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Highlights

• Model that consists on the time-space fractional Fokker-Planck equation with time dependent coeffi-
cients.

• Numerical method for the equation that takes in consideration:
(a) Time dependent coefficients;
(b) Regularity of the solution.
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Numerical solution of a time-space fractional Fokker Planck equation with
variable force field and diffusion

Lúıs Pintoa,1, Erćılia Sousaa,1,∗

aCMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

Abstract

We present a numerical method to solve a time-space fractional Fokker-Planck equation with a space-
time dependent force field F (x, t), and diffusion d(x, t). When the problem being modelled includes time
dependent coefficients, the time fractional operator, that typically appears on the right hand side of the
fractional equation, should not act on those coefficients and consequently the differential equation can not be
simplified using the standard technique of transferring the time fractional operator to the left hand side of the
equation. We take this into account when deriving the numerical method. Discussions on the unconditional
stability and accuracy of the method are presented, including results that show the order of convergence
is affected by the regularity of solutions. The numerical experiments confirm that the convergence of the
method is second order in time and space for sufficiently regular solutions and they also illustrate how the
order of convergence can depend on the regularity of the solutions. In this case, the rate of convergence can
be improved by considering a non-uniform mesh.

Keywords: Fokker-Planck equation, time-dependent force field and diffusion, fractional derivatives, finite
differences, Fourier analysis.

1. The model

Anomalous diffusion problems under the influence of an external force field V ′(x) can be described by
the fractional Fokker-Planck equation [17, 18]

∂u

∂t
(x, t) = 0D

1−α
t

[
d
∂2u

∂x2
(x, t) +

∂[V ′(x)u(x, t)]

∂x

]
, (1)

where d > 0 is the generalized diffusion coefficient and the operator 0D
1−α
t with 0 < α < 1 is the fractional

Riemann-Liouville derivative defined as

0D
1−α
t u(x, t) =

1

Γ(α)

∂

∂t

∫ t

0

(t− s)α−1u(x, s)ds, (2)

where Γ(·) is the Gamma function.
These equations describe the evolution in time of the probability density function of a subdiffusive

process with sublinear in time mean square displacement. For α→ 1, the standard Fokker-Planck equation
is recovered. The fractional operator introduces a convolution integral with a slowly decaying power-law
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kernel, which is typical for memory effects in complex systems. The appearance of the fractional equation
corresponds to the trapping events in the underlying motion of the test particle characteristic of subdiffusive
dynamics [17]. In the general case of 0 < α < 1, initial conditions are strongly persistent due to the slow
decay of the sticking probability of not moving, that is, one observes characteristic cusps at the location of
a sharp initial probability condition, e.g., f0(x) = δ(x− x0) [18].

Equation (1) was first derived in [16] in the framework of continuous-time random walk with heavy-tailed
waiting times and since then this equation became the standard physical equation describing subdiffusive
dynamics. It can also appear written in a different form [17], such as,

0D
α
t u(x, t)− t−α

Γ(1− α)
u(x, 0) = d

∂2u

∂x2
(x, t) +

∂[V ′(x)u(x, t)]

∂x
. (3)

This equation is obtained by applying the fractional operator 0D
α−1
t on both sides of (1) and noting that

0D
α−1
t

(
∂

∂t
u(x, t)

)
= 0D

α
t u(x, t)− t−α

Γ(1− α)
u(x, 0) and 0D

α−1
t

(
0D

1−α
t u(x, t)

)
= u(x, t).

Equation (3) can also be written using the Caputo fractional derivative. This derivative is defined as

C
0 D

α
t u(x, t) :=

1

Γ(1− α)

∫ t

0

∂u

∂t
(x, s)(t− s)−αds.

Since

0D
α
t [u(x, t)− u(x, 0)] = C

0 D
α
t u(x, t)

equation (3) can be written in the simplified form

C
0 D

α
t u(x, t) = d

∂2u

∂x2
(x, t) +

∂[V ′(x)u(x, t)]

∂x
. (4)

A considerable number of numerical methods have been developed for this equation with and without force
field as can be seen, for instance, in [1, 2, 4, 11, 25].

For the case of a time dependent external force, equation (1) has a slightly different form and it was first
derived in [20]. The derivation was based on the generalized master equation with two balance conditions: the
probability conservation in a given state and under transition between different states. The main difference
from equation (1) lies in the fact that the time fractional operator does not act on the time-dependent force.
As a result the force is not modified full-filling the physical requirement that the external time-dependent
force cannot be influenced by the environment.

In recent works the time fractional Fokker-Planck equation with space and time dependent force and
diffusion has been studied, such as, in [7, 13, 14], where physical and stochastic interpretations have been
analyzed. In [7, 24] this type of equation has been discussed using Langevin and continuous-time random
walk approaches, which clarified some of the issues addressed in [6] for time dependent coefficients. For a
space-time dependent field the equation has the form

∂u

∂t
(x, t) = d

∂2

∂x2
(0D

1−α
t u(x, t))− ∂

∂x
(F (x, t)0D

1−α
t u(x, t)), 0 < α < 1. (5)

A more general equation with space time dependent force and diffusion is given by

∂u

∂t
(x, t) =

∂2

∂x2
(d(x, t)0D

1−α
t u(x, t))− ∂

∂x
(F (x, t)0D

1−α
t u(x, t)) + g(x, t), (6)

where d(x, t) > 0 and g(x, t) is a source term. Note that the fractional operator does not act in the time
dependent force and diffusion and consequently we can not return to an equation similar to (4).

In this work, we propose a numerical method for an equation that includes a time and space dependent
force, but additionally to the time fractional operator it also includes a space fractional operator. Let us

3
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define the left and right Riemann-Liouville fractional derivatives of order 1 < β < 2, −∞ ≤ a < b ≤ ∞,
given respectively by

∂βu

∂xβ
(x, t) =

1

Γ(2− β)

∂2

∂x2

∫ x

a

u(ξ, t)(x− ξ)1−βdξ, (1 < β < 2) (7)

∂βu

∂(−x)β
(x, t) =

(−1)2

Γ(2− β)

∂2

∂x2

∫ b

x

u(ξ, t)(ξ − x)1−βdξ, (1 < β < 2). (8)

The spatial fractional operator is given by

∇βu = p
∂βu

∂xβ
+ q

∂βu

∂(−x)β
, p+ q = 1, 1 < β < 2. (9)

The more general equation we study in this work can finally be written as

∂u

∂t
(x, t) = ∇β(d(x, t)0D

1−α
t u(x, t))− ∂

∂x
(F (x, t)0D

1−α
t u(x, t)) + g(x, t). (10)

2. The numerical method

In this section we present the numerical method. We first start by describing the discretisation in time
that includes a discretisation of the time fractional operator. Then we discuss the discretization in space,
that includes a discretisation of the spatial fractional operator.

2.1. Time discretisation

We denote the integral involved in the definition of the time fractional derivative (2) as

Iαu(x, t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(x, s)ds, (11)

that is,

0D
1−α
t u(x, t) =

∂

∂t
Iαu(x, t).

