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Abstract

Understanding life at a molecular level, while complex, encloses a myriad

of opportunities for humanity’s future. As important as being able to

identify the molecular components of the cell it is of major relevance to

understand their relationships and interactions. This way, the study of

Protein-Protein Interactions (PPIs) has been used as a cornerstone to de-

termine how most of the biological processes take place. Due to the large

scale of the problem it is critical to use the appropriate computational

tools and methods. Despite the existence of previous works in the field,

the available methods are divided in two groups of approaches: experi-

mental and computational. Experimental techniques have good prediction

accuracy but are slow and expensive, therefore urges the need of develop-

ing computational approaches. These have low prediction accuracy but

only require computational power and consequently are inexpensive since

no laboratory machinery is required. A great amount of these algorithms

are based on protein annotations, such as protein homology or protein do-

mains. That makes such algorithms inapplicable to sparse multi-organism

datasets usually composed only by the proteins sequences. In this work

we start by analysing the existent state of the art methods for compu-

tational prediction of PPIs. It is our goal to explore their limitations

and make improvements that can lead to more accurate results. After

that we propose a new approach using the discrete cosine transform as

a method of construction of features from the protein chain and a new

method that calculates the three dimensional structure of the protein

from its sequence. These new improved approaches will bequeath more

accurate protein interactomes that can be used by Genomic Engineers in

order to understand the intracellular structures relationship and biological

processes. From these biological processes it is possible to extract seman-

tic knowledge that can lead to new drug discoveries. Finally as a method

of validation, our work is currently being experimentally validated by the

Faculty of Dental Medicine from the Catholic University of Portugal from



the biological perspective using real sets of proteins extracted from hu-

mans saliva and from microorganisms presents in the oral cavity. It is

also publicly available online for everyone to complement or use in other

researches.

Key-Words: Bioinformatics, Protein Interaction Prediction, Protein

Features, Machine Learning
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Chapter 1

Introduction

The term bioinfomatics was coined by Paulien Hogeweg in 1970 to refer the

study of the information processes in living organisms [1]. In the present days, bioin-

formatics is the name given to the research field that focus on the development and

improvement of methods for storing and analysing biological data [2, 3]. One of the

major characteristic of bioinformatics is the necessity to integrate diverse fields of

knowledge. Informatics, mathematics, biology and statistics are used in order to

analyse the biological data extracted from the diverse organisms or from their intra-

cellular structures.

The main areas of research related with bioinformatics are sequence analysis,

gene and protein expression, protein structure, and molecular networks. It is impor-

tant to study the sequencing of genomes and their mutations, to understand protein

structures and their interactions and to extract semantic knowledge from raw biolog-

ical data in order to understand how the life works at its lower levels.

Proteins are biological molecules, composed by of one or more long chains of a

simple organic compounds containing both a carboxyl and an amino group. These

groups are called amino acid residues. Proteins perform a multitude of functions

within the living organisms, among them the most important are catalysing metabolic

reactions, replicating DNA, responding to stimuli, and transporting molecules from

one location to another. Each protein differs from one another primarily in their chain
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of amino acids, which is dictated by the nucleotide sequence of the genes, and which

usually results in folding of the protein into a specific three-dimensional structure

that determines its function.

Protein-Protein Interaction (PPI) is the process where pairs of proteins phys-

ically bind as a result of biochemical events and/or electrostatic forces in order to

accomplish a biological function. These interactions are of critical importance be-

cause they modulate the cellular macromolecular structures and functions. Indeed

they are the main mediators for several biological processes including the intracellular

signalling pathways [4] commonly known as the the transmission of messages within

different structures of the cells.

Having the knowledge of how proteins interact with each other can provide a

great opportunity to understand pathogenic mechanisms, and subsequently support

the development of new drugs, focusing on very specific intracellular structures or

optimize already commercialized drugs re-targeting them to new gene products [5].

PPIs operate at almost every level of cell functioning [6]. From the definition of

cell structures to the regulation of gene expression, all depends on the interaction of

different proteins. This is why they became popular and object of so many different

studies. Finding and labelling new interactions opens the door to new discoveries that

vary from having detailed insights of how diseases are originated and how they can be

prevented, to finding new medicines which can target some proteins and strengthen or

weaken certain protein interactions in order to make the patients healthier, increasing

their lifespan or even to completely cure them from untreatable diseases by the actual

medicine.

With the present work our focus is upon the prediction of protein interactions

using features extracted from their genetic sequences and their respective structures.

We are going to study the limitations of the existent state of the art methods and

try to develop new methods to overcome such limitations. As a final result, we have
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developed a classification algorithm that is able to predict if pairs of proteins are

susceptible to physically bind or not. This task is often denominated computational

prediction of PPIs.

1.1 Motivation

The most standard way for detecting PPIs is throughout the usage of biolog-

ical techniques. These methods test in vitro if a pair of proteins is susceptible to

interaction. There are many experimental methods of predicting PPIs such as yeast

Two-Hybrid Systems, Mass Spectrometry, Protein Microarrays and Fluorescence Res-

onance Energy Transfer [7], each one having his own advantages and disadvantages.

Some of them, despite being very accurate, are monetary expensive and time con-

suming, others are more time efficient and consequently predict a higher amount of

interactions per unit of time, however their results are sometimes inaccurate [8].

While predicting PPIs the adversities come not only from the fact that the pre-

dictions are hard to make, since specialists do not know what factors are directly

related with protein bonding, but also because there is a large number of interactions

to be tested. According to the last release of Uniprot [9] the human being has around

140,000 proteins (release Jul 9, 2014). If all pairs are to be tested there is an astonish-

ing number of possibilities
(
140,000

2

)
' 9×109. In addition to the problem of testing all

the human protein interactions the problem gains an even bigger dimension when the

interactions that happen between the human and other organisms are considered. For

instance, in the oral cavity there are evidences of around 2300 micro-organisms [10].

When considering the interactions of the human proteins with these micro-organisms

proteins, the number of interactions to be computationally tested expands largely to

untreatable numbers for the exiting computational power of recent computers.

The limitations described above have lead to a different approach to the prob-
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lem. This approach consists in the development of computational techniques. These

techniques are currently being used to allow researchers to more accurately find which

proteins have a high probability of interaction for further testing with the experimen-

tal methods referred above.

There are several computational methods currently available. The most recent

studies on this area already show interesting results (85.9% accuracy for Naive Bayes

(NB) with Substitution Matrices [11] to 87.36% accuracy for Support Vector Ma-

chines (SVM) with Auto-Covariance (AC) [12].

While promising they present several limitations. Their results are sometimes

not as valid as desired in these kind of researches, since the datasets used were not

selected from official databases or sometimes not considered as a whole, but just small

portions. The feature extraction strategies could be optimized by considering more

factors that are related with protein interactions or even integrate diverse features

in order to achieve better results or to overcome each others individual limitations.

Also different methods can be used to test new concepts and hypothesis.

In addition the existent studies give focus to the prediction of interactions from

intraspecies datasets, not considering PPIs from interspecies datasets, on which the

precision is expected to decay since intracellular structures vary from organism to

organism. In fact most of the published work restricts the datasets to a single organ-

ism, ignoring the fact that multi-organism interactions is a subject that needs to be

explored since all of our body, but mainly oral cavity, nose, eyes, skin and gastroin-

testinal surfaces are environments in which a lot of micro-organisms are in constant

interaction.

In sum, although the problem of identifying PPI have already been addressed

both by the use of experimental and computational techniques, all the existent meth-

ods present major limitations such as high monetary costs, low throughput or accu-

racy of the results and therefore it still an open research problem to be studied.
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1.2 Objectives

The methods described in the state of the art are applied and tested in in-

traspecies, and some times manually restricted datasets. With this work our objective

is to be able to predict interactions between the proteins of different species with the

best possible accuracy, since it will be used by the Faculty of Dental Medicine from

the Catholic University of Portugal in order to discover protein interactions between

bacteria and human immune system that occur on saliva. Their idea is to be able to

predict Periodontitis and other dental deterioration diseases even before the patients

show symptoms. So we need to predict PPIs happening between diverse organisms

and the human saliva with the best possible accuracy. On most of the proteins that

need to be experimentally tested only the amino acid chain is available, therefore our

method should work based on this premiss.

Our first step should be to analyse the state of the art methods used to predict

PPIs and apply them to our datasets in order to have a metric of comparison with

the results of our methods on the same datasets. Then we should be able to find

limitations present on the existent methods and propose new approaches that are

able transcend such limitations.

With the current project we aim to build the PPRINT classifier that should

be able to predict PPIs using machine learning techniques. This system input will

receive pairs of protein amino-acids sequences as input and should output a value

within the range [0,1], 0 representing lowest score of interaction between the pair and

1 representing the highest score of interaction between the pair of proteins.

Since there is no known simple mathematical rule that dictates if proteins are

inclined to physically bind or not, different methods for extracting features from pro-

teins primary sequence are going to be implemented and evaluated in this work. We

should test and analyse the behaviour of different classifiers given the features ex-

tracted and choose the best classifiers and parameters to optimize the output results.
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1.3 Document Structure

Here we present a brief description of the different chapters of this thesis and

what is done in each one of them.

Chapter 1: Introduction This section. We show the importance of the work

presenting a brief contextualization of the motivations behind the project and our

objectives.

Chapter 2: State of the Art State of the art, biological background, work con-

textualization including background on machine learning and similar studies on the

area.

Chapter 3: Methodology Description of the methodologies used to develop our

approaches to the problem, allowing others to understand and implement our work.

Chapter 4: Results and Discussion Presentation and analysis of the results

achieved with our work and further comparison with the existing methods.

Chapter 5: Final Considerations In the final chapter we conclude our work

and make a reflection about the achievements of our research. We also present notes

about some ideas that can be studied in future works that we think that are of great

importance.
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Chapter 2

State of the Art

With the present chapter we analyse the concepts necessary to the problem of

predicting PPIs. The brief biological background presented in the next section aims

to introduce the concepts to understand the work that took place in this thesis.

After presenting some biological concepts we formally define our problem and

present diverse classification methods used previously in similar tasks.

On a later stage we present and analyse different feature extraction techniques

used to extract features from proteins and fully describe some methods that have

shown great results on previous works.

This analysis of the state of the art will allow us to have a better insight of

the strategies used in similar tasks and what were the conclusions and limitations

observed by the researchers, allowing us to achieve knowledge to posteriorly build our

classifier more easily and efficiently.

2.1 Biological Background

Although this work is focused on the engineering and the mathematical concepts

behind the prediction of PPIs, in this section we present an overview of the biological

background required to understand the rest of the document.
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2.1.1 Understanding the Role of Proteins

Proteins are complex molecules that play diverse critical roles in the bodies of

living organisms. Most of proteins work is done within cells where they compose the

intracellular structures and are responsible for tasks such as transport and commu-

nication. However, some proteins are not limited to control intracellular structures

and are required for the structure, function, and regulation of the body tissues and

organs. An example of this is the Growth Hormone which is a messenger protein that

transmits signals between different cells to coordinate biological processes such as

growth stimulation, cell reproduction and regeneration in humans and other animals.

Proteins are made of hundreds to thousands of smaller units called amino acids

that are the basic organic compounds composed of amine and carboxylic groups.

These units are attached to one another in long chains, defining different sizes of

the proteins. Despite the existence of only 20 different types of amino acids when

combined in these chains they are responsible for the generation of all the existent

proteins since the order in what they appear and the number of amino acids in the

each chain is variable. In terms of size proteins are classified as nanoparticles, having

between 1 and 100 nanometres.

