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Abstract

We live in an era where information overflows. Yet, for this information

to become knowledge, it has to be given meaning. This thesis focuses on a

machine learning approach that evolved from probabilistic graphical mod-

els, which automatically extracts knowledge from vast amounts of data by

assigning themes to documents: topic modeling. Topic models are an emer-

gent technique used for both descriptive and predictive tasks. As a result,

it was soon extended to other goals that do not only model topics, but also

target variables.

This work presents a supervised topic model that is able to learn from

crowds. That is, we consider the case where the label set of the data was

provided by multiple annotators. In the multi-annotator setting, the ground

truth labels need to be modeled from several noisy versions of them given by

the different annotators. To address this sort of problems, it is often assumed

that all labelers are equally reliable through the use of voting techniques,

which was proven to be an unrealistic conjecture. On the contrary, the

proposed model takes into account the different levels of expertise and biases

of annotators, by jointly modeling them together with the topics and the true

labels. In order to make this process computationally tractable, a variational

inference algorithm was developed, which provides an efficient approximate

inference method.

We finalize by showing how general supervised topic models can be

used to predict demand in special events by correlating internet search query

data with real measurements of transport usage, thus, motivating the usage

of the topic models in real-world applications.
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Chapter 1

Introduction

1.1 Motivation

As the phenomenon of big data grows, the need for automated methods
of data analysis becomes increasingly evident. Machine learning provides
an answer to this problem by comprising a set of theoretical concepts and
methods capable of managing complex, dynamical and heterogeneous sorts
of data. Furthermore, this field of artificial intelligence allows data to be
explained, patterns about the data to be uncovered and it gives the possibility
to make predictions about the future given some past data. In fact, machine
learning algorithms can be applied to solve a broad spectrum of previously
unsolved problems, which may explain its spreading across several areas of
science and industry.

This thesis focuses on a statistical approach on machine learning: topic
modeling. Topic models are a powerful tool to automatically assign “themes”
to text instances, i.e., weighted lists of semantically coherent words. This can
be extremely useful for summarization, information retrieval, categorization,
dimensionality reduction and prediction tasks. This means that problems
like indexing articles by theme or suggesting a book to a user based on other
books he likes can be easily addressed by employing topic modeling tech-
niques. Models like Latent Dirichlet Allocation (LDA) brought an efficient
way of analyzing large corpora and, consequently, are being explored and ex-
tended for many different purposes. In fact, they have now many applications
that go beyond their original goal of modeling textual data, such as analyzing
images, videos, survey data or social networks data. However, since the data
to be modeled is frequently associated with other variables such as labels,
tags or ratings and considering that the distributions of the documents over
topics may act as feature sets to train a predictor, an extension to classifi-

1



cation/regression problems was an obvious next step in topic models. As we
will show, by combining the learning of the topics distributions with a re-
gression or classification model, better prediction performances are obtained
comparing to the separate use of the two methods.

Supervised topic models, like Supervised LDA (sLDA), explore this
combination by jointly modeling the topics and the target variables of the
documents, which means that the topics are influenced by words co-occurrences
and the relationship between documents and their labels. However, these
models assume the existence of at least one label per document, which may
represent a real challenge when it is too expensive to label every instance of
the data or even when there are no ground truth targets defined.

This sort of challenges motivates this work. A specific example is the
participation of multiple medical experts in diagnosis as a substitute for ex-
pensive medical procedures, such as biopsies, since the identification of the
actual disease or condition might require costly invasive tests. Instead of the
biopsy, labels can be assigned by multiple experts. For instance, when deter-
mining if a patient has cancer or not, a group of radiologists may examine
images of the suspicious region and individually give an opinion about it. Un-
fortunately, experts may be specialized in different fields, which can result in
non-consensual opinions. Actually, in nearly all sorts of contexts it is highly
unlikely to have annotators with equal behavior. Hence, annotator-aware
models are needed, in order to get the best out of noisy answers.

Other examples of the necessity for annotator-aware models are tasks
related to product rating in online stores and webpage or image tagging,
in websites like LabelMe and Delicious1. This type of tasks are naturally
thought to be fulfilled by crowdsourcing, either because they are too subjec-
tive to be considered by only one labeler or because the size of the data makes
it impossible for a single person to examine it. Product rating or semantic
analysis, for example, are subjective tasks, since two people are likely to have
different and possibly biased views on the same product or media object.

Similarly, Named Entity Recognition, Keyphrase Extraction, Word
Sense Disambiguation and Handwritten Character Recognition are tasks usu-
ally more accurately performed by humans than by current artificial meth-
ods. For instance, Passonneau et al. (2010) presented a study on Word Sense
Disambiguation involving multiple annotators and Huang & Suen (1995) de-
veloped a work on recognition of handwritten numerals combining multiple
experts.

On the other hand, a dataset comprising millions of instances would be
too time consuming to be labeled by a single individual. Consider the case

1http://www.delicious.com
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of LabelMe: how would the project build such a large labeled dataset (about
700 thousand objects) if there was only one volunteer assigned to that task?

Crowd-sourced data is, indeed, a solution to bear in mind when dealing
with such scenarios, either because it is a simple inexpensive way to answer
these challenges or because it is demonstrated that learning from labels pro-
vided by multiple annotators can be as good as learning from the labels of a
single expert (Snow et al., 2008). This is why there are now online plataforms,
like Amazon Mechanical Turk, which make it easy to post HITs (Human In-
telligence Tasks) to obtain annotations from multiple workers. Particularly
in an era where web is becoming increasingly social, it becomes inevitable to
follow this shift by taking advantage of it, but at the same time adapting to
its needs. In this context, following this shift means designing models that
are able to deal with multiple annotators.

But how can the labels from multiple annotators be integrated to pro-
duce a single label? The majority voting method could be applied. However,
this would be relying on the assumption that all labelers are equally good,
which was demonstrated to be an unrealistic supposition in Snow et al. (2008)
and Rodrigues et al. (2013). Some annotators may be trustworthy, others
may me be ill-intentioned. Furthermore, not everyone is equally good across
all subjects. If the majority of the labelers are not reliable, the resulting
labels would be too noisy.

In other words, motivating this work is the inevitable adaptation of
statistical models to crowdsourced data. This means breaking the assump-
tion that all labelers are equivalent, which, expectedly, could lead to the
generation of flawed models.

Finally, a motivation for this work is also the fact that it is part of
the research project InfoCrowds. InfoCrowds’s primary objective is to ex-
ploit online information about public events, mobility data and event-specific
surveys to build interpretative and predictive models of flows of people and
their transportation mode in the city. Besides the fact that this information
comes mainly from the Internet, which enhances the need for models capable
of learning from the crowds, the challenges related to transport planning and
operations in large events for transit agencies are an example of how super-
vised topic models can predict on real-world problems. These large events
not only imply stress to the system on an irregular basis, but their associated
mobility behavior is also difficult to predict. The importance of prognosis on
non-habitual transport overcrowding for a transit agency is undeniable and
textual probabilistic approaches like supervised topic models are very well
suited to its solution.

3



1.2 Objectives

This thesis aims to generalize supervised LDA in such a way that multiple
annotators with different levels of expertise and biases are considered. This
is possible by designing a supervised topic model that introduces new latent
variables to account for the heterogeneity of the multiple annotators in terms
of reliability and developing a new Bayesian inference algorithm. The resul-
tant model jointly learns the topics and the true classes of each document,
as well as the annotators accuracies and biases, even in the absence of the
ground truth labels.

Moreover, we want to show how powerful supervised topic models can
be on real-world applications, by using internet search query data to predict
overcrowding hotspots. Thus, we propose a way for transportation companies
to start planning special events as early as they are announced on the web.
This implies studying which model fits better the problem, how the data
should be processed and how to interpret the results in order to improve
them.

1.3 Thesis structure

This thesis starts with Chapter 2, which describes the state of the art by
briefly explaining probabilistic graphical models, approximate inference and
by presenting some relevant examples of both topic models and learning from
crowds methods.

Chapters 3 and 4 introduce the proposed model: multiple-annotator
supervised latent Dirichlet allocation in its both classification and regression
versions, respectively. In Chapter 5, the experiences conducted to evaluate
them are presented and the results discussed.

Following, in Chapter 6 we present the application of supervised topic
models in the real-world problem of using internet search queries to predict
human mobility in social events.

In Chapter 7, the work done in the first and second semesters is de-
scribed, comparing the plan and objectives outlined with the ones achieved.

Finally, Chapter 8 draws the final remarks.
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Chapter 2

State of the art

This thesis covers concepts of topic modeling techniques and learning from
crowds methods, strongly connecting these two areas. These are, in turn,
closely related to the field of probabilistic graphical models and, consequently,
to inference mechanisms, which is how the unknown variables of the graphi-
cal models are estimated given the observed ones. This means that, in order
to present the supervised topic model that learns from multiple annotators
that is the main contribution of this thesis, it is, firstly, necessary to frame it
as a probabilistic graphical model, to explain its inference process and distin-
guish it from some similar works. Therefore, this chapter starts by providing
background concepts on probabilistic graphical models and approximate in-
ference, continues with a discussion about topic models and presents some
methods for learning from crowds.

Since this thesis also proposes an application of supervised topic models
for human mobility prediction, this chapter ends with a briefly review about
travel demand modeling state of the art approaches.

2.1 Probabilistic graphical models

Probabilistic graphical models are a framework for establishing relationships
between variables. The idea is to combine probability theory with graphs
in a way that allows statistical models to be represented intuitively and
illustratively. A graphical model is formed by nodes, edges that connect
them and plates. Nodes correspond to variables in the domain. Shaded
nodes (like c in Figure 2.1) represent observed variables and unshaded nodes
the latent ones. Edges represent statistical dependencies between variables
and plates are rectangles that indicate that the variables inside them are

5



a b c

N

Figure 2.1: Example of a graphical model.

repeated the number of times denoted in the bottom right corner. This
means that a graphical model encodes a probability distribution over a high-
dimensional space. A well known subclass of probabilistic graphical models
are Bayesian networks, whose graph is directed. In Bayesian networks, each
node only depends on the ones that point to them. For instance, looking at
Figure 2.1, it can be seen that c depends on b and b depends on a. Therefore,
the dependencies between variables in the distribution are clearly stated in
the graph, which makes the factorization of the joint distribution p(a, b, c)
intuitive. In the case of the example of Figure 2.1, the factorization would
be:

p(a, b, c) = p(a)
N∏

n=1

p(bn|a)p(cn|bn), (2.1)

where b = {bn}Nn=1 and c = {cn}Nn=1 are vectors (of size N) and, thus,
represented in bold.

So, instead of assigning every possible values to all the variables in the
model, the joint probability of all random variables becomes a product of
conditional distributions. Consider the case in which a, b and c are binary-
valued variables. In this setting, the factorization 2.1 asserts that the joint
probability is obtained by multiplying 1 + 2×N numbers, instead of having
2 × (2 × 2)N possible values. Consequently, instead of 2 × (4)N − 1 non-
redundant parameters, this parametrization requires only 1 + (2 + 2) × N
non-redundant parameters.

2.2 Approximate inference

A probabilistic graphical model can be used to answer various types of ques-
tions about the data being modeled. Since it defines the joint probability
distribution of the variables, it becomes possible to estimate unknown quan-
tities from known ones, i.e., to compute the posterior distribution of random
variables given observed ones. This process is called probabilistic inference,

6



in particularly, if Bayes’ rule is used to estimate unknown variables, it is
called Bayesian inference.

From the Bayes’ theorem, we know that the probability of the quantity
of interest, z, given all the data collected about it, x, is formulated by:

posterior︷ ︸︸ ︷
p(z|x) =

p(x, z)

p(x)
=

likelihood︷ ︸︸ ︷
p(x|z)

prior︷︸︸︷
p(z)

p(x)︸︷︷︸
evidence

. (2.2)

Therefore, supposing that z is a disease needed to be inferred and x is the
observed symptom, p(z|x) (the probability of the disease given the symp-
tom) can be calculated by multiplying p(z) (a measurable quantity of the
probability of the disease) and p(x|z) (the probability of the symptom given
the disease, which can be obtained from the case histories of the disease).
Fortunately, p(x) does not need to be measured, since, according to the sum
rule of probability and considering that z is discrete:

p(x) =
∑

z

p(x|z)p(z). (2.3)

However, there are cases in which exact answers are infeasible to com-
pute, which means that the only solution is to approximate those answers.
Approximate inference algorithms turn the computation of posterior distri-
butions in probabilistic graphical models into a tractable problem, by trading
off computation time for accuracy.

Two large classes of approximate inference algorithms for high- dimen-
sional distributions are Markov Chain Monte Carlo (MCMC) and variational
inference. The MCMC approach is based on Monte Carlo approximations,
whose main idea is to use repeated sampling to obtain the desired distribu-
tion. MCMC iteratively constructs a Markov chain of samples, which, at the
some point, converges. At this stage, the sample draws are close to the true
posterior distribution p(z|x), meaning that samples can then be collected to
approximate the required expectations.

On the other hand, variational inference methods are deterministic.
Given the observed data x and the latent variables z, the goal of variational
Bayesian inference is to pick an approximation to the distribution from a
tractable family of distributions q(z) and make it as close as possible to the
true posterior distribution p(z|x). A tractable family can be obtained by re-
laxing some constraints in the true distribution. Then, the inference problem
is to optimize the parameters of the new distribution (variational parame-
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ters) so that the approximation becomes as close as possible to the true
posterior. This can be achieved by minimizing the Kullback-Leibler diver-
gence KL

(
q(z)||p(z|x)

)
between the true distribution and the approximated

one, which can be equivalently formulated as maximizing a lower-bound on
the log probability of the observations p(x). The Kullback-Leibler divergence
is defined to be the following integral:

DKL(q(z)‖p(z|x)) =

∫ ∞

−∞
q(z) ln

q(z)

p(z|x)
dx. (2.4)

Since the logarithmic function is concave, the variational objective
function can be defined by using Jensen’s inequality to lower bound the
log likelihood, as follows:

log p(x) = log

∫

z

p(x, z)

= log

∫

z

p(x, z)
q(z)

q(z)

= log

(
Eq
[
p(x, z)

q(z)

])

≥ Eq
[

log

(
p(x, z)

q(z)

)]

= Eq
[

log p(x, z)

]
− Eq

[
log q(z)

]
. (2.5)

This function can be maximized using a coordinate ascent algorithm, which
iteratively optimizes each variational distribution, by setting its derivative
to zero, keeping the others fixed. The batch coordinate ascent variational
inference algorithm can be summarized as follows:
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Input : Corpus, variational parameters
Output: Updated variational parameters

1 Initialize global parameters randomly
2 repeat
3 for each local variational parameter do
4 Update its estimate using the estimated global variational

parameters
5 end
6 for each global variational parameter do
7 Update it using the estimated local variational parameters.
8 end

9 until convergence;

Algorithm 1: Batch coordinate ascent variational algorithm

Recently, it was developed a more scalable version of the variational
inference algorithm. Stochastic variational inference (Hoffman et al., 2013)
is faster than the regular variational inference method (batch variational
inference), since it updates the variational parameters using a subsample of
the data, instead of the whole dataset. The problem solved by Hoffman
et al. (2013)) is the inefficiency caused by the local steps 3 and 4 of the batch
coordinate ascent variational inference algorithm, since to move on to the
step 6, the entire dataset has to be processed.

Returning to the graphical model example illustrated in Figure 2.1,
one can distinguish the global variables (a) from the local ones (b and c).
In this case, the batch variational inference algorithm requires that every N
points of the data are analyzed before the global variational parameter of a
is updated. However, the variational parameter of a may be continuously
estimated as more data is observed, especially if it is considered that subsets
of the data (mini-batches) can provide a noisy representation of the entire
dataset. In fact, this is the main difference between the batch variational
inference algorithm and the stochastic algorithm. The stochastic variational
inference algorithm is the following:
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Input : Corpus, variational parameters
Output: Updated variational parameters

1 Initialize global parameters randomly
2 Compute the step-size schedule ρt

3 repeat
4 Subsample one or more data points from the corpus
5 repeat
6 for each local variational parameter do
7 Update its estimate using the current estimated global

variational parameters
8 end

9 until variational local parameters converge;
10 for each global variational parameter do
11 Using the current estimate of the local variational

parameters, compute its intermediate value
12 Update it partially, putting weight ρt on the new estimate

and 1− ρt on the old estimate
13 end

14 until convergence;

Algorithm 2: Stochastic coordinate ascent variational algorithm

In this setting, ρt is the step-size schedule that depends on a forgetting
rate κ, which controls how quickly old estimates are forgotten, and a delay
d, that down-weights early iterations: ρt = (t + d)−κ. Suppose that: the
dataset N is divided in 10 mini-batches of size S; the algorithm is on its
2nd iteration t; the value of the delay and the forgetting rate is, respectively,
1 and 0.75 and let â be the intermediate global parameter. In this setting,
ρ is calculated as ρ = (2 + 1)−0.75 and the global parameter at is equal to
(1− ρ)at−1 + ρ× S × â = (1− 3−0.75)× a+ 3−0.75 × N

10
× â. The reason why

the term S = N
10

is multiplied with the intermediate global parameter â is to
make up for the fact that the size of the mini-batch is lower than the size of
the entire dataset. Thus, this product simulates that the mini-batch is the
same size of the whole data.

Stochastic variational inference gives the model the efficiency needed
to handle massive data sets, since it only needs to fit in memory a subsample
at a time. Of all the three algorithms presented, it is the most scalable one.
Moreover, although MCMC is often easier to implement and applicable to a
broader range of models than variational inference, the latter is usually faster
(see Bishop et al. (2006)), it is deterministic and it is easy to determine when
to stop.
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2.3 Topic models

Topic models are a family of algorithms capable of discovering the “topics”
of a collection of documents. By extracting text patterns of the corpus, topic
models disclose the themes that compose the document collection, which, in
turn, make this suite of algorithms an emerging field in machine learning
for analyze structured data. The simplest kind of topic model is, at the
same time, the most popular one: Latent Dirichlet Allocation (Blei et al.,
2003a). Given the importance that it early received, many extensions and
adaptations were made to its original algorithm. This section describes both
LDA and some of its extensions.

2.3.1 Unsupervised topic models

Latent Dirichlet allocation (Blei et al., 2003a) is a probabilistic graphical
model that reveals the semantic properties of words and documents by prob-
abilistic topics. In latent Dirichlet allocation (LDA), each topic is a pattern
represented by a distribution over the words present in the vocabulary. Its
result is a set of topics and topic proportions associated with each docu-
ment, meaning that documents are mixtures of topics and topics mixtures
of words. Therefore, LDA allows the documents to be represented heteroge-
neously through its latent semantics.

In Figure 2.2, an article about how data analysis is used to determine
the genes an organism needs to survive is illustrated. In the left side of
the figure, the extracted topics of this article are listed. As it can be seen,
there are four topics: the yellow one is about genetics, the pink one about
evolutionary biology, the topic in green is about neuroscience and the blue
one is related to data analysis. The words highlighted match the topic of its
color, which explains the topic proportions and assignments represented in
the right side of the picture. Naturally, one can understand why the most
probable topic is the one related to genetics and the absence of the green
topic in the histogram.
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Figure 2.2: Topics example (extracted from Blei (2012)).

Topic 247 Topic 5 Topic 43 Topic 56

word prob word prob word prob word prob
drugs .069 red .202 mind .081 doctor .074
drug .060 blue .099 thought .066 dr. .063
medicine .027 green .096 remember .064 patient .061
effects .026 yellow .073 memory .037 hospital .049
body .023 white .048 thinking .030 care .046
medicines .019 color .048 professor .028 medical .042
pain .016 bright .030 felt .025 nurse .031
person .016 colors .029 remembered .022 patients .029
marijuana .014 orange .027 thoughts .020 doctors .028
label .012 brown .027 forgotten .020 health .025
alcohol .012 pink .017 moment .020 medicine .017
dangerous .011 look .017 think .019 nursing .017
abuse .009 black .016 thing .016 dental .015
effect .009 purple .015 wonder .014 nurses .013
known .008 cross .011 forget .012 physician .012
pils .008 colored .009 recall .012 hospitals .011

Table 2.1: Example of four topics extracted from the TASA corpus in
Steyvers & Griffiths (2007).
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Topic 77 Topic 82 Topic 166

word prob word prob word prob
music .090 literature .031 play .136
dance .034 poem .028 ball .129
song .033 poetry .027 game .065
play .030 poet .020 playing .042
sing .026 plays .019 hit .032
singing .026 poems .019 played .031
band .026 play .015 baseball .027
played .023 literary .013 games .025
sang .022 writers .013 bat .019
songs .021 drama .012 run .019
dancing .020 wrote .012 throw .016
piano .017 poets .011 balls .015
playing .016 writer .011 tennis .011
rhythm .015 shakespeare .010 home .010
albert .013 written .009 wonder .010
musical .013 stage .009 field .010

Table 2.2: Example of three topics extracted from the TASA corpus in
Steyvers & Griffiths (2007).

In Table 2.1, another example of a topic model outcome is shown.
More particularly, those are four topics inferred from the Touchstone Applied
Science Associates corpus (Zeno et al., 1995). The words are downwardly
sorted by their probability under the topic, which means that the words that
best represent each topic are in the top positions. Clearly, we can observe
that topics join the words semantically related. In the topic 247 are words
related to drugs, in the topic 5, to colors, in the 43rd topic, to mind and, in
the topic 56, words relate to medical visits. Since each document is assigned
to a distribution over topics, a document about color theory would have topic
5 as its main topic and a medical article would probably have the 56th and
247th topics as its most likely topics.

Moreover, topics may be useful for disambiguation tasks (e.g. Li et al.
(2010)). For instance, in Table 2.2, it can be seen that the word “play”
appears in the topics in three different senses. According to the context
given by the remaining words, we can infer that the documents generated by
the topic 77 use play in “playing music” sense, in the topic 82 “play” means
a “theater play” and, in the 166td topic, “play” is associated with sports.

All of these properties are conferred to the LDA model by its generative
nature. A generative probabilistic graphical model randomly generates ob-
servable data through its latent variables. The idea in generative models is,
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for example, given two variables a and b, to estimate the joint distribution
p(a, b) and, subsequently, use this distribution to evaluate the conditional
p(b|a) in order to make predictions of b for new values of a. In contrast,
one could estimate the conditional distribution p(b|a) directly by following
a discriminative approach. However, a discriminative approach provides a
model only for the response variables conditioned on the observed variables.
When fitting a generative model, the goal is to find the best set of latent
variables that can explain the observed data.

The generative process under the LDA model for each document wd =
{wdn}N

d

n=1 in a corpus D = {wd}Dd=1 is the following:

1. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(α)

(b) For the nth word

i. Draw topic assignment zdn|θd ∼Multinomial(θd)

ii. Draw word wdn|zdn,β ∼Multinomial(βzdn)

In practice, to sample a new document, a distribution over topics is chosen.
Then, for every word in the document, a topic is selected according to the
distribution over topics picked and, finally, a word from that topic is chosen.

Figure 2.3: Symmetric Dirichlet distribution for three topics on two-
dimensional simplex.
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The topics are drawn from a Dirichlet distribution parameterized by
α, which controls the width of the peak of the documents distributions over
topics. High values of α lead to smooth distributions, while small values
(α ≤ 1) mean that the modes of the Dirichlet distribution are in the corners
of the simplex, resulting in sparse topic distributions. Figure 2.3 illustrates
this phenomenon.

The reason behind the choice of the Dirichlet distribution is the fact
that it is a convenient distribution on the simplex. Firstly, because the
Dirichlet distribution by itself is a density over K positive numbers, so it can
be used to draw parameters for a multinomial distribution. For instance, we
can see the advantage of using the Dirichlet as a prior for the multinomial
distribution, by multiplying p(θd|α) and p(zdn|θd), to obtain p(θd|zdn, α), as
follows:

• θ is chosen from a Dirichlet distribution parameterized by α, so, ac-
cording to the Dirichlet definition:

p(θd|α) =
Γ(
∑K

j=1 αj)∏K
i=1 Γ(αi)

K∏

i=1

(θdi )
(αi−1) (2.6)

• zdn is chosen from a multinomial distribution parameterized by θd, hence,
according to the multinomial definition:

p(zdn|θd) =
K∏

i=1

(
θdi
)zdn,i (2.7)

Therefore:

posterior︷ ︸︸ ︷
p(θd|zdn, α) ∝

prior︷ ︸︸ ︷
p(θd|α)

likelihood︷ ︸︸ ︷
p(zdn|θd)

=
Γ(
∑K

j=1 αj)∏K
i=1 Γ(αi)

K∏

i=1

(θdi )
(αi−1) ×

K∏

i=1

(
θdi
)zdn,i

=
Γ(
∑K

j=1 αj)∏K
i=1 Γ(αi)

K∏

i=1

(θdi )
nk+(αi−1), (2.8)

where nk is the number of times that zdn,i appeared, i.e., the number of times
the topic i was associated to the word n in the document d. As it can be
noticed, the posterior p(θd|zdn, α) is also a Dirichlet distribution, given by a
similar probability density function to the prior p(θd|α).
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Figure 2.4: Graphical model of LDA.
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Figure 2.5: Graphical model of the variational distribution.

Secondly, because sufficient statistics, like nk, can be applied to fully
summarize the data. This is justified by the fact that both Dirichlet and
multinomial distributions are from the exponential family. That is, the pos-
terior p(θd|zdn, α) can be calculated without knowing all the individual values
of zdn. Instead, it can be written as dependent on the sufficient statistic of
zdn, nk.

Figure 2.4 shows the graphical model of LDA, where D is the number
of documents, Nd is the number of words in the document d, θd is topic
distribution of the dth document, zdn is the word-topic assignments and wdn
represents the word n of the document d. The model parameters (α and βk)
are represented following the notation used by Bishop et al. (2006). As it can
be seen in the graphical model of Figure 2.4, the joint distribution is given
by:

p(θ, z1:D,w1:D|α,β =
D∏

d=1

p(θd|α)




Nd∏

n=1

p(zdn|θd)p(wdn|zdn,β)


 . (2.9)

The posterior distribution over the latent variables θ1:D and z1:D is then given
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by:

p(θ, z1:D|w1:D) =
p(θ, z1:D,w1:D|α,β)

p(w1:D|α,β)

=

∏D
d=1 p(θ

d|α)

(
∏Nd

n=1 p(z
d
n|θd)p(wdn|zdn,β)

)

∫ d
θ

∏D
d p(θ

d|α)
∑

z

(∏Nd
n=1 p(z

d
n|θ)p(wdn|zdn,β)

) , (2.10)

which is intractable. If one considers expanding the denominator:

p(w1:D|α,β) =
Γ(
∑K

j=1 αj)∏K
i=1 Γ(αi)

∫

θd

(
k∏

i=1

(θd)ai−1i

)(
N∏

n=1

k∑

i=1

V∏

j=1

(θdi βi,j)
(wdn)

j

)
,

(2.11)

it can be seen that there is a problematic coupling between θ and β. Fur-
thermore, θ is continuous, which makes the integral intractable to compute.

