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”I’m reaching for the random or whatever will bewilder me.

Following our will and wind we may just go where no one’s been.

We’ll ride the spiral to the end and may just go where no one’s been.

Spiral out. Keep going.”

—Tool, in Lateralus
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The purpose of this thesis was to identify the role of interhemispherical connections

in resting-state functional connectivity. Studying brain function in resting-state

gives insight into patterns in anatomical connectivity and is increasingly impor-

tant both as a proxy measure for structural connectivity and as a biomarker for

brain changes in disease. We used the Kuramoto Model of Time Delays and Cou-

pled Oscillators to evaluate the effect of reducing the strength of interhemispheric

connections on the functional network of the brain, both with and without pre-

serving the Anterior Commissure. Our findings indicate a monotonic reduction in

interhemispheric functional connectivity as the strength of structural connections

diminish, an increase of intrahemispheric connectivity as the strength of struc-

tural connections diminish below 40% of their original value and a unmistakable

preservation of functional connectivity after total interhemispheric section when

the anterior commissure is preserved, albeit with important quantitative changes

in the network. These results present one more step in the way towards complete

understanding of human brain.
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O objectivo desta tese foi a identificação do impacto das ligações inter-hemisféricas

na conectividade funcional em estado de repouso. O estudo da função cerebral em

estado de repouso permite a compreensão de padrões na conectividade anatómica e

é cada vez mais importante, quer como uma medida indirecta da conectividade es-

trutural e como um biomarcador de alterações cerebrais em doena. Neste trabalho

usamos o modelo de Kuramoto com atrasos temporais e osciladores acoplados para

avaliar o efeito de reduzir a força de ligações inter-hemisféricas na rede funcional

do cérebro, com preservação e secção da comissura anterior. Os nossos resultados

indicam uma redução monotónica na conectividade funcional inter-hemisférica à

medida que a força das ligações estruturais diminui, um aumento na conectividade

intra-hemisférica quando a força as ligações estruturais diminui abaixo de 40% do

seu valor original e preservação da conectividade funcional após secção total das

ligações inter-hemisféricas quando a comissura anterior é preservada, apesar de

que, com elevadas mudanças qualitativas na rede. Estes resultados são mais um

passo no caminho para a total compreensão do cérebro humano.
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Chapter 1

Introduction

Studying brain function during rest in the absence of task demands has proven

to be a valuable tool for characterization of spontaneous brain functional struc-

ture.This is refered to as resting-state functional connectivity and reveals inter-

actions between various brain regions showing correlations in spontaneous brain

activity in the absence of external stimuli or task demands. This reflects patterns

in anatomical connectivity and is increasingly important both as a proxy measure

for structural connectivity and as a biomarker for brain changes in disease. How-

ever, to understand the relationship between changes in functional connectivity

and physiological changes in the brain tissue we need to investigate how the phys-

ical integrity of the brain influences the correlations in functional connectivity.

In this work, we evaluate the effect of reducing the strength of interhemispheric

connections on the functional network of the brain, both with and without pre-

serving the anterior commissure. With this we hope to shed light on the role of

interhemispherical connections in resting-state functional connectivity.

1.1 Motivation And Goals

A complete understanding of the human brain is one of the greatest challenges

facing modern science. We have reached a point where we know more about

the human brain than ever before but still not enough by far. Recent advances

in imaging technology have brought us answers, but multiple questions as well,

as is often the case in science. This has led to an unprecedented international

1



Chapter 1. Introduction 2

push towards fully comprehending this most complex of organs in what could be

described as our generations race to the moon.

However if we truly wish to achieve this goal a method of simplifying the over-

whelming complexity of brain dynamics must be used. A possible approach would

be to model the human brain, using abstraction to reduce the cortical network to

a tractable approximation capable of providing further insight into the laws gov-

erning the cerebrum. Indeed, such models have already been used to successfully

reproduce features of macroscopic cortical dynamics. With this in mind, we used

the Kuramoto Model of Phase Oscillators and Time Delays [1] in order to generate

interpretable data from neural simulations.

In this work, we set out with the objective of providing further insight into the

role that structural connections between hemispheres play in normal brain func-

tion. Dysfunction in these interhemispherical connections are related to multiple

pathologies further incentivizing research in this subject. To this end, we simu-

lated various states of structural damage, from intact to complete section of these

interhemispheric connections.

1.2 Thesis Structure

This thesis is divided into 6 distinct chapters, where each chapter is divided into

sections and sub-sections. This chapter provides a general introduction of this

work. It is followed by a brief overview of the theoretical concepts needed to

understand our research, as well a description of relevant previous studies. In the

third chapter we introduce the methodology that was followed in this work. In the

fourth we present the results we obtained and discuss them in chapter five. The

final chapter concludes this work with a review of our results, conclusions as well

as sugestions for future work.



Chapter 2

Theoretical Background

In this chapter we review the theoretical basis of this work. We begin with an illus-

tration of the brains networks, both relative to structure and function, its activity

during rest and all necessary introductory concepts to fully understand the the-

sis. This is then followed by an overview of the best understood interhemispheric

connections, the Corpus Callosum and the Anterior Commissure, describing their

anatomy and the most common pathologies they are affected by. This chapter

ends with a detailed description of the model used to simulate the human brain.

The importance of models like this cannot be understated, as with such tools we

have a means of exploring neural processes in ways that are simply not possible

in vivo and with virtually no monetary cost.

2.1 Structural and Functional Connectivity

The understanding of the human brain has been a long-lasting goal for the scien-

tific community ever since the first anatomical studies were performed. Anatomi-

cal studies of ever-increasing complexity have allowed for a remarkable wealth of

knowledge on the brain's structural organization. We now recognize the brain as a

complex network of distinct brain areas with specialized functions communicating

through axonal fibers.

Despite this, our understanding of the mechanisms leading to its function has

lagged behind. This is so because the brain is responsible for a variety of tasks

despite a fixed anatomy, a characteristic that distinguishes it from the remaining

3
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organs which present a 1:1 ratio of anatomy to function. Sporns [2] suggests that

valuable insight into this problem may be gathered by furthering our understand-

ing on the organization of the neuro-anatomical network. Indeed, recent studies

indicate that the coordination required for functional integration may arise from

the brain’s network architecture [3] [4].

This brought to light the need to understand the relationship between structural

networks (connectivity), the physical connections between neural regions, and

functional connectivity, the patterns of dynamic interactions [5]. Research shows

that the underlying structural connectivity influences resting-state functional con-

nectivity [6] [7]. Resting-state describes a wakeful brain in the absence of tasks

and will be further described in the Functional Connectivity subsection. However,

while a physical link between two regions predicts functional connectivity, func-

tional connectivity has been found to exist without direct structural connection [8]

which suggests these to be mediated by indirect anatomical connections. A study

by Hae-Jeong Park and Karl Friston [9] underlines the need for computational

models of neural network dynamics to investigate these relationships. In this work

we have used one such model to infer the alterations in resting-state functional

connectivity caused by various degrees of loss in interhemispherical connectivity.

Figure 2.1: Diagram illustrating how computational models can serve to explore the relationship
between anatomical structural networks and resting functional networks. The red line indicates com-
parison and the dashed line implies the need for feedback of the model's performance in order to
fine-tune its parameters. The red cross simbolizes the lack of a direct comparison between structural

and functional connectivity. Adapted from Cabral et al. [10]

.

In the following subsections, we will further describe structural and functional

connectivity and how these networks are constructed.

2.1.1 Structural Networks

In order to accurately simulate the human brain its structural connectivity network

must be mapped [12] [13]. This map of the brain's anatomical connectivity is

known as the connectome. To map the cerebral cortex, a complex network believed
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Figure 2.2: Basic workflow for extracting brain networks from neurological data. Adapted from
Sporns [11].

to contain at least 1010 neurons, would be a herculean task but by focusing on the

large-scale connections between cortical regions a map of the structural network

becomes viable. This network would then contain a “blueprint” of the brain's

organization, the major connections between neural regions that are the basis for

communication in the brain.

Such a map of the brain's structural connectivity is only possible due to advances

in noninvasive neuroimaging, with such a major leap forward that sparked the

Human Connectome Project (www.humanconnectomeproject.org) and the Human

Brain Project (www.humanbrainproject.eu) two international initiatives dedicated

to establishing the largest possible library of neural information. Two techniques

are the basis for creating the connectome, brain parcellation, and Diffusion Tensor

Imaging (DTI) [14], as represented in fig. 2.2 ((1) and (2,left)).

The first step is to divide gray matter using brain parcellation, which is done

according to a plan with the guidelines for determining partition between areas,

the parcellation scheme. There are multiple versions of such templates described

in literature [15], with various partition strategies, from traditional separation

into lobes to division into several thousand regions of interest. Once a suitable

parcellation scheme is selected, the number of fiber tracts, detected by DTI and
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tractography, connecting regions are counted by computational algorithms, thus

creating a connection matrix between the regions of interest (fig.2.3).