We consider the time discretization 0 = t0 < t1 < t2 < · · · < tn = T and denote ∆tn = tn − tn−1 the
non-uniform time step. The maximum step is denoted by ∆t = max

n
∆tn.

Integrating equation (10) over In = (tn−1, tn), as done in [12, 26], we obtain

u(x, tn)− u(x, tn−1) =

∫

In

∇β
(
d(x, t)

∂

∂t
Iαu(x, t)

)
dt−

∫

In

∂

∂x

(
F (x, t)

∂

∂t
Iαu(x, t)

)
dt

+

∫

In

g(x, t)dt. (12)

In each interval In we approximate the function d(x, t) and F (x, t) by

dn+1/2(x) =
d(x, tn) + d(x, tn−1)

2
, Fn+1/2(x) =

F (x, tn) + F (x, tn−1)

2
.

4
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We get

u(x, tn)− u(x, tn−1) ≈
∫

In

∂

∂t
∇β
(
dn+1/2(x)Iαu(x, t)

)
dt

−
∫

In

∂

∂t

∂

∂x

(
Fn+1/2(x)Iαu(x, t)

)
dt+

∫

In

g(x, t)dt,

= ∇β
(
dn+1/2(x)Iαu(x, tn)

)
−∇β

(
dn+1/2(x)Iαu(x, tn−1)

)

− d

dx

(
Fn+1/2(x)Iαu(x, tn)

)
+

d

dx

(
Fn+1/2(x)Iαu(x, tn−1)

)

+

∫

In

g(x, t)dt.

Regarding time discretisation it remains to discuss how we approximate Iαu(x, tn). In what follows, for
clarity, we omit the x and denote Iαu(tn) := Iαu(x, tn). We consider the non-uniform time step tn =
tn−1 + ∆tn, n > 0. To compute the integral (11) we can approximate the function u by a linear spline
Sn(τ), that is, a piecewise linear interpolation, whose nodes and knots are chosen at tk, k ≤ n, that is,
by doing in a non-uniform mesh a similar approach done for uniform meshes in [3, 21, 23]. Therefore, an
approximation to (11) becomes

Iαu(tn) =
1

Γ(α)

∫ tn

0

Sn(τ)(tn − τ)α−1dτ, (13)

where the spline Sn(τ) interpolates {u(x, tn), k ≤ n} in the interval [0, tn] and is of the form

Sn(τ) =

n∑

k=0

u(x, tk)sk(τ), (14)

with sk(τ), in each interval [tk−1, tk+1], for 1 ≤ k ≤ n− 1, given by

sk(τ) =





τ − tk−1

tk − tk−1
, tk−1 ≤ τ ≤ tk

tk+1 − τ
tk+1 − tk

, tk ≤ τ ≤ tk+1

0 otherwise.

For k = 0 in the interval [0, t1] and for k = n in the interval [tn−1, tn], sk(τ) is of the form respectively

s0(τ) =





t1 − τ
t1 − t0

, t0 ≤ τ ≤ t1

0 otherwise,

sn(τ) =





τ − tn−1

tn − tn−1
, tn−1 ≤ τ ≤ tn

0 otherwise.

Therefore an approximation to Iα, that we denote by Iα, is given by

Iαu(tn) =
1

Γ(2 + α)

n∑

k=0

u(x, tk)an,k, n ≥ 1, (15)

where the an,k are defined by

an,0 = (1 + α)(tn − t0)α +
(tn − t1)1+α − (tn − t0)1+α

∆t1
, (16)

an,n = ∆tαn (17)

5
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and for 1 ≤ k ≤ n− 1, with n ≥ 2,

an,k =
∆tk+1(tn − tk−1)1+α − (∆tk + ∆tk+1)(tn − tk)1+α + ∆tk(tn − tk+1)1+α

∆tk∆tk+1
. (18)

We assume a0,0 = 0.
Note that for α = 1 we get

an,0 = ∆t1, an,k = ∆tk + ∆tk+1, an,n = ∆tn

and the formula (15) matches the trapezian rule to approximate the integral for α = 1, that is given by

I1u(x, t) =

∫ t

0

u(x, s)ds.

We have so far the approximation

u(x, tn)− u(x, tn−1) ≈ ∇β
(
dn+1/2(x)Iαu(x, tn)

)
−∇β

(
dn+1/2(x)Iαu(x, tn−1)

)

− d

dx

(
Fn+1/2(x)Iαu(x, tn)

)
+

d

dx

(
Fn+1/2(x)Iαu(x, tn−1)

)
+

∫

In

g(x, t)dt.

We can re-write that as

u(x, tn)− u(x, tn−1) ≈ 1

Γ(2 + α)

n∑

k=0

an,k∇β
(
dn+1/2(x)u(x, tk)

)

− 1

Γ(2 + α)

n−1∑

k=0

an−1,k∇β
(
dn+1/2(x)u(x, tk)

)
− 1

Γ(2 + α)

n∑

k=0

an,k
d

dx

(
Fn+1/2(x)u(x, tk)

)

+
1

Γ(2 + α)

n−1∑

k=0

an−1,k
d

dx

(
Fn+1/2(x)u(x, tk)

)
+

∫

In

g(x, t)dt.

When α = 1, since Γ(3) = 2 and

an,k − an−1,k = 0, for k = 0, . . . n− 2

an,n−1 − an−1,n−1 = ∆tn

an,n = ∆tn

the numerical method becomes

u(x, tn)− u(x, tn−1) ≈ 1

2

(
∆tn∇β

(
dn+1/2(x)u(x, tn)

)
+ ∆tn∇β

(
dn+1/2(x)u(x, tn−1)

))

−1

2

(
∆tn

d

dx

(
Fn+1/2(x)u(x, tn)

)
+ ∆tn

d

dx

(
Fn+1/2(x)u(x, tn−1)

))
+

∫

In

g(x, t)dt.

This method is similar to a Crank-Nicolson discretisation if we approximate the integral of the source term
by ∫

In

g(x, t)dt ≈ 1

2
(g(x, tn) + g(x, tn−1)).

In the next section we discuss the spatial discretization.

6
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2.2. The spatial discretization
We assume the domain is the real line, and that additionally to the initial condition

u(x, 0) = u0(x), x ∈ IR

we have
lim
|x|→∞

u(x, t) = 0.

We consider a uniform mesh, xj , j ∈ ZZ, where xj+1 = xj + ∆x. We approximate the fractional derivatives
by the method discussed in [21, 22] for a uniform mesh. This approximation is obtained by approximating
the integral involved in the definition of the fractional derivatives through a linear spline in order to obtain a
second order approximation for the fractional operator similarly to what has been described in the previous
section in relation to the approximation of the time fractional integral. Additionally, the second order
derivative outside the integral is approximated by a central second order approximation.

