
Masters’ Degree in Informatics Engineering

Dissertation

System of Automatic Recommendation and
Prioritization of Tasks

José Pedro Santana Saraiva

jpssar@student.dei.uc.pt

Advisor :

Alexandre Pinto

June 2014

UNIVERSIDADE DE COIMBRA

Abstract

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Informática

Master’s Degree Thesis

System of Automatic Recommendation and Prioritization of Tasks

by José Pedro Santana Saraiva

Most people have many different tasks, goals, projects, interests and responsibilities

in life, and in the fast paced world we live in today, all of these grow in number and

diversity all the time. This rising in complexity and quantity of matters to handle makes

it progressively harder to make intuitive choices about which task to execute next. We

developed a prototype application for helping the user in managing and prioritizing

his tasks, guaranteeing an alignment with his goals and deadlines. Our application

follows a variation over the Getting Things Done (GTD) methodology but also includes

benefits from other complementary approaches, such as goal cascading and dynamic

prioritization.

Keywords: GTD, Prioritization of Tasks, Recommendation of Tasks, Hierarchization

of Objectives, Personal Productivity

University Web Site URL Here (include http://)

—————————————————————————————-

Acknowledgements

Firstly, I would like to acknowledge my immense gratitude to my advisor Prof. Alexandre

Pinto for all the guidance and knowledge provided, for the patience and availability

shown since the start of this thesis and for his motivational words provided in hard

times.

I also would like to acknowledge the Cognitive and Media Systems Group for providing

me shelter and allowing me to use their resources.

Last but not least, I am truly grateful for the support that my beloved family has

given throughout my studies, especially my parents and grandparents for their relentless

support, belief and comprehension, and my gratitude to all my friends who played an

essential role during this period of my life.

iv

Contents

Abstract ii

Acknowledgements iv

Contents vi

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Context . 1

1.2 Problem Identification . 2

1.3 Motivation . 3

1.3.1 Target Users . 3

1.3.2 Innovative Characteristics of the work 4

1.3.3 Challenges to overcome . 4

1.4 Document Structure . 5

2 Background and Proposed Approach 6

2.1 The Getting Things Done Methodology 6

2.1.1 The GTD Workflow . 8

2.1.1.1 Horizontal Processing . 8

2.1.1.2 Vertical Processing . 11

2.2 Our approach . 12

2.2.1 Horizontal Processing . 13

2.2.2 Vertical Processing . 14

2.3 Alternatives to the GTD . 15

2.3.1 The One Minute To-Do List . 15

2.3.2 Pomodoro Technique . 16

3 State of the Art and Related Work 18

3.1 State of the Art Applications . 18

3.2 Comparative Vectors . 27

3.2.1 Non Functional Vectors . 27

3.2.2 Information Vectors . 27

3.2.3 Organizational Vectors . 28

vi

Contents vii

3.3 Critical Evaluation of the Applications . 29

3.3.1 Non Functional Vectors . 33

3.3.2 Information Vectors . 34

3.3.3 Organizational Vectors . 35

3.4 Related Work . 36

3.4.1 Scheduling Algorithms . 36

3.4.2 Goal Decomposition . 39

3.4.2.1 Goals Breakdown Structure 39

3.4.2.2 Goal Modeling in Requirements Engineering 40

4 Requirements Analysis 41

4.1 Functional and Non-Functional Requirements 41

4.1.1 Functional Requirements . 42

4.1.2 Non-Functional Requirements . 46

4.2 Use Cases Diagram . 48

4.2.1 Tasks Sequence Diagram . 49

4.2.2 Recommendation Sequence Diagram 50

5 Architecture 51

5.1 First Level Architecture . 51

5.2 Second Level Architecture . 52

5.2.1 Model . 52

5.2.2 Controllers . 54

5.2.3 View . 57

5.3 Technologies . 57

5.3.1 Programming Language . 57

5.3.2 Persistent Data Storage Solution 58

5.3.3 Software Platform . 59

6 Recommendation Process 61

6.1 Reducing the task list . 61

6.2 Prioritization Algorithm . 62

6.2.1 Importance . 63

6.2.2 Urgency . 66

6.2.3 Age . 69

6.2.4 Speed . 70

6.2.5 Presentation of the Tasks . 71

7 Developing,Testing and Validation 72

7.1 Development and Testing . 72

7.2 Validation . 72

7.2.1 Functional Requirements . 72

7.2.2 Recommendation Algorithm . 73

7.2.3 Filters . 76

8 Conclusions and Future Work 79

8.1 Conclusions . 79

8.2 Future Work . 79

Contents viii

A Work Plan 80

A.1 Work Plan for the First Semester . 80

A.2 Work Plan for the Second Semester . 82

Bibliography 84

List of Figures

2.1 GTD Workflow Map . 7

2.2 Collect . 8

2.3 Process . 9

2.4 Organize . 10

2.5 Do . 11

2.6 Horizons of Focus . 12

2.7 Areas of Focus . 14

3.1 OmniFocus Screenshot . 19

3.2 Things 2 Screenshot . 20

3.3 Inbox Classic Screenshot . 20

3.4 IQTell Screenshot . 21

3.5 Life Balance Screenshot . 22

3.6 Producteev Screenshot . 22

3.7 ThinkingRock Screenshot . 23

3.8 Toodledo Screenshot . 23

3.9 ToDoist Screenshot . 24

3.10 NirvanaHQ Screenshot . 25

3.11 Asana Screenshot . 25

3.12 RememberTheMilk Screenshot . 26

3.13 Wunderlist Screenshot . 26

4.1 Use cases Diagram . 48

4.2 Tasks Sequence Diagram . 49

4.3 Recommendation Sequence Diagram . 50

5.1 Abstract Arquitecture . 51

5.2 Classes Diagram . 52

5.3 Entity-Relationship Diagram . 54

5.4 Components Diagram . 55

6.1 Example 1 Tree of objectives . 64

6.2 Example 2 Tree of objectives . 65

6.3 Importance Variation . 66

6.4 Calculation of the latest start . 67

6.5 Urgency Variation . 68

6.6 Age Variation . 70

6.7 Speed Variation . 71

6.8 Prioritized list of tasks . 71

ix

List of Figures x

7.1 Functional Requirements Completion Ratios 73

A.1 Distribution of the Work in the First Semester 80

A.2 Distribution of the Work in the Second Semester 82

List of Tables

3.1 Analysis of the Applications . 30

3.2 Analysis of the Applications . 31

3.3 Analysis of the Applications . 32

4.1 Ideas Requirements . 42

4.2 S/M Requirements . 42

4.3 Tasks Requirements . 43

4.4 Events Requirements . 43

4.5 Projects Requirements . 43

4.6 Goals Requirements . 43

4.7 Vision Objectives Requirements . 44

4.8 Life Objectives Requirements . 44

4.9 Areas of Focus Requirements . 44

4.10 Recommendation Requirements . 44

4.11 Review Requirements . 45

4.12 Integration with Web Services Requirements 45

4.13 Context Requirements . 45

4.14 Usability Requirements . 46

4.15 Reliability Requirements . 47

4.16 Supportability Requirements . 47

4.17 Security Requirements . 47

4.18 Implementation Requirements . 47

xi

Chapter 1

Introduction

This project was developed in the Department of Informatics Engineering (DEI) of

the Faculty of Sciences and Technologies of the University of Coimbra within the the

engineering masters program. It counted with the support of the Center for Informatics

and Systems (CISUC), more specifically the Cognitive and Media Systems (CMS) which

has provided the indispensable workplace to develop the thesis.

1.1 Context

Most people have many different tasks, goals, projects, interests and responsibilities

in life, and in the fast paced world we live in today, all of these grow in number and

diversity all the time. This rising in complexity and quantity of matters to handle makes

it progressively harder to make intuitive choices about which task to execute next.

The possibility of having calendars shared online, where new commitments may be sched-

uled by others, makes this decision problem even harder as it may force a redistribution

of the time necessary for the execution of the tasks and their respective reprioritization

in function of the available time, which renders even more complex and volatile the pre-

vious decisions. The “Getting Things Done” [1] (GTD) methodology for managing time

and tasks, invented by David Allen, has been used by many people to solve these issues

and helping them improve their productivity [2, 3]. Inspired by the effectiveness and

practical results of the GTD, many software applications of productivity and personal

information management that use this methodology were developed, assisting the users

throughout the five steps of the GTD method: the Capturing, Processing, Organizing,

Reviewing and Doing of the tasks.

1

Chapter 1. Introduction 2

Our main goal in this project is to develop a new software tool supporting the GTD

method with a new combination of additional features not yet found in any available

tool. The solution is implemented for laptops and desktop computers

The portability of the notebooks allows the user to access the information of the program

everywhere: at his home, workplace or in a traveling situation. However, is it needed to

take in account that not all programs run in all machines so the necessity of portability

in the application to run in many different platforms is a priority. In order to have an

application that would permit that portability we could have followed options: develop

a web based application or a stand alone application with versions for different operation

systems. We opted for the stand alone because it is crucial that the application allows the

user to aces his productivity systems in the biggest number of scenarios and a web based

application would need always aces to the Internet, which would exclude for example

traveling situations. However in the future we intend to develop a web based version

of the system developed during this thesis to enable the user to acces his productivity

information in other devices beyond his personal computer.

1.2 Problem Identification

None of the GTD applications that exist so far in the market is able to make an effective

dynamic reprioritization of the tasks taking in account the value and relative importance

of them to the user and adjusted to the changes in his schedule. In addition to this,

these applications do not explore all the Horizons of Focus in GTD (the stack of levels

of increasingly longer-term and wider-scope goals), being focused in the two lower ones

giving only importance to Tasks (or Actions) and Projects. Without the levels above,

that represent higher objectives associated with future goals, it is not possible to make

a good prioritization of the tasks to be done next based, ultimately, on the life goals of

the user.

There are other applications that auxiliate the user in the prioritization of their tasks,

nonetheless they do not follow the GTD protocols, that is worldwide recognized as the

most effective personal productivity methodology.

On the other hand, the GTD methodology proposes only a very ad hoc prioritization

scheme. Actually the lack of a specific prioritization method is one of the most common

criticisms to the GTD among the ”GTDers” community.

Chapter 1. Introduction 3

1.3 Motivation

The main goal of this work is to develop a prototype application for helping the user

in managing and prioritizing his tasks guaranteeing an alignment with his goals and

deadlines. Our application follows a variation over the GTD methodology but also

includes benefits from other complementary approaches, such as goal cascading and

dynamic prioritization.Since there are already several applications of this type in the

market, but none with the dynamic reprioritization of tasks according to the user’s goals,

their relative importances, deadlines, and other factors, we believe there is a realistic

chance of turning this prototypical implementation of the tool into a commercial software

application in the future. The development of the market-ready version of the application

is beyond the scope of this project, as for now we are only focused on building a first

prototype able to demonstrate the value of the new features we introduce. Nonetheless,

if this prototype proves to be useful and to provide added value to the user relatively to

the other applications already available, then we may have some of the initial ingredients

to put forward a start-up project. Under that scenario, this project may become the

origin of yet another industrial spin-off of our Department of Informatics Engineering.

1.3.1 Target Users

The target users of the application are the same as the David Allen’s book Getting

Things Done: “everyone who wants to use strategies to have more energy, to be more

relaxed and making much more with less effort”. These are life objectives of almost

everyone, however not everyone is a possible user of applications to manage his time/life

or has the will to start using the GTD methodology because in most of the cases the

person must change some of his daily routines and way of facing his life. First of all

the user must have experience using a computer and have minimal knowledge on using

simple applications.

Of this segment there are 3 focus of possible users:

• Users who follow the GTD methodology and use other applications that already

exist on the market, but the features of the programs they use are not enough or

do not satisfy them enough.

• People who follow the methodology GTD but have the information from the tasks

to its higher levels in different places, services or formats.

• Possible new users of the GTD, who can benefit from having a system which allows

them to start using the methodology in an incremental way, i.e., beginning with

Chapter 1. Introduction 4

the lowest levels and, over time, adapting to it and covering all the levels of the

GTD.

1.3.2 Innovative Characteristics of the work

The first innovative characteristic of the thesis is the reformulation of the GTD method-

ology proposed by Prof. Alexandre Pinto. Although the GTD methodology has been

widely used throughout the world, we believe these changes will help the productivity

of the user.

The second innovative characteristic of this work is a software application which will

have the feature of letting the user create a tree of objectives. The user must then

assign a relative importance to each objective in the tree. This way, the meaning of

the tree is that sibling objectives in a given depth level contribute to the achievement

of their parent goal in the tree. With this hierarchy and with the value of importance

given by the user to each objective we will be able to calculate the importance of lower

objectives in the reach of the ones in higher levels.

Knowing the impact of current objectives in future goals and using other more usual

criteria we will be able to build a recommendation system that will make a prioritization

that has never been before. With this we will improve the productivity of the user

because he will spend less time in the process of deciding which tasks will he perform next

and we will improve the possibility of letting him make the best choices for accomplishing

his goals.

Finally we will provide the possibility of synchronizing the information existent in other

services with the application to give him the possibility to access it in other devices.

1.3.3 Challenges to overcome

First of all, none of the programs that exist in the market make a good mapping of

the 4th (3-5 year Visions) and 5th levels (Life-long Goals and Purpose), because of

the ambiguity of making a computational representation of the future goals and life

objectives of an individual. In addition to this it is necessary to preview the impact of

the tasks (lower level) in the reaching of the goals.

As important as this, the selection of criteria that will define the priority of the tasks

depending of the context where the user is and the other conditions to realize them will

be very important in the process of scheduling.

Chapter 1. Introduction 5

In terms of usability, making a graphical user interface allowing the user to easily and

effectively benefit from the application without losing its full features is also one of the

important trade-offs of the project. Making an application with the capacity to work

offline, to be integrated with other services and with the capacity of syncing in the cloud

and be robust to resist to eventual problems related to internet failures is also a priority.

1.4 Document Structure

In this section we present the structure of the document.

In Chapter 2 we explain the GTD methodology focusing on the Workflow Map. In this

chapter we also present the alteration of this methodology proposed that we used for de-

veloping the prototype of the application and other methodologies which are alternatives

to the GTD.

In Chapter 3 we present the State-of-the-Art of GTD-following applications. It is divided

in 4 sections. In the first one we make a brief description of each application studied, in

the second one we describe the comparative vectors used to compare the applications, in

the third one we make a critical analysis of them and in the last section we summarize the

algorithms that were studied to inspire the creation of our recommendation algorithm

and other goal decomposition techniques.

In Chapter 4 are present the gathering of functional and non functional requirements

needed for development of the application, the uses cases diagram and the sequence

diagrams designed.

In Chapter 5 we present the architecture of the application which is divided into three

sections: First Level Architecture, where we present a simple view of the architecture,

Second Level Architecture, where we present the different layers of the architecture and

a detailed description of each one and Technologies, where we present the reasons for

the choice of the technologies used.

In Chapter 6 we present the mechanisms implemented in order to provide to the appli-

cation the feature that suggests to the user what tasks he should perform next.

In Chapter 7 we present the procedures followed by us to verify if the application meets

the Functional Requirements presented in the first semester and if the mechanisms de-

veloped to aid the user choosing the tasks to perform are valid.

In Chapter 8 we present the Conclusions and Future Work of the application developed.

Chapter 2

Background and Proposed

Approach

2.1 The Getting Things Done Methodology

This thesis is based on the GTD methodology and focuses particularly in the Workflow

Map, which is David Allen’s way of getting control and perspective over all tasks at

hand.

6

Chapter 2. Global Characteristics 7

Figure 2.1: GTD Workflow Map [4]

Chapter 2. Global Characteristics 8

2.1.1 The GTD Workflow

The Workflow is divided in two parts: the horizontal processing which involves the col-

lect of ideas, transforming them into possible actions and choosing what actions to do

next (control) and the vertical processing where there is a decomposition of personal ob-

jectives in several levels, each one associated to certain abstraction scope (perspective).

2.1.1.1 Horizontal Processing

The horizontal axis is composed of five stages: Collect, Process, Organize, Review and

Do.

