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Abstract 

 

 Retinal pathologies monitoring may be performed by comparing retinal images of the 

same patient and eye captured at different times. To perform this comparison, after the 

acquisition of a new retinal image, it is necessary to locate other images stored in the database 

that belong to the same patient and eye. Although stored images may be easily labeled (using 

metadata) to facilitate the database search, errors may occur and relevant information such as 

patient information may not be correctly retrieved. To overcome this problem, images must be 

identified solely based on visual features. To perform retina-based person identification several 

techniques, like image registration, have been developed in the past. Unfortunately the 

sequential search based on the comparison of the newly retinal image with each image in the 

database is a costly procedure. The aim of this work is the research and development of faster 

image search methods based on the selection of a subset of the image database, which is then 

subject to a verification step during which a retina-based identification method accurately 

verifies which images from this subset belong in fact to the same patient and eye from which the 

query image was captured. Naturally, to be efficient, the algorithm must select a subset of 

images which should be as small as possible while ensuring that the overall identification 

performance is as high as possible. 

The major contribution of this work is the application of Vocabulary Trees to the 

problem of efficient retinal image database search, using different features for retinal image 

representation. Four different types of features were considered: Fractal Dimension and Wavelet 

Energy Features (WEF), both used in biometric identification procedures using retinal images, 

and SIFT and SURF image features. These image descriptors were then organized using 

Vocabulary Trees to build structures which made the search procedure a lot faster.  

This novel approach of retinal image search using Vocabulary Trees, enables the 

clustering of images accordingly to their similarity, which facilitates the selection of the subset 

of images most similar to the one being queried. As expected, the best retrieval performance 

was obtained with image features used in retina-based person identification systems, resulting in 

the selection of a small subset of images from the database while ensuring that the correct 

images were retrieved. 

The proposed algorithm enables, on average, the use of only 0.042% of the total 

database in the retina-based person identification method, resulting in a 97.57% overall 

computation time reduction when compared to the use of the retina-based person identification 

method in the total database. The developed algorithm achieves a 98.79% accuracy in the 

retrieval of the correct images. 

Keywords: Retinal Image, Retinal Image Recognition, Feature Extraction, Image 

Registration, Image Texture Analysis, Image Processing, Vocabulary Trees, Search Techniques. 
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Sumário 

 A monitorização de patologias da retina pode ser feita através da comparação de 

imagens retinais do mesmo paciente e mesmo olho capturadas em diferentes períodos de tempo. 

De modo a fazer esta comparação, após a aquisição de uma nova imagem da retina, é necessário 

identificar na base de dados as restantes imagens pertencentes a esse mesmo paciente e olho. 

Embora as imagens armazenadas possam ser facilmente etiquetadas usando metadados de forma 

a facilitar a pesquisa na base de dados, frequentemente ocorrem erros e informação importante 

como a identificação do paciente pode não ser obtida correctamente. Para precaver este 

problema, as imagens devem ser identificadas apenas através de características da própria 

imagem. Para fazer o reconhecimento de indivíduos baseado na retina existem várias técnicas 

eficientes que podem ser aplicadas, tal como o registo de imagens. Um aspecto negativo de 

métodos baseados na pesquisa exaustiva da base de dados de imagens, com a comparação da 

imagem da retina a pesquisar com todas as imagens armazenadas na base de dados é o elevado 

custo computacional. O objectivo deste trabalho é a pesquisa e desenvolvimento de métodos 

que permitam definir um subconjunto de imagens da base de dados, idealmente contendo todas 

as imagens do mesmo paciente que a imagem da retina em questão, que após passagem por uma 

segunda fase de identificação na qual é usado um método de reconhecimento de indivíduos com 

base na retina, permitam a identificação expedita das imagens que pertencem de facto ao mesmo 

paciente e olho. Para o desenvolvimento de um algoritmo eficiente, o conjunto de imagens 

devolvido deve ser o mais reduzido possível e o desempenho medido pela taxa de identificação 

correcta deve ser o mais elevado possível. 

A contribuição principal deste trabalho centra-se no uso de Árvores de Vocabulário para 

pesquisa eficiente em bases de dados de imagens da retina, aliado ao uso de diferentes 

descritores de características visuais das imagens retinais. Foram considerados quatro tipos 

diferentes de descritores de imagens: Dimensão Fractal e Energia de Wavelets, ambos usados 

em estudos de reconhecimento biométrico a partir de imagens da retina e também descritores 

SIFT e SURF. Os conjuntos de descritores associados às imagens da base de dados foram 

organizados usando Árvores de Vocabulário por forma a permitirem uma pesquisa rápida da 

base de dados.  

Este procedimento inovador de pesquisa de imagens da retina recorrendo a Árvores de 

Vocabulário, permite agrupar as imagens de acordo com a semelhança que apresentam entre si, 

facilitando a selecção de um subconjunto de imagens mais semelhantes à imagem da retina 

usada na pesquisa. Tal como era esperado, os métodos de extracção de características usados em 

sistemas de identificação de indivíduos baseados na retina foram os que apresentaram uma 

maior eficiência, isto é, que permitiram a selecção de um menor subconjunto de imagens da 

base de dados assegurando que as imagens correctas são identificadas.O algoritmo proposto 

permite, em média, usar apenas 0.042% da base de dados num método de identificação de 

indivíduos baseado na retina, representando 97.57% de redução do tempo de cálculo quando 

comparando com o uso do método de identificação de indivíduos na totalidade da base de 

dados. O algoritmo desenvolvido permite a identificação correcta das imagens pertencentes ao 

mesmo paciente em 98.79% dos casos.  

 Palavras-chave: Imagem da Retina, Reconhecimento de Imagem da Retina, Extracção 

de Características, Registo de Imagens, Análise de Texture de Imagem, Processamento de 

Imagem, Árvore de Vocabulário, Técnicas de Pesquisa. 
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Chapter 1 

Introduction 
 

 

1.1 Problem Contextualization 

 

 In the developed countries where a considerable large share of the population is an aged 

population further importance needs to be given to the study of typical diseases of this age 

group. Eye diseases, in particular those related to aging, have been concerning scientists and 

professionals in the health industry. More importance has been given to those that may cause 

vision loss or total blindness such as Diabetic Retinopathy (DR) and Age-Related Macular 

Degeneration (AMD) [1]. Surveys suggest that over 25 million people worldwide are affected 

by AMD, which is the leading cause of blindness in people over 55 in the developed countries. 

Moreover, this number is expected to triple by 2025 [2]. AMD causes the macula cells of the 

eye to become damaged leading to a gradual loss of the central vision [3]. In addition to AMD 

prevalence, studies revealed that the number of diabetic people is expected to reach 552 million 

by 2030, meaning that one person in ten will suffer from this disease [4]. A person with 

Diabetes is exposed to a variety of diabetic eye diseases including DR, cataracts and glaucoma. 

DR, the most common diabetic eye disease, is characterized by damage of the retina blood 

vessels. Cataracts develop at an early age in diabetic patients and cause clouding of the eye’s 

lens. Glaucoma is the increase in the pressure of the fluid inside the eye which can lead to 

damage in the optic nerve [5].  

 The early detection of these pathologies is crucial to maintain a good vision and prevent 

such severe consequences as blindness [6]. When detected at an early stage, these eye diseases 

may be treatable or their progress may be slowed down. DR and AMD are diagnosable based on 

perfectly characterized symptoms which may be detectable by visual inspection of the eye 

fundus [7]. 

Eye disease screening, especially in the early asymptomatic stage, has been shown to be 

effective in the prevention of vision loss and reduction of the costs associated with disease 

progression and treatment [8]. A typical screening process involves the acquisition of retinal 

images with specific cameras and visual inspection by medical experts. In order to detect 

anomalies in the eye, different retinal images taken at different time periods are compared in 

order to identify modifications that may be indicators of an unhealthy eye. However, this 

manual image comparison process is inefficient since it may be subjective and depends on the 

medical proficiency, being both expensive and time consuming. These disadvantages conducted 
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to the development of automated clinical decision support systems focused on detecting 

modifications in the retina through time [7]. The advances in digital imaging and computing 

power enabled the use of these new technologies in ophthalmology. Over the past 15 years 

progresses have been made in the field of automated retinal images analysis systems to be used 

in screening programs, with better resource use and reduction of diagnostic errors due to 

observer bias [9]. At the moment some manufacturers already offer automated diagnosis 

systems which support medical experts in clinical decisions. Critical Health’s Retmarker® is 

one of these retinal image analysis tool which performs automated eye disease diagnosis. 

Retmarker has three different versions: RetmarkerDR which is a biomarker for DR progression, 

RetmarkerC which performs automatic detection of retinal changes over time and 

RetmarkerAMD which is an assisted AMD grading tool [10]. 

In these clinical decision support systems it is a common practice to compare a newly 

obtained retinal image with previous acquired ones of that same patient in order to monitor the 

eye disease progress and evaluate the efficiency of the treatment. Thereby, retinal images need 

to be stored and easily identified for the proper functioning of the automated diagnosis system. 

Although database images may be indexed or labeled to easily search for a specific patient, 

errors often occur, such as misspelled names and typos, and thus the relevant information, i.e. 

the other images of the same patient, cannot be retrieved. This problem was the main motivation 

for the development of this thesis. This work is focused on retinal image database search 

techniques based solely on image features thus avoiding errors due to incorrect database text 

information. The aforementioned database search consists of the identification of stored retinal 

images belonging to the same patient and eye as those of a query retinal image. 

Since it is necessary that the image is identified based on its image features, retinal-

based person identification methods were studied. These methods enable the comparison of a 

pair of retinal images and their identification as belonging or not to the same patient and eye. 

Several methods used for biometric recognition apply retinal image registration attaining good 

identification performance [11] [12]. However, the goal of this work is substantially different 

from a person identification problem using retinal images. While in retina-based person 

identification the aim is to verify whether two images belong to the same individual, the 

purpose of this work is the search of stored retinal images belonging to the same patient and eye 

of an input image without any prior information. Obviously person identification methods could 

be solely considered if applied between the query image and all the retinal images from the 

database. However, taking into consideration that this software deals with hundreds of retinal 

images, solely using this method was found not to be suitable to solve the problem. The solution 

considered involves the selection of a subset of images from the entire database, as reduced as 

possible, which groups the most similar retinal images to the one being queried. The similarity 

between the query retinal image and each one from the retrieved subset of images is appraised 

by using a retina-based person identification method which enables the identification of the 

images belonging to the same patient and eye of that of the query image, with less computation 

time than by applying only the person identification method to the entire database.  

For the development of this work, image feature descriptor methods, as well as database 

search techniques, were studied in detail. As for the image feature descriptors methods, more 

importance was given to those used in biometric recognition systems using retinal images. The 

goal is an efficient retinal image representation solely by image feature descriptors. Since the 

problem consists in the search of images belonging to the same patient of a retinal image being 

queried, the feature descriptors of retinal images belonging to the same patient and eye must be 



3 
 

similar and the feature descriptors of retinal images from different patients and eye must be very 

dissimilar. Besides retinal image representation by image feature descriptors, database search 

techniques were explored. As aforementioned, in a database with thousands of retinal images it 

is not feasible to perform a comparison between the query and each database image. Ideally 

retinal image descriptors should be chosen to enable faster selection of images similar to a query 

image. Even so, usually the time required to search the entire database using naïve approaches is 

not adequate to an automated system. For this reason, fast image retrieval methods were studied, 

with emphasis on Vocabulary Trees (VT) which have been successfully used in similar contexts 

[13] [14]. In VT, at each tree-level the image feature descriptors are divided into clusters 

accordingly to their similarity. For each cluster a mean centroid descriptor vector is computed. 

When searching for images belonging to the same patient of an input image, the same type of 

descriptors are computed from the query image and each one traverse the VT by choosing the 

closest node at each tree-level (see Chapter 4 – Methodology for more details). The images 

retrieved are those represented in the selected terminal nodes. The main steps of the solution 

proposed in this thesis are illustrated in Figure 1. Several VT techniques and image feature 

computation methods described in the scientific literature were studied and applied in this work. 

From the research performed no information was found about the use of VTs in large retinal 

image databases for recognition purposes, which justifies the exploration presented here.  

 

 

 

 

 

 

 

 

 

Figure 1: Representation of the goal algorithm for this thesis. 

 

One aspect that may be taken into consideration is the fact that the algorithm developed 

is meant to be used in an automated diagnosis system, meaning that retinal images probably 

present symptoms of eye pathologies such as hemorrhages, edemas and other lesions. Therefore, 

the algorithm must be robust to the presence of these conditions ensuring that image distortions 

and deviations from the normal do not affect the image retrieval performance. Since this type of 

automated retinal images analysis systems must be as trustworthy as possible, it was established 

that in the studies performed throughout this work in nearly 99% of the situations tested, the 

correct images were to be retrieved.  
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 1.2. Document Overview 

 

This document is divided into seven chapters. Chapter 1 presents the problem 

contextualization and a brief description of the resolution implemented.  Chapter 2 provides 

important information to understand the problem, such as eye anatomy concepts and related 

common diseases and the use of automated diagnosis systems, which was the motivation for this 

dissertation. Chapter 3 is a review of published work about image feature descriptors, in 

particular retinal image feature descriptor methods used in biometric recognition procedures 

using retinal images, and database search techniques for efficient image retrieval. Chapter 4 lists 

the methods implemented for the problem resolution. This chapter contains two essential parts: 

one describing the image feature computation methods and other detailing the procedure used 

for database image retrieval. In Chapter 5 the results obtained are thoroughly evaluated and 

discussed in terms of suitability to the problem resolution and the final algorithm is herein 

described. Chapter 6 consists of a brief summary of the most important conclusions obtained. 

Suggestions for future work development are indicated in Chapter 7. 

One appendix is included in this work, Appendix A, in which  flowcharts of the 

different image feature descriptor computation methods implemented in this dissertation are 

illustrated. 

 

1.3. Scientific Contributions 

 

 -Mourão D., Manta C. M., Cruz L. S., “Retinal Image Recognition using Tree Data Structure 

Search Method with Fractal Dimension Descriptors” , Accepted for oral presentation at HCIST 

2013 - International Conference on Health and Social Care Information Systems and 

Technologies, Lisboa, Portugal, 2013. 
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Chapter 2 

Retinal Imaging 
 

 This chapter provides the essential information to understand the problem which 

motivated this research, as well as all the main features of the solution proposed. A light 

introduction to the anatomy of the eye is provided and the most common eye pathologies 

relevant to this work as well as their characteristic lesions are presented. This information is 

important to understand and evaluate the proposed method. Besides this information, automated 

retinal image analysis systems to which the search method developed is target are introduced. 

 

2.1.The Eye 

 

2.1.1. Eye Anatomy 

 

Sight is one of the most important human senses, enabling us to understand the environment 

around us. The eye, this amazingly complex structure, is constantly taking in the light reflected 

from objects near us. The light passes through the eyeball converging to a point where a set of 

cells at the back of the eye convert the light energy into electric impulses which are then 

transmitted to the brain. Each one of the eye structures contributes in a way to the overall visual 

process [15]. 

The eye may be considered as a slightly asymmetrical sphere with an approximate sagittal 

diameter of 25mm and a transverse diameter of 24 mm. In a cross-sectional view of the eye 

three different layers would be visible [16] . Figure 2 and 3 illustrate the arrangement of each 

layer and structure in the eye anatomy. 

 The external layer is formed by the sclera and the cornea, both making up the supportive 

structure of the eye. Both cornea and sclera have essentially the same chemical composition, 

although the cornea is transparent while the sclera appears opaque or translucent. This 

difference is explained by the fibrils arrangement since the chemical composition is identical 

[17].  The cornea is the clear part of the eye’s protective covering and its main function is to 

focus the light for photoreception while the sclera mainly protects the eyeball [15] [18]. The 

sclera is a tough white outer coating of fibrous tissue which covers the eyeball and the muscles 

that move the eye are attached to it [19]. 
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Figure 2: Eye anatomy [18]. 

 

The middle layer, also called uvea, contains the main blood supply of the eye and it is 

constituted by the choroid, the ciliary body and the iris. The outer layer of the uvea is the 

choroid. It is essentially a layer of blood vessels between the sclera and the retina that nourish 

the back of the eye. It is connected to the ciliary body in the front of the eye and to the optic 

nerve at the back of the eye [20]. The ciliary body is a muscular forward continuation of the 

choroid which main function is the change of the lens shape when the eye is focusing on 

something [15]. Lens is the structure responsible to focus light rays onto the retina [21]. It is 

composed of flexible tissue which enables the change in shape of this structure. The lens 

become more rounded to focus on near objects and more elongated to focus on far objects [19]. 

The iris is the colored part of the eye which regulates the amount of light entering through the 

eye by closing when there is bright light and opening when there is low light. The darker center 

in the middle of the iris is called pupil and is through it that light rays are transmitted. The iris 

controls the pupil size [21].   

 

Figure 3: Representation of the three important layers of the eye: the sclera which belongs to the external 

part of the eye, the choroid which is part of the eye’s middle layer and the retina, the most inner coating 

of the eye [20]. 

 The internal layer, the sensorial part of the eye, is called retina. The retina function is to 

receive light and proceed to its conversion into chemical energy. This chemical energy activates 

nerves that produce electrical impulses. These impulses are then transmitted to the brain through 

the optic nerve [15]. Light conversion into chemical energy is only possible due to two different 

cell types of photoreceptors: cones and rods. Rod cells are extremely sensitive to light but have 

very low spatial resolution. On the other hand, cone cells have high resolution but are relatively 

insensitive to light. The properties of cone cells allow us to distinguish colors. Differences in the 
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mechanisms of these cells contribute to the different reaction of rods and cones to different 

ranges of light intensity [22]. Throughout this work the images used are retinal images similar 

to Figure 4.  In the center of the retina is the optic nerve, a circular white area. The major blood 

vessels of the retina radiate from this structure. On the left of the optic nerve a blood vessel-free 

reddish spot may be seen, the fovea, which is at the center of the area called macula [23]. The 

macula is responsible for a clear central vision whereas the fovea provides the detail vision [19]. 

 

Figure 4: Human retinal image [23]. 

2.1.2. Eye Pathologies 

 

 Like any other organ of the human body, eyes are susceptible to pathologies as well. 

Many eye diseases have no early symptoms and no change in vision may be detected until the 

disease stage worsens [24]. Although eye disorders may appear at any age, most of them are 

more common among adults and especially among elder people [25].  

 Characteristic lesions of both Diabetic Retinopathy (DR) and Age-related Macular 

Degeneration (AMD) were found in the dataset of retinal images used in this work. Therefore a 

detailed description of these pathologies is presented below. 