The approximations for the left and right fractional derivatives, defined in (7) and (8) are in this way
given by the formulas

δβl u(xj , t)

∆xβ
,

δβr u(xj , t)

∆xβ

respectively, where the discrete operators are defined by

δβl u(xj , t) =
1

Γ(4− β)

∞∑

m=−1

qmu(xj−m, t), (19)

δβr u(xj , t) =
1

Γ(4− β)

∞∑

m=−1

qmu(xj+m, t). (20)

The coefficients qm are defined as

qm =





bm−1 − 2bm + bm+1, m ≥ 1
−2b0 + b1, m = 0
b0, m = −1,

(21)

where

bm =





(m+ 1)3−β − 2m3−β + (m− 1)3−β , m ≥ 1

1, m = 0.
(22)

Hence, we define the discrete operator δβu, that approximates ∇βu, as

δβu(xj , t) = pδβl u(xj , t) + qδβr u(xj , t). (23)

When β = 2 this operator is the central second order operator

δ2u(xj , t) = u(xj+1, t)− 2u(xj , t) + u(xj−1, t).

To approximate the first order derivative, included in equation (10), we use the central approximation,
that is,

∆0u(xj , t) = u(xj+1, t)− u(xj−1, t).

Let us denote Unj the approximation function of u(xj , tn). We get the following numerical method

Unj − Un−1
j =

1

Γ(2 + α)∆xβ

n∑

k=0

an,kδ
β
(
d
n+1/2
j Ukj

)

− 1

Γ(2 + α)∆xβ

n−1∑

k=0

an−1,kδ
β
(
d
n+1/2
j Ukj

)
− 1

Γ(2 + α)2∆x

n∑

k=0

an,k∆0

(
F
n+1/2
j Ukj

)

+
1

Γ(2 + α)2∆x

n−1∑

k=0

an−1,k∆0

(
F
n+1/2
j Ukj

)
+

∫

In

g(xj , t)dt, (24)

7
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where
d
n+1/2
j := dn+1/2(xj) F

n+1/2
j := Fn+1/2(xj).

Or more specifically

Unj − Un−1
j =

1

Γ(2 + α)Γ(4− β)∆xβ

n∑

k=0

an,k

[
p

∞∑

m=−1

qmd
n+1/2
j−m Ukj−m + q

∞∑

m=−1

qmd
n+1/2
j+m Ukj+m

]

− 1

Γ(2 + α)Γ(4− β)∆xβ

n−1∑

k=0

an−1,k

[
p

∞∑

m=−1

qmd
n+1/2
j−m Ukj−m + q

∞∑

m=−1

qmd
n+1/2
j+m Ukj+m

]

− 1

Γ(2 + α)2∆x

n∑

k=0

an,k

[
F
n+1/2
j+1 Ukj+1 − Fn+1/2

j−1 Ukj−1

]

+
1

Γ(2 + α)2∆x

n−1∑

k=0

an−1,k

[
F
n+1/2
j+1 Ukj+1 − Fn+1/2

j−1 Ukj−1

]
+

∫

In

g(xj , t)dt. (25)

This approximation can be also applied to the problem defined in an interval Ω = (a, b) and where we
have u(x, t) = 0 for x /∈ Ω. In this case we can consider the discretization space as

xj = a+ j∆x, ∆x =
b− a
N

.

The infinite sums involved in the numerical method can be written as finite sums and the numerical method
becomes

Unj − Un−1
j =

1

Γ(2 + α)Γ(4− β)∆xβ

n∑

k=0

an,k

[
p

j∑

m=−1

qmd
n+1/2
j−m Ukj−m + q

N−j∑

m=−1

qmd
n+1/2
j+m Ukj+m

]

− 1

Γ(2 + α)Γ(4− β)∆xβ

n−1∑

k=0

an−1,k

[
p

j∑

m=−1

qmd
n+1/2
j−m Ukj−m + q

N−j∑

m=−1

qmd
n+1/2
j+m Ukj+m

]

− 1

Γ(2 + α)2∆x

n∑

k=0

an,k

[
F
n+1/2
j+1 Ukj+1 − Fn+1/2

j−1 Ukj−1

]

+
1

Γ(2 + α)2∆x

n−1∑

k=0

an−1,k

[
F
n+1/2
j+1 Ukj+1 − Fn+1/2

j−1 Ukj−1

]
+

∫

In

g(xj , t)dt.

Additionally, to implement the numerical method, a finite computational domain needs to be considered.
The matricial form is given by

(I− a1,1B
1)U1 = (I + a1,0B

1)U0 + G1, (26)

(I− an,nBn)Un = IUn−1 +

n−1∑

k=0

(an,k − an−1,k)BnUk + Gn, n > 1, (27)

where U0 is the initial vector U0 = [U0
1 , . . . , U

0
N−1]T , that is, U0

j := u0(xj); the matrix Bn, n ≥ 1 is such
that

Bn = Bn
1 + Bn

2 ,

where Bn
1 := (Bn1 )i,j is the full (N − 1)× (N − 1) matrix associated with the fractional diffusion operator,

that is,

(Bn1 )j,j+m = pq−md
n+1/2
j+m /(Γ(2 + α)Γ(4− β)∆xβ), m = −j + 1, . . . ,−2, (28)

(Bn1 )j,j+m = (pq−md
n+1/2
j+m + qqmd

n+1/2
j+m )/(Γ(2 + α)Γ(4− β)∆xβ), m = −1, 0, 1, (29)

(Bn1 )j,j+m = qqmd
n+1/2
j+m /(Γ(2 + α)Γ(4− β)∆xβ), m = 2, . . . , N − j + 1. (30)

8
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The matrix Bn
2 := (Bn2 )i,j associated with the force field is a tridiagonal (N − 1)× (N − 1) matrix given

by,

(Bn2 )j,j+1 = −
F
n+1/2
j+1

2∆xΓ(2 + α)
, (Bn2 )j,j = 0, (Bn2 )j,j−1 =

F
n+1/2
j−1

2∆xΓ(2 + α)
.

The vector Gn contains the values of the integral of the source term in In. The integral of the source term
is computed using a quadrature rule that can be the trapezium formula or, in the case of a discontinuity at
the initial point t = t0, the middle point rule.

The non-locality character of fractional derivatives in time and space leads to a numerical method
with increasing storage requirements and computational costs when compared with numerical methods for
differential equations with integer order derivatives. The increase of storage requirements is directly related
to the time fractional derivative where all the previous time levels need to be considered at each time.
Regarding the fractional space derivatives, they lead to dense matrices, although the coefficients of the
approximations of the fractional derivatives, which are the entries of those matrices, converges towards zero
very quickly for all β. To solve the linear systems (26)–(27) a direct method can be used. For one dimensional
problems this numerical approach presents no significant difficulties regarding the computational costs or
storage requirements. However, for a higher dimensional setting these aspects will require more attention.

3. Convergence analysis

In this section we discuss properties related to the convergence of the numerical method, namely, con-
sistency of the approximations of the fractional operators and stability properties of the numerical method.
We start with consistency and will focus our attention in how the regularity of the solution in relation to
time affects the consistency of the time fractional operator.

