Master's Degree in Informatics Engineering

Thesis
Final Report

Web application for
interoperability testing
of web services

Bruno Miguel Filipe Martins
bmfm@student.dei.uc.pt

Supervisor:

Prof. Nuno Laranjeiro
Date: January 29, 2016

FCTUC DEPARTAMENTO
DE ENGENHARIA INFORMATICA

FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Master's Degree in Informatics Engineering
Thesis
Final Report

Author:

Bruno Miguel Filipe Martins
bmfm@student.dei.uc.pt

Jury:
Prof. Marco Vieira
Prof. Carlos Bento

Supervisor:

Prof. Nuno Laranjeiro
Date: January 29, 2016

WitW's - Web application for interoperability testing of web services

Acknowledgments

I would like to start by thanking my supervisor, Professor Carlos Nuno Laranjeiro. Without
his immeasurable help and guidance this thesis would have been a shadow of itself. To this
day I still cannot comprehend how can someone not be completely fed up with me after three
meetings a day. His resilience is admirable.

To Ivano Elia, for putting up with my endless questions about his previous work. His input
throughout the thesis, especially in the testing phase, was invaluable.

To Paulo Martins. After a day’s work, after taking care of his own company and after looking
for his own family, still having the time to provide me with some tips is nothing short of
incredible.

To Catarina Lopes, because a long-distance relationship is hard enough without one of the
members always complaining about his day. For always having the patience to hear me out
even when going through some tough times herself. For understanding that this thesis took a
lot more of my time than I expected.

And last but definitely not least, to my parents. For believing me until the end. For never
letting me down. For being the best parents someone could ever ask for. For always being a
safe haven, no matter how grim things were. This long journey wasn’t easy. A lot of ups and
downs. But here we are. None of this would have been possible without them. Words cannot
express how crucial they were. Nonetheless,

Obrigado Irene.
Obrigado Tomé.

You have my deepest and sincere gratitude.

WitW's - Web application for interoperability testing of web services

WitW's - Web application for interoperability testing of web services

Abstract

The web services technology has been created to support communication between
heterogeneous platforms. Despite its maturity, built upon more than a decade of experience,
research and practice show that the technology still fails to connect the two sides of an
interaction, even when the platforms involved are the same. This is especially concerning for
providers, as a failure in the inter-operation of web services can bring in disastrous
consequences for the services involved, which frequently support businesses. In this paper we
present WitWs, an on-line web application designed to test the interoperability of a web
service against specific client-side platforms. The tool is able to test not only the pre-runtime
steps involving code generation, but also the end-to-end runtime communication present in a
web service interaction with a client. WitWS has been used to test a set of web services
deployed on Glassifsh and WildFly against the well-known Metro JAX-WS, JBossW§, and
Axis2 client platforms and was able to disclose severe interoperability issues.

Keywords

“Web Services”; Interoperability; Certification; Testing.

il

WitW's - Web application for interoperability testing of web services

iv

WitW's - Web application for interoperability testing of web services

Table of Contents

Chapter 1 INtrOdUCHON c..c.iviiiiiiiiciiiicecee e 1
1.1. SCOPE s 1
1.2. MOTIVALION .ottt 1
1.3. ODBJECHIVES ...t 2
1.4. REPOTt SEIUCTULE. ...t 2

Chapter 2 Background and Related Work.........ccccooiviiiiiiiiiiiiiiicccecces 3
2.1. SOAP ettt 3
2.2. WSDIL e 4
2.3. The five steps of the INter-OPeration PrOCESS.......cviiiviiiiriiiriiii s 5

2.3.1. Service Description Generation — Step L. 6
2.3.2. Client Artifact Generation — SEEP 2......cciiuiucucuereiiiririiiicecieie et seseseseens 6
23.3. Client Artifact COMPIAHON — SLEP 3 .vvvrrroeeeeresscccoeesssecoeessssseeesssseeeees s 6
2.3.4. Client communiCAtioN — SEEP 4u...ovuiuiiriiiiiiiiiiiiiini e 6
2.3.5. Service Processing — StEP 5...ooiiiiiiiiiiiiiniiiiiiiiiini s 7
2.4. The Interoperability Problem. ... sns 7
2.5. Approaches and Tools for Interoperability ASSESSMENL c...uvuivrivieieciriiiiiirieeeeieeeeaeiennens 7
2510 SOAPUT e s 8
2.5.20 SOAPSONAL ...ttt 8
2.5.3. WEDINJECE ittt 8
25040 JIMLELEL et 9
2.5.5. SEOIM ittt bbbttt 9
25,0, WHZDL.iiiiiiiiiic s 9
2.5.7. COYOLE ittt 9
2.5.8. Too0l SUMMALY tADIEoiiiiiiiiiiiiiiiii bbb 10

Chapter 3 REQUITEMENTS....c.iiiiiiiiiiiiiiiiiiiecc e 11
3.1. FUNCHONAL ..o 11
3.2. IMOCKUPS ottt 19

Chapter 4 Methodology and planning............cccceiviviiiiniiiiiniiiiiceee e 20
4.1. PLANNING oot s 21

4110 TSt SEMIESLEL vttt 21
41,2, SECONA SEMESTEL...vviiuiiiiiiiieiite ettt ettt 22
4.2. RISk MANAGEMENT....uvuiruiirieereieeeieeeieestieeseieeseie ettt s et sssaees 23
4.2.1. RKO001 — Changing reqUITEMENLSoiiiiuiriririiiiiiiiicscsisesesesssss st sssssssssssesesesesesssss 23

4.2.2.

4.2.3.

4.2.4.

4.2.5.

Chapter 5
5.1.
5.2.
5.3.
5.4.
5.5.

5.5.1.
5.5.2.
5.5.3.
5.5.4.
5.5.5.
5.5.6.
5.5.7.
5.5.8.

5.5.9.

5.6.
Chapter 6

6.1.
6.2.
6.3.
6.4.
6.4.1.
6.4.2.
6.4.3.
6.4.4.

6.4.5.
Chapter 7

7.1.
7.2.
7.3.

WitW's - Web application for interoperability testing of web services

RKO002 — Report written in a non-native language...........ccocevviviniiiiininininicicinnccecens
RKO003 — Wrong estimation of the tasks ...
RKO004 — Higher learning curve than anticipated...........cocoviiiiiiiiiiiiins

RKO005 — OVer PlAnningc.cucuciiiiiiiiiiiiicccn s

Support TechNOolo@IEs......c.ccuiiviiiiiiiiiiiiii

SElECHION CIILEIIA w.uvvuviiiieiiiiceci s bbbt
Development envIrONMENL ...t
Web framEWOIKScvucveivieiiiiici s
Web framework adOPtion.......c. e

Web framework analysisc..ccieerieiriciiiciicrcreiee e

(@ 11 KOTSRS

SEEUES/STIUESZ. evveveeveeteeeeee et eeeeeeueeseseeeseteneeteseesesseesentesentestesesseesessensententenseseasessessentensensenseressessensens
JAVA SEIVEL TFACES c.vviiiiiic

Web framework fINAl VEIAICT...cviiiiiieieieeeeeetee ettt ettt ettt ettt et et et et et et et eeenens

Architecture and OPErationccevureeueiririereirinieiiieeeeesee e
WIEWS O VEIVIEW . o1ttt t et sttt st et eastnte
TUSE CASES vttt ettt sttt sttt ettt st s b et sttt be et
ATLCRITECTULE OVEIVIEW .vovvirieeierririniiereirenceeierseseseeesetsestaesesseesesessesessaesessestessessentacsessesenssesessentosses
DAta MOAEL ettt sttt ses e ettt ses bbb seese b esneneeesen
TTADLE WITWS_USEEL w.viiuiiuiiniieiietieeesteat et eat st et estestesteatestestestessestessesseatessessensessensensensensensensensansensanis
"TADLE WITWS_IUI cuviiuiitiiticeiiet ettt ettt est st esteateatestestestestessestensessessensensensensensensensensensansensans
TADLE WITWS_LOG..evrieiriieiieciieiie ettt e
Table Witws_deplOYMENt_SEIVEL ..ccuieviuerrierrieeirieerreeeireee et ese s seeseseeseseens

TADLE WITWS_TOOL ..viiuiiuiiiiieiiiiieteeee ettt ettt ettt at st et e st st st e st e st ententessestensensensensensensensanis

Implementation detailscocoeiviviiiiiiiiiiiiiii
VAAAIN ot
Protocol used by the COMPALISON SEIVELcuiuiuiuiiiriiiriiiiieiieresese e sseessaens

CUStOM ClaSS LLOAAET ..viviriceiceiceectecteetececteee ettt ettt ettt et et et eaeere s ereereereensensensenseneenean

vi

WitW's - Web application for interoperability testing of web services

Chapter 8 Experimental Evaluation........cccccocviiiiniiiiiiininiiiicecne 49
8.1. RESUILS 1o 50
Chapter 9 Application Limitations and Extensibility.........cccccvveiiiniiiiiniiiiniciiniciens 52
9.1. LAMIEATIONS. 1ttt st 52
9.2. EXEENSTDIIY oot 53
9.2.1. Analyze any number of Web mMethodsoccerrrieeirniicierrcereeerece e enseeeenenes 53
9.3. Add more phases to the Testing PIPELNecccvvcuicmriciriciriciiccreeeeececeeeeieeenene 54
9.3.1. Add client code generation tOOLScccuriiiiiriiiiieiriirr et 54

0.3.2. Add dEPlOYIMENE SEIVELS crrvrserrsesreesseessesseesssesssesseeessessses et sesssesssesesseessess e 55

9.3.3. Add VElOCHY tEMPIALES-.....rrroosoes oo ess e sees oo sees e 55

9.3.4. CoMPAriSOn SEIVer USAZE BY OtNEL SYSTEMS w.ovvroevrrseeeesseessseeesssceeessseeesseseesssseeeesseose s 56
Chapter 10 User Manual ..o 57
Chapter 11 CoNCIUSION......c.iiiiiiiiiiiiiiiiicc e 65
EXPErieNnce ACqUILE......uiuemieiieciieciieciiie ettt enae 65
FUtULe WOTK ..o 65
REEIENCES ...ttt 66
AATINEXES oottt s 70
AL Class dIAGIAMIScveuiiiiiiiiiiiiiiiiiiici s 71
Al.1. Communication PACKAZEccuvueiiueiriciiciicirce e 71
A1.2. CoMPALISON PACKAZE ..ottt 71
A1.3. Controllers PACKAZEc.cvuvueieciieciricirecree e 72
AL4 EVENt PACKAZE ..o 72
ALS Loader PACKAZE c..couvvrieiiiiiici s 73
ATL.6. MISC PACKAZE ..o 74
ALT. MOAEIS PACKAGErvviiiiiii s 75
AT UL PACKAZE .. 76
ATL.9. VIEWS PACKAZEceeiiiiiii bbb 76
AT.10. WItWOIKer PACKAZE ...co.viviieiiiiiii s 77
ALTT OVEIVIEW vttt s s 78
B1. Sequence diagramsccccoiviiiiiiiiiiiiiiiiiiii e 79
B1.1. Process initiated by uploading fIlesoieeiurieenieenieieieeeeeeeeeee e eseaens 79
B1.2. Process initiated by submitting a WSDLcoviiiiiiiniiiiieessseenns 80
B1.3. Certification phase 3 call from the Pipeline Managercooueveenieeneeenieeneenneennienneenneenseans 81
B1.4. Certification phase 3 — Client code to web service communiCation........ccvevieiiinisiesieiennns 82

vii

WitW's - Web application for interoperability testing of web services

C1. Web service source code upload background process..........ccccuvveueicivviiiciniiiinnicinnnes 83
D1. Developer Manual ..o 88
DT SUCTULC. oottt s b sr s a s s 88

D 1.2, CONTIGULAIONrveiieiieiiieci s 90
D120 IMIAI SEIVEL coiiiiiiiiiiiiiet et 90
D122, Database ..o 90
D.1.2.3. Embedded Servlet CONTANETcueueuiiriiiiicicicictcieieieecececisie et 90
D.1.2.40 WHEWOIKELS ..o 90
D.1.2.5. Presentation 1ayer — VAAIN ...coveveveuiieinininieieciininieeecicttseer ettt ese s seeeenene 92
D.1.2.6. DEPlOTMENL SEIVEIS......uiuuiiiiiiiiieiciiiiitete ettt 93
D130 HOW £ FUN ettt et 93
DT3B T MAIN SEIVEL coiiiiiiiiiiiiiicieitc s 93
D.1.3.2. DEPlOYMENE SEIVELviiiiiuiiiiiiiiiiiiiiiisiiciie st 94
D.1.3.30 WHEWOIKELS ..t 94
D.1.3.4. COMPALISON SEIVEL....viiiiiuiuiriiiiiiititieciiteter st n s nns 94

BT MOCKUPS o 95
F1. Research paper: INTENSE - INteroperability TEstiNg ServicE ... 100

viii

WitW's - Web application for interoperability testing of web services

F igure’s List

Figure 1. Example of @ SOAP fEQUEST......cuiuiiiiiiiiiiiiiiiiicicirccce e 4
Figure 2. Example of 2 SOAP £eply.....ccoviiiiiiiiiiiiiiiiiiicces 4
Figure 3. WSDL Structure EXxample ..o 5
Figure 4. Typical web Services envirONMENTt.......covcivurueuiiniriemiiininieiiineeieeisieseeessene e 5
Figure 5. Detailed results MOCKUPcccouviiiiiiiiiiiiiiicciiccce e 19
Figure 6. Thesis development ProCESS ... 20
Figure 7. First Semester Gantt Chart ... 21
Figure 8. Second Semester Gantt Chart - Plannedcooeeviviiciiiniiiinniciiccneccees 22
Figure 9. Second Semester Gantt Chart - Real........ccooooiviiiiiniiiiiiicicccces 22
Figure 10. RebellLabs” Developer Productivity Report.........cccoveiviiiiiiiiiiiiiiiiiiiccns 26
Figure 11. ThoughtWorks” Technology Radar..........cccccevviiiiniiiiiiiiiiiiiiccns 27
Figure 12. JODS ON TJODS. Pttt 28
Figure 13. Job Trends — Full Stackcccoeiiviiiiiininiiiiiciineccecceeeeeeeee e 29
Figure 14. Job Trends — Pure Web......cccoiiiiiiiiiiiiiiiis 29
Figure 15. Google Trends — Full Stackccccoiiiiiiiiiiiiiiiiiiiiiis 30
Figure 16. Google Trends — Pure Webccoooiiiiiiiiiiicicccceeceeeeees 30
Figure 17. StackOverflow Tagged Questions — Full Stack.........cccocvveiiiniiiinniinicins 31
Figure 18. StackOverflow Tagged Questions — Pure Web........ccccoviiiiininiiiniiin, 31
Figure 19. Framework cost of Scale ..o 33
Figure 20. NUMDEL Of fIlES....coueuiiiiiieiiiiiiiiiiccieceeeseeeee e 34
Figure 21. LINES Of JAVA cvcviiiiiiiiiiiiiiiic s 34
Figure 22, RESUILS VIEWc.cuiiiiiiiiiiiiiiiiiiiiccccc e 36
Figure 23. WebPage USE CASEcuiiiiiiiiiiiiiiiiiiiiciciiee e 37
Figure 24. ArchiteCture OVEIVIEWcciiiiiiuiiiiiiiiiiiiieiceeieic s 39
Figure 25. MV Patterilcoioiiuiiiiiiiiiiiiiiciiicicseee e 41
Figure 26. WitWS Data Modelccccoiiiiiiiiiniiiiiiiiiiiiiiis e 42
Figure 27. NewWebService.java - Webservice examplecccoeiiviiiiiiiiiiiniiiiicinns 45
Figure 28. Original.java - class used as parameter and returft valuec.oeeeevveeecniniereinnnes 45
Figure 29. CustomClass1.java - class used by Original.java.........ccccceeiviiinciiiiniiniincnnne, 45
Figure 30. Example classes phase 4 OUtPuULcccvviviiiiiiiiiiiiniiiiiiccccceees 46

ix

WitW's - Web application for interoperability testing of web services

Figure 31. Example classes phase 5 OUtpPULcccciviiiiiiiiiiiiiiicce 46
Figure 32, LOGIN SCIEEM.....ciiiiiiiiiiiiiiiiciccc e 57
Figure 33. RegIStration SCIEEMccuiuiviiiiiiiiiiiiiiiiiciiice s 57
Figure 34. Submit WSDL......ccocoiiiiiiiiiii e 58
Figure 35. File upload VIEWcccciviiiiiiiiiiiiiiiicciiicicseeeee e 59
Figure 30. ReSUILs' VIEWcucviiiiiiiiiiiiiiiiiiiiiiii e 60
Figure 37. Certification level's log detailccoouviiiiiiiiiiiniiiiiiiiiiiiie 61
Figure 38. Certification level's log detail maximized........cceeeveueeeiiiriinininnnisirsieeeeenenenes 62
Figure 39. ADOUL VIEW c..vviiiiiiiiiiiciciiecee et 63
Figure 40. Submit WSDL - smaller SCreen SiZecccooeviviiiiiiiiiiiiiniiiiiiiicciiiccneces 64
Figure 41. Results' view - smaller SCIEEN SIZEoovvvriviiiiiriiiiiiicicicicicccccceee e 64
Figure 42. Source code upload background Process.........cccceviveeueviriricininiiieirinieeiereecenes 83
Figure 43. Testing PIpeline.......cccciviiiiiiiiiiiiiiiiiiiiie s 85
Figure 44. Code STIUCTULE.....couiuiuiiiiiiiiiiicccc s 88
Figure 45. Login MOCKUPcoovviiiiiiiiiiiiicic e 95
Figure 46. SIgn up MOCKUP .c.oiviiiiiiiiiiiiic 95
Figure 47. Sign up SUCCEEAEd.cuiiiiiiiiiiiiiiiiiiiciciiecte et 96
Figure 48. Dashboard MOCKUpccccoiviiiiiiiiiiiiiii e 96
Figure 49- WSDL upload MmOCKUP ...c.civiiiiiiiiiiiiiiiiiiccicc e 97
Figure 50. WSDL submitted MOCKUPcceueuiviiiiiiiiiiiiiiicciseeeeeeseeeeeee e 97
Figure 51. Results overview MmOCKUPccciviiiiiiiiiiiiiiiici 98
Figure 52. Detailed results MOCKUP........ccoiiviiiiiiiiiiiiiiiic e 98
Figure 53. LOg MOCKUP ...cvcviiiiiiiiiiiiiiiiiciic e 99
Figure 54. EXPOrt MOCKUP ...cciuiiiiiiiiiiiictci s 99
Figure 55. Export succeeded MOCKUP ...ttt 100

WitW's - Web application for interoperability testing of web services

Table List

Table 1. TOOl SUMMATLY tADIE c....eviuiieiirieiiiciiicirtccce ettt 10
Table 2. RiSK MAtIIX...cuiciiiiiiiiieiiiiiieecec et 24
Table 3. Results of the interoperability teSts.......cccciviiiiiiiiiiiiiiiic 50

Witw's -

Web application for interoperability testing of web services

Acronyms

Acronym Meaning

AJAX Asynchronous JavaScript And XML

CISsUC Centre for Informatics and Systems of the
University of Coimbra

CSS Cascading Style Sheets

DB Database

FTP File Transfer Protocol

FURPS Functionality, Usability, Reliability,
Performance, Supportability

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

INTENSE Interoperability Testing Service

MoSCoW Must-have, o, Should-have, Could-have, o and
Won’t-have.

Mvc Model View Controller

PODAM Pojo Data Mocker

REST Representational State Transfer

RMT Remote Method Invocation

SMART Specific, Measurable, Attainable, Realistic and
Time-bound.

SMTP Simple Mail Transfer Protocol

URL Uniform Resource Locator

UTF Unicode Transformation Format

WAR Web application Archive

WSDL Web Services Description Language

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

xil

WitW's - Web application for interoperability testing of web services

Chapter 1
Introduction

1.1. Scope

This thesis was developed within the discipline of Thesis/Internship inserted into the Master
in Informatics Engineering of the Department of Informatics Engineering — which is part of
the Faculty of Sciences and Technology, University of Coimbra. This project started on
February 11%, 2015 and ended on January 15", 2016.

The thesis, in its entirety, was developed in a laboratory located in CISUC’s facilities, within
the Software and Systems Engineering group, with the close guidance of Professor Nuno
Laranjeiro, PhD.

The project team consisted solely by the author and the invaluable feedback and advice of
Professor Nuno.

1.2. Motivation

In a web services environment, a provider publishes its service interface in a WSDL document,
which describes the available operations, including required input and output parameters. A
client can use the published service description to understand which operations are available
and how they can be invoked [1] In both cases, i.¢., to publish a service interface or to invoke
a remote operation, developers do not need to implement all supporting code. In fact, most
web service frameworks (software platforms that allow the creation, deployment, and
invocation of web services, e.g. Axis2, Wsimport) provide the necessary support for service
description generation, client-side code generation, and also runtime support to allow the easy
invocation of remote operations by taking care of all communication requirements, in
particular, message serialization and deserialization [2].

Although web services have been designed to support interoperable application-to-application
communication, experience shows that this is a quite difficult goal to achieve, raising concerns
when implementing services with reliability requirements. For example, using a web service
framework to generate C client code from a web service written in Java might pose some
problems, as some data types do not exist in both languages. If the tool is able to generate the
code, more problems might arise when trying to compile it. Even by having the same
programming language on both ends, the process does not always end well, as shown later on.

The interoperability of web services is, in fact, an issue in which the Web Services
Interoperability organization (WS-I) [3] has been working for several years now, with limited
success so far. Thus, practice shows that developers are deploying WS-I compliant services,
which however are many times unable to inter-operate with client applications, even when the
client applications are also supported by WS-I compliant frameworks.

Several testing tools have been created to test web services, but they are, in general, quite
limited in what concerns interoperability testing. Among all tools, the ones provided by the
WS-I Testing Tools Working Group [4] are widely accepted by the industry. Even so, services
that pass the WS-I tests are still failing to achieve interoperability, which ultimately shows the
limitations of the assessments produced by the WS-I tools.

WitW's - Web application for interoperability testing of web services

The interoperability problem was also analyzed by the authors in [5], where they tested a large
number of web services frameworks. However, these tests were carried out in a manual way
at some points. They state the difficulty of difficulty of testing web services for interoperability
in an automatic-way because of its technical challenges.

1.3. Objectives

Based on the issues explained in the previous section, the objectives of this thesis are as
follows:

e Build a web-based tool that implements the interoperability testing procedure
discussed in [5];

e Automate the interoperability tests, not only for pre-runtime steps (e.g. client-side
code generation) but also for the runtime steps (e.g. communication between client
and server);

e Modularity: provide the means to easily extend the core functionality (e.g. add more
test phases);

e Validate the tool against a subset of services used by the authors in [5]—[7], obtaining
100% of correctness in the results.

This thesis is partially based on the following work submitted to an international tier A [8]
conference: INTENSE - INteroperability TEstiNg ServicE [9].

1.4. Report structure

The second section provides context about the work field and analyzes other tools and
approaches similar to what we’re trying to accomplish. The third clarifies the necessary
requirements the application must follow and implement, followed by the fourth section,
“Methodology and planning”, which explains the software development cycle, along with the
task plan and risk management.

After explaining all the background, process and necessary features, a more technical
discussion can be had, starting with the fifth section, “Support technologies”, which analyzes
the several tool and frameworks available in order to build the application. After that analysis,
the sixth section, “Architecture and operation”, details the architecture of the system.

The seventh, “Implementation details”, goes into detail about several aspects of the
application implementation and the eighth section presents the experimental evaluation
designed to verify the application’s functionality.

The ninth section contains formation about the current limitations of the developed system,
along with instructions on how to extend its functionality.

The final user also has a dedicated chapter with the tenth section, “User manual”. It showcases
and explains every view and component of the web user interface.

Finally, the last section, “Conclusions”, talks about the tasks completed throughout the year,
indicating the experience acquired and the aspects to work on in the future.

The “Annexes” section at the end include class diagrams, sequence diagrams, mockups which
are not introduced in the main body of the thesis, the developer manual (which does through
all the necessary steps to run and deploy the application) and the aforementioned research

paper.

WitW's - Web application for interoperability testing of web services

Chapter 2
Background and Related Work

So what is, exactly, a web service? There are many different definitions throughout the World
Wide Web and in books. For simplicity and objectivity sake, since it is commonly accepted,
we are sticking with the one provided by [10]:

“A Web service is any piece of software that makes itself available over the Internet and uses a standardized
XML messaging system”

Given the incredible amount of programming languages and web services middleware
available, an extremely important question arises: how can they all communicate between one
another?

In a typical web services environment, the provider (e.g. the server) offers a well-defined
interface to consumers (e.g. clients), which includes a set of operations and typed input/output
parameters. Clients and servers interact by using a web service framework that provides a
set of mechanisms to support the execution of the following steps: first the web service is
deployed at the server, along with a service interface description (e.g. a WSDL is published);
second, a client developer generates (and compiles, when required) client side artifacts to easily
invoke the service operations; and finally both client and server applications communicate by
exchanging SOAP messages that are generated by the underlying frameworks, on behalf of
the client and server applications.

Before moving on to the next chapter, a brief introduction is needed on the aforementioned
basic concepts.

2.1.SOAP

The SOAP acronym originally meant Simple Object Access Protocol, but later it was dropped
and now SOAP is an official name by itself. It is a protocol specification for exchanging
structured information in the implementation of web services in computer networks. It uses
XML Information Set for its message format, and relies on other application layer protocols
for message negotiation and transmission, such as the popular Hypertext Transfer Protocol
(HTTP), but also Simple Mail Transfer Protocol (SMTP), or XMPP, just to name a few. The
framework has been designed to be independent of any particular programming model and
other implementation specific semantics [11]. Figure 1 and Figure 2 represent a simple example
of a SOAP request and a SOAP reply, respectively.

WitW's - Web application for interoperability testing of web services

POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<rxml version="1.0""?>

<soap:Envelope
xmlns:soap=""http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle=""http://www.w3.0rg/2001/12 /soap-encoding" >

<soap:Body xmlns:m="http://www.example.org/stock" >

<m:GetStockPrice>
<m:StockName>IBM</m:StockName>
</m:GetStockPrice>
</soap:Body>

</soap:Envelope>

Figure 1. Example of a SOAP request

HTTP/1.1200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<rxml version="1.0""?>

<soap:Envelope

xmlns:soap=""http:/ /www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http:/ /www.w3.0rg/2001/12/soap-encoding" >

<soap:Body xmlns:m=""http://www.example.org/stock' >
<m:GetStockPriceResponse>
<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>
</soap:Body>

</soap:Envelope>

Figure 2. Excanple of a SOAP reply

2.2.WSDL

WSDL is an XML format for describing network services as a set of endpoints operating on
messages containing either document-oriented or procedure-oriented information. The
operations and messages are described abstractly, and then bound to a concrete network
protocol and message format to define an endpoint. Related concrete endpoints are combined
into abstract endpoints (services). WSDL is extensible to allow description of endpoints and
their messages regardless of what message formats or network protocols are used to
communicate. The next figure represents an example of a WSDL file structure.

WitW's - Web application for interoperability testing of web services

<!-- WSDL definition structure -->
<definitions
name=""MathService"

targetNamespace="http://example.org/math/"
xmlns="http://schemas.xmlsoap.org/wsdl/"

>
<l-- abstract definitions -->
<types> ...
<message> ...
<portType> ...

<!l-- concrete definitions -->
<binding> ...
<setvice> ...