Hence, it is applied variational inference, whose goal is to select an ap-
proximation distribution from a tractable family of distributions and optimize
its parameters, in order to make it as close as possible to the true posterior
distribution. In LDA, this tractable family can be obtained by relaxing some
constraints in the model. Since the edges that connect θ, z and w are the
reason for the problem to be intractable, dropping them (as shown in Fig-
ure 2.5) results in a tractable family of distributions on the variables z and θ:

q(θ, z1:D|γ, φ) =
D∏

d=1

q(θd|γd)
( Nd∏

n=1

q(zdn|φdn)

)
, (2.12)

where γ and φ are the variational parameters.

The next step is to define the variational objective function to minimize
the Kullback-Leibler divergence between the true posterior p(θ, z1:D|w1:D)
and the approximation q(θ, z1:D|γ, φ) (see Bishop (1998)). This approxi-
mate posterior distribution allows the estimation of the topics β and the
Dirichlet prior α, using the variational Bayes Expectation-maximization al-
gorithm (Bernardo et al., 2003), which is a Bayesian approach to the regular
Expectation-maximization algorithm (Dempster et al., 1977).

Expectation-maximization (EM) consists in two steps that are itera-
tively alternated: in the first step (E-step) the latent variables are inferred
given the current parameters, while in the second (M-step) the goal is to
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Figure 2.6: Graphical model of sLDA.

find the single best value for each parameter, given the current posterior
over the latent variables. The LDA parameters are α and β, whose best
values are the ones that maximize the log likelihood computed on E-step.
This maximization relies on finding the approximate maximum likelihood
estimates of α and β using the expected sufficient statistics computed in the
E-step. In other words, the parameter estimation works with the statistics
calculated on the current distributions of the latent variables. The resulting
parameter-estimates are, then, used in the next E-step.

The difference between VBEM and EM is that, in the E-step of VBEM,
variational Bayesian inference is applied.

2.3.2 Supervised topic models

Supervised topic models are a family of supervised learning methods built on
top of LDA. Since documents are frequently associated with other variables
such as labels, tags or ratings, the main purpose of supervised topic modeling
is to take advantage of this extra information to guide the topics discovery
process. In contrast to procedures that apply the documents topic propor-
tions obtained by LDA as features to train a classifier in an isolated fashion,
supervised topic models take into account the label of the document in the
topics generation. Moreover, notice that the topics are meant to disclose the
themes of the text. Supposing that documents are descriptions of products
and their labels are scores of users reviews, for instance, we can not expect
that the theme of the product explains its score.

Supervised LDA (Blei & McAuliffe, 2007) was one of the first LDA
extensions made for the purpose of treating labeled data. The difference
between supervised LDA (sLDA) and LDA can be perceived by comparing
Figure 2.4 and 2.6: a response variable cd associated with each document d is
added, along with a set of coefficients η to parameterize this relationship, i.e.,
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the nodes and edges represented in green are responsible for the supervised
learning in the model. In order to obtain the optimal response variables,
sLDA jointly models the documents and the responses, hence, the extracted
topics have a fundamental role in the prediction process. The generative
process of the sLDA version to classification problems is the following:

1. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(α)

(b) For the nth word:

i. Draw topic assignment zdn|θd ∼Multinomial(θd)

ii. Draw word wdn|zdn,βzdn ∼Multinomial(βzn)

(c) Draw class cd|zd,η ∼ Softmax(z̄d,η) where z̄d = 1
Nd

∑Nd
n=1 z

d
n

and

p(cd|z̄d,η) =
exp(ηTc z̄

d)∑C
l=1 exp(ηTl z̄

d)
. (2.13)

The posterior distribution over the latent variables θ1:D and z1:D is then
given by:

p(θ, z1:D|w1:D, c) =
p(θ, z1:D,w1:D|α,β)

p(w1:D|α,β)
(2.14)

=

∏D
d=1 p(θ

d|α)

(
∏Nd

n=1 p(z
d
n|θd)p(wdn|zdn,β)

)
p(c|zd,η)

∫ d
θ

∏D
d p(θ

d|α)
∑

z

(∏Nd
n=1 p(z

d
n|θ)p(wdn|zdn,β)

)∑
c p(c

d|zd,η)

(2.15)

which, just like the LDA posterior, is intractable. Therefore, it is approxi-
mated by the variational distribution of the latent variables given by 2.12.

Since there are only a few differences between LDA and sLDA models,
the variational Bayesian Expectation-Maximization algorithm is similar:

• E-step: For each document, optimize the variational parameters γ and
φ.

• M-step: Find the maximum likelihood estimates for the topics β and
the class coefficients η. The Dirichlet parameter α can also be esti-
mated, but, in practice, it is common to fix its value.
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Figure 2.7: Graphical model of DiscLDA.

Supervised LDA was originally developed for predicting continuous re-
sponse values, through a linear regression. The difference between it and
the multi-class version previously presented is in the Step 1c of sLDA’s gen-
erative process. In this step, the classification version of sLDA draws the
classes from a multinomial distribution, whose parameters are obtained by
a softmax function. The softmax function is a generalization of the logistic
function that transforms a K-dimensional vector of arbitrary real values to
a K-dimensional vector of real values in the range (0, 1). The regression
variant, in turn, samples the target value xd from a Gaussian distribution:

xd|z1:N ,η, σ2 ∼ Normal(ηT z̄, σ2), (2.16)

where, here, η are the regression coefficients on the empirical frequencies of
the topics in the dth document zd.

Figure 2.7 shows the graphical model of another supervised topic model:
Discriminative LDA (Lacoste-julien et al., 2009). As its name suggests Dis-
criminative LDA (DiscLDA) is a discriminative probabilistic graphical model,
unlike LDA and sLDA that are generative models. Nevertheless, both sLDA
and DiscLDA assume that a label is generated from each document empirical
topic mixture distribution. However, they have different learning methods:
sLDA is trained by maximizing the joint likelihood of the data and response
variables, while DiscLDA tries to maximize the conditional likelihood of the
response variables. Furthermore, DiscLDA associates an additional class-
label-dependent linear transformation (T ) parameter with each document.
Again, the bottom part of Figure 2.7, colored in green, is the difference be-
tween LDA and DiscLDA, that is, the components of the supervised learning
distinguish the two models.

Another important supervised topic model is Maximum Entropy Dis-
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Figure 2.8: Graphical model L-LDA.

crimination LDA (Zhu et al., 2009). Maximum Entropy Discrimination LDA
(MedLDA) is not a fully generative model, like sLDA, since it is trained using
the max-margin principle. While the M-step is similar between the two, in
the E-step of MedLDA, the posterior distribution of the latent variables is
inferred by optimizing a constrained objective function.

MedLDA trains by looking for the topics that enable the maximum
possible margin, which means that MedLDA is a combination of max-margin
learning, which is well known for its use in support vector machines, and
Bayesian topic models. Although it could have some advantages over sLDA,
it is not as suitable as sLDA for the development of the multi-annotator
generalization we propose. The extension introduced in this thesis requires a
completely probabilistic model that returns the response variables in the form
of distributions over labels, which makes the MedLDA single value output a
hindrance.

In Figure 2.8 it is represented the graphical model of the Labeled LDA
(Ramage et al., 2009), whose main improvement over the previous topic mod-
els is the capability to learn over multi-label data. Comparing the graphical
models of sLDA and Labeled LDA (L-LDA), the most noticeable difference
is, in green, the connection of the response variable: in sLDA the per-word
topic assignment is linked to the response variable, while L-LDA makes the
responses dependent directly on the per-document topic proportions. The
reason why sLDA generates the response after zdn, instead of being drawn
by the documents distribution over topics θd, is to use the topic frequencies
that truly occurred in the document. It can be shown that the word-topics
assignments zdn is more suited to prediction than θd, which is a mean distri-
bution exchangeable with the words (Blei & McAuliffe, 2007). Nevertheless,
the response variable cd has a different purpose in L-LDA: to restrict the
topics of a document to that document’s label set. This means that each
label is matched with a topic.
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Multi-Modal LDA (Putthividhy et al., 2010), Prior-LDA and Dependency-
LDA (Rubin et al., 2012) are further examples of supervised topic models
for multi-label classification that will not be described here for not being
relevant to the purpose of this work.

2.4 Learning from the crowds

The problem of learning from multiple annotators has been studied for a long
time. In 1979, Dawid & Skene (1979) proposed an Expectation-Maximization
(Dempster et al., 1977) approach to estimate the error rates of the responses
of patients (labelers) to various medical questions, based on the true symp-
toms of the disease. The resultant model was also used by Spiegelhalter &
Stovin (1983) to quantify the residual uncertainty of labels related to rejec-
tions in cardiac transplantations. Both of these works considered label error
estimation and building a classifier as two separate processes.

However, there is now a special interest in designing classifiers from
multi-annotator data. A common approach to this problem relies on re-
peated labeling, whose goal is to identify which labels should be reacquired
so that the classification performance or data quality is enhanced. This im-
plies having the same set of annotators labeling the same set of instances.
Smyth et al. (1995), Sheng et al. (2008) and Donmez & Carbonell (2008)
used this approach, since it is relatively cheap to obtain labels in the tasks
they were focusing on. Nevertheless, as stated in Dekel & Shamir (2009),
repeated labeling may wastefully decrease the size of the training set. More-
over, in Sheng et al. (2008), it was assumed that all annotators had equivalent
reliability, thus, majority voting was used to infer the ground truth. Such
an assumption may be reasonable in homogeneous environments, however,
environments such as Amazon Mechanical Turk 1 are highly heterogeneous
and the quality of the annotators can vary significantly (Rodrigues et al.,
2013).

The approach presented in this thesis does not depend on repeated
labeling. Contrarily, it gives the possibility of having only one annotator
answer per data point. Another advantage is that the annotators error rates,
the true label and the classifier are jointly estimated by a latent variable
model using the variational Bayesian Expectation-Maximization algorithm,
in a way that resembles the EM method presented by Raykar et al. (2009).

In Figure 2.9, the graphical model proposed by Raykar et al. (2009) is
illustrated, in which the nodes and edges drawn in dark red are the elements

1http://www.mturk.com
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Figure 2.9: Graphical model of Raykar et al. (2009)’s framework.

related to the multi-annotator learning and the green ones are, like in the
previous section, associated with the supervised training 2. Therefore, the
yn,r node represents the label assigned by the annotator r to instance xn and
cn its true (unobserved) label. Assuming a binary classification scenario and
that each annotator provides a noisy version of the hidden true label, the
sensitivity of the rth annotator (αr) and the specificity (βr)3 are given by:

αr = p(yr = 1|c = 1) (2.17)

βr = p(yr = 0|c = 0) (2.18)

It is also assumed that the N instances are independently sampled,
that αr and βr do not depend on the instance xn and that all the R annota-
tors make their decisions independently, thus, the generative process of the
Raykar et al. (2009)’s model is the following:

1. For each instance xn

(a) Draw latent (true) class cn|xn,η ∼ Softmax(x̄n,η)

(b) For the rth annotator

i. If cn = 1: Draw annotator’s answer yr ∼ Bernoulli(αr)

ii. If cn = 0: Draw annotator’s answer yr ∼ Bernoulli(βr)

Therefore, by reading the graphical model of Figure 2.9, the likelihood
is written as:

p(D|θ) =
N∏

n=1

(
p(cn|xn,η)

R∏

r=1

p(yn,r|cn, αr, βr)
)
, (2.19)

2This color notation will be used throughout the whole thesis.
3These parameters αr and βr should not be confused with the Dirichlet parameter α

and with the per-topic word proportions parameter β of the previous sections.
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Figure 2.10: Graphical model of Yan et al. (2010)’s framework.

where θ = {η,α,β} and D = {yn,1, ..., yn,R, xn}Nn=1.

Then, the maximum-likelihood estimator is found by maximizing the
log-likelihood:

θ̂ML = arg max
θ
{ln p(D|θ)} (2.20)

Since this maximization problem is intractable to compute, the EM
algorithm is used to find a maximum likelihood estimate.

Yan et al. (2010) later proposed a model that does not rely on the
assumption that labelers reliability is consistent across all the input data.
Contrarily to the Raykar et al. (2009)’s model, it is taken into account that
some annotators are better at labeling certain types of data points, which
means that the annotation yr of the rth annotator depends on the (unob-
served) true label c and, also, on the instance x. That is, in the probabilistic
graphical model, there is an edge connecting the node x to the node repre-
senting the label provided by the annotator r to instance x, like it is exhibited
in Figure 2.10.

Nevertheless, in sequence labeling problems, such as part-of-speech tag-
ging (a task that consists in assigning a part-of-speech to each word in an
input sentence or document) there is a connection between the data points
(e.g words), i.e., they are not independent. This represents a real challenge
for the previously presented approaches, since the unobserved ground truth
labels, which are now sequences, are explicitly treated as latent variables.
Considering that these latent variables must be marginalized out for this
sort of problems, this means marginalizing over a potentially huge number
of label sequences. Regarding this kind of problems, Dredze et al. (2009)
presented a method for sequence learning from data with multiple labels in
the presence of noise. Besides the fact that this model is multi-label and
not multi-annotator, the experimental results obtained by it evince that the
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Figure 2.11: Graphical model of Rodrigues et al. (2013)’s framework.

method is only appropriate for scenarios where the amount of training data
is low and when the labels are noisy.

Recently, Rodrigues et al. (2013) presented a multi-annotator solution
to the same problem, in which the annotators reliabilities are treated as
latent variables, so it bypasses the problem of the high number of possible
labellings to marginalize over. Furthermore, focusing on the annotators and
including the unknown reliabilities of the annotators as latent variables leads
to simpler models that are less prone to overfitting.

Indeed, this approach was empirically shown to outperform approaches
in which majority voting or labeled data from all the annotators concatenated
is used. Its graphical model is shown in Figure 2.11, where yn,r is the label
assigned by the annotator r to instance xn and zn,r indicates whether the rth

annotator labeled the instance xn correctly or not.

Despite the fact that the approach proposed in this thesis considers
true labels as latent variables (similarly to some of the presented methods),
it differs by the fact that it is incorporated in a supervised topic model, so
that both topics and true labels are jointly estimated.

2.5 Travel demand modeling for special events

Travel demand modeling (TDM) for special events has been recognized as
highly relevant to prevent congestion, overcrowding and delay (Lei-Lei et al.,
2012; Jingbo et al., 2009; Born et al., 2014; Sall & Bhat, 2007), and, thus,
it has received some attention during the past few years. The major fo-
cus has been on large and mega events, such as the Olympic games, large
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concerts or big soccer matches. These are undoubtedly disruptive and they
are often given their own transport planning resources. On the other hand,
smaller ones are subtle to understand even though they can also raise serious
problems, particularly when happening simultaneously (Pereira et al., 2015).

An interesting aspect is that the travel patterns due to such events
have a quite typical behavior, with two subsequent waves of demand (Lei-Lei
et al., 2012). The first one is caused by going to the event, while the second
one is when leaving. Taking advantage of this fact, in Kwoczek et al. (2014),
the data from the first wave was used to predict the second one. In this
work, a K-Nearest Neighbors (K-NN) technique was applied to find the most
similar past events, in terms of traffic pattern (as measured by GPS probes)
as well as event category (concert, entertainment, sports, comedy), in order
to derive a prediction of the impact of the second wave of traffic. The authors
used a database of twenty nine events hosted in the Cologne LANXESS arena
from June to December 2013 in the inner city of Cologne, Germany. They
showed that the category alone shows high differences in observed average
traffic delays (e.g. comedy events incurred in much less delay than concerts).
This comes from a combination of different attendance size and travel mode
shares.

While Kwoczel’s approach is relevant for traffic operations monitoring
and decision making, TDM can benefit much more from earlier stage pre-
dictions, weeks or months in advance to allow for planning. We can group
methodologies into two general classes: one is the discrete choice framework
(Ben-Akiva & Lerman, 1987), where we represent individual behavior choices
(e.g. transport mode, departure time, path choice) through logistic or pro-
bit regression models, as a function of individual’s characteristics (e.g. age,
gender) and alternative choice properties (e.g. cost, duration), another is ma-
chine learning, where we model an aggregate response variable (e.g. travel
delay, total attendance) as a function of available data (e.g. location, time
of day, event category).

For their discrete choice model, Shahin et al. (2014) analysed surveys
conducted at three Turkish stadiums in advance and after matches, to esti-
mate a binary logit model of mode choice (private car or public transport).
Their decision models consider individual characteristics (age, gender, in-
come and ownership of season ticket) and trip characteristics (trip cost, travel
time). To apply this type of model in TDM, there are two major challenges:
assumptions on population distribution, namely the share of participants
coming from each geographical area and the total expected attendance, and
generation of (unobserved) alternatives. In the discrete choice framework,
each decision is simulated and the agent decides among a set of alternatives,
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only one of which is observable from the data. In Shahin et al. (2014), the
authors only estimated the individual choice model, leaving the actual de-
mand prediction open. Also, they did not ask in the survey for considered
alternatives, so they generated them from all set of possible modes.

Also based on the discrete choice framework, in Jingbo et al. (2009),
parking lot occupancy is estimated in a case study from 2008 Olympic games,
by predicting mode choice from (given) attendance totals, together with esti-
mates of distance and cost for each individual trip. A more general approach
was followed by Born et al. (2014), focusing on weekend discretionary event
type participation, duration of participation and accompaniment type jointly
in a simultaneous equations model system. The authors grouped events into
four categories (social/recreational activity, visit friends/family, go out/hang
out and visit public place). A joint discrete-continuous modeling framework
was, then, formulated for analyzing these dimensions as a choice bundle.
The data used comes from the 2008-2009 National Household Travel Survey
(NHTS) conducted in the United States.

Two other recent examples of this approach include Kuppam et al.
(2011) and Chang & Lu (2013), who proposed a four-step model approach,
where they predict, for each event, the number of trips by type, trip time-of-
day, trip origins/destinations (OD), mode and vehicle miles travelled/transit
boardings generated due to the events. The data was obtained through
questionnaire surveys at the venue gates, that, besides social-demographics
questions, also inquire about transportation choices (e.g. mode, costs, type
of vehicle, origin, etc.). This data was, then, used for calibration of utility
maximization choice models through a maximum likelihood approach.

Although these works seem behaviourally sound and provide plenty of
detail, they are highly dependent on survey response and, in fact, consider
event characteristics on a very superficial way. For example, they rarely go
deeper than general event category (e.g. sports, concerts). Finally, these
models treat each event individually and ignore interactions with other si-
multaneous events or even routine trip behaviour, with the exception of Born
et al. (2014).

On the machine learning realm, some research has been done to analyse
and predict travel demand long time in advance. Using a neural network,
Calabrese et al. (2010) showed the high correlation between event category
and public home area distribution, as observable by a large telecommunica-
tions dataset from the city of Boston. Also using a neural network model,
Pereira et al. (2013b) used three weeks of smartcard data from Singapore
to predict half-hourly demand in five different locations. In this work, the
events and their categories were extracted from the internet and popularity
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features, like number of hits in Google and Facebook likes, were built. How-
ever, these features did not show relevant predictive power, possibly due to
excessive noise (e.g. search not being specific enough). In a follow up work
(Pereira et al., 2015), it is presented an approach that accounts for multiple
simultaneous events and a Bayesian additive linear model is developed, which
breaks down observed attendance into individual event contributions, each
event being defined by the topics extracted from event descriptions, as well
as spatio-temporal data. The same model is, then, used to predict future
demand.

As these models evolved, the data about events has become increas-
ingly rich and the processes to get them more complex. For this thesis, we
take advantage of web search to simplify this process, yet, maintaining high
semantic richness. In this way, moving the model between cities, or even
considering other domains (e.g. stock market), becomes a simple matter.
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Chapter 3

Multi-annotator supervised
latent Dirichlet allocation for
classification

In this chapter, the multi-class supervised topic model with multiple anno-
tators proposed in this thesis is presented. The chapter starts with a brief
description of the model, which is followed by two sections that show both
the approximation of the posterior distribution over the model’s latent vari-
ables and the estimation of the model parameters. We then demonstrate how
stochastic variational inference was applied to the proposed model. As we
mention in Section 2.2, stochastic variational inference is more scalable and,
therefore, faster than the regular variational inference algorithm, especially
when dealing with large data sets. Finally, we show how to use the learned
model to classify new instances.

3.1 Proposed model

The proposed model was built in C++ on top of the multi-class supervised
latent Dirichlet allocation (Blei & McAuliffe, 2007) model. It is able to learn
from crowds, by taking into account multiple answers given by distinct anno-
tators. Therefore, considering an annotated dataset D = {wd,yd}Dd=1 of size
D, in which a set of annotations yd = {ydr}Rr=1 given by R different labelers
is assigned to each document wd, the multiple-annotator supervised latent
Dirichlet allocation model (MA-sLDA) estimates both the topics β and the
true classes c = {cd}Dd=1. This is achieved by treating the documents as
arising from a set of latent topics, each topic being defined as a distribution
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Figure 3.1: Graphical model of MA-sLDA for classification.

over the words in the vocabulary, and associate each one of the documents
with a latent class cd. Each class cd is, in turn, related to a set of annota-
tions yd = {ydr}Rr=1 that are modeled assuming that, given a true class cd,
each annotator r provides the label l with some probability πrc,l. This means
that MA-sLDA generalizes sLDA by observing noisy labels given by multi-
ple labelers and estimating the true classes, while modeling the annotators’
different levels of expertise and correcting their potential biases.

The multi-class MA-sLDA graphical model is exhibited in Figure 3.1,
where D is the size of the corpus, R is the number of annotators, C denotes
the number of classes, K is the number of topics and Nd is the number of
words in the dth document. As it can be seen, each word wdn in a document
d is provided a discrete topic-assignment zdn, which is drawn from the docu-
ments distribution over topics θd and a topic distribution β, just like in LDA.
Moreover, there is a class cd generated from the mean topic assignment of
the document z̄d and by coefficients η, as in sLDA. This class cd and the
per-annotator confusion matrix πr are assumed to give origin to each anno-
tator’s label, which distinguishes MA-sLDA from the previously mentioned
approaches.

The generative process under the MA-sLDA model can be summarized
as follows:

1. For each annotator r

(a) For each class c

i. Draw annotator reliability parameter πrc |ω ∼ Dirichlet(ω)

2. For each topic k

(a) Draw topic distribuition βk|τ ∼ Dirichlet(τ)
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3. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(α)

(b) For the nth word

i. Draw topic assignment zdn|θd ∼Multinomial(θd)

ii. Draw word wdn|zdn,β ∼Multinomial(βzdn)

(c) Draw latent (true) class cd|zd, η ∼ Softmax(z̄d, η) where z̄d =
1
Nd

∑Nd
n=1 z

d
n and

p(cd|z̄d, η) =
exp(ηTc z̄

d)∑C
l=1 exp(ηTl z̄

d)
. (3.1)

(d) For each annotator r

i. Draw annotator’s answer yd,r|cd,πr ∼Mult(πr
cd

)

According to their definitions, the distributions are given by:

p(θd|α)] =
Γ(
∑K

j=1 αj)∏K
i=1 Γ(αi)

K∏

i=1

(θdi )
(αi−1) (3.2)

p(zdn|θd) =
K∏

i=1

(
θdi
)zdn,i (3.3)

p(wdn|zdn,β) =
V∏

j=1

(βzdn,j)
wdn,j (3.4)

p(yd,r|cd,πr) =
C∏

l=1

(πrcd,l)
yd,rl (3.5)

p(βi|τ) =
Γ(
∑V

k=1 τk)∏V
j=1 Γ(τj)

V∏

j=1

(βi,j)
(τj−1) (3.6)

p(πrc |ω) =
Γ(
∑C

t=1 ωt)∏C
l=1 Γ(ωl)

C∏

l=1

(
πrc,l
)(ωl−1) (3.7)

where V is the size of the vocabulary.

We also developed a simpler version of the MA-sLDA, where the pa-
rameters are obtained through maximum likelihood estimation. This model
is described in Appendix C. In this chapter, however, it is introduced a fully
Bayesian approach for estimating the reliabilities and biases of the different
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annotators π as well as the topic distributions β. This means that, instead
of finding just the optimal values for these parameters, such that the likeli-
hood is maximized, it is performed variational Bayesian inference to produce
smooth posteriors. Thus, we have now three Dirichlet parameters: τ on β, ω
on π and α. All of these priors are assumed to be fix-valued. In a practical
manner, the new parameters τ and ω set the sparsity of β’s and π’s distri-
butions, respectively. Small values lead to sparse multinomial distributions,
while high values result in smooth distributions, as it is explained in Section
2.3.1.

3.2 Approximate inference

The goal of the generative probabilistic model of MA-sLDA is to estimate la-
tent variables and the model’s parameters from the observed data. Therefore,
given a dataset D, it is defined the joint distribution of the model’s variables
and, consequently, it is formulated the posterior distribution over the latent
variables θ, z1:D and c. Nevertheless, as it can be perceived by defining the
model parameters Θ = {α, η, τ, ω} and deriving the joint distribution:

p(θ, z1:D, c,w1:D,y1:D,β,π1:R|Θ) (3.8)

=

(
K∏

i=1

p(βi|τ)

)(
R∏

r=1

C∏

c=1

p(πrc |ω)

)
D∏

d=1

p(θd|α)

(
Nd∏

n=1

p(zdn|θd)p(wdn|zdn,β)

)

× p(cd|zd, η)
R∏

r=1

p(yd,r|cd,πr), (3.9)

to obtain the posterior:

p(θ, z1:D, c,β,π1:R|w1:D,y1:D) =
p(θ, z1:D, c,w1:D,y1:D,β,π1:R|Θ)

p(w1:D,y1:D|Θ)
(3.10)

=

(∏K
i=1 p(βi|τ)

)(∏R
r=1

∏C
c=1 p(π

r
c |ω)

)

∫
βi

(∏K
i=1 p(βi|τ)

) ∫
πrc

(∏R
r=1

∏C
c=1 p(π

r
c |ω)

)
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×

∏D
d=1 p(θ

d|α)

(
∏Nd

n=1 p(z
d
n|θd)p(wdn|zdn,β)

)
p(cd|zd, η)

∏R
r=1 p(y

d,r|cd,πr)
∫ d
θ

∏D
d p(θ

d|α)
∑

z

(∏Nd
n=1 p(z

d
n|θ)p(wdn|zdn,β)

)∑
c p(c

d|zd, η)
∏R

r=1 p(y
d,r|cd,πr)

,

(3.11)

exact inference is computationally intractable, for the same reasons of LDA.
Thus, it is applied variational Bayesian inference to approximate the posterior
distribution.