To produce a protein the cell first makes a copy of the DNA instructions called

RNA. The RNA is then moved to the ”ribosome”, the intracellular structure respon-

sible for assembling proteins. Every set of three RNA bases in a row controls which

amino acid is to be added to a growing protein molecule. The copy of the DNA chain

passes through this protein making machinery ”like a tape through a tape player”,

assembling individual amino acids into proteins ready to be used by the cell or by the

host organism.

Proteins structure can be be seen as primary, secondary, tertiary or quaternary.

The proteins primary structure refers to amino acid linear sequence of the polypep-

tide chain as described above. The secondary structure refers to highly regular local
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sub-structures and represents the hydrogen bonds that link the amino and carboxyl

groups. Protein’s tertiary structure corresponds to its three-dimensional structure

and it represents the atomic position of each atom in three dimensional space. Finally

the quaternary structure represents the multiple possibilities of folding the protein

and the diverse shapes and structures that it can have. Many proteins are actually

assemblies of more than one polypeptide chain, the quaternary structure represents

the arrangement into which these subunits assemble.

The use of higher levels of representation adds more information about proteins

and their amino acids, however they also requires a lot more computation time to be

calculated.

Fig 2.1 presents a simple diagram that represents these 4 levels of structural

analysis is shown.
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Figure 2.1: The four levels of protein structure, (source: OpenStax College,

http://cnx.org/content/m44402/latest/?collection=col11448/latest)

2.1.2 The Role of Protein Interactions

Being proteins the main entities responsible for life at lower levels, it is important

to understand how they work and how they are related with each other. Researchers

found out that some of the cells responsible for our immune system have proteins

that work as sensors in order to detect intruder bacteria and proceed with the appro-

priate immunological responses in order to activate the appropriate mechanisms for
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the defence of the host organism.

Latest discoveries in bioinformatics allow the development of new drugs that in-

hibit or fix some proteins in order to tackle pathologies. For instance the origin of

some diseases such as Alzheimer, Parkinson or Huntington’s diseases is related with

errors in the structure of proteins. Oregon Health & Science University researchers

developed a new drug approach that could lead to cures for wide range of diseases [13]

on which these ones are included. The new drug would fix the broken proteins restor-

ing their normal structure and consequently healing the patients.

Being vital macromolecules for the organisms correct functioning, proteins rarely

act alone. Multiple essential molecular processes that happen in an organism are

carried out by molecular machines that are built from a large number of protein com-

ponents organized and interconnected by their PPIs. Indeed, these interactions are

at the core of the entire balance of any living cell. Consequently errors happening

at the PPI level are on the basis of multiple diseases, such as Creutzfeldt-Jacob and

cancer.

Due to its importance to living organisms arises the need to understand how

these proteins interact with each other and what cellular structures are regulated by

them. The final consequence of understanding PPIs is to attain interaction networks

in the form of a graphs or interactomes [14]. Such interactomes will allow molecu-

lar biologists and specialists in genetics to more easily target individuals (proteins,

pharmaceutics, DNA, mRNA, etc) for their studies and to understand what are the

relationships between them or what is the influence that they inflict on each others.

This is why it is so important to understand how proteins interact, because such

interactions can give us insights of how the cells are structured and how the different

biological processes take place inside our bodies. The main goals of these interactomes

are the development of a functional maps of cell’s processes, drug target identification

and to predict the functions of uncharacterised genes or proteins. Having an accu-
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rate method or process of predicting interactomes of a bio-organism can boost the

probability of discovering new drugs to tackle known problems or even understand

the intracellular biological processes that take place in case of pathology.

After the release of the first draft sequence of the human genome in 2001 by the

project named Human Genome Project (Lander et al. [15]), researchers are now more

focused on protein interactions, rather than sequencing the human genome. In 2003,

when the project was declared finished the number of human protein-coding genes

was estimated to be 24,500. Although the actual number is a lot bigger than the

initial estimation (now being around 140,000) due to alternative splicing, a process

that makes a single gene responsible for coding multiple proteins. Therefore comes

the need to develop machine learning algorithms able to predict interactions with

good sensitivity, specificity and high throughput in order to speed up the process of

learning relationships between proteins and reduce the costs of in vitro experimental

tests, focusing on protein pairs with high probabilities of interaction.

An important fact about the actual state of the art is that most of the studies

are focused on intra-species datasets and that is not the target of this work. As said

above, the human genome is responsible for coding around 140,000 proteins, however

our bodies are not isolated beings. By this we intend to emphasize that through-

out all of our bodies we are in constant interactions with other organisms, being the

mouth and the intestines the organs with higher amounts of them. These organisms

are also composed by proteins and PPIs are also present between their proteins and

ours affecting the normal functioning of each other organisms.

The high amount of protein combinations to be tested aside with the lack of

information available about the genes of some micro-organisms opens the door to

optimize the computational methods that use polypeptide chain as input.
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2.1.3 The Importance of Primary Structure

There are a several computational based methods of predicting PPIs. In the

present work our focus in upon the proteins primary sequence of amino acids and

their structure. These methods should able to predict PPIs only from the amino acid

sequence of proteins with a good performance, either in terms of reduced computa-

tional time and with with a relatively high accuracy.

The information extracted from the primary structure of proteins with simple

metrics such as physico-chemical properties or amino acid counts or even amino acid

distributions should be enough to predict some interactions between pairs of proteins.

This method has some advantages: It can be applied to all of the protein sequences; It

does not require the three dimensional structure or other high complexity processing

neither other biologic based information such as the location of the proteins in the

intracellular space. The disadvantages of these methods are the lack of specificity

of the results. On one hand, these methods can be applied to any protein from any

given organism, however there is no detailed information about each protein, such

as intra cellular location, that could make the data more specific and facilitate the

classification task. Joel R. Bock and David A. Gough [16] studied PPIs using the

primary structure and concluded that on average 80% could be correctly predicted,

only using these techniques.

On other hand the three-dimensional position of atoms is more discriminatory of

proteins and consequently it could bring better prediction accuracy to the classifica-

tion methods, however it has to be calculated using algorithms with high computation

complexity that become time expensive for bigger datasets.

The Fig. 2.2 presents an example of a protein’s three-dimensional structure. This

structure represents a dehydrogenase enzyme from the bacteria Colwellia psychrery-

thraea. The enzyme is capable of generating harmful reactive oxygen species and has

been implicated in neurodegeneration, ischemia-reperfusion, cancer and several other
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disorders.

Figure 2.2: Protein’s 3-D structure of dehydrogenase (source: Flicker,

http://www.flickr.com/photos/argonne/3762337272/)

2.2 Classification Problem

In this section we will leave aside the experimental methods and the biologi-

cal background behind this task and will focus our attention on the state of the art

computational methods and algorithms used to predict PPIs. This methods have

followed a multitude of perspectives and have varied much since the start of this field

of investigation.

In machine learning and statistics, classification is the problem of identifying to

which of a set of categories or classes a new observation belongs, on the basis of a

training set of data containing observations whose category membership is known.

These observations consist in features that are quantifiable properties extracted from

each observation.

Considering that we want to computationally verify if pairs of proteins are sus-

ceptible to interaction or not, we have a binary classification problem. In Machine
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Learning a binary classification problem is defined by:

f : RN → y, where yi ∈ [0,1]

(1)

Applied to our case, RN is the whole dataset of features extracted from the protein

pairs, y = 0 defines the not interacting class and y = 1 defines the interacting class.

f is the machine learning method that transforms the input features in output data

y. The learning method uses input-output training data:

D = {(xi, yi) ∈ S ⊆ RN}

(2)

such that f correctly classifies unobserved data (xi, yi) that was not intro-

duced during the training.

xi represents the features of a pair of proteins to be tested, yi represents the de-

sired output for the classification problem. S is used as notation to describe a single

pair (xi, yi) from the entire dataset RN.

In machine learning there are diverse strategies used to build statistical classi-

fiers. It is important to make a brief description and analysis of some classifiers that

are most used in the bioinformatics field, in order to demonstrate their power and

what they are being used for. During this work some these algorithms are going to

be implemented to build our final classifier.

2.2.1 k-Nearest Neighbour

The k-Nearest Neighbour (k-NN) is a very simple machine learning algorithm.

In a given classification problem, the output classification for the input features

is calculated by a measure of proximity between the input and the closest k patterns
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provided by the training set. A pattern is classified by a majority vote of these neigh-

bours classes. Despite being so simple this method is used for a multitude of problems

and sometimes present interesting results.

k-NN has been used in the bioinfomatics field before to predict secondary struc-

tures, to predict protein functioning and even to predict PPIs. Mario R. Guarracino

and Adriano Nebbia [17] were able to correctly classify protein interactions with an

accuracy of 98.11%. However the dataset used by them was independently selected

and consisted only in 3,291 interactions which in our opinion is not a representable

amount of interactions.

2.2.2 Neural Networks

Artificial Neural Networks (NNs) are data structures that approximate the oper-

ation of the human brain. The models consist on interconnected neurons with weights

in the links between them. In fact these connections simulate synapses (transmission

of information between the different neurons of the brain). The organization and

weights of the connections determine the output.

NNs are currently used prominently in voice recognition systems, image recogni-

tion systems, industrial robotics, medical imaging, data mining and aerospace appli-

cations.

The Fig. 2.3 presents a diagram that represents a NN. On the left, represented

with green background there are the input features and on the right with blue back-

ground there is the output layer. The data flows from the input layer to the output

layer passing in the hidden layers and being multiplied by different weights that are

adapted in the learning process.
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Figure 2.3: Neural Network Structure (source: Next price predictor using Neural

Network, http://codebase.mql4.com/5738)

To predict protein interactions Neural Networks are also very effective, Jae-

Hong E. and Byoung-tak [18] built a NN that out-performs other state of the art

algorithms in a independent Saccharomyces cerevisiae dataset, achieving 91.4% ac-

curacy. After that Jae-Hong Eom and Byoung-Tak Zhang improved the feature ex-

tracting mechanism and could achieve 96.1% accuracy using the same dataset [19].

Despite the good results achieved, this method uses additional information that

is not provided only by looking at a proteins primary structure.

2.2.3 Naive Bayes

The naive Bayes classifiers are simple probabilistic classifiers. In fact they are

named naive because they assume that all the feature variables present in a given

pattern are independent.

In simple terms, a naive Bayes classifier assumes that the presence (or absence)

of a particular feature of a class is unrelated to the presence (or absence) of any other
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feature [20]. For example, a protein pair may be considered to be interacting if the

sum of proteins amino acids is higher than a given value and the polarity of each one

is contrary to each other. Even if these features depend on each other or upon the

existence of the other features, a naive Bayes classifier considers all of these properties

to independently contribute to the probability that this pair is interacting. However

that does not modulate the real world problems, since a lot of variables chosen as

description for the datasets are dependent.

Despite of the simplistic approach and assumptions, naive Bayes is one of the

most efficient and effective inductive learning algorithms for machine learning and

data mining [21].

In Protein Interaction context, naive Bayes has been used in some works in the

past. The University of Dundee has a database of predicted human protein-protein

interactions, in which the predictions have been made using a naive Bayesian classifier

to calculate a score of interaction [22,23].

In the bioinformatics field Chishe Wang et al. [8] also used a Bayesian classifier

in order to identify PPI sites (three-dimensional locations where each protein binds

with another), the results were round 60-65% accuracy.