</definition>

Figure 3. WSDL Structure Example

2.3.The five steps of the inter-operation process

After explaining some of the basic concepts composing the web services technology, we can
now explore, in more detail the inter-operation between web services clients and providers.
Figure 4 represents a typical web services inter-operation scenario using two different
frameworks at the client (on the left-hand side of Figure 4) and server sides (at the right-hand
side of the figure), which are placed at each endpoint of the interaction.

(1) Service
Framework A Description Framework B

Generation
Client Artifacts
n (4) Client

@) Communication

Service

(2) Client
Artifact
Generation

(3) Client
Artifact
Compilation

(5) Server
Client side Communication Server side

Figure 4. Typical web services environment

In the scenario represented, the client uses the client-side subsystem of framework A, while
the server uses the server-side subsystem of framework B (although these could also be two
subsystems of the same framework). As shown, five key steps have to be performed for a
client to invoke a remote service operation. These steps represent the critical points where
platform-level interoperability issues may arise.

WitW's - Web application for interoperability testing of web services

2.3.1. Service Description Generation — Step 1

This step typically occurs automatically when the service is deployed in the server. Two
approaches can be used to reach this step: WSDL-first and Code-first, also called Contract-
first and Contract-last, respectively.

In the WSDL-first web service, the WSDL file is created first, without actually writing any
service code. Clients are decoupled from any logic on the server. The logic can be revised on
the server without affecting the clients. More granular control exists over what is in the request
and response messages and WSDL structure.

In the Code-first web-service, existing logic is "exposed" as a web service and the WSDL is
created at the very end. Developers do not need to learn SOAP or any XMlL-related
technologies, and setrvices are created quickly by "exposing" internal APIs with automated
tools. [12].

In both cases the result of this step is a WSDL document that provides the information needed
by a client that uses framework A to invoke the service provided by framework B.

2.3.2. Client Artifact Generation — Step 2

The client’s artifacts are produced using the artifact generation tool provided by Framework
A (refer to Figure 4). These artifacts are pieces of code that, at runtime, will translate
application-level calls at the client to SOAP messages that will be delivered to the server. Some
frameworks do not produce source files; instead they generate these artifacts dynamically, at
runtime.

2.3.3. Client Artifact Compilation — Step 3

The Client Artifact Compilation step is necessary only for platforms that are implemented in
programming languages that require compilation of the code before execution (e.g., Java, C#),
and in some languages/frameworks (e.g., Python) it may not be requited (the client-side
artifacts are dynamically generated at runtime). Obviously, the artifacts (that after this step are
in a compiled form) only provide the methods for a client application to invoke the remote
service, but do not actually invoke it. It is up to the developer to create the client code to
invoke the artifact methods that will allow communicating with the server.

2.3.4. Client communication — Step 4

This step starts precisely when the client code calls the remote operation using, as arguments,
the object (or objects) required by the remote operation. This delegates the control to the
framework that serializes the outgoing object (represented by « in Figure 4) to SOAP and sends
the message. The step ends when the application-level object is delivered to the service
application (i.e., after being deserialized from SOAP to the exact object that the server-side
platform expects), which is represented by 4 in Figure 4 ."The object is then processed at the
server (i.e., business logic is executed).

WitW's - Web application for interoperability testing of web services

2.3.5. Service Processing — Step 5

Finally, the Server Communication step begins immediately before the server sends a
response object back to the client (represented by ¢in Figure 4). As in the previous step, control
is delegated to the framework that translates the response object to SOAP. This step ends
when the response object is delivered to the client application, after being translated from
SOAP by the client-side framework — represented by d in Figure 4.

2.4. The Interoperability Problem

Experience and research clearly show that despite the effort put in bringing in interoperability
between heterogeneous systems it is still very frequent to find cases where the different
systems (i.e., client and server) are unable to inter-operate [5]—[7]. Thus, previous research
reports cases where message contents are lost between client and server; support code cannot
be generated or sometimes cannot be compiled in a specific platform, among many others
[5]-[7]. These cases are due to many factors, ranging from poor web service platforms
implementations, to issues that can be traced back to the specification documents, which are
written in natural language.

Recognizing the interoperability problem, the WS-I organization [3] has been working, for
over a decade, on creating standards to promote interoperability, and this includes refining
and restricting the web services specifications and producing tools that can be used to test
web services [4], [13]. The problem is that, despite the effort, still a WS-I compliant service
shows problems to inter-operate with specific client platforms. Also, testing tools nowadays
are usually limited to execute the WS-I recommended tests, which are also quite limited and
are unable to detect severe inter-operation issues.

2.5.Approaches and Tools for Interoperability Assessment

Authors in [5]—[7] studied the inter-operation problem by testing a large set of web services
frameworks in which we were able to disclose numerous issues. Despite of the usefulness of
the results, the authors carried out the tests in a semi-automatic way (at some points with
manual intervention). The authors indicate the difficulty of building a tool that could be used
by developers to test services for interoperability in a completely automatic way. In fact, this
holds huge difficulties, which include having to generate code for multiple platforms, having
to generate a test workload that fits any service, being ready to test a new platform with
minimum effort, but especially producing client code that is able to communicate with any
service, on any platform.

Since our focus is inter-operation, the WS-I Basic Profile and respective tools are closely
related to our work [14], [15] . As previously referred, although the WS-I effort represents a
first step, experience shows that even WS-I compliant services may have interoperability
problems, and obviously a more practical and realistic insight of a given platform’s
interoperability is many times preferred to conceptual results. This is especially true in systems
where interoperability is critical.

When analyzing tools and frameworks, there are only a couple that perform compliance
testing. Compliance testing, also known as conformance testing, is a type of non-functional
software testing. It’s a methodology used in engineering to ensure that a product, process,
computer program or system meets a defined set of standards [16], the WS-I standards in our
case. Since the focus of this thesis is on interoperability between web services, it is the type of
testing that best fits in this thesis. To have a wider set of results, we have extended our analysis

WitW's - Web application for interoperability testing of web services

to tools that do not actually perform this type of testing but also test web services in a more
generic way.

2.5.1. SoapUI

SoapUI [17] is an open-source web service testing application for service-oriented
architectures (SOA) and representational state transfers (REST). Its functionality covers web
service inspection, invoking, development, simulation and mocking, plus functional, load and
compliance testing. The Pro (paid) version also includes WSDL coverage and refactoring, API
discovery, XML inspector, among others.

SoapUI’'s GUI makes it easy to test all of its supported technologies. The tool received a
number of awards, including [18], [19] and [20].

SoapUI supports compliance testing by including the execution of the WS-I Basic Profile 1.1
test suites [21], for which we already highlighted the limitations. SoapUI also supports the
generation of client side artifacts with a limited set of frameworks. However, developers do
not have a way of adding a new framework (or in some cases, not even a new version of an
existing one) without changing SoapUI’s code, which obviously is not practical.

2.5.2. SOAPSonar

SOAPSonar [22] is a software testing and diagnostics tool for SOAP, XML and REST based
Web Services. The core focus is on functional, performance, interoperability, and security
testing of service endpoints by performing client simulation and automated generation of
client messages.

In what concerns interoperability, the tool (in its paid versions) is able to check for WS-I Basic
Profile 1.1 compliance. It also supports WSDL Region WS-I Assertion Violation Highlighting
and Dynamic XSD-Mutation Active WS-I BP 1.1 compliance. SOAPSonat’s website claims:
“Adhering to WS-I Basic Profile 1.1 ensures that your components are interoperable and that
your WSDL can be consumed by any .NET or Java client”.

As of time of writing, it was not possible to test the application since the installer fails to
conclude its execution on Windows — and it is the only operating system supported. This
emphasizes the need of a platform-agnostic web tool without any kind of installation.

2.5.3. Weblnject

Weblnject [23] is a free tool for automated testing of web applications and web services. It
can be used to test individual system components that have HT'TP interfaces (JSP, ASP, CGI,
PHP, AJAX, Setvlets, HTML Forms, XML/SOAP Web Services, REST, etc), and can be
used as a test harness to create a suite of (HT'TP level) automated functional, acceptance, and
regression tests.

HTTP response times can be collected and monitored in real-time during test execution.
Timer statistics are calculated and displayed in a monitor window during runtime. This is used
to verify responses from the web application or web service under test are within an acceptable
range (to meet a SLA or quality of service criteria). This also enables WeblInject to be run as a
performance probe for application/service monitoring.

Regarding interoperability, Weblnject does not support any kind of compliance testing and
does not check any set of best practices (e.g WS-I). With the right modifications, this tool

WitW's - Web application for interoperability testing of web services

could start checking for interoperability but it would be too time-consuming and it is not
suited for our needs.

2.5.4. JMeter

JMeter [24] is an open-source testing tool developed by Apache Software Foundation (ASF).
It is distributed under Apache License. It was originally designed to test Web applications but
has been extended to other test functions. The core function of JMeter is to load test
client/server application but it can also be used for performance measurement. Furthermore,
JMeter is also helpful in regression testing by facilitating in the creation of test scripts with
assertions. Most of its architecture is based on plugins, so developers can easily extend its
functionalities. However, when it comes to interoperability, the tool is limited to custom tests
the user might create and even so, it would only partially cover the process we are aiming for.

2.5.5. Storm

Storm [25] is a free and open-source tool for testing web services. Storm is developed in F#
language and is available free to use, distributed under New BSD license. Storm allows testing
web services written using any technology. Storm supports dynamic invocation of web service
methods even those that have input parameters of complex data types and facilitates
editing/manipulation of raw SOAP requests. Multiple web setvices can be tested
simultaneously which saves time, speeding up the testing schedule. Compliance testing is not
readily available — the user would have to create time-consuming custom tests to even remotely
achieve it.

2.5.6. WizDL

WizDL [26] is a utility that allows you to quickly import and test web services. It supports
calling complex web services that take arrays and deeply nested objects as parameters. The
tool allows saving the data as an Extensible Markup Language (XML) file, which can be loaded
later for regression testing. Just like the majority of the tools in this section, no compliance
testing of any kind is available out of the box.

2.5.7. Coyote

Coyote [27] is an XMIL-based object-oriented testing framework to test web services that
consists of two parts: test master and test engine. The test master allows testers to specify test
scenarios and cases as well as performing various analyses such as dependency analysis,
completeness and consistency, and converts WSDL specifications into test scenarios. The test
engine interacts with the web services under test, and provides tracing information. The test
framework incorporates concepts from object-oriented application frameworks so that it is
relatively easy to change test scenatios/cases.

Coyote does have an interesting concept behind it, but the software doesn’t seem to be
publicly available. The authors talk about Coyote [28] from a theoretical point of view and
point out its hypothetical drawbacks, but without a real product it is not possible to actually
test or comment on it.

2.5.8. Tool summary table

WitW's - Web application for interoperability testing of web services

Table 1 represents a summary of the aforementioned tools. The “Development Activity” column represents the state of the tool development as of
January 2016. The column can take two values:

e No development — if there haven’t been new software releases in the past year.
e Slow development — if the last version dates from one year back to 6 months ago.
e Active development — if there has been a version released between 6 to 3 months ago.
e Very active development — if the last version dates from less than 3 months ago.
Tool Technology Support Compliance Testing Support Development activity OS Support License
SoapUI HTTP, HTTPS; REST; SOAP; Databases via JDBC; | WS-I Basic Profile 1.1 Active development Cross-platform Standard Version Open Soutce
JMS (through Hermes]MS); REST; AMF;
Pro Version — Paid
SOAPSonar HTTP, HTTPS, IBM MQ, Tibco EMS, Weblogic JMS, | Design Time WS-I Basic Profile 1.1; | Slow development Microsoft Windows Personal Version — Free
Active MQ, FTP, SFTP WSDL Region WS-I Assertion Violation
Highligthing; Dynamic XSD-Mutation Pro Version and Server Version -
Active WS-1 BP 1.1. Paid
WizDL SOAP No. No development. Microsoft Windows Open Source
Weblnject HTTP,SOAP,REST No. No development. Microsoft Windows; All | Open Source
other platforms after
compiling source code.
JMeter Web-HTTP, HTTPS; SOAP; Databases via JDBC; | No. Slow development Cross-platform Open Source — Apache License 2.0
LDAP; JMS; SMTP, POP3 IMAP; Native processes;
Storm SOAP No. No development Microsoft Windows Open source
Coyote N/A N/A - N/A N/A

Table 1. Tool summary table

10

WitW's - Web application for interoperability testing of web services

Chapter 3

Requirements

The requirements where written and analyzed utilizing the MoSCoW technique. Since it is
almost impossible to deliver a product with every single feature desirable on-time, on-quality
and on-budget, this technique helps define the importance of each requirement, forcing the
stakeholders to prioritize them. [29]

The FURPS and FURPS+ methods were considered but our focus was on prioritization and
well-formed requirements, not so much on their qualification (e.g. reliability or performance
requirement). Furthermore, having a relative low number of requirements did not demand
such granularity.

The requirements came to be after several meetings with the thesis’ supervisor. The mockups
presented in section 3.2 also helped to provide a better insight about the necessary features.

3.1. Functional

A function is a defined objective or characteristic action of a system or component and a
functional requirement specifies a function that a system or system component must be able
to perform.

WITWS-REQ-F-0001

The user must be able to log in with a previously created account.
Required fields:

e FEmail
e Password

MoSCoW: Must-have

Status: Completed

11

WitW's - Web application for interoperability testing of web services

WITWS-REQ-F-0002

The user must be able to register a new account for himself/herself.

Required fields:

e Username (25 characters max.)
e Email

e Password (16 characters max.)

MoSCoW: Must-have

Status: Completed

Account confirmation email

After the user signs up, an account confirmation email must be sent to his/her address. The
user won’t be able to log in unless he/she accesses the link provided in the confirmation
email.

MoSCoW: Could-have

Status: Not completed

WITWS-REQ-F-0004 Dashboard

The user could be able to see a dashboard as soon as he logins.

Some relevant information to display:

e Charts with number of tests failed/passed per Level of analysis
e Current number of pending WSDL analysis

MoSCoW: Could-have

Status: Not completed

WITWS-REQ-F-0005 Submit WSDL

The user must have an option to submit a WSDL by providing an URL.

MoSCoW: Must-have

Statis: Completed.

12

WitW's - Web application for interoperability testing of web services

WITWS-REQ-F-0006 Select client code generation tool — Submit

WSDL

The user must be able to select a code generation tool when submitting a WSDL..

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0007 WSDL Validation

The system must validate the URL before proceeding to any certification level.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0008 Upload web service source files

The user must have an option to upload the web service source files — along with all its
dependencies.

MoSCoW: Must-have

Status: Completed.

WITWS-REQ-F-0009 Select client code generation tool - Upload

web service source files

The user must be able to select a code generation tool when uploading web service source
files.

MoSCoW: Must-have

Status: Completed.

WITWS-REQ-F-00010 Select deployment server - Upload web

service source files

The user must be able to select the server where the uploaded files are going to be deployed.

MoSCoW: Must-have

Status: Completed.

13

WitW's - Web application for interoperability testing of web services

WITWS-REQ-F-0011 Deploy web service code

The system must be able to deploy the submitted web service source code.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0012 Service Description Generation

The system must be able to generate a service interface description document.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0013 WS-I Standards Compliance Check

The system must be able to check the WSDL (the one submitted or the one created by
deploying the source code) against the WS-I standards.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0014 Client Artifacts Generation

The system must be able to generate client-side code from the service interface description
document.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0015 Client Artifacts Compilation

The system must be able to compile generated client-side code.

MoSCoW: Must-have

Status: Completed

14

WitW's - Web application for interoperability testing of web services

WITWS-REQ-F-0016 Client Execution

The system must be able to communicate correctly with the server, i.e., message is sent
from the client and delivered correctly at the service application.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0017 Client Execution — Random values

When communicating with the server, the client must call the service with randomly
generated values.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0018 Client Execution — Send to comparison

system

Before actually calling the service with the randomly generated values, the client must send
the values to a comparison system for further inspection.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0019 Service Processing Execution

The system must be able to communicate correctly with the client, i.e., a reply is sent from
the service and delivered correctly at the client application.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0020 Service Processing Execution — Random

Values

When communicating with the client, the service must send a randomly generated reply.

MoSCoW: Must-have

Status: Completed

15

WitW's - Web application for interoperability testing of web services

WITWS-REQ-F-0021 Service Processing Execution — Send to

comparison system

Before actually sending a randomly generated reply, the service must send the values to a
comparison system for further inspection.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0022 Comparison system

The system must be able to compare the values received from the client and the service.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0023 Results

The system must provide the user the result of each analysis according to the testing levels
explained in WITWS-REQ-F-0008 through WITWS-REQ-F-00012.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0024 Submit notification

The system must display a notification to the user after the WSDL submitted.

MoSCoW: Should-have

Status: Completed

WITWS-REQ-F-0025 Upload notification

The system must display a notification to the user after the files are uploaded.

MoSCoW: Should-have

Status: Completed

16

WitW's - Web application for interoperability testing of web services

WITWS-REQ-F-0026 WSDL Operation Selection

The user must be able to select the operations of the WSDL he/she wants to see analyzed
after uploading the WSDL.

MoSCoW: Could-have

Status: Not completed

WITWS-REQ-F-0027 WSDL Operation Custom Range

The user could be able to set a custom range of values to feed the operations of the WSDL
being analyzed.

MoSCoW: Won’t-have

Status: Not completed

WITWS-REQ-F-0028 Analysis History

The system must store a history of all test runs and display it to the user.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0029 Results exporter

The user should be able to select which reports he wants to export. The reports should be
exported to an Excel file.

MoSCoW: Should-have

Status: Not completed

WITWS-REQ-F-0030 User profile

The user should be able to set some configurations from his/her profile, which will be
applied to all WSDL analysis.

e WSDL List Maximum Size
e Request Timeout

MoSCoW: Won’t-have

Status: Not completed

17

WitW's - Web application for interoperability testing of web services

WITWS-REQ-F-0031 Testing Modularity

The entire testing pipeline must be modular enough in order to support additional test steps.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0032 Support for additional frameworks and tools

The system must support the addition of new frameworks and tools into each testing level
(e.g. adding a new tool to generate the client code). If applicable, the user must be able to
choose them in the WSDL submission screen.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0033 Support for different operating systems

All of the tools and frameworks available might be running in different operating system
and machines. The system must have a platform-agnostic way to contact them.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0034 Fault tolerance ‘

When any of the machines or tools pf the system cannot be reached, the user must be
informed. At the very least, a message saying to “try again later” must be displayed.

MoSCoW: Must-have

Status: Completed

WITWS-REQ-F-0035 Support for compiled programming

languages

The system must be prepared to support other compiled languages besides the main one,
Java.

MoSCoW: Must-have

Status: Completed

18

WitW's - Web application for interoperability testing of web services

WITWS-REQ-F-0036 Support for interpreted programming

languages

The system could support interpreted languages (e.g. Python, Ruby).

MoSCoW: Could-have

Status: Not completed

3.2. Mockups

Some mockups were initially designed to better understand the application, its requirements
and its layout. Figure 5 represents one of the most important mockups designed, the “Detailed
results mockup”, where the user could see a list of all his test runs (pending, executing and
completed).

A Web Page
o $ x Q {http//witws deiucpt) @
See results E; t
WSDL1 - Weather secrseute [Spen]
WSDL2 - Cities Hide
| Level 1] Details
I Level 2 I Details
| Level 3 | Details

Details

Details

WSDL3 - Time —
WSDL4 - Flight Search PENDING

Figure 5. Detailed results nockup

The rest of the mockups originally design can be consulted in the Annexes, section E1.

19

WitW's - Web application for interoperability testing of web services

Chapter 4
Methodology and planning

This thesis followed an agile software development methodology, which means, among other
things, that it promoted an evolutionary development cycle and continuous improvement.
[30]. SCRUM is one agile software development methodology and is the one that best
reassembles the process used in this thesis. [31]. While not being a carbon copy of SCRUM,
it’s an adaptation of said methodology. The adaptations consist in not having a Product Owner
and a Scrum Master because the team only consisted in one element, changing the default
Spring duration from two weeks to one week to have a faster development cycle and not
having a Spring Retrospective at the end of every Sprint because it was not always necessary.
Figure 6 represents the methodology used. Adapted from [32].

Daily Scrum
Meeting

Every
24 Hours

i

Sprint Review

I

Task
Breakout

Team selects
starting at top
asmuch as it

Ranked

[ist of what | can commit
[5] 'Sf{,i?:,':d: L to deliver by Sprint Sprint end date and Finished Work
v : P team deliverable
L6 | stories,.. LI end of Sprint
4 Backlog do not change e @
Sprint
Product Planning
Backlog Meeting -
Sprint

Retrospective

Figure 6. Thesis development process

The product backlog consists in a ranked list of what is required. This corresponded to all the
system’s requirements (which some of them might have been broken down into smaller
chunks). At the beginning of each spring, usually on a Monday morning, several tasks from
the product backlog were chosen and pledged to be finished at the end of the Sprint. The
Spring Backlog is made of those selected tasks. Each Sprint had the duration of one week and,
every morning, the author and his supervisor met to talk about the work completed the day
before and what is planned to be accomplished until the end of that same day. Any blockers
or difficulties were also discussed during this period. At the end of the Sprint, a new, running
version of the application, was ready to be delivered, and so, the author and the supervisor
met again to discuss it and to review the sprint. — this normally occurred on Friday’s
afternoons. This process was then repeated every single week until the end of the project.

In some occasions, on Fridays, after the Sprint Review, a Sprint Retrospective was held for
the sake of determining what could be changed that might make the next sprint more
productive.

Using this approach, the system never deviated from its scope and was much easier to prevent
the occurrence of problematic issues.

20

WitW's - Web application for interoperability testing of web services

4.1. Planning

The workflow of the thesis had two distinct parts: an implementation phase where the
requirements and the desired functionality were somewhat straightforward, and a research
phase, where a part of the process required a lot of research because we wanted to test a
service to which we do not have access.

4.1.1.First Semester

During the first semester, the focus was to build the skeleton of the application and to get
familiar with the several different frameworks used. In this phase, the first three testing levels
were implemented, along with a beta version of the web frontend for the user to submit
his/her own WSDL’s. The Gantt Chart of the first semester is represented in Figure 7, and a
higher resolution version of it can be found at https://goo.gl/0k03yx :

February March April May June July
Activity 9 '13‘15 '20‘23 -27|02-06|09-13|16-20(23-27|30-03|06-10|13-17|20-24|27-01|04 - 08|11 - 15|18 '22|25 '29|D1 -05|08-12(15-19|22-26|29-03|06-10(|13-17
Project background and scope definition
Requirements

State ofthe art investigation]

Framework research
Architecture design
Wockups

Setup development environment]
Care functionality implementation
4 Certil Processim
First phase
Second phase
Third phase |
Testing
Intermediate Report .

Intermediate Presentation ‘ ‘ | | | | ‘ ‘ ‘ ‘ ‘ ‘ | | | ‘ ‘ ‘ ‘ ‘ _

Figure 7. First Semester Gantt chart

¢ Requirements: since the foundations of this thesis were clear and well-defined, the
requirements were quick to identify and easy to understand.

e State of the art investigation: As previously stated, there aren’t many tools or
frameworks in this work field so we also had to extend our search to more generic
web service testing tools.

e Framework research: The overwhelming amount of web frameworks demanded an
equally overwhelming amount of time to process.

e Testing: It was started at a very early stage, even when we had no code. Static software
testing was constantly used in order to check the validity of the documentation.

e Mockups: Web frontend wise, this thesis was extremely simple, so there wasn’t the
need to mock many screens.

e Core functionality implementation: This consisted in the implementation of the
registration and login process, the modularity of the testing pipeline, the database and
its persistence layer, a remote RMI server to process the calls to several tools available
(e.g. wsconsume) and a very alpha version of the WSDL submission user-interface.

21

https://goo.gl/0k03yx

WitW's - Web application for interoperability testing of web services

4.1.2. Second Semester

The planned Gantt chart for the second semester is represented in Figure 8 and a higher
resolution of it can be found at https://goo.gl/Z04z£2 .

2015
September October November December January February
Activity 4[07-11|14-18|21-25|28 -02[05 - 09|12 - 16 19 - 23| 26 - 30[02 - 06| 09 - 13|16 -20|23 - 27|30 -04[07 - 11[14 - 18[21-25 |28 - 01|04 - 08| 11 - 15[18 - 22|25 - 2|01 - 05|08 - 12[15 - 19

Final Report

‘ [[T1[]
A A A e oy
Figure 8. Second Semester Gantt Chart - Planned |

ReportProcess/Planing Review l
4Certification Process Investigation
Fourth Level
Fifth Level
4 Certification Process implementation
Fourth level
Fifth level
Results export
User interface fine-tuning ‘
Testing

The tasks worth of note in this semester are:

e Report/Process/Planning review: During the intermediate presentation, the jury
may pose some criticism, questions and suggestions. This item in the planning
represents the assessment of those topics.

e Certification Process Investigation: Research about the fourth and fifth phases of
the testing pipeline.

e Certification Process Implementation: Development of the fourth and fifth phases
of the testing pipeline.

¢ Results export: Implementation of the export functionality - specifically to an Excel
file.

e User interface fine tuning: Web page layout and design improvement.

e Testing: Testing carried on the application and its subsystems.

e DPaper: Given the lack of research in this field, one of the goals of this thesis is to also
write a scientific paper on the subject so we are saving some time to do it before the
final delivery and presentation.

e Final Presentation: Time dedicated to the thesis’ final public presentation.

To guarantee the quality of the final system, the Gantt chart suffered some changes. Figure 9
shows the real one. A higher resolution version can be found at https://goo.gl/2CBUhz at
the two can be seen side by side for an easier comparison at http://goo.gl/DZ6RvVB .

2015
September October November December January February
Activity 4[07-11]14-18|21-25(28-02|05-09|12 - 16[19-23]|26 - 30|02 - 06|09 - 13| 16 - 20|23 -27|30 - 04|07 - 11|14 - 18|21 - 25|28 - 01|04 - 08|11 - 15| 18 - 22|25 - 20| 01 - 05| 08 - 1215 - 19

aCertification Process Investigation ‘
Fourth Level
Fifth Level
Certification Process implementation
Fourth level
Fifth level
User interface fine-tuning
Testing
ReportPracess/Planing Review | | | | | |
Final Report
Paper ‘ ‘

Final Presentation

Figure 9. Second Semester Gantt Chart - Real

The research for the fourth and fifth phases took less time than expected. However, their
implementation required much more effort than anticipated. The improvement of the GUI
required more work. Testing remained about the same, but instead of starting right at the
beginning of the semester, it began some days after the implementation of the fourth phase
started. The juries’ notes were taken into consideration when the final report started to be
written, which took place towards the end of year, instead of right at the beginning,.

22

https://goo.gl/Z04zf2
https://goo.gl/2CBUhz
http://goo.gl/DZ6RvB

WitW's - Web application for interoperability testing of web services

The biggest difference from the planned Gantt chart to the real one is the absence of the
“Results export” feature. Unfortunately, there was no remaining resources to implement it.
Be as it may, said functionality was not considered crucial.

4.2.Risk Management

Risk management involves anticipating risks that might affect the project schedule or the
quality of the software being developed, and then taking action to avoid these risks. A look
into them is taken using the same approach and terminology as in [33]:

1. The probability of the risk might be assessed as:

a. Verylow (< 10 %o;

b. Low (10-25%);

c. Moderate (25-50%);

d. High (50%-75%);

e. Very high (>75%).
2. The impact of the risk might be assessed as:
Catastrophic (threatens the survival of the project);
Serious (would cause major delays);
Tolerable (delays are within allowed contingency);
Insignificant.

oo

4.2.1. RKO001 - Changing requirements

All the requirements were discussed and written down during the first semester, but, as with
all things, we must embrace change and be prepared for it.

