
Master in Informatics Engeeniring
Dissertation
Final Report

Wireless Sensor

Networks Monitoring Tool

Author:

Augusto Soares

augustos@student.dei.uc.pt

Supervisor:

Vasco Pereira

vasco@dei.uc.pt

4 September of 2013

mailto:augustos@student.dei.uc.pt
mailto:vasco@dei.uc.pt

Final Report Wireless Sensor Networks Monitoring Tool

Abstract

A Wireless Sensor Network (WSN) typically consists of a large number of nodes

performing specific tasks such as measuring or monitoring environmental conditions

(temperature, luminosity, humidity, etc.). WSNs once deployed are intended to work for a

long period of time. Possible scenarios are the ones where human presence is not possible

or encouraged such as battlefield, in military application.

Due to the large number of nodes in WSNs, the management and the maintenance of the

WSN is a challenging task. To ease the management of WSNs, a monitoring tool is of

utmost importance to perform some management tasks such as visualize nodes resources

usage (node status), send control message to the nodes and also to provide a general

knowledge of the network as whole.

Beside of monitoring purpose, the monitoring tool can also be used prior to deployment

of a new application on the network, for testing purposes, in order to guarantee that all

application requirements are satisfied before deploying it.

There are some existing monitoring tools that provide data visualization and also perform

control of the nodes on the network. However, none of them provides mechanisms to

measure performance related metrics such as packet delay or throughput. This

dissertation focuses on WSNs monitoring tools which provide the same features of the

other existing tools and also provide mechanism to measure performance related metric.

A new WSN monitoring tool based on Octopus was developed which is able to measure

packets delay and packet lost. The information about these two QoS parameters is

available in a live fashion and also information about past metrics history.

Keywords

“Wireless Sensor Networks” “Wireless Sensor Networks monitoring tools” “Octopus”

“Performance metrics” “new Octopus monitoring tool”

Final Report Wireless Sensor Networks Monitoring Tool

 Page I

Table of Contents
List of Figures ... III

List of Tables .. III

Acronyms ... IV

1. Introduction... 1

1.1. Contextualization ... 1

1.2. Overview of Wireless Sensor Networks ... 1

1.3. Motivation.. 2

1.4. Goal .. 2

1.5. Work done and objective fulfilled ... 3

1.6. Document structure ... 3

2. State of the art .. 4

2.1. WSNs management overview .. 4

2.2. Available WSNs monitoring tools .. 5

2.2.1. Mote-view [4] ... 5

2.2.2. Spyglass [6] ... 7

2.2.3. Octopus [7] ... 8

2.2.4. MonSense [8] .. 10

2.2.5. NanoMon [9] .. 12

2.3. Comparison table of WSNs monitoring tools .. 14

2.4. Critical analysis of the monitoring tools .. 16

3. Monitoring tool requirements .. 17

3.1. Display network statistics, nodes status and the sensed data 17

3.2. Perform basic control of nodes in the network ... 18

3.3. Performance related metrics ... 18

3.4. Other features that monitoring tool needs to provide ... 19

3.5. Definition of a standard interface with the sink .. 19

3.6. Extending Octopus ... 20

Final Report Wireless Sensor Networks Monitoring Tool

 Page II

4. Experimental setup of Octopus ... 22

4.1. Global Architecture of Octopus ... 22

4.2. Octopus Message Format and Protocol Independence .. 23

4.3. Octopus GUI Application .. 25

4.4. Experimenting Octopus and the difficulties .. 30

4.5. Octopus limitations .. 31

5. New Octopus monitoring tool ... 33

5.1. Global architecture of new Octopus .. 34

5.2. Octopus database design ... 35

5.3. New Octopus message format .. 36

5.4. Nodes clock synchronization ... 37

5.5. Alteration of Octopus embedded application ... 38

5.6. New Octopus user interface .. 39

5.6.1. Net.Stat panel ... 40

5.6.2. Live Delay Chart panel .. 42

5.7. Delay History Chart Panel .. 44

5.8. Evaluating delay and Packet lost in multi-hop WSNs scenarios 44

5.9. Overhead incurred by the adding new features .. 47

5.10. Possible improvements and future work ... 48

6. Work plan .. 49

6.1. Work plan for the first semester ... 49

6.2. Work plan for the second semester .. 50

7. Conclusion ... 53

8. References ... 54

APPENDIX - How to install and run New Octopus monitoring tool...................................... 56

Final Report Wireless Sensor Networks Monitoring Tool

 Page III

List of Figures
Figure 1 – Mote-view main screen [5] ... 6

Figure 2 - SpyGlass user interface [6] ... 8

Figure 3 - Octopus user interface ... 9

Figure 4 - MonSense user interface [8] .. 11

Figure 5 - NanoMon configuration File [9] ... 13

Figure 6 - A testbed and the NanoMon UI on the right [9] .. 13

Figure 7 - Global Octopus structure [11] .. 22

Figure 8 - Downstream message and upstream Message types [11] 24

Figure 9 - (a) Octopus message vector format. (b) Aggregated vectors for forming topology

[7] .. 25

Figure 10 - Octopus GUI application... 27

Figure 11 - Sensor reading chart .. 28

Figure 12 - Network topology plus floor layout ... 29

Figure 13 - Legend Panel .. 29

Figure 14 - Button status values ... 31

Figure 15 - Global Architecture of new Octopus .. 34

Figure 16 - Database tables (Motes and Packets) Layout .. 35

Figure 17 - Message format of the new Octopus ... 36

Figure 18 - New Octopus user interface ... 40

Figure 19 - live delay chart ... 43

Figure 20 - Packets delay history chart... 44

Figure 21 - Packets delay in a testbed with no interference .. 46

Figure 22 - Works done in the first Semester with their respective durations 49

Figure 23 – works done in the second semester and their respective durations 52

List of Tables
Table 1 - Comparison of WSNs monitoring tools ... 14

Final Report Wireless Sensor Networks Monitoring Tool

 Page IV

Acronyms
CISUC Centre for Informatics and Systems of the University of Coimbra

ETX Expected Transmissions

FTSP Flooding Time Synchronization Protocol

GUI Graphical User Interface

ISM Industrial Scientific and Medical

LCT Laboratory of Communications and Telematics

MAC Medium Access Control

OS Operating System

QoS Quality of Service

RBS Reference Broadcast Synchronization

SQL Structured Query Language

TCP Transport Control Protocol

TEP TinyOS Enhancement Proposal

TPSN Timing-sync Protocol for Sensor Networks

USB Universal Serial Bus

WLAN Wireless Local Area Network

WSNs Wireless Sensor Networks

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter1|Introduction Page 1

1. Introduction
This final report describes the activities and the works that have been done during the

first and the second semesters by the author. For his one year dissertation entitled

“Wireless Sensor Networks Monitoring Tool” to obtain master degree in Informatics

Engineering.

1.1. Contextualization
Dissertation takes place at Centre for Informatics and Systems of the University of

Coimbra (CISUC), in the Laboratory of Communications and Telematics (LCT), specifically

under the LCT-Sense research group. The dissertation is supervised by Vasco Pereira.

1.2. Overview of Wireless Sensor Networks
Wireless Sensor Networks (WSNs) consist of a few or large number small embedded

electronic devices which perform monitoring or tracking of physical or environmental

conditions, depending on type of sensor coupled to the node it can perform range of

measurements i.e. temperature, pressure, sounds, motions etc. These small electronic

devices, also known as sensor nodes, are equipped with limited resources in terms of

storage, computational resources and limited energy supply.

When the monitored area is relatively small, a few number of sensor nodes is enough to

cover the area, in this case, the data collected by each node can be sent directly via radio

communication to the central node or Sink node (uni-hop communication). A much larger

area may require many nodes, some of them far away from the sink, need intermediate

node to relay or forward their packets to the sink node (multi-hop communication). The

sink node in turn sends received packet to a specific program running on a computer for

visualization or used by other programs.

According to [1] WSNs can be divided in two to categories; Structured WSNs and

unstructured WSN. In structured WSNs nodes are deployed in a pre-planned manner

depending on the radio coverage and thus can reduce the used sensor nodes and are easy

to maintain. On the other hand, unstructured WSNs nodes are deployed in an ad hoc

manner and in large number, especially in hostile areas where human presence is not

encouraged. Once deployed nodes are left unattended and expected to perform

monitoring or tracking during their lifetime with few or no maintenance.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter1|Introduction Page 2

1.3. Motivation
WSNs have many applications such as environmental condition monitoring, military

applications, healthcare or industrial uses. Once deployed, WSNs are intended to work for

a long period of time without any type of human intervention. Typically, WSNs consists of

few nodes to tens or hundreds of nodes or even thousands of nodes depending on size of

the monitored area.

Nodes on the network are severely limited in terms of computational power, energy

supply and storage and they communicate via noisy wireless links. To assure the proper

use of this resources and the link quality a monitoring tools is necessary to visualize the

node’s resources usage and also communication among the nodes.

While some existing WSNs monitoring tools provide data visualization and provide

mechanism to perform basic control of the node in the network none of them really

concentrate on measuring performance metric of the WSNs. WSNs have many application,

and different application has its own requirements. WSNs use in critical areas such as in

military, healthcare and industrial scenarios require predictable performance related

metrics such as packet delay, link throughput and message reliability.

WSNs monitoring tool with ability to measure performance related performance is

necessary in WSNs application where Quality of Service is the main concern. This tool can

be used prior to deployment of new application on the network to guaranty that the new

application requirements are satisfied.

1.4. Goal
The main goal of the dissertation is to study and explore existing WSNs monitoring tools

or to create a new one that provides the following features:

 Data visualization - visualize the data collected from the WSNs network i.e. sensor

reading data.

 Allow user to perform basic control of the nodes in the network i.e. setting or

altering sensor sampling period, control nodes duty cycle, etc.

 Provides mechanism to analyze and calculate performance related metric when

Quality of service is the main concern of the WSNs application. I.e. packet delay,

link throughput, massages reliability, etc.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter1|Introduction Page 3

1.5. Work done and objective fulfilled
In summary, the work done during this dissertation was studying existing WSNs

monitoring tool and elaborate a new WSN monitoring application which is also capable of

measuring the performance related metrics. The new WSNs monitoring tool developed is

based on the existing Octopus monitoring tool. Time synchronization protocol was

incorporated to it for time-stamping events and packet delay measurement and a MySQL

database is used as the main storage for the new tool rather than logging events to a flat

file as done in the previous Octopus. Other advantage of using a database is to allow users

to find events of interest easily, and allow the retrieval of events and node history. The

Octopus tool available only permits for the visualization of current events and data from

WSNs network.

