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Abstract

The impact of Natural Selection overshadowed Darwin’s Sexual Selection
theory. However, over the past few decades it begun to draw the attention
of researchers from several different fields and the amount of supporting evi-
dence of its role in evolution rapidly increased. Today, although the dynamics
aren’t fully understood, the importance of sexual selection in evolution is un-
debatable. The enthusiasm around this field was not followed by evolutionary
computation. On the one hand, canonical evolutionary computation systems
were already well-established when sexual selection re-surfaced. On the other,
so far, attempts to incorporate sexual selection approaches in evolutionary
computation, particularly when applied to optimization problems, have en-
countered several difficulties and no generic tools and approaches applicable
to a wide variety of problems exist.

This dissertation constitutes a step towards changing this situation.
Based on an embracing survey of the state of the art and following a nature-
inspired approach, a popular evolutionary computation framework is ex-
panded through the incorporation of Mate Choice mechanisms — enabling
the application of sexual selection models to a wide variety of problems with
little effort. The approach is tested on symbolic regression benchmark prob-
lems. The analysis of such problems indicates that sexual selection is able
to outperform conventional approaches in complex problem instances. Ad-
ditional testing and analysis focused on understanding how sexual selection
contributes to the evolution. The experimental results show that the evolved
mate choice functions are able to select mating partners in meaningful ways,

contributing to the evolutionary success of the descendants.
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Chapter 1
Introduction

Since his journey on the Beagle, Darwin conceived two theories that explained
the evolution of species: Natural Selection and Sexual Selection. The first
theory is by far the most widely known and can be described as a process by
which organisms possessing specific genotypic characteristics that make them
better adjusted to the environment, tend to survive, reproduce and therefore
transmit and perpetuate their genotypic qualities to succeeding generations.
Since Darwin’s publication On the origin of species by means of Natural
Selection [21], his theory has found acceptance in the scientific community
and was settled for decades as the absolute theory for the explanation of
evolution.

Still there were some aspects observed by Darwin in nature that Natural
Selection could not explain. The costly ornaments that some species pos-
sessed did not contribute to the survivability of its individuals and in some
cases could even jeopardize it. But despite being costly, such ornaments still
spread through future — which goes against Darwin’s Natural Selection the-
ory. Taking these facts into consideration, Darwin came up with the theory
of Sexual Selection.

However, unlike the previous theory, the theory of Sexual Selection was
not well received by the scientific community and was disregarded for over
a century. It was Fisher’s contributions [35] and soon after with Zahavi’s,

[83] that research on the theory re-emerged from its century-long rejection

13



CHAPTER 1. INTRODUCTION 14

to take its place in the spotlight. It expanded to major research areas such
as Anthropology, Biology and Psychology, through an increasing number of
contributions and evidence supporting its importance and impact on evolu-
tion.

Although being widely accepted in other research fields, Sexual Selec-
tion is still far from being explored in Evolutionary Computation (EC). The
conventional algorithms related to Natural Selection were introduced dur-
ing the period in which the theory of Sexual Selection wasn’t acknowledged
and, when it finally re-emerged, they were already established in the scientific
community. The lack of acknowledgement along with the complexity and un-
predictability of results of Sexual Selection algorithms caused the withdrawal
of researchers to adopt the mechanism for automated problem solving. How-
ever, the theory’s success in the previously mentioned research fields makes
it interesting to further explore the resulting effects it may have in the per-
formance of Evolutionary Algorithms and that is a great motivation to its

study.

1.1 Scope

Two main processes in Sexual Selection were introduced by Darwin: Male
Competition and Female Mate Choice. The first process promotes the evo-
lution of male traits valuable for them to fight others for access to females.
The second process promotes the evolution of male ornaments used to attract
females for reproduction. Darwin’s research, as well as many other contem-
porary researchers since the theory’s reappearance, focuses particularly on
Female Mate Choice. Following this trend, this study will focus on the ef-
fects and implications of Female Mate Choice in Evolutionary Computation.

Also, this study focuses on genetic programming and on models that abide

three nature inspired rules:

1. individuals choose their mates according to their perception of others

and mating preferences;

2. the mental traits stated in the first rule are inheritable the same way
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physical traits are;

3. mate selection introduces its own selection pressure but is submitted

to selection pressure itself.

1.2 Research Objectives

Despite a number of publications in the past regarding Sexual Selection
through Mate Choice in Evolutionary Computation, the subject has failed
so far to attract the research community. Two of the reasons that have
contributed for this scenario are the difficulty to model Mate Choice in Evo-
lutionary Computation and the lack of knowledge regarding its behaviour
and effects. Therefore we intend to contribute by meeting two different ob-

jectives:

1. expanding a well known framework to include Mate Choice mecha-

nisms;

2. applying the developed framework on a set of benchmarking problems

and assess its effects;

By meeting the first goal we expect to facilitate the application of Mate
Choice to a wide set of problems with little effort; by meeting the second
goal we contribute to existing knowledge regarding how Mate Choice per-
forms and behaves on different contexts. Finally, we expect to deploy the
developed framework for public use and disseminate the results on special-

ized conferences.

1.3 Outline

The rest of the document is organized as follows: Chapter 2 presents a short
overview of Evolutionary Computation while focusing attention on Genetic
Programming and Self-Adaptive Genetic Programming, since these tech-

niques are the ones used for the study on Sexual Selection. Following the
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overview, is a review of the concepts on Natural Selection in Evolutionary
Computation, an historical background on Sexual Selection through Mate
Choice, its important breakthroughs, and applications in Evolutionary Al-
gorithms. Previous works that have represented mating preferences using
Genetic Programming and Self-Adaptive Genetic Programming are also high-
lighted. Chapter 3 includes a short explanation on the framework proposed
as well as the reasons that led us to choose such framework, followed by
its class diagram. Chapter 4 displays the experiments performed during the
first term of research. In this chapter we find the configuration data defined
for the experiments, followed by the obtained results and analysis over such
results. Chapter 5 contains an explanation of the improvements made on the
framework and a class diagram of the final framework. As for Chapter 6, we
can find the experiments made during the second term, the results obtained
and what can we interpret from those results. Finally, on Chapter 7, we draw

conclusions about the proposed methods and obtained results.



Chapter 2

State of the Art

This chapter initially presents a brief overview of Evolutionary Computation,
describing the field of study and its sub-fields as well as the mechanisms used,
followed by a review of the studies and researches that are considered essen-
tial to the subject of Sexual Selection through Mate Choice in Evolutionary
Computation. First of all, Section 2.1 describes Evolutionary Computation,
and the relationship between this field of study and the theories that be-
came the inspiration to its concept. In the Section 2.3 we will cover Natural
Selection in Evolutionary Computation in a deeper context by addressing
the arguably most significant implementations of selection methods. Most
of these methods are relevant since they may be used as basis for compari-
son when analysing the results obtained from Sexual Selection through Mate
Choice. In Section 2.4, related to Sexual Selection, we will present a review of
its background, followed by Section 2.5 which will describe significant stud-
ies on the matter. This section is branched in three subsections. Subsection
2.5.1 and 2.5.2 describes the experiments of Mate Choice carried using Evo-
lutionary Algorithms, highlighting performed experiments of Mate Choice
using Genetic Programming on the latter. Since the process of Mate Choice
approached by this report is based on self-adaptive mating preferences, Sub-
section 2.5.3 covers a review of related work on Self-Adaptive Algorithms

applied on Sexual Selection through Mate Choice.

17
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2.1 Short Overview of EC

Evolutionary Computation [6, 7, 29] is a research area within Computer
Science. Its philosophy is based on the natural evolution of species.

In order to understand how Evolutionary Computation gets its inspira-
tion from the natural evolution of species, we have to take into consideration
how the evolution process works [21]. A given environment is populated with
individuals of a certain species that will struggle for survival and chance to
reproduce. Their fitness, which will be determined by the surrounding envi-
ronment, is directly related to the ability to meet their main goals, namely,
their chances for survival and dissemination of their genetic characteristics.

This natural evolution process can be linked to the context of problem
solving through stochastic process of trial-and-error. In this process we have
a set of candidate solutions and each of them is composed of a quality measure
that will determine the chances of being stored and used as seed for new
candidate solutions. Thus, Evolutionary Computation relates to the process
of evolution by linking the environment with the problem, individual with

candidate solution, and fitness with quality.

2.2 Evolutionary Algorithms

There are multiple approaches of Evolutionary Algorithms but the underly-
ing idea behind those is based in the following common procedures: given a
population of individuals, we apply selection pressure (survival of the fittest)
thus causing an improvement of the average fitness of the population. With
an existing fitness calculating function, we generate candidate solutions that
are within the problem domain and apply such function as an abstract mea-
sure — when dealing with maximization problems the greater the individual’s
fitness, the better; with minimization problems the lower the fitness, the bet-
ter. Finished the selection process, the recombination operator takes action,
if defined, by choosing two individuals (it is possible to recombine more than
two [27], although it is uncommon) from the mating pool, which will be the

parents of the new generation of candidate solutions, commonly named off-
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spring. After recombining the parents, the mutation operator is applied, also
if defined, individually to each new candidate solutions. The resulting set
of new individuals can compete, based on their fitness (and possibly age),
with the existing ones for a position in the next generation or replace the en-
tire population. The whole process is iterative until a satisfactory candidate
solution is found or a user-defined limit is reached.

The variation operators such as recombination and mutation create the
necessary diversity needed for the evolutionary flow and are responsible for
the creation of new individuals. The selection mechanisms behave like a force
promoting the better qualified individuals of the population. Joining varia-
tion operators and selection mechanisms in an iterative process will lead to
the improvement of the average fitness of the population throughout the gen-
erations. During the selection process, fitter individuals have more chances
to be selected as parents of the new set of individuals or as survivors for
the next generation and those that are less fit will have very low chances of
being chosen but even though the probability of selecting less fit individuals
is insignificant, it is always possible. As for variation operators, decisions
are made based on probability as well. During the recombination process,
the components of each parent to be inherited by the offspring are chosen
randomly and during the mutation process, the components of the candidate
solution that undergo change are also chosen randomly.

The procedural flow of an Evolutionary Algorithm is shown according to

the diagram in Figure 2.1 and in a pseudo-code shown in Algorithm 1.
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Parent selection

»  Parents

Initialisation

Recombination

Population

x Mutation

Y

Termination

Offspring

Survivor selection

Figure 2.1: Example of an Evolutionary Algorithm Flow Chart [29]

Algorithm 1 Typical EA Algorithm [29]

procedure TYPICALEA (parameters_list)
population < GENERATESOLUTIONS(population_size)
population <~ EVALUATESOLUTIONS(population)
repeat
parents <— SELECTPARENTS(population)
offspring <— RECOMBINEPARENTS(parents)
offspring <— MUTATEOFFSPRING (offspring)
offspring <— EVALUATEOFFSPRING (offspring)
population <— SELECTNEXTGENERATION(population, offspring)
until termination_condition is true
end procedure

By analysing both figures, one can simply conclude that Evolutionary
Algorithms fit in the category of “generate-and-test” algorithms. The eval-
uation function — or fitness function — represents an heuristic estimation
of solution quality and the search process is led by selection, recombination
and mutation operators. Evolutionary Algorithms possess some features that

strengthen their position within the category of “generate-and-test” such as:

e Evolutionary Algorithms operate at population level. A collection of

candidate solutions are processed simultaneously.

e They mostly use recombination to create new candidate solutions from

existing ones.

e They perform actions according probabilistic information.
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As mentioned above, there are multiple approaches that belong to the
Evolutionary Computation domain. They all follow the general flow shown
in the diagram above, differing only in some technical details as shown in
the table 2.1 [29]. For instance, the representation of a candidate solution
often distinguishes the approaches. Typically, the candidate solutions are
represented by strings over a finite alphabet in Genetic Algorithms (GA)
[25, 49, 50], real-valued vectors in Evolution Strategies (ES) [67, 71], finite
state machines in classical Evolutionary Programming (EP) [36] , and binary
trees in Genetic Programming (GP) [9, 53, 54, 63]. A given representation
might be more adequate than others if it matches the problem better, i.e.,
if the encoding of candidate solutions represents an easier or more natural
form of solution to the problem. It is important to emphasize that the varia-
tion operators working on candidate solutions must be chosen and altered, if
necessary, to match the representations. Unlike variation operators, the se-
lection mechanisms work independently from the candidates representation

since it is based merely on the solution’s quality.

Table 2.1: Typical components of Evolutionary Algorithms [29]

Component GA ES EP GP
Problems Combinatorial Continuous opti- | Optimization Modelling
optimization mization
Typical  Repre- | String over a fi- | Strings (vectors) | Application spe- | Trees
sentation nite alphabet of real numbers cific often as in
ES
Role of Recombi- | Primary variation | Important but | Never applied Primary/Only
nation operator secondary variation opera-

tor

Role of Mutation

Secondary Varia-

tion Operator

Important, some-
times only varia-

tion operator

The only varia-

tion operator

Secondary, some-
times not used at
all

tion

n.a., all individu-
als replaced
Steady-state:
deterministic,

biased by fitness

biased by fitness

by fitness

Parent Selection Random, biased | Random, uniform | Each individual | Random, biased
by fitness creates one child by fitness
Survivor  Selec- | Generational: Deterministic: Random: biased | Random: biased

by fitness
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2.2.1 Components of Evolutionary Algorithms

The purpose of this section will be to discuss Evolutionary Algorithms in
a deeper detail. Evolutionary Algorithms are composed by a number of
components, procedures, or operators that must be specified in order to define

a certain Evolutionary Algorithm. The most important are:
e Representation (how the individuals will be defined)

Evaluation — or fitness — function

Population characteristics

Parent selection mechanism

Variation operators (recombination and/or mutation)
e Survivor selection mechanism (Replacement/Elitism)

Furthermore, to obtain a running algorithm we must specify an initialization

procedure and a termination condition.

Representation

The first step in developing an Evolutionary Algorithm is to define the link
between the problem context and the search space of the problem’s solutions
where evolution will occur. The objects that formulate candidate solutions
within the problem’s context are named phenotypes while their encoding,
i.e., the individual belonging to a population of an Evolutionary Algorithm,
is named genotype. The process of mapping a phenotype to a genotype is de-
fined by representation. The phenotype’s search space can be very different
from the genotype’s search space and the whole evolutionary search is made
surrounding the individual’s phenotype. In the original context of the prob-
lem, the candidate solution, phenotype, and individual represent positions in
the search space named phenotype space. In the context of the Evolutionary
Algorithm, the genotype, chromosome, and also individual, refer to positions

in the search space where the evolutionary process will be undertaken.
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The term “representation” can be used in two slightly different ways. In
one way it stands for the mapping from the phenotype to the genotype space
which in this sense is synonymous with encoding. The inverse process of
mapping from genotype to phenotype space is usually called decoding and it
implies that representations have invertible capability: to each genotype must
exist at least one corresponding phenotype. Representation can also stand
not for the mapping itself but for the data structure of the genotype space,

for instance, when we refer to a binary string as a binary representation.

Evaluation Function

The fundamental role of the evaluation function is to form the basis for se-
lection, thereby facilitating improvements. More specifically, it defines what
improvement means. In an evolutionary context, it represents the task to be
solved. Technically, the evaluation function is a procedure that assigns the
quality measure to genotypes, which allows comparison between individuals
in order to distinguish the fitter from the less fit, and is typically composed
from a quality measure in the phenotype space and the corresponding inverse
representation.

The evaluation function is commonly called the fitness function in Evolu-
tionary Computation although this terminology may be counter-intuitive if
we are dealing with a minimization problem since fitness is normally assigned
to maximization problems. Generally, the original problem to be solved is an
optimization problem, thus the term “evaluation function” is most commonly
used in the problem context. As for the fitness function, it is commonly used
in the Evolutionary Algorithm context but it may be identical or slightly

different from the evaluation function.

Population

The main purpose of the population is to store a candidate solutions set.
In this set it is possible to have multiple copies of the same element. The
individuals of the population are static objects that do not change or adapt,

it is the population that undergoes adaptation. Given a representation, the
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process of defining a population is done simply by specifying its size, i.e., how
many individuals it will store. The selection mechanisms are the only of the
above mentioned components that operate at population level, as opposed to
the variation operators that work with one or more individuals but never the
population as a whole. Generally, the selection mechanisms take the whole
population into account and choices are made relative to what we have in it,
for instance, the best individual of a given population is selected to survive
and seed the next generation while the worst is chosen to be replaced by a
newly created individual. Typically, the population size is constant and its
size is maintained during the evolutionary process. However certain studies
have proven that a dynamic population size can achieve better convergence
as well as discover any gaps or missing trade-off regions at each generation
(77, 58].

No single measure defines the population’s diversity. Instead, the number
of different solutions present in the population characterizes the diversity.
Generally, we might define diversity by verifying the number of different
fitness values present, the number of different phenotypes, or the number of
different genotypes. Entropy may be also used as well as other statistical
measures. It shall be noted that having one fitness value does not necessarily
imply correspondence to one phenotypes and, in turn, one phenotype does not
necessarily correspond to one genotype. However, the reverse correspondence
is not true, one genotype always corresponds to one phenotype and one fitness

value.

Parent Selection Mechanism

The fundamental role of parent selection mechanisms is to distinguish among
individuals of a given population, based on their quality, so that better fit-
ted individuals are chosen as parents of the next generation of individuals.
Together with the survivor selection mechanism, it is the driving force of the
average quality improvement of the population. In Evolutionary Computa-
tion, parent selection is normally stochastic, meaning that the best individu-

als have more chances of being selected than the worst. However, the worst
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individuals of the population still have a small but positive chance of being
selected to undergo variation. This prevents the whole search to become too

greedy and get stuck in a local optimum.

Variation Operators

Their function is to create new individuals using genotypes of previously
selected individuals through parent selection mechanisms as seeds. In the
phenotype search space, this corresponds to the creation of a new candidate
solution using an existing one. Variation operators, from the “generate-and-
test” perspective, are associated to the “generate” step. From the variation
operators emerge two types of operator that can be distinguished based on

the number of objects as their input:

Mutation is a variation operator that receives one object as its input.
It is applied to one genotype and results in a slightly modified mutated
genotype, the child or offspring. This is a stochastic operation since the
resulting genotype depends on a series of random choices such as a pseudo-
random number generator to generate a series of numbers according to a
given probability distribution. Mutation has a very important theoretical
role in Evolutionary Computation: it allows the operator to jump in the
search space, for example, by changing one allele to any other allele with a

non-zero probability [28].

Recombination is a variation operator that has two or more — if so imple-
mented, although it is uncommon since it has no biological equivalent but it
may have positive effects on evolution [27] — objects as its input. For the rest
of the document, we will assume that recombination receives only two objects
as input. It consists in merging information from the genotype of two par-
ents that underwent parent selection in order to create new individuals. Like
the mutation operator, the information merged is chosen stochastically. The
principle seeks that different individuals with desirable features be merged

to create an individual that possesses both parents combined features.
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Evolutionary Algorithms create a number of offspring by random recom-
bination and accept that some of them will have undesirable combination of
features, some will be no better nor worse than their parents but it is hoped
that some may have improved features. Despite the principles of Biology
which recombination is the main process of reproduction, in Evolutionary
Algorithms recombination is applied probabilistically, i.e., there is a slight
chance that the operator will not be used and, instead, mutation and repli-

cation [29] (copy of the parent genotype) are used.

