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Abstract

Focus on creative autonomous intelligent systems for industrial control applications

is an absolutely crucial aspect in the recent decades. There are enormous economic

incentives to optimize industrial control processes. The World’s evolution from

traditional old factory layouts to modern industrial designs increased the global

community attention to environmental pollution reduction and energy consumption

reduction. In industry, large attention to the energy dissipation concern increased

the vast worldwide competition in applicable control techniques to achieve ade-

quate, high-quality, and optimal control designs for industrial processes. However,

normally the implementation of a good, or an optimal, control strategy for industrial

processes is not an easy task. Frequently, systems have complex characteristics such

as nonlinearities, unknown and time-varying dynamics, constraints, disturbances,

and uncertainties. A vast amount of researches have already been performed in

both theoretical and practical control aspects. However, in the near future higher

levels of accuracy, flexibility, and reliability will be required for industrial plants.

This thesis will address both identification and control problems on nonlinear

industrial processes using fuzzy logic theory, and model predictive control. Also,

the design of a robust control framework for uncertain systems will be addressed in

this thesis. The development of control designs which can deal with concerns such

as modeling difficulties, uncertain dynamics, time-varying parameters, constraints,

and disturbances, is an important topic which will be approached in this thesis. In

this context, four main research objectives and research directions are considered.

The first objective is to propose an automatic algorithm to identify the Takagi-

Sugeno (T-S) fuzzy model and its parameters for modeling nonlinear processes by

using a numerical data set of input/output data of the process and using fuzzy logic

systems and optimization algorithms. Two different approaches to identify the T-S

fuzzy model parameters are investigated. In the first approach, a new unsuper-
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vised fuzzy clustering algorithm (NUFCA), integrated with a recursive least squares

(RLS) algorithm, is proposed to construct a novel methodology for online evolv-

ing T-S fuzzy model identification. In the second approach, a novel identification

methodology based on a hierarchical particle swarm optimization (HPSO) approach

is introduced to model unknown nonlinear processes from a set of input/output data

by automatically extracting the fuzzy logic system (FLS)’s parameters of the T-S

fuzzy model. During online operation, both the consequent parameters of the T-S

fuzzy model and the particle swarm optimization (PSO) inertia weight are continu-

ally updated by a self-adaptive HPSO (S-AHPSO) algorithm.

The second objective of the thesis is to use of the T-S fuzzy models which be-

come available as results of the first objective, to construct a fuzzy model predictive

control architecture for nonlinear time-varying systems without initial knowledge

about the mathematical model of the plant. The integration of each T-S identi-

fication methodology proposed in the work related to the first objective with the

generalized predictive control (GPC) results in an efficient adaptive fuzzy general-

ized predictive control methodology (AFGPC).

The third objective of the thesis is devoted to the development of a new robust

constrained control methodology for discrete-time linear parameter varying (DT-

LPV) uncertain systems, based on a synergetic control theory (SCT) approach.

Moreover, given an uncertain DT-LPV system jointly subject to unmeasured and

constrained additive disturbances, and constraints in states, input commands, and

reference signals (setpoints), then invariant set theory is used to find an appropri-

ate polyhedral robust invariant region in which the proposed control framework is

guaranteed to robustly stabilize the closed-loop system.

Finally, the fourth objective of the thesis is to design a controller based on a

proportional-integral (PI) type of SCT macro-variable to control a non-linear state

dependent discrete time varying (NSDDTV) dynamical systems.

To validate and demonstrate the robustness and efficiency of the proposed method-

ologies, they are applied to identify and control the dissolved oxygen concentration

in an activated sludge reactor within a wastewater treatment plant (WWTP), and

a real experimental setup composed of two coupled DC motors; to identify a real

WWTP plant; and to control a simulated continuous stirred tank reactor (CSTR),

and a simulated process of the Escherichia Coli (E. Coli) bacteria culture.



Resumo

O foco em sistemas inteligentes autónomos criativos para aplicações de controlo

industrial é um aspecto absolutamente crucial nas últimas décadas. Existem enor-

mes incentivos económicos para optimizar os processos de controlo industrial. A

evolução mundial de layouts tradicionais em fábricas antigas para industrias mo-

dernas aumentou a atenção da comunidade global à poluição ambiental e ao con-

sumo energético. Na indústria, a elevada preocupação com a dissipação/utilização

de energia aumentou a competição sobre técnicas de controlo aplicáveis de modo

a alcançar projectos de controlo adequados e de alta qualidade para processos in-

dustriais. Contudo, normalmente a implementação de uma boa estratégia, ou uma

estratégia óptima, de controlo para processos industriais não é uma tarefa fácil. Fre-

quentemente, os sistemas têm características complexas tais como não linearidades,

dinâmicas desconhecidas e variáveis no tempo, restrições, perturbações e incerte-

zas. Muitas pesquisas têm sido feitas em aspectos teóricos e práticos de controlo.

No entanto, no futuro próximo serão necessários níveis mais elevados de precisão,

flexibilidade e confiabilidade para plantas industriais.

Esta tese irá abordar ambos os problemas de identificação e controlo em proces-

sos industriais não-lineares usando a teoria de lógica difusa e modelos de controlo

preditivo. Adicionalmente será abordado nesta tese o projecto de uma estrutura de

controlo robusto de sistemas incertos. O controlo de processos não-lineares, sujeitos

a fatores tais como dificuldade de modelação, dinâmicas incertas, parâmetros variá-

veis no tempo, restrições e perturbações é um tópico importante que será abordado

nesta tese. Neste contexto, quatro principais objetivos de investigação e direções de

investigação são considerados.

O primeiro objectivo é propor um algoritmo automático para identificar um mo-

delo difuso de Takagi Sugeno (T-S) e os seus parâmetros, para modelação de pro-

cessos não-lineares, utilizando um conjunto de dados numéricos de entrada/saída do
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processo, e usando sistemas de lógica difusa e algoritmos de optimização. São investi-

gadas e usadas duas abordagens diferentes para identificar os parâmetros do modelo

difuso T-S. Primeiro, um novo algoritmo de aglomeração não-supervisionado, inte-

grado com um método de mínimos quadrados recursivo, é proposto para construir

uma nova metodologia para identificação evolutiva e online de um modelo difuso de

T-S. Na segunda abordagem, uma nova metodologia de identificação baseada numa

abordagem de optimização hierárquica por enxame de partículas é introduzida para

modelar processos não-lineares desconhecidos a partir de um conjunto de dados de

entrada/saída através da extracção automática dos parâmetros do sistema de ló-

gica difusa do modelo difuso T-S. Durante a operação online, tanto os parâmetros

consequentes do modelo difuso T-S como o peso de inércia do processo de optimi-

zação por enxame de partículas, são continuamente atualizados por um algoritmo

auto-adaptativo hierárquico por enxame de partículas.

O segundo objetivo desta tese, é a utilização dos modelos difusos T-S que se

tornam disponíveis como resultado do primeiro objectivo desta tese, para construir

uma arquitectura de controlo predictivo baseada em modelos difusos para sistemas

não-lineares variantes no tempo, sem conhecimento inicial do modelo matemático

da planta. A integração de cada metodologia de identificação de T-S proposta

no trabalho relacionado com o primeiro objetivo, com a metodologia de controlo

predictivo generalizado, resulta numa eficiente metodologia de controlo preditivo

adaptativo difuso generalizado.

O terceiro objetivo da tese é dedicado ao desenvolvimento de uma nova metodolo-

gia de controlo robusto sujeito a restrições baseada na teoria de controlo sinergético

(SCT), para sistemas discretos lineares e variantes no tempo (DL-VT) contendo in-

certezas. Além disso, dado um sistema incerto DL-VT conjuntamente sujeito a per-

turbações aditivas sujeitas a restrições e não-mensuráveis, e restrições nos estados,

comandos de actuação e sinais de referência (setpoints), é usada a teoria de conjun-

tos invariantes para encontrar uma adequada região robusta invariante poliédrica,

na qual é garantido que a estrutura de controlo proposta estabiliza robustamente o

sistema em malha fechado.

Finalmente, o quarto objectivo da tese é o projecto de um controlador baseado

numa macro variável SCT do tipo proporcional-integral (PI) para controlar sistemas

dinâmicos em tempo discreto não lineares, dependentes do estado, e variantes no

tempo (NSDDTV).
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Para validar e demonstrar a robustez e eficiência das metodologias propostas,

estas são aplicadas para identificar e controlar a concentração de oxigénio dissolvido

num reator de lodo activado, dentro de uma planta de tratamento de águas residuais,

e um ambiente experimental real, composto por dois motores DC acoplados; para

identificar uma planta real de tratamento de águas residuais; e para controlar um

reactor contínuo do tipo tanque agitado simulado, e controlar um processo simulado

de culturas de bactérias Escherichia Coli (E. Coli).
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ŷ(k + p) An p-step ahead prediction of the system.

zd(k) Setpoints of DC motors setup

Robust Control Design Based on Synergetic Control Theory (Chapter 6)

|| · || Euclidean distance

α(k) Uncertain parameter

β(k) Uncertain parameter

ψ(k) Vector of aggregated macro-variables

Γ ∩ Φ Intersection of convex polyhedra Γ and Φ

Co{·} Convex hull of a set

ψi i-th aggregated macro-variables

ProjX(Γ) Projection of Γ onto X

ω Angular velocity of the motor 1 and motor 2

µi Specific growth rate

ζ(t) Internal disturbance

R Field of real numbers

R
n n-dimensional Euclidean space

¯̺ A set represents nominal system matrices in state-space domain

̺ A set represents real system matrices in state-space domain

Ξ A constraints set on the plant state

J A polyhedron

ϑ(t) External disturbance

X0 Projection of O∞

Ξ Constraint admissible set

A Acetate

Aref Setpoints of Acetate
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1.1 Main Motivation

In the past twenty years, technology has changed the nature of manufacturing. Not

very long time ago, manufacturing and fabrication were all done by human sources.

After that, the concept of process automation was gradually invented and then devel-

oped. Reduction in production time, increase in accuracy and reliability, less human

error, and increase in safety, are the main initial purposes which were starting to be

sought behind these technological activities. Very soon, steps to advance industrial

1
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control systems technology started in order to respond to industrial demands for

better performance of systems.

Improving the efficiency in industries needs research and investments in the con-

trol field in order to create significant financial returns. It is quite frequent in

processes in industrial environments to see complex characteristics such as nonlin-

earities, unknown and time-varying dynamics, constraints, disturbances, and uncer-

tainties. Indeed, a vast amount of researches has been performed in both theoretical

and practical aspects of control. However, more advances are required to make a

safe, robust, optimal, and efficient control performance with changes in features or

structures which can be expected the industrial processes.

Motivated by the aforementioned concerns, several works with model predictive

control (MPC), fuzzy logic system (FLS) for nonlinear industrial systems, and ro-

bust control design for uncertain system processes have been recently developed. In

this context, the first focus of the thesis is to propose methodologies for the control of

nonlinear systems, in particular in the areas of FLS and MPC. In continuation, the

thesis is devoted to a new robust control framework which uses a synergetic control

theory (SCT) approach to control discrete-time linear parameter varying (DT-LPV)

systems. The designed controller for DT-LPV systems is called robust discrete SCT

controller (RDSCTC). The proposed RDSCTC deals with system uncertainties, per-

sistent unknown disturbances, and constraints. Stability analysis is given, showing

that during the operation of the process, and for any unmeasured bounded distur-

bances, the proposed controller accomplishes the goal of stabilizing the system by

asymptotically driving the error of the controlled variable to a bounded SCT macro-

variable set containing the origin and then maintaining it there. As another case

study, a controller based on a proportional-integral (PI) type of SCT macro-variable

is presented. The proposed controller based on a PI-type of SCT macro-variable,

is applied to control non-linear state dependent discrete time varying (NSDDTV)

dynamical systems.
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1.2 Use of Fuzzy Logic Concepts in Control

Design Applications

Many control approaches are dependent on models of dynamic plants. An appro-

priate controller can be designed, if a sufficiently accurate model of the system is

obtained. Mostly, in industry, due to complex conditions such as nonlinearity and

uncertainty in a system, finding an explicit mathematical form for modelling of the

plant, is not an easy task. To overcome this concern, using fuzzy logic theory can

be considered as a powerful approach which can be applied to both system identi-

fication methodologies and control design applications. Fuzzy logic theory can be

explored for system modeling purposes, including for complex plants, being con-

sidered a gray-box technique on the boundary between nonlinear black-box and

explicit mathematical type of model. Several fuzzy logic concepts exist and their

use and integration may depend on the specific application. For example, there

are two well-known fuzzy inference engines which make two different fuzzy model

types: Mamdani and Takagi-Sugeno (T-S) models. Fuzzy logic systems have the

capability to be presented in a standard form or in hierarchical structures. Each

type of structure has its own advantages. Normally, for simple fuzzy applications

on a plant with less complexity, a standard form of fuzzy logic structure can give

an acceptable performance to address the main control objective. However, this

efficiency can be violated when the system is exposed to an increasing number of

plant inputs, and exhaustive membership functions, and consequently large num-

bers of potential fuzzy rules numbers. In this condition, maybe a hierarchical fuzzy

structure can be an appropriate alternative which can help to achieve an efficient

identification and/or control design. Furthermore, fuzzy logic system applications in

both system identifications and control designs have the capability to be combined

with computational intelligence techniques to improve their overall frameworks.

1.3 Industrial MPC Technology Motivation

Generally, the main objective in MPC design is to find a future trajectory of the

input manipulated variable in such a way that it can optimize the future behavior

of the plant. The optimization procedure is performed in a time window by giving
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the current plant status at the start of the time window. There are three general

approaches to MPC design where each approach uses its own model structure. The

MPC control design which uses a finite impulse response (FIR) model as well as a

step response model, the MPC design based on a state space model, and the MPC

designs based on a transfer function model. The MPC design based on a transfer

function model is applicable to both stable and unstable plants. Among the MPC

designs which employ a transfer function model maybe the most typically used is

the generalized predictive control (GPC).

In recent years, MPC utilization has been changed drastically, with a large in-

crease in the number of reported applications. Daily growing popularity of MPC can

be found in a wide variety of application areas including chemicals, food processing,

automotive, and aerospace applications. Among all the MPC works, there can be

found several MPC methodologies where the control design is considered for linear

plants. The reason for this was that the procedure for identification of linear plants

from input/output data is typically simpler. Also, the MPC quadratic optimization

problem issue could be easily solved for the linear prediction terms.

MPC is considered to be not a new control technique for linear plants. However,

MPC for complex systems with high degree of non-linearity, is a field under current

research. Indeed, recently some MPC based methodologies for nonlinear systems

have been proposed. But due to complexity in real-time processing conditions,

mostly the current MPC methodologies have met difficulties when they were tested

on real conditions. A survey about MPC industrial applications with linear and

nonlinear models is presented in [Qin and Badgwell, 2003], where the authors found,

in 2003, more than 4600 MPC applications, over twice the number in their previous

survey in 1997 [Qin and Badgwell, 1997]. Figure 1.1 shows an evolutionary tree for

the most significant linear industrial MPC algorithms. A short description of linear

MPC products in Figure 1.1 is presented in Table 1.1.

1.4 Robust Control Design Motivation

Mostly a good control performance can be obtained if a good system model of a plant

can be estimated. Frequently, in a system identification process, due to complexity

in plant behavior, only an uncertain model can be estimated. In other words, an

explicit form of the system model is constructed which contains some uncertain
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Figure 1.1: Approximate distributed diagram of linear MPC algorithms (from [Qin
and Badgwell, 2000]).

parameters in the plant modeling. Also, it happens frequently that in control design,

besides having uncertainties inside the estimated model of a plant, also the plant is

needed to deal with constraints and disturbances during the control of the process

[Rastegar and Araújo, 2013]. Then, an important question that remains is how a

control can be designed to deal with this situation. Motivated by these problems, this

PhD work will present a new robust constrained control methodology for uncertain

systems based on a synergetic control theory (SCT) approach. Also, as another case

study, a new control design for a class of non-linear state dependent discrete time

varying (NSDDTV) dynamical systems is presented. The proposed control scheme

is featured by a proportional-integral (PI) type of synergetic control theory (SCT)

macro-variable manifold based on the output error.

In general, SCT provides methods for designing optimal controllers for dynamical

systems, where the controllers are coordinated with internal state variables of the

systems [Kolesnikov, 2014], [Kolesnikov, 1994, cited in [Kolesnikov, 2014]]. The
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Table 1.1: Representative of some commercial linear MPC products/algorithms.

MPC algorithms Company Year Comments
Linear Quadratic Gaussian
(LQG)

- - It is the combination of a Kalman filter with a
linear-quadratic regulator (LQR); constraints on
the process inputs, states, and outputs were gen-
erally not addressed in the development of LQG
theory.

Identification and Command
(IDCOM)

Adersa 1973 Also known as model predictive heuristic control
(MPHC); input and output constraints are in-
cluded in the formulation.

Dynamic Matrix Control
(DMC)

Aspen
Technology

1985 Linear step response model for the plant is needed;
future plant output behavior is determined by try-
ing to track the setpoint as closely as possible.

Quadratic DMC (QDMC) Shell Oil Second generation of MPC technology, is a form of
the DMC algorithm as a quadratic program (QP)
in which input and output constraints appear ex-
plicitly.

IDCOM-M Setpoint,
Inc

1987 The M was to distinguish this type from a sin-
gle input/single output version called IDCOM-S,
the nearly same Adersa version was referred to as
hierarchical constraint control (HIECON).

Shell Multivariable Optimiz-
ing Controller (SMOC)

Shell
Global
Solutions

1998 Third generation of MPC; is a bridge between
state-space and MPC algorithms; Kalman filter is
used to estimate the plant states and unmeasured
disturbances.

Setpoint Multivariable Con-
trol Architecture (SMCA)

Setpoint
Inc

Third generation of MPC; improved version of the
IDCOM-M technology; it provides a natural way
to incorporate multiple ranked control objectives
and constraints.

Robust Model Predictive
Control Technology (RM-
PCT)

Honeywell 1991 It is representative of the fourth generation MPC
technology; contains features such as windows-
based graphical user interfaces and multiple op-
timization levels to address prioritized control ob-
jectives.

Predictive Control Technol-
ogy (PCT)

Honeywell 1984 Covers the topics of steady-state target calcula-
tion, infinite horizon receding horizon regulation,
resolving infeasibility.

Robust Model Predictive
Control (RMPC)

Honeywell - Primary version of RMPCT which was merged
with the Profimatics PCT controller to create
their current offering, i.e. RMPCT.

DMC+ Aspen Tech - It is representative of the fourth generation MPC
technology; the SMCA and DMC technologies
were subsequently merged to create DMC+ prod-
uct.

Predictive Functional Con-
trol (PFC)

Adersa - Works with two types of models: realigned and
independent. In the independent case the model
output may be different from the process output.

Connoisseur Invensys - Works with the following model types: finite im-
pulse response (FIR), auto-regressive with exoge-
nous input (ARX), and multi-model.

resulting dynamical systems with their controllers have areas of attraction that

correspond to the control purposes. Depending on the dimensionality of the systems,

attractors can be points, contours, tori or regions of fractal dimensionality. If the
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requirements that the controllers should provide to the system cannot be fulfilled,

the attractors cannot be created, and the dynamical system may become unstable

and not converge. Convergence can be analyzed by using stability methods such as

the Lyapunov Stability Theory [Kalman and Bertram, 1960; Sastry, 1999; Liu and

Hsiao, 2012; Guang-Yue et al., 2013], or using a potential function of the system

[Olfati-Saber and Murray, 2002]. In the development of robust control design based

on SC theory, concerns such as uncertainties, system constraints, and persistent

disturbance are considered.

1.4.1 Invariant Set Theory

Uncertainty in a plant leads to the field of robust control design, with applicabil-

ity in several areas such as industrial processes. There are several reasons why a

plant’s control structure may be under an uncertainty situation, such as for exam-

ple approximate measurement of system model variables, imperfect measurement

devices, poor performance in high frequency level, and nonlinearities. As one type

of uncertain model representation, all plant uncertainty can be gathered in a convex

hull polytope which surrounds the real current/nominal system model. Presence

of uncertainty and/or constraints in the system, forces a control design to find a

safety working region for the system state variables. In the robust control field, this

region is named an ‘invariant set’. Set invariance is an important key in the design

of control systems when the system is subject to constraints. This theory guaran-

tees that the constraints can be satisfied for all time if and only if the initial state

is contained inside an invariant set. The theory of positively invariant sets is used

to find a region in which the unconstrained controller does not violate the process

constraints. In other words, if all conditions in invariant set theory are satisfied,

then for every sampling time k, there is a feasible solution for the control design

problem, meeting all system constraints. In most of the cases, due to the complexity

in nonlinear systems, finding an invariant set for the related uncertain/constrained

system is not easy, but if it is found, it can lead to an efficient robust control design.
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1.5 Optimization Algorithms in Fuzzy Control

Direct digital control systems and the computer control of processes has been used

to provide a better co-ordinated control and operation in process control and prod-

uct quality. In computer control of processes, computational intelligence methods

are important tools to help in the development of optimal fuzzy control designs. As

mentioned before, achieving good performance in MPC is depending on having a

process model with good performance. Several types approaches to modeling non-

linear plants can be considered to be used in MPCs. Among them, fuzzy logic based

modeling has become an active area of research because of the capability of han-

dling perceptual uncertainties, such as the vagueness and ambiguity involved in the

interpretation of a real system. Also, it has shown excellent ability when describing

nonlinear systems, in particular with the Takagi-Sugeno (T-S) fuzzy models. Like

in many other models where optimization can be used to find parameters, in T-

S fuzzy models, optimization algorithms can be used to find the T-S fuzzy model

parameters. For example, computational intelligence algorithms such as particle

swarm optimization (PSO), neural network (NN) learning algorithms, and genetic

algorithms (GAs), individually or in combinational forms have shown a good per-

formance to search for optimal T-S fuzzy model parameters [Coelho and Herrera,

2007; Shuzhi et al., 2012; Mendes, 2014].

1.6 Thesis Contributions

This thesis has the following fundamental contributions:

1. [Chapter 4], [Rastegar et al., 2016b],[Rastegar et al., 2017b]: Design of two

different novel online evolving Takagi-Sugeno (T-S) fuzzy model identification

methodologies for nonlinear systems. The first proposed T-S identification

methodology uses a new unsupervised fuzzy clustering algorithm (NUFCA),

and a recursive least squares (RLS) method with adaptive directional forget-

ting (ADF) to construct an online evolving Takagi-Sugeno (T-S) fuzzy model.

As the second proposed T-S identification methodology for this chapter, a

hierarchical particle swarm optimization (HPSO) algorithm is introduced to

automatically extract the structure and all fuzzy logic system (FLS)’s param-

eters of a T-S fuzzy model by using input/output process data in a way that
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it does not require any previous knowledge of the process model, and in par-

ticular no previous knowledge concerning the numbers of rules and antecedent

fuzzy sets of the T-S fuzzy model. Additionally, the selection of the adequate

input variables and their respective time delays for the prediction setting are

addressed in the second T-S fuzzy model identification methodology. The

proposed HPSO algorithm includes an adaptive procedure and becomes a self-

adaptive HPSO (S-AHPSO) algorithm usable in real-time processes.

2. [Chapter 5], [Rastegar et al., 2016b]: Design of new methodologies for fuzzy

model predictive control of nonlinear time-varying systems without the knowl-

edge about the mathematical model of the plant. The fuzzy systems learned

by the proposed T-S fuzzy model identification algorithms in Contribution 1

(see above) are integrated into the control domain to construct an effective

adaptive fuzzy generalized predictive control (AFGPC) methodology.

3. [Chapter 6], [Rastegar et al., 2016a], [Rastegar et al., 2017c], [Rastegar et al.,

2017d], [Rastegar et al., 2017a]: Design of a novel robust constrained control

methodology for discrete-time linear parameter varying (DT-LPV) systems is

proposed based on a synergetic control theory (SCT) approach, and it is called

robust discrete SCT control (RDSCTC). A stability analysis for the RDSCTC

is performed and a theorem is given regarding this issue. The design of a robust

controller for DT-LPV systems is given, while the systems face uncertainties,

and other concerns such as the presence of disturbances on the system, and

system constraints. As another case study for this Chapter, a controller based

on PI type of the SCT macro-variable which uses a one-step delayed estimation

of the disturbance, is designed to control non-linear state dependent discrete

time varying (NSDDTV) dynamical systems, while such NSDDTV systems

face external disturbances.

1.7 Thesis Organization

The thesis is organized as follows:

1. Chapter 2 presents an overview of fuzzy systems and clustering methodologies.
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2. Chapter 3 gives an overview of fuzzy system identification for industrial ap-

plications. A description is given concerning the Takagi-Sugeno fuzzy model

and its applications. Also, adaptive fuzzy control, and fuzzy predictive control

are mentioned in this overview. Finally, constrained robust control design for

uncertain systems and synergetic control theory are discussed.

3. Chapter 4 describes the design of two novel online evolving Takagi-Sugeno

(T-S) fuzzy model identification methodologies. First, the T-S fuzzy model

identification methodology is constructed based on a new unsupervised fuzzy

clustering algorithm (NUFCA), and the RLS-ADF method. The second iden-

tification methodology utilizes a hierarchical fuzzy logic structure to auto-

matically extract the structure and all T-S fuzzy model parameters by using

input/output data in a way that does not require any previous knowledge

about the process model.

4. Chapter 5 describes adaptive fuzzy predictive control designs by integration

of the T-S fuzzy models learning methodologies proposed in Chapter 4, and

model generalized predictive control (GPC) to obtain an effective adaptive

fuzzy GPC methodology (AFGPC).

5. Chapter 6 describes a novel robust constrained control methodology for discrete-

time linear parameter varying (DT-LPV) systems, that, besides uncertainties,

are also subject to other concerns such as the presence of external disturbances,

and system constraints. Then, it presents a control design to control non-linear

state dependent discrete time varying (NSDDTV) dynamical systems, subject

to concerns such as a nonlinearities in the system, and the presence of an

external disturbance. Both controllers use a synergetic control theory (SCT)

approach to create a robust control strategy.

6. Finally, Chapter 7 presents concluding remarks.
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Overview of Fuzzy Systems and

Clustering
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2.1 Clustering Concepts and Analysis

Clustering approaches use information found in the data that describes the objects

and their relationships. Clustering methods identify groups of similar observations,

and assign items to automatically created groups based on a calculation of the

degree of association between items and groups. However, the results can depend

on the chosen methods and initial parameter values. The goal is that the objects

11
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(a) (b)

(c) (d)

Figure 2.1: Different ways of clustering on the same set of points: (a) original points,
(b) two clusters, (c) four clusters, and (d) six clusters.

within a group should be similar to one another, while being different from the

objects in other groups. Larger homogeneity within a group, and larger differences

between groups, result in a better classification with more distinctiveness in the

clustering. Application of clustering techniques can be often found in many fields.

Cluster analysis has long been playing an important role with many applications

in a wide variety of fields, such as for example in life sciences [Cattell, 2012] (e.g.

providing a taxonomy of all living terms such as somatic cells, and gene analysis),

categorization in information retrieval [Miyamoto, 2012], analysis of large amounts of

climate data [Unal et al., 2003], medicine [Eisen et al., 1998] (e.g. disease clustering of

symptom data, and segmentation algorithms in magnetic resonance imaging (MRI),

electroencephalogram (EEG), and electrocardiogram (ECG)), and economy [Davies

and Walters, 2004] (e.g. market analysis).

2.1.1 Different Types of Clusters

Clustering techniques are applied to conceptually analyze data of objects and divide

them into subsets of objects that contain similar characteristics. An example is

given, in order illustrate the differences in clusters attributes, as shown in Figure

2.1. In Figure 2.1, the shapes of the markers indicate cluster membership. Figures

2.1(b), 2.1(c), and 2.1(d) divide the data into two, four, and six parts, respectively.

Some points can be concluded. Different clusters can show a different classification

quality on a same data set depending on the nature of data, on the complexity in the

overlapping of clusters, and also on the threshold which can be defined to classify

objects. As it can be seen, each of the two groups in Figure 2.1(b) has been divided
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into three sub-clusters by another clustering method in Figure 2.1(d).

Not surprisingly, there are several different cluster techniques that have already

shown useful performances in practice. Some popular clustering types are as de-

scribed below:

• Well-Separated. Each cluster is a set of members (objects) in which each

member has more similar characteristics to every other cluster member than to

any member not in the cluster. Sometimes a threshold is considered to classify

that all the members (objects) in a cluster must be sufficiently similar to one

another. The distance between any two objects in different clusters is larger

than the distance between any two objects within a cluster. Well-separated

clusters do not need to have a particular distribution and can have any shape;

• Prototype-Based. Each cluster is composed of a set of members (objects) in

which each member is more similar to the default prototype that defines the

cluster than to the prototype of any other cluster. For data with continuous

attributes, the prototype of a cluster is often a centroid (the average of all the

points in the cluster). However, another situation can happen: a medoid pro-

totype. For example, when the data has categorical attributes, the prototype

has often a medoid clustering pattern. A medoid is a representative member

of a cluster whose average dissimilarity to all the members in the cluster is

minimal. A medoid is a concept similar to a mean or a centroid but a medoid

is always a member of the cluster;

• Graph-Based. Some times it can be seen that data is represented as a

graph. In this case, the nodes are considered as objects and the links represent

connections among objects. A cluster is defined as a connected component, i.e.

a group (cluster) of objects that are connected to one another, but the objects

do not have any connection to the outside of the group. A good example for

graph-based classification are contiguity-based clusters, where two objects are

connected only if they are within a specified distance of each other. This means

that each point in a contiguity-based cluster is closer to some other points in

the group. Meanwhile, it is far away from any objects in other clusters;

• Density-Based. The basic strategy to distinguish clusters is based on the

idea that a cluster in a data space is a contiguous region of high density of
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points. The clusters are separated from other clusters by contiguous regions

of low point density. The data points in the separating regions of low point

density are typically considered noise/outliers;

• Conceptual Clusters. Clusters mostly contain a hierarchical structure. A

process is developed to construct a conceptual network to characterize a col-

lection of objects. Nodes mark the concepts describing objects clusters, and

links mark the relationships between the clusters.

2.1.2 A Visual Example

To show the efficiency of clustering techniques, a clustering example is given in this

section. A fuzzy clustering algorithm is applied on five standard flower data sets of

integrated risk information system (IRIS) [Fisher, 1936]. The samples of this data

set contain real data values with high degree of fuzzy intersection between different

clusters. The S1-S5 sets contain 2, 3, 4, 6, and 3 overlapping clusters, respectively.

The performances of the fuzzy clustering method on the S1-S5 data sets are depicted

in Figure 2.2. The fuzzy membership degree of each cluster in each set is depicted

in Figure 2.3. As can be seen in Figure 2.2, in spite of the high degree of fuzzy

intersection between clusters, an acceptable classification can be obtained with a

fuzzy cluster if an efficient clustering method is applied.

Among all the variety of fields in which clustering algorithms can be applied,

maybe one of the outstanding applications can be seen in industrial process control.

Mostly a good control design for an industrial process needs a good estimation of the

model of the plant. Clustering methods can play an important role in building good

system modeling estimators such as fuzzy systems which are universal approximators

of nonlinear systems. In real conditions for controlling a process, frequently only real

input/output data are available, not a model of the process. Fuzzy systems have

internal data to characterize the antecedent parameters of the best membership

functions, as well as fuzzy rules, and may benefit from the definition of an optimal

number of clusters in different parts of their structures. Therefore, the utilization

of efficient robust clustering techniques for fuzzy applications can be an important

issue.

This thesis is going to use T-S fuzzy modeling techniques in control design. As a

requirement, finding an efficient clustering technique is considered. This thesis will
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Figure 2.2: Fuzzy clustering: simulation results of the fuzzy clustering algorithm on
the S1-S5 IRIS data sets: (a) S1, (b) S2, (c) S3, (d) S4, and (e) S5. “Main” refers to
clusters in the database, “Clus” refer to clusters obtained by the fuzzy cluster, and
“Mismatch” correspond to wrongly clustered samples.
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Figure 2.3: Fuzzy membership functions: simulation results of the fuzzy clustering
algorithm on the S1-S5 IRIS data sets: (a) S1, (b) S2, (c) S3, (d) S4, and (e) S5.
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propose a hybrid unsupervised clustering method based on the K-nearest neighbor

(KNN) and fuzzy C-means (FCM) methods. The number of clusters is selected by

the algorithm. Two steps are involved for each candidate number of clusters. In

the first step, the algorithm finds the initial clustering and respective centers by a

KNN method. In the second step, the quality of the clustering is evaluated using the

fuzzy clustering validation index with the goal of searching for the optimal clustering

solution. The clustering methodologies proposed in this thesis can be involved in

a wider variety of applications in a number of fields such as image segmentation,

signal processing, motion detection, and robotics.

2.2 Fuzzy Systems

An overview of the main concepts of fuzzy systems is given in this section. However,

for a better understanding and additional information on this topic, [Wang, 1997a]

is recommended.

2.2.1 Concept

To construct fuzzy logic systems (FLS), expert’s knowledge on the system needs to

be expressed explicitly in the form of fuzzy IF-THEN rules. When the input to the

fuzzy rules is given, the output is determined by inference using the fuzzy rules.

FLS are characterized by a group of structures comprising four parts: knowledge-

base, fuzzifier, inference engine, and defuzzifier, as can be seen in Figure 2.4. In the

following subsections, a brief explanation of the four main parts of a FLS as it was

represented in Figure 2.4 will be performed.

2.2.2 Knowledge-Base

In the knowledge-base “facts” are represented through linguistic variables and fuzzy

logic rules. Once it is found that the knowledge of a specialist can be expressed

through linguistic variables and rules of thumb, that involve imprecise antecedents

and consequents, then the basis for a knowledge-base is established. The knowledge-

base comprises the information that characterizes and defines the fuzzy system, and

is composed of a data base, and a rule base containing a set of fuzzy rules.
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Figure 2.4: Basic configuration of a fuzzy logic system.