3.1. Accuracy of the numerical method

The local truncation error for the numerical method (25), for the particular case, α = 1 and β = 2, is
know to be second order, that is, O(∆t2 + ∆x2), when the solution is C4(IR) in space and C2(0, T ) in time,
that is, u ∈ C4,2(IR× (0, T )).

For the fractional time integral we have the following result.

Theorem 1. [3](Order of accuracy of the approximation for the time fractional integral): Let u ∈ C2(0, tn).
Then there is a constant Cα that depends only on α such that

|Iαu(tn)− Iαu(tn)| ≤ Cα sup
t∈(0,tn)

|u′′(t)|tαn∆t2.

The next result concerns the approximation of the spacial left fractional Riemann-Liouville operator.

Theorem 2. [22] (Order of accuracy of the approximation for the left fractional derivative): Let u ∈
C(4)(IR) and such that u(4)(x) = 0, for x ≤ a, being a a real constant. We have that

∂βu

∂xβ
(xj)−

δβl u

∆xβ
(xj) = ε1(xj) + ε2(xj),

where
|ε1(xj)| ≤ C1∆x2 |ε2(xj)| ≤ C2∆x2,

and C1 and C2 are independent of ∆x.

A similar result is valid for the right fractional Riemann-Liouville derivative. The previous result can
also be proved by assuming that u is a function with sufficiently many continuous derivatives that vanish at
infinity in an appropriate manner, see [21].

If the regularity of the function decreases then the order of accuracy diminishes. We will study this
aspect, in particular, for the time discretization, similarly to what has been done in [23] for a weakly
singular kernel. We have the following result.
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Theorem 3. Let u ∈ C1[0, tn] ∩ C2(0, tn) satisfying u = O(tα+1) as t→ 0+. Then, there is a constant Cα
that depends only on α such that

|Iαu(tn)− Iαu(tn)| ≤ Cαtαn∆t1+α.

Proof: Let u ∈ C2(tk−1, tk). For ξ ∈ [tk−1, tk]

|sk(ξ)− u(ξ)| ≤ 1

2
|u′′(ξk)|∆t2k, tk−1 ≤ ξk ≤ tk.

We have

Iαu(tn)− Iαu(tn) =
1

Γ(α)

n∑

k=1

∫ tk

tk−1

(sk(τ)− u(τ))(tn − τ)α−1dτ

and

|Iαu(tn)− Iαu(tn)| ≤ 1

Γ(α)

n∑

k=1

∫ tk

tk−1

1

2
|u′′(ξk)|∆t2k(tn − τ)α−1dτ

Therefore, using the mean integral value theorem, for ηk ∈ (tk−1, tk) and ∆t = maxk ∆tk,

|Iαu(tn)− Iαu(tn)| ≤ 1

2Γ(α)

[∫ t1

t0

∆t21O(∆tα−1
1 )(tn − τ)α−1dτ

+∆t2
n∑

k=2

|u′′(ηk)| 1

2Γ(α)

∫ tk

tk−1

(tn − τ)α−1dτ

]

≤ Cαt
α
n∆tα+1.

�

Additionally we have the following result, which proof follows the same steps of the previous proof.

Theorem 4. Let u ∈ C0[0, tn] ∩ C2(0, tn) satisfying u = O(tα) as t → 0+. Then, there is a constant Cα
that depends only on α such that

|Iαu(tn)− Iαu(tn)| ≤ Cαtαn∆tα.

These results will be confirmed by the numerical experiments in the section titled numerical results.

3.2. Fourier decomposition of the error

For simplicity in this section we assume the source term g(x, t) = 0. Our aim is to prove that the
numerical method is unconditionally stable for all 0 < α ≤ 1 and 1 < β ≤ 2.

When α = 1 and β = 2 we have the following method

Unj − Un−1
j =

1

2
∆tn

(
δ2(d

n+1/2
j Unj ) + δ2(d

n+1/2
j Un−1

j )
)

−1

2
∆tn

(
∆0(F

n+1/2
j Unj ) + ∆0(F

n+1/2
j Un−1

j )
)
.

This method is equivalent to a Crank-Nicolson discretization in time and central differences in space for
the first and second order derivatives. It is known to be a second order accurate numerical method and
unconditionally stable [10].

For the particular case, α = 1, 1 < β < 2 and the fractional operator (9) with p = 1, q = 0, where the
force field F (x, t) = 0 and d(x, t) constant, the numerical method is also unconditionally stable, see [22].
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In order to derive stability conditions for a more general case we apply the von Neumann analysis or
Fourier analysis. Fourier analysis assumes that we have a solution defined in the whole real line. It is also
applied to problems defined in finite domains with periodic boundary conditions since the solution is seen
as a periodic function in IR.

If unj is the exact solution u(xj , tn), let

enj = Unj − unj (31)

be the error at time level n in mesh point j. Considering the numerical method (24) and inserting equation
(31) into that equation leads to

enj − en−1
j =

1

Γ(2 + α)∆xβ

n∑

k=0

an,kδ
β
(
d
n+1/2
j ekj

)
− 1

Γ(2 + α)∆xβ

n−1∑

k=0

an−1,kδ
β
(
d
n+1/2
j ekj

)

− 1

Γ(2 + α)2∆x

n∑

k=0

an,k∆0

(
F
n+1/2
j ekj

)
+

1

Γ(2 + α)2∆x

n−1∑

k=0

an−1,k∆0

(
F
n+1/2
j ekj

)
. (32)

Assuming a uniform mesh in space and time, the force field and the diffusion only dependent on time, we
get

enj − en−1
j =

an,nd
n+1/2

Γ(2 + α)∆xβ
δβenj +

dn+1/2

Γ(2 + α)∆xβ

n−1∑

k=0

(an,k − an−1,k)δβekj

− an,nF
n+1/2

Γ(2 + α)2∆x
∆0e

n
j −

Fn+1/2

Γ(2 + α)2∆x

n−1∑

k=0

(an,k − an−1,k)∆0e
k
j .

We can re-write this method as

enj −
an,nd

n+1/2

Γ(2 + α)∆xβ
δβenj +

an,nF
n+1/2

Γ(2 + α)2∆x
∆0e

n
j

= en−1
j +

dn+1/2

Γ(2 + α)∆xβ

n−1∑

k=0

cn,kδ
βekj −

Fn+1/2

Γ(2 + α)2∆x

n−1∑

k=0

cn,k∆0e
k
j ,

with cn,k = an,k − an−1,k. We have

cn,k = ∆tα[(n− k + 1)1+α − 3(n− k)1+α + 3(n− k − 1)1+α − (n− k − 2)1+α],

1 ≤ k ≤ n− 2,

cn,n−1 = an,n−1 − an−1,n−1

= ∆tα(21+α − 3),

cn,0 = an,0 − an−1,0

= ∆tα[(1 + α)(nα − (n− 1)α)− n1+α + 2(n− 1)1+α − (n− 2)1+α], n ≥ 2.