 

 2.1.2.1. Diabetic Retinopathy (DR) 

 

Diabetes is characterized by high blood glucose levels due to the fact that the body 

cannot properly use it. The reason is that the pancreas does not produce enough insulin (or that 

which is produced is not performing its function) which is responsible to help glucose, the main 

body fuel, enter the body’s cells [26]. Diabetic Retinopathy (DR) is one of the common 

complications of Diabetes. It is characterized by the damage of the cells at the back of the eye, 

i.e. at the retina, due to the high blood glucose levels.  

The retina is responsible for the conversion of photonic energy into electrical impulses 

which are then transmitted to the brain through the optic nerve. To properly function, the retina 

needs a constant supply of blood which is provided by blood vessels. A continuous high blood 

glucose level causes obstruction or leakage of the blood vessels, affecting the retina functions 

[27]. In some people abnormal new blood vessels may grow on the retina surface [5]. DR can 

cause vision loss when it progresses to an advanced stage. 
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This eye disorder has four stages: 

Mild Nonproliferative Retinopathy: it is the earliest stage of the disease and it is 

characterized by the occurrence of microaneurysms. Microaneurysms are small areas of blood 

protruding from a vessel which may open and leak blood into the retinal tissue [28]. This results 

in the appearing of retinal hemorrhages, edemas and exudates. In Figure 5 hemorrhages are 

visible as reddish spots in the retina. Macular edema is the swelling or thickening of the part of 

the retina responsible for the central vision and appear in the retinal image as darker areas. 

Exudates are lipid residues of blood vessel leakage and appear as rounded yellow areas in the 

retinal image. 

Figure 5:  Representative retinal images of Nonproliferative Diabetic Retinopathy [29]. 

Moderate Nonproliferative Retinopathy: characterized by the blockage of blood vessels 

that nourish the retina [5]. 

Severe Nonproliferative Retinopathy:  as the disease progresses many more blood 

vessels are obstructed depriving areas of the retina with blood supply. Those deprived areas 

transmit signals to the body to stimulate the growth of new blood vessels for the retina 

nourishment [5]. 

Proliferative Retinopathy: this is the most advanced stage of DR and is characterized by 

the growth of several new blood vessels which are abnormal and fragile. In case they suffer 

leakage it can result in severe vision loss or even blindness [5]. 

Symptoms of an advanced stage of DR include shapes floating in the vision field, 

blurred vision, reduced night vision and sudden blindness [27]. The difference between normal 

vision and that of a person with advanced DR is illustrated in Figure 6. 

 

 

 

 

 

 

Figure 6: Representation of a scenario perceived by a person with normal vision (a) and by a person with 
Diabetic Retinopathy (b) [5]. 

Hemorrhage

s 

Macular Edemas 

Exudates 

(a)                              (b) 
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2.1.2.2. Age-related Macular Degeneration (AMD) 

 

Age-related Macular Degeneration (AMD) is the leading eye pathology causing 

blindness in the elderly. AMD essentially affects the retina area at the back of the eye called 

macula which is the center of vision. Although an exact cause for AMD is not known some 

factors may increase the chance of this disease development such as age, gender (more women 

suffer from AMD), genes, smoking, sunlight and diet [30]. 

The macula is a retina area that contains specialized photoreceptor cells designed cone 

cells. Cone cells allow color recognition and detail vision. When a person develops AMD these 

cells become damaged and do not properly perform their functions [30]. 

There are two forms of AMD, dry and wet AMD, and both can progress to advanced 

stages and cause severe vision loss. 

Dry AMD 

This form of AMD does not have many symptoms in the early stages. However, as the 

disease progresses the person may suffer from blurred vision and see objects more bright than 

they actually are. Usually people with dry AMD experience difficulty in face recognition and 

need more light to perform some tasks such as reading.  

The most common early sign of dry AMD are drusens. Drusens are small yellow and 

white deposits in the retina made up of lipids and proteins.  These substances are wasted 

products of photoreceptors cells which were not correctly disposed [31]. Drusens form on the 

retina, beneath the macula, causing it to deteriorate over time [32]. Figure 7 illustrates a retinal 

image affected with these lesions. 

Dry AMD has three development stages. At an early stage there are no specific 

symptoms and only small or medium-sized drusens are formed. At an intermediate stage one or 

more larger drusens appear. At this stage some people see a blurred spot in the center of their 

vision and often need more light to perform some ordinary tasks. At an advanced dry AMD 

stage a breakdown of the light-sensitivite cells that support tissue in the macula occurs. This 

causes a blurred spot in the center of the vision which tends to get bigger and darker over time 

[33]. 

 

 

Figure 7: Representative retinal image of AMD with presence of drusens [34]. 

 

Drusens 
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Wet AMD 

The dry form of AMD can suddenly turn into the wet form which is what happens with 

10% of all people suffering from AMD. This form of AMD is characterized by the growth of 

new blood vessels under the macula. The new blood vessels can be fragile and easily leak blood 

and fluids causing the macula swelling and damage. During the early stages of wet AMD 

straight lines may appear wavy [33].  

 

Figure 8: Representation of a scenario perceived by a person with normal vision (a) and by a person with 

AMD (b) [33]. 

 

2.2. Automated Retinal Image Analysis Systems 

 

2.2.1 The purpose of the Automated Retinal Image Analysis Systems 

development 

 

The increase of the aged population worldwide means an increase of the number of people 

with eye pathologies as well. For this reason major importance has been given to ophthalmic 

services. Eye health includes several approaches such as raising awareness about eye health, 

early detection of the pathology, diagnosis and targeted prevention. The need in the clinical 

practice to find better ways of identifying and treating eye pathologies combined with recent 

advances in computer hardware and sophisticated image analysis techniques were the main 

driving forces to the development of methodologies and computer software for automated 

detection of retinal pathologies [8]. The aim of these automated systems is to aid 

ophthalmologists and physicians at their work by analyzing and measuring all features of 

interest in a retinal image with more precision than is routinely done. When the smallest 

abnormality is detected the system alerts the ophthalmologist to the need of a close scrutiny of 

the retinal image. Besides this, pairs of images are easily automatically compared for the 

detection of modifications over time [35]. 

Retinal images are a fascinating set of images to use in image analysis. They present a 

number of key features that may be automatically detected with ingenious image processing and 

pattern recognition techniques. Retinal pathologies present an even richer variety of patterns and 

(a)                             (b) 
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features to identify and classify. The automated detection of retinal pathologies is a challenging 

theme of study since some pathologic features are quite distinctive while many show similarities 

to others [8].  

 

2.2.2 Understanding Automated Retinal Image Analysis Systems 

 

 An automated retinal image analysis system involves different stages of image analysis:  

Image Enhancement: some image transformations allow certain features to be more 

emphasized, corrected or even removed, providing an output image which may be evaluated 

more easily for certain criteria [35].  

Image Segmentation and Object Classification: pixels sharing a certain common 

properties are segmented from the image and can be associated with symbolic information. 

Posterior to image segmentation the segmented objects are identified. This stage presents a 

challenging task and uses pattern recognition techniques, specifically statistical classification, 

based on knowledge about each feature characteristics. The usual features detected are the blood 

vessels, the optic nerve and the fovea. The lesions are generally divided into objects brighter 

(drusens, subretinal fibrosis, amelanotic tumors) or darker (hemorrhage, pigmented scar, 

melanoma) than the background [35]. 

Diagnosis: in an automated diagnosis systems all possible diseases manifestations of 

interest must be coded into the computer knowledge base. Once classification is completed, a 

list of identified features in the image is reported. Based on the information provided to the 

computer knowledge base, the system analyzes the combination of features detected and 

provides a report with a potential diagnose [35].  
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Chapter 3 

 State-of-the-Art Methods  
 

 

Person authentication is the process of verifying that a person is who he is supposed to be. 

In biometric authentication a physiological characteristic is used to perform that verification. A 

biometric feature may be useful for authentication if it is unique to the individual and do not 

suffers modifications over his lifetime. Biometric features that meet these requirements include 

fingerprints, retinal scans and iris scans [36]. It is important to note that person authentication 

differs from person identification. While in person authentication methods it is required to know 

in advance information about who the individual supposedly is in order to verify the veracity of 

that fact, in a person identification problem no information is associated to the biometric feature 

considered and the aim is the individual identification. 

The use of the retina as a biometric feature presents certain advantages when compared to 

other biometric features. Retinal scan captures the blood vessels pattern of the eye. Retinal 

patterns are different for right and left eyes and are unique even for identical twins. The retina, 

being an inner layer of the eye, is extremely unlikely to be distorted by any environmental or 

temporal condition [37]. 

The main goal of this work is the improvement of an automated diagnosis system of eye 

pathologies using retinal images, more specifically the identification of database images 

belonging to a same patient and eye by solely considering image features. In this way, these 

images were used as biometric patient and eye identifiers. Although several retina recognition 

methods exist, which enable to verify if two retinas belong to the same individual and eye, no 

previous work was found on methods to search in large retinal image database, looking for 

retinal images belonging to the same patient and eye as those of an input image. However, 

related image retrieval methods were carefully studied in order to obtain a better insight about 

the techniques used in similar contexts.  

 

3.1. Retina-based Person Identification Methods 

 

Retinal images were used for person identification purposes since two famous studies were 

published. In 1935 Dr. Carleton Simon and Dr. Isodore Goldstein [38] confirmed the 
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uniqueness of blood vessels pattern of the retina and later in the 1950s Dr. Paul Tower [39] 

discovered that even among identical twins the uniqueness of the blood vessel patterns is 

maintained. Since then several methods were studied in order to enable a correct matching of 

retinal images belonging to the same person and reject otherwise. 

The first solution of a person identification procedure based on retinal images was carried 

out by R. Hill in 1999 [40]  and used features based on the Fourier spectrum of the retinal 

image. The similarity between two retinal images was measured by computing the correlation 

between their (Fourier) features. Other more modern approaches still use correlation although 

with a different preprocessing procedure. For instance Kabir et all published an approach [41] in 

2004 in which a person identification is based on the color centroid of each retinal image radial 

segment obtained by dividing the image according to a polar grid. The match between the input 

image and a database image is evaluated by computing a feature correlation value. The results 

claimed by the authors were an indicator of this method robustness. 

 A novel retina feature, named Wavelet Energy Feature (WEF), was introduced in 2007 

by Shahnazi et all [42]. Based on wavelets, a powerful tool of multi-resolution analysis, WEF 

describes the wavelet energy distribution of the blood vessels with different thickness and width 

in several directions at different wavelet decomposition levels. For each level, the wavelet 

energy in the horizontal, vertical and diagonal direction is computed. By dividing the retinal 

image into some non-overlapping blocks and then computing the previous energies for each one 

a feature vector is obtained for each retinal image. Similar retinal images, i.e. retinal images 

belonging to the same individual and the same eye, will have similar WEF vectors, which is 

illustrated in Figure 9. In a person identification procedure, in a training phase all training 

samples available of the same retina are captured and a template is obtained by averaging the 

corresponding WEFs.  At the recognition phase, WEF of the query retina is compared with all 

the previously computed templates and the most similar one is selected. The authors reported a 

100% recognition rate in a database with 400 images of 40 different people.  

 

 Figure 9: The connected line represents the differences between WEFs of retinal images belonging to the 

same individual while the dash line corresponds to the differences between WEFs of retinal images from 

different individuals [42]. 

 Based on the work done by Shahnazi et all in 2007, Farzin et all [43] developed an 

approach in which the optical disk is initially located in the retinal image and a circular region 

of interest (ROI) around it is selected. Using a polar transformation, a rotation invariant 

template was created for the ROI. The template is then analyzed at three different scales using 

wavelet transformations to separate vessels according to their diameter size. In the last step, 

vessels position and orientation at each scale are used to define a feature vector for each 
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database image. For feature matching the authors introduced a modified correlation measure to 

obtain a similarity score for each scale of the feature vector. The final similarity score was 

computed by summing scale-weighted similarity scores of the different scales. The experimental 

results using this method on a database of 300 retinal images obtained from 60 people 

demonstrated an average error rate equal to one percent. 

A different approach was published by S. Sukumaran and Dr. M. Punithavalli [44]. The 

authors used Fractal Dimension computation of the retinal image blood vessels based on a box 

counting algorithm. In order to obtain a more robust representation of the retina, the image was 

divided into subregions and for each one a feature vector was obtained. The correlation 

computed between the feature vectors of each pair of images was used for matching evaluation 

and a nearly 96% recognition rate was obtained. Although the recognition rate was lower than in 

other person identification methods, it was proved in 2009 by Zhao et all [45] that Fractal 

Dimension is an effective image feature computation procedure for image retrieval in large 

databases. 

 A different person identification approach was produced in 2008 by K. Fukuta et all 

[46]. The authors proposed a person identification method based on the retinal vessel tree 

images. In the first step, registration between the input image and each database reference image 

of each person was performed, including translational and rotational displacements between the 

pair of images. This method was based on the measure of similarity between retinal tree vessel 

images generated from the input and the reference image. The similarity measure is defined as 

the cross-correlation coefficient calculated from the pixel values. When the similarity is greater 

than a predetermined threshold, the image is identified as belonging to the same person of the 

reference image. With 162 retinal fundus images belonging to 41 different people, the authors 

presented a false rejection rate and a false acceptance rate of 9.9x10
-5

% and 4.3x10
-5
%, 

respectively. 

 As proved in the aforementioned method, image registration may not only be used to 

align two different images but may also be used in the similarity evaluation of two retinal 

images by measuring image similarities and differences of the aligned patterns. Marcos Ortega 

and Manuel G. Penedo [47] introduced in 2011 a robust method for person identification by 

retinal image matching using image registration. The retinal image registration is performed by 

finding a set of landmarks (bifurcations and crossovers of retinal vessel tree) in each image. 

Person identification is performed based on the number of landmarks matched between the pair 

of images. The authors take into consideration that due to disease progression or simply due to 

the conditions of the image acquisition, small differences between images may be accepted. For 

this reason they use the Global Affine Transformation model to perform image registration 

which works well in these conditions. The transformation is applied to the candidate image in 

order to register its landmarks with respect to the corresponding ones in the reference image. 

The transformation with the highest matching score will be accepted as the best transformation 

possible. This score is computed using a similarity measure between each pair of corresponding 

landmarks which takes into consideration the distance between the two landmarks in the two 

different images. Finally, the registration score will determine whether the retinal images belong 

to the same person. Figure 10 represents the main steps of this algorithm 
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Figure 10: Representation of the main steps of Marcos Ortega and Manuel G. Penedo’s  [47] person 

identification method. 

  

When using a person identification method based on image registration it must be ensured 

that the registration algorithm is efficient, i.e. it successfully registers retinal images belonging 

to the same patient. SIFT (Scale Invariant Feature Transform) [48] and SURF (Speeded Up 

Robust Features) [49] image descriptors are widely used in retinal image registration. In the 

approach developed by Wei et all [50], SIFT keypoints are obtained from the retinal image and 

a best-bin-first algorithm is applied to identify the corresponding keypoints between two 

images. The authors claimed a 98.75% success rate of retinal image registration. Similarly, 

SURF descriptors also proved to be adequate to be applied in retinal images. Cattin et all [51]  

used SURF keypoints to automatically fuse retinal images, proving that these descriptors 

perform well in retinal image registration tasks even when using retinal images with no 

discernible vascularity. In 100 pairs of retinal images this method failed in the registration of 6 

pairs, thus showing its good performance.  

Salient Feature Regions (SFR) are computed with a saliency measure that consists of both 

local adaptive variance and gradient field entropy.  These regions were introduced by J. Zheng 

et all [52]. For each SFR region it is computed a local feature descriptor that combines gradient 

field distribution with the corresponding geometric information. These regions are then used in 

a cross-correlation-based local rigid registration method with well-aligned region centers as 

control points. The authors claimed a 95.3% success rate in image registration with this method. 



17 
 

 

Figure 11:  Localization of SFR regions from a pair of retinal images [52]. 

An approach published in 2012 by Condurache et all [53]  uses SIFT feature descriptors 

to describe anatomical characteristics of the retinal vessel tree. The person identification is 

conducted with help of a sparse classifier. Sparse-representation based classification looks for 

the sparsest representation of a test vector in terms of a matrix of training vectors. Depending on 

the maximal number of examples per class, i.e. the maximal number of available retinal scans 

belonging to a person, a minimal size of the final feature is established in order to ensure the 

appropriateness of the sparse-classifier framework to the problem. The authors concluded that 

apart from high accuracy, around 99% efficiency rate, the proposed algorithm enjoys a set of 

invariance properties which make it robust to a set of issues affecting retina-based person 

identification systems. 

Frequency analysis of the retinal images was also applied in person identification 

systems. In the approach proposed by Sabaghi et all [54] the Fourier spectrum of the retinal 

image is obtained and an angular partitioning of the spectrum is then computed. Initially the 

optical disc is localized using a template matching technique and it is used for rotating the 

retinal image into a reference position. This pre-processing step compensates the rotation effects 

which might occur during the scanning process. The energy of the Fourier spectrum and the 

sum of the phase angle per partition is used for the feature descriptor composition. The image 

matching is performed by euclidean distance computation between feature descriptors. The 

flowchart of this approach is figured in Figure 12. 

 

Figure 12: Flowchart for the feature computation process proposed in [54]. (a) Retinal image after 

rotation compensation (b) Fourier spectrum (c) phase angle (d) partitioning of the Fourier spectrum and 

the phase angle (e) computation of the Fourier spectrum energy and the sum of the phase angle per 

partition (f) descriptor vector computation. 
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Although the described person identification methods present high accuracy in verifying 

whether two retinal images belong to the same individual, all of them require the comparison of 

the query retinal image with all the database images, not being a good solution to the subject 

problem of this thesis.  

 

3.2. Image Database Search Methods 

 

 Identifying identical images in an image database may be considered a challenging 

problem due to the different viewpoint and lighting conditions of the image acquisition. Feature 

computation has always been the basis of content-based image retrieval. These features may 

include both text-based features (keywords or annotations for instance) and visual features 

(color, texture, shape, segmentation, etc.). These features shall be associated with the image 

content itself to allow a fast and efficient database searching. In order to make image retrieval 

systems scalable to large databases efficient multi-dimensional indexing techniques were 

explored. The most popular ones use multi-dimensional indexing techniques including k-d trees, 

clustering techniques and neural networks [55]. Typically an image feature is represented by a 

set of non-overlapping regions each represented by a vector computed from the region 

characteristics. Descriptors are computed for all images in the database and the search of a 

particular image feature proceeds by nearest neighbor matching of the descriptor vectors of that 

feature.  

In 2003, J. Sivic and A. Zisserman [13] explored whether this type of image retrieval 

could be recast as text retrieval. In text retrieval [56] the documents are parsed into words. 