Collect

The first stage in the Workflow Horizontal processing of the GTD methodology is gath-

ering any life random inputs and putting them in a trusted system. These inputs consist

in everything in a person’s that requires some action or consideration from his part. In

his book, David Allen defends the practice of capturing every life’s random input with

the objective of having everything out of the person’s head. This way, all the “gotta

remember” thoughts which would be taking valuable brain space, fracturing a person’s

focus, adding stress and robbing use of mental capacity, are not present in the person’s

head giving the opportunity for using it for a more creative and productive use. All of

this captured input can be collected into a physical inbox with sheets of paper, or in a

electronic document in a word processor, or any equivalent format.

Figure 2.2: Collect

Process

After the life’s input have been saved in the system in the Collect process, the information

of them must be processed, which leads to the next step in the GTD Workflow Map:

Chapter 2. Global Characteristics 9

Process. In this step all the items that were stored in the Collect are analyzed and their

meaning defined.

Outcomes and next actions are determined for actionable items and non actionable items

are identified as trash or as something potentially actionable in the future or reference

material. However if the item is actionable and takes less than two minutes to be

performed it should be done immediately. In this process the unclear stuff present in

the inbox is processed into defined work.

Figure 2.3: Process

Organize

In this step of the GTD Workflow is defined where and how will be stored actions and

support material that has been processed. There are four main lists where the processed

items are stored:

• Projects List: Goals that need more than one action to be completed

• Waiting List: Outcomes that are to be achieved by other people and that are

relevant to our goals

• Next Actions: Actions that should be done as soon as possible

Chapter 2. Global Characteristics 10

• Calendar/Agenda: Actions that have to be done on a specific date and/or

time

Other information that should be added to the items in this process is the context where

the action can be performed. This includes its location, tool or people needed to perform

it. This information can be used to filter out actions that are unavailable in the user’s

current context when deciding what to do next.

Figure 2.4: Organize

Review

The review process of tasks, projects and other goals is a critical factor in the GTD

methodology. In David Allen’s words, it is the “glue that keeps it all together”. It is

necessary to ensure that the system is kept “up to date” and if any of the someday/-

maybe tasks should be executed. However each horizon level should be reviewed in

different time intervals, e.g., Runway (actions) once a day, 10k-Projects once a week,

20k- Areas of Focus once a month, 30k-Goals every 3 months, 40k-Vision goals once

a year, and 50k-Life Goals every four years. Also for the next phase of the horizontal

workflow, the Do process, there is the need of having all the information up to date in

order to let the person choose what actions should be done next.

Do

In this phase the person chooses which tasks should be performed using the information.

Having the list of next task the user must apply some criteria to choose what will be his

Chapter 2. Global Characteristics 11

actions. The first criterion is the context, which , as was previously said, consists in the

environment where each task can be performed. In this filter only the actions that can

be performed in the actual environment are picked.

After this selection, the next step is to see the time available at the moment and the

tasks that exceed that time frame are discarded. The last criterion is the resources where

the person compares the necessary energy to perform a task with the energy he wants

to spend, so all the tasks that exceed the limit imposed by him are discarded. After the

end of this process the user should have a “filtered” list of the actions that he can do at

a determined moment. This provides a great facility for the GTD user because having

to decide between a wider range of tasks than the one received in the end of this process

takes much more time and energy.

Figure 2.5: Do

2.1.1.2 Vertical Processing

In his book “Getting Things Done: The art of Stress-Free Productivity”, David Allen

defends that managing the flow of work can be approached from many horizons as there

are many different levels of defining what “work really is”. Whereas there may be some

lower levels in control, there are often incomplete and unclear issues at higher levels

that needed to be addressed, to get it all under control. So there is the necessity of to

categorize “work” in different levels of focus. David Allen uses the take off of a plane as

a metaphor for representing the different levels of focus:

• Runway (Actions): huge volume of actions and information needed to do and

organize. This includes emails, call, memos, stuff to be read or processed. . .

• 10 000 feet level (Projects): Inventory of the projects, in other words, all the

commitments that take more than one action to complete. Every group of tasks

that contribute to a certain objective belong to the same project. For example if

a project is to “have a dinner with friends” some tasks have to be completed: talk

with John and Mary to set the date, choose the restaurant, make the reservation

and drive the car to the place.

Chapter 2. Global Characteristics 12

• 20 000 feet level (Areas of Focus): Represents the major areas of respon-

sibility of one person and where many projects belong. Examples of areas of

responsibility are work, personal life and personal managing.

• 30 000 feet level (Goals): represents the goals of a person from 12 to 18

months.

• 40 000 feet level (Vision): represents the objectives of a person in the next 3

to five years.

• 50 000 feet level(Life/Purpose): in this level are represented the life goals of

a person.

In the Getting Things Done methodology, these levels are analyzed bottom up because

David Allen argues that is difficult for individuals to focus on big picture goals if they

cannot sufficiently control the ones in the lower level. This way the person is concen-

trated in his daily actions knowing that they will help in the accomplishment of the

projects/goals of the levels above.

Figure 2.6: Horizons of Focus

2.2 Our approach

As stated before, our work is based on the GTD methodology which has already given

evidence of improving the productivity of many people around the world. However we

propose some changes to the methodology and our application will be constructed based

upon them. These alterations are made in the vertical and horizontal process of the

Workflow.

Chapter 2. Global Characteristics 13

2.2.1 Horizontal Processing

In the GTD the Review stage comes before the Do because it is in that step that the

user refreshes his own memory of which goals, projects and tasks have higher priority.

This intuitive information is then used in the Do phase.

In our perspective of the horizontal view of the workflow the Do stage swaps position

with the Review. In this proposed new setting, the Do stage includes a prioritization

phase, which can be automated, whereas the subsequent Review stage is concerned only

with keeping the information in the system up to date.

Since we are implementing a software application that supports this new version of the

GTD method, it will be the application’s job to automatically calculate the priorities of

each task and project, leaving the user ready for the Doing, and performing the Review-

ing a posteriori. The application calculates the priorities using relative importances,

deadlines, and other relevant information, and then recommends a task execution order

based on those priorities.

This way we replace the process of reviewing as something heavy and that takes a lot

of time for something more simple that can be divided into smaller amounts of time.

Moreover, these times of reviewing oblige the user to reflect about his long term goals.

Other refinement that we added is in the process of selecting from the list on next

actions, the ones that may be performed. Nowadays the context of the actions is not as

important as it was in the time that David Allen wrote the book where he explains the

GTD methodology (2002). Now the technology allows a person to do most of his tasks

like responding to emails, business conversations or writing reports almost anywhere

thanks to the existence of devices like smart phones and laptops and wireless internet.

So in the task recommendation feature of our application we will use four attributes that

we think are the most important in the decision criteria instead of the 3 selection criteria

of the GTD method: 1)Urgency: time left until the due date of the task; 2)Importance:

importance of the task to accomplish the goals of the user; 3)Speed: duration of the task;

and 4)Age: time elapsed since an action of the same project has last been performed.

this approach is based on the Eisenhower Matrix, where is calculated the priority of an

action using its urgency and importance [5]. We developed a mechanism that gives more

importance to the attributes that are more significant to the user in the choice of what

task to perform next.

Chapter 2. Global Characteristics 14

2.2.2 Vertical Processing

In the vertical perspective of the GTD workflow, David Allen defends that there are

6 horizons of focus. All of them except the third level (counting from the bottom up)

consist in a number of goals that need to be completed, in other words, everything in

these levels consist in something that needs to be done or achieved. As said before, an

Area of Focus is an area in life and work that a person is responsible for, and thus is

a grouping of goals, not a goal itself. Due to this change of perspective, in our version

of the methodology, which our application uses, the third level (20 000 feet - Areas of

Focus) is removed. Instead, the goals in each remaining level — task, project and goal

(from the 30 000 level upwards) — are assigned to a level-specific Area of Focus. Each

level is thus comprised of several Areas of Focus, each containing several goals.

Figure 2.7: Areas of Focus

With our application the user inserts his/hers goals in the correspondent horizon level,

and specific Area of Focus. We allow the user to specify the relative importance of each

goal, and the relationship between objectives of different levels in a parent-goal/child-

goal fashion, and use this information to calculate the importance of each in the reach

of others that are in a “higher” level. To accomplish this, the representation of the

horizons of focus and the relations of the “entities” with the others in the levels above

will be represented by a tree structure where a leaf node represents an action or task,

which are connected to their respective parent projects. Climbing up the tree, each level

corresponds to a higher horizon of the GTD methodology. Every Life goal is connected

to the same node which is the root of the tree. The user can create goals for any

horizon level. After the creation he must choose for which one of the nodes in the

level above will the new task/project/goal be connected (the nodes in the life goal level

will automatically be connected to the root) in order to ensure cohesion of the horizons.

Chapter 2. Global Characteristics 15

This decomposition of objectives into sub objectives is aligned with the Cascading Goals

however we adapted them for our specific context [6].

2.3 Alternatives to the GTD

2.3.1 The One Minute To-Do List

The One Minute To Do [7] is a methodology for Time and Task Management developed

by Michael Lineberger. In this methodology, Michael Lineberg defends that actions/-

goals, named items, should be divided into three lists: Critical Now, Opportunity Now

and Over the Horizon. In the Critical Now List, should be put the items which have as

due date the current day. In the Opportunity Now List, should be put the items that do

not have as due time the current day but, if the user is able to empty his Critical Now

List, the user can perform them. In the Over the Horizon List should be put the items

that have a due date longer than ten days from current day. This process allows the

user to empty his mind of information that do not contribute for the creative process,

which is common to the GTD in the process of Collect and organize the items in lists

based on the item’s urgency, which facilitates the choice of the next tasks to perform.

The review process is also present in this methodology, where Mark Linenberger defends

that the Critical Now List should be reviewed every hour, the Opportunity Now List

once a day and Over The Horizon List approximately every week.

This approach is much more simple that the one of the GTD and can be useful for

people who have to manage a small amount of information and the time spent to keep

it up to date can be smaller than in the David Aleen’s methodology. However, in our

perspective, if the amount of information that the user need to handle is too big, this

system may not have the same benefits of the GTD. First of all, dividing the items in

only three lists can be a bad solution because when the amount of information grows

longer will be the lists and the process of review each one will take more time and be

more tiring for the user. In addition to this, there is not a specification what item is like

in GTD that can be a task, goal, project, idea... The specification of item in GTD allows

the user to differentiate the information in the system, which helps him in what to do

with the information. Another advantage of the GTD is allowing the user to associate

projects and tasks in the achieving of longer term goals, which is not possible in The

One Minute To-Do List because the items are arranged only by urgency and not the

benefits for the user.

Chapter 2. Global Characteristics 16

2.3.2 Pomodoro Technique

The Pomodoro Technique is a time management method developed by Francesco Cirillo.

The analysis was based in the book Pomodoro Technique Illustrated [8] written by

Staffan Noteberg. In this technique the user divides his productivity information in

three lists: To Do Today List, Activity Inventory List and Records List. In the To Do

Today List the user should put the tasks he expects to perform in the current day, in

the Activity Inventory List he should insert the upcoming activities he should perform

in the near future and in the Records List the metrics used to compare his productivty.

In order to keep this lists up to date, this methodology is divided in five stages:

• Planning: in the begin of each day the user should choose the tasks he will

perform by selecting them from the Activity Inventory List and puting them in

the To Do Today List.

• Tracking: In this phase the user performs the tasks of the To Do today List.

Francesco Cirillo defends that the user should wind up a timer for 25 minutes and

start the first time. In these 25 minutes he should only focus on the task and when

the time has passed he should record the number of time he got interrupted. He

defends also a 3-4 minutes pause between the task to the user regain focus. After

the time for pause is passed the user should wind up the timer and if the tasks is

not complete he should continue it otherwise he should choose the next one in the

list.

• Recording: At the end of the day the user should merge all the distractions

recorded in the same place.

• Processing: After the information is gathered in the recording step, it should be

processed in order to evaluate the impact of the distractions in the daily work of

the user.

• Visualizing: In this step the user should compare the information processed of

the current day to the one in the Records List, and update it in order to check for

improvements in his productivity.

This approach is much simpler that the GTD and can be a good choice for users who

only want to include in his productivity system more ”actionable stuff” and want to keep

records of their productivity. We also think that the 25 minute rule in the Tracking phase

can be a complement for the Do phase for people who can have some problems om focus-

ing when performing their tasks. However this approach is too simple comparing with

the GTD. First of all, there is no definition of what work is in the Pomodoro technique

Chapter 2. Global Characteristics 17

as it is specified in the Vertical Perspective of the GTD. Secondly, all the information of

future tasks is stored in one list (Activity Inventory) with no differentiation, being the

process of Planning much more tiring and taking a longer period of time than in the

GTD where the tasks are divided in projects and have the context specified. And the

non existence of work hierarchy makes impossible to represent the impact of the tasks

in the achieving of longer term goals.

Chapter 3

State of the Art and Related

Work

In this chapter, we review some of the existent commercial software tool that provide

the user a digital platform for the use of the GTD methodology and we will make a

review of scheduling algorithms that were studied in order to inspire the creation of our

recommendation algorithm.

The choice of the studied applications was made taking into account some of the func-

tions that we intend to develop, such as: platform where can be run, integration with

other systems, support to work offline, mapping of the GTD higher levels and prece-

dences/parallelism between actions. There are other applications in the market however

we decided to focus in the most used.

The choice of the studied algorithms was made taking in account their characteristics

that could be applied to our recommendation in order to calculate the priority of each

task.

3.1 State of the Art Applications

This section provides a brief description of several existing tools on the market that

provide the user a digital interface for the use of the GTD methodology.

OmniFocus

OmniFocus [9] is an application for Mac OS X , iPad and iPhone with a very simple

GUI developed by the Omni Group [10]. It focuses on the top down level of the GTD

18

Chapter 3. State of the Art and Related Work 19

methodology and allows the user to create tasks, adding them to projects and give them

contexts where they can be performed. The main feature of this tool is the Focus that

allows the user to see in every tasks with a certain context or from the same project.

Other important tool of the OmniFocus is the possibility of associating files with the

tasks and the grouping of projects within possibly nested folders. The Omni Focus has

also the feature of presenting the list of the non complete tasks ordered by by earlier

due date.

Figure 3.1: OmniFocus Screenshot [11]

Things 2

Things [12] is a complete task manager for the use of the GTD methodology developed

by Cultured Code [13]. It includes the process of collecting ideas, processing them into

tasks, someday actions or projects. This tools also provides the user the creation of

Areas of Focus which can be associated to tasks. The existence of contexts in tasks is

also present and is it possible to filter the tasks by context or project. It contains also

a very simple recommendation system where the only weight taking into account is the

urgency of each task: a list of tasks is presented ordered by earlier due date and its

remaining time to the end date is focused.

Chapter 3. State of the Art and Related Work 20

Figure 3.2: Things 2 Screenshot [14]

Inbox Classic

Inbox Classic [15] is a GTD platform developed by Midnight Inbox [16] for Mac Os X,

IPhone and IPad. It follows the flow of the GTD and includes the several steps of the

methodology: Collect, Process, Organize and Review. This application also supports

the addition of Reference Material, the archival of tasks and a system of trashing and the

deleted actions are saved in a tools similar to the Recycle Bin or Trash of the operating

systems (is in the deleted list but is kept in the system).

Figure 3.3: Inbox Classic Screenshot [17]

IQTell

IQTell [18] is a tool for the use of the GTD focused in having all the information for

performing the daily tasks in the same place. It is a web based application and is also

Chapter 3. State of the Art and Related Work 21

available for Android and iOS. Its stronger points are the syncing of information with

calendar services, Email Provider Systems and with the Evernote [19] 1. This tool does

not follow The GTD Work Flow and follows a more common traditional method of the

task managers: the Collect and Process do not exist so the first process is the creation

of the tasks/processes.

Figure 3.4: IQTell Screenshot [20]

Life Balance

Life Balance [21] is a time management software developed by Lamagraphics [22]. This

application does not have a defined structure of the GTD horizon levels and gives the

user the possibility to create a dynamic tree structure of goals of its own. The tasks

created can be inserted into projects and values of time and importance can be given to

them. It has a very simple recommendation system of the next tasks to be performed

that can be shown in the screen letting the user choosing one of three parameters: a

defined project, due date and importance.

1Evernote is an easy-to-use, free application that helps the users remember everything across all of
the devices they use. Evernote lets the client take notes, capture photos, create to-do lists, record voice
reminders and makes these notes completely searchable, whether the location of the user.