Let q(θ, z1:D, c,β,π1:R) denote a variational distribution of the latent
variables. Since we are using a fully-factorized (mean-field) approximation,
we have that:

q(θ, z1:D, c,β,π1:R) =

( K∏

i=1

q(βi|ζi)
)( R∏

r=1

C∏

c=1

q(πrc |ξrc )
) D∏

d=1

q(θd|γd)
(

Nd∏

n=1

q(zdn|φdn)

)

× q(cd|λd), (3.12)

where γ,φ1:D,λ, ζ, ξ1:R are the variational parameters.

The variational objective function (or the evidence lower bound or
ELBO, as explained in Section 2.2) is, then, given by:

log p(w1:D,y1:D|α, η, τ, ω)

= log

∫

π

∫

β

∫

θ

∑

z

∑

c

p(θ, z1:D, c,w1:D,y1:D,β,π1:R|Θ)q(θ, z1:D, c,β,π1:R)

q(θ, z1:D, c,β,π1:R)

(3.13)

> L(w1:D,y1:D|Θ)

= Eq[log p(θ, z1:D, c,w1:D,y1:D,β,π1:R|Θ)]−Eq[log q(θ, z1:D, c,β,π1:R)]︸ ︷︷ ︸
H(q)

(3.14)

=
K∑

i=1

Eq[log p(βi|τ)] +
R∑

r=1

C∑

c=1

Eq[log p(πrc |ω)] +
D∑

d=1

(
Eq[log p(θd|α)]

+

Nd∑

n=1

Eq[log p(zdn|θd)] +

Nd∑

n=1

Eq[log p(wdn|zdn,β)] + Eq[log p(cd|z̄d, η)]
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+
R∑

r=1

Eq[log p(yd,r|cd,πr)]
)

+H(q), (3.15)

where the entropy H(q) of the variational distribution is defined as:

H(q) = −
R∑

r=1

C∑

c=1

Eq[log q(πrc |ξrc )]−
K∑

i=1

Eq[log q(βi|ζi)]

−
D∑

d=1

(
Eq[log q(θd|γd)]−

Nd∑

n=1

Eq[log q(zdn|φdn)]− Eq[log q(cd|λd)]
)
. (3.16)

We will now analyse and calculate each term of the lower bound individually.

Eq[log p(βi|τ)] = Eq
[

log
Γ(
∑V

k=1 τk)∏V
j=1 Γ(τj)

V∏

j=1

β
(τj−1)
i,j

]

= log Γ

( V∑

k=1

τk

)
−

V∑

j=1

log Γ(τj) +
V∑

j=1

(τj − 1)Eq[log βi,j]

(3.17)

Eq[log p(πrc |ω)] = Eq
[

log
Γ(
∑C

t=1 ωt)∏C
l=1 Γ(ωl)

C∏

l=1

(
πrc,l
)(ωl−1)

]

= log Γ

( C∑

t=1

ωt

)
−

C∑

l=1

log Γ(ωl) +
C∑

l=1

(ωl − 1)Eq[log πrc,l]

(3.18)

Eq[log p(θd|α)] = Eq
[

log
Γ(
∑K

j=1 αj)∏K
i=1 Γ(αi)

K∏

i=1

(θdi )
(αi−1)

]

=
V∑

j=1

K∑

i=1

wdn,jφ
d
n,iEq[log βi,j] (3.19)

Eq[log p(yd,r|cd,πr)] =Eq
[

log
C∏

l=1

(πrcd,l)
yd,rl

]
=

C∑

c=1

C∑

l=1

λdcy
d,r
l Eq[log πrc,l].

(3.20)
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Similarly, the corresponding terms of the variational distribution are
derived as:

Eq[log q(πrc |ξrc )] = log Γ

( C∑

t=1

ξrc,t

)
−

C∑

l=1

log Γ(ξrc,l) +
C∑

l=1

(ξrc,l − 1)Eq[log πrc,l]

(3.21)

Eq[log q(βi|ζi)] = log Γ

( V∑

k=1

ζi,k

)
−

V∑

j=1

log Γ(ζi,j) +
V∑

j=1

(ζi,j − 1)Eq[log βi,j]

(3.22)

Eq[log q(θd|γd)] = log Γ

( K∑

j=1

γdj

)
−

K∑

i=1

log Γ(γdi ) +
K∑

i=1

(γdi − 1)Eq[log θdi ]

(3.23)

Eq[log q(zdn|φdn)] =
K∑

i=1

φdn,i log φdn,i (3.24)

Eq[log q(cd|λd)] =
C∑

l=1

λdl log λdl . (3.25)

For a detailed version of these derivations, see Appendix A.

The expectations of the log of the Dirichlet that appears in various of
the equations above are given by:

Eq[log θdi ] = Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
(3.26)

Eq[log βi,j] = Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

)
(3.27)

Eq[log πrc,l] = Ψ(ξrc,l)−Ψ

( C∑

t=1

ξrc,t

)
, (3.28)

where Ψ(·) is the digamma function. See Appendix A.1 in Blei et al. (2003a)
for the derivation of this standard result.
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The only term left to analyse in the lower bound is:

Eq[log p(cd|z̄d, η)] = Eq
[

log
exp(ηT

cd
z̄d)

∑C
l=1 exp(ηTl z̄

d)

]

=

(
Eq[ηTcd z̄

d]− Eq
[

log
C∑

l=1

exp(ηTl z̄
d)

])
. (3.29)

The first term can be easily computed as:

Eq[ηTcd z̄
d] = Eq

[ K∑

j=1

ηcd,j z̄
d
j

]
=

1

Nd

C∑

l=1

λdl

Nd∑

n=1

ηTl φ
d
n. (3.30)

As for the second term, it is intractable to compute (Murphy, 2012). We
address this issue in similar fashion to Wang et al. (2009), i.e. by applying
again Jensen’s inequality to lower bound this term as follows:

−Eq
[

log
C∑

l=1

exp(ηTl z̄
d)

]
> − log

C∑

l=1

Eq[exp(ηTl z̄
d)]

= − log
C∑

l=1

Eq
[

exp(ηTl
1

Nd

Nd∑

n=1

zdn)

]

= − log
C∑

l=1

Nd∏

n=1

(
φdn
)T

exp
(
ηl

1

Nd

)

= − log
(
φdj
)T C∑

l=1

exp(ηl
1

Nd

)

Nd∏

n=1,n6=j

(
φdn
)T

exp
(
ηl

1

Nd

)

︸ ︷︷ ︸
=h

= − log hTφdj (3.31)

where we defined h =
∑C

l=1 exp(ηl
1
Nd

)
∏Nd

n=1,n 6=j
(
φdn
)T

exp
(
ηl

1
Nd

)
.

Now, suppose we have a previous value (φdn)old. We know log(x) 6
ε−1x+ log(ε)− 1,∀x > 0, ε > 0, where equality holds if and only if x = ε. If
we set x = hTφdn and ε = hT (φdn)old then, for an individual parameter φdn, we
have that:

− log(hTφdn) > −(hT (φdn)old)−1(hTφdn)− log(hT (φdn)old) + 1. (3.32)

This lower bound is tight when φdn = (φdn)old.
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Putting it all together, we can rewrite the evidence lower bound of
Equation 4.21 as:

L(w1:D,y1:D|Θ)

=
K∑

i=1

(
log Γ

( V∑

k=1

τk

)
−

V∑

j=1

log Γ(τj) +
V∑

j=1

(τj − 1)

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

)))

+
R∑

r=1

C∑

c=1

(
log Γ

( C∑

t=1

ωt

)
−

C∑

l=1

log Γ(ωl) +
C∑

l=1

(ωl − 1)

(
Ψ(ξrc,l)−Ψ

( C∑

t=1

ξrc,t

)))

+
D∑

d=1

(
log Γ

( K∑

j=1

αj

)
−

K∑

i=1

log Γ(αi) +
K∑

i=1

(αi − 1)

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

)))

+
D∑

d=1

Nd∑

n=1

K∑

i=1

φdn,i

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

))

+
D∑

d=1

Nd∑

n=1

V∑

j=1

K∑

i=1

wdn,jφ
d
n,i

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))

+
D∑

d=1

(
1

Nd

C∑

l=1

λdl

Nd∑

n=1

ηTl φ
d
n −

Nd∑

n=1

(hT (φdn)old)−1(hTφdn)−
Nd∑

n=1

log(hT (φdn)old) +Nd

)

+
D∑

d=1

R∑

r=1

C∑

c=1

C∑

l=1

λdcy
d,r
l

(
Ψ(ξrc,l)−Ψ

( C∑

t=1

ξrc,t

))

−
R∑

r=1

C∑

c=1

(
log Γ

( C∑

t=1

ξrc,t

)
−

C∑

l=1

log Γ(ξrc,l) +
C∑

l=1

(ξrc,l − 1)

(
Ψ(ξrc,l)−Ψ

( C∑

t=1

ξrc,t

)))

−
K∑

i=1

(
log Γ

( V∑

k=1

ζi,k

)
−

V∑

j=1

log Γ(ζi,j) +
V∑

j=1

(ζi,j − 1)

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

)))

−
D∑

d=1

(
log Γ

( K∑

j=1

γdj

)
−

K∑

i=1

log Γ(γdi ) +
K∑

i=1

(γdi − 1)

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

)))

−
D∑

d=1

Nd∑

n=1

K∑

i=1

φdn,i log φdn,i −
D∑

d=1

C∑

l=1

λdl log λdl

(3.33)

To optimize the bound w.r.t the variational parameters γ, φ and λ, the
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coordinate ascent algorithm was used, so that the bound becomes as tight
as possible to the true posterior. Gathering only the terms in the bound
that contain the variational parameter of the documents’ topic proportions
γ gives:

L[γ] =
D∑

d=1

K∑

i=1

Ψ(γdi )

(
αi +

Nd∑

n=1

φdn,i − γdi

)
−

D∑

d=1

K∑

i=1

Ψ

( K∑

j=1

γdj

)

×
(
αi +

Nd∑

n=1

φdn,i − γdi

)
−

D∑

d=1

log Γ

( K∑

j=1

γdj

)
+

D∑

d=1

K∑

i=1

log Γ(γdi ).

(3.34)

Taking derivatives w.r.t. γdi yields:

∂L[γ]

∂γdi
= Ψ′(γdi )

(
αi +

Nd∑

n=1

φdn,i − γdi
)
−Ψ′

( K∑

j=1

γdj

) K∑

j=1

(
αj +

Nd∑

n=1

φdn,j − γdj
)
.

(3.35)

Setting this derivative to zero in order to get a maximum, we get the solution:

γdi = αi +
Nd∑

n=1

φdn,i, (3.36)

which can be easily verified by substituting the value for γdi above in the
expression for the partial derivatives. This update equation is the same as in
standard LDA (Blei et al., 2003a) and Supervised LDA (Blei & McAuliffe,
2007).

Similarly, to optimizing the lower bound w.r.t. the variational param-
eter of the words’ topic assignment φdn,i, only the terms in the bound that
contain φdn,i are collected. However, this is a constrained maximization prob-

lem, since
∑K

k=1 φ
d
n,k = 1, which is necessary for it to be a valid probability

distribution. Hence, we need to also add the necessary Lagrange multipliers.
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The Lagrangian is then given by:

L[φdn,i]
=

D∑

d=1

Nd∑

n=1

K∑

i=1

φdn,i

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

))

+
D∑

d=1

Nd∑

n=1

V∑

j=1

K∑

i=1

wdn,jφ
d
n,i

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))

+
D∑

d=1

(
1

Nd

C∑

l=1

λdl

Nd∑

n=1

ηTl φ
d
n −

Nd∑

n=1

(hT (φdn)old)−1(hTφdn) +Nd

)

−
D∑

d=1

Nd∑

n=1

log(hT (φdn)old)−
D∑

d=1

Nd∑

n=1

K∑

i=1

φdn,i log φdn,i + µ

( K∑

k=1

φdn,k − 1

)

. (3.37)

Taking derivatives w.r.t. φdn,i gives:

∂L[φdn,i]

∂φdn,i
= Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,i − (hT (φdn)old)−1hi − log φdn,i − 1 + µ. (3.38)

Setting this derivative to zero and solving for φdn,i yields:

Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,i − (hT (φdn)old)−1hi − log φdn,i − 1 + µ = 0

⇔ φdn,i = exp

(
Ψ(γi)−Ψ

( K∑

j=1

γj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,i − (hT (φdn)old)−1hi − 1

)
exp(µ). (3.39)

Then, plugging this expression in the constraint and solving for µ (or exp(µ))
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gives:

K∑

k=1

φdn,k = 1

⇔ exp(µ) =
1

∑K
k=1 exp

(
Ψ(γk)−Ψ

(∑K
j=1 γj

)
+
∑V

j=1w
d
n,jΨ(ζi,j)

)

× 1
∑K

k=1 exp
(
−∑V

j=1w
d
n,jΨ

(∑V
k=1 ζi,k

)
+ 1

Nd

∑C
l=1 λ

d
l ηl,k − (hT (φdn)old)−1hk − 1

) .

(3.40)

Finally, plugging this expression back in the expression for φdn,i gives the
solution:

φdn,i ∝ exp

(
Ψ(γi) +

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

))

× exp

(∑C
l=1 λ

d
l ηl,i

Nd

− (hT (φdn)old)−1hi

)
. (3.41)

The optimization of the variational parameters of the documents latent
true classes λdl is performed in the same way φdn,i is: collecting the terms in

the bound that contain it and, since
∑C

k=1 λ
d
k = 1, because it is a probabil-

ity distribution, the Lagrange multipliers are necessary. After we take the
derivative w.r.t. λdl out of the Lagrangian and setting it to zero, we plug the
resultant expression in the constraint and solve it for µ (or exp(µ)), which
gives:

exp(µ) =
1

∑K
k=1 exp

(
ηTk φ

d +
∑R

r=1

∑C
c=1 y

d,r
c Ψ(ξrl,c)

)

× 1

∑K
k=1 exp

(
−∑R

r=1

∑C
c=1 y

d,r
c Ψ

(∑C
t=1 ξ

r
l,t

)
− 1

) . (3.42)

Then, by plugging this expression back in the expression for λdl , we get:

λdl ∝ exp

(
ηTl φ

d +
R∑

r=1

C∑

c=1

yd,rc Ψ(ξrl,c)−
R∑

r=1

C∑

c=1

yd,rc Ψ

( C∑

t=1

ξrl,t

))
. (3.43)
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The ξ and ζ optimizations are not constrained maximisation problems,
which means that the procedures they require are identical to the γ optimiza-
tion. Hence, for the sake of simplicity, the derivations needed to achieve their
final forms are omitted (presented in Appendix A) . The obtained updates
for ξ and ζ parameters are:

ζi,j = τj +
D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i (3.44)

ξrc,t = ωt +
D∑

d=1

λdcy
d,r
t (3.45)

The purpose of these final forms of the variational parameters is to
update them in such way that the evidence lower bound becomes as tight
as possible to the true posterior. In other words, the variational inference
algorithm consists of iteratively optimize each one of these variational pa-
rameters in turn until a maximum number of iterations or a given interval
of convergence are achieved.

3.3 Parameter estimation

Given a corpus of D documents labeled by R different annotators, D =
{wd,yd}Dd=1, maximum likelihood estimates for the class coefficients η are
found. In order to do this, variational Bayesian EM is used, which re-
places the E-step of the Expectation-Maximization algorithm with varia-
tional Bayesian inference to find an approximate posterior for the latent
variables of each document. In the M-step, as in exact EM, we find max-
imum likelihood estimates of the parameters using the expected sufficient
statistics computed in the E-step. We assume the parameters α, τ and ω are
fixed Dirichlet priors, on account of the simplicity of the model.

The corpus-level log-likelihood is given by:

L(D) =
D∑

d=1

log p(w1:D,y1:D|α,β,η,π1:R), (3.46)

where log p(w1:D,y1:D|α,β,η,π1:R) is approximated by equation 4.21, i.e.
the lower bound.

As it was done to optimize the variational parameters, in order to
obtain maximum likelihood estimates of η, the terms in the log-likelihood
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(equation 3.46) that contain it are gathered. Its objective function is given
by:

L[ηl,i] =
D∑

d=1

1

Nd

C∑

l=1

λdl

Nd∑

n=1

ηTl φ
d
n − log

C∑

l=1

λdl

Nd∏

n=1

(
K∑

i=1

φdn,i exp
(
ηl,i

1

Nd

))
.

(3.47)

Taking derivatives w.r.t. ηl,i results in:

∂L[ηl,i]

∂ηl,i
=λdl

D∑

d=1

φn
d × λdl

D∑

d=1



−

∑Nd

n=1

[
1
Ndφ

d
n,i exp

(
1
Ndηc,i

)]

∑C
l=1 λ

d
l

∏Nd

n=1

(
∑K

i=1 φ
d
n,i exp

(
ηl,i

1
Nd

))




× λdl
D∑

d=1




∏Nd

j=1

[
∑K

i=1 φ
d
j,i exp

(
1
Ndηc,i

)]

∑K
i=1 φ

d
n,i − exp

(
1
Ndηc,i

)



. (3.48)

Setting this derivative to zero does not lead to a closed-form solution, hence
it is used a numerical method, namely L-BFGS (Wright & Nocedal, 1999),
to find an optimum.

3.4 Stochastic variational inference

Stochastic variational inference is a scalable algorithm for approximating
posterior distributions. It differs from the variational inference method de-
veloped in Section 3.2 in that it updates the variational parameters using a
subsample of the data, instead of the entire dataset. While the batch coordi-
nate ascent algorithm for variational inference previously presented iterates
between analyzing every document in the corpus to infer the local hidden
structure and estimating the model parameters, stochastic variational infer-
ence does not require a full pass through the data at each iteration. As it is
explained in Section 2.2, the principle behind stochastic optimization (Rob-
bins & Monro, 1951) is that subsets of the data (mini-batches) can provide a
noisy representation of the whole dataset. Applying this idea to MA-sLDA,
we can find unbiased estimates of the model’s variables by subsampling a
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mini-batch of documents from the corpus and using it to compute these vari-
ables as if that document was observed D times. More specifically, given
an uniformly sampled mini-batch, we use the current posterior distributions
of the global latent variables β and π1:R to compute the posterior distri-
bution over the local hidden variables θd, zd, cd, using equations 3.36, 3.41
and 3.43, respectively. These estimates are, then, used to update the global
variational parameters, ζ and ξ1:R by taking a step of size ρt in the direction
of the stochastic gradients. This process is summarized as follows:

Input : Corpus, variational parameters
Output: Updated variational parameters

1 Initialize ζ and ξ1:R randomly and t = 0
2 repeat
3 Set t = t+ 1
4 Subsample one or more data points from the corpus {wd}
5 repeat
6 for wd ∈ {wd} do
7 for n ∈ {1...Nd} do
8 Update φdn using equation 3.41
9 end

10 Update γd using equation 3.36
11 Update λd using equation 3.43

12 end

13 until φdn, γd and λd converge;
14 Compute the step-size schedule ρt = (t+ delay)−κ

15 for k ∈ {1...K} do
16 for n ∈ {1...Nd} do

17 Update ζ
(t)
i,j = (1− ρt)ζ(t−1)i,j + ρt(τj +D

∑Nd

n=1w
d
n,jφ

d
n,i)

18 end

19 end
20 for r ∈ {1...R} do
21 for c ∈ {1...C} do
22 for l ∈ {1...C} do
23 Update

ξrc,l
(t) = (1− ρt)ξrc,l(t−1) + ρt(ωj +D

∑Nd

n=1 λ
d
cy
d,r)

24 end

25 end

26 end

27 until convergence;
Algorithm 3: Stochastic coordinate ascent variational algorithm
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3.5 Prediction

After training the model, by inferring the latent variables and estimating the
parameters, the proposed model is able to predict the labels for new (unob-
served) documents. Therefore, the variables related to the annotators’ labels
(y, c and π) are ignored from the model’s joint distribution and the approx-
imate posterior distribution over the latent variables θd and zd is computed.
Letting the topic distribution over words estimated during training be β, the
joint distribution for a single document is given by:

p(θd, zd) =

∫
p(β)p(θd|α)

Nd∏

n=1

p(zdn|θd)p(wdn|zdn,β)dβ. (3.49)

The posterior distribution over q(θd, zd) = q(θd|γd)∏Nd

n=1 q(z
d
n|φdn) is com-

puted by deriving a mean-field variational inference algorithm, which results
in the same fixed-point updates as in standard LDA (Blei et al., 2003a):

γdi = αi +
Nd∑

n=1

φdn,i

φdn,i ∝
V∑

j=1

wdn,jβk,j exp

(
Ψ(γi) +

∑C
l=1 λ

d
l ηl,i

Nd
− (hT (φdn)old)−1hi

)
.

Then, using the inferred posteriors and the coefficients η estimated
during training, we can make predictions as follows:

cd∗ = arg max
c
ηTc φ̄

d. (3.50)
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Chapter 4

Multi-annotator supervised
latent Dirichlet allocation for
regression

In Chapter 3, we presented a supervised topic model with multiple annota-
tors, that, for each document of an annotated dataset, predicts its true class
label c, which belongs to a discrete set of categories. However, there is a wide
domain of problems in which the instances are labeled with continuous data,
i.e., the label set is formed by real numbers. In this chapter, we describe a
version of the MA-sLDA model that handles this sort of data. Therefore, it
begins with the definition of the model, continues with the mechanism used
for the inference of the model’s variables and the estimation of the model’s
parameters and it concludes with the development of a stochastic variational
inference algorithm for this model.

4.1 Proposed model

Similarly to the proposed model for classification, the regression variant of the
MA-sLDA model estimates the topics β while learns the true label set from
multiple answers given by distinct annotators. Hence, analogously to the pre-
viously presented model, we consider an annotated dataset D = {wd,yd}Dd=1

of size D, in which a set of annotations yd = {yd,r}Rr=1 given by R different
labelers is assigned to each document wd. Yet, in a regression scenario, there
is no discrete set of labels, instead, each data point is labeled with a real
target value xd ∈ R, which belongs to x = {xd}Dd=1. This means that the
answers of the annotators are also real valued numbers and that each annota-
tor is now associated with a bias br and a variance vr. In other words, what
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Figure 4.1: Different annotators’ variances and biases.

characterizes an annotator now is his probability of giving an answer yd,r

given that the true target is xd and that his noisy version of the document’s
label is drawn from a normal distribution parametrized by xd + br and vr.
Just like the classification MA-sLDA, this regression model was implemented
in C++.

In Figure 4.1, four different kinds of annotators can be distinguished.
Imagining the scenario in which each annotator has to predict the number of
stars (from 0 to 10) that a movie got from a reviewer based on his review text,
we can look at Figure 4.1 and interpret each normal curve as the probability of
an annotator’s answer given that the true rating was 6. Therefore, the “green
annotator” is the best one, since he is right on the target and his answers
vary very little (low bias, high precision). The “yellow annotator” has a low
bias, but his answers are very uncertain, as they can vary a lot. Contrarily,
the “blue annotator” is very precise, but consistently over-estimates the true
target (high bias, high precision). Finally, the “red annotator” corresponds
to the worst kind of annotator: with high bias and low precision.

The graphical model of MA-sLDA for regression is depicted in Figure
3.1, where the notation is the same as the remaining of this document. In the
same way as the standard LDA, it can be seen in the black part of the model
that each word wdn in a document d is assigned a discrete topic-assignment
zdn and a topic distribution β and that each zdn is drawn from the documents
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Figure 4.2: Graphical model of MA-sLDA for regression.

distribution over topics θd. As for the green elements of the graphical model,
we have that the target of the dth document xd depends on the topic assign-
ment zdn and on the variables η and σ that parametrize a normal distribution.
This target xd and the per-annotator biases b and variances v are assumed
to give origin to each annotator’s answer that is observed yd,r, which dis-
tinguishes MA-sLDA from the above mentioned approaches. To clarify the
learning method behind MA-sLDA, its generative process is described next.

1. For each topic k

(a) Draw topic distribuition βk|τ ∼ Dirichlet(τ)

2. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(α)

(b) For the nth word

i. Draw topic assignment zdn|θd ∼Multinomial(θd)

ii. Draw word wdn|zdn,β ∼Multinomial(βzdn)

(c) Draw latent (true) value xd|zd, η, σ ∼ Normal(xd|ηT z̄d, σ)

(d) For each annotator r

i. Draw his answer yd,r|xd, br, vr ∼ Normal(yd,r|xd + br, vr)
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According to their definitions, the distributions used in the model are
given by:

p(θd|α)] =
Γ(
∑K

j=1 αj)∏K
i=1 Γ(αi)

K∏

i=1

(θdi )
(αi−1) (4.1)

p(zdn|θd) =
K∏

i=1

(
θdi
)zdn,i (4.2)

p(wdn|zdn,β) =
V∏

j=1

(βzdn,j)
wdn,j (4.3)

p(yd,r|xd, br, vr) =
1

vr
√

2π
e
−

(
yr−(xd+br)

)2

2(vr)2 (4.4)

p(xd|η, zd, σ) =
1

σ
√

2π
e−

(xd−ηT z̄)2

2σ2 (4.5)

p(βi|τ) =
Γ(
∑V

k=1 τk)∏V
j=1 Γ(τj)

V∏

j=1

(βi,j)
(τj−1). (4.6)

(4.7)

4.2 Approximate inference

In this section, the process responsible for estimating the latent variables and
the parameters of the model is demonstrated. Since the regression version
of the MA-sLDA is slightly different from the classification one, its joint
distribution, given by:

p(θ, z1:D,x,w1:D,y1:D,β|Θ) =

(
K∏

i=1

p(βi|τ)

)
D∏

d=1

p(θd|α)

×
(

Nd∏

n=1

p(zdn|θd)p(wdn|zdn,β)

)
p(xd|zd, η, σ)

R∏

r=1

p(yd,r|xd, br, vr), (4.8)

leads to the posterior:

p(θ, z1:D,x,β|w1:D,y1:D) =
p(θ, z1:D,x,w1:D,y1:D,β|Θ)

p(w1:D,y1:D|Θ)
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=

(∏K
i=1 p(βi|τ)

)∏D
d=1 p(θ

d|α)

(
∏Nd

n=1 p(z
d
n|θd)p(wdn|zdn,β)

)

∫
βi

(∏K
i=1 p(βi|τ)

) ∫
θd

∏D
d=1 p(θ

d|α)
∑

z

(∏Nd

n=1 p(z
d
n|θ)p(wdn|zdn,β)

)

×
∏D

d=1 p(x
d|zd, η, σ)

∏R
r=1 p(y

d,r|xd, br, vr)∫
θd

∏D
d=1

∫
x
p(xd|zd, η, σ)

∏R
r=1 p(y

d,r|xd, br, vr)
, (4.9)

which is also infeasible to compute. Thus, again, it is applied variational
Bayesian inference to approximate this posterior distribution.