Figure 2.3: Building a 3-D structural network from the brains anatomical coupling architecture.
Adapted from Cabral et al. [10].

DTI is a diffusion MRI method, a procedure that measures diffusion of water

molecules in the brain. In an unrestricted environment water diffuses equally

in all directions (isotropic diffusion). However, the brain presents a restricted

environment where barriers, such as cell membranes, cause water to diffuse more

readily in the direction of axons than perpendicular to their membrane. This

uneven diffusion (anisotropic diffusion) allows DTI to infer the orientation of white

matter tracts in the brain by measuring the strength and direction of the diffusion

in each voxel. Then the fiber tracts are detected by estimating their trajectories

using tractography.

Figure 2.4: White matter fibres detected in vivo using Diffusion MRI. Images adapted from the gallery
of the Connectome Project (www.humanconnectomeproject.org)

The resulting brain connectivity data can be represented in matrices, the Struc-

tural Connectivity matrix,Cnp, (fig. 2.2, (3,left)) and the length matrix, Lnp. For a
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network with N cortical regions the matrices present N columns and N rows, where

each entry corresponds to either the weight of connectivity Cnp, proportional to

the number of fibers detected, or the distance Lnp between region n and region p.

These matrices are further described in Modeling the Human Brain.

2.1.2 Functional Networks

As previously mentioned, functional connectivity reflects patterns of dynamic in-

teractions between cortical regions [11] [5]. These dynamic interactions are rep-

resented in the statistical dependence of the activity of those regions and provide

an indicator of cognitive function. In contrast to structural connectivity which is

generally stable, functional networks are time-dependent, where the rapid recon-

figurations are an indicator of a temporary brain state in which two separate areas

share the same dynamic [3].

Functional networks are commonly derived from time-series data which can be ob-

tained using multiple techniques such as electroencephalography (EEG), magneto-

encephalography (MEG) and functional magnetic resonance imaging (fMRI) (fig.

2.2, (2,right)). Functional MRI in particular merits further discussion as it was

the method through which the data used in this study was obtained. This tech-

nique has an indentical procedure to MRI, where, while MRI relies on the water

molecules hydrogen nuclei, for fMRI the basic measure is the change in magne-

tization between high and low oxygen concentration in the blood. It does so by

measuring the income of oxygen-rich blood to a determined cortical region, im-

proving the magnetization of that region due to a reduction on the concentration

of the paramagnetic deoxygenated haemoglobin (dHb) [16]. Because of this fMRI

provides an indirect assessment on the activation of neural areas as it is the increase

in oxygen-rich blood that is measured and not the real activation [17]. The changes

in magnetization are detected across the brain by using the blood-oxygen-level-

dependent contrast (BOLD) which is an acquisition method that increases the

effect of dHb developed by Ogawa et al. [18]. Because dHb is a naturally present

contrasting agent there is no need for invasive procedures to prepare for fMRI.

There are two commonly used variations on fMRI, task-fMRI (T-fMRI) where a

specific task is performed by the subjects and resting-state fMRI (R-fMRI) where

the subject is awake, resting (fig. 2.5) [7].



Chapter 2. Theoretical Background 8

Figure 2.5: Schematic of the workflow of a resting-state fMRI study. (A) BOLD fMRI signal of a
resting and awake subject is measured throughout the study. (B) The seed region of interest is chosen,
possibly through conventional T-fMRI. (C) To determine functional connectivity between two regions
the seed voxel is correlated with the target voxel. (D) The functional connectivity map is created by
correlating the seed voxel with all other voxels in the brain, displaying all the regions that display high
functional connectivity (high correlation) with the seed region. Adapted from Heuvel and Hulshoff [7].

Task-fMRI studies are typically used in activation studies, obtaining activation

maps of average engagement of different cortical regions during the study by com-

paring the changes in neural activity induced by the test task, by the control task

and the baseline, or resting-state (fig 2.6)[19]. However, both task and resting-

state fMRI data can be used for studying functional connectivity, revealing the

organization of several neural regions into large-scale networks, both in the pres-

ence, and absence, of a task response [20].

Figure 2.6: Scheme of how increases and decreases in activation are interpreted from T-fMRI data.
Adapted from Gusnard and Raichle [19].

Regarding functional connectivity studies, T-fMRI and R-fMRI serve two distinct

purposes. T-fMRI is used to study the functional connectivity from a source (or

seed) region to another target region, as those regions are responsible for the brain

function linked to the specific task demands, whereas R-fMRI focuses on functional

communication networks within the brain during rest (resting-state). The most
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common method to evaluate functional connectivity from resting-state is to deter-

mine the Pearson correlation between BOLD signals of two distinct regions. With

this method a high correlation coefficient represents functional connection which

occurs if the activation and deactivation of those regions is synchronized. With

this correlation data the functional connectivity matrix is then constructed where

each line displays the correlation of the BOLD signal between a individual region

and all the remaining regions. This matrix has the same size as the structural ma-

trix, where for a network with N cortical regions the matrix presents N columns

and N rows (fig.2.2, (3, right)).

With this we need to further review what resting-state is, as the data used in this

work is resting-state functional connectivity. An individual is considered to be at

rest when no specific physical or mental tasks are performed while in a wakeful

state. Despite being at rest, in this state the brain remains active, with clear

organized neural activations, also known as resting-state functional connectivity.

This was first proved in a study by Biswall et al. [21], where they presented high

correlation between the BOLD signals of the primary motor network regions of

both hemispheres during rest. Since then multiple studies have replicated and

expanded upon these results, recognizing that the brain is not idle in this state,

but rather shows spontaneous networks of highly correlated brain regions. Some

of these correlations fluctuate in time and are present in wakeful rest, vanishing

as a task is triggered or as the person falls asleep [22].

The idea that these networks are neural based and not artifacts or manifestations

of other patterns produced by cardiac or respiratory cycles is supported by a high

consistency of the results across multiple imaging methods, by the fact that the

resting-state functional networks detected usually overlap with known functional

networks detected during task related neural activity and the domination of lower

frequencies (<0.1 Hz) in BOLD signals which are independent from heartbeat and

respiratory frequencies [7].
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Figure 2.7: Resting state networks that are consistently found across multiple studies with different
subject groups. Adapted from Heuvel and Hulshoff [7].

In the next section, we provide a description of interhemispherical connections,

namely the best understood interhemispheric fiber tracts, the Corpus Callosum

and the Anterior Commissure, and contextualize some of the relevant research on

this topic that has been done to date.

2.2 Overview of the Interhemispheric Connec-

tions

Interhemispherical connections are constituted by multiple fiber bundles, the most

prominent and best understood of which are the Corpus Callosum and the Ante-

rior Commissure. The Anterior Commissure connects both hemispheres, crossing

through the lamina terminalis, and is located in the anterior portion of the columns

of the fornix [23]. Most nerve fibers connecting the hemispheres cross via the Cor-

pus Callosum, but a small number alternatively pass through this fiber bundle,

connecting the olfactory bulbs, olfactory nuclei, and the middle and inferior tem-

poral gyri [15]. Thus, the pursuit for a greater understanding on the importance

of interhemispheric connections would be fruitless without detailed and compre-

hensive knowledge about the structure containing the great majority of fibers

connecting the left and right hemispheres, the Corpus Callosum (CC). It is by far

the largest white matter tract in the human brain, consisting of approximately 190

million axons [24] and although at one point believed to serve no purpose other
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than to keep both hemispheres from toppling onto each other [25], its importance

has long since been recognized and is now believed to play an important role in

cognition and is object of extensive research [26].

Located in the center of the human brain between hemispheres, the CC is topo-

graphically organized, that is to say arranged in such a way that groups of adjacent

fibers connect a particular cortical area [27]. In order to provide anatomical de-

scription it is generally organized in four broad regions: genu or anterior bulbar

end, the splenium or posterior rounded end, the isthmus or the area anterior to

the splenium, and the body or the area between the genu and isthmus, as seen

in fig.2.8. Regarding the white matter fibers that constitute each of these areas

the genu and the anterior splenium are composed of high-density thin fibers, with

low myelination and slow conduction, whereas, in the posterior splenium, exist

large, highly myelinated and fast-conducting fibers [28]. The body is made of fast-

conducting medium sized fibers that grow larger and more myelinated from the

anterior end up to the posterior end, whereas the isthmus has a fiber organization

that contradicts this pattern, being composed of smaller fibers than the ones in

the posterior end of the body [28].

Figure 2.8: Schematic view of corpus callosum with the different subregions of the CC for nomencla-
ture. Adapted from Aboitiz et al. [28].

Figure 2.9: Scheme of a cross-section of the human corpus callosum illustrating the spatial distribution
of fibers according to their diameter. Adapted from Aboitiz et al. [28].
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Each of these areas associate specific regions, the genu connects the prefrontal asso-

ciation areas and the anterior inferior parietal regions [29] [30], the body connects

premotor, supplementary and primary motor areas, and the isthmus connects pri-

mary motor as well as primary sensory areas [29] [31]. Lastly the anterior end of

the splenium connects association areas of the parietal and temporal lobes and the

posterior end links the occipital lobes.