Chapter 3. State of the Art and Related Work 22

Figure 3.5: Life Balance Screenshot [23]

Producteev

Producteev[24] is a team oriented task manager developed by Jive [24]. Like in IQTell,

in Producteev the steps of Collect and Process do not exist, being the first one of the

workflow the creation of tasks/projects. The main focus of this application is the feature

of sharing projects and tasks with other users of the service, having a very simple and

effective solution for the Waiting For tasks (actions that have been delegated to others

and the person is waiting for them to be finished).

Figure 3.6: Producteev Screenshot [25]

ThinkingRock

ThinkingRock [26] is a GTD software platform developed by Avente Pty [27]. This

tool follows the GTD workflow in its entire scale being all the steps presented in the

Chapter 3. State of the Art and Related Work 23

application, having an interactive diagram similar with the workflow to user to navigate

between the different steps of the methodology. Thinking Rock does not have integration

with other services and all the information is stored in a local database.

Figure 3.7: ThinkingRock Screenshot [28]

Toodledo

Toodledo [29] is a tool developed to improve the productivity of the users by . It allows

the integration with a great number of other services and it is highly customizable.

Another important feature of Toodledo is the sorting of the next actions to be performed

that can be sorted by due date or importance.

Figure 3.8: Toodledo Screenshot [30]

ToDoist

ToDoist [31] is a productivity manager developed by Doist[32] available in many plat-

forms. Provides integration with a great number of other services and has the a feature

Chapter 3. State of the Art and Related Work 24

call “Karma” which is a visual tracking system that monitors the user’s task manage-

ment activities and let him visualize his productivity. In terms of the GTD workflow is

only limited to Tasks and Projects being and Areas of Focus and the three higher levels

are not present.

Figure 3.9: ToDoist Screenshot [33]

NirvanaHQ

NirvanaHQ [34] is a software for managing personal tasks following the GTD methodol-

ogy. Follows a simple methodology being only present the two more down levels of the

GTD Horizon Levels. Includes the Collect process to the user store his ideas of possible

tasks or projects. These tasks can be inserted in projects, be added to the Waiting list,

scheduled or marked as Someday/Maybe.

Chapter 3. State of the Art and Related Work 25

Figure 3.10: NirvanaHQ Screenshot [35]

Asana

Asana[36] is a team oriented task manager developed by the company with the same

name. It allows the creation of tasks and projects that can be shared with the rest of

a team and allows the delegation of them to a certain individual. It provides also a

system where the user can store his personal tasks and projects and a sub menu with

the information of the next tasks to be performed.

Figure 3.11: Asana Screenshot [37]

RememberTheMilk

Remember the Milk [38] is a tool for managing personal productivity following the GTD

methodology. Includes several of the processes of the GTD Workflow, Collect, Process

Chapter 3. State of the Art and Related Work 26

and Organize and a list of the tasks that should be performed taking in account their

due date. Provides also a integration with other systems and has a resume of the time

that the next tasks that have to be performed take and the number of them which have

passed theirs overdue date.

Figure 3.12: RememberTheMilk Screenshot[39]

Wunderlist

Wunderlist [40] is a simplified task manager with the objective to provide a tool “free of

unnecessary features”. Following this paradigm it only allows the creation of tasks and

projects where they can be inserted, being the GTD WorkFlow not followed. It provides

also the display of all the tasks with the due date of the current day, current day or that

were flagged by the user.

Figure 3.13: Wunderlist Screenshot [41]

Chapter 3. State of the Art and Related Work 27

3.2 Comparative Vectors

In this section we present the different vectors of comparison that we used to compare

the GTD applications.

3.2.1 Non Functional Vectors

Platforms This vector includes the different platforms where the application can be ac-

cessed. It is very important because this feature allows the user to access his productivity

information in different devices.

Price In this vector we analyze if the application is free, paid or if the user has to pay

to access certain features.

Integration In this vector we analyze if the application has the feature of importing/-

exporting information from external web services and which kind of information is able

to exchange.

Support to work Offline This binary vector refers if the application allows the user

to use it if there is no Internet connection. Availability is an important requirement for

a GTD application because the user must have access to his information in the biggest

number of possible scenarios.

3.2.2 Information Vectors

Contexts per Action The number of contexts per action is an important vector of

comparison of the applications studied: in his book David Allen defends that a task

should have one context which corresponds to a location, or a tool or a person needed

to perform it. However, in our perspective, tasks should have more than one context

because they may need more than one type of context to be performed.

Precedences/Parallelism between Tasks In this vector is analyzed if the applica-

tions allows the user to define if an action should be performed only after the conclusion

of another (existence of precedences) or if within the application’s logic all actions can

be performed at the same time (parallelism). This existence of precedences between task

is fundamental because eliminates from a list of possible action the ones who cannot be

performed because previous tasks need have not been completed.

Begin Date In this vector we analyzed if the applications allows the user to add a begin

date to tasks/projects. This information can be very useful because if an action is only

Chapter 3. State of the Art and Related Work 28

possible to be performed after a certain date, the system should allow the user to add

this information to the task, helping him in the decision of the next actions to perform.

Duration In this vector we verify if the application allows the user to insert the time

that takes a task to be performed in the system. This information is important in the

decision of the next tasks to be performed because the user can have a limited available

time.

Subtasks In this vector we analyze if the application allows the creation of a list of

subtasks per task. In the GTD Methodology David Allen defend that tasks that are not

”complete enough” to be a project can be divided into smaller tasks (subtasks) which

help the user to divide his actions into smaller ones.

Tags In this vector is verified if the application supports the adding of keywords to

tasks or projects. The usage of tags can grant benefits to the users because it allows the

association of tasks/projects with the same keyword and facilitates the search operations.

Level of importance In this vector we verify if the applications allow the user to add

a value of importance to a task or project. This parameter can be important in the

decision of the next tasks to perform because the value of the output of the action can

be an important criteria for the choice.

3.2.3 Organizational Vectors

Areas of Focus In this vector is analyzed if the application allows the creation of

Areas of Focus, where the projects can be associated to in order to divide them for area

of responsibility. The Areas of Focus is a fundamental level of the Horizons of Focus

because help the user separating his projects he has to perform daily into areas he should

keep his eye on.

Mapping of the GTD Higher Levels In this vector we analyze if the applications

map the 3 higher levels of the GTD methodology: Goals, Vision and Life Objectives. The

mapping of the higher levels is a very important feature because in the GTD method-

ology is analyzed the impact of projects and tasks in the achievement of longer terms

objectives.

Tree of Objectives In this vector we analyze if the application has the feature of

providing a tree structure where the user can see his productivity information stored in

the system, organized by level of the Horizon of Focus Hierarchy. This feature allows the

user to see all his goals from higher level and visualize the impact of tasks and projects

for the reach of future goals.

Chapter 3. State of the Art and Related Work 29

3.3 Critical Evaluation of the Applications

In this section we present the results of the analysis of the applications studied. We

used the vectors of comparison explained in the previous section to compare them and

presented the results in a table structure. After the results were collected we made an

evaluation of them and analyze what features could also be used in our prototype and

show that no software available has some characteristics we pretend to create.

Chapter 3. State of the Art and Related Work 30

N
am

e
P

la
tf

or
m

s
P

ri
ce

In
te

gr
at

io
n

S
u

p
p

or
t

to
w

o
rk

offl
in

e
C

o
n
te

x
ts

p
er

A
c-

ti
o
n

O
m

n
iF

o
cu

s
M

ac
O

S
X

,
iP

h
on

e,
IP

ad
7
9
,9

9
,

1
9
,9

9
,

3
9
,9

9
iC

a
l

Y
es

1

T
h

in
gs

M
ac

O
S

X
,

iP
h

on
e,

IP
ad

4
9
,9

9
,

9
,9

9
1
9
,9

9
N

o
Y

es
M

a
n
y

In
b

ox
C

la
ss

ic
M

ac
O

s
X

,
iO

S
F

re
e

E
m

a
il

,
C

a
le

n
d

a
rs

,
S

a
fa

ri
b

o
o
k
m

a
rk

s
Y

es
1

IQ
T

el
l

W
eb

,
A

n
d

ro
id

iO
S

F
re

e
E

m
a
il

,
C

a
le

n
d

a
rs

,
C

o
n
ta

ct
s

a
n
d

T
a
sk

s
Y

es
1

L
if

eB
al

an
ce

M
ac

O
s

X
,

W
in

-
d

ow
s,

iO
S

3
9
,9

5
,

3
9
,9

5
,

4
,9

9
iC

a
l

Y
es

1

P
ro

d
u

ct
ee

v
W

eb
,

M
ac

O
S

X
,

iP
h

on
e,

A
n

d
ro

id
F

re
e

N
o

Y
es

N
o

T
h

in
k
in

gR
o
ck

W
in

d
ow

s/
L

in
u

x
/

M
ac

O
s

X
/

A
n

-
d

ro
id

/
iO

S

F
re

e
(v

2
)

,1
9
,9

9
(v

3
)

E
m

a
il

Y
es

1

T
o
o
d

le
d

o
iO

s,
A

n
d

ro
id

,
B

la
ck

B
er

ry
,

W
eb

F
re

e,
1
4
,9

9
,

2
9
,9

9
,

8
9
,9

9
(y

)
G

o
o
g
le

C
a
le

n
d

a
r,

G
m

a
il

,
T

w
it

te
r,

iC
a
l,

R
S

S
re

a
d

er
s

a
n

d
F

ir
ef

ox

A
p

p
s

1

T
oD

oi
st

W
eb

,
A

n
d

ro
id

,
iO

s
W

in
d

ow
s,

M
ac

O
s

F
re

e,
2
9
/
y

M
a
il

,
C

a
le

n
d

a
rs

Y
es

T
a
g
s

N
ir

va
n

aH
Q

W
eb

,
A

n
d

ro
id

(b
et

a)
,

iO
S

F
re

e,
5
/
m

o
n
th

,
3
9
/
y

N
o

N
o

M
a
n
y

A
sa

n
a

O
S

X
,

A
n
d

oi
d

,
iO

s,
W

eb
A

n
d

ro
id

B
la

ck
-

B
er

ry
iP

a
d

iP
h

o
n

e
iP

o
d

W
eb

E
m

a
il

,
iC

a
l,

G
o
o
g
le

C
a
le

n
d

a
r,

o
th

er
ca

l-
en

d
a
rs

Y
es

N
o

R
em

em
b

er
T

h
e

M
il

k
iO

s,
A

n
d

ro
id

,
W

u
n

-
d

er
k
it

W
in

d
ow

s,
O

S
X

,
W

eb

F
re

e,
2
5
/
m

o
n
th

E
m

a
il

Y
es

1

W
u

n
d

er
li

st
iO

S
,

A
n

d
ro

id
,

W
in

-
d

ow
s,

O
S

X
,

W
eb

F
re

e
5
d

o
l/

m
o
n
th

N
o

Y
es

Y
es

T
a
b
l
e
3
.1
:

A
n

a
ly

si
s

o
f

th
e

A
p

p
li

ca
ti

o
n

s

Chapter 3. State of the Art and Related Work 31

N
am

e
P

re
ce

d
en

ce
s/

P
ar

al
le

li
sm

B
eg

in
D

u
ra

ti
on

S
u

b
ta

sk
ss

T
a
g
s

O
m

n
iF

o
cu

s
P

re
ce

d
en

ce
s

D
at

e
Y

es
Y

es
N

o

T
h

in
gs

P
ar

al
le

li
sm

N
o

Y
es

N
o

Y
es

In
b

ox
C

la
ss

ic
P

ar
al

le
li

sm
D

at
e

Y
es

Y
es

N
o

IQ
T

el
l

P
ar

al
le

li
sm

N
o

N
o

N
o

Y
es

L
if

eB
al

an
ce

P
ar

al
le

li
sm

D
at

e
an

d
ti

m
e

Y
es

N
o

N
o

P
ro

d
u

ct
ee

v
P

ar
al

le
li

sm
N

o
N

o
Y

es
Y

es

T
h

in
k
in

gR
o
ck

P
ar

al
le

li
sm

D
at

e
an

d
T

im
e

Y
es

Y
es

Y
es

T
o
o
d

le
d

o
P

ar
al

le
li

sm
D

at
e

an
d

T
im

e
N

o
Y

es
Y

es

T
oD

oi
st

P
ar

al
le

li
sm

N
o

N
o

N
o

Y
es

N
ir

va
n

aH
Q

P
ar

al
le

li
sm

D
at

e
Y

es
N

o
Y

es

A
sa

n
a

P
ar

al
le

li
sm

N
o

N
o

Y
es

Y
es

R
em

em
b

er
T

h
e

M
il

k
P

ar
al

le
li

sm
D

at
e

an
d

T
im

e
Y

es
N

o
A

ct
io

n
s

W
u

n
d

er
li
st

P
ar

al
le

li
sm

N
o

N
o

Y
es

Y
es

T
a
b
l
e
3
.2
:

A
n

a
ly

si
s

o
f

th
e

A
p

p
li

ca
ti

o
n

s

Chapter 3. State of the Art and Related Work 32

N
am

e
L

ev
el

s
of

Im
p

or
-

ta
n

ce
A

re
as

of
F

o
cu

s
M

ap
p

in
g

H
ig

h
er

L
ev

el
s

T
re

e
o
f

O
b

je
c-

ti
ve

s

O
m

n
iF

o
cu

s
F

la
g

N
o

N
o

N
o

T
h

in
gs

A
ct

io
n

s
an

d
P

ro
je

ct
s

Y
es

N
o

N
o

In
b

ox
C

la
ss

ic
N

o
Y

es
N

o
N

o

IQ
T

el
l

A
ct

io
n

s
N

o
N

o
N

o

L
if

eB
al

an
ce

A
ct

io
n

s
an

d
P

ro
je

ct
s

N
o

N
o

N
o

P
ro

d
u

ct
ee

v
A

ct
io

n
s

N
o

N
o

N
o

T
h

in
k
in

gR
o
ck

A
ct

io
n

s
an

d
P

ro
je

ct
s

Y
es

A
ct

io
n

s,
P

ro
je

ct
s

an
d

G
oa

ls

N
o

T
o
o
d

le
d

o
A

ct
io

n
s

an
d

P
ro

je
ct

s
N

o
Y

es
N

o

T
oD

oi
st

A
ct

io
n

s
an

d
P

ro
je

ct
s

N
o

N
o

N
o

N
ir

va
n

aH
Q

N
o

N
o

N
o

N
o

A
sa

n
a

N
o

N
o

N
o

N
o

R
em

em
b

er
T

h
e

M
il

k
A

ct
io

n
s

N
o

N
o

N
o

W
u

n
d
er

li
st

N
o

N
o

N
o

N
o

T
a
b
l
e
3
.3
:

A
n

a
ly

si
s

o
f

th
e

A
p

p
li

ca
ti

o
n

s

Chapter 3. State of the Art and Related Work 33

3.3.1 Non Functional Vectors

Platforms

All the applications studied provide the user to access the system in different platforms

that include mobile devices, browsers and standalone applications. We can conclude of

this that the information of our system should not only be accessed in the computer itself

but also in mobile environments. This way the better solution would be to develop an

application with a version for computer and mobile devices. However, we did not have

the time and the human resources needed to develop different versions of the application.

So, for now, we developed a stand alone application for Windows, Linux and Mac OS

X and wi will analyze the accepting of the users. If the application has the expected

success, we intend to launch in on the market and develop the mobile versions of it.

Price

From the applications studied, only Inbox Classic and IQTell (Which is in a beta phase)

are completely free. All the others are paid or the free version implies that the user has

not access to all of it features, which include different platforms environments. In our

project we developed a prototype that should be free, however, in the case we continue

his development in the future, selling it has a payed application should not be put aside.

Integration

Most of the applications support integration with other systems. As we can see in the

table, the most external services used are services of Email, Calendar and Contacts.

In our interpretation, the developing of a system who would synchronize with Email

providers would take too much time, so it was discarded. In the other hand, the inte-

gration of the application with a calendar service was implemented. The chosen service

was Google Calendar due to his popularity and features [42]. However, like the most

applications have versions for mobile devices, few of them synchronize information with

notes/tasks managers. Since we developed a standalone application that allows the user

to check his task list in mobile environments without needing to develop a version for

them, we opted for Evernote to store and present this information to the user due to

this service having a great number of users and recognized quality [43].

