
Master’s Degree in Informatics Engineering

Dissertation

Visualisation and Analysis of
Geographic Information:
Algorithms and Data Structures

July, 2015

João dos Santos Valença
valenca@student.dei.uc.pt

Advisors

Prof. Dr. Lúıs Paquete
Eng. Pedro Reino

mailto:valenca@student.dei.uc.pt




Visualisation and Analysis of

Geographic Information:

Algorithms and Data Structures

Master’s Degree in Informatics Engineering

Dissertation

July 6, 2015

João dos Santos Valença

Department of Informatics Engineering
University of Coimbra

valenca@student.dei.uc.pt

Advisors

Prof. Dr. Lúıs Paquete Eng. Pedro Reino
Department of Informatics Engineering Smartgeo Solutions

University of Coimbra Lisbon, Portugal
paquete@dei.uc.pt pedro.reino@smartgeo.pt

Jury

Prof. Dr. Filipe Araújo Eng. Alcides Fonseca
Department of Informatics Engineering Department of Informatics Engineering

University of Coimbra University of Coimbra
filipius@uc.pt amaf@dei.uc.pt

-

valenca@student.dei.uc.pt
mailto:paquete@dei.uc.pt
mailto:pedro.reino@smartgeo.pt
mailto:filipius@uc.pt
mailto:amaf@dei.uc.pt




Abstract

In recent years, Geographic Information Systems have witnessed a large increase in data avail-
ability. There is a need to process a large amount of data before it can be managed and analysed.
This project aims to develop an application operating through a Web platform in order to al-
low for a low cost and simplified integration, management and manipulation of georeferenced
information. Special emphasis is given to the implementation of efficient clustering algorithms
for finding a representative set of points in a map. In the thesis, this representation problem
is formulated as two classic optimisation problems: the k-center and the geometric disk cover.
The approaches covered in this thesis include exact algorithms for solving the k-centre problem,
as well as approximation algorithms and heuristic methods to solve the geometric disk cover
problem. The algorithms are experimentally evaluated in a wide range of scenarios.

Keywords

Geographic Clustering, Computational Geometry Algorithms, Coverage Problems, Real-Time
Applications.

Resumo

Nos últimos anos, os Sistemas de Informação Geográfica têm assistido a um grande aumento na
quantidade de dados dispońıveis. De facto, existe uma necessidade de encontrar uma maneira
eficiente de processar grandes quantidades de dados para que tanta informação possa ser facil-
mente gerida e analisada. Este projeto visa desenvolver uma aplicação para uma plataforma
Web, de modo a obter uma integração simples e de baixo custo que manipule e analise dados
georeferenciados. Uma ênfase especial é dada à implementação de algoritmos para encontrar
um conjunto representativo de pontos num mapa. Nesta tese, o problema de representação
é formulado como dois problemas de optimisação clássicos: k-centre e geometric disk cover.
As abordagens descritas nesta tese incluem algoritmos exactos para resolver o problema do k-
centre, bem como algoritmos de aproximação e métodos heuŕısticos para resolver o problema de
geometric disk cover. Os algoritmos são experimentalmente avaliados numa grande seleção de
cenários.

Palavras-chave

Clustering Geográfico, Algoritmos de Geometria Computacional, Problemas de Cobertura, Aplicações
em Tempo Real.

J. Valença i



ii J. Valença



Acknowledgements

First and foremost, I would like to thank my parents, for supporting me, providing me

with a great familiar environment, and helping me get to where I am today.

My thanks to my advisor, Professor Lúıs Paquete, for all the readiness and effort to make

my thesis better as well as the trust in me and my abilities as a computer scientist.

To my friends, thank you for the leisurely moments and incessant banter, which are part

of a healthy lifestyle and coexist with the hard work.

My thanks also go to the ECOS lab, for the company and work environment.

Finally I would like to thank the people at Smartgeo Solutions, for the all the help and

for presenting me a great challenge, which made working on this thesis a very pleasant

experience.

This thesis was developed within the work plan of a research grant for undergraduates, in the context

of the R&D project QREN unit in co-promotion no.34164 - Smartgeo Portal “Geographic Information

Management System”. The project is co-financed by QREN and Innovation Agency within the scope of

the technological development and research incentive system, by the Operational Program for Competi-

tiveness and Internationalization (Compete).

J. Valença iii



iv J. Valença



Contents

1 Introduction 1

2 Concepts, Definitions and Notation 5

2.1 Definitions of Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The k-centre Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Geometric Disk Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Algorithmic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.2 Heuristic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.3 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Geometric Concepts and Data Structures . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Nearest Neighbour Search and Point Location . . . . . . . . . . . . . . . . 10

2.5.2 k -Dimensional Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3 Orthogonal Aligned Range Search . . . . . . . . . . . . . . . . . . . . . . 12

2.5.4 Voronoi Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.5 Delaunay Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.6 Hilbert Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Exact Algorithms for the k-Centre Problem 21

3.1 Näıve Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Delaunay Assisted Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Algorithm Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Geometric Disk Cover 33

4.1 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Proximity Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Set Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Heuristic Speed-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Two-phase filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Region Panning and Zooming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 47

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

J. Valença v



A Theorems and Proofs 49
A.1 Median of Medians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2 Set Cover Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.3 Circle Packing Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vi J. Valença



List of Figures

1.1 Example of a Representative Subset . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Program Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Different assignments for the same set of points . . . . . . . . . . . . . . . . . . . 6
2.2 Example of a k -d Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Example of a range search query on a k -d Tree . . . . . . . . . . . . . . . . . . . 12
2.4 Illustration of the Line Sweep method. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Example of a Voronoi Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Example of a Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Overlap of a Voronoi Diagram and its Delaunay Triangulation . . . . . . . . . . . 15
2.8 Illustration of the Half-Edge Structure . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Example of the Greedy Routing Algorithm . . . . . . . . . . . . . . . . . . . . . 17
2.10 Illustration of the Walking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 First Five Orders of Hilbert Curve Approximation . . . . . . . . . . . . . . . . . 19

3.1 Illustration of the branching process . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Illustration of a centroid insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Illustration of a non-centroid insertion . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Illustration of a centroid removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Illustration of a non-centroid removal . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Illustration of the lower bound calculation. . . . . . . . . . . . . . . . . . . . . . 24
3.7 Illustration of a centroid insertion using the geometric method . . . . . . . . . . 25
3.8 Illustration of a non-centroid insertion using the geometric method . . . . . . . . 26
3.9 Illustration of a centroid removal using the geometric method . . . . . . . . . . . 27
3.10 Illustration of a non-centroid removal using the geometric method . . . . . . . . 27
3.11 CPU-time for different values of K with varying values of N . . . . . . . . . . . . 29
3.12 CPU-time for different values of N with varying values of K . . . . . . . . . . . . 30

4.1 Illustration of the proximity graph . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Illustration of the state of the proximity graph after the first iteration . . . . . . 35
4.3 Illustration of the state of the final chosen set . . . . . . . . . . . . . . . . . . . . 35
4.4 Selected subsets from both graph building algorithms . . . . . . . . . . . . . . . . 36
4.5 CPU-time for Line Sweep and k-d Tree range search. . . . . . . . . . . . . . . . . 38
4.6 Memory used by Line Sweep and k-d Tree range search. . . . . . . . . . . . . . . 38
4.7 Number k of points selected for Line Sweep and k-d Tree range search. . . . . . . 38
4.8 CPU-time for Line Sweep and Random Sampling algorithms. . . . . . . . . . . . 40
4.9 Memory used by Line Sweep and Random Sampling algorithms. . . . . . . . . . 40
4.10 Number k of points selected for Line Sweep and Random Sampling algorithms. . 40
4.11 Selected subset using the full set and a sampled subset . . . . . . . . . . . . . . . 41
4.12 Illustration of the worst case scenario for the error of the two-phase algorithm . . 42
4.13 CPU-time for Line Sweep and Two-phase filter algorithms. . . . . . . . . . . . . 43
4.14 Memory used by Line Sweep and Two-phase filter algorithms.. . . . . . . . . . . 43
4.15 Number k of points selected for Line Sweep and Two-phase filter algorithms. . . 43

J. Valença vii



4.16 Two-phase filter result comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.17 Example of a panning motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.18 Example of a zooming motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.1 Most efficient distributions for circle packing for d = 0.1, d = 0.15,d = 0.2. . . . . 52

List of Tables

3.1 Time complexities for the various operations in a uniformly distributed point set 28

viii J. Valença



Chapter 1

Introduction

In recent years, there has been a large increase in the amount and availability of geographic data

which has prompted a similar rise on the number of applications to capture, store, manipulate

and analyse this data. A lot of these applications share the need to visualise the geographic

information in such a way that it can be easily understood by a human. This is usually done

by displaying points of interest on a map so that their relative position and distribution can be

easily interpreted by the user.

One obstacle when representing large amounts of geographic data is that the sheer number of

points to display can be overwhelming for a human, as well as computationally intensive to

render for a machine. As such, there is a need to develop and implement a viable way to reliably

calculate and display a subset of geographic points, whilst keeping a degree of representativeness

of the larger set.

The purpose of SGP-GIMS, a QREN-funded project that involves the University of Coimbra

and Smartgeo, is to research and develop a real-time algorithm that can analyse geographic data

provided by a geographic information system (GIS) infrastructure developed and maintained

at Smartgeo. More precisely, the developed algorithm must be able to aggregate and select

geographic points according to a given a set of criteria. Figure 1.1 shows a large set of geographic

points and an example of a representative subset.

Figure 1.1. Example of a starting set (left), and a representative subset (right).

J. Valença 1



2 Visualisation and Analysis of Geographic Information

This thesis aims to design and and analyse different algorithms that allow to choose a represen-

tative subset of geographic points, whilst being able to dynamically change that set of points via

zooming or panning over a geographic region containing a large amount of geographical data.

The algorithm that is deemed the most suitable to solve the task is integrated in a web frame-

work via the geojson and WFS (web feature service) geographic data communication standards.

The application is meant to function as an independent module capable of being decoupled and

used for different clients and/or servers. Figure 1.2 shows the basic concept of the architecture

for the web application.

Client

Display

Window

Web Application

Representation
Algorithm

Request
Processing

GeoServer

ge
o

js
on

R
eq

u
es

t
g
eo

js
on

R
es

p
o
n

se

W
F

S
R

eq
u

es
t

W
F

S
R

es
p

on
se

Figure 1.2. Proposed Program Architecture

Some well-known web applications and services perform similar operations that already select

points from large sets. Currently, there are two ways of handling the problem: to preprocess

the data into layers of representation, and to project the points into a limited resolution image

format.

Most of these applications rely on having different preprocessed layers of information, which

contain similarly ranked points. For example, a map of a continent would only request the layer

containing the capitals of the visible countries, whilst a map of a singular country would only

request the layer containing the cities within the viewing window’s coordinates. This solution

requires that a lot of preprocessed data be stored in a fairly large and robust database. It

also skips the representation problem by having points with different importance ranks. If any

geographic query returns too many points for the application to render, then it could choose to

only display the higher ranked ones or, alternatively, repeat the same query to the layer above

to reduce the number of points to be rendered. Since this project requires that no storage space

is used, other solutions must be found.

In the second approach of projecting all points to a limited resolution image format, mapping

vectorial points into a bitmap format with no aliasing means that all points that are closer

Introduction J. Valença



Visualisation and Analysis of Geographic Information 3

together than a pixel are likely be rounded off to the same spot, effectively merging the two

points. Explicitly creating an image file may result in a larger file, which may cause problems in a

bandwidth-dependent web application. The solution to this would be to round the coordinates

of every point to a grid, and only relay the coordinates of the grid that would contain any

points. This method, however, would mean a loss of precision increasing with the size of the

grid. Furthermore, the points selected would be grid-aligned, and not necessarily correspond

with any of the original, vectorial set. This would make for a visual pattern, which would be

obvious for a human user. This solution is therefore also not suitable for our purpose.