Let q(θ, z1:D,x,β) denote a variational distribution of the latent vari-
ables. Since a fully-factorized (mean-field) approximation is used, we have
that:

q(θ, z1:D,x,β) =

( K∏

i=1

q(βi|ζi)
) D∏

d=1

q(θd|γd)
(

Nd∏

n=1

q(zdn|φdn)

)
q(xd|md, νd),

(4.10)

where ζ,γ,φ1:D, m and ν are the variational parameters.

The the evidence lower bound of MA-sLDA for regression is, then,
given by:

log p(w1:D,y1:D|α, η, τ, σ, b,v)

= log

∫

β

∫

θ

∑

z

∫

x

p(θ, z1:D,x,w1:D,y1:D,β|Θ)q(θ, z1:D,x,β)

q(θ, z1:D,x,β)
(4.11)

> L(w1:D,y1:D|Θ)

= Eq[log p(θ, z1:D,x,w1:D,y1:D,β|Θ)]− Eq[log q(θ, z1:D,x,β)] (4.12)

=
K∑

i=1

Eq[log p(βi|τ)]−
K∑

i=1

Eq[log q(βi|ζi)] +
D∑

d=1

(
Eq[log p(θd|α)]

− Eq[log q(θd|γd)] +
Nd∑

n=1

Eq[log p(zdn|θd)]−
Nd∑

n=1

Eq[log q(zdn|φdn)]

+
Nd∑

n=1

Eq[log p(wdn|zdn,β)] +
R∑

r=1

Eq[log p(yd,r|xd, br, vr)] + Eq[log p(xd|z̄d, η, σ)]

− Eq[log q(xd|md, νd)]

)
. (4.13)
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In Chapter 3, we already derived Eq[log p(βi|τ)],Eq[log p(θd|α), Eq[log p(zdn|θd)]
and Eq[log p(wdn|zdn,β)]. Thus, here, only the derivations of the non-common
terms of the evidence lower bound are performed.

Eq[log p(yd,r|xd, br, vr)] = Eq
[

log
1√

2πvr
exp

(
−
(
yr − (xd + br)

)2

2(vr)2

)]

= −
(
yr −md − br

)2

2vr
− 1

2
log
(
2πvr

)
(4.14)

Eq[log p(xd|z̄d, η, σ)] = Eq
[

log

(
1√

2πσ2
exp

(
− (xd − ηT z̄d)2

2σ2

))]

=
1

2
log(2πσ2)− 1

2σ2

(
Eq
[
(xd)2

]
− 2Eq[xd]ηTEq[z̄d]

+ ηTEq
[
z̄d(z̄d)T

]
η

)
(4.15)

where:

Eq[xd] = md (4.16)

Eq
[
(xd)2

]
= νd + (md)2 (4.17)

Eq[z̄d] = φ̄d =
1

Nd

Nd∑

n=1

φdn (4.18)

Eq
[
z̄d(z̄d)T

]
=

1

(Nd)2

( Nd∑

n=1

Nd∑

m 6=n

φdn(φdm)T +
Nd∑

n=1

diag(φdn)

)
(4.19)

Similarly, the only corresponding term of the variational distribution that is
not common with the MA-sLDA for classification is derived as:

Eq[log q(xd|md, νd)] = Eq
[

log

(
1√

2πνd
exp

(
− (xd −md)2

2νd

))]

=
1

2
− 1

2
log(2πνd) (4.20)

Again, for a detailed version of these equations, see Appendix B.
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Using these results, the evidence lower bound is then given by:

L(w1:D,y1:D|Θ)

=
K∑

i=1

(
log Γ

( V∑

k=1
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)
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)))
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(
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log(2πνd) (4.21)
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We already demonstrated that the γ and ζ updates obtained by the
variational inference algorithm are:

γdi = αi +
Nd∑

n=1

φdn,i, (4.22)

ζi,j = τj +
D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i. (4.23)

For φ, we have a similar update to the one in sLDA:

φdn,i ∝ exp

(
Ψ(γi) +

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)
+

md

Ndσ2
η

)

× exp

(
−
ηTNd

∑Nd

m 6=n φ
d
mη + ηTη

2(Nd)2σ2

)
. (4.24)

To achieve the updates of the variational parameters of the latent vari-
able xd: md and νd, we have the same procedure. Starting by collecting only
the terms in the bound that contain md, it yields:

L[md] = −
D∑

d=1

R∑

r=1

−
(
yr −md − br

)

2vr
+

D∑

d=1

−(md)2 − 2mdηT 1
Nd

∑Nd

n=1 φ
d
n

2σ2
.

(4.25)

Taking derivatives w.r.t. md gives:

∂L[md]

∂md
=

R∑

r=1

(
−−y

d,r + (md) + br

vr

)
− −m

d − ηT 1
Nd

∑Nd

n=1 φ
d
n

σ2
. (4.26)

By setting this derivative to zero and solving for md, we have that:

∂L[md]

∂md
=

R∑

r=1

(
−−y

d,r + (md) + br

vr

)
− −m

d − ηT 1
Nd

∑Nd

n=1 φ
d
n

σ2
= 0

(4.27)
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⇔ md =
R∑

r=1

yd,rσ2 − brσ2 + vrηT 1
Nd

∑Nd

n=1 φ
d
n

σ2 + vr
. (4.28)

Collecting the terms in the bound that contain ν gives:

L[ν] =
D∑

d=1

R∑

r=1

− 1

2vr
(νd)− 1

2σ2
νd +

1

2
log(2πνd). (4.29)

Taking its derivatives, setting them to zero and solving for νd yields:

νd = σ2 +
R∑

r=1

vr. (4.30)

By using these updates, we can minimize the Kullback-Leibler divergence
between the true distribution and the approximate posterior q(θ, z1:D,x,β).

4.3 Parameter estimation

In this version of MA-sLDA, the model parameters are: b,v, η and σ. For
the sake of simplicity, σ is assumed to be fixed. This section explains the
parameter estimation of MA-sLDA for regression, which corresponds to the
M-step of the variational EM used for the training of the model. Like the
method described in Section 4.2 for optimizing the variational parameters
(E-step), we will gather the terms in the log-likelihood that contain each
parameter, take their derivatives and equal them to zero, in order to find
their maximum likelihood estimates. For br, the objective function is:

L[br] =
D∑

d=1

R∑

r=1

− 1

2vr

(
− 2yd,rbr + 2mdbr + (br)2

)
. (4.31)

Taking derivatives w.r.t. br gives:

∂L[br]

∂br
=

D∑

d=1

yd,r −md − br
vr

. (4.32)
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Setting it to zero and solving for br results in:

br =

∑D
d=1 y

d,r −md

D
. (4.33)

For vr, with the same process we obtain:

vr =
1

D

D∑

d=1

(
(yd,r)2 − 2yd,rmd − 2yd,rbr + νd + (md)2 + 2mdbr + (br)2

)
.

(4.34)

Finally, to estimate ηl,i, the objective function is given by:

L[η] =
D∑

d=1

(
1

σ2
mdηT

1

Nd

Nd∑

n=1

φdn −
1

2σ2
ηTEq

[
z̄d(z̄d)T

]
η

)
. (4.35)

Taking derivatives, setting them to zero and solving for η gives:

D∑

d=1

(
1

σ2
md 1

Nd

Nd∑

n=1

φdn −
1

σ2
Eq
[
z̄d(z̄d)T

]
η

)
= 0

⇔ ηT =
D∑

d=1

Eq
[
z̄d(z̄d)T

]−1
md 1

Nd

Nd∑

n=1

φdn (4.36)

When the variational EM algorithm meets a global converge criterion,
the model is trained and, therefore, able to predict the targets for new (un-
observed) documents. This prediction process is the same as the method
described in Section 3.5.

4.4 Stochastic variational inference

As we did for the classification model from Chapter 3, we can envision de-
veloping a stochastic variational inference for the proposed regression model.
In this case, the only global latent variables are the per-topic distributions
over words βk. As for the local latent variables, instead of a single variable
λd, we now have two variables per-document: md and νd. The stochastic
variational inference can then be summarized as shown in Algorithm 4. For
added efficiency, one can also perform stochastic updates of the annotators
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biases br and variances vr, by taking a step in the direction of the gradient
of the noisy evidence lower bound scaled by the step-size ρt.

Input : Corpus, variational parameters
Output: Updated variational parameters

1 Initialize ζ randomly and t = 0
2 repeat
3 Set t = t+ 1
4 Subsample one or more data points from the corpus {wd}
5 repeat
6 for wd ∈ {wd} do
7 for n ∈ {1...Nd} do
8 Update φdn using equation 3.41
9 end

10 Update γd using equation 3.36
11 Update md using equation 4.28

12 end
13 Update νd using equation 4.30

14 until φdn, γd and λd converge;

15 until convergence;
16 Compute the step-size schedule ρt = (t+ delay)−κ

17 for k ∈ {1...K} do
18 for n ∈ {1...Nd} do

19 Update ζ
(t)
i,j = (1− ρt)ζ(t−1)i,j + ρt(τj +D

∑Nd

n=1w
d
n,jφ

d
n,i)

20 end

21 end
Algorithm 4: Stochastic coordinate ascent variational algorithm.
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Chapter 5

Experimental evaluation of
multi-annotator supervised
latent Dirichlet allocation

In this section, the proposed multi-annotator supervised LDA models for
classification (MA-sLDAc) and regression (MA-sLDAr) are validated using
simulated annotators on popular corpora and using real multiple-annotator
labels obtained from Amazon Mechanical Turk. Namely, we shall consider
the following real-world problems:

1. classifying posts and news stories;

2. classifying images according to their content;

3. predicting number of stars of a given user gave to a restaurant based
on the review;

We will start by evaluating the classification model proposed in Chapter
3 in the first two problems (see 5.1) and use the last regression problem for
evaluating the model proposed in Chapter 4 (see Section 5.2).

5.1 Classification

5.1.1 Data

MA-sLDA was tested in three different well-known labeled datasets: Reuters-
21578 (Lewis, 1997), 20-Newsgroups and LabelMe (Russell et al., 2008).
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Figure 5.1: Boxplot of the number of answers per annotator (a) and their
respective accuracies (b) for the Reuters dataset.

Train instances Test instances

Earnings 982 2731
Acquisitions 519 1536
Crude-oil 70 251
Trade 69 229
Money effects 55 190
Interest rates 47 150
Shipping 39 103
Grain 18 27
Total 1799 5217

Table 5.1: Class distribution of Reuters-21578.

Reuters-21578 is a group of manually categorized newswire stories with
labels such as Acquisitions, Crude-oil, Earnings or Grain. It is characterized
by having a very skewed distribution of classes over documents, as it can
be seen in Table 5.1. Only the documents belonging to the Modified Apte
(ModApte) split 1 were considered. ModApte split is a standard division of
the Reuters collection into train and a test sets. However, we had to filter
the documents to obtain just single-labeled ones. Of these, 1800 documents
were submitted to Amazon Mechanical Turk for multiple annotators to label,
giving an average of 3.007 answers per document. Since this train set of
1800 documents was verified to ensure good prediction performances, the
remaining 5216 documents were used for testing.

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
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The collected answers yield an average annotator accuracy of 56.8%.
Applying majority voting to these answers reveals a ground truth accuracy of
71.0%. Figure 5.1 shows the boxplots of the number of answers per annotator
and the workers accuracies. Observe how applying majority voting yields a
higher accuracy than the median accuracy of the workers.

Train instances Test instances

Computers 3586 1268
Recreative 2980 986
Science 2979 963
Politics 1991 629
Total 11536 3846

Table 5.2: Class distribution of 20-Newsgroups.

20-Newsgroups consists of twenty thousand messages taken from twenty
newsgroups. It is a single-label dataset that, comparing to Reuters-21578,
has a much more uniform class distribution, which is shown in Table 5.2.
This corpus is divided in six super-classes, which are, in turn, partitioned
in several sub-classes. Yet, only the four most populated super-classes were
used: Computers, Science, Politics and Recreative.

To process the natural language of the documents of both Reuters-
21578 and 20-Newsgroups corpora, stemming was applied, in order to map
related words to the same stem, and stop words were removed, since they
are irrelevant for the classification task.

Train instances Test instances

Open country 154 256
Forest 138 190
Coast 134 226
Tall building 131 225
Mountain 128 246
Inside city 116 192
Street 110 182
Highway 89 171
Total 1000 1688

Table 5.3: Class distribution of LabelMe.
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Figure 5.2: Boxplot of the number of answers per annotator (a) and their
respective accuracies (b) for the LabelMe dataset.

In contrast to the Reuters and Newsgroups corpora, LabelMe is an
open online tool to annotate images, hence, it allows to evaluate the model
in non-textual data. For images to be handled by our algorithm, they have
to be encoded the same way text is: each image is seen as a document formed
by fragments that represent words. Therefore, they were processed following
the setting in Fei-Fei & Perona (2005): using a 128-dimensional SIFT (Lowe,
1999) region descriptors given by a sliding grid spaced at 16×16 pixels. This
sliding grid extracts local regions of the image of sizes randomly sampled
between 16 × 16 and 32 × 32 pixels, which are, then, assigned to one of
the 200 clusters obtained by a K-Means algorithm (Kadir & Brady, 2001)
previously performed in the image collection. This means that there is a
vocabulary of 200 different “visual words” that constitute the images. Table
5.3 shows this dataset’s class population. Of the total of 2688 labeled images,
1000 images were given to Amazon Mechanical Turk workers to classify with
one of the classes above. The train set is smaller than the test set for the
same reason of the train-test split considered for the Reuters dataset: as long
as the train set size allows the good learning of the model, there is no reason
to submit more documents in Amazon Mechanical Turk.

Each image was labeled by an average of 2.547 workers, with a mean
accuracy of 69.2%. When majority voting is applied to the collected answers,
a ground truth accuracy of 76.9% is obtained. Figure 5.2 shows the boxplots
of the number of answers per annotator and the workers accuracies. Interest-
ingly, the worker accuracies are much higher and their distribution is much
more concentrated than on the Reuters-21578 data (see Figure 5.1), which
suggests that this is an easier task for the Amazon Mechanical Turk workers.
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Dataset
Annot.
source

Num. ans. per
inst. (± stddev.)

Mean annotators
accuracy (± stddev.)

Maj. vot.
accuracy

20 Newsgroups Simulated 1.000 ± 0.000 0.405 ± 0.182 0.405
Reuters-21578 Mech. Turk 3.007 ± 1.019 0.568 ± 0.262 0.710

LabelMe Mech. Turk 2.547 ± 0.576 0.692 ± 0.181 0.769

Table 5.4: Overall statistics of the classification datasets used in the experi-
ments.

As it can be noted from Table 5.4, for the 20-Newsgroups corpus, MA-
sLDA was validated in a slightly more controlled environment, by simulating
multiple annotators with different levels of expertise. While the process re-
quired to gather real annotators’ labels consisted only in submitting a task
in Amazon Mechanical Turk, to obtain the artificial annotators it took more
steps: firstly, a mean desirable accuracy was assigned to each one of the
annotators; secondly, each annotator’s confusion matrix was randomly simu-
lated based on those accuracies and, finally, the annotations were randomly
generated according to both the real label of the instance being annotated
and the annotators’ confusion matrices. In other words, the line c of the rth

annotator’s confusion matrix πr can be perceived as a set of multinomial
parameters, so that one could sample the rth-annotator’s answer yr = l with
some probability πrc,l.

5.1.2 Experimental procedure

To assess the implemented model, the following methods were compared with
it:

• LDA + LogReg (mv): LDA was employed to extract topics from the
data and, then, a logistic regression was applied to classify the instances
based on their topic distributions. In order to perform classification,
the most voted class by the annotators for each instance acted as its
label.

• sLDA (mv): sLDA model was used with the label set obtained by
performing the majority voting (mv) method on the annotations.

• LDA + Raykar’s: Again, LDA was applied to infer the topic distribu-
tions per instance. Then, the framework of (Raykar et al., 2009) was
used to perform classification based on the annotators’ answers.
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• LDA + Rodrigues’s: This approach is identical to the aforementioned
method, but the framework from (Rodrigues et al., 2013) was applied
alternatively to the Raykar’s learning algorithm.

Since these algorithms initialize their variables randomly, each one of
these methods was run 30 times. Thus, the values presented in the images
of the following Section (5.1.3) are the means of the 30 accuracies obtained
for each test. We chose accuracy as the metric to compare our model with
the remaining approaches, as it is the metric commonly applied in this sort
of work. This way, we make it easy to confront the presented results with
related ones.

5.1.3 Results
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Figure 5.3: Average test set accuracy (over 30 runs; stddev.) of the different
approaches on the Reuters data.
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Figure 5.4: Average test set accuracy (over 30 runs; stddev.) of the different
approaches on the 20-Newsgroups data.
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Figure 5.5: Average test set accuracy (over 30 runs; stddev.) of the different
approaches on the LabelMe data.
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The experimental results are presented in Figures 5.3, 5.4 and 5.5.
As it can be seen, MA-sLDA outperforms the remaining methods in all the
experiments conducted.

Furthermore, it can be perceived that the best results are obtained
in the 20-Newsgroups dataset. Even with the worst quality annotators, the
model achieves the highest accuracies comparing with the other datasets,
especially comparing to the LabelMe dataset. This can be explained by the
fact that this corpora has only four very distinct classes, which, probably,
makes it an easier dataset to perform classification.

On the other hand, the results show that the worst accuracies occur
in the LabelMe set of images, which have the best annotators. However,
there are only 3 annotations per instance, which means that there is less
information about the ground truth labels. Yet, in this dataset the difference
between the MA-sLDA and the other approaches mean accuracy is superior
to the other datasets outcomes.

Other conclusions that can be derived from this set of experiments is
that the annotator-aware models always outperform the classifiers that learn
on the most voted labels, which evinces the vulnerability of the majority
voting method. Similarly, like it was expected, sLDA ensures better inferred
labels than the separated approaches for extracting topics and classifying the
instances.

Also, to be noticed that all the approaches with the exception of MA-
sLDA require multiple disconnected methods: LDA to extract topics, clas-
sification to infer labels for the unobserved instances and majority voting
to obtain labels from the annotations. Therefore, MA-sLDA is the only ap-
proach that combines all the procedures and, for that reason, its modeling
takes advantage of all the fullness of the information contained in the data.

All of these are conclusions readable from the figures. Nevertheless, we
are interested in assessing the statistical significance of the results obtained.
In order to do it, we selected the different models’ accuracies for 40 topics
to, firstly, use the Kolmorov-Smirnov test to verify if there was statistic facts
supporting that the data was drawn from the a normal distribution. For each
one of the approaches above compared, except for MA-sLDA with stochastic
variational inference, and for each dataset, in Table 5.5, we show the p value
resultant from the Kolmogorov-Smirnov test. Since the stochastic variational
inference version of MA-sLDA is just a more scalable instance of MA-sLDA,
inheriting all its remaining properties, it was not included in this study.

As it can be seen, all the p values are less than 0.05, which means that
we can reject the null hypothesis that the data is normally distributed for
each one of the cases. We proceed, therefore, to Kruskal-Wallis tests: we
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Reuters LabelMe 20-Newsgroups
LDA+LogReg (mv) 9.681e-14 1.366e-14 2.776e-15
sLDA (mv) 2.22e-16 9.57e-14 1.024e-12
LDA + Raykar’s 2.2e-16 3.197e-14 6.994e-15
LDA + Rodrigues’s 5.44e-15 1.665e-15 2.2e-16
MA-sLDA (mle) 2.2e-16 1.887e-15 6.062e-14
MA-sLDA (batch) 2.2e-16 1.288e-14 4.441e-16

Table 5.5: Kolmogorov-Smirnov test’s p values.

have more than two categories to compare, the runs are not paired and the
data is not parametric.

Reuters LabelMe 20-Newsgroups
p value <2.2e-16 <2.2e-16 <2.2e-16

Table 5.6: Kruskal-Wallis tests’ p values.

The results shown in Table 5.6 allows us to believe that there is sig-
nificant difference in the six methods used in the three datasets. Hence,
Mann-Whitney tests were then used. For the sake of simplicity, only the
pairs formed by MA-sLDA and the most accurate baseline were tested. In
this way, we can measure the improvements of the proposed model compared
to the best state of the art approach in the classification problems considered.

Reuters LabelMe 20-Newsgroups
p value 2.183e-07 <2.2e-16 0.001
z -score -6.611 -6.257 -3.062

Table 5.7: Mann-Whitney tests’ p values (one-tailed) and z-scores.

Comparing MA-sLDA (batch) with LDA+Raykar’s method for all the
three corpora, the Mann-Whitney tests outputs one-tailed p values that
are less than 0.05

15
≈ 0.0033, which is the significance threshold with the

proper Bonferroni correction (Bonferroni, 1935). This means that the accu-
racies of MA-sLDA are significantly superior from the ones obtained by the
LDA+Raykar’s approach. Moreover, the z -scores reveal the effect size r of
this differences. In the case of 20-Newsgroups dataset, r20Newsgroups = 0.228,
meaning that the effect size is small. However, for the Reuters and LabelMe
dataset, rReuters = 0.493 and rLabelMe = 0.466, thus, proving a medium effect
size of the difference between the proposed model and the best state of the
art approach tested.
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Figure 5.6: Comparison of the log marginal likelihood between the batch and
the stochastic variational inference (svi) algorithms on the 20-Newsgroups
corpus.

Concerning the evaluation of the computational advantages of the stochas-
tic variational inference (svi) over the batch algorithm, the log marginal like-
lihood (or log evidence) was plotted against the number of iterations. Figure
5.6 shows this comparison. Not surprisingly, the svi version converges much
faster to higher values of the log marginal likelihood when compared to the
batch version, which reflects the efficiency of the svi algorithm. However, it is
important to note that this increased efficiency does not necessarily translates
in higher predictive accuracies, as the results of Figure 5.3 demonstrate.

In order to verify that the proposed model was estimating the (nor-
malized) confusion matrices πr of the different workers correctly, a random
sample of them was plotted against the true confusion matrices (i.e. the nor-
malized confusion matrices evaluated against the true labels). Figures and
5.7 5.8 show the obtained results, where the colour intensity of the cells in-
creases with the magnitude of the value of p(yd,r = l|cd) = πrc,l. Using this
visualization we can verify that the Amazon Mechanical Turk workers are
quite heterogeneous in their labeling styles and in the kind of mistakes they
make, with several workers showing clear biases (e.g. workers 3 and 4 in Fig-
ure 5.7, and workers 1 and 5 in Figure 5.8), while others made mistakes more
randomly (e.g. worker 1 in Figure 5.7, and worker 6 in Figure 5.8). Never-
theless, the proposed is able to capture these patterns correctly and account
for effect.

66



0 1 2 3 4 5 6 7
predicted label

0

1

2

3

4

5

6

7

tr
u
e
 l
a
b
e
l

true cm

0 1 2 3 4 5 6 7
predicted label

0

1

2

3

4

5

6

7

tr
u
e
 l
a
b
e
l

estimated cm

(a) annotator 1

0 1 2 3 4 5 6 7
predicted label

0

1

2

3

4

5

6

7

tr
u
e
 l
a
b
e
l

true cm

0 1 2 3 4 5 6 7
predicted label

0

1

2

3

4

5

6

7

tr
u
e
 l
a
b
e
l

estimated cm

(b) annotator 2

0 1 2 3 4 5 6 7
predicted label

0

1

2

3

4

5

6

7

tr
u
e
 l
a
b
e
l

true cm

0 1 2 3 4 5 6 7
predicted label

0

1

2

3

4

5

6

7

tr
u
e
 l
a
b
e
l

estimated cm

(c) annotator 3
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Figure 5.7: True vs. estimated confusion matrix (cm) of 6 different workers
of the Reuters-21578 dataset.
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Figure 5.8: True vs. estimated confusion matrix (cm) of 6 different workers
of the LabelMe dataset.

5.2 Regression

5.2.1 Data

To validate MA-sLDAr, the we8there dataset, consisting of user-submitted
restaurant reviews from the website we8there.com, was considered. The
we8there corpus was originally presented in Mauá & Cozman (2009) and
it contains 6260 reviews. For each review, there is a five-star rating on four
specific aspects of quality (food, service, value, and atmosphere) as well as
the overall experience. The goal is, then, to predict the overall experience of
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Dataset
Train/test

sizes
Ann.
source

Num. ans./inst.
(± stddev.)

Mean annotators
R2 (± stddev.)

Mean
answer R2

we8there 4624/1542 Simulated 2 ± 0.000 0.680 ± 0.260 0.969

Table 5.8: Overall statistics of the regression dataset used in the experiments.

the user based on his comments in the review. We apply the same prepro-
cessing as in Taddy (2013), which consists in tokenizing the text into bigrams
and discarding those that appear in less than ten reviews. The preprocessing
of the documents consisted of stemming and stop-words removal. After that,
75% of the documents were randomly selected for training and the remaining
25% for testing.

For this dataset, artificial annotations were generated. As with the
classification model, we seek to simulate an heterogeneous set of annotators
in terms of reliability and bias. Hence, in order to simulate an annotator r,
we proceed as follows: let xd be the true review of the restaurant; we start by
assigning the reviewers a given bias br and variance vr, depending on what
type of annotator we wish to simulate (see Figure 4.1); we then sample a
simulated answer as yd,r ∼ Normal(xd + br, vr). Using this procedure, we
simulated 5 annotators with the following (bias, variance) pairs: (0.1, 0.1), (-
0.1, 0.1), (1, 0.1), (-1, 0.1) and (0.01, 1). The goal is to have 2 good annotators
(low bias, low variance), 2 biased annotators and 1 imprecise. The coefficients
of determination (R2) of the simulated annotators are: [0.939, 0.940, 0.402,
0.392, 0.438]. Computing the mean of the answers of the different annotators
yields a R2 of 0.969. Table 5.8 gives an overview on the statistics of datasets
used in the regression experiments.