Posteriorly to the rejection of the most common words, each document is represented by a 

vector with components given by the frequency of occurrence of the words the document 

contains. The set of vectors representing all documents are organized in an inverted file to 

facilitate an efficient retrieval which is similar to a book index: each word is followed by a list 

of all the documents in which the word occurs. In text retrieval the documents with the closest 

vectors of word frequencies to that of a query text are selected. Adapting this approach to image 

retrieval J. Sivic and A. Zisserman computed region descriptors (Shape Adapted [57] and 

Maximally Stable [58] regions) for each image and constructed inverted files similar to the ones 

used in text retrieval. In order to quantize the descriptors into clusters, which will be the visual 

“words”, a k-means clustering algorithm is applied to the set of region descriptors obtained. 

Instead of using a simple frequency vector, a weighting function known as “term frequency – 

inverse document frequency” is computed and used in image retrieval afterwards. In this 

approach images are ranked according to their similarity. 

The use of text retrieval methodology in image retrieval gave rise to the development of 

efficient image retrieval algorithms. In 2006, D. Nistér and H. Stewénius [59] proposed an 

image retrieval scheme, based on J. Sivic and A. Zisserman approach [13], which efficiently 

retrieved images from a large image database by using Vocabulary Trees (VT). In this approach, 

SIFT descriptors were used to describe the image interest points. Those descriptors were used in 

a hierarchical k-means clustering in order to build the Vocabulary Tree. An initial k-means 

process is run on the set of descriptors defining k cluster centers. The same process is then 

recursively applied to each cluster of descriptors obtained, splitting each cluster into k new 

groups of descriptors. This process is illustrated in Figure 13. 
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In the querying phase, a traversal tree path is defined for each descriptor of the input 

image by comparisons, at each level, of the query descriptor vector with the k cluster centers 

choosing the closest one. This differs from the original approach of J. Sivic and A. Zisserman 

where a non-hierarchical visual vocabulary was used. This choice is more appealing in the 

search step and is more adequate to the subsequent scoring procedures proposed. The scoring 

procedure proposed is based in inverted files which are associated to each node of the 

Vocabulary Tree. The inverted files store the index numbers of the images with descriptors 

represented in a particular node, as well as the frequency of that image’s descriptors in the node. 

The images retrieved are those represented in the terminal nodes of the paths defined by the 

query image descriptors. The implementation of the scoring system enables the ranking of the 

images retrieved according to their similarity to the input image. In this way the image with the 

highest score will be the most similar to the input image. 

 

 

 

 

 

 

 

Figure 13: An illustration of the process of building the Vocabulary Tree by descriptor hierarchical 

quantization as proposed in [59]. 

 

 Vocabulary Trees have been studied for several years and are still widely used in image 

retrieval. Such structures typically contain millions of terminal nodes making image retrieval 

very efficient. Inspired by this database search method several authors proposed different 

approaches of using Vocabulary Trees for database search [14].  In 2007, Chum et all [60] 

applied the query expansion to VTs for image retrieval purposes which reissues the initial 

retrieved results as new queries. In this way additional relevant terms can be added to the query. 

This method proved to substantially boost retrieval precision although requiring more 

computational time. The same authors introduced a post spatial verification by RANSAC which 

re-ranks the results returned. This method improved the search quality comparing to the state-

of-the-art methods of that time though it did not show much improvement when used in large 

VTs [61]. A year later, the authors also proposed another method [62] in which each visual 

feature is associated to a weighted set of words, allowing the inclusion of features which were 

lost in the quantization stage of previous systems. It relies on a descriptor association to a 

combination of visual “words” rather than solely to a single “word” (the terminal node) as in 

previous approaches. This method of soft-assignment proved to exceed the image retrieval 

performance obtained by previous works. Figure 14 illustrates the improvement introduced by 

this approach in finding matching features. 
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Figure 14: Comparison of matching results with and without soft-assignment technique proposed in [62]. 

 A more recent approach proposed by Wang et all [14] improves the VT based search 

technique by introducing contextual weighting of local features in both descriptor and spatial 

domains. This procedure enhances the discriminative power of individual local features with a 

very small computational overhead. Based on other VT search approaches, this method 

implements a voting interpretation of the retrieved images from the initial query, i.e. images are 

ranked accordingly to their similarity to the input image. The scoring function includes a 

descriptor and a spatial contextual weighting. In the descriptor contextual weighting inverse 

weighted counts of a node path are considered, down-weighting the importance in image 

retrieval of nodes with many descriptors. Since local descriptors are not independent and their 

neighborhood contains important information, a simple statistics in the region surrounding a 

descriptor is applied to enhance its discriminative ability. The authors proved that this method 

performance in image retrieval reached 85.15% efficiency, although different results were 

obtained for the different datasets used. 

 

Figure 15: Illustration of the spatial contextual weighting approach proposed in [14]. The red circles 

represent local descriptors while the green and blue ones refer to the neighborhood of a local descriptor. ρ 

is the number of local descriptors inside the neighborhood region, Δs is the mean relative log scale of 

those descriptors and Δθ is their mean orientation difference. 
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Chapter 4 

Methodology 
 

 The algorithms studied throughout this work may be divided into two different 

categories: image feature computation methods and database search techniques using image 

feature descriptors. Feature computation methods enable the image representation by feature 

descriptors. In a database search for the identification of the stored images belonging to the 

same individual and eye as a query retinal image, a subset of images is retrieved. Those images 

are the most similar ones to the query image. However, the subset of images retrieved contains 

not only the images sought but also other images belonging to different individuals or eyes, 

although being very similar to the query retinal image. Considering this, a person identification 

method based on the retina as biometric feature is used to distinguish the right images from the 

other images belonging to the subset of images retrieved. It is noteworthy that although the 

algorithm proposed still uses a retinal identification method, it is only applied to the reduced 

subset of images retrieved representing a significant computational time reduction. Moreover, as 

mentioned before this work solely focuses on the selection of the database retinal images most 

similar to the one being queried.  

 

4.1. Image Descriptors  

 

 Four different image feature descriptors were studied: Fractal Dimension (FD), Wavelet 

Energy Feature (WEF), Scale Invariant Feature Transform (SIFT) and Speeded Up Robust 

Features (SURF). FD and WEF are image feature descriptors methods used in retina-based 

person identification systems which attained high efficiency in verifying whether two retinal 

images belong to the same person and eye. Hence we believe that these methods are appropriate 

to correctly represent retinal images and their vascular details. Besides this highly advantageous 

characteristic, both methods use a low complexity algorithm and the image features computed 

have low dimensionality. SIFT and SURF image descriptors were also studied in this work. 

From the research carried out, most references of VT in the literature use this type of descriptors 

in the organization of these search structures. Moreover, the distinctiveness and invariance of 

SIFT and SURF descriptors to image scale, image rotation, distortions, changes in viewpoint, 

noise and illumination [48] enable the development of robust algorithms for image retrieval 

purposes. Taking into consideration that the retinal image datasets used in this work include 

images with the presence of several eye pathologies characteristic lesions, the study of these 

methods was imperative as they could be robust to image changes due to the evolution of the 

pathologies. 
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 4.1.1. Fractal Dimension (FD) 

 

The Fractal Dimension concept is directly related to surface roughness being 

appropriate to use in content based image retrieval systems as shown in [45] where it is applied 

to person identification based on retinal images. As mentioned in Chapter 3 – State-of-the-Art 

Methods, the use of Fractal Dimension computation in retina-based person identification was 

previously studied by S. Sukumaran and Dr. M. Punithavalli [44]. The authors computed the 

Fractal Dimension value of image subregions obtaining a feature vector which was used to 

describe each retinal image.  

Fractals are fragmented geometric shapes that can be subdivided into parts where each 

of those parts is a smaller copy of the original shape. These objects defy conventional concepts, 

such as length and area, since they exhibit similarity over all scales. For this reason, they are 

usually expressed by their Fractal Dimension value which expresses how completely a fractal 

appears when zoomed down to finer scales. Fractal Dimension is a quantity which determines 

how the fractal differs from a Euclidean object. In Euclidean objects the topological dimension 

associated to points is 0, to lines is 1, to surfaces is 2 and to volumes is 3. While Euclidean 

objects are expressed in integral dimensions, fractals are expressed in dimensions with non-

integral values. The fractal concept may be better understood with Figure 16, where a 

Sierpinsky triangle is illustrated. This triangle is constructed excluding the middle triangle 

A’B’C’, which is recursively done resulting in smaller triangles. The final triangle is not a one-

dimensional object but it is not as well a bi-dimension object. In fact, it has a 1.58 dimension 

value, which corresponds to the object Fractal Dimension value [44]. 

 

Figure 16: Sierpinsky triangle, a well-known point-set fractal [44]. 

Several ways of computing the Fractal Dimension of an object have been studied. From 

those, the box-counting method is one of the most widely used [63]. With this Fractal 

Dimension computation approach, the image pattern is evaluated in terms of presence of zero 

and nonzero pixel values.  In this way it only makes sense to use it in retinal vessel tree images. 

The vessel tree computation is performed in the green channel of the retinal image, which was 

proved to be the channel containing more information about the retina vasculature [64]. 

Initially, the Curvelet Transform coefficients of this channel were obtained using the Fast 

Curvelet Trasform algorithm proposed by Candès et all [65], the smallest 10% were set to zero 

and the inverse Curvelet Transform coefficients were computed. The vascular tree segmentation 

is performed using the wavelet based approach proposed in 2012 by Bankhead et all [66]. 

However, other vascular tree computation methods may be used for this purpose. In the vascular 

tree image the vessels assume pixel value 1 and the remaining pixels have value 0 

corresponding to the image background. 
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Figure 17: (a) Retinal image and (b) its corresponding retinal vessel tree image computed by using the 

aforementioned algorithm. 

The algorithm of the box counting method starts by partitioning the M M pixels image  

into square non-overlapping boxes of size s s, where 1<s<M. The maximum image partitioning 

degree is given by    
       

       
, where M corresponds to the number of pixels of the biggest side 

of the image. Therefore, the square image boxes assume sizes s= 2,4,8…2
p
. Figure 18 illustrates 

different image partitioning degrees in a retinal vessel tree image. 

 

Figure 18: Image sampling with square boxes with size s=28 , s=27 and s=26, respectively. 

 

The existence of nonzero pixels in each box is then verified.     represents the number 

of boxes with at least one nonzero pixel for each partitioning degree r. The partitioning degree is 

given by    
 

 
 .     is computed according to equation (1), where    assumes value 1 if the 

image box (i,j) contains at least one nonzero pixel and 0 otherwise. 

      =∑           ,                         (1) 

Posteriorly to the computation of different    values for different partitioning degrees, 

the Fractal Dimension value of the image considered is given by the equation (2).  

  
        

       ⁄  
,       (2) 

Equation (2) may be interpreted as being the slope of the linear regression fitting of the 

plotting of log(    along log(  ⁄ ), which is illustrated in Figure 19. 

 

(a)                                     (b) 
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Figure 19: Plotting of log(Nr) along log(1/r). 

The slope of the linear regression line represented in Figure 19 is 1.461, and it 

represents the Fractal Dimension of the vascular tree estimation image illustrated in Figure 

17(a). 

Representing an entire image by a single value does not enable an efficient 

representation of the image. In fact, Fractal Dimension values obtained for different retinal 

images were, as expected, very similar. For this reason and following [44] approach, the retinal 

image was divided into subregions and for each one the Fractal Dimension value was computed. 

To summarize, two different image partitioning types are performed: the retinal image is 

initially partitioned into subregions and for each of one the Fractal Dimension value is 

computed; when applying the box counting algorithm for Fractal Dimension computation of the 

image subregion, the partitioning of the image subregion into boxes is performed. 

 

 

 

 

 

Figure 20: Illustration of this method of Fractal Dimension computation by image partitioning. The retinal 

vessel tree image was divided into four non-overlapping boxes and for each one a Fractal Dimension 

value was computed. The image may now be represented by a four-element descriptor vector V as 

illustrated. 

From the research carried out, it was found that Fractal Dimension was also applied in 

image classification, more specifically, Hong et al. [67] used this feature computation method 

for X-ray medical images classification. Although the algorithm used by the authors for the 

Fractal Dimension computation was similar to the one described before, it differs in one aspect: 

besides using the original image for feature descriptor computation, the authors computed five 

transformed images in order to obtain more information about directional details. The original 

image is represented by I(i,j), where i and j are the coordinates of each image pixel. I1, I2, I3 
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and I4 , which are expressed by equations (3) to (6), represent the transformed images in the 

horizontal, vertical, diagonal and anti-diagonal directions, respectively.  

I1(i,j)=|I(i,j)-I(i-1,j)|     (3) 

I2(i,j)=|I(I,j)-I(I,j-1)|     (4) 

I3(i,j)=|I(i,j)-I(i-1,j-1)|     (5) 

I4(i,j)=|I(i,j)-I(i-1,j+1)|     (6) 

Besides this, the image roughness, I5, can be expressed by equation (7). 

I5(I,j){
                          

        
    (7) 

Lmin=min(I(i,j)+1/2*mean value of the original image 

 

 

Figure 21:  (a) Original vessel tree image, (b) transformed image I1, (c) transformed image I2, (d) 

transformed image I3, (e) transformed image I4, (f) transformed image I5. 

This approach was followed when computing the Fractal Dimension descriptors of  

retinal vessel tree estimation images since it enables a better representation of vessel details 

rather than solely using the original image. By using the transformed images approach, each 

image subregion is represented by six Fractal Dimension values instead of a scalar vector, i.e. 

each subregion is described by a descriptor vector V=(x1, x2, x3, x4, x5, x6) where x1, x2…x6 

are the Fractal Dimension values of the original image and of each transformed image obtained. 

The flowchart of the computation of this feature may be found in Appendix A.1. 

 

(a)                                           (b)                               (c) 

         (d)                                                   (e)                            (f) 
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4.1.2. Wavelet Energy Feature (WEF) 

 

Wavelets provide a detailed multiscale analysis of a sequence or function, providing another 

perspective of analysis. Wavelet analysis enables the simultaneous localization of an event in 

time, defined by the wavelet localization, and in scale, defined by its shape. The continuous 

Wavelet Transform F(a,b) of a function f(t) is defined by 

       
 

√ 
∫      (

   

 
)  

 

  
   (8) 

The function  a,b is called the mother wavelet and is adjusted by parameters a and b which 

correspond to the wavelet scale and time shift respectively. In the discrete domain these 

parameters are discretized, as well as the mother wavelet [68]. Since this dissertation deals with 

image processing techniques only the discrete domain is considered. 

The discrete wavelet analysis of an image yields the computation of subimages which are 

sets of coefficients that represent horizontal, vertical and diagonal oriented image details. These 

subimages contain information which enables a perfect reconstruction of the original image. For 

each decomposition level J, the image may be represented by 3J+1 subimages: the 

approximation coefficients of the last decomposition level (AJ) and the horizontal (Hi), vertical 

(Vi) and diagonal (Di) coefficients of each decomposition level performed ({Hi,Vi,Di}, i=1,…,J). 

 

Figure 22:  (a) Approximation, (b) Horizontal, (c) Vertical and (d) Diagonal coefficients subimages.  

Subimages are obtained by filtering the original image using both a low-pass and a high-

pass filter, which are applied in two different phases. First, the low-pass and the high-pass filter 

are applied in the original image resulting in the image approximation and the detail coefficients 

computation respectively. Posterior to this, the same set of filters are applied to both the 

approximation and detail coefficients. Filtering the subimage of approximation coefficients with 

a low-pass filter results in the computation of another subimage of approximation coefficients. 

When filtering the subimage of approximation coefficients with a high-pass filter, the subimage 

of horizontal coefficients is computed. By applying the same set of low-pass and high-pass 

              (a)                                               (b) 

              (c)                                               (d) 
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filters to the detail coefficients subimage, the vertical and diagonal coefficients are computed. A 

better understanding of this procedure is possible when analyzing the flowchart in Figure 23. 

 

Figure 23: One wavelet decomposition level of image I(x,y). 

Wavelet families are sets of different filters that may be used in image decomposition by 

wavelets. All of them enable a perfect reconstruction of the analyzed image by considering the 

approximation and detail coefficients generated [42]. The most used wavelet families are Haar, 

Morlet, Daubechies, Symlets and Coiflets wavelets. 

 The retina feature computation method based on image wavelet analysis considered in 

this work was based on the person identification procedure proposed by Shahnazi et all [42]. 

The authors computed horizontal (E
h
), vertical (E

v
) and diagonal (E

d
) energies according to 

equations (9) to (11), where M and N correspond to the subimage width and height, 

respectively. 

  
  ∑ ∑          

  
   

 
        (9) 

  
  ∑ ∑          

  
   

 
       (10) 

  
  ∑ ∑          

  
   

 
       (11) 

 By using this image analysis technique with retinal vessel tree images, the energies 

reflect the blood vessel details, the main biometric feature of retinal images which is the crucial 

aspect in a person identification system. 

 Similarly to the procedure used in the Fractal Dimension descriptors computation, the 

retinal vessel tree image was partitioned into image subregions. For each image subregion the 

descriptor {  
    

    
 } is computed. The number of descriptors per image depends on the 

image partitioning degree. For this reason different image subregion sizes as well as different 

wavelet families and decomposition levels were studied in order to find the most suitable 

combination which most efficiently describes the retinal images used in this work. This aspect is 

further explored in Chapter 5- Results and Discussion and a flowchart of the computation 

algorithm of this method may be seen in Appendix A.2. 
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4.1.3. Scale Invariant Feature Transform (SIFT) 

 

 In the state-of-the-art literature, several image retrieval methods use SIFT feature 

descriptors. The distinctiveness and invariance of these descriptors to image scale and rotation 

have proved to provide a robust image representation across a substantial range of distortions, 

changes in viewpoint, noise and illumination [48]. In retinal image registration these descriptors 

enable the identification of identical features in different images which is a crucial step to 

correctly align them. It is possible to infer whether two retinal images belong to the same 

individual by evaluating the number of correct matches found between them. This fact was the 

main motivation for exploring SIFT feature computation method in this dissertation. 

 The SIFT descriptor computation was introduced by Lowe [48] and the procedure used 

in this thesis was based on his work. This descriptor computation method was applied to a 

luminance image of the retinal images, which was normalized to a range pixel value between 0 

and 1.  

 

Detection of Scale-Space extrema 

Scale-Space extrema are locations that can be identified under different views of the same 

image. Their detection is performed by searching from stable features across all possible scales.  

The image scale space L(x,y,σ) of an image may be defined as the result of the convolution of a 

variable-scale Gaussian function G(x,y,σ), which was proved by Lindeberg in [69]  to be the 

most suitable one for this purpose, with the image I(x,y). 

L(x,y,σ)=G(x,y, σ)*I(x,y)  with   G(x,y, σ)=
 

    
    

                 (12) 

 The scale space extrema in D(x,y,σ), the difference-of-Gaussian function convolved 

with the image, which is computed from the difference of two nearby scales separated by a 

constant multiplicative factor k, are identified as stable keypoints. 