Since none of the two approaches were suitable for the project, particular algorithms were

developed to properly solve the problem. The first approach interpreted the representation

problem as an optimization problem known as k-centre [11]. This problem consists of finding k

points from a large set that optimizes a given measure of representation, namely coverage. The

cardinality constraint means that the number of representative points must be known before

the algorithm is ran, which is not always possible. Because of this particular limitation, and

coupled with performance issues, a second approach was considered: the coverage distance is

established a priori and the goal is to find the smallest set of points such that no point in

the set is uncovered. This is known as a Geometric Disk Cover [10] problem, and our specific

formulation has one extra constraint: each disk has it centre on a point of the original set. This

problem was solved using an approximation algorithm, which compromises the quality of the

result (within a controlled threshold) in order to be performed in a more reasonable time.

This report is organized as follows: Chapter 2 defines the base theoretical concepts, such as

a notion of representativeness, as well as some useful data structures used in the algorithms.

Chapter 3 describes the implicit enumeration algorithms implemented for the k-centre problem.

The goal of this problem is to, given a set N of n points, find the subset of centroids of cardinality

k that minimises the farthest distance of a point in N to its closest centroid. The chapter also

contains an analysis their time and space complexities. Chapter 4 describes an approximation

algorithm for the geometric disk coverage problem. The goal of the geometric disk cover problem

is to, given a set N of points and a minimum distance d, find the smallest number k of circles

of radius d centred around points in N such that no point is left uncovered. The chapter also

describes heuristic speed-ups and a space and time complexity analysis for the algorithms, and

ends with a proposed solution to the issue of panning the viewing window. The work developed

in this thesis was presented as a poster [25] on the 18th International Conference on Geographic

Information Systems, AGILE 2015.

J. Valença Introduction



4 Visualisation and Analysis of Geographic Information

Introduction J. Valença



Chapter 2

Concepts, Definitions and Notation

This chapter gives an introduction to the base concepts used further in this report. The chapter

starts by establishing the formal definition of the formal definition of the k-centre. Then it

proceeds to detail the algorithmic and geometric concepts to be used in the different approaches

described in the following chapters.

2.1 Definitions of Coverage

In the context of this thesis, the representation problem consists of finding a subset of points in

a larger set. The subset chosen should be able to keep some specified properties of the original

set, such as general distribution. As such there can be many ways to measure representation.

For the purpose of this thesis, we use the definition of coverage.

In two dimensions, coverage measures the area occupied by the union of a collection of shapes in

space. Since our method for representing points is based on the Euclidean distance, the shapes

are circles, since their circumference delimits all the possible points within a smaller distance of

the given radius. The points chosen to represent a larger set of points are called centroids as

they can ultimately cover a circular area centred around them. Therefore, any point p is covered

by centroid c if and only if it is contained in a disk of a given radius centred around c.

Although the points represent geographic locations, in this thesis the metric that would measure

their distance on the surface of the globe, the geodesic distance, is not used. The triangular

inequality property does not apply to geodesic distances as a sphere (or an approximation of

thereof) is not an Euclidean space, and it would add an unnecessary layer of complexity to

computing the coverage. Therefore, in this thesis, the coordinates of the points are the planar

projection of the geographic coordinates to their location counterparts, as implemented by the

WFS web mapping communication standard.

J. Valença 5



6 Visualisation and Analysis of Geographic Information

2.2 The k-centre Problem

One of coverage problems approached in this thesis is the k-centre problem. Given a set of points

N in R2, the goal is to choose a subset P that best matches our definition of representation. The

size of P , however, is constrained to a size k, which specifies how many points can be displayed

in a section of a map.

For any point in N not in P , there must be a point in P that best represents it. This notion

of representation may be defined by the distance, i.e. the point p that best represents q is the

closest point to q, or the one that minimises the Euclidean distance between the pair. Finding

the most representative set P in N means that every point in N is assigned to the point in P

closest to it. This definition of representation is referred to as coverage and the points in P are

called centroids.

The coverage value of a given centroid is defined by the circle around that centroid with the

radius defined by the distance between itself and the farthest non-centroid point assigned to it.

The coverage value of a subset is determined by the highest coverage value of its points. It can

thus be more formally described as:

max
n∈N

min
p∈P
‖p− n‖ (2.1)

where N is the initial set of points in R2, P is the centroid subset and ‖·‖ is the Euclidean

distance. The most representative subset, however, is the one with the minimum value of

coverage. This means all points are assigned to the closest centroid, minimising the coverage

of all centroids and avoiding overlapping coverage areas whenever possible. We can then finally

define our problem as the minimising the coverage:

min
P⊆N
|P |=k

max
n∈N

min
p∈P
‖p− n‖ (2.2)

This is known in the field of optimisation as the k-centre problem, and is an example of a facility

location problem [12]. Figure 2.1 shows two possible centroid assignments, each with its own

value of coverage, denoted as d.

d

Non-optimal assignment

d

Optimal assignment

Figure 2.1. Different assignments for the same set of points

Concepts, Definitions and Notation J. Valença



Visualisation and Analysis of Geographic Information 7

The k-centre problem is a well-known problem in the optimisation field of study. As such, several

approaches have been explored over the years. For the 1-dimensional case, the minimum coverage

value can be calculated in polynomial time [26]. However, for any other number of dimensions

it is an NP-hard problem, and cannot be solved in polynomial time [19]. One approach to the

problem is to model it in integer linear programming as follows:

minimise D (2.3)

subject to

N∑
j=1

yj = k (2.4)

N∑
j=1

xij = 1 i = 1, . . . , N (2.5)

N∑
j=1

dijxij ≤ D i = 1, . . . , N (2.6)

xij ≤ yj i = 1, . . . , N ; j = 1, . . . , N (2.7)

xij , yj ∈ {0, 1} i = 1, . . . , N ; j = 1, . . . , N (2.8)

In this formulation, yj = 1 if point j is a centroid and yj = 0 if it is a non-centroid; xij = 1 if

the point i is assigned to the centroid j, and xij = 0 otherwise; dij is the Euclidean distance

between points i and j. Constraint (2.4) ensures that k centroids are chosen. Constraint (2.5)

limits the assignment of one point to more than one centroid. Constraint (2.6) ensures that all

active distances are lower than the limit we are minimising. Constraint (2.7) limits points to

being assigned only to centroids. Constraint (2.8) defines both xij and yj as binary variables,

in order to properly represent selection and assignment.

It is worth noting that this formulation minimises the objective function by selecting the best

possible set of centroids, but it only minimises the maximum coverage. This way, only the

farthest point from its centroid has the guarantee that it is connected to its closest centroid.

Every other point, however, can be linked to any centroid so long as it is closer to it than the

distance defined by the objective function, since dijxij only has to be lower than D, but not

include the lowest possible values. Likewise, it can also produce the result where one centroid

is assigned to another centroid as opposed to itself, as long as they are close enough together

and it does not affect the coverage of the whole set. These cases have no effect on the outcome

of the final coverage value or the centroid selection, but are rather counter-productive, since we

want to minimize the coverage of all centroids, with minimal overlapping of the covered areas.

In order to best display the results, a simple post-processing step can be applied, where each

point is strictly assigned to the closest centroid. This can be easily computed in O((N − k)k)

time in case there is a need for a clearer display of the assignment.

Other more elaborate formulations can be used. Elloumi et al. [14] explore a new formulation to

obtain tighter bounds in the LP relaxation. They limit the values that the solution can take by

enumerating all unique values of distances between points and sorting them in decreasing order.

J. Valença Concepts, Definitions and Notation



8 Visualisation and Analysis of Geographic Information

2.3 Geometric Disk Coverage

Another coverage problem considered in this thesis is the geometric disk coverage problem.

Given a set of objects N and a fixed distance d, the goal is to minimise the cardinality of the set

of disks of radius d centred around a set of centroids P contained in N , such that all points in

N are covered. This is also a variation of the class of facility location problems [12], and shares

some similarities with the k-centre problem, described in the previous section.

The geometric distance cover problem can be seen as a dual problem to the k-centre. In fact, an

Integer Linear Programming formulation can be obtained by swapping the objective function

with one of the constraints:

minimise k (2.9)

subject to

N∑
j=1

yj ≤ k (2.10)

N∑
j=1

xij = 1 i = 1, . . . , N (2.11)

N∑
j=1

dijxij ≤ D i = 1, . . . , N (2.12)

xij ≤ yj i = 1, . . . , N ; j = 1, . . . , N (2.13)

xij , yj ∈ {0, 1} i = 1, . . . , N ; j = 1, . . . , N (2.14)

In this formulation, the value for the minimum distance D is given as a parameter and k is

the value to be minimized. The value for yj = 1 if point j is a centroid and yj = 0 if it is a

non-centroid; xij = 1 if the point i is assigned to the centroid j, and xij = 0 otherwise; dij is the

Euclidean distance between points i and j. Constraint (2.10) ensures that k or less centroids

are chosen. Constraint (2.11) limits the assignment of one point to more than one centroid.

Constraint (2.12) ensures that all active distances are lower than the limit we are minimising.

Constraint (2.13) limits points to being assigned only to centroids. Constraint (2.14) defines

both xij and yj as binary variables, in order to properly represent selection and assignment.

2.4 Algorithmic Concepts

2.4.1 Branch-and-Bound

The two problems in this thesis are NP-hard combinatorial problems [10, 19]. One possible way

of solving these problems is to use implicit enumeration algorithms such as Branch-and-Bound

algorithms. These algorithms solve the problems by recursively dividing the solution set in half,

Concepts, Definitions and Notation J. Valença



Visualisation and Analysis of Geographic Information 9

thus branching it into a rooted binary tree. At each step of the subdivision, it then calculates

the upper and lower bounds for the best possible value for the space of solutions considered at

that node. This step is called bounding. In the case of a minimisation problem, it would be the

upper and lower bounds for minimum possible value for the objective function in the current

node. These values are then compared with the best ones already calculated in other branches

of the recursive tree, and updated if better.

The bounds can be used to prune the search tree. This can be done when the branch-and-

bound algorithm arrives at a node where the lower bound is larger than the best calculated

upper bound. At this point, no further search within the branch is required, as there is no

solution in the current branch better than one that has already been calculated. In the case

that the global upper and lower bound meet, the algorithm has arrived at the best possible

solution, and no further computation must be done.

These algorithms are very common in the field of optimisation and can be very efficient, but their

performance depends on the complexity and tightness of its bounds. Tighter bounds accelerate

the process, but are usually slower to compute, so a compromise has to be made in order to

obtain the fastest possible algorithm.

2.4.2 Heuristic Techniques

Optimal solution algorithms, even very optimized ones, are oftentimes still too inefficient to be

used in any practical, time constrained application. One possible strategy to solve an NP-hard

problem is to use a heuristic method to speed the process up. A heuristic is a rule or method

that allows an algorithm to find a solution to problems faster than it would by calculating every

option. Heuristics do this by compromising the quality of the result, and so they do not calculate

the optimal solution to the problems. However, they are useful in applications where the time

is a more important factor than quality.

Local search is a heuristic method to find the solution to NP-hard problems. This approach

starts by finding a valid solution to a problem. Then, it tries to find similar valid solutions by

slightly modifying the original solution, thus searching the local space of candidate solutions.