The fuzzy rules are composed of two parts: the antecedent (IF part) and the

consequent (THEN part). For example, one could make up a rule that says: if

temperature is high and humidity is high then room is hot. A knowledge-base

composed of a set of N fuzzy IF-THEN rules Ri can be represented in the form:

Ri : IF x1(k) is Ai1, and . . . and xn(k) is Ain THEN u(k) is Bi, (2.1)

i = 1, . . . , N,

where xj (j = 1, . . . , n) are the fuzzy system input variables, and u is the output of

the fuzzy system, Aij and Bi are the linguistic terms characterized by fuzzy mem-

bership functions µAi
j
(x) = Uj → [0, 1] and µBi

(u) = V → [0, 1], respectively, for

i = 1, . . . , N , and j = 1, . . . , n. n is the number of input variables. Uj ⊂ R is the

universe of discourse of xj, for j = 1, . . . , n, and V ⊂ R is the universe of discourse

of u. The most commonly used membership function types are the trapezoidal,

triangular, Gaussian, and generalized membership functions (MF), as represented

in Figure 2.5. In this thesis only the Gaussian type of membership function is

considered.
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Figure 2.5: Examples of membership functions: (a) trapezoidal, (b) triangular, (c)
Gaussian, and (d) generalized.

2.2.3 Fuzzifier

Another component of a fuzzy logic system is the fuzzifier which transforms input

real numbers into fuzzy sets, taking the real-valued inputs and determining the

degree to which they belong to each of the appropriate fuzzy sets via membership

functions. In industrial systems, for example, the purpose of fuzzification is to map

the real-valued inputs from a set of sensors or features of those sensors such as

amplitude or spectrum, into values from 0 to 1 using a set of input membership

functions.

The output of the fuzzifier unit reflects the degree to which each part of the

antecedent is satisfied for each rule. In the present thesis, only the singleton fuzzi-

fier (2.2) is considered, due to its simplicity of implementation. However, other

fuzzifier methods can be consulted in [Wang, 1997a]. The mapping performed by

the singleton fuzzifier is defined as follows:

µA′(x) =







1, if x = x∗,

0, other cases.
(2.2)

In (2.2), the fuzzifier transforms the real-valued input vector x∗ ∈ S ⊂ R
n into a

fuzzy set A′ defined in a universe of discourse S.
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Figure 2.6: An example of a two input, and two rules Mamdani-minimum FIE with
crisp inputs.

2.2.4 Fuzzy Inference Engine

The fuzzy inference engine (FIE) is one of the most important components of a

fuzzy system. This section describes it in a simplified and compact manner. A more

detailed description and formulation can be found in [Wang, 1997a].

If the antecedent of a given rule (2.1) has more than one part, fuzzy operators

are applied to obtain one number that represents the result of the antecedent for

that rule. In (2.1) only “and” operators are included in the antecedent. The input

to the fuzzy operator is two or more membership values obtained from the fuzzified

input variables, and the output is a single truth value. This number is then applied

to the output membership function. In fuzzy logic, the basic fuzzy operators used to

process the antecedent part of a rule can be the following: intersection, union, and

complement. There is a variety of choices for the FIE, depending on the employed

operators and on the employed implication and aggregation methods. For a more

detailed description and formulation and a better understanding on FIEs and on

different FIEs, [Wang, 1997a] is recommended.

A graphical example of a Mamdani-minimum FIE is given in Figure 2.6. This

FIE contains two inputs, x0 and y0 shown at the lower left corner of the figure. This

type of fuzzy system is not used in this thesis, but it is a good illustrative base

example. The inputs are mapped into fuzzy numbers by drawing a line up from the
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inputs to the input membership functions above and marking the intersection point.

In this example, the “min” fuzzy “and” operator is used to combine the antecedent

membership functions to compute the rule strength. Notice that the outputs of all

the fuzzy rules must be combined to obtain one overall output fuzzy membership

function. This is usually, but not always, done by using the fuzzy “or” operator.

Figure 2.6 shows an example of this. The output membership functions on the right

hand side of the figure are combined using the “max” fuzzy “or” operator to obtain

the output distribution shown on the lower right corner of the figure.

2.2.5 Defuzzifier

In many cases, it is desired to obtain a single crisp output from a FIE unit. Fuzziness

is involved in the rule evaluation during the intermediate steps, but the final desired

output for each variable is generally a single number. However, a fuzzy set aggregate

encompasses a range of output values, and so must be defuzzified in order to resolve

into a single real-valued output to represent the output fuzzy set, and therefore the

output of the fuzzy logic system. For example, suppose that one is trying to classify

a letter drawn by hand on a drawing tablet, ultimately the FIE would have to come

up with a crisp number to tell the computer which letter was drawn. This crisp

number is obtained in this process called defuzzification.

There are several techniques to perform defuzzification. Some of the most com-

mon techniques to perform defuzzification are the centroid, mean of centers, bisec-

tor, middle of maximum (the average of the elements of the universe of discourse

where the membership function attains the maximum), largest of maximum, and

smallest of maximum. Perhaps the most popular defuzzification method is the cen-

troid, which returns the centroid of the universe of discourse of the fuzzy set when

considering the mass density to be defined by the fuzzy membership function.
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3.1 Fuzzy Based System Identification

Nonlinear system identification plays an important role in industrial processes. The

application of an identified model of good quality can lead to a control design of

higher quality. There are different nonlinear identification techniques. However,

among them, relatively new methodologies based on fuzzy logic models were grad-

ually becoming established not only in the academia but also in industrial appli-
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cations. Fuzzy system identification is an example of a gray-box technique on the

boundary between nonlinear black-box and qualitative models. Adequately designed

fuzzy systems can simulate a nonlinear system with an acceptable accuracy. Powerful

tools useful to contribute to the construction of fuzzy models from data sets can be

found in the various fields of fuzzy logic, approximate reasoning, neural networks,

pattern recognition, and regression analysis. Modern processes exhibit nonlinear

behaviors, while most of them are exposed to complex characteristics such as time-

varying dynamics, disturbances, constraints, and stochastic phenomena. Also, the

multivariable nature of the systems can be seen frequently in real processes.

Several steps must be considered for having a successful system identification

design [Nelles, 2000]. Some factors such as the choice of the model inputs, choice

of the excitation signals, choice of the model structure, as well as the choice of the

model parameters play significant roles to achieve an adequate system model by

identification. The assumption that the performance of MPC methods is dependent

on the availability of an accurate model may present problems, because many com-

plex plants are difficult to be modeled mathematically based on physical laws, or

have large uncertainties and strong nonlinearities. Having a successful system iden-

tification can be difficult to achieve, for example in complex industrial processes.

Several types of approaches to modeling nonlinear plants can be considered to be

used for MPCs. Among them, fuzzy models have received particular attention in

the area of nonlinear modeling.

The principles of fuzzy sets and fuzzy logic were developed by Lotfi A. Zadeh in

1965 [Zadeh, 1965]. In the late 1960s and early 1970s, fuzzy set theory has grown

to become a major scientific domain. Several new fuzzy logic methods such as fuzzy

algorithms, fuzzy decision making, etc, were proposed, and grew as independent

fields. In this period, Zadeh proposed fundamental concepts in fuzzy theory. Zadeh

proposed the concepts of fuzzy algorithms in 1968 [Zadeh, 1968], fuzzy decision mak-

ing in 1970 [Bellman and Zadeh, 1970], and fuzzy ordering in 1971 [Zadeh, 1971].

An important paper published by Zadeh was [Zadeh, 1973], where the author intro-

duced the concepts of linguistic variables and proposed the use of fuzzy IF-THEN

rules to formulate human knowledge, which established the foundation for fuzzy

control. In the continuously increasing progress in fuzzy control systems, Mam-

dani and Assilian [Mamdani, 1974] developed the first fuzzy Logic control system

[Mamdani and Assilian, 1975], to be used in a small steam engine. Until now many
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fuzzy logic based models for system identification were proposed. Among them,

one of the famous fuzzy models which has received interest from control engineers

is the Takagi-Sugeno (T-S) type of fuzzy model [Takagi and Sugeno, 1985]. The

Takagi-Sugeno fuzzy model can estimate complex nonlinear systems with few rules

and accurately. The capacity of approximating complex nonlinear systems with few

rules and high modeling accuracy, the possibility to apply conventional linear system

theories for system analysis and synthesis, as well as the possibility to be used in

both online and offline mode, all cause the T-S fuzzy model to become a popular

nonlinear system estimator, being considered a relevant research area.

Many optimization methods were investigated to be used in T-S fuzzy modeling.

Among them, evolutionary algorithms such as particle swarm optimization (PSO)

algorithms and genetic algorithms (GAs) have shown a good adaptation to search

for optimal T-S fuzzy model parameters [Delgado et al., 2001; Coelho and Herrera,

2007; Shuzhi et al., 2012]. Although a GA may be able to find the global minimum, it

consumes too much search time. The PSO algorithm is an alternative. It can result

in a lower computational complexity with a better performance of fitness evaluation

in general when compared to GAs [Eberhart and Shi, 1998], consequently resulting

in a better prediction performance when applied to learn a T-S fuzzy model.

3.1.1 Takagi-Sugeno Fuzzy Model Identification

Rule-based fuzzy models are categorized into two main types: Mamdani fuzzy mod-

els and Takagi–Sugeno (T-S) fuzzy models. The consequent parts of Mamdani fuzzy

models are fuzzy sets. Differently, the consequent parts of the T-S fuzzy model are

functions of the input variables. In the remaining of this thesis, linear consequent

functions will be considered in T-S fuzzy systems. In many examples it was observed

that comparing with Mamdani fuzzy models, T-S fuzzy models can approximate

complex nonlinear systems with fewer rules and higher modeling accuracy. This

advantage causes the T-S fuzzy model to become a popular nonlinear system esti-

mator, being considered an active research area. Additionally, the Takagi-Sugeno

fuzzy model combines the linguistic description with standard functional regression,

while the antecedents describe fuzzy regions in the input space in which the conse-

quent functions are valid. Consequent functions of the T-S fuzzy model are often

based on a linear structure. Thus, conventional linear system theory can be used
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for the system analysis and synthesis accordingly. This advantage gives another

motivation which causes the T-S fuzzy models to be considered as a powerful engi-

neering tool which can be applied in both system modeling and process control. The

main task in the identification of processes based on T-S fuzzy models is to partition

the input space into a number of fuzzy sub-spaces and obtain the antecedent and

consequent parameters of the model.

The T-S fuzzy model can be constructed on online and/or offline mode. However,

an online learning mode can have superiority because unlike offline mode, the online

process can incrementally construct and improve the model, and adapt the model to

changes in the process being modeled. Considering this fact, T-S fuzzy models are

going to be used for control design purposes, and in particular they will be used in

integration with MPC designs. In this context, the use of offline and/or online T-S

fuzzy modeling combined with the concept of MPC can be considered as an efficient

technique. With this motivation in mind, this PhD work will also investigate the

combination of both MPC and online T-S fuzzy modeling techniques with the goal

of achieving a fuzzy predictive controller that can be used for online process control

in nonlinear industrial plants.

3.2 Hierarchical Fuzzy Modelling Structure

Application of fuzzy logic techniques for system identification and/or control of

industrial processes are considered as efficient techniques due to the practical ap-

plications of fuzzy logic systems in identification and control, and to theoretical

approximation properties of fuzzy systems. However, the design of a fuzzy model

is a time-consuming and challenging process which involves expert knowledge ac-

quisition, the fuzzy system structure definition, finding the rules, and fuzzy sets

construction. From the past decades until now, the methodologies proposed to

establish fuzzy logic systems have been suffering from a shortage in performance.

Typically, in a standard fuzzy system, the number of rules increases exponentially

with the number of variables [Lee et al., 2003], and many research studies have

been performed to address this important concern in the design of fuzzy logic sys-

tems. The initial objective was to try to find a way to reduce the total number of

involved rules, and their corresponding computation requirements. If there are n in-

put variables and m membership functions for each variable, then it needs mn rules
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to construct a fuzzy logic controller based on an exhautive partitioning of the input

space based on all the combinations of input fuzzy sets for each variable. When n

increases, the rule base will quickly overload the memory, and the computational

time needed for implementing the fuzzy controller will increase significantly. In this

context, the “curse of dimensionality” phenomenon arises, where the complexity of

the problem increases exponentially with the number of variables involved. Addi-

tionally, as the number of antecedent fuzzy sets increases, the number of fuzzy rules

increases polynomialy. Thus, in both the cases of increasing n or m the number of

rules and the associated costs increase significantly, in a phenomenon called “rule

explosion”.

Some investigations have been performed to avoid rule explosion in fuzzy in-

ference engines by converting an intersection rule configuration (IRC) to a union

rule configuration (URC). For example, [Weinschenk et al., 2003] presented a new

mapping of classical fuzzy systems into a union rule configuration. Later, [Wein-

schenk et al., 2004] provided a novel Fourier-based technique for designing a layered

URC fuzzy system that eliminates the need for costly search techniques. As a prac-

tical efficient solution to overcome the problem of the “curse of dimensionality”,

and “avoidance of rule explosion”, the idea of hierarchical fuzzy systems has been

developed [Lee et al., 2003]. Hierarchical fuzzy systems consist of a number of low-

dimensional fuzzy systems in a hierarchical form. The hierarchical fuzzy systems

have the advantage that the total number of rules increases only linearly with the

number of input variables [Rajua et al., 1991]. Later, the application of hierarchical

fuzzy system concepts was improved when fuzzy systems with hierarchical struc-

tures were developed [Delgado et al., 2009; Mendes et al., 2012]. Despite having a

successful performance, neither the works in [Delgado et al., 2009] nor in [Mendes

et al., 2012] utilized any significant improvement in their interior structure to be

augmented for online applications. Furthermore, for automatic extraction of all

fuzzy logic system (FLS) parameters, the number of partitions of the input space is

a key parameter. Approximately all the FLS’s units of a T-S fuzzy model such as

the set of fuzzy rules, the individual rules, the consequent parameters, as well as the

unit of the inference mechanism, use this parameter during the FLS construction.

However, in both the methods proposed in [Delgado et al., 2009] and in [Mendes

et al., 2012], the number of partitions was defined firstly and then considered as a

constant value during all the running time of the algorithm. With these motivations
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in mind, this PhD work will investigate on a hierarchical T-S identification method-

ology which is designed in integration with hierarchical particle swarm optimization

(HPSO) algorithm usable in real-time processes. The HPSO automatically extracts

the structure and all FLS’s parameters of a T-S fuzzy model by using input/output

data in such way that it does not require any previous knowledge of the process

model, and in particular no previous knowledge concerning the number of rules and

the number of antecedent fuzzy sets of the T-S fuzzy model.

3.3 Adaptive Fuzzy Control

Many available works regarding the application of fuzzy system concepts in control

design show the efficiency of fuzzy controllers for controlling industrial processes.

However, a non-adaptive fuzzy control design can easily meet difficulties when the

plants have unknown and/or time-varying models and parameters. In this case,

specifying the fuzzy rule base to construct the controller for such plants is not an easy

task. Consequently, the main control objectives can not be addressed correctly. As

one solution, adaptive techniques can be used in control design structures. Adaptive

fuzzy logic controllers try to focus on automatic on-line synthesis and tuning of fuzzy

controller parameters and/or structure by learning and adapting to the dynamics

of the plant. The adaptation law can help the fuzzy controller to adjust itself to

changing environments [Wang, 1997a].

In general, adaptive fuzzy control designs can be categorized in two different

types. Depending on how a fuzzy controller is constructed, different adaptive pro-

cedures can be investigated. For example, one typical type of fuzzy control design

is direct fuzzy control (DFC) [Mendes et al., 2014; Wang et al., 2016]. In direct

fuzzy control, the parameters of the controller are initially constructed from human

control knowledge. In most cases in DFC design, a fuzzy logic system (FLS) is

considered for control purposes. A data set composed of the input command signal

(the output of the controller), and the reference signal and the corresponding plant

output when the system is under control (the inputs of the controller) is provided.

In the next step, this data set is applied to the fuzzy logic system (FLS) to initial-

ize a training process. For this type of fuzzy control design, usually computational

intelligence techniques are used to directly adjust/adapt the controller, and thus

achieve a direct adaptive fuzzy control (DAFC) design. An intelligent system which
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uses an iterative procedure is adjusted to reduce the output error between the plant

and a desired reference.

As another type, a fuzzy control can be constructed based on an explicit fuzzy

modeling of the plant. Normally, a system modeling can be formulated based on

different types of mathematical modeling techniques in different spaces such as state

space or transfer function space. Among many system modelling representation

types, fuzzy system modeling has an efficient applicable modelling structure which

has been frequently used in system identification methodologies [Nelles, 2000]. In

indirect adaptive fuzzy control (IAFC), the parameters of the fuzzy model of the

plant are initially constructed from some human knowledge about the unknown

plant, and then iteratively adjusted to reduce the output error between the plant

and an estimated model, while the current model parameters are used to indirectly

adapt the controller [Rastegar et al., 2016b].

For the first time, an adaptive fuzzy controller which was called the linguistic

self-organizing controller was introduced by [Procyk and Mamdani, 1978]. Later,

the fuzzy model reference learning controller was introduced in [Layne and Passino,

1993], and has shown to have a successful performance in simulation [Layne and

Passino, 1993; Kwong et al., 1994; Passino et al., 1995; Layne and Passino, 1996;

Kwong and Passino, 1996; Lennon and Passino, 1999], and in implementation stud-

ies [Moudgal et al., 1995; Zumberge and Passino, 1998]. The most studied stable

adaptive fuzzy control (AFC) schemes are based on feedback linearization [Wang,

1996, 1992; Spooner et al., 2002], which was considered for the control of nonlinear

plants. More recently, application of adaptive fuzzy control can be seen in industry

applications. In [Liu et al., 2013], the problems of stability and tracking control for

a class of large-scale nonlinear systems with unmodeled dynamics were addressed

by designing the decentralized adaptive fuzzy output feedback approach. For sta-

bility analysis the Lyapunov stability method was used. It was shown that all the

signals in the closed-loop nonlinear system are bounded, and the system outputs

track the reference signals to a small neighborhood of the origin by choosing the

design parameters appropriately. In [Li et al., 2014b], the problem of adaptive fuzzy

output-feedback control was investigated for a class of output constrained uncertain

nonlinear systems with input saturation and unmeasured states. To address the

input and output constraints, a barrier Lyapunov function and an auxiliary design

system were employed, respectively. The adaptive strategy in the control design
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was founded on a back-stepping recursive technique. Unlike some existing control

schemes for systems with input saturation, the developed controller does not require

assumptions on the available states. Fuzzy logic systems were utilized to approxi-

mate the unknown nonlinear functions, and a fuzzy state observer was designed to

estimate the unmeasured states. The control design issue in both the works [Liu

et al., 2013; Li et al., 2014b] was limited to tracking of reference signals at the origin.

3.4 Receding Horizon Control Design

The interest in receding horizon control (RHC), which is also known as model pre-

dictive control (MPC), began to increase after the introduction of the Identification

and Command (IDCOM) Method [Richalet et al., 1978] and the Dynamic Matrix

Control (DMC) [Cutler and Ramaker, 1980]. Since then, MPC has become a widely

used technology in process control. For example, the MPC has become a standard

technique for control of multivariable constrained chemical processes. Applications

of this technology have made it a multimillion dollar industry. Nowadays, a new

crude distillation unit in a refinery is not conceived with other control scheme ex-

cept MPC. MPC fundamentally is a control strategy based on a predictive model

of the process under control, which is used as a basis to find a future trajectory of

the input manipulated (command) variable in such a way as to minimize a perfor-

mance index that depends on the predicted future behavior of the plant. Li et al.

[2012] first combined a T-S fuzzy model with a predictive control methodology to

the control the nonlinear behavior of a boiler-turbine. In continuation, this work

used a strategy based on GA to solve the problem of constraints in the control of the

boiler-turbine system. The work [Maeder et al., 2009] tried to suggest an offset-free

model predictive control which was able to track an asymptotically a constant refer-

ence. For that, an additional disturbance state was employed to be combined with

the main system to make an augmented system to obtain disturbance estimates. Li

et al. [2012] presented an offset-free output predictive control approach for nonlin-

ear processes without considering the presence of external disturbances. Izadi et al.

[2011] investigated Moving Horizon Estimation (MHE) and the Unscented Kalman

Filter (UKF) as two methods for nonlinear parameter estimation. A framework

was then formulated for integrating MHE/UKF based fault estimator with MPC to

form an active fault tolerant control system for systems with nonlinear constrained
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dynamics.

Application of MPC has not been limited just on certain dynamical systems.

MPC could widely show an effective role in the control of uncertain systems. For

uncertain systems, the MPC based approaches led to LMI optimisation problems and

solutions [Kothare et al., 1996] or used ellipsoidal robustly invariant sets [Kouvari-

takis et al., 2000; Muñoz-Carpintero et al., 2015], probabilistic approach [Calafiore

and Fagiano, 2013], or were based on having an online construction of polytopic

tubes [Evans et al., 2012; Fleming et al., 2015].

The designs in some of these methods were limited to control designs to track

zero setpoints, or did not consider the existence of unexpected disturbances [Fleming

et al., 2013], or in some cases, the MPC control design was constructed for periodic

step-type disturbances [Li et al., 2014a]. But, there is a more important concern with

MPC based robust control design. The presence of uncertainty in a linear system

can cause computational difficulties. In particular in the case of polytopic systems,

the number of vertices of the uncertainty set grows exponentially in the length of the

prediction horizon [Evans et al., 2012]. Attempts to find a solution for this problem

can be seen in some recent works such as [Fleming et al., 2015]. When facing external

unexpected disturbances besides of uncertainty, the analysis and insurance of closed-

loop feasibility, stability, and robustness of such MPC methodologies becomes a more

challenging, and difficult issue to solve.

As mentioned throughout this thesis, the assumption of the knowledge of an ac-

curate model in MPCs, presents problems because many complex plants are difficult

to be mathematically modeled based on physical laws, or have large uncertainties

and strong nonlinearities. Thus, to find an automatic control design which just uses

input/output data for model construction, is an interesting and important issue.

None of the methods of [Li et al., 2012; Maeder et al., 2009; Zhang et al., 2009; Li

et al., 2012, 2014a; Han et al., 2012] have a full automatic control structure. All

these methods have the limitation of not being able to perform automatic selection

of variables and delays of the model of the system: pre-selection is performed. The

variable selection process is usually manual and not accompanied with the accurate

selection of the right time delays, probably leading to low-accuracy results. A vari-

able with the correct delay may contain more information about the output, than

one which does not consider any delay or which considers an incorrect delay [Souza

et al., 2010].
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The MPC methodologies are designed based on a mathematical model of the

plant. Among several modeling approaches which have been applied, fuzzy logic

systems have received particular attention in the area of nonlinear modeling. The

use of fuzzy models together with the concept of model predictive control is a promis-

ing technique because both techniques can have an intuitive human interpretation,

and can be explained in simple terms to industrial human operators. Additionally,

fuzzy systems have general approximation properties in the modeling of functions

and systems [Wang and Mendel, 1992; Kosko, 1994]. Among several fuzzy model-

ing approaches, Takagi-Sugeno fuzzy models have gained much popularity in MPC

because their rule consequents are real-valued functions.

3.5 Constrained Robust Control Design

Often, in a system identification process due to complexity in plant behavior, just

an uncertain model can be estimated. One of the typical class of uncertain sys-

tems/models is the class of discrete-time linear parameter varying (DT-LPV) plants

[Pannocchia, 2004; Li et al., 2014a]. In nonlinear processes, the theory of Linear

Parameter-Varying (LPV) systems suggests an efficient modeling framework. In

general, LPV systems can be presented as an extended version of the class of Linear

Time-Invariant (LTI) systems. In LPV systems, the relations of signals are consid-

ered to be linear, but the parameters in the description of these relations are assumed

to be time-varying functions. In a discrete-time setting, LPV systems are generally

described in a state-space (SS) domain. Practical application of this framework is

oriented by the fact that LPV control design is well developed, extending results of

optimal and robust LTI control theory to nonlinear, time varying plants.

Although, uncertainty in industrial process control can introduce difficulty in a

control design, it is not the unique challenging issue for consideration. Besides uncer-

tainty, a control design problem can be exposed to unknown disturbances or stochas-

tic phenomena. Furthermore, often some limitations/constraints can be seen in the

performance of control parameters in real industrial environments. Input/output

signals saturation, as well as limitation in the variation of system state variables,

all can impose some constraints which must be considered in control design for such

complex plants. That is why the control of DT-LPV plants in the presence of con-

straints while the plants are affected by unknown disturbances, is a very active and
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relevant research area.

MPC designs have been considering these concerns slightly [Chakrabarty et al.,

2013; Kirubakaran et al., 2014]. However, in real control processes, the issue of

the reduction of computational complexity due to objective functions and terminal

constraints in MPC can emerge as a weakness of such control approaches. For exam-

ple, giving a solution for an infinite-horizon linear quadratic programming problem

with terminal constraints, which is a typical optimization problem in MPC method-

ologies, is a more difficult task when compared to a system that is not exposed

to constraints. Several works have been performed with the goal of reducing the

computational time of the MPC optimization algorithm for both offline and online

modes [Bemporad et al., 2002]. However, due to the complexity of the works, this

research field is still considered as a challenging area for investigation [Qi et al.,

2015]. This was a reason to start to investigate on the possibility of combining these

two control techniques, MPC and sliding mode control (SMC), to take advantage

of the MPC capability of coping with system constraints and the SMC robustness

properties [Wang et al., 2013]. However, other common and important drawback

of the SMC scheme, or the model predictive SMC design, is the existence of the

chattering phenomena caused by the high frequency switching control law which

needs to be seriously taken into account [Lee et al., 2009; Feng et al., 2014].

Frequently, for having a chattering-free sliding mode control, fuzzy logic tech-

niques were applied [Roopaei and Zolghadri, 2009]. As another solution a saturation

function is applied instead of a sign function [Lo and Chen, 1995]. Higher-order

SMC also is another possible solution for having a chattering-free sliding mode con-

trol [Feng et al., 2014]. Each of the aforementioned solutions has its own complexity.

For methods based on fuzzy systems, to find fuzzy rules, select best input variables,

as well as the calculation of fuzzy membership parameters are challenging tasks. So-

lutions based on higher-order models increase the computational costs significantly

which is not desirable. For saturation functions based solutions, finding thresholds

of saturation functions is considered another challenging issue. In most cases, it

can be seen that fuzzy logic techniques were applied to find the optimal value of

the threshold in saturation functions which increases the difficulty in control design.

Totally, due to complexity of the design, the concern regarding chattering is still an

important issue that should be considered and researched.

From the above discussion, it can be concluded that the study on robust control
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designs for LPV systems, while the systems, besides uncertainty, are also exposed

to unknown external disturbances, and system constrains is an important research

area [Rastegar et al., 2017c]. Investigation on this area opens a new gate towards

another interesting research case study such as robustly positively invariant set

theory applications to find an appropriate robust control region.

After thorough investigation, the author found that to have an efficient robust

control design for LPV systems in the presence of unknown external disturbance

sources and system constrains, synergetic control theory (SCT) can be considered as

a powerful mathematical tool to solve this problem. Synergetic control theory (SCT)

offers a control framework based on a theory conceived to control non-linear dynami-

cal processes [Kolesnikov, 2014], [Kolesnikov, 1994, cited in [Kolesnikov, 2014]]. The

SCT based controllers are coordinated with the internal characteristics of the sys-

tems. The synergetic control structure is designed to make the closed-loop control

system converge to regions/sets of attraction that correspond to the control pur-

poses, and then force the trajectories to stay on those regions. The author believes

the resulting control design for LPV systems [Rastegar et al., 2017c] can also be ex-

tended and applied for the control of nonlinear state dependent discrete time varying

(NSDDTV) systems [Rastegar et al., 2017a] and linear time varying (LTV) systems

[Rastegar et al., 2017d].

3.6 Summary/Conclusion

In this chapter a review of fuzzy system identification, and fuzzy control and their

derivations for industrial applications was considered. Taking into account that one

of the objectives of the thesis is the control of nonlinear industrial processes, the

author considers that the use of fuzzy logic, hierarchical PSO algorithms, and model

predictive control can result in efficient control techniques. MPC is a good control

paradigm to apply in industrial processes. This controller has the capability to be

combined with Takagi-Sugeno fuzzy models, and lends itself well to be used in multi-

variable control. Furthermore, typical systems restrictions such as state and control

command constraints can be incorporated into the control methodology. Moreover,

MPC can be integrated with an adaptive law to make an adaptive model predictive

control design. Among many fuzzy logic system types, T-S fuzzy model is chosen

in this thesis to be combined with MPC. The T-S fuzzy model can be identified by
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hierarchical PSO algorithms yielding good results. Another main objective in this

thesis is trying to have a constrained robust control design for uncertain time-varying

LPV systems. For that purpose, the synergetic control theory is a strong candidate

to be used in the design of a robust controller for LPV systems. The author believes

that the use of synergetic control theory combined with positively invariant set the-

ory can lead to a robust control framework, in such a way that the total proposed

control methodology can deal with system uncertainties, external disturbances, and

system constraints. Moreover, the author believes that the resulting control design

is also able to be extended to be used in the control of nonlinear state dependent

discrete time varying (NSDDTV) systems and linear time varying (LTV) systems.
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4.1 Introduction / State of the Art

System identification based on experimental data has been considered a powerful

practical engineering tool in many industrial control fields. A common point among

most control methodologies is their assumption of the knowledge of an accurate

model of the process to be controlled. This assumption may cause important prob-

lems, because many complex plants are difficult to be mathematically modeled based

on physical laws or have large uncertainties and strong nonlinearities. Several types

of approaches to modelling nonlinear plants can be considered. Among them, fuzzy

models have received particular attention in the area of nonlinear modelling [Škr-

janc, 2009], especially the Takagi-Sugeno (T-S) fuzzy models [Takagi and Sugeno,

1985]. The main feature of a T-S fuzzy model is that it may express the local dy-

namics on the region of the tate-space associated to each fuzzy implication (rule) by

a linear system model [Barros and Dexter, 2007; Chang et al., 2010; Hua et al., 2013;

Dovzan et al., 2015]. The T-S fuzzy model parameters can be estimated in either or

both offline or online modes. However, an online learning mode can have superior-

ity because in most cases, the collected data set used in offline methods is limited,

and the estimated T-S fuzzy model may not provide adequate accuracy in parts of

the, or the whole, operating areas of the plant [Salahshoor et al., 2012; Li and Du,

2012]. Many optimization methods were investigated to be used in T-S fuzzy mod-

elling. Among them, evolutionary algorithms such as particle swarm optimization

(PSO) algorithms and genetic algorithms (GAs) have shown a good adaptation to

search for optimal T-S fuzzy model parameters [Delgado et al., 2001; Coelho and

Herrera, 2007; Shuzhi et al., 2012]. Although a GA may be able to find the global

minimum, it consumes too much search time. The PSO algorithm is an alterna-

tive. It can result in a lower computational complexity with a better performance
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of fitness evaluation in general when compared with GAs [Eberhart and Shi, 1998],

consequently resulting in a better prediction performance when applied to learn a

T-S fuzzy model. Ali and Ramaswamy [2009] presented an optimal fuzzy logic con-

trol (FLC) algorithm for vibration mitigation of buildings using magneto-rheological

(MR) dampers. A micro-genetic algorithm (m-GA) and a standard particle swarm

optimization (SPSO) were used to optimize the FLC parameters. In the method,

only the membership function parameters are optimized, while the other components

of the fuzzy system are considered to be fixed. An adaptive PID controller based on

adaptive PSO was proposed in [Alfi and Modares, 2011]. In most cases, controlling

the inertia weight of PSO has been done based on a constant parameter, or a linearly

decreasing inertia weight PSO (LDW-PSO) has also been used [Shi and Eberhart,

1998]. But in [Alfi and Modares, 2011], the inertia weight was dynamically adapted

for every particle by considering a measure called the adjacency index (AI). This

idea lead the classical LDW-PSO algorithm to be evolved into a new class of system

modelling based on an adaptive PSO (APSO) methodology. The results proved a

superiority of APSO performance when compared to the LDW-PSO or GA.

The prediction performance of a Takagi-Sugeno fuzzy model depends on its com-

plexity (e.g. number of fuzzy rules), on the number and type of membership func-

tions, on the antecedent variables, and on the consequent regressors [Yao et al.,

2014]. A hierarchical genetic algorithm (HGA) was proposed by Delgado et al.

[2001] to find optimal parameters of T-S fuzzy systems through an evolutionary

genetic algorithm and a neuro-based technique, and then was improved [Delgado

et al., 2009] by proposing an idea for pre-selection of input variables using an aux-

iliary criterion. However, the variable and delay selection are not jointly performed

with the learning of the fuzzy model, which precludes the global optimization of the

prediction setting. As an evolution of the work [Delgado et al., 2001, 2009], Mendes

et al. [2012] proposed an identification methodology based on the application of a

HGA, and also the proposed identification method was applied for the design of a

control methodology [Mendes et al., 2014]. The main advances in this work are the

improvement of the whole hierarchical structure, automatically extracting the fuzzy

control rules. Despite of having a successful performance, the HGA did not utilize

any significant improvement in its interior structure to be augmented for online ap-

plications. A related methodology for online applications was proposed in [Mendes

et al., 2013], using a combination with other method, the RLS method with adaptive
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directional forgetting (ADF) [Kulhavý, 1987]. For automatic extraction of all FLS

parameters, the number of fuzzy partitions is a key parameter. Approximately all

the FLS units of a T-S fuzzy model such as the set of fuzzy rules, the individual

rules, the consequent parameters, as well as the unit of the FLS, use this parameter

during the FLS construction. However, in the methods proposed in [Delgado et al.,

2001], [Mendes et al., 2012], [Mendes et al., 2013], and [Mendes et al., 2014], the

number of partitions is defined initially, and then considered as a constant value

during all the operation of the algorithm. Abbasi et al. [2015] represented a time

delay fuzzy Takagi-Sugeno (T-S) for modeling and analyzing the human immunod-

eficiency virus type 1 (HIV-1) dynamics. In [Abdelmalek et al., 2016], a strategy

for the detection and isolation of current sensor faults in the stator of a double-

fed induction generator (DFIG) based Wind Turbine (WT) was implemented. The

work develops local linear models of a DFIG by applying T-S fuzzy modeling in

the operating region of the wind turbine. The resulting T-S fuzzy DFIG model

was used with a bank of Luenberger observers to detect current sensor faults in the

stator. Large nonlinearities can be seen in the dynamics of both the HIV-1 process

model [Abbasi et al., 2015] and the DFIG [Abdelmalek et al., 2016]. However, the

constructed T-S fuzzy model in both cases does not utilize any adaptive procedure

in these works.