2.2.4 SVM

Traditional machine learning algorithms such as Neural Networks use the empir-

ical risk as a minimization objective, this objective function leads to accurate results

in the well known patterns, but also reduces the classifier ability to generalize since

the problem’s structure is not taken in account.

SVMs were initially proposed by Vladimir N. Vapnik in 1964 and were posteriorly

work on by Corinna Cortes and Vladimir N. Vapnik in 1995 to allow the existence of

non-linear separable patterns [24].

A SVM is a representation of the patterns as points in space, mapped so that
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the patters of the separate categories are divided by a clear gap that is as wide as

possible (the support vectors). New patterns are then mapped into that same space

and predicted to belong to a category based on which side of the margin they fall on.

The SVMs differ from the other methods because the principal concept behind them

is to calculate the optimal structure in order to perform a structural risk minimization

maintaining a good generalization performance.

The Fig. 2.4 is a graphical representation of the concept behind SVMs. On the

left, the error generated by underfitting (the classifier was not able to learn the correct

data model) and, on the right side, the error generated by overfitting (the classifier is

well trained for the training data, but is not able to generalize outputs for new data).

The idea here is to reach the optimal structure which is somewhere in the middle of

the both these concepts.

Figure 2.4: Generalization ability in dependence of VC-dimension h (source:

Bernardete Ribeiro (2013), Pattern Recognition Techniques Slides (2013))
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When applied to the PPI prediction task, SVMs have shown the best results.

Citing Shinsuke D. and Asako K, Toshihisa T.: ”SVMs are very useful in that domain

information and several protein features including amino acid composition, sequential

amino acid usage, and localization, whether they are continuous or discrete values,

can be easily combined into a feature vector, and take them all into account” [25].

SVMs were used on some PPI prediction methods that are explained in more

detail in the upcoming sections. More emphasis was given to that classifiers since

they will be implemented for further testing and optimization.

2.2.5 Other Classifiers

There are other classification methods available, Linear Discriminant Analysis

(LDA) classifies data making a classification decision based on the value of a linear

combination of the characteristics provided. Quadratic Discriminant Analysis (QDA)

separates the samples by a quadratic surface. In bioinformatics is rare to find studies

that implement LDA or QDA as classifiers and for that reason they are not studied

in more detail.

Also decision trees are used, but the results are usually not great in comparison

with other methods. Most of these classifiers are sometimes too much simplistic and

do not achieve the desired performance in PPI classification tasks.

2.3 Feature Extraction

A feature is an individual measurable heuristic property. When dealing with a

classification problem it is important to use the most descriptive features in order to

build the best possible classifier. The more discriminating and independent a given

feature is, the best. This happens because it allows the classifier to discern between

classes more easily.
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One perspective of feature extraction was used by Rodriguez-Soca et al. [28, 29]

in 2009 when he used the publicly available tertiary structures of Trypanosome (par-

asites well known for causing sleeping sickness and Chagas disease) proteins to build

an artificial neural network using the linear activation function, achieved results of

90.9% accuracy. They also performed similar strategies on Plasmodium(responsible

for malaria) and scored 96.8% accuracy on the validation data.

Patrick Aloy and Robert B. Russell [30] also built a classifier to predict protein

interactions based on their tertiary structure. Given a pair of proteins, they search

for homologue’s in a database of interacting domains of known three dimensional

structures and inference if there is interaction from that information.

However the tertiary structure of proteins is only available for a small amount of

proteins, since complex and consequently slow algorithms are used to generate such

models, so theses methods are not the best ones, considering that a classifier able to

classify a lot of different proteins from interspecies dataset is needed.

In alternative to these high complex structures, physico-chemical properties of

amino acids can also be used to study protein sequence profiles, folding and func-

tion [31].

In 2012 Xiao et al. [32] published protr, a state of the art library for protein

sequence extraction methods for the R language. It focus in the implementation of

methods of extraction of protein sequence information for other researches usage.

These features are the Amino Acid composition (Amino Acid, Dipeptide and Tripep-

tide), Auto-correlation, Composition, Transition, Distribution and Pseudo Amino

Acid composition because they are usually implemented in bioinformatics tools for

protein studies and PPI prediction.

In order to correctly describe each protein for the classifier to be able to learn if

PPI are going to happen or not, features are going to be extracted from the FASTA

format correspondent to each protein.
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2.3.1 The FASTA Format

Despite some methods making usage of three-dimensional structures or other

features that require high amounts of computation, in this study mainly the primary

sequence is going to be used, as ways to define and describe proteins for the sake of

using less amount of computation.

Being our final objective the prediction of PPIs between different organisms we

have to stick to these representations, since more advanced features are not usually

studied for inter-species datasets, and consequently there is not enough consistent

information about diverse organism’s proteins.

The genetic code is the set of rules by which information encoded within genetic

material (DNA or mRNA sequences) is translated into proteins by living cells. Groups

of three nucleotides are grouped in order to discern what amino acids to use. This

identifiers of amino acids are usually known as codon.

In order to represent the sequence that composes a protein the most standard

representation is the FASTA format. FASTA format is a text-based format that uses

single-letter codes to refer to each individual amino acid derived from the groups of

three nucleotides acids. The format also allows for sequence names, comments, species

name and additional information to precede the sequences. The format originates

from the FASTA software package [33], but has now become a standard in the field

of bioinformatics.

Each amino acid as a corresponding single-letter code in FASTA code as shown

in the table 2.1:
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Table 2.1: FASTA Supported Codes
Amino acid Code Meaning

* translation stop
- gap of indeterminate length
A Alanine
B Aspartic acid or Asparagine
C Cysteine
D Aspartic acid
E Glutamic acid
F Phenylalanine
G Glycine
H Histidine
I Isoleucine
J Leucine or Isoleucine
K Lysine
L Leucine
M Methionine
N Asparagine
O Pyrrolysine
P Proline
Q Glutamine
R Arginine
S Serine
T Threonine
U Selenocysteine
V Valine
W Tryptophan
X any
Y Tyrosine
Z Glutamic acid or Glutamine

2.3.2 Amino Acids and N-Grams

Amino acid composition is a simple feature extraction technique. It consists in

counting the occurrences of amino acids on the protein chain. This method gives us

features looking at the protein as a whole, sometimes leading to insufficient informa-

tion to determine if two proteins interact or not.

N-Grams consist in sub-sequences of the amino acids that compose the protein

with predefined length N. Such sequences are built using a sliding window along all

the proteins chain.
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N-Grams is a technique that can be used to improve the performance of the

amino acids counting. In fact the method described above is a particular case of

N-Grams with N =1. With N = 2 (Dipeptide composition) and N = 3 (Tripeptide

composition) there is more information available for the algorithm to deal with and

usually better results.

Despite being simplistic N-Grams is commonly used as text and speech feature

extraction techniques, being one of the most used strategies for these tasks.

When applied to the proteins, the results of these methods are not the best in

terms of performance since they lose locational information, neither consider long

range bonds between amino acids which are important to predict interactions. Some-

times the noise added by number of features extracted causes the performance to

deteriorate while increasing the length of the N-Gram.

2.3.3 Domain Composition

With the recent advances in the field the known methods have become faster

and a large amount interacting proteins is now known. This allows the researches to

focus more on the inner parts of each protein, rather than looking at proteins as a

whole. By focusing more on proteins, domains where found. Domains are conserved

parts of proteins amino acid sequences, structures that can evolve, function and exist

independently of the rest of the amino acid chain.

Protein domains were first proposed in 1973 when scientists studied the structure

and function of immunoglobins [34]. Up to the date, these domains are distinct func-

tional and/or structural units in a protein, they have a compact three-dimensional

structure and some of them can be independently stable and/or folded. Most of the

times these domains are responsible for particular functions or interactions, contribut-

ing to the overall role of proteins. Proteins with similar domains can have the most

different functions.
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These domains work like sub-divisions of the protein structure. Domains are

important since a high quantity of protein interactions occurs between domains that

compose each of the involved proteins [35, 36]. When building a machine learning

classifier that predicts PPIs using domains there is the necessity to divide proteins in

their domains and furthermore extract information for classification from each one of

the involved domains.

The Fig 2.5 represents two FASTA code sequences that could represent two pro-

teins and a possible interaction between domain A and domain B. The idea behind

this approach is that proteins are composed by structures that can define interac-

tions just by themselves. Similarly to PPI, in domain-domain interactions there is

no known single mathematical rule or formula that dictates if interactions exist or not.

Figure 2.5: Domain Interactions Diagram

Shawn et al. [37] implemented a similar approach, employing a relatively sim-

ple model that learns dynamically from a large collection of data. They projected

an ”attraction-repulsion” model in which the interaction between a pair of proteins

is represented as the sum of attractive and repulsive forces associated with small,

domain or motif-sized features along the length of each protein. They used Hidden

Markov Models to extract protein domains, and to extract the E-values of each do-

main [38] choosing the best match. Then they represented amino acid sub-sequences

reduced from 20 to 6 categories of biochemical similarity as studied by Taylor and
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Jones, 1993 [39]. After various testing environments the best performance achieved

was 0.818 Area Under Curve (AUC) with a standard variation of 0.011, not making

any reference to accuracy.

Pagel et al. [40] defend that the conserved domains carry many of the functional

features found in the proteins of an organism. In their opinion the domains define

not only the protein functions and but also molecular adapters. Such adapters are

responsible for interactions between proteins and/or proteins and other molecules.

They also defend that domain interaction is defined not by physical contact, but by

common functioning.

Regarding the classification problem of PPIs, the use of domains needs to be

considered since they are compact three-dimensional structures and often can be in-

dependently stable and folded and seen as parts of proteins.

2.3.4 Physico-chemical Properties

When the topic is physico-chemical properties it is possible to consider the prop-

erties of a protein as a whole or the properties of each one of its amino acids in-

dividually and build vectors with such properties. These vectors are like signals of

the properties along the protein chain. The first method does not provide enough

information to make correct assumptions about PPIs of the proteins studied since

it falls back on a small amount of physico-chemical properties to describe each pro-

tein, not providing detailed information about its composition or structure. On other

hand, the second method provides information enough to predict some PPIs since the

amount of information that can be extracted from the chain of amino acids is greater.

Different proteins have different lengths. So, in order to classify pairs of proteins

a method of extracting features from these signals is going to be used for further

acquiring the same amount of indicators for both proteins of the interacting pair. In

26



order to do this, metrics like sum, average or weighted average can be used, since

they equalize the number of features of each protein.

The following approaches (Shen and Guo) are state of the art methods that use

physico-chemical properties information in order to predict PPIs. In the present work

are going to implement and explain them in more detail.

On one hand they are the state of the art methods to predict PPIs using physico-

chemical properties (providing more information than the classic N-Grams approach)

and on other hand their functioning is based upon the proteins primary sequence (a

requirement for our final classifier). These methods have shown good results while

tested with the developers independent datasets as described below.

2.3.4.1 Shen Classification Strategy

The usage of physico-chemical properties was introduced by Shen et al. [41] in

2007 when he introduced the idea that isolated information of each amino acid is not

relevant and consequently there is the necessity of relying on methods that somehow

evaluate how the amino acids interact with each other. To his study he used as

features the physico-chemical properties of amino acids such as the hidrophobicity

(the capacity of repelling water) or hidrophilicity (the capacity of having affinity for

water) building a substitution table with 7 categories and afterwards combining these

categories with the conjoin triad method, a method which considers three continuous

amino acids as a unit obtaining promising results. In his study Shen scored 83.90%

accuracy on a human restricted dataset.