Survivor Selection Mechanism

Like the parent selection mechanism, its role is to distinguish among individ-
uals based on their quality. But this mechanism, as opposed to the parent
selection, is applied in the final stage of the evolutionary process, after the
creation of the offspring of the selected parents. As it was mentioned before,
the population size remains almost always unchanged during the evolution-
ary cycle which causes the algorithm to make choices on the individuals that
will be allowed to remain for the next generation. The decision is typically
based on their fitness values, promoting better fitted individuals although
the concept of age can also be implemented. One other characteristic that
distinguishes survivor selection from parent selection is that the former is de-
terministic. For instance, parents and newly created individuals are merged
and then sorted by their fitness. The survivor selection mechanisms will se-
lect the segment containing the best individuals with size equals to that of

the population.

Initialization Procedure

The initialization is normally built in order to be as simple as possible. The
most common way to initialize an Evolutionary Algorithm is to generate ran-
dom solutions that will fill the first generation of individuals. It is advised to
maintain the solutions within the problem domain to prevent dissemination

of invalid solutions.
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Termination Condition

The termination condition can be defined using two different cases. If the
optimal fitness value for a given problem is known, then reaching this value
— and possibly accepting a certain margin for error — can be one of the
cases for a termination condition. However, Evolutionary Algorithms are
stochastic which means that such value is always reached. For those cases, it
may be necessary to define a different condition that guarantees the end of
the algorithm execution. The following termination conditions can be used

as alternative to the previously mentioned:

e The maximum number of generations reaches a given value;

The maximum CPU execution time is reached;

The total number of evaluations in the algorithm is reached;

The fitness improvement does not raise above a certain threshold value

for a given period of time

The population diversity drops below a given threshold

2.2.2 Genetic Programming

Since our Sexual Selection through Mate Choice model is implemented us-
ing Genetic Programming [9, 53, 54, 63], we will focus on this approach,
describing the components, mechanisms and operators that composes a typ-
ical Genetic Programming algorithm. The aim of this particular technique
is to automatically solve problems without knowledge or specification from
the user in advance related to the form or structure to the solution. Ab-
stractly, Genetic Programming is a systematic, domain-dependent method
used in order to make computers automatically solve problems from a high-
level statement of what needs to be done.

This is done by evolving a population of individuals containing computer
programs. Generation by generation, Genetic Programming stochastically

transforms individuals of a given population into new ones, hoping to obtain
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better solutions. The basic steps of a Genetic Programming algorithm follows
the principle of Evolutionary Algorithms above mentioned. It aims to find out
how well a program works by running it and then comparing its behaviour to
some ideal solution. The comparison is later quantified to assign a numerical
value to the candidate which will represent its fitness. Programs with better
fitness are chosen to breed and produce new programs for the next generation.
The primary variation operators used in this technique are recombination and

mutation operators.

Representation

In Genetic Programming, programs are usually expressed as syntax trees
rather than lines of code. An example of a syntax tree of the program

maz(x + x,x + 3 * y) is shown in the Figure 2.2.

max

3 y
Figure 2.2: GP Syntax Tree representing maz(x + x,z + 3 * y) [63]

The variables and constants in the program are the leaves. In Genetic
Programming they are named terminals, whilst arithmetic operations are the
internal nodes named functions. The set of allowed functions and terminals
together define the primitive set of a Genetic Programming system.

It is common to represent expressions of a candidate solution in a similar
notation seen in Lisp or Scheme, e.g., the expression maz(x + x,z 4+ 3 *y) is
represented as (max (+ x z) (+ x (x 3 y))). With this, it is easier to detect

the relationship between expressions and their corresponding trees.
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Fitness Function

Without a measuring method, we do not know which elements of the search
space include programs that solve or approximately solve the problem. This
is the role of the fitness measure which is our primary, and often sole, mech-
anism for giving a high-level statement of the problem’s requirements to the
Genetic Programming system.

Fitness can be measured in many ways. For instance: the difference
between its output and the desired output, also known as error [62]; the
amount of resources required to bring a system to a desired target state [2];
the program’s accuracy in recognising patterns of classifying objects [76, 57];
the pay-off that a game-playing program produces [5]; the compliance of a
structure with user-defined design criteria [73].

Because the structures being evolved are computer programs, fitness eval-
uation usually requires executing all the programs in the population multiple
times. The overhead of building a compiler to compile the Genetic Program-
ming programs is typically substantial so it is much more common to use an
interpreter for evaluation. Interpreting a program tree means executing the
nodes in it in an order that guarantees that nodes are not executed before
knowing the values of their arguments, if they exist. This is done by travers-
ing the tree recursively from the root node, postponing the evaluation of
each node until the values of its children are known. The Figure 2.3 and the

Algorithm 2 represent the method for the calculation of the fitness function.
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Figure 2.3: Example interpretation of a syntax tree with x as a variable and
with value of -1. The number to the right of each node represents the result
of evaluating the sub-tree root at that node [63]

Algorithm 2 Interpreter for GP [63]

procedure EVAL(expr)
if expr is a list then
proc < expr(1)
if proc is a function then

value < proc(EVAL(expr(2)), EVAL(expr(3)), ...)
else

value < proc(expr(2), expr(3)), ...)
end if

else
if expr is a variable or expr is a constant then
value < expr
else
value « expr()
end if
end ifreturn value
end procedure

In some problems we are interested in the output produced by a program,
namely the value returned after evaluation. In other problems we are inter-
ested in the actions performed by the program. But in either cases, the fitness
depends on the results produced by its execution on many different inputs or
under a number of different conditions. Another common feature of Genetic
Programming fitness measure is that, for many practical problems, they are
multi-objective [24], i.e., they combine two or more different elements that

are often in competition with one another.
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Initialization

Since Genetic Programming is an Evolutionary Algorithm, the initialization
is made as previously stated, i.e., by generating a number of random indi-
viduals equal to the size of the population. The are a number of different
approaches to generate this initial population. The two of the simplest and
earliest are the “full” and “grow” methods. A combination of the two is also
widely used and it is know as “ramped half-and-half” which we describe in
more detail later in this subject.

Both full and grow methods generate individuals taking into account a
given maximum depth (depth of a node is obtained by counting the number
of traversed nodes starting from the tree’s root, which is not included in the
count, until given node is reached). Thus, the depth of a tree is the same
as its deepest leaf. In the full method, elements from the function set are
assigned to the tree nodes in a random fashion until the maximum tree depth
is reached, assuring that all leaves have the same depth and only terminals
are assigned to them (its called full method for generating full trees, i.e., all
leaves have the same depth). Although trees generated by the full method
have their leaves at the same depth level, it does not necessarily means that
all initial trees will have the same number of nodes or the same shape. This
only happens if every element of the function set contains functions with
equal number of input objects.

The grow method, on the contrary, allows for the creation of trees of more
varied sizes and shapes. When building a tree, both functions and terminals
are selected from the function set until the depth limit is reached. Once it is
reached, a random terminal is chosen (just as in full method) and the process
is finished.

Because neither the grow or full method provide adequate variety of sizes
or shapes, Koza [53] proposed a combination of both methods and called
it “ramped half-and-half”. This method consists in constructing half of the
population using full and the other half using grow. For this, it is defined
a range of depth limits (hence the term ramped) to help ensure variety of

sizes and shapes in the initial population. Pseudo-code for a recursive im-
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plementation of both the full and grow methods is given in the Algorithm
3.

Algorithm 3 Pseudo-code for Ramped Half and Half method [63]

procedure GENERATERNDEXPR(fset, tset, maxd, method)
|tset|
|tset|+]fset]|

if maxd = 0 or (method is grow and rand < > then

proc < expr(1)
if proc is a function then
value <— proc(EVAL(expr(2)), EVAL(expr(3)), ...)
else
value «— proc(expr(2), expr(3)), ...)
end if
else
if expr is a variable or expr is a constant then
value < expr
else
value < expr()
end if
end if
return value
end procedure

While these methods are easy to implement, they often make it difficult
to control the statistical distribution of important properties such as sizes
and shapes of the generated trees. For instance, the sizes and shapes of the
generated trees using the grow method are highly sensitive to the proportion
between the size of function and terminal sets. If there are significantly more
terminals than functions, the grow method is more likely to generate very
short trees regardless of the depth limit. But, if there are significantly more
functions than terminals, the grow method will tend to behave quite similarly
to the full method.

Selection Mechanisms

As with most Evolutionary Algorithms, operators in Genetic Programming
are applied to individuals that have been probabilistically selected based on
their fitness. The most common method for selecting individuals applied in
Genetic Programming is Tournament Selection [40].

In it, a number of individuals are chosen at random from the population.
They will, then, compete with each other and the individual with the best
fitness is chosen to be one of the parents of the next generation. The selection

mechanism only compares which program is better than another, it does not
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need to know how much better the program is. This maintains a constant
selection pressure thus preventing a single extraordinarily good individual
to completely dominate the next generation with its children. If that were
to happen, we would lose diversity rapidly causing potentially disastrous
consequences to the run.

While preferring the best, tournament selection does not guarantee that
average quality individuals have a chance of producing children. Since this
selection method is easy to implement and provides automatic fitness rescal-
ing, it is commonly used in Genetic Programming.

Despite the fact that tournament selection is a common selection mecha-
nism in Genetic Programming, many other mechanisms proposed in the Evo-
lutionary Algorithms literature can be used as well. Goldberg [42] presents,
for instance, Fitness Proportionate Selection, Stochastic Universal Sampling

and several others.

Variation Operators

Genetic Programming is distinguished from other Evolutionary Algorithms
in the implementation of recombination and mutation operators. The most
common recombination method used is sub-tree recombination. Having two
previously selected parents, this operator randomly and independently selects
a crossover point — a tree node — in each parent. Then, it creates the
offspring by copying the first parent and replacing, in the copied tree, the sub-
tree rooted at the crossover point with the sub-tree rooted at the crossover
point of the second parent. The process is repeated for the copy of the
second parent, replacing its sub-tree rooted at the crossover point with the
first parent’s sub-tree rooted at the crossover point. Copies are used in order
to prevent disruption of the parents’ original content. The Figure 2.4 is a

representation of the crossover procedure in Genetic Programming.
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Figure 2.4: Example of a sub-tree crossover. The trees on the left are copies
of the parents so that their genetic material can be used without altering the
original trees [63]

Crossover points are usually selected in a non-uniform probability. Typi-
cal Genetic Programming primitive sets lead to trees with an average branch-
ing factor (number of children of each node) of at least two so the majority of
nodes will be leaves. Consequently, the usage of uniform selection of crossover
points will lead to crossover operations frequently exchanging only small con-
tent of genetic material. Many crossovers may in fact simply swap one leaf in
each tree. To counter this problem, Koza [53] suggested to use an approach
that chooses functions 90% of the time and leaves 10% of the time.

The most commonly used mutation operator in Genetic Programming
is named sub-tree mutation and consists in randomly choosing a mutation
point in a tree and substituting the sub-tree rooted in it with a randomly
generated sub-tree as it is illustrated in Figure 2.5. Sub-tree mutation can
also bee seen as a crossover between the sub-tree and the newly generated

tree, which gave it the name of headless chicken crossover [4].
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Figure 2.5: Example of a sub-tree mutation. As in crossover, the operation
is processed on a copy of the parent tree [63]

Point mutation is also a common form of mutation that, in Genetic Pro-
gramming, resembles the bit-flip mutation in Genetic Algorithms [41]. In
point mutation, a random node is selected and the stored primitive is re-
placed with a different random one with the same number of input objects
from the primitive set, if it exists. Otherwise, the selected node is not mu-
tated but other nodes may still be.

Operators in Genetic Programming are usually mutually exclusive, unlike
other Evolutionary Algorithms where offspring are sometimes obtained via a
composition of operators, and their probability of application is called oper-
ator rates. Typically, crossover is applied with the highest probability, often
being 90% or higher. On the contrary, the mutation rate is much smaller,
typically about 1%. When the rates of crossover and mutation add up to a
value p which is less than 100%, an operator called reproduction operator is
also used with a rate of 1 — p. Reproduction simply consists on selecting an
individual based on its fitness and inserting a copy of it into the structure

containing the next generation of individuals.
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2.3 Natural Selection

The existing selection mechanisms applied in Evolutionary Algorithms are, in
a way, a representation of the very familiar procedures observed in nature and
that play a major role in the evolution of species, namely Natural Selection.
Those mechanisms simulate a competition of individuals in a population
struggling for natural resources, thus having a very determinant role on their
relative survival rate. The fitter the individuals, the better the chances for
them to reproduce and spread their genes through the next generations,
resulting in a propensity of the individuals with higher fitness to dominate
over those with lower fitness.

Usually in Evolutionary Algorithms, fitness is emulated resorting to a
function that evaluates each individual on a determined environment, re-
turning a value representing how fit that individual is. Selection mechanisms
favour fitter individuals which give them better chances to produce more
offspring and such results in a higher propagation of their genes causing a
tendency in the population to move through the search space into the best
manageable areas and include fitter and fitter individuals. One important
feature of the selection mechanisms is that they allow control over the selec-
tion pressure which, in turn, affects the convergence speed of Evolutionary
Algorithms. If such pressure is too low, the convergence of the population
into the optimal area may be too slow. Otherwise, if the pressure is too high,
the population may converge too early into a local optimal, to a state where
it cannot improve further. These situations demand an adequate balance
of the selection pressure for a good performance of Evolutionary Algorithms
42].

Since the appearance of Evolutionary Computation and its early stages,
several selection mechanisms have been developed and applied to countless
problems. The following subsections include a possible classification of ar-

guably the most popular of those methods.
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2.3.1 Proportionate Selection

The methods described below choose individuals for breeding based on their

fitness value.

Roulette Wheel Selection

Developed by De Jong [23], it attributes a probability of an individual being
picked, among the individuals of the entire population, directly proportionate
to its fitness through Eq. 2.1 where Py(i) is the probability of an individual
with fitness f(7) being selected over the sum of fitness from all the individuals,
represented by Z?Zl f(7). This method strongly resembles a roulette wheel
in which each space corresponds to an individual and its size varies according

to the individual’s selection probability.

(2.1)

Deterministic sampling

This method was introduced by Brindle [14] and later explored by Goldberg
[42]. This mechanism consists in calculating the number of expected copies
of each individual to undergo crossover through Eq. 2.2 where Ps(i) cor-
responds to the result of Eq. 2.1 and n corresponds to the population size.
With this mechanism, each individual is selected the same number of times
as the integer part of C'(7). In case this method does not generate enough
individuals to account for the needed mating pairs, they are sorted in de-
scending order according to the fractional part of Eq. 2.1 and the missing
slots are filled with the best ones.

C(i) = Pu(i) x n (2.2)
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Stochastic remainder sampling

Stochastic remainder sampling [14, 11] was introduced at the same time as
deterministic sampling and it works in a very similar way. The difference
resides in the case where not enough parents are selected based on the integer
parts obtained by Eq. 2.2. If such happens, instead of sorting the population
and fill the missing slots, this mechanism stochastically selects parents until
all slots are filled. In case this is done with replacement, a roulette wheel
method is applied where each individual will have a probability of being
selected directly proportionate to the fractional part of C(i). If it done
without replacement, the fractional part of C'(i) is used as a bias for coin

toss.

Stochastic universal selection

This selection procedure [8] follows the same methodology as the roulette
wheel selection but, instead of running the method when selecting each par-
ent, it uses a much simpler, less demanding approach. A number of markers
equal to the number of individuals in the population are equally distributed
on the outside of the wheel. After that, each individual is selected as many

times as the number of markers placed in its corresponding wheel section.

2.3.2 Ranking Selection

The methods described in this section rely on how individuals are ranked in

an ordered population for selection of parents in order to reproduce.

Linear ranking selection

This method was introduced by Baker [44, 82], who proposed a ranking mech-
anism on the individuals according to their fitness values and their selection
based on a roulette wheel fashion where the probabilities of selecting each in-
dividual are linearly proportional to their rank. The individuals with higher
fitness will have higher rank while the opposite happens to the individuals

with lower fitness. On the one hand, high rated individuals are unlikely to
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be able to dominate the roulette wheel, giving better chances for others to
be selected. On the other hand, very similar individuals that would likely
have very close selection probabilities (considering a proportionate selection

mechanism) may, in this case, have a large difference when selecting parents.

Exponential ranking selection

This mechanism [10] works like the previous one, with the difference residing
on how the individuals are ranked. Instead of applying a linear rank, this
mechanism defines the selection probability of parents exponentially pro-
portionate to their rank. By doing so, better ranked individuals are more

favoured when comparing to the linear ranking selection.

Truncation selection

Truncate selection allows only the best subset of individuals to be selected
as parents for mating. An approach to genetic algorithms was first proposed
by Muhlenbein [70] and it consists in defining a threshold n making only the
best n individuals available for selection, each one with 1/n probability. This
results in the assignment of the same probability to all the individuals in
the subset, even though they have different performances but also results in
the removal of all the individuals outside the elitist group from the selection

process.

2.3.3 Tournament Selection

The next methods define selection as a set of randomly chosen individuals
that compete between themselves for a chance to reproduce. Tournament
selection implementations are very efficient given that is not necessary to

sort the individuals within a population.

Binary tournament selection

As the name implies, the mechanism randomly selects two individuals from

the population and simulates a competition between them based on their
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fitness as if they underwent a match, keeping the fittest as a parent [14].
Tournaments are carried out until all parents needed for reproduction have

been chosen.

Larger tournament selection

Similar to the binary tournament selection with the exception of the number
of participants. In this case, the mechanism selects n individuals instead of
two as a generalization of the previously described mechanism. Asn increases
so does the selection pressure since each individual must compete against a

larger set of candidates.

Boltzmann tournament selection

A more complex selection mechanism [43] than the previous two, it works by
applying a tournament of three individuals but, instead of behaving like a
standard size three tournament selection, this mechanism chooses its partici-
pants through three distinct methods: the first individual is, like the standard
tournament selection, selected randomly; the next participant will be chosen
based on a predefined threshold x which represents the difference between
its fitness and the first individual. The third and last individual is selected
by one of two ways in an alternate fashion. Either in a way that its fitness
differs by x from both the first and the second participants or just from the

first one.

2.3.4 Restricted Selection

The methods described below rely on sets of rules and conditions in order to
restrain the selection operations.

Selection with chromosome differentiation

Chromosome differentiation selection is based in the ideas of male vigor and

female choice and emulates these differences by applying different selection
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mechanisms for each of the two required parents [79]. As Wagner and Af-
fenzeller suggest, this mechanism mimics male vigor by selecting the first
individual randomly from the population and also mimics female choice by
addressing a different method when choosing the second individual such as

roulette wheel or linear ranking selection.

Restricted mating

The mechanism, introduced by Booker [12], consists in restricting each indi-
vidual to mate with others similar to it thereby promoting niching. Conse-
quently it prevents individuals from a particular niche to be selected along
with others from a different niche which in turn becomes fitter to search
landscapes that have a large number of local optima. Restricting interaction
between niches implies a less likelihood for individuals to converge to one

local optima thus promoting the exploration of various local optima.

Reserve selection

Introduced by Chen et al. [17], this selection mechanism’s primary aim is to
maintain population diversity relying on the segmentation of the population
in two distinct parts: non-reserved area and reserved area. The non-reserved
area consists of highly fit individuals that are subjected to evolution through
the regular operators in order to exploit their high quality genes. The re-
served area is particularly designed to maintain the less fit individuals so that
diversity is maintained and the exploration of larger parts of the search space
is promoted. Unlike in the non-reserved area, the reserved individuals evolve
through specially built operators, allowing them to have an active role in the
evolution process and possibly reaching solutions that can be considered of

high fit, making the individual become a part of the non-reserved area.