We can simplify the notation of the constants cn,k by writing

enj −
∆tαdn+1/2

Γ(2 + α)∆xβ
δβenj +

∆tαFn+1/2

Γ(2 + α)2∆x
∆0e

n
j

= en−1
j +

dn+1/2∆tα

Γ(2 + α)∆xβ

n∑

l=1

clδ
βen−lj − Fn+1/2∆tα

Γ(2 + α)2∆x

n∑

l=1

cl∆0e
n−l
j , (33)

where, for n ≥ 2,

c1 = 21+α − 3,

cl = (l + 1)1+α − 3l1+α + 3(l − 1)1+α − (l − 2)1+α, l = 2, . . . , n− 1,

cn = (1 + α)(nα − (n− 1)α)− n1+α + 2(n− 1)1+α − (n− 2)1+α. (34)
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Remarks: For the case k = 0 and n = 1, the sum of the constants cl in (33) is equal to a s∗ =
an,k − an−1,k = a1,0− a0,0 = ∆tα[(1 +α)nα− n1+α] = α. Note also that as we change n, the cl’s need to be
redefined according to (34).

The von Neumann analysis assumes that any finite mesh function, such as, the error enj will be decom-
posed into a Fourier series as

enj =
∑

p

κnpe
ijξp∆x,

where κnp is the amplitude of the p-th harmonic and the product ξp∆x is often called the phase angle
φ = ξp∆x.

Considering a single mode κneijφ, its time evolution is determined by the same numerical scheme as the
error enj . The stability conditions will be satisfied if the amplitude of any error harmonic κn does not grow
in time [5, 8], that is, if the ratio

G(φ) =
∣∣κn+1/κn

∣∣ ≤ 1, for all φ.

If |G(φ)| > 1 for some φ, then the solution grows to infinity and the mode is unstable. An arbitrary mode
can be singled out and stability requires that no harmonic should be allowed to increase in time without
bound. Hence inserting a representation of a single mode κneijφ into a numerical scheme we obtain stability
conditions. By substituting enj by κneijφ we get

κneijφ − κn ∆tαdn+1/2

Γ(2 + α)∆xβ
δβeijφ + κn

∆tαFn+1/2

Γ(2 + α)2∆x
∆0e

ijφ

= κn−1eijφ +
dn+1/2∆tα

Γ(2 + α)∆xβ

n∑

l=1

clκ
n−lδβeijφ − Fn+1/2∆tα

Γ(2 + α)2∆x

n∑

l=1

clκ
n−l∆0e

ijφ. (35)

Let

να = Fn+1/2 ∆tα

∆x
µαβ = dn+1/2 ∆tα

∆xβ
.

Dividing (35) by κn−1 we get

κn

κn−1

(
eijφ −

µαβ
Γ(2 + α)

δβeijφ +
να

2Γ(2 + α)
∆0e

ijφ

)

= eijφ +
µαβ

Γ(2 + α)

n∑

l=1

cl
κn−l

κn−1
δβeijφ − να

Γ(2 + α)2

n∑

l=1

cl
κn−l

κn−1
∆0e

ijφ. (36)

We have

δβeijφ = pδβl e
ijφ + qδβr e

ijφ

= p
1

Γ(4− β)

∞∑

m=−1

qme
ijφ(e−imφ) + q

1

Γ(4− β)

∞∑

m=−1

qme
ijφ(eimφ)

=
eijφ

Γ(4− β)

(
(p+ q)

∞∑

m=−1

qm cos(mφ) + (q − p)i
∞∑

m=−1

qm sin(mφ)

)
(37)

and
∆0e

ijφ = eijφ(eiφ − e−iφ) = eijφ2i sin(φ). (38)
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Therefore from (36), (37) and (38) we get

κn

κn−1

(
1−

µαβ
Γ(2 + α)Γ(4− β)

(
(p+ q)

∞∑

m=−1

qm cos(mφ) + (q − p)i
∞∑

m=−1

qm sin(mφ)

)

+
να

2Γ(2 + α)
2i sin(φ)

)

= 1 +
µαβ

Γ(2 + α)Γ(4− β)

n∑

l=1

cl
κn−l

κn−1

(
(p+ q)

∞∑

m=−1

qm cos(mφ) + (q − p)i
∞∑

m=−1

qm sin(mφ)

)

− να

Γ(2 + α)2

n∑

l=1

cl
κn−l

κn−1
2i sin(φ). (39)

Let

A =
µαβ

Γ(2 + α)Γ(4− β)

(
(p+ q)

∞∑

m=−1

qm cos(mφ) + (q − p)i
∞∑

m=−1

qm sin(mφ)

)

− να

Γ(2 + α)
i sin(φ). (40)

We can write (39) in the simplified form

κn

κn−1
(1−A) = 1 +A

n∑

l=1

cl
κn−l

κn−1
. (41)

In what follows we present theoretical results for some particular cases.

Theorem 5. For α = 1 and 1 < β < 2, the method (24) is von Neumann unconditionally stable.

Proof: For α = 1, from equation (39) and for κn = Gκn−1 we get

G

(
1−

µαβ
Γ(2 + α)Γ(4− β)

(
(p+ q)

∞∑

m=−1

qm cos(mφ) + (q − p)i
∞∑

m=−1

qm sin(mφ)

)

+
να

Γ(2 + α)
i sin(φ)

)

= 1 +
µαβ

Γ(2 + α)Γ(4− β)

(
(p+ q)

∞∑

m=−1

qm cos(mφ) + (q − p)i
∞∑

m=−1

qm sin(mφ)

)

− να

Γ(2 + α)
i sin(φ) (42)

Therefore, we have

G =
1 +A

1−A,

where A is defined by (40). If the real part of A is negative then |G| ≤ 1 for all φ, since |1 + A| ≤ |1− A|.
The real part of A is negative since we have [22],

∞∑

m=−1

qm cos(mφ) ≤ 0

and therefore the method is unconditionally stable. �
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Lemma 6. The coefficients cl defined in (34) satisfy:

−1 < c1 < 1, |cl+1| < |cl| and − 1 < cl < 0, l ≥ 2 (43)

c1 +

n−1∑

l=2

cl + cn = −1 + (1 + α)(nα − (n− 1)α) (44)

−1 ≤
n∑

l=1

cl ≤ 1 and lim
n→∞

n∑

l=1

cl = −1 (45)

Proof: The second inequality of (43) can be proved by developing into a series the fractional power
terms that appear in the constants cl and the other two inequalities are straightforward.

The equality (44) comes immediately after noting that

n−1∑

l=2

cl = 2− 21+α + (n− 2)1+α − 2(n− 1)1+α + nα.

Lastly, equality (45) follows from (43), (44) and the fact that

lim
n→∞

(nα − (n− 1)α) = 0.