The work done fulfilled the main goals of the dissertation which was to create a new

monitoring tool that was able to measure performance related metrics. The two metrics

related measure by the new Octopus is the packet delay and the Packet lost. Besides

monitoring live events, the application also provides features for retrieving information

related to these metric for the past events and data.

1.6. Document structure
The rest of the document is structured as follow; chapter 2 presents the state of the art,

which discuss about existing WSNs monitoring tools. Chapter 3 discuses the requirements

of the WSNS monitoring tool to be develop. Chapter 4 presents Octopus in details the

experimental setup of octopus in TinyOS [2]. Chapter 5 discusses in detail the alterations

made to Octopus and the implementation of the new features and functionalities of the

new Octopus. The work plan for the first and second semester, their list of activities and

respective durations is discussed in chapter 6. Conclusion if found in chapter 7 and

references are available in chapter 8.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 4

2. State of the art
This chapter discusses the state of the art of WSNs monitoring tools by analyzing existing WSNs

monitoring tools stating their main features and a comparison summary of these tools also is

provided.

2.1. WSNs management overview
WSNs typically consist of many small wireless devices which equipped with one or more

sensors to perform specific tasks such as measuring or monitoring environmental conditions

(temperature, luminosity, humidity, etc.). These small wireless devices perform the sensing and

the sensed data is sent via radio communication to a sink node, which in turn forwards it to the

monitoring application typically running on the Computer to be processed and visualized to the

user.

The nodes in the WSNs are limited in terms of storage, energy supply and computational

power. To better utilize these limited resources of the nodes, a mechanism to monitor these

resources is utmost necessary for the management of the WSNs and the performance of the

WSN as a whole. Beside for monitoring the nodes resources the management application can

also use to perform testing prior to deploy a new application on the WSNs.

According to [3] WSNs management systems can be classified in: central vs distributed control,

and reactive vs proactive monitoring. In a centralized fashion all the collected data is sent to a

sink node which in turn forwards it to a central manager which more powerful resources that

can perform complex management tasks, reducing the processing burden on resource

constrained node. The advantage of this approach is that the central manager has a global

knowledge and thus it provides more accurate management decision. However this approach

suffers the scalability issue and also implies a single point of data concentration and a potential

failure. The distributed control was used to overcome the problems presented by the

centralized control by using multiple sink nodes, each of which can be used to control portion

of the network and may communicate with the other sink nodes to perform management

functions. It solved the problem of single a single point of data concentration but it considered

complex and difficult to manage. All the monitoring tools discuss later in this document fall into

the centralized monitoring category.

Based on the approach used for monitoring and control, WSNs monitoring tools can be further

divide into four categories:

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 5

• Passive Monitoring. System collects the information about the network for post-

mortem analysis.

• Fault Detection Monitoring. The system collects the information of the network

states to identify whether a fault has occurred.

• Reactive Monitoring. System collects the information of the network states to

identify whether an event of interest have occurred and adaptively reconfigure the

network.

• Proactive Monitoring. The system actively collects and analyses network states to

detect past events and to predict future events in order to maintain the

performance of the network.

2.2. Available WSNs monitoring tools
In this section the available WSNs monitoring tools are described along with their

functionalities.

2.2.1. Mote-view [4]
Mote-View is a scalable software framework from crossbow technology for visualization and

monitoring WSNs. According to Mote-view designers a typical WSNs consists of three tiers

(Mote tier, Server tier and Client tier). Mote tier runs embedded firmware (TinyOS [2]) and

sensor hardware’s drivers, the server tier provides logger and a data base for the data obtain

from the sensor nodes. Mote-view belongs to the Client tier that provides Graphical User

interface for visualization of the sensor data.

Beside of visualizing the live individual sensor data, Mote-view can log sensor data to be

visualized in later time. The tools also allow collecting the sensor reading data from several

sensor nodes for graphing or comparison purposes.

Since Mote-view is a modular framework, modules within the Mote-view client split in to four

layers, each layer in turn provides plug-ins that can be extended.

Mote-view currently only supports the crossbow products, i.e. the crossbow sensor boards and

crossbow sensor motes.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 6

Mote-view features:

• Visualizes the network topology and network statistic and also logging of sensor

readings data and viewing the logged data.

• Displays live sensor-reading data and also plot the data over the span of time.

• Node color changes if no reading from the node during a specified interval.

• Color-coding note health can be used for other metrics such as throughput,

Bandwidth and success/yield data packet received.

• Provides statistic function includes end-to-end data packet yield and a prediction for

the feature and the RF link quality.

Below is an image of Mote-view user interface and several options for displaying data gathered

by the application.

Figure 1 – Mote-view main screen [5]

The application provides a list of nodes on the network on the left column and several

visualization options such as: “Data” which shows sensor reading for each node on the network,

“Command” this tab allows user to control node’s LED light by turning it on or off. The Chart tab

allows user to choose up to three nodes to plot their sensor reading value (temperature, light

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 7

and Luminosity). Lastly, the image above is currently showing the logical network topology

using its Topology tab. As shown above, nodes are shown in circle and lines to represent the

link among them. Beside of the nodes and the links among them, user can also choose which

sensor reading value to be displayed for each node.

2.2.2. Spyglass [6]
Spyglass is modular framework for monitoring WSNs, it uses several plugins to display various

data such as node position, sensor reading data and network topology. The plugins can be

extended to support more functionality.

Spyglass consists of three major functional entities: The sensor network, the gateway nodes

located in the sensor network and the visualization software.

Data from the network is forwarded to the gateway node which forms a ring buffer to store the

data packets, the application running on the gateway listen to a certain port for incoming

visualization request from the visualization PCs via a TCP connection.

The visualization software consists of 3 components: graphical display canvas, tree-structured

textual information of the network as a whole and line-based output for debugging purposes.

Spyglass functionalities:

• Displays the temperature and the relation between nodes and network and also

allows recording activities in certain point of time for later playback in different

speed (normal, fast forward and jumping to a certain point in playback).

• Uses plug-ins to paint on the canvas in its own layer via drawing primitive in the

SpyGlass can avoid conflict between plug-ins and plug-ins can be extended as

needed.

• Currently SpyGlass supports the several plugins to display the nodes and the

network: temperature map plug-in, display node plug-in, the battery plug-in,

topology plug-in.

SpyGlass user interface shown below can be grouped in three main categories: main windows

on the upper left for displaying the logical network topology, right column is used to display

tree-structured text information of the selected node (i.e. node position, sensor reading value).

The lower windows show text-based output for debugging purposes.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 8

Figure 2 - SpyGlass user interface [6]

2.2.3. Octopus [7]
Octopus is WSNs monitoring tools which is independent of the routing protocol used in the

WSN. It provides live information about the network topology and the sensor reading data. It

also enables reconfiguration of the network and of the application by sending short commands

to the sensor nodes over the air.

Octopus is both developed in nesC for the nodes (TinyOS 2) and Java in the application side that

runs on the computer.

Octopus reconfiguration commands can easily extended such as modifying the sampling period,

setting the duty cycle, changing between query, event or timer driven modes.

Octopus consists of 3 entities: GUI, gateway node and the emote nodes. GUI is a java based

application serve as frontend of Octopus which displays live network topology, it connects to

the gateway node via serial port on the host computer. The embedded portion of octopus relies

on three main component octopus core, timer and sensor.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 9

Octopus functionalities are:

• GUI for visualizing live sensor network topology

• Supports time, query, or event base driven sensor network.

• Allow user to broadcast or send control commands (sampling period, radio duty

cycle, sensing thresholds) to specific node

• Allows generating alerts when the sensor reading data exceed user predefined

threshold.

• Network chart is used to provide live data plots.

• Logs all the data received in a .csv file for post or further analysis.

• Enables developer to customize or extend GUI through modular APIs.

Octopus user interface below (the latest version) was taken from the experiment conducted in

the first semester because the application was constantly improved and the new features were

not available in the paper published by the authors.

Figure 3 - Octopus user interface

Octopus user interface consists of several tabs that provide the features described above.

“Network Map” displays the logical network topology, nodes are shown along with the lines

representing the connection among the nodes, Sink node is colored red and the regular nodes

are in blue. The “Legend” tab on the right can be used to show more information about node

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 10

states and network topology (i.e. link quality, node’s sampling rate). Users can choose any or all

nodes displayed on the topology to be controlled by sending them the control message either

from “Radio.Rqst” or “App.Rqst” tab. Also, the selected nodes can be added to plot their sensor

reading values. The chart can be consulted in the “Network Chart”.

“Floor Plan” allows user to upload an image of the floor, this is done in the “Localise” tab on the

right, and after uploading the image the user needs only dragged the node to its specific

location.

User can be alerted when an event of interest happens, an Alert can be setup in the “Alert” tab,

and alert is implemented as pop-up windows that will be shown when the interest event has

happened. (I.e. user is notified when the sensor reading value is beyond or below a determined

threshold).

Most of the control message is send using the “App.Rqst” tab, the target nodes can be one or

more, target nodes can be selected either in the “Network Map” or in the “Radio.Rqst”. As

shown above user can choose which sensor reading value to be displayed by console panel on

the lower window, put node into sleep or awake mode, settings duty cycle period and add the

nodes to plot their sensor reading values.

2.2.4. MonSense [8]
MonSense is modular WSNs monitoring framework for deploying, monitoring and controlling

WSNs. It supports connections to various WSNs and also can interface with one or more

gateways that forward information received by attached network.

The current implementation of MonSense in TinyOS and the telosB hardware platform, it

targets two different user types: WSNs Customer and WSNs researcher. The application is used

by the WSNs researchers to plan and deploy WSNs since they have deep understanding of the

ad-hoc routing protocols, sensor hardware platform and the nesC code that runs on the

devices, while the same application is used by WSNs customer for monitoring and controlling

purposes.

MonSense functionalities are:

• For the deployment purpose Mon sense displays map of the testbed field and using

the GPS to assist the deployment agent to select exact location of the node.