2.4 Sexual Selection

It was during the expeditions made on board of the ship Beagle, between 1831
and 1836 that Charles Darwin furthered his studies and research leading to
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the development of one of the most revolutionary theories ever related to the
evolution of species, the Theory of Natural Selection. In his book, published
in 1859 and entitled “On the Origin of Species by Means of Natural Selection”
[21], Darwin argues that the species we know nowadays went through an
evolutionary process for millennia which allowed them to acquire a certain
set of capabilities that assist them on their survival. In a general way his
theory was very well received in the scientific community as most scientists
and researchers recognized the strength of Darwin’s arguments.

But despite such acceptance, there was one aspect in evolution that his
theory couldn’t explain which was the rich animal ornaments found in several
researched species during the Beagle expedition. Those ornaments seemed
to serve no survival purpose, were therefore useless and, more importantly,
costly sometimes in a way that could possibly jeopardize the species rate of
survivability. The evolution of such ornaments was an enigma for Darwin
as they defied his idea that traits were shaped for survival purposes. With
this in mind, Darwin developed his theory of Sexual Selection, aiming to
overcome this gap that the theory of Natural Selection could not explain.

Even though Natural Selection was Darwin’s main research from which his
theory emerges, he began to look into animal ornamentation early, dedicating
three paragraphs to the subject in his work on the origin of species [21].
Furthermore, in “The Descent of Man and Selection in Relation to Sex” [20]
Darwin devoted seventy pages regarding Sexual Selection in humans and
five hundred pages on the same subject regarding other species. While the
publication’s main topic was the origin of mankind, Sexual Selection was
extensively introduced, a subject that was considered very touchy at the
time.

Animal ornamentation was something that puzzled Darwin since Natural
Selection was unable to explain the existence of largely, costly and complex
traits that didn’t seem to contribute to the individuals survival ability. Ac-
cording to his theory, only the traits that benefit the individuals rate of
survivability would be favoured and, consequently, ornaments would become
counter-productive. Taken these facts into consideration, Darwin envisioned

that, besides Natural Selection, another trait-shaping selection feature must
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be part of the evolution process and that feature would cause traits that
help individuals, when competing against others for a mating pair, to be
spread through the species even if those traits can severely compromise the
individual’s rate of survivability.

The main purpose of Natural Selection is making species adapt to the
surrounding environment while Sexual Selection’s main purpose is making
each sex adapt in relation to other through the struggle of individuals of
one sex for the possession of individuals of the opposite sex. In a realistic
environment and unlike Natural Selection, the outcome of failing this pro-
cess is not death but rather few or possibly no offspring resulting in a very
low or non-existent spread of the individual’s genes. In an evolutionary per-
spective, failing to compete for mates will result on individuals perishing
before being able to reproduce which has the same outcome as having very
weak survival abilities. On the other hand, reproduction followed by an early
death still serves its purpose anyway since the genes were already inherited
by the offspring. Therefore, the previous process explains how differences in
reproductive success leads to evolutionary changes.

As a way to explain Sexual Selection, Darwin resorts to Artificial Selec-
tion, an experiment also used earlier to explain his theory of Natural Selec-
tion. Darwin aimed to promote the theory by arguing that the same way
human beings evaluate other species aesthetics and promote reproduction
between those that fit their preferences, it is likely that the same can happen
based on each species own preferences. He also argued that Sexual Selection
is characteristic of species with highly developed perception systems, allowing
courtship behaviour and active Mate Choice to be carried out.

Sexual Selection can be separated into two main processes: competition
among males for access to females and female Mate Choice. The first pro-
cess promotes the evolution of natural weaponry, body strength and other
characteristics needed for males to quarrel with each other for access to fe-
males while the second one explains the existence of ornaments and courtship
displays to attract females.

According to Darwin’s ideas on Sexual Selection through Mate Choice,

female preferences alone may lead mating candidates to develop traits to an
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high degree of decoration. However if trait evolution imposes a cost that
threatens the survival of too many individuals, then Natural Selection will
suppress it, risking extinction.

Darwin’s theories are unprecedented and suggest that the process of evo-
lution appears to result from the differences between reproduction success
rather than survival alone and they also claim that evolution results not
only from the adaptation of species to the environment but also from mating
choices.

Despite the huge effort put by Darwin to introduce the theory of Sex-
ual Selection and the mechanisms of Mate Choice, the theory was not well
received in the scientific community and many researchers refuted Darwin’s
arguments. Alfred Wallace was possibly the most influential researcher to
contradict this new theory. His explanation for the existence of ornaments
in both sexes was that they had no weight in the evolutionary process but
rather worked as a way for individuals to identify others [80]. In the end,
Wallace’s theory had been better accepted than Darwin’s, sending the latter
into a “limbo” for about a century with contributions of only a few other re-
searchers such as August Weismann in his book, published in 1904 [81], and
Ronald Fisher, who contributed the most to the theory of Sexual Selection
through Mate Choice providing answers to many of Darwin’s unanswered
questions.

In 1915, Sexual Selection resurfaces with Ronald Fisher as the main sup-
porter. That year, in a 1915 journal [35], Fisher presented the challenge of
explaining the origin of mating preferences and, in 1930, he suggested that
those preferences can be considered biological traits and thus are as subject
to inheritance and evolution as the physical traits [34].

Fisher came up with two major concepts to the theory of Sexual Selection.
The first, outlined in his 1915 publication, stated that ornaments evolve as bi-
ological indicators of fitness, health, energy, reproductive potential, etc. This
idea described that if females have particular mating preferences and if these
are complemented by specific male ornamentation with some being healthier
than others, then females with those preferences will have reproductive ad-

vantage given that they select mating partners that seem to provide better



CHAPTER 2. STATE OF THE ART 45

genes to the offspring. Over time, preferences for particular ornaments will
spread over the population as well as be inherited over generations, giving
better chances of reproduction to the males possessing the preferred orna-
ments.

Regarding the second idea, stated in his 1930 publication, Fisher believed
that both mating preferences and preferred features are able to evolve in
a positive-feedback loop causing ornaments to suffer extreme evolution due
to sexual competitiveness between individuals. This concept, known as the
Runaway Sexual Selection, is more characteristic of populations of species
where males are able to mate with multiple females and highly depends on
the original existing traits and preferences as they evolve in unpredictable di-
rections. For example, considering a population where preferences and traits
can vary according to the inherited genes but haven’t changed for a sig-
nificant number of generations causing maintenance in both characteristics.
Coincidentally, either by reproduction or mutation, a change in the mating
preferences of a group of females occurs, triggering a preference in a specific
trait that will give reproductive advantage to the individuals showing the
preferred trait. With parents passing on their original preferences and traits,
the number of offspring inheriting the runaway preferences and traits will
also increase. The effect occurs showing a genetic correlation with increasing
speed, providing momentum to the runaway process.

Fisher theorized that, in cases where individuals with most ornaments
monopolize the reproductive advantage, the runaway process will strongly
reinforce both ornaments and preferences to a point where the survival cost
becomes unbearable for individuals to maintain and Natural Selection dis-
rupts the runaway process. As happened to Darwin, Fisher’s ideals were
target of heavy criticism by various authors such as Julian Huxley in his
1938 and 1942 publications [52], which made them fall into oblivion until the
1960s.

Once again, Sexual Selection through Mate Choice was disregarded as
an evolutionary theory. But, besides being subjected to heavy criticism,
other existing factors were decisive to such contempt. First of all, it is a

complex theory to model mathematically. Unlike Natural Selection which
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implies adaptation of a given population to an environment where effects of
different genes are easier to predict, Sexual Selection implies that individuals
contribute for the selection pressure while being subject to it themselves in
the evolution process in addition to the existing one imposed by Natural Se-
lection. This feedback loop between preferences and traits makes the theory
very hard to model and analyse. Secondly, there was very few support from
biologists since they considered Sexual Selection as a way for individuals to
identify others of the same species as well as were focused in the study and
explanation of speciation. Thirdly, animal behaviour including sexual be-
haviour was considered a result of stimulus instead of choice. Lastly, Sexual
Selection would imply an active role of costly, threateningly ornaments in the
evolutionary process and since Evolution was regarded as the adaptation of
species as means to increase their rate of survivability, ornaments would be
placed on a lower level of adaptation than others as they didn’t contribute
for the survival of the species.

In 1975, Amotz Zahavi expanded Fisher’s theories by defending that or-
naments could be considered indicators of fitness. Contesting the critics
arguments, he argued that because ornaments were costly, weak and un-
healthy individuals were unable to maintain them therefore those who are
able to maintain such features must possess higher fitness than the former
[83]. Zahavi named his principle as the Handicap Principle due to ornaments
working as handicaps for survivability. Richard Dawkins promoted this idea
as well in his 1976 publication [22].

Like most theories concerning Sexual Selection through Mate Choice, the
Handicap Principle was target of heavy criticism. Even so, Zahavi’s contri-
bution got enough attention allowing Fisher’s theory about fitness indicators
to resurface and the discussion around both ideas led to Darwin’s ideologies.
The amount of publications regarding Sexual Selection increased so much
that more research was performed on the following decade than during the
past century. The aroused discussion attracted authors and researchers from
various study areas such as biology, psychology and anthropology where many
of the models developed to Sexual Selection in the past years were applied

for the first time and confirmed many of the theories elaborated behind Mate



CHAPTER 2. STATE OF THE ART 47

Choice. In the 1990s decade, research on Sexual Selection emerged from the
century-long oblivion to finally gain acceptance in the scientific community.
The history and ideas behind Sexual Selection through Mate Choice have

been reviewed, for instance, by Helena Cronin [19] and Malte Andersson [3].

2.5 Related Work

In this section, we will describe in more detail the research made in the field
of Mate Choice by several authors. We begin with the research experiments
performed in Evolutionary Algorithms since its introduction in the scientific
community. Next we will describe the research accomplished using Mate
Choice along Genetic Programming and close the chapter with 2.5.3 where
studies performed with Mate Choice models along with Self-adaptive are

reviewed .

2.5.1 Mate Choice in Evolutionary Algorithms

Since 1980, Sexual Selection through Mate Choice has been accepted as
one of the major driving forces behind evolution by Evolutionary Biology
and many other science fields have also adapted to include Sexual Selection
through Mate Choice models. Evolutionary Computation has its seed in the
1950s decade and by the 1990s its development allowed the identification
of four main approaches. Evolutionary Programming was introduced by L.
Fogel in 1960 [36], Genetic Algorithms were proposed by John Holland in
the 1970s decade [49], Evolutionary Strategies were developed by Rechen-
berg and Schewefel during the 1960s and the 1970s decade [66] and Genetic
Programming established itself during the 1990s decade following some of
the same ideas of its ancestors but was initially idealized during the 1960s
decade [55].

Evolutionary Computation emerged when Sexual Selection was consid-
ered of no true importance and by the time Sexual Selection became a solid
theory, Evolutionary Algorithms were already settled based on the ideology
of Natural Selection through its popular models from the 1950s to the 1970s
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decades. Although there is a number of studies on applications of Sexual
Selection through Mate Choice in Evolutionary Computation, attracting the
scientific community to further explore the theory has proven to be difficult
leading to a failure in integrating it in the realm of Evolutionary Computa-
tion.

This indifference towards Sexual Selection through Mate Choice may oc-
cur on the account of the following probable reasons. First of all, this is a
process that strongly depends on the individuals ornamentation, perception
and mating preferences and these “new biological” traits suffer changes dur-
ing the evolution process along with the existing physical traits. Given that
such process is complex and unclear makes it very challenging to model. Sec-
ondly, the introduction of Sexual Selection through Mate Choice brings a new
paradigm to Evolutionary Computation. Instead of solely have individuals
adapting to a static environment as often happens with Natural Selection, in
this new theory they not only suffer pressure from the environment through
Natural Selection but also from other individuals in the population which are
themselves under the same evolutionary pressure. With this new paradigm
comes a new challenge in means to analyse the performance and behaviour
of the Evolutionary Algorithm which may drive researchers away from such
models. Thirdly, the results obtained on many performed experiments us-
ing traditional Evolutionary Algorithms are frequently good enough, which
discourages researchers to explore the application of new methods. This has
favoured resorting to Natural Selection and led researchers to spend their
time in possible solutions that could help improve the experiments’ results
on particular applications rather than exploring the use of Sexual Selection
through Mate Choice. Ultimately, despite its development, Evolutionary
Computation still has many unanswered questions and answering them have
been more appealing to the interests of researchers.

In other study areas such as Biology, Anthropology and other Human Sci-
ences, Sexual Selection through Mate Choice became a major research sub-
ject but in Evolutionary Computation, due to the reasons mentioned above,
research took other directions, keeping it from having a more active role in

the study area. Still, several studies worth reviewing have been published in
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the past couple of decades.

Of the existing models of Sexual Selection through Mate Choice, the two
that are probably the most known are the Assortative Mating Selection [16]
and Disassortative Mating Selection [32]. The first occurs when individuals
with similar phenotypes or genotypes are more frequently paired for mating
purposes than expected by chance. The second model consists in the inverse
process of the former i.e. individuals with dissimilar phenotypes or genotypes
tend to be more frequently paired for mating purposes. Individuals choose
their partners based on Hamming distance, counting the number of different
information between the choosing individual’s phenotype and each individ-
ual’s phenotype of the candidate set, or Euclidean distance by calculating
the difference between the choosing individual’s genotype information and
each individual’s genotype information of the candidate set [72].

Chien-feng Huang elaborated a study on assortative and dissortative mat-
ing selection [51] where he applies four different approaches using Hamming
distance and analyses the obtained behaviour. The results of the approach
showed that dissimilar selection promotes better and innovative solutions
but at the population’s mean fitness expense which decreases due to a higher
probability of disrupting existing building blocks by mixing dissimilar indi-
viduals.

Ratford et al. [65] proposed a seduction function that combines the fitness
of the mating candidates with the Hamming distance to the first parent. The
measure benefits mating between individuals that are neither too similar
nor too dissimilar. They also propose dynamically adapting the bias of the
function at each generation so that mating between dissimilar individuals is
favoured at the beginning of each run but gradually gives space to mating
between similar individuals through the evolution process. The ability of the
approach on finding multiple solutions on multi-modal problems was assessed
and results show that the proposed strategy may be an important asset. The
same research group has proposed a seduction function that doesn’t rely
on fitness but rather on either Hamming distance, Euclidean distance or
common building block between the first parent and mating candidates [64].

They study the approach on a set of test problems and for the most of it,



CHAPTER 2. STATE OF THE ART 50

results are reported to be significantly better than a traditional approach. It
is also discussed that either similarity measure performed robustly without
the need to rely on the fitness of the individuals for mating purposes.

Hinterding and Michalewicz [47] apply Sexual Selection through Mate
Choice to the constrained optimization of a Non-linear Programming Prob-
lem (NLP). They propose an alternative method where the fitness function,
besides returning the individual’s fitness (without penalizations), also returns
information on the constraints. On their study, a individual is first selected
using a tournament that favors feasible individuals which will then select
a mating partner from a set of candidates. By preferring mates that, in
conjunction with itself, violate the least number of constraints they aim at
producing more feasible offspring. The approach was compared with stan-
dard constraint optimization methods achieving comparable results.

In [60], Matsui proposed two correlation based operators, the first one for
Sexual Selection through Mate Choice, named correlative tournament selec-
tion, and the second one for survival. The approach selects mating partners
from a set of candidates that are evaluated through a function that assesses
both the fitness and the hamming distance to the first parent, promoting
those with a higher correlation. The results obtained showed an increase on
population diversity as well as on performance.

Sanchez-Velazco and Bullinaria proposed a gendered Sexual Selection
through Mate Choice model where the gender is randomly attributed to indi-
viduals of the initial population and sequentially attributed to offspring [68].
In their approach males are selected first and choose a female mating partner.
The authors also propose an application of a weighted mean of three distinct
criteria as mating evaluation function. The first is the candidate’s fitness,
the second is the difference between the candidate’s previous offspring’s fit-
ness and the male itself, and the third criteria is a scaling function of the
female’s age. This model was applied to the Travelling Salesman problem
where improvements were consistently shown. Other functions were tested
by the same authors where a similar approach was applied [69]. Besides pre-
senting a certain level of problem dependency, the Sexual Selection model

outperformed a standard approach.
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A similarity-based approach for Mate Choice in Genetic Programming
was proposed by Fry et al. [37]. The approach consists in the evaluation of
candidates using a function that determines the similarity between the first
parent and each candidate along with its fitness, favouring the mating of
dissimilar pairs. As a way to measure such similarities, the authors suggest
three methods: edit distance similarity, relative similarity and absolute sim-
ilarity. They also propose that both mate selection and regular tournament
selection should be used for the selection of the second parent along with a
parameter that will define which of them will be applied and its value should
adapt using either a population level dynamic probability or an individual
level dynamic probability. The approach was tested on symbolic regression
problems and the results obtained showed that mate selection stimulated
species evolution. Both adaptive approaches allow the system to adapt its
behaviour between exploration and exploitation, and the results of their im-
plementation presented enhanced results. For instance, adaptation on the
individual level resulted on good solutions showing up later on the evolution
process but the probability of successful crossovers is consistently better.

In [39], Galdn and Mengghoel propose a Sexual Selection through Mate
Choice model where either survival fitness value or Euclidean distance are
used as mating preferences, emphasizing three methods for Mate Choice:
Best-First selection, Best-Last selection and Self-Adaptive. The first method
consists in selecting the first individual from an ordered set of mating can-
didates according to the first parent’s chosen preferences. The next method
works the same way as the previous with the exception that the mating
partner will be the last individual of the set. The last proposed approach
consists of encoding a mating index in each individual, therefore, defining
their own mating preferences. The index parameter is inherited from parents
to offspring and is subject to a customized mutation operator. Obtained
results show better performances on the Best-First approach on uni-modal
functions while Best-Last performed better on multi-modal functions. The
Self-Adaptive approach performed robustly in both functions and is consid-
ered a great option for cases where the multi-modal level is unclear.

In [78], Varnamkahsti and Lee apply Sexual Selection through Mate
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Choice model to the multidimensional 0/1 knapsack problem. They pro-
pose splitting individuals into female and male populations in an alternate
way, selecting females using tournament selection followed by the selection
of a male partner from a candidate set by each triumphant female. Mating
choices are based on the maximum Hamming distance but if a draw occurs
the fittest male is selected. In case of a second draw, females choose the male
with the most active genes. If, once again, a draw occurs, then the male
is randomly selected. The authors compare this approach with traditional
selection operators obtaining similar results.

In [45], Guntly and Tauritz propose a Learning Individual Mating Prefer-
ences approach (LIMP) with two variants: a centralized approach (C-LIMP)
and a decentralized approach (D-LIMP). LIMP is adapted for binary repre-
sentation problems using a floating-point vector with the same size as the
genotype as representation of the individual’s preferences (each position rep-
resents how much an individual desires that the same position of the genotype
is set to one). In D-LIMP each individual possesses its own preference vec-
tor used to evaluate the genotype of a mating candidate. After choosing a
mate, the offspring will be generated through crossover and they will inherit
both preferences from both parents so that they correspond to the inherited
genes from each parent. Parent’s preferences as well as offspring’s are up-
dated according to the latter’s fitness so that successful crossovers reinforce
preferences while unsuccessful ones weaken them in order to favour others.
The C-LIMP approach uses two common vectors to all individuals of the
population. The first one corresponds to the genes set to zero while the
second one corresponds to the genes set to one. When choosing its mate,
the first parent relies on its own genes to choose between the two prefer-
ence vectors and evaluates the candidates’ genotypes based on the chosen
vector. Both preference vectors adapt at each step as with D-LIMP. These
two approaches were tested on DTRAP, MAXSAT and NK Landscape, ei-
ther alone and along with a Restricted Tournament Replacement operator
(RTR) that helped maintaining the population’s diversity. When compared
to a traditional Genetic Algorithm and to a Variable Dissortative Mating
Genetic Algorithm (VDMGA), D-LIMP shows better performance than the
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others on the MAXSAT and DTRAP problems even though it requires more
evaluations to converge. On the other hand, C-LIMP along with RTR had
a better performance than D-LIMP on the NK Landscape. However VD-
MGA outperformed both of them on that problem. More results on D-LIMP
applications were published in [48].