The results achieved by the process were good, however focusing on the two

more proximate amino acid, makes the classifier susceptible to close range interactions

between amino acids leaving out the long range interactions that are also important

to predict PPIs in the complex biological world.
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The proteins primary sequence is substituted by the physico-chemical categories

using the substitution table (Attribution letters to colors in Fig 2.6). After that the

groups of 3 categories in each sequence are counted and the amount of occurrences

each triplet is normalized using the standard normalization building a proteins feature

space. In order to represent pairs of proteins the feature spaces of two proteins are

concatenated into a vector of features. Finally a SVM classifier is used in order to

classify the whole dataset.

The Fig. 2.6 presents a diagram that elucidates how features are extracted from

the proteins primary sequence.

Figure 2.6: Constructing the feature space of a proteins sequence. Extracted from [41]

Source PNAS: http://www.pnas.org/content/104/11/4337/suppl/DC1, available in

July 2014

2.3.4.2 Guo Classifier

Similarly to Shen, the Guo classifier is going to be explained in detail since they

are going to be implemented and we are going to use their results as a baseline to be
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transcended by our final methods.

Guo implements a different approach that considers the amino acid properties of

the protein chain as a signal. The intention was to overcome Shen’s limitation that

consists in leaving out the long range interactions.

In the year of 2008, using support vector machines combined with auto covari-

ance to predict protein-protein interactions from protein sequences [12] in an indepen-

dent dataset of 11,474 interactions from the yeast Saccharomyces cerevisiae (used to

wine-making, baking, and brewing since ancient times) the authors achieved 87.36%

accuracy, when applied to predicting the PPIs. As physico-chemical properties of the

amino acids they used hydrophobicity, hydrophilicity, volume of side chains, polarity,

polarizability, solvent accessible surface area, net charge and index of side chains. The

way that the researchers implemented the auto-covariance as features is extremely

meaningful since that for a given window n, they store the auto-covariances of the

amino acid physico-chemical properties vectors from 1 to n. These features allow the

classifier to learn the influence of short range amino acid relationships, but also the

long range interactions, overcoming the strategy previously studied by Shenet al.

The method works as follows: when in presence of a protein sequence 7 signals

are built substituting each amino acid by the information present in the table S1

present in the Annexes. Then for each one of the 7 signals the auto-covariance of the

signal is calculated in a window from 0 to 30. 0 giving us a measure of the amino

acid influence on himself, 30 giving us the influence of each amino acid 30 positions

ahead.

Each one of the 30 values are then concatenated with the other for each physico-

chemical property. A protein is described by a concatenation of all the values for

all the physico-chemical properties. Finally, in order to represent a pair of proteins,

information from two proteins is concatenated into a single feature vector for training

and/or classification purposes.
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Auto-covariance (AC) is the covariance of the variable against a time-shifted ver-

sion of itself. AC is given by:

AClag,j = 1
n−lag

∑n−lag
i=1

(
xi,j − 1

n

∑n
i=1 xi,j

)
.
(
x(i+lag),j − 1

n

∑n
i=1 xi,j

)
(3)

This method is the one described in the state of the art that predicts PPIs from

only the protein’s primary structure with most accuracy.
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Chapter 3

Predicting Protein-Protein

Interactions

3.1 Task Overview

The present work has as objective the development of a computational method

able to predict PPIs between proteins of different species. Our method will be avail-

able to be used by the community.

We will implement some existing methods, try to improver their performance,

verify existing limitations and finally explore new methods that can perform better

than the existing in terms of classification accuracy.

During the development of the work multiple challenges come up. The size of

the datasets, the computational complexity of the feature extraction methods or the

efficiency of the features used are some examples of these challenges.

When building the classifier of PPIs the main problem is that we do not know

what path to follow in order to achieve the desired results, since there is a multitude

of factors that influence proteins interactions.
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3.2 Summary

A Gold Dataset was built in order to allow comparison between all the methods

available in the state of the art and the methods developed. This dataset is described

in more detail in the following chapters.

In order to build our final classifier several approaches were followed.

We didn’t exactly know how the existing classifiers were going to perform and

neither had the guarantee to be able to achieve a classifier that could outperform the

existing methods.

So we proceeded as following:

1 - Implementation of the best state of the art methods that could be applied to

the existing data;

2 - Trying to improve the state of the art methods implemented;

3 - Combining classifiers in order to optimize results;

4 - Verifying limitations in the implemented methods;

5 - Developing our final classifiers.

In order to implement machine learning algorithms we used the scikit-learn for

Machine Learning in Python which provides simple and efficient tools for data mining

and data analysis.

During our attempts to optimize and combine the state of the art methods we

verified that looking at proteins as a whole could be the most beneficial way to ap-

proach the problem. So, our final computational methods are classifiers that use new

feature extraction techniques that represent proteins as a whole, allowing the classi-

fiers to learn interactions base on proteins structure. The final tools are two classifiers,

one that uses the discrete cosine transform in order to represent proteins chain and

another that builds the three-dimensional model of proteins and extracts information

from there. However also the combination of multiple classification methods revealed

itself advantageous in comparison with existing methods.
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3.3 PPRINT Classifier

3.3.1 Generating Datasets

The datasets used are explained in detail in the results section. However, in this

section a description of the methods used in order to generate the datasets is made.

The datasets used for training and testing the state of the art methods correspond

to independent datasets not publicly available, since they are usually not provided.

In addition to this, most of the researches about protein interactions are limited to in-

traspecies interactions and classifiers are not trained with examples from interspecies

datasets. Because of this, we need to use sub-sets of existing large datasets, analyse

the behaviour of the existing methods and then develop our own methods.

In order to build the datasets the required biological data was collected from

UniProt and BioGRID.

UniProt is the central hub for the collection of functional information regarding

proteins. Each entry contains the amino acid sequence, protein name, taxonomic

data as well as supplementary annotations such as ontologies, classifications, cross-

references, and clear indications of the quality of annotation in the form of evidence

attribution of experimental and computational data. BioGRID is an online inter-

action repository with data compiled through comprehensive curation efforts. The

current version compiles 42,004 publications for 720,840 raw protein and genetic inter-

actions from major model organism species. All interaction data are freely provided

through search indexes and available via download in a wide variety of standardized

formats. Contrasting with other interaction databases, BioGRID provides protein

interactions for multiple organisms.

BioGrid is our source of protein interactions and Uniprot is our source of proteins

amino acid sequences for the proteins used.

Due to the large amount of protein combinations possible, its only possible to
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represent a limited amount of the whole representation space. So in order to build

datasets for training and testing of the computational methods, we used randomly

selected subsets of the known protein interactions available on the described tools

and joined them in different datasets with the same amount of positive and negative

interactions. However for the classifiers to be able to predict if pairs of proteins do not

interact we have to use datasets with negative examples as described in the following

subsection.

3.3.2 Generating Negative Interactions

A recurrent problem in this kind of work is the absence of negative interactions

since only the positive interactions are published. In other words, when a pair of

interacting proteins is found, researchers publish the discovery on multiple online

platforms available for that matter, but examples of not interacting pairs are hardly

find.

Negatome [42] is the exception to the rule. It is a collection of protein and domain

pairs which are unlikely engaged in direct physical interactions. The database cur-

rently contains experimentally supported non-interacting protein pairs derived from

two distinct sources: by manual curation of literature and by analysing protein com-

plexes. However the protein pool covered by this dataset is small.

In order to overcome this problem there are diverse methods of generating not

interacting pairs described in the literature [43].

In the present work we are going to use Negatome and randomly selected pairs

of proteins from the pool of proteins and establish them as not interacting proteins.

For instance in the human body the possible combinations of proteins are of
(
140,000

2

)
' 9 × 109 pairs, although only 237,498 interactions are actually known (Uniprot

3.2.115 - August 2014). So, the probability of randomly choosing a pair of proteins

and it interacts is of 0.000026 of the whole set. So because of the high number of

34



proteins in the pool, the probability of a pair of randomly selected proteins interact

is very low.

Using both Negatome and randomly selected pairs, we can build multiple datasets

with different sizes and make sure our method works independently of the dataset

used and is not under overfitting conditions.

3.3.3 Implementing State of the Art Methods

We started this work implementing existing methods and applying them to our

datasets to observe how they would perform.

The simplest method available for this task is to use N-Grams of the chain as

features (as described in the state of the art chapter), so we started by implementing

some N-Grams approaches (with length = 1,2,3,4) to serve as baseline of classification

performance. When we use N-Grams with length 3,4 the amount of features is too big,

for the classification task, so we chose the 1000 features with higher term frequency

in the whole dataset in order to represent proteins.

The state of the art methods implemented were the one proposed by Guo et

al, called ”Using support vector machine combined with auto covariance to predict

protein-protein interactions from protein sequences” and the one proposed by Shen

et al” Predicting protein-protein interactions based only on sequences information”.

Despite the existence of other methods available to predict PPIs, these are the

ones that use reliable datasets for validation and the ones that predict interactions

based only on the proteins primary sequence which is a requirement for our project.

3.3.3.1 Our First Methods

After implementing the Guo’s method and watching its results. We focused

our attention in searching and developing new ways of extracting features from the

physico-chemical properties of amino acids, so our first method emerged. For each
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protein we subdivided the amino-acid chain in various equal parts and for each one

of the parts we used the physico-chemical properties of amino acids (present in the

table in the annexes). For each one of these parts the features are the average of

each physico-chemical property hydrophobicity, hydrophilicity, volume of side chains,

polarity, polarizability, solvent accessible surface area and net charge index of side

chains. Features are then concatenated.

In parallel with this approach another one was tested. For each amino acid

belonging to the protein, we extracted the index on which it occurred, and then nor-

malized it in relation to the length of the protein in the interval [0,1]. 0 representing

the first position of the protein and 1 the last.

For the strategies presented above pairs of proteins are represented by the con-

catenation of features of two proteins and the classification task a SVM classifier was

used.

3.3.3.2 Improving The Shen Classifier

The conjoint triad method proposed by Shen, considers psychico-chemical prop-

erties of one amino acid and from its neighbours regarding three continuous amino

acids as a unit. It uses 7 amino acid categories making a total of (7*7*7) = 349

features.

We tried to improve this method reducing the number of considered amino acids

to a window of 2 amino acids and adding a supplementary counting of the occurrences

of 2 amino acids with intervals of 1. Later we also appended to these features the

counting of the occurrences of 2 amino acids with intervals of 2.

The Fig 3.1 demonstrates how to proceed. On top we have the standard method

proposed by Shen et al on mid our first idea to improve the method considering amino

acid categories that are 1 unit distant from each other and on bottom we append the

count of categories that are 2 units distant. Despite the image only show the first
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occurrence for terms of simplicity, these methods consider all the sub-windows from

the start to finish of proteins chain. We also tried to use the standard Shen method

in together with our idea, however the high number of features causes too much noise

and the results deteriorate.

Figure 3.1: Improving Shen

A different approach was followed when we tried to improve Shen perfor-

mance using conjoint methods larger than 3 units and manually limiting the number

of features, however we didn’t attain the desired results, since this increment adds to

much noise to the features.

Afterwards, we tested complementing Shen classifier with our positional based

method, since it would give the classifier more information about the position of

amino acids on the protein chain. This optimization was made using both the feature

extraction methods and then concatenating them in a vector representing a protein.

Also an interaction was represented by the concatenation of two proteins.

37



3.3.4 Combining Classifiers

In order to combine different classifiers we should have simple methods that mea-

sure different features from individuals. We had a multitude of methods available,

however any of them provided the desired results, so we chose the simplest of them

and the ones that did not need so much computational power to build our classifica-

tion network. The idea to be tested was that combining multiple different classifiers

could boost the overall performance of the classification task.