Chapter 3. State of the Art and Related Work 34

Support to Work Offline

Almost every application allows the user to reach when there is no Internet connection.

Following these examples our application has the mechanisms that provide this feature.

3.3.2 Information Vectors

Contexts per Action

Most of the applications support adding contexts to the actions. However only Things,

ToDoist, NirvanaHQ and Wunderlist support associating more than one context per task.

In these applications we can find two different approaches: in Things and NirvanaHQ

the input fields are explicit as contexts and in ToDoist is possible to add the conditions

where the task can be performed using tags. In our opinion, giving a specific input for

the Contexts is a better approach because, besides the fact of being more intuitive to

the user, it incentives him to insert this information when he creates a task, which is a

good practice defended by David Allen.

Precedences / Parallelism

In all the applications analyzed only the OmniFocus allowed the adding of precedences

between tasks. However, the only purpose of this information in OmniFocus, is aiding

the user in the choice of the next actions to perform by telling him that a certain task

can only be performed if another has been completed. In our solution, we go beyond,

using this information to present in the recommendation system the only the actions

that can be performed at that moment.

Begin

A majority of the applications allow the user to add a begin date to tasks. This informa-

tion can be very important when the user decides the next actions to perform because

he can put aside the ones that cannot be performed in that time. Like in LifeBalance,

Toodledo and RemeberTheMilk, we opted for giving the user the possibility of adding a

date and time for task or project because is added a more specific time when the action

can be performed which will give better results in the recommendation algorithm: if we

constrained only to the date the system could recommend tasks that could be performed

in the certain day however at the wrong time.

Chapter 3. State of the Art and Related Work 35

Duration

Almost every application studied allows the user to add an estimated time duration

to a task. This is important because, in many situations, the user has a determined

amount of time to perform tasks and the duration is a critical attribute for his choice.

In addition to this, we did the same because is fundamental for the recommendation

algorithm that the actions have a duration because is one of the arguments analyzed by

it.

Tags

In most of the application studied, the system allows the user to add keywords to the

tasks/projects. Like it was said before, this can help in the association of tasks/projects

and facilitates the search operations. However, in our perspective, the usage of tags

can result in a bad interpretation of the methodology of the GTD because it allows the

user to make his own structure of goals which can deteriorate the results of David Allen

studied for years. Our redefinition of the GTD has the objective of providing a better

productivity for the user of the application, so if we allowed the user to add tags to a

task or projects, they would only be used in searching operations.

Levels of Importance

Most of the application studied allow the user to associate a value of importance to a task

or project. In our perspective like in Thinks, LifeBalance, ThinkingRock, Toodledo and

ToDoist we add a number that represents the importance of performing a task/project

to achieve longer term objectives. However, in our perspective, this value should be

associated not only to lower level objectives but to every objective in higher levels as

well.

3.3.3 Organizational Vectors

Areas of Focus Of the applications studied only Things, InboxClassic and Think-

ingRock have a clear entity ”Area of Focus” where projects can be associated to. In

the rest of them, the projects can be only grouped by context or using tags to group

them. In our redefinition, we propose to add Areas of Focus in the objectives from the

second (projects) level, inclusive, upwards. These can then be subdivided in sub-areas

of interests in the level below. This is one of the innovative contributions in our work.

Chapter 3. State of the Art and Related Work 36

Mapping the Higher Levels Of the applications studied, only in ThinkingRock is

mapped the top three levels of the GTD and presents statistics of the sub-objectives

completed. This can be very useful to provide the current state of the individual in

the path for reaching his long term objectives. Following our redefinition of the GTD

methodology mapping the higher levels of the vertical flow will be fundamental for our

application in order to preview the importance of each task/project for reaching longer

term goals and for their decomposition in sub-objectives.

Tree of Objectives

None of the applications studied provide a graphical view of the entire vertical processing

work flow. In our perspective, this feature can be very important for motivating the user

to be more productive and review in which areas of focus he spends more time.

3.4 Related Work

In this section we present work already developed that served as inspiration for our

project. In the first sub section we will present several algorithms that were used to

inspire our recommendation algorithm and in the second one we will present some goal

decompositions techniques used in different areas.

3.4.1 Scheduling Algorithms

In this section we summarize the algorithms studied and considered relevant for solving

the problem of the time scheduling. For each one, we present a brief resume of the

techniques used by the algorithm, focusing on the characteristics that can be applied on

our project.

Completely Fair Schedule (CFS) [44]

In contrast to the majority of the scheduler algorithms, the CFS uses a red black tree

implementation instead of a queue system to store the next tasks to be executed, ranked

by spent processor time. The least used amount of time of the task, the lefter in the

red and black tree is stored. The process in the leftest node is picked and executed and,

if is not completed, its used amount of time is updated and goes to the correspondent

Chapter 3. State of the Art and Related Work 37

node. The algorithm is using a self balancing binary tree so the nodes are rearranged

and in the next iteration it is chosen the new leftest node is chosen and the process is

repeated.

The red black and tree structure could be used to store the tasks to be select for rec-

ommendation. However the weights to choose the priority of the nodes cannot be the

amount of time but is necessary to attend other factors like importance, due date, free

time in the agenda among others.

Critical Path Method (CPM) [45]

This algorithm is used for scheduling a set of project activities. The project includes a list

of activities required to complete it, the duration of each one, the dependencies between

the activities and logical endpoints (milestones and derivables). With this information

a graph is constructed. After that, the algorithm calculates the longest path of planned

path to logical endpoints and the earliest and the latest that each activity can start and

finish without making the project longer. This process determines which activities are

critical (longest path) or can be delayed. The critical path it is possible to determine

the shortest time to complete the project and any delay in this path will impact the

completion date.

The use of this algorithm was fundamental for the project because to prioritize the tasks

it is necessary to take in account the precedences between them and suggest to the user

which one of them should be done next ,or can be delayed, to complete it in the least

amount of time.

Highest response ratio next [46]

This algorithm is similar to Shortest Job Next [47], however the priority of each job is

calculated according to its estimated runtime and the time spended in waiting list. The

priority of each task is given by the function:

Priority =
waiting time + estimated runtime

estimated runtime
= 1 +

waiting time

estimated runtime

The task with the highest priority is chosen to be performed. In the project the waiting

can be used to remind the user of the existence of the project /task if a certain amount

of time passed without him completing any task, or the task itself.

Chapter 3. State of the Art and Related Work 38

Including the Age factor (materialized in the waiting time variable) in the calculation

of the priority we avoid the possibility of having actions or projects left in the system

for too long periods without any progress.

Least slack time scheduling [48]

The earliest deadline first scheduling was studied, however it was discarded because in

an application whose objective is to recommend the next tasks to perform it is needed

to take in account the time left until the task due date . In this algorithm it is needed

to take in account not only the due date of the tasks but also the durations of each

one. This algorithm selects the tasks according to their slack time (temporal difference

between the deadline, the ready time and the run time).

The value of the slack time in the project is used to calculate the urgency of the task.

Modified due-date scheduling [49]

This algorithm attempts first to complete tasks early on time and second complete tasks

tasks as soon as possible: Given a list of tasks, with a range of due dates (dj), and a

range of times it takes to complete the tasks (pj), then at any moment (t) it should be

picked the task that has the smallest modified due date. mddj = max(dj, t+pj).

This process could be used to select activities which due date has already passed.

Multilevel Feedback Queue [50]

In this algorithm there are several queues each one representing a level. When a process

enters the system is assigned a level according to its priority/importance. One process

is only executed when the ones in the levels above have already been removed.

The tasks recommended to the user could be presented ordered by levels maybe using a

color to differentiate them.

Chapter 3. State of the Art and Related Work 39

3.4.2 Goal Decomposition

In this section we will present other goal decomposition techniques used in different

areas that inspired our adaptation of the Vertical Flow of the GTD Methodology.

3.4.2.1 Goals Breakdown Structure

The Goals Breakdown Structure (GBS)[51] is a hierarchal structure that connects high

level objectives to more detailed goals. The GBS was developed for product development

however it has been adapted to be applied to product development and the organization

as a whole. This pyramid of layers of goals is divided into four levels and we will present

them from from top-down perspective:

• Project Goal or Mission Statement: This layer represents the final goal of

the organization. The aim of all the layers above is to achieve the propose of this

level. Is the only layer where the rule Nothing Missing is violated because there

no goal above to be satisfied.

• Business Objectives: This layer is composed by the several business goals of

the company, which are often connected to the organization’s strategic plan, that

contribute to achieve it’s final objective.

• Project Requirements: List of the project and/or product characteristics re-

quired to achieve the business objectives. Are part of this level all the features,

functions and characteristics that a process must include in order to achieve the

objectives of the business.

• Project Specifications: In this level are included all the requirements that

should be satisfied in order to achieve the success of the project. are included

in this layers beyond the product specifications the components and subcompo-

nents stipulation.

For the decomposition of the GBS to be effective every goal of each layer must obey to

two rules:

• Nothing Missing: Each layer must contain all the goals needed to ensure the

project achieves the higher level objective above, to ensure the success of the

organization.

Chapter 3. State of the Art and Related Work 40

• Nothing Extra: No layer should contain goals not needed to achieve the layer

above, to prevent extra scopes that may spend extra time and money to the

organization.

3.4.2.2 Goal Modeling in Requirements Engineering

Goal Modeling is an element of Requirements Engineering that follows the principle

defining Goals in the process design, which are objectives that the system must achieve

through cooperation of actors in the software environment and in the environment [52].

This approach is used in several models such as i-star [53] and UML in the Use Case

Diagram [54], and has the advantage of clarifying goals, allows larger goals to be specified

into more specific ones that are smaller and more realizable and deals with conflicts

because meeting with one goal can interfere with meeting other goals.

In the paper ”The mysteries of goal decomposition” [55] the authors present experiments

that prove that using goal decomposition of high level goals into leaf level tasks that

can be performed by agents can have better results than follow a more direct process.

They refer the experiment of [56] where a group of students were divided into two

separated groups and to one of the groups was presented a problem as a single non

decomposed question and to the other a decomposed set of questions. The group with

the decomposed set of questions produced more accurate answers than the other. Other

experience they refer is the one performed by Lyness and Cornellius[57] in which the

students were asked to judge an hypothetical college professor using decomposed or non

decomposed methods. It was found that the subjects using the weighted decomposed

method offered more reliable results. Although in this experiments the presence of pre-

existing decomposition is assumed, the results prove that decomposition appears to help

correct problem solving and support the utility of Goals Decomposition in requirements

engineering.

Chapter 4

Requirements Analysis

4.1 Functional and Non-Functional Requirements

The analysis of the requirements was based on the methodology described in the book

“Software Engineering” by Ian Sommerville [58] and the classification of the requirements

was made using the FURPS+ Method [59]. Each requirement was assigned a priority

level according to the MosCoW method [60].

As follows we present a list of the considered requirements, divided into two categories:

• Functional Requirements: “Statements of services the system should provide,

how the system should react to particular inputs, and how the system should

behave in particular situations. In some cases, the functional requirements may

also explicitly state what the system should not do.” [58]

• Non-functional Requirements: “These are constraints on the services or

functions offered by the system. They include timing constraints, constraints on

the development process, and constraints imposed by standards. Non-functional

requirements often apply to the system as a whole, rather than individual system

features or services.” [58]

In sections 4.1.1 and 4.1.2 below we list the requirements we have identified, pre-

senting them in a table format with requirement id, description and priority cate-

gory. We used the MoSCOW to assign a priority to each requirement.

Now we will present the criteria of the MosCoW Method used to classify the priority of

the requirements of the project:

41

Chapter 3. Requirements Analysis 42

M - MUST: Describes a requirement that must be satisfied in the final solution for

the solution to be considered a success.

S - SHOULD: Represents a high-priority item that should be included in the solution

if it is possible. This is often a critical requirement but one which can be satisfied in

other ways if strictly necessary.

C - COULD: Describes a requirement which is considered desirable but not necessary.

This will be included if time and resources permit.

W - WOULD: Represents a requirement that stakeholders have agreed will not be

implemented in a given release, but may be considered for the future. (note: occasionally

the word ”Would” is substituted for ”Won’t” to give a clearer understanding of this

choice)

4.1.1 Functional Requirements

I-1 Ideas Category

I-1.1 The application allows the creation of ideas by the user M

I-1.2 The user must give a name to an idea M

I-1.3 The user can add a description to an idea S

I-1.4 The application stores all ideas in the Inbox List M

I-1.5 The user can edit the name and the description of an idea M

I-1.6 An idea can be converted to a Someday/Maybe item, or to a Task,
or to a Project, or to a Goal, or to a Vision, or to a Life Goal, or
to trash it

M

Table 4.1: Ideas Requirements

SM-2 Someday/Maybe items Priority

SM-2.1 The application allows the creation of S/M items by the user M

SM-2.2 The user must give a name to a S/M item M

SM-2.3 The user can give a description to a S/M S

SM-2.4 The application stores a S/M item in the Someday/Maybe List M

SM-2.5 The user can edit every attribute of a S/M item M

SM-2.6 The user can convert a Someday/Maybe item to a Task, or to a
Project, or to a Goal, or to a Vision, or to a Life Goal, or to Trash
it

M

Table 4.2: S/M Requirements

Chapter 3. Requirements Analysis 43

T-3 Tasks Priority

T-3.1 The user can mark a task as done M

T-3.2 The user can add tags to a task C

T-3.3 The user can divide a task into subtasks C

T-3.4 The user can make a task repetitive C

T-3.5 The user must associate a task to a project M

T-3.6 The user can add delegated person to a task S

T-3.7 The user can add precedences between tasks M

T-3.8 The user can edit every attribute of a task M

Table 4.3: Tasks Requirements

E-4 Events Priority

E-4.1 The Application allows the creation of new events by the user M

E-4.2 An event must have a name M

E-4.3 The user can add a begin date, a due date, a location and a
description to an event

M

E-4.4 The user can edit every attribute of an event M

Table 4.4: Events Requirements

P-5 Project Priority

P-5.1 The user can create a new Project M

P-5.2 The user must give a name to a project M

P-5.3 A project can have a list of tasks associated M

P-5.4 A project can have a value of importance associated given by the
user

M

P-5.5 The user can associate a project with only one Goal M

P-5.6 A project can belong to one area of focus M

P-5.7 A project has information about the last time one of its tasks has
been executed and it cannot be changed by the user because it
used for calculating the age of the project

M

P-5.8 A project can have a due date. S

P-5.9 The user can make a project repetitive S

Table 4.5: Projects Requirements

G-6 Goals Priority

G-6.1 The user can create new goals M

G-6.2 A Goal can have a list of projects associated M

G-6.3 A Goal can have a value of importance associated given by the
user

M

G-6.4 The user can associate a goal with only one Vision goal M

G-6.5 A Goal can belong to one area of focus M

G-6.6 A Goal can have a due date S

Table 4.6: Goals Requirements

Chapter 3. Requirements Analysis 44

V-7 Vision Objectives Priority

V-7.1 The user can create new Vision Objective M

V-7.2 A vision objective can have a list of Goals M

V-7.3 A Vision objective can have a value of importance associated given
by the user

M

V-7.4 A Vision objective can be associated with only one Life Goal as-
sociated

M

V-7.5 A Vision Objective can belong to one area of focus M

V-7.6 A Vision Objective can have a due date S

Table 4.7: Vision Objectives Requirements

L-8 Life Objectives Priority

L-8.1 The user can create new Life Objective M

L-8.2 A Life Objective can have a list of Vision Objectives associated M

L-8.3 A Life Objectives can have a value of importance associated given
by the user

M

L-8.4 A Vision Objective can belong to one area of focus M

L-8.5 A Vision Objective can have a due date S

Table 4.8: Life Objectives Requirements

AF-9 Areas of Focus Priority

AF-9.1 An Area of Focus must have a name M

AF-9.2 An Area of Focus must be associated to a horizon level (projects
or objectives)

M

AF-9.3 An area of focus can be associated with several projects/goals in
the same horizon level

M

AF-9.4 An area of focus can be associated with only one area of Focus in
the horizon level above

S

Table 4.9: Areas of Focus Requirements

R-10 Recommendation Process Priority

R-10.1 The number of tasks recommended by the system can be defined
by the user

C

R-10.2 The recommendation only presents tasks with no active prece-
dences

M

R-10.3 The priority of each task is given by the recommendation algo-
rithm

M

R-10.4 The recommendation algorithm uses the values of the importance,
speed, urgency and age to calculate the priority of each task

M

R-10.5 The user can add a specific location, tool or person needed, or a
maximum energy value, or duration, or area of focus to filter the
results of the recommendation

M

R-11.6 The system must save the choice of the action to perform by the
user

C

Table 4.10: Recommendation Requirements

Chapter 3. Requirements Analysis 45

RV-11 Review Priority

RV-11.1 The user can review all the ideas in the Inbox List M

RV-11.2 The user can review all the ideas in the S/M List M

RV-11.3 The user can review all the Projects and their associated Tasks M

RV-11.4 The user can review all the Objectives (Goals and Objectives
above)

M

RV-11.5 The Review Processes of each corresponding horizon level are
stored as projects in the system and are native of the applica-
tion

S

RV-11.6 The review of every horizon level is shown to the client in the
recommendation tasks in its corresponding time frame (Projects
once a wee, Goals very three months, Vision Objectives every year
and Life Objectives every four years.)