Eshelman et al. [31] applied an approach that relies on a Hamming dis-
tance threshold, below which recombination is inhibited. An alternative ap-
proach has been proposed by Craighurst et al. [18] where similarity between
individuals is measured by their genealogical trees. Individuals sharing ances-
tors to a certain degree are prevented from mating with each other. Fernandes
and Rosa [32] have studied the two aforementioned strategies on a Genetic
Algorithms (GA) model applied to the royal road function. Results show an
increase in performance on both approaches, specially if coupled with pop-
ulations with varying sizes. It is also discussed that approaches showing a
greater diversity along the evolutionary process don’t necessarily result in
a better performance despite that being the goal of both the non-random
mating strategies.

Burke et al. [15] have proposed a different approach where individuals
are grouped according to their lineage. During selection, two groups are ran-
domly selected and one individual is also randomly selected from each group.
This approach entirely removes the influence of fitness from the selection
process and focuses on lineage alone. Lineage selection, as labelled by the
authors, reportedly changes the dynamics of evolution on various domains,
aiming at the promotion of diversity. On regression of Binomial-3 problems,
improving diversity resulted on worst results when compared to a standard
approach. The authors discuss that combining parts of dissimilar solutions
doesn’t always result in solutions that make sense due to nodes losing their
context. They argue that converged populations have an easier task when
combining genetic material from different individuals without them losing
context, suggesting that there should be a balance between selection pres-
sure and diversity handling.

Gustafson et al. [46] experimented with mating between dissimilar indi-

viduals on regression of binomial-3 instances. In the discussed work, mea-
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suring the similarity between individuals relies on the edit-distance [15, 30].
Results suggest that the search process is equally influence by unfit solutions
and solutions that are both fit and dissimilar. Ultimately, the experimented
approach resulted on improved solution quality.

Fernandes and Rosa [33] applied both negative and positive assortative
mating to a Vector Quantization problem using a similarity measure that
accounts for phenotype information regarding individuals. The approach
selects both a parent and a set of mating candidates through a roulette wheel
operator and the parent mates with the most similar or dissimilar candidate.
Results show an enhanced performance on negative assortative mating and

it is argued that diversity handling is a key factor.

2.5.2 Genetic Programming and Mate Choice

Smorokdina and Tauritz proposed a self-adapting semi-autonomous parent
selection model, an approach where mates are chosen according to the first
parent’s own mating preferences. The first parent encodes not only his po-
tential solution but also an evolving mate selection function in form of an
extra chromosome. Represented as a Genetic Programming tree that uses as
its only possible terminal the entire population with the exception of itself,
the function returns the selected mating partner. As non-terminals, a set of
selection operators are used, e.g., tournament selection, biggest or more uni-
form hamming distance, etc. Constraints were used to make sure that rules
for all operators are complied. The authors consider two approaches in the
attribution of mate selection functions to new offspring, either by inheritance
of the first parent’s mating selection function or by a recombination of both
parents’ selection functions. In order to choose between both, they advise
measuring the improvement of the produced offspring and, done that, inherit
the first parent’s mating selection function if the improvement is considerably
significant. This approach was tested in a set of problems and the results
showed that its performance is slightly lower than the traditional approach,
but without statistically significant differences. While its generalization is an

advantageous aspect, the approach suffers a trade off in the obtained results
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[74].

In [59], Machado and Leitao propose the self-adaptation of mate selecting
evaluation functions in the Circle Packing in Squares (CPS) problem. Their
approach consists in individuals with an encoded Genetic Algorithm solution
for the targeted problem and an extra chromosome containing the mating
preferences of each individual. Two variants were tested: the encoding and
evaluation of mating preferences using Genetic Algorithms, and full evalu-
ation functions using Genetic Programming. Initially a parent is selected
using tournament selection then a set of mating candidates are chosen ran-
domly from the population. The first parent is able to perceive phenotype
information from each candidate, specifically how they perform on simpler
instances of the CPS problem. Candidates phenotypes and how they per-
form on simpler instances of the CPS problem contain information on their
genotypes that can help determine if it can contribute to the breeding of
healthy offspring. The Genetic Algorithm evaluation function is modelled
as a weighted function of the fitness values obtained by each candidate on
smaller instances of the problem, where only the weights are evolved. Re-
garding Genetic Programming, the approach evolves the entire evaluation
function using the fitness values on smaller instances of the problem as ter-
minals and a set of arithmetic operators as non terminals. Obtained results
show that mate selection based on Genetic Algorithm had worst performance
than the traditional approach while mate selection based on Genetic Pro-
gramming surpassed both conventional and Genetic Algorithm approaches,
frequently with statistically significant difference even though it searches a

wider search space.

2.5.3 Self-Adaptive Algorithms

Self-Adaptive dynamic adaptation relies on the theory of evolution to modify
Evolutionary Algorithms parameters or operators through their evolution. In
this case, the target control parameters subject to adaptation are found en-
coded in each individual of the population and experience recombination and

mutation processes as part of the individual’s genotype without influencing
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its fitness since they are not taken into account during evaluation processes.
Considering this approach, individuals containing “better” parameter values
will expectedly have evolutionary advantage over those not containing such
parameters thus leading to “better” individuals that will, consequently, have
more chances of survival and reproduction therefore helping the propagation
of the included parameters/operators through the population. This kind of
representation and evolution of parameters/operators defines the main differ-
ence between adaptive and self-adaptive dynamic adaptation. In the second
approach, the methods of credit assignment and update are not explicitly
design but are rather implicit in the Evolutionary Algorithm itself. The
subjects of self-adaptation can go from parameter values that control the
execution of Evolutionary Algorithms to operators managing selection, re-
combination and mutation processes, or the probability of applying single or
multiple alternative methods.

The method of Sexual Selection through Mate Choice studied and de-
veloped relies on self-adaptation of each individual selected for mating. The
parent selection mechanism is, then, altered in order to select the second par-
ent biased by the first parent’s mating preferences. These mating preferences
will evolve in parallel with the traditional evolutionary process imposed by
the used Evolutionary Algorithm.

In [26], Eiben, Schut and de Wilde studied self-adaptation of the tourna-
ment selection size. They proceeded to include an extra parameter in each
individual’s chromosome encoding a tournament size. For each selection step,
a voting system is used to decide which will be the size of the tournament at
that point. The mechanism was tested and the obtained results showed that
improvements occurred in the evolution processes.

Spears proposes in his publication [75] a method that selects between two-
point and uniform crossover in the recombination process. He suggests the
encoding of an extra gene in the individual’s genotype which represents one
of the crossover types and analyses possible population-level implementations
and individual-level implementations.

In [13] Braught assesses the self-adaptation of mutation rates by including

an extra gene in the representation that determines the mutation probabil-
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ity of its offspring. The offspring inherit its parents mutation rates that

undergoes evolution as part of the genotype.
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Chapter 3
Model /Framework Proposal

Two options stood out for potential use: OpenBeagle[38], a C++ Evolution-
ary Computation framework following strong principles of object oriented
programming, and ECJ[1], a Java-based Evolutionary Computation Research
System framework that follow the same principles as OpenBeagle but since
it is written in Java, it has poorer execution speed and bigger memory foot-
prints. Both are full featured Object Oriented Systems and are quite similar
in philosophy and features.

Despite the fact that ECJ is inferior in performance when compared to
OpenBeagle, it has better documentation and support as well as third-party
content available such as packages for Gene Expression Programming that
may reveal themselves useful. Since we are implementing a new approach
that will become an extension of the original framework and want to develop
it in order to be as generic as possible, we considered that a well documented
framework has priority over one with better performance. For these rea-
sons, ECJ was the chosen framework to aid on the study of Sexual Selection
through Mate Choice. The framework’s diagram can be found attached to
the report’s appendix.

When modelling Sexual Selection through Mate Choice in Evolutionary
Computation, one should keep in mind certain concepts based on species’
natural behaviour. Taking into account the approach tackled by Machado

and Leitao[59], the most relevant concept is that, as opposed to traditional
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models where they are randomly paired, individuals must choose a mating
partner. The choice is made according to a relation between mental pref-
erences from the one finding its partner and sexual attractiveness from a
number of mating candidates and such mental traits are heritable the same
way physical traits are. Finally, mate selection is a process that induces its
own selection pressure but is subject to selection pressure itself. Through
generations, individuals of a population are able to evolve both their orna-
ments and mating preferences in a feedback loop that allows them to perceive

what are good mating preferences and adapt according to such preferences.

Population

Selection Selection

Parentl Parent2

Figure 3.1: Traditional selection mechanism

In figure 3.1 the process of traditional selection mechanisms is described.
To put it simply, two individuals are picked from the population through

traditional selection methods and then paired with each other for mating

purposes.
Population
Selection Random
Mating
Candidates
Evaluation
Parentl
Most
Attractive
Parent2

Figure 3.2: Sexual Selection mating mechanism

The mating mechanism for Sexual Selection through Mate Choice is rep-
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resented by figure 3.2. Unlike the traditional mechanisms, a set of individuals
from the population undergo selection via tournament and the winner is se-
lected to be the first parent along with a set of mating candidates. Then the
selected individual evaluates all the individuals of the candidate set classify-
ing their sexual attractiveness and chooses the most attractive to pair with

for mating purposes.

Parent 1 Candidate

Chromosome 1 Chromosome 1

Candidate solution ‘ Candidate solution

Mental Traits /I’{ Phenotype ‘
/

Perception System

Chromosome 2

Mating Preferences | Interpretation

level of attractiveness|

Figure 3.3: Evaluation process of mating candidates

Figure 3.3 explains how evaluation performed by the first parent works.
The mechanism consists in the tournament winning individual resorting to
its perception system to assess each candidate’s phenotype. After that it uses
an evaluation function, represented by the mating preferences in the figure,
to interpret and assign the candidate’s level of attractiveness.

Algorithm 4 shows a simple pseudo-code representation of the selection

operator in Sexual Selection through Mate Choice.

Algorithm 4 Sexual Selection through Mate Choice

procedure MATECHOICE(population)
parent_1 < SELECTINDIVIDUAL(population)
candidates <— SELECTCANDIDATESET(population)
EVALUATECANDIDATES(parent_1, candidates)
parent_2 < SELECTBESTOF (candidates)

end procedure
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As seen in Algorithm 4, the first parent is selected from the population
by means of a chosen selection mechanism as well as a set of n candidate
solutions for mating with the first parent. These are, after being selected,
subjected to evaluation according to the first parent’s mating preferences.
This is obtained by comparing the first parent’s representation of its ideal
mating partner with the phenotype of each individual of the candidate set.
The result will determine the attractiveness a mating candidate causes on
the first parent. The second parent is selected for mating by the first which

will choose the most attractive candidate of the set.



Chapter 4
First Term Experimentation

The performed work is split into two distinct phases. First the framework for
Evolutionary Computation was chosen, as already stated in Chapter 3. Then
the target problem was defined and Genetic Programming approaches were
implemented in order to gain experience both on the framework as well as
on the target problem. Afterwards, the framework was expanded to include
mechanisms of Mate Choice for the target problem. Finally, several experi-
ences were carried out on two different models, Natural Selection and Sexual
Selection through Mate Choice. The evolution process and the resulting so-
lutions were analysed for a better understanding of each model and to assess
the particularities behind Mate Choice.

In order to compare the developed mechanisms for Sexual Selection
through Mate Choice against the conventional existing mechanism, namely
Natural Selection, both were applied in several symbolic regression functions
using Genetic Programming. When benchmarking Genetic Programming
problems, one should take into account several criteria to have a good bench-
mark producing reliable results: it should be adjustable in order to gener-
ate more difficult instances as required; it should be fast enough to allow
large number of runs to be executed for meaningful comparison between ap-
proaches; its results should be easy to interpret and compare, and measures
like average best fitness are statistically better than, for instance, the best

fitness found. Along with easy implementation, these criteria make symbolic
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regression a widely used resource for benchmarking Evolutionary Algorithms
[61]. The chosen method was applied for both Natural Selection and Sexual

Selection through Mate Choice mechanisms.

4.1 Experimental Set-up

In order to get familiarized with the ECJ framework and Genetic Program-
ming, several Natural Selection models were initially developed for symbolic
regression on a set of 7 functions. The functions were selected based on a
study regarding benchmarking of Genetic Programming by McDermott et al.
[61]. The functions tackled have been compiled in table 4.1 as well as the
training intervals. Each training interval states the minimum and maximum
values of = as well as either the number of steps in intervals, labelled U, or

the distance between steps in intervals, labelled F.

Function Objective Function Training Set
Keijzer-1  0.3zsin(27x) E[-1, 1, 0.1]
Keijzer-2  0.3zsin(2nwz)

E
Keijzer-3  0.3zsin(2mx) E .
Keijzer-4 3¢ %cos(z)sin(x)(sin?(z)cos(z) — 1 E[0, 10, 0.05]
Koza-1 R L R Ul-1, 1, 20]
Nguyen-5  sin(z?)cos(z) — —1 U[-1, 1, 20]

Table 4.1: Functions for the application of symbolic regression

Each symbolic regression function is associated with a particular function
set as well as a particular terminal set used to build the GP trees. The
function sets can be found in table 4.2. The terminal set is composed by the
ERCs in the table and the variable .

Function Function Set Constants (ERC)
Random value from
K .o o l _
eijzer + = —nn (L=0, 6=5)
Koza + — x + sin cos €" In(|n|) None
Nguyen + — X <+ sin cos €" In(|n|) None

Table 4.2: Function and terminal set of each of the used functions for symbolic
regression
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4.1.1 Natural Selection Models

Having established the function set and the terminal set, the next step re-
sides in defining the Genetic Programming parameters used on each target
function. Characteristics such as the population size, the total number of
generations, the minimum and maximum depth of individuals genotype de-
fined by Grow, the maximum tree depth resulting from crossover operations
and the value range of each problem’s variable as well as the incremental
step of that value vary from one problem to another. The parameters that
remain unchanged will be the total number of runs of each problem, the
probability of each node being a terminal or a non-terminal during initializa-
tion, the crossover, reproduction and mutation probabilities and the elitist
proportion of the fittest individuals. Thus, the parameter set definition for

each addressed problem is described in table 4.3

Koza Nguyen Keijzer

Total number of runs 50 50 50
Population size 4000 500 100
Number of generations 100 100 100
Tournament size ) ) )
Crossover probability 90.0% 90.0% 90.0%
Mutation probably 0.0%  0.0% 0.0%
Reproduction probability — 10.0% 10.0% 10.0%
Elitist proportion 1 1 1
Crossover maximum depth 17 15 10
Grow minimum depth 5 6 5
Grow maximum depth 5 6 5
Non-terminal probability — 90.0% 90.0% 90.0%
Terminal probability 10.0% 10.0% 10.0%

Table 4.3: Parameter set for each problem using the Natural Selection ap-
proach

4.1.2 A Mate Choice approach to Symbolic Regression

As described in chapter 3, on the model of Sexual Selection through Mate
Choice, a new chromosome is implemented on each individual. This chromo-

some contains the individual’s mating preferences and will allow it to evaluate
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mating candidates in order to determine their “sexual attractiveness” accord-
ing it its own preferences and is represented by a Genetic Programming tree
and encodes the ideal mating partner of the individual. During the process
of parent selection, the first parent is selected via Tournament Selection from
the population along with a random set of mating candidates. The first in-
dividual will, then, evaluate each candidate based on its mating preferences
defined by the second chromosome. This evaluation is performed by calcu-
lating the quadratic error between the functions encoded in the individual’s
second chromosome and each candidate’s first chromosome, selecting the one
with the lowest distance error as the mating partner. Selecting the candidate
with the lowest distance error means that its phenotypic information is closer
to the one of an ideal mating partner for the first parent, therefore, satisfy-
ing the most of its mating preferences. The mechanisms for recombination,
reproduction and mutation remain the same as the mechanisms applied for
Natural Selection with the exception that they apply independently to both
chromosomes.

We expect the mate choice model to be able to evolve mating evaluation
functions that choose mating partners in an appropriate, meaningful way.
While we hope that such an approach leads to improved results, our main
concern is to assess and discuss the behaviour. Also, the test set has been
selected to include only functions with one variable so that the resulting
functions can easily be plotted and analysed.

The parameter set used for each addressed problem is described in table
4.4.
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Koza Nguyen Keijzer

Total number of runs 50 50 50
Population size 4000 500 500
Number of generations 100 100 100
First Parent Selection Tournament Tournament Tournament
Tournament Size 5 5 5
Candidate Selection Random Random Random
Candidate Set Size 5 5 5
Number of Chromosomes 2 2 2
Evaluating Chromosome 1 1 1
Candidate Chromosome 0 0 0
Crossover probability 90.0% 90.0% 90.0%
Reproduction probability 10.0% 10.0% 10.0%
Mutation probably 0.0% 0.0% 0.0%
Elitist proportion 1 1 1
Crossover max depth 17 15 10
Grow minimum depth 5 6 5
Grow maximum depth 5 6 5
Terminal probability 10.0% 10.0% 10.0%
Non-terminal probability  90.0% 90.0% 90.0%

Table 4.4: Parameter set for each problem using the Mate Choice approach

4.2 Experimental Results

Table 4.5 shows a comparison of the results obtained by both Natural and
The Column

labelled “Standard” shows the mean best fitness value obtained using the

Sexual Selection approaches on the test set along 50 runs.

traditional selection mechanism inspired by Darwin’s first theory, the col-
umn labelled “Mate Choice” shows the mean best fitness value of the best
individuals obtained by the Sexual Selection through Mate Choice framework
mentioned on Chapter 3 and the column labelled “Random” shows the mean
best fitness value obtained using random parent selection mechanism on the
candidate set, not regarding their fitness. The Random approach uses the

same parameter values as mentioned on table 4.3 .
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Function Standard Mate Choice Random

Keijzer-1 0.008005462 0.0059473756 0.0072442644
Keijzer-2 0.0063776454  0.0052139161 0.0062104645
Keijzer-3 0.0071500245 0.0056003145 0.0067438776
Keijzer-4 0.0890397335  0.0833904122 0.0840754187
Koza-1 0.0000121344  0.0007854719  0.0000917544
Nguyen-5 0.0014892713 0.0004783439  0.0025763115

Table 4.5: Mean best fitness obtained by the Standard, mate choice and ran-
dom approaches on each function over 50 runs. Since they are minimization
problems, lower values are better than higher values

4.3 Analysis of the Experimental Results

A Wilcoxon-Mann-Whitney test with a significance level of 0.01 was con-
ducted, comparing each approach with the remaining two. The instances
where the proposed approach performed significantly better than the stan-
dard approach or the other way around where emphasized in table 4.5. Re-
garding the random approach, it performed significantly better than the mate
choice approach on the Koza-1 instance but worst on Keijzer-1, Keijzer-2
and Keijzer-3. On the Nguyen instance no significant differences between
the three approaches were found.