Using Shen classifier, our positional approach and our physicho-chemical ap-

proach we combined their results using a majority voting system.

In terms of design this classification network is very simple. Given a pair of pro-

teins it calculates the features for each one of these methods as explained above and

calculates the correspondent output. Each one of these classifiers outputs a value in

the interval [0,1] (0 for a possible not interacting pair and 1 for possible interacting

pair). Afterwards, the values of output of the three classifiers are combined using

different methods:

Method 1 - Choosing the average class: with this method we calculated the av-

erage values of probability of a pair belonging to the class 0 or 1 and chose the class

with higher average value;

Method 2 - Choosing the most certain classifier: with this method we looked at

the most discerning classifier and choose its result;

Method 3 - Using a SVM Classifier: this was the most complex method used.

We got the output values from the three classifiers and used them as input for a

second layer SVM-RBF classifier. Like any SVM classifier the best parameters have

to be chosen and the classifier needs to be trained, so we needed to be extra careful

in order to choose the correct data to train this classification network. We made

cross-validation with 5 folds, and then used 80% of the test data to choose the SVM

parameters and to train this classifier, and the last 20% to evaluate its performance.
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The parameters used for the RBF Kernel were C= 1,000,000 and gamma = 0.0001

since they were the ones that achieved better performance in the tested window.

On the Fig. 3.2 a simple diagram helps to elucidate how the classification net-

work works.

Figure 3.2: Combining Classifiers

3.3.5 Limitations Verified

During the implementation of the methods explained above we verified multiple

limitations.

The N-Grams method is too simplistic. The features extracted with this method

consider the ratio of the protein that is composed by a given N-Gram. It does not

provide any positional information of the location of these elements and the fact of

using 20 amino acids can limit the algorithm since some of the amino acids can phys-

ically be replaced by others with similar characteristics during its assembling time,

phenomena named synonymous mutation.

Shen’s method tries to improve these limitations by reducing the dimensions

of the vector space and suiting synonymous mutation using a amino acid physico-

chemical substitution table, however there is no positional neither structural infor-

mation being used.
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Guo’s method tries to overcome these problems implementing a feature extrac-

tion technique that calculates the auto-covariance between the elements of the chain.

Such metric can be seen as a structural feature, since it measures the way of how the

physico-chemical properties change in a given window. However it does not present

any metric of amino acid composition.

The other methods implemented are somehow simplistic and do not provide

enough information in order to correctly predict PPIs, although we verified that

having too much features causes the classifier to lose performance due to the noise

generated by the quantity of features that are not relevant to the interaction. As a

result of our first ideas to build classifiers, we noticed that the location of amino acids

and the structure of the protein is important.

Given these verifications we proceeded with the idea of using a new method that

could overcome such limitations.

3.3.6 Discrete Cosine Transform

3.3.6.1 Why This Approach?

At the primary level proteins are linear chains of amino acids. In this approach,

each protein sequence is represented by a signal that modulates the variations of

amino acids along the protein sequence.

The Discrete Cosine Transform (DCT) expresses a finite sequence of data points

in terms of a sum of cosine functions oscillating at different frequencies. The DCT

is well known for its practical applications in codecs such as MP3 or JPEG, allowing

compression by discarding the higher frequencies.

In our opinion a method of representing proteins as a whole can be beneficial

to predict PPIs that occur based the structure instead of other metrics shown in the

sate of the art like amino acid counting that learn some strict parameters that can
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be limited to approach all the details of the task.

3.3.6.2 Using DCT as a Feature Extraction Tool

In his previous work Shen et al. proposed that to reduce the dimensions of

the vector space and suit synonymous mutation the 20 amino amino acids could be

transformed in 7 different categories calculated accordingly to their physico-chemical

properties. In the table 3.1 there is the substitution table initially used by Shen et al.

based on the dipole scale and in the volume scale. This table was used in the present

work considering that similar amino acids in the protein sequence can be susceptible

to mutation.

Table 3.1: Amino acid substitution table
Category Amino Acids

1 Ala, Gly, Val
2 Ile, Leu, Phe, Pro
3 Tyr, Met, Thr, Ser
4 His, Asn, Gln, Tpr
5 Arg, Lys
6 Asp, Glu
7 Cys

The procedure used to extract features from a protein consists of getting its

amino acid sequence convert it to a vector of physico-chemical categories and then

apply the DCT to the resulting vector. The signal is then reconstructed dependently

of the number of features and concatenated with another signal in order to represent

a protein interaction.

The DCT of a signal is given by following formula:

y(k) = w(k).
∑N

n=1 x(n).cos( π
2N

(2n− 1)(k − 1)), k = 1, 2, ..., N,
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w(k) =


1√
N

k = 1√
2
N

2 ≤ k ≤ N

(4)

And its inverse, for terms of signal reconstruction, is given by:

x(n) =
∑N

k=1w(k).y(k).cos(π(2n−1)(k−1)
2N

), k = 1, 2, ..., N,

w(k) =


1√
N

k = 1√
2
N

2 ≤ k ≤ N

(5)

An arbitrary number of frequencies (F) can be used to represent a protein. If

the protein is bigger than F, the first F frequencies are selected. If smaller zeros are

padded until the number of desired features is archived.

After having the frequencies that describe the signal the inverse formula is used

to reconstruct the original signal and to apply a standard normalization. This new

signal is less noisy, since the high frequencies are ignored. It also has the same length

for all the proteins and can be used to solve the classification problem. By doing this,

it is possible to have representations of the proteins as a whole.

In the Fig. 3.3 we present the protein A0AQH0 sequence after replacing its

amino acids with the physico-chemical categories as explained above.
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Figure 3.3: A1EKW0 Protein sequence after substitution with categories

The Fig. 3.4 presents the same protein after reconstruction using the DCT

method explained above with 600 features and performing a standard normalization.

Figure 3.4: A1EKW0 Reconstructed using DCT

3.3.7 Three Dimensional Structure

Another possible approach to our work is to inference proteins three dimensional

structure from the amino acid sequence. Using PyMOL, a open-source software that

allows molecular visualization with the support of a script that predicts molecular

structures from the amino acids chains called build seq.py [44] we can build a pipeline

able to create the proteins three-dimensional structures. The standard file format

used to save these structures is the he Protein Data Bank (PDB).
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The pipeline works as following:

FASTA file: Contains each proteins amino acid sequence.

PyMOL: Provides the libraries necessary to use the build seq.py script and allows

visualization of the three dimensional strucutres. It also allows to save such structures

in PDB files.

build seq.py : Script that is responsible for building a three-dimensional structure

for a specified chain.

The Fig. 3.8 represents the protein A1EKW0 three-dimensional structure in

PyMOL when predicted using this pipeline.

Figure 3.5: 3-D structure of A1EKW0 Protein built using build seq.py and represented

in PyMOL

This method is very complex from computational point of view. Given the

proteins chain, we have to calculate the proteins three dimensional structure and

posteriorly calculate the centers of clusters necessary for the classification algorithm.

While other algorithms execute in terms of hours this takes multiple days to run in

our gold dataset.

Having a prediction of the positions of the atoms for all the proteins is then
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necessary to find a way to represent them in order to build a computational method.

In order to do that we used the K-Means Clustering technique. We applied this

clustering technique to obtain the center of the clusters and the applied standard

normalization to their coordinates in the three different axis (X,Y,Z). Finally this

information was used as input to machine learning methods.

The Fig. 3.6 shows the original positions of atoms extracted with Pymol and

the Fig. 3.7 shows the centers of 150 clusters calculated with K-Means algorithm and

ready for the classification task.

Figure 3.6: 3-D structure of A1EKW0

Figure 3.7: 150 Centroids of 3-D structure of A1EKW0
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3.3.8 Discrete Cosine Transform - An Improvement

The usage of the Discrete Cosine Transform as in the method presented above

looks at the dataset of proteins to train and classify as having all the same importance

and do not work with additional biological information. In other words it uses only

proteins sequence, despite the existence of other informations that could improve its

behaviour.

In order to increase the performance we implemented one last optimization to

this method. The Uniprot database has a Gene Ontology (GO) section that provides

a set of controlled vocabulary with terms split into 3 categories: Biological Process,

Cellular Component and Molecular Function. Our idea is that choosing the most

predominant vocabulary terms existent in the Uniprot GO for the proteins in the

dataset and posteriorly creating independent classifiers for the combinations of these

GO terms can lead to more accurate results. Each classifier will be more specific,

since it will only be responsible for the proteins pairs with a given GO identification.

Uniref [45] provides clustered sets of sequences from the UniProt Knowledgebase.

It combines identical sequences and subfragments from any source organism into a

single UniRef entry.

In order to reduce the number of protein interactions that have no GOs available

in Uniprot, we used Uniref. If the protein that we want to classify as no annotation

but another protein in the same Uniref cluster as GO annotation we choose the GO

annotation from the other protein in order to classify our protein.

The method works as follows:

1 - Given a Protein-Protein interaction we check Uniprot for GO vocabulary

terms of the proteins.

2 - If there is no GO information for the searched proteins we search other proteins

within the same Uniref cluster for GO information and use that GO information.

3 - If any protein within the same cluster as GO information we use our General
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Classifier.

4 - If the pair of proteins as one or more GO they are sent the respective GO-GO

classifiers and their probability of interaction is calculated. Given the fact that only

the top GO-GO classifiers for a given dataset are used, some GO-GO classifiers are

non existent and probability of interaction is automatically defined as 0. This is not

a problem since these protein pairs represent only a small portion of the dataset.

In the Fig. 3.5 a diagram shows how this classification network works. The Black

color marks a GO-GO classifier as being available for training and classification. The

red color is attributed to non existent GO-GO classifier. The existence or not of

a GO-GO classifier is determined by the amount of proteins interactions that are

attributed to that GO-GO classifier during training time. The user chooses only to

train the top 5 GO-GO classifiers for a given dataset :

Figure 3.8: DCT Method using GO informations
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3.3.9 Validating The Results

When dealing with machine learning methods, there is a condition called overfit-

ting that occurs when the classification methods describe random noise instead of the

appropriate relationships that should define the underlying relationship. It usually

happens when the training data is not enough to extrapolate the correct assumptions

or the number of features is to big relatively to the number of observations used for

training.

In order to minimize overfitting we will use a step of validation called k-fold

cross-validation. This method allows us to estimate how the results of the training

are generalized when dealing with new data not used during training time.

The k-fold cross-validation method consists in dividing data into k subsets. In

k steps, one of the k subsets is used as the test set and the other k-1 subsets are

put together to form a training set. Then the average performance calculated across

all k tests is computed. The order of the dataset is not much relevant since every

observation gets to be in a test set exactly once, and gets to be in a training set k-1

times. When using a high value for k the variance of the result estimation is reduced.

However, as a disadvantage, the training-classification process has to run k times,

which means it takes k times more execution time than a simple classic training-test

evaluation, making it computationally expensive to use high values of k with large

datasets and large numbers of features.

Usually, researchers often use k ranges from 3 to 20, being k = 10, the most

frequently value used. However, in the present work we will use large amounts of

features and large datasets (as explained in the following section)and we have limited

time to develop this work, so we will have to stick with k = 5 folds for the validation

process.