�

Theorem 7. For 0 < α < α∗, where α∗ = log(3)/log(2) − 1 ≈ 0.585 and 1 < β < 2, the method (24) is
von Neumann unconditionally stable for the case of a free force, that is, F (x, t) = 0 and for a symmetric
fractional operator (9), that is, when p = q.

Proof: By assuming that κn = Gκn−1, for all n, [8, 25], from (39) we get a closed form for the
amplification factor G(φ). We have κn = Gκn−1 and κn−l = G−l+1κn−1. Therefore

G

(
1−

µαβ
Γ(2 + α)Γ(4− β)

(
(p+ q)

∞∑

m=−1

qm cos(mφ) + (q − p)i
∞∑

m=−1

qm sin(mφ)

)

+
να

Γ(2 + α)
i sin(φ)

)

= 1 +
µαβ

Γ(2 + α)Γ(4− β)

n∑

l=1

clG
−l+1

(
(p+ q)

∞∑

m=−1

qm cos(mφ) + (q − p)i
∞∑

m=−1

qm sin(mφ)

)

− να

Γ(2 + α)

n∑

l=1

clG
−l+1i sin(φ). (46)

From equation (46) and for A defined by (40) we have

G(1−A) = 1 +A

n∑

l=1

clG
−l+1, (47)

where the constants cl are defined by (34). If for all φ the parameter G that satisfies this equation is less
than one, then the method is unconditionally stable.

If we multiply by Gn−1 equation (47), we get

Gn(1−A) = Gn−1 +A

n∑

l=1

clG
n−l, (48)
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that is,

Gn − 1 +Ac1
1−A Gn−1 − A

1−A (c2G
n−2 + · · ·+ cn−2G

2 + cn−1G+ cn) = 0. (49)

The roots G∗ of the polynomial (49) verify [15]

|G∗| ≤ max

{
1,

∣∣∣∣
1 +Ac1
1−A

∣∣∣∣+

∣∣∣∣
A

1−A

∣∣∣∣
n∑

l=2

|cn|
}
.

For the case under discussion, that is, να = 0 (free force case) and p = q (symmetric spatial fractional
operator) there is no imaginary part in A defined by (40). Additionally, if c1 = 21+α − 3 ≤ 0 we have
1 + c1A ≥ 0, because A ≤ 0. We have cl ≤ 0 for all l ≥ 2, see Lemma 6, and therefore

∣∣∣∣
1 +Ac1
1−A

∣∣∣∣+

∣∣∣∣
A

1−A

∣∣∣∣
n∑

l=2

|cn| =
1 +Ac1
1−A +

A

1−A
n∑

l=2

cl =
1

1−A +
A

1−A
n∑

l=1

cl.

Since A ≤ 0 and

n∑

l=1

cl is less than one in absolute value, then 1 +A

n∑

l=1

cl ≤ 1−A. Therefore |G∗| ≤ 1. �

In [9] stability results, in the L∞ norm, are proved under similar restrictions for α, for a simpler case
with β = 2 and non-dependent time coefficients.

Now we turn to the general case 0 < α < 1 and 1 < β < 2. To analyse if the numerical method is von
Neumann stable, we need to check if the roots of the polynomial

Gn − 1 +Ac1
1−A Gn−1 − A

1−A (c2G
n−2 + · · ·+ cn−2G

2 + cn−1G+ cn) = 0 (50)

are in modulus less than one. The roots of this polynomial are the same as the eigenvalues of the companion
matrix [15],

CG =




1 +Ac1
1−A

Ac2
1−A . . .

Acn−1

1−A
Acn

1−A
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0



.

Therefore, if the eigenvalues of the matrix CG are all less or equal to one, for 0 < α < 1 and 1 < β < 2,
the method (24) is unconditionally stable. The companion matrix CG depends on p, q, α, β, να, µαβ , φ and we
have checked computationally that the eigenvalues of CG are less than one for a big set of values, indicating
the method is unconditionally stable for 0 < α ≤ 1 and 1 < β ≤ 2. This is also confirmed by the numerical
tests in the next section. We illustrate in Figures 1(a) and 1(b) the eigenvalues of the matrix CG for fixed
values of µαβ , ν

α, α, β and a fixed φ. Note that the value φ = π corresponds to the highest frequency
resolvable in the mesh and that να is similar to the Courant number. In Figures 1(a) and 1(b) we have
considered n = 20 and n = 200 respectively. If, for instance, we consider n = 500 we obtain a similar figure
to 1(b), with a more dense black region, since the number of eigenvalues increases.

4. Numerical results

We consider the one-dimensional fractional Fokker-Planck equation,

ut(x, t)−∇β(d(x, t) 0D
1−α
t u(x, t)) + (F (x, t) 0D

1−α
t u(x, t))x = g(x, t), x ∈ Ω× (0, T ],

for 0 < α ≤ 1 and 1 < β ≤ 2.
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Figure 1: Eigenvalues for the companion matrix CG for p = 0.2 (q = 1 − p) and a range of values for α, β, να, µαβ , φ, namely,

α = 0.1, 0.5, 0.9, β = 1.1, 1.5, 1.9, να = −2,−1,−0.25, 0.25, 1, 2, µαβ = 0.25, 0.5, 1, 2, φ = −π,−π/2, π/2, π. The red dots denote

the maximum value for each fixed value of α, β, να, µαβ , φ. The blue circle is the unitary circle. (a) n = 20; (b) n = 200.

For the numerical simulations we assume Ω = (a, b) and a uniform mesh in space, that is, xj = a+ j∆x,
for j = 0, . . . , N , with xN = b. In time, we consider the case of a uniform mesh, and also an example with a
non-uniform mesh. For the non-uniform case we have tn = tn−1 + ∆tn, for n = 0, . . . ,M , with tM = T and
in the cases of a uniform mesh we denote the time step by ∆t. The error is defined by,

error = max
n=1,...M


∆x

N−1∑

j=1

(Unj − u(xj , tn))2




1/2

,

where Unj is the numerical approximation of the exact solution u(xj , tn).

Problem 1. In this first example we have a diffusion parameter that depends on x and a force that
depends on x and t. We assume Ω = (0, 2), T = 1, d(x, t) = x, F (x, t) = x + sin(t), and the source term
g(x, t) and initial solution u0(x) are defined, such that, the exact solution of this problem is given by

u(x, t) = t2+αx4(2− x)4.

The problem can be interpreted as defined in the real line with

u(x, t) = 0 x /∈ Ω.

In this case, the regularity of the solution is in space C3(IR) and in time is C2([0, T ]), that is, C3,2(IR×[0, T ]).
It is shown that the order of convergence of the numerical method is second order accurate in space and
time in Table 1 and Table 2 respectively. We also observe in Table 2 that the time steps we have considered
are significantly larger when compared with the space step and this is in agreement with the discussion in
Section 3 about the unconditional stability of the numerical method. This can also be verified in the next
example.

Problem 2. We assume β = 2 and therefore we do not have a non-local operator in space, only in time.