Figure 4.2 shows that the mean best fitness rapidly evolves for the stan-
dard approach for the first 5 or so generations, probably taking advantage of
the initial population diversity. The Koza-1 instance is regarded as a partic-
ularly easy instance for symbolic regression[61] which may explain the results
obtained, specially if the large size of the population is considered. The re-
sults suggest that the overhead created by the mate choice model does not
pay off. The extra effort put on the evolution process to adapt mating pref-
erences slows down convergence, giving the standard approach the observed

advantage.
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Figure 4.1: Mean best fitness obtained along 50 runs for the Koza-1 function

Regarding the Nguyen-5 function, the three approaches performed con-
siderably better than on the Keijzer instances. While the instance is not
regarded as particularly simple for symbolic regression, the use of a pop-
ulation with 500 individuals may explain why the approaches were able to
achieve comparable mean best fitness results. Still, the Mate Choice approach
performed slightly better than the remaining two.

On the Keijzer instances, however, the Mate Choice approach achieved a
significantly better mean best fitness value than the standard approach, sug-
gesting that the proposed strategy is able to contribute to enhanced results.
Despite the generated overhead on the evolution process, the approach seems
capable of evolving mating preferences that favour mating partners in a way
that is beneficial to the evolution process. Overall, the differences in mean
best fitness values between the proposed approach and the random approach
are quite noticeable, emphasizing that the behaviour produced by the Mate
Choice strategy is not similar to randomly selecting mating partners, but a
behaviour that produces larger benefits, therefore backing up our assump-
tion that Mate Choice evolves mating preferences that help selecting mating
partners in meaningful ways. It’s also noticeable that while no significant
differences where found between the standard and the random approaches,
the later performs slightly but consistently better on the harder instances,

suggesting that the reduced selection pressure inherent may be beneficial,
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allowing for a better exploration rather than exploitation of the fittest indi-
viduals.

Further analysis will focus on a single function. However, the discussed
behaviours generalize to the other instances with the exception of the Koza-1,
where the standard approach performs better. We have chosen to focus on
the Keijzer-3 function. Figure 4.2 shows how the mean best fitness evolves
along the 100 generations. The mate choice approach has a slower mean best
fitness evolution on the first generations, surpassing however the standard

approach at around the 10th generation.
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Figure 4.2: Mean best fitness obtained along 50 runs for the Keijzer-3
function

During our preliminary analysis we found several examples that fall into
one of the following three categories: individuals possess mating evaluation
functions that closely reproduce the expected function; individuals possess
mating evaluation functions that benefit mating partners that are likely to
correct their own flaws; individuals possess mating evaluation functions that,
while not being close reproductions of the expected function, are simplifica-

tions or share some of its characteristics.
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4.3.1 Replication

Figures 4.3 and 4.4 show examples of individuals that hold mating evalua-
tion functions that have evolved through the generations to closely resemble
the expected function, therefore promoting mating partners that have high
genetic quality.

Mating selection functions have no connection to the expected function
and evolve without any knowledge of it. Individuals adapt to each other and
their mating preferences adapt to other individuals in order to select mating
partners containing candidate solutions that resembles the target function
to be optimized through a feedback loop that hasn’t, in any way, knowledge
of the target function. They evolve without any knowledge while the first
chromosome is evaluated on how well it correlates with the expected function
through the fitness function and therefore adapts to the environment. Mat-
ing evaluation function adapts to other individuals through a feedback loop
where good mating preferences are more likely to select fitter individuals and
therefore produce better offspring that contribute to the spreading of good
mating preferences and physical characteristics.

The fact that mating evaluation functions are able to evolve toward re-
sembling the target function suggests that mating preferences are able to
perceive what characteristics are beneficial and correspond to good survival
abilities and evolve towards promoting good fitness indicators and corre-

sponding mating candidates.

Koza-1 - Replication
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Figure 4.3: Representation of an evolved individual for the Koza-1 function
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Nguyen-5 - Replication
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Figure 4.4: Representation of an evolved individual for the Nguyen-5 func-
tion

4.3.2 Correction

Figures 4.5 through 4.9 show individuals that own mating evaluation func-
tions that while not reproducing the target function, make an attempt to
compensate for the flaws shown in their candidate solutions. By promoting
the selection of mating partners that are similar to the mating evaluation
function, individuals actively make an effort to mate with individuals whose
genetic material may contribute to healthier offspring that help the perpet-
uation of the individuals’ genes. Unlike the previous examples, these mat-
ing evaluation functions don’t correspond directly to an adaptation towards
particularly good fitness indicators but rather toward the needs of the in-
dividuals. Through the feedback loop, mating preferences show an aptitude
that promote individuals that, while lacking mating evaluation functions that
help mating with particularly good partners, promote mating with individu-
als that show promise to correct their own flaws and therefore contribute to

their own reproductive success.
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Figure 4.5: Representation of an evolved individual for the Keijzer-1 func-
tion
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Figure 4.6: Representation of an evolved individual for the Keijzer-2 func-
tion
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Figure 4.7: Representation of an evolved individual for the Keijzer-3 func-
tion
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Keijzer-4 - Correction
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Figure 4.8: Representation of an evolved individual for the Keijzer-4 func-

tion
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Figure 4.9: Representation of an evolved individual for the Nguyen-5 func-

tion

4.3.3 Simplification

Finally, figures 4.10 through 4.12 show individuals that own mating evalua-

tion functions that, while unable to reproduce the expected function, show an

approximation and share some of its characteristics. On the one hand, these

mating evaluation functions may be seen as an earlier stage of the effect seen

in Section 4.3.1. On the other hand, these functions may show that a close

reproduction of the expected result is unnecessary and that a simplification

may serve the same purpose.
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Keijzer-2 - Simplification

T
Expected 7

First Chromosome - - <-
Second Chromosome -+

L L L L L L L L L
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
Step

Y
h B b N Hh ok N wse O

Figure 4.10: Representation of an evolved individual for the Keijzer-2 func-
tion
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Figure 4.11: Representation of an evolved individual for the Koza-1 function
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Figure 4.12: Representation of an evolved individual for Nguyen-5 function
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Chapter 5

Improvements over Original

Proposal

The ECJ framework as it doesn’t support tool to easily implement and exper-
iment with Mate Choice. In order to integrate the proposed model, described
in Chapter 3, in the existing framework, several adaptations were made. The
purpose of the this chapter is to list and describe the limitations encountered
during this process and the methods developed to overcome those limita-
tions. In Section 5.2 as well as present the resulting class diagram of the

model implementation and the source of most relevant classes.

5.1 Workings of ECJ on Natural Selection

and Genetic Programming

To better understand the Mate Choice framework implemented, we will
briefly describe how ECJ works when running a standard evolutionary pro-
cess. Before the evolutionary process starts, an object of the Population class
is created which, in turn, has an array of Subpopulation objects. Each of these
will contain a list of individuals that compose the population of the evolu-
tionary algorithm. In the experiments conducted only one subpopulation was
needed.

The Initializer class initializes a population which, in turn, initializes a

7
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subpopulation. A length and a Species class object is assigned to the sub-
population. The object contains an Individual prototype — which contains
an Individual prototype. The sub-population is filled by calling the newIn-
dividual () method from Species which returns individual clones(), differing
in the genetic information they contain. Since we are dealing with Genetic
Programming, the classes for that purpose are GPInitializer, GPSpecies and
GPIndividual.

It is after the initialization that the evolutionary process begins. From
this point on, the population will evolve throughout generations according
to a set of mechanisms and variations that will allow the creation of new
individuals, the offspring, that will partially or totally replace those in the
original population.

At the beginning of each generation, individuals from the population
undergo selection to become part of the mating pool. This process is per-
formed using the SelectionMethod class, an abstract class that provides a
base instantiation of selection methods such as TournamentSelection. Selec-
tion subclasses contain the implemented methods that perform selection of
individuals from the population and their addition to the mating pool.

The procedures that follow selection consist in applying variation to the
selected parents. This is achieved by a number of subclasses of the abstract
class BreedingPipeline: CrossoverPipeline, MutationPipeline and Reproduc-
tionPipeline. They are applied in exclusion with a given probability. The
application of such operators will result in a set of newly created individuals
based on the genetic information of their parents. Note that every time a
variation operator is applied, a clone of each individual undergoing variation
is made in order to maintain the original individuals unaltered. The operator
will, then, act directly on the created clone. Elitism is also supported and is
applied previous to selection and variation and simply clones n individuals
to the new generation

The final step of the evolutionary process for each iteration is to determine
the individuals that will pass on to the next generation. If the Evolutionary
Algorithm adopts a generational model, the offspring will replace the entire

population in the next generation (except for individuals passed by elitism)
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and the parents are discarded. If a steady-state model is adopted by the
algorithm, a survival selection mechanism is applied and the offspring will
replace part of the individuals in the population. This is typically a deter-
ministic process biased by fitness. The parents and the offspring are sorted
from best to worst individual and a fraction of the parents is discarded. The
survivor selection process ends with the best offspring of the set being chosen

fill the empty positions of the sub-population until it reaches its original size.

5.2 Limitations and Their Overcoming

One of the main concern of implementing Sexual Selection through Mate
Choice was doing so while keeping the original ECJ classes and class hi-
erarchy unaltered. Doing so represented one of the biggest challenges but
would allow the framework to keep all of its features such as multiple repre-
sentations (Genetic Algorithms, Genetic Programming, etc.), Island Models,
Steady State and Generational evolution and many others. The Mate Choice
model was designed so that it could be coupled with any of these pre-existing
features. The solution found to overcome this limitation was to create a new
set of classes and build a package that will connect to the ECJ framework by
relations described along the chapter. During the next subsections we will
refer specifically to the GP approach to symbolic regression but the methods

support other representations

5.2.1 Package ec.ss.gp

First of all, the model needed an object that could store not only the ge-
netic information of a Genetic Programming individual but also its mating
preferences. To this end, an extension to the Individual class was created,
named MultiSpeciesIndividual, which works the same way but contains the
appropriate data structures to accommodate multiple chromosomes rather
than one. This type of individual belongs to a specific species created as an
extension to the Species class, called MultiSpeciesSpecies, responsible for the

initialization of the initial individual.
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Figure 5.1: Class diagram for the ec.ss.gp package

Listing 5.1 contains the Java source code with information on the most rel-
evant variables and methods from MultiSpeciesIndividual. The size of chro-
mosomes is user-defined and can store the candidate solution and mating
preferences on independent chromosomes. Despite the fact that chromo-
somes may have length greater than two, only two elements of the array are

used throughout the evolutionary process.

1 public class MultiSpeciesIndividual extends Individual {

2 public Individual[] chromosomes = null;
3
4}

Listing 5.1: Relevant variables of MultiSpeciesIndividual class

The process of initialization of a MultiSpeciesIndividual object consists,
itself, in initializing the data structures that compose such objects both from
Individual class along with the specific data structures of the initialized ob-

ject. The clone() method of the same class, represented in Listing 5.2,
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simply creates a clone object of the Individual class with the whole content
of a MultiSpeciesIndividual object. This method is called either while fill-
ing the population at the initial stage of the evolutionary process or while

applying variation operators.

1 public class MultiSpeciesIndividual extends Individual {

2 :
3 public Object clone() {

4 MultiSpeciesIndividual myobj = (MultiSpeciesIndividual)
super.clone () ;

5 if (chromosomes != null) {

6 myobj.chromosomes = new Individual[chromosomes.lengthl];

7 for (int i = 0; i < chromosomes.length; ++i) {

8 if (chromosomes[i] != null) {

9 myobj.chromosomes[i] = (Individual) chromosomes[i].clone();

10 }

11 }

12 }

13 return myobj;

14 }

15

16 }

Listing 5.2: Method clone() of MultiSpeciesIndividual class

The initialization of a MultiSpeciesIndividual through MultiSpeciesSpecies
class is shown in Listings 5.3, 5.4 and 5.5. Since a MultiSpeciesIndividual ob-
ject is composed of n sub-Individual objects (identified as chromosomes),
they need to be initialized as well. For that purpose, two array objects were
defined in MultiSpeciesSpecies class: species and initializers. For each
chromosome object on MultiSpeciesIndividual, a corresponding species and
initializer are assigned. This will allow the MultiSpeciesIndividual to accom-
modate chromosomes from different species or with different specifications.
The algorithm then proceeds to the creation of each chromosome that com-
poses a MultiSpeciesIndividual object by changing the active initializer to
the initializer of the corresponding chromosome to be initialized. Before this

process begins, the mainInitializer object stores the algorithm initializer
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responsible for the creation of MultiSpeciesIndividual objects so that it can
be restored when all chromosomes have been initialized. After it is complete,

the algorithm initializer is restored to its original state.

public class MultiSpeciesSpecies extends Species {
int numChromos;

public SubSpecies[] species;

1

2

3

4 public Initializer[] initializers;
5 public Initializer mainInitializer;
6

7

}

Listing 5.3: Relevant variables of MultiSpeciesSpecies class

Listing 5.4 presents the Java source code responsible for the set-up of
a MultiSpeciesIndividual object. The most relevant aspect of the setup()
method is the length definition of each array object in the class by assigning
a value to the variable numChromos through a user-defined parameter. That
done, the Initializer array and SubSpecies instantiation is carried to start the
initialization of each chromosome. The instantiation of the MultiSpeciesin-
dividual is performed only after the instantiation of each array objects in

MultiSpeciesSpecies.
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1 public class MultiSpeciesSpecies extends Species {

T W N

N O

10
11
12

13
14
15
16
17
18
19

20

public void setup(final EvolutionState state, final Parameter base) {
mainInitializer = state.initializer;
numChromos = state.parameters.getInt(base.push("num-chromosomes"),
def .push("num-chromosomes"));
species = new SubSpecies[numChromos];
for(int i = 0; i < numChromos; ++i){
species[i] = (SubSpecies)
state.parameters.getInstanceForParameter (base.push("" +
i) .push("species"), def.push("" + i).push("species"),
SubSpecies.class);
}
initializers = new Initializer [numChromos];
for (int i = 0; i < numChromos; ++i) {
initializers[i] = (Initializer)
state.parameters.getInstanceForParameter (base.push("" +
i) .push("species").push("init") ,def.push("" +
i) .push("species").push("init"), Initializer.class);
state.initializer = initializers[i];

initializers[i].setup(state, base.push(i + ".species.init"));

species[i].setup(state, base.push(i + "

}

state.initializer = mainlInitializer;

.species"));

super.setup(state, base);

Listing 5.4: Method setup() of MultiSpeciesSpecies class

The method newIndividual() from the MultispeciesSpecies class, pre-

sented in Listing 5.5, deals with the creation of MultiSpeciesIndividual ob-

jects by initializing each Individual object in the chromosomes array through

configuration of the corresponding Initializer object.
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1 public class MultiSpeciesSpecies extends Species {

2
3 public Individual newIndividual(final EvolutionState state, int
thread) {
4 MultiSpeciesIndividual newind =
(MultiSpeciesIndividual) (super.newIndividual (state, thread));
5 newind.chromosomes = new Individual [numChromos];
6 for(int i = 0; i<numChromos; ++i){
7 state.initializer = initializers[il;
8 newind.chromosomes [i] = species[i].newIndividual(state, thread);
9 }
10 state.initializer = mainInitializer;
11 return newind;
12 }
13
14 ¥

Listing 5.5: Creation of a MultiSpeciesIndividual object on

MultiSpeciesSpecies class

Listing 5.6 shows the Java source code of the method newIndividual ()
called by MultiSpeciesSpecies for the creation of SSIndividual objects stored
in the chromosome array of MultiSpeciesIndividual. The instantiation of new
SSIndividual objects is performed based on the corresponding SSInitializer
which extends from the Simplelnitializer class which, in turn, extends from
the Initializer class. SSInitializer contains the function and terminal set
nodes, and the tree and node constraints configuration, used to build the
genetic tree stored in the SSIndividual object. These configurations are spe-
cific for the problem at hand, meaning that both the SSindividual and the
SSInitializer are specific for symbolic regression and given the Mate Choice
model used, are similar for both the first and the second chromosome of each

MultiSpeciesIndividual.
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1 public class SubGPSpecies extends SubSpecies{
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public Individual newIndividual (EvolutionState state, int thread){
SSIndividual newind = ((SSIndividual) (i_prototype)).lightClone();
for (int x = 0;x < newind.trees.length;x++)

newind.trees[x].buildTree(state, thread);

newind.fitness = (Fitness) (f_prototype.clone());
newind.evaluated = false;
newind.species = this;

return newind;

Listing 5.6: Creation of a SSIndividual object on SubGPSpecies class
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Figure 5.2: Class diagram for the ec.ss.gp package
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5.2.2 Package ec.ss.gp.koza

The classes of this package have the same functionalities as the original classes
with minor alterations in order to support Sexual Selection. They could
almost be seen as a copy of the original Genetic Programming specific classes
but solve some faults that didn’t allow the use of Genetic Programming
representation on Mate Choice models. This way, the original koza package
can be used for non Mate Choice models while the new ones add support for
Mate Choice.
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Figure 5.3: Class diagram for the ec.ss.gp.koza package

5.2.3 Package ec.ss.breed

After both the individuals and their species are defined, it was necessary
to develop the Sexual Selection through Mate Choice model for the frame-
work. This model is implemented in the SezualSelectionPipeline, which will
deal with the selection of the second parent for mating based on the mating
preferences of the first parent. The ReproductionPipeline and SexualSelec-
tionBreeder classes are variant classes of ReproductionPipeline from package
ec.breed and SimpleBreeder from package ec.simple respectively, adapted

to our Mate Choice model.
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Figure 5.4: Class diagram for the ec.ss.breed package

Listings 5.7 and 5.8 present the most relevant elements of our Sexual Se-
lection through Mate Choice model. Listing 5.7 contains the variables needed
for individuals to perform mate choice. evalchromo corresponds to the index
of the MultiSpeciesIndividual chromosome array that will be used as mating
preferences to evaluate the candidate partners stored in candidates array.
In our specific case, the second chromosome represents mating preferences

through an ideal mating partner.

1 public class SexualSelectionPipeline extends BreedingPipeline {
2 public int evalChromo;

3 public int candChromo;
4

Individual candidates[];

5
6 }

Listing 5.7: Most relevant variables of SexualSelectionPipeline class

Listing 5.8 shows the evaluate() method call that will determine the
level of attractiveness that a mating candidate induces on the individual
assessing it. The next step is simply to verify if the assessed candidate

arouses a better sexual attraction than the previous candidates, placing it as
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the best mating partner found until that point.