An additional step of proficient evaluation will be conduced by experts from the

Faculty of Dental Medicine from the Catholic University of Portugal. They will use
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our classifier and apply it to a set of well known proteins, predict interactions and

analyse the performance from the biological point of view. The final goal is to test

if despite the performance of the classifier on the used datasets the predicted PPIs

make sense considering the biologically known interactomes.
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Chapter 4

Results and Discussion

4.1 Dataset

Due to the vast amount of interactions available on the online platforms, only

small sub-sets can be used to train classifiers, due to the limitation of additional com-

putational power.

As described in the section 3.3.1 BioGrid is our source of protein interactions

and Uniprot is our source of proteins amino acid sequences for the proteins used.

Negatome was used in some datasets in order to build the negative part of the dataset.

We used randomly selected subsets of the known protein interactions available on the

described tools and joined them in different datasets with the same amount of posi-

tive and negative interactions.

Three datasets were created in our work. However only gold dataset (dataset 1)

was applied to all the methods. Datasets 2 and 3 were only applied to the Discrete

Cosine Transform method since it is the main method built during our work and we

wanted to test it in mode detail.

Dataset 1 (Gold dataset): This dataset consists of 6,484 interactions of a pool of

3,351 proteins extracted from the Negatome collection and an equal number of pos-
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itive interactions of the same proteins from BioGrid. The chosen proteins proteins

were the ones that were also available on UniProt in order to extract the amino acid

sequences. The positive half of the dataset was built searching BioGrid for known

interactions of the same 3,351 proteins used in the negative pool.

Dataset 2: The dataset number two was built with 10,000 protein interactions

randomly selected from the BioGRID dataset. The negative interactions were a com-

bination of the 6,484 known negative interactions from Negatome used in Dataset 1

and 3,516 random combinations of the protein pool used in the positive interactions.

The dataset was also balanced having a total of 20,000 protein interactions, 10,000

positives and 10,000 negatives. This dataset allowed to test the classifier when ap-

plied to more diverse data. In fact the protein pool of this dataset was higher than

the previous, consisting of 9,686 proteins.

Dataset 3: This dataset contains 20,000 protein interactions from 14,470 pro-

teins randomly selected from the BioGRID dataset. The negative interactions were

obtained by randomly construct pairs of proteins from the positive. This strategy to

obtain negative interactions is acceptable, since the probability of randomly selecting

a positive interaction is very low. This dataset was used to test if our method could

keep achieving good results independently of the usage of the Negatome.

The Fig. 4.1 represents the datasets used on our work.

Figure 4.1: Datasets used in our work
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4.2 Baseline

For the present results an SVM classifier with RBF kernel was used. Using our

gold dataset the N-Grams methods achieved a good performance. With N = 3 and

selecting the 1000 features with the highest term frequency, the accuracy almost hits

the more complex methods described in the state of the art. We tried to increase N

to 4, but the number of features becomes too big and too much noise appears in the

selected features. The limitation of features based in term frequency of the top 1000

features was good enough to have a working method with window length 3, but was

not was not satisfactory when applied to window length 4

The Table 4.1 presents the accuracy of the method when applied to our Gold

Dataset. As we can see the performance is increased with the augmentation of the

length of the windows used, however stabilizing around .80 accuracy.

Table 4.1: N-Grams Accuracy when applied to Gold Dataset

N-Gram Method Accuracy Std. Deviation

N = 1 0.725 0.008

N = 2 0.780 0.001

N = 3 0.800 0.001

N = 4 0.770 0.001

The truth is that we didn’t expect results so accurate from a method so sim-

ple. However this algorithm is known for its results on a multitude of fields from

speech recognition and computational linguistics to DNA sequencing. The perfor-

mance of this algorithm increases with the increment of window length N, however

it is difficult to optimize it after achieving its limitations. In our case it was impos-

sible to experiment with bigger windows or with a number of features higher than

1000 since the execution time would increase to multiple days. On other hand the

accuracy results seem to achieve its maximum around 0.80, so it would be too much
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computation time for probably a really small increment of performance.

4.3 State of the Art Methods

The state of the art methods are more complex than the N-Grams, however more

complexity was not equal to better performance. With results slightly higher than

simpler methods, Shen and Guo methods showed a performance line to be transcended

in this work.

The table 4.2 presents the state of art results when applied to our Gold Dataset.

Table 4.2: State of the art accuracy when applied to Gold Dataset

Method Accuracy Std. Deviation

Shen et al (2007) 0.803 0.011

Guo et al (2008) 0.804 0.001

We expected results slightly higher from the methods enunciated in the state

of the art, as it happens in the referenced papers, but that didn’t happen.

Despite presenting higher performances in their presentation papers, both meth-

ods fall to around 0.80 accuracy when applied to our gold dataset. Such fall in

performance can be caused by a multitude of factors: Our dataset is composed by

interactions of proteins from multiple organisms, increasing variability in data; Our

dataset uses proteins from any part of cells, which can difficult the classification pro-

cess and we did not implement any filter to the dataset that could boost the overall

accuracy of methods.
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4.4 Our First Methods

When implementing state of the art methods we noticed that both physico-

chemical properties and the positioning of the amino acids had big importance on the

classification task, so we developed feature extraction methods that consider these

measures as explained in the subsection 3.3.3.1.

The table 4.3 and the Fig 4.2 present the accuracy and standard deviation of our

simple physico-chemical based method on our Gold Dataset.

Table 4.3: Our Physico-Chemical approach applied to Gold Dataset
Number of Divisions Accuracy Std. Deviation

2 0.635 0.015
3 0.661 0.017
4 0.708 0.018
5 0.718 0.006
6 0.717 0.001
7 0.722 0.007
8 0.727 0.009
9 0.729 0.014
10 0.735 0.009
11 0.730 0.018
12 0.729 0.013
13 0.737 0.031
14 0.686 0.009
15 0.634 0.017
16 0.611 0.018
17 0.598 0.007
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Figure 4.2: Dividing protein chains in parts

As we can see, the results were not great. The accuracy is dependent on

the number of divisions to a given point, but then it drops and the method becomes

unstable and a lot of wrong predictions are made.

It was just an idea that need to be explored, however this method cannot com-

pete with other previously implemented methods since its performance is too low,

even with the most suitable number of divisions it never passes 0.737 accuracy.

In parallel with the physico-chemical based method we implemented another

simple method consisting on the location of the N-Grams on the protein chain, for

terms of simplicity we call it the positional method, for more details consult subsec-

tion 3.3.3.1

On the table 4.4 the results of our positional method on our Gold Dataset are

shown.
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Table 4.4: Positional method accuracy on our Gold Dataset

N-Gram Positions Accuracy Std. Deviation

N = 1 0.758 0.020

N = 2 0.788 0.016

N = 3 0.599 0.012

Despite the simplicity of the method and the reduced number of features the

results were better than the ones achieved with the physico-chemical method indi-

cating that the position of amino acids in the protein chain is a good indicator of

interaction between proteins. In fact using only the positional method we achieved a

reasonable performance of 0.788 accuracy, that is proximate to the existing state of

the art methods. We tried to increase the N-Gram window to 3, but the number of

features becomes too big and the performance starts to decrease, this happens mainly

due to the increase of noisy features that disturb the learning process.

4.5 Optimizing Shen

After having the above implementations working we tried to upgrade Shen’s

method. We chose this method mainly due to its simplicity and good results obtained

and we tried a multitude of perspectives in order to upgrade it.

In the table 4.5 the results obtained in diverse experiments on our Gold Dataset

are presented:
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Table 4.5: Trying to Optimize Shen - Accuracy on Gold Dataset

Method Accuracy Std. Deviation

Shen window 2 0.787 0.007

Shen window 3 0.803 0.011

Shen window 2 + positional features N = 2 0.803 0.180

Shen window 3 + positional features N = 2 0.783 0.015

Shen window 4 0.763 0.020

Shen window 5 0.767 0.013

The standard Shen method is represented by the ”Shen window 3”, since it

uses groups of three units. We reduced the length of the conjoints to 2 in order to

reduce the number of features used and have a valid comparison with other similar

methods.

When using Shen window 2 in addition with positional features the number of

features is 98 (7*7+7*7) and when using standard Shen method the number of fea-

tures is of 343 (7*7*7), so we can say that we achieved results similar to the ones

published in the state of the art, using a number of features 3.5 times smaller, which

boosts the execution time of the feature extraction technique and of the classification

task. However this was not our objective, just an intermediate fruit of our work, so

we did not stop here, since we wanted to outscore the existing methods.

The other results correspond to experiences on which we did not achieve the de-

sired performances. We thought that using Shen window 3 in combination with our

positional method we could achieve better performance, however the results dropped,

in our opinion, due to the large amount of features being used that provokes noise in

the learning process. For the Shen window 4 and Shen window 5, we limited the num-

ber of features to the 1000 most frequent. We expected that protein sub-structures

would be recognized by this method and that would increase the classification per-
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formance, however that didn’t happen and the results decayed. Our limitation of

features to the 1000 most frequent may have caused this decay, we could probably

explore this issue with more detail but we had plenty of other ideas that could work

better and decided to follow them.

4.6 Combining Classifiers

We tried to combine Shen classifier, our positional method and the physico-

chemical approach using different methods. We chose this classifiers due to its sim-

plicity and for that fact that measure different characteristics of proteins. So we

thought that combining such characteristics a classification network we could boost

the overall performance of the classification task.

In the table 4.6 the results obtained on our Gold Dataset are shown, for more

detailed description of the methods, please read subsection 3.3.4:

Table 4.6: Combining classifiers

Method Accuracy Std. Deviation

Method 1 - Average Output Class 0.810 0.017

Method 2 - Best certain classifier 0.809 0.012

Method 3 - SVM Classifier 0.810 0.009

Any of the three combination strategies outscores all the previous imple-

mented methods. The results obtained are similar in all of them and consequently we

cannot say that one is better than another. The usage of simple metrics on method

1 and 2 can compete with method 3 in terms of performance, so we advice choosing

them for a future work. Method 3 uses an additional SVM classifier, and for that

reason it has computationally costs that need to be considered either for the training
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and for the classification tasks.

As expected, combining simple classifiers that consider multiple feature extrac-

tion techniques allows the development a classification algorithm that outperforms the

results of more complex methods that only look at a simple feature. This happens,

because the interaction of proteins is not subject of a simple property or conditioned

by a simple rule. On opposite, PPIs are the result of a multitude of physico-chemical,

structural, positional, and other factors. Increasing the amount of features used, and

looking at proteins from different perspectives increases the performance of compu-

tational methods. At this point we had a valid method that could compete with the

state of the art, but we kept testing other ideas.

4.7 Discrete Cosine Transform

In this section we present the results achieved with our DCT approach to the

problem, the main computational method developed by us. We will use more datasets

and more metrics in order to make a better analysis of this method.

4.7.1 Choosing the Optimal Number of Features

The number of frequencies used in the DCT can be manually selected. However

there is the need to test different values to have some indication of how many should

be used in order to attain the optimal results. One of our first tests was made using

the KNN classifier in order to choose the number of features to be used.

Fig. 4.3 presents the evaluation of the classifier accuracy when compared with

the increase in the number of features when applied to our Gold Dataset. The line in

green contains the raw frequencies extracted from the protein features. Clearly this

result is not as good as the other methods. In red the accuracy score using the recon-
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struction of the protein amino acid chain while considering the original 20 amino acids

is shown. Finally in blue there is the representation of a replacement of the 20 amino

acids with the 7 categories where feature extraction and signal reconstruction were

performed. The peak occurs in the blue line while using 600 frequencies achieving an

accuracy of 0.825, so for the rest of the work the strategy of using a reconstructed

signal after substitution of the amino acids with the 7 amino acid categories.