C

Table 4.11: Review Requirements

WS-12 Integration with web services Priority

WS-12.1 The user can add a Google Account to the application M

WS-12.2 The application allows importing events from a Google Calendar
account

M

WS-12.3 The user can add a Evernote account to the application M

WS-12.4 The application allows importing tasks from an Evernote account C

WS-12.5 The application allows importing events from a iCal account C

WS-12.6 The applications allows editing tasks imported C

WS-12.7 The application exports new events for Google Calendar S

WS-12.8 The application exports new events for iCal C

WS-12.9 The application exports new tasks for Evernote M

WS-12.10 When an event is edited in the application the correspondent event
in Google Calendar is updated

S

WS-12.11 When an event is edited in the application the correspondent event
in iCal is updated

S

WS-12.12 When a task is edited in the application the correspondent note
in Evernote is updated

M

WS-12.13 The application imports contacts from Google Contacts S

Table 4.12: Integration with Web Services Requirements

C-14 Contexts Priority

C-13.1 The user can add locations to the system that can be associated
to tasks

M

C-13.2 The user can add people to the system that can be associated to
tasks

M

C-13.3 The user can add tools to the system that can be associated to
tasks

M

Table 4.13: Context Requirements

Chapter 3. Requirements Analysis 46

4.1.2 Non-Functional Requirements

We divide these requirements into categories according to the FURPS+ [59] model:

Usability, Reliability, Supportability, Security and Implementation.

U-1 Usability Priority

U-1.1 Indicate System Status: The system should give feedback
to provide a clear statement to inform the user when he performs
an action that changes its status. Eg:”when the users creates an
idea the system should inform that a new idea has been added to
the system”

S

U-1.2 Maximize Disambiguation: The system contains mainly
terms that the user understands. Sometimes a word/sentence can
lead to the user misinterpretation so the the statements must be
the simplest and clearest possible and follow the terminology used
in the GTD methodology

M

U-1.3 Same term for identical operations: The terms used by
the system must be consistent. The system refers to equivalent
actions with the same terms or icons. Eg: the “delete” in pro-
cess in the “Process Inbox” must mean semantically the same as
“delete” in the “Process S/M”

M

U-1.4 Limit options: The system only presents a set of possible
values/attributes when some proprieties/entities are restricted to
them. E.g. “The value of the importance attribute of a projec-
t/Goal that the user can choose from is restricted to the interval
1..5”; “When creating an idea the only attributes presented the
user are “Name” and “Description”

M

U-1.5 Follow real world conventions: the application displays
its functionality in a way that users intuitively understands. For
instance, destructive options should have color red, and creative
ones, green.

M

U-1.6 Describe Input fields: the system presents a small descrip-
tion for every input field so that the users understands exactly
what is requested.

S

U-1.7 Present and Highlight errors: Errors originated by poor
filling are highlighted by the system. When the user fails in prop-
erly filling a specific field after the form is submitted the system
informs him that the action couldn’t be performed and provides
highlighted feedback explaining him what went wrong.

M

U-1.8 Describe errors and fixes in plain language: when an
error occurs the system presents what happened in a way that
most of the users can understand because errors can occur due a
technical failure and not every user has the knowledge to under-
stand its meaning.

S

U-1.9 Provide Help Section: the system has a section providing
a tutorial to help him use the application according the GTD
methodology and the meaning/objectives of each functionality.

C

Table 4.14: Usability Requirements

Chapter 3. Requirements Analysis 47

R-2 Reliability Priority

R-2.1 Recover from internal errors: when an error occurs all the
actions performed before it must have been saved in the persis-
tence storage to prevent loss of data

M

R-2.2 Recover from web failure: when the system cannot con-
nect to the internet the user can keep using the application and
when the connection is available it syncs its information with the
existing services

M

R-2.3 Syncing with external services: the system syncs its inter-
nal information with the external services from 20 to 20 minutes
to be updated with the other systems used by the client.

M

Table 4.15: Reliability Requirements

S-3 Supportability Priority

S-3.1 Multi Platform: The system must run in Windows, Mac OS
X and Linux operative systems.

M

S-3.2 Testable System: The system must be testable since the sys-
tem requirements must be verified by test to check if they were
achieved. For this purpose we will present a test plan.

M

S-3.3 Properly Documented: In order to have a good maintain-
ability, the functional requirements must have associated doc-
umentation like Use Cases, Sequence Diagrams and Graphical
Mockups of the linked system functions.

M

Table 4.16: Supportability Requirements

SE-4 Security Priority

SE-4.1 Hash Passwords: In the database must be inserted the hashes
of the password to access outside services instead of the the pass-
word itself to keep this information confidential

M

Table 4.17: Security Requirements

I-5 Implementation Priority

I-5.1 Expertise with Programming Language: The program-
ing language used to develop the application must be one of that
the programmer has experience using

M

I-5.2 Environment for the developer: The application should
be developed in an IDE where the programmer has already expe-
rience working on and should provide a good number of features
that will provide a good speed of development.

M

I-5.3 Persistence of the data: The data used by the application
should be stored in a persistent database stored system in order
to be saved and facilitate the access to it and the operations to
keep it up to date.

M

Table 4.18: Implementation Requirements

Chapter 3. Requirements Analysis 48

4.2 Use Cases Diagram

In this section we present the Use Cases Diagram we designed. The objective of this

diagram is to demonstrate the scenarios in which our application interacts with (people,

organizations, or external systems), the goals that helps the user achieve and the scope

of the system. To make the relation of each action with the Functional requirements,

we inserted in the diagram the ID of the corresponding requirement. [61]

Figure 4.1: Use cases Diagram

Chapter 3. Requirements Analysis 49

4.2.1 Tasks Sequence Diagram

In this diagram is represented the sequence of actions when the user adds a task in

the Evernote Application and in the system. First he adds a tasks in the Evernote

Application. Asynchronously, our system checks for updates in the Evernote notes to

keep the information up to date. It verifies a new task has been added to the system, and

it is inserted in the database. After that the user inserts a new task in our application,

so the system will add it to our database and inform the Evenote Servers of it, which

will update its information.

Figure 4.2: Tasks Sequence Diagram

Chapter 3. Requirements Analysis 50

4.2.2 Recommendation Sequence Diagram

In this diagram we present the sequence of actions when the user wants to see his recom-

mended tasks list. The recommendation system decides which tasks will be presented to

the user and then they are displayed. If the user decided to filter the tasks recommended

with a specific characteristics he would enter them in to the application and after that

the recommendation system would only present tasks with that attribute.

Figure 4.3: Recommendation Sequence Diagram

Chapter 5

Architecture

This chapter is subdivided in 3 sections. In the sec first one we present a simple view of

the architecture. In the second section we present the different layers of the architecture

and a detailed description of each one. In the last section we present the technologies

used to develop the application and the reasons for their choice.

5.1 First Level Architecture

For a better understanding of the system we first explain how it operates in an abstract

way. The application interacts with three external entities, besides the user: the DBMS,

Google Servers, and Evernote Servers.

Figure 5.1: Abstract Arquitecture

Primarily, the user accesses the system by browsing the application installed in his

computer, where his requests are processed and transformed into operations to be pro-

cessed by the system. In this process, the information of the operations is saved in the

database and the information of the user in the google and evernote servers is updated.

When these operations are complete the system returns a response with the information

requested by the user.

51

Chapter 5. Architecture 52

5.2 Second Level Architecture

In this section we describe the components needed to develop the system derived from

the requirements analysis process whose results we presented in the previous chapter.

The design of the second level architecture was based in the Model View Controller

(MVC) software pattern. We opted for the Active MVC instead of the more traditional

(Passive) because, due to the decision of having more than one controller in the system.

5.2.1 Model

The Model layer is responsible for representing the information in the system. We follow

an object oriented paradigm to save the data of the system as classes and their respective

attributes and methods. The structure of the classes and database are represented and

described in this section.

Figure 5.2: Classes Diagram

Fig. 5.2 represents the different classes that model the objects in the system and the

relationships between them. In the description of this diagram we will focus in the

classes that are the most important for the project.

Chapter 5. Architecture 53

• Task: an object of the class task has as an id that indicates the index of the

column in the respective table of the Data Base, a name, the correspondent project,

an importance for the achievement of that project, a level of energy, its duration

and the boolean ”done” that indicates if the task is completed or not. The task can

also be associated to three different contexts: location, tool and person needed.

The object can also have a start date (a specific date from when the task can be

performed given by the user) and a due date (date limit to perform the task given

by the user). The doubles imp, speed, urgency and age and the date LastStart are

values calculated by the recommendation algorithm and represent, respectively, the

importance of the task in the tree of objectives, the speed value, the urgency value,

the age value and the last date when the task can start without compromising the

due date of the project.

• Project: an object of the class Project has as an id that indicates the index

of the column in the respective table of the Data Base, a name, a due date,

an importance to the achievement of a specific goal and the imp value, which

represents the importance of the project in the tree of objectives and the boolean

completed which indicates if the project is completed or not. All of these attributes

are inherited from the Objective class. The attribute ”last” indicates the last

time a task of the project as been marked as completed, the ”af” attribute the

correspondent Area of Focus object and the goal the correspondent Goal object.

The project object has also a list of tasks.

• Goal, Vision and Life: an object of these classes has an id that indicates the

index of the column in the respective table of the Data Base, a name, a due date,

an importance to the achievement of the correspondent higher objective, the imp

value, which represents the importance of the objective in the tree of objectives and

the boolean completed which indicates if the objective is completed or not. All of

these attributes are inherited from the Objective class. The attribute af indicates

the Area of Focus associated with the objective and the attributes Vision and Life

the upper objective for the Goal and Vision class. Each one of them has also a list

of lower objectives associated to it: projects, goals, visions for the Goal, Vision

and Life objects respectively.

• Area of Focus: an object of the class Area of Focus has an id that indicates the

index of the column in the respective table of the Data Base, and a name. This

class has four different subclasses (AFLife, AFVision, AFGoal and AFProject)

which have an additional attribute which is the list of associated objectives of the

correspondent level.

Chapter 5. Architecture 54

• Event: an object of the class Event has as attribute an id that indicates the

index of the column in the respective table of the Data Base, a name given by the

user, two dates, the begin and end date of the event and must also be associated

with a Calendar. A calendar represents a list of events that have a certain common

context given by the user and it is used for the synchronizing of the information

with the Google Calendar Service. An event can also be associated with a location.

Figure 5.3: Entity-Relationship Diagram

This diagram represents the tables where the objects are stored in the database.

5.2.2 Controllers

This layer is responsible for the interpretation of the mouse and keyboard inputs from

the user, informing the model and/or the view to change as appropriate. There is more

than one controller and they are represented in the component diagram below.

Chapter 5. Architecture 55

Figure 5.4: Components Diagram

• ObjectsHandler.java this component is responsible for keeping the model in

memory up to date. It receives the alterations made by the Interface Controller.java,

Evernote.java and Google.java needed to perform at the model, updates the in-

formation in memory and informs the DBHandler.java of the updates needed to

perform in the database.

• FXMLDocumentController.java: receives the inputs from the user in the view

layer and informs the ObjectsHandler.java of the alterations needed to perform.

• Google.java: This component is responsible for keeping the events of the model

and the information of the Google Calendar of the user synchronized. Every 20

minutes 1, this component will compare the information of the events in memory,

to check for updates made by the user in his Google calendar Service, refresh the

information of the system and adds to the Google Calendar Service new events

created by the user in the application.

For the authentication and authorization needed for the application to access the

information of the user in the Google servers it was necessary to use the OAuth2.0.

The authorization flow of the OAuth 2.0 in the Google Service is divided in these

steps:

1. Using the Client ID and the Client Secret, which are tokens that identify the

application in the Google Service, it is generated a Request Token in a form of an

URL that the user can use to grant the application to access his information on

the Google Calendar Service.

1In this version of the application, the interval of time between the comparing data operation of this
component and Evernote.java is hard-coded. However, in a future version of the application, it will be
possible for the user to parametrize this value.

Chapter 5. Architecture 56

2. Copying the URL given in step 1, to the browser the user logs in in his Google

Account and authorizes the application to access his Google Calendar information

and an Authorization Token is generated in the screen. This token must be inserted

manually by the user in the application.

4. The application exchanges the Authorization Token for an Access Token.

5. The system has now access to the information of the user in the Google Calendar

Service. However this authorization token has a limited time of life, 60 minutes,

so the application can exchange it for a Refresh Token necessary for generating

new Access Tokens.

6. The application saves the Refresh Token in the computer to have future access

to the Service. As a security of precaution, it is saved in a file using a 128 bits

DES encryption.

7. Every time the applications communicates with the Google Calendar Service it

exchanges the Refresh Token for a new Access Token, being the process transparent

to the user. To do so, the application makes a request to the API to get the new

Access token, using the Client ID and Client Secret to identify the application

and the Refresh Token that proves the the application has access to the user’s

information in the Google Service. As response, the Google Server send the new

Access token.

If the user does not want anymore that the application accesses his personal in-

formation in the Google Calendar Service, he can do so by logging in his Google

Account and revoke the grant of access authorized before.

• Evernote.java:This component is responsible for checking if the information in

the Evernote account of the user and the one in the application are up to date.

Every 20 minutes, this component will check if any task has been marked as

completed or if a new idea has been added to the Inbox note and inform the

ObjectsHandler.java of the alterations.

For the authentication and authorization needed for the application to access the

information of the user in the Evernote servers it was necessary to use the OAuth

1.0. The authorization flow of the OAUth 1.0 in the Evernote Service is divided

in these steps:

1. The system displays the link where the user can get the Access Token needed

for the application to access his information in the Evernote Service.

2. Copying the URL given in step 1 to the browser, the user logs in in his Evernote

Account and the Access Token for the system to access his Notes is displayed on

the screen.

Chapter 5. Architecture 57

3. The user inserts his Access Token in the application. Now the application has

permission to access his notes. This token is saved in a file using a 128 bits DES

encryption.

If the user does not want anymore that the application has access to his Evernote

Account Service, he needs to revoke the Access Token in the Evernote website.

• DBHandler.java: This component is responsible to intermediate the communi-

cations between the ObjectsHandler.java and the database. When is it necessary to

update the persistent information of the system, the ObjectHandler.java commu-

nicates what operations are needed to be done to the database and this component

is responsible for performing them.

5.2.3 View

The view manages the display of information with which the user will interact. In

the diagram the component responsible for this layer is the interface, that is designed

following the prototypes of the GUI designed in the first semester. The interface is built

using the .FXML file developed.

5.3 Technologies

In this section we present the several technologies chosen to develop our application and

the reasons for their choice. It is divided in three subsections: Programming Language,

Persistent Data Store and Framework to Develop the GUI.

5.3.1 Programming Language

Regarding programming languages, the options we considered as viable included Java,

Python and C++. In this section we present the motives for choosing Java as the

programing language to develop the project. This decision was based on the centered

outcomes and technical characteristics of the language. The criteria were based in the

Chris Britton article ”Choosing a Programming Language”[62].