We consider Ω = (0, 1), T = 1, d(x, t) = Γ(3+α)
2 , F (x, t) = x+ sin(t), and define the source term g(x, t) and

the initial condition u0(x), such that, the exact solution is given by

u(x, t) = tα+2ex.
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β ∆x = 2/40 ∆x = 2/80 Rate
α = 0.2 1.2 2.5514e-03 6.3422e-04 2.0082

1.4 2.3981e-03 5.9864e-04 2.0021
1.6 2.3289e-03 5.8877e-04 1.9838
1.8 2.1534e-03 5.5150e-04 1.9652
2.0 1.5200e-03 3.7890e-04 2.0041

α = 0.4 1.2 2.4934e-03 6.1983e-04 2.0082
1.4 2.3241e-03 5.8009e-04 2.0024
1.6 2.2499e-03 5.6870e-04 1.9841
1.8 2.0868e-03 5.3435e-04 1.9654
2.0 1.4869e-03 3.7061e-04 2.0043

α = 0.6 1.2 2.4316e-03 6.0450e-04 2.0081
1.4 2.2426e-03 5.5975e-04 2.0023
1.6 2.1632e-03 5.4681e-04 1.9841
1.8 2.0129e-03 5.1552e-04 1.9651
2.0 1.4474e-03 3.6075e-04 2.0044

α = 0.8 1.2 2.3612e-03 5.8708e-04 2.0079
1.4 2.1462e-03 5.3580e-04 2.0020
1.6 2.0626e-03 5.2155e-04 1.9836
1.8 1.9276e-03 4.9395e-04 1.9644
2.0 1.3992e-03 3.4874e-04 2.0043

α = 1.0 1.2 2.2723e-03 5.6519e-04 2.0074
1.4 2.0240e-03 5.0555e-04 2.0013
1.6 1.9413e-03 4.9119e-04 1.9826
1.8 1.8264e-03 4.6846e-04 1.9630
2.0 1.3397e-03 3.3396e-04 2.0042

Table 1: Results concerning Problem 1. Convergence rate in space for different values of α and β with ∆t = 1/800. The
solution is regular enough in space and therefore we get second order convergence.

In Table 3 and Table 4 we observe second order convergence in space and time respectively. The regularity
of the solutions is C∞,2([0, 1]× [0, T ]).

Problem 3. In this example we consider a problem with a solution with lower regularity than the

previous problem. We assume, Ω = (0, 2), T = 1, d(x, t) = Γ(5−β)
2 , F (x, t) = x + sin(t), and define g(x, t)

and u0(x), such that, the exact solution is given by

u(x, t) = t1+α4x2(2− x)2.

We have a fractional operator also in space and the problem can be interpreted as defined in the real line
with

u(x, t) = 0 x /∈ Ω.

In this case the regularity of the solution in time is C1([0, T ]). We observe, in Table 5, that the convergence
is approximately of order ∆tα+1. This is in agreement with the discussion in Section 3.1 and in particular
with Theorem 3.

Problem 4. In this example we further reduce the regularity of the solution in time and we assume
β = 2. This example is also included in [12]. We consider Ω = (0, π), T = 1, d(x, t) = 1, F (x, t) = x+sin(t),
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β ∆t = 1/10 ∆t = 1/20 Rate
α = 0.2 1.2 2.1073e-03 5.2759e-04 1.9979

1.4 1.9439e-03 4.8647e-04 1.9985
1.6 1.7778e-03 4.4470e-04 1.9991
1.8 1.6523e-03 4.1333e-04 1.9991
2.0 1.5187e-03 3.8038e-04 1.9974

α = 0.4 1.2 2.1073e-03 5.2759e-04 1.9979
1.4 1.9439e-03 4.8647e-04 1.9985
1.6 1.7778e-03 4.4470e-04 1.9991
1.8 1.6523e-03 4.1333e-04 1.9991
2.0 1.5187e-03 3.8038e-04 1.9974

α = 0.6 1.2 2.0842e-03 5.1786e-04 2.0089
1.4 1.9798e-03 4.9151e-04 2.0101
1.6 1.8761e-03 4.6536e-04 2.0113
1.8 1.8082e-03 4.4850e-04 2.0114
2.0 1.7278e-03 4.2896e-04 2.0100

α = 0.8 1.2 2.1725e-03 5.4257e-04 2.0015
1.4 2.0760e-03 5.1799e-04 2.0028
1.6 1.9838e-03 4.9440e-04 2.0045
1.8 1.9284e-03 4.8030e-04 2.0054
2.0 1.8694e-03 4.6585e-04 2.0046

α = 1.0 1.2 2.3783e-03 5.9608e-04 1.9963
1.4 2.2814e-03 5.7129e-04 1.9977
1.6 2.1895e-03 5.4760e-04 1.9994
1.8 2.1348e-03 5.3343e-04 2.0007
2.0 2.0936e-03 5.2321e-04 2.0005

Table 2: Results concerning Problem 1. Convergence rate in time for different values of α and β with ∆x = 2/800. The solution
is regular enough in time and therefore we get second order convergence.

α ∆x = 1/10 ∆x = 1/20 Rate
0.2 6.5175e-04 1.6259e-04 2.0031
0.4 5.2336e-04 1.3062e-04 2.0025
0.6 4.0707e-04 1.0163e-04 2.0019
0.8 3.0495e-04 7.6154e-05 2.0016
1.0 2.1766e-04 5.4362e-05 2.0014

Table 3: Results concerning Problem 2. Convergence rate in space for different values of α and β = 2 with ∆t = 1/800. The
solution is regular enough in space and therefore we get second order convergence.

and define g(x, t) and u0(x), such that, the exact solution of this problem is given by

u(x, t) =

(
1 +

tα

Γ(1 + α)

)
sin(x).

In this example, we also include the results we obtain when a nonuniform mesh in time is considered, that
is, we assume tn = (n/M)γT , where γ ≥ 1. Note that for γ = 1 we obtain a uniform mesh.

For this solution we see that ut = O(tα−1) as t→ 0 and therefore it presents a singularity behavior. The
regularity of the solution is C∞,0([0, π] × [0, T ]). For a uniform mesh the order of convergence in time is
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α ∆t = 1/10 ∆t = 1/20 Rate
0.2 6.5734e-04 1.6444e-04 1.9991
0.4 6.1647e-04 1.5346e-04 2.0061
0.6 5.5681e-04 1.3844e-04 2.0079
0.8 5.0006e-04 1.2430e-04 2.0083
1.0 4.5011e-04 1.1194e-04 2.0076

Table 4: Results concerning Problem 2. Convergence rate in time for different values of α and β = 2 with ∆x = 1/200. The
solution is regular enough in time and therefore we get second order convergence.