4.2 T-S Fuzzy Model Identification Methodology

This section proposes an algorithm to identify a T-S fuzzy model to approximate

unknown nonlinear processes based on input/output data. The proposed method

identifies the structure and parameters of the model. The fuzzy rules, the parame-

ters of the antecedent fuzzy membership functions, and the consequent parameters

are automatically learned from system data. The proposed hybrid identification

methodology can be considered for application in problems such as the design of

data-driven soft sensors, or in model-based predictive control.

4.2.1 Modelling Using T-S Fuzzy Models

Takagi-Sugeno fuzzy models with simplified linear rule consequents are universal

approximators capable of approximating any continuous nonlinear system [Ying,



4.2. T-S FUZZY MODEL IDENTIFICATION METHODOLOGY 41

1997]. For more details about T-S fuzzy models, references [Takagi and Sugeno,

1985; Wang, 1997b], are recommended. With a T-S fuzzy model, the global opera-

tion of the nonlinear system can be accurately approximated into several local affine

models. In general, a nonlinear system can be described by a T-S fuzzy system

model defined by the following fuzzy rules:

Ri : IF x1(k) is Ai1, and . . . and xN(k) is AiN

THEN yi(k) = θi1x1(k) + · · ·+ θiNxN(k), i = 1, 2, . . . , c, (4.1)

where Ri represents the i-th fuzzy rule (i = 1, 2, . . . , c), c is the number of rules,

x1(k), . . . , xN(k) are the input variables of the T-S fuzzy system. Aij (j = 1, 2, . . . , N)

are linguistic terms characterized by fuzzy membership functions µAi
j
(xj) which

describe the local operating regions of the plant. θi1, · · · , θiN are model parameters

of yi(k). From (4.1), the model output y(k) can be written as

y(k) =
c∑

i=1

ω̄i[x(k)]x(k)θi,

= Ψ(k)Θ, (4.2)

where for i = 1, . . . , c, and assuming Gaussian membership functions,

x(k) = [x1(k), . . . , xN(k)] , (4.3)

µAi
j
(xj) = exp

(

−(xj − vij)2

σij

)

, j = 1, . . . , N, (4.4)

ω̄i[x(k)] =

∏N
j=1 µAi

j
(xj)

∑c
i=1

∏N
j=1 µAi

j
(xj)

, (4.5)

θi = [θi1 . . . , θiN ]T , (4.6)

Θ =
[

θT1 ,θ
T
2 , . . . ,θ

T
c

]T
, (4.7)

Ψ(k) =
[(

ω̄1[x(k)]
)

x(k), . . . , (ω̄c[x(k)]) x(k)
]

, (4.8)

where vij and σij are the antecedent parameters, which represent the center and

width of the antecedent membership functions, respectively, and which need to be

defined/learned. Parameters vij and σij will be learned from data using the Fuzzy

C-means method presented in Subsection 4.2.2 below. The consequent parameters
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θij are estimated by a RLS method, with ADF (Subsection 4.2.5).

4.2.2 Fuzzy C-Means

The objective of the fuzzy c-means (FCM) clustering algorithm is the partition-

ing of a dataset X into a predefined number of clusters, c. In the fuzzy clustering

methods, the objects can belong to multiple clusters, with different degrees of mem-

bership. Consider N samples which compose an observation l of the input variables

(one sample of each input variable), which are grouped in an N -dimensional observa-

tion/sample vector xl = x(l) = [xl1, . . . , xlN ]T ∈ R
N . A set of L observations/objects

is then denoted as

X =











x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

...
...

xL1 xL2 . . . xLN











. (4.9)

For the T-S fuzzy model identification problem, each complete input/output obser-

vation (xl, y(l)) = (x(l), y(l)), is composed of one input observation x(l), and one

output observation yl = y(l), for l = 1, . . . , L. Sections 4.2.2-4.2.4 deal with the

clustering issue, and will use only the input part, X, of the observations.

A fuzzy partition of the set X ∈ R
L×N into c clusters, is a family of fuzzy subsets

{Ai | i = 1, . . . , c}. The membership functions of these fuzzy subsets are defined

as µi(l) = µAi(xl), and form the fuzzy partition matrix U = [uil] = [µi(l)] ∈ R
c×L.

The i-th row of the matrix U contains the values of the membership function of

the i-th fuzzy subset Ai for all the observations belonging to the data matrix X.

The partition matrix has to meet the following conditions [Dovžan and Škrjanc,

2011; Mendes et al., 2013]: The membership degrees are real numbers in the interval

µi(l) ∈ [0, 1], for l = 1, . . . , L; The total membership of each sample in all the clusters

must be equal to one
∑c
i=1 µi(l) = 1; And none of the fuzzy clusters is empty, neither

do any contain all the data 0 <
∑L
l=1 µi(l) < L, for i = 1, . . . , c. FCM clustering

tries to minimize the following objective function, which has a pre-defined number

of clusters, c, and includes a fuzziness weighting parameter, η:

J(X,U,V) =
c∑

i=1

L∑

l=1

[µi(l)]ηd2
il(xl,vi), (4.10)
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where V = [v1, . . . ,vc]T ∈ R
c×N is a matrix of cluster centroid vectors vi =

[vi1, · · · , viN ]T , dil(xl,vi) is the Euclidean distance (l2-norm) between the observa-

tion xl and the cluster centroid vi, and the overlapping factor, or fuzziness param-

eter, η, influences the fuzziness of the resulting partition. The partition can range

from a hard partition (η = 1) to a completely fuzzy partition (η →∞). In order to

find the fuzzy clusters in the dataset X, equation (4.10) must be minimized. If the

derivative of the objective function is taken with respect to the cluster centers V

and to the membership values U, then optimum membership values are calculated

as follows [Dovžan and Škrjanc, 2011]:

µi(l) =



d2
il

c∑

q=1

(

d2
ql

)1/(η−1)





−1

, (4.11)

where

d2
il = (xl − vi)

T (xl − vi) , (4.12)

and

vi =
∑L
l=1 µ

η
i (l)xl

∑L
l=1 µ

η
i (l)

. (4.13)

The vij parameters of (4.4) are obtained from the center-vectors vi =

[vi1, · · · , viN ]T of (4.13). To finalize the identification of the premise parameters

in (4.4) of the T-S model (4.1)-(4.2), the σi = [σi1, · · · , σiN ]T , i = 1, . . . , c, can be

calculated from U = [µi(l)], as follows:

σij =

√
√
√
√
√
√
√
√

2
L∑

l=1
µi(l)(xlj − vij)2

L∑

l=1
µi(l)

, j = 1, . . . , N. (4.14)

4.2.3 Fuzzy Validity Indices

Since FCM is an unsupervised clustering algorithm, some cluster validity index is

required to evaluate the quality of the clustering that results from the algorithm.

Each index is categorized based on specified criteria. Several types of cluster validity

criteria exist, namely external criteria which are based on the external characteris-

tics regarding all of the data, internal criteria which use quantities internal to data

of each class, and relative criteria which basically follow the idea of evaluating a clus-
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tering algorithm by comparing it to other clustering schemes. However, all of these

criteria can be converted into two main optimal clustering criteria, compactness and

separation [Berry and Linoff, 1996].

The compactness criteria have been proposed based on the idea that the members

in one same cluster should be as close to each other as possible. For the compactness

criteria the variance, which should be minimized, is one common measure. Some

conventional fuzzy validity indices for this class of scheme are for example the par-

tition coefficient (PC) [Bezdek, 1974], the partition entropy [Bezdek, 1975], and the

proportion exponent [Windham, 1982]. The main difference between these three

fuzzy validity indices are in the way that the membership functions of fuzzy sets are

combined and used for fuzzy evaluation. For example, while the Partition coeffi-

cient (PC) uses the square of membership functions of fuzzy sets in the formulation,

the partition entropy validity indice uses logarithmic type of membership functions

of fuzzy sets. Also, in the formulation of fuzzy evaluation of the proportion expo-

nent, there is an exponential-type distance term which causes more robust clustering

results.

Separation criteria are organized based on the distance between the closest mem-

bers of the clusters, the distance between the most distant members, or the distance

between the centers of the clusters. A conventional performance index in this class

of scheme is the Xie-Beni index [Xie and Beni, 1991]. Although the Xie-Beni index

has proved that it can provide a reliable response over a wide range of choices for

the number of clusters and the fuzziness weighting parameter, the Xie-Beni index

has two intrinsic drawbacks: 1) the validation index monotonically decreases when

the number of clusters gets very large and close to the number of data points, and 2)

strong interaction between the cluster validity index and fuzziness weighting param-

eter η imposes unpredictable behaviour in the results when the fuzziness weighting

parameter approaches infinity. The first problem was considered by Kwon [1998],

who imposed a punishing function to eliminate the decreasing tendency. Tang and

Sun [2005] proposed an improved validation index for the FCM algorithm to over-

come the above two problems with the same idea. This work uses the Tang-Sun’s
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validation index which is defined as follows:

VT (U,V; X) =
∑c
i=1

∑L
l=1 µ

2
il ‖ xl − vi ‖2

min
i6=k
‖ vi − vk ‖2 +1/c

+
1

c(c−1)

∑c
i=1

∑c
k=1,k 6=i ‖ vi − vk ‖2

min
i6=k
‖ vi − vk ‖2 +1/c

,

(4.15)

where c is number of clusters, and vi is the center of cluster i, i = 1, ...c. The numer-

ator of the second term in (4.15) is an ad hoc punishing function (average distance

between cluster centers) which is applied to eliminate the decreasing tendency of

VT (·) as c→ L.

4.2.4 K-Nearest Neighbor (K-NN)

The FCM algorithm with pre-defined initial values such as the number of clusters,

initial cluster centers and fuzziness weighting exponent η converges to a solution at

which the objective function J in (4.10) is minimized. In practice, in many cases,

randomly choosing initial FCM parameters may cause the FCM to just obtain results

which are only locally optimal [Yu et al., 2004; Wu, 2012]. To overcome these prob-

lems, an initialization technique based on a K-NN method is proposed to initialize

the FCM method [Algorithm 4.1, Steps 1-3(c)]. The basic FCM follows an iterative

procedure to converge to a solution. But with the proposed initialization procedure

just one iteration of the FCM is enough to learn the antecedent parameters in the

course of learning the T-S fuzzy model [Algorithm 4.1, Step 3(d)]. The basic K-NN

is a non parametric learning algorithm for classification some initialization of the

‘K’ decides how many neighbours influence the classification. In the initialization

procedure proposed in this work, the K is a parameter to be determined which will

be iteratively calculated by the proposed method in order to obtain the best/optimal

value, c∗, for the number of clusters c subject to a maximum value cmax (see Algo-

rithm 4.1, Steps 3). Thus, the resulting K for the best c is obtained in Algorithm

4.1. The complete proposed method is explained in Subsection 4.2.6. In Subsection

4.2.6 it will be explained how the combination of these steps together can result in

the NUFCA to initialize the T-S fuzzy model.
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4.2.5 Recursive Least Squares Method With

Adaptive Directional Forgetting

In the proposed nonlinear systems modeling methodology, after learning the an-

tecedent parameters, the consequent parameters are given by a recursive least squares

(RLS) method, with the adaptive directional forgetting approach (ADF) (RLS-

ADF) [Kulhavý, 1987; Bobál et al., 2005; Mendes et al., 2013] here adapted for

the T-S fuzzy model. Using off-line training algorithms, the T-S fuzzy model can

be obtained from input-output data collected from a plant. However, such collected

dataset(s) can be limited, the obtained T-S fuzzy models maybe do not provide

adequate accuracy, the system can be nonlinear and/or time-varying, or can have

varying operating points and varying model parameters. Adaptive methodologies

should be applied to solve these problems. The goals of having an adaptive forget-

ting factor is to improve convergence rate, tracking, and stability of RLS, as well as

avoiding covariance matrix wind-up in case of poor excitation of the system.

At each iteration l, the vector of parameter estimates (4.6), is updated using

θi(l) = θi(l − 1) +
Ci(l − 1)ψT

i (l)
1 + ξi

[yi(l)−ψi(l)θi(l − 1)] , (4.16)

where ψi(l) = (ω̄i[x(l)]) x(l), ξi = ψi(l)Ci(l−1)ψT
i (l), Ci(l) is the covariance matrix

of fuzzy rule i, and yi(l) = (ω̄i[x(l)]) y(l). The initial value Ci(0), of Ci(l), should be

set to a diagonal matrix where the main diagonal entries are suitably large numbers,

as for example 105 for all main diagonal entries.

The covariance matrix is also updated at each iteration, l, using

Ci(l) = Ci(l − 1)− Ci(l − 1)ψT
i (l)ψi(l)Ci(l − 1)
ε−1
i + ξi

, (4.17)

where εi = ϕi(l − 1) − 1−ϕi(l−1)
ξi

, and ϕi(l − 1) is the forgetting factor at iteration

(l − 1) of the fuzzy rule i.

The adaptation performed on the forgetting factor is obtained using [Bobál et al.,

2005; Bobál and Chalupa, 2008; Kulhavý, 1987], [Kulhavý, 1985, cited in [Bobál and
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Chalupa, 2008]]:

ϕi(l) =
1

1 + (1 + ρ)
{

ln(1 + ξi) +
[

(νi(l)+1)γi

1+ξi+γi
− 1

]
ξi

1+ξi

} , (4.18)

where νi(l) = ϕi(l − 1)(νi(l − 1) + 1), γi = (yi(l)−ψi(l)θi(l−1))2

τi(l)
, τi(l) = ϕi(l −

1)
[

τi(l − 1) + (yi(l)−ψi(l)θi(l−1))2

1+ξi

]

, and ρ is a positive constant. The initial values

of ϕi(0), τi(0) and νi(0) should be set between zero and one.

4.2.6 Proposed T-S Fuzzy Model Identification Based on an

Unsupervised Fuzzy Clustering Algorithm

In this section a new T-S fuzzy model identification algorithm is proposed [Rastegar

et al., 2016b]. To construct a T-S fuzzy system of the form (4.2) it is necessary

to obtain the number of rules, the antecedent membership functions, the set of

rules, and also to learn and update the consequent parameters (θi). The antecedent

part is given by a new unsupervised fuzzy clustering algorithm (NUFCA) and the

consequent parameters are estimated by the RLS-ADF method (Subsection 4.2.5).

The complete proposed algorithm for T-S fuzzy model identification is presented in

Algorithm 4.1, and is called “Method 1”.

As noted in Subsection 4.2.4, the FCM algorithm with pre-defined initial val-

ues such as the number of clusters, initial cluster centers and fuzziness weighting

parameter η converges to a solution at which the objective function J in (4.10) is

minimized. In practice, in many cases, randomly choosing the initial FCM param-

eters may cause the FCM to just obtain results which are only locally optimal [Yu

et al., 2004; Wu, 2012]. Furthermore, while the FCM is a semi-unsupervised method

that requires the knowledge of the number of clusters, in an intelligent expert sys-

tem it is desirable to use an unsupervised clustering technique. To overcome these

problems, this section proposes the NUFCA [Algorithm 4.1, Steps 1-4] which uses

a hybrid clustering algorithm based on two layers. NUFCA iteratively tests several

values for the number of clusters c, in order to find an optimal value which is de-

noted as c∗. The first layer uses an unsupervised clustering technique based on KNN

which tries to partition the samples into a specified number of clusters that is being

varied. The second layer of NUFCA has the role of performing one iteration of the
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Algorithm 4.1 Proposed T-S fuzzy model identification algorithm, which defines
the NUFCA in Steps 1-4 and uses the RLS-ADF in Step 5 - Method 1.

1. Consider the output data y = [y(1), . . . , y(L)]T and construct the matrix of input
data X = [xlj ]L×N in (4.9), for l = 1, . . . , L, and j = 1, . . . , N , using L observations;

2. Choose the degree of fuzziness η > 1; And let g0 be the center of data X, and
v∗
t ← 0;

3. Repeat the procedure below for c = 1, 2, . . . cmax =
√

L:

(a) Initialization for iteration c:

i. Let K =
⌊
L
c − 1

⌋

, and I = {1, 2, . . . , L}, where ⌊·⌋ is the floor function;

(b) For i = 1, . . . , c construct Ei using K nearest neighbourhood:

i. In I find the index i of the unknown sample xi which is farthest from
gi−1;

ii. Ei = {xi} ∪ KNN(K − 1, xi), where KNN(K − 1, xi) is the set of K − 1
nearest-neighbour samples of xi that do not belong to any other already
existing Ei.

iii. Let gi =

∑

xk∈Ei
xk

K , and Ei ← Ei ∪ {gi};
iv. I ← I \ {i} \ IKNN(K − 1, xi), where IKNN(K − 1, xi) is the set of all

indices n such that xn ∈ KNN(K − 1, xi);

(c) While I 6= ∅, do:

i. Select r ∈ I, let I ← I\{r}, and calculate the distances from the still
unclustered sample xr to the center gi of all Ei by d(xr, gi),∀i = 1 . . . c;

ii. Assign xr to the Ei with the nearest gi, so that Ei ← Ei ∪ {xr};

iii. Perform the update of gi =

∑

xk∈Ei
xk

K+1 ;

(d) Perform one iteration of FCM:

i. Calculate the fuzzy clustering matrix U = [µil]c×L using (4.11)-(4.12)
with vi = gi in (4.12);

ii. Calculate clustering validity index by (4.15) and assign it to vt.

(e) If vt > v∗
t , then

i. Let the optimal number of clusters be c∗ ← c;

ii. Let E∗
i ← Ei, for i = 1, . . . c∗, be the optimal clustering sets;

iii. Update the optimal clustering validity index: v∗
t ← vt;

4. Using U = [µil]c∗×L calculate vi and σij by (4.13)-(4.14).

5. Compute the consequent parameters θi, by initializing its components to small
values, and then using the RLS-ADF method (Subsection 4.2.5), using recursion
(4.16) for l = 1, . . . , L.
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FCM algorithm for each number of clusters until the antecedent parameters of the

T-S fuzzy model are learned. All the parameters extracted from the first layer and

the second layer are used in a fuzzy validity formulation to find the optimal number

of clusters.

In the first layer of NUFCA, for each c, the initial centers of the clusters are

obtained by using the KNN approach [Step 3(b)]. The basic idea in the KNN

method is to try to find, from the L samples of a dataset, the k samples which

have the highest levels of similarity to a specified feature vector. Specifically, in

the first layer of NUFCA, the dataset X of (4.9) is partitioned into c clusters, in

which samples of each cluster have similarity in the Euclidean distance sense, and

will belong to one set Ei [Steps 3(a)-3(c)]. Ei is an auxiliary set of samples to gather

the members of tentative cluster i. After all Ei sets are constructed for a certain c,

then one iteration of the FCM is performed [Step 3(d)]. The final step of NUFCA

consists on determining the best c, and the corresponding collection of the best Ei
(i = 1, . . . , c), which are termed as c∗, and E∗

i (i = 1, . . . , c∗), respectively [Step

3(e)]. The results of this proposed hybrid clustering algorithm are used to set the

antecedent parameters of the T-S model (4.1)-(4.2). In the final step, the algorithm

uses the RLS-ADF procedure to obtain consequent the parts of T-S fuzzy model

[Step 5].

4.3 Hierarchical T-S Fuzzy System Identification

The T-S fuzzy model identification which was proposed in Subsection 4.2.6 gives an

efficient strategy for data fuzzy clustering while it just uses the system input/output

data. A common limitation of the T-S fuzzy model identification method proposed

in Subsection 4.2.6, as well as of other identification methods, is the concern regard-

ing the selection of the correct set of input variables and associated time delays.

The variable selection process is usually manual and not accompanied with the ac-

curate selection of the right time delays, probably leading to low-accuracy results.

A variable with the correct delay may contain more information about the output,

than one which does not consider any delay or which considers an incorrect delay

[Souza et al., 2010]. This section proposes a new adaptive methodology for online

learning of Takagi-Sugeno (T-S) fuzzy models based on a hierarchical particle swarm

optimization (HPSO) algorithm. The HPSO design uses an automatic inputs selec-
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tion strategy in a way that is able to extract the best combinations of inputs and

associated delays.

The use of random initialization of the particles in a PSO may result in a very

exhausting optimality search, requiring more iterations to attain convergence. Thus,

in order to obtain an initial satisfactory starting point, reducing the computational

cost, and to increase the algorithm’s performance, NUFCA which uses a hybrid

clustering algorithm based on two layers [Algorithm 4.1, Steps 1-4] is applied to

initialize the particles of the proposed HPSO algorithm. While the HPSO was

proposed to automatically extract all the parameters of the T-S fuzzy model from a

set of input/output data, as another contribution of this work, a self-adaptive HPSO

(S-AHPSO) algorithm is proposed for online identification of T-S fuzzy models.

4.3.1 Particle Swarm Optimization (PSO) Algorithm

The particle swarm optimization (PSO) algorithm was first proposed by Kennedy

and Eberhart [1995]. The algorithm was attempting to simulate the choreographed

motion of swarms of birds as part of a socio-cognitive study investigating the notion

of collective intelligence in biological populations. PSO, unlike genetic algorithms

(GA), is motivated by the simulation of social behaviour, and each candidate solu-

tion is associated with a velocity. Candidate solutions to a problem are represented

by ‘particles’ which try to fly through the design space. The standard PSO algo-

rithm consists of three steps, namely, generating particles positions and velocities,

velocity update, and finally, position update. Here, a particle refers to a point in the

design space that changes its position from one move (iteration) to another based

on velocity updates. At each iteration, t, the velocity of every particle vtr will be

iteratively calculated as follows:

vt+1
r = w vtr + c1r1(pbesttr − xtr) + c2r2(gbestt − xtr), (4.19)

where xtr is the position of the particle r in iteration t, pbesttr is the best previous

position of this particle (memorized by each individual particle), gbestt is the best

previous position among all the particles in iteration t (memorized in a common

repository), w is the inertia weight, and c1 and c2 are positive acceleration coefficients

and are known as the cognitive and social parameters, respectively. Finally, r1 and

r2 are two random variables that take values in the range [0, 1]. After calculating
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the velocity, the new position of every particle can be obtained as

xt+1
r = xtr + vt+1

r . (4.20)

To better address the notation of the particles inside each level of the HPSO

algorithm proposed in this thesis, and also based on the case study in this work,

equation (4.19) is rearranged as follows:

vpr(t+ 1) = wpr(t)v
p
r(t) + c1r(p)r1(pbestpr(t)− xpr(t)) + c2r(p)r2(gbestp(t)− xpr(t)),

(4.21)

where, wpr(t) and pbestpr(t) are the inertia weight and the best personal experience

of particle r in iteration t inside Level p, respectively. gbestp(t) is the best previous

experience among all the particles inside Level p in iteration t. c1r(p) and c2r(p) are

acceleration coefficients of the r-th particle in Level p. Then, (4.20) is rearranged

as:

xpr(t+ 1) = xpr(t) + vpr(t+ 1). (4.22)

The learning process of the HPSO algorithm utilizes the conventional linearly

decreasing inertia weight PSO (LDW-PSO) concept [Shi and Eberhart, 1998], which

means that for each individual particle r, and iteration t:

wpr(t) = wpr,max − (wpr,max − wpr,min) · t/T1, (4.23)

where wpr(t) is the inertia weight in iteration t in Level p. wpr,max, w
p
r,min are the

initial and the final (minimum) inertia weight of particle r in Level p, respectively,

and T1 is the number of PSO iterations.

4.3.2 Hierarchical Particle Swarm Optimization (HPSO)

Algorithm

This section presents HPSO, an automatic evolutionary algorithm to extract from

data all the FLS parameters, and the structure, of the T-S fuzzy model (4.1)-(4.8),

not requiring prior explicit expert knowledge [Rastegar et al., 2017b]. The data from

which the FLS is extracted is composed of a set of input observations X ∈ R
L×N

(4.9), and a corresponding set of output observations y = [y1, . . . , yL]T ∈ R
L, where
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Figure 4.1: Encoding of hierarchical relations among the individuals of different
levels of the HPSO algorithm that integrates the NUFCA.

yl is the output corresponding to xl, for l = 1, . . . , L.

The HPSO is constructed based on six hierarchical levels (Figure 4.1). The

first level represents the particles of the set of input variables and their respective

time delays. The particles of the second level represent all the antecedent fuzzy

membership functions which constitute the fuzzy rules of the fuzzy system. Particles
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at the third level represent parameters sets for the consequent parts of the fuzzy

rules. The individual rule particles are defined on the fourth level, and the particles

that represent sets of rules are obtained on the fifth level. Finally, the sixth level

represents T-S fuzzy models, where the particles include the indices of the selected

elements of the previous levels. In Algorithm 4.2, all the particles in the second,

fourth, and fifth levels, and one particle of each of the first and sixth levels of the

HPSO algorithm use NUFCA results to be initialized. Otherwise, all other particles

are initialized randomly. The detailed description of each level is given below.

Level 1: it is composed of particles that represent the set of input variables, and

respective delays. The particles of this level are represented by binary encoding,

where each allele (element of the particle located in a specific position) corresponds

to each input variable/delay pair (see Figure 4.1). The length of the particle is

given by the total number of pairs of system variables and respective delays that are

considered as possible candidates to be used as inputs for the T-S fuzzy system.

Level 2: contains Gaussian membership functions defined in the universes of

discourse of the variables involved. The particle is erected by the aggregations of

all Gaussian partition sets associated with the input variables. A partition set of a

variable is a collection of fuzzy sets associated to the variable.

Level 3: it is constructed based on particles, where each particle represents the

consequent parameters that can be used for a fuzzy rule. The length of each particle

in this level is determined by the maximum number of input variables. The particle

is represented by real number encoding. On each particle, the specific alleles that

are taken into account for a rule are the ones that correspond to the collection of

input variables selected by Level 1. Null values indicate the absence of consequent

parameter value for the corresponding variable.

Level 4: it is formed by particles of individual rules. The length of the particle

is given by the maximum number of antecedent variables plus one. The particle is

represented by non-negative integer encoding, where each allele contains the index

of the corresponding antecedent membership function (defined at Level 2), except

the last allele in each particle which is appointed to select the indices of Level 3. Null

values indicate the absence of membership function for the corresponding variable

(i.e. the absence of the variable) and are only considered for antecedent indices.

Level 5: it is constituted by a set of fuzzy rules, where each allele contains the

index of the corresponding individual rule defined in Level 4 that has been included
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in the set. The particle is represented by integer encoding, where once again, null

values indicate that the corresponding allele does not contribute to the inclusion of

any rule in the set of fuzzy rules. The length of each particle is determined by the

maximum number of fuzzy rules.

Level 6: it represents a control and specification unit for the T-S fuzzy model

(TSFM). Key information required to develop and describe a TSFM design is con-

templated on this level. The particle is represented by integer encoding and is

constituted by three alleles. The first allele indicates the index, b, of the set of rules

specified on Level 5. The second allele contains the s-th individual of Level 2 which

represents the s-th collection of partition sets given by Level 2. The third allele

represents the index, m, of the set of input variables selected on Level 1 (see Figure

4.1).

Level 6 is a flexible unit. Other alleles can be added to this unit in order to design

a new HPSO usable with different characteristics. For example, a new extended

HPSO with more complexity can be constructed for a direct fuzzy controller (DFC)

design, where other alleles can be added to correspond to other important fuzzy

elements such as t-norm operators, inference engine, and defuzzifier methods, and

where, consequently, such additional elements of the fuzzy system can have a chance

to be identified in a competition by the PSO methodology. However, as can be

concluded from Subsection 4.2.1, the design of the T-S fuzzy model (as the case

study of this work) is composed of: singleton fuzzifier (direct representation of

a number by a singleton fuzzy set), center average defuzzifier, and the product

inference engine [Wang, 1996].

The main steps of the HPSO algorithm used to learn/improve the FLS param-

eters are presented in Algorithm 4.2. Each level utilizes its own PSO parameters

and fitness function to estimate the new position of the particles in that level. The

fitness evaluation of each individual particle in each level of the hierarchy is defined

as follows:

• Control unit of the fuzzy logic system (Level 6):

The value of the fitness function of the a-th particle in Level 6 is defined by

Ja6 =
1

MSE(y, ŷa)
, (4.24)

where MSE(y, ŷa) = 1
L

∑L
l=1 (yl − ŷl)2, is the mean square error of the a-th
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Algorithm 4.2 Hierarchical Particle Swarm Optimization (HPSO) Algorithm.
Inputs: Set of input observations X (4.9), and a corresponding set of output
observations y = [y1, . . . , yL]T ∈ R

L, where yl is the output corresponding to xl,
for l = 1, . . . , L; Maximum number of particles for each level, amax, bmax, dmax,
zmax, smax, mmax; Velocity limits for each level, vpmin =

[

vpmin,i1
]

, vpmax =
[

vpmax,i1
]

,
p = 1, . . . , 6; Maximum number of iterations, T1; wr,min, wr,max, c1r, and c2r PSO
parameters of the r-th particle for each level; Maximum number of particles in each
level, rmax;
Output: Optimized T-S fuzzy model (TSFM);

procedure
for all levels p = 1, 2, . . . , 6 do // For all levels of the HPSO

for all particles r = 1, 2, . . . , rpmax, of Level p do // For all particles of
the level

if p ∈ {2, 4, 5} or (p = r = 1) or (p = 6 and r = 1)
then Initialize xpr of p-th Level using the results extracted with NUFCA

[Algorithm 4.1, Steps 1-4];
else Randomly initialize xpr endif
Initialize vpr of p-th Level randomly within the velocity range of

(vpmin,v
p
max);

pbestpr ← xpr;
end for

end for
Evaluate all particles using one of the equations (4.24)-(4.27), according to the

level of each particle;
Identify the gbestp of the swarm p, for p = 1, . . . , 6;
t← 1;
while t ≤ T1 do

for all levels p = 1, 2, . . . , 6 do
for all particles r = 1, 2, . . . , rpmax, of Level p do

Compute wpr(t) and vpr(t) using (4.23) and (4.21), respectively;
Update xpr(t) using (4.22);

end for
end for
Evaluate J (r)

p , for each particle r = 1, 2, . . . , rpmax, of each level p =
1, 2, . . . , 6, using (4.24)-(4.27);

Update pbestpr(t) and gbestp(t) based on the J (r)
p results from (4.24)-

(4.27), for p = 1, 2, . . . , 6, r = 1, 2, . . . , rpmax;
t← t+ 1;

end while
end procedure
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fuzzy system (a = 1, . . . , amax), yl is the l-th output observation (target), and

ŷl is the corresponding output value predicted by the FLS;

• Units of Levels 1, 2, and 5:

The value of the fitness function of the u-th particle in Level e, for e = 1, 2, 5,

is evaluated by

Jue = max
(

J
fe,1

6 , · · · , Jfe,p(e)

6

)

, (4.25)

where {fe,1, . . . , fe,p(e)} ⊆ {1, . . . , amax} is the subset of all the particles of

Level 6 that contain the u-th individual of Level e (see Figure 4.1);

• Individual rule (Level 4):

The value of the fitness function of the d-th particle in Level 4 is defined by

Jd4 = max(Jr1
6 , . . . , J

rq

6 ), (4.26)

where {r1, . . . , rq} ⊆ {1, . . . , amax} is the subset of all the particles of Level 6

that involve the d-th individual rule of Level 4 (indirect involvement through

Level 5, see Figure 4.1);

• Consequent sets (Level 3):

The value of the fitness function of the z-th particle in Level 3 is defined by

Jz3 = max(Jg1
6 , . . . , J

gp

6 ), (4.27)

where {g1, . . . , gp} ⊆ {1, . . . , amax} is the subset of all the particles of Level 6

that involve the z-th consequent set of Level 3 (indirect involvement through

Levels 5 and 4, see Figure 4.1).

Each level of the particles’ hierarchy is evolved separately as an independent

PSO algorithm using its own particles, its own fitness function, and its own PSO

parameters. However, since the values of the fitness evaluations of the particles in

each level also depend on the particles in other levels, then the evolution of each

level is also influenced by the evolution of all the other levels.
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4.3.3 Adaptive Online the T-S Fuzzy Modelling

The results extracted by the HPSO methodology, Subsection 4.3.2, and Algorithm

4.2 will be used to initialize the T-S fuzzy model for the operation in online mode.

For the online process the consequent parameters vector Θ (4.7) is denoted by Θon,

and is self-adjusted, being updated as follows whenever a new data sample becomes

available at time instant k:

Θon(k) = Θon(k − 1) + ∆Θon(k), (4.28)

where Θon is initialized by the consequent parameters that have resulted from Al-

gorithm 4.2, and ∆Θon is calculated for each incoming sample at each time instant

k using the S-AHPSO algorithm as described in this sub-section.

Although PSO has shown some important advances by providing high speed

of convergence in specific problems, it does exhibit some shortages. It was found

that PSO has a poor ability to search at a fine grain scale because it lacks an

adequate velocity control mechanism. Many approaches have been attempted to

improve the performance of conventional PSO by variable inertia weight [Ratnaweera

et al., 2004]. The inertia weight, which balances the global exploration and local

exploitation abilities of the swarm, is critical for the performance of PSO. A big

inertia weight facilitates exploration, but it makes the particle to take a long time

to converge. Conversely, a small inertia weight makes the particle to converge fast,

but it some times leads to local optima. The performance of PSO can be improved

if an appropriate adaptive strategy for the inertia weight [Ratnaweera et al., 2004]

replaces typical inertia weight strategies like the conventional linearly decreasing

inertia weight PSO (LDW-PSO) [Shi and Eberhart, 1998]. For example, a variable

inertia weight can be formulated to depend on the particle’s position or velocity.