88
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1 public class SexualSelectionPipeline extends BreedingPipeline {

2

3 public int produce(final int min, final int max, final int start,
final int subpopulation, final Individual[] inds, final
EvolutionState state, final int thread) {

4

5 Individual bestIndividual = null;

6 double bestScore = 0;

7 int bestIndex = -1;

8 for (int i = 0; i < candidates.length; i++) {

9 ((FitnessFunctionKeijzer1l)
state.evaluator.p_problem).evaluate(state,
(MultiSpeciesIndividual) parent, (MultiSpeciesIndividual)
candidates[i], thread, evalChromo, candChromo);

10 :

11 if (bestIndividual == null) {

12 bestIndividual = candidates[il];

13 bestIndex = 1i;

14 bestScore = ((MultiSpeciesIndividual)

parent) .chromosomes [evalChromo].fitness.fitness();
15 } else if (pickWorst && ((MultiSpeciesIndividual)
parent) .chromosomes [evalChromo].fitness.fitness () <
bestScore) {

16 bestIndividual = candidates[il];
17 bestIndex = i;
18 bestScore = ((MultiSpeciesIndividual)
parent) .chromosomes [evalChromo].fitness.fitness();
19 } else if (!pickWorst && ((MultiSpeciesIndividual)

parent) .chromosomes [evalChromo].fitness.fitness() >
bestScore) {

20 bestIndividual = candidates[i];

21 bestIndex = 1i;

22 bestScore = ((MultiSpeciesIndividual)
parent).chromosomes [evalChromo].fitness.fitness ();

23 }

24 }

25 inds [q] = bestIndividual;

26 qt++;

27 if (q < n + start) {

28 inds [q] = parent;

29 qt++;

30 }

31 }

32 return n;

33

34 }

Listing 5.8: Method produce() of SexualSelectionPipeline
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5.2.4 Package ec.ss.gp.breed

This package contains the classes corresponding to the variation operators,
GPCrossoverPipeline and GPMutationPipeline. The ReproductionPipeline
does not suffer any changes. Both are variant classes of CrossoverPipeline and
MutationPipeline respectively, from package the ec.gp.koza and adapted in
order to execute the variation operators on MultiSpeciesIndividual objects,

maintaining the original classes for Natural Selection models.
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Figure 5.5: Class diagram for the ec.ss.gp.breed package

5.2.5 Package ec.ss.select

This package contains the selection method used to select the first parent
via tournament. This selection mechanism works similarly to the existing
tournament selection mechanism of ECJ, TournamentSelection from package

ec.select, but altered in order to support MultiSpeciesIndividual.
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Figure 5.6: Class diagram for the ec.ss.select package

5.2.6 Package ec.ss

This package contains the class SexualShortStatistics, responsible for the stor-
age of the population information. This class is a variation of the class Sim-
pleShortStatistics, from the package ec.simple, and adapted to our Mate
Choice Model. There were new functionalities implemented to store the in-
formation of the population, allowing a better observation of the evolutionary
process. One of the functionalities implemented was the storage of all the
chromosomes of each individual in order to better analyse the evolution of
each individual mating preferences. The other implemented functionality
consists in storing information of the crossover types — destructive, neutral
and constructive — occurred during each generation as well as the sum of each

type along generations.
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Figure 5.7: Class diagram for the ec.ss package

5.3 Parameters Configuration

ECJ is configured according to a set of parameters that will define the evolu-
tionary process, for instance, individuals representation, selection and vari-
ation methos, and survival mechanisms. Each method has its own configu-
ration, thus, a corresponding set of parameters. To implement the Sexual
Selection through Mate Choice model, a particular set of parameters was
added in order to set up the algorithm execution. This subsection will de-
scribe the most relevant parameters that will allow the implementation and
execution of the model. During the description of the parameters set, we
will assign pre-defined values for reasons of simplification and they will be

mentioned as parameters are described.

5.3.1 Parameters related to the Individual

To implement Mate Choice according to the proposed model, the corre-
sponding individual and its characteristics must be explicitly defined by
parameters. Assuming that there is only one population in the evolutionary

process and individuals can possess two chromosomes, we will describe
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the set of parameters used for the configuration of the model implemented
below. Further information about standard ECJ framework configuration

can be found in [1].

pop.subpop.0.species = ec.ss.gp.MultiSpeciesSpecies
pop.subpop.0.species.ind = ec.ss.gp.MultiSpeciesIndividual

pop.subpop.0.species.num-chromosomes = 2

By doing so, we are now allowed to define each chromosome’s characteristics
independently, in particular, its class and species. The next parameter set
will describe the first and second chromosome’s definition:

pop.subpop.0.species.0.species = ec.ss.gp.SubGPSpecies

pop.subpop.0.species.

0

pop.subpop.0.species.0.species.ind = ec.ss.gp.SSIndividual
1.species = ec.ss.gp.S3ubGPSpecies
1

pop.subpop.0.species.l.species.ind = ec.ss.gp.S3SIndividual

The individual characteristics such as number of trees, tree class, tree
constraints and fitness are defined the same way as for a GPIndividual.
Initializing each chromosome is made simply by defining the Initializer to

the corresponding chromosome:

pop.subpop.0.species.0.species.init = ec.ss.gp.SSInitializer

pop.subpop.0.species.l.species.init = ec.ss.gp.SSInitializer

SSInitializer properties are also defined in a way similar to the original class
of ECJ framework , GPInitializer.

5.3.2 Parameters related to Selection

The next set of parameters define the configuration of the mating selection

process.

sexual-selection.evaluating-chromosome = 1
sexual-selection.candidate-chromosome = 0O

sexual-selection.num-sources = 2
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sexual-selection.source.0 = ec.ss.selection.TournamentSelection
sexual-selection.source.0.chromosome = 0
sexual-selection.source.0.pick-worst = true
sexual-selection.source.0.size = 5

sexual-selection.source.l = ec.select.RandomSelection

sexual-selection.source.l.n-candidates = 5

In this set, we define the chromosome of the MultiSpeciesIndividual respon-
sible for the evaluation of mating candidates with evaluating-chromosome
and each candidate chromosome subjected to evaluation with candidade-
chromosome. Next, we designate the number of sources used for parent
selection with num-sources. The first source corresponds to the selection
of the first parent and the second source to the selection of a set of mating

candidates that will undergo evaluation from the previously selected parent.

5.3.3 Parameters related to Variation

The parametrization of the variation operators became rather extensive with
the implementation of the Mate Choice model. Figure 5.8 represents a dia-
gram with the connections between variation operators classes for the pro-

posed model.
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Figure 5.8: Pipeline organization and connection for variation operators

In order to set up the variation operators, we need to specify the
complete path to the source we are configuring. Given that, if we
want to configure an element of one of the sources we would have the
prefix pop.subpop.K.species.pipe related to the population, the in-
dex — in our case, 0 — of the sub-population, the species and the
pipeline added to every configuration parameter of the source. The re-
sulting parameter would be the prefix plus source.X.source.Y.source.Z
where X corresponds to operators of the first set, Y to one of the sec-
ond, W to one of the third and Z to one of the forth. If, for in-
stance, we wanted to configure the properties of an operator from the
fourth set, the resulting parameter without the class properties would be,
pop.subpop.K.species.pipe.source.X.source.Y.source.W.source.Z.

To overcome the extension of such parameters, a new parameter model
was designed for the purpose of shortening them. Taken into account that
they followed the pattern mentioned above, we opted to omit every word of
the parameter and keep the numbers only. We, then, obtained the string

K.X.Y.W.Z where K corresponds to the index of the sub-population, X to the
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index of the first set of sources, Y to the index of the second set of sources,
W to the index of the third set of sources and Z to the index of the fourth set
of sources. The configuration of the variation operator is handled after the
last digit. With this parameter model, the configuration set to set up the
variation operators became clearly shorter than before.

However, while the parameter set became shorter and easier to handle it
also became easier to cause confusion. With this in mind, we developed a
way to identify which variation operator is being configured. For the con-
figuration parameters related to the crossover operator, we added the prefix
gp.sexualselection.xover, and for the configuration parameters related to
the mutation operator, we added the prefix gp.sexualselection.mutate.
The resulting parameters are gp.sexualselection.xover.K.X.Y.W and
gp.sexualselection.mutate.K.X.Y.Z for crossover and mutation, respec-
tively. Note that the source corresponding to the Z element is not on the
resulting parameters due to the fact that the variation operators are only
on the first and third set, so the parameter configuration for them goes as
far as the third digit. For instance, if we want to configure the chromosome
used for crossover operations of the third set, the resulting parameter will be

gp.sexualselection.xover.0.0.0.1.chromosome = 1.



Chapter 6

Second Term Experimentation

After performing the improvements on the proposed model mentioned on
Chapter 5, a new set of symbolic regression functions were configured, ex-
ecuted and their results were obtained for further analysis. We start the
chapter by presenting the functions used for those tests in Section 6.1 as well
as their corresponding configuration. Section 6.2 will contain the results ob-
tained for each function regarding the performance and crossover behaviour.
We end the chapter with Section 6.3 where we will debate about the obtained

results for both performances.

6.1 Experimental Setup

In addition to the functions mentioned in the Table 4.1 from Section 4.1, we
choose six functions based, as well, on the study regarding benchmarking of
Genetic Programming by McDermott et al.[61]. Like mentioned in the section
related to the first semester experiments, the training set states the minimum
and maximum values of x as well as the number of steps to be performed for

U labeled intervals or the distance between steps for E labeled intervals.

97
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Function Objective Function Training Set

Keijzer-8  /z E[0, 100, 1]
Keijzer-9  arcsinh(x) E[0, 100, 1]
Korns-4 —2.3 4 0.13 x sin(x) UJ-50, 50, 10000]
Korns-5 3+ 2.13 x log(z) UJ-50, 50, 10000]

Nguyen-6  sin(z) + sin(z + 22) Ul-1, 1, 20]
Nguyen-7 In(z +1) +In(z2+1) U[-L, 1, 20]

Table 6.1: New functions for the application of symbolic regression

Each objective functions is associated with a set of mathematical func-
tions and a set of terminal variables and constants. Both define the nodes
that will compose the trees. The function and terminal sets for the Keijzer
and Nguyen functions are already defined in the Table 4.2 on Chapter 4. For
the remaining objective function, the Korns, the function set and terminal
set used to build the tree is as follows:

Function Function Set Constants (ERC)

Korns 4+ — X =+ sin cos €" Random finite 64-bit IEEE double
In(|n]) n? n® \/n tan tanh

Table 6.2: Function and terminal set for the Korns objective function

The next step consists in defining the parameters for the execution of
the Evolutionary Algorithm used on each function. Tables 6.3 and 6.4 show
the configuration of the algorithms for the Natural Selection and the Mate

Choice approaches, respectively.
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Keijzer Korns Nguyen

Number of runs 100 100 100
Population size 500 100 500
Number of generations 100 100 100
First parent selection Tournament Tournament Tournament
Tournament size 5) ) )
Second parent selection Tournament Tournament Tournament
Tournament size 5) ) )
Crossover probability 90% 90% 90%
Mutation probability 0% 0% 0%
Reproduction probability 10% 10% 10%
Elitist proportion 1 1 1
Crossover maximum depth 10 17 15
Ramped half-and-half probability 50% 50% 50%
Grow minimum depth 5 5 6
Grow maximum depth ) 5 6
Non-terminal probability 90% 90% 90%
Terminal probability 10% 10% 10%

Table 6.3: Configuration set for each objective function using Natural Selec-
tion
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Keijzer Korns Nguyen
Number of runs 100 100 100
Population size 100 100 100
Number of generations 100 100 100
First parent selection Tournament Tournament Tournament
Tournament size ) ) 5)
Candidate selection Random Random Random
Candidate set size 5 5 5
Number of chromosomes 2 2 2
Evaluating chromosome 1 1 1
Candidate chromosome 0 0 0
Crossover probability 90% 90% 90%
Mutation probability 0% 0% 0%
Reproduction probability 10% 10% 10%
Elitist proportion 1 1 1
Crossover maximum depth 10 17 15
Ramped half-and-half probability 50% 50% 50%
Grow minimum depth 5 5 6
Grow maximum depth 5 5 6
Non-terminal probability 90% 90% 90%
Terminal probability 10% 10% 10%

Table 6.4: Configuration set for each objective function using Mate Choice

Description of the parameter set for the Natural Selection model can be
found in Subsection 4.1.1 as well as description of the parameter set for the
Mate Choice model in Subsection 4.1.2.

6.2 Experimental Results

In this section, we can find the relevant results obtained during the execution
of each objective function using the standard Natural Selection approach, the
proposed Sexual Selection through Mate Choice approach and the Random
Selection approach which consist in selecting, for crossover, the first parent

via tournament selection and the second parent via random selection.
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Function Standard Mate Choice Random
Keijzer-8 1.40129846432¢~% 1.4e=4° 1.40129846432¢ %
Keijzer-9 0.2256588004 0.0305635135 0.0597596787
Korns-4 0.0315580546 0.0239037031 0.0310657165
Korns-5 4.7735830338 4.3397756109 2.7512731444
Nguyen-6 0.0181183084 0.0047443458 0.0061174161

Nguyen-7 0.0195324862 0.0110878289 0.0066977619

Table 6.5: Mean best fitness values along 50 runs

Tables 6.5 contains the mean best fitness values of 50 runs for each func-
tion. Note that the columns labelled “Standard” contain the mean best fitness
values obtained by the Natural Selection model. The columns labelled “Mate
Choice” correspond to the mean fitness values using the Sexual Selection
through Mate Choice model. Lastly the columns labelled “Random” relate

to the mean fitness values using Random Selection.

Function Standard Mate Choice Random

Keijzer-8 61.74 694.4 74.92
Keijzer-9 602.72 749.26 765.1
Korns-4 662.52 768.28 705.08
Korns-5 952.94 879.34 1014.84
Nguyen-6 905.68 836.7 948.8
Nguyen-7 727.58 814.88 792.04

Table 6.6: Mean cumulative constructive crossover values along 50 runs

As for Table 6.6, it contains the mean constructive crossover obtained
from the 50 runs executed for each new objective function. The mean cu-
mulative constructive crossover of previous experiments is not presented as
that analysis was not performed at that time. We consider a constructive
crossover to be the resulting offspring of a crossover operation possessing a

better fitness value than the first parent selected for genetic recombination.
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Function Standard Mate Choice Random

Keijzer-1 3124.6 1760.94 2524.54
Keijzer-2 3278.84 1708.12 2060.58
Keijzer-3 2852.96 1741.4 2187.86
Keijzer-4 2997.26 1528.56 2169.32
Koza-1 8666.42 8016.44 7397.52

Nguyen-5  17749.86 10583.78 15592.58

Table 6.7: Mean cumulative neutral crossover values along 50 runs for func-
tions on Table 4.1

Function Standard Mate Choice Random

Keijzer-8 7358.86 1494.42 6369.06
Keijzer-9 3309.06 1390.84 1692.68
Korns-4 3118.86 1495.54 2200.08
Korns-5 1955.82 1220.28 1015

Nguyen-6 1690.6 1218.58 1157.06
Nguyen-7  2554.12 1304.96 1607.08

Table 6.8: Mean cumulative neutral crossover values along 50 runs

In Tables 6.7 and 6.8, we show the mean cumulative neutral crossover
performed along 50 runs for the previous optimization of the objective func-
tions shown in the Table 4.1 from Chapter 4 and the mean cumulative neutral
crossover performed on the new test suite along 50 runs. We consider a neu-
tral crossover to be the resulting offspring of a crossover operation possessing

the same fitness value as the first parent selected for genetic recombination.

Function Standard Mate Choice Random

Keijzer-1 5847.6 7102.22 6336.2
Keijzer-2 5793.92 7039.2 6370.88
Keijzer-3 5738.58 6830.3 6375.36
Keijzer-4 5726.4 6615.66 6191.24

Koza-1 57737.565 68469.805 62787.615
Nguyen-5 28539.18 33254.02 26258.88

Table 6.9: Mean cumulative destructive crossover values along 50 runs for
functions on Table 4.1
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Function Standard Mate Choice Random

Keijzer-8 1861.66 6636.62 2846.08
Keijzer-9 5462.38 6764.44 6923.7
Korns-4 5596.4 6630.38 6468.5
Korns-5 6471.32 6802.38 7347.42
Nguyen-6  6775.28 6856.78 7277.88
Nguyen-7  6091.98 6781.14 6981.46

Table 6.10: Mean cumulative destructive crossover values along 50 runs

Lastly, Tables 6.9 and 6.10 contain the mean destructive crossover of the
50 runs executed for each objective function mentioned in Tables 4.1 and
6.1, respectively. For destructive crossover we reckon it to be the resulting
offspring of a crossover operation possessing a worst fitness value than the

first parent selected for genetic recombination.

6.3 Analysis of the Experimental Results

We compared the obtained mean fitness results shown in Table 6.5 by per-
gorming a Wilcoxon Mann Whitney test with significance level of 0.01. The
instances where the proposed model performed significantly better than the
Standard approach or vice-versa were emphasized. Regarding the perfor-
mance of the approaches, we note that Mate Choice performed better for the
Keijzer-8, Keijzer-9 and Korns-4. As for Nguyen-6, while neither the Mate
Choice nor the Random approaches performed significantly better than the
standard approach, there is a statistically significant difference between them.
This emphasizes that the Mate Choice approach doesn’t behave similarly to
randomly selecting the second parent but rather is able to evolve mating
preferences in ways that are beneficial to the evolutionary process.

Despite the differences between approaches, none of them presents sig-
nificant differences with the Standard approach which means that its mean
best fitness is possibly being impaired by some runs where the best solution
found has very low fitness value. This aspect may suggest that the Standard
approach becomes stuck in an local optima in some of the runs. By intro-

ducing stochasticity, the Mate Choice and the Random approaches provide
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a better search with lower probability of becoming stuck in a local optima.

The Wilcoxon-Mann-Whitney test was also conducted on the reported
mean cumulative values of each crossover type, presented in tables 6.6
through 6.10, also with a significance level of 0.01. Instances where the Mate
Choice approach achieved a significantly higher mean cumulative number
of destructive crossovers or a significantly smaller mean cumulative num-
ber of neutral crossovers than the Standard approach are depicted in bold.
In Table 6.6 we can observe that, for the objective functions Keijzer-8 and
Keijzer-9, Mate Choice performs a significantly higher number of construc-
tive crossovers than the other two approaches. Since Keijzer-8 function is
very easy to optimize, the Standard approach rapidly converges and stops
performing constructive or destructive crossovers as the population diversity
becomes very low due to highly fit individuals taking over the population.
As a result, the mean cumulative number of neutral crossovers is very high.
The Random approach also eventually converges, even though it performs a
slightly greater number of constructive and destructive crossovers than the
Standard approach, mainly caused by its greater stochasticity. Still, the ap-
proach also results on a high number of neutral crossovers that result from
pairing similar individuals. Mate Choice behaves distinctly different from
the other two approaches by maintaining a lower number of mean cumula-
tive neutral crossovers and greater number of mean cumulative constructive
and destructive crossover. This proves the approach capability in maintain-
ing diverse, non-converged population, allowing a wider exploration of the
search space, which ultimately results in a significantly better mean best
fitness.

On a more general analysis, there is clearly an advantage in maintaining a
low amount of neutral crossovers. Mate Choice always produces better mean
best fitness results than the Standard approach and consistently maintains
the number of mean cumulative neutral crossovers significantly lower than
the Standard, even when the mean best fitness is not significantly lower. In
functions where the Random approach obtained a significantly better mean
best fitness than the Standard approach, the number of mean cumulative neu-

tral crossover also proved to be significantly lower than the number obtained
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by the other. For Nguyen-6 results, there are no significant differences.

As the result of a low number of cumulative neutral crossover values,
the mate choice approach performs a high number of cumulative destructive
crossovers which allows a better exploration due to the possibility of low
fitted individuals disseminating their genetic information to the next gen-
eration instead allowing the genes of highly fit individuals to take over. In
the three instances where Mate Choice obtained significantly better results,
the number of mean cumulative destructive crossovers was also significantly
greater. Also, in instances with functions where the Random approach pro-
duced significantly better results, the number of mean cumulative destructive
crossovers, for Mate Choice, was also significantly higher.

Tables 6.7 and 6.9 show cumulative values for neutral and destructive
crossovers on the functions assessed in Chapter 4. They suggest a similar be-
haviour as that discussed above. A brief perusal of Tables 6.7 and 6.9 reveals
that, on this test suite, Mate Choice consistently results in a higher mean
cumulative number of destructive crossovers as well. Conversely, it attains
lower mean cumulative number of neutral crossovers on all instances where it
outperformed the other approaches. On the Koza-1 instance, probably due
both to its large population and simplicity, the approach that performed the
smallest cumulative number of destructive crossovers was able to outperform
the others. In this case, candidate solutions are likely to evolve faster and
further towards the target function by means of successful crossovers while di-
versity is assured by the large number of individuals in the population which
keeps the process from drasticly increasing the number of neutral crossovers.