  D(x,y,σ)=(G(x,y,kσ)-G(x,y,σ))*I(x,y)=L(x,y,kσ)-L(x,yσ)         (13) 

Each octave of scale space is divided into an integer number s of intervals, so that 

k=2
1/s

. For each octave s+3 images are computed so that the final extrema detection covers a 

complete octave. Adjacent image scales are then subtracted, producing the difference-of-

Gaussian images. As for the local extrema detection, each sample point is compared to its eight 

neighbors in the current image and nine in the scales immediately above and below.  The 

sample point is only selected if it is larger or smaller than all of those neighbors, constituting a 

local maximum or local minimum respectively. Besides this, maxima are only considered in the 

next steps if larger than a specified threshold value. Lowe’s choice for this value was 0.01, 

however throughout this dissertation this value was studied in order to obtain different number 

of descriptors for the same image, exploring its contribution in person identification procedures. 

As it may be easily proven, smaller threshold values enable the computation of more feature 

descriptors. 
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Figure 24: Representation of the set of scale space images (on the left), which are computed by repeatedly 

convolving the original image with a Gaussian function, and Difference-of-Gaussian images, which are 

the result of the subtraction of adjacent Gaussian images [48]. 

Accurate keypoint location 

Once a keypoint is detected, a fit to the closest data is performed for its location, scale and 

orientation computation. This procedure allows the rejection of points that have low contrast or 

are poorly localized along the edge. A 3D quadratic function is fitted to the local sample points 

to determine the interpolated location of the maximum or minimum. This approach uses the 

Taylor expansion of the scale space function D(x,y, σ), shifted so that the origin is at the sample 

point. This is expressed by equation (14), where D and its derivatives are evaluated at the 

sample point and x=(x,y, σ)
T
 is the offset from this point. 

            
   

  
  

 

 
   

   

   
     (14) 

The location of the extremum  ̂, is determined by taking the derivative of this function with 

respect to x and setting it to zero giving  ̂   
     

   
 
  

  
. Derivatives of D are approximated by 

using differences of neighboring sample points. The resulting 3x3 linear system can be solved 

with minimal computational cost. If  ̂ is larger than 0.5 in any dimension it means it lies closer 

to other sample point and interpolation is performed around it. The final offset  ̂ is added to the 

location of its sample point to get the interpolated estimation for the location of the extremum. 

To discard unstable extrema it is considered the D( ̂  function value at the extremum, which is 

calculated by equation (15). 

   ̂    
 

 
 
   

  
 ̂    (15) 

If D( ̂ <0.03 the point is discarded (assuming that image pixels are in the range value [0,1]. 

The difference-of-Gaussian function will have a strong response along edges, which is an 

important aspect to be properly analyzed. A poorly defined peak in the difference-of-Gaussian 

function will have a large principal curvature across the edge but a small one in the 

perpendicular direction. Principal curvatures are computed from a 2x2 Hessian matrix, given by 

equation (16), computed at the keypoint location and scale. 
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H=[
      
      

]      (16) 

The derivatives are estimated by taking differences of neighboring sample points. 

Eigenvalues are proportional to the principal curvatures of D. Since what is important is only 

the eigenvalues ratio, the eignvalue calculation can be avoid. Let   be the eignvalue with the 

largest magnitude and   the smallest. The trace and product from the determinant of H may be 

computed in the following way: 

Tr(H)=Dxx+Dyy=          (17) 

Det(H)=Dxx.Dyy-(Dxy)2==       (18) 

If the Det(H) is negative, the curvatures have different signs and so the point is discarded. 

Let r be the ratio between   and  , so that  =r  , then: 

Tr(H)2=
        

   
=
         

   
=
      

 
    (19) 

This quantity is at minimum when the two eignvalues are equal and it increases with r. 

In this way, to check whether the ratio of the principal curvatures is below a threshold r, it is 

only necessary to verify if  
      

      
 
      

 
. The experiments performed use a value of r=10 

which eliminates keypoints that have a ratio between principal curvatures greater than 10. 

Orientation Assignment 

Another important feature for the keypoint correct description is the orientation 

assigned to it. By being assigned an orientation to the keypoint, it achieves invariance to image 

rotation. The scale of the keypoint is used to select the Gaussian smoothed image L(x,y, σ), with 

the closest scale, so that all computations are performed in a scale invariant way.  

 For each image sample L(x,y) at this scale, the magnitude m(x,y) and orientation ɵ(x,y) 

gradients may be computed using pixel differences, as may be seen in equations (20) and (21). 

                √                                           (20) 

                                                              (21) 

 An orientation histogram is built from the orientation gradient of sample points within a 

region around the keypoint. The orientation histogram has 36 bins covering the 360 degree 

range of orientations. Each sample added to the histogram is weighted by its magnitude gradient 

and by a Gaussian-weighted circular window with a σ that is 1.5 times greater than the one of 

the keypoint scale. Histogram peaks correspond to dominant directions of local gradients. The 

highest peak is detected and any other local peak that is within 80% of the highest peak is used 

as well in the keypoint description. In this way, for the locations with multiple peaks with 

similar magnitude there will be multiple keypoints differing only in orientation. A parabola is 

then fitted to the three histogram values closest to each peak to interpolate the peak position for 

better accuracy. With these characteristics, SIFT features are resistant to even large amounts of 

pixel noise. The major cause of error in those conditions is the initial location and scale 

detection. 
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Local Image Descriptor 

The previous steps assign to each keypoint a location, a scale and an orientation, providing a 

coordinate system in which to describe the local image region. The approach applied to compute 

the final SIFT descriptor was based on the one demonstrated by Edelman et all [70], differing 

only in the fact that this one allows for positional shift using a different computational 

mechanism. 

Initially, image gradient magnitude and orientation are sampled around the keypoint 

location, using the scale of the keypoint to select the level of Gaussian blur for the image. The 

coordinates of the descriptor and the orientation gradient are rotated relative to the keypoint 

orientation in order to achieve invariance. Posteriorly, a Gaussian weighting function with 

σ 
 

 
 (width of the descriptor window) is used to assign a weight to the magnitude of each 

sample point. This avoids sudden changes in the descriptor with small changes in the position of 

the window and gives less emphasis to gradients that are far from the center of the descriptor, 

since these are most affected by misregistration errors. The descriptor allows for significant shift 

in gradient positions by creating orientation histograms over 4x4 sample regions. 

It is important to avoid all boundary effects in which the descriptor abruptly changes as a 

sample shifts smoothly from being within one histogram to another or from one orientation to 

another. Therefore, trilinear interpolation is used to distribute the value of each gradient sample 

into adjacent histogram bins. In other words, each entry into a bin is multiplied by a weight of 

1-d for each dimension, where d is the distance of the sample from the central value of the bin 

measured in units of the histogram bin spacing. The descriptor is formed by a vector containing 

the values of all the orientation histogram bins. In this work, the descriptor is computed from a 

4x4 array of histogram with 8 orientation bins in each, as illustrated in Figure 25, which result 

in 4x4x8=128 element feature vector for each keypoint. 

 

 

 

 

 

Figure 25: First it is computed the gradient magnitude and orientation at each image sample point in a 

region around the keypoint location (on the left). These are weighted by a Gaussian window, indicated by 

the overlaid circle. These samples are then accumulated into orientation histograms summarizing the 

contents over 4x4 subregions, as shown on the right, with the length of each arrow corresponding to the 

sum of the gradient magnitudes near that direction within the region. This figure shows a 2 × 2 

descriptor array computed from an 8 × 8 set of samples, whereas the experiments in this work use 4 × 4 

descriptors computed from a 16 × 16 sample arrays [48]. 

 

Finally, the feature vector is modified to reduce the effects of illumination change. First it is 

normalized to unit length, making the descriptor invariant to image contrast changes. Besides 

this it is also invariant to brightness change since the gradient values are computed from pixel 

differences. Non-linear illumination changes may cause a large change in relative magnitudes 

Keypoint descriptor   Image gradientes   
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for some gradients. Therefore, the influence of large gradient magnitudes is reduced by 

thresholding the values in the unit feature vector to be no larger than 0.2 and then renormalizing 

to unit length. In this way, orientation distribution has a greater emphasis.  

The descriptor complexity may be adjusted by the number of orientations represented in the 

histogram and the width,  , of the     orientation histograms. As obvious, the more complex 

is the descriptor, the more discriminative it will be. On the other side, as complexity increases 

the descriptor becomes more sensitive to shape distortions and occlusions. The complexity 

degree was studied experimentally by analyzing the descriptor performance in enabling correct 

matches between images. It was proved that the best results were obtained with a 4x4 array of 

histograms with eight orientations each. 

Figure 26 illustrates the location of SIFT descriptors computed from a retinal image. As 

previously mentioned, the threshold value which discards the maxima values of the scale space 

in the initial steps to select keypoint candidates was studied in order to choose one that properly 

enables the identification of retina vessels details in the image. The effect of this parameter in 

SIFT descriptors computation is further described in Chapter 5- Results and Discussion. The 

SIFT descriptors represented in Figure 26 were computed using a threshold value equal to 1, 

which was concluded to be the most suitable one for the images used in this work. As it may be 

analyzed, SIFT descriptors are mainly localized in the retina vessel tree, enabling an efficient 

representation of the retinal image details for a person identification procedure. 

 

Figure 26: SIFT feature descriptors computed from a retinal image by using a threshold value 1 to discard 

the maxima values of the scale space in keypoint identification. 

A flowchart of the main steps required for SIFT descriptor computation is present in 

Appendix A.3. 

 

 

4.1.4. Speeded Up Robust Features (SURF) 

 

The SURF descriptor computation method was based on the work developed by Lowe 

(SIFT descriptor computation method), using similar properties. As in SIFT descriptors 

computation, this approach consists of computing a keypoint descriptor in such a way that it 

makes that feature reproducible even in images with very different characteristics. The major 

steps of SURF descriptors computation are further described below. 
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Keypoint Detection 

 The keypoint detection is performed using a basic Hessian matrix approximation, which 

lends itself to the use of integral images. This enables a computational time reduction.  Integral 

images allow for fast computation of box type convolution filters. In integral images   (x) at the 

location x=(x,y)
T
 it is represented the sum of all pixels in the input image I within a rectangular 

region formed between the origin and x. In this way, by using integral images it only takes three 

additions to calculate the sum of intensities over any rectangular upright area, as illustrated in 

the figure below.  

 

Figure 27: Illustration of the pixel intensity sum of the image inside a rectangular region, taking only 

three additions by using integral images [49]. 

 The keypoint detector is based on the Hessian matrix since it has been proved to have a 

good performance in accuracy. Blob-like structures are detected at locations where the 

determinant is maximum. Given a point x=(x,y) in an image I, the Hessian matrix H(x,σ) in x at 

scale σ is defined as follows: 

H(x,σ)=[
                

                
]    (22) 

          is the convolution of the Gaussian second order derivative 
  

   
g(σ) with the image I in 

point x, and Lxy      and Lyy      are similarly computed. For scale space analysis, box filters 

are used, approximating second order Gaussian derivatives, as shown in the figure below. 

 

Figure 28:  (a) Discretized Gaussian second order partial derivative in y (Lyy) and (b) xy (Lxy) direction; 

(c and d) box filtering approximations of (a) and (b) [49]. 

 The box filtering approximations will be denoted by Dxx, Dyy and Dxy and so the 

determinant of the Hessian Matrix is computed by equation (23), where w is the weight of the 

filter responses, used to balance the expression for the Hessian’s determinant. 

Det(Happrox)=DxxDyy-(wDxy)
2    (23) 

(a)                           (b)               (c)              (d) 
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 The approximated determinant of the Hessian represents the blob response in the image 

at location x. These responses are stored in a blob response map over different scales, from 

which local maxima are detected. 

 As in SIFT approach, the keypoints have to be found at different scales to ensure that a 

correct matching between two images may be found even when those images differ in several 

conditions such as lighting, viewpoint and noise. The images are repeatedly smoothed with a 

Gaussian, followed by a sub-sampling procedure. These images are usually represented in 

pyramids, in which the highest levels correspond to the most smoothed images. In SIFT 

approach the pyramid layers are subtracted in order to obtain the DoG (Difference of Gaussians) 

images where edges and blobs can be found. In this approach, instead of iteratively applying the 

same filter to the output of a previous filtered layer as in SIFT, box filters of any size can be 

directly applied on the original image. In this way, the scale space is analyzed by up-scaling the 

filter size rather than iteratively reducing the image size. This is represented in the image below. 

The initial box filter size used is a 9x9 filter, corresponding to the initial scale layer, which will 

be referred as scale s=1.2 (approximating Gaussian derivatives with σ=1,2 ). The following 

layers are obtained using successive bigger box filters. The main reason of this alternative 

procedure is computation efficiency. 

 

Figure 29:  (a) Representation of the SIFT approach of iteratively reducing the image size;                      

(b) Representation of SURF approach using integral images which enable the up-scaling of the filter [49]. 

 The scale space is divided into octaves. An octave represents a series of filter response 

maps obtained by convolving the same input image with a filter of increasing size. In total, an 

octave encompasses a scaling factor of 2, which implies that one needs to more than double the 

filter size. Each octave is subdivided into a constant number of scale levels.  

 For accurate keypoint localization, filter responses are thresholded such that all values 

below a specific threshold are not considered. This threshold value was experimentally chosen 

in this dissertation as it may be seen in Chapter 5 – Results and Discussion. By increasing the 

threshold value the number of descriptors computed reduces, leaving the most stable ones for 

the further steps. Each pixel in the scale-space is compared to its 26 neighbors (8 pixels in the 

native scale space and 9 in each of the scales above and below). Those larger or smaller than all 

their corresponding neighbors are selected as keypoint candidates. A 3D quadratic fitting is used 

to accurately determine each keypoint space localization. 

Orientation Assignment 

 It is crucial to assign an orientation to each keypoint to provide rotation invariance to 

the descriptors computed. For descriptor orientation computation, the Haar-wavelet responses in 

x and y direction are computed in a circular neighborhood of radius 6s around the interest point, 

where s is the scale at which the keypoint was detected. Once the wavelet responses are 
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computed and weighted with a Gaussian (σ=2.5s) centered at the keypoint, the responses are 

represented as vectors in a space with the horizontal response strength along the abscissa and 

the vertical response strength along the ordinate. To compute the dominant orientation it is used 

a sliding window through the responses space covering an angle of π/3. The horizontal and 

vertical responses within the sliding window are summed, yielding a new vector. The longest 

vector represents the keypoint orientation. 

Descriptor Components 

 For the descriptor computation, a square region of size 20s is centered around the 

keypoint and oriented along the dominant orientation computed previously. The region is split 

up into smaller 4x4 square subregions, keeping important spatial information in. For each 

subregion a few simple features at 5x5 regularly spaced sample points are computed. For 

simplicity, dx refers to the Haar wavelet response in the horizontal direction in relation to the 

orientation assigned to the keypoint and dy refers to the response in the vertical direction. To 

provide robustness to geometric deformations and localization errors, the responses dx and dy 

are first weighted with a Gaussian (σ=3.3s) centered at the keypoint. 

Then, the wavelet responses dx and dy are summed up over each subregion and form a 

first set of entries to the feature vector. In order to bring in information about the polarity of the 

intensity changes, the sum of the absolute values of the responses, |dx| and |dy|, is also 

computed. Hence, each subregion has a four-dimensional descriptor vector v for its underlying 

structure v = (∑  , ∑  , ∑     , ∑     ). This results in a descriptor vector for all 4×4 sub-

regions of length 64, since it was the approach proved to present the best results. The wavelet 

responses are invariant to different illumination characteristics and invariance to contrast (a 

scale factor) is achieved by converting the descriptor into a unit vector. Considering finer 

subdivisions appeared to be less robust and increased descriptor matching timed. 

 

 

 

 

 

 

 
Figure 30: An oriented quadratic grid with 4 x4square sub-regions is laid over the interest point (left). For 

each square, the wavelet responses are computed from 5 x5 samples , which is represented in the figure 

by 2x2 sub-divisions for illustrative purposes. For each field, the sums dx, |dx|, dy, and |dy| are computed 

relatively to the grid orientation (right) [49]. 

 

 Figure 31 illustrates the location of SURF descriptors computed in a retinal image by 

using a         threshold value to discard the filter response values below this value in the 

initial keypoint identification step. In Chapter 5 - Results and Discussion, the influence of 
different threshold values in descriptor computation may be analyzed. 
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Figure 31: SURF feature descriptors computed from a retinal image and using a        threshold value 

which discards the filter response values below this value in keypoint identification step. 

 For a better understanding of the procedures used for SURF descriptors computation a 

flowchart of the main steps may be seen in Appendix A.4. 

 

 

4.2. Database Image Search  

 

4.2.1. Vocabulary Trees 

 

Image database search is a fundamental issue in this dissertation being important to use an 

approach which scales efficiently to large databases. As aforementioned, the main motivation of 

this work is the identification in a large retinal image database of a subset of images that belong 

to the same individual and eye as those of a query image. One efficient solution would be the 

use of an identification method based on retinal images, which compares two retinal images and 

verifies whether they belong to the same person and eye. However, it was already concluded 

that this procedure is infeasible to use in the problem context since it would be necessary to 

compare the query image with each database image. Considering this aspect, Tree Data 

Structures were explored and used to the retrieval of a reduced list of the candidate images most 

likely to match the query image [71]. Posterior to this, an efficient person identification system 

based on retinal images can then be applied to the selected images in order to ensure the correct 

identification of images of the same individual and eye. For this type of image retrieval, 

database images need to be correctly represented in the Tree Data Structure. In the initial part of 

this chapter different feature descriptor computation methods were described. These descriptors 

were hierarchically quantized in a Tree Data Structure, more specifically a Vocabulary Tree 

(VT) [59], for an efficient image retrieval. 

Vocabulary Trees define a hierarchical organization of the feature descriptors computed for 

each database image by performing a hierarchical k-means clustering on them.  Initially, k large 

cluster nodes are defined, k representing the number of children nodes of each cluster (branch 

factor) [59]. Posteriorly, k-means clustering is recursively performed in each children cluster. 

This recursive division of the descriptor space is repeated until there are enough bins to ensure a 

good classification performance [71]. A VT with k branch factor and L levels of iteration has k
L
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terminal nodes, which means that the descriptor vectors will be divided into k
L
 clusters 

according to their similarity degree. 

 Figure 32 illustrates a VT with three children nodes for each node (k=3) and two levels 

of iteration (L=2), meaning that it has 3
2
=9 terminal nodes, in which the training descriptors are 

divided. 

 

 

 

 

 

 

 

Figure 32: Vocabulary Tree representation [71]. 

 

 At each terminal node it is associated a list with the number of feature descriptors of 

each image represented in the node. These lists, named inverted index lists, are represented in 

Figure 33, where iab refers to the image index b with feature descriptors in the node a and cab is 

the number of descriptors of the image with index b at the node a.  