Performance of Compiled Code

Performance of the compiled code is the amount of useful work accomplished by a

computer system, compared to the time and resources used. It is an important factor

for the technology chosen because we want to provide a system with a short response

Chapter 5. Architecture 58

time, high throughput and low utilization of computer resources. Java can provide

us this characteristics by adopting a scheme by which the interpreter can run at full

speed without needing to check the run time environment, has an automatic garbage

collector that ensures that memory is available when is necessary, which result in a good

performance [63].

Portability

Portability is crucial for the application because we want to ensure that it may run in

different operation services. Java has a high portability due to the Java Virtual Machine

which allows the applications developed in the language to be architectural neutral [63].

Supported Platforms Environments

Java has already facilities that provide support for the program to communicate with

other entities like the database management system and the external services. For

connecting to the database there is the sqlite-jdbc which is a library that provides the

program to connect to a sqlite database and perform queries to handle the information

in it. In order to use the API of Evernote [19] is available the Evernote SDK [19] for

Java. For exchanging information with Google calendar API using Java, one of the

options available is the Java Client Library [64].

Speed of Development A factor with a considerable impact on the projects progress

is the developer’s productivity with the chosen programming language. Java is the

programming language that I have the more experience using so there was not the

necessity of sparing time to learn a new programming language. The object oriented

paradigm is also a benefit because provides a clear modular structure for programs which

makes it good for defining abstract data types, makes it easy to maintain and modify

existing code as new objects can be created with small differences to existing ones and

the heritage feature allows the reuse of code. There are some integrated development

environments that provide comprehensive facilities to JAVA programmers. We will focus

on Netbeans [65] which will be the chosen one. In addition to support Java, Netbeans

provides a syntax highlighting, code completion, refactoring support and full-featured

debugger. Other great advantage of this IDE is the full integration with the JavaFX,

which allows the creation of a Graphical Interface, improving the speed of making the

connection of the front end with the back end of the application.

5.3.2 Persistent Data Storage Solution

For the persistent data store we chose SQLite [66] which is a software library that im-

plements a self-contained, server-less, zero-configuration, transactional SQL database

Chapter 5. Architecture 59

engine. In contrast to other database management systems, SQLite is not a separate

process that is accessed from the client application, but an integral part of it. Database

managements system who required a server like PostGreSQL and MYSQL were dis-

carded because they would be prejudicial for the portability of the application.

The reason of this choice was based in several criteria:

Portability: Portability is the capacity is the usability of the same software in different

environment. We want to ensure that the application can be used in different operation

systems, so this will be an important criteria for the choice of the database system.

SQlite is a simple application file which is portable across all operating systems, 32-bits

and 64-bits architectures. Additionally, it does not need a database server running in

background which eliminates the necessity for the user to install a DataBase Management

System to run the application. This tools has also bindings for a large number of

programming languages[67].

Querying Language: Query languages are computer languages used to make queries

into databases and information systems. The content of SQLite database can be ac-

cessed and updated by its own Query language [68] that supports a large number of

operations, reducing the complexity of the application code and provide consistency to

the information.

Scalability: Scalabity can be defined as ”the ability of a system to accommodate an

increasing number of elements or objects, to process growing volumes of work gracefully,

and/or to besusceptible to enlargement” [69]. We need to ensure that the system is

scalable in order to keep data consistency and performance as long as the volume of

information processed and stored grows. We will assume that the database management

system will handle in the maximum 10000 hit per day which include new entrances in

the system, update and delete information and other operation to keep the it up to date.

SQLite has been demonstrated to be able to handle more than 100000 hits per day [67],

so it is able to handle the scalability requirements of the system.

Cost: In the case of the application being to the market, we need to ensure that has the

least costs associated possible, so there is the necessity for opting for a free data base

management system: SQLite is in the public domain and does not require a license [70],

so its use will not have additional cost for us.

5.3.3 Software Platform

For the development of the graphical user interface of the prototype we analyzed Java

FX, Java Swing and SWD. We opted for the JavaFX 2, which is a software platform

Chapter 5. Architecture 60

developed by Oracle to ”develop rich, user-friendly client interfaces, and its tooling and

binding features have helped close the gap between design and code and reduced time

to market”.

Appearance

Java FX 2 contains over 50 already built UI controls necessary for the building of the

interface. In addition to this it also provides the customization of these components

using CSS. It is also possible to add effects to these components in order to improve the

usability of the application.

Speed of Development The JavaFX 2 provides an easy and fast development of the

applications. It provides a Scene Builder which enables the developer to quickly design

dragging a UI component from a library of UI components and dropping it into a content

view area. The FXML2 code for the UI layout created in the tool is automatically

generated in the background.

Portability Java FX applications can be deployed to be run in Windows, Mac OS X

and Linux operation systems as Self-Contained Applications[71]. This has the advantage

of providing to the users an application that resemble native applications for the target

platform with an installer format that is familiar to them and there is no necessity for

them to install the Java Runtime.

2FXML, a scriptable, XML-based markup language for defining user interfaces

Chapter 6

Recommendation Process

In this chapter we present the mechanism implemented in order to provide to the appli-

cation the feature that suggests to the user what tasks he should perform next. First of

all, the list of tasks that will be presented to the user is reduced to the only ones that

the user can perform at that moment. After that, the application calculates the priority

of each task in that reduced list using the prioritization algorithm developed. Having

the priority calculated for each task, the application presents them to the user ordered

by it.

6.1 Reducing the task list

In order to present to the user only the tasks he can perform at that moment, the system

withdraws from the list the ones which are completed, or that have a precedence that

is not yet completed or that have have a Start date posterior to the date at the current

time. In addition to this, the user can add parameters, in the Do screen that provide

more information of his current situation, called filters, which help the system to filter

out even more the list of tasks presented. Now we present the filters we added to the

application:

• Location: a specific location

• Tool: a specific instrument

• Person: a specific person

• Duration: a maximum estimated duration value needed to perform it

• Energy: a maximum estimated energy value to perform it

61

Chapter 6. Recommendation Process 62

• Area of Focus: a specific Area of Interest/Responsibility of the user

The tasks that do not satisfy these filters are not shown in the Do list, which is next

processed by the prioritization algorithm and later ordered.

6.2 Prioritization Algorithm

The prioritization algorithm we developed is based upon several known techniques in

the literature of time management, and scheduling problems. The priority of a task is

a function of a range of parameters, namely: importance, urgency, age, and speed.With

the Importance and Urgency we can use the Eisenhower Matrix approach to calculate

a first approximation of the priority of the task. Also, drawing inspiration from some

scheduling algorithms previously reviewed, we consider too the Age of the Project the

Task is associated with, as well as the Task’s Speed (a function of its Duration) as a

combination of these can help in fine-tuning the final priority of the Task.

To calculate the priority of the different tasks the system follows the formula:

Priority = α× (I × U) + (1 − alpha) × (A× S)

0 <= α <= 1

• I: Importance of the task in the tree of objectives

• U: Urgency of the task

• A: Age of the Project of the task

• S: Speed of the task

The system uses as value Alpha 0.9. This way we give more relevance to the value which

is given by The Eisenhower Method, an approach largely used in personal productivity

that has already shown good result. The Eisenhower Method uses the multiplication of

the values urgency and importance to determinate the priority of a task. However, in

our perspective, there was the need to provide additional information for the recommen-

dation process in the case of prioritizing tasks with similar values of importance given

by the Eisenhower Matrix. To accomplish this, the system includes in the prioritization

formula the values of Age and Speed, who are less relevant than the Importance and

Chapter 6. Recommendation Process 63

Urgency of a task. The final Priority value for a Task is always a real value between 0

and 1.

6.2.1 Importance

The Importance of a Task is a function of the Importances of the progressively higher-

level objectives it contributes to. Namely, it is proportional to the product of the ”local”

Importances of each such objective, where each such ”local” importance is given by the

user and specifies how much that particular objective contributes to achieve its one-

level-above parent objective. ”Local” importances are integer values between 1 (residual

importance) to 5 (critical importance).

To calculate the importance of a task we came to the formula:

I =
Ti

5l

0 <= I <= 1

• Ti: importance of the task in the tree of objectives

• l: number of levels of the three of objectives used

To calculate the importance of the task in the tree of objectives we multiply the im-

portance of the task for the completion of its respective project by the product of the

objectives above and divide it by five elevated to the number of levels used, which is the

maximum value that an importance of a task can have.

However we needed to handle cases where the user did not have a complete hierarchy

of objectives (objectives that would contribute to the achivement of a higher one), so

it was necessary to handle this possible lack. To accomplish this, if a objective is not

connected to a higher one the application creates a virtual one which has as value of

importance the average of the other objectives of the same level. In the case the user

does not yet use all the levels of the GTD vertical workflow, the applications connects

directly the highest level he is using to the root of the tree.

To give the reader a better understanding of how the application calculates we provide

below two examples. In both examples, for each objective the value between ”()” is the

value of importance given by the user and between ”[]” the importance of the objective

in the tree of objectives, which is calculated by the system multiplying the value given

Chapter 6. Recommendation Process 64

by the user for the product of the objectives above.

Figure 6.1: Example 1 Tree of objectives

In the first example we present a tree of objectives where all the horizon levels are filled.

The goal ”G4” is not connected to any Vision objective, so the system calculates its

importance by associating it to a virtual Vision Objective with importance 14. The

value of importance of tasks T1, T2, T3 and T4 are, respectively, 288, 288, 96 and 1400.

Dividing each one of it by the the maximum value of importance (5 elevated to 5) the

system obtains the value of importance used by the prioritization algorithm, which are

presented in the table below.

Task T1 T2 T3 T4

Importance 0,09 0,09 0,03 0,448

Chapter 6. Recommendation Process 65

Figure 6.2: Example 2 Tree of objectives

In the second example we provide a tree where are only present objectives of the three

lowest levels of the GTD horizons of focus, Goals, Projects and Tasks, so the system

assumes the Goals are connected to the root of the hierarchy tree. The project ”P4” is

not associated to any Goal, so the system creates a virtual goal whose importance is the

average of the values of the other ones (2,5). The value of importance of tasks T1, T2,

T3 and T4 are, respectively, 24, 24, 6 and 50. Since this hierarchical tree of objectives

has depth 3, the maximum value of importance is 5 to the power of 3. For that reason,

in order to calculate the final importance of each task, we divide their values (24, 24, 6,

and 50) by 5 to the power of 3. The results are shown in the table below:

Task T1 T2 T3 T4

Importance 0,192 0,192 0,048 0,400

Taking the original importance value of a task (the product of ”local” importance values,

each varying between 1 and 5) we just normalize it to the interval [0..1] to obtain the

final priority value of the task, via a simple linear transformation.

In the graphic below we present the values that the factor Importance can take in a

complete hierarchy tree of objectives in the system (all levels of the vertical workflow in

the system contain at least an objective). In the horizontal axis is the importance of the

task in the tree of objectives and in the vertical axis the value of the factor Importance

in the prioritization algorithm.

Chapter 6. Recommendation Process 66

Figure 6.3: Importance Variation

6.2.2 Urgency

The Urgency of a task is a function of the time still available for the user between ”now”

and the latest possible start for the task. As this gap closes down by the passage of

time, the urgency of the task should rise exponentially to the maximum value of 1. To

calculate the urgency of a task we came to the formula:

U = e−
t

15×7

0 <= U <= 1

• t: number of hours until the latest start of the task

The calculation of the value Urgency is divided in two parts. In the first one the system

calculates the Latest Start of the task, which is the last date where a task can start

without delaying the project due date. After that, the system estimates the number of

hours that the user has available until the latest start, taking in account the average

hours a person has per day to perform task and the duration of the events in the system.

To calculate the latest start of a task we implemented a variation of the Critical Path

Method, which was studied in the first semester and is described in the State of the Art

and Related work chapter. The due date of a task can be a value given by the user

or the earlier Latest Start of the tasks that have the current task as precedence or, if

the current does not have any task that depends of it, the due date of the project. Its

latest start will be the subtraction of the its estimated duration to the value of the due

date. To implement this, we developed a recursive algorithm, similar to a topological

Chapter 6. Recommendation Process 67

sorting, that starts calculating the latest start of the tasks that do not have any other

who depend of their completion to be performed. After this it calulates the latest start

of the tasks which have as precedents the ones identified in the first step, and so on, for

all tasks in the project. Below we present an example:

Figure 6.4: Calculation of the latest start

• The task T1 has a duration of 5 hours and does not have any task that depend of

it to be performed, so its due date is the due date of the project. The latest start

of T1 is 29/06/2014 at 7 pm.

• The task T4 has a duration of 2 hours and does not have any task that depend of

it to be performed, so its due date is the due date of the project. The latest start

of T4 is 29/06/2014 at 10 pm.

• The task T5 has a duration of 1 hour and does not have any task that depend of

it to be performed, but has as due date the date 28/06/2014). The latest start of

T5 is 28/06/2014 at 4 pm.

• The task T2 has a duration of 3 hours and T4 and T5 depend of it to be performed.

Comparing T4 and T5, T5 has a earlist Latest Start than T4, so the due date of

T2 is the lastest start of T5 (28/06/2014 at 4 pm). The latest start of T2 is

28/06/2014 at 1 pm.

• The task T7 has a duration of 1 hour and does not have any task that depend of

it to be performed, so its due date is the due date of the project. The latest start

of T1 is 29/06/2014 at 11 pm.

Chapter 6. Recommendation Process 68

• The task T6 has a duration of 2 hours and T7 depends of it to be performed, so

its due date is the latest start of T7. Subtracting the duration of T6 to its due

date we obtain its Latest start 29/06/2014 at 9 pm.

• The task T3 has a duration of 3 hours and T6 depends of it to be performed, so

its due date is the latest start of T6. Subtracting the duration of T2 to its due

date we obtain its Latest start 29/06/2014 at 1 pm.

Task T1 T2 T3 T4 T5 T6 T7

Due Date 30/06/2014

00:00

28/06/2014

16:00

28/06/2014

21:00

30/06/2014

22:00

28/06/2014

17:00

29/06/2014

23:00

30/06/2014

00:00

Latest

Start

29/06/2014

19:00

28/06/2014

13:00

29/06/2014

18:00

30/06/2014

22:00

28/06/2014

16:00

29/06/2014

21:00

29/06/2014

23:00

After the latest start of the task is calculated, the system measures the difference in

days since that moment to the latest start of the task. We assume that a person has 15

hours per day 1 to execute his tasks, so for each day from the current date to the latest

start 9 hours are subtracted to the duration value. In addition to this, taking advantage

of the information of the events the user must attend, obtained from the user’s Google

Calendar and from the events he added to the application, and assuming the events do

not overlap, the duration of the events who occur between and the latest start of the

task is subtracted to the difference calculated.

Variation of the value Urgency:

Figure 6.5: Urgency Variation

In our perspective, the value of the urgency should not follow a linear distribution

because when the deadline of a task is getting closer the value of the Urgency should

1In this version of the application this value is hard-coded however in a future version of the appli-
cation will be parametrized by the user

Chapter 6. Recommendation Process 69

increase exponentially. We think that when there is only one week left for the Latest

Start of a task the value of the Urgency should incresase ”faster”. So the value dif is

divided by 15*7 which is the effective time of a week of work.

Hours Left 1 2 6 12 24 48 60 105 200 300

Urgency 0,990 0,981 0,892 0,796 0,633 0,564 0,632 0,368 0,149 0,057

In future versions of the application we do not intend to impose the restriction to the

user of assigning a due date to a project. In those cases, seeking inspiration in the

Highest Response-Ratio Next Algorithm, we could calculate the urgency of a task using

the formula:

U = 1 − e−
Age

Duration

6.2.3 Age

The Age of a task is a function of how much time has elapsed between the last time

another task of the same project has been completed, and ”now”. Drawing inspiration

from the Highest Response-Ratio Next scheduling algorithm, the Age in our prioritiza-

tion method is intended to give higher priority of tasks of projects that have been in

”stand by” for a longer time. This helps prevent less important objectives from being

indefinitely put behind.

To calculate the age of a task the application uses the formula:

A = 1 − e
−dif
60

0 <= A <= 1

The Age of the project is calculated using the difference, in days, since the last time

that an action of the same project has been performed. The goal of this parameter is

to provide a higher priority to projects which have been ”inactive” for a longer time.