• The connections or routes among the nodes is represented by colored line for

different connections parameters such as; the node is active or connected to the

network, is node connected to the base station, is the node just send a packet, etc.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 11

colored line is used to display the status of the network and facilitate the rapid

perception of the entire network.

• Application allows control commands to be sent to the nodes, i.e. command to

calibrate the sensors on the nodes.

MonSense user interface shown below consists of list of the nodes and map of the testbed and

using GPS to locate nodes precise location.

Figure 4 - MonSense user interface [8]

AS shown on the above image colors are used to describe connection among the node on the

network: Nodes appear in red are node that have lost connection to the network, nodes in

yellow means a network message has just been received from this node, nodes in green are

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 12

nodes that are connected to the base station, blue nodes are nodes thats connected and heve

sent a message recently.

2.2.5. NanoMon [9]
NanoMon is modular and flexible WSNs monitoring software, it offers flexible architecture and

supports for various user requirements of sensor network applications in an adaptive manner.

NanoMon consists of following functional parts: wireless sensor networks, monitoring servers,

databases and monitoring clients. Information generated by the WSNs nodes is forwarded to

the monitoring server via one or more sink nodes trough serial connection, the monitoring

server in turn forward the information received to the monitoring clients via TCP/IP connection

for visualization and also forward to the databases for the later queries.

Software in NanoMon is comprised of 5 modules: connection module is responsible for

managing the connection between the NanoMon and sink nodes also process the information

request from monitoring devices. Packet processing Module parses the packet from received

from the connection module to a well-defined packet (XML packet formats) for sending to

monitoring clients and also sends the parsed to the management module to store in the

database. The management module provides data access interface to and from the database.

Sensor network abstraction module contains information of the sensors, nodes and the

connection between them and allow user to choose between the live mode and the past

information generated in a specified period. GUI integration module creates a GUI framework

and integrates GUI plug-ins defined in the configuration file.

Users can flexibly scale and change the operation of NanoMon according to its specialized

sensor network application requirements by using the configuration file.

NanoMon functionalities:

• Topology plug-ins for visualizing sensor node and the connection between them.

• Sensor data plug-in displays sensing value from the sensor node, data reception time

and also searching particular sensor data according to input condition.

• Chart plug-in visualizes the sensor data using different types of charts.

• Sensor list plug-in visualizes live sensor nodes and their details information such as

battery level, install location, ID and last sensing value.

Image below depicts NanoMon configuration file and the NanoMon user interface. The user

interface can vary for different scenario of usage. User is free to choose modules and plug-ins

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 13

to load according to his needs. All these choices are configured in the configuration file, prior to

loading the user interface.

Figure 5 - NanoMon configuration File [9]

As show in the image above, all the required components and plug ins must be defined on

configuration to use for later in the UI, i.e. type of sensor, unit calibration and the some plugins

to load for the user interface and other information that will be provided by this session user

interface. Following is the correspondent User interface for the configuration file above.

Figure 6 - A testbed and the NanoMon UI on the right [9]

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 14

2.3. Comparison table of WSNs monitoring tools

Monitoring

Tools

Data

visualization

and controlling

Live

visualization

and data

logging

Data retrieval

method

Type of data

displayed

Generate

Alerts

Source Code

availability

and

extension

Supported

Mote

Platform

Operating

System

Mote-view

Data

visualization

and controlling

Live and data

logging

Event and

query driven

Nodes and

network
yes No Mica series TinyOS

Spyglass
Data

visualization
Live Time - driven

Nodes and

network
no No

Embedded

Sensor Board

ESB 430/2

C language

Octopus

Data

visualization

and controlling

Live and data

logging

Time-driven

and query-

driven

Nodes and

network
yes

Yes and

support

extension

TelosB, Mica

Family and

Tyndall 25

TinyOS

MonSense

Data

visualization

and controlling

Live and data

logging
 Time-driven network yes no TelosB TinyOS

NanoMon
Data

visualization

Live and data

logging

Time-driven

and query-

driven

Nodes and

network
No no

Nano-24

ETRI-SSN

MicaZ

NanoQplus

[10]

Table 1 - Comparison of WSNs monitoring tools

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 15

Above table compares the functionalities provide by the WSNs monitoring tools discussed

in this chapter. This comparison is necessary to determine which tool is offers more

functionality by analyzing the following characteristics:

 Data visualization and Controlling – This functionality determines if the tool is only

used to visualize the gathered data by the nodes on the network, or if it is also able

to control the network. In the first case data flow only occur in one direction, from

the WSNs to the Monitoring application running on the computer. On the other

hand if besides data visualization, the tool also provides mechanisms to the user to

control nodes on the network (i.e. change settings - altering Sensor sampling

period, node duty cycle, and query the specific data from the nodes).

 Live visualization and Logging – Apart from visualizing the event that is happening

in real time, the logging functionality is necessary to save the events for later

analysis and also to consult an event that happened in the past.

 Data retrieval method – This functionality refers to the ways the collected data,

node status, are send to the monitoring tool; “Time-driven” data are sent in a

periodic fashion to the monitoring tool. “Query-driven” data retrieval method

allows user to query at any time the data or information from the network

whenever they desire.

 Type of data displayed – This characteristic is used to distinguish monitoring tools

by the information that the tool provides. Most monitoring tools as shown in the

above table provide data for both node and network level whereas MonSense

primarily focus on the network level information as whole.

 Alerts - This functionality refers to the ability of the monitoring tool to notify a user

when an event of interest has happened.

 Source code availability and support of extension – while most of the tools claim to

support extensions, allowing the adding of more functionality to the tool, not all of

them have source code available. Mote-view is a case of proprietary software that

only supports only Crossbow products.

 Supported mote Platform – There are reasonable number of mote platforms

available. The more platforms it supports is better. Even when some tools claim to

be easily ported to a new mote platform, this can be quite difficult when the

applications source code is not available.

 Operating system – the applications running on the nodes are programmed in a

sensor operating system environment. Some operating system provide libraries to

be used by other programs to communicate with the application running on the

sensor node (i.e. TinyOS provides libraries for C, java and python program to

communicate with the node’s application)

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter2|State of the art Page 16

2.4. Critical analysis of the monitoring tools
WSNs monitoring presented above were designed to use mainly for data visualization and

to collect the network status (quality of the link between adjacent nodes) and nodes

status such as energy level and sensor reading values. Mote-view, Octopus and MonSense

provide a mechanism for the user to preform basic controlling such as query distinct

sensor reading values and set or alter the sampling rate of the sensor node, the other

tools only used for data visualizing or passive monitoring.

None of the existing tools provide a mechanism to calculate performance related metrics

such as packet delay and throughput. The monitoring tool to develop will include the

mentioned metrics and others to allow calculation of the performance.

The monitoring tool to be implemented in this dissertation will target WSNs in critical

areas where performance of the network must be measured. Thus the tool must provide

functionalities to measure the performance related parameters in real-time fashion.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Monitoring tools requirements Page 17

3. Monitoring tool requirements
This chapter discusses the requirements of a WSNs monitoring tool that targets controlled

performance networks. The monitoring will imply the display of the collected data and

related performance parameters in real-time.

WSNs have been used in many areas such as environmental condition monitoring, health

care, military applications and industrial plants. Different applications of WSNs require

different requisites such as communication overhead, packet delay and task execution

time, depending on the area where WSNs is used.

To assure the performance of the WSNs in the critical areas, a WSNs monitoring tool can

be used to measure performance related parameter such as packet delay and the packet

loss rate. Unlike most of the WSN monitoring tools discussed in the previous chapter,

which only provide network monitoring and data visualization, the intended WSNs

monitoring tool should also provide mechanism to predict the network performance by

measuring some of the QoS parameters such as packet delay and packet lost.

The monitoring tool targets WSNs with controlled performance which allows network

performance analysis in real-time fashion.

The monitoring tool In general, will provide following functionalities:

 Display the status of nodes in the network;

 Display data collected by the nodes;

 Display the logical network topology;

 Allow users to perform basic control of nodes in the network;

 Generate alerts based on the user predefined values;

 Allow the access to the history of each node.

Each of these functionalities will be described in more detail in the following sections.

3.1. Display network statistics, nodes status and the

sensed data
The main task of the monitoring tool is to visualize the logical network topology, the

status of nodes in the network and the sensed data. This is mainly important because it’s

the only way for the user to check the node status, node resource usage (such as battery

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Monitoring tools requirements Page 18

level, memory usage) and data collected by the nodes (sensor reading values). The data

collected by the nodes is displayed on the tool and also stored in the database for the

later analysis.

Apart from obtaining the node status, the tool should also show the logical network

topology, which displays all nodes and the interconnection (links) among them. This

approach gives the user real-time network status and helps to determine if a node is

active in the network.

A link between the nodes is used to determine the node connection, a node is active when

there is a link from the node to the parent node otherwise the node is inactive (inactive

node will be displayed without link).

3.2. Perform basic control of nodes in the network
There are times when the user needs to configure or alter node configurations such as

sensor sampling period and setting node’s duty cycle. This is necessary to avoid

reprogramming the node just to alter a configuration value.

Node lifetime is dependent on the energy available in the node, since nodes are using

limited energy supply (battery powered). Enabling node duty cycle can help to preserve

energy on the node. Duty cycle allows a node to be in a quiescent estate to preserve

energy.

For the flexibility reason control commands can be sent either in broadcast form or to

specific node because sometimes control command is intend for all nodes on the network

i.e. setting or altering sensor sampling period, whereas duty cycle control commands

usually intended for specific node or group of nodes.

3.3. Performance related metrics
WSNs used in critical areas such industrial area, healthcare and military the network

behavior must be predictable in order for some application to function properly. The

monitoring tool can and should be used to measure the network performance in order to

guarantee that the performance is the expected.

Following is the list of chosen metrics to measure, which will be able to determine the

performance of the network:

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Monitoring tools requirements Page 19

 Packet delay. The packet delay is calculated by subtracting the “packet receive

time” and the “packet send time”.

 Packet lost. The packet lost is calculated by subtracting number of “packet

received” and the number “packet sent” during a period of time.

 Packet delivery rate. Packet delivery rate is calculated by the number of “receive

packet” over time interval of one second.