Motivated by these facts, this section proposes an adaptive process for obtaining

the inertia weight. For each newly available data sample at time instant k, S-

AHPSO runs PSO iterations t = 1, . . . , T2. For each iteration t of S-AHPSO, the

inertia weight wr for each particle r is obtained from feedback taken from the best
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memories of the individual particle and of the swarm as follows:

wr(t) = wr,min + (wr,max − wr,min)×

exp

(

− γ

| y(pbestr)(t)− y(gbest)(t) |+ β
× t− 1
T2 − t+ δ(t− T2)

)

[1− δ(t− T2)],

(4.29)

where γ and β are positive constants, δ(k) is the Kronecker Delta function, where

δ(k) = 0, for all k ∈ N, except δ(0) = 1, and T2 is the number of S-AHPSO

iterations in t at each time instant k. Also, y(pbestr)(t) is the result obtained by

the best previous position of the r-th particle for all non-future values of t for the

current k, and y(gbest)(t) is the best output estimation attained among all particles

of the swarm, until the current iteration t for the current k.

If the effect of
∣
∣
∣ y(pbestr)(t)− y(gbest)(t)

∣
∣
∣ is not considered in (4.29), then, as

can be seen, the inertia weight in both (4.23) and (4.29) follows a decreasing ten-

dency. On the other hand, if a particle r is far away from the swarm, then the term
∣
∣
∣y(pbestr)(t)− y(gbest)(t)

∣
∣
∣ in the denominator in (4.29) will reduce the decreasing ten-

dency of the particles’ inertia weights, and thus increase the degree of exploration

in order to give better possibilities for particle r to join the swarm.

For updating of consequent rules in order to perform the online construction of

the T-S fuzzy model, Eq. (4.19) is reformulated as:

vr(t+ 1) = wr(t)vr(t) + c1rr1(pbestr(t)−∆Θr(t)) + c2rr2(gbest(t)−∆Θr(t)),

(4.30)

and the new position of every particle can be obtained as

∆Θr(t+ 1) = ∆Θr(t) + vr(t+ 1). (4.31)

The complete proposed S-AHPSO online adaptive system identification algo-

rithm is presented in Algorithm 4.3. For each new data sample that becomes avail-

able at time instant k, when the S-AHPSO algorithm terminates the PSO iterations

t = 1, . . . , T2 for that sample k, the final ∆Θr(t) value is used as ∆Θon(k) in (4.28).

The S-AHPSO algorithm, requires the use of the HPSO algorithm to generate its

inputs, and is also called “Method 2”.
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Algorithm 4.3 Self-adaptive Hierarchical Particle Swarm Optimization (S-
AHPSO) Algorithm, which requires the use of the HPSO algorithm to generate
the inputs - Method 2.
Input: The T-S fuzzy system learned by the HPSO Algorithm 4.2 (input variables,
antecedent parameters, consequent parameters, the fuzzy rules, and the final learned
model parameters).
Output: ∆Θon(k), for each new data sample that becomes available during the
online operation at time instant k;

1. Initialization:

(a) Select rmax, the maximum number of particles for the swarm ∆Θr; as
well as the maximum number of iterations T2; Select the velocity limits
vmin = [vmin,i1], vmax = [vmax,i1];

(b) Design the PSO parameters wr,max, wr,min, c1r, c2r for each particle r of
the swarm ∆Θr;

(c) Initialize [Θon](cN)×1 of the T-S fuzzy model using the best result obtained
from Level 3 of Algorithm 4.2, where [Θon](cN)×1 is the consequent pa-
rameters vector and c is the optimal number of individual fuzzy rules
which have both resulted from Algorithm 4.2, and N is the maximum
number of selected input variables, respectively;

2. For/using each newly arriving online sample k, do:
for all particles of the swarm, r = 1, 2, . . . , rmax do

Randomly initialize [∆Θr](cN)×1;
Initialize vr randomly within the velocity range (vmin,vmax);
Let pbestr ← ∆Θr;

end for
Evaluate each particle of the swarm ∆Θr using the fitness function J (r)

(4.32);
Identify the best particle gbest;
for all t = 1, . . . , T2 do

Compute wr(t) and vr(t+ 1) using (4.29) and (4.30), respectively;
Update ∆Θr(t) using (4.31);
Calculate the fitness function of each particle of the swarm ∆Θr using

the fitness function J (r) (4.32);
Update pbestr and gbest;

end for
Let ∆Θon(k)← ∆Θr(t);
Adapt the T-S fuzzy model parameters (Θ of Eq. (4.7)) using (4.28) ;
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The numbers of iterations T1 and T2 of Algorithms 4.2, and 4.3, respectively,

could be seen as the maximum numbers of iterations if other/early termination

conditions (e.g. as a function of fitness) would be introduced in these algorithms.

The fitness function applied in Algorithm 4.3 is

J (r) = 1/MSE(r) =
[

(yre(k)− ŷ(r)(k))2
]−1

, (4.32)

where MSE(r) is the mean square error of the r-th particle, yre(k) is the target

output value at instant k, and ŷ(r)(k) is a prediction of yre(k) calculated by the r-th

particle using (4.28) and (4.2).

4.4 Experimental Results

This section presents simulation and real-world experimental results to demonstrate

the feasibility, performance, and effectiveness of the proposed T-S design methodolo-

gies in system identification. The performances of the proposed adaptive fuzzy iden-

tification methodologies are demonstrated on three setups: a real WWTP plant, a

simulated WWTP plant (Benchmark simulation model 1 (BSM1)), and a real-world

experimental setup composed of two coupled DC motors. For the real-world two

coupled DC motors, and the simulated WWTP plant the proposed identification

methodologies are analyzed and quantitatively compared with the recursive partial

least squares (RPLS) [Dayal and MacGregor, 1997] adaptive approach, and with a

new fuzzy c-regression model algorithm (NFCRMA) [Li et al., 2009]. Furthermore,

the results obtained with five more methods are compared: a fuzzy modeling based

on MLP Neural Networks (MLPNN) [Nelles, 2001], a recent proposed incremen-

tal local learning soft sensing algorithm (ILLSA) for adaptive soft sensors [Kadlec

and Gabrys, 2011], a system Identification using adaptive PSO (APSO) [Alfi and

Modares, 2011], an extreme learning machine for regression (ELM) [Huang et al.,

2012], and a hierarchical genetic approach (HGA) for learning T-S fuzzy models

[Mendes et al., 2012]. Method 1 and Method 2 were defined in Sections 4.2.6, and

4.3.3, respectively. Following such definitions, in all simulations presented below in

this chapter, “Method 1” indicates the T-S fuzzy model identification methodology

specified in Algorithm 4.1, while the learned consequent parameters of the T-S fuzzy

model are updated by the RLS-ADF methodology (Subsection 4.2.5); And “Method
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Table 4.1: Variables of the wastewater treatment plant dataset.

Variables Description

u1 Amount of chlorine in the influent;
u2 Amount of chlorine in the effluent;
u3 Turbidity in the raw water;
u4 Turbidity in the influent;
u5 Turbidity in the effluent;
u6 Ph in the raw water;
u7 Ph in the influent;
u8 Ph in the effluent;
u9 Color in the raw water;
u10 Color in the influent;
u11 Color in the effluent;
y Flour in the effluent.

2” refers to the adaptive online T-S fuzzy identification methodology given by the

HPSO Algorithm 4.2, while the learned consequent parameters of the T-S fuzzy

model are updated by the S-AHPSO specified in Algorithm 4.3.

4.4.1 Application to a Real Wastewater Treatment System

In this section, the performances of the two proposed identification methodologies

(Methods 1 and 2) are studied. Specifically, a Soft Sensor application is studied.

The objective of this experiment is to estimate the flour concentration in the effluent

of a real-world urban wastewater treatment plant (WWTP). The dataset of plant

variables that is available for learning consists of 11 input variables, u1, . . . , u11, and

one target output variable to be estimated, y. The variables correspond to physical

values, such as pH, turbidity, color of the water and others. The input variables

are measured on-line by plant sensors, and the output variable in the dataset is

measured by laboratory analysis. The plant variables are described in Table 4.1.

The historical data set comprises three years of acquisition, with a sample rate of

2 [hours] for the variables acquired by sensors (input variables). The target variable,

the fluorine, is laboratory measured at every 24 [hours]. Complete information about

the WWTP can be found in [Souza et al., 2013; Souza and Araújo, 2014].

To construct the dataset, the first three delayed versions of each variable were

chosen as candidates for inputs of the T-S fuzzy model. Specifically, the following
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Figure 4.2: Modeling performance of the proposed system identification of Method
1 (learned by Algorithm 4.1 and updated by the RLS-ADF method), and Method
2 (learned by Algorithm 4.2 and updated by Algorithm 4.3) for the real wastewater
treatment system data set.

combinations of process variables and delays are used as the candidates for inputs

of the T-S fuzzy model to predict y(t): [u1(t − 1), u1(t − 2), u1(t − 3), . . . , u11(t −
1), u11(t − 2), u11(t − 3)]. The available data set was split into 30% of data for

training, and the remaining 70% of data was used to test the proposed algorithm.

The selected degree of fuzziness was set to η = 2, and the optimal number of clusters

that resulted from Algorithm 4.1 was c∗ = 13. Figure 4.2 shows the predicted values

that resulted from the application of Method 1 and Method 2, as well as the desired

(real) values of the target variable to be estimated, for the WWTP experiment.

As can be seen, the accuracy of the modeling is acceptable for both proposed T-S

fuzzy modeling methodologies. Numerical results comparing the performance of the

proposed identification methodologies and the works RPLS [Dayal and MacGregor,

1997], MLPNN [Nelles, 2001], NFCRMA [Li et al., 2009], APSO [Alfi and Modares,

2011], ILLSA [Kadlec and Gabrys, 2011], ELM [Huang et al., 2012], and HGA

[Mendes et al., 2012] are presented in Table 4.2.

As can be seen comparing with other methods, larger values of the fitness func-
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Table 4.2: Comparison results on the test dataset for the real wastewater treatment
plant (WWTP).

Method
Number

of
rules

Number
of

inputs
Inputs 1/MSE

CT
[minutes]

RPLS [Dayal and
MacGregor, 1997] - - All variables 840.9 2.18

MLPNN [Nelles, 2001] - - All variables 424.3 8.33
NFCRMA [Li et al.,

2009] - - All variables 206.1 5.24
APSO [Alfi and
Modares, 2011] - - All variables 978.5 7.15

ILLSA [Kadlec and
Gabrys, 2011] - - All variables 1197.6 3.68

ELM [Huang et al.,
2012] - - All variables 419.5 2.92

HGA [Mendes et al.,
2012] 20 15

u1(t− 2), u2(t− 3), u3(t− 2),
u3(t− 3), u4(t− 1), u4(t− 2),
u4(t− 3), u5(t− 2), u5(t− 3),
u6(t− 3), u7(t− 1), u7(t− 2),
u8(t− 3), u10(t− 2), u11(t− 1) 441.6 13.07

Method 1 13 11

u1(t− 1), u1(t− 3), u3(t− 1),
u6(t− 3), u7(t− 1), u7(t− 3),
u8(t− 1), u8(t− 3), u9(t− 3),

u10(t− 1), u11(t− 3) 1716.2 2.45

Method 2 28 15

u2(t− 1), u3(t− 1), u4(t− 2),
u4(t− 3), u5(t− 2), u6(t− 1),
u7(t− 2), u7(t− 3), u8(t− 1),
u8(t− 2), u9(t− 1), u9(t− 2),
u10(t− 1), u10(t− 3), u11(t− 1) 2120 7.88

tion (1/MSE), MSE = (1/L)
∑L
l=1(yk − ŷk)2, in the test dataset are obtained with

the two methods proposed in this work, where yk and ŷk are the real and predicted

values of y at instant k, respectively. The computational time (CT) of each of the

used methods is given in Table 4.2. The computational time for Method 2 was

7.88 [minutes], while for Method 1 it was 2.45 [minutes]. Comparing with Method

1, a larger value of the fitness function was obtained by Method 2. However, com-

paring with Method 1, more computational time was spent by the Method 2 to be

run. The implementation of Method 2 uses the NUFCA results which is a part

of Method 1. Figure 4.3 illustrates trajectory of fitness evaluation in the WWTP

for both Method 1 and Method 2, when the number of clusters considered in the

input WWTP data was changed. The first purpose for designing the NUFCA was

to address concerns with the T-S fuzzy modelling based on FCM. However, the

result in Figure 4.3 show that finding the optimal number of clusters can improve

the estimation of the WWTP plant. This parameter plays an important role in the
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Figure 4.3: Fitness evaluation that resulted from the application of Method 1 and
Method 2 on the real WWTP prediction experiment, against the number of fuzzy
clusters on the NUFCA.

design of the fuzzy membership functions, and individual rules. As can be seen in

the fitness evaluation trajectory obtained by Method 1, in the range from c = 2 to

c = 11 the fitness evaluation values are improving. After c = 11 the optimal trajec-

tory evolves with small changes. However, for this case study, the best result was

obtained for c∗ = 13. The fitness evaluation that resulted from Method 2 shows a

different trajectory when comparing to the trajectory of fitness values that resulted

resulted from Method 1. For example after c = 11 the optimal trajectory on Method

2 evolves with more changes than on Method 1. However, like Method 1, the best

fitness value obtained by Method 2 was obtained for c∗ = 13.

4.4.2 General Characteristics of the Benchmark Simulation

Model 1 (BSM1)

WWTPs are industrial structures designed to remove biological or chemical waste

products from water. They are complex nonlinear systems subject to large distur-

bances in influent flow rate and pollutant load, together with uncertainties con-

cerning the composition of the incoming wastewater [Belchior et al., 2012]. The

Benchmark Simulation Model no.1 (BSM1) is a platform-independent simulation
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Figure 4.4: General overview of the BSM1 plant [Belchior et al., 2012].

environment of WWTPs which has been undertaken in Europe by Working groups

of COST Actions 682 and 624 that are dedicated to the optimization of perfor-

mance and cost-effectiveness of wastewater management systems [Jeppsson and

Pons, 2004]. This development work is now continued under the umbrella of the

IWA Task group on Benchmarking of Control Strategies for WWTPs. The T-S

fuzzy model learning architectures proposed in this chapter are tested in the BSM1.

A general overview of the BMS1 plant is presented in Figure 4.4. The benchmark

plant is composed of a five compartment activated sludge reactor consisting of two

anoxic tanks followed by three aerobic tanks. Each compartment is characterized

by flow rate Qk, concentration Zk, volume Vk, and reaction rate rk. Volumes Vk for

non-aerated compartments are V1 = V2 = 1.000 [m3], and for aerated compartments

are V3 = V4 = V5 = 1.333 [m3]. Compartments 3-4 have a fixed oxygen transfer

coefficient (KLa = 10 [h−1] = 240 [days−1]) while in compartment 5, the dissolved

oxygen (DO) concentration, DOC , is controlled by manipulation of the KLa5 oxygen

transfer coefficient. For more details about the BSM1 plant, references [Jeppsson

and Pons, 2004; Belchior et al., 2012; Mendes et al., 2014] are recommended. The

sampling period is 15 [min], and the simulations have a maximum of 14 [days].
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Figure 4.5: Input variables of the data set applied for learning of the HPSO and
algorithm 4.1.

4.4.3 Application to the Benchmark Simulation

Model 1 (BSM1)

For the learning process of the proposed algorithms, a data set has

been gathered from the plant operation and consists of 10 main vari-

ables (u1, . . . , u10), where 9 of them are input variables (u1, . . . , u9) =

(SS, XS, XI , SNO, SNH , XND, SND, XB,H , KLa5), and the remaining variable is the

target output variable to be estimated, y = u10 = DOC . Figure 4.5 illustrates the

input variables of the data set. The plant variables are described in Table 4.3.



4.4. EXPERIMENTAL RESULTS 67

Table 4.3: List of BSM1 variables.

Notation Description

SS Readily biodegradable substrate;
XS Slowly biodegradable substrate;
XI Particulate inert organic matter;

XB,H Active heterotrophic biomass;
XB,A Active autotrophic biomass;
XP Particulate products arising from biomass decay;
SO Oxygen;
SI Soluble inert organic matter;

SNO Nitrate and nitrite nitrogen;
SNH NH4+ + NH3 nitrogen;
SND Soluble biodegradable organic nitrogen;
XND Particulate biodegradable organic nitrogen;
KLa Oxygen transfer coefficient;

SALK Alkalinity;
DOC Dissolved oxygen concentration.

To construct the data set, the first three delayed versions of each of the variables

u1, . . . , u9, were chosen as candidates for inputs of the T-S fuzzy model. Specifically,

the following combinations of process variables and delays were used as the candi-

dates for inputs of the T-S fuzzy models to predict y(t): [u1(t− 1), u1(t− 2), u1(t−
3), . . . , u9(t−1), u9(t−2), u9(t−3)]. The total data set includes 1344 samples where

the first 480 samples are used as the training data set to learn the T-S fuzzy model

parameters by Algorithm 4.1 in Method 1, and by the HPSO algorithm, i.e. Algo-

rithm 4.2, in Method 2. The remaining 864 samples are used as the test data set for

RLS-ADF (see Subsection 4.2.5) in Method 1, and for Algorithm 4.3 in Method 2.

The selected degree of fuzziness was set to η = 2 in Algorithm 4.1. The PSO

parameters wr,max = 1, wr,min = 0.3, c1r = 1.5, and c2r = 2 are used in common

among all particles in both Algorithm 4.2 and Algorithm 4.3. In Algorithms 4.2

and 4.3, all components of the minimum and maximum velocities are vpmin,i1 =

vmin,i1 = −2, and vpmax,i1 = vmax,i1 = 2, respectively. The maximum number of

iterations of the HPSO algorithm is T1 = 200. For the S-AHPSO algorithm, γ = 1,

β = 0.1, and a maximum number of iterations T2 = 50 were considered. The

numbers of particles for each level of the HPSO architecture are: amax = bmax = 30,

dmax = zmax = 50, smax = 40, and mmax = 20. Also, rmax = 25 is considered for
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Figure 4.6: Modeling performance of the proposed system identification methodolo-
gies of Method 1, and Method 2 for the y = DOC variable of the BSM1 wastewater
treatment system data set.

the S-AHPSO architecture. The parameters aforementioned in this paragraph were

tuned by the designer. On the other hand, the optimal number of clusters c∗ is self-

adjusted by Algorithm 4.1, which obtained a value of c∗ = 10. Also, the consequent

parameters are self-adjusted, being calculated by the RLS-ADF for Method 1, and

by Algorithm 4.3 for Method 2. The following parameters were set for the RLS-ADF

method: ρ = 0.999, ϕi = 1, τi = νi = 1× 10−8, for i = 1, . . . , c∗.

Figure 4.6 illustrates the predicted values obtained by the proposed methodolo-

gies and the desired (real) values of the target variable y = DOC to be estimated,

for the data set of the BSM1 WWTP experiment. Numerical results, with the best

fitness function, comparing the performance of the proposed methodologies and the

works FCM-FRLS [Kulhavý, 1987], RPLS [Dayal and MacGregor, 1997], MLPNN

[Nelles, 2001], NFCRMA [Li et al., 2009], APSO [Alfi and Modares, 2011], ELM

[Huang et al., 2012], and HGA [Mendes et al., 2012] are presented in Table 4.4.

For a test dataset with L samples, define Jbest = 1
MSE

as the fitness function,

and MSE =
∑L
k=1(y(k) − yre(k))2, where y(k) and yre(k) are the estimated and

real plant output values at time instant k, respectively. The main objective is to
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Table 4.4: Comparison results on the test data set for the wastewater treatment
plant Benchmark Simulation Model 1 (BSM1).

Method
Number

of
rules

Number
of

inputs
Inputs 1/MSE

CT
[minutes]

FCM-FRLS - - All variables 1483.7 2.803

RPLS - - All variables 119.3 4.375

MLPNN - - All variables 1226.9 16.247
NFCRMA (Random

initialization) - - All variables 59.2 10.36

NUFCA-NFCRMA - - All variables 373.7 10.55

APSO (FCM initialization) - - All variables 135.9 13.75

NUFCA-APSO - - All variables 1024.6 14.88

ELM - - All variables 46.7 5.953

HGA 32 13

u1(t− 2), u2(t− 1), u2(t− 2),
u3(t− 1), u3(t− 3), u4(t− 3),
u5(t− 1), u6(t− 1), u7(t− 1),
u7(t− 3), u8(t− 1), u9(t− 1),

u9(t− 2) 1349.5 24.66

Method 1 10 9

u1(t− 3), u2(t− 1), u3(t− 1),
u3(t− 3), u4(t− 1), u5(t− 2),
u7(t− 1), u9(t− 2), u9(t− 3) 1721.2 4.35

Method 2 20 8

u2(t− 1), u3(t− 1), u3(t− 3),
u4(t− 1), u5(t− 2), u7(t− 1),

u9(t− 2), u9(t− 3) 2247.2 13.07

obtain a large value of Jbest which corresponds to the goal of having a small MSE.

Based on the results in Table 4.4, the largest value of the fitness function in the test

data set is obtained with Method 2. Also, comparing with the HGA, the proposed

methodologies (Methods 1 and 2) use a lower number of variables and fuzzy rules,

but show a better prediction performance and faster learning performance. The

computational time (CT) of each of the used methods is given in Table 4.4. With

an Intel(R) core (TM) i7-2600 CPU at 3.4 GHz, the simulation times for Method 1

and Method 2 were 17.6%, and 53% of the simulation time of the HGA, respectively.

Also, from the results in Table 4.4 it is seen that 8 input variables u2(t−1), u3(t−1),

u3(t−3), u4(t−1), u5(t−2), u7(t−1), u9(t−2), and u9(t−3), were selected by the

HPSO algorithm (and therefore also used in Method 2) (among all the 27 the input

(variable, delay) pairs candidates that were considered) for the T-S fuzzy model of

the BSM1 process that was learned. Also, for Method 1 (Algorithm 4.1), 9 input

variables u1(t − 3), u2(t − 1), u3(t − 1), u3(t − 3), u4(t − 1), u5(t − 2), u7(t − 1),

u9(t − 2), and u9(t − 3) were chosen for the learning process. The membership
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Figure 4.7: Membership functions of the partition set of the selected variables ob-
tained by the HPSO method with random initialization and by using the NUFCA
as the initialization algorithm.

functions extracted by Level 2 for the variables selected by Level 1 for the whole T-

S fuzzy model obtained by the HPSO with random initialization, and by the HPSO

initialized by the NUFCA algorithm (as specified in Algorithm 4.2) are shown in

Figure 4.7.

Some points related to the methods’ performance results presented in Table 4.4

are worth noting. The MLPNN method was run based on two different types of iter-

ations. The method has an external iterative cycle, with a maximum number of 1000

iterations for this example which is considered as a stop criterion for the MLPNN.
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Also, the MLPNN learning is done by the Levenberg-Marquardt method which has

an inner additive iteration to update neural network weights. Updated neural net-

work weights which result from the inner iteration will initialize the weights of the

next external iteration. The implementation of the HGA was also accompanied with

more iterations than was considered firstly. The method was initially programmed

for 1000 iterations. However, due to the random initialization, the result of the HGA

method just depicted after 100 times runs of the complete algorithm with 1000 it-

erations each. The result in Table 4.4 is the best result among all repetitions of the

HGA. The performance of the APSO method [Alfi and Modares, 2011] has shown

a variety of sensitivity phenomena to some parameters inside the APSO algorithm.

The best result was obtained just after all observations on the APSO’s performance

variations resulting from the variations of the aforementioned significant parame-

ters. However, the best fitness evaluation obtained by Method 2 (Algorithms 4.2

and 4.3), and shown in Table 4.4, is simply obtained with just one test of the pro-

posed method with T1 = 200 and T2 = 50. Furthermore, the APSO’s initialization

was performed with the presented NUFCA method. A final point should be men-

tioned regarding to the efficiency of NUFCA method: based on the results in Table

4.4, the efficient role of the NUFCA to enhance the performance of other regressors

is also remarkable. The best fitness evaluation was obtained by Method 2, while in

the implementation of Method 2 the results of the NUFCA operation/performance

have been used. As it was seen before, NUFCA is also a part of Method 1.

4.4.4 Real-World Control of Two Coupled DC Motors

The real plant from Figure 4.8(a) is composed of two motors which are coupled

by their shafts [Mendes et al., 2016; Rastegar et al., 2017d,c]. The first motor is

controlled by Pulse Width Modulation (PWM) and makes the second motor rotate

and behave as a generator. On the other hand, this generator is connected to a

variable/controllable electrical load, RL(k), which acts as an energy sink where the

amount of dissipated energy can be varied. The selected motors have an encoder

with 64 Counts Per Revolution (CPR) and are rated for 11000 Rotations Per Minute

at 12V (free run). The velocity units are [pp/(100 ms)] (pulses per 100 [ms]). The

controlled motor is powered by a motor driver that drains energy from an external

power source and receives PWM control signals. The motor that works as a gener-
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(a) (b)

Figure 4.8: (a) The experimental scheme of the two coupled DC motors, and (b)
RC filtering and the voltage divider.

Figure 4.9: Variable load (Re:load).

ator is connected to the “variable load” RL(k) that is also controlled using PWM

signals. Managing the plant, there is a Texas Instruments Tiva C micro-controller

(µC). This µC establishes serial communication with a Computer where the control

algorithms are running, receives through serial communication the PWM values to

control both the PWM of the motor and the PWM of the load, delivers PWM sig-

nals both to the motor driver and the load, reads the motor’s encoder and finally

sends back to the computer the encoder’s value using serial communication.
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The major feature of this plant is its “variable load”, which is achieved using

an electronic circuit from Arachnid Labs named Re:load (Figure 4.9) with a simple

modification to allow it to be controlled by PWM. To be able to control the load from

the computer is was needed to remove the potentiometer from Re:load and deliver

an analog voltage to the circuit. Because the used µC only has digital and PWM

outputs it was needed to build a RC filter and a voltage divider (Figure 4.8(b)) to

be able to deliver a continuous voltage to the circuit’ op-amp using a PWM output.

This plant allows the control/command of both the motor and of the “heaviness” of

the load by sending integer commands in the range from 0 to 4096. The sampling

period in this real-world experiment is, Ts = 100 [ms].

Identification of the Two Coupled DC Motors Process

To identify the experimental setup, a data set was constructed. The data set was

obtained by applying to the motor the control signal represented in Figure 4.10(a).

The variables chosen for the data set were the first five delayed versions of the

velocity [y(k − 1), y(k − 2), y(k − 3), y(k − 4), y(k − 5)], and the command signal,

u(k), and its first five delayed versions [u(k−1), u(k−2), u(k−3), u(k−4), u(k−5)],

where k is the sample time. For the DC motors application, the available data set

was split into 35% for training, and the remaining 65% was used as the test data

set. In NUFCA, the best number of clusters was determined as c∗ = 9. The degree

of fuzziness was chosen as η = 2. Numerical results comparing the performance

of Method 1 and Method 2, and the works RPLS [Dayal and MacGregor, 1997],

MLPNN [Nelles, 2001], NFCRMA [Li et al., 2009], APSO [Alfi and Modares, 2011],

ILLSA [Kadlec and Gabrys, 2011], ELM [Huang et al., 2012], and HGA [Mendes

et al., 2012] are presented in Table 4.5. Method 2 produced 26 fuzzy rules, and

the inputs of the T-S fuzzy system model learned (selected) by the HPSO (Algo-

rithm 4.2) are [y(k − 1), y(k − 3), u(k − 1), u(k − 2), u(k − 4)]. The same inputs

were chosen in Method 1 (Algorithm 4.1). Figure 4.10(b) shows the comparison

of the velocity values of the motor obtained by Method 1, Method 2, and by the

RPLS and NFCRMA methods which were randomly chosen to be plotted, and the

real/observed velocity values. From the results of Figure 4.10(b), and Table 4.4,

it can be seen that the modeling of the velocity by the proposed methodologies,

i.e. Method 1 and Method 2, is accurate and has a better prediction performance
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Figure 4.10: Motor data set: (a) control signal used to compile the data set on the
two cooupled DC motors process, and (b) modelling performance of the proposed
Algorithm 4.1 (which uses RLS-ADF method for online adaptive modeling), Algo-
rithm 4.2 (which uses Algorithm 4.3 for online adaptive modeling), and comparing
with RPLS [Dayal and MacGregor, 1997] and NFCRMA [Li et al., 2009].
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Table 4.5: Comparison of the system identification results on the test data set for
the two coupled DC motors setup.

Method
Number

of
rules

Number
of

inputs
Inputs 1/MSE

RPLS [Dayal and MacGregor, 1997] - - All variables 0.1634

MLPNN [Nelles, 2001] - - All variables 0.1907

NFCRMA [Li et al., 2009] - - All variables 0.1850

FCM-APSO [Alfi and Modares, 2011] - - All variables 0.2274

ILLSA [Kadlec and Gabrys, 2011] - - All variables 0.1122

ELM [Huang et al., 2012] - - All variables 0.1771

HGA [Mendes et al., 2012] 20 3 y(t− 2), y(t− 4), u(t− 2) 0.158

Method 1 19 5
y(k − 1), y(k − 3), u(k − 1), u(k − 2),

u(k − 4) 0.3441

Method 2 26 5
y(k − 1), y(k − 3), u(k − 1), u(k − 2),

u(k − 4) 0.4682

when compared to the modeling obtained by the RPLS and NFCRMA methods.

Also, the estimated T-S fuzzy model given by Method 2 is more accurate to model

the real/observed velocity values when comparing to the estimated T-S fuzzy model

given by Method 1. However, the implementation of Method 2 uses the results of

the NUFCA performance which is a part of Method 1.

4.5 Conclusion

Two adaptive methodologies for online learning of Takagi-Sugeno (T-S) fuzzy models

based on two different techniques were proposed in this chapter.

First, a new unsupervised fuzzy clustering algorithm (NUFCA) was proposed

to construct a novel online evolving Takagi-Sugeno (T-S) fuzzy model identification

method. The proposed system identification approach consists of two main steps:

antecedent T-S fuzzy model parameters identification and consequent parameters

identification. The NUFCA combines the K-nearest neighbour and fuzzy C-means

methods into a fuzzy modelling method for partitioning of the input data and iden-

tifying the antecedent parameters of the fuzzy system; then the RLS-ADF method

is exploited to obtain initial consequent parameters and to construct a method for

on-line fuzzy model identification.

Second, a T-S fuzzy model identification methodology using a hierarchical fuzzy
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structure was proposed. A novel learning algorithm based on a Hierarchical Particle

Swarm Optimization (HPSO) was introduced to automatically extract all the fuzzy

logic system (FLS)’s parameters of a T-S fuzzy model. The HPSO was proposed

to automatically extract all the parameters of the T-S fuzzy model from a set of

input/output data. Furthermore, a self-adaptive HPSO (S-AHPSO) algorithm was

proposed for online identification of T-S fuzzy models.

To validate and demonstrate the performance and effectiveness of the proposed

algorithms, the identification of a real WWTP plant, the identification of the dis-

solved oxygen in a simulated activated sludge reactor within a WWTP, and the iden-

tification of a real-world experimental setup composed of two coupled DC motors

were studied. The results show that the proposed techniques, in both methodolo-

gies, can successfully identify fuzzy model parameters that represent the dynamics

of nonlinear plants, using only a data set of the process, where the model can be

further used to estimate the output of the plant. Moreover, the results reveal su-

perior performance of the proposed identification methods when compared to other

state of the art methods. In the next chapter, the fuzzy modeling methodologies

proposed in this chapter will be used to design adaptive fuzzy generalized predictive

controllers, a proposed solution to address the concerns in the control design for

nonlinear systems, and in particular with the presentation of experiments in the

control of a simulated WWTP plant, and in the velocity control of the real-world

experimental setup composed of two coupled DC motors.
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5.1 Introduction / State of the Art

Model predictive control (MPC) is a popular control approach which is widely used

in practice due to its high-quality control performance. The main objective in model

predictive control (MPC) design is to find a future trajectory of the manipulated

77



78 CHAPTER 5. ADAPTIVE FUZZY MODEL PREDICTIVE CONTROL

input variable (command) in such a way that it can optimize the future behav-

ior of the plant output. The optimization procedure is performed in a finite time

window by giving the current plant status at the start of the time window. The

MPC are designed based on a mathematical model of the plant. There are three

well-known model structures which can be seen frequently in MPC designs. The

MPC control designs which use finite impulse response (FIR) models as well as

step response models, MPC designs based on state space models, and MPC designs

based on transfer function models. Among all MPC designs which use transfer func-

tion models, maybe the most typical controller is the generalized predictive control

(GPC) [Camacho and Bordons, 2007]. The GPC is applicable to both stable and

unstable plants, and has shown good performance results [Clarke, 1988; Tham et al.,

1991] using linear plant models. However, a main drawback of GPC, as commonly

in MPCs, is its assumption of the knowledge of an accurate model of the process

to be controlled. Frequently, in industrial environments, physical systems contain

complex nonlinear behaviors and relations. In most cases, they are difficult to be

modeled with conventional techniques.

As already mentioned in this thesis, the assumption of the knowledge of an accu-

rate model in MPCs, presents problems because many complex plants are difficult

to be mathematically modeled based on physical laws, or have large uncertainties

and strong nonlinearities. Among several modeling approaches which have been ap-

plied, fuzzy logic systems have received particular attention in the area of nonlinear

modeling, which is theoretically supported by the fact that fuzzy logic systems are

universal approximators [Wang and Mendel, 1992; Kosko, 1994].