 

Figure 33: Inverted index lists associated to each node of a Vocabulary Tree [71]. 

 Inverted index lists are only computed for terminal nodes since for inner nodes these 

lists correspond to the junction of their children inverted index lists. For this purpose inner 

nodes are considered to be associated to virtual inverted index lists as it may be seen in Figure 

34.  

 

 

 

 

 

Figure 34: Real and virtual index lists in Tree Data Structures [59]. 
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To search in this structure for the most similar images to a query one, the first step is the 

computation of the same type of descriptors (that were used in the VT training) for the image 

being queried. Each query descriptor traverses the VT until a terminal node is reached.  The 

path of a descriptor is defined by its similarity to the mean descriptor of each node at each level. 

The similarity measure is performed by a Euclidean distance between the query descriptor and 

the node centroid descriptor, which is the mean descriptor vector of all feature descriptors 

represented in that cluster. The most similar node centroid to the query descriptor is identified 

and the same analogy is performed with its children nodes, in the level below. After trasversing 

all query descriptors in the VT, the images whose descriptors are represented in the terminal 

nodes selected by the query descriptors are retrieved. Since this subset of images may contain 

several images, it is important to exclude some of them and rank them in a similarity order to 

perform an efficient image database search. 

It was noticed that there were terminal nodes with descriptors from almost all or even all 
images. Those terminal nodes do not allow an efficient image retrieval as they do not contribute 

to the discriminative power of the method. Similarly, terminal nodes with few descriptors do not 

significantly affect the search performance although they increase the search time. For this 
reason, a percentage of the terminal nodes with more and less descriptors were not considered in 

the search step, that is, images whose descriptors were in these nodes were not retrieved. The 

percentage of nodes not considered for this reason depends on the feature computation method 
applied as well as the VT used. In this way, these parameters were studied for several conditions 

which is further described in Chapter 5 – Results and Discussion. 

Moreover, some descriptors may appear in almost all images while others may be very rare, 

not contributing to an efficient image retrieval. Due to this, a list of all possible descriptor 

vectors was organized and their occurrences in the VT were counted. In the same way and for 

the same reason as with the terminal nodes, the most and the least frequent descriptors were not 

considered in the search step, making part of stop lists as introduced by Sivic J. and Zisserman 

A. [13]. Once again the percentage of the least and the most frequent descriptors that can be 

ignored without affecting the search performance was studied for different feature computation 

methods and may as well be analyzed in Chapter 5 – Results and Discussion. 

 

In addition to node and descriptor frequency analysis, a similarity scoring approach 

identical to the one proposed by Sivic J. and Zisserman A. [13] and Girod et all [71] was 

implemented. The score is based on a node weight computed by equation (24), where N is the 

total number of images represented in the VT and Nv is the number of images with descriptors 

in node v. 

          
 

  
       (24) 

This weight is higher for terminal nodes with fewer descriptors and lower for terminal 

nodes with a larger number of descriptors, effectively down-weighting the less useful terminal 

nodes for image retrieval of visually similar images. 

 

In the search step, a similarity scoring [71] is computed for each image retrieved so that 

the final list of images may be ranked and only the most similar ones are selected. For each 

node selected in each query descriptor path across the VT, the scores of the images represented 

in that node are incremented according to the similarity score expressed by equation (25). In this 

equation w(v) is the terminal node weight computed with equation (24), cq and cd correspond to 

the number of descriptors from the query image (q) and the database image (d) , respectively, 



39 
 

that fall into node v and ∑  and ∑  refer to normalization factors which are simply the sum of 

the node weights of all the k nodes in which there are descriptors from images d and q. 

 

 (   )   (   )  
  
      

∑ ∑ 
             (25) 

 

Only the database images whose similarity score is above a similarity threshold value 

are selected for the next processing step, the person identification procedure based on retinal 

images, to efficiently only identify the target images. The threshold value was chosen 

experimentally according to the feature computation method used. 

  

When considering SIFT and SURF descriptors, a different similarity scoring based on 

the one developed by Wang et all [14] was used for purposes of image ranking. This similarity 

score, which defines a similarity measure between two images q and d, is specified considering 

all the possible pairs between the query and the database image descriptors, i and j, which are 

represented in a same node v. 
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The weighting function     
       is given by (27). 

 

    
           

    
 
   

         (27) 

 

As it may be easily analyzed, different aspects are taken into consideration in this 

weighting function. The first term expresses contextual statistics between descriptors. 
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   (29) 

For this term computation, three descriptor statistics (ρ,      ) have to be obtained. 

Each SIFT or SURF descriptor (f0) is represented by the descriptor vector itself x0, its location 

u0, its scale s0 and its orientation ɵ0. First, the image descriptors inside a circular neighborhood 

of the f0 descriptor with radius          are selected. The statistical terms may then be 

computed using equations (30) to (32), where         is the number of descriptors within the 

neighborhood of f0. 

                               (30) 

     
 

       
∑              

     (31) 

                
 

       
∑              

                                (32) 

The second and third terms are related to the descriptor path in the VT and refer to the 

query image descriptor and database image descriptor respectively. Taking   
 

as example, it 

may be computed using equation (33), where w(v) is obtained with equation (24) and consists in 
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the node weight of each node in the path T(xi) of descriptor xi, and n
q
(v) represents the number 

of descriptors from image q represented in node v. For the database image d,   
  may be 

computed using the same analogy. 

      
 
 √

∑            

∑                  
     (33) 
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Chapter 5 

Results and Discussion 
 

 This chapter addresses two different algorithm performance analysis. The first one 

characterizes the effect of eye pathology lesions effect on the performance of the different 

image descriptors used to represent retinal images and their efficiency in performing person and 

eye identification. It was crucial to perform this initial evaluation since the second part of the 

study uses healthy and unhealthy retinal images. The second set of performance studies analyses 

the retrieval success rates as well as the processing time for the identification of retinal images 

belonging to the same patient and eye as those of the retinal image being queried in a large 

image database. 

5.1. Robustness of the Feature Computation Methods to Eye Pathologies 

 

As previously mentioned, the main motivation of this dissertation was the improvement 

of an automated clinical decision support system for eye pathology detection and monitoring. 

For this reason, it is important that the algorithm proposed is robust to the presence of the most 

common eye pathology characteristic lesions. The database search of retinal images from the 

same patient of the one being queried should not be affected by the presence of eye lesions in 

retinal images such as hemorrhages, drusens and edemas. In this analysis two diseases were 

considered: Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD).  The 

choice of these pathologies is justified by their prevalence among those that cause vision loss or 

total blindness.  

 Four different image datasets, which were all part of studies performed at Critical 

Health®, were used in this study. The datasets are described in Table 1. 

Table 1: Characteristics of the retinal image datasets used 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 

Type of retinal images 

predominant in the dataset 
AMD DR Healthy AMD+DR+Healthy 

Number of images 230 284 435 949 

Number of different patients 

represented 
58 81 200 339 
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In order to evaluate the robustness of each feature computation method to eye pathology 

lesions, the descriptors of each image, the query image, were compared to those of each 

remaining images in the dataset and their similarity was measured. For each dataset, a threshold 

value of similarity was established so that only the images whose similarity to the query image 

was higher than the value defined were considered to have high probability of belonging to the 

same patient and eye of the query image. The similarity threshold value was chosen so that for 

nearly 99% of the images queried all the images belonging to the same patient and eye were 

selected. This analysis was performed within each different dataset and for each of the feature 

computation methods analyzed in this thesis. 

 The four different types of descriptors used in this analysis were computed as described 

in Chapter 4- Methodology. The WEF descriptors were computed using Daubechies wavelet 

family filters and two levels of wavelet decomposition. Besides this, both WEF and FD 

descriptors were obtained by partitioning the image in 100x100 non-overlapped image 

subregions. For these two types of descriptors a row descriptor vector was built by joining all 

descriptor vectors computed for each image subregion. Since the images used in this analysis, 

within each dataset, have the same characteristics, regarding for example viewpoint, scale and 

illumination, this procedure of joining image subregion descriptors does not significantly affect 

the correct selection of the most similar images to a query image and enables a less complex 

evaluation of the method’s performance. In order to measure the similarity between two images, 

a simple Euclidean difference between their respective descriptors is computed.  

 Although SIFT and SURF also enable the computation of several descriptor vectors per 

image, the procedure of joining the descriptors in a row vector is not adequate since these 

descriptors are computed for each interest point in the image and not for image subregions. 

Therefore, a different similarity measure was used with these two feature descriptor 

computation methods. To evaluate the similarity between a pair of images it is performed a 

keypoint descriptor matching between both images. The initial step of keypoint matching of the 

descriptors from image A to those of image B is the identification for each image A descriptor 

of the most similar descriptor in image B. The similarity between descriptors is measured by 

Euclidean distance between the two descriptor vectors. To ensure a correct keypoint matching, 

i.e. the keypoints matched represent the same feature in both images, the distance between the 

two matched descriptors is analyzed. A pair of matched descriptors D1 and D2 is only 

considered a correct match if the distance between then multiplied by 1.5 (value defined by 

Lowe for the same matching procedure [48]) is not greater than the distance of the descriptor D1 

to all other descriptors from the other image. Considering this, the similarity measure between 

two images when using SIFT and SURF feature computation methods is given by the number of 

correct matches found between them. 

The similarity between each dataset image and each remaining images from the same 

dataset was computed and the minimum percentage of the dataset that could be selected to 

ensure that all images of the same patient and eye of the query image were selected was 

determined. The selected images were those whose similarity measure with the query image was 

greater than the similarity threshold value, which was chosen experimentally for each feature 

computation method so that for at least 99% of the query images considered all the images 

belonging to the same patient and eye of the image being queried were selected. 
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 Figure 35: SIFT Keypoint matching between two retinal images [50]. 

 

The following tables summarize the results obtained in this study. FD and WEF feature 

computation methods were applied to retina vessel tree images for the reasons previously 

explained in Chapter 4 - Methodology. On the other hand, SIFT and SURF feature computation 

methods were applied to retinal images since these methods take into consideration the image 

gradients for descriptor computation. 

 

Table 2: FD descriptors robustness to eye 

pathologies – % of dataset selection to ensure, in 

nearly 99% of the images queried, the selection of 

all images belonging to the same patient and eye of 

the image being queried. 

Table 3: WEF descriptors robustness to eye 

pathologies - % of dataset selection to ensure, in 

nearly 99% of the images queried, the selection of 

all images belonging to the same patient and eye of 

the image being queried. 

Dataset  
% of images selected from 

the entire Dataset 
 Dataset 

%  of images selected 

from the entire Dataset 

Dataset 1 97.51%  Dataset 1 87.27% 

Dataset 2 79.61%  Dataset 2 77.92% 

Dataset 3 51.06%  Dataset 3 73.49% 

Dataset 4 47.07%  Dataset 4 38.91% 

 

 

 

Table 4: SIFT descriptors robustness to eye 

pathologies – % of dataset selection to 

ensure, in nearly 99% of the images queried, 

the selection of all images belonging to the 

same patient and eye of the image being 

queried. 

 

 

Table 5: SURF descriptors robustness to eye 

pathologies – % of dataset selection to 

ensure, in nearly 99% of the images queried, 

the selection of all images belonging to the 

same patient and eye of the image being 

queried. 

Dataset  
% of images selected from 

the entire Dataset 
 Dataset 

%  of images selected 

from the entire Dataset 

Dataset 1 99.47%  Dataset 1 97.32% 

Dataset 2 87.58%  Dataset 2 88.15% 

Dataset 3 76.10%  Dataset 3 77.81% 

Dataset 4 78.96%  Dataset 4 77.03% 
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Figure 36: Representation of the percentage of each dataset selection needed to ensure that all images 

belonging to the same patient and eye of the image being queried are selected. 

 

 Taking into consideration the results from the previous tables, the effect of AMD and 

DR characteristic lesions in the retina obviously influence the feature descriptor computation. 

When considering images from Dataset 1, with prevalence of retinal images with AMD 
characteristic lesions, almost the entire dataset needs to be selected for the correct selection of 

images belonging to the same patient of the image being queried. The large yellow areas, 

drusens, which are consequences of this eye pathology, are overlapped with the retina vessel 
tree explaining the small dataset reduction obtained.  

 Images from Dataset 2 are associated with DR characteristic lesions. These lesions 

although smaller than the AMD drusens also affect the retina vessel tree, modifying this 

biometric feature. By a careful examination of the results, one may easily perceive the effect of 

these lesions in the identification of images belonging to the same patients and eye, though not 

as severe as with AMD lesions.  

When considering the results obtained with Dataset 4, which contains healthy and 

unhealthy retinal images, one would not expect that a more reduced dataset selection would be 

obtained with this dataset than with Dataset 3, which only contains healthy retinal images. 

However, a reasonable explanation is the fact that these type of lesions, when present in all 

images of the same patient, are one more unique feature of the patient retina. Therefore, the fact 

that some images were associated with different types of lesions while others not enabled to 

discard a larger part of the dataset than when using solely healthy retinal images in Dataset 3. 

Even so, a robust method for the identification of images of the same patient and eye in a 

database may not be based in this fact since eye lesions may decrease or even disappear with 

treatment through time or, on the contrary, increase in size and number in the worst scenario.  

  With this preliminary analysis of the feature computation methods implemented it is 

easily concluded that FD and WEF descriptors are the most adequate ones to use in the retrieval 

of images of the same patient and eye of a query retinal image. One reason for the good 

performance of these feature computation methods in this analysis is the fact they were applied 

to retinal vessel tree images. In these images the influence of eye pathology lesions is not as 

evident as in retinal images since only the vessels are figured in the image and only the 

situations where lesions are overlapped to the vessel tree are portrayed.   
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5.2. Image Descriptors Efficiency in Image Retrieval 

  

 The novel aspect introduced by this dissertation is the use of VTs combined with image 

feature computation methods for the identification, in a large database, of the most similar 

images of a query retinal image. This subset of images may be as reduced as possible since it is 

posteriorly used in an efficient retina-based person identification method which enables to 

accurately verify whether two retinal images belong to the same patient.  

 In image retrieval performance analysis two different approaches were studied. If 

considering that the images stored in the database are not labeled or indexed in any way, not 

being possible to establish any type of correspondence between the images and their respective 

patient information, it is crucial that the search technique applied enables the retrieval of all 

images from the same patient. On the other hand, database images may be correctly labeled and 

the lack of information is only verified in the acquisition of a new retinal image, the query one. 

In this scenario it is only necessary to ensure the retrieval of one stored database image from the 

same patient of the image being queried. Doing so, a simple database index search is performed 

to retrieve the remaining images belonging to that patient. For these reasons, both scenarios 

were included in the analysis conducted. All the parameters chosen throughout the study were 

based on the fact that for nearly 99% of the query images used all or at least one, depending on 

the analysis approach considered, of the stored database images of the same patient and eye of 

the image being queried should be retrieved in the final outcome. 

 To ensure that the training and testing dataset choice do not significantly affect the 

results obtained, a k-fold procedure was used in all computations performed. The total image 

dataset (1989 images) available for these experiments with correct patient information 

associated to each image was divided into five groups (with 397,397,398 398and 399 images 

respectively). In each analysis, one of these groups was used as a testing dataset and the 

remaining four groups were used for the algorithm training. Since the VT retrieval efficiency 

strongly depends on the number of descriptors used in its training, more 3467 retinal images 

were used for that purpose. This means that a training dataset with more than five thousand 

retinal images is used for the VT training. Considering this, the results shown in this thesis 

correspond to the mean result obtained with the five testing image datasets. 

 

5.2.1. Fractal Dimension (FD) 

 

 In Chapter 4- Methodology, the FD feature computation method is described in detail. 

Image partitioning is one of the major steps in this method. Since the image subregions may 

assume different sizes, an initial analysis was performed to evaluate the image subregion size 

effect in the image retrieval efficiency. As expected, by decreasing the image subregion size the 

number of subregions in each image increases, as well as the number of descriptors associated 

to each image. In Table 6 it is shown the number of descriptors per image obtained with 

different image subregion sizes for image partitioning, considering that the feature computation 

method was applied to 1024x1024 retinal vessel tree images. 
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Table 6: Number of FD descriptors per image with different image partitioning degrees. 

Image Subregion Size in 

Pixels 

Number of Descriptors per 

image 

200x200 25 

150x150 36 

125x125 64 

106x106 81 

100x100 100 

75x75 169 

50x50 400 

32x32 1089 

 

 

For each image partitioning degree, the descriptors computed were organized in VTs 

with k=5 and different levels (L). The following tables show the database percentage retrieved 

when using the VT to search for the most similar images to a query image, as well as the 

percentage of the query images for which all or at least one image of the same patient and eye 

were correctly retrieved.  

 

 

Table 7: FD - Image retrieval performance 

using 200x200 image subregions. 

Table 8: FD - Image retrieval performance 

using 150x150 image subregions. 

 

 

 

 

 

 

 

 

Structure 

(KxL) 

% of the 

database 

selected 

Approach 1: 

% selection 

of ALL 

images of 

the same 

patient and 

eye 

Approach 2: 

% selection of 

at least ONE 

image of the 

same patient 

and eye 

 

Structure 

(KxL) 

% of the 

database 

selected 

Approach 1: 

% selection 

of ALL 

images of the 

same patient 

and eye 

Approach 2: 

% selection 

of at least 

ONE image 

of the same 

patient and 

eye 

Tree 5x4 56.27% 99.80% 99.95%  Tree 5x4 60.81% 100.00% 100.00% 

Tree 5x5 43.06% 91.90% 98.90%  Tree 5x5 49.85% 98.84% 99.95% 

Tree 5x6 18.22% 47.66% 85.92%  Tree 5x6 28.43% 67.52% 94.97% 



47 
 

Table 9: FD - Image retrieval performance 

using 125x125 image subregions. 

Table 10: FD - Image retrieval performance 

using 106x106 image subregions. 

Structure 

(KxL) 

% of the 

database 

selected 

Approach 1: 

% selection  

ALL images 

of the same 

patient and 

eye 

   Approach 2: 

% selection of 

at least ONE 

image of the 

same patient 

and eye 

 
 

Structure 

(KxL) 

% of the 

database 

selected 

Approach 1: 

% selection  

ALL images 

of the same 

patient  and 

eye 

Approach 2:  

% selection of 

at least ONE 

image of the 

same patient 

and eye 

Tree 5x5 48.15% 99.95% 100.00%  Tree 5x5 49.48% 100.00% 100.00% 

Tree 5x6 37.93% 91.86% 98.84%  Tree 5x6 42.41% 97.03% 99.60% 

Tree 5x7 17.06% 43.28% 83.71%  Tree 5x7 22.90% 58.47% 90.85% 

 

 

 

Table 11: FD - Image retrieval performance 

using 100x100 image subregions. 