Probability: Moderate.

Impact: Tolerable.

Mitigation Plan: Introduce more meetings with the supervisor to control and prioritize
requitements and / or drop some requitements altogether.

4.2.2. RKO002 — Report written in a non-native language

Since this report is entirely written in English and the native language of the author is
Portuguese, translation and grammar issues may arise and slow down the writing process.

Probabilzty: High.
Impact: Tolerable.

Mitigation Plan: Ask the supervisor for some guidelines, since he has a vast experience with
English papers/thesis. Allocate more time to the thesis writing task.

23

WitW's - Web application for interoperability testing of web services

4.2.3. RKO003 — Wrong estimation of the tasks

Only one person is responsible to develop all tasks and requirements. If they aren’t delivered
on time, this can cause a snowball effect and can jeopardize the entire project.

Probability: Moderate.
Impact: Tolerable.

Mitigation plan: Requirements and their specific tasks are classified using the MoSCoW
technique in order to understand and establish priorities, dropping some requirements if
needed to.

4.2.4. RKO004 — Higher learning curve than anticipated

The system uses many different tools, frameworks and libraries with very different learning
curves. The ramp-up period each one demands cannot be overlooked.

Probabilsty: High.
Impact: Serious.

Mitigation Plan: 1f SpringMVC and Vaadin turn out to be too complex, the author can always
lean on Strut2 plus Bootstrap and jQuery, all in which he already has a considerable amount
of experience. MySQL could also be an alternative if PostgreSQL revealed itself to be too
challenging.

4.2.5. RKO005 — Over planning

This thesis consists in mainly two phases: an implementation phase where the development
of the certification levels is somewhat straightforward and an investigation phase, where a part
of the process requires a lot of research. Trying to establish a work plan in the beginning of
the thesis to cover these two distinct phases might be problematic.

Probability: Very low.
Impact: Insignificant.

Mitigation Plan: Divide the thesis in two parts: the implementation part, which consists in the
first three certification levels, goes to the first half of the thesis (first semester) and the research
phase, which consists in the last two testing levels is taken care of in the second half (second
semester).

Very high
E High RKOO04
=
8 Moderate
Ko}
2
= Low

Very low

Insignificant Tolerable Serious Catastrophic

Table 2. Risk matrix

24

WitW's - Web application for interoperability testing of web services

Chapter 5
Support Technologies

All tools discussed in Chapter 2 are lacking in different ways: may it be for the lack of
simplicity, forcing the user to use a specific operating system or simply because they do not
test interoperability propetly - or they do not test it at all out of the box. With that in mind,
the tools and frameworks in this section will be used to create a web-based system that, in its
core, is platform agnostic and will be able to assess the issue of interoperability in a proper
manner.

This section starts by clarifying the selection criteria, and then the development environment
is explained. Afterwards, a lengthy analysis of the web frameworks currently available on the
market (including some popularity surveys and market adoption rate) is done and the section
finishes by crosschecking all the information against the system’s needs.

5.1. Selection criteria

Before dwelling into the support technologies, it is important to take note of our selection
criteria. We want a framework that takes care of some aspects so we can focus on building the
system itself. We are talking specifically about three major areas identified during the first
meetings with the supervisor:

e Session management
e Database connection and querying
e Security

In the future, this project may be integrated with another application which was created using
Spring, is currently using Maven as its dependency and build manager and is storing its data
into a PostgreSQL database so we’re also taking that into consideration. The programming
language of choice will be Java, mainly because of the authot’s experience with it.

5.2.Development environment

The system will be developed under OSX. Intelli]’s IDEA 15 is the IDE chosen because of
its amazing HTML5, CSS3 and Javascript capabilities. It also keeps winning Dr. Dobb’s Jolt
Productivity Award. [34]. Undertow [35] was chosen as the Web Server because of its flexible
and lightweight nature (e.g. it uses less than 4Mb heap space). Having our selection criteria in
mind, to build and manage the application, Maven was chosen [36] and to save all the
information processed, a PostgreSQL database will be used. Last but not least, the
department’s deployment of GIT [37] will be used to serve as the code repository.

5.3.Web frameworks

There are many options when it comes to the development framework. They divide into 3
major groups: full stack web frameworks, pure web frameworks and SOFEA.

Full-stack web frameworks gather multiple libraries useful for web development into a single
cohesive software stack for web developers to use. They handle everything from web serving

25

WitW's - Web application for interoperability testing of web services

to database management right down to HTML generation. Examples include Grails, Play and
Lift.

Pure web frameworks provide a more versatile development environment since many
different plugins can be used and custom complex business rules can be more easily
implemented. Spring MVC, Google Web Kit, Vaadin, Wicket, Struts2 and JSF fall into
this category.

SOFEA stands for Service-Oriented Front-End Architecture and consists in the idea that the
server side should only provide data (e.g. via SOAP) and the whole MVC paradigm happens
on the client. Angular]S, Backbone]S and Ember]S are clear examples of it.

For a quick overview on all these different frameworks, let us look at RebellLabs’ analysis in

Figure 10.

Web frameworks in use *

Spring MVC
m

Vaadin

Google Web Toolkit

Grails
Play 2
Struts 2
Struts 1
0 5 1 15 20% 25% 3 35 10 4
LREBELLABS nd the results were normalized to exclude non-users

Play 1, ZK framework, VRaptor and about 40 others
Figure 10. Rebell_abs’ Developer Productivity Report

The chart in Figure 10 was based on over 1800 developer responses. We can see that
SpringMVC is easily the most popular framework available, followed by JSF and Vaadin.
GWT comes in the fourth place and the last four places are reserved for Play 2, Grails and
Struts, with a relatively low score. What might come as a surprise is that one in six developers
(around 17%) do not use any real framework at all — just JSPs and servlets.

Rebellabs also compared these frameworks for several aspects. The results were [38] :

e Rapid Prototyping: Grails and Play

e Framework Complexity: Vaadin, GWT and Struts

e Ease of use: Grails and Vaadin

e Documentation and Community: Grails and Vaadin
e Throughput/Scalability: Play

e UX, Look and Feel: Vaadin and GWT

26

WitW's - Web application for interoperability testing of web services

ThoughtWorks’ Technology Radar also provides an interesting view on several technologies
on the market. Figure 11 represents the chart currently on their website. [39].

@®ADOPT

83.Go language
84 java 8

@®TRIAL

85.Angular]S

86.Core Async
87.Dashing new
88.Django Rest new
89.HAL

90.lonic Framework new
91.Nashorn new

92.0m

93.Q & Bluebird

94.R as Compute Platform
95.Retrofit new

@ASSESS

96.Flight.js new

97.Haskell Hadoop library new
98.Lotus new

99.React.js new

100.Reagent new

101.Rust

102.Spring Boot

103.5wift new

®HOLD
104,)SF

ADOPT TRIAL ASSESS HOLD

(s:
© o &

& (53)

< S
(&)

& New or moved
® No change

Figure 11. ThoughtWorks’ Technology Radar

According to ThoughtWorks, the .Adop? Ring represents blips that they think the user should
be using now and is something where there is no doubt that it is proven and mature for use.
The Trial Ring is for blips that they think are ready for use, but not as completely proven as
those in the adopt ring, so for most organizations they think the user should use these on a
trial basis, to decide whether they should be patt of his/her toolkit. The Assess Ring are things
that the user should look at closely, but not necessatily trial yet — unless he/she thinks they
would be a particularly good fit. Finally, the Hold Ring is for things that are getting attention
in the industry, but ThoughtWorks do not think are ready for use. Sometimes this is because
they do not think they are mature enough yet, sometimes it means they think those things are
irredeemably flawed. There’s no “avoid” ring, but they throw things in the ho/d ring that they
wish their clients would not use.

27

WitW's - Web application for interoperability testing of web services

5.4.Web framework adoption

Technical specs only tell half the story and so a real look into the market’s framework adoption
is needed. In order to achieve it, Matt Riable, AppTuse’s creator [40], took a different approach
when analyzing the great amount of web frameworks available where he compared them with
real-world market adoption numbers. The focus was on:

e Number of jobs on a job aggregator site
e Job trends on Indeed.com

e Interest over time on Google

e Number of questions on StackOverflow

In order to not analyze every single framework available and exclude some of them right at
the start, we adapted his research and the graphs in this section were created using the
following elimination criteria:

o Atleast 1 release in 2014

e Atleast 1 book on Amazon.com

e 10 jobs on itjobs.pt

e Atleast 300 questions on StackOverflow

e As we have stated at the beginning of this Chapter, programming language must be
Java or based on Java at least - so SOFEA frameworks will not be analyzed.

In Figure 12 we can see number of job positions for each framework. SpringMVC and Struts2
dominate the market, followed by JSF and GWT. No other frameworks fulfilled the 10
minimum jobs criteria.

70
60
50
40
30
20
10

0

B GWT MEJSF EStruts? B SpringMVvC

Figure 12. Jobs on itjobs.pt

Figure 13 and Figure 14 represent the job trends on Indeed.com. As we can see, on the full
stack web framework side, Grails had a huge spike from 2009 until 2012 but kept declining
since that time (becoming slightly more popular in 2015). Even with the strong decline, it
remains the most relevant of all full stack frameworks.

Focusing on pure web frameworks, Spring dominates the business since 2006, with all the
alternatives not even coming close.

28

WitW's - Web application for interoperability testing of web services

Job Trends from Indeed.com
== rails jrubzy == grails = "play framework’ = scala lift == "spring rog”

=
=1
]

0.02

0.01

Fercentage of Matching Job Fostings

Jan'06 Jan'0F Jan'08 Jan'09 Jan'l0 Jan'll Jan'l2 Jan'l3 Jan'l4 Jan'15
Figure 13. Job Trends — Full stack

Job Trends from Indeed.com
~=gwt = jsf = wicket == spring = wvaadlin struts

0.5

FPercentage of Matching Job Postings

eSS
Jan'06 Jan'0F Jan'08 Jan'09 Jan'l0 Jan'll Jan'l2 Jan'l3 Jan'l4 Jan’'l5
Figure 14. Job Trends — Pure Web

Figure 15 and Figure 16 represent the interest over time in Google searches. Grails is clearly
a popular framework on the full stack side, with Play coming second and all the alternatives
tied in third place with similar results.

On the pure web side of searches, JSF kept being the most popular until 2010 when it matched
GWT. Nowadays, they are all similar.

29

WitW's - Web application for interoperability testing of web services

jruby rails lift scala "play fra... "spring roo” grails
Search term Search term Search term Search term Search term
Interest over time
v Mews headlines Forecast

>

Figure 15. Google Trends — Full Stack

"spring m...

Search term

"struts 2" jsf

Search term Search term

vaadin

Search term

gwt

Search term

Interest over time

v News headlines Forecast

<>

Figure 16. Google Trends — Pure Web

Looking at the StackOverflow question scenario, Figure 17 shows us that Grails completely
obliterates the competition with more than twenty thousand questions raised in the platform.

Play comes in a very distant second place and JRuby on Rails, Lift and Spring Roo tie for
third.

30

WitW's - Web application for interoperability testing of web services

Questions as of 21/04

25000

20000
15000
10000
5000
O — . __

o Iruby on Rails m Lift ®mPlay 2.0 mGrails ®Spring Roo

Figure 17. StackOverflow Tagged Questions — Full Stack

When we switch to pure web frameworks, SpringMVC and JSF tie for having the highest
amount of questions asked — around twenty five thousand. GWT comes in second place with
roughly nineteen thousand, Strust2 in third with barely ten thousand and Vaadin and Wicket
tie for last place with two and a half thousand.

Questions as of 21/04

30000

25000
20000
15000
10000
- Hm
0 B

M Spring MVC B Struts2 MIJSF BGWT B Vaadin B Wicket

Figure 18. StackOuverflow Tagged Questions — Pure Web

31

WitW's - Web application for interoperability testing of web services

5.5.Web framework analysis

Picking up on the results of the last two subsections (5.3 and 5.4), we reach the conclusion
that the most important and relevant ones are Grails, Play, Lift Wicket, SpringMVC, GWT,
Vaadin, Struts and JSF. We will now analyze each one of them into more detail while also
applying the selection criteria mentioned in section 5.1.

It is important to say that, even with our own selection criteria, all of these final nine
frameworks could fit our needs, one way or another. Mix and match is a viable option and, in
some cases, they even use the same underlying technologies (e.g. Spring Security is or can be
used in most of them). There is no single silver bullet or one framework to rule them all. It all
comes down to our own preference and sometimes we need to go an extra-mile to rule one
out (e.g. Wicket, GWT) — that is why the reader will notice that the reasons and the set of
rules to exclude a certain framework will not always be the same.

5.5.1. GQGrails

Grails is one of the most popular frameworks nowadays. It is ranked first in DevRates [41]
and got highly praised in the Rebell.abs’ The Curious Coder’s Java Web Frameworks
Comparison [38]. Unfortunately, one needs to know Groovy to use this framework and even
though it is based on Java, it brings an extra overhead to the development process.

5.5.2. Play

This framework also managed to get excellent scores all across the board and, unlike Grails,
uses pure Java as the main programming language. The problem lies within the market
adoption rate. This thesis also serves as a showcase for the author’s skills and if the market is
not looking for those skills, it feels like a wasted effort to a certain extent. It also uses Scala in
some parts of the framework, so we are ruling it out.

5.5.3. Lift
Lift does not have a relevant presence in any of the areas analyzed, so there is very little reason
to use it.

5.5.4. Wicket

On 2011, a study called The World Wide Wait [42] took place in Devoxx, a European Java,
Android and HTMLS5 [43]. They did a comparison between Wicket, JSF, Spring, MyFaces and
GWT. They found out that Wicket, JSF and MyFaces had enormous costs of scale. Figure 19
illustrates the situation:

32

WitW's - Web application for interoperability testing of web services

Wicket

JSF

—
B

m

GWT

S0
$20 000
$40 000
$60 000
$80 000
$100 000
$120 000

Figure 19. Framework cost of scale

For this reason, Wicket won’t be used.

5.5.5. SpringMVC

Of all the Java frameworks currently available, SpringMVC is probably the one that has been
relevant the longest and still continues to innovate. As we have stated previously, our project
will eventually be integrated into a system that was built using this framework. It must also
use Maven and using it with SpringMVC is quite straightforward. Concerning authentication,
Springs” own Spring Security is used by a number of other frameworks and is one of the best
solutions in its field. All of this makes SpringMVC a very strong candidate.

The biggest issue lies in its initial configuration. The framework is massive and is hard to grasp
if one’s just starting out.

5.5.6. Google Web Kit

On February 2013, Ivan Garcia Sainz-Aja posted to AppFuse’s board an implementation of
the application which included GWT functionality [44]. To see how the GWT flavor
compared to the other implementations in AppFuse, Matt Raible (one of AppFuse’s
developers) created a cloc report — cloc stands for “count lines of code” and is a utility that
counts blank lines, comment lines, and physical lines of source code in many programming
languages - on the various web frameworks in AppFuse [45]. We have created two graphs
based on this information to better illustrate the scenario, which are represented in Figure 20
and Figure 21.

33

WitW's - Web application for interoperability testing of web services

GWT
Wicket
Tapestry

Struts

Spring MVC

JSF

150
200

Figure 20. Number of files

GWT
Wicket
Tapestry
Struts
Spring MVC

JSF

2000 4000
6000 oo
10000

12000

14000

Figure 21. Lines of java

It's important to note that this implementation followed many of the GWT best pratices:
MVP pattern, activities and places, EventBus, Gin and Guice [46]. Since we don’t want to
maintain so much code, GWT won’t be used.

5.5.7. Vaadin

Vaadin also came on top on RebellLab’s tests. It allows one to implement an entire Ul layer
using an Object Oriented model, so one can use Object Oriented knowledge to design Ul
components. It eliminates the task of designing and implementing the client-server
communication that is usually required for AJAX applications.

5.5.8. Struts/Struts2

Struts was the first web framework to provide the MVC paradigm. All of the other frameworks
today exist because of it. Struts should no longer be used because Struts2 superseded it.

Strust2 is pure MVC with a more or less straightforward architecture (e.g. no extra
components that may add complexity), however it can be seen as a legacy technology as there
is lots of boilerplate code [47], no built-in code generation and no external powerful tools.

34

WitW's - Web application for interoperability testing of web services

5.5.9. Java Server Faces

ThoughtWorks’ Technology Radar [39] is quite interesting as they put JSF “on hold”. They
say that teams are running into several problems with it and are recommending the user to
avoid this technology. ThoughtWorks think that JSF is flawed because its programming model
encourages use of its own abstractions rather than fully embracing the underlying web model.
JSE attempts to create stateful component trees on top HIML markup and the stateless
HTTP protocol. The improvements in JSF 2.0 and 2.2, such as the introduction of stateless
views and the promotion of GET, are steps in the right direction, maybe even an
acknowledgement that the original model was flawed, but they feel this is a too little too late
— and so this framework won’t be used.

According to the World Wide Wait study previously mentioned (Figure 19), it also has an
enormous cost of scale, along with Wicket.

5.6.Web framework final verdict

Based on all previous criteria, a combination of Spring Boot plus Spring MVC and Vaadin will
be used. The major issue with Spring MVC is the amount of time needed to configure it
properly. This can be addressed with Spring Boot: it provides a radically faster and widely
accessible ‘getting started’ experience for all Spring development; it is opinionated out of the
box, but gets out of the way quickly as requirements start to diverge from the defaults. It also
provides a range of non-functional features that are common to large classes of projects (e.g.
embedded servers, security, metrics, health checks, externalized configuration). Vaadin will
facilitate the presentation view since it eliminates the task of designing and implementing the
client-server communication that is usually required for AJAX applications. Using Intelli]’s
Spring Initializr, it is extremely easy to “glue together” these tools.

35

WitW's - Web application for interoperability testing of web services

Chapter 6
Architecture and Operation

This section will examine the architecture built to achieve the objectives stated in 1.3 -
Objectives by using a “top-down” approach, starting by showing an overview of the GUI to
give a rough idea what can be done using the application, followed by use cases, passing to
the overall architecture, the MVC pattern and finally the data model.

For a much more detailed analysis on the background of a typical process in this application,
please refer to the Annexes, section C1 — Web service source code upload background
process.

6.1. WitWS Overview

Figure 22 shows the layout of the application and one of its main views and features: the
Results’ view. It contains all the user’s test runs (pending, executing and completed). This one
and the rest of the user’s interaction with the web page can be seen in the next section, Use
Cases.

WitWs Certification Pipeline

[tpcapp6 axis2] on [2016-01-26 01:49:07.458]

. [tpcappé axis2 after comp fix] on [2016-01-26 01:24:16.753]

[tpcappé axis2 after xlint] on [2016-01-26 01:19:28.583]
[tpcappé axis2] on [2016-01-26 01:13:09.152]

[tpcapp6 wsconsume] on [2016-01-26 01:14:25.408]

l « Certification level 1 l Show log
Results
About l + Certification level 2 I Show log
l + Certification level 3 I Show log
l + Certification level 4 I Show log
l v Certification level 5 I Show log

[tpcappé wsimport] on [2016-01-26 01:13:07.781]

[tpcapp> wsimport] on [2016-01-25 23:17:08.417]
[tpcapps wsimport] on [2016-01-25 13:28:56.363]
[tpcapps wsimport] on [2016-01-25 13:26:46.496]
[tpcapp4 axis2] on [2016-01-25 13:23:20.451]
[tpcapp4 wsconsume] on [2016-01-25 13:22:43.425]
[tpcapp4 wsimport] on [2016-01-25 13:19:09.868]
[tpcapp3 axis2 take 6] on [2016-01-25 01:54:34.361]
[tpcapp3 axis2 take 5] on [2016-01-25 01:50:51.22]
[tpcapp3 axis2 take 4] on [2016-01-25 01:19:36.9]
[tpcapp3 axis take 3] on [2016-01-25 01:12:12.277]

[tpcapp3 axis2] on [2016-01-25 01:08:40.534]

FrmmamnD s eAncmAl An FINTA A1 I8 AMGAGEN 1071

Figure 22. Results view

The complete set of views and features can be seen in chapter Chapter 10
User Manual in more detail.

36

6.2.Use cases

WitW's - Web application for interoperability testing of web services

The use case relevant to the scenario is represented in Figure 23. It contains the relevant actions
the user can perform on the application. For the sequence diagrams of “Submit online WSDIL.”
and “Upload web service source code”, please go to the Annexes, Sequence Diagrams section.

User\

Webpage

Submit online WSDL

Upload web service
source code

View test run results

Figure 23. Webpage use case

The description of each use case can be seen in the following tables, using the format

specified in [33].

WitWS: Submit online WSDL
Actors
Description

Data
Stimulus

Response

Comments

Web page users

A user may submit any WSDL which is
already available online for the system to
test. It’s possible to select the client code
generation tool when submitting the
WSDL.

WSDL endpoint of the web service.
User command initiated by pressing the
“Start testing” button.

Web page notification indicating that the
test process has started.

The user needs to be registered in the
system and must have already logged in to
access this functionality.

37

WitW's - Web application for interoperability testing of web services

WitWS: Upload web service source code

Actors Web page users

Description A user may submit any web service (along
with its dependencies) source code to the
application for the system to analyze. It’s
possible to select the client code generation
tool and the deployment server when
submitting the code.

Data Web service source code and any class
dependencies it might have.

Stimulus User command initiated by pressing the
“Start testing” button.

Response Web page notification indicating that the
test process has started.

Comments The user needs to be registered in the

system and must have already logged in to
access this functionality.

WitWS: View test run results |

Actors Web page users

Description A user may consult all his submitted test
runs (already completed, pending and still
executing).

Data N/A.

Stimulus User command initiated by clicking on each
test run and “Show log”.

Response Test run’s testing phases and corresponding
logs.

Comments The user needs to be registered in the

system and must have already logged in to
access this functionality.

38

WitW's - Web application for interoperability testing of web services

6.3.Architecture overview

To implement the use cases in the previous section, a system represented by Figure 24 was
built.

10

CI< L

. =)

External Server Comparison Server
SR)
1

- 8 _>
WitWorker WitWorker WitWorker Deployment Server Deployment Server Deployment Server
A A
7 5
6 4
A 4
User
S B
.5) Datanase
Main Server 3

Figure 24. Architecture overview

The architecture represented in Figure 24 contains several annotations but it’s important to
mention that those number annotations do not represent a particular communication order.

(1) Vaadin: The main entrance point of the application. It represents a user connecting to the
web page built in Vaadin — which is located in the main server. Vaadin is responsible for
abstracting the HTML code and to facilitate the access to the beans created in the main server.
Using this framework, it was possible to design the entire application without writing a single
line of HTML or JavaScript.

(2) Main server: The main server/machine. It contains the webserver and the majority of the
application’s logic. It is built following the MVC paradigm around Spring MVC. Fetches all
the information contained in the database, sends it to the Vaadin layer, creates new test runs
and forwards them to the appropriate WitWorker/Deployment server, among other things.

(3) Database: The PostgreSQL database, which is located in the same machine as the main
server, contains all the info about users, logs, deployment servers, tools and test runs. The
main server fetches the information of what to do and where to do it from here. In order to

39

WitW's - Web application for interoperability testing of web services

facilitate all the database related operations, Hibernate is used as the JPA provider and Spring
Data JPA hides Hibernate behind its repository abstraction. The data model and an overview
of the database tables can be found in section 6.4.

(4) Communication between main server and deployment servers: Represents the
communication between the main server and the deployment servers available. Main server
and deployment servers communicate exclusively through FTP. In fact, it’s just a one-way
communication channel — from the main server to the deployment one. The other way around
is not necessary, so it is not used.

(5) Deployment servers: As previously mentioned, this application allows the users to
submit their own web service code (and its dependencies) in order to go through a more
comprehensive set of interoperability tests. One of the steps of one of those tests consists in
deploying the code to a deployment server.

(6) Communication between main server and WitWorker servers: Represents the
communication between the main server and the WitWorker servers.

(7) WitWorker servers: Regardless of the comprehensiveness of the tests being run, they
always go through one WitWorker server. They are responsible for generating code, compiling
code, build the run log, etc.

(8) Communication between the WitWorkers and the External Server/Deployment
servers: The tests run on the platform can either be started from an online WSDL -
represented by the “External Server” - or by submitting the source code and deploying it to
our own servers — represented by the “Deployment Servers” in square 5. This communication
is initiated by the WitWorkers to the wsdl endpoints of those services.

(9) Communication between the WitWorker servers and the comparison server: This
arrow represents the communication between the WitWorker servers and the comparison
server.

(10) Comparison server: Two of the testing phases in the pipeline require the system to
generate random values for one component and send them to another component. The
comparison server, as the name suggests, is a server which compares these randomly generated
values.

(11) Communication between the deployment servers and the comparison setrver
Represents the communication between the deployment servers and the comparison server.

The system follows the MVC architectural pattern, which is represented in Figure 25. MVC
Pattern. Vaadin represents the presentation layer, the controller is built around Spring and the
model translates to the combination of JPA and Hibernate. The data model is explained in the
next section.

40

WitW's - Web application for interoperability testing of web services

External systems
Users
1 A — —
— J L ﬂ? WitWorkers Deployment servers
¥ J
Presentation Layer
3
= vaadin }>
g Business Layer
S
& =
5 spring
(5]
Data Persistence Layer: Spring Data
ORM -
JPA Hibernate
D —
z
<]
=
N4
V
Database
PostgreSQL

Figure 25. MV'C Pattern

Notice that in the “External Systems” box, there is no Comparison Server. This is because
the Comparison server does not communicate directly the controller, so it was left out of the
figure.

41

WitW's - Web application for interoperability testing of web services

6.4.Data Model

Figure 26 represents the physical data model of the application.

| Em witws_run

1l run_id

m] run_certhsl

Em run_timestamp
%‘Tl user_id

[T run_name archar
Em run_status arc
Em run_debug_info archar(255
A

Djj witws_user

'E:E user_id

Em user_email archa

EDI user_name are

Emuser_ rd varcha
1 passwo

run_id{run_id

| mj witws_log
#llogid
{1 tog_level
Eﬂj log_content text
Eﬂrun_ill bigint
[11] log_state archar(255

[witws_deployment_server -
Em witws_tool

71| deployment_server_id

71l tool_id

Em deployment_server_name arch
Em deployment_server_path arch
Em deployment_server_port arch
] deployment_server_address arch
Eﬂj deployment_server_ftp_pass arch

[Tl tool_name
[T] tool_operating_system
[T] tool_status

Em tool_version

[11] tool_language
Eﬂj deployment_server_ftp_port Eﬂj : L
tool rt
Djj deployment_server_ftp_user arch a
DI] tool_address

] deployment_server_language arch

Enj tool_socket_address
| deployment_server_os arch

| tool_working_folder

Eﬂj deployment_server_version archar(233

Figure 26. WitW'$' Data Model

6.4.1. Table witws_user

Info about the user. Straightforward without any special attribute. Maintains a OneToMany
relationship with the witws_run table.

6.4.2. Table witws_run

The witws_run table stores the information about each user run and maintains a ManyToOne
relationship with witws_user and a OneToMany with witws_log. Some columns worth of
note:

42

WitW's - Web application for interoperability testing of web services

e run_certlvl—The highest certification level attained in a specific run. Basically, consists
in the log_level associated in the witws_log table.

e run_name — The name given by the user in the webpage, before starting the run.