5.2.2 Experimental procedure

We compare the proposed model (MA-sLDAr) with the two following base-
lines:

• LDA + LinReg (mean): This baseline corresponds to applying unsu-
pervised LDA to the data and learning a linear regression model on the
inferred topics distributions of the documents. The answers from the
different annotators were aggregated computing the mean.

• sLDA (mean): This corresponds to using the regression version of sLDA
Blei & McAuliffe (2007) with the target variables obtained by comput-
ing the mean of the annotators’ answers.
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5.2.3 Results

20 30 40 50 60
num. topics

0.0

0.1

0.2

0.3

0.4
te
st
se

t a
cc
ur
ac

y

LDA+LinReg (mean)
sLDAr (mean)
MA-sLDAr (mle)

Figure 5.9: Average test set accuracy (over 30 runs; stddev.) of the different
approaches on the we8there’s data.

Figure 5.9 shows the results obtained for different numbers of topics.
Due to the stochastic nature of both the annotators simulation procedure
and the initialization of the variational Bayesian EM algorithm, we repeated
each experiment 30 times and report the average R2 obtained with the cor-
responding standard deviation. The results obtained show the improved
performance of MA-sLDAr mle (the MA-sLDAr version that uses maximum
likelihood estimates described in Appendix E) over the other methods. Un-
fortunately, the experiments for the batch and svi versions did not finished in
time for their results to be presented. These two versions of our model require
the optimization of more parameters and, for this reason, their experimental
procedure takes more time.

Besides the contrast among the results of the three approaches that
favors the proposed model, the figure also makes it clear the benefit of the
use of integrated approaches against two-stage procedures.
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we8there
LDA+LinReg (mean) 1.236e-07
sLDA (mean) 6.244e-11
MA-sLDA (mle) 3.32e-11

Table 5.9: Kolmogorov-Smirnov test’s p values.

In order to assess the statistical significance of the results obtained,
the same statistical evaluation of Section 5.1.3 was conducted. The different
models’ R2 values for 40 topics were compared to the normal distribution
through the Kolmorov-Smirnov test. The resultant p values can be seen in
Table 5.9.

We can verify that all p values are less than 0.05, thus, in neither case
we can assume parametric data. For this reason, because we have more than
two categories and because the runs are not paired, the Kruskal-Wallis test
was applied to measure the differences between the three methods.

we8there
p value <3.799e-15

Table 5.10: Kruskal-Wallis tests’ p values.

The results shown in Table 5.10 make us believe that there is significant
difference among the three sets of R2 values. Hence, the Mann-Whitney test
was used to compare MA-sLDA with the sLDA (mean) method.

we8there
p value 7.347e-05
z -score -4.033

Table 5.11: Mann-Whitney tests’ p values (one-tailed) and z-scores.

The output of the Mann-Whitney test exhibited in Table 5.11 shows
that the one-tailed p value is less than the significance threshold corrected
as in Bonferroni (1935)): 0.05

3
≈ 0.0166 , proving the statistical significance

of the improvements obtained by MA-sLDA when compared to the sLDA
(mean) approach. Moreover, from the z -scores, we get rwe8there = 0.301,
meaning that the effect is medium.

We also studied if the proposed model was, indeed, estimating the
biases and variances of the different workers correctly. Figure 5.10 shows the
true values against the estimates of MA-sLDAr for our 5 simulated workers,
where the higher colour intensities indicate higher values. Ideally, the colour
of two horizontally-adjacent squares would then be of similar shades and this
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Figure 5.10: Average test set accuracy (over 30 runs; stddev.) of the different
approaches on the we8there’s data.

is indeed what happens, as Figure 5.10 clearly demonstrates. Interestingly,
the fact that the biases are being correctly estimated justifies the inclusion
of a bias parameter in the proposed model, which contrasts with previous
works (Raykar et al., 2009; Groot et al., 2011).
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Chapter 6

Case study: supervised topic
models for human mobility
prediction

In the previous chapters we developed a supervised topic model that is able
to learn from multiple annotators with different levels of expertise. In this
chapter, we present a case study of the use of supervised topic models for
human mobility prediction.

While our transport systems are generally designed for habitual be-
haviour, the dynamics of large and mega cities systematically push it to its
limits. Particularly, transport planning and operations in large events are
well known to be a challenge. Not only they imply stress to the system on an
irregular basis, their associated mobility behavior is also difficult to predict.

With this problem as motivation, we present iOracle, an approach that,
given minimal data (event title, date and location) obtained from a feed of
event listings and a set of automated search queries, predicts the occurrence
of public transport overcrowding hotspots. Since iOracle works on textual
data, a supervised topic model is used as classification mechanism.

This work was developed in the Singapore-MIT Alliance for Research
and Technology centre (SMART) in collaboration with four other researchers:
Professor Francisco Câmara Pereira, Filipe Rodrigues, Manuel Frutuoso and
Stanislav Borysov, who contributed with guidance, suggestions, valuable dis-
cussions, data preparation and preprocessing.
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6.1 Proposed approach

The goal of the proposed approach is to predict overcrowding hotspots, by
using a historical smartcard dataset, of 5 months of data, together with a
dataset of event information captured from the internet. A hotspot is de-
fined as an observation of number of public transport arrivals exceeding the
80th percentile for at least 30 minutes, in practice, representing a continuous
series of bus/subway standing trips. This research was developed in collab-
oration with the Singapore Land Transport Authority (LTA) and aims to
solve the concrete objective of having a weekly feed with potential upcoming
overcrowding alarms.

iOracle combines MedLDA (Zhu et al., 2009), a maximum margin clas-
sifier topic modeling algorithm, with textual data obtained from automat-
ically generated queries. These queries are constructed from basic event
information (title, location, time) obtained from event listing websites.

This approach is novel in two ways: web search query content is ex-
plicitly included in the model (in fact, it is the only input for the model);
we apply a supervised topic model, which guarantees to search for the query
content that is more relevant for hotspot prediction. By using such a simple
input structure, we also make our model easily portable from city to city and
even domain (e.g. stock market).

6.2 Classification mechanism

MedLDA builds on the max-margin principle to train for classification as well
as regression. As it is explained in Section 2.3.2, MedLDA looks for the topics
that enable the maximum possible margin. Namely, in this case, topics will
be preferred that either strongly support, or strongly oppose, the likelihood
of a hotspot. The result is a combination of the SVM’s principles and LDA
that are trained jointly. As a consequence, MedLDA inherits the robustness
properties of the SVM and it demonstrated to outperform several state-of-
the-art approaches, such as sLDA (Blei & McAuliffe, 2007) and DiscLDA
(Lacoste-julien et al., 2009).

In fact, the choice of MedLDA for iOracle was subsequent to the anal-
ysis of the system behaviour when other classification mechanisms were em-
ployed. sLDA, as well as two-step methods including LDA and a logistic re-
gression and LDA and a SVM classifier were tested. Not surprisingly, sLDA
and MedLDA proved to have better classification results than the separated
approaches. Also, MedLDA showed to be the most accurate and efficient
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model. The observed difference between sLDA and MedLDA training times
was the strongest reason why MedLDA was chosen. Especially in this prac-
tical application context, the efficiency is a crucial factor and sLDA did not
exhibit to be as suitable as MedLDA.

The MedLDA’s classification rule for the document d is determined by:

c∗ = arg max
c

E[ηTc z̄|α,β], (6.1)

where the notation is the same used in the previous chapters: (c∗)d is the
predicted class, ηc is a class-specific set of weights, z̄d the topic proportions
of the document, α is the Dirichlet prior for the distribution of documents
over topics and β the distribution of words for each topic k (see Section 2.3.2
for further details).

For this particular case, we are interested in both ηc and z̄d, as the for-
mer can help us understand the relative weight of each topic in the determi-
nation of a hotspot, while the latter describes, for each event, the proportion
of each topic. We will also analyse the word distributions, βk for each topic.

6.3 Methodology

Figure 6.1 summarizes the architecture of the internet Oracle (iOracle). It
works in two different modes: training and prediction. The training mode
consists of collecting a set of events that share the same time window as the
smartcard dataset available. For each event, a set of queries is generated
and a binary label that identifies whether a hotspot has occurred or not is
created. The query results are aggregated into a single query document, as
explained below, becoming the input vector, x, while the label becomes the
target variable, y. As a result of this process, a set of K topics are estimated,
together with the per class max-margin η parameters, which are saved for the
prediction mode. As happens in (Zhu et al., 2009), the variational approxi-
mation for η, which is represented as q(η), follows a normal distribution, so
we only need to save the sufficient statistics (mean and variance).

The objective is to classify potential hotspots for future events. In pre-
diction mode, for each candidate event (retrieved from the list of announced
events), the corresponding queries are run, in order to obtain the query doc-
ument d. The iOracle algorithm performs inference on the MedLDA model,
by applying equation 6.1, using q(η) and the topic proportions z̄d of the query
document.
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Figure 6.1: Architecture of iOracle.

6.3.1 Sources of data

As it can be seen in Figure 6.1, iOracle handles two kinds of data: the data
from LTA and the internet-sourced data (in Figure 6.1: “Events database”
and “Query results”). LTA’s data comes from the Singaporean fully inte-
grated smartcard transit system, called EZLink. In the EZLink system, all
public transport modes (bus, Mass Rapid Transit, or MRT, and light rail, or
LR) have a distance-based fare system, calculated by tap-in and tap-out in
each ride. Fare is, thus, calculated based on the distance between tap-in and
tap-out GPS data. As a consequence, each individual trip is recorded in the
system with high spatial and temporal precision.

After selecting 5 different areas (see Figure 6.2) jointly with LTA, we
were provided with 5 months of data, from November 2012 to February 2012.
In Figure 6.3, it is shown the study areas in detail, in shaded polygons. The
Stadium area comprises two venues: Singapore Indoor Stadium (SIS) and
Kallang theatre. This area is generally isolated from other attractions or
major shopping malls. Orchard and Somerset form part of the “Orchard
road” district, famous for its shopping malls. It also holds a significant
number of events. Although individually they may have low significance,
when put together they can attract a large part of trips.

Harbourfront is the transportation gateway that gives access to Sentosa
Island, the largest entertainment area in Singapore. Finally, Singapore Expo
regularly hosts exhibition fairs and festivals.

Besides the EZLink data, it is fundamental for this approach to have
an events database with the lists of event titles, locations, start times (and
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Figure 6.2: Map of Singapore, with the study areas

Figure 6.3: Map of Singapore, with the study areas

ending times when available) and short descriptions. For the current ex-
periment, Eventful.org API was used to collect all the data. For training,
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data from the same time window as our EZLink dataset was collected. This
dataset is continuously increased on a daily basis.

This events database is, then, used for the query generation step. Web
search engines provide opportunity to ask questions in form of queries to
hopefully get some relevant information. Therefore, for each event of the
database, it is important to decide what questions to ask (information re-
trieval) and how to interpret the answers (information extraction from the
search results) in order to maximize prediction power of extracted features.
In this case study, sophisticated information retrieval techniques were not
touched, only two simple queries were used: event title and event venue
name. Also, only basic information from the search results like titles, snip-
pets (the short descriptions that appear below the title of every search result)
and URLs was extracted. Finally, for each event, the two used queries were
run in Bing.com search engine and their resultant titles and text snippets
were aggregated into a single document to train MedLDA.

6.3.2 Data preparation

In order to get the best out of the collected data, it had to be prepared
in multiple ways. There were choices to be made regarding the problem of
having simultaneous events, the definition of hotspot and, finally, events lists
and textual data need to go through cleaning procedures.

Simultaneous events, i.e., events sufficiently close in time and space,
can create complex interactions, as discussed in Pereira et al. (2015). From a
data modeling perspective, there is the challenge of putting together different
features from each event (e.g. categories, start times, Facebook likes). In
Pereira et al. (2015), an additive model was created, where each event is
separately represented, allowing to separate the total demand into individual
demand sources, including individual events and the routine component. In
this work, we decided to take a simpler, fully non-parametric, approach where
we stack together the query results of multiple events.

Similarly, we had to determine under what circumstances a particular
period in a specific area would be declared a hotspot. Thus, for each event in
the database, the EZLink arrivals time series for the bus and subway stops
that were (manually) associated to that venue were identified. We focused
on the period of 2 half-hours before the start time and the half-hour after.
If, at any of such period, the total demand exceeded the 80th percentile, it
would be defined as a hotspot. Figure 6.4 illustrates this concept.

Expectedly, using this definition there are much more non-hotspot in-
stances than positive ones, which could lead to the generation of flawed
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classifications. An unbalanced label set could cause the model’s tendency to
always predict the most common class, which, in this case, means generating
many false negative cases. Since, for a transit agency, a false negative is a
much more costly error than a false positive case, we adjusted the dataset
by repeating every positive input vector 7 times in the training set, so that
both positive and negative instances would be in the same proportion. This
way, the model is able to learn to distinguish the two classes fairly. Notice
that, at the test set side, we keep the original proportions, so the metrics we
use will still reflect the quality of the model on a realistic setting.

Another problem of our definition of hotspot is that events that hap-
pen more than once may represent a hotspot one day but not in the other
days. The existence of multiple instances with the same textual input vector
but different target values could “confuse” the model. Hence, all of these
contradictory instances were discarded, since we can not define their ground
truth labels.

Table 6.1 summarizes the statistics for study areas, event venues and
hotspots.

Expo Harbourfront Orchard Somerset Stadium
Venues 5 27 54 26 7
Events 266 265 116 77 26
Hotspots 39 16 8 3 19
Mean number of
hotspots per day

± stddev. *
0.41± 1.00 0.13 ± 0.64 0.17± 0.56 0.067± 0.25 0.95± 0.80

Table 6.1: Descriptive statistics for events and hotspots database.

∗ Only counting with days with events.

As for the events lists, even though they are generally well structured
and clean, there was a verification of the possible errors in venue spatial
coordinates as well as in temporal tags, particularly the start/end times.
These errors were, then, manually corrected. This approach is scalable for
spatial corrections (only once per venue), but harder for temporal tags. In
prediction mode at a transit agency, an approach may be to spot suspicious
temporal mistakes and have a simple interface to correct them.

Finally, in order to proceed with topic modeling, preprocessing of avail-
able textual information was the first crucial step. For titles and snippets
(from the web search results), we followed the standard natural language
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Figure 6.4: Arrivals data for a specific day.

processing procedure: kept only alphabetic symbols, removed stop and short
words (less that 3 symbols), snowball stemming, removed words that appear
only once. We also extended this approach using Wikipedia API calls for
particular lexical patterns (Noun + Noun, etc).

6.4 Experimental design

The results of our model depended on the following decisions: the selection
of query templates has a direct implication on the documents for the topic
model, since it is the only input in the model, and the classification mech-
anism parameters. MedLDA has several parameters, namely α, l (penalty
term for misclassifications) and C (penalty for soft margin slack variables).
These are user given parameters and there is no obvious intuition for their
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values, which means that an experiment evaluation was needed to choose
their values.

For choosing the queries, we first tested the model with just the search
results of the query with the title of the event. Since the type of events is
not uniform across all venues, we then compared the prediction accuracies of
using just that query and the results combining it with the query related to
the venues’ names. We verified that using the aggregation of the two queries’
outputs, we achieved better predictions.

The choice of MedLDA parameters followed a grid search methodol-
ogy, essentially by selecting a discrete set of values to try and choosing the
best combination. We tested with α ∈ {0.0001/K, 0.001/K, 0.01/K, 0.1/K},
l ∈ {1, 5, 8, 10, 12, 15, 20} and C ∈ {1, 10, 20, 30, 50}. The best resulting
combination was α = 0.001/K, l = 10 and C = 30.

We will first analyse our results in terms of their interpretability. We
will discuss the topics extracted, particularly, their word distributions, βk,
and their individual influence in the classification task, as represented by the
η vectors. Then, we will compare with a baseline model that does not apply
supervised topic models. It is essentially the typical two-stage model where
we determine the topics through LDA Blei et al. (2003b) and then train
a classifier (we chose and SVM for better comparability with MedLDA).
The comparison will be based on three measures: accuracy, F1-score and κ
statistic. Since accuracy is just the percentage of correctly classified instances
(Equation 6.4), it could be misleading as the test set is disproportionate in
the volume of the two classes. Therefore, the predictions’ F1-score and κ
statistics were analysed. F1-score is given by:

F1 =
2TP

2TP + FP + FN
, (6.2)

where TP is the number of positive instances correctly classified, FP is the
number of false alarms, in this case, the number of non-hotspots classified as
hotspots and FN is the number of positive instances predicted as negative.

The Kappa statistic is defined as:

κ =
OA−RA
1−RA , (6.3)

where OA is the observed accuracy calculated as:

OA =
TP − TN

T
, (6.4)

81



and RA is the random accuracy defined as:

RA =
(TN + FP )(TN + FN)(FN + TP )(FP + TP )

T 2
, (6.5)

where TP , FP and FN follow the same notation used in F1-score, TN are
the right classified negative cases and T is the total number of instances.

F1-score is an important metric since it relates the number of well
classified positive instances with the quantity of the missed ones. The Kappa
statistic, in turn, gives us a comparison between the performances of our
classification system and a random one. In other words, it confronts the
observed accuracy obtained by the model with the accuracy that any random
classifier would be expected to achieve based on the confusion matrix. That
is, if there are 20% of hotspots, a random classifier would probably predict
20% of positive instances and 80% of negative. We will see in the next section
that these two metrics reveal clearly the quality of the tested approaches.

We applied 10-fold cross validation and we used all events and hotspots
mentioned in Table 6.1.

6.5 Results

The topics generated by MedLDA are shown in Figure 6.5 along with their
assigned η values (etas). It can be seen that there are two dominant topics:
the first and the eighth. These are clearly the topics that have the largest
contribution in the classification of the events as hotspots or not. The re-
maining seven topics are, still, helpful in this discrimination in the decision
surface’s boundaries, as our analysis revealed.

We evaluated the model using 2, 6, 7, 8, 10, 20, 30 and 50 topics in
terms of its prediction quality as well as its topics interpretability. We started
by favoring accuracy, by trying big values of K. However, a large K would
make it difficult to comprehend the outcome of the model. Since we want
to study the relationship between the word distributions of the topics and
their individual contribution for the classification process, this would be a
drawback. Our goal is to understand the topics underlying explanation of
what makes an event a hotspot or not.

Therefore, K was decreased until a good trade-off between the clas-
sification performance and the topics understandability was achieved. We
observed that, for K values higher than 10, the prediction improvements
were marginal and that small values of K resulted in low F1-scores and κ
statistics values.
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−30−20−10 0 10 20 30
etas

1. expo sale asia show exhibit fair food pet trade hotel    

2. sentosa wave hous beach dharma music island live asia siloso    

3. stadium indoor kallang tour concert ticket clash sport world live    

4. kallang theatr jump live georg train benson room world guitar    

5. expo asia sale show fair food exhibit trade internat hall    

6. incanto east pirat world ferragamo sentosa resort salvator hotel perfum    

7. expo citi sale changi design point babi show megatex exhibit    

8. expo orchard parti beach siloso central sentosa zoukout hotel live    

Figure 6.5: Topics and their assigned η’s.

Also, we verified that using more than 6 topics resulted in groups of top-
ics highly correlated. Figure 6.6 exhibits this correlation using K ∈ {6, 7, 8},
in which the darkest colors represent the highest correlations. Ideally, there
would not be correlated topics, since a high similarity between groups of
topics could mean that there is multicollinearity. Multicollinearity, in this
case, would be having correlated values of η (our predictors), which would
affect our interpretation of the model’s outcome. Nevertheless, the difference
between the F1-scores using 7 (F1-score = 0.6369) or 8 topics (F1-score =
0.6597) justified our choice for K = 8.
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Figure 6.6: Correlation matrices resultant of applying different values of K.

83



Figure 6.7: Word clouds of topics.

Figure 6.7 illustrate the topics’ words and their strength inside the
topic. The biggest words are the words with higher probability in that topic.
Moreover, the word clouds with more vivid colors represent the topics more
“predictive” and, while the blue topics on the left match the positive η’s, the
others correspond to the negative ones (this relation is also shown in Figure
6.5).

It stands out that the word “expo” is a heavy word in four topics, a
phenomenon that can be associated with the correlations between the topics
that are depicted in Figure 6.6c. However, this also can be explained by
the fact that Expo is a very heterogeneous area, with a high percentage of
hotspots per day (see Table 6.1). In fact, topics reveal that “expo” can be
related to very distinct contexts: food, design, sale, pet and Megatex, which
is an electronics exposition.

We can also see that there are words clearly discriminative: events in
Sentosa, in the Indoor Stadium or in the Kallang Theatre are quite likely
to represent a hotspot. In fact, Stadium and Kallang Theatre belong to
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the Stadium zone, which have an average of 95% hotspots per day. On the
other hand, events in Ochard, which is mainly a shopping area, are more
representative of non-hotpots.

Mean accuracy Mean F1-score Mean κ statistic
LDA + SVM 0.9040 0.2583 0.2427
MedLDA 0.9030 0.6597 0.6053

Table 6.2: Comparison between LDA+SVM and MedLDA results.

Finally, by analysing the prediction results of both MedLDA’s and
LDA+SVM’s methods, it becomes evident that our classifier outperforms
the LDA+SVM approach, proving that MedLDA was a better option than
the two-step procedure. Even though the accuracies are very similar, the
contrast between the two is well manifested by the κ statistic values. While
our approach is approximately 61% better than a random classifier, the
LDA+SVM’s method demonstrates to have a high tendency to predict the
most popular class: non-hotspot. These are results for just a single run,
since the effect of stochasticity of both models was verified to be insignifi-
cant. That is, the F1-scores obtained in 30 runs were the same, probably due
to the binary nature of this problem and the small size of the testsets (10%
of the data is just 75 events).

These results show that iOracle can predict the correct hotspots with
a F1-score of 65.97% using only web search query content as input for the
model. Notice that one can possibly further improve the quality of this
classifier with other features, like type of day (e.g. weekend/weekday), time
of day, event ticket price when available or any other information that is
available. The unique advantage of our contribution is that it provides topics
that are much more discriminative than a typical two-stage process.
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Chapter 7

Work plan

This chapter describes the first and second semester activities. The initial
objectives outlined are compared to the ones achieved and the differences
between the two are justified. The first section is related to the first semester
and the second one to the second semester.

7.1 First semester

The first semester started with the study of the state of the art topics covered
in this thesis. Themes such as variational inference, topic models and learn-
ing from crowds were explored so that the necessary knowledge to execute
the required tasks of this thesis was acquired. This included a discussion
about the existent topic models, especially focusing on the supervised ap-
proaches, and learning from crowds methods, from which can be highlighted
the supervised latent Dirichlet allocation (sLDA) algorithm proposed by Blei
& McAuliffe (2007) and the framework described in Raykar et al. (2009).

Beyond the study of the state of the art, the objectives to this semester
were to develop the variational inference algorithm for the model, to imple-
ment it and, of course, the writing of the intermediate report. All of them
were accomplished. Moreover, the implemented model was validated and
evaluated in a set of diversified experiments that included real and simulated
annotators and text and image datasets. Since these tests and experiences
involved data with annotations, it was necessary to collect labeled textual
data, to process it using natural language processing techniques, to simulate
annotations based on previously defined annotators’ accuracies and to use
Amazon Mechanical Turk to obtain real annotations. These real annotations
were important, not only to assess the behavior of the model with truthful
data, but also to evaluate the real labelers’ expertise and biases.
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The first version of the multi-annotator supervised latent Dirichlet al-
location implemented (described in Appendix C) computed the topics and
the annotators reliability parameters β and π using maximum likelihood es-
timates. After this simpler variant of the model have been validated, in the
last weeks of the first semester, a fully Bayesian approach was designed. By
“fully Bayesian”, we mean that there are, now, two new priors: one over the
topics β and another over the annotators’ confusion matrices π. In other
words, instead of finding just the optimal values for these parameters, such
that the likelihood is maximized, a distribution for each of them is obtained.
In this way, it is performed Bayesian inference in the topics and the annota-
tors quality parameters to produce smooth posteriors and to control sparsity.

Besides this conceptual improvement, a more scalable variational in-
ference algorithm (using stochastic variational inference) was started to be
developed. It was further implemented and tested in the beginning of the
second semester.

Finally, in the first semester, the writing of a scientific article in-
tended to be submitted in the International Conference on Machine Learning
(ICML) 1 was also started.

7.2 Second semester

Beyond the continuation of the unfinished three tasks started in the first
semester: the development and implementation of the stochastic variational
inference algorithm, the model redesigning to include two new priors and
the writing of scientific article, some main challenges were considered to the
second semester. Those were:

• Application of the developed model to the problem of event
classification: Using the description of major social events such as
music concerts or football matches extracted from online event sources,
the idea was to study the relation between those descriptions and the
impact of the events, in order to predict valuable information like pop-
ularity indicators, attendance or even to distinguish relevant events of
spam. The main goal was to identify future demand disruptions related
to social events in public transports;

• Generalization of the developed model to regression problems:
The first implemented model was adapted to classification problems,

1http://icml.cc/2015

88



however, it could be useful to predict continuous response variables,
instead of a discrete set of classes. Therefore, it was defined as a chal-
lenge for the second semester the extension of the model to regression
problems;

• Generalization of the developed model to multi-label prob-
lems: MA-sLDA was initially developed for single-label problems,
hence, another generalization that was intended to be made was to take
into account data with multiple labels. Multi-label data is not equiv-
alent to multi-annotator data, since multi-label means having more
than one label per instance, while in multi-annotation problems there
are annotations given by several labelers and the knowledge about who
provided the labels is crucial;

• Writing of a second scientific article;

• Writing of the thesis.

Naturally, the unconcluded tasks of the first semester started the work
of the second one. The new version of the MA-sLDA and the new variational
inference algorithm were implemented, validated with the set of experiments
demonstrated in Chapter 5 and the results were analysed. Then, a paper
intended to be submitted to ICML was written presenting the new fully
Bayesian version of MA-sLDA including stochastic variational inference and
reporting the improvements obtained comparing to the related state of the
art approaches. This article was rejected in ICML, but latter accepted in
AAAI HCOMP2015 conference 2 and it is presented in Appendix E.