 

 

 

Table 12: FD - Image retrieval performance 

using 75x75 image subregions. 

Structure 

(KxL) 

% of the 

database 

selected 

Approach 1: 

% selection  

ALL images 

of the same 

patient and 

eye  

Approach 2:  

% selection 

of at least 

ONE image 

of the same 

patient and 

eye  

 
 

Structure 

(KxL) 

% of the 

database 

selected 

Approach 1: 

% selection  

ALL images 

of the same 

patient and 

eye  

Approach 2:  

% selection 

of at least 

ONE image 

of the same 

patient and 

eye 

Tree 5x5 56.47% 100.00% 100.00%  Tree 5x6 53.74% 99.95% 100.00% 

Tree 5x6 49.89% 99.04% 99.90%  Tree 5x7 41.62% 90.85% 98.84% 

Tree 5x7 29.70% 68.88% 93.37%  Tree 5x8 20.05% 43.89% 84.82% 

 

 

 

 

 

Table 13: FD - Image retrieval performance 

using 50x50 image subregions. 

Table 14: FD - Image retrieval performance 

using 32x32 image suubregions. 

Structure 

(KxL) 

% of the 

database 

selected 

Approach 1: 

% selection  

ALL images 

of the same 

patient and 

eye  

Approach 2:  

% selection 

of at least 

ONE image 

of the same 

patient and 

eye  

 
 

Structure 

(KxL) 

% of the 

database 

selected 

Approach 1: 

% selection  

ALL images 

of the same 

patient and 

eye  

Approach 2:  

% selection 

of at least 

ONE image 

of the same 

patient and 

eye 

Tree 5x6 59.95% 100.00% 100.00%  Tree 5x7 59.16% 100.00% 100.00% 

Tree 5x7 52.24% 99.55% 99.95%  Tree 5x8 52.91% 99.30% 99.90% 

Tree 5x8 36.70% 76.44% 94.93%  Tree 5x9 41.77% 84.77% 96.23% 

 

 In order to provide a better analysis of the results obtained, the VTs which enabled the 

best image retrieval performance for each image partitioning degree are shown in Table 15 and 

Table 16, for image retrieval of all and at least one image of the same patient, respectively. 
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Table 15:  FD - Best image retrieval 

performance, of all images from the same 

patient and eye, for each image partitioning 

degree. 

Table 16:  FD - Best image retrieval 

performance, of at least one image of the 

same patient and eye, for each image 

partitioning degree. 

Image 

Subregion 

Size 

Tree 

Structure 

(kxL) 

Approach 1: % of 

the database 

selected to ensure 

the retrieval of 

ALL images of the 

same patient and 

eye 

 

Image 

Subregion  

Size 

Tree 

Structure 

(kxL) 

Approach 2: % of the 

database selected to 

ensure the retrieval of 

at least ONE image of 

the same patient and 

eye 

200x200 Tree 5x4 56.27%  200x200 Tree 5x5 43.06% 

150x150 Tree 5x5 49.46%  150x150 Tree 5x5 49.85% 

125x125 Tree 5x5 48.07%  125x125 Tree 5x6 37.93% 

106x106 Tree 5x5 49.20%  106x106 Tree 5x6 42.41% 

100x100 Tree 5x6 50.66%  100x100 Tree 5x6 49.89% 

75x75 Tree 5x6 53.74%  75x75 Tree 5x7 41.62% 

50x50 Tree 5x7 52.24%  50x50 Tree 5x7 52.24% 

32x32 Tree 5x8 53.27%  32x32 Tree 5x8 52.91% 

% of the database selected to ensure the 

retrieval of ALL images of the same patient 

and eye 

% of the database selection to ensure the 

retrieval of at least ONE image of the same 

patient and eye 

 

Figure 37: Best image retrieval performance, of all 

images of the same patient and eye, for each image 

partitioning degree. 

 

Figure 38: Best image retrieval performance, of 

at least one image of the same patient and eye, 
for each image partitioning degree. 

  

Analyzing Figures 37 and 38, it may be concluded that image partitioning significantly 

affects the image retrieval performance. In Figure 37, it is noticeable that when decreasing the 

image subregion size a better image retrieval performance is achieved, i.e. a smaller percentage 

of the database is retrieved. However, when using too small image subregions the image 

information represented in them is not enough for a correct descriptor computation and the 

image retrieval becomes less efficient. By analyzing the results from both approaches, one may 

conclude that 125x125 image subregions are the most appropriate ones for this type of image 

retrieval. 
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For purposes of obtaining a better image retrieval performance using VT, different k 

values were used with the three best image partitioning degrees obtained from the previous 

analysis (150x150, 125x125 and 106x106 image subregions).  

Table 17:  FD - Image retrieval performance of VTs with different k factors in retrieving 

All images of the same patient and eye in nearly 99% of the images queried 

 

Table 18:  FD - Image retrieval performance of VTs with different k factors in retrieving at 

least ONE image of the same patient and eye in nearly 99% of the images queried 

 

In Tables 17 and 18, which summarize the results of this analysis for approach 1 and 

approach 2 respectively, only the best image retrieval performance for each k value is shown. 

Taking into consideration this analysis, 106x106 image subregions and a 13x4 VT were found 

to enable the best image retrieval performance for retrieval  of all images of the same patient 

and eye (it enables the selection of 44.03% of the entire database).  On the other hand, for image 

retrieval of at least one image of the same patient and eye 125x125 image subregions and a 5x6 

 150x150 125x125 106x106 

k Level 
% of the database 

selected 
Level 

% of the database 

selected 
Level 

% of the database 

selected 

2 10 62.73% 11 49.31% 12 47.39% 

3 6 55.91% 7 47.79% 8 45.61% 

4 5 55.72% 5 51.81% 6 47.71% 

5 5 49.46% 5 48.07% 5 48.07% 

6 4 56.05% 5 44.92% 5 46.48% 

7 4 53.67% 4 49.80% 4 53.26% 

8 4 50.87% 4 47.89% 4 50.12% 

9 3 64.72% 4 47.15% 4 48.16% 

10 3 62.23% 4 45.71% 4 47.19% 

11 3 62.88% 3 59.66% 4 46.18% 

12 3 58.16% 3 57.01% 4 46.02% 

13 3 57.10% 3 55.58% 4 44.03% 

14 3 55.98% 3 53.45% 3 57.25% 

15 3 55.17% 3 51.53% 3 55.85% 

 150x150 125x125 106x106 

k Level 

% of the 

database 

selected  

Level 

% of the 

database 

selected  

Level 
% of the 

database selected  

2 11 58.01%        13  38.66% 13 42.76% 

3 7 49.48% 8 42.29% 9 36.24% 

4 6 45.68% 5 51.81% 7 40.08% 

5 5 49.85% 6 37.93% 6 42.41% 

6 4 56.05% 5 44.92% 5 46.48% 

7 4 53.67% 5 40.32% 5 43.25% 

8 4 50.87% 4 47.89% 5 39.05% 

9 4 47.87% 4 47.15% 4 48.16% 

10 3 44.30% 4 45.71% 4 47.19% 

11 4 41.01% 4 44.26% 4 46.18% 

12 3 58.16% 4 42.35% 4 46.02% 

13 3 57.10% 4 41.69% 4 44.03% 

14 3 55.98% 4 39.11% 4 43.20% 

15 3 55.17% 4 39.01% 4 41.25% 
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VT were the combination that enabled the best retrieval efficiency (selection of 37.93% of the 

entire database).  

 As mentioned in the previous chapter, the most and the least populated nodes, that is, 

those with more and less descriptors, can be removed from the VT search step in order to 

increase image retrieval performance. Tables 19 and 20 summarize this analysis for both 

approaches studied. 

 

Table 19: FD - Image retrieval performance in retrieving all images of the same patient 

and eye by removing the most and the least populated nodes 

 

 

Table 20: FD - Image retrieval performance in retrieving at least one image of the same patient and 

eye by removing the most and the least populated nodes 

 
% of Nodes 

removed 

% of images 

selected from the 

database 

Approach 2: % of situations in which at 

least ONE image of the same patient and 

eye is selected 

Most Populated 

Nodes 

0.01%  37.76% 98.84% 

0.05% 37.72% 98.79% 

0.07% 37.67% 98.79% 

0.1% 37.63% 98.79% 

0.2% 37.52% 98.74% 

0.5%  37.15% 98.49% 

Least populated 

nodes (After removal 

of the 0.1% most 

populated nodes) 

5.0%  37.63% 98.79% 

6.0% 37.63% 98.79% 

7.0%  37.63% 98.74% 

10.0%  37.62% 98.74% 

 

 Although this analysis has not enabled a significant increase in image retrieval 

performance, removing the most and the least populated nodes enables a faster search step. In 

order to ensure that the percentage of situations in which all images from the same patient were 

retrieved (approach 1) or at least one image was retrieved (approach 2) did not suffer a 

significant decrease, in Approach 1 it was concluded that the 0.04% most populated nodes and 

the 0.1% least populated nodes could be removed from the search step and in Approach 2 the 

0.1% most populated and the 6.0% least populated nodes could as well be removed. 

 
% of Nodes 

removed 

% of the database 

selected 

Approach 1: % of situations in 

which ALL images of the same 

patient and eye are selected 

Most Populated 

Nodes 

0.02%  43.60% 98.79% 

0.03%  43.60% 98.79% 

0.04%  43.60% 98.79% 

0.05%  43.29% 98.69% 

Least populated 

nodes (After removal 

of the 0.04% most 

populated nodes) 

0.1%  43.60% 98.79%5 

0.2% 43.60% 98.74% 

0.5%  43.60% 98.74% 

1.0%  43.60% 98.74% 
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 Besides the node analysis, descriptor frequency analysis was also performed. As 

previously explained in Chapter 4 - Methodology, the most and the least frequent descriptors 

may not be used in the search step since they do not contribute to an efficient image retrieval 

performance. However, in this method of FD feature descriptor computation it was concluded 

that the descriptors were very distinct and although a group of descriptors were found to be 

more common in retinal images, the remaining ones were found to have only one occurrence in 

the total database of descriptors. Taking this into consideration the 10% most frequent 

descriptors were selected. Before traversing each query descriptor in the VT, the descriptor is 

compared to each of the 10% most frequent descriptors and if its difference to one of them is 

smaller than a specific threshold value of similarity, then that descriptor is not used in the VT 

traversal. This threshold value was experimentally chosen as it may be seen in Tables 21 and 

22. 

Table 21:  FD - Image retrieval performance in retrieving ALL images of the same patient and eye 

by choosing different difference threshold values for the 10% most common descriptor discard 

Threshold 

Value 

% of images selected from the 

database  

% of situations in which ALL 

images of the same patient and eye 

are selected 

0 43.60% 98.79% 

6 43.37% 98.79% 

6.3 43.04% 98.69% 

6.5 42.51% 98.49% 

6.7 41.62% 97.94% 

7 37.43% 92.06% 

 

 

Table 22: FD - Image retrieval performance in retrieving at least ONE image of the same patient 

and eye by choosing different difference threshold values for the 10% most common descriptor 

discard 

Threshold 

Value 

% of images selected from the 

database  

% of situations in which at least 

ONE image of the same patient 

and eye is selected 

0 37.63% 98.79% 

5 37.63% 98.79% 

5.5 37.63% 98.79% 

5.7 37.62% 98.74% 

6 37.53% 98.69% 

 

Once again, this analysis has not enabled a significant increase of the image retrieval 

performance although faster queries may be performed since less descriptors need to be 

traversed in the VT. It may be concluded that using a 6 or 5.5 threshold value for image retrieval 

of all images or of at least one image of the same patient and eye, respectively, is appropriate to 

reduce the amount of descriptors to traverse in the VT. 

The last analysis performed was the use of a similarity score which is given by equation 

(24) in Chapter 4- Methodology. In this analysis each retrieved image is associated with a 

similarity score. Images whose similarity score is above a specified threshold value are 

considered the most similar ones to the image being queried and have high probability of 

belonging to the same individual. Different threshold values were tested in order to reduce the 

percentage of images retrieved while still ensuring that nearly in 99% of the images queried all 
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images (approach 1) or at least one image (approach 2) from the same patient and eye were 

retrieved. 

 

 

Table 23:  FD - Similarity score 

analysis for image retrieval of ALL images of 

the same patient and eye performance 

 

Table 24: FD - Similarity score 

analysis for image retrieval of at least ONE 

image of the same patient and eye 

performance 

 

 

This analysis enabled an increase in the image retrieval efficiency while ensuring the 

image retrieval of the correct images. For image retrieval of all images of the same patient and 
eye the similarity threshold value which enabled the best image retrieval performance (selection 

of 38.85% of the entire database) was a 1 10
-6 

threshold value while in approach 2 for image 

retrieval of at least one of those images a threshold value of 1.355 10-3 enabled the selection of 

only 32.78% of the database.  

 

 

5.2.2. Wavelet Energy Feature (WEF)  

 

 To improve WEF feature computation method performance in image retrieval for 

identification of images of the same patient and eye of a query image, a few initial analysis were 

performed. In these preliminary studies simple descriptor Euclidean differences were computed 

to distinguish whether or not images belong to the same patient and eye. 

 Similarly to the procedures considered in the FD method, the effect of image 

partitioning size was the first parameter analyzed. Different image subregion sizes were used to 

compute WEF descriptors. By computing Euclidean descriptor differences, the database images 

were sorted by their similarity to the query image. Considering that it is necessary to select all 

images of the same patient and eye or, in a different analysis, at least one image of the same 

patient and eye for 99% of the query images, the parameter that was evaluated was the 

percentage of the database that could be selected while meeting the these requirements. Table 

25 expresses the results obtained. 

Similarity 

Threshold

Value 

% of images 

selected from 

the database 

Approach 1: 

% of situations 

in which ALL 

images of the 

same patient 

and eye are 

selected 

 

Similarity

Threshold

Value 

% of images 

selected from 

the database 

Approach 2: 

% of situations 

in which at 

least ONE 

image of the 

same patient 

and eye is 

selected 

5 10-6 38.85% 98.79%  1.350 10-3 32.80% 98.79% 

1 10-6 38.85% 98.79%  1.355 10-3 32.78% 98.79% 

5 10-5 38.79% 98.64%  1.360 10-3 32.76% 98.74% 



53 
 

 

 

Table 25:  WEF - Image subregion partitioning effect in the retrieval performance. 

Image Subregion size 

% Selection of the database to 

ensure the retrieval of ALL 

images of the same patient 

and eye 

% Selection of the database to 

ensure the retrieval of at least 

ONE image of the same 

patient and eye 

400x400 96.61% 87.36% 

256x256 92.80% 63.84% 

150x150 72.53% 41.31% 

126x126 55.65% 25.78% 

116x116 66.10% 33.26% 

100x100 57.52% 20.13% 

90x90 55.37% 23.09% 

80x80 52.61% 29.10% 

50x50 61.86% 27.97% 

26x26 77.12% 40.61% 

 

 

 

Figure 39: Image subregion partitioning effect in retrieval performance. 

 

From both Table 25 and Figure 39, one may easily conclude that the best image 

retrieval performance is achieved by using 100x100 image subregions if the aim is to select all 

images of the same patient and eye and 80x80 image subregions if the selection of at least one 

image of the same patient and eye is enough. In addition to the image partitioning degree, there 

are other parameters which may be adjusted in order to increase image retrieval performance 

such as the filters wavelet family and the number of decomposition levels used. 
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Figure 40: Filter wavelet family and decomposition level effect in image retrieval performance. 

  

The best image retrieval performance for both approaches analyzed (retrieval of all 

images of the same patient and eye and retrieval of at least one of those images) was obtained 

using the Daubechies filter wavelet family and two levels of decomposition. The studies 

performed posteriorly to this analysis were computed using these parameters. 

 Considering the aspects previously concluded, VTs with WEF descriptor vectors were 

organized. Each image subregion is represented by a 6-length vector: the three energies for each 

level of decomposition as described in detail in Chapter 4 - Methodology. Similarly to the 

analysis performed with the FD feature computation method, different values of k, the number 

of branches of each VT node, were analyzed. Since in the previous study about the effect of the 

image partitioning degree on image retrieval the best image retrieval performances were 

obtained with two different image subregions sizes for the different analysis approaches, both 

image subregion sizes (100x100 and 80x80 image subregions) were used in this analysis. 

 

 

Table 26:  WEF - Image Retrieval Performance by using VT with WEF descriptors computed from 

100x100 image subregions 

 
Selection of ALL images of the 

same patient and eye 
 

Selection of at least ONE image of 

the same patient and eye 

K Level % of the Dataset selected Level %of the Dataset selected 

3 7 96.84% 8 79.67% 

4 6 86.36% 6 86.36% 

5 5 89.45% 5 89.45% 

6 4 98.12% 5 70.55% 
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Table 27:  WEF - Image Retrieval Performance by using VTs with WEF descriptors  computed 

from 80x80 image subregions 

 
Selection of ALL images of the 

same patient and eye 

Selection of at least ONE image of the same 

patient and eye 

K Level 
% of the Dataset 

selected 
Level %of the Dataset selected 

3 7 100.00% 9 71.91% 

4 6 96.45% 7 73.24% 

5 5 97.17% 6 71.60% 

6 4 99.41% 5 81.73% 

 

 Due to the fact that WEF descriptors are very similar to each other, when using them to 

build a VT a low image retrieval performance is obtained. In fact, to ensure the selection of all 

images of the same patient and eye almost the entire image database needs to be considered 

(86.36% was the best image retrieval performance obtained with a 4x6 VT built with WEF 

descriptors computed from 100x100 image subregions). Although the selection of only one 

image of the same patient and eye enabled a better performance (70.55% with a 6x5 VT also 

built with WEF descriptors computed from 100x100 image subregions), it still represents a 

great part of the image database. Similarly to the analysis performed with the FD method, the 

most and the least populated nodes were ignored from the VT search step.  

Table 28: WEF - Image retrieval performance in retrieving ALL images of the same patient and 

eye by removing the most and the least populated nodes 

 

Table 29:  WEF - Image retrieval performance in retrieving at least ONE image of the same patient 

and eye by removing the most and the least populated nodes. 

 
% of Nodes 

removed 

% of images 

selected from the 

database 

Approach 2: % of situations in 

which at least ONE image of 

the same patient and eye is 

selected 

Most Populated Nodes 

2.0% 68.83% 98.79% 

4.0% 68.35% 98.79% 

6.0% 68.15% 98.79% 

7.0% 67.94% 98.44% 

Least populated nodes 

(After removal of the 6% 

most populated nodes) 

10.0% 68.02% 98.79% 

15.0% 67.95% 98.58% 

20.0% 67.60% 98.44% 

  

 
% of Nodes 

removed 

% of images selected 

from the database 

Approach 1: % of situations 

in which ALL images of the 

same patient and eye are 

selected 

Most Populated Nodes 

2.0% 81.57% 97.98% 

1.0% 83.68% 98.79% 

0.5% 84.94% 98.49% 

Least populated nodes 

(After removal of the 1.0% 

most populated nodes) 

20.0% 83.45% 98.79% 

25.0% 83.30% 98.79% 

30.0% 83.11% 98.23% 
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Taking the results from Tables 28 and 29 into consideration one may conclude that 

although removing the most and the least populated nodes from the VT search step the image 

retrieval performance almost remains the same in both approaches. Although an increase in 

image retrieval performance is not expected by performing an analysis of the most common 

descriptors, since that analysis was performed for the other methods it was performed with this 

one as well. 