2> <<
b

e run_status — The current status of the run: “pending”, “executing” or “completed”.

e run_debug info — Used for debugging purposes when the run fails to reach the first
level of certification. The application stores the error in this column and reads it later
on on the Results page.

6.4.3. Table witws_log

Data about the log of each run. One per each Certification Level. Maintains a ManyToOne
relationship with the witws_run table.

e log level — The level of the certification level being analysed.
e log content — The output of said certification level.

) <

e log state — The outcome of the certification phase. “success”, “warning” or “error”.

6.4.4. Table witws_deployment_server

Used to keep track of the available deployment servers to be displayed in the webpage. The
info here is added mannually by the developer.

e deployment_server_name — The name of the deployment server (Wildfly, Glassfish,
etc)

e deployment_server_path — The deployment path of the server. In other words, the
path where the server looks for WAR files to automatically deploy. Always relative to
the configuration of its FTP server.

e deployment_server_address — Address of the server in the form of

e deployment_server_ftp_ ... — Columns which store the corresponding FTP server
configuration.

e deployment_server_language — Web service programming language supported by the
server.

6.4.5. Table witws_tool

Tools and WitWorker servers do not exist without one another, so in order to facilitate the
extensibility of the app, the database table “witws_tool” tracks the available client code
generation tools and their corresponding RMI address because that’s how the system
communicates with them.

e tool_name: The name of the tool. E.g.: wsconsume, wsimport.

e tool_operating_system: Programming language supported the tool.

e tool_status: Available/Unavaible;

e tool_address: RMI address of the RMI server running in the tool’s machine.

e tool_socket_address: Address where the comparison server must send its answer to.

e tool_working folder: The absolute path of the folder the main server should send the
WitSerialization helper class to.

43

WitW's - Web application for interoperability testing of web services

Chapter 7
Implementation details

Implementing the architecture and the system exposed in the previous chapter demanded
many technical decisions. Some of them are explained in this section. For more details about
the implementation, refer to the Annexes - sections Al, B1, C1 and D1.

7.1. Vaadin

The presentation layer of WitWS is built around Vaadin. Comparing this application to a
system using a traditional combination of Bootstrap and jQuery, the entry point (the
index.html) is the DashboardUI class and there are no other UI classes in project. This means
that whatever page the user requests (e.g. http://witws.dei.uc.pt/#!submit), it will always go
through the DashboardUI first and will update the page content’s based on the current user
status — if the user if logged in, main view is shown (or the page request in the URL. “submit”
in this case), otherwise, login view is presented.

The GUI is built by Java classes which represent each view of the system — AboutView,
LoginView, ResultsView, etc

7.2.Protocol used by the Comparison server

As soon as the Comparison server starts, it waits for a string containing the following format:

testID | origin | destination | number_of following write_operations | pair | language

e testlD — the ID of the test run

e origin — Where the test is coming from. 'cc' for client code and "ws" for webservice.

e destination — It is the server which the Comparison Server should send its results to.
It was previously injected in both the Invoker and in the web service code.

e number_of_following write_operations — Size of the map that is going to be received
after this message.

e pair — Number corresponding to the pair of the operation. 1 if it is the invoker-web
service pair or 2 if it is web service-invoker response pait.

e language — Programming language of the web setvice / invoker.

This string (and all the communication to and from the Comparison Server) actually initiates
with 2 bytes. These 2 bytes express the number of 8-bit characters, which will follow up, so
that the other side is able to read the exact quantity or fail. This is the same contract used in
the Java language in the methods wrireUTF and readUTF of the data stream classes and can be
implemented in any language that supports the sockets abstraction. Also, we are not interested
at the moment in a more complex protocol, which would allow us to recover from failures
(i.e., logging and re-sending lost messages, using negative acknowledgments, etc.). We are
simply interested in understanding if the information is being received as a whole or not. If
there is a problem in the communication, WitWS interrupts the interoperability test.

44

WitW's - Web application for interoperability testing of web services

After the first reading operation, the comparison server reads N more times in the following
structure:
variable_structure | variable_type | variable_value

For a better understanding of this structure, let us take a look at Figure 27, Figure 28 and
Figure 29. Notice that some code is intentionally omitted because it is not important in this
example. Figure 27 represents a web service with a web method which takes several
parameters: an Original type value (a class created by the developer), a long type value , a list
of strings and a string.

package w.i.tj

import javax.jws.WebMethod;
import javax.jws.WebService;
import java.util.list;
import java.util.Map;

[WebService
public class NewWebService {

(@WebMethod
public Original sayHi{Original original, long alongValue, List<String»> listStrng, String aString) {

R T N R R Y TR

return nullj;

8
)
@

O

Figure 27. NewWebService.java - Webservice exanmple

Figure 28 is a screenshot of the Original class code. It contains a an integer, a CustomClass1
(another class created by the developer), a list of strings, a string, a double and a Boolean as
fields.

package w.i.t;

import java.io.Serializablej
import java.util.List;
import javax.wml.datatype.XMLGregorianCalendar;

E T R S FTR

public class Original implements Serializable {

[JT=

int i3
11 CustomClassl customClassl;

12 List<String> 1;
13 String s;

14 Double dj

15

Boolean bbj

ol

Figure 28. Original,java - class used as parameter and return value

Figure 29 is another code screenshot, but this time it shows the CustomClass1 class. As fields,
we can see a string, an integer, a list of strings and a Map — with strings as keys and bytes as

values.
package w.i.tj

import java.util.HashMap;
import java.util.Llist;
import java.util.Map;

public class CustomClassl {

[T RN (T R S UTRY

string sCustomClass;

int iCustomClass;
List<String> stringlist;
Map<5tring,Byter myMap;

[l el
]

Bl opa

Figure 29. CustomClass1.java - class used by Original.java

After being submitted to the Certification Pipeline, these classes produced the output in Figure
30 during phase 4 (some output omitted).

45

rarg2.09|java.

zarg2.1|java.
:arg2.2|java.
rarg2.3|java.

zarg2.4|java.

[R -1 T Y. B - R VY Ry N R "]

=
@

:customClassl

[y
[

:customClassl

=
5]

:customClassl

[y
w

:customClassl

=
=

:customClassl

T N T e e e =
NP ® W o s ;W

:1.8|java

=]
w

:1.1|java

=]
=

:1.2|java

=]
v

:1.3|java

=]
o

:1.4|java

%]
=]

:customClassl.
:customClassl.
:customClassl.
:customClassl.

:customClassl.

.lang.
.lang.
.lang.
.lang.
.lang.

WitW's - Web application for interoperability testing of web services

:argl|java.lang.Long|2575447483826997091
lang.String|BHrpuFYbcRLITMPUYQyb
lang.String|mKyWfDxvecErQZcPochH
lang.String|dMKbLcLwFIiIawHDNtVM
lang.String|rRKEaogdHoEZYetfADOL
lang.String|snjHIpTOiMalfIILTZML
:arg3|java.lang.String|koSgeuiOhRFtGZaXgvlQ
:bb|java.lang.Boolean|true
:customClassl.iCustomClass|java.lang.Integer|-1997035298
:customClass1.myMap.IcWeNSA9V]|java.lang.Byte|88

.myMap.JIJ1DT8_Iw|java.lang.Byte|124
.myMap.g_b8Ky2q8G|java.lang.Byte|38
.myMap.h3FkpDfUZ]|java.lang.Byte|58
.myMap . kBOwOgqtYEn|java.lang.Byte|11
.String|ixFciuXREk
String|1mCArSQ9wY
String|ss04MYoZle
String|9PrcSxkena
String|RjYiPmSKOe
String|cDpPnqCY9G

.sCustomClass|java.lang

stringlist.@|java.lang.

stringlist.1|java.lang.

stringlist.2|java.lang.

stringlist.3|java.lang.

stringlist.4|java.lang.

:d|java.lang.Double|@.2518357013088586
:i|java.lang.Integer|-1455201618

String| TrncOWVQoQ
String|sn68srIVCL
String|cSigFAeOgX
String|wptebwXhuz
String|YSBBpmESEQ

:s|java.lang.String|9vBVEMHBS

Figure 30. Exanmple classes phase 4 output

The output produced in phase 5 is displayed in Figure 31 (some code omitted).

[--=------- Webservice (Java) sent---------- 1:
@:bb|java.lang.Boolean|true
1:customClassl.iCustomClass|java.lang.Integer|251539538
2:customClassl.myMap.HqUuOW@dNZ | java.lang.Byte|95
3:customClassl.myMap.Lv3nhLzkur|java.lang.Byte|65
4:customClassl.myMap.WzRIvpTIYZ|java.lang.Byte|96
5:customClassl.myMap.Y5d_h4BHnR|java.lang.Byte|98
6:customClassl.myMap.fGE3tTRF6A|java.lang.Byte|2
7:customClassl.sCustomClass|java.lang.String|lavMI@RizL
8:customClassl.stringlist.@|java.lang.String|njM52Zh7cQ
9:customClassl.stringlist.1|java.lang.String|6wkulb4WXxyv
1@:customClassl.stringlist.2|java.lang.String|cgFKbxW1G2
11:customClassl.stringlist.3|java.lang.String|SmUj88K90u
12:customClassl.stringlist.4|java.lang.String|TyIP_3FVzG
13:d|java.lang.Double|@.14236729721508246
14:i|java.lang.Integer|169202111
15:1.8|java.lang.String| RAAUZecegV
16:1.1|java.lang.String|19aLSK8G8b
17:1.2|java.lang.String|HgWjFVZXeT
18:1.3|java.lang.String|140wKxeoxy
19:1.4|java.lang.String|X107PbKV37
20:s|java.lang.String|phx4HH50Du

Figure 31. Example classes phase 5 output

46

WitW's - Web application for interoperability testing of web services

It now becomes clear what variable_structure, variable_type and variable_value are.
Looking at the code above, particularly at Figure 30, one can see that the “primitive”
parameters of the web method (the ones recognized by the Java programming language) are
represented as “arg0” , “argl”, “arg2”. The rest are fields inside other classes and are “nested”
as the system, recursively, inspects all fields, for all classes passed as parameters. E.g.: The field
“bb” is “inside” the first level of nesting, as we can see by the code above — it belongs to the
Original class passed as parameter to the web method. Using the same logic, it’s easy to
understand that the customClass1.iCustomClass variable represents an integer field, which
belongs to a “custom class” named customClass1 which, in turn, is a field in the Original class.
When it comes to lists and maps, some more detail might be needed:

e Since lists can have any kind of generic type, the index position is used as the name of
each value of the list. E.g. Figure 31, line 8 through 12.
e Maps also need some extra work. The key of each entry of the map is used as its

variable name (and the value of that entry is the variable_value). E.g.: Figure 31, line
2 through 6.

After the comparison process, it then creates several answers for the WitWorker. The order
is:
1. testID|"cc" | pairlClientListSize | lvIDebuglInfo |language
a. testlD — ID of the test run;
b. “cc” — Means “client code” which is used by the WitWorker to control the
order in which it is receiving the information;
c. pairlClientListSize — Size of the list it going to send in the next message, so
the server knows how many reading operations it needs to do;
d. IvlDebuglnfo — Number used for debug purposes. Analyzed at the
WitWorker. HT'TP like codes:
i. 200-OK
ii. 500 — Internal server error
iii. 404 -- Couldn’t contact the server
e. language — Programming language of the client code.
2. pairlClientList
a. The same list it received earlier, one element at a time, following the structure
explained above (variable_structure | variable_type | variable_value).
3. testID|"ws" | pairlWebserviceListSize | IvIReachedStructure | IvIReachedType
| lvIReachedValue | language
a. testlD —ID of the test run
b. “ws” — Means “web service” which is used by the WitWorker to control the
order in which it is receiving the information;
c. pairlWebserviceListSize -- Size of the list it going to send in the next message,
so the server knows how many reading operations it needs to do;
d. IvlReachedStructure — Similarity level of the structures analyzed.
i. 0— Not even similat;
ii. 1 — Similar enough or equivalent;
iii. 2 — Equal;
e. IvlReachedType — Similarity level of the types analyzed:
i. 0— Not even similat;
ii. 1 — Similar enough or equivalent;
iii. 2 — Equal;
f. IlvlReachedValue — Similarity level of the values analyzed:
i. 0 — Not even similar;
ii. 1 — Similar enough or equivalent;

47

WitW's - Web application for interoperability testing of web services

ii. 2 — Equal;
g. language — Programming language of the web service;

4. pairlWebserviceList
a. Same logic as above;
5. testID|"ws" | pair2WebserviceListSize | IvIDebugInfo |language
a. Same logic as above;
6. pair2WebserviceList
a. Same logic as above;
7. testID|"cc" | pair2ClientListSize | lvIReachedStructure | IvIReachedType | IVIR
eachedValue |language
a. Same logic as above;
8. pair2ClientList
a. Same logic as above;

7.3.Custom Class Loader

WitWS utilizes reflection in many parts of the testing pipeline in order to get the information
it needs from the classes submitted. To do it, it must load the web service class to a Class
Loader. E.g.:

e (Class ¢ = Class.forName("com.package.MyClass");

Once the class loader has imported the class, it won’t change anymore. There is no way of
unloading such a class. As a result, the system can't change the class being loaded. This
becomes a problem when, for example, the user submits two classes with different contents
but with the same name.

After numerous tries, it was decided to adapt the method used by L.é Anh Quan [48].

48

WitW's - Web application for interoperability testing of web services

Chapter 8
Experimental Evaluation

In this section the experimental evaluation is described, which was designed essentially to
verify and validate the tool’s capabilities in detecting interoperability issues. The next sections
describe the scenarios used and main results obtained during the experiments.

The test bed consisted in:

Client side code generation tools:
o JAX-WS23.1
o JBossWS 5.0.0
o Axis21.6.4
Server side application servers:
o WildFly 9.0.1 Final
o Glassfish 4.1

Every possible combination between the client-side platforms and server-side was used during
the interoperability tests, thus resulting in a total of 6 combinations. Regarding the services,
we considered the following scenarios (the whole set of services and results is available at

https://goo.gl/8iGdXf).

Synthetic services: A set of 10 custom services, created to provide initial different
test cases to exercise the tool. The services range from simple cases (a single and simple
argument for service operation) to more complex cases (service operations accepting
complex parameters involving lists, maps, and custom complex objects with nested
complex objects).
Realistic services: A set of 10 web services specified by the TPC-App benchmark
[49]. The goal here is simply to demonstrate the application of WitWS to a realistic
scenario and further exercise the tool and disclose any possible bug in the tool.
Real services: Selected cases of 80 web services publicly available on the Internet. In
this case the goal is to, based on the authors results in [6], show that WitWS is based
to detect known web service framework bugs and at the same time does not signal
inexistent problems.
Faulty services: The most complex service of the synthetic services was selected to
be used with a fault injector. This fault injector applies three different types of faults
into the data being exchanged between client and server and vice-versa. Thus, it
emulates 10 different cases (5 problems detectable at the server-side plus 5 at the
client-side). The fault types are:

o 1) structure changing faults;

o 1ii) data type changing faults;

o iii) value mutation faults (which can be value replacement, value addition, or

value removal).

49

https://goo.gl/8iGdXf

WitW's - Web application for interoperability testing of web services

8.1. Results

Table 3 summarizes the results of the experimental evaluation, showing the results per service
set and per framework used. The results for each of the inter-operation levels (regarding each
combination service set / framework) are further detailed. Note that we do not show the
results per server-side framework, as they were found to be the same. In the table, » means
one or more warnings were found; e refers to one or more ervors being found; and a dash
indicates that the tests were not run for that level.

Metro JBossWS | Axis2
Sets I I IV VT IO IV VT |ITION]IV|V
Synthetic w | — | =
Realistic wo|— |-
Real w|e - | —|w]|e — |—|wle |e - |-
Faulty e e e |e w | = |-

Table 3. Results of the interoperability tests

As we can see in Table 1, WitWS was able to detect different problems in all steps of the inter-
operation process, with exception of the deployment step where we only uncovered warnings
(resulting from the execution of the WS-I tests). In fact, authors in [7] emphasize that the
deployment in current major platforms is quite robust, failing whenever the rules are not
fulfilled (e.g., a class not being provided, or a wrong structure in the deployment file), but if
the deployment complies with the basic rules it’s very difficult to find a fatal problem.
Obviously we also tried to deploy undeployable setrvices, which served to verify the
correctness of WitWS. Anyway, we did not manage to get an error in step 1, using a service
that complies with the deployment rules (e.g., having a java class annotated with @ WebService).

Regarding the synthetic set, no error was found, in any of the five inter-operation levels,
probably due to the small size of the experiments, but anyway the set was useful for verifying
WitWS basic functionalities. However, we did observe warnings using Axis2, related with the
absence of typed collections during the compilation process, for all services in this set.

The results regarding the realistic set were similar to the above. Clearly, we were expecting
detecting more problems in the Real services, as they include services built on many different
platforms, and also obviously in the Faulty services. In the case of the real services, we
selected cases from the set used by the authors in [6], for validating our tools results. 12.5%
of the services in this set were selected for being known to not generate any kind of problem
[6], which was confirmed by our tool. Of the remaining, we highlight one case resulting in an
error in Level 11 with JBossWS (which however did not fail with Metro or Axis2). We also
highlight 10 services failing with Metro and JBossWS but not failing with Axis2 in Level II. In
9 of these services a compilation problem was detected when using Axis2 in Level III. Also
present in this more heterogeneous set, were some WS-I warnings, which we used to fine-
tune WitWS warning detection capabilities. Obviously, when using the real services set we are
unable to reach steps 4 or 5 (marked with a dash in Table 1), as we do not have access to the
service code or infrastructure.

Finally, we used the faulty service jointly with a fault injector that emulates a framework
holding bugs. As we were not using a weakly statically typed programming language in these
experiments, we were not able to change the structure or object types, although we simulated
these two situations by changing the information travelling to the comparison server, which

50

WitW's - Web application for interoperability testing of web services

handled these cases properly. However, we managed to detect three kinds of problems in the
communication, even when the communication is slightly different due to the use of the
different frameworks. Thus, we were able disclose errors due to missing values, extra values
and modified values.

51

WitW's - Web application for interoperability testing of web services

Chapter 9
Application Limitations and Extensibility

As the development of the system progressed, its complexity also rose. In some cases, the
external libraries being used to facilitate the implementation of some tasks (e.g. populate
POJOs) started to trigger some bugs. In other cases, there wasn’t time to implement every
single desirable feature and compromises had to be made. In this section, a deeper look into
the limitations and extensibility of the system is provided, followed by a small guide on how
to lift some of those limitations and how to extend the current functionality of the system.

9.1. Limitations

The PODAM library [50] is used to populate the “non-primitive” classes (classes created by
the developer) with random data. However, it contains some limitations when going through
that process.

First of all, the classes submitted by the user must contain setters and getters in the
“conventional” format — we’re not calling it standard because there isn’t one. The naming
convention it looks for is:

e private String qwertyField;

Should have its getters and setters in the following format:
o cetQwertyField() / setQwertyField()

But:
e private String sQwerty;

Translates to:

o ogetsQwerty() / setsQwerty()

There is also the case with field names with only 1 character:
e private integer i;
Which, by following Java naming conventions, should have getters and setters like:

o getl() / setl();

If any of the files submitted contains field names in any other format, PODAM won’t be able
to populate the pojo, and so the system must verify each file against this compliance. The class
stc\main\java\com\dei\witws\misc\SettersAndGettersVerifier.java does just that.

PODAM is also unable to populate pojos if they contain a BigDecimal field type or a
LinkedHashMap. In the case of the former, it causes the JVM to run out of memory regardless
of how high the —Xmx parameter value was set when running the server. The latter triggers a
generic error. The application searches for these field types right after looking for the setters
and getters compliance by calling the searchForTypes() method in the
\stc\main\java\com\dei\witws\misc\NoSupport.java class.

52

WitW's - Web application for interoperability testing of web services

When the system compiles the classes, right before the serialization process, even though
we’re using Java 8 and compiling with the flag “-parameters” it was not possible to retain the
parameter names at run time, and so, when serializing, the method parameters are passed as
“arg0”, “argl”, “arg2”, etc. Doing it inside the IDE worked, but using the
javax.tools.JavaCompiler and calling the java compiler from inside the Java code, somehow,

didn’t.

The tools in the deployment servers also have a limitation. Since the system is communicating
through FTP with the deployment servers (and FTP is the only server available on those
machines), the cleanup method at the end of the testing process isn’t as efficient as it is in the
WitWorkers. When a test run finishes, the testing manager in the main server connects to the
deployment server used and deletes the contents from the remote application server’s auto-
deployment directory. This, effectively, undeploys the web service from the server, however,
after several deployments and undeployments, the application server might not behave as
expected and might start causing memory leaks. The solution would have been to drop the
FTP connection and logic all together and opt for RMI server in the deployment machines to
restart the application server manually.

Lastly, the “File upload” feature supports web services with any number of web methods but
only processes the first one it finds.

9.2. Extensibility
The extensibility of WitWS exists in the form of:

e Analyzing any number of web methods inside a web service;
e Adding more tests to the Testing Pipeline;

e Adding more WitWorkers servers that can support more client code generation tools
for the user to choose from;

e Adding more deployment servers;
e Adding more Velocity templates to deal with those new tools and deployment servers.
e Usage of the Comparison Server by other systems.

The following subsections explain how to do it.

9.2.1. Analyze any number of web methods

The system can only analyze the first web method it finds inside a web service. To lift this
limitation, the developer needs to follow the following steps:

e com/dei/witws/views/UploadView.java
o Ina for loop, pass all methods to the noSupport.searchForTypes() method.

e com.dei.witws.controllers.SerializationManager#createModifiedWebservice
o Search for non-standard getters and setters in all methods;

e com.dei.witws.controllers.SerializationManager#saveToTemplate
o Pass all info necessary from all fields to the method;

e templates/template_invoker_java.vm
o Modify the template accordingly;

e templates/template_webservice_java.vm
o Modify the template accordingly;

53

WitW's - Web application for interoperability testing of web services

9.3. Add more phases to the Testing Pipeline

Right now there are five different test phases in the Testing Pipeline, but it’s trivial to add
more.

Navigate to com.dei.witws.controllers.CertificationLevellnterface and create a new class
extending the CertificationLevellnterface which represents your new test phase and
implement the “process” method. Implement your own code and return a Messase type
variable with the following fields properly populated:

com.dei.witws.communication.Message#log
com.dei.witws.communication.Message#failedCondition
com.del.witws.communication.MessageH#warningCondition
com.dei.witws.communication.Message#status

(If status |= 200) com.dei.witws.communication.Message#debuglnfo

O O O O O

Afterwards, the developer just needs to go to the enum
com.dei.witws.controllers.PipelineManager.CertificationLevels and insert its new phase
anywhere in the process. E.g:

COMPLIANCE_CHECK (new Compliance()),
GENERATE_CODE(new Generate()),
COMPILE_CODE(new Compile()),
NEW_PHASE (new Qwerty());
CLIENT_TO_SERVER((new ClientToServer()),
SERVER_TO_CLIENT (new ServerToClient());

0O O O O O O

9.3.1. Add client code generation tools

WitWorkers and tools are connected in the database, as in they share the same table. For the
system to recognize a new WitWorker server, the developer needs to add all the relevant data
to the witws_tool table in the database located in the main server. However, for the system to
actually work with the server is a different issue.

The server must have a RMI server up and running. Keep in mind that adding a new tool to
a WitWorker server can demand a lot of work, even if it’s in Java. For example, Axis2’s
wsdl2java generates artifacts in a completely different way than wsconsume or wsimport. For
a new tool to work with the system, some details must be taken into consideration:

e Fail and warning conditions of the tool must be added to the client code generation
phase — if they aren’t already present.

e If the tool generates code with different dependencies, those must be added to the
classpath — otherwise the compilation step will fail.

If the developer is adding a new physical server to generate client code in a language other
than Java, looking at that new server as a black box (in which the dev is responsible for the
code, configuration and operations inside), there are only two additional points to keep in
mind:

e The main server communicates with it through RMI. Both ways.

e It must communicate with the Comparison server through tcp/sockets. The
compatison server also answers through tep/sockets.

54

WitW's - Web application for interoperability testing of web services

The first bullet point should be quite straightforward. Since the TestManager in the main
server just calls the methods in the RMI server and expects some text logs in return. The
second one must be implement in the same way as explained in 7.2 - Protocol used by the
Comparison server .

9.3.2. Add deployment servers

By adding a new deployment server to the pool, the developer needs to verify how the service
is actually deployed. Besides that, the system appends a string “Service” to the name of the
WAR file before sending it to the appropriate server for deployment.

Example:

The wuser uploads a SimpleWsdljava file. After all the processing, it creates a
SimpleWsdIService.war and sends it to the deployment server. If the user chose Wildfly as the
deployment server, the final URL to the webservice wsdl endpoint will be:

http://vouraddress.com/SimpleWsdlService/SimpleWsdlPwsdl

However, if the user chooses Glassfish, the URL is slightly different:

http://yvouraddress.com/SimpleWsdlService/SimpleWsdlServicerwsdl

If the developer wishes to add more servers to deploy the user’s web service, besides installing
the software and adding the appropriate info to the deployment_server database table, he
must also add the format of the final URL to the znitiateCertProcessEromClassUploaded method
in \sre\main\java\ com\ dei\ witws\ controllers\ PipelineManager.java.

9.3.3. Add Velocity templates

Velocity templates are the most important aspect of the extensibility of this application. Right
now, it only supports Java web services and Java client code generators, but new functionality

can be added.

To support client code generation tools which are not Java-based, the dev must also create
new templates and deal with the peculiarities of each implementation.
A new file under the /resources/templates folder must be created. Recommendation:

e template_invoker_xxxxx.vm — For the client code Invoker, where “xxxxxx” is the
programming language of the artifacts generated by the new client code generation
tool.

For web services in other languages:

e template_webservice_yyyy.vm .

In both cases, the developer must handle the peculiarities of each implementation.

55

http://youraddress.com/SimpleWsdlService/SimpleWsdl?wsdl
http://youraddress.com/SimpleWsdlService/SimpleWsdlService?wsdl

WitW's - Web application for interoperability testing of web services

9.3.4. Comparison server usage by other systems

As stated previously, the system does not have much flexibility when it comes to handling
web services written in other languages besides Java. It does not mean, however, that the
Comparison server can only accept information from Java code. The whole comparison
process and the communication from and to the comparison server was built with extensibility
being one of the major impacting factors. By following the protocol explained in section 7.2,
WitWorker and deployment servers written in another language can be easily added.

56

WitW's - Web application for interoperability testing of web services

Chapter 10
User Manual

In this section the features of the WitWS Certification Pipeline will be presented.

The first screen the user sees when access the application is the Login screen. Figure 32. In
here there are just two options. Entering credentials and logging in or signing up for a new
account.

[s § senvp

Figure 32. Login Screen

Figure 33 shows what the Registration screen looks like when the user presses “Sign Up” in
the previous screen.

Figure 33. Registration Screen

57

WitW's - Web application for interoperability testing of web services

When the user enters valid credentials, he is taken to the Dashboard screen — the main screen
of the application. Regardless of where he is located, the left menu bar is always displayed. His
name and profile icon is also displayed on the top left corner. The default menu option
selected when the user enter the application is the “WSDL Submission”, as we can see in
Figure 34

In this screen the user can submita WSDL URL for the system to process — there’s an example
of one right below the “path” field. Below it, the user can select a client code generator to
process the WSDL. A run name must also be provided because it will make the task of tracking
runs in the “Results” page much easier.

This feature does not support the full testing pipeline and there’s a warning label in the page
to indicate that.