[Smoczek, 2015] tried to address the issue of reducing the residual vibration and

limiting the transient oscillations of a flexible and under-actuated system with re-

spect to the variation of operating conditions. Two alternatives of a GPC-based

method were proposed that enable to realize this technique either with or without a

sensor of payload deflection. The first control technique was based on the recursive

least squares (RLS) method applied to on-line estimate the parameters of a linear

parameter varying (LPV) model of a crane dynamic system. The second GPC-based

approach was based on a payload deflection feedback estimated using a pendulum

model with the parameters interpolated using the T-S fuzzy system. In [Wu et al.,

2012] a GPC strategy with closed-loop model identification for burn-through point

(BTP) control in the sintering process, was proposed. First, the dynamic Auto-
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Regressive eXogenous (ARX) model structure was defined to describe the sintering

process. Then, BTP predictive control model was established based on the GPC

algorithm to predict BTP accurately and to calculate the strand velocity. In [Bello

et al., 2014], a fuzzy model predictive control strategy was proposed to regulate the

output variables of a coagulation chemical dosing unit. A multiple-input, multiple-

output (MIMO) process model in the form of a linearised Takagi-Sugeno (T-S)

fuzzy model was derived. The process model was obtained from the plant’s data

set through subtractive clustering. Killian et al. [2014] presented a hierachical fuzzy

model predictive control structure with decoupled MPCs for building heating con-

trol using weather forecasts and occupancy information. The hierachical MPC in

[Killian et al., 2014] could only find local optima. Therefore, a sub-optimal solution

was presented to solve this problem. Indeed, both fuzzy MPC designs in [Bello et al.,

2014; Killian et al., 2014] were designed to control nonlinear plants. But, none of the

works in [Bello et al., 2014; Killian et al., 2014] proposed any adaptive strategy in T-

S fuzzy modelling to update parameters in the plants modelling. Some recent works

are available which can be found interesting by fuzzy MPC designers. For example

in the work [Mendes, 2014], issues such as online fuzzy MPC design, direct fuzzy

control, as well as different techniques to construct the T-S fuzzy model have been

presented and discussed. The work followed computational intelligence methodolo-

gies to learn fuzzy systems from data, and then combined the learned fuzzy models

with GPC for control purposes in industrial processes. Using different hierachical

fuzzy structures usable in both T-S fuzzy system modelling and fuzzy control de-

signs are significant achievements of this work. In [Han et al., 2012] a self-organizing

radial basis function neural network MPC method is proposed for controlling the

dissolved oxygen concentration in a WWTP. The methods of [Kayadelen, 2011;

Hung and Lin, 2012; Han et al., 2012; Wu et al., 2012; Smoczek, 2015], have the

limitation of not being able to perform automatic selection of variables and delays:

pre-selection is performed. The variable selection process is usually manual and not

accompanied with the accurate selection of the right time delays, probably leading

to low-accuracy results. As previously mentioned in this thesis, a variable with the

correct delay may contain more information about the output, than one which does

not consider any delay or which considers an incorrect delay [Souza et al., 2010].

This chapter is going to deal with the problem of the assumption of knowledge

about an accurate model of the process in the MPC control framework. For this
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purpose, the identification methodologies proposed in Chapter 4 are combined with

the GPC algorithm. The integration of the T-S fuzzy models learned in Chapter

4, and GPC result in effective adaptive fuzzy GPC methodologies (AFGPC) which

are applied for the control of nonlinear processes.

5.2 Adaptive Fuzzy Model Predictive Control

Design

As discussed in Section 3.3, adaptive fuzzy control designs can be categorized into

two different types: direct adaptive fuzzy control (DAFC), and indirect adaptive

fuzzy control (IAFC). The controllers proposed in this chapter can be categorized

into the second type, where a fuzzy logic modeling approach is integrated with a

well-known GPC control structure to construct a fuzzy model predictive controller.

Also, the adaptive fuzzy model identification approaches proposed in Chapter 4, will

be used for online control purposes.

After having studied the identification algorithms in Section 4.2 (Algorithm 4.1)

and Section 4.3 (Algorithms 4.2, and 4.3), in this section the control algorithms are

presented. A diagram of the adaptive fuzzy generalized predictive control (AFGPC)

approach is presented in Figure 5.1. As can be seen, the control scheme consists of

the plant, the controller, and the adaptive T-S fuzzy model. The controller is com-

posed of a model-based predictive controller that integrates a T-S fuzzy model. Two

different T-S fuzzy model identification methodologies were introduced in Chapter

4. Correspondingly, two AFGPC schemes based on two different T-S fuzzy models

are designed. The first AFGPC algorithm uses the model results extracted from

Algorithm 4.1 to be constructed. The consequent parameters of the model are

adjusted the RLS-ADF adaptation law studied in Subsection 4.2.5. The second

proposed AFGPC integrates a T-S fuzzy model learned off-line, according to the

methodology presented on Algorithm 4.2. In the second AFGPC, in online mode,

the consequent parameters of the model are also adjusted in a recursive procedure

using the adaptation procedure given by Algorithm 4.3.
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Figure 5.1: A generic schematic diagram of the AFGPC control architecture.

5.2.1 Dynamic Systems Modelling Using T-S Fuzzy Models

Dynamic systems of practical interest often have significant nonlinearities. Processes

of the following form will be considered [Rastegar et al., 2016b; Mendes et al., 2013]:

y(k) = f [y(k − 1), . . . , y(k − ny), u(k − d̄− 1), . . . , u(k − d̄− nu)], (5.1)

where f(·) : Rny+nu → R is a nonlinear function which is assumed to be unknown,

y(·) : N → R is the system output, u(·) : N → R is the system input, d̄ ∈ N is

the dead time, d̄ + 1 is the time delay of the system, and nu ∈ N and ny ∈ N are

the orders of the input and output, respectively. A large class of nonlinear SISO

processes can be represented by (5.1). f(·) is approximated by a T-S fuzzy system.

For the GPC controller, system (5.1) can be described by a T-S fuzzy model defined

by the following fuzzy rules:

Ri : IF x1(k) is Ai1, and . . . and xN(k) is AiN

THEN yi(k) = ai(z−1)y(k − 1) + bi(z−1)u(k − d̄− 1), i = 1, . . . , c, (5.2)

where u(k) is the command signal, c is the number of rules, and N = ny + nu.
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The polynomials ai(z−1), and bi(z−1) in (5.2) are defined as follows:

ai(z−1) = a1i + a2iz
−1 + . . .+ anyiz

−(ny−1),

bi(z−1) = b1i + b2iz
−1 + . . .+ bnuiz

−(nu−1), (5.3)

and x(k) = [x1(k), . . . , xN(k)] = [y(k−1), . . . , y(k−ny), u(k−d̄−1), . . . , u(k−d̄−nu)]
is the vector of input variables of the T-S fuzzy system. Thus, from (5.2) y(k) can

be rewritten as

y(k) =
c∑

i=1

ω̄i[x(k)]
[

ai(z−1)y(k − 1) + bi(z−1)u(k − d̄− 1)
]

, (5.4)

=
c∑

i=1

ω̄i[x(k)]x(k)θi,

= Ψ(k)Θ, (5.5)

where for i = 1, . . . , c,

ω̄i[x(k)] =
∏N
j=1 A

h
ij(xj)

∑c
i=1

∏N
j=1 A

h
ij(xj)

, (5.6)

θi =
[

a1i, . . . , anyi, b1i, . . . , bnui

]T
, (5.7)

Θ =
[

θT1 ,θ
T
2 , . . . ,θ

T
c

]T
, (5.8)

Ψ(k) = [(ω̄1[x(k)]) x(k), . . . , (ω̄c[x(k)]) x(k)] . (5.9)

5.2.2 Generalized Predictive Control Law

It is assumed that the plant model is of the form (5.5), which can be rewritten as

follows [Rastegar et al., 2016b; Mendes et al., 2013]:

ā(z−1)y(k) = b̄(z−1)u(k − d̄− 1), (5.10)

where

ā(z−1) = 1− ā1z
−1 − . . .− āny

z−ny , (5.11)

b̄(z−1) = b̄1 + b̄2z
−1 + . . .+ b̄nu

z−(nu−1), (5.12)
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āt =
c∑

i=1

ω̄i[x(k)]ati, t = 1, . . . , ny, (5.13)

b̄m =
c∑

i=1

ω̄i[x(k)]bmi, m = 1, . . . , nu. (5.14)

The GPC control law is obtained so as to minimize the following cost function

J(k) =
Np∑

p=d̄+1

[ŷ(k + p|k)− r(k + p)]2 +
d̄+Nu∑

p=d̄+1

[

λ(z−1)∆u(k + p− d̄− 1|k)
]2
,(5.15)

where ŷ(k + p|k) is a p-step ahead prediction of the system on instant k, r(k + p)

is the future reference trajectory, ∆ = 1 − z−1, and λ(z−1) = λ0 + λ1z
−1 + . . . +

λNp+nu−1z
−(Np+nu−1) is a weighting polynomial. Np and Nu are the output and

control horizons, respectively. Consider the following Diophantine equation (5.16):

1 = ∆ep(z−1)ā(z−1) + z−pfp(z−1), (5.16)

In (5.16) the two polynomials ep(z−1), and fp(z−1) are defined as follows:

ep(z−1) = 1 + ep,1z
−1 + . . .+ ep,p−1z

−(p−1), (5.17)

fp(z−1) = fp,0 + fp,1z
−1 + . . .+ fp,ny

z−ny , (5.18)

where ep(z−1) and fp(z−1) can be obtained by dividing 1 by ∆ā(z−1) until the

remainder can be factorized as z−pfp(z−1). The quotient of the division is the

polynomial ep(z−1). A simple and efficient way to obtain polynomials ep(z−1) and

fp(z−1) is to use recursion of the Diophantine equation as demonstrated in [Camacho

and Bordons, 2007]. Polynomials ep+1(z−1) and fp+1(z−1) can be obtained from

polynomials ep(z−1) and fp(z−1), respectively. Polynomials ep+1(z−1) are given by

ep+1(z−1) = ep(z−1) + z−pep+1,p, (5.19)

where ep+1,p = fp,0. The coefficients of polynomial fp+1(z−1) can be obtained recur-

sively as follows:

fp+1,i = fp,i+1 − fp,0 ∆āi+1, i = 0, . . . , ny − 1, (5.20)
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where fp,ny
= 0. Polynomial gp+1(z−1) is expressed as:

gp+1(z−1) = ep+1(z−1)b̄(z−1) =
[

ep(z−1) + z−pfp,0
]

b̄(z−1)

= gp(z−1) + z−pfp,0b̄(z−1), (5.21)

where the coefficients of gp+1(z−1) are given by gp+1,j = gp,j for j = 0, . . . , p− 1, and

gp+1,p+i = gp,p+i + fp,0b̄i, i = 0, . . . , nu, (5.22)

where gp,p+nu
= 0. ep(z−1), fp(z−1), and gp(z−1) are recursively computed for p =

d̄+ 1, . . . , Np. To initialize the recursion (5.16), p = d̄+ 1, and

ed̄+1(z
−1) = 1, (5.23)

fd̄+1(z
−1) = z(1− ã(z−1)) = ã1 + ã2z

−1 + . . .+ ãny+1z
−ny , (5.24)

where

ã(z−1) = ∆ā(z−1) = 1− ã1z
−1 − . . .− ãny+1z

−(ny+1). (5.25)

Replacing (5.23) into (5.21), and considering to p = d̄ gives

gd̄+1(z
−1) = ed̄+1(z

−1)b̄(z−1) = b̄(z−1). (5.26)

Multiplying (5.10) by ∆zpep(z−1) yields

∆zpep(z−1)ā(z−1)y(k) = ∆zpep(z−1)b̄(z−1)u(k − d̄− 1). (5.27)

Defining

gp(z−1) = ep(z−1)b̄(z−1), (5.28)

= gp,0 + gp,1z
−1 + . . .+ gp,p+nu−1z

−(p+nu−1),

and substituting (5.16) and (5.28) into (5.27) gives

y(k + p|k) = fp(z−1)y(k) + gp(z−1)∆u(k + p− d̄− 1). (5.29)



5.2. ADAPTIVE FUZZY MODEL PREDICTIVE CONTROL DESIGN 85

Thus, the best prediction of y(k + p|k) is

ŷ(k + p|k) = fp(z−1)y(k) + gp(z−1)∆u(k + p− d̄− 1). (5.30)

Equation (5.30) can be rewritten as

y(k) = Gu(k) + F(z−1)y(k) + L(z−1), (5.31)

where

y(k) =











ŷ(k + d̄+ 1)

ŷ(k + d̄+ 2)
...

ŷ(k +Np)











,u(k) =











∆u(k)

∆u(k + 1)
...

∆u(k +Nu − 1)











, (5.32)

F =











fd̄+1(z
−1)

fd̄+2(z
−1)

...

fNp
(z−1)











,G =











g1,0 0 . . . 0

g2,1 g2,0 . . . 0
...

...
. . .

...

gNp,Np−1 gNp,Np−2 . . . gNp,Np−Nu











, (5.33)

L =











[

gd̄+1(z
−1)− ḡd̄+1(z

−1)
]

z∆u(k − 1)
[

gd̄+2(z
−1)− ḡd̄+2(z

−1)
]

z2∆u(k − 1)
...

[

gNp
(z−1)− ḡNp

(z−1)
]

zNp∆u(k − 1)











,

ḡp(z−1) = gp,0 + gp,1z
−1 + . . .+ gp,p−d̄−1z

d̄+1−p.

Using (5.31) and considering λ(z−1) to be constant (λ > 0), (5.15) can be rewritten

as

Jeq(k) = [Fy(k) + Gu(k) + L−R]T [Fy(k) + Gu(k) + L−R] + [λu(k)]2 , (5.34)

where

R =
[

r(k + d̄+ 1), . . . , r(k +Np)
]T
. (5.35)

The necessary condition of the minimum Jeq(k) is obtained through the first deriva-
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tive of cost funtion Jeq(k), and by

∂Jeq(k)
∂[∆u(k)]

= 0. (5.36)

from which the optimal solution for the control signal is found as [Camacho and

Bordons, 2007]

u∗(k) =
GT (R − Fy(k)− L)

GTG + λI
, (5.37)

where I is the identity matrix. As the control signal sent to the process is the first

row of u∗(k), the ∆u∗(k) is given by:

∆u∗(k) = K[R − Fy(k)− L], (5.38)

where K is the first row of matrix (GTG + λI)−1GT ,

K =
[

1 0 0 · · · 0
]

1×Nu

(GTG + λI)−1GT . (5.39)

5.2.3 Fuzzy Predictive Control Scheme Algorithms

The main steps of the two proposed fuzzy model predictive control architectures are

presented in this section. The two fuzzy predictive control frameworks are proposed

in Algorithm 5.1 and Algorithm 5.2:

1. Algorithm 5.1 summarizes the design and operation of the first adaptive fuzzy

generalized predictive controller [Rastegar et al., 2016b]. The fuzzy controller

uses the fuzzy model results which are extracted by Algorithm 4.1, where the

consequent parameters of the model in this fuzzy controller are adjusted in a

recursive procedure using the RLS-ADF adaptation law studied in Subsection

4.2.5.

2. Algorithm 5.2 proposes the second type of adaptive fuzzy model predictive

controller for this section. This second fuzzy controller uses the T-S fuzzy

model learned by Algorithm 4.2, while the consequent parameters of the model

in this fuzzy controller are adjusted in a recursive adaptive procedure given

by Algorithm 4.3 (S-AHPSO).
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Algorithm 5.1 Adaptive fuzzy generalized predictive control algorithm based on
the T-S fuzzy modelling system proposed in Algorithm 4.1, and the RLS-ADF
methodology (Subsection 4.2.5).

(a) Design control parameters: Np, Nu, λ and d̄. Design the identification param-
eters (ρ, ϕi, τi, νi, for i = 1, . . . , c) with the same values as the ones defined in
Algorithm 4.1;

(b) Use the fuzzy rule base (input variables, respective membership functions, the
fuzzy rules and the final learned model parameters) learned in Algorithm 4.1
and initialize u(0);

(c) For/using each newly arriving online sample, do:

i. Compute ā(z−1) and b̄(z−1) using (5.11) and (5.12), respectively;
ii. Compute control signal ∆u(k) with (5.38);
iii. Adapt the T-S fuzzy model parameters (aji and bji of (5.3)) by performing

one iteration of recursion (4.16).

Algorithm 5.2 Adaptive fuzzy generalized predictive control algorithm based on
the hierarchical T-S fuzzy modelling system proposed in Algorithm 4.2, and the
S-AHPSO methodology proposed in Algorithm 4.3.

(a) Use the fuzzy rule base (input variables, respective membership functions, the
fuzzy rules and the final learned model parameters) learned in Algorithm 4.2
and initialize u(0);

(b) Design control parameters: Np, Nu, λ and d̄. Design the identification param-
eters (wr,max, wr,min, c1r, c2r, rmax, vmin, vmax, γ, β, and T2) with the same
values as the ones defined in Algorithm 4.3;

(c) For/using each newly arriving online sample, do:

i. Compute ā(z−1) and b̄(z−1) using (5.11) and (5.12), respectively;
ii. Compute control signal ∆u(k) with (5.38);
iii. Adapt the T-S fuzzy model parameters (aji and bji of (5.3)) by performing

one iteration of recursion (4.28).
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5.3 Experimental Results

This section presents simulation and real-world results to demonstrate the effective-

ness of both proposed adaptive fuzzy model predictive control methods proposed

in Section 5.2. The performance of the proposed adaptive predictive fuzzy control

methodologies are demonstrated on two setups: a simulated WWTP plant (Bench-

mark Simulation Model 1 (BSM1), Subsection 4.4.2), and a real-world experimental

setup composed of two coupled DC motors (Subsection 4.4.4). For the WWTP ap-

plication, a comparison between the performance of the two AFGPC proposed in

this work with the PID controller, a direct fuzzy controller (DFC) design [Mendes

et al., 2014], and the classical GPC [Camacho and Bordons, 2007], is shown and

discussed. For the two DC motors real-world setup, a comparison between the per-

formance of the two AFGPC proposed in this work with the classical GPC [Camacho

and Bordons, 2007], is presented and discussed. In all the simulations, the notation

“AFGPC (Method 1)” refers to the AFGPC scheme of Algorithm 5.1, which is based

on the T-S fuzzy model obtained by Algorithm 4.1, while the AFGPC in this design

uses RLS-ADF (Subsection 4.2.5) to update the consequent parameters of the con-

structed T-S fuzzy model. Also, the notation “AFGPC (Method 2)” refers to the

AFGPC scheme of Algorithm 5.2, which is based on the T-S fuzzy model learned

by Algorithm 4.2 (HPSO), and the adaptation procedure given by Algorithm 4.3

(S-AHPSO).

5.3.1 Adaptive Predictive Fuzzy Control of the Simulated

BSM1 Plant

The two adaptive fuzzy model predictive control methods proposed in Section 5.2,

using the two different T-S fuzzy modelling methods presented in Section 4.2, and

Section 4.3 are tested on the BSM1 plant and compared with other controllers. For

the first type of AFGPC, the model learned by Algorithm 4.1 and being updated

by RLS-ADF (i.e. the model is learned by Method 1, Subsection 4.2.5) is used to

initialize the prediction model of the adaptive fuzzy GPC controller of Subsection

5.2.3. For the second type of AFGPC, the model learned by Algorithm 4.2 and

updated by Algorithm 4.3 (Subsection 4.3.3) is used to initialize the prediction model

of the adaptive fuzzy GPC controller of Subsection 5.2.3. Also, in the online control
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operation, the RLS-ADF method and the Algorithm 4.3 are used to update the

consequent parameters of the first type and second type of AFGPC, respectively.

For the AFGPC which uses Method 1, the following controller parameters were

chosen: Np = 10, Nu = 1, λ = 0.08, d̄ = 0, ρ = 0.999, ϕi = 1, τi = νi = 1 × 10−8,

for i = 1, . . . , c. For the AFGPC which uses Method 2, the following controller

parameters were: Np = 5, Nu = 1, λ = 8 × 10−5, d̄ = 0, wr,max = 1, wr,min = 0.1,

c1r = 1.5, c2r = 2, rmax = 16, vmax = 1.8, vmin = −0.9, γ = 1, β = 0.2, and

T2 = 30. The best control parameters for both AFGPC methodologies were found

experimentally by trial and error, and considering the results obtained in Subsection

4.4.3.

The reference input DOref (t) [g.cm−3] is

DOref (t) =







3, 0 < t 6 7 [days],

2, 7 [days] < t 6 14 [days].
(5.40)

As a source of disturbance, the external carbon (EC) source to reactor 5 is a constant

equal to dCarbon5(k) = 0 [kg COD.days−1] (COD is the abbreviation for chemical

oxygen demand), for 0 ≤ t ≤ 14 [days], except that it is changed to a disturbance

value of dCarbon5(k) = 5 [kg COD.days−1] during 2 ≤ t ≤ 5 [days].

From the results presented in Figure 5.2(a), it can be seen that the proposed

AFGPC methods which use the T-S fuzzy model identification methodologies pro-

posed in Chapter 4 are able to adequately (attain and) control the system output at

the desired reference DOref (t). Numerical comparison of the results of the proposed

adaptive fuzzy control methodologies with other controllers (PID, DFC, GPC) are

reported in Table 5.1. For the PID controller, the best control parameters were

found by the Ziegler-Nichols method [Ziegler and Nichols, 1942]. As shown in Ta-

ble 5.1, comparing to the other methods (PID, DFC, GPC), with the proposed

AFGPC (with two different T-S fuzzy models) more accuracy in tracking the ref-

erence DOref (t) was obtained. From the results, it is concluded that the proposed

AFGPC methodology can control the process using only a data set of the process to

initialize the T-S fuzzy model. Comparing with the AFGPC (Method 1), a better

performance can be seen by the AFGPC (Method 2) in the tracking of the set-

points. The different control performances obtained by the AFGPC (Method 2)

and AFGPC (Method 1) can be due to the important effect of each T-S fuzzy model
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Figure 5.2: Dissolved oxygen control: (a) The results of the DO [g.m−3] control with
the proposed adaptive fuzzy predictive controllers of Algorithm 5.1, and Algorithm
5.2, and the classical GPC controller [Camacho and Bordons, 2007]; and (b) the
respective applied KLa5 command signals. The units of the disturbance variable
dCarbon5(k) are [kg COD.days−1].
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Table 5.1: Comparison of results of the proposed adaptive fuzzy control method-
ologies, AFGPC, with other methods (PID, DFC, GPC), for the BSM1 test. Note
that, here, the MSE = 1

Tn

∑Tn
t=1 (DOref (t)−DO(t))2 is related to the tracking error

rather than to the estimation error that is used in the training of the T-S fuzzy
models. Tn is the total number of samples on the test.

Methodology 1/MSE = 1/
(

1
Tn

∑Tn

t=1
(DOref (t) −DO(t))2

)

PID 335.3795

DFC 260.8385

GPC 382.8368

AFGPC (Method 1) 598.4009

AFGPC (Method 2) 774.7117

identification methodology, i.e. Method 1 and Method 2, in the control of the BSM1

plant. The fact that, except in the T-S fuzzy modeling part, both controllers use a

similar control structure/procedure in the design, can indicate/confirm that a sig-

nificant role is played by the T-S fuzzy model in a fuzzy control design. As was

shown in the results of Subsection 4.4.3, Method 2 has shown a better estimation

performance in T-S fuzzy model identification in the BSM1 plant, when compared

to Method 1 (Table 4.2). The command signals obtained by the proposed controllers

and by the other methods are depicted in Figure 5.2(b).

5.3.2 Adaptive Predictive Fuzzy Control of Two Coupled

DC Motors

The two adaptive fuzzy model predictive controllers proposed in Section 5.2, and

based on two different T-S fuzzy modelling methods (see Section 4.2, and Section

4.3), are tested on the real two coupled DC motors setup (Subsection 4.4.4). For

the AFGPC which uses Method 1, the following controller parameters were chosen:

Np = 8, Nu = 1, λ = 30, d̄ = 0, ρ = 0.95, ϕi = 1, τi = 1 × 10−3, νi = 1 × 10−6,

for i = 1, . . . , c. For the AFGPC which uses Method 2, the following controller

parameters were chosen by the user: Np = 10, Nu = 1, λ = 5 × 10−3, d̄ = 0,

wr,max = 0.9, wr,min = 0.4, c1r = 1.5, c2r = 2, rmax = 20, vmax = 1.0, vmin = −0.8,

γ = 1, β = 0.1, and T2 = 20. The best control parameters for both AFGPC

methodologies were found experimentally by trial and error, and considering the

results obtained in Subsection 4.4.4.



92 CHAPTER 5. ADAPTIVE FUZZY MODEL PREDICTIVE CONTROL

The reference input zd(t) [pp/(100 ms)] is

zd(k) =







400, 0 < k 6 350,

300, 350 < k 6 1000,

250, 1000 < k 6 1400,

(5.41)

and the load disturbance RL(k) is:

RL(k) =







2500, 0 < k 6 200,

6(k − 200) + 2500, 200 < k 6 450,

4000, 450 < k 6 650,

2500, 650 < k 6 1400.

(5.42)

RL(k) satisfies its admissible operating range which is 0 6 RL(k) < 4096. The

performances of both the proposed AFGPC controllers, and the classical GPC con-

troller [Camacho and Bordons, 2007], as well as the respective command signals

are presented in Figures 5.3(a) and 5.3(b). In Figure 5.3(a), the value of RL(k) is

presented after multiplying it by a factor of 0.1. For the classical GPC, Np = 8,

Nu = 1, and λ = 2.5 × 10−3 were chosen. These are the best control parameters

found experimentally for the classical GPC. The linear model parameters used in

the GPC controller were obtained with the Reaction Curve Method from [Cama-

cho and Bordons, 2007]. For the PID controller, the best control parameters were

found by the Ziegler-Nichols method [Ziegler and Nichols, 1942]. From the results

presented in Figure 5.3, it can be seen that the proposed fuzzy controllers are able

to adequately (attain and) control the system output at the desired reference zd(k).

In the sampling intervals 450 < k < 650 the output is working approximately at

full load status. At k = 650, when the load disturbance changes from a value of

RL(k) = 4000, down to its initial first value of RL(k) = 2500, there is an overshoot

at k = 650 in the system response. At k = 650 the proposed AFGPC (Method

1) comparing with AFGPC (Method 2), shows a better performance by having

a smaller overshoot against the unexpected load disturbance changes. But, the

AFGPC (Method 2) controller comparing with AFGPC (Method 1) shows a faster

response against setpoint changes during all the control process. In the setpoints
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Figure 5.3: Real-world control of two coupled DC motors: (a) The performance
of the proposed adaptive fuzzy GPC (AFGPC) designs, and of the classical GPC,
in the presence of load disturbances in the real DC motors process; and (b) the
respective applied command signals.
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Table 5.2: Comparison of results of the proposed adaptive fuzzy control, AFGPC,
methodologies with other methods (PID, DFC, GPC), for the two coupled DC mo-
tors test. Note that, here, the MSE = 1

Tn

∑Tn
t=1 (DOref (t)−DO(t))2 is related to

the tracking error rather than to the estimation error that is used in the training
of the T-S fuzzy models. Tn is the total number of samples on the test. All values
have been multiplied by 104.

Methodology 1/MSE

PID 3.4994

DFC 4.0138

GPC 3.8896

AFGPC (Method 1) 4.0385

AFGPC (Method 2) 4.2002

tracking results of the GPC, in the interval 200 6 k 6 350 a steady error can be

observed. Numerical 1/MSE results (where MSE is the tracking error) of the pro-

posed adaptive fuzzy control methodologies and of the other methods (PID, DFC,

GPC) are reported in Table 5.2. As can be seen from Table 5.2, among all con-

trollers, the AFGPC (Method 2) controller shows a better performance in setpoints

tracking. The results imply that both AFGPC control methodologies can lead to the

adequate control of the process just based on a data set of the process to initialize

the T-S fuzzy models. Furthermore, the results show that when comparing with the

classical GPC, the proposed adaptive fuzzy controllers with the T-S fuzzy models

cause the output y(k) to track the reference signal zd(k) with more accuracy.

5.4 Conclusion

In this chapter, the methodologies proposed in Chapter 4 to learn a T-S fuzzy model

were integrated with a fuzzy GPC controller. Results from both proposed T-S fuzzy

identification methodologies, i.e. the identification methodology based on an unsu-

pervised clustering technique, and also the identification methodology based on a

hierarchical fuzzy structure, were used for a fuzzy control design. The integration of

the proposed adaptive identification methodologies with the GPC results in an effec-

tive adaptive predictive fuzzy control methodology. To validate and demonstrate the

performance and effectiveness of the proposed algorithms, they were tested in the
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problems of controlling the dissolved oxygen in the activated sludge reactor within

a WWTP; and on the control of the real-world experimental setup composed of two

coupled DC motors. Results have shown that the proposed controller methodolo-

gies can control the process using only a data set of the process to initialize the

adaptive T-S fuzzy models. The experiments revealed that the proposed AFGPC

frameworks outperform typical well-known control methods such as the PID con-

troller, and the classical GPC controller [Camacho and Bordons, 2007]. In most

cases/aspects, the AFGPC (Method 2) has shown a better performance when com-

pared with the AFGPC (Method 1). Taking into account the fact that, except in

the T-S fuzzy modeling, in the other parts both controllers utilize a similar control

structure/procedure in the design and operation, this difference shows that a model

of the process plays a very important role in the design of an AFGPC. This in turn

confirms the well known fact that, as mentioned throughout this thesis, a model of

the process may play an important role in the design of controller; a good control

design can result from the use in the controller of a good estimation of the system

model.
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6.1 Introduction / State of the Art

The control of discrete-time linear parameter varying (DT-LPV) plants in the pres-

ence of constraints while the plants are affected by unknown disturbances is a very

active research area. Until now, control theory for linear parameter varying (LPV)

systems has been showing successful application roles in aircrafts [Jiang et al., 2015],

energy production systems [Navalkar and van Wingerden, 2015], wafer scanners

[Wassink et al., 2005], robotic systems [Vizer et al., 2015], active suspension of ve-

hicles [Pan et al., 2015], and missiles [Feng and Guangren, 2008]. There are good

surveys which discuss on the concerns regarding the guarantee of closed-loop sta-

bility and constraint satisfaction and also how these concerns can be addressed

[Blanchini, 1999; Mayne et al., 2000; Lin and Antsakis, 2009]. Some existing ap-

proaches to address the problem of robust control of constrained systems are set

invariance approaches [Mayne and Schroeder, 1997; Riverso et al., 2014], reference

governors [Gilbert and Kolmanovsky, 2002; Cairano et al., 2015], as well as receding

horizon control [Lucia and Tedesco, 2015].

One limitation of existing approaches to control LPV systems is that most of

them are able to control uncertain systems only at the origin (see [Pannocchia,

2004] for a discussion). Under this limitation, controllers can be used to achieve

steady-state offset-free control, but the setpoints are never allowed to be changed.

In practical applications, many times it happens that setpoints need to be changed.

Lacking the possibility of changing the setpoints is considered a limitation. Another

limitation is present in the important work [Wan and Kothare, 2002], where a robust

constrained controller was formulated which was based on the concept of asymp-

totically stable invariant ellipsoid [Wan and Kothare, 2003]. However, by following

this design methodology, the robust controller is limited just to find an elliptical

invariant set [Muñoz-Carpintero et al., 2015]. Some works were presented in the

literature to overcome these limitations. For example, [Pannocchia, 2004] proposed
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a robust control design which uses an auxiliary system to remove offset. The design

of the controller was strongly dependent on setpoint changes: in [Pannocchia, 2004],

for any setpoint change, new state and input command targets (x̄k, ūk) need to be

calculated to serve as a new origin. Additionally, in [Pannocchia, 2004], the presence

of disturbances on the plants is not considered.

In [Rotondo et al., 2014] a robust state feedback control method based on a

linear matrix inequality (LMI) based approach for uncertain LPV systems was pre-

sented. The approach uses the vector of varying parameters to schedule between

uncertain linear time invariant (LTI) systems. A robust tube MPC for linear sys-

tems with multiplicative uncertainty has been proposed recently in [Fleming et al.,

2015]. Before that, the same authors, in [Fleming et al., 2013], have presented a

formulation of robust model predictive control which recursively define at each sam-

pling interval intermediate sets that will contain the predicted state trajectory, and

from which it is possible to formulate conditions which guarantee satisfaction of the

control problem constraints. In addition, a terminal restriction set belonging to a

robustly invariant and feasible set takes care of constraints over the infinite hori-

zon beyond a finite prediction horizon. The MPC design in [Fleming et al., 2015]

considered multiplicative uncertainty, but was just devoted to track zero setpoints

without considering the presense of disturbances. Li et al. [2014a] proposed a design

of model predictive control (MPC) for LPV systems. A gain scheduling strategy was

adopted to handle the system uncertainty and to achieve a fixed learning model for

repetitive predictive control (RPC). The design of the RPC in [Li et al., 2014a] has

been limited just to periodic step-type disturbances varying between two values. In

[Al-Othman and Irving, 2007], a robust state estimator for LPV systems based on

maximum constrains satisfaction (MCS) of uncertain measurements and a genetic

algorithm was proposed. But the work was limited to state estimation not control

design.

One of the main drawbacks of MPC based methodologies is, in general, the

computational effort required to solve the constrained finite-time optimal control

(CFTOC) problem at each sampling instance. This effort can prevent the applica-

tion of MPC to systems with a high sampling rate. Some techniques like explicit

form of MPC [Besselmann et al., 2012] have been proposed as a remedy for this

problem, and as an alternative way to guarantee constraint recursive feasibility and

asymptotic stability of closed loop LPV systems. However, due to its complexity,
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research on this domain is still a challanging issue [Hajiloo, 2016]. This was a reason

to start to investigate on the possibility of combining these two control techniques,

MPC and sliding mode control (SMC), to take advantage of the MPC capability

of coping with system constraints and the SMC robustness properties [Wang et al.,

2013]. However, other common and important drawback of the SMC scheme, or the

model predictive SMC design, is the existence of the chattering phenomena caused

by the high frequency switching control law which needs to be seriously taken into

account [Lee et al., 2009; Feng et al., 2014].