After a local optimum is found or a time bound is elapsed, the best candidate is returned as the

local solution to the problem. This method offers no quality guarantee, but are very efficient in

practical implementations. Chapter 3 mentions a Local Search approach to the k-centre problem

that was proposed by Cambazard et al. [9].

2.4.3 Approximation Algorithms

Much like heuristic methods, approximation algorithms do not compute the optimal solution

to a given problem for the sake of time efficiency. Unlike heuristics, however, these algorithms

J. Valença Concepts, Definitions and Notation



10 Visualisation and Analysis of Geographic Information

are designed to compute a solution in polynomial time that differs from the optimal by a given

predictable factor [27]. For example, a 2-approximation algorithm for a minimising problem

never reaches any solution that is more than twice the optimal value for any given input. By

compromising the quality of the solution, the algorithms can take polynomial time.

In this thesis, we explore approximation algorithms to solve the set cover problem. The set

cover problem is a well-known combinatorial problem: given a Universe U of n elements, and

sets S1, . . . , Sk ⊆ U , one must find the smallest cardinality collection of sets whose union covers

U . Calculating the optimal solution to the set cover problem is NP-hard [10], and thus cannot

be solved in polynomial time. However, by using the greedy approach of iteratively picking the

set that contains the most uncovered points, it is possible to achieve an approximated solution in

polynomial time [27]. Assuming the instance of the problem has an optimal solution of m sets,

the greedy algorithm guarantees that its solution is bound above by m loge n. This statement

has the proof described in detail in Appendix A.2.

2.5 Geometric Concepts and Data Structures

In the following, we explain some geometric concepts that are used in the following chapters, in

order to simplify the explanation of more complex algorithms in further chapters.

2.5.1 Nearest Neighbour Search and Point Location

A common concept in computational geometry is point location. A point location algorithm

finds the region on a plane that contains a given point p. Depending on the nature and shape of

the regions, point location algorithms may differ in approach. In this thesis, most point location

problems consist of finding the closest centroid to a given point, i.e. a nearest neighbour search

algorithm.

Given a point p, a nearest neighbour search algorithm returns the closest point to p in a given

set. Since we need to find the closest centroid to a given point in order to find the correct

coverage value, this operation is one of the most used, and so we need a fast and flexible way of

determining which of the centroids is closest, in order to reduce computational overhead.

Point location algorithms direct the nearest neighbour search to smaller regions, bypassing any

regions that are too distant from p, thus reducing the number of calculations necessary to get

the proper point location. Common structures used for point location are k-d trees as described

in Cambazard et al. [9]. A k-d tree partitions the space using a divide and conquer approach

to define orthogonally aligned half-planes. This approach takes O(log n) time to achieve point

location queries. However, a k-d tree needs to be periodically updated in order to keep its

efficiency and cannot be constructed or deconstructed incrementally without considering this

Concepts, Definitions and Notation J. Valença



Visualisation and Analysis of Geographic Information 11

overhead.

2.5.2 k-Dimensional Trees

A k -dimensional tree, or k -d tree, is a space partitioning structure used for point location and

nearest neighbour queries. A k -d tree is a binary tree, where each node represents an axis-aligned

hyper-rectangle. Each node specifies an axis and splits the set of points based on whether their

coordinate along that axis is greater than or less than a particular value [5]. The axis chosen

to split each subgroup is chosen via rotation, which in the 2-dimensional space means that each

level alternates between the vertical and horizontal axis.

During construction, the splitting point is chosen to be the point whose relevant coordinate best

divides the group into two subgroups. The best possible choice for the splitting point at each

level is the point which has the median of the relevant coordinate in the group. This ensures

that each node divides the number of points in half so that the resulting tree becomes balanced,

and that each point is reachable by performing O(log n) operations [5]. Figure 2.2 illustrates a

k -d tree partitioning a 2-dimensional space.

Figure 2.2. Example of a k -d Tree

Constructing a k -d tree requires selecting a pivot, which divides the set into two groups: the

points whose relevant coordinate is smaller than the pivot, the points whose relevant coordinate

is larger than the pivot. The same process is then repeated recursively for each of the groups,

alternating the relevant coordinate between both axes. Each recursive call fixes one pivot,

which ideally contains the median value of the relevant coordinate. The time complexity of

the construction of a k -d tree relies on the pivot selection function. Calculating the median

usually requires sorting a list of n and then picking the n/2-th element. Since sorting algorithms

typically take O(n log n), building a k -d tree would take O(n2) time. To achieve linear time

complexity the median of medians algorithm described in Appendix A.1 can be used.

The median of medians algorithm does not necessarily return the actual median, which results

in slightly unbalanced trees. However, the query complexity in a k -d tree constructed using

J. Valença Concepts, Definitions and Notation



12 Visualisation and Analysis of Geographic Information

this method still achieves O(log n) time complexity. This occurs because the median of medians

always outputs a value between the 30th and 70th percentile [6]. This guarantees that at each

level of the k -d tree the group of points covered by each of the children nodes is substantially

smaller than the parent node by a constant factor, and there is never a redundant node that

covers the same set of points the parent does. At each level of a given query, each decision

discards at least 30% of the points. This constant reduction factor maintains the O(log n) time

complexity for the queries.

2.5.3 Orthogonal Aligned Range Search

Some geometric algorithms require knowing which subset of points are contained in a given area.

This operation is known as range search. A range search can be used to find all the neighbours

of a given point that are within a fixed radius. This is most efficiently done by performing a

orthogonally aligned range search on the square that encloses the range circle. Performing a

orthogonally aligned range search query on a set of points can be done using a k -d tree structure

or a line sweep.

k-d Tree Range Search

Performing a range search on a k -d tree can be done recursively. Each level of the k -d tree divides

the plane in a different axis, alternating between horizontal and vertical divisions. Starting at

the root, only the sides (left and/or right) that intersect the queried rectangle are checked for

points contained inside it. Figure 2.3 illustrates a 2-dimensional k -d tree.

p

Figure 2.3. The dashed lines are never queried, since the rectangle does not intercept their
parent. This query searches for all points within a fixed distance of p.

If the rectangle queried is small enough, this method eliminates most candidates from being

checked, thus improving on a brute force algorithm. However, since the rectangle can be big

enough to cover all points, the worst case is still the same, since returning the whole set of

points never takes less than linear time to compute. The expected time complexity is given by

O(
√
N + m) for queries in a 2-dimensional space, where m is the number of points inside the

Concepts, Definitions and Notation J. Valença



Visualisation and Analysis of Geographic Information 13

region [18]. If the rectangle to be queried is a square of side 2d centred around a given point p,

this query can be used to limit the number of points to be tested for being within a fixed radius

d around p.

Line Sweep Range Search

A Line Sweep method can also be used to find all the points in a orthogonally aligned rectangle.

The line sweep algorithm starts by sorting the points on one of the coordinates, usually the

x coordinate. Then, an imaginary vertical line starts sweeping each pair of points, until the

distance between them is larger than the width of the rectangle.

d

d

p

Figure 2.4. Illustration of the Line Sweep method. This query searches for the points within
a given distance of p that are to the right of p

If the rectangle to be queried is a square of side 2d centred around a given point p, this query

can be used to limit the number of points to be tested for being within a fixed radius d around

p. Doing so is a matter of performing the line sweep twice, once in each direction. A special

property of this algorithm is that it can find all neighbours of all points within a distance by

performing the sweep starting on every point. This method does not require both directions to

be swept, since this definition of neighbourhood is mutual. So if q is a neighbour to q, then q is

a neighbour to p. Each of the queries still take O(n) time for each point, since each swipe can

contain all of the other points

2.5.4 Voronoi Diagrams

Voronoi diagrams [20] partition the space into regions, which are defined by the set of points

in the space that are closest to a subset of those points. Definitions of distance and space may

vary, but on our case we consider the R2 plane and the Euclidean distance. Figure 2.5 shows

a partitioning of a plane using a Voronoi Diagram for a set of points: Dashed lines extend to

infinity. Any new point inserted in this plane is contained in one of the cells, and its closest

point is the one at the centre of the cell. Each edge is the perpendicular bisector between two

neighbouring points, dividing the plane in two half planes, containing the set of points closest

J. Valença Concepts, Definitions and Notation



14 Visualisation and Analysis of Geographic Information

Figure 2.5. Example of a Voronoi Diagram

to each of them. The construction of Voronoi diagrams can be done incrementally, but in order

to obtain fast query times, one needs to decompose the cells into simpler structures.

2.5.5 Delaunay Triangulations

Another useful structure for geometric algorithms is the Delaunay triangulation [20]. A De-

launay triangulation [13] is a special kind of triangulation with many useful properties. In

an unconstrained Delaunay triangulation, each triangle’s circumcircle contains no points other

inside its circumference.

A Delaunay triangulation maximizes the minimum angle of its triangles, avoiding long or slender

ones. The set of all its edges contains both the minimum-spanning tree and the convex hull.

The Delaunay triangulation is unique for a set of points, except when it contains a subset that

can be placed along the same circumference. Figure 2.6 shows the Delaunay triangulation of

the same set of points used in Figure 2.5. More importantly, the Delaunay triangulation of a

Figure 2.6. Example of a Delaunay Triangulation

set of points is the dual graph of its Voronoi Diagram. The edges of the Voronoi diagram, are

the line segments connecting the circumcentres of the Delaunay triangles. When overlapped,

the duality becomes more obvious. Figure 2.7 shows the overlapping of the Voronoi diagram in

Figure 2.5 and the Delaunay triangulation in Figure 2.6. The Delaunay edges, in black, connect

the points at the centre of the Voronoi cells, with edges in blue, to their neighbours. Unlike its

Concepts, Definitions and Notation J. Valença



Visualisation and Analysis of Geographic Information 15

Figure 2.7. Overlap of a Voronoi Diagram and its Delaunay Triangulation

counterpart, the Delaunay is much simpler to build incrementally. It is also easier to work with,

whilst still providing most of the Voronoi diagram’s properties, including the ability to calculate

both point location and nearest neighbour searches.

Construction

There are many algorithms to construct a Delaunay triangulation. The particular conditions of

our approach to the coverage problem impose some restrictions to the choice of the algorithm

to use. Building a Delaunay triangulation can be done incrementally. Starting with a valid

triangulation, points can be added, creating and updating existing triangles. An efficient way

to do so is to use the Bowyer-Watson algorithm [8].

Starting with a valid Delaunay triangulation T , we find the triangle t with vertices a,b and c

that contains the vertex to insert v using a point location algorithm, such as the line walking

algorithm described in the previous section. We then follow algorithm 2.1 for each vertex v to

be included in the triangulation.

The algorithm starts by removing the triangle t that contains the new vertex v, and recursively

checks adjacent triangles whose circumcircle contains v using the DigCavity function. Any

triangle that contains v in its circumcircle (calculated with the InCircle function), violates the

Delaunay rule, and must also be deleted and have its sides recursively checked, until no adjacent

triangles violate the Delaunay rule. Whenever the DigCavity function reaches a set of three

points whose circumcircle does not contain v, it creates the triangle by creating counter-clockwise

half-edges between those three points (AddTriangle). For inserting n points, this algorithm has

an expected time complexity of O(n log n) and is described in more detail by Shewchuk [23].