WitWs Certification Pipeline

. & Path to online WSDL
Example WSDL: http://www.dataaccess.com/webservicesserver/numberconversion.wso?WSDL
WSDL Submission Choose a client code generator:

A Due to not having access to the source code, submitting a WSDL through this method will limit the amount of tests the
Certification pipeline can run.

Figure 34. Submit WSDL

58

WitW's - Web application for interoperability testing of web services

By clicking on the “File Upload” menu option, the user is taken to the view represented by
Figure 35. When clicked, the “Select files to upload”, opens a system dialog for the user to
select a web service source file along with its dependencies to upload to the application. A
notification will be shown for each file uploaded. Similarly to the “WSDIL Submission”
feature, there’s also an option to select a client code generator and a run name must also be

provided.

Besides being able to upload files, this feature is different from the one before because there’s
a drop down menu for the user to select an application server to deploy the source code to.

WitWs Certification Pipeline

o2 File upload

Select files to upload

Choose a client code generator:

wsimport (Java) 2.3.2 on Windows

Please select a deployment server:

WildFly 2.3 (Java) on Windows

Start testing

Figure 35. File upload view

59

WitW's - Web application for interoperability testing of web services

Clicking the “Results” menu option on the left, takes the user to the Results page, where all
his test runs are displayed - Figure 36.

Test runs in this page are displayed in an “accordion panel” style. Each panel, when collapsed,
displays the name of the run followed by the timestamp of its initiation. It’s only when the
user expands that that the result of each certification level is displayed.

The test runs are displayed in descending time order with the most recent run “accordion
panel” opened. For a quick and easy overview, each Certification Level can be displayed in
three different color (with matching icons): green (which means that the analyzed level
completed without any kind of warning or errors), yellow (if the system identified a warning,
but not critical, condition during the phase) or red (if an error — a condition which does not
allow us to continue any further — was found).

Alongside each certification level there is a “Show log” button.

WitWs Certification Pipeline

[tpcapp6 axis2] on [2016-01-26 01:49:07.458]

. [tpcapp6 axis2 after comp fix] on [2016-01-26 01:24:16.753]

[tpcappé axis2 after xlint] on [2016-01-26 01:19:28.583]
[tpcapp6 axis2] on [2016-01-26 01:15:09.132]

[tpcapp6 wsconsume] on [2016-01-26 01:14:25.408]

AU | v Certification level 1 l Show log
Results
About I « Certification level 2 l Show log
| + Certification level 3 l Show log
| + Certification level 4 l Show log

I « Certification level 5 l Show log

[tpcapps wsimport] on [2016-01-26 01:13:07.781]

[tpcapp5 wsimport] on [2016-01-25 23:17:08.417]
[tpcapp5 wsimport] on [2016-01-25 13:28:56.363]
[tpcapp5 wsimport] on [2016-01-25 13:26:46.496]
[tpcapp4 axis2] on [2016-01-25 13:23:20.451]
[tpcapp4 wsconsume] on [2016-01-25 13:22:43.425]
[tpcapp4 wsimport] on [2016-01-25 13:19:09.868]
[tpcapp3 axis2 take 6] on [2016-01-25 01:54:34.361]
[tpcapp3 axis2 take 5] on [2016-01-25 01:50:51.22]
[tpcapp3 axis2 take 4] on [2016-01-25 01:19:36.9]
[tpcapp3 axis take 3] on [2016-01-25 01:12:12.277]

[tpcapp3 axis2] on [2016-01-25 01:08:40.534]

Frmrmimn3 s amr imaal A FIATE A1 IS AR-AMLEA 4071

Figure 36. Results' view

60

WitW's - Web application for interoperability testing of web services

When the user clicks the “Show log” button, a scrollable and expandable “modal” popup
appear containing the corresponding resulting log of that phase. It can be closed by clicking
on the “X” button on the top left corner or by pressing “ESC” on the keyboard. Figure 37
shows the modal.

[:::STRUCTURE:::]
SUCCESS!

Client and Webservice got the same structure.

[:::TYPES:::]
SUCCESS!
Client and Webservice got the same types.

[:::VALUES: ::]
SUCCESS!

Client and Webservice got the same values.

Please check the log below:

Figure 37. Certification level's log detail

61

WitW's - Web application for interoperability testing of web services

If the user clicks on the “+” button on the left of the “X” on the on the modal screen, the
modal expands and takes up the whole screen state, allowing for a much easier log analysis.
Figure 38 is an example of that feature.

T
o

Il

[:::TYPES:::]
SUCCESS!

Client and Webservice got the same types. m

[:::VALUES:::]
SUCCESS!

Client and Webservice got the same values

Please check the log below:

@:argd|java.lang.String|QTRRTWrACtuxCtMibQPN
1:argl|java.lang.String|ks1jMhRtQYFolIROLPbd
2:argl8|java.lang.String|ruKavIrBOICKxfPgOvAV
3:argll|java.lang.String|ksSjNdxxvCmYnNWVvBrl
4:argl2|java.lang.String|UidsNnTeqUbncUWiKEX]
S:argl3|java.lang.String|ojZ0GbKhScbIzapPYGTs
6:argld|java.lang.String|BGhKhPTMrCTkFgkG1GQo
7:argl5|java.lang.String|sVj1PEbmZSozqqTASHyY
8:arg2|java.lang.String| IPFWeQdLFqWYdesDFeFE
9:arg3|java.lang.String|ZfYHiAXRKLsuIrObUXiM
1@:arg4|java.lang.String|KxUbdUPumOvoGaDZBDTY
11:arg5|java.lang.String|kzGHIzEydRdfGWZdKbck
12:arg6|java.lang.String |WBgiRDtjnBseYuIUKUTE
13:arg7|java.lang.String|hOArWMdYEV1BtNdzvrer
14:arg8|java.lang.Long|5932490815363344255
15:arg9|java.lang.String|JLirjUBFNIWCZbVqTUHT

=y

rargd|java.lang.String |QTRRTWrACtuxCtMibQPN
argl|java.lang.String|ks1jMhRtQYFoJIROLPbd
argl@|java.lang.String|rukavIrBOTCKxfPgOvAV
argll|java.lang.String|ksSjNdxxvCmYnNWVvBrl
argl2|java.lang.String|UidsNnTeqUbncUWiKEX]

arol13liava lang Strinclni7n0GhKhSrhT7anPYGfc

Figure 38. Certification level's log detail maxinized

B]

62

WitW's - Web application for interoperability testing of web services

Last, but not least, the last menu item is the “About” - Figure 39, which takes the user to the
About page. It contains two sections:

e About the application: details about the application itself, how to use it and what the
system is doing on the background.
e About the authors: information about the developers and contributors of the

application.

WitWs Certification Pipeline

© About the application

when it comes to its

The WitWS Certification Pipeline allov

nteroperability.
You can either submit an already online deployed WSDL or you can upload the source files of th DL and its dependecies.
Please note that if you choose the former method, due to platform limitations, we can only run a certain amount of tests (up to

hile the latter methed can

you to have a higher confidence level on your websery

ore details belov

through the full range of our tests.

ane of the tools selected by the user to try

+ Certification Level 2: U generate client code based on the WSDL
submitted.

» Certification Level 3:Compiles the artifacts generated by the tool on the previous s

+ Certification Level 4: Creat ass based on the artifacts created on sl nd 4 h calls the client code

thods and parameters. Afterwards it sends those values to a ce whi

passing random
compare them with the or y the webservice,

Certification Level 5: If the values, types and structure of the flelds/parameters are sufficiently alike, then the w
creates an answer back to the Invoker of the client code and sends it to the comparison service. The Invoke
ch will compare them and end the run.

generated

service
then send

e values to the same

Note: This application is called a "pipeline” because none of the Certification Levels run without the previous one ending
successfully (except the first one).

4% About the authors

vas developed by Bruno Miguel Filipe Martins
nce Engineering of t nt of Comput:
ivs tarted on Februa
) developed in a laboratory located in the Department of Computer Sciences, with the close
guldanc Carlos Nuno Bizarro e Silva Laranjelro, PhD.

The project team consisted solely by the author and the invaluable feedback and advice of Professor Nuno.

Figure 39. About view

As a bonus, the application is responsive, so it adapts to several screen sizes, as we can see in
Figure 40 and Figure 41.

63

WitW's - Web application for interoperability testing of web services

& Path to online WSDL

Path..

Example WSDL:
htir

dataaccess.com/m OnVersion.w:

Choose a client code generator:
®) wsimport (Java) 2.3.2 on Windows
wsconsume (Java) 4.8 on Windows

wsdl2java (Java) 1.6.4 on Windows

Insert run name

Start te

A\ Due to not having access to the source code, submitting a WSDL
through this method will limit the amount of tests the Certification
pipeline can run.

Figure 40. Submit WSDL. - smaller screen size

[sdfsdfsdfssf] on [2016-01-09 03:00:13.299]

I + Certification level 1 I
I + Certification level 2 I
I + Certification level 3 I
I v Certification level 4 I
I + Certification level 5 I

[and now with wildfly] on [2016-01-09 02:59:44.935]

[after some fixes glassfish] on [2016-01-09 02:55:29.524]
[ssssddssdsdsdsd] on [2016-01-09 02:38:34.405]
[dfdsfsdsdf] on [2016-01-09 02:05:03.44]

[..ghdfh] on [2016-01-09 02:00:30.521]

[sdfsfssdf] on [2016-01-09 01:58:33.867]

[new run with glashfish] on [2016-01-09 01:54:42.103]
[sdfsdfsdsfd] on [2016-01-09 01:48:44,238]
[glasshfish] on [2016-01-09 01:41:02.141]

[is this it...] on [2016-01-08 19:58:52.499]
[wwewrwrer] on [2016-01-08 19:48:01.747]
[sdfdsfssdsdf] on [2016-01-08 19:43:52.774]
[sfiljghdfgfdg] on [2016-01-08 19:17:48.016]
[prtioroit] on [2016-01-08 18:44:34.664]

[dsfgsdfs] on [2016-01-08 18:42:54.266] .

Figure 41. Results" view - smaller screen size

64

WitW's - Web application for interoperability testing of web services

Chapter 11
Conclusion

In this thesis, WitWS, a web-based testing tool that allows testing a web service against
multiple client platforms, was presented. The tool can be used without the presence of the
code of the service being tested (i.e., it only requires a WSDL file to perform tests), although
it can perform extended communication tests if the service source code (i.e., the service
interface code) is provided. WitWS was used to test 4 sets of services deployed on very popular
implementations of the web services stack — Metro, the JAX-WS reference implementation
on Glassfish, and JBossWS on the WildFly server. Tests were run against the client-side
implementation of Metro, JBossWS, and also against Axis2. The problems disclosed during
the experiments, including problems introduced by our custom fault injector, served to
illustrated the utility of our testing service and its problem detection capabilities. Without this
type of testing, many of these problems usually pass unaware to developers, only to be found
at runtime, when a particular client interacts with the service.

A research paper was also submitted to the International Symposium on Software Testing and
Analysis conference, which takes place in Saarland University, Saarbriicken, Germany, in July
18-20, 2016

Experience acquired

The implementation required a solid knowledge about programming an application for the
web and the ability to use, configure and manage several different tools, frameworks and
libraries. The author never had contact with any of them until the start of the thesis.

Vaadin, Spring, PODAM and Velocity were, without a doubt, the most challenging ones, with
Vaadin and Velocity having a really steep learning curve.

The author also had very little experience with web services until now, so this was an excellent
opportunity to learn more about the field and its quirks.

Future Work

The modularity of the system allows to extend its functionality, so most of the tasks related
to the future work were already discussed in section Chapter 9
Application Limitations and Extensibility.
Besides that, the following bullet points represent some of the possible future tasks:
e When uploading source code or submitting a WSDL, the user could have the option
to select the method he wants to test;
e Have the system work with other protocols beyond SOAP.
e It would be very useful to add an “Export results” option to each test run.
Unfortunately, there was no time to implement that feature;
e An option to delete runs could be added;
e A “Remember Me” option on the login screen would be interesting to have. That
way the user wouldn’t need to login every time his session times out.
e The “File upload” view could use a facelift. The interface looks a bit empty.

65

WitW's - Web application for interoperability testing of web services

References

1]

[14]

[15]

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, “Unraveling
the Web services web: an introduction to SOAP, WSDL, and UDDI,” IEEE Infernet
Comput., vol. 6, no. 2, pp. 86—93, Mar. 2002.

E. Hewitt, Java SOA Cookbook. O’Reilly Media, Inc., 2009.

“Web Services Interoperability ~Organization (WS-I).” [Online]. Available:
http://www.ws-i.org/. [Accessed: 26-Mar-2015].

Web Services Interoperabily Organization (WS-I), “Deliverables - Basic Profile Working
Group,” 2014. [Online]. Available: http:/ /www.ws-
i.otg/deliverables/workinggroup.aspxrwg=basicprofile. [Accessed: 13-Jan-2014].

I. A. Elia, N. Laranjeiro, and M. Vieira, “Test-based Interoperability Certification for
Web Setvices,” in The 45th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2015), Rio de Janeiro, Brazil, 2015.

I. A. Elia, N. Laranjeiro, and M. Vieira, “A Field Perspective on the Interoperability of
Web Services,” in 11#h IEEE International Conference on Services Computing (SCC 2014),
Anchorage, Alaska, USA, 2014.

I. A. Elia, N. Laranjeiro, and M. Vieira, “Understanding Interoperability Issues of Web
Service Frameworks,” in The 44th Annual IEEE [IFIP International Conference on Dependable
Systems and Networks (DSN 2014), Atlanta, Georgia, USA, 2014.

“CORE Conference Portal.” [Online]. Available: http://portal.core.edu.au/conf-
ranks/. [Accessed: 29-Jan-2016].

B. Martins, N. Laranjeiro, and M. Vieira, “INTENSE: INteroperability TEstiNg as a
SErvice,” in The International Symposium on Software Testing and Analysis, Saarbricken,
Germany, July 18-20, 2016.

E. Cerami, Web Services Essentials: Distributed Applications with XMI-RPC, SOAP, UDDI
& WSDL. O’Reilly Media, Inc., 2002.

“SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).” [Online].
Available: http://www.w3.0tg/TR/soap12/. [Accessed: 27-Mar-2015].

“Enterprise Java Contract-First vs. Contract-Last Web Services.” [Online]. Available:
http://www.developer.com/design/article.php/3745701/Enterprise-Java-Contract-
First-vs-Contract-Last-Web-Services.htm. [Accessed: 27-Mar-2015].

C. Ferris, A. Karmarkar, P. Yendluri, K. Ballinger, D. Ehnebuske, M. Gudgin, C. Liu,
and M. Nottingham, “WS-I Basic Profile - Version 1.2,” 24-Oct-2007. [Online].
Available: http://www.ws-1.otrg/Profiles/BasicProfile-1_2(WGAD).html. [Accessed:
14-Feb-2008].

“Basic Profile - Version 1.1 (Final).” [Online]. Available: http://www.ws-
i.otg/profiles/basicprofile-1.1.html. [Accessed: 27-Matr-2015].

“Deliverables - Basic Profile.” [Online]. Available: http://www.ws-
i.otg/deliverables/workinggroup.aspx?wg=basicprofile. [Accessed: 27-Mar-2015].

66

[16]

[19]

[20]

[24]

25]

[26]

27]

WitW's - Web application for interoperability testing of web services

S. Liu, T. Maibaum, and K. Araki, Formal Methods and Software Engineering: 10th International
Conference on Formal Engineering Methods ICEEM 2008, Kitakyushu-City, Japan, October 27-31,
2008, Proceedings. Springer Science & Business Media, 2008.

“SoapUI - The Home of Functional Testing.” [Online]. Available:
http://www.soapui.org/. [Accessed: 26-Mar-2015].

“Jolt Awards 2014: The Best Testing Tools,” Dr. Dobb’s. [Online]. Available:
http://www.drdobbs.com/testing/jolt-awards-2014-the-best-testing-tools /240168372.
[Accessed: 29-Mar-2015].

“SYS-CON SOA World Reader’s Choice Award.” [Online]. Available: http://soa.sys-
con.com/node/397933. [Accessed: 29-Mar-2015].

“ATI Automation Awards: Best Open Source Performance Automated Test Tool.”
[Online]. Available: http://smartbear.com/news/news-releases/smartbear-collects-5-
ati-automation-awards-at-test/. [Accessed: 29-Mar-2015].

“Working with WSDLs | SOAP and WSDL.” [Online]. Available:
http:/ /www.soapui.org/soap-and-wsdl/working-with-wsdls.html#2-Validating-the-
WSDL-against-the-WS-I-Basic-Profile. [Accessed: 29-Mar-2015].

“SOAPSonar - SOA Service Testing and Diagnostics.” [Online]. Available:
http:/ /www.crosschecknet.com/products/soapsonat.php. [Accessed: 26-Mat-2015].

“Weblnject - (HTTP) Web Application and Web Services Test Tool.” [Online].
Available: http://www.webinject.org/. [Accessed: 27-Mar-2015].

“Apache JMeter - Apache JMeter™.” [Online]. Available: http://jmeter.apache.org/.
[Accessed: 27-Mar-2015].

“Storm,” CodePlex. [Online]. Available:
https://storm.codeplex.com/Wikipage?ProjectName=storm. [Accessed: 27-Mar-2015].

“wizdl - Web Service GUI Test Tool,” CodePlex. [Online]. Available:
http:/ /wizdl.codeplex.com/Wikipage?ProjectName=wizdl. [Accessed: 27-Mat-2015].

W. T. Tsai, R. Paul, W. Song, and Z. Cao, “Coyote: An XML-Based Framework for Web
Services Testing,” in Ninth IEEE International Symposium on High-Assurance Systems
Engineering (HASE05), Los Alamitos, CA, USA, 2002, vol. 0, p. 173.

Y. Bassil, “Distributed, Cross-Platform, and Regression Testing Architecture for
Service-Oriented Architecture,” . ArXiv12035403 Cs, Mar. 2012,

K. Wiegers and J. Beatty, Software Requirements. Pearson Education, 2013.

R. C. Martin, Agile Software Development: Principles, Patterns, and Practices. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2003.

K. Schwaber, “SCRUM Development Process,” in Business Object Design and
Implementation, D. J. Sutherland, C. Casanave, J. Miller, D. P. Patel, and G. Hollowell,
Eds. Springer London, 1997, pp. 117-134.

“Intro to Agile - Agile For All.” [Online]. Available: http://www.agileforall.com/intro-
to-agile/. [Accessed: 20-Jan-2010].

67

[48]

[49]

WitW's - Web application for interoperability testing of web services

I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley Publishing Company,
2010.

“Jolt Awards: Coding Tools,” Dr. Dobb’s. [Online]. Available:
http://www.drdobbs.com/joltawatrds/jolt-awards-coding-tools /240165725. [Accessed:
12-Apr-2015].

“Undertow * JBoss Community.” [Online]. Available: http://undertow.io/. [Accessed:
24-May-2015].

“Maven.” [Online]. Available: https://maven.apache.org/. [Accessed: 05-Apr-2015].

“GitLab.” [Online]. Available: https://git.dei.uc.pt/users/sign_in. [Accessed: 05-Jul-
2015].

“Java Web Frameworks Comparison | zeroturnaround.com - Part 11, ZeroTurnaround.
[Online]. Available: http://zeroturnaround.com/rebellabs/ the-curious-coders-java-
web-frameworks-comparison-spring-mvc-grails-vaadin-gwt-wicket-play-struts-and-
jsf/11/. [Accessed: 15-Apr-2015].

“Technology Radar Digital Edition | ThoughtWorks.” [Online]. Available:
http://www.thoughtworks.com/radar/languages-and-frameworks. [Accessed: 15-Apt-
2015].

“Raible Designs | Presentations.” [Online]. Available:
http://raibledesigns.com/rd/page/publications. [Accessed: 15-Apr-2015].

“DevRates | Web Frameworks.” [Online]. Available:
http://devrates.com/project/list?query=%5Bweb+framework%5D. [Accessed: 15-
Apr-2015].

“WWW: World Wide Wait - Devoxx Edition,” prezicom. [Online]. Available:
https://prezi.com/dr3onlqcajzw/www-world-wide-wait-devoxx-edition/. [Accessed:
20-Apr-2015].

“Devoxx,” Wikipedia, the free encyclopedia. 13-Apr-2015.

“AppFuse - Dev - Creating a new archetype.” [Online]. Available:
http://appfuse.547863.n4.nabble.com/Creating-a-new-archetype-td4656359.html.
[Accessed: 16-Apr-2015].

mraible, “mraible/appfuse-loc.md,” GitHub Gists. [Online]. Available:
https://gist.github.com/mraible/5033218. [Accessed: 15-Apr-2015].

“owt-best-practices-soup.” [Online]. Available: https://code.google.com/p/gwt-best-
practices-soup/. [Accessed: 17-Apr-2015].

R. Limmel and S. P. Jones, “Scrap Your Boilerplate: A Practical Design Pattern for
Generic Programming,” in Proceedings of the 2003 ACM SIGPLAN International Workshop
on Types in Languages Design and Implementation, New York, NY, USA, 2003, pp. 26-37.

“Advanced Java Class Tutorial: A Guide to Class Reloading,” Toptal Engineering Blog.
[Online]. Available: http://www.toptal.com/java/java-wizardry-101-a-guide-to-java-
class-reloading. [Accessed: 29-Jan-2016].

“TPC-App - Homepage.” [Online]. Available: http://www.tpc.otg/tpc_app/.
[Accessed: 26-Jan-2010].

68

WitW's - Web application for interoperability testing of web services

[50] “PODAM (POjo DAta Mocker).” [Online]. Available:
http://mtedone.github.io/podam/. [Accessed: 28-Jan-2010].

[51] “Utilities for streaming data over RML” [Online]. Available:
http://openhms.sourceforge.net/rmiio/. [Accessed: 17-Jan-2016].

[52] “WitWS Git Repository | GitLab.” [Online]. Available:
https://git.dei.uc.pt/bmfm/witws. [Accessed: 28-Jan-2016].

[53] E. Jendrock, R. Cervera-Navarro, 1. Evan, K. Haase, and W. Markito, “Java EE
Tutorial.” Sep-2014.

69

WitW's - Web application for interoperability testing of web services

Annexes

70

Al. Class diagrams

In this section the class diagrams of the application will be presented, divided by package.

WitW's - Web application for interoperability testing of web services

Al.1. Communication package

& Message

€ InfoForinvoker

@ Message{long, String, String)

@ Message(long)

@ tostring() String
{8 packageMame String
i@ serverlP String
{8 nameOfClass String
{8 language String
i testD long
{8 toolName String
{8 nameOfMethod String
{8 parameterNames List<String>

m toString()

String

18 infoForlnvoker
i# log
{8 debuginfo

)

deploymentServer
#8 language

origin

testiD

command

®
®

®

{8 failedCondition
i wsdl

i status

{8 map

P id

48 warningCondition
{8 platform

P username

i® tool

A1.2. Comparison package

C ' ComparisonSupport

b javaAndjava
b javaAndC

InfoForlnvoker
String

String
DeploymentServer
String

String

long

List<String>

String

String

int

Map+Object, Objects
long

String

String

String

Tool

LinkedHashMap«<5tring, String=
LinkedHashMap«<5tring, String=

b javaAndPython
s CAndPython

LinkedHashMap«<5tring, String=
LinkedHashMap«<5tring, String=

m ComparisonSupport()

m isSimilarEnoughTypes(String, String, String, String) boolean
A
xcre‘me»

|

[}
e ComparisonServer
m ComparisonServer(int)
g0 main(String[]) void
g getPhasellvl() int
gn setPhasellvi(int) void
g getPhase3lvl() int
g0 setPhase3lvi(int) void
gn getPhase() int
gn setPhase(int) void
47 getThisRunlD() int
gn setThisRunlD{int) void
m runf) void

m compareValues(List<String=, List<5tring>, LinkedHashMap<5tring, Integer>)
m compareTypes(List<String=, List<5tring>, LinkedHashMap<5tring, Integer>, S
m compareStructure(List<String>, List<String>, LinkedHashMap«5tring, Integer

71

WitW's - Web application for interoperability testing of web services

A1.3. Controllers package
For a better look the this diagram, please go to: https://goo.gl/rVX0ss

£ FTROpention:
W g
8 FIPOpmationslSving, i, Sting Sting)

stttk oDeploymentible Songl vod

TS p—
LY
5 Wabsarvicl wametan St i, i, Cbjec)

& w

e srmeta i, S, i, S, Cjct)

. comnectandloging vod
el - lesoutindUiscomnect) vod
oo . @ ot NbmobdelF S vord
o e P ;‘:
8 etContentyoe e —
o v
e o
© Fisttanager
W TESTI0_FELD_NAME Song
0 st Lo pame arng
t 13 ong
 FIP_ADDRESS Seeng
) FTP ADDRESS WINDOWS. Swing
v Fie
Cpree——— amng
Ep—————— o
e — vad o
@ compiefiSnieg) -
Fropeies :::::"'!:";"' - e ——,
NA—— s & totmirberter i o
A — o ey Viomen L ..
" e REEEEE @ ot P e).
= geariagetiSumgPathGurg) Sung e | s -
 gePaciageFRtiecionpsmatandiing sung Pl ! Lo -
sung i | L
vod | |
vod | |
vod | |
tookean { |
D] i | |
S it | |
B et bndmeSesintSiing,Seiog) v | |
P ———— wa | |

& ChentTotene
® Mg @ Mg @ Message -

® ceneadpasnessenie

 get0rignatieheniceim
 serabsatiorautinesgon,

| ‘n
[p—
COMPUANCE CHECK
GENRATE CO0R
cowpus cane
cumn 1o s
s 10, cUT

@pncmpteropy wenane|
r—— Papee—
30 TESTD_AELD pamE Sng B wtWorkmietaracs Wilicdkarirhetace
50 SERVER_ADORESS,FIELD NAME Sng
b g
» g
» i
» i
» g
» fm——
» lesirng>
® isetiings
LS
Teabag e, Chject»
B concacthntsendToComputscaSarva{ot, g S Wop<ipc, Gopcs, o, i) =
19 sesongo, g S, Wap by, CHjct, i, g s
P——————— s
T —— s
 gehapualesinng Mapc e, Ohects] s
1 sanProcesFramiesenceFeil), Onec i, Sing) s
® websenicefespuege o) Otject, Otject int, String) e
e Sng
i por I
Al.4. Event package
DashboardEvent
k UserLoginRequestedEvent
‘m UserLoginRequestedEvent(String, String)
& UserLoggedOutEvent
LB password String
(P userName String