The Russian researcher Kolesnikov [Kolesnikov, 1994] introduced synergetic con-

trol theory (SCT) for the first time. To date, synergetic control (SC) theory has

been utilized in power systems control [Santi et al., 2003, 2004; Jiang, 2009; Bai

et al., 2012]. The SC is an effective technique which can possess the properties of

order reduction and decoupling in the design procedure [Santi et al., 2003]. SC is

well-suited for digital implementation, and when compared to SMC, it gives better

control of the dynamics outside the target manifold, and avoids the chattering phe-

nomenon [Santi et al., 2003, 2004], because the SCT-based controllers are designed

without discontinuous part(s). But SCT has never been used for a robust control

design. Therefore, the development of a robust control design based on SC theory,

and the examination and evaluation of the corresponding robustness properties is

an important and promising research subject. In this Chapter, achieving the control

of uncertain systems in the presence of disturbance and system constrains, tracking

of varying non-zero setpoints, and a chattering-free operation will be a goal.

In this chapter a new robust constrained control methodology for discrete-time

linear parameter varying (DT-LPV) systems, is proposed based on a SCT approach.

The proposed controller inherits the SMC advantages, while it overcomes the SMC

chattering concerns. The proposed SC based design is called the robust discrete

SCT controller (RDSCTC). First, a SCT macro-variable is defined based on the

output tracking error. To ensure asymptotic convergence of the tracking error to

a bounded manifold, a system evolution constraint is given. Through combination

of the evolution constraint and macro-variable functions, the dynamics of the error

equation is constructed. Solving the dynamic stability equation results in a desired

command signal to address the control objectives. It is shown that in systems

without uncertainty, and for any unmeasured bounded additive disturbance, the

proposed controller accomplishes the goal of stabilizing the system by asymptotically
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driving the error of the controlled variable to a bounded set containing the origin

and then maintaining it there.

Moreover, given an uncertain DT-LPV system jointly subject to unmeasured and

constrained additive disturbances, and constraints in states, input commands, and

reference signals (setpoints), then invariant set theory is used to find an appropriate

polyhedral robust invariant region in which the proposed control framework is guar-

anteed to robustly stabilize the closed-loop system. Furthermore, this is achieved

even for the case of varying non-zero control setpoints in such uncertain DT-LPV

systems. The proposed controller is used to steer the state from any initial state

inside the robustly positively invariant set to desired and allowable setpoints. Unlike

other control methodologies, such as MPC based control, the proposed controller

is characterized to have a simple structure leading to an easy implementation, and

a non-complex design process. The effectiveness of the proposed method and the

implications of the controller design on feasibility and closed-loop performance are

demonstrated through application examples on the temperature control on a Con-

tinuous Stirred Tank Reactor (CSTR) plant.

As another case study, a new control design to control nonlinear state dependent

discrete time varying (NSDDTV) systems in the presence of unknown additive dis-

turbances, is presented. The proposed discrete-time SCT control framework uses a

proportional-integral (PI) type of the SCT macro-variable and a one-step delayed

estimation of the disturbance. The proposed controller is characterized to have ro-

bustness properties and advantages of SMC, but without inheriting the SMC chat-

tering phenomena. To show the efficiency of the second control design which is based

on a PI-type of SCT macro-variable, it is applied on the Escherichia Coli (E. Coli)

plant. The cultivation of E. Coli bacteria is widely used by geneticists and biophar-

maceuticals to produce medicines and vaccines. In such industries, biotechnological

processes are known by their harsh complex environment. A fed-batch bioprocess

requires an appropriate controller to suppress the inherent nonlinearity and distur-

bances. The proposed controller based on a PI-type of SCT macro-variable, is going

to maximize the biomass productivity of cultures of E. Coli through acetate concen-

tration control, by manipulating the substrate feed rate, while it is assumed that an

additive disturbance affects the bioprocess model.

The Chapter is organized as follows. Section 6.2 presents some introductory

notations and definitions. Section 6.3 introduces the proposed online RDSCTC
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(a) (b)

Figure 6.1: Difference between convex and non-convex set: examples of a (a) convex
set, and (b) non-convex set.

and presents the RDSCTC stability proof, and then performs robustly positively

invariant set constraint analysis for the application of the controller to DT-LPV

systems with input and state constraints in the presence of external disturbance.

In Section 6.4, an integral type of robust SCT control design for application to

NSDDTV systems is presented. In Section 6.5, results of the applications of the

RDSCTC controller, and the proposed controller based on a PI-type of SCT macro-

variable, their feasibilities and closed-loop performances, are presented and analyzed.

Finally, Section 6.6 makes concluding remarks.

6.2 Polytopic Uncertainty, Notations, and

Definitions

For the design of the robust constrained control methodology for discrete-time linear

parameter varying (DT-LPV) systems that will be proposed in Section 6.3, having

relevant knowledge regarding the concepts of polytopic uncertainty in the geomet-

rical space, is necessary. Some useful definitions are given below.

Let R denote the field of real numbers, and R
n the n-dimensional Euclidean

space. A set C is “convex” if the line segment joining any two points c1 and c2

in C remains entirely in C. Given c1 and c2 in C and λ ∈ [0, 1], λc1 + (1− λ) c2

in C is called a “convex combination” of c1 and c2. Figure 6.1 presents exam-

ples of convex and nonconvex sets. Given a set C (not necessarily convex) its

“convex hull”, denoted as Co{C}, is the smallest convex set which contains C.
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Figure 6.2: Examples of sets and their corresponding convex hulls. The convex hull
of a set is the smallest convex set which includes the set.

(a) (b)

Figure 6.3: Examples of polytopes: (a) an example of 2-D polytope generated by
vertices p1, p2, p5, p6, and p7, and (b) a 3-D polytope.

Figure 6.2 presents examples of convex hulls. A “polyhedron” is the intersection

of a collection of half-spaces. A set is equivalently defined as a “convex poly-

hedron” if it is the set of solutions to a finite system of linear inequalities. A

“polytope” is a bounded polyhedron, or equivalently, the convex hull of a finite

set of points P = convexhull {p1,p2, . . . ,pN}. Figure 6.3 presents examples poly-

topes. In Figure 6.3(a), each pi, i = 1, 2, 5, 6, 7, is a vertex of the polytope

P = convexhull {p1,p2,p5,p6,p7}.
A convex combination of a set of points pi, i = 1, . . . , N is a point p such that:

p =
N∑

i=1

λipi,
N∑

i=1

λi = 1 λi ≥ 0. (6.1)



104 CHAPTER 6. ROBUST CONTROL DESIGN

Figure 6.4: 3-D polymap: examples of face, vertex, and edge on a polytope.

The constraint set for λ = [λ1, . . . , λN ]T defined in (6.1) is called the “unit sim-

plex”. A “vertex” of a convex set is a point that cannot be generated as the convex

combination of two distinct points of the convex set.

A “face” of a polytope is the intersection of the polytope with a tangent hyper-

plane. An “edge” (or side) is a 1-D face (a line segment) where two 2-D faces of a

polytope meet. A “vertex” (or extreme point) is a 0-D face (a point) at which three

or more edges meet (Figure 6.4).

The operation A ∼ B represents the Pontryagin difference of two polyhedra

A ⊂ R
n and B ⊂ R

n: A ∼ B := {c ∈ R
n | c + b ∈ A,∀b ∈ B}. Given a vector

v, then ||v||∞ is the Chebyshev vector norm of v. If the set Γ ⊂ X × Y , then the

projection of Γ onto X is defined as ProjX(Γ) := {x ∈ X |∃y ∈ Y | (x,y) ∈ Γ}. The

operation A∗U represents the linear map of a polyhedron, where A is a real matrix

and U is a polyhedron. A ⊕ B denotes the Minkowski sum of convex polyhedra A

and B: A ⊕ B := {x ∈ R
n | ∃ a ∈ A,b ∈ B : x = a + b}. Given the two sets Γ ,

{x ∈ R
n | Qx 6 q} and Φ , {x ∈ R

n | Sx 6 s}, Γ ∩ Φ is denoted the intersection

of convex polyhedra Γ and Φ: Γ ∩ Φ :=
{

x ∈ R
n
∣
∣
∣

[

Q S
]T

x 6
[

q s
]T
}

.
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6.3 Robust Discrete SCT Control Design

In this section a novel robust constrained control methodology for discrete-time lin-

ear parameter varying (DT-LPV) systems, is proposed based on a synergetic control

theory (SCT) approach. It is shown that in DT-LPV systems without uncertainty,

and for any unmeasured bounded additive disturbance, the proposed controller ac-

complishes the goal of stabilizing the system by asymptotically driving the error

of the controlled variable to a bounded set containing the origin and then main-

taining it there. Moreover, given an uncertain DT-LPV system jointly subject to

unmeasured and constrained additive disturbances, and constraints in states, input

commands, and reference signals (setpoints), then invariant set theory is used to

find an appropriate polyhedral robust invariant region in which the proposed control

framework is guaranteed to robustly stabilize the closed-loop system. Furthermore,

this is achieved even for the case of time-varying non-zero control setpoints in such

uncertain DT-LPV systems. The controller proposed in this section is termed robust

discrete SCT controller (RDSCTC). It is clear that both LPV and LTV systems are

time varing systems. However, the system dynamics in LTV systems at each instant

time k is known, but in LPV systems it is unknown. This is because, LPV systems

contain uncertain parameters in the modelling coefficients.

6.3.1 Problem Formulation and Preliminaries

Consider a DT-LPV system in the normal form with parametric uncertainty, dis-

turbance, and both state and input constraints,

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k), (6.2)

y(k) = C(k)x(k), (6.3)

(A(k),B(k)) ∈ Γ ⊂ R
n×n × R

n×m, (6.4)

where x(k) is the plant state, and u(k) is the control input, which are subject to

x(k) = [x1(k), . . . , xn(k)]T ∈ X ⊂ R
n, (6.5)

u(k) = [u1(k), . . . , um(k)]T ∈ U ⊂ R
m. (6.6)
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w(k) = [w1(k), . . . , wn(k)]T ∈ W ⊂ R
n is a bounded, and unmeasured disturbance,

y(k) = [y1(k), . . . , yp(k)]T ∈ R
p is the output variable, and C(k) = [cij(k)] ∈ R

p×n

is a non-negative matrix (i.e. cij(k) > 0 for all i = 1, . . . , p, j = 1, . . . , n). y(k) is

also considered the controlled variable, i.e. the variable to be controlled to a given

desired setpoint zd(k) ∈ Z ⊂ R
p. For polytopic uncertainty, Γ is the polytope

Co {(Av
1,B

v
1), . . . , (Av

L,B
v
L)}, where (Av

j ,B
v
j ), j = 1, . . . , L, are the vertices of the

convex hull. Any (A,B) within the convex set Γ is a linear combination, more specif-

ically a convex combination, of the vertices: A =
∑j=L
j=1 µ(j)Av

j , B =
∑j=L
j=1 µ(j)Bv

j ,

with
∑j=L
j=1 µ(j) = 1, and 0 6 µ(j) 6 1 (see Section 6.2). Under fairly general

conditions a state space model of the form (6.2)-(6.3) can be transformed into an

observability, observer, or observable canonical form/realization where C(k) is non-

negative [Sinha and Rózsa, 1976; Antsaklis and Michel, 2007; Tóth, 2010].

Assume that the constraint sets of the state, X , and of the input, U , are in

the form of closed and convex polyhedra which are given by some affine inequality

constraints on the state and input, i.e. they are convex sets which can be described

by a finite number of affine inequality constraints as follows:

X := {x ∈ R
n |Axx 6 bx}, (6.7)

U := {u ∈ R
m |Auu 6 bu}, (6.8)

where Ax ∈ R
qx×n, Au ∈ R

qu×m, bx ∈ R
qx , and bu ∈ R

qu . It is assumed that X , and

U contain the origin in their interiors. It is assumed that, at each time instant k,

the disturbance is unknown, but that the disturbance sequence w(·) takes on values

w(k) ∈ W ⊂ R
n for all k ∈ N.

Similarly to (6.7) and (6.8),W and Z are assumed to be polyhedral sets with non-

empty interiors containing the origin, given by a finite number of affine inequality

constraints as follows:

W := {w ∈ R
n |Aww 6 bw}, (6.9)

Z := {zd ∈ R
p |Azzd 6 bz}, (6.10)

where Aw ∈ R
qw×n, Az ∈ R

qz×p, bw ∈ R
qw , and bz ∈ R

qz .

Some fundamental statements which will be important in the sequel, are listed

below.
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Definition 6.3.1. A set O∞ ⊂ R
n is a robust control invariant set for the system

(6.2)-(6.4) if ∀x(k) ∈ O∞, there exists an auxiliary control signal u(k) = h(x(k)),

such that ∀w(k) ∈ W, ∀zd(k) ∈ Z, ∀(A,B) ∈ Γ, ∀k ∈ N
+, the following holds:

x(k + 1) ∈ O∞, ∀k ∈ N
+.

Assumption 6.3.1. There exists a robust control invariant set O∞ for the system

(6.2)-(6.3) with the control law to calculate the command signal u(k) ∈ U , such that

O∞ lies in the interior of Ξ, where Ξ is the set of all the states for which the con-

straints on the plant states, and on the corresponding plant inputs u = u(x, zd,w),

are satisfied for any choice of the desired outputs zd ∈ Z.

Assumption 6.3.2. [General] The measurement of the plant state is available at

each sample time k, system {A(k),B(k),C(k)} is output controllable, and C(k) =

[cij(k)] ∈ R
p×n is a non-negative matrix (i.e. cij(k) > 0 for all k, and all i = 1, . . . , p,

j = 1, . . . , n).

Definition 6.3.2. A system is asymptotically ultimately bounded if, after starting

at a set of bounded initial conditions, the system converges asymptotically to a

bounded set.

Next, it is presented a useful result [Kerrigan and Maciejowski, 2004; Bemporad

et al., 2003; Pannocchia and Kerrigan, 2005] which will also be helpful for the present

work:

Proposition 6.3.1. For the polyhedron J which is given by

J := {g ∈ R
t |Fg 6 v + Ew,∀w ∈ W},

where F ∈ R
q×t, E ∈ R

q×s, v ∈ R
q, q, t, and s are positive integers, and W is a

compact (i.e. closed and bounded) subset of Rs, then the following holds

J = {g ∈ R
t |Fg 6 v + min

w ∈ W
Ew},

where the minimization is performed row-wise, i.e. if ei denotes the i-th row of E,

then min
w ∈ W

Ew =
[

min
w ∈ W

e1w, . . . , min
w ∈ W

eqw
]T

. Furthermore, if

W := {w ∈ R
s | ‖ w ‖∞6 γ},
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then

J := {g ∈ R
t |Fg 6 v− γEs},

where Es = abs(E) [11 12 . . . 1s]T .

abs(E) = [ |eij| ] represents the matrix of the absolute values of the corresponding

elements of matrix E = [eij], and 1i = 1, for i = 1, . . . , s.

Remark 1. The A(k), B(k), and C(k + 1) matrices can be time-varying, but to

simplify the notation, in the sequel they will be simply denoted by A, B, and C,

respectively.

Under the above assumptions and definitions, this section presents a novel robust

controller for DT-LPV systems. It is shown that in the plant without uncertainty

and for any bounded disturbance, the controller accomplishes the goal of asymp-

totically driving the error of the controlled variable to a bounded set and then

maintaining it there, while driving the controlled variable to any given allowable

setpoints. Then, considering the case of the presence of plant uncertainty, as well

as known constraints on the state variables, input commands, reference signals,

and disturbances, it is derived a robustly positively invariant set for the proposed

controller.

6.3.2 Synergetic Control Theory Principles

Synergetic control theory (SCT) offers a control framework based on a theory con-

ceived to control non-linear dynamical processes [Kolesnikov, 2014], [Kolesnikov,

1994, cited in [Kolesnikov, 2014]]. The SCT based controllers are coordinated with

the internal characteristics of the systems. The synergetic control structure is de-

signed to make the closed-loop control system converge to regions/sets of attraction

that correspond to the control purposes, and then force the trajectories to stay on

those regions.

Depending on the dimensionality of the state space, attractors can be points,

contours, tori or regions of fractal dimensionality. Generating such regions of at-

traction, or attractors, in dynamical systems, is one of the main concepts of the

SCT. The SCT is attractive because, unlike approaches such as SMC, the derived

controllers are continuous, and because controllers can be derived from a first-order
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differential equation [Liu and Hsiao, 2012], [Nusawardhana et al., 2007]. Conver-

gence can be analyzed by using stability methods such as the Lyapunov Stability

Theory [Kalman and Bertram, 1960; Sastry, 1999; Liu and Hsiao, 2012; Guang-Yue

et al., 2013], or using a potential function of the system [Olfati-Saber and Murray,

2002].

The control purposes in SCT are formulated as a collection of aggregated macro-

variables ψi that need to be zero. The aggregated macro-variables, ψi, i = 1, . . . , r 6

m, are functions of system variables x, zd, and control signals u: ψi = ψi(x, zd,u) =

ψi(k) = ψi(x(k), zd(k),u(k)). Hence, to attain the control purposes, attractors are

introduced where all the aggregated macro-variables are equal to zero. The SCT

gives an equation which can be used for creating dynamical systems with attractors

at ψi = 0 which is expressed as

T ψ̇ + φ(ψ) = 0, (6.11)

where T determines the rate of convergence to the attractor, ψ = [ψ1, ψ2, . . . , ψr]T

is the vector of aggregated macro-variables, ψ̇ is the derivative of the aggregated

macro-variable (vector) with respect to time, and φ(·) is some function that makes

the solution of (6.11) approach the attractor.

One of the possible expressions for φ(·) is φ(ψ) = ψ. In this case, equation

(6.11) is rewritten as:

T ψ̇ +ψ = 0. (6.12)

Assumption 6.3.3. In this chapter, it is assumed that the process to be controlled

is a single-input single-output (SISO) plant, and r = m = p = 1.

6.3.3 Proposed Controller

In this section, the discrete time controller based on synergetic control theory is

designed in the presence of unmeasured bounded additive disturbances without con-

straints on the state x, and input u of the DT-LPV system [Rastegar et al., 2017c].

Subsrection 6.3.5, will present the analysis of the proposed controller for systems

which are also subject to constraints in states, input commands, reference signals,

and unmeasured constrained additive disturbances.

The SCT can be useful for a robust control design [Rastegar et al., 2016a, 2017d]
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in such a way that the constructed controller can address the main control purposes

investigated in this section. In fact, the SCT gives an attractor which was defined

in (6.12). By using this attractor, the dynamic error (6.17) of the system will be

formed. Then, with a simple analytic procedure, the control law (6.18)-(6.19) will

be derived, and can then be easily implemented.

For the first phase of the work, let the tracking error be defined as e(k) =

y(k) − zd(k), where zd(k) contains the setpoints, and define the macro-variable

ψ(k) = e(k):

e(k) = y(k)− zd(k), (6.13)

ψ(k) = e(k), (6.14)

ψ(k + 1) = e(k + 1). (6.15)

Replacing (6.14) and (6.15) into the discrete version of (6.12), discretized using the

forward differences method, yields

T
e(k + 1)− e(k)

Ts
+ e(k) = 0, (6.16)

where Ts is the sampling time period. Eq. (6.16) describes the dynamic error of the

system as

Te(k + 1)− (T − Ts)e(k) = 0. (6.17)

Using (6.2), and (6.13), the error dynamics (6.17) can be rewritten as:

T [CAx(k) + CBu(k) + Cw(k)− zd(k + 1)]− (T − Ts)e(k) = 0. (6.18)

In this Section, it is used the notation that ¯̺ is the nominal value, or the estimated

value, of the real value ̺, for any ̺, i.e. ¯̺ is the value of ̺ that is used in the

controller.

Assumption 6.3.4. It is assumed that det(C̄B̄) 6= 0.

Some points are worth to be remarked regarding the mathematical implications

of the assumption that det(CB) 6= 0. First, there are many relevant practical

situations in which the condition det(CB) 6= 0 can be satisfied on the plants. Second,

note that det(CB) 6= 0 implies that CB should be a square matrix in order to be
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possible to calculate its determinant, which in turn implies that m = p. In this

chapter, the process to be controlled is single-input single-output (SISO), m = p = 1

(Assumption 6.3.3).

From (6.3), (6.13), (6.14), and (6.18), and Assumption 6.3.4, the input signal is

obtained as

u(k) =
(

T C̄B̄
)−1 [−T C̄Āx(k)− T C̄w(k) + Tzd(k + 1) + (T − Ts)ψ(k)

]

,

=
(

T C̄B̄
)−1 [−T C̄Āx(k)− T C̄w(k)

+Tzd(k + 1) + (T − Ts)(C̄x(k)− zd(k))
]

. (6.19)

The command law in Eq. (6.19) needs to have an explicit form. By this reason,

and assuming for the sake of motivation that w(k) is smooth so that the change

of w(k) in one sampling interval is small, w(k) ≈ w(k − 1), then the unknown

bounded disturbance w(k) ∈ W is replaced by w̄(k − 1) which is the one-step

delayed estimation of w(k) [Xu and Li, 2012] obtained from (6.2), and projected

into the closest point in W . Specifically,

w̄(k − 1) = arg min
w′∈W

||w′ − ŵ(k − 1)|| , (6.20)

ŵ(k − 1) = x(k)− Ā(k − 1)x(k − 1)− B̄(k − 1)u(k − 1), (6.21)

where || · || is the Euclidean distance. Note that w̄(k − 1) 6= ŵ(k − 1) only if

ŵ(k − 1) 6∈ W, which in turn may only happen if Ā 6= A or B̄ 6= B. Also note

that, if Ā = A and B̄ = B, then, from (6.2), ŵ(k − 1) = w(k − 1) ∈ W, and from

(6.20)-(6.21), w̄(k − 1) = ŵ(k − 1):

w̄(k − 1) = x(k)− Ā(k − 1)x(k − 1)− B̄(k − 1)u(k − 1). (6.22)

After obtaining w̄(k − 1) ∈ W from (6.20), then, Eq. (6.19) is transformed into:

u(k) = Ā1x(k) + Ā2zd(k + 1) + Ā3zd(k) + Ā4w̄(k − 1), (6.23)



112 CHAPTER 6. ROBUST CONTROL DESIGN

where Ā1 and Ā4 are 1× n matrices and Ā2 and Ā3 are scalar values defined as:

Ā1 = −
(

T C̄B̄
)−1 {

T C̄Ā + (Ts − T )C̄
}

,

Ā2 =
(

T C̄B̄
)−1

T,

Ā3 =
(

T C̄B̄
)−1

(Ts − T ),

Ā4 =
(

T C̄B̄
)−1

(−T C̄). (6.24)

In situations where it is not possible to predict zd(k + 1), then the command

signal u(k) in (6.19), (6.23), can be approximated/estimated, by using zd(k + 1) ≈
2zd(k)− zd(k − 1) to extrapolate for the next future reference signal, zd(k + 1).

The stability of the closed-loop system (6.2)-(6.3), (6.19)-(6.24), can be attained

as will be discussed below in Subsections 6.3.4, and 6.3.5 [Rastegar et al., 2017c].

In Subsection 6.3.4 it will be shown that, by adequately choosing the controller

parameters T , and Ts, the control signal (6.19)-(6.24) enforces the state variables of

the closed-loop system without uncertainty in A, B, and C, and with unmeasured

bounded disturbances, to asymptotically converge to a macro-variable manifold,

after starting from any initial state, and then to cause the state variables to remain

in a bounded region near the macro-variable manifold. Then, in Subsection 6.3.5,

a robustly positively invariant set for the uncertain closed loop system subject to

constraints in the system variables, will be derived.

6.3.4 Robust Closed-Loop Stability

In the stability analysis performed in this subsection, it will be assumed that the

nominal plant parameter values used in the controller are equal to the real plant

parameters, i.e. ¯̺ = ̺,∀̺ ∈ {A,B,C}. From (6.20)-(6.21), (6.3), and (6.24),

this implies that ¯̺ = ̺,∀̺ ∈ {A1,A2,A3,A4,w}. Also, in this subsection, the

constraints in the system states, input commands, and reference signals, are not

considered. In Subsection 6.3.5 these assumptions will be abandoned.

In the design of the SCT control law, the SCT convergence law in Eq. (6.12) must

guarantee that after starting from any initial state, the error trajectory monotoni-

cally moves towards a SCT macro-variable manifold, also called the robust macro-

variable manifold band (RMMB). After the error trajectory has reached the RMMB,
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then in each subsequent time step, the trajectory is confined to remain inside the

RMMB. It will be shown that the following RMMB meets these conditions:

RMMB =
{

x ∈ R
n : |ψ(x, zd)| 6Mψ = C̄(wmax −wmin)

T

2T − Ts

}

. (6.25)

T and Ts are positive constant values, C̄ contains non-negative values, and wmax ∈
R
n and wmin ∈ R

n are the row-wise maximum and minimum of w(k), respectively.

The control law that enforces the SCT convergence law in Eq. (6.12) is given

by (6.19), which is then developed as specified in (6.20)-(6.24). Therefore, from

(6.20)-(6.24), the control law can be rewritten as follows:

u(k) =
(

T C̄B̄
)−1 {−T C̄Āx(k)− T C̄w̄(k − 1) + Tzd(k + 1) + (T − Ts)ψ(k)

}

,

=
(

T C̄B̄
)−1 {[−T C̄Ā + (T − Ts)C̄

]

x(k) + Tzd(k + 1)

+(Ts − T )zd(k)− T C̄w̄(k − 1)
}

. (6.26)

where T > Ts/2, and det(C̄B̄) 6= 0.

Theorem 6.3.1. Consider the system (6.2)-(6.3) with control law (6.26). Suppose

the reference/desired output variables are given by zd(k), and the dynamic error is

defined as e(k) = y(k)− zd(k). Also assume that T < Ts < 2T , det
(

C̄B̄
)

6= 0, and

¯̺ = ̺,∀̺ ∈ {A,B,C}. Then, the closed-loop system (6.2)-(6.3) in the presence of

unknown bounded disturbance w(k) is stable, and by using the control law (6.26) the

error trajectory asymptotically converges to the RMMB (6.25). After the trajectory

has reached the RMMB, then in each subsequent time step, the trajectory is confined

to remain inside the RMMB.

Proof. First, note that several steps of the proof are justified by the fact that ¯̺ =

̺,∀̺ ∈ {A,B,C}. Since ¯̺ = ̺,∀̺ ∈ {A,B,C}, then from (6.20)-(6.21), and (6.2),
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Figure 6.5: Illustration of the RMMB function and four possible conditions for ψ(k).

w̄(k − 1) = w(k − 1) is given by (6.22). Then, using (6.26), note that

ψ(k + 1) = e(k + 1)

= y(k + 1)− zd(k + 1)

= CAx(k) + CBu(k) + Cw(k)− zd(k + 1),

= CAx(k) + CB(T C̄B̄)−1
[

−T C̄Āx(k)− T C̄w̄(k − 1)

+Tzd(k + 1)− (Ts − T )ψ(k)
]

+ Cw(k)− zd(k + 1),

= CAx(k)− C̄Āx(k)− C̄w̄(k − 1) + zd(k + 1)+
(

1− Ts
T

)

ψ(k) + Cw(k)

− zd(k + 1) =
T − Ts
T

ψ(k) + C(w(k)−w(k − 1)). (6.27)

The proof will be made as follows: (a) if ψ(k) /∈ RMMB, then the discrete-time

Lyapunov function [Haddad and Chellaboina, 2008] V (k) = ψ2(k) := ψT(k)ψ(k) is

chosen, and it is shown that ∆V = V (k + 1) − V (k) < 0, i.e. ψ2(k + 1) < ψ2(k);

and (b) it is shown that if ψ(k) ∈ RMMB, then ψ(k + 1) ∈ RMMB.

Based on the definition of the RMMB in Eq. (6.25), ψ(k) can meet one of the

following four different conditions: (i) 0 6 Mψ < ψ(k), (ii) 0 < ψ(k) 6 Mψ, (iii)

−Mψ 6 ψ(k) < 0, (iv) ψ(k) < −Mψ 6 0. For each of these four conditions, both

(a) and (b) must be satisfied. Figure 6.5 presents all possible conditions. These four

conditions are analyzed in detail below.
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(i). If 0 6 C(wmax −wmin) T
2T−Ts

< ψ(k), then from (6.27)

ψ(k + 1)−ψ(k) =
(
T − Ts
T

− 1
)

ψ(k) + C(w(k) −w(k − 1))

= −Ts
T
ψ(k) + C(w(k)−w(k − 1))

6 −Ts
T
ψ(k) + C(wmax −wmin)

< −Ts
T

C(wmax −wmin)
T

2T − Ts
+ C(wmax −wmin)

= 2
T − Ts
2T − Ts

C(wmax −wmin) < 0, (6.28)

ψ(k + 1) +ψ(k) =
(
T − Ts
T

+ 1
)

ψ(k) + C(w(k) −w(k − 1))

=
(2T − Ts

T

)

ψ(k) + C (w(k) −w(k − 1))

>
(2T − Ts

T

)

C(wmax −wmin)
T

2T − Ts
−C(wmax −wmin) = 0. (6.29)

Therefore, from (6.28) and (6.29), ψ2(k + 1) < ψ2(k).

(ii). If 0 < ψ(k) 6 C(wmax −wmin) T
2T−Ts

, then the condition which must be

satisfied is |ψ(k + 1)| 6 C(wmax −wmin) T
2T−Ts

. Considering also (6.27), and

the fact that T − Ts < 0, it is noted that

T − Ts
2T − Ts

C(wmax −wmin) + C(w(k)−w(k − 1)) 6 ψ(k + 1)

< C(w(k)−w(k − 1)). (6.30)

From (6.30), and considering that |w(k) − w(k − 1)| 6 wmax − wmin, and

2T − Ts < T , then

ψ(k + 1) < C(w(k)−w(k − 1)) 6 C(wmax −wmin)

< C(wmax −wmin)
T

2T − Ts
, (6.31)

ψ(k + 1) >
T − Ts
2T − Ts

C(wmax −wmin) + C(w(k)−w(k − 1))
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>
T − Ts
2T − Ts

C(wmax −wmin)−C(wmax −wmin)

= − T

2T − Ts
C(wmax −wmin). (6.32)

From (6.31) and (6.32),

|ψ(k + 1)| 6 C(wmax −wmin)
T

2T − Ts
. (6.33)

From (6.33), it is seen that after the trajectory has reached the upper positive

side band of the RMMB, then in each subsequent time step, the trajectory

is confined to remain inside the RMMB. Also note that in the case that

ψ(k) = 0, then (6.31), (6.32), and (6.33), still hold, except that the left most

inequality in (6.31) becomes an equality. Therefore, the theorem also holds

for ψ(k) = 0.

(iii). If −C(wmax−wmin) T
2T−Ts

6 ψ(k) < 0, then the condition that must be

satisfied is (6.33). Considering also that T < Ts < 2T , then ψ(k) < T−Ts

T
ψ(k).

Therefore, from (6.27),

ψ(k + 1) =
T − Ts
T

ψ(k) + C(w(k)−w(k − 1))

> C(w(k)−w(k − 1)) > −C(wmax −wmin)

> − T

2T − Ts
C(wmax −wmin), (6.34)

ψ(k + 1) =
T − Ts
T

ψ(k) + C(w(k)−w(k − 1))

6 −T − Ts
T

C(wmax −wmin)
T

2T − Ts
+ C(w(k)−w(k − 1))

6 − T − Ts
2T − Ts

C(wmax −wmin) + C(wmax −wmin)

= C(wmax −wmin)
T

2T − Ts
. (6.35)

Thus, from (6.34) and (6.35), it is seen that (6.33) holds.
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(iv). If ψ(k) < −C(wmax −wmin) T
2T−Ts

6 0, then from (6.27),

ψ(k + 1)−ψ(k) =
−Ts
T
ψ(k) + C(w(k)−w(k − 1))

>
Ts

2T − Ts
C(wmax −wmin) + C(w(k)−w(k − 1))

>
Ts

2T − Ts
C(wmax −wmin)−C(wmax −wmin)

=
2(Ts − T )
2T − Ts

C(wmax −wmin) > 0, (6.36)

ψ(k + 1) +ψ(k) =
2T − Ts

T
ψ(k) + C(w(k)−w(k − 1))

< −2T − Ts
T

× T

2T − Ts
C(wmax −wmin)

+ C(w(k)−w(k − 1))

= −C(wmax −wmin) + C(w(k)−w(k − 1)) < 0. (6.37)

From (6.36) and (6.37) it is concluded that ψ2(k + 1) < ψ2(k).

Note that Theorem 6.3.1, may still be useful in the study of the stability of

systems with additive uncertainty in A(k) and B(k), if it is possible that such

uncertainty is first transferred to w(k) and the system remains in the hypothesis of

the theorem regarding w(k).

6.3.5 Robustly Positively Invariant Set

In this section, the controller presented in Subsection 6.3.3 is applied to DT-LPV

systems exposed to constraints in the states, in the input command signals, in the

reference signals, and in the unmeasured additive disturbances. Additionally, it is

abandoned the assumption that ¯̺ = ̺,∀̺ ∈ {A,B,C} which has been made in

Subsection 6.3.4, and the problem of computing the robustly positively invariant set

of the system is considered.

Assume that the controller is such that it generates the plant inputs u(k) =

u(x(k), zd(k), zd(k+1), w̄(k)), as given by (6.23). Then, let the constraint-admissible

set Ξ be defined as the set of all the states x(k), for which the constraints on the plant

states, and on the corresponding plant inputs u(k) = u(x(k), zd(k), zd(k+1), w̄(k)),
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are satisfied for any choice of the desired outputs zd(k) ∈ Z:

Ξ = {x(k) ∈ R
n |x(k) ∈ X and u(x(k), zd(k), zd(k + 1)) ∈ U ,

∀zd(k) ∈ Z,∀zd(k + 1) ∈ Z}. (6.38)

Since X and U are polyhedra given by affine inequalities, then Ξ is computed by

applying Proposition 6.3.1 to the above definition (6.38).