Figure 4.3: Choosing the number of features

4.7.2 KNN Classifier

In the present work two classification methods were tested, the K-Nearest Neigh-

bour (KNN) classifier and the Support Vector Machine (SVM). On this section we

are going to study the best parameters for the KNN Classifier.

60



The KNN classifier uses as parameters the number of neighbours to consider in

order classifying a sample as being of one class or of another. In order to optimize

our classifier an experimentally evaluation of this parameter was made in the range

from 3 to 19.

As present in the Fig. 4.4 the optimal number of neighbours for classification was

9 neighbours, achieving the accuracy of 0.825, the test was made using the dataset

number one with cross-validation with 5 folds.

Figure 4.4: Choosing the number of neighbours

4.7.3 SVM Classifier

The SVM classifier with RBF kernel, as used in the present work uses two param-

eters, C and gamma. In order to test our method, these parameters were changed in

the window shown in Fig 4.5, using the dataset number one and cross-validation with

5 folds applied to our Gold Dataset. As shown in the figure the optimal parameters

were C = 100 and gamma = 0.001, achieving an accuracy of 0.827. Such parameters

were afterwards used for testing with the other datasets.
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Figure 4.5: Choosing the best SVM parameters

4.7.4 Comparing Accuracy With the State of the Art

In the Table 4.7 and Fig. 4.6 the results achieved with the different methods

in the different datasets are presented. Fig. 4.6 presents the results of our DCT

method using the SVM classifier. It outperforms the existing state of the art methods

while tested on every dataset. Although slower, the increase on the accuracy might

be beneficial for the extra computing time. The KNN method for classification of

our features behaves acceptably. On some datasets it even outperformed the results

achieved with the existing state of the art.
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Table 4.7: Comparing DCT with other methods

Figure 4.6: Comparing DCT with other methods

4.7.5 Execution time comparison

The differences in the execution time were noticed since the start of testing

the existing methods. When testing in small datasets such differences are low and
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unnoticeable, however when working with bigger datasets similar to the ones used by

biologist, this factor needs to be considered.

The following tests were made with the dataset number one. The execution

times are showed in seconds and correspond to executions of feature extraction and

cross-validation (training and test) of the dataset using 5 folds. The tests were made

using a common i7-4700mq CPU and 8 GB of RAM.

In table 4.8 the execution time results for our Gold Dataset are present:

Table 4.8: Comparing execution time in seconds

Method
Execution Time (Seconds)

Average Std. Deviation
Run 1 Run 2 Run 2

Guo 5913 6212 5984 6036 128

Shen 7259 6496 6748 6834 317

Our method using k-NN 595 568 617 593 20

Our method using SVM 11739 12791 11865 12132 469

Using KNN classifier with our feature extraction method it was the fastest

method tested. The classification method used by Shen et al. and Guo et al. is based

on SVM, when using an SVM classifier our method was the slowest. Despite being

slower, the increase on the accuracy, while using DCT with SVM, might be beneficial

for the time spent on computing.

4.7.6 Using a Validation Dataset

A further step of validation was made in this study in order to infer our classifiers

capabilities under real conditions.

The dataset 2 was used for training the classifiers on this sub-section since it has

a good balance between two factors. It includes the Negatome, providing a good in-
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dication of the negative interactions, but not limiting the information to the proteins

contained on such dataset proteins pool.

In order to test the classifier performance on real data, 1000 random interactions

were selected from the BioGRID to build the independent validation dataset. Per-

forming training and validation with these datasets we obtained the results present

in Fig. 4.7:

Figure 4.7: DCT performance on extra validation dataset

Our method was the one that achieved the best performance accurately pre-

dicting 80.7% of the known positive interactions and with a great margin of perfor-

mance above the other tested classifiers.

4.8 Three Dimensional Structure

When extracting data from the three dimensional structure of proteins the results

were very interesting. The Table 4.9 presents these results of this method when

applied to our Gold Dataset:
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Table 4.9: Three Dimensional Method Accuracy

Method Accuracy per Number of Clusters

Clusters 50 100 150 200

LDA 0.657 0.710 0.727 0.759

QDA 0.808 0.838 0.842 0.841

SVM - Kernel RBF 0.814 0.819 0.817 0.820

In terms of number of clusters considered for the machine learning algorithm

the optimal number was of 150. When using a Linear Discriminant classifier the

results were worse than other methods previously tested. Using a SVM with RBF

kernel we outscore the state of the art methods, but we did not outscore our DCT

method. Finally when using a Quadratic Discriminant classifier the results are the

highest achieving 0.842 accuracy and and outscoring any other method. However

this method is very complex from computational point of view. The calculation of

proteins three dimensional structure and posteriorly calculate the centers of clusters

makes the algorithm inapplicable to bigger datasets. Even for this smaller dataset

took multiple days.

4.9 Discrete Cosine Transform - An Improvement

When boosting our DCT method with information from GOs, as explained in the

section 3.3.7, we cannot use the same datasets, because it needs much more volume

of data to be able to train the different classifiers. So, in order to test this method we

used for the positive part of the dataset of the publicly available protein interactions

from Saccharomyces cerevisiae in addition with randomly selected pairs of proteins

of the same organism for the negative part. By using this dataset we can evaluate

the performance of the method and also compare it with the state of the art method
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proposed by Guo. He achieved 0.8736% accuracy on this dataset.

In the table 4.10 we present the results achieved with our classification network,

237,572 protein interactions were considered but only 125,256 were used to train the

different classifiers, since we limited the max number of interactions to 15000 for each

classifier.

Table 4.10: GO Classifier Results

Classifier # Interactions # Interactions Used Accuracy Std. Dev.

go3a5515 - go3a5515 88775 15000 0.969 0.002

go3a5488 - go3a5515 48269 15000 0.931 0.008

General Classifier 47841 15000 0.932 0.002

go3a3824 - go3a5515 16921 15000 0.871 0.008

go3a5488 -go3a5488 10638 15000 0.810 0.003

go3a3824 - go3a5488 6337 12674 0.777 0.002

go3a5198 - go3a5515 5897 11794 0.903 0.006

go3a5215 - go3a5515 5209 10418 0.826 0.007

go3a30234 - go3a5515 4175 8350 0.934 0.006

go3a5198 - go3a5488 3510 7020 0.851 0.007

Total 237572 125256 - -

Weighted Average - - 0.927 0.004

On this dataset the GOs had the following meaning:
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Table 4.11: Meaning of GO IDs

GO ID Meaning

go3a5515 Protein Binding

go3a5488 Binding

go3a3824 Catalytic Activity

go3a5198 Structural Molecule Activity

go3a5215 Transporter Activity

go3a30234 Enzyme Regulator Activity

As the results show, having multiple classifiers that subdivide the dataset is

multiple parts according to biological or molecular terms associated with the pairs of

proteins is beneficial in terms of performance.

Considering that different amounts of data are assigned to each classifier and

some classifiers have better performance than others, we were able to predict protein

interactions with an weighted average accuracy of 0.927 outscoring the Guo’s state

of the art method for similar dataset. This method is well suited for large datasets

since it creates different classifiers for the most frequent GOs.

4.10 Result Summary

As ways of comparison on the following figure we present the results achieved

during the development of this work. In black the baseline and state of the art

methods. In grey some of the experiments made and described in the document that

didn’t perform as good as expected. In green our combination methods. In blue our

extraction of features using the DCT and finally in red our three dimensional method.
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Figure 4.8: Comparing Accuracy

Our best method, DCT using GO annotations requires large amounts of data

to function. We had two options, either run one of these large datasets for all the

methods or run a smaller dataset for all the methods and a larger one for this method.

Due to the limited computational power and time for the task we chose the second

option. This is the reason why this method is not represented in the above plot.
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Chapter 5

Final Considerations

During the whole project, multiple decisions and corrections were made, we didn’t

know if we were to succeed in the task of developing a new functional method. Time

constraints or computational constraints, were factors that were always compelling

us to make the most diverse decisions.

With the development of this work, either during the feature extraction time,

construction of our classifiers or as finished tool, we performed tests which gave us

important information that allowed us to make new considerations regarding the work

that was developed during this dissertation. Therefore, in this chapter we present our

main conclusions during the development of the project. Furthermore, we also detail

the limitations of the proposed approaches, and propose additional challenges or issues

that can be addressed in future works.

5.1 Tool Availability

The final tool for predicting PPIs is available online for the community to use

and optimize. It can be found at https://code.google.com/p/pprint-protein-protein-

interaction-prediction/ under the Apache License 2.0, it can be useful for future re-

searches in the Bioinformatics field.
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5.2 Conclusions

The objectives proposed in an earlier stage were achieved. During the develop-

ment of this work we were able to produce a computational classifier that predicts

PPIs with better accuracy than the previously existing methods described in the

state of the art. In fact diverse approaches idealized and implemented outscored the

existing methods when applied to our interspecies datasets.

We were able to implement and detect limitations on the existing state of art

methods. As expected since the start of the work, the existing methods work better

in the intraspecies datasets than in our interspecies datasets. Their performance was

acceptable, but the results achieved by such methods were lower than the ones pub-

lished in the existing papers. So the prediction of proteins between multi-organisms

is really a task that needs to be considered by future investigations, since existing

method’s scores reduced when applied to this kind of datasets.

During the development of our project, it was relatively easy to build new meth-

ods based on new feature ideas, however these methods were difficult to optimize in

order to outperform the state of the art. It was hard to build methods able to achieve

an accuracy higher than 0.80 on our Gold Dataset and some experiences ended up

being loose ends.

Earlier in the project we started by implementing existing baseline and state of

the art methods and verifying their performance and limitations. Either N-Grams,

Shen and Guo methods scored .80 on our Gold Dataset. So from that moment on we

had that value as an goal to outscore.

On an intermediate phase we spent some time trying to improve the existing

classifier proposed by Shen mainly due to its good performance and high simplicity

but we could not achieve better results. However we could achieve the existing per-

formance reducing the window length to 2 and complementing it with our positional

method. This strategy has a quantity of features considerably smaller. Such reduc-
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tion on the number of features can be beneficial for questions of time performance or

less computational needs allowing a larger throughput by the classification algorithm.

However we had other ideas to build classifiers, and preferred to use the existing time

implementing methods that could outperform the existing results rather then make

further testing about execution time comparison of this method.

When we combined 3 simple classifiers using different strategies we outscored the

state of the art methods for the first time, achieving 0.810 accuracy. As we thought,

combining simple classifiers that consider multiple feature extraction techniques al-

lows the development a classification algorithm that outperforms the results of more

complex methods. This happens, because the interaction of proteins is not subject of

a simple property or conditioned by a simple rule. On opposite, PPIs are the result of

a multitude of factors that may lead to interaction or not. In our conclusion, increas-

ing the amount of features used, and looking at proteins from different perspectives,

can increase the performance of computability methods. However we did not stop

here and we were more ambitious, 0.810 accuracy was just a small step from the 0.804

that needed to be passed.

The N-Grams method is too simplistic. It does not provide any positional infor-

mation of the location of each element and the fact of using 20 amino acids can limit

the algorithm since some of the amino acids can physically be replaced by others by

a process called synonymous mutation.

Shen’s method tries to improve N-Grams limitations however there is no posi-

tional neither structural information being used in the method.