 Freshness [4]. Freshness is use to determine the node status and the last packet

received from the node. This is useful to keep track of active node and can

generate alerts when packet from a specific node has not been received beyond a

defined time interval.

In order to perform the measurements of the above metrics the time synchronization is

utmost important. The nodes time, the sink and the monitoring tool time must be

synchronized to obtain correct results of the measurement. Apart from time

synchronization the monitoring tool must provide a mechanism to log the history events

or packet.

3.4. Other features that monitoring tool needs to provide
Beside than display network statistic, node status and allow user to perform basic control

of nodes, the monitoring tool needs also mechanism to store the history values for post

analysis and graphing purpose. The database is preferred to store these data rather than a

flat file because it is easy to retrieve data of interest from the database via queries rather

than analyzing the file manually.

The monitoring tool ability to generate alerts is necessary to alert the user of interest

event has occurred or when the data collected by the nodes on the network exceed the

threshold set by the user. The alert message will be displayed on the PC running the

monitoring tool.

3.5. Definition of a standard interface with the sink
The monitoring tools will be divided into mote application and the PC application, the

mote application as the name imply will be install on the node on the network, mote

application is responsible for sending the data collected by the node to the PC application

for visualization and also receive the control commands send from the PC application by

the user. The mote application will be developed in TinyOS.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Monitoring tools requirements Page 20

The PC application is the GUI application which displays the network statistics, nodes

status and allows user to send control commands to the nodes on the network. The PC

application will be interacting with a database to store and retrieve data. The PC

application will be developed using high level programming language such as java which

for the platform independent to be able to run in any operating system.

The communication between the PC application and the mote application will be done via

TinyOS java tools. The message format and the field of the message will be configured in

the mote application and the PC application.

3.6. Extending Octopus
After analyzing some of the existing WSNs monitoring tools discussed in the previous

chapter, this chapter specifies the requirements of a WSNs monitoring tool with the ability

not only for data visualization and to perform basic control of nodes on the network, but

also that is able to measure network and node level performance.

Most of monitoring tools requirements specified in this chapter are a combination of the

common features of existing monitoring tools which are considered essential and

provided by all WSNs monitoring tools such as discussed in section 3.1, 3.2 and 3.4. While

these commons and essential features are good to have, they are not enough for the

purpose of the monitoring tool intended by this dissertation, which is developing a

monitoring tool which is able to measure performance related metrics.

A comparison was made for the monitoring tools in section 2.3 of the previous chapter.

This was done to compare their features and the possibility to extend an existing tool to

leverage their features and add new functionalities according to the goal of this

dissertation. With this in mind, comparison table was made along with the criteria of the

comparison to decide which existing monitoring tool to be chosen as the base of the new

monitoring tool.

By analyzing the comparison table the choice becomes clear. Octopus was chosen because

it satisfies most the comparison criteria compare to other tools. Following is the

description how Octopus feats those comparison criteria:

 Octopus provides data visualization as the other tools and also allows user to

control nodes on the network, Octopus allows to control nodes for variety of tasks

(i.e. setting, altering node’s sampling period, node’s duty cycle, changing radio

communication channel, etc.) compare to other tool such as Mote-view which only

allows to perform basic control i.e. controlling the node’s LEDs.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Monitoring tools requirements Page 21

 Octopus supports several motes platform as shown on the comparison table

compare to other which either tested only for specific mote platform or limited to

a company product (i.e. Mote-view only supports Crossbow products)

 Source code availability and support for extension, Octopus source code is made

available by their developer under a GPL license for other developer to use and

modify according to their need, furthermore Octopus made used of the protocols

and the libraries which included actively maintained by TinyOS developer.

Octopus as discussed in the state-of-art chapter already provided some of the

requirements listed in the previous section 3.1, 3.2, 3.4 and 3.5. Extending Octopus so it

can measure performance related parameters requires adding new features i.e. packets

delay calculation, packet lost rate and the node freshness or it last known activity. These

three parameters are can be used as main factors to measure network performance in

general:

 Packet delay – In some WSNs applications scenarios i.e. industrial area where

WSNs are used for controlling and automations, the packet delay must be in a

tolerable range to guaranty that actions are taken at timely. (I.e. commands send

to nodes in the network must be arrived between expected times so thus

corresponding actions can be carried out at the expected time)

 Packet Lost – In A WSNs with controlled performance, this parameter can be as

restricted as packet delay described above where packet lost must be in a certain

range to consider that the networks is perform as expected. Apart from being a

metric used to determine network performance, packet lost is also related to the

nodes energy efficiency because when packet lost rate is high can also deplete

the energy supply by packet retransmission depending on the packet

retransmission policy use.

 Node Freshness – This factor is not strictly related to the network performance in

general, this was added because of fact that nodes on WSNs are prone to link

failures because of unreliable wireless characteristic one cannot know for sure

when the node is active or inactive for certain period of time in the past. This

value simply contains date and time of the last packet received from the node.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 22

4. Experimental setup of Octopus
This chapter describes in-depth the Octopus monitoring tool and also the experimental

setup of Octopus in TinyOS. The purpose of this experimentation was to familiarize with

the Octopus source code, explore the octopus features and its limitation in small testbed

of WSNs with two nodes (a sink node and a normal node) and exploring the possibility of

using the Octopus as base tool for the monitoring tool to be developed. Octopus was

chosen for the experimentation because among the monitoring tools discussed in the

state of art chapter it poses some of fundamentals functionalities require to monitor

WSNs and also its source code is GPL licensed which can be freely used or modified.

4.1. Global Architecture of Octopus
The image bellow shows the connection of the three components used in Octopus, the

regular mote is referring to the nodes in the network that collect the data and send it to

the Gateway node (sink node) via radio. The Gateway, in turn, forwards the data received

to the application running on PC (GUI) using serial communication since the Gateway is

connected to a serial port on the PC. The configuration commands from GUI application

are sent via the serial port to the Gateway node and the Gateway either forwards the

command to a specific node or broadcast the command to the all nodes in the network

depending on the specified destination address by the user.

Figure 7 - Global Octopus structure [11]

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 23

As shown in the above image embedded application of Octopus relies on the Timer

 The Octopus GUI comprises of four components: Scout, Mote Database, Panels and

Logger. Scout is a java thread which listens to the serial port and processes the received

messages, the MoteDB updates the status of corresponding node when it receive a new

message. The other two components (Panels and Logger) can access the MoteDB to learn

the status of a particular node, Panels access the MoteDB for displaying the node status

for the user and also when user sends configuration commands to the nodes on the

network. Logger component access the MoteDB to log the collected data to a file for the

later analysis.

Embedded Octopus application running on the nodes, allows the node to perform

sampling of the sensor values and determine how often the data is sent to the gateway.

Nodes on the network can send the collected data to the gateway in three ways: (i) A

timer is used to determine how often nodes send data collected data to the gateway, it is

also known as time-driven mode. (ii) In an event-driven mode, when timer fires nodes

check whether any of the sensor reading values exceed the defined threshold before

sending it to the gateway, this mode is used to generate alerts. (iii) In a query-driven mode

nodes wait for the sampling request from the gateway to sample the sensor reading and

send it to the gateway.

4.2. Octopus Message Format and Protocol Independence
Octopus supports two-way communication. Data collected by the nodes is sent to the GUI

application (Upstream messages) for the visualization and the configuration commands

are sent from the GUI application to the nodes on the on the network (Downstream

messages). Currently two TinyOS default protocols; Collection Protocol Tree [12] and the

dissemination protocol [13] are used for the upstream messages and downstream

messages, respectively.

Two message types were defined to support the upstream messages and the downstream

messages, these messages format are shown in the picture bellow:

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 24

Figure 8 - Downstream message and upstream Message types [11]

Downstream message type contains the targetId field of (16 bits) to identify a node or a

set of nodes as the message destination and the set of parameters in the parameters field

(16 bits). The request field (8 bits) is used to identify the request types it also supports up

to 256 requests.

The upstream message type contains: moteId, count, reading quality parentId and replay.

These fields are used by the GUI application to display the network status such as the

network topology and also log the collected data for the later analysis. To display the live

network topology, GUI application aggregates the local topology information embedded in

the upstream message (moteId and the parentId). MoteId refers to the source node of the

message which is unchanged even when the message is forwarded through multiple hops.

The quality field is used to determine the weight of the vector and the link quality. The

following image show the vector format used to identify link quality and the aggregated

vector used to display network topology in the GUI application.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 25

Figure 9 - (a) Octopus message vector format. (b) Aggregated vectors for forming topology [7]

When a message from a specific node arrives in the base station for the first time the

moteId field is extracted by the java application form the message header to create a new

node with this moteId, parentId is needed to determine the direction and the destination

endpoint of the vector in the GUI. To visualize the network topology, an aggregation of the

vector of all nodes in the network is carried out by the java application as shown in the

figure (b) above.

The reading field contains the sensor reading values which can used by the java

application for displaying live sensor reading, log them in a file or plot them in the

network chart. The reply field indicates whether it’s a reply to a user request or periodic

message carrying the sensor reading.

All the necessary information for the visualization and the controlling the sensor nodes is

included in the upstream message making the Octopus independent of the underlying

routing protocol and allowing developers to experiment it with other routing protocol.

4.3. Octopus GUI Application
Octopus GUI application is developed in java that’s run in computer with the sink node

attached. Following are some of the main classes of Octopus GUI application:

 Scout.java is a thread which listens to the serial port for incoming messages from

the base station to processes them, it also update the data base when receive a

message from the existing node or creating new entry in the data base if for the

new node.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 26

 Mote.java is a class contains virtual mote with all the related characteristics to the

real mote on the network and also the characteristics related to its parent.

 MoteDataBase.java is an implementation of linked-list to store instances of the

Mote Objects it provides method for add, get and remove Mote.

 Consolpanel.java is use to generate text based display for events such as new

mote was added to the database and when the message is received or sent.

 ReadingrecordList.java and ChartPanel.java these two classes are used for display

the reading value of the motes.

 RequestPanel.java and MsgSender.java these two classes are used to create the

request panel and the send the request from the user to the network.

 LegendPanel.java allows user to customize the displayed data such as; display

nodeId, parentId, link quality, etc.

 Logger.java is used to log the data collected in a csv format for the later analysis.