The next step was to design MA-sLDA for regression problems. The
development phase was assumed to be similar to the same process for the
classification model: to study the code that would be the base for our model
and, after that, to start extending it to account for multiple annotators.
Unfortunately, the sLDA code for regression did not performed as well as
it was supposed to. The experiences specified in Blei & McAuliffe (2007)
were replicated, yet, the prediction outcomes were far worse than the ones
showed in the paper. Since the author of the code did not give us any hint
of what could be the problem, the solution was to modify the classification
variant of sLDA code already studied in the first semester in order to adapt
it for prediction of continuous values. This was followed by the unavoidable
validation of the model.

2http://www.humancomputation.com/2015/
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When we managed to reproduce the accuracy results of sLDA for re-
gression documented in Blei & McAuliffe (2007), we finally initiated the
multi-annotator generalization. This was planned to be started earlier that
it actually did, consequence of the unexpected difficulty on getting the sLDA
for regression working.

At the time our proposed regression model got ready to be tested and
when I was already working as an invited research scientist at Singapore-
MIT Alliance for Research and Technology (SMART), some preparation of
the Singapore Land Transport Authority (LTA)’s data was also initiated.
The goal was to begin another planned task for the second semester: the
application of the developed model to the problem of event classification.
However, this plan also had a deviation from what it was outlined: since the
LTA’s data comprises real values of people’s arrivals at bus/subway stops,
i.e., the ground truth of our target variables, the generalization we proposed
that is able to learn from crowds would not be fundamental. Hence, it was
chosen the supervised topic model that empirically showed the best predic-
tion performances and efficiency in that context: MedLDA.

Although this turned out to be a case study about MedLDA for hu-
man mobility prediction, MA-sLDA would fit very well in this problem if,
instead of the data of Singapore LTA, annotated data was available. In fact,
to extract crowdsourced data about public transportation travelers is the
purpose of the Future Mobility Survey (FMS) (Pereira et al., 2013a). FMS
is a smartphone application developed in the Singaporean context also as a
collaborative project between the SMART and the Singapore LTA, but, it is
still in a field testing stage and that was the reason why we used LTA’s data
instead.

The primary objective of this part of the work was, then, to build a
model able to predict demand in special events by correlating internet search
query data with real measurements of transport usage. It was a project
of a five people’s team in which the classification mechanism of the system
(MedLDA) and the textual data preprocessing were my main responsibilities.
Therefore, until the end of the second semester, I was focused on it alongside
with the experimental evaluation of the MA-sLDA for regression.

With the contributions resultant of the work done in both semesters,
two new articles were started to be written: “Learning Supervised Topic
Models from Crowds”, presenting both MA-sLDA for classification and re-
gression, and “iOracle” introducing the method for human mobility predic-
tion characterized in Chapter 6.

In conclusion, apart from the generalization of the developed model
to multi-label problems defined as a goal for the second semester and the
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application of MA-sLDA to the problem of event classification, all the tasks
were accomplished as they were outlined.
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Chapter 8

Conclusion

This thesis proposed a supervised topic model that is able to learn from mul-
tiple annotators and crowds, by accounting for their biases and different levels
of expertise. Given the large sizes of modern datasets and considering that
the majority of the tasks for which crowdsourcing and multiple annotators are
desirable candidates, generally involve complex high-dimensional data such
as text and images, the proposed model constitutes a strong contribution
for the multi-annotator paradigm. Furthermore, an efficient stochastic vari-
ational inference algorithm was described, which gives the proposed models
the ability to scale to large datasets.

Two distinct variants of multi-annotator supervised topic model pro-
posed were developed, one for classification and another for regression. These
models share similar intuitions but they inevitably differ due the nature of
the target variables. Both of them are capable of jointly modeling the words
in documents as arising from a mixture of topics, as well as the latent true
target variables and the (noisy) answers of the multiple annotators. We em-
pirically showed, using both simulated and real annotators from Amazon
Mechanical Turk that the proposed model is able to outperform state-of-the-
art approaches in several real-world problems, such as classifying posts, news
stories and images or predicting the number of stars of a restaurant based on
its reviews. For this, we used various popular datasets from the state of the
art, that are commonly used for benchmarking machine learning algorithms.

Also, we included a case study about a real-world application of su-
pervised topic models, by proposing iOracle. iOracle predicts the occurrence
of public transport overcrowding hotspots using minimal data (event title,
date and location) obtained from a feed of event listings and a set of au-
tomated search queries. This work was developed in collaboration with the
Singapore Land Transport Authority and aims to answer the concrete chal-

93



lenge of transport planning. The presented approach is novel in the sense
that the only input for the model is search query content and, since a super-
vised topic model is applied, we can study the query content that is more
relevant for hotspot prediction. By using such a simple input structure, the
proposed method is easily portable from city to city and even domain (e.g.
stock market).

The experimental evaluation of iOracle revealed that our method suc-
cessfully classifies the overcrowded events with a κ statistic value of 60.53%
and a F1-score of 65.97%. Furthermore, the experiments’ results confirmed
the power of supervised topic models when compared to separated topic
modeling and classifier procedures.

With the contribution of the work performed in this thesis, one pub-
lication was accepted in AAAI HCOMP20151 (Appendix E) and another
two publications are about to be submitted. One, describing both multi-
annotator supervised LDA for classification and for regression, will be sub-
mitted to IEEE T-PAMI 2 and an article presenting iOracle has as target
Nature Scientic Reports 3.

Future work will explore the extension of the multi-annotator super-
vised topic model proposed to multi-label classification problems and the
enrichment of iOracle with other features.

1http://www.humancomputation.com/2015
2http://www.computer.org/web/tpami
3http://www.nature.com/srep/index.html
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Appendix A

Inference and parameter
estimation in the classification
model

In this appendix, a detailed version of Sections 3.2 and 3.3 is presented.

A.1 Derivation of the terms in the lower bound

Eq[log p(βi|τ)] = Eq
[

log
Γ(
∑V

k=1 τk)∏V
j=1 Γ(τj)

V∏

j=1

β
(τj−1)
i,j

]

= log Γ

( V∑

k=1

τk

)
−

V∑

j=1

log Γ(τj) +
V∑

j=1

(τj − 1)Eq[log βi,j].

(A.1)

Eq[log p(πrc |ω)] = Eq
[

log
Γ(
∑C

t=1 ωt)∏C
l=1 Γ(ωl)

C∏

l=1

(
πrc,l
)(ωl−1)

]

= log Γ

( C∑

t=1

ωt

)
−

C∑

l=1

log Γ(ωl) +
C∑

l=1

(ωl − 1)Eq[log πrc,l].

(A.2)
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Eq[log p(θd|α)] = Eq
[

log
Γ(
∑K

j=1 αj)∏K
i=1 Γ(αi)

K∏

i=1

(θdi )
(αi−1)

]

= log Γ

( K∑

j=1

αj

)
−

K∑

i=1

log Γ(αi) +
K∑

i=1

(αi − 1)Eq[log θdi ].

(A.3)

Eq[log p(zdn|θd)] = Eq
[

log
K∏

i=1

(
θdi
)zdn,i

]
=

K∑

i=1

Eq[zdn,i]Eq[log θdi ]

=
K∑

i=1

φdn,iEq[log θdi ]. (A.4)

Eq[log p(wdn|zdn,β)] = Eq
[

log
V∏

j=1

(βzdn,j)
wdn,j

]
=

V∑

j=1

Eq[wdn,j]Eq[log βzdn,j]

=
V∑

j=1

wdn,jEq[log βzdn,j] =
V∑

j=1

wdn,jEq
[ K∑

i=1

zdn,i log βi,j

]

=
V∑

j=1

K∑

i=1

wdn,jφ
d
n,iEq[log βi,j]. (A.5)

Eq[log p(yd,r|cd,πr)] =Eq
[

log
C∏

l=1

(πrcd,l)
yd,rl

]
= Eq

[ C∑

l=1

yd,rl log πrcd,l

]

=
C∑

c=1

λdc

C∑

l=1

Eq[yd,rl ]Eq[log πrc,l] =
C∑

c=1

C∑

l=1

λdcy
d,r
l Eq[log πrc,l].

(A.6)

Eq[log q(πrc |ξrc )] = Eq
[

log
Γ(
∑C

t=1 ξ
r
c,t)∏C

l=1 Γ(ξrc,l)

C∏

l=1

(
πrc,l
)(ξrc,l−1)

]

= log Γ

( C∑

t=1

ξrc,t

)
−

C∑

l=1

log Γ(ξrc,l) +
C∑

l=1

(ξrc,l − 1)Eq[log πrc,l].

(A.7)
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Eq[log q(βi|ζi)] = Eq
[

log
Γ(
∑V

k=1 ζi,k)∏V
j=1 Γ(ζi,j)

V∏

j=1

(
βi,j
)(ζi,j−1)

]

= log Γ

( V∑

k=1

ζi,k

)
−

V∑

j=1

log Γ(ζi,j) +
V∑

j=1

(ζi,j − 1)Eq[log βi,j]. (A.8)

Eq[log q(θd|γd)] = Eq
[

log
Γ(
∑K

j=1 γ
d
j )

∏K
i=1 Γ(γdi )

K∏

i=1

(
θdi
)(γdi −1)

]

= log Γ

( K∑

j=1

γdj

)
−

K∑

i=1

log Γ(γdi ) +
K∑

i=1

(γdi − 1)Eq[log θdi ]. (A.9)

Eq[log q(zdn|φdn)] = Eq
[

log
K∏

i=1

(
φdn,i
)zdn,i

]
=

K∑

i=1

Eq[zdn,i]Eq[log φdn,i]

=
K∑

i=1

φdn,i log φdn,i. (A.10)

Eq[log q(cd|λd)] = Eq
[

log
C∏

l=1

(
λdl
)cdl
]

=
C∑

l=1

Eq[cdl ]Eq[log λdl ] =
C∑

l=1

λdl log λdl .

(A.11)

Eq[log p(cd|z̄d, η)] = Eq
[

log
exp(ηT

cd
z̄d)

∑C
l=1 exp(ηTl z̄

d)

]

=

(
Eq[ηTcd z̄

d]− Eq
[

log
C∑

l=1

exp(ηTl z̄
d)

])
. (A.12)

The first term can be easily computed as:

Eq[ηTcd z̄
d] = Eq

[ K∑

j=1

ηcd,j z̄
d
j

]
=

C∑

l=1

λdl

K∑

j=1

ηl,jEq[z̄dj ]

=
C∑

l=1

λdl

K∑

j=1

ηl,j
1

Nd

Nd∑

n=1

Eq[zdn,j] =
1

Nd

C∑

l=1

λdl

Nd∑

n=1

K∑

j=1

ηl,jφ
d
n,j

=
1

Nd

C∑

l=1

λdl

Nd∑

n=1

ηTl φ
d
n. (A.13)
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Appealing to Jensens inequality, the second term is given by:

− Eq
[

log
C∑

l=1

exp(ηTl z̄
d)

]
> − log

C∑

l=1

Eq[exp(ηTl z̄
d)]

= − log
C∑

l=1

Eq
[

exp(ηTl
1

Nd

Nd∑

n=1

zdn)

]
= − log

C∑

l=1

Eq
[ Nd∏

n=1

exp(ηTl
1

Nd

zdn)

]

= − log
C∑

l=1

Nd∏

n=1

(
φdn
)T

exp
(
ηl

1

Nd

)

= − log
C∑

l=1

(
φdj
)T

exp(ηl
1

Nd

)

Nd∏

n=1,n 6=j

(
φdn
)T

exp
(
ηl

1

Nd

)

= − log
(
φdj
)T C∑

l=1

exp(ηl
1

Nd

)

Nd∏

n=1,n 6=j

(
φdn
)T

exp
(
ηl

1

Nd

)

︸ ︷︷ ︸
=h

= − log
(
φdj
)T
h = − log hTφdj . (A.14)

where we defined h =
∑C

l=1 exp(ηl
1
Nd

)
∏Nd

n=1,n 6=j
(
φdn
)T

exp
(
ηl

1
Nd

)
.

A.2 Optimizing the lower bound

A.2.1 Optimizing w.r.t. γdi

Collecting only the terms in the bound that contain γ gives:

L[γ] =
D∑

d=1

K∑

i=1

(αi − 1)

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

))

+
D∑

d=1

Nd∑

n=1

K∑

i=1

φdn,i

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

))

−
D∑

d=1

(
log Γ

( K∑

j=1

γdj

)
−

K∑

i=1

log Γ(γdi )

)

−
D∑

d=1

(
K∑

i=1

(γdi − 1)

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

)))
(A.15)
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=
D∑

d=1

K∑

i=1

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

))(
αi +

Nd∑

n=1

φdn,i − γdi

)

−
D∑

d=1

log Γ

( K∑

j=1

γdj

)
+

D∑

d=1

K∑

i=1

log Γ(γdi )

=
D∑

d=1

K∑

i=1

Ψ(γdi )

(
αi +

Nd∑

n=1

φdn,i − γdi

)
−

D∑

d=1

K∑

i=1

Ψ

( K∑

j=1

γdj

)(
αi +

Nd∑

n=1

φdn,i − γdi

)

−
D∑

d=1

log Γ

( K∑

j=1

γdj

)
+

D∑

d=1

K∑

i=1

log Γ(γdi ).

(A.16)

Taking derivatives w.r.t. γdi gives:

∂L[γ]

∂γdi
= Ψ′(γdi )

(
αi +

Nd∑

n=1

φdn,i − γdi
)
−Ψ(γdi )

−Ψ′
( K∑

j=1

γdj

) K∑

j=1

(
αj +

Nd∑

n=1

φdn,j − γdj
)

+ Ψ

( K∑

j=1

γdj

)
−Ψ

( K∑

j=1

γdj

)
+ Ψ(γdi )

= Ψ′(γdi )

(
αi +

Nd∑

n=1

φdn,i − γdi
)
−Ψ′

( K∑

j=1

γdj

) K∑

j=1

(
αj +

Nd∑

n=1

φdn,j − γdj
)
.

(A.17)

Setting this derivative to zero in order to get a maximum (notice that the
solutions for the different γdi are coupled, hence they have to be solved as a
system of linear equations), we get the solution:

γdi = αi +

Nd∑

n=1

φdn,i, (A.18)

which can be easily verified by submitting the value for γdi above in the
expression for the partial derivatives.
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A.2.2 Optimizing w.r.t. φdn,i

Collecting only the terms in the bound that contain φdn,i and adding the
necessary Lagrange multipliers gives:

L[φdn,i]
=

D∑

d=1

Nd∑

n=1

K∑

i=1

φdn,i

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

))

+
D∑

d=1

Nd∑

n=1

V∑

j=1

K∑

i=1

wdn,jφ
d
n,i

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))

+
D∑

d=1

(
1

Nd

C∑

l=1

λdl

Nd∑

n=1

ηTl φ
d
n −

Nd∑

n=1

(hT (φdn)old)−1(hTφdn)

)

D∑

d=1

(
−

Nd∑

n=1

log(hT (φdn)old) +Nd

)

−
D∑

d=1

Nd∑

n=1

K∑

i=1

φdn,i log φdn,i + µ

( K∑

k=1

φdn,k − 1

)
. (A.19)

Taking derivatives w.r.t. φdn,i gives:

∂L[φdn,i]

∂φdn,i
= Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,i − (hT (φdn)old)−1hi − log φdn,i − 1 + µ. (A.20)

Setting this derivative to zero and solving for φdn,i gives:

Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,i − (hT (φdn)old)−1hi − log φdn,i − 1 + µ = 0
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⇔ log φdn,i = Ψ(γi)−Ψ

( K∑

j=1

γj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,i − (hT (φdn)old)−1hi − 1 + µ

⇔ φdn,i = exp

(
Ψ(γi)−Ψ

( K∑

j=1

γj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,i − (hT (φdn)old)−1hi − 1 + µ

)

⇔ φdn,i = exp

(
Ψ(γi)−Ψ

( K∑

j=1

γj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,i − (hT (φdn)old)−1hi − 1

)
exp(µ). (A.21)

Plugging this expression in the constraint and solving for µ (or exp(µ)) gives:

K∑

k=1

φdn,k = 1

⇔
K∑

k=1

exp

(
Ψ(γk)−Ψ

( K∑

j=1

γj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,k − (hT (φdn)old)−1hk − 1 + µ

)
= 1

⇔
K∑

k=1

exp

(
Ψ(γk)−Ψ

( K∑

j=1

γj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

+
1

Nd

C∑

l=1

λdl ηl,k − (hT (φdn)old)−1hk − 1

)
exp(µ) = 1
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⇔ exp(µ) =
1

∑K
k=1 exp

(
Ψ(γk)−Ψ

(∑K
j=1 γj

)
+
∑V

j=1w
d
n,jΨ(ζi,j)

)

× 1

−∑V
j=1w

d
n,jΨ(

∑V
k=1 ζi,k

)
+
∑K

k=1 exp
(

1
Nd

∑C
l=1 λ

d
l ηl,k − (hT (φdn)old)−1hk − 1

) .

(A.22)

Plugging this expression back in the expression for φdn,i gives the solution:

φdn,i =

exp

(
Ψ(γi)−Ψ

(∑K
j=1 γj

)
+
∑V

j=1w
d
n,jΨ(ζi,j)

)

∑K
k=1 exp

(
Ψ(γk)−Ψ

(∑K
j=1 γj

)
+
∑V

j=1w
d
n,jΨ(ζi,j)

)

×
exp

(
1
Nd

∑C
l=1 λ

d
l ηl,i − (hT (φdn)old)−1hi − 1−∑V

j=1w
d
n,jΨ

(∑V
k=1 ζi,k

))

∑K
k=1 exp

(∑C
l=1 λ

d
l ηl,k

Nd
− (hT (φdn)old)−1hk − 1−∑V

j=1w
d
n,jΨ

(∑V
k=1 ζi,k

))

∝ exp

(
Ψ(γi)−Ψ

( K∑

j=1

γj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

))

× exp

(∑C
l=1 λ

d
l ηl,i

Nd

− (hT (φdn)old)−1hi

)

∝ exp

(
Ψ(γi) +

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)
+

∑C
l=1 λ

d
l ηl,i

Nd

)

exp

(
− (hT (φdn)old)−1hi

)
. (A.23)
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A.2.3 Optimizing w.r.t. λdl

By collecting only the terms in the bound that contain λdl and adding the
necessary Lagrange multipliers, we have that:

L[λdl ]
=

D∑

d=1

(
1

Nd

C∑

l=1

λdl

Nd∑

n=1

ηTl φ
d
n

)

+
D∑

d=1

R∑

r=1

C∑

l=1

C∑

c=1

λdl y
d,r
c

(
Ψ(ξrl,c)−Ψ

( C∑

t=1

ξrl,t

))

−
D∑

d=1

C∑

l=1

λdl log λdl + µ

( C∑

k=1

λdk − 1

)

=
D∑

d=1

C∑

l=1

λdl η
T
l φ

d +
D∑

d=1

R∑

r=1

C∑

l=1

C∑

c=1

λdl y
d,r
c

(
Ψ(ξrl,c)−Ψ

( C∑

t=1

ξrl,t

))

−
C∑

l=1

λdl log λdl + µ

( C∑

k=1

λdk − 1

)
. (A.24)

where we defined φd = 1
Nd

∑Nd
n=1 φ

d
n.

Taking derivatives w.r.t. λdl gives:

∂L[λdl ]

∂λdl
= ηTl φ

d +
R∑

r=1

C∑

c=1

yd,rc Ψ(ξrl,c)−
R∑

r=1

C∑

c=1

yd,rc Ψ

( C∑

t=1

ξrl,t

)
− log λdl − 1 + µ.

(A.25)

Setting this derivative to zero and solving for λdl gives:

ηTl φ
d +

R∑

r=1

C∑

c=1

yd,rc Ψ(ξrl,c)−
R∑

r=1

C∑

c=1

yd,rc Ψ

( C∑

t=1

ξrl,t

)
− log λdl − 1 + µ = 0

⇔ log λdl = ηTl φ
d +

R∑

r=1

C∑

c=1

yd,rc Ψ(ξrl,c)−
R∑

r=1

C∑

c=1

yd,rc Ψ

( C∑

t=1

ξrl,t

)
− 1 + µ

⇔ λdl = exp

(
ηTl φ

d +
R∑

r=1

C∑

c=1

yd,rc Ψ(ξrl,c)−
R∑

r=1

C∑

c=1

yd,rc Ψ

( C∑

t=1

ξrl,t

)
− 1

)
exp(µ).

(A.26)
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Plugging this expression in the constraint and solving for µ (or exp(µ))
gives:

K∑

k=1

λdk = 1

⇔
K∑

k=1

exp

(
ηTk φ

d +
R∑

r=1

C∑

c=1

yd,rc Ψ(ξrl,c)−
R∑

r=1

C∑

c=1

yd,rc Ψ

( C∑

t=1

ξrl,t

)
− 1

)
exp(µ) = 1

⇔ exp(µ) =
1

∑K
k=1 exp

(
ηTk φ

d +
∑R

r=1

∑C
c=1 y

d,r
c Ψ(ξrl,c)

)

× 1

∑K
k=1 exp

(
−∑R

r=1

∑C
c=1 y

d,r
c Ψ

(∑C
t=1 ξ

r
l,t

)
− 1

) (A.27)

Plugging this expression back in the expression for λdl gives the solution:

λdl =

exp

(
ηTl φ

d +
∑R

r=1

∑C
c=1 y

d,r
c Ψ(ξrl,c)−

∑R
r=1

∑C
c=1 y

d,r
c Ψ

(∑C
t=1 ξ

r
l,t

))

∑K
k=1 exp

(
ηTk φ

d +
∑R

r=1

∑C
c=1 y

d,r
c Ψ(ξrl,c)−

∑R
r=1

∑C
c=1 y

d,r
c Ψ

(∑C
t=1 ξ

r
l,t

))

∝ exp

(
ηTl φ

d +
R∑

r=1

C∑

c=1

yd,rc Ψ(ξrl,c)−
R∑

r=1

C∑

c=1

yd,rc Ψ

( C∑

t=1

ξrl,t

))
. (A.28)

Optimizing w.r.t. ζi,j

Collecting only the terms in the log-likelihood that contain ζ yields:

L[ζ] =
K∑

i=1

V∑

j=1

(τj − 1)

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))

+
D∑

d=1

Nd∑

n=1

V∑

j=1

wdn,j

K∑

i=1

φdn,i

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))

−
K∑

i=1

log Γ

( V∑

k=1

ζi,k

)
+

K∑

i=1

V∑

j=1

log Γ(ζi,j)

−
K∑

i=1

V∑

j=1

(ζi,j − 1)

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))
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=
K∑

i=1

V∑

j=1

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))(
τj +

D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i − ζi,j

)

−
K∑

i=1

log Γ

( V∑

k=1

ζi,k

)
+

K∑

i=1

V∑

j=1

log Γ(ζi,j)

=
K∑

i=1

V∑

j=1

Ψ(ζi,j)

(
τj +

D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i − ζi,j

)

−
K∑

i=1

V∑

j=1

Ψ

( V∑

k=1

ζi,k

)(
τj +

D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i − ζi,j

)

−
K∑

i=1

log Γ

( V∑

k=1

ζi,k

)
+

K∑

i=1

V∑

j=1

log Γ(ζi,j). (A.29)

Taking derivatives w.r.t. ζi,j gives:

∂L[ζ]

∂ζi,j
= Ψ′(ζi,j)

(
τj +

D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i − ζi,j

)
−Ψ(ζi,j)

−Ψ′
( V∑

k=1

ζi,k

) V∑

k=1

(
τk +

D∑

d=1

Nd∑

n=1

wdn,kφ
d
n,i − ζi,k

)
+ Ψ

( V∑

k=1

ζi,k

)

−Ψ

( V∑

k=1

ζi,k

)
+ Ψ(ζi,j)

= Ψ′(ζi,j)

(
τj +

D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i − ζi,j

)

−Ψ′
( V∑

k=1

ζi,k

) V∑

k=1

(
τk +

D∑

d=1

Nd∑

n=1

wdn,kφ
d
n,i − ζi,k

)
. (A.30)

Setting this derivative to zero in order to get a maximum (notice that the
solutions for the different ζi,j are coupled, hence they have to be solved as a
system of linear equations), we get the solution:

ζi,j = τj +
D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i. (A.31)

which can be easily verified by submitting the value for ζi,j above in the
expression for the partial derivatives.
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A.2.4 Optimizing w.r.t. ξrc,l

Collecting only the terms in the log-likelihood that contain ξ gives:

L[ξ] =
R∑

r=1

C∑

c=1

C∑

l=1

(ωl − 1)

(
Ψ(ξrc,l)−Ψ

( C∑

t=1

ξrc,t

))

+
D∑

d=1

R∑

r=1

C∑

c=1

C∑

l=1

λdcy
d,r
l

(
(Ψ(ξrc,l)−Ψ

( C∑

t=1

ξrc,t

))

−
R∑

r=1

C∑

c=1

(
log Γ

( C∑

t=1

ξrc,t

)
−

C∑

l=1

log Γ(ξrc,l)

+
C∑

l=1

(ξrc,l − 1)

(
Ψ(ξrc,l)−Ψ

( C∑

t=1

ξrc,t

))

=
R∑

r=1

C∑

c=1

C∑

l=1

(
Ψ(ξrc,l)−Ψ

( C∑

t=1

ξrc,t

))(
ωl +

D∑

d=1

λdcy
d,r
l − ξrc,l

)

−
R∑

r=1

C∑

c=1

log Γ

( C∑

t=1

ξrc,t

)
+

R∑

r=1

C∑

c=1

C∑

l=1

log Γ(ξrc,l)

=
R∑

r=1

C∑

c=1

C∑

l=1

Ψ(ξrc,l)

(
ωl +

D∑

d=1

λdcy
d,r
l − ξrc,l

)

−
R∑

r=1

C∑

c=1

C∑

l=1

Ψ

( C∑

t=1

ξrc,t

)(
ωl +

D∑

d=1

λdcy
d,r
l − ξrc,l

)

−
R∑

r=1

C∑

c=1

log Γ

( C∑

t=1

ξrc,t

)
+

R∑

r=1

C∑

c=1

C∑

l=1

log Γ(ξrc,l). (A.32)

Taking derivatives w.r.t. ξrc,l gives:

∂L[ξ]

∂ξrc,l
= Ψ′(ξrc,l)

(
ωl +

D∑

d=1

λdcy
d,r
l − ξrc,l

)
−Ψ(ξrc,l)

−Ψ′
( C∑

t=1

ξrc,t

) C∑

t=1

(
ωt +

D∑

d=1

λdcy
d,r
t − ξrc,t

)

+ Ψ

( C∑

t=1

ξrc,t

)
−Ψ

( C∑

t=1

ξrc,t

)
+ Ψ(ξrc,l)
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= Ψ′(ξrc,l)

(
ωl +

D∑

d=1

λdcy
d,r
l − ξrc,l

)

−Ψ′
( C∑

t=1

ξrc,t

) C∑

t=1

(
ωt +

D∑

d=1

λdcy
d,r
t − ξrc,t

)
. (A.33)

Setting this derivative to zero in order to get a maximum (notice that the
solutions for the different ξrc,l are coupled, hence they have to be solved as a
system of linear equations), we get the solution:

ξrc,t = ωt +
D∑

d=1

λdcy
d,r
t . (A.34)

which can be easily verified by submitting the value for ξrc,l above in the
expression for the partial derivatives.