 

Table 30: WEF - Image retrieval performance in 

retrieving all images of the same patient and eye by 

choosing different difference thresholds for the 

most common descriptor discard 

Table 31: WEF - Image retrieval performance in 

retrieving at least one image of the same patient 

and eye by choosing different difference thresholds 

for the most common descriptor discard 

Threshold 

Value 

% of images 

selected from 

the database 

% of 

situations in 

which ALL 

images of the 

same patient 

and eye are 

selected 

 
Threshold 

Value 

% of 

images 

selected 

from the 

database 

% of 

situations in 

which at least 

ONE image of 

the same 

patient and 

eye is selected 

0.7 82.81% 98.79%  1.3 65.91% 98.58% 

0.5 82.55% 98.54%  1.4 67.09% 98.78% 

0.4 81.16% 97.98%  1.5 67.34% 98.79% 

  

As expected no major improvement of the image retrieval performance was obtained 
with this analysis, apart from the reduction in the computation time required for the VT search 

step.  The final study performed was the similarity score attribution for image ranking. This 

similarity score is described by Equation (24) in Chapter 4- Methodology. Although not very 
significant, this procedure enabled a slightly better image retrieval performance as it may be 

seen in the following tables. 

 

Table 32: WEF - Similarity score analysis for 

image retrieval of ALL images of the same 

patient and eye performance 

Table 33:  WEF - Similarity score analysis 

for image retrieval of at least ONE image of 

the same patient and eye performance

 

Considering the previous analysis, the best image retrieval performance obtained for the 

selection of all images of the same patient and eye was the selection of 80.02% of the image 

database. While, on the other hand, the selection of at least one of those images allows the use 

of only 60.24% of the total database.  

Similarity 

Threshold 

Value 

% of images 

selected from 

the database 

% of 

situations in 

which ALL 

images of the 

same patient 

and eye are 

selected 

 
Similarity 

Threshold 
Value 

% of 

images 

selected 

from the 

database 

% of 

situations in 

which at least 

ONE image of 

the same 

patient and 

eye is selected 

1x10
-6 83.30% 98.79%  1x10-6 64.38% 98.78% 

1x10
-5 80.02% 98.79%  1x10-5 60.24% 98.75% 

2x10
-5 79.97% 97.73%  2x10-5 59.47% 98.57% 
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5.2.3. Scale Invariant Feature Transform (SIFT) 

 

 In the SIFT descriptor computation method, several parameters could be chosen in order 

to adjust this descriptor computation method to the images used. In this dissertation only the 

threshold value that discards the maxima values of the scale space in the initial steps in order to 

select keypoint candidates is studied. Lowe used a 0.01 threshold value. However, by a careful 

analysis of the images from Figure 41 it is easily concluded that this threshold value is not 

appropriated to be used in this type of images, since too many descriptors are extracted.  

Figure 41: SIFT descriptors localizations by using a threshold value of 0.01 (Lowe’s choice) for the scale 

space maxima discard. 

Several threshold values were then analyzed to reduce the number of SIFT descriptors 

computed, although ensuring that important image features were still detected, such as the 

retinal vessel tree.  By increasing the threshold value, the number of descriptors reduces. 

Figures 42 and 43 show the localization of SIFT descriptors computed with threshold 1 and 2, 

respectively.  

Figure 42: SIFT descriptors localizations by using a threshold value of 1 for the scale space maxima 

discard. 

 

Figure 43: SIFT descriptors localizations by using a threshold value of 2 for the scale space maxima 

discard. 

Using a threshold value equal to 1 seemed to be the best option from the threshold values 

analyzed since the keypoints detected are located in the retinal vessels, which is the most 
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important part of the image in a person identification method. Using a threshold value equal to 2 

was not considered a good option due to the fact the number of keypoints detected is not enough 

to an efficient VT search. Moreover, important details of the tree vasculature of the retinal 

image were not detected with this threshold value. In this way, the further studies conducted are 

performed with SIFT descriptors computed with threshold value 1. 

Posterior to the SIFT descriptors computation from all database images, VTs with k=5 were 

built. It was noticeable that the average number of SIFT descriptors computed for each image 

was significantly higher than the number of FD or WEF descriptors obtained for the same 

images. Therefore, fewer images were used in the VT training. Besides the use of the k-fold sets 

of images for which ones the information about each image patient is available, more 1100 

images were used in this study instead of the 3467 images used for the VT training in the 

previous two methods analyzed. 

Table 34:  SIFT - Image retrieval performance with SIFT descriptors using retinal images 

K Level 

%of the 

Dataset 

Selected 

Approach 1: 

% of situations 

in which ALL 

images of the 

same patient 

and eye are 

selected 

Approach 2: % of 

situations in which 

at least ONE 

image of the same 

patient and eye is 

selected 

5 

5 99.86% 100.00% 100.00% 

6 99.20% 98.77% 99.83% 

7 88.28% 74.78% 94.05% 

 

Taken into consideration the excellent performance results obtained in published works 

using this type of descriptors in VTs for image retrieval, it was assumed that some 

characteristics of the retinal images used were not carefully examined which could explain the 

weak performance of this method with the images used. One of the image characteristics that 

was carefully examined was the image noise. The background pixel variance of the retinal 

images used was computed. For this computation a retina segmentation was performed using a 

threshold technique. A 0.5 pixel value threshold was applied to the image, segmenting the 

background from the retina itself. Doing so, only the background pixels are considered in the 

computation of the background variance intensity. 

 

   

 

 

 

Figure 44: (a) Retinal image and (b) its segmentation from the background for pixel variance 

computation. 

 

(a)                            (b) 
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The images from the datasets used were analyzed with respect to their background 

variance and it was found that the pixel intensity variance obtained could assume different 

values as it may seen in Figure 45 

Figure 45: Plotting of the background variance of the retinal images used in this study. 

To avoid this undesirable effect, retinal vessel tree images were used instead of the 

retinal images themselves. SIFT feature computation method is based on image gradients. In 

this way and since retina vessel tree images are logical images, a low-pass filter was applied in 

order to blur the binary representation of the tree vasculature so that a smooth gradient is 

obtained instead of a rough transition from pixel value 0 to pixel value 1. The filter used for this 

purpose was a Gaussian low-pass filter and its effect on the vascular tree image can be analyzed 

in Figure 46. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46:  (a) Original retina vessel tree image, (b) Filtered retinal vessel tree image, (c) Detail of the 

original retina vessel tree  image, (d) Detail of the smoothed retina vessel tree image.  

VTs were built with the SIFT descriptors computed from the smoothed retinal vessel tree 

images. The retrieval performance results may be analyzed in Table 34. Since less SIFT 

descriptors are computed when using these images, 3467 images were used in this analysis apart 

from the k-fold sets of images.  

(a)                                                (b) 

(c)                                               (d) 
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Table 35:  SIFT - Image retrieval performance of VT built with SIFT descriptors computed from 

smoothed retinal vessel tree images 

K Level 
%of the Dataset 

Selected 

Approach 1: % of 

situations in which ALL 

images of the same 

patient and eye are 

selected 

Approach 2: % of 

situations in which at 

least ONE image of the 

same patient and eye is 

selected 

5 

10 66.36% 100.00% 100.00% 

11 65.94% 98.86% 99.38% 

12 63.17% 98.43% 98.95% 

 

From the results represented in Table 35 it is noticeable the increase in image retrieval of 

the VTs when using SIFT descriptors computed from the smoothed retinal vessel tree images. 

The use of a 5x11 VT enables the selection of 65.94% of the entire database to ensure the 

retrieval of all images belonging to the same patient and eye of the image being queried. When 

only ensuring the retrieval of one of those images, 63.17% of the database is selected by using a 

5x12 VT. 

Similarly to what was done for other descriptors, the removal effect of the most and the 

least populated nodes was studied in detail, as well as the discard of the most and the least 

common descriptors. The effect of these parameters may be further understood by examining 

Tables 36 and 37. 

Table 36: SIFT - Image retrieval performance in retrieving ALL images of the same patient and 

eye by removing the most and the least populated nodes 

 
% of Nodes 

removed 

% of images 

selected from the 

database 

Approach 1: % of situations in 

which ALL images of the same 

patient and eye is selected 

Most Populated Nodes 

0.5% 65.62% 98.86% 

1.0% 65.21% 98.81% 
1.3% 64.87% 98.79% 

1.5% 64.80% 98.74% 

Least populated nodes 

(After removal of the 1.3% 
most populated nodes) 

5.0% 64.85% 98.79% 

10.0% 64.77% 98.79% 

13.0% 64.72% 98.75% 

 

Table 37: SIFT - Image retrieval performance in retrieving at least ONE image of the same patient 

by removing the most and the least populated nodes. 

 
% of Nodes 

removed 

% of images 

selected from the 

database 

Approach 2: % of situations in 

which at least ONE image of 

the same patient and eye is 

selected 

Most Populated Nodes 

0.5% 63.16% 98.95% 

1.0% 62.93% 98.89% 

1.5% 62.77% 98.81% 

1.7% 62.68% 98.75% 

Least populated nodes 

(After removal of the 1.5% 

most populated nodes) 

12.0% 62.47% 98.81% 

14.0% 62.41% 98.78% 

15.0% 62.38% 98.75% 
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 The removal of the 1.3% and the 10.0% most and least populated nodes, respectively, 

enables the use of 64.77% of the entire database to ensure that all images belonging to the same 

patient and eye of the image being queried are retrieved. On the other hand, by removing the 

1.5% and the 14.0% most and least populated nodes, 62.41% of the database may be selected to 

ensure that at least one of those images is retrieved.  

 By a careful examination of the SIFT descriptors computed, it was concluded that they 

were very distinct, most of them only appearing once in the database. Therefore, it was not 

possible to identify frequent and infrequent descriptors since most of them were unique in the 

set of descriptors.    

 As previously explained in Chapter 4 - Methodology, a different similarity score was 

used with SIFT and SURF descriptors, which is expressed by Equations 26 to 31. Using this 

score which is associated to each image retrieved, a similarity threshold may be used to reduce 

the percentage of the dataset selected. This threshold was experimentally chosen as it may be 

seen in Tables 38 and 39. 

 

Table 38: SIFT -  Similarity score analysis 

for image retrieval of ALL images of the 

same patient and eye performance 

Table 39: SIFT - Similarity score analysis for 

image retrieval of at least ONE image of the 

same patient and eye performance 

 

 From Tables 38 and 39 one may conclude that the best retrieval performance was 

obtained by using a similarity threshold value of   10-4 for retrieval all images of the same 
patient and eye of the image being queried and   10-3 for retrieval of at least one of those 

images. Doing so, 59.77% and 57.84% of the entire database may be selected in approach 1 and 

approach 2, respectively. 

5.2.4. Speeded Up Robust Features (SURF) 

In SURF descriptor computation method, similarly to the SIFT method, there are some 

parameters that may be adjusted in order to adjust the characteristics of the SURF descriptors 

computed. In this work the parameter analyzed may be compared to the one studied in the SIFT 

feature descriptor method, since both regulate the number of keypoints computed. In Chapter 4 

– Methodology the algorithm for SURF descriptor computation is carefully described and it is 

mentioned that one of the steps for keypoint localization is the use of a Hessian matrix 

approximation. The image blob response map over different scales, from which local maxima 

are detected, is computed from the approximated determinant of the Hessian matrix at each 

location x in the image. The maxima points are only considered in the following steps if greater 

than a threshold value, which assumes 0.0002 value in the SURF descriptor computation 

Similarity 

Threshold 

Value 

% of images 

selected from 

the database 

% of situations in 

which ALL images 

of the same 

patient and eye 

are selected 

 

Similarity 

Threshold 
Value 

% of 

images 

selected 

from the 

database 

% of situations 

in which at 

least ONE 

image of the 

same patient 

and eye is 

selected 

4 10-4 61.35% 98.78%    10-4 58.17% 98.78% 

  10-4 59.77% 98.77%    10-3 57.84% 98.78% 

  10-4 58.98% 98.63%      10-3 57.09% 98.66% 
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algorithm developed by Bay et all [49]. As it is illustrated in Figure 47, when using this 

threshold value, very few SURF descriptors are computed. Therefore, other threshold values, 

smaller than this one, were studied and their effect in the descriptors computation was 

evaluated. 

 

 

Figure 47: SURF keypoints obtained by discarding the interest points in the image response map 

computed with a Hessian matrix approximation lower than 0.0002. 

  

Figure 48: SURF keypoints obtained by discarding the interest points in the image response map 

computed with a Hessian matrix approximation lower than 0.0001. 

 

Figure 49: SURF keypoints obtained by discarding the interest points in the image response map 

computed with a Hessian matrix approximation lower than 0.00001. 

Taking the above figures into consideration, it is easily concluded that smaller threshold 

values enable the computation of more SURF descriptors since less maxima points in the 

Hessian response map are discarded. . Although more threshold values were studied, only three 

are represented for illustrative purpose. Threshold value 0.00001 enables the computation of a 

reasonable number of SURF descriptors, considering their use in VTs. Moreover, most of the 

descriptors computed represent vessel tree details, which is one of the most important aspects 

that needs to be taken into consideration in this work. The posterior studies performed use 

SURF descriptors computed with this threshold value to discard those whose Hessian response 

is low. 
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  Likewise to the procedure used in the others feature computation methods, SURF 

descriptors were organized in VTs for a fast search in the database of retinal images. VT with 

k=5 were built and their image retrieval performance was evaluated. Similarly to what was 

concluded with the SIFT method, this feature descriptor computation method enables the 

computation of a significant higher number of descriptors per image than regarding FD and 

WEF methods. Therefore a fewer number of images was used in this study. Besides the four k-

fold groups of images for which there are available information about the corresponding patient 

of each image, more 1100 images were used to the VT training, instead of using more 3467 

images as with FD and WEF method. 

 

Table 40: SURF -  Image retrieval performance of VT built with SURF descriptors computed from 

retinal images 

K Level 
%of the Dataset 

Selected 

Approach 1: % of 

situations in which ALL 

images of the same 

patient and eye are 

selected 

Approach 2: % of 

situations in which at 

least ONE image of the 

same patient and eye is 

selected 

5 

5 55.07% 99.89% 100.00% 

6 54.85% 99.40% 99.79% 

7 52.31% 95.22% 97.83% 

 

 The use of VTs with SURF descriptors has proved to be more efficient in the retinal 

image retrieval than using SIFT descriptors. However, considering the increase in the image 

retrieval efficiency obtained when considering the retina vessel tree images with SIFT 

descriptors, the same approach was studied with SURF descriptors. Retinal vessel tree images 

were obtained in the same way as previously described, by using a Gaussian filter to smooth the 

binary vascular tree image. It is worth to mention that when applying SURF method to this type 

of images the threshold value considered to discard the less stable keypoints of the Hessian 

response map was 0.0002. Table 41 shows the image retrieval performance obtained with VTs 

using SURF descriptors computed from the smoothed retinal vessel tree images. 

 

Table 41: SURF - Image retrieval performance of VT built with SURF descriptors computed from 

smoothed retinal vessel  tree images 

K Level 
%of the Dataset 

Selected 

Approach 1: % of 

situations in which ALL 

images from the same 

patient are selected 

Approach 2: % of 

situations in which at 

least ONE image from 

the same patient is 

selected 

5 

11 49.19% 99.57% 99.83% 

12 44.61% 99.24% 99.75% 

13 38.86% 98.63% 98.89% 
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By using SURF descriptors computed from the retinal vessel tree images a lower 

percentage of the database may be retrieved. For the retrieval of all images from the same 

patient of the image being queried 44.61% of the database is selected with a 5x12 VT. If 

considering the retrieval of only at least one of those images, 38.86% of the database may be 

selected with a 5x13 VT.  

 The removal of the most and the least populated nodes was performed and the results 

obtained are summarized in Tables 42 and 43. 

 

Table 42: SURF - Image retrieval performance in retrieving ALL images of the same patient and 

eye by removing the most and the least populated nodes 

 
% of Nodes 

removed 

% of images 

selected from the 

database 

Approach 1: % of situations in 

which ALL images of the same 

patient and eye are selected 

Most Populated Nodes 

0.5% 44.47% 99.24% 

1.0% 44.21% 98.85% 

1.5% 43.89% 98.80% 
1.6% 43.89% 99.74% 

Least populated nodes 

(After removal of the 1.5% 
most populated nodes) 

12.0% 43.67% 98.80% 

14.0% 43.64% 98.78% 

16.0% 44.63% 98.73% 

 

 

Table 43: SURF - Image retrieval performance in retrieving at least ONE image of the same patient 

and eye by removing the most and the least populated nodes. 

 
% of Nodes 

removed 

% of images 

selected from the 

database 

Approach 2: % of situations in 

which at least ONE image of 

the same patient and eye is 

selected 

Most Populated Nodes 

1.0% 38.32% 98.81% 

1.5% 38.07% 98.78% 

1.8% 37.99% 98.78% 

2.0% 37.91% 98.75% 

Least populated nodes 

(After removal of the 

1.8% most populated 

nodes) 

10.0% 37.95% 98.78% 

12.0% 37.93% 98.78% 

13.0% 37.92% 98.74% 

  

 The removal of the 1.5% most populated and the 14.0% least populated nodes from the 

search step enabled a slight increase in the image retrieval performance in approach 1. The 

removal of the 1.8% most populated and the 12.0% least populated nodes from the search step 

enabled, as well, a slight increase in the image retrieval performance in approach 2. 

As in SIFT method, the descriptors computed are very distinct not being possible to 

distinguish frequent and infrequent nodes. In fact more than 90% of the descriptors computed 

are unique in the set of descriptors. Therefore, similarly to the SIFT method, the analysis of the 

effect of the removal of frequent and infrequent descriptors from the search step was not 

performed. On the other hand, the attribution of a similarity score to the images retrieved was 

studied in this feature computation method. The similarity score computation is described in 
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Chapter 4 – Methodology. The similarity threshold defined to distinguish the most similar 

images to the image being queried from the other retrieved images is shown in Table 44 and 45 

for both approaches of analysis. 