Despite possessing both homotopic connectivity (connectivity from a region to

its contralateral homolog) and heterotopic connectivity, the majority of fibers in

the Corpus Callosum connect homotopic areas. In previous work, Stark et al. [32]

studied the distribution of the correlation between such connections across the hu-

man brain using resting-state fMRI data from 62 healthy individuals. In their work

they report correlation between homotopic connections to be significantly higher

than nonhomotopic ones (intra and interhemispheric connections) [32]. With their

study, Stark et al. [32] also found interhemispheric correlation to vary from region

to region, with the highest correlation among homotopic connections to be for the

primary sensory and motor cortices. The distribution of the average homotopic

correlation is presented in fig. 2.10.

The Corpus Callosum, like any structure in the human body is subject to multi-

ple pathologies that alter or impair its function. These can have multiple origins,

ranging from myelination disorders, both hereditary (Krabbe’s disease) and in-

flammatory (Multiple sclerosis), to trauma (Diffuse Axonal Injury) and to rare

toxic pathologies (Marchiafava−Bignami) [33] [34].

Out of all pathologies however, callosal malformations are by far the most relevant

to the understanding of this fiber tract. Callosal agenesis in particular provides a

unique window to comprehend the CC. In the next section we will describe these

congenital pathologies and their impact on brain function.

2.2.1 Congenital Pathologies of the Corpus Callosum

Normal development of the human CC begins after 10-13 weeks post conception

and the development is completed within the first 4 years of life. However this is

not infallible, with many problems liable to occur during this period, resulting in

callosal malformations. These pathologies are referred to as congenital and include
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Figure 2.10: Tukey box-and-whiskers plots showing the distribution of interhemispheric correlations
for all 56 homotopic regions across subjects (vertical line, median; box, interquartile range; whiskers, 1.5
times the interquartile range; closed circles, individual values lying outside 1.5 times the interquartile

range). Adapted from Stark et al. [32].

agenesis (partial or complete absence of the CC), dysgenesis (malformation of CC),

and hypoplasia (abnormality in CC).

As it is impossible to know how many of these remain undiagnosed, the incidence

of such pathologies is hard to estimate but recent studies suggest a prevalence of

3-7 per 1000 births [33].

Out of the congenital pathologies the most studied remains the agenesis of the CC

(AgCC). This malformation presents an exceptional opportunity to further our

understanding of the CC, as its absence should shed light on CC functionality in an

analogous manner to the knockout gene model. However a paradox soon surfaced,

discovered by Roger Sperry, Nobel Prize winner in 1981. While patients with

AgCC presented preserved interhemispheric communications, split brain subjects

(subjects who underwent surgical transection of the corpus callosum) had no such

capability, in fact, developing the disconnection syndrome, a condition caused by

absence of information transfer between hemispheres. While this paradox is not

yet fully understood a recent study shows that brain rewiring via anomalous fiber



Chapter 2. Theoretical Background 14

Figure 2.11: MR coronal image (a) and MR axial image (b) fluid-attenuated inversion recovery images
show complete agenesis of the corpus callosum. Adapted from Fitsiori et al. [33].

tracts connecting both hemispheres explains the preservation of interhemispheric

integration in AgCC [35].

These expectations are supported by the work of Owen et al. [36] where DTI

studies indicate a rearrangement of interhemispheric connections in AgCC indi-

viduals. They also show higher variability in the structural connectome of AgCC

subjects than controls. Further work by Owen et al. [36] expands on the ef-

fects of AgCC on functional networks. They found that while qualitatively these

networks presented almost no variation from the controls (fig. 2.12) quantitative

measures found greatly reduced functional connectivity in some intra-hemispheric

and interhemispheric networks in subjects with AgCC (fig. 2.13).

Figure 2.12: Qualitative comparison of two Resting-state state networks between AgCC and control.
Adapted from Owen et al. [36].
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Figure 2.13: Quantitative differences of functional connectivity in AgCC versus controls for the same
networks presented in fig. 2.12. Adapted from Owen et al. [36].

Another finding reports greater variability of functional connectivity for AgCC

individuals (Table 2.1) than control [36], a result supported by the work described

in the above paragraph where the same was true for the structural connectivity.

Table 2.1: Edge space similarity. The increased variability of functional connectivity among AgCC
individuals suggests rerouting of interhemispheric connections differs from person to person. Adapted

from Owen et al. [36].

O'Reilly et al. [37] also investigated the effects of interhemispheric disconnection

on functional networks, although focusing on the effects of sectioning the CC and

Anterior Commissure on rhesus monkeys as opposed to studying AgCC individ-

uals. Their results indicate a significant reduction in interhemispheric functional

connectivity (fig. 2.14), both quantitative and qualitative, whereas Owen et al.

[36] found the network qualitatively intact in AgCC.

The work of O'Reilly et al. [37] also supports the influence of commissures, other

than the CC, on the cortical functional network. In fact they found that sectioning

the CC but sparing the Anterior Commissure lead to preservation of interhemi-

spherical connectivity (fig. 2.15). Indeed this result is in agreement with a prior
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Figure 2.14: (A, B) Connectivity matrices for pre-section and post-section. Matrices are presented so
that the main diagonal shows the correlation of each region with itself, the upper left and lower right
quadrants show correlations within hemispheres, and the lower left and upper right quadrants show
interhemispheric connectivity. (C) Fishers z correlation between homotopic regions. The shaded area
is the mean 2 SD for a group of 18 control monkeys. In blue is depicted data from pre-section subject,
post-section in full red and post-section with the AC spared in open red circles. (D) Location of the
connectivity blocks that match the colored key above and beside each matrix. Adapted from OReilly

et al. [37].

structural MR imaging study which shows an enlargement of the Anterior Com-

missure in 10% of AgCC individuals [38].

Figure 2.15: Connectivity matrices for pre-section and post-section for three different monkeys. The
AC was sectioned in all subjects but (C). Matrices are presented in the same manner as in Fig. 14.

Adapted from OReilly et al. [37].

Another important result from the research of O'Reilly et al. [37] shows an in-

crease in intrahemispheric functional connectivity after CC+AC section and a

small decrease for the same network in the case of CC only section (figs. 2.14 and

2.15). This last result seems to support the results of reduced intra-hemispheric

functional connectivity in AgCC by Owen et al. [36].
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All in all, these findings seem to validate the idea that, while the CC is responsible

for most hemisphere to hemisphere connections in the healthy brain, the remaining

commissures are capable of preserving its functions in its absence. In the next

section we will review the model used to simulate the human brain.

2.3 Modeling the Human Brain

Over the last few years, we have watched a definitive trend towards obtaining

experimental data via computer simulations. This has been the case as empirical

tests become ever more costly and can be impractical as in the case of exploring

the human brain's dynamics in vivo. As such many models have been developed

and explored, namely the FitzHugh-Nagumo model, the Wilson-Cowan model

and the Kuramoto model [10]. Models of this kind use abstraction (assumptions

regarding the intrinsic spontaneous behavior of neural populations) to create a

brain-inspired connectome, enabling a tractable neural network at the cost of

lower spacial resolution.

With this in mind we chose this method of exploration with the goal of studying the

effects of disconnecting the brain's hemispheres in incremental values, a difficult

task using only empirical data. We achieved this by using a computational brain

model developed recently which, although relatively simple to program, is capable

of replicating large-scale neural network dynamics accurately, modeling human

brain dynamics under rest and task conditions [1] [10] [39]. This model is based

on the Kuramoto model and uses empirically obtained brain anatomical variables

(connectivity patterns and grey matter sizes). We will review this model in full in

this section.

2.3.1 Phase-oscillators

Before we begin describing the model used, the Kuramoto model of coupled os-

cillators and time delays, it is vital that the concept of oscillator is fully clarified.

In general terms an oscillator is a system where the dynamics is represented by a

single variable that varies over time and along a circular trajectory. Because this

trajectory is a circle the variable in question has a determined range of possible
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values and will return to the initial value after completing the loop. For conve-

nience the periodic trajectory is often represented on the unit-circle. One of the

possible variables used to describe the dynamics is the phase, which describes the

position of any point in the periodic loop relative to a reference point. This is a

variable that can be used in any oscillator model and is of great significance in

this work as it is the one used in the Kuramoto model.

Figure 2.16: Fireflies as an example of system plausibly modeled by a phase oscilla-
tor.(https://www.learner.org/courses/mathilluminated/units/12/textbook/05.php)

The Kuramoto model is a network of phase-oscillators, with possible values in the

[−π, π] space. In the Kuramoto model the phase allows us to determine whether

that oscillator is in synchrony with any other target oscillator by checking whether

phase-lock was achieved. The evolution of the oscillators phase over time is de-

scribed by ω0, the oscillators natural frequency, which can be determined by:

dθ

dt
= ω0 (2.1)

Next we will describe how the Kuramoto model can be used to represent brain

dynamics.