Deconstruction

Deconstructing a Delaunay triangulation usually consists of reversing the construction algorithm

to remove points from the triangulation. However, as we explain in a later chapter, in our case the

deconstruction has to be incremental. Since the first point to be removed from the triangulation

J. Valença Concepts, Definitions and Notation



16 Visualisation and Analysis of Geographic Information

Algorithm 2.1. Bowyer-Watson Algorithm

1: function InsertVertex(v, a, b, c)
2: DeleteTriangle(a, b, c)
3: DigCavity(v, a, b)
4: DigCavity(v, b, c)
5: DigCavity(v, c, a)

1: function DigCavity(a, b, c)
2: d← Adjacent(b, c)
3: if d 6= ∅ then
4: if inCircle(a, b, c, d) then
5: DeleteTriangle(w, v, x)
6: DigCavity(a, b, d)
7: DigCavity(a, d, c)
8: else
9: AddTriangle(a, b, c)

is necessarily the last one to be inserted, we can use a simpler approach. At each step of the

construction, all created and removed edges and triangle from the triangulation can be stored

in a LIFO structure, or a stack. When the last inserted point is to be removed, recreating the

previous state of the triangulation is only a matter of rolling back and retrieving the information

from the stack. This also means no geometrical calculations have to be performed, and the old

edges and triangles are quickly put back in place, with no new memory allocation needed.

Half-Edge Structure

A useful structure to use when building and managing triangulation meshes is the half-edge

structure. The half-edge structure represents one orientation of each edge in the triangulation.

This means that for each pair of points (pi, pj)connected in a triangulation T , there are two

directed half-edges: one represents the edge from pi to pj , and the other represents the opposite

direction, connecting pj to pi. They both contain information about the triangle that they face,

and thus, are part of. Triangles are defined by three half edges. All the half edges in the triangle

share two of the vertices of the triangle, and are all sorted in a counter-clockwise order. Figure

2.8 further illustrates the concept of the half-edges.

This structure makes it easier to store the changes to the triangulation at each step, since they

contain the information about the triangles themselves. This means that only the half edges

need to be stored in the stack (for construction and deconstruction) with no need to manage the

triangles directly. The half-edge structure helps to obtain the triangulation neighbours for any

vertex v, since it keeps all the edges starting at any given point easily accessible. All neighbours

to any point v are the end points to the half-edges starting at v. This property is useful when

efficiently implementing the greedy routing algorithm described in the following Section.

Concepts, Definitions and Notation J. Valença



Visualisation and Analysis of Geographic Information 17

a

b

c

d

Figure 2.8. Illustration of the Half-Edge Structure

Greedy Routing

In order to quickly calculate the nearest neighbour to a point in a set, one can make use of

the Delaunay triangulation with Greedy Routing [7]. Consider a triangulation T . In order to

find the closest vertex in T to a new point p, start at an arbitrary vertex of T , v, and find a

neighbour u of v whose distance to p is smaller than the distance between p and v. Repeat the

process for u and its neighbours. When a point w is reached such that no neighbours of w are

closer to p than w is, the closest point to p in T has been found. In the following, we show

that the greedy routing algorithm is correct: In Figure 2.9, the search for the closest vertex to

e0

hv hu

e1

hu ht

e2

ht

hw

p

v

u
t

w

Figure 2.9. Example of the Greedy Routing Algorithm

p starts at point v. From there, point u, which is closer to p than v is, is found. The step is

repeated, following the blue path until point w is reached. Since no neighbour of w is closer to

p than w is, then p must be within the Voronoi cell of point w (shaded light grey).

Theorem 2.1. [7] There is no point set whose Delaunay triangulation defeats the greedy routing

algorithm.

J. Valença Concepts, Definitions and Notation



18 Visualisation and Analysis of Geographic Information

Proof. For every vertex v in a triangulation T , let the perpendicular bisector of the line segment

defined by v and any neighbour u be called e if there is at least one neighbour of v, u closer to

p than v is. The line e intersects the line segment (v, p) and divides the plane in two open half

planes: hv and hu. Note that the half plane hu contains p. Delaunay edges connect the Voronoi

neighbours and their bisectors define the edges of the Voronoi cells, which are convex polygons.

Repeating the process recursively for u, if a point w is found, whose neighbourhood contains no

points closer to p than itself, then p is contained within all possible open half planes containing

w, defined by w and all its neighbours. Point p is then by definition located in point w’s Voronoi

cell. This means that w is the point in T closest to p.

Line Walking

Another point location algorithm to consider is the line walking algorithm [4]. This algorithm

finds a triangle t in a triangulation T that contains a given point v. Starting at any triangle

s, with the geometrical centre m, if point v is not contained in s, then the line segment (v,m)

intersects a finite set of triangles. The line segment (v,m) intersects two edges of each triangle

in this set, with the exception of s and t where (v,m) only intersects one edge each. By iterating

through each triangle choosing the neighbour triangle that contains the next edge that intersects

(v,m), triangle t can be found in O(n) time.

m

v

Figure 2.10. Illustration of the Walking Algorithm

This algorithm was described by Amenta et al. [4], and is illustrated in the following figure,

where the dark shaded triangles represent the starting and finishing triangles, and the light

shaded triangles the path the algorithm takes to find the final triangle that contains the vertex

v.

After finding this triangle, the Bowyer-Watson algorithm described in Section 2.5.5 can be used

to update the new triangulation, which now includes v.

2.5.6 Hilbert Curves

Most of the point location algorithms aforementioned have linear time complexity, and most

of the worst case scenarios include searching across the plane. These occur when the starting

Concepts, Definitions and Notation J. Valença



Visualisation and Analysis of Geographic Information 19

search position is random and does not make use of the spatial organisation of the data. To fully

take advantage of these approaches, the points should be sorted is such a way that the distance

between consecutive points is minimised.

Hilbert curves are a kind of fractal space-filling curves [22] that generally minimize the Euclidean

distance between points close on the curve. True Hilbert curves map a 2-dimensional space in

a 1-dimension line. This line has an infinite length, which makes mapping 2-dimensional points

to it infeasible. Instead, discrete approximations are used. Since the true curve is fractal, the

approximations are defined by the number of fractal steps it takes in order to reach them. Figure

2.11 demonstrates the first few orders of approximation: Since the coordinates of the points in

Figure 2.11. First Five Orders of Hilbert Curve Approximation

our problem are continuous rather than discrete, the points must first be mapped into a square

grid with tile size and number appropriate to the Hilbert approximation chosen. Sorting an

array of 2-dimensional points to follow a Hilbert approximation, each point should be assigned

the 1-dimensional coordinate of the square tile containing it. The array is then sorted using the

square coordinates along the Hilbert approximation as a key. There are cases where points share

the same discrete approximation coordinates, but this has little effect on the performance of the

point location algorithms, providing the grid is fine enough to separate most of the points. The

space must be partitioned into a grid of 2n squares in height and width containing all points.

J. Valença Concepts, Definitions and Notation



20 Visualisation and Analysis of Geographic Information

Concepts, Definitions and Notation J. Valença



Chapter 3

Exact Algorithms for the k-Centre

Problem

This chapter describes two possible algorithms that solve the k-centre problem. The goal of

this problem is to, given a set N of n points, find the subset of centroids of cardinality k that

minimises the farthest distance of a point in N to its closest centroid.

Both algorithms use an incremental branch-and-bound approach for implicit enumeration. The

first algorithm is a näıve implementation of a branch-and-bound algorithm and uses simple

loops over arrays for point location queries. The second algorithm builds and uses Delaunay

triangulations to achieve more efficient point location queries. At the end of this chapter,

these algorithms, as well as an implementation of the Integer Linear Programming formulation

described in Section 2.2, are experimentally tested in a set of benchmark instances.

3.1 Näıve Branch-and-Bound

One possible approach to this problem is to use a branch-and-bound method. Our approach is

based on the wotk of Cambazard et al. [9] for solving a related k-centre problem. Their method

describes algorithms to incrementally insert and remove centroids from a set of points, and

update the centroid assignment only in the geometrical area surrounding the changed point.

This method allows for small modifications on an already valid solution, and the techniques

for updating the objective function upon insertion and removal of points can be used in an

incremental branch-and-bound method to speed up the computation between branches, without

having to calculate the full point assignment for every iteration of the algorithm, whilst still

implicitly enumerating all possible combinations.

J. Valença 21



22 Visualisation and Analysis of Geographic Information

3.1.1 Branching

To solve the problem incrementally, at each step of the recursive tree, one of the available points

is considered. A decision is then taken of whether the point is a centroid or a non-centroid.

According to which decision is taken, the objective function and the centroid assignment is

updated accordingly. This is done until all the centroids have been chosen and a solution is

found at the end of the branch. The best solution in all the branches is the optimal value for

the k-centre problem. Figure 3.1 illustrates the branching process.

p1

p2

p3

· · · · · ·

centroid

p3

· · · · · ·

non-centroid

centroid

p2

p3

· · · · · ·

centroid

p3

· · · · · ·

non-centroid

non-centroid

Figure 3.1. Illustration of the branching process. The set starts empty, and each point is
added recursively, first as centroid and then as a non-centroid, until all combinations are tested.

As stated above, branching the tree involves updating the assignment between new points and/or

new centroids, as well as updating the objective function. The following procedures explain in

detail how to do so.

Inserting a Centroid To insert a centroid c, the established non-centroids which are closer

to c than their current centroid must be checked, and change their assignment to c. Since non-

centroids only change assignment to centroids closer to them, inserting a centroid means that

the objective function either decreases in value or stays the same.

After inserting a centroid, if the farthest non-centroid is reassigned, all non-centroids must be

checked to see which one now maximises the objective function. This step compares all non-

centroids to the new centroid c, taking Θ(N) time. Figure 3.2 illustrates this operation.

c c

Figure 3.2. Illustration of a centroid insertion. The new point c changes the assignment of
neighbouring points (in dashed lines), to connect to the new closest centroid.

Exact Algorithms for the k-Centre Problem J. Valença



Visualisation and Analysis of Geographic Information 23

Inserting a Non-Centroid Inserting a non-centroid n only requires finding which of the cur-

rent centroids is the closest to n. Updating the objective function is a matter of testing whether

the distance between n and its centroid is larger than the current maximum. Inserting a non-

centroid cannot produce a better objective function, since it either decreases or maintains the

current value. This step compares the distance between point n and all centroids, taking Θ(k)

time. Figure 3.3 illustrates this step.

n n

Figure 3.3. Illustration of a non-centroid insertion. The new non-centroid, n, is assigned to
the closest centroid.

Removing a Centroid After a branch is fully calculated, it is necessary to backtrack to the

parent state, either by removing a centroid, or a non-centroid. Removing a centroid c means

redistributing the values assigned to c to their respective closest centroids in the remaining set.

The value function either increases or maintains, since the distance for all points previously

assigned to c increases, potentially above the current value for the objective function. Removing

a centroid c means comparing all non-centroids assigned to c to all the other centroids. This step

takes Θ(NK) time to execute. Alternatively, if the assignment state is saved before inserting

the centroid, recovering it requires only retrieving the state, which means, in the worst and best

cases copying an array of size N , which takes Θ(N) time at the expense of additional Θ(N)

memory space. Figure 3.4 illustrates this step.

c c

Figure 3.4. Illustration of a centroid removal. The old assignments, in thicker lines, are
restored after removing the centroid c.

Removing a Non-Centroid In order to remove a non-centroid n, we only need to update the

objective function. If point n maximises the objective function, the second farthest point from

its centroid, the new maximiser, must be found. Removing a non-centroid can either decrease

or maintain the value of the objective function. Removing a non-centroid n means that the

next farthest point from its centroid must be found. This can be done by checking all distances

J. Valença Exact Algorithms for the k-Centre Problem



24 Visualisation and Analysis of Geographic Information

between the non-centroids and their respective centroids, taking Θ(N) time. Alternatively, one

can save the previous value for the objective function, as well as the maximiser. Retrieving

the previous value can be done in O(1) time at the expense of additional Θ(1) memory space.

Figure 3.5 illustrates this step.

n n

Figure 3.5. Illustration of a non-centroid, n, removal.