 Localization.java and Localise.java are used to display network topology plus the

floor or testbed layout.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 27

Following is a screen shot of a latest version of Octopus User interface.

Figure 10 - Octopus GUI application

Octopus User interface can be divided in two main sections left and right table or panels.

Panels on the left (Network Map, Network Chart, Floor Plan, and Console on the bottom)

are used mainly for data visualization and the right Panels (Radio.Rqst, App.rqst, Alerts

and Legend) are used to filter or control data displays on the left panel and also allow user

to send control commands to the nodes on the network.

The console panel on the bottom is always visible to displays events i.e. according to

option chose by the on the filters panel, whereas user can navigate to any panel on the

left and the right panel. Above image currently chows Network Map on the left and the

App.Rqst on the right. Network Map shows the logical topology of the network and some

information about node and link status, also in this panel user can choose nodes to control

by clicking on the nodes. After intended nodes are selected App.Rqst Panel can be used to

send the control commands (choosing among three sensor reading values to be displayed,

setting nodes duty cycle, setting sensor sampling period and add nodes to the chart)

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 28

Figure 11 - Sensor reading chart

Above image shows charting feature of Octopus, after selected nodes are added to plot

their sensor reading values, the chart can be visualize under Network Chart. The values are

been plotted as they are received in a live fashion. The same values can also be displayed

on the lower windows if user enables it under Filters panel.

Radio.Rqst Panel shows information related to Radio used for communication, allows user

to choose target nodes (Broadcast and Unicast) information about selected, option to

change Radio channel and configure the nodes duty cycle.

To use the Floor Plan panel the user must insert a floor plan layout in the Localise panel on

the right. Floor Plan shows the logical network topology as shown on the Network Map

panel plus a layout of the floor or testbed, this feature allows user to place the nodes

according to their real locations.

The Legend Panel is used to control information to be displayed along with the nodes on

the Network Map as shown in the Figure 10, this panel also provides the logging feature

which allows user to choose fields of data to be logged.

Usage of these two features is depicted in the followings images:

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 29

Figure 12 - Network topology plus floor layout

Figure 13 - Legend Panel

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 30

4.4. Experimenting Octopus and the difficulties
An experimental testbed for testing Octopus was carried out to further analyze the tool.

The testbed consists of 2 nodes (1 sink node and 1 client) and the java application running

on a PC for displaying the data or information gathered from the network. The sensors

nodes aforementioned run an embedded version of Octopus that was implemented in

TinyOS. The embedded application is responsible for sending the data gathered by the

various sensors attached to the nodes to the java application running on the PC via sink

node.

The purpose of this experimentation was to explore the Octopus features in action, the

message format use for communication between the Octopus embedded application

running on the motes and the PC application and the possibility of altering the message

format used to include more fields on the packets send to the GUI application.

The changes were made only for the Octopus embedded application (The TinyOS code) to

integrate a mechanism to monitor the status of the USER Button found on the nodes. To

add this feature, the initial attempt was to add a new field in the massage format that

contains value regarding the button status (value 1 if button is pressed and value 0 if it is

not pressed). Although this is the correct and the preferred way of testing the ability of

adding the new fields to the message format it would require to alter all the GUI

application (the java codes) in order display this newly added field.

To avoid altering the GUI application which is not mandatory for testing the possibility of

adding new fields to the message format, since message format configuration is

implemented on embedded version of Octopus. The new field for the button status was

added to the embedded version while on the GUI application for visualization purposes

this field’s values will be received and displayed in place of the light sensor reading values

as shown in the following image.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 31

Figure 14 - Button status values

In the above image, console panel on the bottom shows the 3 sensor reading values

(Temperature, Light and Humidity) in this case the Light sensor values have been replaced

by the values of the button status which is either 1 or 0 depending on the button status.

The field was successfully added to the message format and also can be visualized in the

place of the light sensor reading value, however, regardless of the button states the values

appears on the GUI does not change (always display 1 even when the button is not

pressed).

4.5. Octopus limitations
As already discussed in the state of art chapter Octopus provide data visualization (sensor

reading values), nodes battery level, link quality between child and parent node these

data can be visualized directly in the GUI application or logged into file for later analysis. It

also provides a mechanism to perform basic control to the nodes on the network such

altering nodes sampling period, query a specific data on the nodes, setting nods duty cycle

and sensing thresholds.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|Experimental setup of Octopus Page 32

The tools also suffer the same limitation as the other tools none of the events or packet

received by the GUI application has time-stamp associated, which make it hard to

determine when the last packet was received or to check the node’s active time. It has no

dedicated database to store all the events or packets which allows the user to replay or

visualize events or packets received in a certain span of time. Octopus, as it is now

visualizes the data in a live fashion in the GUI application thus by default it doesn’t

maintain any record.

 Octopus provides possibility to log the data received to a file for later analysis, however

this file only contain the information specified in the message format and the data in this

file is mainly used for graphing purpose. The limitation of this approach is that the data in

the file will be processed manually by the user, i.e. the data is import to a Microsoft excel

program to generate graphs.

The other limitation of the saving the data to a flat file is hard to visualize event or packet

received in a particular span of time, because it has to be done manually especially when

the file contain hundreds or thousands. The database is necessary to store all the record

and make the data processing easy by issuing queries against the database

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 33

5. New Octopus monitoring tool
After conducting the experimental setup of Octopus and analyzing its limitations in the

previous chapter, this chapter focuses on the alterations necessary for Octopus to

measure performance related metric of WSNs.

As discussed in the previous chapter, Octopus is using flat files to store the data received

by the application. While this is a useful feature to have, it is not convenient because it is a

tedious work to find specific events of interest on the file, especially when the file contains

lots of records, and ultimately makes it harder for other program to analyze and used data

stored on the file.

To overcome the storage problem, MySQL database is used to store all the data received

by the application, this makes it easier for other program to use the collected data and

retrieve interest events and data occurred in the past.

Time synchronization on WSNs is essential to keep track and time-stamping events as

argued by the authors in [14] and considered paramount to perform measurement of

some of the performance related parameter such as to calculate packet delay, which

requires nodes involved in the communication agree upon one global time. The current

version of Octopus doesn’t provide any mechanism to synchronize nodes clock. For clock

synchronization purposes it was necessary to integrate Flooding Time Synchronization

Protocol (FTSP) [15] . FTSP will be discussed in detail in a following topic.

Packet delay information is available in a real-time fashion, where packets delay is

visualized in form of a chart for each node. The delay of the last packet received from a

specified node and also packets delay for a specified time range in the past, is also shown.

Each node maintains a counter for the packets it sends. This counter is included in every

packet (in the counter field in message format as shown in Figure 17) and it increments by

one for every new packet. Packet loss information for each node is by default shown for

the last thirty minutes. Also, start time and end time can be specified to visualize packet

loss information for the desired time range.

This chapter discusses in detail the development of new octopus monitoring tool and the

alterations made to the previous version of Octopus and some tests for different hops.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 34

5.1. Global architecture of new Octopus
Following image depicts the global structure of the new Octopus.

Figure 15 - Global Architecture of new Octopus

As depicted in the above new three blocks were added to the original architecture of

Octopus (MySQL DB, Net.StatPanel and DelayHistories Chart). However it doesn’t change

the data flow and communication among the blocks of the previous Octopus, just added a

few more interactions among “Scout” Block and some new blocks.

On the previous version of Octopus when the packets are received by the “Scout” block

from the Gateway or sink node it then sends the received data for every node on the

network to be stored on in the MoteDB block. Panels and Logger then can use the data on

the MoteDB for Visualization or for logging purposes as shown by the image above.

The new version of Octopus follows the same procedure as described in the previous

paragraph, and also send the data to be stored in MySQL database. This is necessary

because the data stored in the MoteDB block is only available when the Octopus is

running, when the application is closed or restarted the data is lost. By Storing the receive

data also in the MySQL database make it persistent and can be accessed later in time

when needed.

Another reason not to completely replace the MySQL database with the MoteDB is

because some real-time data visualization such as displaying sensor reading value for each

node or graphing these values as they are received is much faster using the data store in

the MoteDB rather than Querying the MySQL database. For this reason all the data for

visualization in a real-time fashion are obtained from the MoteDB.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 35

MySQL database is mainly use for retrieving previous data stored in there: i.e. retrieving

packet delay and packet lost histories for each node for a specified time in the past and

also some statistical calculation is based on the data store in the database.

5.2. Octopus database design
MySQL database was chosen to store data collect from the network. For portability and

ease of use purposes rather than installing the MySQL from the source for Linux

distribution and manage it via command line, a portable version of MySQL and the GUI

program for managing it (PHP MyAdmin) is made available by Apache friends [16] under

name of XAMPP which is available both for Windows and Linux platforms.

Octopus database consists of two tables (Motes table and Packets table) “Motes table”

stores information related to node status and the “Packets Table” information related to

the packets received from the WSNs.

The columns in these tables are the same fields defined in the octopus message format as

shown in Figure 17 on the right with new fields added to measure performance related

metrics.

The columns on the both tables can be observed in the following image:

Figure 16 - Database tables (Motes and Packets) Layout

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 36

Both tables are linked by the mote_id in the Motes Table and the source_mote in the

Packets table. Some of the columns in the both table are solely use as a filter or used to

perform calculations. (i.e “reading_long”, reply and scale in the Motes table and “counter”

in the Packets table).

5.3. New Octopus message format
As discussed in the section 4.2 Octopus uses two different message formats for upstream

message (from WSNs toward monitoring tool) and downstream packets (commands send

from GUI to sensor node on the WSNs). The downstream message format was not

changed whereas new fields were added to the upstream message format to include more

information about the packets as can be observed in the following image.

Figure 17 - Message format of the new Octopus

On the right is the up-stream message format two new fields sendTime and receiveTime

were added to keep track the packet sending and receiving time respectively.

sendTime of a packet is obtain from the packet’s source node and the receiveTime is the

time of packet reception by the sink node, independently of the number of hops the

packet travels, both values are in millisecond precision. These changes were made on the

Octopus embedded application running on the motes (Octopus.h file)

The size of these two fields is of 32 bit long compare to others fields because the time

return by the time synchronization protocol is of 32 bit long as shown in code snippet in

section 5.5.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 37

5.4. Nodes clock synchronization
The need for network level time synchronization is crucial for the monitoring purposes for

time-stamping events and essential for calculating packet delay. There are several time

synchronization protocols for WSNs. This section discusses briefly some of the existing

time synchronization protocol for WSNs:

 Reference Broadcast Synchronizations (RBS) [17], in RBS nodes periodically

broadcast reference beacons to its neighbors, this reference doesn’t contain

explicit timestamp instead receivers use its reception time and record their local

time to exchange with their neighbors. According to [15] the protocol has not been

extended for large multi-hop networks.