2.3.2 The Kuramoto Model of Coupled Oscillators with

Time Delays

As the title indicates, in this section we will describe the Kuramoto model of

coupled oscillators with time delays, the model we used in this work to simulate

the complex dynamics of the human brain. The version of the model we will review

here was first developed by Cabral et al. [1], where it was shown to successfully

simulate neural activity with a network of phase-oscillators.
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Figure 2.17: Schematic representation of two coupled phase oscillators. When phase locked, oscillator
2 leads oscillator 1 by a phase angle θ. Adapted from Bertrams lecture: Synchronization and Phase

Oscillators.

As mentioned in the previous section on phase-oscillators, the Kuramoto model

uses these as nodes, where each node represents a network of neurons, considered

to be of homogeneous internal structure in the study we are reviewing. This

approach was proven to be a valid representation of cortical rhythms as suggested

by numerous studies, most notably in the works of Bartos et al.[40], Brunel and

Wang [41] and Borgers and Koppell [42] where local neural networks have been

shown to present gamma oscillations. The equation developed by Cabral et al [1]

to simulate this network is as follows:

dθn
dt

= ωn + k
N∑
p=1

Cnpsin(θp(t− τnp)− θn(t)) + ηn(t) (2.2)

1) θn is the phase of the target oscillator (θp is the source) and their coupling

is a periodic function, the sin;

2) ωn is the target oscillators natural frequency;

3) k is the global coupling strength of the network, a measure of how strong

the networks connections are;

4) Cnp is the connectivity matrix, containing the connection strength between

any two nodes;

5) Lnp is the length matrix, containing the distance between any two nodes;

6) τnp is the time-delay matrix, with the delay between the connections of any

two nodes. This parameter is given by τnp = Lnp

ν
= τ.Lnp

L
, where v is the
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connection speed, L is the mean fiber length and τ the mean delay of the

network;

7) Finally, ηn(t) represents the noise factor in the network.

This model represents the nodes influence on one another as a periodic function,

the sine of the phase difference between two oscillators.

The first parameter shown in the equation above is ωn, the oscillators intrinsic

frequency that describes the natural evolution of its phase in the absence of ex-

ternal inputs, as described in the previous section. For this Cabral et al. [1] used

a mean of 60Hz, assigned to each node according to a Gaussian distribution with

standard deviation σf , as it was shown to be a plausible value for the resting-state

dynamics [40] [41] [42].

Another concept needed to understand the model's functioning is the brain con-

nectome, which was previously described in the Structural Networks section of

this work, but for clarity purposes a brief summary will be provided here. The

brain connectome used by Cabral et al [1] is built of both tractography data and

brain parcelation. With brain parcelation various independent cortical regions are

identified, in this case 66 different areas were created by the parcelation scheme

[43].

From tractography data two matrices were obtained. One is the connection

strength matrix, represented above as Cnp, that contains data of the relative

strength of connection between any source (p) and target (n) nodes (phase-oscillators).

This is done by using the strength of tracts detected connecting both nodes. Al-

though by this description it would seem that Cnp is symmetrical it is important

to note that this is not the case. This arises as the connection strength of any

two nodes is calculated by dividing the total number of white matter tracts in-

coming to a node by the size of the region that node represents as determined

by parcelation. Because the size differs from region to region in the network this

results in a non-symmetric Cnp, where the connection from p to n is different from

n to p. Such a method of calculating the connection strength needs to be taken

as the model needs to reflect the fact that a larger cortical region has more effect

on a smaller one than in the reversed scenario [1]. With this approach, the higher

the ratio of incoming axons to size, the stronger the connection to that area and,
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Figure 2.18: Structural connectome as developed by Cabral et al. [1]. (A) Connectivity matrix.
(B) Fiber length matrix. Both matrices are arranged such that corresponding contra-lateral regions
are symmetrically arranged with respect to the matrix center, the anti-diagonal revealing the existing
connections between these contra-lateral regions. (C) Cortical region index. Adapted from Cabral et

al. [1].

as consequence, its intrinsic activity is more strongly influenced by the external

input.

The connectivity matrix, Cnp, has a fixed structure and thus, the primary means

of modulating this parameter was done through the global coupling weight of the

network, represented in the equation as k. This global coupling weight is then

very important as a free variable of the Kuramoto model, as it allows control

over the scaling of connectivity strength and, as such, has been subject to an

extensive exploration of its parameter space in the work we are reviewing. Their

conclusions will be discussed after the theoretical background of the model has

been fully detailed, in the next section of this chapter. Our own study of its

parameter space will be presented in the Methods chapter.

The second matrix is the length matrix Lnp, containing the information of fiber

lengths connecting nodes p and n and thus the distances between them as well.

This was calculated from tractography data as an average of the length of all

fiber tracts connecting two nodes, with the intra-region lengths being set to 0.

This data enters in the model equation show in (2.2) in the form of the time-

delay, a parameter that describes the non-instantaneous nature of physiological

connections. Unsurprisingly taking this into account is of vital importance in

assuring the validity of a model of large-scale brain dynamics, where axons have
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limited transmission speed, and variable axon myelination and synaptic processes

impact the overall speed of the connection. This time-delay in the connection

between two nodes is constructed with the mean length of fibers between those

nodes of Lnp, as mentioned, and conduction velocity v in the following manner:

τnp =
Lnp
ν

=
τ.Lnp
L

(2.3)

This equation gives a delay matrix for the network, τnp, with Cabral et al [1]

choosing a value for v that is physiologically plausible as this parameter cannot

be accurately determined. The value for v is given by v = L/τ , where τ is the

mean delay and L the mean fiber length. With the mean delay τ there is a factor

that can scale the delays we impose on the network as a whole, meaning that this

is another important free parameter of the Kuramoto model. Much like k we will

review the exploration of its parameter space in the next section, whereas our own

study is presented in the Methods chapter.

Figure 2.19: Graphical representation of three interacting oscillators with delayed coupling. (Bot-
tom) Set of 3 coupled phase oscillators, with delayed interactions Tnp, where the angle on the circle
represents the phase on the limit cycle of self-sustained neuronal oscillations. (Top) Example of 3 time

series obtained from sin(n(t)). Adapted from Cabral et al. [44].

To finalize, there is the noise parameter,ηn(t), which represents frequency dis-

persion and noise, contributing to a more accurate representation of the brains

dynamics. For this Cabral et al. [1] used uncorrelated Gaussian white noise with

zero mean and variance σn in radians. These are the final free parameters and

their parameter space was investigated in the study and will be reviewed in the

next sub-section.
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2.3.3 Simulated Network Dynamics

As mentioned, all the results will be reviewed in this sub-section, but first there is

need to understand how they were obtained and measured. The most important

variables through which we can describe the evolution of the network dynamics

over time are the Order Parameters. These measure global network synchrony and

were first derived by Kuramoto:

R(t)eiφ(t) =
1

N

N∑
n=1

eiθn(t) (2.4)

The Order parameters R(t) and φ(t) measure the phase uniformity and the move-

ment of the oscillators around the limit circle respectively. R(t) in particular is

very useful when characterizing the networks dynamics as it can describe any state

between a fully synchronized network, with R(t) = 1, and an incoherent state of

the network where all the oscillators are desynchronized, for R(t) = 0.

The order parameter R(t) also allows for two other descriptors of the global dy-

namics, the average of R(t) simulated over time and its standard deviation. The

first allows for a description of the global synchrony of the network referred to as

Synchrony. The standard deviation of R(t) (hereafter referred to as Metastability)

describes how stable the networks synchronous states are, with high standard de-

viation representing a network with high variation, where synchrony may be high

but never stays so for long. This describes a network with high Metastability [1].

We now know how Cabral et al. [1] simulated and evaluated neural activity with

a network of phase-oscillators but there is still a need to understand how these

results were compared to empirically-obtained results. The first step in this process

is to convert the simulated data into BOLD for which the Balloon-Windkessel

hemodynamic model, as described in Friston et al. [45], was used.

With the hypothesis that the variations in the oscillators phase are the root trigger-

ing the BOLD signal, Cabral et al. [1] used a Balloon-Windkessel model analogue

to a linear filter and their results indicate that the correlations obtained depend

only on the simulated network, i.e. with no influence of the hemodynamic model.

The data they presented to verify these conclusions were adapted into fig. 2.20.
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Figure 2.20: Diagrams representing the minimum value (left) and the maximum value (right) of the
blood flow as a function of the mean delay τ , and the coupling strength, k. The blood flow fluctuates
15% at most. This means that the Balloon model is behaving essentially linearly, proving that the
patterns we observe at the BOLD level come essentially from the network dynamics. Adapted from

Cabral et al. [44]

The BOLD data provided by this model was then filtered to remove the high fre-

quency components of the signal, increasing its physiological precision and elimi-

nating possible incorrect correlations due to these components. For the last step in

obtaining model results comparable to empirical FC Cabral et al.[1] obtained the

BOLD signal for each area and calculated the correlation matrix by doing Pearsons

correlation between paired areas. In doing so the simulated FC was created, and

could be compared by means of a Pearson correlation with the analogous empirical

FC.