Let zd(·) and w(·) denote the output reference sequence and the disturbance

sequence, respectively, where a sequence is defined as an ordered set. Let,

ϕ(x(0), zd(·),w(·), ·) be the solution sequence to (6.2), under controller (6.20)-

(6.21), (6.23), and reference and disturbance sequences zd(·) and w(·), after start-

ing at initial state x(0). Also let ϕ(x(0), zd(·),w(·), k) = x(k) be the value of

ϕ(x, zd(·),w(·), ·) at time k. The constraint admissible robustly positively invari-

ant set O∞ for the closed-loop system composed of plant (6.2)-(6.3) and controller

(6.20)-(6.21), (6.23), is defined as the set of all initial states in Ξ for which the evo-

lution of the system remains in Ξ for all allowable infinite reference and disturbance

sequences [Pannocchia and Kerrigan, 2005], i.e.

O∞ ={x(0) ∈ Ξ |ϕ(x(0), zd(·),w(·), k) ∈ Ξ,

∀zd(·) ⊂ Z, ∀w(·) ⊂ W, ∀(A,B) ∈ Γ, ∀k ∈ N
+}. (6.39)

Since Ξ is given by a finite number of affine inequality constraints, O∞ is com-

puted by efficient linear programming (LP) methods like the recursive Algorithm

6.2 proposed in [Kolmanovsky and Gilbert, 1998].

Note that if, in the construction of Ξ, an augmented form of the state vector is

used, then one can define X0 as the set of states belonging to the plant state space, X,

for which, for all x ∈ X0 there exists a corresponding augmented state that belongs

to O∞. X0 can be computed explicitly: since O∞ is a polyhedron, then the set X0 is

computed as the projection of O∞ onto the plant state space, i.e. X0 = ProjX(O∞).

6.3.6 Invariant Set for the Proposed Controller

As explained in Subsection 6.3.5, the robust invariant set for the closed-loop system

must be searched inside of Ξ. In other words, to find a robust invariant set for

the closed-loop system, first the search for the constraint-admissible set must be



6.3. ROBUST DISCRETE SCT CONTROL DESIGN 119

performed. This initial constraint-admissible set, i.e. Ξ, is obtained just after both

the constrains on u, and x are considered. By finding an invariant set, it is shown

that the closed-loop system is asymptotically ultimately bounded, where for each

initial condition inside of a bounded invariant set, the LPV system will converge

asymptotically to this bounded set (Definition 6.3.2).

According to the controller proposed in Subsection 6.3.3, for the discrete-time

uncertain system (6.2)-(6.3), the command signal u(k) is given by (6.23). Then, the

closed-loop state equation is given by

x(k + 1) = (A + BĀ1)x(k) + BĀ2zd(k + 1) + BĀ3zd(k) + BĀ4w̄(k − 1) + w(k).

(6.40)

Recall that the w̄(k − 1) computed in (6.20) meets w̄(k − 1) ∈ W. The set

of admissible system states that meet restrictions (6.5), (6.7), and that make the

command signal of the proposed controller (6.20)-(6.21), (6.23) meet restrictions

(6.6), (6.8), for all admissible reference signals zd(k) ∈ Z, subject to (6.10), and

all possible disturbances w(k) ∈ W, subject to (6.9), is obtained by the constraint-

admissible set Ξ (6.38). By using (6.23), the Ξ is given by

Ξ =
{

x ∈ R
n|x ∈ X ∩ Ā1x ∈ F

}

, (6.41)

where

F = U ∼ L, (6.42)

L = (Ā2 ∗ Z)⊕ (Ā3 ∗ Z)⊕ (Ā4 ∗W). (6.43)

The initial constraint-admissible set Ξ is obtained from the consideration and

enforcement of the constrains on both u(k), and x(k). In (6.41), the Ξ set is com-

puted by applying the intersection operator between these two constraints. The

second operand on this equation (i.e. Ā1x ∈ F) represents the enforcement of the

constraints that the u(k), zd(k), and w(k) are assumed to meet. Therefore, before

determining Ξ through (6.41), equations (6.42)-(6.43) should be used to determine

F which in turn depends on the allowable operating region of u(k) (i.e. depends

on U) subject to the allowable operating regions for the setpoints and disturbance

(i.e. subject to zd(k) ∈ Z and w(k) ∈ W). Once this region F is calculated by
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(6.42)-(6.43), then it is applied in (6.41).

The Ξ in (6.41) is computed by solving a finite number of affine inequalities

[Kolmanovsky and Gilbert, 1998]. The robustly positively invariant set O∞ for the

closed-loop system (6.40) is then represented by

O∞ = {x(k) ∈ Ξ |x(k + 1) ∈ Ξ,

∀zd(k + 1) ∈ Z, ∀zd(k) ∈ Z, ∀w(·) ⊂ W, ∀(A,B) ∈ Γ, ∀k ∈ N
+}. (6.44)

6.4 Robust Control Design Based on PI-Type

Synergetic Control Theory Structure

Consider a class of nonlinear state dependent discrete time varying (NSDDTV)

dynamical systems with disturbance, represented by the following equations:

x(k + 1) = A(x, k)x(k) + B(x, k)u(k) + w(k), (6.45)

y(k) = C(x, k)x(k), (6.46)

where x(k) = [x1(k), . . . , xn(k)]T ∈ R
n is the plant state which is assumed to

be measured, u(k) = [u1(k), . . . , um(k)]T ∈ R
m is the control input, w(k) =

[w1(k), . . . , wn(k)]T ∈ R
n is a bounded, and unmeasured disturbance, y(k) =

[y1(k), . . . , yp(k)]T ∈ R
p is the output variable, and C(x, k) = [cij(x, k)] ∈ R

p×n

is a non-negative matrix (i.e. cij(x, k) > 0 for all i = 1, . . . , p, j = 1, . . . , n). y(k) is

also considered the controlled variable, i.e. the variable to be controlled to a given

desired setpoint sequence zd(k). The A(x, k), B(x, k), and C(x, k+ 1) matrices can

be time-varying, and dependent on the state x(k), but to simplify the notation, in

the sequel they will be simply denoted by A, B, and C, respectively.

It is assumed that the triplet (A,B,C) of the nominal system is both controllable

and observable with the matrices B and C being of full rank. In addition matrix

CB is supposed to be invertible. It is assumed that, at each time instant k, the

disturbances w(k + p) are known for p < 0, but are unknown for p > 0. It is also

assumed that Assumption 6.3.3 holds. Similarly to what was noted in Subsection

6.3.1 regarding system (6.2)-(6.3), note that under fairly general conditions a state

space model (6.45)-(6.46) can be transformed into an observability, observer, or
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observable canonical form/realization where C(k) is non-negative [Sinha and Rózsa,

1976; Antsaklis and Michel, 2007; Tóth, 2010].

This section presents a novel robust controller for nonlinear state dependent

discrete time varying (NSDDTV) systems of the form (6.45)-(6.46), such that, for

any allowable (i.e. bounded) disturbance and varying setpoints sequence, the con-

troller accomplishes the goal of asymptotically driving the system towards a bounded

macro-variable manifold based on output error and containing the origin, and then

maintaining it there.

6.4.1 Proposed Controller for NSDDTV Systems

In this section, the discrete time controller based on synergetic control theory (SCT)

is designed in the presence of unmeasured bounded additive disturbances on nonlin-

ear state dependent discrete time varying (NSDDTV) systems (6.45)-(6.46) [Raste-

gar et al., 2017a]. First, let the tracking error be defined as e(k) = y(k) − zd(k),

where zd(k) contains the setpoints, and define a proportional integral (PI) type

macro-variable, as follows:

e(k) = y(k)− zd(k), (6.47)

ψ(k) = KPe(k) + KIζ(k), (6.48)

ψ(k + 1) = KPe(k + 1) + KIζ(k + 1), (6.49)

where ζ(k) is an integral-type of the error which is defined as ζ(k) = e(k)+ζ(k−1),

and KP and KI are positive proportional and integral gains, respectively.

Replacing (6.48) and (6.49) into the discrete-time version of (6.12) (see Subsec-

tion 6.3.2), discretized by the forward differences method, yields

T (KP + KI)e(k + 1) + TKIζ(k)− (T − Ts)ψ(k) = 0. (6.50)

Eq. (6.50) expresses the dynamic error of the system, where Ts is the sampling time

period.

Using (6.45), and (6.47), the error dynamics equation (6.50) can be rewritten as:

T (KP + KI)[CAx(k) + CBu(k) + Cw(k)− zd(k + 1)]

+ TKIζ(k)− (T − Ts)ψ(k) = 0. (6.51)
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From (6.46), (6.47), and (6.51), the input signal is obtained as

u(k) =− [T (KP + KI)CB]−1 [−qψ(k) + T (KP + KI)CAx(k)

+T (KP + KI)Cw(k)− T (KP + KI)zd(k + 1) + TKIζ(k)] . (6.52)

where q = T − Ts, and it is assumed that det(CB) 6= 0. In addition, similarly

to Theorem 6.3.1 in Subsection 6.3.4, it is assumed that T > Ts/2 > 0, and thus

−Ts < q < 0.

In Subsection 6.3.3 some points were remarked regarding the mathematical im-

plications of the assumption that det(CB) 6= 0. Here, an additional point is

remarked regarding this assumption. Define the certain LTV system to be the

LTV system (6.45)-(6.46) with w(k) being zero or known at time instant k, for

all k. Then, generalizing the analysis in [Åström and Wittenmark, 1997, Sec.

3.4], y(k1) = C(k1)Φ(k0, k1)x(k0) + Wc(k0, k1)U, where the controlability matrix

Wc(k0, k1) is defined such that Wc(k0, k1)U = C(k1)
∑k1−1
k=k0

Φ(k + 1, k1)B(k)u(k),

U = [u(k0), . . . ,u(k1 − 1)]T , Φ(k0, k1) =
∏k1−1
k=k0

A(k), except that Φ(k0, k0) = I

is the identity matrix, for all k1, k0 such that k1 > k0. Then, det(CB) 6= 0 is a

sufficient condition for Wc(k0, k1) to be full rank, which in turn is an equivalent

condition for such certain LTV system to be output reachable (i.e. to be possible

for the output y(k1) to be transferred to any value by the adequate selection of

actuation commands U to the process). Moreover, in such certain LTV system, if

det(CB) 6= 0 then in theory it is possible to place y(k + 1) arbitrarily by choosing

the right value of u(k). However, in this chapter the disturbance w(k) is not known

at sampling time k, which implies that it is not possible that one can place y(k+ 1)

arbitrarily by choosing the right value of u(k). Therefore, condition of det(CB) 6= 0

should not be interpreted as a reachability condition for system (6.45)-(6.46), as it

can be realized for the certain LTV system.

The command law (6.52) needs to have an explicit form. By this reason, and

assuming for the sake of motivation that w(k) is smooth so that the change of w(k)

in one sampling interval is small, w(k) ≈ w(k − 1), then, similarly to Subsection

6.3.3, the unknown bounded disturbance w(k) is replaced by w(k − 1) which is the

one-step delayed estimation of w(k) [Xu and Li, 2012] obtained from (6.45).
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Specifically,

w(k − 1) = x(k)−A(k − 1)x(k − 1)−B(k − 1)u(k − 1). (6.53)

By replacing the unknown bounded w(k) with (6.53), then (6.52) is transformed

into:

u(k) =− [T (KP + KI)CB)]−1 [−qψ(k) + T (KP + KI)CAx(k)

+T (KP + KI)Cw(k − 1)− T (KP + KI)zd(k + 1) + TKIζ(k)] , (6.54)

where w(k − 1) is given by (6.53).

Define the asymptotic stability of the closed-loop system composed of plant

(6.45)-(6.46) and controller (6.54) as the property of the system where the error

trajectory to moves towards a bounded SCT macro-variable manifold starting from

any initial state, and then remains in such manifold. The asymptotic stability can

be achieved by choosing the controller parameters T , Ts, KP , and KI . Again, note

that in situations where it is not possible to predict zd(k + 1), then the command

signal u(k) in (6.52), (6.54), can be approximated/estimated, by using zd(k + 1) ≈
2zd(k)− zd(k − 1) to extrapolate for the next future reference signal, zd(k + 1).

The controller proposed in this section is termed robust discrete SCT controller

of proportional-integral type (RDSCTC-PI).

6.4.2 Robust Closed-Loop Stability

The stability analysis for the proposed controller based on a PI-type of SCT macro-

variable follows a same procedure as for the RDSCTC (Subsection 6.3.4). The

strategy used to design the control law for the process, is that the SCT convergence

law in (6.12) must guarantee the following desired attributes: (1) starting from any

initial state, the output error is moved towards a bounded macro-variable manifold

based on error and containing the origin, where such manifold is also called the

robust macro-variable manifold band (RMMB); (2) After the trajectory has reached

the RMMB, then in each subsequent time step, the trajectory is confined to remain
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inside the RMMB, where

RMMB =
{

x ∈ R
n| |ψ(x, zd)| 6Mψ = ΩC(wmax −wmin)

T

2T − Ts

}

, (6.55)

and Ω = KP + KI . wmin ∈ R
n and wmax ∈ R

n are the row-wise minimum and

maximum of w(k), respectively.

The control law that enforces the SCT convergence law in Eq. (6.12) is given by

(6.54), and is rewritten as follows:

u(k) =− (TΩCB)−1 [−qψ(k) + TΩCAx(k) (6.56)

+TΩCw(k − 1)− TΩzd(k + 1) + TKIζ(k))] .

Theorem 6.4.1. Consider the system (6.45)-(6.46) with control law (6.56). Sup-

pose the reference/desired output variables are given by zd(k), and the dynamic

error is defined as e(k) = y(k) − zd(k). Also assume that T < Ts < 2T , and

det(CB) 6= 0. Then, the closed-loop system (6.45)-(6.46), (6.56), in the presence of

unknown bounded disturbance w(k), is stable, and using the control law (6.56) the

error trajectory asymptotically converges to the RMMB (6.55). After the trajectory

has reached the RMMB, then in each subsequent time step, the trajectory is confined

to remain inside the RMMB.

Proof. Using (6.49), (6.45), and (6.56), start by noting that

ψ(k + 1) = Ωe(k + 1) + KIζ(k)

= Ω [Cx(k + 1)− zd(k + 1)] + KIζ(k)

= Ω [C(Ax(k) + Bu(k) + w(k))− zd(k + 1)] +KIζ(k)

= ΩCAx(k)−ΩCB (TΩCB)−1 [qψ(k) + TΩCAx(k)

+TΩCw(k − 1)− TΩzd(k + 1) + TKIζ(k)]

+ ΩCw(k)−Ωzd(k + 1) + KIζ(k),

= ΩCAx(k)−ΩCAx(k)−ΩCw(k − 1)− TKIζ(k)

+ Ωzd(k + 1)−
(

−1 +
Ts
T

)

ψ(k) + ΩCw(k)

−Ωzd(k + 1) + TKIζ(k)

=
(

1− Ts
T

)

ψ(k) + ΩC(w(k)−w(k − 1))
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= qT−1ψ(k) + ΩC(w(k)−w(k − 1))

=
T − Ts
T

ψ(k) + ΩC(w(k)−w(k − 1)). (6.57)

By comparing (6.25), and (6.27) with (6.55), and (6.57), respectively, it can

be realized that the proof of Theorem 6.4.1 regarding stability analysis/properties

of the proposed NSDDTV controller based on a PI-type SCT macro-variable can

be performed similarly to the proof of Theorem 6.3.1 (Subsection 6.3.4) regarding

stability analysis/properties of the RDSCTC controller. In fact, the only difference

is that matrix C in (6.25), and (6.27), is substituted by ΩC in (6.55) and (6.57).

Otherwise, the proof of Theorem 6.4.1 follows the same procedure as the proof of

Theorem 6.3.1.

6.5 Experimental Results

This section, presents three examples that illustrate the implementation of the pro-

posed RDSCTC, and of the proposed RDSCTC-PI. The performance and effective-

ness of the RDSCTC is demonstrated through an example of reactor temperature

control on a nonisothermal Continuous Stirred Tank Reactor (CSTR) plant. The

performance of the RDSCTC-PI is presented through the control of the acetate con-

centration A(t) in the Escherichia Coli (E. Coli) process bioreactor. Additionally,

to better demonstrate the efficiency of RDSCTC, and RDSCTC-PI, the closed-loop

simulation results obtained by RDSCTC, and RDSCTC-PI are demonstrated and

compared with the performance of the RMPC [Pannocchia, 2004], and with the

standard discrete-time sliding mode controller (SDSMC) [Eun et al., 1999]. Finally,

the performances of all controllers proposed in this thesis, i.e. the appplication of

the AFGPC (Method 1), AFGPC (Method 2), RDSCTC, and RDSCTC-PI on the

real-world experimental setup composed of two DC motors (Subsetion 4.4.4) are

illustrated and compared. All the simulations and computations were performed on

an Intel(R) core (TM) i7-2600, CPU 3.4GHz, with 512 MB Cache, and total mem-

ory of 8 GB. The constraint admissible sets Ξ, and the robustly positively invariant

sets O∞ were computed using the Multi-Parametric Toolbox [Herceg et al., 2013],

and the Invariant Set Toolbox [Kerrigan, 2005].
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Table 6.1: Variables of the continuous stirred tank reactor (CSTR) [Wan and
Kothare, 2002].

Variables description Value

CA - Product concentration 0.265 [mol/l]
Tc - Reactor temperature 394 [K]
qc - Coolant flow rate 250 [l/min]
q - Process flow rate 1× 103 [l/min]
CA0 - Feed concentration 1 [mol/l]
To - Feed temperature 365 [K]
Tc0 - Inlet coolant temperature 365 [K]
V - CSTR volume 1× 103 [l]
hA - Heat transfer term 7× 105 [cal/min/K]
k0 - Reaction rate constant 1× 109 6 k0 6 5× 109 [min−1]
E/R - Activation energy term 8330.1 [K]
−∆H - Heat of reaction 1× 107 6 −∆H 6 5× 107 [cal/mol]
ρ, ρc - Liquid densities 1× 103 [g/l]
Cp, Cpc - Specific heats 1 [cal/g/K]

6.5.1 Control of a Simulated CSTR Plant

A nonisothermal Continuous Stirred Tank Reactor (CSTR) is a highly nonlinear pro-

cess which is very common in chemical and petrochemical plants. It is frequently

used to show the efficiency of control designs, including for LPV systems, e.g. [Wan

and Kothare, 2002], [Pannocchia, 2004]. In the process, a single irreversible exother-

mic reaction is assumed to occur in the reactor. The nonisothermal CSTR for an

exothermic irreversible reaction is described by the following dynamic model based

on a component balance and on an energy balance [Morningred et al., 1992]:

∂CA(t+ dc)
∂t

=
q(t)
V

(CA0(t)− CA(t+ dc))− k0CA(t+ dc) exp

(

− E

RTc(t)

)

, (6.58)

∂Tc(t)
∂t

=
q(t)
V

(T0(t)− Tc(t))−
(−∆H)k0CA(t+ dc)

ρCp
exp

(

− E

RTc(t)

)

+
ρcCpc
ρCpV

qc(t)

[

1− exp

(

−hA
qc(t)ρcCpc

)]

(Tc0(t)− Tc(t)) . (6.59)

The objective is to control the reactor temperature Tc(t) asymptotically by ma-

nipulation of the coolant flow rate qc(t). It is assumed that the CSTR plant is

exposed to polytopic model uncertainties, state and input constraints, and plant
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disturbances. The plant variables and the respective nominal values are described

in Table 6.1.

A linearization operation is performed on the continuous-time model (6.58)-

(6.59), yielding a linear model which is given in terms of perturbation/deviation

variables. At a steady operating point of CA = 0.265 [mol/l] and Tc = 394 [K], and

under uncertainty in the parameters k0 and −∆H, the linear model is discretized us-

ing a sampling period of Ts = 0.15 [min], which results in the following discrete-time

linear model [Wan and Kothare, 2002]:

x(k + 1) =




0.85− 0.0986α(k) −0.0014α(k)

0.9864α(k)β(k) 0.0487 + 0.01403α(k)β(k)



x(k) +




0

−0.912



u(k)

+ w(k), (6.60)

y(k) =
[

0 1
]

x(k), (6.61)

where w(k) = [w1(k), w2(k)]T represents a disturbance, and the following parameter

uncertainties are assumed: 1 6 α(k) = k0/109 6 5 and 1 6 β(k) = −∆H/107 6 5.

In the experiments α(k) and β(k) are implemented as random variables uniformly

distributed within the intervals defined by these bounds. The experiments used

the linearized model (6.60)-(6.61). Notice that in this example model (6.60)-(6.61),

matrix B(k) has no uncertainty, so that B(k) will not be considered in the model

uncertainty. The following constraints on the plant states and input and on the

admissible setpoints and possible disturbances are considered:

− 1.5 6 u(k) 6 1.5, −1 6 zd(k) 6 1,

−



0.5

5



 6




x1(k)

x2(k)



 6




0.5

5



 , −



0.05

0.25



 6




w1(k)

w2(k)



 6




0.05

0.25



 , (6.62)

where zd(k) = zd(k) is the set-point.

Equation (6.60) contains uncertain parameters α(k), and β(k), each of them

bounded between two values. Thus, the polytopic uncertain set has four vertices

Ω = Co {Av
1,A

v
2,A

v
3,A

v
4}. For the RDSCTC, the nominal model Ā for the CSTR

is considered to be the average of the four vertices, and parameters T = 0.085 [min],

and Ts = 0.15 [min] were chosen. The applied w(k) is a random noise with uniform

distribution within the w(k) bounds defined in (6.62), except for 7.5 [hours] 6 t 6
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Figure 6.6: Illustration of the constraint-admissible set Ξ, and the robust control
invariant set O∞ for the RDSCTC on the CSTR plant.

9 [hours], where t = kTs, and w2(k) = we(k) + ws(k), we(k) = 0.15, and ws(k) is

uniformly distributed within the bounds −0.1 6 ws(k) 6 0.1.

Figure 6.6 presents the constraint-admissible set Ξ (6.38), (6.41), and the ro-

bustly positively invariant set O∞ (6.39), (6.44) of the CSTR plant. To demon-

strate the feasibility of RDSCTC, three initial state points are chosen randomly

inside of the robustly positively invariant set O∞, namely xA = [−0.2081, 3.882]T ,

xB = [−0.0712, 3.611]T , and xC = [0.1735,−3.836]T , while the controlled variable

setpoint zd(t), is changed during the simulation as follows:

zd(t) =







1, 0 < t 6 3.33 [hours],

−1, 3.33 [hours] < t 6 6.67 [hours],

0, 6.67 [hours] < t 6 10 [hours].

(6.63)

The state trajectories obtained with the different initial states xA, xB, and xC , and

the result obtained by the proposed RDSCTC on the nonlinear simulated CSTR

plant (6.58)-(6.59) after starting from the initial state xD = [0.10,−3.65]T , are

presented in Figure 6.7.

Figure 6.8 presents the closed-loop simulation results obtained by the proposed

RDSCTC on the discrete-time linearized CSTR plant (6.60)-(6.61) after starting
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Figure 6.7: The robust control invariant set O∞ in the x space, and the state
trajectories for different initial states of xA, xB, xC , and xD for RDSCTC on the
CSTR plant and the reference signal given by (6.63).

from initial states xA, xB, and xC , and the result obtained by the RDSCTC on

the nonlinear simulated CSTR plant (6.58)-(6.59) after starting from xD. During

the experiment, two different models have been used to implement the plant. For

t 6 4.5 [hours], the nominal plant model Ā was the average of the four vertices,

i.e. µ(1) = µ(2) = µ(3) = µ(4) = 1
4
, where µ(j) (j = 1, 2, 3, 4) have the meaning

defined in Subsection 6.3.1. For t > 4.5 [hours] an unexpected change was inserted

into the nominal plant model: the new plant model is obtained by µ(1) = 1
8
, µ(2) =

4
8
, µ(3) = 2

8
, µ(4) = 1

8
. Note that both nominal models that are in effect before

or after t = 4.5 [hours] are inside Γ (6.4). The results in the Figure 6.8 reveal

that, as it was expected, the RDSCTC enforces the controlled variable to track the

setpoints despite of the presence of unmeasured disturbances and uncertainty. When

the setpoints are changed, the controllers drive the controlled variable to the new

setpoints.

The results of the ψ(k) = e(k) = y(k) − zd(k) functions for the three different

initial states are depicted in Figure 6.9. A value of Mψ = 2.125 was obtained

from (6.25). As can be seen in Figure 6.9(b), after the trajectory has entered the

RMMB, then with every successive time step, the trajectory remains confined within

the RMMB. The state trajectories manipulated by the RDSCTC were magnified

around origin and mapped in part II inside Figure 6.7.
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Figure 6.8: (a) Closed loop simulation results of the output y(k) using the proposed
RDSCTC for different initial states xA, xB, xC , and xD on the CSTR plant; and
(b) the respective applied command signals. The reference signal is given by (6.63).
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Figure 6.9: Results of the RDSCTC on the CSTR plant: (a) Illustration of the ψ(k)
function for the different initial states of xA, xB, xC , and xD for the reference signal
given by (6.63); and (b) Magnified plot of Figure 6.9(a) for the time period between
0 and 1 [hours].
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Parameters Sensitivity

In this section the sensitivity of the RDSCTC to its control parameters is inves-

tigated. For that purpose, the RDSCTC is run with different values of the SCT

convergence rate T . The results obtained by the RDSCTC are compared with the

work [Pannocchia, 2004]. As discussed in Section 6.1, [Pannocchia, 2004] presented

a novel robust model predictive controller (RMPC) for LPV systems. Here, the

experiments for both the RDSCTC and the RMPC used the same DT-LPV model

of the CSTR plant as exemplified in [Pannocchia, 2004]. The RMPC was appointed

to guarantee offset removal for setpoints different from the origin while respecting

the process constraints. In the RMPC, the R is defined as a symmetric and posi-

tive definite matrix penalty factor for the actuation command in an infinite-horizon

linear quadratic regulator (LQR) problem. An example with the same constraints,

and setpoint as was defined in [Pannocchia, 2004] is defined for the RDSCTC. The

RMPC performance for three values of R = R = R1 = 0.05, R = R = R2 = 0.1,

and R = R = R3 = 0.15 is presented. In another part of the simulation study, the

performance of the RDSCTC for three values of T = T1 = 3.8, T = T2 = 4, and

T = T3 = 4.2 is tested. The initial state value xm = [−0.05, 2.5]T , and sampling

time Ts = 5 [s] were used. For the RMPC, S = 1, N = 0 (notice that, for the

control horizon value of N = 0, the feasible region is the robustly invariant region),

and (Am, Bm) = 0.6(A1, B1) + 0.4(A2, B2) were chosen. The results obtained by the

RMPC and RDSCTC are depicted in Figures 6.10 and 6.11, respectively.

The performances of the time responses of RMPC and RDSCTC are comparable.

However, three points are noticeable. First, the results show that comparing with

RMPC, a larger invariant set region is ensured/obtained by the RDSCTC. Second,

the RDSCTC showed less sensitivity to unexpected control parameter changes when

compared to the RMPC. With a small variation in the value of R, the invariant

set obtained by RMPC can shrink seriously. However, as can be seen in Figure

6.11(a), RDSCTC did not show such large sensitivity against changes in T . This

is consistent with the fact that, as mentioned in Subsection 6.3.4, for the RDSCTC

the condition of T < Ts < 2T is sufficient to ensure the robustness of the control

scheme in satisfying the control purposes. Third, in the RMPC, for prediction

horizons larger that N = 0, the computational time is experimentally observed to

grow much larger than the fixed computational time in RDSCTC. To show this, the
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Figure 6.10: (a) Performance of the RMPC [Pannocchia, 2004] for different positive
definite values of the variable R (R = R1, R2, R3), to calculate the invariant set
on the CSTR plant, where the other RMPC configurations are the same as the
ones that were exemplified in [Pannocchia, 2004]; (b) and (c) the plant output and
the command signal that resulted from the application of the RMPC controller,
respectively.
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Figure 6.11: (a) Performance of the RDSCTC for different values of the SCT conver-
gence rate T (T = T1, T2, T3), to calculate the invariant set O∞, on the CSTR plant
which was exemplified in [Pannocchia, 2004]; (b) and (c) the plant output and the
command signal that resulted from the application of the RDSCTC, respectively.
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Table 6.2: The computational time of the RMPC [Pannocchia, 2004].

Control horizon N 1 5 7 11 15 19 25 30

Computational time [sec] 10.55 11.38 17.80 20.22 25.24 31.55 35.25 42.26

above experiment with same configurations was repeated with T = T1 for RDSCTC

and with R = R1 for RMPC performance. However, this time different prediction

horizons were considered for RMPC. The computational times with the RMPC for

different values of N is depicted in Table 6.2. These time values contain both the

computation time to find the robustly invariant set and also the time to perform

the computations to calculate the control efforts from the initial point until the end

of the simulation process. As can be seen in Table 6.2, the total computational

time of the RMPC has grown when the control horizon N was increased. However,

the simulation time for the RDSCTC in all cases was approximately 15.57 [sec].

Experimentally, it was seen that both RMPC and RDSCTC approximately spend a

same computational time to calculate control signal in each sampling interval. This

means that, mostly, the differences in computational times in Table 6.2 are due to

the computation time the which is needed for the invariant set computation by the

two control methodologies.

6.5.2 E. Coli Bioprocess Modeling

Several valuable products such as recombinant proteins, antibiotics and amino acids

are nowadays commercially produced through genetically altered microorganisms.

In real bioreactors the characteristics of nonlinearity, uncertainty, and disturbance,

considered either separately or jointly, can affect the cultivation process and con-

sequently the product maximization. This occurs for instance in Escherichia coli

(E. Coli) cultures with aerobic acetate formation. Several studies have been per-

formed for keeping a microbial cultivation process close to its optimized control

profile [Hafidi et al., 2008; Dewasmea et al., 2011; Santos et al., 2012]. Tradition-

ally, the control of bioreactors mostly has been limited to pH, temperature, partial

pressure of dissolved oxygen, and dissolved carbon dioxide regulations [Diaz et al.,

1996]. Without any doubt computer control of the biochemical state variables was

an effective way to increase efficiency of the process performance significantly.
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Figure 6.12: Schematic representation of the bottleneck theory.

The growth of the E. Coli bacteria follows the bottleneck theory (Figure 6.12).

The E. Coli has a limited respiratory capacity. Acetate is produced when the glu-

cose exceeds the respiratory capacity, which corresponds to the oxido-fermentative

regime. Acetate is consumed when glucose is less than the respiratory capacity;

which is the oxidative regime. When the quantity of glucose exactly fills the respi-

ratory capacity, the system operates in optimal conditions. This case corresponds

to the edge between the two regimes when acetate is not produced nor consumed.

It will be seen in further developments that the aim of the control is to force the E.

Coli culture to remain at the edge between these two regimes [Rocha, 2003; Hafidi,

2008]. The metabolism of the E. Coli is described through three macroscopic reac-

tions [Hafidi et al., 2008]:

• Glucose oxidation,

k1S + k5O
r1−→ X + k8C; (6.64)

• Glucose fermentation,

k2S + k6O
r2−→ X + k9C + k3A; (6.65)

• Acetate oxidation,

k4A+ k7O
r3−→ X + k10C. (6.66)
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Table 6.3: Specific growth rates µ1, µ2, and µ3, and expressions of rX and rA,
depending on the regimes [Hafidi et al., 2008].

Variable Oxido-
fermentative

regime

Oxidative
regime

µ1
qS,crit

k1

qS

k1

µ2
qS−qS,crit

k2
0

µ3 0 qAC

k4

rX
qS−qS,crit

k2
+ qS,crit

k1

qS

k1
+ qAC

k4

rA k3
qS−qS,crit

k2
−qAC

where S, O, X, C and A represent glucose (substrate), oxygen, biomass, carbon

dioxide, and acetate, respectively. ki (i = 1, . . . , 10) are the stoichiometric coeffi-

cients. rj (j = 1, 2, 3) are the growth rates. Reactions (6.64) and (6.66) describe the

oxidative regime, and reactions (6.64) and (6.65) describe the oxido-fermentative

regime. The relationship between the growth rate ri and the specific growth rate µi
(i = 1, 2, 3), which depends on the operation regimes (Table 6.3), is as follows:

ri = µiX. (6.67)

Based on the previous scheme, mass balances yield the dynamic model (6.68)-

(6.69) [Bastin and Dochain, 1990]:

d

dt
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, (6.68)
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dW

dt
=Fin, (6.69)

where W is the culture medium weight [kg], Sin is the influent glucose concentration

[g/kg], Fin is the influent flow rate [kg/h], Otr is the oxygen transfer rate from gas

to liquid phase, and Ctr the carbon dioxide transfer rate from liquid to gas phase.

Considering the bottleneck assumption, then the kinetic terms associated with the

glucose consumption qS, the critical substrate consumption qS,crit (generally depen-

dent on the cells oxidative or respiratory capacity qO), and the product oxidative

rate qAC are expressed by [Santos et al., 2012]:

qS = qS,max
S

KS + S
, (6.70)

qS,crit =
qO
kOS

=
qO,max
KOS

O

O +KO

Ki,O

Ki,O + A
, (6.71)

qAC = qAC,max
A

KA + A

Ki,A

Ki,A + A
, (6.72)

where qO is the respiratory capacity, qS,max, qO,max, and qAC,max are the maximum

specific growth rates, and KS, KO, and KA are the saturation constants of the

substrate (glucose), oxygen, and acetate, respectively. KOS is the oxygen yield

related to glucose, and Ki,O and Ki,A are the inhibition constants related to oxygen

uptake and acetate uptake, respectively.