 Timing-sync Protocol for Sensor Networks (TPSN) [18] achieves network level time

synchronization first by creating a structural topology in the network and

guaranties that at least a node in a level can communicate with the upper or lower

level in the topology structure, this phase is known as “discovery phase”. The next

phase is “synchronization phase” a node belongs to higher level synchronize to a

node of level immediately below it, this process is repeated until synchronization

reaches the level zero of the topology structure where the root node resides. As

described in [15] by using MAC layer level radio time-stamping this protocol

achieves two times better performance than RBS protocol. One of its downside is

that it does not estimate the clock drift of the nodes.

 Flooding Time Synchronization Protocol (FTSP) [15] this protocol uses the radio

broadcast to synchronize possibly multiple receivers to the time provided in the

radio message. Receivers then record in their local time of the message reception

time, this result in a global-local time pair (Time included in the received message

and the time stamp taken when the message was received). This time pair is used

to estimate the clock offset of the receivers.

For managing clocks drift between a sender and receivers Linear regression is used

to determine the error for different broadcast beacons, apart from determining

the error liners regression is also used to determine the periodic beacons interval.

In a multi-hop environment the network wide time synchronization takes a

proportional time to the number of hops. Root node is determined by the lower

“nodeId” and root node re-election takes place when the previous root a no longer

available or disconnected from the network.

FTSP is the time synchronization protocol used with the new Octopus monitoring tool for

clock synchronization purposes, because this protocol is the latest one up to date and the

results obtained by this protocol is better than the two previous time synchronization

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 38

protocols according to the comparisons made in [15] and among this three protocols FTSP

is included as a library in TinyOS by its developer.

5.5. Alteration of Octopus embedded application
Octopus embedded application runs on the sensor nodes consists of files written in nesC

language [19] and some C language header files. Beside the changes discussed in 5.3 to

incorporate time synchronization protocol to the Octopus embedded application the file

“OctopusAppC.nc” was added the TimeSyncC component which provides the clock

synchronization and LocalTimeMilliC component to obtain node’s local time and converts

it to corresponding global time. The components and the wiring necessaries for the time

synchronization are shown code snippet below.

// Components and wirings for Clock synchronization
components TimeSyncC, LocalTimeMilliC;
MainC.SoftwareInit -> TimeSyncC;
TimeSyncC.Boot -> MainC;
OctopusC.GlobalTime -> TimeSyncC;
OctopusC.PacketTimeStamp -> ActiveMessageC;
OctopusC.LocalTime ->LocalTimeMilliC;
OctopusC.TimeSyncInfo -> TimeSyncC;

The components used are listed in the first line after the keyword components and the

rest of the lines are wirings which connect the user and provider of a service, the arrows

indicates the user and the provider. The second and the third lines initiate the FTSP

protocol when the sensor node boot, lines start with “OctopusC.” indicates the services

use by Octopus and their providers.

The file “OctopusC.nc” was also altered to include the packet sending time from the

source node and the packet receiving time in the sink node. These changes were done in

their appropriate sending and receiving event.

//Adding the packet sending time for the regular nodes
task void collectSendTask() {

uint32_t tmp;
tmp = call LocalTime.get();
localCollectedMsg.isSync = call GlobalTime.local2Global(&tmp);
localCollectedMsg.sendTime = tmp;
localCollectedMsg.rootAddress = call TimeSyncInfo.getRootID();

}

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 39

The lines above were added to the task that responsible for sending packets, the first line
obtains the node’s local time using the “LocalTime” interface then the second line
converts it to the global time and finally the value is included to the appropriate field of
the packet. “localCollectedMsg.isSync” and “localCollectedMsg.rootAddress” both fields are
related to node synchronization information, first is used to determine whether node is
synchronized and the second is to obtain the address (moteId) of which the node synchronize its
clock to.

Sink node set the packet reception time, the process is similar to the one described above
the only difference it’s done inside the reception event. Following is the snippet code for
determining packet reception time.

event message_t *CollectReceive.receive(message_t* msg, void* payload, uint8_t len) {
 octopus_collected_msg_t *collectedMsg = (octopus_collected_msg_t *) payload;
 //Adding packet receiving time
 Uint32_t tmp, receiveTime;
 tmp = call LocalTime.get();
 receiveTime = call GlobalTime.local2Global(&tmp);
 collectedMsg->receiveTime = tmp;
}

5.6. New Octopus user interface
New Octopus user interface added three new panels for calculating performance related

parameters (Net.Stats), plotting packets delay in real-time fashion (Live Delay Chart) and a

panel to plot packet delay for specified period of time (DelayHistory Chart).

Data uses by these new panels are obtained from the MySQL database, except data for

real-time packet delay chart which plots the delay values as they are received. Real time

packet information values are also sent to the database for later visualizations. New

Octopus user interface is shown in the following image.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 40

Figure 18 - New Octopus user interface

The new panels added will be discussed in details in the following subsections.

5.6.1. Net.Stat panel
Net.Stat panel shown in Figure 18 contains performance related information organized

based on the selected node, and also provides access to the delay history of the node.

After a node is selected from the list the subsequent fields will be populated: Freshness,

Packet delay, Median of delay and Packet Loss Rate. The list shows all the nodes found in

the database regardless of their current status (Active or Inactive), allowing users to

obtain information of the desired node even if the node is currently inactive. Each of these

fields will be discussed in details:

 Node Selection – This list contains the nodes stored in the database. Other fields

will be updated accordingly when a node is selected. Following is the SQL query

use to obtain the list of nodes “SELECT DISTICNT source_mote FROM Packets”

 Node Freshness – This field contains information of the last packet received from

the node. The time is precise to seconds. This is useful in the WSNs communication

because the radio links are unreliable, with nodes disconnecting and connecting

again to the network at any time. “SELECT time FROM Packets WHERE

source_mote = ? ORDER BY time DESC LIMIT 1”

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 41

 Packet Delay – It is a time in milliseconds denoting the delay of the last packet

received from the specified node. The respective SQL query is “SELECT delay

FROM Packets WHERE source_mote =? WHERE source_mote = ? ORDER BY time

DESC LIMIT 1”

 Median of Delay – Median of the delay is a preferable way of measuring overall

node performance because individual packet delay is not stable due to the

unreliable link quality and the radio interference can cause individual packet higher

or lower from the expected range. The SQL Command used was adopted for this

field was adopted from [20] “SELECT x.delay, AS median FROM Packets x, Packets

y WHERE x.source_mote = ? AND y.source_mote =? GROUP BY x.delay

HAVING SUM (CASE WHEN y.delay <= x.delay THEN 1 ELSE 0 END) >= (COUNT

(*+1)/2) AND

SUM (CASE WHEN y.delay >= x.delay THEN 1 ELSE 0 END) >= (COUNT (*)/2) +1”

 Packet Loss rate – This field contains information about number of packet lost

experienced by the node in the last 30 minutes. The respective SQL command

“SELECT SUM(stop – start +1) AS lost_count FROM(SELECT l.packet_id + 1 as

start, MIN(fr.packet_id) -1 AS stop FROM Packets AS l

LEFT OUTER JOIN Packets AS r on l.packet_id = r.packet_id -1

LEFT OUTER JOIN Packets AS fr on l.packet_id < fr.packet_id WHERE (r.packet_id

IS NULL and fr.packet_id IS NOT NULL) AND l.source_mote =? AND l.time >=

DATE_ADD (NOW(), INTERVAL -30 MINUTE) GROUP BY l.packet_id, r.packet_id)

AS t”

 Node Packet delay & Packet Lost history – this feature allows user to retrieve

selected node packet delay and the packet lost for a specified time range, both the

start and the end time must be provided in their respective field.

 Packet Loss Rate – After specifying the start and the end time, clicking the “Get

Packet Delay & Packet Lost button” will return the results of the search or query,

the number of Packet lost for the specified time range will be shown in the “Packet

Loss Rate” SQL command used is

 “SELECT SUM(stop – start +1) AS lost_count FROM(SELECT l.packet_id + 1 as

start, MIN(fr.packet_id) -1 AS stop FROM Packets AS l

LEFT OUTER JOIN Packets AS r on l.packet_id = r.packet_id -1

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 42

LEFT OUTER JOIN Packets AS fr on l.packet_id < fr.packet_id WHERE (r.packet_id

IS NULL and fr.packet_id IS NOT NULL) AND l.source_mote =? AND l.time

BETWEEN ? AND ? GROUP BY l.packet_id, r.packet_id) AS t”

 Selected node’s packets delay can be visualized in form of a chart, this feature

allows user to observe the node’s packets delay evolution for the specified time

period. User needs to enter the start time and end time. Label on the bottom of

the panel will inform whether records are found for the specified period, if no

records found for the specified period user will be informed to refined the search

otherwise user will be told to visualize the chart in DelayHostries Panel. Used SQL

command “SELECT delay, time FROM Packets WHERE source_mote =? AND time

BETWEEN? AND?” “SELECT ”

The Question mark inside the SQL commands denotes values that are specified by the

user and passed as a method parameter when the query executes.

5.6.2. Live Delay Chart panel
Delay chart panel allows users to observe the delay evolution in a real-time fashion.

Packets delay is plotted as is received by the application. The data used by this panel is

obtained from the MoteDB block because storing and retrieving data to MySQL database

can be a slow process when database contains thousands or millions of records. The live

delay chart feature is shown in the following image.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 43

Figure 19 - live delay chart

Nodes can be added to the chart at any time, to visualize their packets delay evolution or

to add specific nodes. On the Network Map Panel, as shown in Figure 18, an individual

node can be selected by clicking on the desired nodes. Afterwards, on the App.Rqst

choose the “Add Selected” under the “Choose the motes displayed in the chart”. If all the

nodes will be included on the chart, “Add All” button can be used to avoid selecting the

node one by one. The delay values are plotted on the Y-Axis. X-Axis is used to compress

the chart if needed - the time will be shown in seconds for the first 100 seconds and then

will change to minute. The live chart can be used to visualize the delay evolution for two

hours. The “Clear” button can be used to clear the panel and plot a new chart. The

corresponding delay values and nodes are shown on the panel in the bottom.