'c DashboardEventBus

@0 post{Object) void

g0 register(Object) void

Q!',‘ handleException(Throwable, 5

72

https://goo.gl/rVX0ss

WitW's - Web application for interoperability testing of web services

A1l.5 Loader package

&) AggressiveClassLoader
1) loadedClasses Set<String>
1) unavaiClasses Set<String>
©p 12 o Fl
toFilePath(Strin Strin
@ efd) void meAB) T b (String) 9
S Py - ™ loadClass(String) Class<?>
|
i ! ! m load(String) Class<?»
| «crelste i) loadClass(byte[], String) Class<?>
| | «Creates
! [A— : i
| I | | |
! | | i 1
! | | i
! ! ! ! © DynamicClassLoader
i
=creates < FsGenerated 1 loaders LinkedList<F1<String, byte[]>>
|
| & pi(PO) Pi<A» @ DynamicClassLoader(String...)
|
| G fIP1<A>, R Fl<AR» ™ DynamicClassLoader(Collection<File>)
i 40 f2(P2<A, B> R)2<A, B, R> g loader(File) Fi<String, byte[]>
| &0 dirLoader(File) F1<String, byte[]>
i
|
|
-
]
!
O Fs
40 runnable(P0) Runnable
0 store(Collection<A>) Pl<A>
0 setter{AtomicReference<A>) Pl<A>
@ invokeAll{Collection<P1<A>>, A) void
< 10Ul € Cols < FileUtil
40 readData(InputStrezm) bytel] 40 isEmpty(Collection<?>) boolean & readFileToBytes(File) bytel]
0 readDataNice(lnputStream) bytel] @ isMotEmpty(Collection<7>) boolean {0 filelnputStream(File) FilelnputStream
0 close(Closeable) void @ getSingle(Collection<A>) A o filelnputStream(String) FilelnputStream
@ close(Connection) void 0 createlist(int, FO<A>) List<A>) eachFile(File, P2<File, String>) void
40 close(ResultSet) void &0 join(lterable<A>, String) String &0 eachFile(File, P2<File, String=, F1<File, Boolean>) |
& close(PreparedStatement) void &0 yield(List<A», F1<A4, T») List<T> {0 eachFile(File, F2<File, String, Boolean>, F1<File, Boc
0 toString(InputStream, String) String i yield(lterable<A>, C, F1<A, T>) c
@ inputStreamToString_foree(InputStream, String) String n map(Object...) Map<A, B>
0 inputStreamToString(InputStream, String) String
40 toString(Reader) String
40 connect(InputStream, OutputStrezm) long
1 p2) po 1 FO
@ e(A,B) void me) void mey T

73

A1l.6. Misc package

WitW's - Web application for interoperability testing of web services

€' RandomiGenerator

50 MAXIMUM int
S0 MINIMUN int
£ STRING_LENGHT int
&0 PRECISION int
m generateRandomString () String
m generateRandomint() int
m generateRandomDouble() double
m generateRandomFloat() float
m generateRandomBoolean() Boolean
m generateRandomByte() byte[]
m generateRandombLeng() long
m generateRandomBigDecimal(BigDecimal
m generateRandomGregorianCalendar() XMLGregorianCalendar
m generateRandomShort() short
m generateRandomValue(String) Object
m getSimpleTypeMName(String) String

m getRandomReturnType(String)

|
xCI'elﬁTe»

TreeMap<Object, Object>
A
|
rereatey
)
]

C SettersAndGettersVerifier

C' NoSupport) classTolnspect String
;f nonSupported Types Arraylist<5tring> I methodTolnspect Method
B fileManager FileManager I fileManager FileManager
m NeSupport() m SettersAndGettersVerifier(String, Method)
m searchForTypes(Method) boolean m searchForMonStandard GettersAndSetters() n
m searchFields(Class<T>) boolean
C URLRetry C Executer
m connectToURL(String) boolean ;f executorService ExecutorService
xcre:@t_e‘x
&' RetryOnExceptionStrategy
;f DEFAULT_RETRIES int
;f DEFAULT_ WAIT_TIME_IM_MILLI leng
m RetryOnExceptionStrategy()
m RetryOnExceptionStrategy(int, long)
m shouldRetry() boolean
m errorQccured() wiid
(P timeToWait leng

74

C) Platform

40 PLATFORM

String

Al1.7. Models package

WitW's - Web application for interoperability testing of web services

€ DeploymentServer
m DeploymentServer()
m toString() String
sP name String
(B version String
(B ftpUser String
P language String
(B ftpPass String
P os String
B port String
P ftpPort int
[P address String
P serverlD int
2P path String
I ToolRepository

Run m findAllByOrderBy ToolIDAsc() Tool[]

Run m findByToollD(int) Tool

Run

Run

Run(]

Long

Run[]

I DeploymentServerRepository

€ User
m User(long) B 1.
og
) User(String, String, String) ® Logiint, Sring Sting)
@ taString() String Log0 g
™ Log
m addRun{Run) void to5ting0 P
0String ring
@ clearSet{) void
a2 - #F content String
4P name rin
J P logState String
1B password String R
B run un
1P email String "
P certlvl int
[P runs Set<Run> A
B userlD long * 1
1 1
1 * 1 1
€ Run
m Runilong)
@ Run(Date, String, int)
i toString() String
m addLog(Log) void
m clearSet{) void
i name String
#P debug String
B timestamp Date
B logs Set<Log>
B certivl int
3P runlD long
P status String
3P user User
€l Tool I RunRepository
™ Tool(int) i findByTimestampAndUser(Date, User)
m toString() String m findTopByUserOrderByRunIDDesc(User)
® toollD int i findFirstByUser(User)
(P name String m findTopByOrderByUserDesc(User)
(B version String m findAllByUser{User)
(P language String m deleteByRuniD(Long)
B status Boolean m findAllByUserOrderByRunlDDesc(User)
P os String
(B workingFolder String
[P sockethddress String
() port String
[P address String
I UserRepository 1 LogRepository
) findByName(String) User) findAllByRun(Run) Log[]
m findByEmail(String) User m findAllByRunOrderByCertlvlAsc(F

75

WitW's - Web application for interoperability testing of web services

A1.8. UI package

C DashboardUl

&l userRepository UserRepository
&l runRepository RunRepository
b logRepository LogRepository
b toolRepository ToolRepository
b deploymentServerRepository DeploymentServerRepository

m DashboardUl(UserRepository, ToolRepository, RunRepository, Logh

g getDashboardEventbus() DashboardEventBus
m userLoginRequested(UserLoginRequestedEvent) void
m userLoggedOQut(UserLoggedOutEvent) void
< WitMenulayout

) menuhrea Csslayout

m WitMenuLayout()

g

addMenu{Compenent) void

o

contentContainer mponentContainer

A1.9. Views package

© RegisterView € DashboardView
T repo UserRepository) root WitMenuLayout
m RegisterView(UserRepositary) T viewDisplay ComponentContainer
'T‘ i T menu CssLayout
«crel:ate» «cre:ete») menultemsLayout CssLayout
' ¥) DashboardView()
© LoginView m buildMenu() Csslayout
) repo UserRepository
m LoginView(UserRepository)
£ AboutView C UploadView
S0 VIEW_NAME String S0 VIEW_NAME String
m AboutView() T fileNamesArray List« String>
m panelContent() Component m UpleadView()
m panelContentAuthors() Component m startProcess(List<5tring=, Run, Tool, De
m enter(ViewChangeEvent) wvoid m enter(ViewChangeEvent) void
< ResultsView < SubmitView
S0 VIEW_NAME String S0 VIEW_NAME String
m ResultsView() m SubmitView()
m buildAccordion{Run[]) Accordion m enter(ViewChangeEvent] woid

m enter(ViewChangeEvent) wvoid

76

WitW's - Web application for interoperability testing of web services

A1.10. Witworker package

1 WitWorkerinterface
m generateClientCode(Message) Message
m compileClientCode(Message) Message
m complianceCheck(Message) Message
m clientToServer(Message) Message
m serverToClient{Message) Message
m cleanEverything() void
A
|
i
" WitWorkerServer
;f fs String
$f) RMI_SERVER_PORT String
1) DEFAULT_RMI_SERVER_WINDOWS String
$f) ANSWER_FROM_COMPARISON_SERVER_PORT int
£ CLASSPATH String
$6) CLASSPATH_WINDOWS String
£f) ARTIFACT_FOLDER_LOCATION String
o pairlFromClientCode List=5tring>
b pairlFromWebservice List«String>
s pairZFromWebservice List«5tring»
b pair2FromClientCode List<String=
b languageClient String
o languageWebservice String
b IReachedStructurePair2 int
sl WIReachedTypePair2 int
&b vIReachedValuePair2 int
s COMPLIAMCE_CHECK_OUTPUT_DIR String
T serverSocket ServerSocket
m WitWorkerServer()
4 main(5tring[]) void
m complianceCheck(Message) Message
m clientToServer(Message) Message
m serverToClient(Message) Message
m generateClientCode{Message) Message
m compileClientCode(Message) Message
m buildLog(List<5tring>, List<5tring>, int, int, int, int, String, String) String
m cleanEverything() void

77

WitW's - Web application for interoperability testing of web services

A1.11. Overview
For a better look at the overview diagram, please go to: https://goo.gl/ByvZp3E

5 Usellogintequenedtvent | © Useepesitory |
a /

T

© B ‘ & | @ i © Resultstiew &) Aboutiiew € Platform @s.sm.l & FileUil
w
s
T —

78

https://goo.gl/ByZp3E
https://goo.gl/ByZp3E

WitW's - Web application for interoperability testing of web services

B1. Sequence diagrams

Relevant sequence diagrams are displayed here.

B1.1. Process initiated by uploading files

The original version of this diagram can be found here: https://goo.gl/OYAU2b

T T TF

79

https://goo.gl/OYAU2b

WitW's - Web application for interoperability testing of web services

B1.2. Process initiated by submitting a WSDL

The original version of this diagram can be found here: https://goo.gl/c9f20r

| PipelineManager | | | ‘ u | | I | CertificationLevels | | Cenﬂmatmnlevelmtelface| Run | (Log | Wﬁkaermterfac% ‘ FTPOperstions

1.1:=<create>>

1.2, fincByName

_______ -

1.2.2:finf TopByUserOrflerByRuniDDesc

1.2 3values

1.2.4d;process

1.2 S:outputParser

1.2.8addlog

1l

127 <=crejtes=

______ 1

P R N R —————
1.28addLog
R Y 1l
128 <=cregte==
R U A M A
1.210:addLog
RN N I 1l
1.2.11:<<cregte==
1.2.12:cleaner
1

1212 1 clearSet

___________________ 1l

1.2, 2:clepnEvenything

1

1p12.3:<=<create>>

e — — (1 4+ 1 4 | N
1.34 2.5:cIeanF’.enmteDenIcymemDirectoryj-H

80

https://goo.gl/c9fzOr

WitW's - Web application for interoperability testing of web services

B1.3. Certification phase 3 call from the Pipeline Manager

The original version of this diagram can be found here: https://goo.gl/n634Dn

CliertToServer FileManager Invekerhanager Aggressive Classtoader| FTPOperstions Wnkaer/memr;

1.1:getPackageForReflectionOperations

1.1.1: getPackageStructure

1 2:getinfoForinvoker

1 lang Stringljava.

1.2 1:Jpublicl@loacClassiname=java lang.Stringljava.lang Class<?>

1.2.1.1.1-loadNewCiass

1.211 2Ipublic|@loadClass[classData=bytel] name=java lang Stringliava lang Class<?>

1.3<<create>>

1.5 connectAndLogin

1.51:connect

1.51.1:disconnect

1.51 Zdisconnect

1.5210gn

1.52.1:setFtp0ptions

1.52.2logout

1.7 4-ogout

1.7 2:disconnect

1.8:clientToServer

81

https://goo.gl/n634Dn

WitW's - Web application for interoperability testing of web services

B1.4. Certification phase 3 — Client code to web service communication

The original version of this diagram can be found here: https://goo.gl/gZaMOR

82

https://goo.gl/gZaMOR

WitW's - Web application for interoperability testing of web services

C1. Web service source code upload background process

In order to have a better understanding of the system, let us take a look at a typical exchange
of information. In this case, we’ll be looking at the most complex case, submitting files for
the system to analyze. Figure 42 shows a graphical representation of the information exchange
between the several components. In this interaction, one WitWorker and one Deployment
server is represented because every individual test run only uses one of each. Also, there’s no
“External server” (as represented in Figure 24 because we’re using the File upload option and
not the Submit WSDL one and we’re deploying the source code submitted (after several
modifications) to our own servers. The following explanation will also consider that all steps

are completed successfully.

oL
® - ®

Comparison Server

v
© ()) @
WitWorker (9 Deployment Server
T () @ T
\ 4

Main Server

Figure 42. Source code upload background process

(A) The interaction begins with the user accessing the Vaadin-built webpage;

(B) User tries to login;

(C) Login data is queried against the Database;

(B) Log in successful and the user is now in the Dashboard view;

(B) User selects “File upload” in the menu;

(B,C) Main server queries Database for available tools and deployment servers. Shows
them on the webpage.

7. (B) User selects some files and uploads them;

Sk =

83

10.

11.

12.

13.

14.

15.

16.

WitW's - Web application for interoperability testing of web services

(B) User selects a client code generator, a deployment server, gives a name to the run
and clicks “Start Process”;

(B) A new test run is immediately created in the database with the current timestamp,
the name we mentioned in step 7 and associated with the user who started it;

(B) If there are no other threads running, the process can continue and the status of
the run is updated to “executing”;

(B) The system creates the basic folder structure for the WAR file — the file that will
be uploaded and deployed to the Deployment Server later on — the WEB-INF\classes
and META-INF folder.

a. In this step, the libraries from \resoutrces\lib are also copied to the WEB-
INF\lib. These libraries are needed for the serialization process explained
later.

(B) The files uploaded are compiled to guarantee that the user submitted proper source
code and all dependencies are present. If it fails to compile, the run is set to
“completed”, the “debug” column associated with the run is filled to warn the user
and the process ends.

(B) The system looks for the web service file in the submitted files and marks it for
further analysis.

(B) The rest of the files are analyzed and, based on their package:

a. Class files get copied to WEB-INF\classes\package\structure\.

b. Class files get copied to the project folder \target\classes for further
inspection later on.

c. Java files get copied to the project folder \src\main\java\package\structure
for further inspection.

(B) Main server looks for the first web method it finds in the web service and passes
it to a method to search for non-supported field, parameter and return types (more on
this on section Limitations.

(B) The serialization process begins. This means that the system, through reflection,
analyzes the web service and all its dependencies.

a. Uses the previously selected web method and searches all its parameters and
return values for user defined classes with non-standard getters and setters.
Inspects the method parameters;

Inspects the return type of the method and generates a random one.
d. Using a Velocity template, generates a new web service that differs from the
original one in some aspects. Major differences are:

1. All code from the original web service file is now gone, with the
exception of the original imports, the original fields and the selected
method.

i. The parameters of the web method are also fields. This is necessary so
we can get their values during run time in a phase of the testing
pipeline.

iii. The method is now injected with some reflection code in order to get
the fields’ values and pass them to the WitSerialization helper class
(along with an instance of the method for reflection and recursion
purposes).

iv. Added importts for the serialization package;

o v

Overall, this template modifies the original web service to be able to execute
the following tasks with the help of the WitSerialization class:

e As soon as the web method is called, it sends the values received as
parameters to the Comparison server;

84

17.

18.

19.
20.
21.
22.

23.

24.

WitW's - Web application for interoperability testing of web services

e Returns a randomly generated value to the caller, but not before
sending that value to the Comparison server.

(B) The modified web service is compiled and then copied to the same structure as
above;

(B) A helper class called WitSerialization.java is also compiled and moved to the same
folder structure.

a. This class contains several helper methods to receive, serialize and send the
values the web service is called with to the comparison server, along with the
return value of the web method.

(B) All files and folders created above are compressed into a WAR file;

(H) The WAR file is sent to the previously selected deployment server by FTP.

(D) The deployment server waits until the transfer is complete and auto deploys the
WAR file.

(B) The process then passes to the Test Manager domain and checks if it can ping the
newly deployed web service WSDL endpoint.

(B) The Test Manager starts the what can be called as the Testing Pipeline. The process
until now can be represented by Figure 43.

User submits WSDL or uploads source files

|
Executor Service /
Thread Pool

Deployment Serialization
file operations operations

Output Parser ¢ ——3

Test Manager — SavestoDB™ |

4 Level 1 Y4 Level 2 N/ Level 3
Compliance Compliance Compliance
Calls WitWorker ——
methods
thi h RMI
WS- Standards WSDL Client WSDL Client g
Compliance Code Generation (Code Compilation
\ / \ / \ Receives —
(" Levela \{ Level5) ! Level N answer
Compliance Compliance 1 Compliance
Client Server E Modular
communication communication | |i: additional steps * |
with the Server with the client K P i
N N\ o) N

L

OUTPUT

* Phase Log
* Error and Warning Criteria

Figure 43. Testing Pipeline

(B,D,E) The system calls the first phase — the WS-I Standards Compliance phase.
a. (E, D) The number and order of phases are defined in the main server, but are
run in the WitWorkers. Each WitWorker server has a RMI server running and,
thanks to its interface, exposes several methods which can then be called by

85

25
26

27.
28.

29.
30.

WitW's - Web application for interoperability testing of web services

the main server to run all the necessary operations. The application knows
which server to call because of the tool selected in the “File Upload” web page.

. (C) After analyzing the return value, saves certification level output to the database;
. (B,D,E) System calls the second phase- The WSDL Client Code generation using the
tool selected earlier in the web page which generates java code from the deployed web

service;
(C) After analyzing the return value, saves certification level output to the database;
(B,D,E) System calls the third phase — WSDIL Client code Compilation which

compiles the previous code;

(C) After analyzing the return value, saves certification level output to the database;
(B,D,E) System calls the fourth phase, the Client communication with the server. This

phase is a lot more complex than the previous ones:

a.

€.

Before calling the method on the remote server through RMI, the main server
needs to fetch some info for the WitWorker to build the Invoker class. This
class, as the name suggests, will utilize the client code generated in the previous
steps to call the web service.

Using reflection once more, we fetch the web service from the previous
operations and extract some basic info to pass to the method in the remote
server. (So the remote operation knows where to fetch what)

The system then sends the WitSerialization helper class to the tool working
folder (through RMI, using the RMIIO library [51]).

At this point, the remote method is called. The WitWorker server initiates the
operations to build the Invoker class. All these operations are performed on
the tool generated client code.

i. Using reflection, it fetches all the fields of the class file which
corresponds to the web method previously mentioned and generates
random values for each one.

ii. Using the same method as above, it also analyzes the generated class
which corresponds to the return value of the web method.

iii. It then creates the Invoker file using a Velocity template which,
similarly to the modified web service, executes the following tasks with
the help of the WitSerialization class:

1. Before calling the web method, it sends the above generated
random values to the Comparison server
2. As soon as it receives the return value from the web method,
it sends it to the Comparison server.
Finally, it calls the Invoker.

31. (J) To send the necessary data to the Comparison server, the communication is done
through TCP/sockets from the helper class WitSetialization (which is called from the
Invoker)

a.

This data consists in, among others, the random generated values we talked
before. More details about the protocol in 7.2 - Protocol used by the
Comparison server.

32. (L) The Invoker class calls the web method in the web service, and so the
modifications mentioned in 16 are triggered.

33. (K) The Comparison server, can be reached by tep/sockets and waits for the following
order of data:

a.

Values passed as parameters to the web method from the Invoker class;

b. Values received as parameters from the web service / web method;

C.

d.

Return value generated from the web service / web method,;
Return value received from the Invoker.

86

34

35.

36.

37.
38.
39.
40.
41.

42.
43.

WitW's - Web application for interoperability testing of web services

. (M) After receiving all the data, the Comparison server send everything to the
WitWorker via tcp/sockets.

a. Lists and level of certification reached in each analyzed structure type and
value;

(E) The WitWorker then builds two user friendly logs based on everything it received
from the Comparison server.

a. As the reader might already have noticed, the certification phase 4 also
triggered the operations in which the certification phase 5 consists (sending
the info from the web service back to the client code). To keep the
Certification Pipeline modular and don’t deal with a specific phase in a
different manner, the WitWorker, after receiving everything from the
Comparison server, keeps the data related to the phase 5 in memory.

(F) WitWorker sends the data of the phase 4 back to the main server (through RMI,
as the return value of the method called in 30.

(B) After analyzing the return value, saves certification level output to the database;
(B) System calls the fifth and last phase — server communication with the client.

(E) WitWorker just needs to send the phase 5 related info it already has in memory.
(B) After analyzing the return value, saves certification level output to the database;
(B) The system detects there are no more testing phases to run and calls its clean-up
methods.

a. Calls a method in the WitWorker server for it to clean the artifacts generated
from the client code generation tool.

b. Connects to the Deployment server via FTP and deletes the deployment
directory.

(B) User clicks in “Results” on the left menu.
(B) Webpage displays the results of the test run, with the possibility of analyzing the
log of each individual phase.

87

WitW's - Web application for interoperability testing of web services

D1. Developer Manual

This section starts by explaining the structure of the system’s source code and then
demonstrates how to run the application (by going through all the necessary components) on
other machines.

The code is publicly available on University’s servers. [52].

D1.1 Structure

Figure 44 consists in a screenshot of the Inteli]’s IDEA folder structure.

In the root of the project (inside the “main” folder) main
there are three main directories: java
com.del.witws
e java — Where the code of the WitWS communication
Certification Pipeline is written; comparison
e resources — External files used by the controllers
application; event
e webapp — Contains the Vaadin themes and loader
custom CSS rules. misc
. models
Inside each one of those packages are several more: g
e java/com/dei/witws/communication views
— Classes used to send information . witworker
throughout the application; © 5 WitwsApplication
e java/com/dei/witws/comparison - B AppWidgetset.gwtaml
Contains the code necessary to run the resourees
Comparison Server. lib
e java/com/dei/witws/controllers — The templates _ _
majority of the application’s features are UMP'N_'W'dgEtSEts_'Appw'dgEtSEt
coded in this package. E.g.: contains classes % app“c_atmn'pmpemes
responsible for controlling the Certification < AppWidgetset.gwt.xml
Pipeline and to verify the compliance webapp
against the setters and getters standard test
nomenclature. M pom.xml
Figure 44. Code structure
e java/com/dei/witws/event — Event bus events used in #i/DashboardUI are listed
here as inner classes. Also contains a simple wrapper for Guava event bus which
defines static convenience methods for relevant actions.
e java/com/dei/witws/loader — Dynamic Class Loader code and its dependencies.
e java/com/dei/witws/misc — Helper classes that supportt the rest of the application.
E.g. Random Generator.
e java/com/dei/witws/models — The tables of the PostgresSQL database and their
corresponding repository methods are created from the classes in this package.
e java/com/dei/witws/ui — Contains the class which builds our graphical user

interface and the dashboard menu layout. Since the user entry point to our application
leads to this class (DashboardUI), it also controls the unauthorized access to the rest

88

WitW's - Web application for interoperability testing of web services

of the views and controls the login/logout process with the help of the Guava event
bus events.

java/com/dei/witws/views — Classes that represent the different views in the
application.

java/com/dei/witws/witworker — The WitWorker server code is located in this
package.

resource/lib — Libraries that get bundled along the deployment file. They are essential
to the serialization process.

resource/templates — Velocity templates for the uploaded web service and for the
client code Invoker. One for each supported programming language.

VAADIN /widgetsets/AppWidgetSet — Package containing the custom built
widgetset. Necessary for Vaadin. Will be explained in more detail in the next section.
/webapp — Contains several themes provided by Vaadin which can be used by the
application and one built specifically for this thesis.

Besides the folders and packages, there are also four more files worth of mention:

WitwsApplication: It’s the file used to run the main server and it’s where we define
the application as a Spring Boot application, which helps tremendously with the
developing process. Even though the file is just some lines long, it contains some
caveats:

o (@SpringBootApplication is a convenience annotation that adds all of the
following:

* (@Configuration tags the class as a source of bean definitions for the
application context.

* @EnableAutoConfiguration tells Spring Boot to start adding beans
based on classpath settings, other beans, and various property settings.

* Normally you would add @EnableWebMvc for a Spring MVC app,
but Spring Boot adds it automatically when it sees spring-webmvc on
the classpath. This flags the application as a web application and
activates key behaviors such as setting up a DispatcherServlet.

* @ComponentScan tells Spring to look for other components,
configurations, and services.

o The main() method uses Spring Boot’s SpringApplication.run() method to
launch an application.

o The run() method returns an ApplicationContext and this application then
retrieves all the beans that were created either by the application or were
automatically added thanks to Spring Boot. It sorts them and prints them out.

o The amazing thing about SpringBoot and Vaadin is that the developer didn’t
need to write a single line of XML or HTM.L No web.xml file either. This
web application is 100% pure Java and the developer doesn’t have to deal with
configuring any plumbing or infrastructure.

AppWidgetset.gwt.xml — Generated by Maven with the goal = Vaadin:update-
widgetset. Necessary for the custom widgetset the application uses. Will be explained
in the next section.

application.properties — Contains some system-wide configurations. E.g.
datasource, datasource credentials, spring jpa data configurations, log level, etc.
pom.xml — Maven configuration file. The application uses Maven as its dependency
and build manager. All the plugins and libraries used by the app are declared here.

89

WitW's - Web application for interoperability testing of web services

D1.2. Configuration

The system was built in almost in its entirety using Windows so this section contains
instructions on how to configure everything on Microsoft’s operating system. For other OS’s,
please go to Chapter 9
Application Limitations and Extensibility.

In order to run the entire application and the servers it depends on, several configurations are
needed. Maven is used in several steps so be sure you have it installed.
D.1.2.1. Main server

The platform where the main server will be running needs to be defined:

¢ \com\dei\witws\misc\Platform.java
o public static final String PLATFORM,;

If running on Windows, CoreUltils also needs to be installed:

http://gnuwin32.sourceforge.net/packages/coreutils.htm

D.1.2.2. Database

The application uses a PostgreSQL database called “witws” to store its information. Since
PostgreSQL does not support “create if not exists”, the database must already exist in the
system. The application will create everything else.

To configure it, the developer needs to change the following properties to proper values:

e resources\application.properties
o spring.datasource.utl
o spring.datasource.username
o spring.datasource.password
o (Optional) spring.jpa.show-sql
= To see the sql in the console.

D.1.2.3. Embedded servlet container

There is only one embedded servlet container — Undertow — related configuration:

e resources\application.properties
o server.port = 8080

D.1.2.4. WitWorkers

WitWorkers contain the tools available to the application. It’s extremely important to note
that the system infers that all of them also include the ability to run the Certification Level 1
— the W8-I standards compliance.

For your server to support this compliance phase, several steps must be followed:

e Download the WS-I Testing Tools available at: http://www.ws-
i.org/Testing/Tools/2005/06/WSI Test Java Final 1.1.zip - Java version.
e Extract it to a folder. E.g.: G:\dev\tools\wsi-test-tools

90

http://gnuwin32.sourceforge.net/packages/coreutils.htm
http://www.ws-i.org/Testing/Tools/2005/06/WSI_Test_Java_Final_1.1.zip
http://www.ws-i.org/Testing/Tools/2005/06/WSI_Test_Java_Final_1.1.zip

WitW's - Web application for interoperability testing of web services

e Add WSI_HOME to the system variables and point it to the folder you just extracted
the zip to. E.g: G:\dev\tools\wsi-test-tools

e Add the bin folder to the “Path” system variable. E.g.: G:\dev\tools\wsi-test-
tools\java\bin

e Download the XMLStarlet Command Line XML Toolkit:
http://sourceforge.net/projects/xmlstar/files/

e Extract it to a folder. E.g.: G:\dev\tools\xmlstatlet-1.6.0

e Add the folder to the system’s “Path” variable. E.g.: G:\dev\tools\xmlstarlet-1.6.0

o Install sed : http://gnuwin32.sourceforge.net/packages/sed.htm

e Install grep: http://gnuwin32.sourceforge.net/packages/grep.htm

o Install wget: http://gnuwin32.sourceforge.net/packages/weget.htm

e Go to the “support” folder in the root of the project and copy the files to any location.
E.g.: G:\dev\tools\

e Add that location to the system’s “Path” environment variable.

e [dit the instructions (paths) inside those files accordingly.

The InitiateComplianceCheck.bat file takes two arguments: the first one is the WSDL and the
second one is the output directory which we send the results to. In
stc\main\java\com\dei\witws\witworker\WitWorketServer.java modify the public static
final variable “COMPLIANCE_CHECK_OUTPUT_DIR” to your liking, as long as it

already exists.