A.3 Parameter estimation

A.3.1 Estimating ηl,i

Collecting only the terms in the log-likelihood that contain ηl yields:

L[ηl,i] =
D∑

d=1

1

Nd

C∑

l=1

λdl

Nd∑

n=1

ηTl φ
d
n − log

C∑

l=1

λdl

Nd∏

n=1

(
K∑

i=1

φdn,i exp
(
ηl,i

1

Nd

))
.

(A.35)

Taking derivatives w.r.t. ηl,i gives:

∂L[ηl,i]

∂ηl,i
=

D∑

d=1

λdlφn
d

−
D∑

d=1

λdl
∑Nd

n=1

[
1
Nd
φdn,i exp

(
1
Nd
ηc,i

)]∏Nd
j=1,j 6=n

[
∑K

i=1 φ
d
j,i exp

(
1
Nd
ηc,i

)

∑C
l=1 λ

d
l

∏Nd
n=1

(
∑K

i=1 φ
d
n.i exp

(
ηl,i

1
Nd

))

115



= λdl

D∑

d=1

φn
d × λdl

D∑

d=1



−

∑Nd

n=1

[
1
Ndφ

d
n,i exp

(
1
Ndηc,i

)]

∑C
l=1 λ

d
l

∏Nd

n=1

(
∑K

i=1 φ
d
n,i exp

(
ηl,i

1
Nd

))




× λdl
D∑

d=1




∏Nd

j=1

[
∑K

i=1 φ
d
j,i exp

(
1
Ndηc,i

)]

∑K
i=1 φ

d
n,i − exp

(
1
Ndηc,i

)



. (A.36)

Setting this derivative to zero does not lead to a closed-form solution.
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Appendix B

Inference and parameter
estimation in the regression
model

In this appendix, a detailed version of Sections 4.2 and 4.3 is presented. Re-
call that in the Chapter 3, we already derived Eq[log p(βi|τ)],Eq[log p(θd|α),
Eq[log p(zdn|θd)] and Eq[log p(wdn|zdn,β)]. Since the regression model differs
slightly from the classification one, here, only the derivations of the non-
common terms of the evidence lower bound and the optimization of the new
variables are obtained.

B.1 Derivation of the terms in the lower bound

Eq[log p(yd,r|xd, br, vr)] = Eq[logNormal(yd,r|xd + br, vr)]

= Eq
[

log
1√

2πvr
exp

(
−
(
yr − (xd + br)

)2

2(vr)2

)]

= Eq
[
− (yr − xd − br)2

2(vr)2

]
− Eq

[
log
(
vr
√

2π
)]

= −
(
yr −md − br

)2

2vr
− 1

2
log
(
2πvr

)
(B.1)
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Eq[log p(xd|z̄d, η, σ)] = Eq
[

log

(
1√

2πσ2
exp

(
− (xd − ηT z̄d)2

2σ2

))]

= Eq
[
− 1

2
log(2πσ2)− (xd)2 − 2xdηT z̄d + ηT z̄d(z̄d)Tη

2σ2

]

=
1

2
log(2πσ2)− 1

2σ2

(
Eq
[
(xd)2

]

− 2Eq[xd]ηTEq[z̄d] + ηTEq
[
z̄d(z̄d)T

]
η

)
(B.2)

B.2 Optimizing the lower bound

B.2.1 Optimizing w.r.t. φdn,i

By collecting only the terms in the bound that contain φdn,i and adding the
necessary Lagrange multipliers, we have that:

L[φdn,i]
=

D∑

d=1

Nd∑

n=1

K∑

i=1

φdn,i

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

))

+
D∑

d=1

Nd∑

n=1

V∑

j=1

K∑

i=1

wdn,jφ
d
n,i

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))

−
D∑

d=1

1

2σ2

(
− 2mdηT

1

Nd

Nd∑

n=1

φdn

)

−
D∑

d=1

1

2σ2

(
ηT

1

(Nd)2

( Nd∑

n=1

Nd∑

m6=n

φdn(φdm)T +
Nd∑

n=1

diag(φdn)

)
η

)

−
D∑

d=1

Nd∑

n=1

K∑

i=1

φdn,i log φdn,i + µ

( K∑

k=1

φdn,k − 1

)
, (B.3)
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where we defined φ
d

= 1
Nd

∑Nd

n=1 φ
d
n. Taking derivatives w.r.t. φdn,i gives:

∂L[φdn,i]

∂φdn,i
= Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

− 1

2σ2

(
− 2mdηi

1

Nd
+ ηi

1

(Nd)2

( Nd∑

m 6=n

φdm + 1

)
ηi

)
− log φdn,i − 1 + µ.

(B.4)

Setting this derivative to zero and solving for φdn,i gives:

Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

− 1

2σ2

(
− 2mdηi

1

Nd
+ ηT

1

(Nd)2

( Nd∑

m6=n

φdm + 1

)
ηi

)
− log φdn,i − 1 + µ = 0

⇔ log φdn,i = Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

− 1

2σ2

(
− 2mdηi

1

Nd
+ ηi

1

(Nd)2

( Nd∑

m6=n

φdm + 1

)
ηi

)
− 1 + µ

⇔ φdn,i = exp

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

− 1

2σ2

(
− 2mdηi

1

Nd
+ ηi

1

(Nd)2

( Nd∑

m6=n

φdm + 1

)
ηi

)
− 1 + µ

)
. (B.5)
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Plugging this expression in the constraint and solving for µ (or exp(µ)) yields:

K∑

k=1

φdn,k = 1

⇔
K∑

k=1

exp

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

− 1

2σ2

(
− 2mdηT

1

Nd
+ ηT

1

(Nd)2

(
Nd

Nd∑

m 6=n

φdm + 1

)
η

)
− 1 + µ

)
= 1

⇔
K∑

k=1

exp

(
Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
+

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)

− 1

2σ2

(
− 2mdη

1

Nd
+ ηT

1

(Nd)2

(
Nd

Nd∑

m6=n

φdm + 1

)
η

)
− 1

)
exp(µ) = 1

⇔ exp(µ) =

1

∑K
k=1 exp

(
Ψ(γdi )−Ψ

(∑K
j=1 γ

d
j

)
+
∑V

j=1w
d
n,jΨ(ζi,j)−

∑V
j=1w

d
n,jΨ

(∑V
k=1 ζi,k

))

× 1

∑K
k=1 exp

(
− 1

2σ2

(
− 2mdη 1

Nd + ηT 1
(Nd)2

(
Nd
∑Nd

m 6=n φ
d
m + 1

)
η

)
− 1

) .

(B.6)
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Plugging this expression back in the expression for φdn,i gives the solution:

φdn,i =

exp

(
Ψ(γdi )−Ψ

(∑K
j=1 γ

d
j

)
+
∑V

j=1w
d
n,jΨ(ζi,j)−

∑V
j=1w

d
n,jΨ

(∑V
k=1 ζi,k

))

∑K
k=1 exp

(
Ψ(γdi )−Ψ

(∑K
j=1 γ

d
j

)
+
∑V

j=1w
d
n,jΨ(ζi,j)−

∑V
j=1w

d
n,jΨ

(∑V
k=1 ζi,k

))

×
exp

(
− 1

2σ2

(
− 2mdη 1

Nd + ηT 1
(Nd)2

(
Nd
∑Nd

m 6=n φ
d
m + 1

)
η

)
− 1

)

∑K
k=1 exp

(∑K
k=1 exp

(
− 1

2σ2

(
− 2mdη 1

Nd + ηT 1
(Nd)2

(
Nd
∑Nd

m6=n φ
d
m + 1

)
η

)
− 1

))

∝ exp

(
Ψ(γi) +

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

))

× exp

(
− 1

2σ2

(
− 2mdη

1

Nd
+ ηT

1

(Nd)2
(
Nd

Nd∑

m6=n

φdm + 1
)
η

))

∝ exp

(
Ψ(γi) +

V∑

j=1

wdn,jΨ(ζi,j)−
V∑

j=1

wdn,jΨ

( V∑

k=1

ζi,k

)
+

md

Ndσ2
η

)

× exp

(
−
ηTNd

∑Nd

m6=n φ
d
mη + ηTη

2(Nd)2σ2

)
. (B.7)

B.2.2 Optimizing w.r.t. md

We again start by collecting only the terms in the bound that contain md.

L[md] = −
D∑

d=1

R∑

r=1

−
(
yr −md − br

)

2vr

+
D∑

d=1

− 1

2σ2

(
(md)2 − 2mdηT

1

Nd

Nd∑

n=1

φdn

)
. (B.8)

Taking derivatives w.r.t. md gives:

∂L[md]

∂md
=

R∑

r=1

(
− 1

2vr

(
− 2yd,r + 2(md) + 2br

))
− 1

2σ2

(
− 2md − 2ηT

1

Nd

Nd∑

n=1

φdn

)
.

(B.9)
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Setting this derivative to zero and solving for md yields:

∂L[md]

∂md
=

R∑

r=1

(
− 1

2vr

(
− 2yd,r + 2(md) + 2br

))
−

1

2σ2

(
− 2md − 2ηT

1

Nd

Nd∑

n=1

φdn

)
= 0

⇔
R∑

r=1

−2md

2vr
− −2md

2σ2
= −

R∑

r=1

(
−
(
− 2yd,r + 2br

)

2vr

)

+
(−2ηT 1

Nd

∑Nd

n=1 φ
d
n

)

2σ2

⇔
R∑

r=1

−σ2md + vrmd

vrσ2
=

R∑

r=1

−yd,r + br

vr
− ηT 1

Nd

∑Nd

n=1 φ
d
n

σ2

⇔ md =
R∑

r=1

yd,rσ2 − brσ2 + vrηT 1
Nd

∑Nd

n=1 φ
d
n

σ2 + vr
. (B.10)

B.2.3 Optimizing w.r.t. νd

Collecting only the terms in the bound that contain ν gives:

L[ν] =
D∑

d=1

R∑

r=1

− 1

2vr
(νd)− 1

2σ2
νd +

1

2
log(2πνd). (B.11)

Taking derivatives w.r.t. νd gives:

∂L[νd]

∂νd
=

R∑

r=1

− 1

2vr
− 1

2σ2
+

1

2νd
. (B.12)

Setting this derivative to zero and solving for νd gives:

R∑

r=1

− 1

2vr
− 1

2σ2
+

1

2νd
= 0

⇔ νd = σ2 +
R∑

r=1

vr. (B.13)
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B.3 Parameter estimation

B.3.1 Estimating η

By collecting only the terms in the log-likelihood that contain ηl, the objective
function becomes:

L[η] =
D∑

d=1

− 1

2σ2

(
− 2mdηT

1

Nd

Nd∑

n=1

φdn + ηTEq
[
z̄d(z̄d)T

]
η

)

=
D∑

d=1

(
1

σ2
mdηT

1

Nd

Nd∑

n=1

φdn −
1

2σ2
ηTEq

[
z̄d(z̄d)T

]
η

)
. (B.14)

Taking derivatives w.r.t. η gives:

D∑

d=1

(
1

σ2
md 1

Nd

Nd∑

n=1

φdn −
1

σ2
Eq
[
z̄d(z̄d)T

]
η

)
. (B.15)

Setting this derivative to zero and solving for η yields:

D∑

d=1

(
1

σ2
md 1

Nd

Nd∑

n=1

φdn −
1

σ2
Eq
[
z̄d(z̄d)T

]
η

)
= 0

⇔
D∑

d=1

(
md 1

Nd

Nd∑

n=1

φdn = Eq
[
z̄d(z̄d)T

]
η

)

⇔ ηT =
D∑

d=1

Eq
[
z̄d(z̄d)T

]−1
md 1

Nd

Nd∑

n=1

φdn.

(B.16)

Estimating b

Collecting only the terms in the log-likelihood that contain br gives:

L[br] =
D∑

d=1

R∑

r=1

− 1

2vr

(
− 2yd,rbr + 2mdbr + (br)2

)
. (B.17)
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By taking derivatives w.r.t. br we have that:

∂L[br]

∂br
=

D∑

d=1

yd,r −md − br
vr

. (B.18)

Setting this derivative to zero and solving for br gives:

D∑

d=1

D∑

d=1

yd,r −md − br
vr

= 0

⇔ br =

∑D
d=1 y

d,r −md

D
. (B.19)

B.3.2 Estimating v

By gathering only the terms in the log-likelihood that contain vr., the objec-
tive function is given by:

L[vr] =
D∑

d=1

R∑

r=1

− 1

2vr

(
(yd,r)2 − 2yd,rmd − 2yd,rbr + νd + (md)2 + 2mdbr + (br)2

)

− log
(
2πvr

)

2
. (B.20)

Taking derivatives w.r.t. vr gives:

∂L[vr]

∂vr
=

D∑

d=1

1

2(vr)2

(
(yd,r)2 − 2yd,rmd − 2yd,rbr + νd + (md)2 + 2mdbr + (br)2

)

− 1

2vr
. (B.21)
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Setting this derivative to zero and solving for vr yields:

D∑

d=1

1

2(vr)2

(
(yd,r)2 − 2yd,rmd − 2yd,rbr + νd + (md)2 + 2mdbr + (br)2

)
− 1

2vr

= 0

⇔
D∑

d=1

2(vr)2

2vr
=

D∑

d=1

(
(yd,r)2 − 2yd,rmd − 2yd,rbr + νd + (md)2 + 2mdbr + (br)2

)

⇔ vr =
1

D

D∑

d=1

(
(yd,r)2 − 2yd,rmd − 2yd,rbr + νd + (md)2 + 2mdbr + (br)2

)
.

(B.22)
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Appendix C

Classification model using
maximum likelihood estimation

In this appendix a mle version of the classification model is presented. The
generative process of this simpler variant is similar to the model described
in Chapter 3:

1. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(α)

(b) For the nth word

i. Draw topic assignment zdn|θd ∼Multinomial(θd)

ii. Draw word wdn|zdn,β ∼Multinomial(βzdn)

(c) Draw latent (true) class cd|zd,η ∼ Softmax(z̄d,η) where z̄d =
1
Nd

∑Nd

n=1 z
d
n and

p(cd|z̄d,η) =
exp(ηTc z̄

d)∑C
l=1 exp(ηTl z̄

d)
(C.1)

(d) For each annotator r

i. Draw annotator’s answer yd,r|cd,πr ∼Multinomial(πr
cd

).

The differences between this model and the one presented in Chapter
3 are in the β and π parameters. While in the fully Bayesian MA-sLDA
there are two priors connected to these parameters (compare Figures C.1
and 3.1) and, consequently, two new steps in the generative process, the
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Figure C.1: MA-sLDA graphical model.

model described here is simpler. This implies a different posterior:

p(θ, z1:D, c|w1:D,y1:D) =
p(θ, z1:D, c,w1:D,y1:D|Θ)

p(w1:D,y1:D|Θ)
(C.2)

=

∏D
d=1 p(θ

d|α)

(
∏Nd

n=1 p(z
d
n|θd)p(wdn|zdn,β)

)
p(cd|zd,η)

∏R
r=1 p(y

d,r|cd,πr)
∫ d
θ

∏D
d p(θ

d|α)
∑

z

(∏Nd

n=1 p(z
d
n|θ)p(wdn|zdn,β)

)∑
c p(c

d|zd,η)
∏R

r=1 p(y
d,r|cd,πr)

(C.3)

and an analogously simpler variational distribution of the latent variables:

q(θ, z1:D, c) =
D∏

d=1

q(θd|γd)
(

Nd∏

n=1

q(zdn|φdn)

)
q(cd|λd), (C.4)

where γ,φ1:D and λ are only three variational parameters. Therefore, the
differences between the evidence lower bound of these two versions are that,
in the one from Chapter 3 there are two terms that do not exist in this
one (

∑K
i=1 Eq[log p(βi|τ) and

∑R
r=1

∑C
c=1 Eq[log p(πrc |ω)]) and that, while in

Bayesian variant the expectations of the log of the Dirichlet are given by:

Eq[log θdi ] = Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
(C.5)
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Eq[log βi,j] = Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

)
(C.6)

Eq[log πrc,l] = Ψ(ξrc,l)−Ψ

( C∑

t=1

ξrc,t

)
, (C.7)

here, are only:

Eq[log θdi ] = Ψ(γdi )−Ψ

( K∑

j=1

γdj

)
(C.8)

Eq[log βi,j] = log βi,j (C.9)

Eq[log πrc,l] = log πrc,l. (C.10)

This gets intuitive if we think that, here β and π are just one value and the
expectation of a single value is the value itself. Oppositely, in the entirely
Bayesian approach, they are Dirichlet distributions and, thus, are calculated
in a more complex way.

Also, here, the updates that involve β and π are, naturally, different
from the previously presented version of MA-sLDA. Therefore, we follow by
showing them:

φdn,i ∝
V∑

j=1

wdn,jβk,j exp

(
Ψ(γi) +

∑C
l=1 λ

d
l ηl,i

Nd
− (hT (φdn)old)−1hi

)
; (C.11)

λdl ∝
(

R∏

r=1

C∏

c=1

yd,rc πrk,c

)
exp

(
ηTk φ

d
)

; (C.12)

βi,j ∝
D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i; (C.13)

πrc,l ∝
D∑

d=1

yr,dl λc. (C.14)

Notice that φdn,i and λdl are latent variables and βi,j and πrc,l are pa-
rameters. So, in conclusion, this model is distinguished from the model of
Chapter 3 by performing variational Bayesian inference on the first two and
maximum likelihood estimation on the last ones.
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Appendix D

Regression model using
maximum likelihood estimation

In this appendix a mle version of the regression model is presented. The
generative process of this simpler variant is similar to the model described
in Chapter 4:

1. For each document d

(a) Draw topic proportions θd|α ∼ Dirichlet(α)

(b) For the nth word

i. Draw topic assignment zdn|θd ∼Multinomial(θd)

ii. Draw word wdn|zdn,β ∼Multinomial(βzdn)

(c) Draw latent (true) value xd|zd,η, σ ∼ Normal(xd|ηT z̄d, σ)

(d) For each annotator r

i. Draw annotator’s answer yd,r|xd, br, vr ∼ Normal(yd,r|xd +
br, vr)

This model differs from the one from Chapter 4 in the way the per topic
word distribution parameter β is calculated. While in the fully Bayesian MA-
sLDA for regression there is a Dirichlet on this variable (τ), here it acts as
a global parameter obtained by maximum likelihood estimation. Hence, the
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Figure D.1: Graphical model.

posterior becomes:

p(θ, z1:D,x|w1:D,y1:D)

=
p(θ, z1:D,x,w1:D,y1:D|Θ)

p(w1:D,y1:D|Θ)
(D.1)

=

∏D
d=1 p(θ

d|α)

(
∏Nd

n=1 p(z
d
n|θd)p(wdn|zdn,β)

)

∫ d
θ

∏D
d p(θ

d|α)
∑

z

(∏Nd

n=1 p(z
d
n|θ)p(wdn|zdn,β)

)

×
∏D

d=1 p(x
d|zd,η, σ)

∏R
r=1 p(y

d,r|xd, br, vr)∫ d
θ

∏D
d

∫
x
p(xd|zd,η, σ)

∏R
r=1 p(y

d,r|xd, br, vr)
, (D.2)

Similarly, the variational distribution of the latent variables of this mle model
is:

q(θ, z1:D,x) =
D∏

d=1

q(θd|γd)
(

Nd∏

n=1

q(zdn|φdn)

)
q(xd|md, νd), (D.3)

where γ,φ1:D, m and ν are the variational parameters. Also, the fact that
the parameter β does not have a prior in this version means that:

Eq[log βi,j] = log βi,j, (D.4)

which is intuitive for the reasons described in the Appendix C.

Therefore, to make the lower bound as close as possible to the true
posterior, we update the variational parameter phidn,i and the global model
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parameter βi,j as:

φdn,i ∝ exp

(
Ψ(γi) +

V∑

j=1

wdn,j

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))

+
md

Ndσ2
η − 2(ηTφd−n)η + (η ◦ η)

2(Nd)2σ2

)
,

βi,j ∝
D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i. (D.5)

(D.6)

133



134



Appendix E

Submitted publications

This appendix presents the accepted publication on AAAI HCOMP2015 con-
ference.
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Learning Supervised Topic Models from Crowds

Abstract

The growing need to analyze large collections of docu-
ments has led to great developments in topic modeling.
Since documents are frequently associated with other
related variables, such as labels or ratings, much interest
has been placed on supervised topic models. However,
the nature of most annotation tasks, prone to ambigu-
ity and noise, often with high volumes of documents,
deem learning under a single-annotator assumption un-
realistic or unpractical for most real-world applications.
In this paper, we propose a supervised topic model that
accounts for the heterogeneity and biases among dif-
ferent annotators that are encountered in practice when
learning from crowds. We develop an efficient stochas-
tic variational inference algorithm that is able to scale
to very large datasets, and we empirically demonstrate
the advantages of the proposed model over state of the
art approaches.

Introduction
Topic models, such as latent Dirichlet allocation (LDA), al-
low us to analyze large collections of documents, by reveal-
ing their underlying themes, or topics, and how each doc-
ument exhibits them (Blei, Ng, and Jordan 2003). There-
fore, it is not surprising that topic models have become a
standard tool in machine learning, with many applications
that transcend their original purpose of modeling textual
data, such as analyzing images (Fei-Fei and Perona 2005;
Wang, Blei, and Fei-Fei 2009), videos (Niebles, Wang, and
Fei-Fei 2008), survey data (Erosheva, Fienberg, and Joutard
2007) or social networks data (Airoldi et al. 2007).

Since documents are frequently associated with other
variables such as labels, tags or ratings, much interest has
been placed on supervised topic models (Mcauliffe and Blei
2008), which allow the use of that extra information to
“guide” the topics discovery. By jointly learning the topics
distributions and a regression or classification model, super-
vised topic models have been shown to outperform the sep-
arate use of their unsupervised analogues with an external
regression/classification algorithm (Wang, Blei, and Fei-Fei
2009; Zhu, Ahmed, and Xing 2012).

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Supervised topics models are then state-of-the-art ap-
proaches for predicting target variables associated with com-
plex high-dimensional data, such as documents or images.
Unfortunately, the size of modern datasets make the use of a
single annotator unrealistic and unpractical for the major-
ity of the real-world applications that involve some form
of human labeling. For instance, the popular Reuters-21578
benchmark dataset was categorized by a group of personnel
from Reuters Ltd and Carnegie Group, Inc. Similarly, the
LabelMe1 project asks volunteers to annotate images from a
large collection using an online tool. Hence, it is seldom the
case where a single oracle labels an entire collection.

Furthermore, the Web, through its social nature, also ex-
ploits the wisdom of crowds to annotate large collections
of documents and images. By categorizing texts, tagging
images or rating products, Web users are generating large
volumes of labeled content. However, when learning super-
vised models from crowds, the quality of labels can vary
a lot due to task subjectivity and differences in annotator
reliability (or bias) (Snow et al. 2008; Rodrigues, Pereira,
and Ribeiro 2013). It is therefore essential to account for
these issues when learning from this increasingly common
type of data. Hence, the interest of researchers on build-
ing models that take the reliabilities of different annotators
into consideration and mitigate the effect of their biases has
spiked during the last few years (e.g. (Welinder et al. 2010;
Yan et al. 2014)).

The increasing popularity of crowdsourcing platforms
like Amazon Mechanical Turk (AMT) has further con-
tributed to the recent developments in learning from crowds.
This kind of platforms offer a fast, scalable and inexpensive
solution for labeling large amounts of data. However, their
heterogeneous nature in terms of contributors makes their
straightforward application prone to many sorts of labeling
noise and bias. Hence, a careless use of crowdsourced data
as training data risks generating flawed models.

In this paper we propose a fully generative supervised
topic model that is able to account for the different reliabili-
ties of multiple annotators and correct their biases. The pro-
posed model is then capable of jointly modeling the words
in documents as arising from a mixture of topics, the latent
true labels as a result of the empirical distribution over topics

1http://labelme.csail.mit.edu



of the documents, and the labels of the multiple annotators
as noisy versions of that latent ground truth. Although we
focus on multi-class classification problems, the same ratio-
nale can be applied to regression problems. Since the major-
ity of the tasks for which multiple annotators are used gen-
erally involve complex data such as text, images and video,
by developing a multi-annotator supervised topic model we
are contributing with a powerful tool for learning predictive
models of complex high-dimensional data from crowds.

Given that the increasing sizes of modern datasets can
pose a problem for obtaining human labels as well as for
Bayesian inference, we propose an efficient stochastic vari-
ational inference algorithm (Hoffman et al. 2013) that is able
to scale to very large datasets. We empirically show, using
both simulated and real multiple-annotator labels obtained
from AMT for popular text and image collections, that the
proposed model is able to outperform other state-of-the-art
approaches. We further show the computational and predic-
tive advantages of the stochastic variational inference algo-
rithm over its batch counterpart.

State of the art
Latent Dirichlet allocation (LDA) soon proved to be a pow-
erful tool for modeling documents (Blei, Ng, and Jordan
2003) and images (Fei-Fei and Perona 2005), by extracting
their underlying topics. However, the need to model the re-
lationship between documents and labels quickly gave rise
to many supervised variants of LDA. One of the first no-
table works was that of (Mcauliffe and Blei 2008) in devel-
oping supervised LDA (sLDA). By extending LDA through
the inclusion of a response variable that is linearly dependent
on the mean topic-assignments of the words in a document,
sLDA is able to jointly model the documents and their re-
sponses, in order to find latent topics that will best predict
the response variables for future unlabeled documents. Al-
though initially developed for general continuous response
variables, (Wang, Blei, and Fei-Fei 2009) later extended
sLDA to classification problems, by modeling the relation-
ship between topic-assignments and labels with a softmax
function.