Finally, since oxygen is always regulated to induce no influence on the growth of

bacteria, the dynamic model (6.68)-(6.69) can be formulated in a compact form as

follows [Hafidi et al., 2008]:

dX

dt
= rXX −

Fin
W

X, (6.73)

dS

dt
= −qSX −

Fin
W

(S − Sin) , (6.74)

dA

dt
= rAX −

Fin
W

A, (6.75)

dW

dt
= Fin, (6.76)

denoted in further developments as ẋ (t) = f (x (t) , Fin (t)), with x =
[

X S A W
]T

. rX and rA in (6.73)-(6.76) depend on the operating regime

and are given in Table 6.3. Further details on the model formulation can be found
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in [Hafidi, 2008; Rocha, 2003].

By discretizing (6.73)-(6.76) using the forward differences method with a sam-

pling period of Ts, then the following state-space model (6.77)-(6.78) is obtained for

the plant:

x(k + 1) =










X(k + 1)

S(k + 1)

A(k + 1)

W (k + 1)










=










−Ts XW
−Ts Sin−S

W

−Ts AW
Ts










︸ ︷︷ ︸

B(x,k)

Fin(k)

+










1 + TsrX 0 0 0

−TsqS 1 0 0

TsrA 0 1 0

0 0 0 1










︸ ︷︷ ︸

A(x,k)










X(k)

S(k)

A(k)

W (k)










, (6.77)

y(k) =
[

0 0 1 0
]

︸ ︷︷ ︸

C(x,k)










X(k)

S(k)

A(k)

W (k)










, (6.78)

where for the recombinant E. Coli cultivation process, the controlled variable will

be y(k) = y(k) = A(k), and the manipulated variable will be u(k) = u(k) = Fin(k).

Maintaining the operating conditions for the optimal biological behavior is at-

tainable if the system works in the edge between the two operating regimes; in this

case, the acetate is not produced, leading to µ2 = 0 and thus qS = qS,crit; and the

acetate is not consumed, leading to µ3 = 0, and thus qAC = 0. The optimal feed rate

is thus defined for a unique pair of acetate and glucose concentrations, satisfying

the aforementioned conditions [Hafidi et al., 2008]:

A(k) = 0, S(k) = Scrit. (6.79)

By applying the conditions of Eq. (6.79) on Eqs. (6.70)-(6.71), then the following

relation between the critical substrate concentration level and the cell respiratory



140 CHAPTER 6. ROBUST CONTROL DESIGN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

0.03

0.04

Figure 6.13: Scrit as a function of qO.

capacity is obtained [Santos et al., 2012]:

Scrit =
KSqO

KOSqS,max − qO
. (6.80)

Figure 6.13 shows how the respiratory capacity qO has an influence on the critical

substrate concentration level, where the point (0, 0) corresponds to a totally inhib-

ited respiratory capacity, preventing any growth, and the point (qO,max, Scrit,max)

corresponds to maximum productivity (i.e., absence of acetate product in the cul-

ture medium and a sufficient level of oxygenation). Clearly, the presence of the

acetate A in the culture medium can decrease the respiratory capacity, qO (6.71),

and in turn decrease the value of the critical substrate concentration S = Scrit (6.80)

(Figure 6.13).

In order to maintain the system at the edge between the oxidative (also called

respirative) regime and the oxido-fermentative (also called respiro-fermentative)

regime, it is necessary to control the acetate, and also keep the substrate concentra-

tion S in the culture medium around Scrit in order to reach the optimal operating

conditions. To this aim, a control strategy achieving a real-time control is needed in

order to optimize the process. As can be seen from Eqs. (6.77)-(6.78), the E. Coli

plant is modeled in the form of a NSDDTV dynamical system. In the next section,

the RDSCTC-PI controller is applied to the NSDDTV E. Coli plant. The design

of the RDSCTC-PI for the E. Coli plant is presented assuming that the plant is

affected by the presence of a bounded, and unmeasured, additive disturbance.
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Table 6.4: Parameters values [Hafidi, 2008; Rocha, 2003]

Parameters Values
k1 3.164 [g/kg]
k2 25.220 [g/kg]
k3 10.900 [g/kg]
k4 6.382 [g/kg]
qS,max 1.832 [g/(kg.h)]
KS 0.1428 [g/(kg.h)]
KOS 2.020 −
qO,max 0.7218 [g/(kg.h)]
ki,O 6.952 [g/(kg.h)]
qAC,max 0.0967 [g/(kg.h)]
Ki,A 5.85 [g/(kg.h)]
Sin 250 [g/kg]
KA 0.5236 [g/(kg.h)]
KOA 1.996 [g/(kg.h)]

6.5.3 Control of the E. Coli Cultivation Process

For better presentation, the efficiency of the RDSCTC-PI and the SDSMC are

tested under two different conditions. In both cases xA =
[

X0 S0 A0 W0

]T
=

[5 [g/Kg]; 0.115 [g/Kg]; 0.8 [g/Kg]; 3.17 [Kg]]T is considered as the initial state value.

Constant parameters values are considered for all simulations, and are presented

in Table 6.4. The sample time is chosen to be Ts = 2 [min]. The applied w(k)

is a random noise with uniform distribution within the w(k) bounds defined as

w(k) = [wmin wmax]T , where wmin = −[0 0 0.05 0]T , and wmax = [0 0 0.05 0]T .

Case 1. In a realistic test during a microbial cultivation process, reducing the

acetate concentration to an exact zero value is not possible. To make the test condi-

tion similar to a real condition, a non-zero Aref was considered for this simulation.

The setpoint is zd = Aref = 0.5 [g/Kg] over 20 hours, which is the time required

to complete the culture. Figure 6.14 presents the closed loop robust performances

of the proposed RDSCTC-PI and of the sliding mode controller (SDSMC). For the

RDSCTC-PI scheme KP = 1, KI = 0.01, T = 1.5 [min], and Ts = 2 [min] were

chosen. As the best tuning parameters, for the SDSMC [Eun et al., 1999], η = 0.95,
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Figure 6.14: Case 1: (a) Closed-loop simulation results of the output y(t) using the
proposed RDSCTC-PI, and standard discrete-time sliding mode controller (SDSMC)
[Eun et al., 1999] with the xA initial state on the E. Coli plant; and (b) the respective
applied command signals.

q = 0.001, and g = 0.8 were chosen.

As can be seen in Figure 6.14, both controllers can perform the acetate reg-

ulation. However, it is clear that, when comparing to SDSMC, a faster response

was obtained by the RDSCTC-PI. The best SDSMC result is presented, and was

obtained only after the SDSMC was run and tested several times with different

SDSMC control parameters sets. Differently, the RDSCTC-PI does not show such

a sensitivity in the tuning of the control parameters. When compared to SDSMC

the RDSCTC-PI has a much better robust performance in face of changes in the
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Figure 6.15: Substrate concentration evolution using the RDSCTC-PI controller
over 20 hours in the conditions of Case 1 on the E. Coli plant.

controller design parameters. From the performed experiments, and in contrast to

the SDSMC sensitivity, it is observed that for the RDSCTC-PI the main control

objectives can be attained if condition 0 < Ts/2 < T is satisfied.

Figure 6.15 shows the evolution of the substrate state. As can be seen the

RDSCTC-PI holds the substrate concentration controlled around Scrit.

One of the major drawbacks of other control approaches for the E. Coli process

can be the instability of the operating regimes which is generated in the closed-loop

control. Such control approaches make the system to permanently switch between

different regimes which greatly affects the whole process performances and bacteria

production [Hafidi, 2008; Rocha, 2003]. Meanwhile the result presented in Figure

6.16 implies that despite of the presence of unmeasured bounded disturbance the

optimal conditions for the operating regime has been maintained by the RDSCTC-

PI with full agreement to the control objective for Case 1 (zd = Aref = 0.5 [g/Kg])

that corresponds to an oxido-fermentative regime.

From the result in Figure 6.16 it can be deduced that the E. Coli plant operates

in the oxido-fermentative regime during all the simulation process (since µ3 = 0),

while it simultaneously keeps the specific growth rate near to zero (µ2 ≈ 0), with

respect to a non-zero acetate A, and an unknown disturbance w. As was discussed

in Subsection 6.5.2, conditions µ2 = 0, and µ3 = 0 are desirable and were considered

as main objectives for control purposes in the E. Coli plant, in order to operate in

the transition between the two regimes (Table 6.3). The results in Figure 6.16 are
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Figure 6.16: Specific growth rate using the RDSCTC-PI controller over 20 hours in
the conditions of Case 1 on the E. Coli plant.
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Figure 6.17: Biomass concentration evolution using the RDSCTC-PI controller over
20 hours in the conditions of Case 1 on the E. Coli plant.

close to satisfy the conditions, because µ2 ≈ 0, and µ3 = 0. The results in Figure

6.16 show that, despite of the presence of unmeasured bounded disturbance, the

operating regime has been maintained by the RDSCTC-PI approximately in the

border between the two regimes.

Figure 6.17 shows the evolution of the biomass state, where it is shown that the

proposed RDSCTC-PI can increase the biomass state, while the plant is exposed to

an unmeasured unknown disturbance. Comparing to [Hafidi et al., 2008, Figure 3],
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Figure 6.18: Application of the RDSCTC-PI on the E. Coli plant, Case 1: (a)
Illustration of the ψ(k) function with the initial state of xA; and (b) Magnified plot
of Figure 6.18(a) for the time period between 0 and 0.5 [hours].

with a same condition, a larger maximum value of the biomass variable is achieved by

the RDSCTC-PI. The issue of biomass maximization was handled, while unlike the

MPC based controller proposed in [Hafidi et al., 2008], the RDSCTC-PI must also

overcome an undesired effect of additive disturbance. The ψ(k) function obtained

in the simulation is depicted in Figure 6.18.

A value of Mψ = 0.1515 was obtained from Eq. (6.25). As can be seen in Figure

6.18, after the trajectory has entered the RMMB, then with every successive time

step, the trajectory remains confined within the RMMB.
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Case 2. The setpoint is zd = Aref = 0.5 [g/Kg], for 0 < t 6 10 [hours], while for

10 [hours] < t 6 20 [hours], the reference value changes to zd = Aref = 1 [g/Kg].

Also, unexpected plant parameter changes are applied: two constant parameters

Sin = 250 [g/kg] and ki,o = 6.952 [g/kg] are changed to Sin = 500 [g/kg], and ki,o =

3.476 [g/kg], respectively, for 5 [hours] 6 t 6 15 [hours]. In the scenario of this

Case 2, KP = 0.58, KI = 0.02, T = 1.06 [min], and Ts = 2 [min] were chosen

in the RDSCTC-PI. For the SDSMC [Eun et al., 1999], η = 0.8, q = 0.005, and

g = 0.6 were chosen as the best tunning parameters. Note that the change of

acetate setpoints for this E. Coli plant example is not of practical relevance, and

the goal of the regulation is to track a value very close to zero. In fact, this Case 2

scenario shows the adequate tracking behavior of the developed RDSCTC-PI control

strategy.

Figure 6.19 shows the impact of a change of acetate concentration setpoints in

this Case 2. The results of Figure 6.19(a) confirm that comparing to the SDSMC,

a faster response was obtained by the RDSCTC-PI, including a faster response of

RDSCTC-PI to the change of setpoint at time t = 10 [hours]. Figure 6.20 shows

the evolution of the substrate state, where it is confirmed, in the new conditions of

Case 2, the good tracking and robustness performances of the RDSCTC-PI. In fact,

the substrate concentration S can track Scrit well, even with unexpected changes

in both the plant output setpoints (tracking) and on the plant model parameters

(robustness). Furthermore, during the interval 5 [hours] < t 6 15 [hours] where

the plant parameters were changed/different, it can be seen that unlike RDSCTC-

PI, the SDSMC performance imposes a large value of command law variation (see

Figure 6.19(b)). Clearly, in the case that the E. Coli plant faces constraints on ∆u,

then the large variation of the required actuation commands can limit the SDSMC

performance.

Figure 6.21 shows the evolution of the biomass state for the RDSCTC-PI case.

The biomass value at the end of the simulation at time t = 20 [hours] in Figure 6.21,

when compared with the result in Figure 6.17, confirms that, as expected, increasing

acetate A further away from zero can reduce the amount of maximum biomass state

X that is attained at the end of the E. Coli cultivation process experiment. Also,

the increase of acetate concentration, A, reduced the level of Scrit (see Figure 6.20).

The ψ(t) function obtained in the simulation of Case 2 is depicted in Figure 6.22.

A value of Mψ = 0.530 was obtained from Eq. (6.25).
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Figure 6.19: Application of the RDSCTC-PI and the SDSMC controllers on the E.
Coli plant, Case 2: (a) Closed-loop simulation results of the output y(t), for the xA
initial state; and (b) the respective command signals applied by the two controllers.

In another test for Case 2, it was tried to achieve a faster response to setpoint

changes by the SDSMC. A faster response was obtained after several trial-and-error

runs of the SDSMC algorithm. However, the chattering problem has emerged for

the attained faster response case: Figure 6.23 shows how the output in the fed-batch

bioprocesses can be affected by the chattering phenomenon. Moreover, the result of

the SDSMC performance was obtained without including the additive disturbance.

In other words, the frequent variations in the output in this SDSMC experiment are
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Figure 6.20: Substrate concentration evolution using the RDSCTC-PI controller
over 20 hours in the conditions of Case 2 on the E. Coli plant.
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Figure 6.21: Biomass concentration evolution using the RDSCTC-PI controller over
20 hours in the conditions of Case 2 on the E. Coli plant.

not caused by disturbances, but rather they are caused by the switching tendency

of the SDSMC control law.

6.5.4 Control of Two Coupled DC Motors

In this section, both SCT based controllers proposed in this Chapter, i.e. RDSCTC,

and RDSCTC-PI as well as the two adaptive fuzzy controllers proposed in Chapter.

5, i.e. AFGPC (Method 1), and AFGPC (Method 2), are tested on the two coupled
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Figure 6.22: Application of the RDSCTC-PI on the E. Coli plant, Case 2: Illustra-
tion of the ψ(t) function for the xA initial state for the reference signal.

0 5 10 15 20

0.2

0.4

0.6

0.8

1

1.2

1.4

9.8 10 10.2

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

0.4

0.6

0.8

Figure 6.23: Chattering phenomena incurred for obtaining a faster SDSMC response
on the fed-batch E. Coli bioprocess.

DC motors experimental setup (see Subsection 4.4.4).

A simulation stage was implemented in order to analyze different operating con-

ditions and to compare with real-time experiments. Using electromagnetic and

mechanical laws, and considering the case where the load disturbance applied to the

generator (motor 2) is RL <∞, the following continuous-time state space model of
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the plant is obtained:
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ϑ(k), (6.81)

ω(k) =
[

0 0 1
] [

i1(k) i2(k) ω(k)
]T
. (6.82)

where V1 is the voltage source for motor 1, ω is the angular velocity of motors 1 and

2, and ii, Rti, Lti, Bti, Jti, Kvi, and Kti are the armature current, armature resis-

tance, inductance, viscous friction coefficient, moment of inertia, velocity constant

(or back electromotive (EMF) constant), and torque constant of motor i (i = 1, 2),

respectively. ϑ and ζ(t) are external and internal disturbances, respectively. The

sampling period in the experiment with the simulated physical model was the same

as the one used in the real-world experiment, Ts = 0.1 [s].

The model parameters were identified from data obtained from the real motor

(Figure 4.10(a), Section 4.4.4), and using an optimization algorithm to search for the

best fit of the parameters. The motor parameters obtained were Lti = 1.95074 [H],

Rti = 1.4020 [Ω], Jti = 8 × 10−6 [Kg·m2], Bti = 6.3445 × 10−6 [N·m·s/rad], Kvi =

0.0040 [V/rad/s], Kti = 0.0048 [N·m/A], for i = 1, 2. Experimentally, in the real test

it was seen that the output error is greater when the input signal increases, due to

the fact that the shaft which connects the two motors is wraped and twisted, which

produces nonlinearities and/or a time varying load with non-uniform characteristics

for different motor angles. Thus, an interconnection disturbance namely, ζt = 0.1,

was considered in (6.81) to model this situation.

By discretizing model (6.81)-(6.82) using the forward differences method, and

using the obtained motor parameters on both the two coupled DC motors, model
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(6.81)-(6.82) is rewritten as

x(k + 1) =
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ϑ(k), (6.83)

y(k) =
[

0 0 1
]

x(k), (6.84)

where x(k) = [x1(k), x2(k), x3(k)]T = [i1(k), i2(k), ω(k)]T , and u(k) = V1(k). The

following admissible disturbance is considered: −2 6 ϑ(k) 6 2. The objective of the

experiment is to control the angular velocity asymptotically by manipulating of the

voltage source for motor 1.

For the RDSCTC-PI control scheme KP = 1.0, KI = 0.095, T = 0.06 [s], and

Ts = 0.1 [s] were chosen. The same values of the T , and Ts parameters were consid-

ered for RDSCTC, i.e. T = 0.06 [s], and Ts = 0.1 [s]. For the AFGPC (Method 1),

the following controller parameters were chosen: Np = 25, Nu = 1, λ = 8, d̄ = 0,

ρ = 0.95, ϕi = 1, τi = 1 × 10−3, νi = 1 × 10−6, for i = 1, . . . , c, and c = 9. For the

AFGPC (Method 2), the following controller parameters were chosen by the user:

Np = 25, Nu = 1, λ = 8, d̄ = 0, wr,max = 0.9, wr,min = 0.4, c1r = 1.5, c2r = 2,

rmax = 20, vmax = 1.0, vmin = −0.8, γ = 1, β = 0.1, and T2 = 20. The best control

parameters for both AFGPC methodologies were found experimentally by trial and

error, and considering the results obtained in Subsection 5.3.2.

The setpoint of the controlled variable, zd(t), is changed as follows during the

simulations:

zd(k) =







350, 0 < k 6 150 ,

400, 150 < k 6 400 ,

380, 400 < k 6 600 ,

(6.85)
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Table 6.5: Numerical results of the real and simulation tests obtained by the pro-
posed RDSCTC, RDSCTC-PI, AFGPC (Method 1), and AFGPC (Method 2) for the
two coupled DC motors setup. Note that, here, the MSE = 1

Tn

∑Tn

k=1 (y(k)− zd(k))2

is related to the tracking error. Tn is the total number of samples on the test. The
values were multiplied by 104.

Methodology 1/MSE

Simulation 1.4783

RDSCTC 1.2603

RDSCTC-PI 1.5967

AFGPC (Method 1) 1.3033

AFGPC (Method 2) 1.3698

and the load disturbance RL(k) is

RL(k) =







0, 0 < k 6 200 ,

4000, 200 < k 6 500 ,

0, 500 < k 6 600 .

(6.86)

Figure 6.24 presents the results of the closed-loop performance on both the sim-

ulation and the real test obtained by the proposed RDSCTC, RDSCTC-PI, AFGPC

(Method 1), and AFGPC (Method 2) controllers, starting from an initial state of

zero. Figure 6.24 contains results from performance of all the four aforementioned

controllers on the real two coupled DC motors setup. For the simulated model of

the two coupled DC motors setup, in order to have an illustrative figure and avoid

confusion, among all results of the four controllers, just the result obtained by the

RDSCTC was depicted in Figure 6.24. In Figure 6.24(a), the value of RL(k) is pre-

sented after multiplying it by a factor of 0.1. Table 6.5 shows numerical results of

the four real and RDSCTC simulation tests obtained by the aforementioned control

methodologies for the two coupled DC motors setup. The results in Table 6.5 show

that the RDSCTC-PI had a better performance to track setpoints. When the load

disturbance is applied at 200 6 k 6 500 , there is an undershoot at k = 200 and an

overshoot at k = 500 in the system response. As can be seen in Figure 6.24(a), larger

undershoots at k = 200 and larger overshoots at k = 500 have been obtained by the

AFGPC controllers when the results are compared to SCT based controllers. At the
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Figure 6.24: (a) Closed loop real and simulation results obtained by the proposed
RDSCTC, RDSCTC-PI, AFGPC (Method 1), and AFGPC (Method 2) for the two
coupled DC motors setup, starting from an initial state of zero; and (b) the respective
applied command signals.
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Figure 6.25: Magnified plot of Figure (a) for the time period between 300 and 500.

beginning, at k = 20 an overshoot occurred when using the AFGPC methodologies.

Experimentally, it was realized that larger values of λ can reduce the overshoot value

at k = 20. However, after that it was seen that a larger value of λ will increase the

values of undershoot, and overshoot at k = 200, and at k = 500, respectively. Figure

6.25 presents a magnified plot of Figure 6.24(a) for the time period between 300 and

500. The results in Figures 6.24 and 6.25 confirm that AFGPC controllers had an

acceptable performance to track zd(k) in the DC motors setup. The exception is at

the initial step after k = 0, and at k = 200 and k = 500, where larger undershoots

and overshoots can be seen in the results of the AFGPC controllers, otherwise in

most of the times, the output tracking results obtained by the AFGPC controllers

are comparable to the tracking results obtained by the SCT-based controllers.

6.6 Conclusion

In this chapter, first the problems/concerns regarding the control of DT-LPV sys-

tems were investigated. An innovative robust constrained control framework for

DT-LPV systems, was proposed based on the synergetic control theory (SCT) tech-

nique and the invariant set theory. The proposed RDSCTC controller was used
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to drive the state from any initial state inside the robustly positively invariant set

to desired and allowable setpoints. It was shown that in DT-LPV systems with-

out model uncertainty, and for any unmeasured bounded additive disturbance, the

proposed controller stabilizes the system by asymptotically driving the error of the

controlled variable to a bounded set containing the origin and then maintaining it

there. Moreover, given an uncertain DT-LPV system jointly subject to unmeasured

and constrained additive disturbances, and constraints in states, input commands,

and reference signals (setpoints), then invariant set theory was used to derive an

appropriate polyhedral robust invariant region in which the proposed control frame-

work was guaranteed to robustly stabilize the closed-loop system. Furthermore, the

proposed controller can track varying non-zero control setpoints even in the pres-

ence of complex conditions such as disturbances, fast setpoints changes, and the

uncertainty in the DT-LPV plant. The controller is characterized to have a simple

structure leading to an easy implementation, and a non-complex design process.

The robust performance and effectiveness of the proposed controller and the im-

plications of the controller design on feasibility and closed-loop performance were

demonstrated through application examples on the temperature control of a contin-

uous stirred tank reactor (CSTR) plant. To better demonstrate the efficiency of the

RDSCTC, the closed-loop simulation results obtained by the proposed RDSCTC

were demonstrated and compared with the performance of the RMPC [Pannoc-

chia, 2004]. Three points were noticeable when the RDSCTC was compared with

the RMPC. First, a larger invariant set region was ensured/obtained by the RD-

SCTC. Second, the RDSCTC showed less sensitivity to unexpected control parame-

ter changes when compared to the RMPC. Third, for prediction horizons larger than

N = 0 the computational time required in the RMPC for the invariant set compu-

tation is experimentally observed to grow in order to have an enlarged invariant set

region. Moreover, the RDSCTC did not show such sensitivity of the computational

time as a function of N .

In the continuation of this Chapter, attention was paid to the issue of nonlinear

state dependent discrete time varying (NSDDTV) systems control. A controller was

proposed for NSDDTV systems in the presence of unknown additive disturbances.

The proposed discrete-time SCT control framework uses a proportional-integral (PI)

type of the SCT macro-variable and a one-step delayed estimation of the disturbance.

The proposed controller was characterized to have robust properties and advantages
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over SMC, but, unlike SMC, without suffering from a chattering phenomenon. As

the case study, the controller was applied to the fed-batch fermentation of E. Coli

system. The objective was to use the proposed controller to control the acetate con-

centration on the E. Coli cultivation bioprocess in order to maximize the biomass

concentration at the end of the process by adjusting the amount of the feed given

to the system. The proposed controller can track acetate setpoints in the presence

of complex conditions such as disturbances, fast setpoints changes, and system pa-

rameters variations. Results revealed that comparing to the SMC controller, the

proposed method performed a faster response to setpoints changes.

Finally, to gather results from all controllers proposed in this thesis, both the

SCT based controllers, i.e. RDSCTC, and the controller based on a PI-type SCT

macro-variable which is called RDSCTC-PI, as well as both the two adaptive fuzzy

model predictive controllers proposed in Chapter 5, i.e. AFGPC (Method 1), and

AFGPC (Method 2), were tested on the two coupled DC motors experimental setup

and control results were discussed.



Chapter 7

Conclusions

Nowadays a vast amount of changes can be seen in industrial processes comparing

with past decades. There are enormous economic incentives to optimize industrial

processes. World’s attraction from traditional old factory layouts to modern in-

dustrial designs increased concerns regarding environmental pollution, and global

energy consumption. Both aforementioned concerns have direct connection with

natural resources degradation. In industry, lack of high accuracy on system param-

eters measuring in instrumentation could intensify these global problems. Large and

significant attention to these concerns increased a vast worldwide competition and

research, not only in trying to fabricate more standard devices and instruments, but

also in control techniques applicable to achieve optimal control designs for indus-

trial processes. However, the design of an optimal controller which simultaneously

can satisfy control purposes on a real process, is not an easy task. The presence

of complex characteristics in industrial processes such as nonlinearities, unknown

and time-varying dynamics, constraints, disturbances, and uncertainties increases

the difficulty in control designs.

Mostly, a good control design for a nonlinear plant can be obtained if for that

plant a good model can be estimated. Several types of approaches to modeling

nonlinear plants can be considered to be used in control design. Among them,

fuzzy modeling has become an active research area because of the capability of

handling perceptual uncertainties, such as vagueness and ambiguity, involved in the

interpretation of a real system. Also, it has shown excellent ability when describing

nonlinear systems, in particular with the Takagi-Sugeno (T-S) fuzzy models. The
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Takagi-Sugeno fuzzy models with simplified linear rule consequents are universal

approximators capable of approximating any continuous nonlinear system. However,

the T-S fuzzy models have important components which need to be computed well.

Some important components for a T-S fuzzy model structure are the consequent

parameters, antecedent parameters, membership functions types, as well as the fuzzy

rules and fuzzy sets. In this context, the use of computational intelligence techniques

can be useful to find the T-S fuzzy model parameters. Also, the presence of an

external disturbance on the system as well as other concerns such as uncertainties,

and system constraints can impose restrictions in the control design which must be

considered. In this situation, a new class of control design to handle systems subject

to the presence of such concerns must be considered.

Motivated by these problems, three main research directions were addressed

in this thesis: automatic identification of T-S fuzzy models, design of frameworks

for model predictive control purposes without having any prior knowledge about

a model of the plant, and robust control designs for uncertain systems subject to

system constrains, and external disturbances.

In Chapter 4, the design of two different novel online evolving Takagi-Sugeno

(T-S) fuzzy model identification methodologies was considered. The first proposed

T-S identification methodology used a new unsupervised fuzzy clustering algorithm

(NUFCA), and the RLS-ADF method to construct an online evolving T-S fuzzy

model identification method. The proposed system identification approach consists

of two main steps: antecedent T-S fuzzy model parameters identification and conse-

quent parameters identification. The NUFCA combines the K-nearest neighbor and

fuzzy C-means methods into a fuzzy modelling method for partitioning the input

data and identifying the antecedent parameters of the fuzzy system; then the RLS-

ADF method is exploited to obtain initial consequent parameters and to construct

a method for on-line T-S fuzzy model identification.

As second part of the work related to the T-S fuzzy identification methodologies,

a hierarchical particle swarm optimization (HPSO) algorithm was introduced to

automatically extract all fuzzy logic system (FLS)’s parameters of a T-S fuzzy model.

The HPSO algorithm is composed of a six level structure, where the first level

is responsible for the selection of an adequate set of input variables and delays.

The second level considers the antecedent membership functions. The consequent

parameters are defined on the third Level. Level four is devoted to particles of
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individual rules. The set of rules are obtained on the fifth level, and finally, the

sixth level is appointed as the control unit of the FLS, specifying the choice of

several configurations in the lower levels. For improving the convergence time, the

NUFCA was employed to initialize particles positions inside the HPSO, as well as

the number of partitions. Finally, an online adaptive approach based on the HPSO

was proposed which results in a self-adaptive HPSO (S-AHPSO) approach to make

an online learning/updating of the fuzzy T-S model.

To validate and demonstrate the performance and effectiveness of the two pro-

posed identification methodologies, the identification of the dissolved oxygen in an

activated sludge reactor within a simulated wastewater treatment plant (WWTP),

the identification of a real WWTP plant, and the identification of a real-world ex-

perimental setup composed of two coupled DC motors were studied. The results

have shown that the proposed techniques in both methodologies can successfully

identify fuzzy model parameters that represent the dynamics of nonlinear plants,

using only a data set of the process, where the model can be further used to esti-

mate the output of the plant. Moreover, the results revealed superior performance

of the proposed methods when compared to other state of the art methods.

In Chapter 5, the design of new methodologies for fuzzy model predictive control

of nonlinear time-varying systems without the knowledge about the mathematical

model of the plant, were considered. The T-S fuzzy system learned by the T-S

fuzzy model identification algorithms proposed in Chapter 4 was integrated into

the control domain to construct an effective adaptive fuzzy generalized predictive

controller (AFGPC).

To validate and demonstrate the performance and effectiveness of the proposed

adaptive model predictive controllers, they were tested in the problems of controlling

the dissolved oxygen in the activated sludge reactor within a simulated wastewater

treatment plant (WWTP); and on the control of the real-world experimental setup

composed of two coupled DC motors. Results have shown that the proposed con-

troller methodologies can control processes using only a data set of the process to

initialize the adaptive T-S fuzzy models. The experiments revealed that the total

proposed AFGPC adaptive controller frameworks outperform typical well-known

control methods such as the PID controller, and the classical GPC controller.

In Chapter 6, the RDSCTC, a novel robust constrained control methodology for

discrete-time linear parameter varying (DT-LPV) systems, was proposed based on
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a synergetic control theory (SCT) approach and on the invariant set theory. The

proposed controller, can be used to drive the state from any initial state inside the

robustly positively invariant set to desired and allowable setpoints. Stability analysis

for the RDSCTC was discussed and a theorem was given. It was shown that in DT-

LPV systems without model uncertainty, and for any unmeasured bounded additive

disturbance, the proposed controller stabilizes the system by asymptotically driving

the error of the controlled variable to a bounded set containing the origin and then

maintaining it there. Moreover, given an uncertain DT-LPV system jointly subject

to unmeasured and constrained additive disturbances, and constraints in states, in-

put commands, and reference signals (setpoints), then invariant set theory was used

to derive an appropriate polyhedral robust invariant region in which the proposed

control framework was guaranteed to robustly stabilize the closed-loop system. Fur-

thermore, the proposed controller can track varying non-zero control setpoints even

in the presence of complex conditions such as disturbances, fast setpoints changes,

and the uncertainty in the DT-LPV plant. The controller is characterized to have a

simple structure for implementation, and a non-complex design process. The robust

performance and effectiveness of the proposed controller and the implications of

the controller design on feasibility and closed-loop performance were demonstrated

through application examples on the temperature control of a continuous stirred

tank reactor (CSTR) plant.

In the continuation of Chapter 6, attention was paid to the issue of NSDDTV

systems control. A controller for NSDDTV systems in the presence of unknown ad-

ditive disturbances, was presented. The proposed discrete-time SCT control frame-

work uses a proportional-integral (PI) type of the SCT macro-variable and a one-step

delayed estimation of the disturbance. The proposed controller was characterized

to have robust properties and advantages of SMC, but without inheriting the SMC

chattering phenomena. As the case study, the controller was applied to the fed-batch

fermentation of the E. Coli system. The objective was to use the proposed controller

to control the acetate concentration on the E. Coli cultivation bioprocess in order

to maximize the biomass concentration at the end of the process by adjusting the

amount of the feed given to the system. The proposed controller could track acetate

setpoints in the presence of complex conditions such as disturbances, fast setpoints

changes, and system parameters variations. Results showed that comparing with

the SMC controller, the proposed method presented a faster response to setpoints



7.1. FUTURE WORK 161

changes.

7.1 Future Work

As future works the following issues can be investigated:

• A more effective unsupervised algorithm can be investigated to find the im-

portant T-S fuzzy model components such as the best membership functions

types, the best input variables, the fuzzy rules, as well as the parameters of

the antecedent fuzzy membership functions.

• Furthermore, a new adaptive procedure for online identification can be in-

vestigated to be used for an adaptive online model predictive control design.

Considering the fact that an online system identification plays an important

role in online control design, thus, investigation in order to find a more accurate

method usable for adaptive process identification is worth further research.

• In this thesis, a hierarchical particle swarm optimization (HPSO) algorithm

was introduced to automatically extract the structure and all fuzzy logic sys-

tem (FLS)’s parameters of a T-S fuzzy model. A new technique based on the

hierarchical particle swarm optimization algorithm proposed in this thesis, can

also be investigated to be used in direct fuzzy control design.

• Regarding the issue of invariant set design which was discussed in this thesis,

a new approach can be investigated to extend the initial invariant set region.

Enlarging the set of initial plant states in which the proposed control frame-

work is guaranteed to robustly stabilize the closed-loop system, and perform

asymptotical setpoints tracking, is a relevant future research direction. An en-

larged invariant set region gives the possibility of a wider range of initial states

selection for the designer. This issue is important because mostly, in real world

applications, and depending on different practical situations, different initial

values are required to initialize a control process.

• An adaptive fuzzy system was studied in this thesis to construct an adaptive

online model predictive controller. However, neither the adaptive procedure

nor the fuzzy system were integrated with the SCT control design in this thesis.
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Therefore, an adaptive fuzzy SCT control approach can be a relevant subject

to study for the future work.

• Finally, new controllers based on SCT have been designed and applied on both

DT-LPV and NSDDTV systems in this thesis. SCT-based control designs for

SISO systems have been considered and stability analyses were given. The de-

velopment of SCT-based control designs, and corresponding stability analyses,

for MIMO systems is a relevant direction for future work.
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