3.1.2 Bounds

At all steps in the branching, the lower bound for the value of the objective function in the

current branches is calculated. If the lower bound is larger than an already calculated upper

bound, then there is no purpose in further exploring the current branch. In a minimisation

problem, the upper bound can be the best solution found until that point in time.

Lower Bound After each insertion, centroid or non-centroid, one can assume that, the best

case scenario, all the points not yet inserted are centroids. This would hypothetically decrease

the value the most. If this value is larger than the best value found, then there is no possible

assignment that improves the current solution in the current branch, and the branch can be

pruned. Figure 3.6 illustrates the computation of the bound in one branch of the recursion.

Figure 3.6. Illustration of the lower bound calculation. The dashed line represents the
distance in the lower bound. Since the value is larger than the current objective function,

drawn thicker, if there has been found a branch with a better solution, then the current branch
is pruned.

Exact Algorithms for the k-Centre Problem J. Valença



Visualisation and Analysis of Geographic Information 25

3.2 Delaunay Assisted Branch-and-Bound

Most of the operations in the branch-and-bound approach described in Section 3.1 have at

least linear time complexity for both the best and expected cases. We can speed these up by

implementing incrementally built Delaunay triangulations, which can be used to accelerate point

location queries. To aid the calculations, the points are pre-processed and sorted by a Hilbert

Curve approximation of a sufficiently high order.

Inserting a Centroid In order to take advantage of Delaunay triangulations, each time a

centroid is chosen, it must be included in the Delaunay triangulation. This means that the

triangulation must be updated. Inserting a point in a triangulation with K vertices using the

Bowyer-Watson algorithm described in Section 2.5.5 takes an estimated O(logK) for a uniformly

distributed set of points [23]. After a centroid c is included in a Delaunay triangulation, it is

possible to know which other centroids are its Voronoi neighbours. This is due to the duality

between Delaunay triangulations and Voronoi diagrams. Since Voronoi diagrams partition the

space into regions by distance to the centroids, we only need to check the subset of non-centroids

assigned to the direct neighbours of c to find which points should change assignment to c. This

property lowers the expected number of comparisons to make. Since the average number of

Voronoi neighbours per centroid in any given diagram cannot exceed six [16, 20], the number

of points to be compared in a uniformly distributed set of non-centroids should not include all

non-centroids, but only a small fraction of them. Despite the lower number of comparisons, the

worst-case time complexity still takes O(N) time to complete, and in the worst case scenario

it can still require a check through all non-centroids, which can all be neighbours of c. If the

objective function maximiser is assigned to c, all non-centroids can be candidates to become the

new maximiser, so a linear search through all the non-centroids must be done, to see which one

is now the farthest away from its centroid. Figure 3.7 illustrates this operation.

c c

Figure 3.7. Illustration of a centroid insertion c using the geometric method. The Delaunay
triangulation is updated and only the neighbours of c need to be checked for assignment

updates.

Inserting a Non-Centroid Since there is a triangulation built, using the centroids as its

vertices, finding the closest centroid c to a new non-centroid n is simply a matter of using the

greedy routing algorithm to find c [7]. The greedy routing algorithm has a worst-case time

complexity of O(K). This happens when the search starts from the farthest centroid from n,

J. Valença Exact Algorithms for the k-Centre Problem



26 Visualisation and Analysis of Geographic Information

and all centroids are either in the direction of n, or are neighbours of the centroids that are.

The last centroid returned by the greedy routing algorithm can be used to start the new query.

Since the points are inserted ordered by a Hilbert curve approximation, each consecutive point

should minimise the position variation from the last. This means that, ideally, each inserted non-

centroid n is close to its respective optimally positioned centroid c, and it only needs to calculate

the distances to the neighbours of c in order to guarantee that c is indeed the correct centroid.

The aforementioned property of the average six neighbours for each centroid means that the

expected time for a query starting at the right centroid would be O(1). This represents the best

case scenario, and is heuristically approximated by the Hilbert curves. The time complexity of

inserting one non-centroid is still O(K) for the worst case. However, the insertion of a large

number of uniformly distributed points should behave closer to O(
√
K) time per point. If a

rectangular area has N points, the longest path would be a diagonal. The diagonal, like the

sides, has close to
√
N number of points, in an area with a sufficiently good uniformity of points

in it. Figure 3.8 illustrates this operation.

n n m

Figure 3.8. Illustration of a non-centroid insertion using the geometric method. The greedy
routing starts at m is used to limit the number of points to be checked to be the closest

centroid.

Removing a Centroid Removing a centroid c means removing it from the Delaunay triangu-

lation and redistributing all points assigned to c across its neighbours. Figure 3.9 illustrates this

operation. Since all points are inserted in the triangulation in a LIFO order, removing a point

from a triangulation is a matter of retrieving the previous state. We can do this by storing all

new edges and triangles in a stack upon construction, and retrieve them upon removal, without

the need of recalculating anything. Since inserting a centroid c takes expected O(logK) time

[23], and removing it takes exactly the same higher level operations (in reverse order), it can

also be done in expected O(logK) time, without the need to do extra calculations. Likewise,

redistributing the points assigned to c takes retrieving the previous state. Each change in as-

signment can be saved in a stack upon insertion, and retrieving it can be done by popping the

stack. This step also takes O(N) time, since all points can change assignment. However, using

a stack limits the number of operations to only those that changed upon insertion, which in an

uniform distribution, means an expected time complexity of O(N/K).

Removing a Non-Centroid Removing a non-centroid n only requires recovering the second

farthest point if n is currently the farthest point, otherwise, no operations besides erasing n’s

assignment, taking O(1) time and memory. Figure 3.10 illustrates this operation.

Exact Algorithms for the k-Centre Problem J. Valença



Visualisation and Analysis of Geographic Information 27

c c

Figure 3.9. Illustration of a centroid removal using the geometric method. This operation is
done by retrieving the previous state of the triangulation. Only the points covered by

neighbour points of the removed centroid c need to be considered for the assignment update.

n n

Figure 3.10. Illustration of a non-centroid removal using the geometric method.

Bounds The same lower bound described in Section 3.1.2 can be applied in this approach. Both

algorithms have the same time complexity of O(N) for computing the bound.

These steps occur at each iteration of the branch-and-bound algorithm, and each is performed

potentially 2N times for both approaches. Despite having the same worst-case time complexity

as the branch-and-bound algorithm described in Section 3.1, the expected time complexity

for the Delaunay assisted approach is smaller. This approach should have better performance

when a large number of centroids are needed. This is especially true since maintaining a valid

Delaunay triangulation through all the centroid permutations, as well as the Hilbert sorting,

takes a computing cost. This extra overhead has a negative impact in the performance in the

smaller instances of the problem.

3.3 Algorithm Comparison

3.3.1 Time Complexity

Each of the procedures mentioned in the previous Section are performed at each step of the

recursive tree. At each step the bound is also calculated, which takes O(N) time. Table 3.1

shows the time complexities for each procedure in both algorithms. The values presented at the

row corresponding to the average case of the Delaunay-assisted algorithm are conjectured and

J. Valença Exact Algorithms for the k-Centre Problem



28 Visualisation and Analysis of Geographic Information

need to be shown in a more formal manner.

Algorithm
Insert Remove

Centroid Non-Centroid Centroid Non-Centroid

Näıve BB Θ(N) Θ(K) Θ(N) O(1)

Del. Assisted BB O(logK +N/K) O(
√
K) O(N/K) O(1)

Average Case

Del. Assisted BB O(K +N) O(K) O(N) O(1)
Worst Case

Table 3.1. Time complexities for the various operations in a uniformly distributed point set

3.3.2 Experimental Results

In this section, we analyse empirically the time spent calculating the solutions to different sizes

of the problem.

Methodology and Set-up

The test cases are sets of uniformly distributed points generated with a fixed seed. Each test

was repeated 10 times with different sets of points. The same sets and machine were used to

test the three algorithms.

Both branch-and-bound approaches were implemented using C++ and compiled using g++

4.9.2. The integer linear programming version had the data preprocessed using python 2.7.9

and was solved using the GLPK LP/MIP v4.55 solver. The programs were ran on a machine

with a Intel i7 Dual-Core, 2GHz processor, with a 8 GB, 1600 MHz memory and Arch Linux

3.14.4 x64 as its operating system.

Effect of N

The first test conducted analysed the variance in performance relative to changes in the value of

N . It was done by changing N , with K taking fixed fractional values of N . Figure 3.11 shows

the results of these tests. The measures were taken in seconds and account for the pre-processing

steps and the solving time, but not the input reading or output writing times. The tests were

stopped at the half-hour mark.

As it can be seen, the problem solving time increases exponentially with the value of N , as

expected. The Integer Linear Programming Approach performs faster for larger values of N .

Comparing the branch-and-bound approaches, these tests show that the Delaunay-assisted algo-

rithm steadily approaches and surpasses the näıve branch-and-bound algorithm as the instance

size grows.

Exact Algorithms for the k-Centre Problem J. Valença



Visualisation and Analysis of Geographic Information 29

(a) K = 0.25N (b) K = 0.5N

(c) K = 0.75N

l – Integer Linear Programming s – Delaunay Assisted B&B n – Naive B&B

Figure 3.11. CPU-time for different values of K with varying values of N

Effect of K

In this experiment, we analysed the performance of the three algorithms in dependence of

parameter K. We fixed N and varied K from 2 to N by steps of 2. Figure 3.12 show the results

for the N = {10, 20, 30, 40}, respectively. The tests were stopped at the half-hour mark. Figure

3.12 shows the results of these tests.

The Integer Linear Programming approach seems to be the fastest approach for most cases, and

seems independent to the value of K, the only exception being for smaller values of N , as well as

J. Valença Exact Algorithms for the k-Centre Problem



30 Visualisation and Analysis of Geographic Information

(a) N = 10 (b) N = 20

(c) N = 30 (d) N = 40

l – Integer Linear Programming s – Delaunay Assisted B&B n – Naive B&B

Figure 3.12. CPU-time for different values of N with varying values of K

the smallest and largest values of K. This happens because the implicit enumeration methods

only need to enumerate a very small number of combinations. As for the branch-and-bound

algorithms, the Delaunay-assisted approach is slower than the Näıve implementation in these

test cases. However it should be noted that for each N , the Delaunay-assisted algorithm peaks

before the expected value of K = N/2. This is justified due to the fact that the Delaunay

triangulation has an overhead which can take advantage for in larger values of K. Furthermore,

the fact that the Näıve implementation had no test for the middle values of K for N = 40

that ended before the time-out mark is noteworthy. It is also worth noting that The Delaunay-

assisted approach showed a lot more variance between tests, often taking much lower values than

the mean. However, for the tests performed, two runs had values much larger than the Näıve

Exact Algorithms for the k-Centre Problem J. Valença



Visualisation and Analysis of Geographic Information 31

approach, approximating the mean of the Delaunay-assisted to that of the Näıve approach.

The time required for each test limited the number of tests performed. Because of this, the results

may not be statistically meaningful. This could mean that the Delaunay-assisted approach is

only preferable for values of N and K to which neither approach is usable in real-time.

3.4 Discussion

The algorithms in this chapter have some drawbacks when used in a web application. Not only

were the running times too large to be used in real-time, taking minutes and even hours for

small instances with 40 points at most, but they also required some a priori knowledge about

the number of clusters on a given window. This is infeasible, since there is no efficient way

to infer how many clusters there are in a new region, without testing for all possible values of

K. The algorithm should be able to calculate the final number of selected points, constrained

to a minimum distance factor between them. This can be achieved by solving Geometric Disk

Cover problem described in Section 2.3. The next chapter describes in detail a way to solve this

problem in regards to the final application.