Figure 2.21: Flowchart illustrating the workflow from the empirical SC to simulated FC. Adapted
from Cabral et al. [44]

Now we can describe the results obtained by Cabral et al. [1], which show this is a

model capable of effectively simulating functional connectivity at rest. One of the

major results from this study is the relatively small influence of both frequency
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dispersion and noise. In this study they found that the model reacts most sensi-

tively to changes in the (k, τ) plane. Indeed, whether considered simultaneously or

separately, in the physiologically plausible range, the effect of changes to frequency

dispersion and noise were minor and for every parameter combination tested, the

network dynamics were preserved. Therefore, they decided not to include noise or

frequency dispersion in the model.

Another result from this study was in accordance with previous work, where Ace-

bron et al. [46] characterize the network dynamics of the Kuramoto model for a

large number of nodes (N → ∞) as a function of the global coupling k. These

results are illustrated in the fig below in which a critical value of the global cou-

pling (kc) is evident. In this study, Cabral et al. [1] present a similar behavior in

their results with a finite-sized network. For such a network, although R(t) never

exhibits a null value, there is a smooth but significant transition as the global

coupling increases past its critical value (k > kc), where R(t) increases.

Figure 2.22: Order parameter R versus the coupling strength. Adapted from Popovych et al.[47]

Their results were also in agreement with the theoretical study by Lee et al.[48],

indicating that as the mean delay, τnp, increases, the network needs higher coupling

values to maintain synchrony. This result is shown in fig. 2.23.

Figure 2.23: Global dynamics of the mean delay τ and coupling strength parameter space k. Adapted
from Cabral et al. [44].

One additional result shows that R(t) is seldomly found to be stationary. This

indicates constant change in the network, with frequent transitions in the global
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synchrony. Indeed, for a high enough global coupling but still bellow kc it is

revealed that Metastability is at its highest. In this state R(t) exhibits very high

variation and the network dynamics are at their most irregular, a result that agrees

with the work done by Popovitch et al. [47]. As seen in fig. 2.24 this is a region

where dynamic clusters of nodes appear, where a node may be synchronized to a

cluster but not to the rest of the network.

Figure 2.24: Snapshot of node phases for k=2, 18, 60. As k increases nodes go from incoherence (A)
to cluster formation (B) to global synchrony (C). Adapted from Cabral et al. [44].

To finalize, Cabral et al. [1] also show that for the simulation parameters that

maximize the correlation between simulated FC and empirical FC, the correlation

between simulated FC and SC (Structural Connectivity) is high. This suggests

that high Metastability, and SC and empirical FC correlations are all valuable

indicators of the optimal parameter pair (k, t).

To summarize, the Kuramoto model of coupled oscillators here described replicates

large-scale brain dynamics using a network of N oscillators. Each of these is a node

that represents a neural network within a cortical region. It does so by simulating

the variation in phase of a given target node n over time. This variation is affected

by the multiple parameters we used, both intrinsic and extrinsic to the node. The

intrinsic parameter is ωn, the oscillators intrinsic frequency, which represents the

phases natural evolution over time and with no external influences. The first

extrinsic parameter we examined was the connectivity matrix,Cnp, representing

the strength of the connection between any two nodes and, as such, the influence

the source exerts on the target node (if any). The next one was k, the global

coupling weight of the network, which allows for scaling of the total influence that

one node exerts on another and is, as such, an important free variable in this

model. The other important free parameter we used was the mean delay of the

network, τnp, which allows for scaling the delay when two nodes communicate.

As a simplistic example, with no delay, if two nodes had the same phase the source

would exert maximum influence on the target, as sin(0) = 1. By adding delay we
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add frustration to the network, meaning that it is harder for two nodes to achieve

phase-lock (synchronization). This is the case because, assuming two nodes with

equal phases at time t, after taking delay into consideration the target would be

receiving the influence of the source from the time t − τnp , when the source had

a different phase. This scenario would make synchronization harder. As a final

note in this summary the noise parameter was ignored for the reasons explained

above.





Chapter 3

Methods

3.1 Structural connections

The structural connectivity data we used was empirically obtained and described

by Cabral et al. [49]. This data was obtained using the magnetic resonance images

from the brains of 21 healthy contributors (11 males and 10 females, ages: 22−45

years) with the use of diffusion tensor imaging (DTI). Afterwards anatomical con-

nectomes were constructed for each individual using a tractography algorithm and,

with the use of the automated anatomic labelling (AAL) template [50], the entire

brain was parcellated into 90 regions each representing a node in the network.

With this data two 90x90 coupling matrices were created, Cnp, the connectivity

matrix and Lnp, the length matrix. Lnp was calculated as the Euclidean distance

between any two nodes, n and p ,(each of the 90 nodes were placed at the centers

of gravity of the respective brain area), with the intra-region lengths being set to

0. Cnp contains the coupling strengths between any two regions n and p, where

this connection strength is proportional to the number of fibers incoming to region

n and the size of that region obtained from the tractography algorithm. However,

the connectivity matrix is not symmetric as the connection from p to n is different

from n to p (please see Chapter 2 for more detail).

In order to create a matrix capable of reliably representing the anatomical organi-

zation of the cerebral cortex of the whole group, the matrices were averaged across

all subjects. For more detail on the steps necessary to create this data please refer

to Chapter 2.

29



Chapter 3. Methods 30

Figure 3.1: Structural matrix (A), connectome of the intact brain (B) and label for each of the 90
nodes(C).(A) The matrix is arranged so the main diagonal shows the connection of each region with
itself, the upper left and lower right quadrants show the connectivity within hemispheres, and the
lower left and upper right quadrants show interhemispheric connectivity. The source is n and p the
target region. (B) The connectome is an above view of the brain with the frontal lobes closest to the

bottom. The red nodes represent anatomical regions placed at their center of gravity coordinates.

3.2 Modeling Neural Dynamics

In order to simulate spontaneous brain activity we used the Kuramoto model

of coupled oscillators with time delays [1] as described in Chapter 2. But, for

clarity purposes, a much briefer description of the model we used is presented

here. This model represents multiple brain regions as phase oscillators with an

average intrinsic frequency in the gamma-band and describes the relationship of

these oscillators in the network. The Kuramoto model we used is represented in

the following expression:

dθn
dt

= ωn + k

N∑
p=1

Cnpsin(θp(t− τnp)− θn(t)) + ηn(t) (3.1)
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Each variable represents a different characteristic of the network:

1) θn is the phase of the target oscillator (θp is the source) and their coupling

is a periodic function, the sin;

2) ωn is the target oscillators natural frequency;

3) k is the global coupling strength of the network, a measure of how strong

the networks connections are;

4) Cnp is the connectivity matrix, containing the connection strength between

any two nodes;

5) Lnp is the length matrix, containing the distance between any two nodes;

6) τnp is the time-delay matrix, with the delay between the connections of any

two nodes. This parameter is given by τnp = Lnp

ν
= τ.Lnp

L
, where v is the

connection speed, L is the mean fiber length and τ the mean delay of the

network;

7) Finally, ηn(t) represents the noise factor in the network.

The process and reasoning behind selecting the values for each of the model pa-

rameters is discussed below in Model Parameter Determination. This model was

then simulated with MATLAB (www.mathworks.com) using a script provided by

Joana Cabral, (Postdoctoral Researcher, Department of Psychiatry - University

of Oxford). The results of this model are measured using the Order Parameter

R(t) which describes phase uniformity (synchrony) between any two oscillators

over time, varying between 0 and 1. To further the analysis of the simulation

two other descriptors are used, Synchrony (average of R(t)) and Metastability

(standard deviation of R(t)). Each of these is further described in Chapter 2.

3.3 Simulated BOLD and FC

In order to compare the simulation results with physiological data they need to be

converted into a BOLD signal. To do so we used the Balloon-Windkessel model

described by Friston et al. [51] [45]. This simulated BOLD signal was low-pass

filtered bellow 0.25Hz to remove incorrect BOLD data and reduce the flaws of
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hemodynamic model and then downsampled to achieve the same resolution as a

MR scanner. The simulated Functional Connectivity was computed using Pear-

son correlation between the BOLD signals of any source and target nodes. This

resulted in a 90x90 FC matrix with the information of all nodes in the network.

All calculations were done with MATLAB (www.mathworks.com) using a script

provided by Joana Cabral (Postdoctoral Researcher, Department of Psychiatry -

University of Oxford).

3.4 Model Parameter Determination

As described before, the Kuramoto model, like most models, has optimal parame-

ters in order to achieve the most accurate representation of the human brain. One

of such parameters is the oscillators’ average intrinsic frequency, for which we used

40 Hz as it has been shown to result in an accurate representation of brain function

[39]. Regarding the connectivity and length matrices, the method through which

they were obtained is described in Chapter 2.