Although correlation does no imply causality, these results suggest that
the explanation for the success of the Mate Choice approach may rest on the
reduction of neutral crossover. Individuals that result from neutral crossovers
make no contribution to fitness enhancements and may ultimately stall evolu-
tion and decrease diversity. The higher mean cumulative number of destruc-
tive crossovers obtained by Mate Choice may be explained by the stochastic-
ity it introduces in the mate selection process. Additionally, Mate Choice is
outperforming other approaches and, as such, the results are inherently more

difficult to improve.
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Further analysis will focus on a single function. However, the discussed
behaviours generalize to the other instances with the exception of the Koza-
1, where the Standard approach performs better. On the Korns-5, Nguyen-6
and Nguyen-7, the behaviour of the random approach may not share all the
behaviours described as they achieve better mean best fitness values and
higher mean cumulative values of destructive crossover. We have chosen to
focus on the Keijzer-3 function. Figure 2 shows how the mean best fitness
evolves along the 100 generations while Figures 6.1 and 6.2 show the mean of
destructive crossovers and the mean of neutral crossovers at each generation

and how they evolve along the runs.
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Figure 6.1: Mean of destructive crossovers obtained along 50 runs for the
Keijzer-3 function
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Figure 6.2: Mean of neutral crossovers obtained along 50 runs for the
Keijzer-3 function

Figure 4.2 from Chapter 4 shows that the mean best fitness rapidly evolves
for the Standard approach for the first 5 or so generations, probably taking
advantage of the initial population diversity. Figure 6.1 shows that for this
period, the mean of destructive crossovers also raises rapidly, stabilizes and
then gradually descends for the remaining of the generations. The behaviour
suggests that, from this point on, the Standard approach promotes crossover
between fit solutions. Individuals have a greater chance of promoting their
genetic material by mating with fit partners, those who are unable to do
so are gradually discarded and no longer contribute to evolution. This be-
haviour is supported by Figure 6.2 which shows that the Standard approach
produces a gradually higher mean of neutral crossovers. This is consistent
with a decreasingly diverse population where a small number of individuals
takes over. As a result, while fitter individuals gradually mate with other fit
individuals, their impact on the evolution process is reduced and advances
are made slowly as individuals exploit a smaller set of genes.

The Mate Choice approach, as shown by Figure 4.2 and Table 4.5, from
Chapter 4, and by Table 6.9, a slower mean best fitness evolution on the
first generations, surpassing however the Standard approach at around the
10th generation. Figure 6.1 shows that by generation 10, the Mate Choice ap-

proach is producing more destructive crossovers than the Standard approach.
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While mating between fit and similar solutions is less likely to cause destruc-
tive crossovers, mating with unfit or dissimilar individuals is more likely to
produce destructive crossovers as genes mix either with worst genes or with
genes from different contexts. The Mate Choice approach seems to promote
this behaviour along the runs, causing the mean of destructive crossovers to
remain steady for the remainder of the generations. However, such a be-
haviour has a positive impact on the mean best fitness, likely the result of
a better exploration through the contribution of genes from less fit or dis-
similar individuals. Figure 6.2 supports this behaviour as a smaller mean of
neutral crossovers is observed on the Mate Choice approach throughout the
entire run. Thus, in the considered experimental settings, the Mate Choice
strategy promotes risktaking resulting in higher mean cumulative destructive
crossovers and lower mean cumulative neutral crossovers and taking risks is
beneficial in the most complex problem instances.

When comparing the Mate Choice approach with the Random one,
both regarding the mean of destructive crossovers and the mean of neu-
tral crossovers, it is noticeable that the produced behaviours happen with
a different frequency, indicating that the evolution of mate preferences has
an impact on the behaviour of the algorithm. The results reported in both
Tables 4.5 and 6.9, and the analysis of Figure 4.2 show that such an impact

is positive for the performance of the evolutionary process.



Chapter 7
Conclusion

The field of Evolutionary Computation is a relatively recent research field
where, just as in the Evolution Theory, new groundbreaking theories and
ideas are constantly devised and experimented. While in many research
fields, the theory of Sexual Selection has been acknowledged, its practical ef-
fects on Evolutionary Computation are yet to be fully perceived. During the
performed study, we explore Mate Choice, a nature inspired selection mech-
anism biased by mating preferences, and analyse the phenomenon and its
effects on Evolutionary Algorithms. An introduction to Evolutionary Com-
putation is presented with emphasis on Genetic Programming, the adopted
approach for this study. A review of the background of Sexual Selection
and particularly Mate Choice is also included, followed by the studies and
applications of the approach on Evolutionary Computation.

A self-adaptive Mate Choice approach is proposed based on three na-
ture inspired rules: individuals choose who they mate with based on their
perception of others and their own mating preferences; mating preferences
are inherited similarly to physical traits; mate selection introduces its own
mating selection pressure but is subject to selection pressure itself.

An extra chromosome is introduced, allowing the encoding of the mating
preferences of each individual. The way it is used to assess mating candi-
dates before selecting the most desirable are presented. The mechanisms and

operators by which mating preferences are inherited and undergo evolution
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are also discussed. A test suite is introduced using a functional prototype of
the proposed model along with experimentation results. Three approaches
are compared: Standard, Mate Choice and Random.

The obtained results show that the Mate Choice approach is able to sig-
nificantly outperform the other two on complex instances of Symbolic Re-
gression. Analysis on the evolved mating preferences also show interesting
behaviours that may allow selected partner to complement the imperfections
of the selecting parent.

The improvements on the prototype model to a fully fledged version are
presented using a set of diagrams representing the relations between classes
followed by implementation details and description.

The second test suite with a new set of objective functions is performed
and its results are shown revealing a good performance of the proposed ap-
proach in most of the objective functions of the test suite. These results are
now accompanied by a discussion on the behaviour of the proposed model
compared to the Standard and Random approaches, showing that the Mate
Choice approach is capable of evolving mating preferences that choose mat-
ing partners in meaningful ways, allowing them to actively contribute to an
enhanced performance by the Evolutionary Algorithm on the target function.

The results described in section 4.3 of Chapter 4 and in Table 6.7 and 6.9
from Chapter 6 resulted in the paper “A self-adaptive Mate Choice model for
Symbolic Regression” [56] published and presented at the IEEE Congress on
Evolutionary Computation 2013. Due to time constraints and to the incom-
patibility between the delivery date of the dissertation and the submission
deadlines of the conferences we consider strategic, it was impossible, so far,
to publish, and therefore, disseminate the near results. We foresee the sub-
mission of a paper communicating these results to the european Conference
on Genetic Programming 2014. Additionally the writing of an encompassing
article for the Evolutionary Computation Journal is already underway.

Future work may include applying the proposed model to a larger func-
tion set, implementation of multiple Evolutionary Algorithms representa-
tions, and the study of genealogical trees with emphasis on the interpreta-

tion of the evolution of mating preferences and its effects on the evolution of
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Abstract—Sexual Selection through Mate Choice has for the
past few decades attracted the attention of many researchers
from different fields. Numerous contributions and supporting
evidence for the role and impact of Sexual Selection through
Mate Choice in Evolution have emerged since then. Just like
Evolutionary Theory has had to adapt its models to account
for Sexual Selection through Mate Choice and its effects, it is
relevant to study and analyse the impact that Mate Choice may
have on Evolutionary Algorithms.

In this study we describe a nature inspired self-adaptive
Mate Choice approach designed to tackle Symbolic Regression
problems. Results on a set of test functions are presented
and compared to a standard approach, showing that Mate
Choice is able to contribute to enhanced results on complex
instances of Symbolic Regression. Also, the resulting behaviours
are contrasted and discussed, suggesting that Mate Choice is
able to evolve Mating evaluation functions that are able to select
partners in meaningful and valuable ways.

I. INTRODUCTION

Darwin’s theory of Natural Selection has for long been
widely accepted by the scientific community. Described by
Darwin as the result of competition within or between species
affecting their individuals relative rates of survival [1], Natural
Selection has found its way into many research fields and
is utterly relevant in Evolutionary Computation (EC). Given
a population where genetic variance occurs, individuals with
favorable characteristics have a higher rate of survival and are
more likely to spread their genes through future generations
by means of heritability while unfavored characteristics and
corresponding genes are gradually discarded.

In the years after his masterpiece on Natural Selection,
Darwin put much effort on developing his theory of Sexual
Selection, a force capable of shaping complex traits and
behaviours across the species. He described it as the result
of competition within species affecting its individuals relative
rate of reproduction [2], but unlike Natural Selection, this
theory found little acceptance at the time. Interest rose however
in the 1970s mostly due to Zahavis works [3] and previous
contributions by Fisher [4], [5]. With the emergence of new
fields of research such as Evolutionary Anthropology [6] and
Evolutionary Psychology [7], aided by modern knowledge
and technology, new ideas and supporting evidence have

University of Coimbra
3030-199 Coimbra, Portugal
Email: jeneves@student.dei.uc.pt

University of Coimbra
3030-290 Coimbra, Portugal
Email: machado@dei.uc.pt

contributed to a much wider acceptance of Sexual Selection
as playing a major role in evolution.

Darwin has proposed two main processes composing Sexual
Selection: Male Competition and Female Mate Choice. The
latter is the psychological process by which individuals choose
their mating partners based on their perception of others and
mating preferences and is the scope of this study. Just like
Evolutionary Theory, EC is an ongoing research field, where
new ideas are constantly introduced and experimented with.
The same way that Evolutionary Theory has had to adapt its
evolutionary models to account for Sexual Selection through
Mate choice, it is relevant to study the impact and inherent
effects that it may have on Evolutionary Algorithms (EA).

Studying Sexual Selection through Mate Choice in EC
presents a number of challenges, the most prominent be-
ing the difficulty of modeling nature-inspired Mate Choice
mechanisms as well as analysing its effects on EAs. The
process depends on individuals’ ornamentation, perception of
others and mating preferences that evolve similarly to physical
traits [4], which is not straightforward to model. Also, unlike
Natural Selection based models, individuals adapt not only to
an environment but also in relation to each other through the
intrinsic relation between mating preferences and displayed
ornaments or characteristics [5]. This presents a new paradigm
that is challenging to analyse.

In this research we propose a self-adaptive [8] Mate Choice
approach to Symbolic Regression. The study aims at analysing
the ability of the nature-inspired model to evolve mating evalu-
ation functions that help choose mating partners in meaningful
and beneficial ways. The performance of the proposed strategy
is discussed and the impact on the algorithm’s behaviour is
addressed with a particular interest on destructive crossover.

The following section introduces Sexual Selection through
Mate Choice, including a review of the theory’s background
and of related work and implementations on Evolutionary Al-
gorithms. A Mate Choice approach for symbolic regression is
then introduced and implementation details addressed. Section
IIT describes the experimental setup and results are analysed
and discussed. Conclusions are drawn in Sec. IV and future
work presented.



II. SEXUAL SELECTION THROUGH MATE CHOICE

The subject of Sexual Selection through Mate Choice is
introduced on the following subsections. Firstly, sec. II-A
covers theoretical background on Sexual Selection through
Mate Choice. Secondly, previous research on Mate Choice in
EC is presented in sec. II-B. Finally, sec. II-C discusses our
approach to symbolic regression.

A. Background

Ever since publishing his theory of Natural Selection,
Darwin was interested in the origin of animal ornamentation
and courtship behaviours, briefly addressing the subject in his
masterpiece On the Origin of Species [1] and later extensively
discussing the subject in The Descent of Man, and Selection
in Relation to Sex [2]. Darwin’s intrigue was that Natural
Selection could not explain the emergence of these costly and
complex traits that don’t seem to contribute to the individuals
survival ability. To some extent they seemed counterproductive
to Natural Selection. Nonetheless, Darwin knew that in order
for ornaments and courtship behaviours to emerge and spread
they needed to bring some kind of evolutionary advantage
to individuals. In order to account for such traits, Darwin
envisioned the theory of Sexual Selection, a trait-shaping
selection feature capable of evolving complex traits that bring
reproductive rather than survival advantages.

While Natural Selection adapts species to their environment
[1], Sexual Selection adapts individuals in relation to others in
a struggle of individuals of one sex for access to individuals of
the other [2]. In this scenario, failure means that the individuals
will produce few or no offspring. While such individuals may
have strong survival abilities, from an evolutionary perspec-
tive, individuals that have a small reproductive success are
akin to individuals with weak survival abilities as their genes
are less likely to spread through future generations. Darwin’s
ideas on Sexual Selection showed that adaption occurs not only
due to differences in survival rates but also from differences
in reproductive success. They also show how psychological
traits can shape physical traits through Mate Choice.

The theory of Sexual Selection imposes that individual’s
reproductive success is determined by how attractive they are
to others. Such a paradigm includes cases where individuals
with poor survival abilities may attain a high reproductive
success because they display phenotypic characteristics that
are favored by mating preferences and the other way around.
The role of mating preferences is therefore of great relevance.
Fisher [4], [5] has made important contributions to better un-
derstand the relation between mating preferences and evolved
traits. He suggested that ornaments have evolved as indicators
of fitness and that individual whose mating preferences favour
ornaments associated to highly fit individuals will have an evo-
Iutionary advantage as they will select fitter mating partners,
helping produce fitter offspring and contributing to the spread
of their genetic material [4]. Fisher also proposed, among other
contributions, that mating preferences are heritable as part of
the genotype and are therefore subject to evolution in a similar
way as physical traits [5].

The aforementioned characteristics suggest an intrinsic
and deep dependence between both mating preferences and
evolved physical traits. Fisher described the relation as a
positive-feedback loop [5], an arms race where both mating
preferences evolve in relation to exhibited ornaments and
ornaments adapt according to existing mating preferences.
In a nutshell, features that result on a higher survival rate
will bring evolutionary advantage to individuals whose mating
preferences favour them, which results on the reinforcement
and spreading of both ornaments and mating preferences. The
opposite may also occur, with ornaments adapting to popular
mating preferences in order to bring reproductive success to
individuals, resulting on the reinforcement of both ornaments
and mating preferences [5].

The feedback loop described above makes Sexual Selection
through Mate Choice an extremely difficult subject to analyse.
Moreover, Zahavi introduced the handicap principle [3] which
suggests that not all ornaments act as honest indicators of
fitness. Examples such as the peacock’s tail or the Irish elk’s
antlers show that ornaments may work as handicaps. Only
individuals with a high fitness are able to maintain such costly
ornaments, indicating good genes. A variety of behaviours
can result from Sexual Selection through Mate Choice, with
sometimes unexpected results that are challenging to analyse
and interpret.

B. Related Work

The increasing interest of researchers on Sexual Selection
through Mate Choice has spread its impact to various research
fields. While on EC the number of publications on the subject
is still reduced, there are a number of contributions regarding
the design and implementation of Sexual Selection through
Mate Choice that are worth reviewing. We are especially
interested in models that follow three nature-inspired rules:

1) individuals must choose who they mate with based on

their perception of others and on their own mating
preferences;

2) mating preferences are heritable the same way as phys-

ical traits;

3) mate selection introduces its own selection pressure but

is subject to selection pressure itself [9];

Several publications fall into this scope but others have
given important contributions as well. The remainder of this
section covers relevant contributions to the present work.

Eshelman et al. [10] applied an approach that relies on
a Hamming distance threshold, below which recombination
is inhibited. An alternative approach has been proposed by
Craighurst et al. [11] where similarity between individuals
is measured by their genealogical trees. Individuals sharing
ancestors to a certain degree are prevented from mating
with each other. Fernandes and Rosa [12] have studied the
two aforementioned strategies on a Genetic Algorithms (GA)
model applied to the royal road function. Results show an in-
crease in performance on both approaches, specially if coupled
with populations with varying sizes. It is also discussed that
approaches showing a greater diversity along the evolutionary



process don’t necessarily result in a better performance despite
that being the goal of both the non-random mating strategies.

Burke et al. [13] have proposed a different approach where
individuals are grouped according to their lineage. During
selection, two groups are randomly selected and one individual
is also randomly selected from each group. This approach
entirely removes the influence of fitness from the selection
process and focuses on lineage alone. Lineage selection, as
labeled by the authors, reportedly changes the dynamics of
evolution on various domains, aiming at the promotion of
diversity. On regression of Binomial-3 problems, improving
diversity resulted on worst results when compared to a stan-
dard approach. The authors discuss that combining parts of
dissimilar solutions doesn’t always result in solutions that
make sense due to nodes losing their context. They argue that
converged populations have an easier task when combining
genetic material from different individuals without them losing
context, suggesting that there should be a balance between
selection pressure and diversity handling.

Vrajitoru [14] proposed a scheme where individuals are
grouped into four genders: self-fertilizing, hermaphrodite,
female or male. Each gender is associated with its own
mating preferences, i.e. what groups they may mate with.
Two approaches are compared, either with or without fitness-
proportionate selection. It is discussed that natural selection
plays a role on determining each individual’s reproduction
mode as dominant individuals will promote their gender
through future generations.

Gustafson et al. [15] experimented with mating between
dissimilar individuals on regression of binomial-3 instances.
In the discussed work, measuring the similarity between indi-
viduals relies on the edit-distance [13], [16]. Results suggest
that the search process is equally influenced by unfit solutions
and solutions that are both fit and dissimilar. Ultimately, the
experimented approach resulted on improved solution quality.

Fernandes and Rosa [17] applied both negative and positive
assortative mating to a Vector Quantization problem using a
similarity measure that accounts for phenotype information
regarding individuals. The approach selects both a parent and a
set of mating candidates through a roulette wheel operator and
the parent mates with the most similar or dissimilar candidate.
Results show an enhanced performance on negative assortative
mating and it is argued that diversity handling is a key factor.

Ratford et al. [18] proposed a seduction function that com-
bines the fitness of the mating candidates with the Hamming
distance to the first parent. The measure benefits mating
between individuals that are neither too similar nor too dissim-
ilar. They also propose dynamically adapting the bias of the
function at each generation so that mating between dissimilar
individuals is favoured at the beginning of each run but
gradually gives space to mating between similar individuals
through the evolution process. The ability of the approach
on finding multiple solutions on multimodal problems was
assessed and results show that the proposed strategy may be
an important asset. The same research group has proposed
a seduction function that doesn’t rely on fitness but rather

on either Hamming distance, Euclidean distance or common
building block between the first parent and mating candidates
[19]. They study the approach on a set of test problems and
for the most of it, results are reported to be significantly
better. It is also discussed that either similarity measure
performed robustly without the need to rely on the fitness of
the individuals for mating purposes.

Booker [20], [21] proposed an approach where classifier
systems are allowed to mate only if they match the same
message. If no full matches are possible, partial matching
individuals are allowed to crossover. The approach was labeled
Restricted Mating. Booker [20] and Goldberg [22] have also
explored models where a tag is added to each individual’s
chromosome and mating occurs when a number of bit-
positions between a tag and other individuals are matched.
Variations such as one-way, two-way and partial matching
have been proposed as well as matching tags with templates
rather than individuals. Tags and templates are allowed to
evolve as part of the genotype.

Fry et al. [9] experimented in GP with a negative assortative
mating scheme that self-adapts along the run. They propose
that individuals choose their partners based on a function
combining fitness and dissimilarity so that mating between
dissimilar pairs is promoted. Similarity is assessed based
either on relative or absolute edit distance between individuals.
Finally, they propose applying this operator, as an alternative
to tournament selection, with a given probability. This value
adapts along the run either on a population or on an individual
level according to how successful crossover is. Results show
that self-adapting the probability of choosing between the most
fit or the most dissimilar mating partners provides a valuable
balance between exploration and exploitation that enhances
performance.