Above image shows a live delay chart of three nodes. Nodes with id 1 and 2 are connected

directly to the sink node whereas node with id 3 is two hops away from the sink node

which has a packet delay average twice higher than those connected directly to the sink

node, as shown in Figure 18 - New Octopus user interfaceFigure 18.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 44

5.7. Delay History Chart Panel
As described in section 5.6 after specified the time range and execute the query if results

exist for the period, then, the corresponding chart can be visualized by opening the Delay

History Chart, as shown in the following image.

Figure 20 - Packets delay history chart

If no result found for the specified period, the “Delay history:---” label will inform that no

results found for the specified period and no chart will be provided.

5.8. Evaluating delay and Packet lost in multi-hop WSNs

scenarios
Octopus as described in the previous chapter uses Collection Tree Protocol (CTP) routing

protocol to route packets from regular nodes to one or more specified root nodes. CTP

form a tree structure where data from the leaf nodes are sent to the one or more root

nodes, as described in its implementation for TinyOS TEP [21] , it is addressed-free which

means nodes do not send packets to specific nodes, rather they implicitly choose next hop

as root.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 45

Expected Transmissions (ETX) is used to determine the next hop to send the packet to.

Root node has ETX of 0 while regular nodes ETX are determined by the ETX of its parent

plus the ETX of the link to its parent. The next hops for a node is not always the same

every time the application start sand in case of link failure the protocol is also agile in

finding a new next hop.

The purpose of the evaluation of packets delay and packets lost in a different number of

hop of communication is to find out how the number of hops involved in a communication

affects the packets delay and packets lost, individual packet delay as already discussed in

section 5.6.1 is not stable that is why the media of the delay will be used. In case of

packets delay the median delay value for each hop must be proportional for the number

of hops that the node has or in.

In a topology as shown in Figure 18 which comprises of four nodes, node with ID 1 and 2

communicate directly with the sink node while, node with ID 3 is two hops away from the

sink node in this case node 2 relays the packet from node 3 to sink node. Also in the same

figure shows that the median packet delay for node 2 is 15 milliseconds (for uni-hop

communication) even in a median representation the median of packets delay can vary

from 8 to 17 milliseconds for different environment, packet delay when the test is done in

an environment where other wireless technology also use the ISM frequency as described

in [22].

The packets delay for node in a multi-hop scenario is dependent proportionally to the

packets delay of its parent node. Following image show the difference packets delay

carried out in a different environment Figure 18 is a screen shot of test was in an

environment which WSNs coexist with other wireless technology such WLAN and

Bluetooth. The same test was done in an environment where there is no other wireless

technology the results can be observed in the following image.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 46

Figure 21 - Packets delay in a testbed with no interference

This is the same topology structure with less or no interference from the environment.

The median delay in this case for node with ID 3 is 9 milliseconds and the median packet

delay for the node 1 is 22 milliseconds, which is a little bit over twice as the median delay

for the parent node (node 3). The fact that node 3 relays messages from node 1 do not

affect (increase) its packet delay

On the other hand the packet loss rate is loosely related to the number of the node from

these two tests. There is almost no difference in the evaluation of the packet loss rate for

each node in different hops for the last 30 minutes.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 47

5.9. Overhead incurred by the adding new features
The packets structure also known as message_t in TinyOS consists of header, data and

footer as described in [23], size of each section is platform specific (depends on the radio

chips used). For telosB platform which used during this dissertation uses CC2420 radio

chip which has the following configuration: packet header size of 11 bytes, data size of 28

bytes (This is reconfigurable depending on the amount of data to be included in the

packet) and the packet metadata of 7 bytes.

By adding new fields to Octopus message format as described in section 5.3 requires to

extend the data section of the packet which by default is 28 bytes. It was necessary to

alter this section to 48 bytes, this was done using the ncc (nesC compiler) option by setting

“CFLAGS += -DTOSH_DATA_LENGTH=48“, this change was made in the Makefile.

Previous version of Octopus used the default size.

Following is the content of the Makefile, the line referred above is found in the second

line.

#Content of Makefile
COMPONENT=OctopusAppC

CFLAGS += -DTOSH_DATA_LENGTH=48

CFLAGS += -I$(TOSDIR)/lib/net/ -I$(TOSDIR)/lib/net/ctp -I$(TOSDIR)/lib/net/le -
I$(TOSDIR)/lib/net/drip/ -I$(TOSDIR)/lib/ftsp -I.
BUILD_EXTRA_DEPS = OctopusSentMsg.class OctopusCollectedMsg.class
MIGFILES = OctopusCollectedMsg.java OctopusCollectedMsg.class OctopusSentMsg.java
OctopusSentMsg.class

PFLAGS += -DENERGY_MONITORING=0
OctopusCollectedMsg.class: OctopusCollectedMsg.java
 javac OctopusCollectedMsg.java
OctopusCollectedMsg.java: Octopus.h
 mig java -target=$(PLATFORM) $(CFLAGS) -java-classname=OctopusCollectedMsg
Octopus.h octopus_collected_msg -o $@

OctopusSentMsg.class: OctopusSentMsg.java
 javac OctopusSentMsg.java
OctopusSentMsg.java: Octopus.h
 mig java -target=$(PLATFORM) $(CFLAGS) -java-classname=OctopusSentMsg
Octopus.h octopus_sent_msg -o $@

include $(MAKERULES)
migclean:
 rm -rf $(MIGFILES)

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 5|New Octopus monitoring tool Page 48

5.10. Possible improvements and future work
This section discusses the possible improvements, future work and some remaining

problems regarding the implementation of the new Octopus. Specifically, this section

focuses on time required by the FTSP to synchronize all the nodes on the network and

other features that can be added to the new octopus as a feature work.

The current implementation of FTSP uses a periodic broadcast beacons to time

synchronized nodes on the network, however, the time requires to synchronize all nodes

is non-deterministic, especially when the networks consist of multiple hops. While the

clock synchronization in process packet sending time and the packet reception time can

be in a different value range, which can affect the packets delay calculation. This happens

when the nodes boot for the first time and also when there is a sudden topology change

in the networks, when this happens the packet delay can be a huge positive number or

even a negative number. This phenomenon sometimes can be observed on the live

packets delay chart when it happens.

Another problem with the FTSP is that happens sometimes even when all nodes

synchronized, especially for packets delay, the value spike to a huge positive or negative

value. Individual packet delay is unstable as already discussed in section 5.6.1 thus,

median of the packets delay is used instead. In order to get a correct median packets

delay for each node, the negative value of packet delay will be set to zero before the

median packets delay calculation is perform.

The node duty cycle setting is not included in the new Octopus because it can provoke an

increase of non-deterministic time of FTSP to synchronize nodes in the network and

because the FTSP requires the radio to be on every time to keep nodes synchronized. The

current FTSP broadcast beacons is every 5 millisecond, even though it still struggle to

synchronize multiple hops with this time interval. More work for FTSP is required to

overcome above mentioned problems.

Regarding features improvements of new Octopus, one would be adding more

sophisticated statistic data presentation i.e. moving average of packets delay to smooth

out the packets delay fluctuations base on time series.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 6|Work plan Page 49

6. Work plan
This chapter discusses the works done in the first semester and the changes made to the initial work plan for the second semester.

6.1. Work plan for the first semester
Beside of Octopus experimentation in TinyOS, a number of studies about the WSNs monitoring tools such as: study of literature and

the requirements analyses of WSNs monitoring tool for measuring QoS related parameters in WSNs with controlled performance

ID Task Name Start Finish Duration
Jan 2013Sep 2012 Nov 2012Oct 2012 Dec 2012

23/12 13/128/10 18/1116/9 16/129/1211/1130/9 30/122/1214/10 25/1123/9 4/117/10 6/1

1 10d28-09-201217/09/2012
Reading literature of WSNs monitoring
tools

2 23d31-10-201201/10/2012Study existing WSNs monitoring tools

3 23d03-12-201201/11/2012Experimental setup of Octopus

4 25d08-01-201305/12/2012
Requirements analysis of the
monitoring tool

5 33d25-01-201312/12/2012Elaborating intermediate report

20/121/10

Figure 22 - Works done in the first Semester with their respective durations

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 6|Work plan Page 50

Main tasks of the first semester are the following:

6.2. Work plan for the second semester
An initial work plan for the second semester consists of five main tasks; (i) Adapting

Octopus monitoring tool, (ii) Implementing Database and measuring performance related

metrics, (iii) Developing the GUI and the node’s application , (iv) Testing the new

monitoring tool, (v) Elaborating final report.

 A new task was added to the prior proposed tasks. This task is essential to perform the

Packet delay calculation and also time-stamping events, this task was inserted as the

second task prior to database implementation and measuring some QoS (mainly Packets

delay) related parameters.

Following is the description of the tasks and their durations are available in a Gantt chart.

1. Adapting Octopus monitoring tool.

The monitoring tool will be based on Octopus monitoring tool, after an

experimental setup made in the first semester. Octopus was chosen because of

interesting Octopus features will be retained on the new monitoring tool, such as

the ability to send control messages to nodes on the network. Also in this activity

octopus GUI components and classes are studied in-depth.

2. Studying and incorporating FTSP with Octopus.

Three time synchronization protocol for WSNs discussed in 5.4 (RBS, TPSN and

FTSP) were revised to acquire knowledge of time synchronization protocol for

WSNs and modify Octopus embedded application to incorporate FTSP to perform

network wide time synchronization.

3. Implementing Database and measuring performance related metrics.

Database is necessary to store data received by sink node (i.e. sensor reading

values) and store time stamp for every event to perform calculation of

performance related parameters and allows access of the history values.

4. Developing the GUI and the node’s application

The Graphical User Interface of the monitoring tool will be developed in java

programming language. The GUI allows user to display network topology, visualize

sensor reading values and send control commands to nodes on the network. Node

application is an embedded application that will be developed in TinyOS. This

application is responsible for collecting data from the monitored phenomenon and

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 6|Work plan Page 51

sends these data to the sink node and also process the command send by the user

to the node.