To measure this, the application measures the time that has passed since the user has

performed a task of the project for the last time. The inspiration for this parameter was

a technique used in the Highest Response-Ratio Next scheduling algorithm that takes

into account the last time a process was executed in the decision of the next process to

be run. In our perspective, after 2 months have passed (60 days), is the expiration date

Chapter 6. Recommendation Process 70

to a project start being forgotten by the user. So we use this value as reference for the

value of the Age factor start growing at a higher speed.

Variation of the value Age:

Figure 6.6: Age Variation

Days 0 1 7 15 30 90 120 365

Age 0 0,016 0,110 0,221 0,393 0,776 0,864 0,997

6.2.4 Speed

In this parameter the system will try to give more priority to the tasks that have a

shorter duration. The duration will be processed in minutes. The reason for us adding

this parameter for the recommendation algorithm is that David Allen defends that the

user spend less energy performing shorter actions than longer ones, which raises his

productivity. For calculating the Speed value we used as reference the value 25 which is

the duration defended by Francisco Cirillo to be the the time a person can focus while

performing a task, in the Pomodoro Technique.

To calculate the speed of a task the application uses the formula:

S = e
−duration

25

0 <= S <= 1

Variation of the value Speed:

Chapter 6. Recommendation Process 71

Figure 6.7: Speed Variation

Duration 5 15 30 45 60 120

Speed 0,818 0,548 0,301 0,166 0,090 0,008

6.2.5 Presentation of the Tasks

After calculating the priority of the tasks the system displays only the ones that the

user can perform at the moment.

We present below a screenshot of a prioritized list tasks displayed to the user according

to his priorities. It’s up to him to decide which task he is going to perform. In addition

to this, he can also restrain even more that list using the filters of the application.

Figure 6.8: Prioritized list of tasks

Chapter 7

Developing,Testing and

Validation

In this chapter we present the procedures followed by us to verify if the application

meets the Functional Requirements presented in the first semester and if the mechanisms

developed to aid the user choosing the tasks to perform are valid.

7.1 Development and Testing

The development of the several functionalities was made following the Gant designed

in the first semester. The first phase of testing of each ”module” was made along the

developing process of it. After development and test of individual modules, integration

tests were carried out and the system iteratively validated with the supervisor of the

project. The cycle comprised of testing and validation, error detection and improvements

suggestion, and corrections and implementation of improvements. Several iterations

took place along this cycle until the application reached a stable state with rich enough

features for this prototype application.

7.2 Validation

7.2.1 Functional Requirements

We now analyze the completion of the requirements proposed in the first semester. To

provide an overview we inserted the results of the completion of the requirements in a

72

Chapter 7. Testing and Validation 73

table. Each row represents one table of the section 4.1 and is filled with the total number

of requirements of each category, how many were completed and their percentage.

Figure 7.1: Functional Requirements Completion Ratios

We can conclude that all the 58 of the ”Must” requirements have been completed. This

indicates that all the crucial requirements were satisfied. In addition to this, more than

fifty per cent of the ”Should” requirements and 3 out of 10 of the classified as ”Could”

were also completed. We can conclude that the commitment made in the first semester

was completed.

7.2.2 Recommendation Algorithm

In order to validate the algorithm of prioritization of tasks and the usefulness of the

methods for filtering them, 14 people have used the application and responded to a

questionnaire. Because most of them did not know the GTD Methodology they were

given a short introduction to GTD. To each one of them was provided a computer with

the latest version of the application, the questionnaire and the user manual. In addition

to this, the users had a field where they could leave some observations. Each one of

them spent at least half an hour putting in the system their inputs which consisted of

at least of 20 tasks, 5 projects and 3 higher level objectives. To be possible to measure

the answers to the questionnaire we put them in a scale from 1 to 5 where:

• 1. I completely Disagree

• 2. I disagree

• 3. I do not Agree nor Disagree

• 4. I Agree

• 5. I completely agree

Chapter 7. Testing and Validation 74

Below we present the questions answered by the users and for each one we present the

results obtained and our analysis of them. For each question, the results are represented

in a table below it and in the first row are present the different answers and in the row

below the number of times users chose that option.

The first five questions had the objective of evaluating the recommendation system and

the presentation of the list of tasks on the screen.

1.The list of tasks contains all the tasks I can perform at this moment.

Answer 1 2 3 4 5

Count 0 0 0 8 6

% 00.00 00.00 00.00 57.14 42.86

In this question the users were asked if the tasks presented in the the Do list were only the

ones they could perform at the moment. As we can see, the results were very positive,

8 agrees and 6 agrees completely. Although the size of the population of individuals

answering the questionnaires is far too small to have a strong statistical significance,

these first results give us some confidence that the recommended tasks presented to the

user are restrained only to the ones that can be performed at that specific time.

2.It is easy to understand the list of tasks.

Answer 1 2 3 4 5

Count 2 0 2 4 6

% 14.29 00,00 14.29 28.57 42.86

In this question was asked if it the information presented on the screen is easily inter-

preted as a list of tasks. 71.43 % of the population inquired agreed with the answer

however the results show a high percentage of not agreement or not opinion (28,57%9

and we received as feedback that the application should display more information about

the tasks on the screen. We can conclude the results are satisfactory for proof of concept

application but in a future version of the application the interface of the Do list should

be improved.

3.It is easy to understand the order of the list of tasks

Answer 1 2 3 4 5

Count 1 0 4 5 4

% 07.14 00.00 28.57 35.71 28.57

Chapter 7. Testing and Validation 75

In this question was asked if the understood the tasks were presented in a specific order.

64.29 % agreed with the question, however 28,57 didnot agree or disagree. We can

conclude of the results that, despite most of the people inquired understood the list of

tasks, in a future version of the application there should be present on the screen some

kind of information alerting the user the tasks presented are ordered by priority.

4.The list is ordered according to my priorities (the one with the biggest

priority in the begin)

Answer 1 2 3 4 5

Count 0 0 2 3 9

% 00.00 00.00 14.29 21.43 64.29

In this question was asked if the tasks presented were ordered by their priority. 85,72

% of the users Agreed or Agreed Completely, so we can conclude the results of the

prioritization algorithm are valid. Although the size of the population of individuals

answering the questionnaires is far too small to have a strong statistical significance,

these first results give us some confidence that the values of the priority calculated are

right.

5.In the list of tasks some tasks are disordered according to my priorities

Answer 1 2 3 4 5

Count 7 5 2 0 0

% 50.00 35.71 14.29 00.00 00.00

In this question was asked the same than in question 4, however was inquired on the

negative to verify the attention of the users while answering this questionnaire. If the

results were not the opposite no results could be taken from the questionnaire because

the answers were not sequent. 85,72 % did not agreed or did not agreed completely with

this question and 14,29 % did not agree nor disagree which are the opposite percentages

of question 4, so we can assume the usersd answered sincerely tot he questionnaire.

Although having a small population inquired we can take some conclusions of the first

results. The results of the restrain of tasks and ordering by priority are very positive

and show that we are on the right path to take this method to another level. However,

the interface of the Do screen should be improvised to provide a better experience and

easier understood of the application by the future users.

Chapter 7. Testing and Validation 76

7.2.3 Filters

The following questions had the objective of analyzing the usefulness of the filter mech-

anism of tasks available in the platform.

6.The filter by ”location” helps me in the decision of choosing the next task

to perform

Answer 1 2 3 4 5

Count 1 0 5 4 4

% 07.14 00,00 35.71 28.57 28.57

In this question was asked to the users if the filter by location required to the perform

the task was useful in the choice of the next task to perform.

7.The filter by ”tool” helps me in the decision of choosing the next task to

perform

Answer 1 2 3 4 5

Count 0 0 5 3 6

% 00.00 00.00 35.71 21.43 42.86

In this question was asked to the users if the filter by tool required to perform the task

was useful in the choice of the next task to perform.

8.The filter by ”person” helps me in the decision of choosing the next task

to perform

Answer 1 2 3 4 5

Count 0 1 4 2 7

% 00.00 07.14 28.57 14.29 50.00

In this question was asked to the users if the filter by person required to perform the

task was useful in the choice of the next task to perform.

These 3 filters had in general a good reception by the the users, 57,14%, 57,14% and

64,29% respectively have agreed or completely agreed with the questions. However we

have received some feedback of the users that answered 3, 2 or 1 in these questions and

in the two below that they do not feel the need to associate contexts with tasks. Since

the majority of the population studied have agreed with the usefulness of this filters, we

decided to keep them for future development of the application.

Chapter 7. Testing and Validation 77

9.The filter by ”energy” helps me in the decision of choosing the next task

to perform

Answer 1 2 3 4 5

Count 1 2 1 5 5

% 07.14 14.29 00.07 35.71 35.71

In this question was asked if the filter by energy necessary to perform a tasks was useful

in the choice of the next task to perform. 71.42% of the population studied agreed with

the question asked so we can conclude that this filter brings value to the application and

can help the user in the decision of the next task to perform.

10.The filter by ”duration” helps me in the decision of choosing the next

task to perform

Answer 1 2 3 4 5

Count 1 0 0 6 7

% 07.14 00.00 00.00 42.86 50.00

In this question was asked if the the filter by ”duration” was useful for the useful when

he had to decide the next task to perform next. Having a grade of acceptance of 92.86%,

we can conclude this filter is the most relevant for the user when needs to filter the tasks

presented, comparing to the other values of the inquiry and the factor of speed in a task

should have more relevance in further developments of the algorithm.

11.The filter by ”Area of Focus” helps me in the decision of choosing the

next task to perform

Answer 1 2 3 4 5

Count 0 0 2 7 5

% 00.00 00.00 14.29 50.00 35.71

In this question was asked is if the filtering the tasks presented by an area of inter-

est/responsibility could be useful for deciding the next task to perform. We had a

good feedback overall having 85,71% of the population answered that agreed with the

usefulness of this filter, so we can conclude it brings value to the application.

12.The filter of the application are enough to help me in the decision of the

next task to perform

Chapter 7. Testing and Validation 78

Answer 1 2 3 4 5

Count 0 0 1 7 6

% 00.00 00.00 14.29 50.00 42.86

The aim of this questions was to verify if the filters of tasks presented in the application

were enough for aiding the user filtering a big list of the next tasks to conform depending

of its context and time. We had 92,86% of positive answers, 7 agrees and 6 Agrees

Totally, so we can conclude the application has all the filtering mechanism necessary.

Conclusion: with these questions we can conclude that all the filters aid the user in the

decision of the next task to perform and thus provide additional value to the application.

We can also deduce with this study that they offer the necessary range of parameters to

the application that, having a great number of tasks in the system, allowing the user to

visualize what he can do in a very specific situation.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

We have successfully developed the first prototype of a GTD-based application that

automatically prioritizes the user’s tasks according to his importances, deadlines, and

commitments in his online calendar. The application securely integrates with Google

Calendar for event synchronization, and more accurate calculus of urgencies; and it

also securely integrates with Evernote to allow the user to capture his thoughts and

ideas anywhere. This is a first prototype and there is room many improvements, namely

regarding usability and the user interface, before a commercial version of the application

can be deployed. Still, the combination of features of this application is unique, especially

the prioritization mechanism which is indeed innovative as no other similar application

provides a comparable functionality.

8.2 Future Work

We think the application developed could be useful to a great number of people to help

them improve their productivity and is our intention to continue its development. We

would like to improve its usability for proving a better UI for people who are not familiar-

ized with the GTD Methodlogy and perhaps web-based, and a develop a mobile version

of the application. In terms of the missing requirements (Should and could), we intend

to developed them in order to provide additional useful features tot the application.

79

Appendix A

Work Plan

In this section we present the distribution of the work during the first and the second

semester.

A.1 Work Plan for the First Semester

In this section we present the distribution of the work in the first semester.

Figure A.1: Distribution of the Work in the First Semester

• Read the GTD Book: In the first two weeks of the semester I read the ”Getting

Things Done”[1] book, where David Allen explains his productivity methodology

that has been followed in the design of the application.

• Analyze of the GTD Applications: In this task I have analyzed a list of the

most used applications that use the GTD methodology as inspiration in order to

understand what new features that our application could give to the users.

80

Work Plan Work Plan 81

• Study of the Activity Selection Problem: In this tasks I studied the pro-

graming problem activity selection problem with the objective of understand the

different solutions already found to solve it and how to adapt them into our rec-

ommendation problem.

• Analysis of Scheduling Algorithms: I analyzed the different scheduling algo-

rithms in order to understand different approaches for solving scheduling problems

and which of their characteristics could be applied to our projects.

• Requirements Analysis: In this tasks, I analyzed and documented the list of

physical and functional requirements needed to ensure the developing of the project

goal.

• Design of the GUI Prototypes: In this task, I designed the prototypes that

represent the future Interface with the user will interact with, based on the re-

quirements analysis.

• Design of the Sequence Diagrams This task was needed in order to repre-

sent the temporal difference between the functions represented in the Use Cases

Diagram.

• Design of The Components Diagram: The objective of this task was to

represent the different components that system will need to have or communicate

in order to perform its functions.

• Design of the Recommendation System: In this task I used the information

collected in the study of the activity selection problem and the analysis of the

scheduling algorithm in order to come to a first prototype of the final algorithm

that will be used in the application to recommend tasks to the user.

• Study of the Technologies: In this tasks I analyzed the different technologies

that can be used in order to develop our application.

• Write of the Report Since the start of this task all the information collected in

other tasks was documented in order to be present in the intermediate report.

Work Plan Work Plan 82

A.2 Work Plan for the Second Semester

Figure A.2: Distribution of the Work in the Second Semester

• Integration of the Alterations: Analysis of the alterations to the work devel-

oped in the first semester suggested by the jury and implementation of them.

• Design of the Architecture: Design of the final version of the architecture of

the system. Will be designed a Class Diagram, Entity-Relationship Diagram and

a more detailed Component Diagram with the objective of defining the details of

the implementation. In this tasks will also be made a Risk analysis of the project.

• Defining testing methodlogy: Defining the tests and validations necessary to

Validate the implementation.

• Design of the Final version of the Recommendation Algorithm Design of

the final version of the algorithm that will developed in the implementation phase.

• Implementation of the Interface: Implementation of the proposed Interface

of the application based in the prototypes designed.

• Validation of the Interface: Validate the interface implemented.

• Implementation of the Support: Implementation of the functions to provide

the application features proposed for creating Contexts and Areas of Focus.

• Validation of the Support: Validate the implementation of the Support func-

tions.

• Implementation of the Collect and Process : Implementation of the func-

tions to provide the application features proposed for the Collect and Process

processes.

Work Plan Work Plan 83

• Validation of the Collect and Process: Validate the implementation of the

Collect and Process functions.

• Implementation of the Review : Implementation of the functions to provide

the application features proposed for the Review process.

• Validation of the Review: Validate the implementation of the Review functions.

• Implementation of the Recommendation : Implementation of the functions

to provide the application features proposed for the Recommendation of Tasks

System.

• Validation of the Review: Validate the implementation of the prioritization

functions.

• Implementation of the Synch with Evernote: Implementation of the Module

that keeps the information of the application and the Evernote up to date .

• Validation of the Evernote: Validate the implementation of the Evenote Synch

Module.

• Implementation of the Synch with google: Implementation of the component

that keeps the information of the application and the Google Calendar up to date

.

• Validation of the Google: Validate the implementation of the Google Synch

component.

• Correct failures: Correct Possible failures that appear in the system in validate

system testing

• Validation of the System: Validate the integration of the diferent comnponent

of the system.

• Deployment: deploy the application in Linux, Windows and Mac OS X environ-

ment.

• Validation of the Deployment: Validate the deployment using the deployment

tests elaborated.

Bibliography

[1] David Allen. Getting Things Done: The Art of Stress-Free Productivity. Penguin

Group, 2001.

[2] The Guardian. Meet the man who can bring order to your universe. September

2005.

[3] Jeremy Caplan. The oracle of organization. Time Magazine, March 2007.

[4] Gtd workflow map, 1 2014. URL http://radicallycandid.com/files/2012/08/

GTD_flow.jpg.

[5] The eisenhower decision matrix: How to distinguish between urgent and impor-

tant tasks and make real progress in your life, 10 2013. URL http://www.

artofmanliness.com/2013/10/23/eisenhower-decision-matrix/.