J. Valença Exact Algorithms for the k-Centre Problem



32 Visualisation and Analysis of Geographic Information

Exact Algorithms for the k-Centre Problem J. Valença



Chapter 4

Geometric Disk Cover

The goal of the geometric disk cover problem is to, given a set N of points and a minimum

distance d, find the smallest number k of circles of radius d centred around points in N such

that no point is left uncovered. This chapter describes an efficient way to approximate the

optimal solution to this new problem. The number of points selected by the algorithm is bound

above by m lnn points, where m is the optimal value of k. The algorithm is then experimentally

tested for performance in a set of benchmark instances.

Finally, some speed-up heuristic methods are explored. The heuristic algorithms are also exper-

imentally tested for performance and compared to the regular approximation algorithm.

4.1 Approximation Algorithm

Calculating the optimal solution for Geometric Disk Cover is an NP-hard problem [10]. However,

there are ways of finding a reasonable approximation to the optimal solution in a short amount

of time. Briefly, this approach requires two steps. The first step is the Proximity Graph Building

step, which builds a graph connecting all pairs of points that are close together. The second

step is a Set Cover step, which uses an approximation algorithm to cover the graph built in the

former step. The following sections describe these steps in more detail.

4.1.1 Proximity Graph Construction

The first step is to create a graph connecting all pairs points that are within a distance of

each other. This means constructing a graph in which every point is a vertex, and every edge

connects two vertices whose points are within the given distance, also known as a proximity

graph [17]. The näıve approach to building this graph would be to test all the distances between

each pair of points, taking O(n2) operations. Alternatively a line sweep algorithm or a series of

range searches on a k -d tree could be used to speed up the process. The line sweep algorithm

J. Valença 33



34 Visualisation and Analysis of Geographic Information

would require a O(n log n) sorting algorithm, followed by O(n2) comparisons. However, the

latter is limited by the number of points within the sliding window, which should only contain

a fraction of the total number of points on the map, since the distance chosen is a fraction of

its dimensions. The k -d tree range search, on the other hand, requires a O(n log n) construction

of a k -d tree using a median of medians algorithm. This is followed by n queries consisting of

finding the points within a square of side 2d centred around each of the points. Each one of

these operations take O(
√
N + m) time, where m is the number of returned points [18]. Even

though the complexity of the k -d tree range search is theoretically faster than the line sweep

method, it comes with an extra overhead of handling a more complex structure. As such, both

methods are analysed from an experimental point of view in this thesis. After this operation,

the graph connecting all neighbours is built. Figure 4.1 illustrates one such graph.

Figure 4.1. Illustration of the proximity graph. The white circle represents the point with
the largest number of neighbours.

This graph is represented via adjacency lists. The adjacency lists have an advantage over an

adjacency matrix as linked lists can be used to considerably reduce the memory footprint in

sparse graphs. It also allows for faster sequential access to the neighbours of any given point.

These linked lists share similarities to the half-edge structure, in which each node represents a

unidirectional edge that contains a pointer to its counterpart.

It is noteworthy that the graph can reach O(n2) edges if the points are all very close together

and/or the minimum distance is large enough. This case coupled with the fact that the adjacency

linked lists occupy more space per edge than an adjacency matrix, the space needed to keep the

graph in memory can be potentially too high for some machines to handle larger instances of

the problem.

4.1.2 Set Cover

The second step to the algorithm is to chose a small subset of vertices whose neighbours unions

are equal to the whole set of vertices of the graph. This is known as set cover, and its solution

Geometric Disk Cover J. Valença



Visualisation and Analysis of Geographic Information 35

can be approximated using a greedy approach [27]. Starting with the whole uncovered graph,

the point with the largest number of uncovered neighbours is selected. This is done iteratively

until no uncovered points remain on the graph. This approach approximates the number of

points to within m lnn points, were m is the optimal number.

At each step of this algorithm, one point p and all its neighbours and respective edges must be

removed from the graph. This is done by iterating through the adjacency lists of the neighbours

of p and deleting all the connections to their neighbours (second-degree neighbours of p). This

operation takes exactly O(n) time where n is proportional to the number of edges to be deleted.

Figure 4.2 illustrates the graph after the first iteration:

Figure 4.2. Illustration of the state of the proximity graph after the first iteration. Any of
the gray points is to be removed in the next iteration, as they have the largest amount of

neighbours.

After all the points are covered, the collection of selected centres makes the subset of centroids

that is displayed as the final output. The cardinality of this set does not exceed the approxima-

tion as described above.

Figure 4.3. Illustration of the state of the final chosen set. The white points are the final
representative set.

J. Valença Geometric Disk Cover



36 Visualisation and Analysis of Geographic Information

4.1.3 Results

This section reports both approaches (k -d trees and line sweeping) to the graph building portion

of the algorithm. The implementations differ from each other only in the range search algorithm

they use to build the proximity graph. This is done because the graph building stage has the

highest time complexity, and is therefore expected to be the bottleneck. In fact, running a code

profiler shows that the graph building stage takes 98% of the CPU-time, with the time taken to

run the set cover algorithm stage being negligible.

For the tests in this section, the given value of d is the minimum distance between points,

therefore radius of the covering disks. It is given as a percentage of the largest dimension of the

window, as this value is easier to adjust and analyse by a human user. Figure 4.4 shows the

outputs for different values of d for a set of points of interest in Sweden. The data was obtained

from the University of Waterloo, Ontario, Canada[2].

(a) Original Set (b) d = 10% (c) d = 15% (d) d = 20%

Figure 4.4. Selected subsets from both graph building algorithms.

By analysing images of a few real-world examples, the values for the minimum distance d were

agreed to be given as a value between 10% and 15% of the largest dimension of the window.

These values give the subsets that were deemed as the easiest to look at without losing sense of

shape of the area. The performance tests still use the value of 20% to test the algorithms under

less favourable conditions, since the larger the value of d, the denser and more time is required

to build the proximity graph.

Since this approach is more interesting for the web application from a coputational time point

of view, a new set of benchmark tests were defined. Both uniform and clustered inputs are

tested. The uniform inputs are a simple collection of N points whose Cartesian coordinates are

randomly chosen between 0 and 100. The clustered inputs are generated by choosing a random

number of points s between 10 to 20 points. Each of these points acts as a centre and is chosen

by randomly generating two Cartesian coordinates between 0 and 100. Around each of these,

N/s points were generated by randomly choosing an angle Θ (between 0 and 2π) and a distance

ρ (between 10 and 20), which represent the polar coordinates around their respective central

point. These tests generate circular clusters, with more density towards the centre. Each test is

Geometric Disk Cover J. Valença

http://www.math.uwaterloo.ca/tsp/world/swpoints.html


Visualisation and Analysis of Geographic Information 37

performed 30 times, with shared seeds between the algorithms. The times listed do include the

input scanning. All algorithms are implemented using ANSI C89 and compiled using gcc 5.1.0.

The programs were ran on a machine with a Intel i7 Dual-Core, 2GHz processor, with a 8 GB,

1600 MHz memory and Arch Linux 3.14.4 x64 as its operating system.

The first test performed benchmarked both line sweep and k -d tree range search algorithms

for the proximity graph construction. The results are shown in Figure 4.5. As the Figure

shows, the line sweep method performs faster in both the uniform and the clustered data. The

lower expected complexity of the k -d trees does not compensate the larger overhead in their

construction. It can also be seen that both algorithms become slower the larger the number of

points, as was expected.

Building a proximity graph with 30000 vertices has the potential to need 300002 edges, making

these algorithms very memory intensive. Even with adjacency lists instead of an adjacency

matrix, the inputs can generate a instance where every point must be connected to every other

point. In this case, the advantage of the adjacency lists for sparse graphs is lost, and the program

exceeds the RAM limit given by the operating system. This occurs more frequently for larger

values of d and N , with the smallest case recorded being of N = 25000 and d = 0.2 on a

clustered input that generated most clusters on top of each other, concentrating most points

within a circle of a small radius, where most of them had over 20000 neighbours. However this

case is somewhat rare, and only occurs under very specific circumstances and did not occur

during the tests displayed. Figure 4.6 shows the amount of memory used by both algorithms on

the tests performed. The lines for both algorithms overlap, since applying both methods to any

given case gives the same proximity graph, as it is unique.

However, the final set may not be the same. The coverage algorithm picks the points with

most neighbours. Since two different points may have the same number of neighbours, and the

two algorithms sort the points in two different ways, there may occur a case where the sets are

completely different, based on which point is selected first in case of a draw. The values still

fall bellow the upper bound for the approximation factor, and no algorithm should have the

advantage over the other. Figure 4.7 shows the number of points selected by each algorithm in

the same instances as above. The figure shows that the number of selected points k does not

seem to vary very much with N for the same values of d. In fact, the growth of the value of k

seems to suggest an asymptotic approach to a fixed value. This happens because there is a limit

to how many circles can be placed in an area without any of them containing the centres of the

others.

The process of finding the best disposition of circles of the same radius in a given area is known

as circle packing. The number of circles in a circle packing instance for a square area is given by

the ratio between the circles’ radii and the width of the square enclosing them. Since the value

for d is given as a fraction of the size of the window, the bound values of k can be calculated for

the various values of d. A detailed explanation of how to calculate the values for the upper bound

J. Valença Geometric Disk Cover



38 Visualisation and Analysis of Geographic Information

Figure 4.5. CPU-time for both proximity graph algorithms on uniform and clustered inputs
for different values of d.

Figure 4.6. Memory used by both proximity graph algorithms on uniform and clustered
inputs for different values of d. The lines overlap, as both algorithms build the same graph.

Figure 4.7. Number k of points selected for both proximity graph algorithms on uniform and
clustered inputs for different values of d. Note that the lines overlap, since both algorithms are

expected to output the same set most of the time.

Geometric Disk Cover J. Valença



Visualisation and Analysis of Geographic Information 39

is given in Appendix A.3. The values indicate that k should not be larger than {128, 59, 36}, for

the given values d = {0.1, 0.15, 0.2}, respectively. With the exception of the latter, these values

are yet to be proven to be optimal, but are not expected to be very different, and serve as a

good estimate of the maximum number of points that can be selected.

These results suggest that the best algorithm to use is the line sweep algorithm, as it takes less

time and the same memory to compute similar results.

4.2 Heuristic Speed-ups

The approximation algorithm runs rather efficiently, taking under 1 second for 30000 points for

the uniform inputs, and under 3 seconds for the clustered inputs. Nonetheless, they are very

memory intensive, which could present an issue for larger instances. This result can be improved

by employing some heuristic filtering methods to the inputs. By using these approaches, however,

the guarantee of the quality of the approximation is lost. Nevertheless, the results may indicate

if the heuristic algorithms should still be considered to handle larger numbers of points.

4.2.1 Random Sampling

The simplest method to speed-up the algorithms is to simply ignore a randomly chosen subset

of those points. With the smaller sample of points, the algorithm should run faster and use less

memory space. If the points are removed uniformly, then the overall distribution should still

be kept. Two versions of this method were tested. In the first, only one in every five points

was considered by the algorithm, whereas in the second only one in every ten were. Figure

4.8 shows the time difference between the regular line sweep and the randomly sampled input

algorithms. The graph proves that the sampling is indeed faster. This speed-up is caused by

the lower number of starting points for the algorithm to process.