The remaining parameters are the principal descriptors of the network dynamics:

the global coupling strength k, the mean delay of the network τ and the noise factor

in the network ηn(t). However, as shown in the characterization of the network

behavior by Cabral et al. [1], the shift between incoherence and synchrony is

most sensitive to the (k, τ) dimensions of this parameter space than to the noise,

as ηn(t), in its plausible biological range, has too little impact on the networks

dynamics to justify a simulation in the complete parameter space. With our tests

providing fundamentally the same results as this study, we opted to ignore the

influence of this parameter and focus on the main descriptors of the model, (k, τ)

in order to reduce the computing cost of the model.

To finalize we needed to identify the optimal values for (k, τ) and so, before truly

utilizing the model, this parameter pair space was studied in order to find the

parameters that best described the brain dynamics of the subject data we had

available.

A good indicator of a suitable parameter pair is a high value of Metastability (the

standard deviation of the order parameter, previously described in Chapter 2).

High values of Metastability are mainly associated with an intermediate dynamical
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regime where the coupling between areas is only sufficiently strong to form partially

synchronized clusters, never reaching full synchronization. This regime occurs

between incoherence and global synchronization due to the high heterogeneity and

complexity of the structural connectome (couplings and delays). Nodes within a

cluster display correlated BOLD signal forming a functional network resembling

what is observed in real resting-state data.

With that in mind we chose the pairs that both maximized the values of Metasta-

bility and had a good fit with both structural and functional connectivity data from

healthy subjects. Doing this resulted in various well-adjusted pairs and of those

we opted to utilize the pairs (k = 7, τ = 12), (k = 7, τ = 13) and (k = 7, τ = 14)

for further study (see figs.3.2 and 3.3). However, it is important to note that the

structural and functional connectivity data we used in this process was obtained

from two different groups of healthy subjects. This was done because we lacked

the two types of data from the same group but, while not ideal, there should not

be any significant differences between average resting-state functional connectivity

of groups of healthy individuals.

Figure 3.2: Exploration of parameter space (k, τ) for (A) Synchrony, (B) Metastability, (C) Functional
Connectivity Fit and (D) Structural Fit.

3.5 Simulating Interhemispheric Disconnection

As described, neural networks in the model are connected according to the global

coupling strength k and the coupling strength Cnp matrix, forming the weighted
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Figure 3.3: Determining the optimal pairs. To do so we normalized the relevant matrices from fig.
3.2 and averaged them, revealing the optimal pairs in the area inside the ellipse.

(connectivity) matrix K, where K = kCnp. Essentially, disconnection in the model

implies that at least a subset of the weights K are reduced in comparison to the

connected, healthy counterparts, which is done by altering the scaling done by k

for this subset.

For this study two types of disconnection were utilized, one simulating the com-

plete separation between the left and right hemispheres and another sparing the

connections corresponding to the AC. For a description of interhemispheric con-

nections and the structures that maintain them please refer to Chapter 2.

In order to implement total disconnection between hemispheres all interhemi-

spheric connections in the structural connectome were identified and had all their

weights decreased in equal proportion. This was achieved by defining a particular

coupling strength for these connections, the interhemispheric coupling strength,

which was done by multiplying the original interhemispheric connections, Cnp, by

a scaling factor ranging from zero to one. As such, we were able to model total

disconnection with a scaling factor of zero and various partial interhemispheric

disconnections with scaling factors between zero and one. The simulation where

the AC is spared was done in a very similar fashion. The difference is merely in

that the interhemispheric connections in the structural connectome pertaining to

the AC (Olfactory Cortex and Middle and Inferior Temporal Gyri) were spared,

which allowed the modeling of preserving the AC in an otherwise complete dis-

connection. In a manner identical to the previous case, total disconnection is
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simulated with a scaling factor of zero and partial interhemispheric disconnec-

tions with scaling factors between zero and one. All calculations were done using

MATLAB (www.mathworks.com).

Figure 3.4: Structural matrix and connectome of the intact brain (A,B), Structural matrix and con-
nectome of total corpus callosum section (C,D), Structural matrix and connectome of corpus callosum
section sparing the Anterior Comissure (E,F). Matrices are presented in the same way as in fig.3.1(A).





Chapter 4

Results

4.1 Global Impact of Reducing the Strength of

Interhemispheric Connections

In this section, we analyze the effect of the gradual reduction in the interhemi-

spheric coupling strength on simulated resting-state functional connectivity mea-

sures. For this, we have simulated the functional connectivity matrices for the

whole brain both for each of the three optimal model parameter pairs and for each

of the various interhemispheric coupling strengths. The process through which

this data was obtained is described in full in Chapter 3.

37
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Figure 4.1: Matrices of functional connectivity (Pearsons Correlation between simulated BOLD sig-
nals in 90 areas) for three different sets of parameters (coupling strength k and mean delay τ) with
decreasing strength of inter-hemispheric connections, from pre-lesion (Top) to complete corpus callo-
sum section (Bottom). From left to right the mean transmission time (t in ms) increases from τ = 12
to τ = 13 and finally τ = 14. The global coupling strength is kept constant at 7. From top to bottom,
inter-hemispheric connections were scaled by a factor of 1 (no scaling A, B, C), 0.7 (D, E, F), 0.5 (G,
H, I), 0.3 (J, K, L), 0.1 (M, N, O) and 0 (P, Q, R). Color scale ranges from r = −1 to r = 1 in all cases.
Matrices are arranged so the main diagonal shows the correlation of each area with itself, the upper
left and lower right quadrants show correlations within hemispheres, and the lower left and upper right

quadrants show interhemispheric connectivity.
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A clear conclusion from the results in fig.4.1 is the existence of a definitive influence

of the interhemispheric structural connections in resting-state functional connec-

tivity. The overall reduction in their strength is only significantly pronounced in

the case of complete section for each parameter pair in fig3.1(P, Q, R). Although

there are some reductions in the strength of interhemispheric connections for scal-

ing factor values under 0.5, the strength of such connections apparently increased

for scaling factor values between 1 and 0.5.

Another possible inference from fig.4.1 is the apparently increased intrahemispheric

correlation as the scaling factor is reduced beyond 0.7. This is most evident in

figs.3.1(M, N, O), when comparing to (A, B, C), where the increase is noticeable

inside the left and right hemispheres. However, we find that in some cases this

seems not to manifest, in particular in fig.4.1(K,N).

Figure 4.2: Average Pearsons Correlation for intrahemispheric, interhemispheric and homotopic con-
nections, for each scaling factor. From left to right the mean transmission time (t in ms) increases
from τ = 12 to τ = 13 and finally τ = 14. The global coupling strength is kept constant at 7.The left
hemisphere is depicted in blue, the right in red, interhemisferic connections in black and homotopic

connections in green

From fig. 4.2 we can clearly note that the strongest correlation for pre-section

(scalling factor 1) occurs for the homotopic connections.

4.2 Impact on Interhemispheric Connections

An immediate result of the changes caused by the reduction in the interhemispheric

coupling strength is the influence in the connections between both hemispheres

and, as such, a thorough study of such influence is essential. To do so we have

produced graphics detailing the average correlation for each coupling strength in

the interhemispheric connections, with special interest in the homotopic regions.
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Figure 4.3: Average Pearsons Correlation in the interhemispheric connections for various groups,
from the 20% strongest positive (Top) to the 20% strongest negative (Bottom), for each scaling factor.
From left to right the mean transmission time (t in ms) increases from τ = 12 to τ = 13 and finally

τ = 14. The global coupling strength is kept constant at 7.

Next, we studied how, in our model, interhemispheric functional connectivity was

affected by reducing the strength of interhemispheric structural connectivity, in

groups of pairs of areas showing different levels of correlation in the intact brain,

i.e., we divided the interhemispheric connections in 5 quintiles according to the

strength of functional connectivity in the model with intact interhemispheric con-

nectivity, from the 20% stronger connections (correlation) to the 20% most neg-

ative connections (anticorrelation). From fig.4.3 we can observe that the average
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correlation for the interhemispheric connections tends to zero for each parame-

ter pair, regardless of the group. Quintiles 20-40%, 40-60% and 60-80% present

relative stability as the scaling factor diminishes. This observation suggests that

interhemispheric connections that show weak functional connectivity in the in-

tact brain, continue presenting weak connectivity when interhemispheric struc-

tural connectivity is reduced. There are, however some notable cases, particularly

in the k = 7τ = 12 and k = 7τ = 14 parameter pairings where there is a noticeable

variance for the scaling factor 0.1 and in the case of k = 7τ = 12 for 0.2 also. For

the k = 7τ = 13 pair this occurs in the 0.3 factor. This is present in virtually

every group and parameter pair, even occurring for the 40-60% group, a group

that otherwise presents very low disparity.

Thus the main change observed in interhemispheric connectivity is restricted to

the 20% of the connection showing stronger functional connectivity. These show

a parametric reduction in their functional connectivity levels as interhemispheric

structural connections are weakened.