[6] Goal setting: A fresh perspective, June 2012. URL http://www.oracle.com/us/

media1/goal-setting-fresh-perspective-ee-1679275.pdf.

[7] Michael Lineberg. The One Minute To DO List. New Academy Publishers, 2014.

[8] Staffan Noteberg. Pomodoro Technique Illustrated. The Pragmatic Bookshelf, 2009.

[9] Omnifocus webpage, 6 2014. URL http://www.omnigroup.com/omnifocus/.

[10] Omnigroup website, 6 2014. URL http://www.omnigroup.com/.

[11] Omnifocus screenshot, 6 2014. URL http://radicallycandid.com/files/2012/

08/GTD_flow.jpg.

[12] Omnifocus webpage, 6 2014. URL http://www.omnigroup.com/omnifocus/.

[13] Culture code website, 1 2014. URL http://culturedcode.com/.

[14] Things 2 screenshot, 6 2014. URL http://a4.mzstatic.com/us/r30/Purple/v4/

e0/46/90/e04690e0-3309-b600-dcda-fb574737dea1/screen800x500.jpeg.

84

http://radicallycandid.com/files/2012/08/GTD_flow.jpg
http://radicallycandid.com/files/2012/08/GTD_flow.jpg
http://www.artofmanliness.com/2013/10/23/eisenhower-decision-matrix/
http://www.artofmanliness.com/2013/10/23/eisenhower-decision-matrix/
http://www.oracle.com/us/media1/goal-setting-fresh-perspective-ee-1679275.pdf
http://www.oracle.com/us/media1/goal-setting-fresh-perspective-ee-1679275.pdf
http://www.omnigroup.com/omnifocus/
http://www.omnigroup.com/
http://radicallycandid.com/files/2012/08/ GTD_flow.jpg.
http://radicallycandid.com/files/2012/08/ GTD_flow.jpg.
http://www.omnigroup.com/omnifocus/
http://culturedcode.com/
http://a4.mzstatic.com/us/r30/Purple/v4/e0/46/90/e04690e0-3309-b600-dcda-fb574737dea1/screen800x500.jpeg
http://a4.mzstatic.com/us/r30/Purple/v4/e0/46/90/e04690e0-3309-b600-dcda-fb574737dea1/screen800x500.jpeg

Bibliography 85

[15] Inbox classic download webpage, 6 2014. URL https://itunes.apple.com/pt/

app/inbox-classic/id528008223?mt=12.

[16] Midnight beep website, 6 2014. URL http://www.midnightbeep.com/.

[17] Inbox classic screenshot, 6 2014. URL http://a2.mzstatic.com/us/r30/Purple/

v4/9a/0a/b6/9a0ab6a6-fc4e-5088-bc50-4fc098b67a4b/screen800x500.jpeg.

[18] Iqtell website, 6 2014. URL http://iqtell.com/.

[19] Evernote website, 1 2014. URL https://evernote.com/.

[20] Iqtell screenshot, 6 2014. URL http://iqtell.com/wp-content/uploads/2013/

11/web_image3.png.

[21] Life balance webpage, 1 2014. URL http://www.llamagraphics.com/products/

life-balance/.

[22] Lamagraphics website, 6 2014. URL http://www.llamagraphics.com/.

[23] Life balance screenshot, 6 2014. URL http://a5.mzstatic.com/us/r30/Purple/

v4/13/6a/18/136a18b4-cc7f-f088-ff29-a8410aa946b6/screen320x480.jpeg.

[24] Jive software website, 6 2014. URL http://www.jivesoftware.com/.

[25] Producteev screenshot, 6 2014. URL https://encrypted-tbn2.

gstatic.com/images?q=tbn:ANd9GcSgtwpATSKJ486G4O3bp5kQmMG_

e7KkeFDFzhhC2CcNqm7zw4lm.

[26] Jive website, 6 2014. URL http://www.jivesoftware.com/.

[27] Avente webpage, 1 2014. URL http://www.trgtd.com.au/index.php/

aboutusmenu.

[28] Thikingrock screenshot, 6 2014. URL http://antoniosanchez.files.

wordpress.com/2007/08/ejemplo_thinkingrock.png.

[29] Toodledo website, 6 2014. URL http://www.toodledo.com/.

[30] Toodledo screenshot, 6 2014. URL http://www.chriscanfield.net/Offsite/

BlogImages/ToodledoRework.png.

[31] Todoist Website. To, 1 2014. URL https://en.todoist.com/.

[32] Doist website, 6 2014. URL http://doist.io/.

[33] Todoist screenshot, 6 2014. URL http://cdn1.tnwcdn.com/wp-content/blogs.

dir/1/files/2013/03/Todoist-520x535.png.

https://itunes.apple.com/pt/app/inbox-classic/id528008223?mt=12
https://itunes.apple.com/pt/app/inbox-classic/id528008223?mt=12
http://www.midnightbeep.com/
http://a2.mzstatic.com/us/r30/Purple/v4/9a/0a/b6/9a0ab6a6-fc4e-5088-bc50-4fc098b67a4b/screen800x500.jpeg
http://a2.mzstatic.com/us/r30/Purple/v4/9a/0a/b6/9a0ab6a6-fc4e-5088-bc50-4fc098b67a4b/screen800x500.jpeg
http://iqtell.com/
https://evernote.com/
http://iqtell.com/wp-content/uploads/2013/11/web_ image3.png.
http://iqtell.com/wp-content/uploads/2013/11/web_ image3.png.
http://www.llamagraphics.com/products/life-balance/
http://www.llamagraphics.com/products/life-balance/
http://www.llamagraphics.com/
http://a5.mzstatic.com/us/r30/Purple/v4/13/6a/18/136a18b4-cc7f-f088-ff29-a8410aa946b6/screen320x480.jpeg
http://a5.mzstatic.com/us/r30/Purple/v4/13/6a/18/136a18b4-cc7f-f088-ff29-a8410aa946b6/screen320x480.jpeg
http://www.jivesoftware.com/
https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcSgtwpATSKJ486G4O3bp5kQmMG_e7KkeFDFzhhC2CcNqm7zw4lm
https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcSgtwpATSKJ486G4O3bp5kQmMG_e7KkeFDFzhhC2CcNqm7zw4lm
https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcSgtwpATSKJ486G4O3bp5kQmMG_e7KkeFDFzhhC2CcNqm7zw4lm
http://www.jivesoftware.com/
http://www.trgtd.com.au/index.php/aboutusmenu
http://www.trgtd.com.au/index.php/aboutusmenu
http://antoniosanchez.files.wordpress.com/2007/08/ejemplo_thinkingrock.png
http://antoniosanchez.files.wordpress.com/2007/08/ejemplo_thinkingrock.png
http://www.toodledo.com/
http://www.chriscanfield.net/Offsite/BlogImages/ToodledoRework.png
http://www.chriscanfield.net/Offsite/BlogImages/ToodledoRework.png
https://en.todoist.com/
http://doist.io/
http://cdn1.tnwcdn.com/wp-content/blogs.dir/1/files/2013/03/Todoist-520x535.png
http://cdn1.tnwcdn.com/wp-content/blogs.dir/1/files/2013/03/Todoist-520x535.png

Bibliography 86

[34] Nirvana website, 6 2014. URL https://www.nirvanahq.com/.

[35] Nirvana screenshot, 6 2014. URL http://larrinski.files.wordpress.com/

2010/09/nirvana_screenshot.png.

[36] Asana website, 1 2014. URL https://asana.com/.

[37] Asana screenshot, 6 2014. URL http://allthingsd.com/files/2011/11/

asana-project.png.

[38] Remember the milk website, 6 2014. URL http://www.rememberthemilk.com/.

[39] Rememberthemilk screenshot, 6 2014. URL http://www.maclife.com/files/

u129772/RTM_full.jpg.

[40] Wunderlist website, 6 2014. URL https://www.wunderlist.com/en/.

[41] Wunderlist screenshot, 6 2014. URL http://3.bp.blogspot.com/-cMFPkwQS4jU/

UKtf7D9YWHI/AAAAAAAAALk/m6V8A1BRDzE/s640/wunderlist.png.

[42] Adam Pash. Five best calendar applications. Technical report, lifehacker,

http://lifehacker.com/5048189/five-best-calendar-applications, 11 2008.

[43] Alan Henry. Five best note taking applications. Technical report, lifehacker,

http://lifehacker.com/5837191/five-best-note-taking-applications, 11 2011.

[44] Completely fair scheduler, 1 2014. URL http://www.ibm.com/developerworks/

linux/library/l-completely-fair-scheduler/.

[45] Samuel L. Baker. Critical path method (cpm). Technical report, University of

South Carolina, 2004.

[46] William Stallings. Operating systems: internals and design principles. Prentice-Hal,

2001.

[47] A Silberschatz. Operating Systems Concepts. 7. Wiley, 2005.

[48] Dongjin Choi Myunggwon Hwang and Pankoo Kim. Least slack time rate first:

an efficient scheduling algorithm for pervasive computing environment. Journal of

Universal Computer Science, 17:912–925, 2011.

[49] Peter Bruker. Scheduling algorithms. pages I–XII, 1–367, January 2004.

[50] L. Keinrock and R. Muntz. Processor sharing queueing models of mixed scheduling

disciplines for time shared systems. Journal of the ACM, 18:464–482, July 1972.

[51] A Guide to the Project Management Body of Knowledge. Project Management

Institute, 4th edition edition, 2009.

https://www.nirvanahq.com/
http://larrinski.files.wordpress.com/2010/09/nirvana_screenshot.png
http://larrinski.files.wordpress.com/2010/09/nirvana_screenshot.png
https://asana.com/
http://allthingsd.com/files/2011/11/asana-project.png
http://allthingsd.com/files/2011/11/asana-project.png
http://www.rememberthemilk.com/
http://www.maclife.com/files/u129772/RTM_full.jpg
http://www.maclife.com/files/u129772/RTM_full.jpg
https://www.wunderlist.com/en/
http://3.bp.blogspot.com/-cMFPkwQS4jU/UKtf7D9YWHI/AAAAAAAAALk/m6V8A1BRDzE/s640/wunderlist.png
http://3.bp.blogspot.com/-cMFPkwQS4jU/UKtf7D9YWHI/AAAAAAAAALk/m6V8A1BRDzE/s640/wunderlist.png
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/

Bibliography 87

[52] Lin Liu and Eric Yu. Designing information systems in social context: A goal and

scenario modelling approach. Inf. Syst, 29(2):187–203, April 2004.

[53] Eric S. Yu. Social modeling and i*. Faculty of Information, University of Toronto,

Canada.

[54] Alistair Cockburn. Writting Effective Use Cases. Addison-Wesley, 2001.

[55] Jorge Aranda Scott Munro, Sotiries Liaskos. The mysteries of goal decomposition.

CEUR Workshop Proceedings, 766:49–54, 2011.

[56] W. B. Denniston J. S. Armstrong and M.M. Gordon. The use of the decompostion

principle in making judgments. Organizational Behaviour and Human Performance,

14:257–263, 1975.

[57] K. S. Lyness and Cornelius E-T. A comparison of holistic and decomposed judge-

ment strategies in performance rating simulation. Organization Behaviour and Hu-

man performance, pages 21–38, 1982.

[58] Ian Sommerville. Software Engineering. Addison-Wesley, 9 edition, March 2013.

[59] Capturing architectural requirements, 111 2005. URL http://www.ibm.com/

developerworks/rational/library/4706.html#N100A7.

[60] IIBA International Institute of Business Analysis. A Guide to the Business Analysis

Body of Knowledge R© (BABOK R© Guide). 2009.

[61] Uml use case diagrams: Guidelines, 2013. URL http://msdn.microsoft.com/

en-us/library/dd409432.aspx.

[62] Chris Britton. Choosing a programming language, 1 2008. URL http://msdn.

microsoft.com/en-us/library/cc168615.aspx.

[63] The java language environment, 1 2014. URL http://www.oracle.com/

technetwork/java/intro-141325.html.

[64] Google calendar api, 6 2014. URL https://developers.google.com/

google-apps/calendar/.

[65] Netbeans website, 6 2014. URL https://netbeans.org/.

[66] Sqlite website, 1 2014. URL http://www.sqlite.org/.

[67] When to use sqlite. URL http://sqlite.org/cvstrac/wiki?p=

WhenToUseSqlite.

[68] Sql as understood by sqlite, 6 2014. URL https://www.sqlite.org/lang.html.

http://www.ibm.com/developerworks/rational/library/4706.html#N100A7
http://www.ibm.com/developerworks/rational/library/4706.html#N100A7
http://msdn.microsoft.com/en-us/library/dd409432.aspx
http://msdn.microsoft.com/en-us/library/dd409432.aspx
http://msdn.microsoft.com/en-us/library/cc168615.aspx
http://msdn.microsoft.com/en-us/library/cc168615.aspx
http://www.oracle.com/technetwork/java/intro-141325.html
http://www.oracle.com/technetwork/java/intro-141325.html
https://developers.google.com/google-apps/calendar/
https://developers.google.com/google-apps/calendar/
https://netbeans.org/
http://www.sqlite.org/
http://sqlite.org/cvstrac/wiki?p=WhenToUseSqlite
http://sqlite.org/cvstrac/wiki?p=WhenToUseSqlite
https://www.sqlite.org/lang.html

Bibliography 88

[69] André B. Bondi. Characteristics of scalability and their impact on performance.

Proceedings of the second international workshop on Software and performance,

pages 195–203, 2000.

[70] Sqlite copyright, 1 2014. URL http://www.sqlite.org/copyright.html.

[71] Self-contained application packaging, 6 2014. URL http://docs.oracle.com/

javafx/2/deployment/self-contained-packaging.htm#BCGIBBCI.

http://www.sqlite.org/copyright.html
http://docs.oracle.com/javafx/2/deployment/self-contained-packaging.htm#BCGIBBCI
http://docs.oracle.com/javafx/2/deployment/self-contained-packaging.htm#BCGIBBCI

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Identification
	1.3 Motivation
	1.3.1 Target Users
	1.3.2 Innovative Characteristics of the work
	1.3.3 Challenges to overcome

	1.4 Document Structure

	2 Background and Proposed Approach
	2.1 The Getting Things Done Methodology
	2.1.1 The GTD Workflow
	2.1.1.1 Horizontal Processing
	2.1.1.2 Vertical Processing

	2.2 Our approach
	2.2.1 Horizontal Processing
	2.2.2 Vertical Processing

	2.3 Alternatives to the GTD
	2.3.1 The One Minute To-Do List
	2.3.2 Pomodoro Technique

	3 State of the Art and Related Work
	3.1 State of the Art Applications
	3.2 Comparative Vectors
	3.2.1 Non Functional Vectors
	3.2.2 Information Vectors
	3.2.3 Organizational Vectors

	3.3 Critical Evaluation of the Applications
	3.3.1 Non Functional Vectors
	3.3.2 Information Vectors
	3.3.3 Organizational Vectors

	3.4 Related Work
	3.4.1 Scheduling Algorithms
	3.4.2 Goal Decomposition
	3.4.2.1 Goals Breakdown Structure
	3.4.2.2 Goal Modeling in Requirements Engineering

	4 Requirements Analysis
	4.1 Functional and Non-Functional Requirements
	4.1.1 Functional Requirements
	4.1.2 Non-Functional Requirements

	4.2 Use Cases Diagram
	4.2.1 Tasks Sequence Diagram
	4.2.2 Recommendation Sequence Diagram

	5 Architecture
	5.1 First Level Architecture
	5.2 Second Level Architecture
	5.2.1 Model
	5.2.2 Controllers
	5.2.3 View

	5.3 Technologies
	5.3.1 Programming Language
	5.3.2 Persistent Data Storage Solution
	5.3.3 Software Platform

	6 Recommendation Process
	6.1 Reducing the task list
	6.2 Prioritization Algorithm
	6.2.1 Importance
	6.2.2 Urgency
	6.2.3 Age
	6.2.4 Speed
	6.2.5 Presentation of the Tasks

	7 Developing,Testing and Validation
	7.1 Development and Testing
	7.2 Validation
	7.2.1 Functional Requirements
	7.2.2 Recommendation Algorithm
	7.2.3 Filters

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	A Work Plan
	A.1 Work Plan for the First Semester
	A.2 Work Plan for the Second Semester

	Bibliography