At the end of the whole process (either if it went smoothly or it failed on any phase), the main
server calls a cleanEverything() method on the WitWorker. This method will call the batch
file “rmFilesFromArtifacts.bat” we moved earlier to clean the artifacts generated by the client
code generation tools.

To modify the port the WitWorker RMI server listens to, change the following:

e public static final String RMI_SERVER_PORT;

These servers compile Java code with several library dependencies. Make sure you have the
ones located in the /resources/lib folder in your classpath. Speaking of classpath, it must also
contain the path to the java folder of the project and the classes output folder of the project.
With that in mind, change the following variable to an appropriate path:

e public static final String CLASSPATH
o E.g";G:"+ fs +"dev"+ fs +"witws"+ fs +"src"+ fs +"main"+ fs +"java"+
fs +";G:"+ fs +"dev"+ fs +"jars"+ fs +"*,G:"+ fs +"dev"+ fs +"witws"+ fs
+"target"+ fs +"classes"+ fs +"";
= “fs” is a File.separator String. Useful to keep the implementation
operating system-independent.

The client code generation tool folder output might also be changed. A path inside the
project’s java folder is recommended. Variable to change:

e public static final String ARTIFACT_FOLDER_LOCATION
o E.g'"g"+fs+"dev" + fs + "witws" + fs + "src" + fs + "main" + fs + "java"
+ fs + "artifact" + fs.

91

http://sourceforge.net/projects/xmlstar/files/
http://gnuwin32.sourceforge.net/packages/sed.htm
http://gnuwin32.sourceforge.net/packages/grep.htm
http://gnuwin32.sourceforge.net/packages/wget.htm

WitW's - Web application for interoperability testing of web services

The system supports the code generation tool Axis2. Its artifacts are generated to a similar,
but slightly different folder structure — regardless of the output folder chosen, it is always
created inside a “src” folder. so the following variable also needs to be changed:

e public static final String ARTIFACT_FOLDER_LOCATION_AXIS
o E.g:"g" + fs + "dev" + fs + "witws" + fs + "src" + fs + "main" + fs +
"java" + fs + "src" + fs + "artifact" + fs;

WitWorkers, at a certain part of the testing pipeline, also wait for an answer from the
Comparison Server (in the form of a socket connection), so to change the port it listens to,
modify the variable:

e public static final int ANSWER_FROM_COMPARISON_SERVER_PORT.

After setting up all these configurations, the dev can now add tools to the pool. Wsimport
and wsconsume are currently supported so they can be added to the witws_tool table in the
database located in the main server. The rest of the columns must match the paths and info
configured in the above steps.

On a side note, given that the system was developed under Windows, most command line
instructions had to be slightly modified by adding “cmd.exe” and “/¢” at the beginning of the
call. The application does this automatically, however, some other commands might need that
additional those additional strings. Keep that in mind.

D.1.2.5. Presentation layer — Vaadin

If the app is being run from Maven or from the IDE, then there should be no aditional Vaadin
configurations. However, since the app uses a custom widget some complications might arise.
If, when running the app and trying to load the UploadView, an error occurs, the dev should
tfollow the following steps:

1. Delete any *.gwt.xml already existing in the project
2. Create a AppWidgetset.gwt.xml in the src/main/resoutces:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 2.5.1//EN"

"http://google-web-toolkit.googlecode.com/svn/tags/2.5.1/distro-source/core/src/gwt-
module.dtd">

<module>
<inherits name="com.wcs.wcslib.vaadin.widget.multifileupload.MultiFileUploadWidgetSet"/>

</module>

3. Add the @Widgetset("AppWidgetset") annotation the Main UI

4. Run As - Maven clean

5. Refresh

6. Run As - Maven build ... (create a new run configuration with goal = vaadin:update-
widgetset) This will create a new AppWidgetset.gwt.xml in the src/main/java folder.

7. Run As - Maven build ... (create a new run configuration with goal = vaadin:compile
)

8. Copy the entire generated AppWidgetset folder from target/com.dei.witws-0.0.1-
SNAPSHOT to stc/main/webapp/VAADIN /widgetsets.

9. Run As - Maven install

92

WitW's - Web application for interoperability testing of web services

Additionally, to guarantee that the theme is displayed correctly, run the following Maven
targets (either inside the IDE or in the command line, on the root of the project):

e mvn vaadin:update-theme vaadin:compile-theme vaadin:compile

D.1.2.6. Deployment setvers

The deployment servers aren’t exactly part of the system since there is no code about them.
They are just servers we have full access to. Their features, credentials and available
deployment tools, just like the WitWorkers, must be inserted into the main database located
in the same machine as the main server. In order for the system to recognize and use a
deployment server, a new entry in the “deployment_server” must be inserted with all the
columns correctly filled.

A FTP server needs to be running on port 21.

Additionally, the server has to be reachable and port 21 for FTP communications must be
open.

Please be careful about the deployment_server_path column. It is always relative to the path
being shared in the FTP server. Example: On your FTP server, if the deployment folder of the
tool you’re adding is “c:\dev\tools\wildfly\standalone\” and you’re only giving access to
\tools and its subfolders, then the deployment_server_path column in the table needs to be
“\tools\wildfly\standalone\”

Out of the box, the system supports Glassfish and Wildfly so both can be installed in the
machine.

The configuration of those application servers is out of the scope of the project, so please
refer to their official documentation.

D.1.3. How to run

Before trying to run any of the components, a cleanup should be executed. Either delete the
/target folder by hand or use the following Maven target (recommended), by typing the
following command in the terminal (in the root of the project, where the pom.xml file is
located):

e mvn clean

The application was created using Inteli]’s IDEA 15, so in order to run it the dev cab import
it to the same IDE and everything should work out of the box. To run the several servers just
navigate to the corresponding files, right click on them and press “Run”- this is the
recommended and supported approach. The dev can repeat this process as many times as
necessary throughout several machines in order to deploy more WitWorkers. Don’t forget
that there can only be one instance of both the main server and comparison setrver.

D.1.3.1. Main server

Since the app uses Maven, it’s also possible to run the application just by calling it in the tool.
In the root of the project type:

® mvn exec:java
o 'This will run the main setrvet.

93

WitW's - Web application for interoperability testing of web services

To deploy the main server as a JAR file, it must be bundled with all its dependencies, so the
following mvn targets must be run in order:

mvn vaadin:update-widgetset
mvn vaadin:update-theme
mvn vaadin:compile-theme
mvn vaadin:compile

mvn install

SRR

This will create a file in the /target folder called com.dei.witws-1.0-RELEASE jar . Run it by
typing in the command line:

e java —jar com.dei.witws-1.0-RELEASE jar
The main server runs on port 8080. See section D1.2.3 in order to change it.

Sometimes, when running the main server from the JAR and accessing the application, the
GUI might not look as expected and the server log displays the following line:

Reguested resource [/ VAADINY/ themes/ witws/ styles.css] not found from filesystem or through class loader.
Add widgetset and/ or theme | AR to your classpath or add files to WebContent/ 1 AADIN folder.

It happens because the packaging step (in maven install) didn’t include the
webapp/VAADIN/themes folder. A workaround for now is to copy the VAADIN folder
and its contents to /resources.

D.1.3.2. Deployment server

Assuming the application servers are already configured, running them is trivial. In the
command line, type:

o GlassFish: (path_to_glassfish_bin_folder)\asadmin restart-domain
o To bind to a specific address:

asadmin set server-config.jms-service.jms-
host.default_JMS_host.host="hostname"

o Restart the server.
o WildFly: (path_to_wildfly_bin_folder)\standalone.bat —b=(address_to_bind_to)
D.1.3.3. WitWorkers

As explained eatrlier, to run the WitWorkers go to the corresponding package, right click on
WitWorkerServer.java and select “Run” — this is the supported method because of some Java
reflection steps occurring in the code.

WitWorkers are part of the same project, and so, deploying them as a JAR is slightly different
but equally easy. Since it’s outside of the scope of this project, but refer to [53] This approach
is not recommended because it forces the dev to change several more files and configurations
(not detailed here) for the system to work as intended.

D.1.3.4. Comparison server

Same process as the WitWorkers-

94

WitW's - Web application for interoperability testing of web services

E1. Mockups

In order to better represent the required functionality of the system, some mockups were
made. Since a lot of the work is done in the background and is transparent to the user, the
user interface can be simplified.

Figure 45 represents the screen displayed when the user accesses the web application URL. It
contains the usual sign in fields: username, password and a link for registration.

A Web Page
c E> X Q http://witws dei.ucpt) @
Welare WIitWS
Username Password
C 1L =
Register

Figure 45. Login mockup

When the user clicks on the previous “Register” link, he/she is taken to the screen represented
in Figure 46. In order to sign up, the user needs to input a username, a password and an email.

A Web Page
c E> x Q (http://witws.dei.uc.pt) @
Sianue WitWS
Username
L]
Password
L]
Email
L]
“

Figure 46. Sign up mockup

95

WitW's - Web application for interoperability testing of web services

If the user inputs valid data in all fields (non-existing username, password not too short and a
well-formed email) and presses “Sign Up”, he/she will be taken to a screen like the one in
Figure 47.

A Web Page

o $ x Q {http//witws deiucpt) @

Sinw WitWS

Account succesfully
created, check your
email to confirm
your account.

Figure 47. Sign up succeeded

After confirming his/her account (by clicking on the link sent to the email address provided)
and logging in with valid credentials on the first page, the user is then taken to the main
application screen, the dashboard - Figure 48. In an initial phase of the project, the dashboard
will only contain a greeting message and the main application features located in the left static
menu. This screen can later be extended to include some statistics about the submitted
WSDL’s (e.g. number of WSDL’s that reached the higher certification level available).

A Web Page

o $ x Q {http//witws deiucpt) @

Welcome to the WitWS Web Application

Please select one of the options on the left

Statistics will be available soon

Figure 48. Dashboard mockup

Clicking on “WSDL upload”, the user will be taken to a screen like the one in Figure 49, where
it is possible to submit a given WSDL, give it a description and select several tools on different
operating systems to check it against (by default, all of them will be selected).

96

WitW's - Web application for interoperability testing of web services

A Web Page

o $ x Q {http//witws deiucpt) @

o

Submit your WSDL
[wsoL]
Iiescnpuon I

K wsimport 2.3 on windows
i wsimport 3.0 on windows

4 wsconsume 1.1 0n osx
4 wsconsume 0.9 on linux

| Submit 1

Figure 49- WSDL upload mockup

After clicking the “Submit” button and if the URL is valid, the system will display a screen
like the one in Figure 50

A Web Page

o $ x Q {http//witws deiucpt) @

V)

Your WSDL is now being analysed.

Plese check the "Results & Export" option on the left menu.

Figure 50. WSDL submitted mockup

The screen in Error! Reference source not found. represents a scenario where the user
already submitted 4 WSDL’s. The system has already completed the analysis on the first two
WSDL’s, it’s still analyzing the third and has put the forth on hold since it can only analyze
one WSDL at a time. As the reader can see, each WSDL has two options: see its analysis
detailed results or export them to a file on the user’s machine.

97

WitW's - Web application for interoperability testing of web services

A Web Page
O $ X Q {http//witws deiucpt) @
WSDL1 - Weather See results
WSDL2 - Cities Seeresults [_Export]
WSDL3 - Time ——
WSDL4 - Flight Search EERUING

Figure 51. Results overview mockup

By clicking on any “See results” button on the mockup above, the user will be taken to a
screen like the one below in Figure 52. The system will then display all the available certification
levels the WSDL went through (in this thesis we implement five), along with a simple visual
representation of the result of each one: green if the system didn’t encounter any error or
warning in that level, yellow if it encountered any warnings and red if it produced at least one
error. The various levels are all part of a pipeline and cannot co-exit independently, meaning

that if a level produces an error, all of the other ones next in the pipeline will automatically
fail.

A Web Page
o $ x Q {http//witws deiucpt) @
s)

WSDL1 - Weather s
WSDL2 - Cities Hide

| Level 1 | Details

I Level 2 I Details

| Level 3] Details

Details

WSDL3 - Time —

WSDL4 - Flight Search PENDING

Figure 52. Detailed results mockup

Each certification level will have its own associated details/log. This way the user can
investigate went wrong with a certain phase and make the necessary modifications. By clicking
on the link “Details”, the system will display the log of the select phase, like in the. Figure 53

98

WitW's - Web application for interoperability testing of web services

A X} Cormwiwsdoroep) @

Level 2 Log for WSDL2 - Cities

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec a
diam lectus. Sed sit amet ipsum mauris. Moecenas congue ligula ac
quam viverra nec consectetur ante hendrerit. Donec et mollis dolor

Proesent et diam eget libero egestas mattis sit amet vitae augue.
Nam tincidunt congue enim, ut porta lorem lacinia consectetur.
Donec ut libero

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean ut
gravida lorem. Ut turpis felis, pulvinar a semper sed, adipiscing id
dolor. Pellentesque auctor nisi id magna

Figure 53. 1og mockup

The user will also have the option to save the entire log of each analysis to a file in his/her

own machine by clicking in the “Export” button of each certification level, like in the Figure
54

\lol __d
Organize System Properties Uninstall or change a program Map network drive
@ Recently (3 Loreem ipsum dolor 1/13/2012 ¢ File Folder
@ Desktop

(8 Libraries
Documents | [Loreem ipsum dolor 111312012 © Text File

Music
pictures | [Loreem ipsum dolor 111312012 € Text File

Movies

D Loreem ipsum dolor 1/13/2012 ¢ Text File

D Loreem ipsum dolor 1/13/2012 ¢ Text File

D Loreem ipsum dolor 1/13/2012 ¢ Text File

D Loreem ipsum dolor 1/13/2012 ¢ Text File

Filename I cities.txt

Figure 54. Export mockup 7

After exporting the file, a simple pop will tell the user if everything went ok, like in the screen
represented in Figure 55

99

WitW's - Web application for interoperability testing of web services

4 ‘ * http:/ /witws.deiucpt

Your log has been exported

Figure 55. Export succeeded mockup

F1. Research paper: INTENSE - INteroperability
TEstiNg ServicE

Starts in the next page.

100

WitW's' - Web application for interoperability testing of web services

[INTENSE]: Interoperability Testing as a Service

ABSTRACT

The web services technology has been created to support
communication between heterogeneous platforms. Despite its
maturity, built upon more than a decade of experience, research and
practice show that the technology still fails to connect the two sides
of an interaction, even when the programming languages involved
are the same. This is especially concerning for providers, as a
failure in the inter-operation of web services can bring in disastrous
consequences for the services involved, which frequently support
businesses. In this paper we present INTENSE, an on-line web
application designed to test the interoperability of a web service
against specific client-side platforms. The tool is able to test not
only the pre-runtime steps involving code generation, but also the
end-to-end runtime communication present in a web service
interaction with a client. INTENSE has been used to test a set of
web services deployed on Glassifsh and WildFly against the well-
known Metro JAX-WS, JBossWS, and Axis2 client platforms and
was able to disclose severe interoperability issues.

CCS Concepts

e Information systems—Simple Object Access Protocol
(SOAP) e Information systems—Web Services Description
Language (WSDL) e Applied computing—Enterprise
interoperability ¢ Software and its engineering~Software
testing and debugging

Keywords

web services; interoperability; testing; reliability

INTRODUCTION

The web services technology was created with the goal of providing
interoperable communication between heterogeneous platforms,
allowing applications to be brought to the web environment.
Nowadays, web services are found deployed on the web and used
to provide service to consumers around the world, many times
supporting business-critical services. In these environments, a
single failure in the interaction of a consumer with a service can
directly result in the loss of revenue (e.g., loss of a business
transaction) and have disastrous consequences for the businesses
involved (e.g., reputation losses).

In a web services environment, a provider offers a service for
consumers (i.e., the clients) and announces the service interface in
a WSDL file, which can include several operations, each one
typically accepting one or more input parameters and returning an
output object. When a developer wants to create a client for a web
service, s/he typically uses a tool to process the WSDL file and
generate code that is specific to the client-side platform (e.g., Java,
C#, Python) and allows to invoke the web service in an easy
manner. This generated code and supporting platform (i.e., a web
service framework) is responsible for, at the client side, translating

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference’10, Month 1-2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 ...$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

the application-specific objects (e.g., C# objects) to SOAP and send
this SOAP message to the server. At the server-side the SOAP
message is translated to the language specific objects (e.g., Java
objects).

Experience and research clearly show that despite the effort put in
bringing in interoperability between heterogeneous systems it is
still very frequent to find cases where the different systems (i.e.,
client and server) are unable to inter-operate [1]-[3]. Thus, previous
research reports cases where message contents are lost between
client and server; support code cannot be generated or sometimes
cannot be compiled in a specific platform, among many others [1]-
[3]. These cases are due to many factors, ranging from poor web
service platforms implementations, to issues that can be traced back
to the specification documents, which are written in natural
language.

Recognizing the interoperability problem, the WS-I organization
[4] has been working, for over a decade, on creating standards to
promote interoperability, and this includes refining and restricting
the web services specifications and producing tools that can be used
to test web services [5], [6]. The problem is that, despite the effort,
still a WS-I compliant service shows problems to inter-operate with
specific client platforms. Also, testing tools nowadays are usually
limited to execute the WS-1 recommended tests, which are also
quite limited and are unable to detect severe inter-operation issues.

Authors in [1]-[3] studied the inter-operation problem by testing a
large set of web services frameworks in which we were able to
disclose numerous issues. Despite of the usefulness of the results,
the authors carried out the tests in a semi-automatic way (at some
points with manual intervention). The authors indicate the
difficulty of building a tool that could be used by developers to test
services for interoperability in a completely automatic way. In fact,
this holds huge difficulties, which include having to generate code
for multiple platforms, having to generate a test workload that fits
any service, being ready to test a new platform with minimum
effort, but especially producing client code that is able to
communicate with any service, on any platform.

In this paper we present a web-based tool that implements the
interoperability testing procedure discussed in [3] and automatizes
the interoperability tests not only for pre-runtime steps (e.g., client-
side code generation) but also for the runtime steps (e.g.,
communication between client and server). The tool is now
prepared to automatically execute interoperability tests for web
services built in Java and deployed in two major web servers
(Glassfish and WildFly) against three client-side platforms (Oracle
Metro, JBoss CXF, and Apache Axis2), but has been designed with
extensibility in mind, thus it is easy to add support for further
platforms or languages. We validated the tool against a subset of
the services used by the authors in [1]-[3], obtaining 100% of
correctness in the results. In this paper we also added a new set of
services, to further study interoperability problems during the
communication between client and server, as a means to further
showcase the tool’s capabilities.

This paper is organized as follows. Section Il discusses related
work in interoperability testing and Section 111 presents INTENSE
from the user point-of-view. Section IV discusses the architecture
and the internal processes that support INTENSE and Section V

presents the experimental evaluation carried out to illustrate the
tools capabilities. Finally, Section VI concludes the paper.

Web Services and Interoperability

In a web services environment, the provider (i.e., the server) offers
a service to consumers (i.e., clients). This service is described in an
interface description document (i.e., a WSDL file), which describes
a set of operations and their corresponding typed input/output
parameters. Clients and servers interact by using a web service
framework, which is the software that supports the inter-operation
between them. In practice, a web service framework supports the
creation and deployment of the service, the generation of support
code at the client for easy invocation of the service, the serialization
of programing language objects to SOAP messages at the client and
the respective deserialization from SOAP messages to
programming language objects at the server. Frameworks also
support the reverse path taken by the messages from the server to
the client. Of course, the service and client implementation, despite
making use of the framework, need to be coded by the developer

[71.

In our context, interoperability can be defined as the ability of a
particular service to work together with some client [8]. In this
paper we focus on syntactic interoperability, which ultimately
refers to correct communication and exchanging of data between
the two systems involved, and overall refers to the whole inter-
operation process, which we describe in the next paragraphs.

1.1 Background on web services inter-operation

Fig. 1 represents a web services scenario, where client and server
try to inter-operate. As we can see, two different frameworks are
used in this process; the client uses framework A and the server
uses framework B (although they could also use the same
framework). For a client to be able invoke a remote operation, five
steps have to be performed (numbered from 1 to 5 in Fig. 1). The
correct conclusion of steps is critical for the inter-operation process,
where in the end both endpoints exchange correct information.

The Service Description Generation step (1) usually starts
automatically with deployment of the service at the server. The
framework present at the server is able to read the source code and
generate the corresponding WSDL at deployment time. There is
also the possibility of manually coding the WSDL file and then
generating the service interfaces, which is not very common. In
either case, in the end the result is a WSDL file that can be used as
basis for the inter-operation process.

(1) Service
Description
Generation

Framework A Framework B

(2) Client
Artifact
Generation

(4) Client
Communication

(3) Client
Artifact
Compilation

(5) Server
Communication

Server side

Client side

A web services environment.

WitW's' - Web application for interoperability testing of web services

Using the WSDL produced in the previous step, the developer can
proceed with Client Artifact Generation (2). The client artifacts
are code that at runtime translates application-level calls to SOAP
messages and send these messages to the server, thus making it
easier to code a client as the low-level protocol details are hidden
from the developer. Client artifacts are generated with a tool that is
part of framework A (e.g., the wsimport tool from the Metro
framework). Some frameworks generate these artifacts
dynamically at runtime, i.e., there is no file generation.

The Client Artifact Compilation step (3) is necessary for
platforms that require compilation before execution (e.g., Java,
C#). In languages/frameworks (e.g., Python) where artifacts are
dynamically generated at runtime, this step may not be necessary.
Upon correct compilation, it is up to the developer to create the
client code that calls the artifact methods that, in turn, will allow
sending a message to the server. This latter step is named the Client
Communication step (4), which starts precisely when the client
code calls the remote operation using, as arguments, the object (or
objects) required by the remote operation. This delegates the
control to the framework that serializes the outgoing object
(represented by a in Fig. 1) to SOAP and sends the message. The
step ends when the application-level object is delivered to the
service application (i.e., after being deserialized from SOAP to the
exact object that the server-side platform expects), which is
represented by b in Fig. 1. The object is then processed at the server
(i.e., business logic is executed).

Finally, the Server Communication step (5) begins immediately
before the server sends a response object back to the client
(represented by c in Fig. 1). As in the previous step, control is
delegated to the framework that translates the response object to
SOAP. This step ends when the response object is delivered to the
client application, after being translated from SOAP by the client-
side framework.

1.2 Approaches and tools for interoperability testing

Research on web services interoperability has disclosed a few
problematic issues in the past. The work in [9] analyzes this
problem and identifies implementation issues, including problems
with the representation of sequences of elements and namespaces
in WSDL files. The authors discuss how the WS-1 Basic Profile 1.0
[4], [10] addresses the raised issues, but at the same expose the
limitations of the WS-1 recommendations. Conclusions include the
fact that following the WS-I Basic Profile recommendations can be
a good starting point for reducing interoperability problems.

The use of natural language to build the specifications that guide
the web services frameworks implementations can be the source of
interoperability issues [11]. However, problems can happen much
later with deficient implementation of the specifications. Inter-
operation problems are prone to occur when native data types or
specific constructs of the language being used to build a service are
present at the interface. Still, there is no standard specifying which
types are adequate to be used at an interface. This is corroborated
by the work in [12] where the authors confirm the difficult to
identify the right constructs to express data types that are in fact
supported by all service frameworks.

A framework for auditing interoperability in SOA environments
based in web services is proposed in [13]. The perspective is web
services composition, so the authors take into account the
possibility of creating compositions using different services, rather
than a client/server point-of-view. In [14] a framework for the
implementation of third party certification of quality properties in

102

Web Services and SOA environments is proposed. The framework
is based on the presence of an external trusted authority that is
responsible for checking and certifying systems. The target of the
work in [15] is certifying security properties of Web Services.
Modeling drives the generation of tests for the evaluation and
certification of those properties. It is a test-based approach but still
the goal differs from the one in this paper.

The industry has produced several tools to test web services
interoperability. The WS-I Testing Tools Working Group created
tools that can check if a web service complies with a set of profiles
[4], [6], [16]. These profiles are essentially a set of
recommendations, including clarifications and refinements of the
web services specifications with the goal of promoting
interoperability. Since our focus is inter-operation, the WS-1 Basic
Profile and respective tools are closely related to our work [6], [16].
Note however that the limitations of the WS-I standards and tools
are well known. Even services that pass the tests defined by the
WS-I tools are prone to show interoperability problems, which just
shows the need for a superior approach and tool that can reveal such
problems before systems are deployed.

In what concerns interoperability, most testing tools are limited to
the execution of the WS-I tests. SOAPSonar [17] is a quite popular
web services testing tool. The tool is able to check services for
compliance with the WS-I Basic Profile 1.1, which is known to be
largely insufficient when the goal is to disclose issues.

SoapUlI [18] is another well-known tool that can be used to execute
functional, load, and security tests on web services. The tool also
supports the execution of WS-I Basic Profile 1.1 tests. In addition,
SoapUlI also supports the generation of client-side artifacts using a
pre-defined set of client frameworks. Adding a new framework to
the set is not possible without changing SoapUI’s code, which is
not a trivial task. One of the goals of INTENSE is that the tool can
be easily extensible, so that adding a new framework can be
reduced mostly to a configuration effort.

THE INTENSE APPLICATION

In this section we present an external view of our tool, mostly from
the user point-of-view. The tool is available at intense.dei.uc.pt, and
requires a simple registration procedure to be used. After
authentication, the user has access to the tool’s main interface,
which is presented in Figure 2.

WitWs Certification Pipeline

L. File upload

Select files to upload

Choose a client code generator:

Please select a deployment server:

WildFly 2.3 (Java) on Windo...

Start certification

Figure 2. Starting an interoperability test.

WitW's' - Web application for interoperability testing of web services

As we can see in Figure 2, the user can initiate a test by:
1) Adding a WSDL file;
2) Upload the service source code (selected option in Figure 2).

Selecting option 1) means that the user wants to test a remotely
deployed service, for which there will be no code access. The direct
implication is that, as we do not have access to the service code, we
will not be able to understand which information is arriving at the
service code (sent by the client) and which information is leaving
the service code (sent to the client). Thus, option 1) will result in
testing only the first 3 steps of the inter-operation process,
described in the previous section (service description generation,
client artifact generation, and client artifact compilation), as we
cannot evaluate the correction of the internal information at both
endpoints. Option 2) gives full control to INTENSE and allows
performing the full set of tests, as described in the next paragraphs.
When the user selects this option 2), it also is prompted to select
the platform that will provide the service (e.g., WildFly
9.1.0.Final on Java 1.8.0_20 on Windows 8). INTENSE will use
this information to internally select the right platform and
mechanisms for deploying the code and producing the WSDL file
that will be used to begin the tests.

Regardless of the user option for the server-side platform, s/he can
also select the client platform for which the service should be
tested against (e.g., testing a given service against Metro 2.3.1 on
Java 1.6 on Windows 7). After the user provides the necessary input
for the tests (i.e., the WSDL or the code, and necessary options),
the interoperability assessment will begin and will include tests at
each of the possible inter-operation steps. Note that the
interoperability assessment will test a service against the selected
client platform, so the rest run is composed of 5 tests (executed for
each of the 5 levels). Executing a test at any given level, can result
in one of the following outcomes:

e Error: a fatal event, i.e., an event that prevents further
inter-operation, occurs during the tests (e.g., a WSDL
cannot be generated).

e Warning: one or more non-fatal events (i.e., events that
do not prevent further inter-operation) occur during the
execution of a particular test. This type of events suggests
or indicates the presence of some issue, which has
potential to later result in an inter-operation problem
(e.g., client code can be generated but fails to compile).

e Correct: the test is able to finish without any visible
issue (fatal or non-fatal).