Hinterding and Michalewicz [23] tackle the constrained
optimization of a nonlinear programming problem. They
propose using a Mate Choice approach that promotes the
feasibility of individuals rather than using traditional methods
for constrained optimization. On their study, a individual is
first selected using a tournament that favors feasible individ-
uals which will then select a mating partner from a set of
candidates. By preferring mates that, in conjunction with itself,
violate the least number of constraints they aim at producing
more feasible offspring. The approach was compared with
standard constraint optimization methods achieving compara-
ble results.

Smorokdina and Tauritz have proposed a self-adaptive ap-
proach where each individual encodes its own Mate selection
function in addition to a candidate solution for the working
problem [24]. The Mate selection function is represented
using Genetic Programming (GP). The terminal nodes of
the trees are, exclusively, the remaining individuals in the
population. The non-terminals are a set of selection operators
such as tournament selection, biggest hamming distance, etc.
Constraints are enforced to make sure the operators are applied
correctly. Mate selection functions are inherited from parents
to offspring following one of two proposed rules: given that



the new offspring show improvements they inherit the function
that was actively used; otherwise, the function attributed to
new offspring is the result of the recombination of those from
both parents. Results on a set of test problems were slightly
worse than a traditional approach.

Guntly and Tauritz [25] propose two variants to a Learning
Individual Mating Preferences (LIMP) approach, either using a
centralized (C-LIMP) or a decentralized approach (D-LIMP).
LIMP has been designed for binary representations, using a
real-valued preferences vector that encodes how desirable it
is that each gene in the genotype is set to one. The D-LIMP
approach attributes a preferences vector to each individual that
is used to select mating partners. Offspring inherit the vectors
from their parents so that preferences match the genes inher-
ited from each one. Also, the vectors are adapted according to
the success of the offspring. The C-LIMP approach relies on
two centralized preferences vectors, one relative to genes set
to 0 and the other relative to genes set to 1. These vectors are
accessed by individuals when evaluating others and adapt to
match the success of the offspring in the same fashion as in
D-LIMP. Both approaches were compared with a traditional
GA and a variable dissortative mating GA, achieving better
results in part of the test set.

Machado and Leitdo [26] describe a model with self-
adapting mate evaluation functions for the Circle Packing in
Squares (CPS) problem. They rely on the fact that candidate
solutions to this problem also encode candidate solutions
to smaller instances, which when assessed can be used as
indicators of good genetic quality. Apart from a candidate
solution to the problem, each individual also encodes an extra
chromosome that represents its own mating preferences. Two
approaches were tested either relying on GA or GP repre-
sentations. The GA mate evaluation function was designed as
a weighted sum matching the weights on the first individual
with the fitness values obtained by each candidate on smaller
instances of the problem. In this case only the weights are
evolved. The GP approach evolves whole evaluation functions
that are built using the fitness values from each candidate on
smaller instances as the terminal set and a set of arithmetic
operators as the function set. Results achieved by the GA
approach were poor when compared to a standard approach.
On the other hand, the GP approach was able to improve
upon the results obtained with a classical approach. The
same authors have studied a Mate Choice approach to the
optimization of Morse Clusters [27]. The approach achieved
a slightly more robust behaviour on a global level than a
standard selection scheme. The Mate Choice mechanism is
coupled with a steady state model and it is discussed that by
adapting to the replacement strategy, it is able to produce a
higher rate of valuable offspring which have a smaller yet
longer impact on the population’s structural diversity.

C. A Self-adaptive Mate Choice Approach to Symbolic Re-
gression

The approach implemented for this study encodes in each
individual its own mating preferences, which it uses to assess

other individuals for mating purposes. In order to do so, each
individual includes two chromosomes, the first representing
a candidate solution to the target problem, as in a standard
approach, and the second representing the mating preferences.
Therefore, the approach follows the first rule set in sec. 1I-B
since each individual will rely on its own preferences to
assess and evaluate potential partners. The second rule is
enforced by the heritability inherent in the evolution process.
The application of genetic operators on each chromosome,
independently, ensures that genetic material is passed both
regarding candidate solutions and mating preferences. Fi-
nally, the spectrum of available mating preferences impacts
the reproductive success of individuals by favoring certain
characteristics over others. The selection pressure caused by
mating preferences will ultimately impact both chromosomes
by causing the adaption of individuals to each other, therefore
adhering to the third rule.

Both chromosomes rely on a GP representation. The first
tree is mapped to a candidate solution to the target function,
once mapped this is the phenotype of the individual and hence
visible to potential mating partners. The second chromosome
encodes a tree that is mapped to a function representing
the ideal mating partner according to the preferences of the
individual. When assessing potential mating partners, each
individual compares the function that represents its ideal mate
with the phenotypes of each mating partner choosing the most
similar one. In a nutshell, evaluation of mating candidates
relies on the same mechanisms as when evaluating the first
chromosome to determine its fitness. However, instead of
comparing the function represented by the first chromosome
to the target one, it is compared to the function representing
the ideal mating partner. The differences between the ideal
mating partner and each of the candidates are measured in a
similar way as in a standard approach and the one that most
resembles the ideal mating partner is selected for mating. The
similarity measure therefore accounts for differences between
phenotypes. Traditional choices such as edit distance rely on
genotype characteristics, however, we feel that assessing others
based on their phenotypes shows a closer resemblance to
natural processes.

Algorithm 1 Parent selection using Sexual Selection through
Mate Choice

1: mate selection {

2:  parentl = parent_selection(Pop)

3:  candidates = mating_candidates_selection(Pop)

4:  evaluate_mating_candidates(parent],candidates)

5:  parent2 = select_best(candidates)

6: }

Algorithm 1 succinctly describes the selection process ap-
plied. Firstly, Parentl is selected by means of Tournament
Selection and a number of mating candidates is randomly
sampled from the population. Secondly, Parentl assesses the
displayed functions and chooses for mating the individual that



TABLE I
SYMBOLIC REGRESSION FUNCTIONS. Ula, b, ¢] REPRESENTS ¢ UNIFORM
RANDOM SAMPLES DRAWN FROM THE INTERVAL [a, b]. E[a, b, ] IS A SET
OF POINTS EQUALLY SPACED WITH AN INTERVAL OF ¢, IN THE INTERVAL

[a,b].
Name Objective Function Set
Keijzer-1 [29] 0.3zsin(27x) E[-1,1,0.1]
Keijzer-2 [29] 0.3zsin(2nx) E[-2,2,0.1]
Keijzer-3 [29] 0.3zsin(2mx) E[-3,3,0.1]
Keijzer-4 [29]  x3e~%cos(z)sin(x)(sin?(x)cos(z) — 1)  E[0,10,0.1]
Koza-1 [30] 4t +a? 4 U[-1,1,20]
Nguyen-5 [31] sin(x?)cos(x) — 1 U[-1,1,20]

best matches its ideal partner. Afterwards, the pair generate
offspring by means of GP operators applied independently to
each chromosome and the new individuals are introduced into
the population of the new generation. The process is repeated
until the new population is complete.

This process illustrates how the attractiveness of each in-
dividual influences its reproductive success. Genes that are
coupled with good mating preferences have a better chance
of being mixed with good quality genes during reproduction,
therefore increasing their chance of spreading through future
generations. On the other hand, mating preferences coupled
with attractive genetic material are also more prone to success-
fully spread. The resulting feedback-loop causes individuals in
the population to not only adapt to the environment but also
to each other in a struggle for reproduction. The success of
the approach therefore relies on its ability to evolve mating
preferences that help choose partners in ways that benefit the
evolution process.

III. RESULTS

The following subsection details the experimental setup
applied to study the effects of Sexual Selection through Mate
Choice and the proposed approach on Symbolic Regression.
The results are then analysed and discussed.

A. Experimental Setup

Experiments were conducted on symbolic regression tar-
geting a set of functions mixing the six functions displayed
in Table I. The decision to tackle this particular subset relies
mostly on their inclusion and discussion on the publication
regarding GP benchmarking by McDermott et al. [28].

Three approaches were considered: Standard approach
where both individuals are selected using tournament selection
and mating preferences take no part; a Random approach
where the first parent is selected by means of tournament
selection but its pair is selected randomly; the proposed
approach where the first parent is selected through tournament
selection and chooses from a pool a candidates the one that
best resembles its ideal mating partner.

At each run, the Keijzer functions evolve a population of
100 individuals while for both the Koza and the Nguyen
functions, populations of 500 individuals are evolved. The
populations evolve for 100 generations. Tournament size has
been set to 5 individuals and the number of mating candi-
dates has also been set to 5. Crossover is applied on the

TABLE II
MEAN BEST FITNESS OBTAINED BY THE STANDARD, MATE CHOICE AND
RANDOM APPROACHES ON EACH FUNCTION OVER 50 RUNS.

Function Standard Mate Choice Random
Keijzer-1 0.008005462 0.0059473756  0.0072442644
Keijzer-2 | 0.0063776454  0.0052139161  0.0062104645
Keijzer-3 | 0.0071500245  0.0056003145  0.0067438776
Keijzer-4 | 0.0890397335  0.0833904122  0.0840754187
Koza-1 0.0006384168  0.0014386396  0.0006481816
Nguyen-5 | 0.0014892713  0.0004783439  0.0025763115

selected parents, independently on the first and the second
chromosomes, with a probability of 90% and is 90% biased to
function nodes and 10% biased to terminal nodes as crossover
points [30]. Elitism is also imposed so that the best individual
of each generation is included in the next one. Information
regarding the terminal and non-terminal sets can be found in
McDermott’s publication [28] and implementation details can
be found in each of the articles describing the functions [29]-
[31].

A total of 50 runs are executed for each approach and data
regarding the fitness and the number of individuals resulting
from destructive crossover are recorded for analysis. In this
study, an individual is considered to be the result of destructive
crossover if its fitness is worst than the fitness of the parent
that actively chose a mate. An individual is considered the
result of a neutral crossover if its fitness is equivalent to the
fitness of the parent that actively chose a mate.

B. Analysis and Discussion

Table II shows a comparison of the Mean Best Fitness
(MBF) obtained by each studied approach on each func-
tion along 50 runs. A Wilcoxon Mann Whitney test with
a significance level of 0.01 was conducted, comparing each
approach with the remaining two. The instances where the
proposed approach performed significantly better than the
Standard approach or the other way around are presented in
bold in Table II. Regarding the Random approach, it performed
significantly better than the Mate Choice approach on the
Koza-1 instance but worst on Keijzer-1, Keijzer-2 and Keijzer-
3 as well as on the Nguyen-5.

The Koza-1 instance is regarded as a particularly easy
instance for symbolic regression [28] which may explain the
results obtained, specially if the large size of the population
is considered. The results suggest that the overhead created
by the Mate Choice model does not payoff. The extra effort
put on the evolution process to adapt mating preferences, as
seen in Figure 1, slows down convergence, giving the Standard
approach the observed advantage. Regarding the Nguyen-5
function, the three approaches performed considerably better
than on the Keijzer instances. While the instance is not
regarded as particularly simple for symbolic regression, the
use of a population with 500 individuals may explain why the
approaches were able to achieve better MBFs. In this case,
the Standard approach seems able to benefit from a larger,
and likely more diverse, population and achieve a lower MBF
than the Random approach. Still, Mate Choice was able to
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Fig. 1. Mean Best Fitness obtained along 50 runs for the Koza-1 function
TABLE III
MEAN CUMULATIVE DESTRUCTIVE CROSSOVERS OBTAINED BY THE
STANDARD, MATE CHOICE AND RANDOM APPROACHES ON EACH
FUNCTION OVER 50 RUNS.

Function \ Standard ~ Mate Choice ~ Random
Keijzer-1 6013.14 7062.88 6484.58
Keijzer-2 5892.56 7149.06 6929.12
Keijzer-3 6173.56 7198.2 6808.86
Keijzer-4 5968.18 7239.4 6805.04

Koza-1 34889.32 36399.72 36797.82
Nguyen-5 | 27597.62 34656.84 30013.76

outperform the Standard approach with a significant MBF
difference.

The Mate Choice approach achieved a significantly bet-
ter MBF value than the Standard approach on the Keijzer
instances as well, suggesting that the proposed strategy is
able to contribute to enhancing results. Despite the generated
overhead on the evolution process, the approach seems capable
of evolving mating preferences that favour mating partners
in a way that is beneficial to the evolution process. Overall,
the differences in MBFs between the proposed approach
and the Random approach are quite noticeable, emphasizing
that the behaviour produced by the Mate Choice strategy
is not similar to randomly selecting mating partners, but a
behaviour that produces larger benefits, therefore backing up
our assumption that Mate Choice evolves mating preferences
that help selecting mating partners in meaningful ways. It’s
also noticeable that while no significant differences were
found between the Standard and the Random approaches, the
later performs slightly but consistently better on the harder
instances (Keijzer-1 to Keijzer-4), suggesting that the reduced
selection pressure inherent may be beneficial, allowing for
a better exploration rather than exploitation of the fittest
individuals. Different studies explore selection pressure, one
where different schemes are coupled with the ideas of Sexual
Selection and compared has been conducted by Wagner and
Affenzeller [32].

Tables IIT and IV further highlight behavioural differences
between the studied approaches. Table III shows the mean cu-
mulative number of destructive crossovers (MCDC) obtained
along the 50 runs by each approach while Table IV shows the
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Fig. 2. Mean Best Fitness obtained along 50 runs for the Keijzer-3 function

TABLE IV
MEAN CUMULATIVE NEUTRAL CROSSOVERS OBTAINED BY THE
STANDARD, MATE CHOICE AND RANDOM APPROACHES ON EACH
FUNCTION OVER 50 RUNS.

Function \ Standard ~ Mate Choice ~ Random
Keijzer-1 3124.6 1760.94 2524.54
Keijzer-2 3278.84 1708.12 2060.58
Keijzer-3 2852.96 1741.4 2187.86
Keijzer-4 2997.26 1528.56 2169.32

Koza-1 8666.42 8016.44 7397.52
Nguyen-5 | 17749.86 10583.78 15592.58

mean cumulative number of neutral crossovers (MCNC). A
Wilcoxon Mann Whitney test with a significance level of 0.01
was conducted, comparing each pair of approaches. Instances
where the Mate Choice approach achieved a significantly
higher MCDC or a significantly smaller MCNC than the
Standard approach are depicted in bold.

A brief perusal of Tables III and IV reveals that Mate
choice consistently results in a higher MCDC than the standard
approach. Conversely, it attains lower MCNC on all instances
where it outperformed the other approaches. On the Koza-
1 instance, probably due to its simplicity, the approach that
performed the smallest MCDC was able to outperform the
others as candidate solutions are likely to evolve faster and
further towards the target function by means of successful
crossovers. Although correlation does no imply causality, these
results suggest that the explanation for the success of the
Mate Choice approach may rest on the reduction of neutral
crossover. Individuals that result from neutral crossovers make
no contribution to fitness enhancements and may ultimately
stall evolution and decrease diversity. The higher MCDC
obtained by Mate Choice may be explained by the stochasticity
it introduces in the mate selection process. Additionally, Mate
Choice is outperforming other approaches and, as such, the
results are inherently more difficult to improve.

Due to lack of space, further analysis will focus on a single
function. However, the discussed behaviours generalize to the
other instances with the exception of the Koza-1, where the
Standard approach performs better. We have chosen to focus
on the Keijzer-3 function. Figure 2 shows how the MBF
evolves along the 100 generations while Figures 3 and 4 show
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the mean of destructive crossovers and the mean of neutral
crossovers at each generation and how they evolve along the
runs.

Figure 2 shows that the MBF rapidly evolves for the
Standard approach for the first 5 or so generations, probably
taking advantage of the initial population diversity. Figure 3
shows that for this period, the mean of destructive crossovers
also raises rapidly, stabilizes and then gradually descends for
the remaining of the generations. The behaviour suggests that,
from this point on, the Standard approach promotes crossover
between fit solutions. Individuals have a greater chance of
promoting their genetic material by mating with fit partners,
those who are unable to do so are gradually discarded and no
longer contribute to evolution. This behaviour is supported by
Figure 4 which shows that the Standard approach produces a
gradually higher mean of neutral crossovers. This is consistent
with a decreasingly diverse population where a small number
of individuals takes over. As a result, while fitter individuals
gradually mate with other fit individuals, their impact on the
evolution process is reduced and advances are made slowly as
individuals exploit a smaller set of genes.

The Mate Choice approach, as shown by Figure 2, has
a slower MBF evolution on the first generations, surpassing

however the Standard approach at around the 10th generation.
Figure 3 shows that by generation 10, the Mate Choice
approach is producing more destructive crossovers than the
Standard approach. While mating between fit and similar
solutions is less likely to cause destructive crossovers, mating
with unfit or dissimilar individuals is more likely to produce
destructive crossovers as genes mix either with worst genes
or with genes from different contexts. The Mate Choice
approach seems to promote this behaviour along the runs,
causing the mean of destructive crossovers to remain steady
for the remainder of the generations. However, as seen by
Figure 2 and by Table II, such a behaviour has a positive
impact on the MBF, likely the result of a better exploration
through the contribution of genes from less fit or dissimilar
individuals. Figure 4 supports this behaviour as a smaller
mean of neutral crossovers is observed on the Mate Choice
approach throughout the entire run. Thus, in the considered
experimental settings, the Mate Choice strategy promotes risk-
taking resulting in higher MCDC and lower MCNC and taking
risks is beneficial in the most complex problem instances.
When comparing the Mate Choice approach with the Ran-
dom one, both regarding the mean of destructive crossovers
and the mean of neutral crossovers, it is noticeable that
the produced behaviours happen with a different frequency,
indicating that the evolution of mate preferences has an impact
on the behaviour of the algorithm. The results reported in Table
Il and the analysis of Figure 2 show that such an impact is
positive for the performance of the evolutionary process.

IV. CONCLUSIONS

Evolutionary Computation is an ongoing research field
where, just like in Evolutionary Theory, new ideas are con-
stantly introduced and experimented. While many research
fields have come to study and embrace the theory of Sexual Se-
lection, its impact on Evolutionary Computation and inherent
effects are yet not fully understood. During this study we ex-
plore a nature-inspired Mate choice mechanism and analyse its
effects on Evolutionary Algorithms. A comprehensive review
of the background of Sexual Selection and more specifically
Mate Choice is included as well as an extended review of
related work and applications on Evolutionary Computation.

A self-adaptive Mate Choice approach to Symbolic Re-
gression is proposed, following three nature inspired rules:
individuals must choose who they mate with based on their
perception of others and their own mating preferences; mating
preferences are inherited the same way as physical traits; mate
selection introduces its own selection pressure but is subject
to selection pressure itself.

A representation of mating preferences as an extra chro-
mosome on each individual is introduced and the means by
which they are used to assess mating candidates and select the
most desirable mating partners are presented. The mechanisms
and operators by which mating preferences are inherited and
undergo evolution are also discussed. A test suite is introduced
and implementation details are presented. Three approaches



are experimented and compared: Standard, Mate Choice, and
Random.

The obtained results show that the Mate Choice approach
is able to significantly outperform the other two on complex
instances of Symbolic Regression. The behaviour of the ap-
proach is discussed and contrasted with the behaviour obtained
by the Random and the Standard approaches, showing that the
Mate Choice approach is able to evolve mating preferences
that choose mating partners in meaningful ways, actively
contributing to an enhanced performance by the Evolutionary
Algorithm on the target problem.

Future work may include applying the presented model on
a larger function set as well as studying the genealogical trees
of the individuals, how mating preferences evolve and affect
the evolution of candidate solutions.
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