Next we analyzed the 45 homotopic connections with the same method, by dividing

them in quintiles according to the strength of their functional connectivity. As

expected the average correlation for the homolotopic connections tends to zero

as the scaling factor diminishes. There is also a noteworthy jump in the average

correlation of each group for scaling factor 0.1 in parameter pair k = 7, τ = 13

and 0.2 in k = 7, τ = 12. The pair k = 7, τ = 14 presents relatively low disparity

with the exceptions seen in figs.4.4(O, L) where there is a slight decrease for the

average correlation for scaling factor 0.1.

As observed in fig.4.5 the correlation between homotopic areas for scaling factor

0 is reduced to values close to zero in all areas.

4.3 Impact on Intrahemispheric Connections

To proceed with the detailed study of the changes brought by the reduction in the

interhemispheric coupling strength, we also have to understand their influence in

the connections inside each hemisphere. This is important because empirical data

suggests that reducing interhemispheric connections enhances intrahemispheric

functional connectivity [37]. With our model, we will be able to distinguish if
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Figure 4.4: Average Pearsons Correlation in homotopic regions for various groups, from the 20%
strongest positive (Top) to the 20% strongest negative (bottom) for each scaling factor. From left to
right the mean transmission time (t in ms) increases from τ = 12 to τ = 13 and finally τ = 14. The

global coupling strength is kept constant at 7.

this could be a consequence of the structural alteration per se or if other underly-

ing mechanisms are responsible for this increase like for example neural plasticity

occurring after the interhemispheric lesion. As such, in this section, we present

graphics detailing the average correlation for each coupling strength in both hemi-

spheres.

In fig.4.6 we can confirm the relationship we detected previously in the intra-

hemispheric connections. The average correlation increases as the scaling factor
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Figure 4.5: Pearsons Correlation for the homotopic areas for pre-section interhemispheric connections
(scaling factor 1, in blue) and cut interhemispheric connections (scaling factor 0, in red), for each
parameter pairing. From left to right the mean transmission time (t in ms) increases from τ = 12 (A)

to τ = 13 (B) and finally τ = 14 (C). The global coupling strength is kept constant at 7.

Figure 4.6: Average Pearsons Correlation in the left and right hemispheres for each scaling factor and
for each parameter pairing. From left to right the mean transmission time (t in ms) increases from
τ = 12 (A) to τ = 13 (B) and finally τ = 14 (C). The global coupling strength is kept constant at

7.The left hemisphere is depicted in blue and the right in red.

Figure 4.7: Average Pearsons Correlation for the 20% strongest positive and negative correlations
in the left and right hemispheres for each scaling factor and for each parameter pairing. From left
to right the mean transmission time (t in ms) increases from τ = 12 (A) to τ = 13 (B) and finally
τ = 14 (C). The global coupling strength is kept constant at 7. For the left hemisphere the strongest
positive group is depicted in blue and the strongest negative in light blue. For the right hemisphere

the strongest positive group is depicted in red and the strongest negative in orange.

is reduced beyond 0.4, surpassing the original correlation with scaling factor 1 in

most cases. In fig.4.7 this relationship is further explored as either the strongest

positive correlations increase for scaling factor 0.3 and below as seen in fig.4.7(A)

for the right hemisphere or the strongest negative correlations approach zero for

the same scaling factors as is most noticeable in fig.4.7(C). There is, however, one

exception occurring on fig.4.6(C) for the pair k = 7, τ = 14 in the left hemisphere

for the scaling factor 0 where its correlation is slightly below the one for factor 1.

Between the scaling factors 1 and 0.4 the average correlation usually diminishes
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along the scaling factor with some exemptions.

Therefore, with our simulation data suggesting an increase in intrahemispheric

functional connectivity when interhemispheric structural connections are reduced

to 40% of their original strength, we hypothesize shuch alterations to be mostly

due to the brain long-range structural connectivity. This is in line with empirical

findings [37] but further research would help identify the cause of this phenomenon.

4.4 Impact of Reducing the Strength of Inter-

hemispheric Connections on Specific Areas

Continuing our study, we proceeded with describing the behavior of specific ho-

motopic connections of interest. To this end, we studied both the variation in

correlation for each coupling strength as well as the pair of simulated bold signals

for each connection. These homotopic connections were chosen as a window into

the possible dynamics of a particular group of areas and as such we selected three

areas, one with very high pre-section correlation (Posterior Cingulate Gyrus), one

with almost no correlation (Middle Temporal Gyrus) and one with relatively high

anticorrelation (Thalamus).

Figure 4.8: Pearsons Correlation in three homotopic connections for each scaling factor and for each
parameter pairing. From left to right the mean transmission time (t in ms) increases from τ = 12
(A) to τ = 13 (B) and finally τ = 14 (C). The global coupling strength is kept constant at 7. In
green is represented an area with the strongest average of positive correlation for each pair (Posterior
Cingulum), area with the lowest average in black (Middle Temporal Gyrus) and in yellow is depicted

the area with the strongest average of negative correlation (Thalamus).

In fig.4.8 it is again clear the trend of diminishing correlation as the scaling factor

decreases, in particular for the pair of areas showing stronger functional connectiv-

ity. That being said there is significant variation for the Thalamus connection in

parameter pair k = 7, τ = 13, in particular for scaling factor 0.1 and, to a slightly

lesser extent, 0.8 and 0.9. We can also verify the existence of a critical scaling

factor value. Beyond this point the region dynamics are changed, with a faster
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decline of correlation. This observation is most obvious for the strongly correlated

region in fig.4.8 (green).

Figure 4.9: BOLD data in Posterior Cingulate Gyrus in a temporal interval for each scaling factor
and for each parameter pairing. From left to right the mean transmission time (t in ms) increases from
τ = 12 (A) to τ = 13 (B) and finally τ = 14 (C). The global coupling strength is kept constant at 7.

The left hemisphere is depicted in blue and the right in red.

In figs.4.9(A,B,C) we can see the strong overlapping of data which leads to the

strong initial correlation for this pair of areas as represented in fig.4.8. This cor-

respondence dies down as the scaling factor diminishes however, most notable in

fig.4.9(H).

4.5 Sparing the Anterior Commissure

Interhemispheric connectivity is supported mainly by the corpus callosum connec-

tions and the anterior commissure. In order to separate the impact of each of

these bundles of fibers, we simulated corpus callosum disconnection while leaving

intact the anterior commissure. This would allow us to understand whether the

results we observed can be attributed only to the severing of the corpus callosum.

Indeed there is already evidence on the contrary with the results by OReilly et al.

[37] showing a definitive influence of sparing the AC. To this end we simulated the
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preservation of the anterior commissure in an otherwise complete cut allowing for

comparison of interhemispheric connections after lesion.

Figure 4.10: Matrices of connectivity (Pearsons Correlation) for each parameter pair, for pre-section
(A, B, C) and complete section sparing the AC (D, E, F). From left to right the mean transmission time
(t in ms) increases from τ = 12 (A,D) to τ = 13 (B,E) and finally τ = 14 (C,F). The global coupling
strength is kept constant at 7.Color scale ranges from r = −1 to r = 1 in all cases. Matrices are
arranged so the main diagonal shows the correlation of each area with itself, the upper left and lower
right quadrants show correlations within hemispheres, and the lower left and upper right quadrants

show interhemispheric connectivity.

When the results shown in fig.4.10 (D, E, F) are compared with the ones shown

in fig.4.1(P, Q, R), it is evident that sparing the AC led to the preservation of

considerable interhemispheric connectivity after severing all other interhemispheric

connections. It is also worth noting that, just as in fig.4.1, there seems to be

an increased intrahemispheric correlation after the cut, particularly noticeable in

figs.4.10 (D,F).

Figure 4.11: Pearsons Correlation for the homotopic areas for pre-section interhemispheric connections
(scaling factor 1, in blue) and cut interhemispheric connections sparing the AC (scaling factor 0, in red),
for each parameter pairing. As described in Chapter 3 the connections spared when simulating this
lesion were connection 11, between the olfactory cortices, and connections 43 and 45, the middle and
inferior temporal gyri respectively. From left to right the mean transmission time (t in ms) increases
from τ = 12 (A) to τ = 13 (B) and finally τ = 14 (C). The global coupling strength is kept constant

at 7.
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Building from the results presented in fig.4.10 and in fig.4.11 we can clearly see

that the preservation of interhemispheric connectivity is not limited to the con-

nections that were structurally preserved when simulating the lesion. Another

interesting result presented in fig.4.11 are the clear changes from positive corre-

lation to negative correlation or no correlation and vice versa, highlighting the

importance of indirect structural connections in functional connectivity results.

Furthermore, these results indicate that while, on average, connectivity may be

preserved its overall pattern is definitively altered after the section.