5. Testing the new monitoring tool.

The purpose of this work is to test the new WSNs monitoring tool in a small

testbed with several nodes for by varying number of hops travel by the packets.

6. Adjusting intermediate and elaborating Final Report.

This task refers to the adjustments necessary for the intermediate report according

to the recommendations from the jury in intermediate evaluation and elaborates

the final dissertation report.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 6|Work plan Page 52

Following Gantt chart depicts the activities of the second semester and their respective durations

ID Task Name Start Finish Duration
Apr 2013 Jul 2013Feb 2013 Jun 2013Mar 2013 May 2013 Aug 2013

28/4 7/79/617/310/3 26/5 30/6 18/823/631/3 7/4 14/4 21/4 19/5 4/817/2 21/73/3 14/716/6 11/812/5 2/624/2 5/524/3 28/7

1 14d28/02/201311/02/2013
Adapting Octopus
monitoring tool

3 35d03/06/201316/04/2013

Implementing database
and measuring
performance related
metrics

4 48d08/08/201304/06/2013
Developing the GUI and
node’s application

5 11d23/08/201309/08/2013Testing new Octopus tool.

6 16d30/08/201309/08/2013
Adjusting Intermediate
report and elaborating
Final Report

2 32d15/04/201301/03/2013
Studying and
incorporating FTSP with
Octopus

Figure 23 – works done in the second semester and their respective durations

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 7|Conclusion Page 53

7. Conclusion
WSNs are a network of small electronic devices, each with a micro-controller and a radio

transceiver that gather data from physical environmental conditions. Each small electronic

device, also known as sensor node, is severely limited in terms of computation and power

resources so the information gathered by these nodes is sent to the sink node for further

analysis.

Most of these small sensor nodes are lack of display which is hard for the user to analyze

the node condition, or to verify if the nodes are functioning as intended. Furthermore

WSNs usage in critical areas such as plant automation requires some of the performance

related parameter such as message delay and message reliability must be within tolerable

range.

The above mentioned issues can be solved by using a WSNs monitoring tool which allows

user to monitor nodes condition, display data gathered by the nodes and perform basic

control of the network. In WSNs with controlled performance the tool must also provide

mechanism to measure performance related metrics.

Chapter 2 of this report discusses some of existing WSNs monitoring tools by listing their

functionalities and presents a brief comparison of them, Most of the tools only provide a

network monitoring data visualization functionality, which is not suitable for WSNs with

controlled performance where it is needed to determine the performance of the network

in real-time.

An experimental setup of Octopus was carried out to explore the possibility of using it as

the base of the new tool to be developed after the tests made, it was decided that

Octopus would be a good starting point to the new monitoring tool. To accomplish that, a

new module with a mechanism to perform measurement of the network performance and

a database to enable data history, will be added.

Chapter entitled “New Octopus monitoring tool” describes the changes made to the

Octopus to make a new WSNs monitoring tool, which is able to measure performance

related parameters. Two of the most used QoS related parameters are measured by this

tool packets delay and the packet lost the information about these two parameters are

available in live and also allows user to retrieve information for a period of time by

specifying start and end time.

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 8|References Page 54

8. References
[1] J. Yick, et al., "Wireless sensor network survey," Computer networks, vol. 52, pp.

2292-2330, 2008.

[2] P. Levis, et al., "Tinyos: An operating system for sensor networks," Ambient
intelligence, vol. 35, 2005.

[3] W. L. Lee, et al., "Network management in wireless sensor networks," Handbook of
Mobile Ad Hoc and Pervasive Communications: American Scientific Publishers,
2006.

[4] M. Turon, "MOTE-VIEW: a sensor network monitoring and management tool,"
2005, pp. 11-17.

[5] Crossbow. (2006, August 10). Mote-view users manual. Available:
http://www.willow.co.uk/MOTE-VIEW_Users_Manual_.pdf

[6] C. Buschmann, et al., "SpyGlass: a wireless sensor network visualizer," Acm Sigbed
Review, vol. 2, pp. 1-6, 2005.

[7] R. Jurdak, et al., "Octopus: monitoring, visualization, and control of sensor
networks," Wireless Communications and Mobile Computing, vol. 11, pp. 1073-
1091, 2009.

[8] J. Pinto, et al., "MonSense–Application for Deployment, Monitoring and Control of
Wireless Sensor Networks," ACM Real WSN, vol. 2006, 2006.

[9] M. Yu, et al., "NanoMon: An Adaptable Sensor Network Monitoring Software,"
2007, pp. 1-6.

[10] S. Park, et al., "A nano operating system for wireless sensor networks," 2006, pp. 4
pp.-348.

[11] A. G. R. Raja Jurdak, Alessio Barbirato, and Samuel Boivineau. (2009, 10 August).
Octopus developer documentation. Available:
http://www.csi.ucd.ie/files/Developer%20Documentation.pdf

[12] O. Gnawali, et al., "Collection tree protocol," in Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems, 2009, pp. 1-14.

[13] P. Levis, et al., "Trickle: A self-regulating algorithm for code propagation and
maintenance in wireless sensor networks," 2004, pp. 2-2.

http://www.willow.co.uk/MOTE-VIEW_Users_Manual_.pdf
http://www.csi.ucd.ie/files/Developer%20Documentation.pdf

Final Report Wireless Sensor Networks Monitoring Tool

 Chapter 8|References Page 55

[14] J. Wang, et al., "On the Delay Performance Analysis in A Large-Scale Wireless
Sensor Network," in Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd, 2012,
pp. 305-314.

[15] M. Maróti, et al., "The flooding time synchronization protocol," in Proceedings of
the 2nd international conference on Embedded networked sensor systems, 2004,
pp. 39-49.

[16] A. Friends. (10). Available: http://www.apachefriends.org/en/index.html

[17] J. Elson, et al., "Fine-grained network time synchronization using reference
broadcasts," ACM SIGOPS Operating Systems Review, vol. 36, pp. 147-163, 2002.

[18] S. Ganeriwal, et al., "Timing-sync protocol for sensor networks," in Proceedings of
the 1st international conference on Embedded networked sensor systems, 2003,
pp. 138-149.

[19] D. Gay, et al., "The nesC language: A holistic approach to networked embedded
systems," in Acm Sigplan Notices, 2003, pp. 1-11.

[20] J. G. Ales Spetic. (2002, 01 of August). Transact-SQL Cookbook. Available:
http://oreilly.com/catalog/transqlcook/chapter/ch08.html

[21] O. G. Rodrigo Fonseca, Kyle Jamieson, Sukun Kim, Philip Levis, and Alec Woo. (2006
 10 of August). CTP TinyOS TEP. Available: http://www.tinyos.net/tinyos-
2.x/doc/html/tep123.html

[22] Y. Wei, "Coexistence of IEEE 802.11 b/g WLANs and IEEE 802.15. 4 WSNs: Modeling
and Protocol Enhancements," 2011.

[23] P. Levis. (20 of August). message_t TinyOS TEP. Available:
http://www.tinyos.net/tinyos-2.x/doc/html/tep111.html

http://www.apachefriends.org/en/index.html
http://oreilly.com/catalog/transqlcook/chapter/ch08.html
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html
http://www.tinyos.net/tinyos-2.x/doc/html/tep111.html

Final Report Wireless Sensor Networks Monitoring Tool

 Appendix| How to install and run new Octopus tool Page 56

APPENDIX - How to install and run New Octopus monitoring tool

To install and run new octopus monitoring tool require a working TinyOS 2.1 environment

on the PC. Following files need to be place in their respective locations or directories:

 Copy the “NewOctopus” directory which contains mote and java directories to

TinyOS App folder, default location is /opt/tinyos-2.1.x/apps/;

 Copy the “lamp” which contains the Octopus database to /opt/ directory

 Copy CC2420TransmitC.nc and CC2420TransmitP.nc from energy directory into the

folder: /opt/tinyos-2.x/tos/chips/cc2420/transmit/;

 Copy LedsC.nc and LedsP.nc from energy directory into the folder: /opt/tinyos-

2.x/tos/system/;

 Copy PowerCycleC.nc, PowerCycleP.nc from energy directory into the folder:

/opt/tinyos-2.x/tos/chips/cc2420/lpl/;

 Copy Energy.nc from energy directory into the folder: /opt/tinyos-

2.x/tos/interfaces/

These .nc file will be replacing the same files existing in the destination folders, these .nc

files are basically the same file with the one existed in the destination with new code

added which requires by Octopus to work (in case you do not want to replace the file, just

make a backup to restore it to their original when needed but, it will not causing any

problem if you decided to replace the original files).

To install Octopus embedded application on the motes do the followings

 Go to the “motes” directory, which is located in cd /opt/tinyos-

2.x/apps/NewOctopus/motes

 And compile the code as you would for any TinyOS application by typing make

telosb (this was the platform used for development) but it should work also with

Micaz Platform.

 make <PLATFORM> reinstall,<NODE_ID> <your usual installation options> for

telosb mote check first USB port used by using motelist command to refer it in

“your installation option”

Final Report Wireless Sensor Networks Monitoring Tool

 Appendix| How to install and run new Octopus tool Page 57

 Make sure to specify the NOTE_ID = 0 for the sink node, other nodes can have

other consecutive distinct IDs

 Connect sink node to the PC serial port and switch on the other nodes

 Export the MOTECOM variable in your environment: export

MOTECOM=serial@<SERIALPORT>:<SERIALPORT BAUD RATE>

 Go to “java” and compile the java code using the Make program in case there are

no class files.

 There is two java application to receive and display the data received from the

network: “OctopusOutput.java” which is a console application which displays the

following data to the console moteId, parentId, isSync, sendTime , receiveTime

packetDelay, packetId, and rootAddress from left to right column respectively. This

application is used mainly for debugging purpose and does not save received data

to the database, thus no need to start XAMPP server to run this application.

OctopuGUI is the GUI application of Octopus which give you more option and

controls, to run this application first it required to start the XAMPP server by typing

sudo /opt/lamp/lamp start and provide your password when ask to. Therein

OctopusGUI can be started.

 OctopusDB can be accessed via a web browser (PHPMyAdmin) after the XAMPP is

started by typing localhost in browser address bar.