 

 

Table 44: SURF - Similarity score analysis 

for image retrieval of ALL images of the 

same patient and eye performance 

Table 45:  SURF - Similarity score analysis 

for image retrieval of at least ONE image of 

the same patient and eye performance 

 

 From this last analysis, one may conclude that to ensure the retrieval of all images 

belonging to the same patient of the image being queried, a similarity threshold value of  

    10-4 may be used, resulting in the selection of 39.29% of the entire database. When 

considering approach 2, the retrieval of at least one image of the same patient and eye, the most 
appropriate similarity value is     10-4 resulting in the selection of 33.48% of the database.  

 

 

 

5.3 Other methods to increase the image retrieval performance 

  

 Table 46 expresses the best image retrieval performances obtained for the retrieval of all 

or at least one image of the same patient and eye of an image being queried, using the different 

feature computation methods studied associated to VTs. 

Taking these aspects into consideration, Fractal Dimension feature descriptor method is 

the one which enables the selection of a most reduced subset of images from the entire database 

to ensure a correct image retrieval in both of the approaches analyzed. The following studies 

were performed considering only approach 2, i.e. only the retrieval of one image belonging to 

the same patient and eye of the image being queried was required. This aspect not only enables 

a more efficiency image retrieval performance with less computational time but it also enables 

to explore other techniques for reducing even more the number of images that needs to be 

verified with a retina-based person identification method. 

 

Similarity 

Threshold 

Value 

% of images 

selected from 

the database 

% of situations in 

which ALL images 

of the same 

patient and eye 

are selected 

 

Similarity 

Threshold 

Value 

% of 

images 

selected 

from the 

database 

% of situations 

in which at 

least ONE 

image of the 

same patient 

and eye is 

selected 

    10-4 39.85% 98.78%      10-4 33.90% 98.78% 

    10-4 39.29% 98.78%      10-4 33.48% 98.77% 

    10-4 38.91% 98.73%      10-4 33.07% 98.69% 
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Table 46: Image retrieval performance of the different methods employed considering the two 

different approaches. 

 

  

 

 

 

 

5.3.1. Retrieved Images Ranking with WEF descriptors 

  

Besides the fact that WEF descriptors do not perform well when used in VTs, the initial 

analysis performed has shown that it is very efficient in image ranking accordingly to their 

similarity to a query image. In this way, the algorithm herein proposed enables the retrieval of a 

subset of images, which is performed by using FD descriptors in VTs, with a posterior ranking, 

using WEF descriptors, of the images retrieved.  

 . 

 

 

 

 

 

 

 

 

 

 

 

Figure 50: Flowchart of the algorithm used for image retrieval using FD descriptors in a VT and image 

ranking with WEF descriptors. 

 

Approach 1: % of the 

dataset selected to 

ensure the retrieval of 

all images of the same 

patient and eye 

Approach 2: % of the 

dataset selected to ensure 

the retrieval of at least 

one image of the same 

patient and eye  

FD 38.85% 32.78% 

WEF 80.02% 60.24% 

SIFT 59.77% 57.84% 

SURF 39.29% 33.48% 

Identification of the patient information of the database image selected in the previous step 

and search in the image database for the remaining images belonging to that same patient 

Retina–based person identification method use between the query image and each of the 

ranked images until a correct match is verified 

Retrieved images ranking accordingly to the similarity of their respective WEF descriptors to 

that of the query image 

Query image WEF descriptors computation 

FD descriptors traversal in the VT and respective image retrieval 

Query image FD descriptors computation 



67 
 

For this algorithm it is considered that database images are correctly indexed and solely 

one image of the same patient and eye of the query image needs to be selected from the 

database. Using FD descriptors with VTs was proved to enable the use of 32.78% of the entire 

database in a retina-based person identification method for the correct images identification. By 

ranking the retrieved images using WEF descriptors, that is, considering the WEF descriptor 

differences between each retrieved image descriptor and the query image descriptor, it is easily 

understood which are the most similar images to the one being queried. If when applying the 

retina-based person identification method one begins the search by the most similar retrieved 

images until a correct match is found, a major reduction of the total amount of images used in 

this step may be obtained. This fact was analyzed in the different subsets of images used in 

these studies and it was found that on average only 3.15% of the entire database needed to be 

used in the person identification method, until a correct match was verified. The flowchart 

illustrated in Figure 50 represents the major steps of this algorithm. 

 

5.3.2. KNN Classification  

 

 For image analysis and classification some authors consider the use of various 

classifiers which are used in algorithms that involve object recognition. These classifiers include 

Bayes classifier, Support Vector Machines (SVM) and K-Nearest Neighbors (KNN) among 

others. In this work, the one considered was the KNN classifier. This method is used for object 

classification based on the k closest training examples. Although it is one of the simplest 

machine learning algorithms, it is suitable for the problem of patient identification due to the 

number of classes considered, that is, the number of patients and eyes considered. In other 

classifiers, SVM for instance, that map the samples in a space in which it is possible to define 

decision boundaries to separate the samples of each class, it is important to use a significant 

number of examples of each class in the training phase of the classifier. However, in this work 

the number of retinal images belonging to the same patient and eye is not sufficient taking into 

consideration the number of classes: there are a maximum of five images of the same patient 

and 573 different patients. Due to the significant number of classes it is not expected an 

excellent classification. Besides this fact, the disadvantages of SVM classification include the 

significant computational time required for both training and testing phase. Considering this, the 

use of a KNN classification was found to be suitable for patient and eye identification since the 

decision is based on the most similar training example, which has high probability of belonging 

to the same patient and eye of the one being queried [72]. 

 The set of WEF and FD descriptor vectors, computed for each of the image subregions, 

were joined together to origin a single row vector. Although rotation invariance may be 

compromised with this technique, it was found that this technique still performed reasonably 

well taking into consideration the characteristics of the datasets used. The same datasets of 

images used for the VT training and testing were used in this study. In Table 47 it is represented 

the classifier performance in identifying the correct patient and eye by searching for the k-

closest training descriptors. The best classification of the testing descriptors was obtained when 

using WEF descriptors to represent the image and considering only the class (patient and eye) of 

the closest training descriptor. It was already mentioned in this work that although WEF 

descriptors enable a very efficient image ranking accordingly to the images similarity to the one 

being queried, they differ very little from each others. Considering this, it is not surprising that 
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the use of only the closest training descriptor enables a better descriptor classification than using 

a higher number of neighbor descriptors in which to base the testing descriptor classification. 

By using WEF descriptors with a KNN classifier with k=1, 54.97% of the testing descriptors 

respective patients were correctly identified.  

Table 47: Patient and Eye Identification Performance with a KNN classifier 

  % of query images for 

which was performed a 

correct patient and eye 

identification 

WEF 

K=1 
54.97% 

K=3 54.62% 

K=5 49.09% 

Fractal Dimension 

K=1 38.39% 

K=3 38.39% 

K=5 36.82% 

 

 Although the classification performance was not enough for the problem of patient and 

eye identification solution, it was considered in a preliminary classification in the final 

algorithm proposed in this thesis, as it may be seen below. 

 

5.4 Proposed Algorithm 

 

 Considering the performance of the methods studied for an efficient image retrieval, it 

was concluded that the best algorithm for this purpose would be a combination of the most 

efficient methods studied. As aforementioned, using VTs for retinal image retrieval has proved 

to be a good approach in the identification of retinal images belonging to the same patient and 

eye of an image being queried. From the four descriptor computation methods used to build 

VTs, FD method was the one which enabled the selection of a smaller percentage of the 

database to use in a retina-based person identification method. Moreover, other studies 

performed have indicated that WEF descriptors may be useful in an efficient images ranking 

accordingly to their similarity to a query image and that KNN classification could be used in a 

preliminary classification for patient and eye identification. 

 Considering all the studies performed in this work, a final algorithm is proposed for the 

correct retrieval of database images belonging to the same patient of a retinal image being 

queried. Since the goal was to obtain the most efficient algorithm possible, it was considered 

that the database images are correctly labeled and labeling errors may only occur with the query 

images. 
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Initially, the binary retinal vessel tree image of the query retinal image is computed. 

WEF descriptors of this image are obtained according to the algorithm described in Chapter 4- 

Methodology. These descriptors are joined in a single row vector descriptor and it is used for a 

KNN classification with k=1 in order to identify the patient and eye of the query retinal image. 

From the analysis performed, there is a nearly 55% chance the correct patient is identified in 

this procedure. To verify whether the identified patient and eye is the same of that of the query 

image, a retina-based person identification method is used to compare the query retinal image 

with one of the database images belonging to that patient. In case a correct match is verified, the 

remaining database images belonging to that patient are retrieved. Otherwise, FD descriptors are 

computed from the retina vessel tree image in order to search in a VT for the most similar 

images to the image being queried. Posteriorly to the VT image retrieval, the retrieved images 

are ranked accordingly to the similarity of their WEF descriptors to that of the query image. A 

retinal-based person identification algorithm is used to verify if each of the retrieved and ranked 

retinal images belong to the same patient of the image being queried. The first image considered 

in this verification step is the most similar one in the ranked list of retrieved images and so on. 

When a correct match is verified the remaining database images belonging to the same patient 

of the image considered are retrieved. The retina-based person identification method used, 

image registration, has an efficiency performance of 98.79% in identifying correct matches in 

images belonging to the same individual and eye and incorrect matches otherwise. It is 

important to remember that the final algorithm proposed must present a nearly 99% efficiency 

in the retrieval of the correct images. Therefore, considering the performance efficiency of the 

retina-based person identification method used it was defined that, in case any correct match is 

verified between the query image and each of the retrieved images, the entire database is used in 

this step, which only occurs with nearly 1% of the query images studied. In this way, the 

algorithm performance in retrieving the correct images is 98.79%, which corresponds to the 

person identification method performance.  

One more aspect needs to be considered as well. Whenever new retinal images are 

added to the database it is necessary to re-train the KKN classifier but not the VT structure. To 

actualize the VT with the new descriptors, they are traversed in the VT in the same way the 

query descriptors do and the centroid of each node is simple re-computed. Figure 51 illustrates 

the major steps of the proposed algorithm. 
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Figure 51: Flowchart of the proposed algorithm. 
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5.5 Algorithm Computation Complexity 

 

 As mentioned before, the main purpose of the development of this work, i.e. the 

development of an algorithm for the identification in a large image database of the retinal 

images belonging to the same patient and eye of a retinal image being queried, is the integration 

in an automated clinical support decision software for eye pathology detection and monitoring. 

It is important to note that the application environment of the target software puts some 

constrains on the computational power required by the proposed algorithm. To efficiently verify 

whether the retrieved images in fact belong to one patient and eye, a retina-based person 

identification method is used between the query image and each of the retrieved images. The 

person identification method used is out of the scope of this project, but as it may be confirmed, 

the computation time required for this method directly influences the overall final algorithm 

computation time. The retina-based person identification method used in this work was the 

quality assessment of the image registration between the query and the retrieved images. 

Although this method requires on average 28.92 seconds to compare a pair of images, since it 

was not included on the goals of this work, it was used to evaluate the proposed algorithm 

performance. However, for the integration of the algorithm in a real-time application 

environment, further developments in this step need to be considered. That said, the proposed 

algorithm performance was evaluated in comparison to the use of the retina-based person 

identification method with the entire image database instead of only considering the subset of 

retrieved images. 

 Table 48 shows the performance results of the different approaches considered 

throughout this work: the use of the person identification method alone, the use of the person 

identification method with the retrieved images obtained by using a VT with Fractal Dimension 

descriptors, the posterior ranking of the retrieved images with WEF descriptors and the use of a 

KNN classifier for a preliminary patient and eye identification. For each approach two 

parameters were analyzed: the percentage of the total image database used in the verification 

step, i.e. the retina-based person identification method, and the overall computation time 

required for the algorithm to retrieve the correct images. The computation time reduction is 

computed in comparison to the first approach: the use of the person identification method in the 

entire image database. As expected, significant computation time reductions were obtained in 

the approaches developed. The use of a VT with Fractal Dimension descriptors to represent 

each database image and the search in this structure for the most similar images to the one being 

queried enables the use of 32.78% of the entire database in nearly 99% of the query images 

analyzed and the total database in the remaining 1% . Therefore, in Table 48 the performance 

values expressed are mean performance values enclosing these two outputs. Although additional 

computations are required for the VT use, their computation time is insignificant when 

compared to the overall computation time reduction of the algorithm. Since the VT training and 

the image database descriptors computation are performed offline, not contributing to the 

computation time of the algorithm, it only takes 1.893s to compute the Fractal Dimension 

descriptors of the query image and 0.1711s to search in the VT for the most similar images to 

the one being queried. A 66.54% computation time reduction was obtained with this approach. 

The use of WEF descriptors to rank the retrieved images accordingly to their similarity to the 

query image enables the use, on average, of 3.15% of the image database, in 99% cases, since 
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the algorithm ends when a correct match between the query and a retrieved image is found. In 

this approach only additional 0.3973s, for WEF descriptors computation of the query image, 

and 0.016s, for the retrieved images ranking, are required in the total computation time of the 

algorithm. The total time of computation of this approach was found to represent a 95.88% time 

reduction when compared to the use of image registration with all database images. The final 

proposed algorithm only differs from the previous one in the initial KNN classification. As 

mentioned before, the KNN classification proposed enables the correct identification of the 

patient on 54.97% of the classifications performed. Therefore, it is used in a preliminary phase 

of the algorithm and 0.1224s are required to perform this classification. If a correct match 

between the query image and one of the images from the patient identified in the KNN 

classification is found, the algorithm ends and it is only performed an image registration 

between a pair of images, which takes 29.43s (considering the computation required for WEF 

descriptors computation and KNN classification). This represents a 97.57% time reduction of 

the overall computation time of the algorithm. In case it is not found a correct match, in 45.03% 

of the cases, with the KNN classification, the previous approach is considered.  

 

Table 48: Computation time for comparison purposes of the different approaches considered 

 

 

 

 

 

 
 

 

 

% of the 

Dataset used in 

the Registration 

Step 

Total Time of computation for 

identifying one image of the 

same patient and  eye in the 

database (s) 

Computation 

time 

reduction (s) 

Image Registration 100.000% 1.463 x105 ---- 

VT + Image Registration 33.452% 4.895x104 66.54% 

VT + retrieved images 

ranking+ Image Registration 
4.115% 6.029x103 95.88% 

KNN classification +  VT + 

retrieved images ranking+ 

Image Registration 

0.042% 3.548x103 97.57% 
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Chapter 6 
 

Conclusion 
 

 The main contribution of this thesis was the use of Vocabulary Trees in the search of 

retinal images belonging to the same patient and eye of a retinal image being queried in a large 

database. Although VTs are widely used in large image databases, their use with retinal images 

was found to be an unexplored issue. Therefore, this thesis contributes with a novel approach 

for retinal image database search. The significant efficiency of VTs in image analysis and 

classification were the main motivation for the use of these database search structures in this 

work. Two different types of methods for image representation in the VTs were studied. Fractal 

Dimension and WEF descriptor computation methods were studied due to the fact these 

descriptors are used in retina-based person identification methods. This means that they enable 

an efficient retinal image representation, which is a crucial aspect in this work. Apart from the 

FD and WEF methods, SIFT and SURF descriptor computation methods were also studied. The 

use of these descriptors with VTs is referred in the literature with excellent performance results. 

Besides this, they enable the computation of a different type of descriptors. These methods 

detect interest points in the image and represent them with descriptors that are invariant to 

several conditions related to image acquisition, such as image rotation, scale and illumination.  

  The retina vessel tree is the biometric feature considered in this work, which enables to 

distinguish retinal images from the same individual from retinal images from different people. 

This biometric feature is unique for each person and usually do not suffer modifications through 

time. However, it was found that some eye pathology characteristic lesions could introduce 

modifications in the vascular tree. Since the target application which was the main motivation 

for the development of this work is an automated clinical support decision software for eye 

pathologies detection and monitoring, it was studied the effect of AMD and DR characteristic 

lesions, two of the most common eye pathologies, on the image retrieval performance by using 

different descriptor computation methods. Fractal Dimension and WEF descriptors were found 

to be the most robust methods to represent retinal images with eye lesions, mainly due to the 

fact they are computed from the binary retina vessel tree image. In this way, the eye lesions 

effect in the retina vascular tree is not so evident as in the retinal image.  

In order to use the proposed algorithm in a real-time application environment the retina-

based identification method used needs to be optimized, which was out of the scope of this 

thesis. Even so, the developed algorithm that this document addresses represents a contribution 

to retinal image retrieval for the identification of images belonging to the same individual of the 

one being queried, whose performance was demonstrated by the already discussed results. 

 The VT search with VT built with Fractal Dimension descriptors proved to be highly 

efficient in the retrieval of images belonging to the same patient of an image being queried. As 
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previously mentioned in this work, the final algorithm includes not only the VT image retrieval 

but also the retrieved images ranking accordingly to their similarity to the one being queried. 

Moreover, an initial KNN classification is performed and in nearly 55% cases it is enough for 

the correct image retrieval. The final algorithm proposed in this thesis, which is carefully 

described in Chapter 5- Results and Discussion, enables the retrieval of database images 

belonging to the same patient of the query image with a 98.79% efficiency performance and 

representing a 97.57% computation time reduction when compared to the use of retina-based 

person identification method solely.  
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Chapter 7 

Future Work 
 

 The selection in a large retinal image database of the most similar images to a query 

retinal image is a problem for which there is not any significant proposed solution in the 

literature. Considering the fact this is an unexplored issue, future research for the development 

of a different solution from the one proposed in this work would be interesting. 

 Even considering this proposed algorithm, several other image feature computation 

methods could be implemented for retinal image accurate representation. Other Vocabulary 

Tree search techniques could as well be studied to improve either the image retrieval efficiency 

and the overall computation time of the algorithm. 

 The main aspect that needs to be addressed in order to adjust the proposed algorithm to 

a real-time application is the retina-based method used to verify whether two retinal images 

belong in fact to the same individual and eye. In this work, image registration was implemented 

since it enables an efficient identification of correct matches between pairs of retinal images. 

Although efficient, a less computationally complex method must be implemented to make it 

feasible to use this algorithm in a real-time application.  
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Appendix A 
 

A.1. FD Descriptor Computation Method Flowchart  
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A.2. WEf Descriptor Computation Method Flowchart  

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 – Decomposition in L 

wavelet levels 

for k=1….n 

3- Computation of the 

horizontal (m=1), vertical 

(m=2) and diagonal (m=3) 

coefficient subimages 

4- Image Partitioning in n 

blocks 

5- Wavelet Direccional 

Energy Emk 

Computation 

6- Computation of the Descriptor 

Vector Vmk=[E1, E2, E3] 

association to block k. 

1 - Vascular Tree Extraction 

for m=1:3 

Em2 Em1 

Em Em

4 

for L=1..l 



81 
 

A.3. SIFT Descriptor Computation Method Flowchart  
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A.4. SURF Descriptor Computation Method Flowchart  
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