The result of testing a service against a particular client framework
is named an interoperability level (from I to V), which describes
the ability of that service to inter-operate with that client
framework. This level refers to the last level successfully achieved
during the inter-operation tests. Thus, after a new service is
submitted to INTENSE for testing, one of the following outcomes
can be achieved:

e Level I: this level will be reached if the server-side
framework is able to generate a WSDL file. The WSDL
(which may be the only input of the tests) is then checked
for WS-1 compliance.

103

o Level II: the framework is able to generate client-side
code starting with the WSDL mentioned in the previous
level.

e Level Ill: the framework, or the compilation tool
required by the framework, is able to compile generated
client-side code.

e Level IV: the client is able to use the generated client
artifacts to correctly communicate with the server. A
message that is sent from the client is correctly delivered
at the service application, i.e., the contents, structure and
data types are equivalent (please refer to Section 4 for
further details on this comparison).

e Level V: the service is able to communicate correctly
with the client. A reply that is sent from the service is
correctly delivered (i.e., it holds an equivalent structure,
types, and values) at the client application.

As an example, if service y is classified with Level 11l during the
tests against framework «, this means that it is possible to: i)
generate a WSDL file from service code; ii) to use framework « to
generate client-side artifacts; iii) and to compile those artifacts with
the tools required by framework o (although these tools are not
necessary part of framework «, they might simply be the
recommended or typical tools used). Thus, in the case of this
example, one failure occurs when sending messages from client to
server. A failure in this step means that the structure, types, and
values of the objects being transmitted are not equivalent (please
refer to Section 4 for the technical details).

Figure 3 shows an example of a concluded test in INTENSE, with
a service that reached only Level Il, when being tested against the
Axis2 framework. As we can see, the service passes Level | and
Level Il without a single warning, but unfortunately it is impossible
to compile the client artifacts produced by this tool. INTENSE
stores all test information, so it’s possible to inspect the tests results
at each of the inter-operation levels by clicking the respective level.
Figure 3 shows precisely this scenario, where the user can
understand which type of error was generated in Level Il and use
that information to understand if some correction is required.

WitWSs Certification Pipeline

[tpcapp2 wsimport] on [2016-01-25 00:30:14.855]

=
| =
[
[
[

v Certification level 1

v Certification level 2

v Certification level 4
Results

About

| v Certification level 3
| v Certification level 5

[tpcapp1 axis2] on [2016-01-25 00:29:29.071]
[tcpapp 1 wsconsume] on [2016-01-25 00:28:06.404]

[tpapp1 wsimport] on [2016-01-25 00:26:49.901]

[test1 tpcapp wsimport] on [2016-01-25 00:24:33.118]

Figure 3. The detailed results of a test.

ARCHITECTURE OF INTENSE

In this section we describe our tool’s architecture and the internal
mechanisms that allow executing the tests. We put particular

WitW's' - Web application for interoperability testing of web services

emphasis on the mechanisms used for Level IV and V
(communication), due to the technical challenges involved.

Figure 4 presents the architecture of INTENSE, which in practice
is kept in two parts, one corresponding to the INTENSE application
(left hand-side of the figure) and the other one (right hand-side of
the figure) holding three components that are strictly responsible
for conducting activities specific to the interoperability tests. The
INTENSE application (left hand-side of the figure) is composed of
three main layers: the presentation layer, which contains all aspects
related with information display and user interaction; the core layer,
which is the part of the application responsible for coordinating and
executing the tests and contains, in this way, the central
functionality of the tool; and the persistence layer, which handles
all persistence requirements of the tool. In this section we describe
the core layer architecture and operational details, including its
interface with external systems, used by our tool.

witws RMI/ETP . Server
~ TCP
Presentation D
Comparison
Core D o - P SOAP SOAP
Server
Persistence D = T -
RMIfFTP Client

Figure 4. INTENSE architecture.

As we can see, the core layer architecture has contact with several
components. These components are a client which will be
responsible for executing all consumer-side tasks (i.e., generating
artifacts, compiling artifacts, and generating and executing client
code); a server, which contains a web server and the server-side
framework, which allows deploying the service to be tested; a
comparison server which is responsible for analyzing the
equivalence of the information sent by the client and received by
the server (and vice-versa) at runtime (i.e., during steps 4 and 5).

Figure 4 also shows RMI, FTP, and TCP communication between
the different components. In short, RMI is used simply as a means
to send commands that will be executed directly on the destination
operation system; FTP is the service used for sending code files
(i.e., the service code for deployment, or the client code for
execution); and TCP is used to send lower-level information such
as variable values received by a service during the tests, or the result
of comparing objects coming from both ends of an interaction. All
machines are connected via an isolated Ethernet network. Although
most of the tests could take place in the same physical machine, we
opted to have further isolation when using tools that might have
bugs that can affect the availability of the machine.

As discussed in the previous section, the user can start a job in two
ways, by submitting a WSDL, or by submitting the code. As this
latter option includes all testing steps, we use it to explain the
functionality of the tool from this point onwards. In the core layer
of INTENSE there is a central component, which we refer to as
TestManager, that is responsible for: waiting on a queue for new
jobs (each job represents an interoperability test added by a user);
starting the execution of a new job; and for coordinating all steps
necessary to conclude the inter-operation tests that compose a job

104

When a new job is created, by submitting the code interface, and
the TestManager has concluded any other previously submitted
jobs, the TestManager starts the 5 tests that assess each of the steps
of the whole inter-operation process. This corresponds to passing
control to a pipeline of 5 components, which execute in sequence.
Each of these components implement the tests required at each
inter-operation step. We will not further detail the internal
components of the tool in this paper, as they strictly reflect
implementation choices. Thus, we focus on the main tasks
involving the inter-operation tests. The next subsections describe
the technical details involving the implementation of the tests
required by the 5 inter-operation steps.

Service Description Generation

After the user uploads the service source code s/he also identifies
the server platform required to deploy the code and initiate the tests.
Before deploying the service, the service code is pre-processed to
remove any business logic and further prepared to handle the next
phases of testing. In particular, INTENSE adds code that will
inspect the objects arriving and leaving the server, thus helping
assessing steps 4 and 5 (client communication and server
communication), respectively. We will explain this object
inspection in detail in Section 4.4 and Section 4.5, which explain
the steps 4 and 5, respectively.

After the code is pre-processed, our platform builds the necessary
package for deployment, when required by the server platform (for
instance, it compiles the code and builds a WAR file if the service
is Java-based, which includes creating all necessary directories for
the different uploaded files) and uploads the package to the
necessary server by FTP, which was previously identified by the
user. INTENSE then waits for correct deployment of the service,
expecting a WSDL file to be produced within a configurable time
period. If the WSDL is not produced in that time period, tests for
that service cannot begin and cleanup follows. In this case, the
TestManager is free to start the next pending job.

If the WSDL is not generated, we mark this as an error, as it is an
event that prevents the execution of further inter-operation tests.
Otherwise, if the WSDL is successfully produced, a remote
machine, which will act as client for that server in the next inter-
operation steps, is ordered (via RMI) to run the WS-1 tests using the
generated WSDL as input. The output of the WS- tests is gathered
and sent back to the test manager. At this point, these tests might
produce some warnings, but will never prevent further inter-
operation steps (i.e., will not generate a errors).

Client Artifact Generation

After passing the service description generation step, the
TestManager commands the remote machine involved in the client-
side tests (i.e., the machine that holds the user selected platform) to
generate client artifacts. The output produced by that process (e.g.,
the wsimport tool, or wsconsume) in the remote machine is
gathered and sent back to the TestManager that dispatches the
message to the respective problem classifier that will understand if
the tool failed, produced warnings, or was successful. Of course,
this classification task is highly dependent on the tools being used,
as tools fail in different ways, and their output can be quite diverse.
Thus, in the worst case, we must provide a classifier for any new
specific tool that is added to the system, which is essentially a
function that receives text as input (i.e., the text that is the output of
the tool) and classifies that text as an Error, Warning, or as Correct.

WitW's' - Web application for interoperability testing of web services

Client Artifact Compilation

In the case of platforms that require code compilation (e.g., Java,
C#), the compilation tool that is required by the client-side
framework to compile the code is used in this step. Again, this is
something run remotely and the outcome is sent back to INTENSE
to be checked for the presence of warnings, or errors (as in step 2).

Client Communication

This step is centered around having a way to understand if the
information at the client and before passing through the client-side
framework is equivalent to the one that is received at the service,
i.e., after passing through the server-side framework. If the
frameworks are able to inter-operate correctly, the information at
both ends will be the same.

Understanding if the data is the same at both ends holds significant
challenges, as we may have different programming languages
involved, or simply different data types when using the same
language. In this context, comparing the information at both sides
holds specificities that exclude or make extremely difficult the
application of an already established serialization mechanism. In
the context of web services, and considering the specific goals
involved in this step, the requirements for having correct
communication are the following:

a) The values sent by a client to a server must be the same at both
ends of the interaction. This implies that they are also placed in the
right placeholders, i.e., the values are associated with the right
variables, which means that we need to know values and be able to
compare a given value in a client-side object with another value in
the equivalent position in the server-side object.

b) The data types of the variables that hold the values that will be
sent to the server must be equivalent, although not necessarily the
same. If the inter-operation process goes well, we will find
equivalent data types at both sides of the interaction. This means
that, for instance, if we have a Java-based operation that accepts a
byte as input argument, we will expect to see an shyte being used
in a C# .NET client to invoke the remote operation. This of course
depends on the correct behavior of the client artifact generation
tool, which will map the XML Schema data type to the specific
platform data type and that, in the case of this example, will be
shyte.

¢) The object or set of objects involved in the invocation must have
the same structure at both ends of the interaction. We must be able
to check if the structure of a specific complex object is the same at
both ends, which implies that we also need to represent and process
such information.

In addition to the comparison requirements abovementioned, this
step requires that we create and execute a client that invokes a
remote operation. The correctness of this step is evaluated with the
help of hook code that we add to the client (placed immediately
before the remote operation invocation) and that we have
previously added (during the pre-processing of the service code) to
the service (immediately after the operation arguments are
received). The purpose of this hook code is simply to collect the
information that is about to leave the client, or has just reached the
server, for comparison purposes. Thus, this Client Communication
step involves the execution of the following tasks, which we
describe in further detail in the next paragraphs:

e Task I: Creation of invocation code that uses the client
artifacts to invoke the remote operation and send the data
to a Comparison Service.

105

e Task Il: Verification of the correctness of the client-
server communication.

Task I: Creating invocation code

Before executing the web service consumer, we need to create
code, which, at runtime, will use the generated artifacts to invoke a
remote operation. As this code must work for any service,
INTENSE generates code that performs the following functions:

i Inspects artifact objects to discover what is the operation
to be invoked and its required arguments;

ii. Initializes service port objects that will allow invoking the
operation;

iii. Inspects the artifacts to automatically fill the operation
arguments with random values;

iv. Serializes and transmits all information regarding the
operation inputs to the Comparison Server (please refer to
the description of Task Il for details);

V. Invokes the remote operation.

INTENSE locally generates code that performs all of the above
functions. This code is specific for the client-side platform being
used, and will be uploaded to the machine where step 3 was carried
out to be compiled and executed. The client code is generated using
a Velocity template, which is expanded at runtime with the right
values to create functional code (as described in the the next
paragraph). The decision of including this information in a template
is due to the fact that we need to perform modifications whenever
we intend to expand INTENSE to support further tools. Thus, we
limit the number of changes in the source code by moving these
aspects to a template that lives outside the code.

For Java-based clients, the generated code makes use of reflection,
which means that it is prepared to handle any kind of service (i.e.,
a service using any number or type of arguments for its operations),
as the code is dynamically inspected at runtime and the proper
actions are taken, according to the structures found. In other
mainstream languages similar mechanisms exist and can be used in
the future, when the platform is extended.

Task 11:1 erifying communication correctness

In order to understand if the information at the client and server
endpoints is the same, we designed a serialization mechanism that
deep-serializes objects and transforms their basic constituents (e.g.,
integer values, float, boolean) into text while keeping information
regarding object structure and data types. At the client-side (and
also at the service-side as described next) the outgoing object
information is sent in a series of basic messages to the Comparison
Service, according to the following general conversation pattern. A
first basic message includes the following main information: an
identifier of the interoperability test (for correlation and verification
purposes at the Comparison Service); information regarding the
endpoint so that the Comparison Service can understand if it there
is another endpoint to wait for or if it is allowed to proceed with the
comparison; and most importantly, metadata regarding a set of N
messages that will follow and that describe each of the values that
compose the operation arguments. Using this last part of the
information, the Comparison Server performs the corresponding
number of reads, according to the information received in the first
basic message and acknowledges reception.

WitW's' - Web application for interoperability testing of web services

The abovementioned exchange of messages is a conversation, for
which we provide minimal delivery guarantees. Each basic
message actually initiates with 2 bytes. These 2 bytes express the
number of 8-bit characters, which will follow up, so that the other
side is able to read the exact quantity or fail. This is the same
contract used in the Java language in the methods writeUTF and
readUTF of the data stream classes and can be implemented in any
language that supports the sockets abstraction. Also, we are not
interested at the moment in a more complex protocol, which would
allow us to recover from failures (i.e., logging and re-sending lost
messages, using negative acknowledgments, etc.). We are simply
interested in understanding if the information is being received as
a whole or not. If there is a problem in the communication,
INTENSE interrupts the interoperability test.

As mentioned, each of the basic messages that follow the first one
hold information regarding a particular parameter. The information
is used to analyze the three correctness requirements described in
the beginning of Section 4.4 and contains data regarding: i) the
structure of the operation argument as perceived at the client side,
as each particular variable can be found at several degrees of depth
(e.g., a String wrapped in a custom class, in turn part of a List); ii)
the type of the argument being analyzed (java.lang.String); iii) the
value for that particular argument (which was generated by
INTENSE).

Some objects hold special characteristics and this is the case of
Lists and Maps. In the case of Lists, each member of the list is
simply viewed as an attribute of this container and is given a unique
numeric name. In the case of Maps, each map entry is viewed as an
attribute of this container and given a name that is equal to the map
key. The corresponding value is naturally the value that is
associated with that particular key.

At the service-side, if the remote operation is invoked
successfully, i.e., if the SOAP message sent by the client is
delivered at the service, then we are able to get the arguments and
also serialize them and send them to the Comparison Server. The
difference is that, only the eligible arguments of that operation are
sent to the Comparison Server. For instance, the eligible arguments
are the ones that, in the case of the Java language have
corresponding getters and are in fact announced as arguments of
the operation (i.e., they respect the JavaBeans specification). As an
example, if a Java service accepts a complex type as argument we
may find fields in the class that are not present in the announced
interface. These fields will not be serialized, as they are not
involved in the process.

At the Comparison Server we will have an application-level
representation of the operation arguments at the client-side (i.e.,
before they were serialized to SOAP) and also the application level
representation of the arguments at the service-side (i.e., after being
transmitted in a SOAP envelope and after being deserialized from
SOAP to a set of application-level objects). This pair of information
is scanned in the following three phases:

i We verify if the structure of the objects is the same on the
two sides. Thus, we perform a depth analysis on the nodes
that contain values, and we must find the same relative
depth at all points, otherwise, the structure of the objects
at the client-side is different from the one found at the
server-side.

ii. We verify the data types are equivalent (but not
necessarily the same). For this we use the established
language mapping used by Google Protocol Buffers [19],
which already specifies, for a few programming

106

languages, a mapping between data types (e.g., a double
in C# is equivalent to a Float in Ruby).

iii. We check if the values present at each side, at each
corresponding position, are the same.

If any of the above scans fails (e.g., a value is missing on one of the
sides of the interaction), the inter-operation process has failed. In
the end, the result of the comparison will reach INTENSE and will
include the above three levels of detail, so that the tester can take
the proper actions.

Server Communication

The server communication step is similar to the previous one. In
this case, there is a single object (i.e., the operation response)
involved in the communication, however it can be complex and
contain various sub-objects. Similar to the client code, this object
is also instantiated by INTENSE, its constituents are recursively
filled with random values, and it is serialized and sent to the
Comparison Server. After this, it will follow the regular path and
will be converted to SOAP, received at the client-side framework,
and converted from SOAP back to a programming language object.
When it reaches the client code, this object will also be serialized
and sent to the Comparison server, which will perform the same
comparison functions as described in the Client Communication
step. If some difference is detected (i.e., in structure, types or
values) then inter-operation process has failed in this step. After the
inter-operation tests conclude (successfully or not), cleanup
procedures follow, so that a new interoperability test can begin
from a clean state.

EXPERIMENTAL EVALUATION

In this section we describe the experimental evaluation, which was
designed essentially to verify and validate the tool’s capabilities in
detecting interoperability issues. The next sections describe the
scenarios used and main results obtained during the experiments.

Experimental Setup
We selected the following set of well-known platforms for
deploying and invoking web services:

e Server-side: Metro 2.3.1 on the Glassfish 4.1 server;
JBossWS 5.0.0 on Wildfly 9.0.1.Final
e Client-side: Metro 2.2.9; JBossWS 5.0.0; Axis2 1.6.4

We used every possible combination between the client-side
platforms and server-side during the interoperability tests, thus
resulting in a total of 6 combinations. Regarding the services, we
considered the following scenarios (the whole set of services is
available at [201]).

e Synthetic services: A set of 10 custom services, created
to provide initial different test cases to exercise the tool.

WitW's' - Web application for interoperability testing of web services

The services range from simple cases (a single and
simple argument for service operation) to more complex
cases (service operations accepting complex parameters
involving lists, maps, and custom complex objects with
nested complex objects).

e Realistic services: A set of 10 web services specified by
the TPC-App benchmark [21]. The goal here is simply to
demonstrate the application of INTENSE to a realistic
scenario and further exercise the tool and disclose any
possible bug in the tool.

e Real services: Selected cases of 80 web services publicly
available on the Internet. In this case the goal is to, based
on the authors results in [1], show that INTENSE is based
to detect known web service framework bugs and at the
same time does not signal inexistent problems.

e Faulty services: The most complex service of the
synthetic services was selected to be used with a fault
injector. This fault injector applies three different types
of faults into the data being exchanged between client
and server and vice-versa. Thus, it emulates 10 different
cases (5 problems detectable at the server-side plus 5 at
the client-side). The fault types are: i) structure changing
faults; ii) data type changing faults; iii) value mutation
faults (which can be value replacement, value addition,
or value removal).

We executed the inter-operation tests for the above sets of services
(Axis2 was not used to test the communication steps), resulting in
a total of 420 inter-operation tests, which are discussed in the
following section.

Results

Table 1 summarizes the results of the experimental evaluation,
showing the results per service set and per framework used. The
results for each of the inter-operation levels (regarding each
combination service set / framework) are further detailed. Note that
we do not show the results per server-side framework, as they were
found to be the same. In the table, w means one or more warnings
were found; e refers to one or more errors being found; and a dash
indicates that the tests were not run for that level.

As we can see in Table 1, INTENSE was able to detect different
problems in all steps of the inter-operation process, with exception
of the deployment step where we only uncovered warnings
(resulting from the execution of the WS-I tests). In fact, authors in
[2] emphasize that the deployment in current major platforms is
quite robust, failing whenever the rules are not fulfilled (e.g., a class
not being provided, or a wrong structure in the deployment file),
but if the deployment complies with the basic rules it’s very
difficult to find a fatal problem. Obviously we also tried to deploy
undeployable services, which served to verify the correctness of
INTENSE. Anyway, we did not manage to get an error in step 1,

Table 1. Results of the interoperability tests.

Metro JBossWS AXis2
Sets | mim | v | v | In[u v | v | 1 i | v V
Synthetic w - -
Realistic w - -
Real w e - - w e - - w e e - -
Faulty e e e e w - -

107

using a service that complies with the deployment rules (e.g.,
having a java class annotated with @WebService).

Regarding the synthetic set, no error was found, in any of the five
inter-operation levels, probably due to the small size of the
experiments, but anyway the set was useful for verifying INTENSE
basic functionalities. However, we did observe warnings using
AXxis2, related with the absence of typed collections during the
compilation process, for all services in this set.

The results regarding the realistic set were similar to the above.
Clearly, we were expecting detecting more problems in the Real
services, as they include services built on many different platforms,
and also obviously in the Faulty services. In the case of the real
services, we selected cases from the set used by the authors in [1],
for validating our tools results. 12.5% of the services in this set
were selected for being known to not generate any kind of problem
[1], which was confirmed by our tool. Of the remaining, we
highlight one case resulting in an error in Level Il with JBossWS
(which however did not fail with Metro or Axis2). We also
highlight 10 services failing with Metro and JBossWS but not
failing with Axis2 in Level Il. In 9 of these services a compilation
problem was detected when using Axis2 in Level Ill. Also present
in this more heterogeneous set, were some WS-l warnings, which
we used to fine-tune INTENSE warning detection capabilities.
Obviously, when using the real services set we are unable to reach
steps 4 or 5 (marked with a dash in Table 1), as we do not have
access to the service code or infrastructure.

Finally, we used the faulty service jointly with a fault injector that
emulates a framework holding bugs. As we were not using a weakly
statically typed programming language in these experiments, we
were not able to change the structure or object types, although we
simulated these two situations by changing the information
travelling to the comparison server, which handled these cases
properly. However, we managed to detect three kinds of problems
in the communication, even when the communication is slightly
different due to the use of the different frameworks. Thus, we were
able disclose errors due to missing values, extra values and
modified values.

CONCLUSION

In this paper we presented INTENSE, a web-based testing tool that
allows testing a web service against multiple client platforms. The
tool can be used without the presence of the code of the service
being tested (i.e., it only requires a WSDL file to perform tests),
although it can perform extended communication tests if the service
source code (i.e., the service interface code) is provided. INTENSE
was used to test 4 sets of services deployed on very popular
implementations of the web services stack — Metro, the JAX-WS
reference implementation on Glassfish, and JBossWS on the
WildFly server. Tests were run against the client-side
implementation of Metro, JBossWS, and also against Axis2. The
problems disclosed during the experiments, including problems
introduced by our custom fault injector, served to illustrated the
utility of our testing service and its problem detection capabilities.
Without this type of testing, many of these problems usually pass
unaware to developers, only to be found at runtime, when a
particular client interacts with the service. Future work includes
extending INTENSE to support further web service frameworks,
which will allow the community to take further advantage of this
testing service.

ACKNOWLEDGMENTS

108

WitW's' - Web application for interoperability testing of web services

This work has been partially supported by the Project DEsign,
Verification and VAlidation of large-scale, dynamic Service
SystEmS (DEVASSES), Marie Curie International Research Staff
Exchange Scheme (IRSES) number 612569, within the context of
the EU Seventh Framework Programme (FP7).

REFERENCES

[1] L A.Elia, N. Laranjeiro, and M. Vieira, “A Field Perspective
on the Interoperability of Web Services,” in 11th IEEE
International Conference on Services Computing (SCC
2014), Anchorage, Alaska, USA, 2014.

I. A. Elia, N. Laranjeiro, and M. Vieira, “Understanding
Interoperability Issues of Web Service Frameworks,” in The
44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2014), Atlanta,
Georgia, USA, 2014.

I. A. Elia, N. Laranjeiro, and M. Vieira, “Test-based
Interoperability Certification for Web Services,” in The 45th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2015), Rio de Janeiro, Brazil,
2015.

Web Services Interoperability Organization (WS-I), “Web
Services Interoperability Organization (WS-1),” 2002.
[Online]. Available: http://www.ws-i.org/. [Accessed: 16-
Sep-2008].

C. Ferris, A. Karmarkar, P. Yendluri, K. Ballinger, D.
Ehnebuske, M. Gudgin, C. Liu, and M. Nottingham, “WS-I
Basic Profile - Version 1.2, 24-Oct-2007. [Online].
Auvailable: http://ww.ws-i.org/Profiles/BasicProfile-
1 _2(WGAD).html. [Accessed: 14-Feb-2008].

Web Services Interoperabily Organization (WS-I),
“Deliverables - Basic Profile Working Group,” 2014.
[Online]. Auvailable: http://www.ws-
i.org/deliverables/workinggroup.aspx?wg=basicprofile.
[Accessed: 13-Jan-2014].

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana, “Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI,” IEEE Internet
Computing, vol. 6, no. 2, pp. 86-93, 2002.
IEEE, “IEEE Standards Glossary,”
Available:
https://www.ieee.org/education_careers/education/standard
s/standards_glossary.html. [Accessed: 29-Sep-2015].

K. M. Senthil Kumar, A. S. Das, and S. Padmanabhuni,
“WS-1 Basic Profile: a practitioner’s view,” in |IEEE
International Conference on Web Services, 2004.
Proceedings, 2004, pp. 17-24.

K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham,
and P. Yendluri, “WS-I Basic Profile - Version 1.0,” 2004.
[Online]. Auvailable: http://ww.ws-
i.org/Profiles/BasicProfile-1.0.html. [Accessed: 06-Dec-
2013].

P. Ramsokul and A. Sowmya, “A Sniffer Based Approach
to WS Protocols Conformance Checking,” in The Fifth
International Symposium on Parallel and Distributed
Computing, 2006. ISPDC "06, 2006, pp. 58—65.

C. Pautasso, O. Zimmermann, and F. Leymann, “Restful
Web Services vs. ‘Big”> Web Services: Making the Right
Architectural Decision,” in Proceedings of the 17th
International Conference on World Wide Web, New York,
NY, USA, 2008, pp. 805-814.

(2]

(3]

(4]

(5]

(6]

(7]

(8] 2015.

[Online].

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

A. Bertolino and A. Polini, “The audition framework for
testing Web services interoperability,” in 31st
EUROMICRO Conference on Software Engineering and
Advanced Applications, 2005, 2005, pp. 134-142.

E. Damiani, N. El Ioini, A. Sillitti, and G. Succi, “WS-
Certificate,” in 2009 World Conference on Services - |,
2009, pp. 637-644.

M. Anisetti, C. A. Ardagna, and E. Damiani, “Fine-Grained
Modeling of Web Services for Test-Based Security
Certification,” in 2011 IEEE International Conference on
Services Computing (SCC), 2011, pp. 456-463.

K. Ballinger, D. Ehnebuske, C. Ferris, M. Gudgin, C. K. Liu,
M. Nottingham, and P. Yendluri, “WS-1 Basic Profile -
Version 1.1,” ProfilesBasicProfile-11 Html April, 2006.
CrossCheck Networks, “SOAPSonar - Advanced Client
Simulation for Service Testing.” [Online]. Available:
http://www.crosschecknet.com/products/soapsonar.php.
[Accessed: 13-Jan-2014].

Eviware, “soapUL” 2011. [Online]. Available:
http://www.soapui.org/. [Accessed: 04-Jul-2011].

Google Inc., “Protocol Buffers Language Guide (proto3),”

2015. [Online]. Auvailable:
https://developers.google.com/protocol-
buffers/docs/proto3. [Accessed: 01-Dec-2015].
“witws_tests.zip,” Google Docs. [Online]. Available:

https://drive.google.com/file/d/0B4SrxuwR8GJ2V3VtcHp
YSE1jZIU/iew?usp=embed_facebook. [Accessed: 29-Jan-
2016].

Transaction Processing Performance Council, “TPC
Benchmark App (Application Server) Standard
Specification, Version 1.3,” 2008. [Online]. Available:
http://imww.tpc.org/tpc_app/. [Accessed: 05-Jul-2008].

109

WitW's' - Web application for interoperability testing of web services

WitW's - Web application for interoperability testing of web services

110