The smaller number also affects the memory needed by these algorithms, which require less space

to store the graph. This happens because the number of edges tends to grow quadratically in

relation to the number of points, meaning that a set with 1/5th of the points would be expected to

have around 1/25th of the edges. Figure 4.9 shows the space used by the programs. This time, no

cases that exceeded the memory limit were recorded. The figure shows that the random samples

use the space expected above. Where the line sweep algorithm uses an average of 4164.93Mb

for the clustered inputs, the random samples use 167.83Mb for the 1/5th sample version and

41.44Mb for the 1/10 sample version. The uniform inputs had a similar result, with the line

sweep algorithm using an average of 3729.71Mb for the largest inputs, and the random sample

algorithms using 149.17Mb for the 1/5th sample version and 37.31Mb in the 1/10th sample

version, matching our initial prediction of 1/25th and 1/100th the amount of memory used by

the line sweep algorithm to the second decimal case.

J. Valença Geometric Disk Cover



40 Visualisation and Analysis of Geographic Information

Figure 4.8. CPU-time for the line sweep algorithm, and two instances of the random
sampling, with 5% and 10% of the total points, for different values of d.

Figure 4.9. Memory used by the line sweep algorithm, and two instances of the random
sampling, which sample 5% and 10% of the number points, for different values of d.

Figure 4.10. Number k of points selected for the line sweep algorithm, and two instances of
the random sampling, which sample 5% and 10% of the number points, for different values of d.

Geometric Disk Cover J. Valença



Visualisation and Analysis of Geographic Information 41

Upon closer inspection, however, it can be noted that the resulting set is not optimal. Figure

4.10 shows that the number of selected points is inferior. This can be explained by the fact that

the algorithm is not accounting for all points. In fact, whenever the original set has one isolated

point, away from any other by more than the coverage distance, it has a 4 out of 5 chance of

being discarded and unaccounted for (or 9 out of 10, depending on the version of the algorithm).

This means that not all points are being covered, and the number of selected points decreases.

Figure 4.11 shows this effect in a real map.

Figure 4.11. Selected subset using the full set (right) and a sampled subset (left). The data
was obtained from the University of Waterloo, Ontario, Canada.[1].

As shown, the sampled subset does not cover the most isolated points. In fact, the westernmost

point in the map is not present in the sample and, therefore, is not covered. This method is not

suitable for the initial requirements, since very isolated points have only a small chance of being

represented.

4.2.2 Two-phase filtering

A solution tat avoids the flaws of the random sampling algorithm is to perform two passes of the

approximation algorithm for the geometric disk cover problem. The first pass over the points

is done with a very small radius d′, since using a small distance speeds the algorithm up, as

previously seen in Figure 4.8. This can be done very quickly, since the range search only has

to look in a very small area. This means that many of the points that are close to each other

are discarded, but a representative neighbour is always left in its place. Isolated points are

then never unaccounted for. The resulting set is much smaller than the original, whilst still

keeping a representativeness degree. The second pass, now with the full coverage distance d

takes advantage of the much smaller set of points for the speed-up.

Despite accounting for isolated points, the resulting set does not necessarily cover all the points

with disks of radii d. Because the first pass transforms the set into disks of radii d′, and the

second pass only considers their centre point as the measure of cover, then there can be points

that are further away from the centroids than d, the maximum distance being d+ d′, as shown

in Figure 4.12. This means that by the strict definition of having all points covered by the disks,

there are points left uncovered, but only by a guaranteed margin.

J. Valença Geometric Disk Cover

http://www.math.uwaterloo.ca/tsp/world/grpoints.html


42 Visualisation and Analysis of Geographic Information

d+ d′

Figure 4.12. Illustration of the worst case scenario for the error of the two-phase algorithm.

The CPU times for three instances of the algorithm can be seen in Figure 4.13. The values

of the first pass distance d′ are given as a percentage of the final pass distance d. One of the

instances uses d′ = 0.05d, another d′ = 0.1d and the other uses d′ = 0.2d.

As it can be seen, the two-phase filtering is more efficient than the simple line sweep algorithm

and does not seem to vary a lot with the total number of points. The first pass eliminates a

very large number of redundant points, leaving a similar resulting set for different values of N .

The intermediate subset is still representative of the original.

The smaller distance requires less edges to be created, and the proximity graph for the first phase

is uses less space than a one-phase algorithm does. The proximity graph for the second phase

benefits from having less points, thus requiring less edges. Since this algorithm calculates two

graphs, both of which sparser than the complete on in the Line Sweep and k -d tree algorithms,

the memory limit was not an issue for the inputs tested. Figure 4.14 shows the memory footprint

of the three versions of the algorithm. These algorithms are less predictable concerning the size

of the graphs, since they depend a lot from local density of points for the first phase. While

they do not have as small a footprint as the random sampling, they still use considerably less

than the line sweep and k -d tree range search.

These algorithms do not share the issue of leaving isolated points completely uncovered like the

random sampling algorithms do, returning better representative subsets. Figure 4.15 shows the

variation in size of the final subset chosen by the two-phase filtering algorithms. The graph

shows that despite the two-phase algorithms returning lower numbers of K, they are not as low

as the random sampling.

As aforementioned, this heuristic has some effect on the quality of the chosen set, but it is not

nearly as noticeable as the results from the random sampling. Figure 4.16 shows the compared

output between the original line sweep algorithm, and the different versions of the two-phase

algorithm, as well as their intermediate phases.

This final result shows that the two-phase filter, especially with d′ = 0.1d, can yield very

approximate results at a fraction of the time and space, thus making a good candidate to use

with inputs larger than the regular Line Sweep method can handle.

Geometric Disk Cover J. Valença



Visualisation and Analysis of Geographic Information 43

Figure 4.13. CPU-time for the line sweep algorithm, and three instances of the Two-phase
filter, with d′ = 5%, d′ = 10% and d′ = 20% in relation to d.

Figure 4.14. Memory used by the line sweep algorithm, and three instances of the Two-phase
filter, with d′ = 5%, d′ = 10% and d′ = 20% in relation to d. Since two graphs are built, only

the larger one is considered for this graph, as they are never simultaneously stored in memory.

Figure 4.15. Number k of points selected for the line sweep algorithm, and three instances of
the Two-phase filter, with d′ = 0.05d, d′ = 0.10d and d′ = 0.2d to various valus of d.

J. Valença Geometric Disk Cover



44 Visualisation and Analysis of Geographic Information

(a) (b) (c)

(d) (e) (f)

Figure 4.16. Two-phase filter result comparison. (A) Original set; (B) Intermediate set for
two-phase filter with d′ = 0.1d; (C) Intermediate set for Two-phase filter with d′ = 0.05d; (D)

Final set for one pass; (E) Final set for two-phase filter with d′ = 0.1d; (F) Final set for
two-phase filter with d′ = 0.05d

4.3 Region Panning and Zooming

One of the requirements established for the final algorithm it that it should be able to handle a

translation motion in the region and starting point set. This means that in case the new region

intersects the previous one, it is important for the user that the points already in display are

kept selected, so that each move does not cause the user to lose track of the movement. As

such, any selected centroids inside the intersection of the two regions, and all the points covered

by them, should be kept unchanged, even if it means losing the guaranteed approximation to

the optimal value. Each of the approaches described earlier can be modified to ensure that this

property is met.

To handle a panning motion, each instance of the program receives the centroids chosen in the

previous region. To ensure that the points are still selected is a matter of artificially increasing

their number of neighbours by N , then compute the problem regularly. Since the number of

Geometric Disk Cover J. Valença



Visualisation and Analysis of Geographic Information 45

points from the old region is bound from above by at most 128, the new number of points

is relatively insignificant for instances of 10000 points and more, and the algorithms show no

significant difference in performance. Since the covering distance does not change, the old

centroids are not close enough together to cover each other, otherwise they would have done so

in the old region. This solves the panning issue without needing to add much complexity to

the algorithms. In the case of multiple phase filters, the weight of the selected points must be

artificially increased in all the phases, to ensure they are kept selected.

A

B

Figure 4.17. Example of a panning motion from region A to region B. Centroids contained
in A ∩B calculated in region A must be kept when calculating region B.

In the case of zooming, the scale changes, and so does the minimum distance. The points selected

previously are relatively more close together in the new window, and they shift towards the centre

of the region. One of the solutions is to simply discard the previous selected points, since they do

not have the same representation properties they did in the previous region. Another solution is

to do the same process as for the panning. By artificially inflating the weight of the established

points, they are given priority over the new window’s points. Since the points are now closer

together in the window, they may cover each other, resulting in some prioritised points not being

selected.

A

B

Figure 4.18. Example of a zooming motion from region A to region B. Centroids contained
in A ∩B calculated in region A should have selection priority when calculating region B.

J. Valença Geometric Disk Cover



46 Visualisation and Analysis of Geographic Information

4.4 Discussion

The approximation algorithms in this chapter meet the efficiency requirements established for

the web application, and are also able to handle panning and zooming motions without any com-

plexity. In the case the test inputs prove to still be too large to be handled by the approximation

algorithms, a good alternative is found in the two-phase filtering approach.

A solution for even larger set of points may require more filter phases, but for the inputs given,

no such solution was needed. Furthermore, since the two-phase filtering approaches show similar

CPU-times to the random sampling approaches, while showing fewer critical shortcomings, there

should be no advantage in using random sampling.

Geometric Disk Cover J. Valença



Chapter 5

Conclusion

In this thesis, we designed algorithms to select representative subsets from large quantities of

geographic points. The algorithm must be able to handle panning and zooming motions along

the geographic region displayed, as well as be efficient enough to be integrated in the back-end

of a real-time Web application.

We started by defining representation as finding the optimal solution to the k-centre problem. To

solve this problem, two different incremental branch-and-bound approaches were implemented.

We then compared the performance of these approaches and one formulation of the problem in

integer linear programming to ascertain if the problem could be solved in real-time. The results

showed not only that optimal approaches are not efficient to meet the time requirements of the

application, but also that the problem required a priori information about the number of point

clusters in the region.

In a second phase, we redefine the representation problem as to find the solution to the geometric

disk cover problem instead. This new approach manages to compute the cardinality of the final

subset with no information about the region. To solve this problem, we implemented two

versions of an approximation algorithm, both of which calculated subsets very efficiently, with

a guarantee of approximation to the optimal value. We then performed some tests to determine

the most efficient solution. Additionally, we used heuristic approaches to further speed up the

algorithm and reduce its memory usage, but without guarantee of approximation.

Throughout this thesis, we found that interpreting the representation problem as geometric disk

cover problem, and solve it with an approximation algorithm is an efficient way to be applied

in the context of a real-time web application. We also found viable solutions for solving larger

instances of the problem.

J. Valença 47



Chapter 5. Conclusion Visualisation and Analysis of Geographic Information

5.1 Future Work

The next step for the web application developer is to integrate the algorithms described and

implemented during this thesis. Since the algorithms are already implemented taking into ac-

count their place in the architecture of the final product, the inputs and outputs are already

conformed to the specifications given. Full integration requires that the communication layer,

as well as the proper protocol request and response parsers are implemented.

Although the results were satisfactory, it may still be possible to develop more efficient algo-

rithms. The bottleneck for our final approaches lies in the proximity graph building stage,

particularly performing the various range search queries to establish neighbouring points. This

means that implementing more efficient range search structures is a good strategy to find better

solutions. Furthermore, since the evaluation of the results may depend of the perspective of the

user, new solutions might require different interpretations on the concept of representation, such

as the notion of uniformity or other similar metrics.

Conclusion J. Valença



Appendix A

Theorems and Proofs

A.1 Median of Medians

Efficiently constructing a balance k -d tree depends on an efficient method to pick the point that

divides the hyper-rectangle in two. One way to reasonably quickly find a value close to the

median is to find the median of a sample. To ensure the quality of this sample, is to gather the

medians of smaller subsets which can be quickly calculated. This algorithm is an example of a

selection algorithm and is known as the median of medians algorithm [6].