Chapter 5

Discussion

In this chapter, we will present and describe the implications of the most signif-

icant findings of our work. These findings were three-fold: the model predicts a

monotonic reduction in interhemispheric functional connectivity as the strength

of structural connections diminish, an increase of intrahemispheric connectivity as

the strength of structural connections diminish below 40% of their original value

and a unmistakable preservation of functional connectivity after total section when

the anterior commissure is preserved, albeit with important quantitative changes

in the network.

Our model showed results consistent with previous interhemispheric connectivity

studies. Namely our results in fig.4.1(P, Q, R) indicated a clear absence of inter-

hemispherical connectivity post-section (using a scaling factor of 0), a result that,

while expected, is confirmed in the work of OReilly et al. [37] where they used rhe-

sus monkeys to study the effect of disconnection on interhemispheric functional

connectivity. Indeed two other findings are in accordance with their research.

With this model we presented evidence of a clear preservation of interhemispheric

connections post-section when sparing the anterior commissure, a result which is

consistent with the work done by OReilly et al. [37]. We also found an increase

in intrahemispheric connectivity post-section for all parameter pairs and for com-

plete section, with only one exception verified, in the case of the left hemisphere

in pair k = 7, τ = 14, (fig.4.6 A,B,C). However, when sparing the anterior com-

missure OReilly et al. [37] noted this increase in interhemispheric connections was

much more subtle and at most barely significant. With our model we still noted

49
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an increase in intrahemispheric connections when sparing the anterior commissure

(fig.4.10b) but we did not study its significance due to time constraints.

As expected, our results also indicated higher average homotopic correlations with

pre-section structural connectivity than either inter or intrahemispheric correla-

tions fig4.2. This is corroborated by the work of Stark et al. [32] where they exam-

ine correlated activity between homotopic regions using fMRI data from healthy

volunteers. However, results obtained with the Kuramoto model showed notewor-

thy differences in regional variation of homotopic correlation when compared to

the results obtained by Stark et al. [32]. Our results present a reduced number

of strong homotopic correlations but the regions presenting higher levels of cor-

relation match the ones obtained empirically by Stark et al [32]. Discrepancies

between the two results might be due to variations on fMRI data obtained for

both studies and to the fact that ours is a simplified model of the human brain.

Also, Stark et al [32] used a different brain parcellation scheme resulting in 56 ho-

motopic connections in comparison with the 45 from our study. This is a restraint

of working with a simplified model of the human brain. As we are approximating

the dynamics of an entire cortical region to a simple phase oscillator, we cannot

expect the model results to be faultless. Nevertheless, these results indicate that

the Kuramoto model of Coupled Oscillators and Time Delays is able to qualita-

tively simulate resting-state interhemispheric homotopic connections albeit with

quantitative disparities as the number of strong functional connections appears

reduced.

Despite not having modeled callosal agenesis (AgCC) some parallelisms can be

drawn between this work and the study by Owen et al. [36]. In their work on

resting-state networks in AgCC they found that while qualitatively these networks

presented no variation from the controls quantitative measures indicate definitive

quantitative changes in functional connectivity for some intra-hemispheric and

interhemispheric networks in subjects with AgCC. This result is somewhat mim-

icked in figs.4.10 and 4.11 where we show that sparing the anterior commissure

preserved connectivity but with a definitive quantitative impact on the network

dynamics. We have also found quantitative change in the cases where we reduce

the strength of structural connectivity, as shown in fig.4.1 (D, E, F, G, H, I, J, K,

L, M, N, O). This is true regardless of how small the structural damage may be,

as presented in fig.4.1 (D, E, F), where even for a relatively small reduction in the
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scaling factor (1 to 0.7) there is a significant impact on the functional connectiv-

ity. This furthers the already established notion that there is a significant causal

link between structural and functional connectivity [37]. An interesting venue to

explore would be to model AgCC using structural DTI data of subjects with the

condition as it would allow further comparisons to be made. With our present

model, we could predict how much the changes observed in patients with AgCC

might be due to reduced interhemispheric connectivity.

Using this model we predicted a monotonic reduction in interhemispheric func-

tional connectivity as the strength of structural connections diminish. This can

be verified in figs.4.3 and 4.4 where we present the results on the interhemispheric

and homotopic connections of particular quintiles. However we can also anticipate

the existence of critical scaling factors for each quintile, a critical value on which

the area dynamics change drastically, even if only for that particular value. We in-

vestigated this further with our study into specific homotopic connections (fig.4.8),

where we verified that such a critical condition applies to each region individually.

After that critical condition is reached it is clear that a change occurs in the reg-

ular dynamic of the region, leading to a faster decline of correlation. This is most

evident in the case of the strongly correlated region (fig.4.8) where the regular

decline in correlation is interrupted at a critical scaling factor value, regardless

of parameter pair. In fact, we have already reported such a critical structural

condition, where scaling factors below 0.4 led to an increase in intrahemispheric

connectivity. In their work, OReilly et al. [37] speculate that increases in intra-

hemispheric connectivity may be somehow linked to the paradoxical findings in

which functional connectivity between some regions increases for individuals with

neurodegenerative diseases or in the early stages of such diseases. Whether this

increase could be used as diagnosis for such diseases might be a compelling topic

for further research. Additional exploration into the fluctuations in functional con-

nectivity of each individual homotopic connection might have proven to be fruitful

but with a limited time to complete this work we narrowed our search to those we

considered to be the most illustrative.

In this thesis, we simulated in silico the changes in resting-state brain functional

connectivity that would occur as interhemispheric connections are weakened, as

such a study would be highly difficult to achieve in vivo. The greatest strength

of a model as an investigative tool is also its weakness as, while it may allow

researching previously untouched questions its results will always be predictions
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while no other studies exist to confirm or contradict them. With this in mind we

opted not to focus on a statistical analysis of our results as time-constraints forced

us to shorten our research. Notwithstanding that, this research would certainly

improve with such an approach but, as there are no studies to compare to, the

increased complexity would amount to little gain.

During our work with this model our most significant restraint was the simplicity

of the model itself, as, while it allows for a tractable simulation of neural dynamics,

the assumptions we make when using the model lead to results that can only be

used as rough estimates of what brain function really entails. This uncertainty is

unavoidable in models of this kind as representing the dynamics neural populations

as phase-oscillators with Euclidean distance connections will always be a large

approximation to make. Another limitation of this work had to do with the data

we used. Our structural connectome was acquired from 21 healthy subjects but

as we did not have access to their functional connectivity data, we had to use

data from another group of 16 healthy subjects in order to determine the optimal

parameters of the model. While it certainly is not optimal, there should not be

any significant differences between average resting-state functional connectivity

of groups of healthy individuals, which we had to resort due to data not being

available.

All in all, the Kuramoto Model of Coupled Oscillators and Time Delays presents

results that are in line with previous research and, as such we believe it to be a valid

and useful tool when investigating the cerebrum. Its simplicity comes with the

disadvantage of uncertainty, but it is a fair trade when we consider the opportunity

to research previously inaccessible characteristics of the human brain.
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Conclusion

To this day, complete understanding of the role that interhemispheric connections

play on normal brain function remains an important scientific challenge. In this

work we describe and utilize the Kuramoto model of Coupled Oscillators and Time

Delays to provide further insight into their impact on resting-state functional con-

nectivity. To do so we simulated the spontaneous behavior of brain areas coupled

together in a large-scale network structure of the brain while systematically re-

ducing structural interhemispheric connection strength. Our network structure

was based on structural connectivity between 90 brain areas averaged across 21

healthy subjects. With this model we observed a clear monotonic reduction of in-

terhemispheric functional connectivity as we diminish their structural connections.

This result indicates a definitive influence of the brains structural connectivity on

its functional networks, a conclusion that is supported by previous research. Our

research also shows an increase in intrahemispheric functional connectivity as we

diminish the structural strength of interhemispheric connections to values lower

than 40% of their original strength. While the cause of such increase is still to be

determined this result may help understand findings in in which functional con-

nectivity between some regions increases in disease or pre-disease states. Another

important finding relates to the preservation of functional connectivity when a

small part of structural interhemispheric connections are preserved, the ones that

represent the anterior commissure in vivo. However, despite maintaining func-

tional connectivity, this corpus callosum only section led to significant quantitative

changes in the functional network. This observation can be compared to previous

studies of agenesis of corpus callosum where quantitative changes are reported

despite the subjects presenting regular functional networks.
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Building on previous research our findings also indicate the Kuramoto model of

Coupled Oscillators and Time Delays as a valid tool for studying neural dynamics.

Our study is far from exhausting the possible applications of this model in this

field of research and, as such, there is plenty opportunity to further our work.

6.1 Further Work

To finalize the evaluation of the role of interhemispherical connections in resting-

state functional connectivity we could proceed with the characterization of our

findings using statistical and graph theory measures.

It would also be interesting to further our research by studying more homotopic

connections as additional insights may be gained by their dynamics. Other venues

to explore would be to model AgCC using structural DTI data of subjects with

the condition and to discern whether increased functional connectivity could be

used as diagnosis for neurodegenerative diseases by comparing our simulations

with their fMRI data.
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