There are several ways in which document classes can
be included in LDA. The most natural one in this setting is
probably the sLDA approach, since the classes are directly
dependent on the empirical topic mixture distributions. This
approach is coherent with the generative perspective of LDA
but, nevertheless, several discriminative alternatives also ex-
ist. For example, DiscLDA (Lacoste-Julien, Sha, and Jordan
2009) introduces a class-dependent linear transformation on
the topic mixture proportions, whose parameters are esti-
mated by maximizing the conditional likelihood of response
variables. (Ramage et al. 2009) propose Labeled-LDA, a
variant of LDA that incorporates supervision by constrain-
ing the topic model to use only the topics that correspond
to a document’s label set. While this has the advantage of
allowing multiple labels per document, it is restrictive in the
sense that the number of topics needs to be the same as the
number of possible labels.

The approaches discussed so far rely on likelihood-based
estimation procedures. The work of (Zhu, Ahmed, and

Xing 2012) contrasts with these approaches by proposing
MedLDA, a supervised topic model that utilizes the max-
margin principle for estimation. Despite its margin-based
advantages, MedLDA looses the probabilistic interpretation
of the document classes given the topic mixture distribu-
tions. On the contrary, this paper proposes a fully generative
probabilistic model of the labels of multiple annotators and
the words in the documents.

Learning from multiple annotators is an increasingly im-
portant research topic. Since the early work of (Dawid and
Skene 1979), who attempted to obtain point estimates of
the error rates of patients given repeated but conflicting re-
sponses to various medical questions, many approaches have
been proposed. These usually rely on latent variable models.
For example, (Smyth et al. 1995) proposed a model to esti-
mate the ground truth from the labels of multiple experts,
which is then used to train a classifier.

While earlier works usually focused on estimating the
ground truth and the error rates of different annotators, re-
cent works are more focused on the problem of learning a
classifier. This idea was explored in (Raykar et al. 2010),
who proposed an approach for jointly learning the levels
of expertise of different annotators and the parameters of a
logistic regression classifier, by modeling the ground truth
labels as latent variables. This work was later extended by
(Yan et al. 2014) by considering the dependencies of the an-
notators’ labels on the instances they are labeling, and also
by (Rodrigues, Pereira, and Ribeiro 2014) through the use
of Gaussian process classifiers. The model proposed in this
paper shares the same intuition with this line of work, and
models the true labels as latent variables. However, it differs
significantly by using a fully Bayesian approach for estimat-
ing the reliabilities and biases of the different annotators.
Furthermore, it considers the problems of learning a low-
dimensional representation of the input data (through topic
modeling) and modeling the answers of multiple annotators
jointly, providing an efficient stochastic variational inference
algorithm.

Approach
In this section we develop a multi-class supervised topic
model with multiple annotators. We start by deriving a
(batch) variational inference algorithm for approximating
the posterior distribution over the latent variables and an al-
gorithm to estimate the model parameters. We then develop
a stochastic variational inference algorithm that gives the
model the capability of handling large collections of doc-
uments. Finally, we show how to use the learned model to
classify new documents.

Proposed model
Let D = {wd, yd}Dd=1 be an annotated corpus of size D,
where each document wd is given a set of labels yd =
{ydr}Rd

r=1 fromRd distinct annotators. We can take advantage
of the inherent topical structure of documents and model
their words as arising from a mixture of topics, each be-
ing defined as a distribution over the words in a vocabu-
lary, as in LDA. In LDA, the nth word, wdn, in a document d



is provided a discrete topic-assignment zdn, which is drawn
from the documents’ distribution over topics θd. This allows
us to build lower-dimensional representations of documents,
which we can explore to build classification models by as-
signing coefficients η to the mean topic-assignment of the
words in the document, z̄d, and applying a softmax function
in order to obtain a distribution over classes.

Unfortunately, a direct mapping between document
classes and the labels provided by the different annotators
in a multiple-annotator setting would correspond to assum-
ing that they are all equally reliable, an assumption that is
violated in practice, as previous works clearly demonstrate
(e.g. (Snow et al. 2008; Rodrigues, Pereira, and Ribeiro
2013)). Hence, we assume the existence of a latent ground
truth class, and model the labels from the different annota-
tors using a noise model that states that, given a true class c,
each annotator r provides the label l with some probability
πrc,l. Hence, by modeling πr we are in fact modeling a per-
annotator confusion matrix, which allows us to account for
their different levels of expertise and correct their potential
biases.

The generative process of the proposed model can then be
summarized as follows:

1. For each annotator r

(a) For each class c
i. Draw reliability parameter πrc |ω ∼ Dir(ω)

2. For each topic k

(a) Draw topic distribution βk|τ ∼ Dir(τ)

3. For each document d

(a) Draw topic proportions θd|α ∼ Dir(α)

(b) For the nth word
i. Draw topic assignment zdn|θd ∼Mult(θd)

ii. Draw word wdn|zdn,β ∼Mult(βzdn)

(c) Draw latent (true) class cd|zd,η ∼ Softmax(z̄d,η)

(d) For each annotator r ∈ Rd
i. Draw annotator’s label yd,r|cd,πr ∼Mult(πrcd)

where Rd denotes the set of annotators that labeled the dth

document, z̄d = 1
Nd

∑Nd

n=1 z
d
n, and the softmax is given by:

p(cd|z̄d,η) =
exp(ηTc z̄

d)
∑C
l=1 exp(ηTl z̄

d)
.

Figure 1 shows a graphical model representation of the
proposed model, where K denotes the number of topics,
C is the number of classes, R is the total number of an-
notators and Nd is the number of words in the document
d. Notice that we included a Dirichlet prior over the topics
βk to produce a smooth posterior and control sparsity. Sim-
ilarly, instead of computing maximum likelihood or MAP
estimates for the annotators reliability parameters πrc , we
place a Dirichlet prior over these variables and perform (ap-
proximate) Bayesian inference. This contrasts with previ-
ous works on learning from crowds (Raykar et al. 2010;
Yan et al. 2010).

Figure 1: Graphical model representation of the proposed
model.

Variational param. Original param.
ξrc πrc
ζk βk
γd θd

λd cd

φdn zdn

Table 1: Correspondence between variational parameters
and the original parameters.

Approximate inference

Given a dataset D, the goal of inference is to compute the
posterior distribution of the per-document topic proportions
θd, the per-word topic assignments zdn, the per-topic dis-
tribution over words βk, the per-document latent true class
cd, and the per-annotator confusion parameters πr. As with
LDA, computing the exact posterior distribution of the la-
tent variables is computationally intractable. Hence, we em-
ploy mean-field variational inference to perform approxi-
mate Bayesian inference.

Variational inference methods seek to minimize the KL
divergence between the variational and the true posterior dis-
tribution. We assume a fully-factorized (mean-field) varia-
tional distribution of the form:

q(θ, z1:D, c,β,π1:R) =

( R∏

r=1

C∏

c=1

q(πrc |ξrc )

)

×
( K∏

i=1

q(βi|ζi)
) D∏

d=1

q(θd|γd)q(cd|λd)
Nd∏

n=1

q(zdn|φdn),

where ξ1:R, ζ, γ, λ and φ1:D are variational parameters.
Table 1 shows the correspondence between variational pa-
rameters and the original parameters.

Let Θ = {α, τ, ω,η} denote the model parameters. Fol-
lowing (Jordan et al. 1999), the KL minimization can be
equivalently formulated as maximizing the following lower



bound on the log marginal likelihood,

log p(w1:D, y1:D|Θ)

= log

∫ ∑

z,c

q(θ, z1:D, c,β,π1:R)

× p(θ, z1:D, c,w1:D, y1:D,β,π1:R|Θ)

q(θ, z1:D, c,β,π1:R)
dθ dβ dπ1:R

> Eq[log p(θ, z1:D, c,w1:D, y1:D,β,π1:R|Θ)]

+ Eq[log q(θ, z1:D, c,β,π1:R)]

= L(γ,φ1:D,λ, ζ, ξ1:R|Θ), (1)

which we maximize using coordinate ascent.
Optimizing L w.r.t. γ and ζ gives the same coordinate as-

cent updates as in (Blei, Ng, and Jordan 2003):

γdi = α+

Nd∑

n=1

φdn,i (2)

ζi,j = τ +
D∑

d=1

Nd∑

n=1

wdn,jφ
d
n,i. (3)

The variational Dirichlet parameters ξ can be optimized
by collecting only the terms in L that contain ξ:

L[ξ] =
R∑

r=1

C∑

c=1

C∑

l=1

Eq[log πrc,l]

(
ω +

Dr∑

d=1

λdcy
d,r
l − ξrc,l

)

−
R∑

r=1

C∑

c=1

log Γ

( C∑

t=1

ξrc,t

)
+

R∑

r=1

C∑

c=1

C∑

l=1

log Γ(ξrc,l),

where Dr denotes the documents labeled by the rth anno-
tator, Eq[log πrc,l] = Ψ(ξrc,l) − Ψ(

∑C
t=1 ξ

r
c,t), and Γ(·) and

Ψ(·) are the gamma and digamma functions, respectively.
Taking derivatives of L[ξ] w.r.t. ξ and setting them to zero,
yields the following update:

ξrc,l = ω +

Dr∑

d=1

λdcy
d,r
l . (4)

Similarly, the coordinate ascent updates for the docu-
ments distribution over classes λ can be found by consid-
ering the terms in L that contain λ:

L[λ] =
D∑

d=1

C∑

l=1

λdl η
T
l φ̄

d −
C∑

l=1

λdl log λdl

+
D∑

d=1

Rd∑

r=1

C∑

l=1

C∑

c=1

λdl y
d,r
c Eq[log πrl,c],

where φ̄d = 1
Nd

∑Nd

n=1 φ
d
n. Adding the necessary Lagrange

multipliers to ensure that
∑C
l=1 λ

d
l = 1 and setting the

derivatives w.r.t. λdl to zero gives the following update:

λdl ∝ exp

(
ηTl φ̄

d +

Rd∑

r=1

C∑

c=1

yd,rc Eq[log πrl,c]

)
. (5)

Observe how the variational distribution over the true classes
results from a combination between the dot product of the
inferred mean topic assignment φ̄d with the coefficients η
and the labels y from the multiple annotators “weighted” by
their expected log probability Eq[log πrl,c].

The main difficulty of applying standard variational infer-
ence methods to the proposed model is the non-conjugacy
between the distribution of the mean topic-assignment z̄d
and the softmax. Namely, in the expectation

Eq[log p(cd|z̄d,η)] = Eq[ηTcd z̄
d]− Eq

[
log

C∑

l=1

exp(ηTl z̄
d)
]
,

the second term is intractable to compute. We can make
progress by applying Jensen’s inequality to bound it as fol-
lows:

−Eq
[

log
C∑

l=1

exp(ηTl z̄
d)

]
> − log

C∑

l=1

Eq[exp(ηTl z̄
d)]

= − log
C∑

l=1

Nd∏

j=1

(
φdj
)T

exp
(
ηl

1

Nd

)

= − log(aTφdn),

where a ,
∑C
l=1 exp( ηlNd

)
∏Nd

j=1,j 6=n
(
φdj
)T

exp
(
ηl
Nd

)
,

which is constant w.r.t. φdn. This local variational bound can
be made tight by noticing that log(x) 6 ε−1x + log(ε) −
1,∀x > 0, ε > 0, where equality holds if and only if x = ε.
Hence, given the current parameter estimates (φdn)old, if we
set x = aTφdn and ε = aT (φdn)old then, for an individual
parameter φdn, we have that:

−Eq
[

log
C∑

l=1

exp(ηTl z̄
d)

]

> −(aT (φdn)old)−1(aTφdn)− log(aT (φdn)old) + 1.

Using this local bound to approximate the expectation of
the log-sum-exp term, and taking derivatives of the evidence
lower bound w.r.t. φn with the constraint that

∑K
i=1 φ

d
n,i =

1, yields the following fix-point update:

φdn,i ∝ exp

(
Ψ(γi) +

V∑

j=1

wdn,j

(
Ψ(ζi,j)−Ψ

( V∑

k=1

ζi,k

))

+

∑C
l=1 λ

d
l ηl,i

Nd
− (aT (φdn)old)−1ai

)
. (6)

where V denotes the size of the vocabulary. Notice how the
per-word variational distribution over topics φ depends on
the variational distribution over the true class label λ.

The variational inference algorithm iterates between
equations 2-6 until the evidence lower bound, eq. 1, con-
verges. The supplementary material provides additional de-
tails on the derivation of this algorithm2.

2Supplementary material available at:
https://dl.dropboxusercontent.com/u/1566445/supp-mat.pdf



Parameter estimation
The model parameters are Θ = {α, τ, ω,η}. For the sake
of simplicity we assume the parameters α, τ and ω of the
Dirichlet priors to be fixed, and only estimate the coefficients
η using a variational EM algorithm. Therefore, in the E-step
we use the variational inference algorithm from section to
estimate the posterior distribution of the latent variables, and
in the M-step we find maximum likelihood estimates of η
by maximizing the evidence lower bound L. Unfortunately,
taking derivatives of L w.r.t. η does not yield a closed-form
solution, hence we use a numerical method, namely L-BFGS
(Nocedal and Wright 2006), to find an optimum. The objec-
tive function and gradients are given by

L[η] =
D∑

d=1

(
C∑

l=1

λdl η
T
l φ̄

d − log
C∑

l=1

bdl

)

∇ηl,i =

D∑

d=1

(
λdl,iφ̄

d
i −

bdl∑C
t=1 b

d
t

×
Nd∑

n=1

1
Nd
φdn,i exp( 1

Nd
ηl,i)

∑K
j=1 φ

d
n,j exp( 1

Nd
ηl,j)

)
,

where, for convenience, we defined the following variable:
bdl ,

∏Nd

n=1

(∑K
i=1 φ

d
n,i exp

(
1
Nd
ηl,i

))
.

Stochastic variational inference
In the “approximate inference” section, we proposed a batch
coordinate ascent algorithm for doing variational inference
in the proposed model. This algorithm iterates between ana-
lyzing every document in the corpus to infer the local hidden
structure, and estimating the global hidden variables. How-
ever, this can be inefficient for large datasets, since it re-
quires a full pass through the data at each iteration before
updating the global variables. In this section we develop a
stochastic variational inference algorithm (Hoffman et al.
2013), which follows noisy estimates of the gradients of the
evidence lower bound L.

Based on the theory of stochastic optimization (Robbins
and Monro 1951), we can find unbiased estimates of the gra-
dients by subsampling a document (or a mini-batch of doc-
uments) from the corpus, and using it to compute the gradi-
ents as if that document was observedD times. Hence, given
an uniformly sampled document d, we use the current poste-
rior distributions of the global latent variables, β and π1:R,
and the current coefficient estimates η, to compute the pos-
terior distribution over the local hidden variables θd, zd and
cd using eqs. 2, 6 and 5 respectively. These posteriors are
then used to update the global variational parameters, ζ and
ξ1:R by taking a step of size ρt in the direction of the noisy
estimates of the natural gradients.

Algorithm 1 describes a stochastic variational inference
algorithm for the proposed model. Given an appropriate
schedule for the learning rates {ρt}, such that

∑
t ρt and∑

t ρ
2
t < ∞, the stochastic optimization algorithm is guar-

anteed to converge to a local maximum of the evidence lower
bound (Robbins and Monro 1951).

Algorithm 1 Stochastic variational inference

1: Initialize γ(0), φ(0)
1:D, λ(0), ζ(0), ξ(0)1:R, t = 0

2: repeat
3: Set t = t + 1.
4: Sample a document wd uniformly from the corpus.
5: repeat
6: Compute φdn using eq. 6, for n ∈ {1..Nd}.
7: Compute γd using eq. 2.
8: Compute λd using eq. 5.
9: until local parameters φdn, γd and λd converge.

10: Compute step-size ρt = (t+ delay)−κ.
11: Update topics variational parameters

ζi,j
(t) = (1− ρt)ζ(t−1)i,j + ρt

(
τ +D

Nd∑

n=1

wdn,jφ
d
n,i

)
.

12: Update annotators confusion parameters

ξrc,l
(t) = (1− ρt)ξrc,l(t−1) + ρt

(
ω +Dλdc y

d,r
l

)
.

13: until global convergence criterion is met.

Document classification
In order to make predictions for a new (unlabeled) docu-
ment d, we start by computing the approximate posterior
distribution over the latent variables θd and zd. This can be
achieved by dropping the terms that involve y, c and π from
the model’s joint distribution (since, at prediction time, the
multi-annotator labels are no longer observed) and averag-
ing over the estimated topics distributions. Letting the topics
distribution over words inferred during training be q(β|ζ),
the joint distribution for a single document is now simply
given by

p(θd, zd) =

∫
q(β|ζ)p(θd|α)

Nd∏

n=1

p(zdn|θd)p(wdn|zdn,β)dβ.

Deriving a mean-field variational inference algo-
rithm for computing the posterior over q(θd, zd) =

q(θd|γd)∏Nd

n=1 q(z
d
n|φdn) results in the same fixed-point

updates as in LDA (Blei, Ng, and Jordan 2003) for γdi
and φdn,i. Using the inferred posteriors and the coefficients
η estimated during training, we can make predictions as
follows:

cd∗ = arg max
c
ηTc φ̄

d. (7)

This is equivalent to making predictions in sLDA (Wang,
Blei, and Fei-Fei 2009).

Experiments
In this section, the proposed model, multi-annotator su-
pervised LDA (MA-sLDA), is validated using both simu-
lated annotators on popular corpora and using real multiple-
annotator labels obtained from Amazon Mechanical Turk.3

3Source code and datasets used are available at: ADD URL



Simulated annotators
In order to first validate the proposed model in a
slightly more controlled environment, the well-known 20-
Newsgroups benchmark corpus (Lang 1995) was used by
simulating multiple annotators with different levels of exper-
tise. The 20-Newsgroups consists of twenty thousand mes-
sages taken from twenty newsgroups, and is divided in six
super-classes, which are, in turn, partitioned in several sub-
classes. For this first set of experiments, only the four most
populated super-classes were used: “computers”, “science”,
“politics” and “recreative”. The preprocessing of the docu-
ments consisted of stemming and stop-words removal. Af-
ter that, 75% of the documents were randomly selected for
training and the remaining 25% for testing.

The different annotators were simulated by sampling their
answers from a multinomial distribution, where the parame-
ters are given by the lines of the annotators’ confusion ma-
trices. Hence, for each annotator r, we start by pre-defining
a confusion matrix πr with elements πrc,l, which correspond
to the probability that the annotators’ answer is l given that
the true label is c, p(yri = l|c). Then, the answers are sam-
pled i.i.d. from yri ∼ Mult(πrc,l). This procedure was used
to simulate 5 different annotators with the following accura-
cies: 0.737, 0.468, 0.284, 0.278, 0.260. In this experiment,
no repeated labelling was used. Hence, each annotator only
labels roughly one-fifth of the data. When compared to the
ground truth, the simulated answers revealed an accuracy
of 0.405. See Table 2 for an overview of the details of the
datasets used.

Both the batch and the stochastic variational inference
(svi) versions of the proposed model (MA-sLDA) are com-
pared with the following baselines:

• LDA + LogReg (mv): This baseline corresponds to apply-
ing unsupervised LDA to the data, and learning a logistic
regression classifier on the inferred topics distributions of
the documents. The labels from the different annotators
were aggregated using majority voting (mv).

• LDA + Raykar: For this baseline, the model of (Raykar et
al. 2010) was applied using the documents’ topic distribu-
tions inferred by LDA as features.

• LDA + Rodrigues: This baseline is similar to the previ-
ous one, but uses the model of (Rodrigues, Pereira, and
Ribeiro 2013) instead.

• Blei 2003 (mv): The idea of this baseline is to replicate a
popular state-of-the-art approach for document classifica-
tion. Hence, the approach of (Blei, Ng, and Jordan 2003)
was used. It consists of applying LDA to extract the docu-
ments’ topics distributions, which are then used to train a
SVM. Similarly to the previous approach, the labels from
the different annotators were aggregated using majority
voting (mv).

• sLDA (mv): This corresponds to using sLDA (Wang, Blei,
and Fei-Fei 2009) with the labels obtained by performing
majority voting (mv) on the annotators’ answers.

For all the experiments the hyper-parameters α, τ and
ω were set using a simple grid search in the collection
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Figure 2: Average testset accuracy (over 5 runs; ± stddev.)
of the different approaches on the 20-Newsgroups data.

{0.01, 0.1, 1.0, 10.0}. The same approach was used to op-
timize the hyper-parameters of the all the baselines. For the
svi algorithm, different mini-batch sizes and forgetting rates
κwere tested. For the 20-Newsgroup dataset, the best results
were obtained with a mini-batch size of 500 and κ = 0.6.
The delay was kept at 1. The results are shown in Figure 2
for different numbers of topics, where we can see that the
proposed model outperforms all the baselines, being the svi
version the one that performs best.

In order to assess the computational advantages of the
stochastic variational inference (svi) over the batch algo-
rithm, the log marginal likelihood (or log evidence) was
plotted against the number of iterations. Figure 3 shows
this comparison. Not surprisingly, the svi version converges
much faster to higher values of the log marginal likelihood
when compared to the batch version, which reflects the effi-
ciency of the svi algorithm.

Amazon Mechanical Turk
In order to validate the proposed model in a real crowd-
sourcing setting, Amazon Mechanical Turk (AMT) was used
to obtain labels from multiple annotators for two popular
datasets: Reuters-21578 (Lewis 1997) and LabelMe (Rus-
sell et al. 2008).

Reuters-21578 is a collection of manually categorized
newswire stories with labels such as Acquisitions, Crude-oil,
Earnings or Grain. For this experiment, only the documents
belonging to the ModApte split were considered with the ad-
ditional constraint that the documents should have no more
than one label. This resulted in a total of 7016 documents
distributed among 8 classes. Of these, 1800 documents were
submitted to AMT for multiple annotators to label, giving an
average of 3.007 answers per document (see Table 2 for fur-
ther details). The remaining 5216 documents were used for
testing. The collected answers yield an average annotator ac-



Dataset Num.
classes

Train/test
sizes

Annotators
source

Num. answers per
instance (± stddev.)

Mean annotators
accuracy (± stddev.)

Maj. vot.
accuracy

20 Newsgroups 4 11536/3846 Simulated 1.000 ± 0.000 0.405 ± 0.182 0.405
Reuters-21578 8 1800/5216 Mech. Turk 3.007 ± 1.019 0.568 ± 0.262 0.710

LabelMe 8 1000/1688 Mech. Turk 2.547 ± 0.576 0.692 ± 0.181 0.769

Table 2: Overall statistics of the datasets used in the experiments.
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Figure 3: Comparison of the log marginal likelihood be-
tween the batch and the stochastic variational inference (svi)
algorithms on the 20-Newsgroups corpus.

curacy of 56.8%. Applying majority voting to these answers
reveals a ground truth accuracy of 71.0%.

The results obtained by the different approaches are given
in Figure 4, where it can be seen that the proposed model
(MA-sLDA) outperforms all the other approaches. For this
dataset, the svi algorithm is using mini-batches of 300 doc-
uments.

The proposed model is also validated using a dataset from
the computer vision domain: LabelMe (Russell et al. 2008).
In contrast to the Reuters and Newsgroups corpora, LabelMe
is an open online tool to annotate images. Hence, this ex-
periment allows us to see how the proposed model gen-
eralises beyond non-textual data. Using the provided Mat-
lab interface, we extracted a subset of the LabelMe data,
consisting of all the 256 x 256 images with the categories:
“highway”, “inside city”, “tall building”, “street”, “forest”,
“coast”, “mountain” or “open country”. This allowed us to
collect a total of 2688 labeled images. Of these, 1000 im-
ages were given to AMT workers to classify with one of
the classes above. Each image was labeled by an average of
2.547 workers, with a mean accuracy of 69.2%. When ma-
jority voting is applied to the collected answers, a ground
truth accuracy of 71.0% is obtained.

The preprocessing of the images used is similar to
the approach of (Fei-Fei and Perona 2005). It uses 128-
dimensional SIFT (Lowe 1999) region descriptors selected
by a sliding grid spaced at one pixel. This sliding grid
extracts local regions of the image with sizes uniformly
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Figure 4: Average testset accuracy (over 30 runs; ± stddev.)
of the different approaches on the Reuters data.

sampled between 16 x 16 and 32 x 32 pixels. The 128-
dimensional SIFT descriptors produced by the sliding win-
dow are then fed to a k-means algorithm (with k=200) in
order construct a vocabulary of 200 “visual words”. This al-
lows us to represent the images with a bag of visual words
model.

With the purpose of comparing the proposed model with
a popular state-of-the-art approach for image classification,
for the LabelMe dataset, the following baseline was intro-
duced:
• Bosch 2006 (mv): This baseline is similar to one in

(Bosch, Zisserman, and Muñoz 2006). The authors pro-
pose the use of pLSA to extract the latent topics, and the
use of k-nearest neighbor (kNN) classifier using the doc-
uments’ topics distributions. For this baseline, unsuper-
vised LDA is used instead of pLSA, and the labels from
the different annotators for kNN (with k = 10) are aggre-
gated using majority voting (mv).

The results obtained by the different approaches for the La-
belMe data are shown in Figure 5, where the svi version is
using mini-batches of 200 documents.

Analyzing the results for the Reuters-21578 and LabelMe
data, we can observe that the proposed model outperforms
all the baselines, with slightly better accuracies for the batch
version, especially in the Reuters data. Interestingly, the
second best results are consistently obtained by the multi-
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Figure 5: Average testset accuracy (over 30 runs; ± stddev.)
of the different approaches on the LabelMe data.

annotator approaches, which highlights the need for ac-
counting for the noise and biases of the answers of the dif-
ferent annotators.

Conclusion
This paper proposed a supervised topic model that is able
to learn from multiple annotators and crowds, by account-
ing for their biases and different levels of expertise. Given
the large sizes of modern datasets, and considering that the
majority of the tasks for which crowdsourcing and multiple
annotators are desirable candidates, generally involve com-
plex high-dimensional data such as text and images, the pro-
posed model constitutes a strong contribution for the multi-
annotator paradigm. This model is then capable of jointly
modeling the words in documents as arising from a mixture
of topics, as well as the latent true labels and the (noisy)
labels of the multiple annotators. We empirically showed,
using simulated annotators on the 20-Newsgroups dataset
and using real annotators from Amazon Mechanical Turk for
Reuters-21578 and LabelMe data, that the proposed model
is able to outperform state-of-the-art approaches. Finally, an
efficient stochastic variational inference algorithm was de-
scribed, which gives the proposed model the ability to scale
to large datasets.

Given that the target variables associated with documents
can be continuous, and also considering that documents can
sometimes belong to more than one class, future work will
explore the extension of the proposed model to regression
and multi-label classification problems.
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