The median of medians algorithms works as follows. Any starting array S consisting of n

arbitrary values is split into n/5 sub-arrays, each containing at most 5 elements (the last array

might have less, depending on whether n is divisible by 5 or not). For each of the sub-arrays,

the median can be calculated in constant time, since for 5 values it can be done in at most 6

comparisons, which for the whole array S takes 6n/5 comparisons. After finding all the sub-

arrays’ medians and gathering them in a new array F , the algorithm then is called recursively

for F until only one value M remains. M is then used to partition the input into two sub-groups:

elements smaller than M and elements larger than M . The two subgroups are then concatenated

in increasing order and with M in between them, and the algorithm is recursively called again

for the group that contains the n/2th point of the newly concatenated list. Whenever the list

has less than a given number of elements, the median is calculated via brute-force, to avoid

infinite recursion. This value is returned by the initial recursive call of the function.

As stated above, this algorithm only returns a value close to the real median. Despite this, it can

proven that for any array S, the value M is always between the 30th and the 70th percentiles.

At each recursive stage, the values in F larger than M are discarded. This means that out of the

n/5 values for any given vector, n/10 is larger by definition, since M is picked as the median.

For each value in F larger than M , there are also two other values that are larger than M , since

each value in F was chosen as a median out of 5 different values. This means that the number of

values greater than M is at most 3n/10. Similarly, by a symmetric proof, there are also 3n/10

J. Valença 49



Chapter A. Theorems and Proofs Visualisation and Analysis of Geographic Information

values in S smaller than M . This also means that the second recursive call can at worst have

7n/10 elements, which is a constant fraction of the input. This property is essential in proving

the linear complexity of the algorithm.

Analysing the time complexity T () of this algorithm requires analysing separately both recursive

calls of the algorithm. The first recursive call occurs in a list of size n/5, and takes T (n/5) time.

The second recursive call occurs in a list with 7n/10 elements, which takes T (7/n). Finding the

median for a group of 5 elements requires a constant number of comparisons. These comparisons

can be arranged in such way that only 6 are necessary for a group of 5 elements. This means

that the algorithm has a constant factor of 6/5 for calculating a median on its smallest division.

T (n) is then given by:

T (n) ≤ 6n/5 + T (n/5) + T (7n/10) (A.1)

If T (n) has, in fact, linear time complexity, then there is a constant c such that:

T (n) ≤ 6n/5 + cn/5 + 7cn/10

≤ n(12/5 + 9c/10)
(A.2)

If T (n) is to be at most cn, so that the induction proof is valid, then is must be true that:

n(6/5 + 9c/10) ≤ cn

6/5 + 9c/10 ≤ c

6/5 ≤ c/10

12 ≤ c

(A.3)

This proves that T (n) ≤ 12n, or any larger constants than 12 multiplied by n comparisons.

A.2 Set Cover Approximation Algorithm

Theorem A.1. The greedy algorithm for the Set Cover can find a collection with at most

m loge n sets, where m is the optimal number, and n is the number of elements covered by all

sets.

Proof. Let the universe U contain n points, which can be covered by at least m sets. The first

set picked by the algorithm has size at least n/m. The number of elements of U left to cover n1

Theorems and Proofs J. Valença



Chapter A. Theorems and Proofs 51

is

n1 ≤ n− n/m = n(1− 1/m) (A.4)

The remaining sets must contain at least n1/(m − 1) elements, otherwise the optimal solution

would have to contain more than m sets. By iteratively calling the same process, the number

of sets at stage i is given by

ni+1 ≤ ni(1− 1/m)

ni+1 ≤ n(1− 1/m)i+1
(A.5)

If it takes k stages for the greedy algorithm to cover U , then nk ≤ n(1− 1/m)1 needs to be less

than 1.

n(1− 1/m)k < 1

n(1− 1/m)m
k
m < 1

(1− 1/m)m
k
m < 1/n

e−
k
m < 1/n . . . (1− x)

1
x ≈ 1/e

k/m > loge n

k < m loge n

(A.6)

This means that the size of the collection of sets picked by the greedy algorithm is bound above

by m loge n, which gives the greedy algorithm a O(loge n) approximation to the optimal solution.

A.3 Circle Packing Upper Bound

The circle packing problem’s goal is to find the best disposition of non-intersecting circles inside

a square, given the ratio of the circle diameter to the width of the square [15]. In our approach to

the geometric disk cover, the radius of the disks is given as a fraction d of the largest dimension

of the rectangular region. This means that the case of a rectangular window is bound from

above by the solution of its containing square. The circle packing algorithm also expects non-

intersecting circles contained by a square. To find the circle packing solution for our problem,

we cannot use or values of distance d for our value of width w, since the circles in our problem

have different properties. The properties must be accounted for to reach the equivalent values

for the radius r′ in relation to the width w′ for the circle packing problem.

J. Valença Theorems and Proofs



Since each covering disk around a centroid can intersect other disks in our problem, but cannot

contain any other centroids. The centres of the disks cannot be closer than the radius d.

Therefore, the circle packing has to be calculated with circles with radius r′ half the radius

r of the geometric disk cover disks, to ensure the centres are at the right distance.

Furthermore, the circles in the circle packing usually have to be fully contained in the square.

In our case, however, they can be partially outside, providing the centre is inside. This means

that the side of the square to the corresponding circle packing instance w′ is equal to the side

of the original region w plus two times the circle packing radius r′.

This means that to find the ratio r′/w′ in relation to d, where r′ = r/2 and w′ = w + 2r′.

r′

w′
=

r/2

w + 2r′
=

r/2

w + r
=

r

2(w + r)
=

dw

2(w + dw)
=

d

2 + 2d
(A.7)

given by r = d
2+d . This means that the corresponding radius to the values of d = {0.1, 0.15, 0.2}

is given by r ≈ {0.4545, 0.6522, 0.0833}, for which the best values found as of the writing of this

thesis are k = {128, 59, 36}, respectively, as demonstrated in [3, 21, 24]. Figure A.1 shows the

best distributions found so far.

Figure A.1. Most efficient distributions for circle packing for d = 0.1, d = 0.15,d = 0.2.

With the exception of the latter, these values are yet to be proven to be optimal. However, the

optimal values are not expected to be very different, as the remaining area is very limited. The

52 J. Valença



References

[1] Greece TSP dataset, University of Waterloo, Ontario, Canada., . URL http://www.math.

uwaterloo.ca/tsp/world/grpoints.html.

[2] Sweden TSP dataset, University of Waterloo, Ontario, Canada., . URL http://www.math.

uwaterloo.ca/tsp/world/swpoints.html.

[3] B. Addis, M. Locatelli, and F. Schoen. Packing circles in a square: New putative optima

obtained via global optimization. Optimization Online, 154, 2005.

[4] N. Amenta, S. Choi, and G. Rote. Incremental constructions con BRIO. In Proceedings

of the Nineteenth Annual Symposium on Computational Geometry, pages 211–219. ACM

Press, 2003.

[5] J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-

munications of the ACM, 18(9):509–517, 1975.

[6] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection.

Journal of computer and system sciences, 7(4):448–461, 1973.

[7] P. Bose and P. Morin. Online routing in triangulations. In Algorithms and Computa-

tions: 10th International Symposium, ISAAC’99, Chennai, India, December 16-18, 1999

Proceedings, page 113. Springer, 2003.

[8] A. Bowyer. Computing dirichlet tessellations. The Computer Journal, 24(2):162–166, 1981.

[9] H. Cambazard, D. Mehta, B. O’Sullivan, and L. Quesada. A computational geometry-based

local search algorithm for planar location problems. In Proceedings of the 9th international

conference on Integration of AI and OR Techniques in Constraint Programming for Com-

binatorial Optimization Problems, pages 97–112. Springer-Verlag, 2012.

[10] A. Caprara, P. Toth, and M. Fischetti. Algorithms for the set covering problem. Annals of

Operations Research, 98(1-4):353–371, 2000.

[11] G. Cornuéjols, G. L. Nemhauser, and L. A. Wolsey. The uncapacitated facility location

problem. Technical report, DTIC Document, 1983.

[12] M. S. Daskin. Network and discrete location: models, algorithms, and applications. John

Wiley & Sons, 2011.

J. Valença 53

http://www.math.uwaterloo.ca/tsp/world/grpoints.html
http://www.math.uwaterloo.ca/tsp/world/grpoints.html
http://www.math.uwaterloo.ca/tsp/world/swpoints.html
http://www.math.uwaterloo.ca/tsp/world/swpoints.html


References

[13] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Computational Ge-

ometry. Springer, 2000.

[14] S. Elloumi, M. Labbé, and Y. Pochet. A new formulation and resolution method for the

p-center problem. INFORMS Journal on Computing, 16(1):84–94, 2004.

[15] M. Goldberg. The packing of equal circles in a square. Mathematics Magazine, pages 24–30,

1970.

[16] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi. Verifying spatial queries using voronoi

neighbors. In Proceedings of the 18th SIGSPATIAL International Conference on Advances

in Geographic Information Systems, pages 350–359. ACM Press, 2010.

[17] J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives.

Proceedings of the IEEE, 80(9):1502–1517, 1992.

[18] D.-T. Lee and C. Wong. Worst-case analysis for region and partial region searches in

multidimensional binary search trees and balanced quad trees. Acta Informatica, 9(1):

23–29, 1977.

[19] N. Megiddo and A. Tamir. New results on the complexity of p-centre problems. SIAM

Journal on Computing, 12(4):751–758, 1983.

[20] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations: Concepts and

Applications of Voronoi Diagrams, volume 501. John Wiley & Sons, 2009.

[21] R. Peikert. Dichteste packungen von gleichen kreisen in einem quadrat. Elem. Math, 49(1):

16–26, 1994.

[22] H. Sagan. Space-Filling Curves, volume 18. Springer-Verlag New York, 1994.

[23] J. R. Shewchuk. Lecture Notes on Delaunay Mesh Generation. Department of Electrical

Engineering and Computer Science, University of California at Berkeley, 1999.

[24] P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, and I. Garćıa. New

approaches to circle packing in a square: with program codes, volume 6. Springer Science

& Business Media, 2007.

[25] J. Valença, L. Paquete, C. Caçador, and P. Reino. Visualisation and Analysis of Geographic

Information: Algorithms and Data Structures, 2015.

[26] D. Vaz. Subset selection algorithms in multiobjective optimization. MSc in informatics

engineering, University of Coimbra, Portugal, 2013.

[27] V. V. Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

54 J. Valença


	Introduction
	Concepts, Definitions and Notation
	Definitions of Coverage
	The k-centre Problem
	Geometric Disk Coverage
	Algorithmic Concepts
	Branch-and-Bound
	Heuristic Techniques
	Approximation Algorithms

	Geometric Concepts and Data Structures
	Nearest Neighbour Search and Point Location
	k-Dimensional Trees
	Orthogonal Aligned Range Search
	Voronoi Diagrams
	Delaunay Triangulations
	Hilbert Curves


	Exact Algorithms for the k-Centre Problem
	Naïve Branch-and-Bound
	Branching
	Bounds

	Delaunay Assisted Branch-and-Bound
	Algorithm Comparison
	Time Complexity
	Experimental Results

	Discussion

	Geometric Disk Cover
	Approximation Algorithm
	Proximity Graph Construction
	Set Cover
	Results

	Heuristic Speed-ups
	Random Sampling
	Two-phase filtering

	Region Panning and Zooming
	Discussion

	Conclusion
	Future Work

	Theorems and Proofs
	Median of Medians
	Set Cover Approximation Algorithm
	Circle Packing Upper Bound