β ∆t = 1/10 ∆t = 1/20 Rate
α = 0.2 1.2 7.9734e-02 3.5276e-02 1.1765

1.4 7.8981e-02 3.4822e-02 1.1815
1.6 7.8515e-02 3.4563e-02 1.1837
1.8 7.8275e-02 3.4431e-02 1.1848
2.0 7.8223e-02 3.4397e-02 1.1853

α = 0.4 1.2 3.5666e-02 1.4085e-02 1.3404
1.4 3.4561e-02 1.3641e-02 1.3411
1.6 3.3930e-02 1.3390e-02 1.3414
1.8 3.3608e-02 1.3261e-02 1.3417
2.0 3.3522e-02 1.3225e-02 1.3419

α = 0.6 1.2 1.5247e-02 5.3238e-03 1.5180
1.4 1.4558e-02 5.1283e-03 1.5052
1.6 1.4161e-02 5.0139e-03 1.4979
1.8 1.3955e-02 4.9541e-03 1.4941
2.0 1.3896e-02 4.9371e-03 1.4929

α = 0.8 1.2 5.0490e-03 1.5836e-03 1.6728
1.4 4.8284e-03 1.4829e-03 1.7031
1.6 4.6975e-03 1.4564e-03 1.6895
1.8 4.6283e-03 1.4423e-03 1.6821
2.0 4.6077e-03 1.4385e-03 1.6795

α = 1.0 1.2 3.7635e-03 9.4709e-04 1.9905
1.4 2.7431e-03 6.9172e-04 1.9876
1.6 2.1755e-03 5.5022e-04 1.9833
1.8 1.8495e-03 4.6987e-04 1.9768
2.0 1.6716e-03 4.2669e-04 1.9700

Table 5: Results concerning Problem 3. Convergence rate in time for different values of α and β with ∆x = 2/800. The
solution is not regular enough in time and therefore we get approximately 1 + α order of convergence. This is in agreement
with Theorem 3.

approximately O(∆tα). This is according to the analysis done in Section 3.1 and in particular with Theorem
4. A non-uniform mesh improves the order of convergence as expected. In Table 6 and 7 we compare the
performance of a non-uniform mesh versus a uniform mesh. In Table 8 we consider a very small time step
to see that the method is second order convergent in space.

Problem 5. In order to observe the dynamical behavior of the fractional Fokker-Planck equation with
a time dependent force, we consider equation (10) without the source term, for p = q, and with the initial
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M α = 0.25 Rate α = 0.50 Rate α = 0.75 Rate
80 5.2235e-01 - 1.1051e-01 - 1.5103e-02 -
160 4.6086e-01 0.18071 8.2666e-02 0.41888 9.3432e-03 0.69288
320 4.0466e-01 0.18761 6.1090e-02 0.43634 5.7081e-03 0.71089
640 3.5374e-01 0.19404 4.4725e-02 0.44985 3.4851e-03 0.71184

Table 6: Results concerning Problem 4. Convergence rate in time for different values of α and β = 2 with ∆x = π/5120 and
γ = 1. Uniform time step. The solution is not regular enough in time. We have approximately α order convergence. This is in
agreement with Theorem 4.

M γ = 1.0 Rate γ = α−1 = 1.6 Rate γ = 2.0 Rate
80 4.4207e-02 - 1.0396e-02 - 4.4297e-03 -
160 3.0110e-02 0.55402 5.4931e-03 0.92039 1.9917e-03 1.1532
320 2.0242e-02 0.57294 2.8629e-03 0.94015 8.8090e-04 1.1769
640 1.3478e-02 0.58671 1.4778e-03 0.95404 3.8482e-04 1.1948

Table 7: Results concerning Problem 4. Convergence rate in time for α = 0.625 and β = 2 with ∆x = π/5120. Non-uniform
mesh. The convergent rate improves with a non-uniform time step.

∆x α = 0.25 Rate α = 0.50 Rate α = 0.75 Rate
π/4 3.5158e-01 - 3.6313e-01 - 3.6018e-01 -
π/8 8.1629e-02 2.1067 8.5220e-02 2.0912 8.5007e-02 2.0831
π/16 1.9009e-02 2.1024 2.0671e-02 2.0436 2.0875e-02 2.0258
π/32 4.5141e-03 2.0741 4.8261e-03 2.0987 5.1233e-03 2.0266

Table 8: Results concerning Problem 4. Convergence rate in space for different values of α and β = 2 with M = 1000 and
γ = α−1. Non-uniform time space.

condition

u(x, 0) =
1

σ
√

2π
exp

(
− (x− x0)2

2σ2

)
.

We assume σ = 0.1 and x0 = 2.
We start to show, in Figure 2, the dynamics of the Fokker-Planck equation (10) without a force field,

that is, for F (x, t) = 0 with d(x, t) = 1, to visualize the effect of the diffusion. In this case, the solution
along time is still symmetric in shape, in relation to x = 2, as the initial solution. If we consider a force
field different from zero, the solution is greatly influenced by the presence of the force field, as we can see in
Figures 3 and 4.

In Figure 3, we show how the solution evolves in time for a force field, periodic in time, F (x, t) = x+sin(t),
and d(x, t) = 1. From left to right we can observe the effect of changing α for a fixed β. From top to bottom
the effect of changing β for a fixed α.

In Figure 4, the force is of the form F (x, t) = −2x+ 3x2(1/(1 + e−t)), related to the commonly named
metastable potential [19]. Similarly to the previous figure, from left to right we can observe the effect of
changing α for a fixed β and from top to bottom the effect of changing β for a fixed α.

5. Final Remarks

A numerical method is presented for a Fokker-Planck equation with a force field and diffusion depending
on space and time. For the general case, 0 < α < 1 and 1 < β < 2, the stability is discussed through the
computation of the eigenvalues of a companion matrix showing the method is unconditionally stable. The
numerical method is second order convergent in space and time for sufficiently regular solutions. We present
numerical tests that show the rate of convergence is affected when less regular solutions are considered as
discussed theoretically in Section 3. In this case, we can improve the rate of convergence by considering a
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Figure 2: Time evolution of u(x, t) for F (x, t) = 0 with d(x, t) = 1: (a) α = 0.3, β = 1.3; (b) α = 0.6, β = 1.3; (c) α = 0.3,
β = 1.6, (d) α = 0.6, β = 1.6.

non-uniform mesh. In the end, in order to reveal the dynamics of the equation, we display the time evolution
of the solution u(x, t), for different time dependent force fields.

The numerical method presented here can be generalized for the velocity fractional Klein-Kramers equa-
tion, defined in the position-velocity space, that is, x-v space, where a fractional operator is considered in
the open space v and in the x space different type of boundary conditions can be studied. However, the
theoretical analysis presents additional difficulties that will require a separated study.
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Figure 3: Time evolution of u(x, t) for F (x, t) = x + sin(t) with d(x, t) = 1: (a) α = 0.3, β = 1.3; (b) α = 0.6, β = 1.3; (c)
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Figure 4: Time evolution of u(x, t) for F (x, t) = −2x + 3x2(1/(1 + e−t)) with d(x, t) = 1: (a) α = 0.3, β = 1.3; (b) α = 0.6,
β = 1.3; (c) α = 0.3, β = 1.6, (d) α = 0.6, β = 1.6.
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