On other hand Guo’s method implements a feature extraction technique that

calculates the auto-covariance between the elements of the chain. Metric that can be

seen as a structural feature, since it measures how the physico-chemical properties

change in a given window. However it does not present any metric of amino acid

composition.
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The representation of the protein sequence as a whole, an idea proposed in this

work, allows the classifiers to predict interactions while making a generalization of

the shape of the sequence, instead of dividing it in smaller problems as is explored by

other machine learning techniques.

We built a method that uses the Discrete Cosine Transform that performs better

than existing alternatives. In addition to the performance improvement the SVM

classifier allied to our method has proven to be more resilient to changes.

Based on the results achieved, our DCT method can compete with the state

of the art methods or even provide better results in terms of performance. Consid-

ering the accuracy results, our method outscored the existing methods while using

the SVM classifier on every dataset tested. Independently of number of interactions,

number of proteins, and method of choosing negative samples for the dataset, the re-

sults achieved were always better, achieving the peak of 0.827 accuracy on our Gold

Dataset.

In terms of computation time required, we verified that our DCT method be-

comes slower than the other methods, but due to the expensiveness of experimen-

tallyin vitro testing of protein pair interaction it might be useful to have a slower but

more accurate computational method to serve as a filter of what proteins to experi-

mentally test.

The KNN classifier allied to our DCT method showed good results while using

the Negatome as a source for non-interacting protein pairs. However when tested

with randomly selected protein pairs from the protein pool as negative examples the

results were poor. Despite this, it is still a viable classification method to do some

experiments since it execution time is ten times faster than the next classifier.

A classification network was built using our DCT method and Gene Ontology

information publicly available in Uniprot. Each classifier was responsible for a more

specific set of data attributed based on each pair of proteins molecular function, bi-
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ological process or cellular component. By combining different classifiers responsible

for more specific data we were able to achieve an accuracy of 0.927 when applied to

Saccharomyces cerevisiae protein interactions, outscoring this way Guo’s state of the

art.

Finally our three dimensional methods presented highest results when combined

with a QDA classifier 0.842 accuracy. However the execution time of this method

(multiple days, just for the smallest dataset) limited further testing. For being so

slow it cannot be applied to larger dataset on acceptable time.

For this reason we propose our DCT feature extraction method allied with an

SVM classifier to classify datasets of proteins from multiple organisms.

5.3 Future Work

Along side with the development of this document and all the source code we also

wrote a paper that was submitted to IEEE International Conference Bioinformatics

and Biomedicine (BIBM).

In terms of improving the actual work there are some optimizations that can

be studied. We suggest a deeper and more profound study of the machine learning

algorithms to operate with our feature extraction method. For example the study

of other classifiers or the development of a custom kernel could be beneficial for

improvement of the method, since a pair of proteins can be represented by protein A

concatenated with protein B or protein B concatenated with protein A and still the

same interactions, however our method is blind about that matter.

On other hand combining classifiers revealed itself a good solution for our problem

when applied to low performance methods, but what would be the results now that

we have higher accuracy methods? Will the results get even better? That could be a

good idea to explore.
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Some of the classifiers studied in the state of the art and implemented often recur

to manually selection of data in order to explore more locational problems. It would

be interesting to implement multiple classifiers in grid with our feature extraction

techniques using data with less variation then combine them together. We think

this would increase the results because classifiers could learn different strategies for

different data.
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Annexes 



Supplementary Material 

 

Table S1. The original values of the seven physicochemical properties for each amino 

acid. 

code H1 H2 V  P1 P2 SASA NCI 

A 0.62 -0.5 27.5 8.1 0.046 1.181 0.007187 

C 0.29 -1 44.6 5.5 0.128 1.461 -0.03661 

D -0.9 3 40 13 0.105 1.587 -0.02382 

E -0.74 3 62 12.3 0.151 1.862 0.006802 

F 1.19 -2.5 115.5 5.2 0.29 2.228 0.037552 

G 0.48 0 0 9 0 0.881 0.179052 

H -0.4 -0.5 79 10.4 0.23 2.025 -0.01069 

I 1.38 -1.8 93.5 5.2 0.186 1.81 0.021631 

K -1.5 3 100 11.3 0.219 2.258 0.017708 

L 1.06 -1.8 93.5 4.9 0.186 1.931 0.051672 

M 0.64 -1.3 94.1 5.7 0.221 2.034 0.002683 

N -0.78 2 58.7 11.6 0.134 1.655 0.005392 

P 0.12 0 41.9 8 0.131 1.468 0.239531 

Q -0.85 0.2 80.7 10.5 0.18 1.932 0.049211 

R -2.53 3 105 10.5 0.291 2.56 0.043587 

S -0.18 0.3 29.3 9.2 0.062 1.298 0.004627 

T -0.05 -0.4 51.3 8.6 0.108 1.525 0.003352 

V 1.08 -1.5 71.5 5.9 0.14 1.645 0.057004 

W 0.81 -3.4 145.5 5.4 0.409 2.663 0.037977 

Y 0.26 -2.3 117.3 6.2 0.298 2.368 0.023599 

H1, hydrophobicity; H2, hydrophilicity; V, volume of side chains; P1, polarity; P2, polarizability; 

SASA, solvent accessible surface area; NCI, net charge index of side chains. 
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Abstract— Understanding life at a molecular level encloses a 
myriad of opportunities. As important as being able to identify 
the molecular components of the cell it is of foremost relevance to 
understand their relationships. The study of Protein-Protein 
Interactions (PPI) has been a cornerstone to understand how 
biological processes take place. Despite the advance of 
laboratorial techniques the problem requires the use of 
computational methods to determine the protein interaction 
networks at the organism level. In this paper we propose an 
improved sequence-based method for predicting protein 
interactions. The usage of the Discrete Cosine Transform (DCT) 
as a feature extraction strategy for proteins sequence alongside 
with a Support Vector Machine (SVM) classifier is introduced 
with this work. Several datasets were used for validation, and it 
outscores the state of the art of sequence-based methods. Using a 
gold dataset of 12968 PPIs with 3351 proteins of multi-organisms 
extracted from BioGrid and Negatome database a consistent 
result of 0.827 accuracy was attained.  

Keywords—discrete cosine transform; protein interaction; 
protein feature extraction; machine learning 

I.  INTRODUCTION 
Protein-Protein Interaction (PPI) is the process where a pair 

of proteins physically binds in order to accomplish a biological 
function. These interactions are of critical importance because 
they influence the cellular macromolecular structures and 
functions. Indeed they are the main mediators for several 
biological processes including the intracellular signaling 
pathways [1] that correspond to the transmission of messages 
within cells. Having the knowledge of how proteins interact 
with each other can provide a great opportunity to understand 
pathogenesis mechanisms, and subsequently support the 
development of drugs focused on very specific disease 
pathways and re-targeting already commercialized drugs to 
new gene products [2]. 

At the cellular level, the operations that each cell need to 
execute for maintaining their function are sustained by PPIs. 
These interactions are represented as cascade of interactions 
that are mapped to a network. The study of protein interaction 
networks has practical applications in drug discovery, since it 
gives a better notion of how diseases work and allows 
researchers to more accurately target proteins interactions 
associated with a given pathology. 

The most standard way for detecting PPIs is throughout the 
use of laboratorial techniques. These methods test in vitro if a 
pair of proteins is prone to interact or not. There are many 
techniques for predicting PPIs such as yeast Two-Hybrid 
Systems, Mass Spectrometry, Protein Microarrays and 
Fluorescence Resonance Energy Transfer [3], each having his 
own advantages and drawbacks. Some of them, despite being 
very accurate, are expensive and time consuming, others, 
despite being high throughput, result in low accuracy outputs 
[4]. 

According to the last release of Uniprot [5] the human 
being has around 135,000 proteins. If all pairs were to be tested 
there were an astonishing number of putative interactions C 
(135,000, 2), approximately 9 × (10^9). In addition to the 
problem of testing all the human protein interactions the 
problem gains an even bigger dimension when considering the 
interactions that happen between the human and other 
organisms. For instance, in the oral cavity there is evidence of 
around 2300 micro-organisms [6,7,8]. Considering the 
interactions of the human proteins with these micro-organisms 
the number of interactions to be tested expands largely to 
untreatable numbers, therefore emerging the need to accurately 
predicting protein interactions using computational methods. 

Multiple computational methods have been developed in 
recent years. Among the multitude of methods some are based 
on the three dimensional structure [9,10], some based on 
functional domains [11] and others on the phylogenetic profiles 
[12]. Despite their major importance, these have limitations 
since prior biological knowledge about proteins is required and 
cannot be applied to datasets on which only protein amino-acid 
sequences are available. 

Several authors have already addressed the problem of 
predicting PPIs from the amino-acid sequence. Shen et al.[13] 
developed a method that scores 83.9% accuracy on a human 
restricted dataset. Such method categorizes the amino-acids 
based on their physico-chemical properties and then counts the 
occurrences of triplets of such categories. Despite scoring good 
results, the method only focuses on each amino-acid and on its 
two most proximate ones, leaving out information that could be 
beneficial to predict long range interactions.  

Guo et al.[14] verified the limitations on long range 
interactions on the features proposed by Shen and made an 



improved method that looks at the proteins sequence 
information as a signal using  the auto-covariance of that signal 
as features to classify PPIs. This method scored 87.36%, when 
applied to predicting the PPIs in an independent dataset of S. 
cerevisiae. 

In this article we propose an improved sequence-based 
method for predicting protein interactions using the DCT 
(Discrete Cosine Transform) as a feature to describe proteins 
sequence, and the Support Vector Machine (SVM) classifier. 
DCT describes the sequence of the proteins taking in 
consideration the physical properties of each amino acid. It is 
responsible for transforming proteins with different lengths in 
the same number of features, ignoring high frequencies. The 
SVM classifier is thereafter used to give a good estimation if 
proteins with dimensional similar features interact or not. 

II. MATERIALS AND METHODS 

A. Dataset 
Three datasets were used to test the efficiency of the 

method under different conditions. The required biological data 
was collected from UniProt Knowledgebase (UniProtKB), 
BioGRID and Negatome. 

UniProtKB is the central hub for the collection of 
functional information regarding proteins. Each entry contains 
the amino acid sequence, protein name, taxonomic data as well 
as supplementary annotations such as ontologies, 
classifications, cross-references, and clear indications of the 
quality of annotation in the form of evidence attribution of 
experimental and computational data. BioGRID [15] is an 
online interaction repository with data compiled through 
comprehensive curation efforts. The current version compiles 
42,004 publications for 720,840 raw protein and genetic 
interactions from major model organism species. All 
interaction data are freely provided through our search index 
and available via download in a wide variety of standardized 
formats. Contrasting with other interaction databases, 
BioGRID provides protein interactions for multiple organisms. 
Negatome [16] is a collection of protein and domain pairs 
which are unlikely engaged in direct physical interactions. The 
database currently contains experimentally supported non-
interacting protein pairs derived from two distinct sources: by 
manual curation of literature and by analyzing protein 
complexes from the PDB. 

Dataset 1: This dataset consists of 6484 interactions of a 
pool of 3351 proteins extracted from the Negatome collection 
and an equal number of positive interactions from BioGrid. 
These proteins were the ones that were also available on 
UniProt in order to extract the amino-acid sequences. The 
positive half of the dataset was built searching BioGrid for 
known interactions of the same 3351 proteins used in the 
negative pool.  

Dataset 2: The dataset number two was built with 10,000 
protein interactions randomly selected from the BioGRID 
dataset. The negative interactions were a combination of the 
6484 known negative interactions from Negatome used in 
Dataset 1 and 3516 random combinations of the protein pool 
used in the positive interactions. The dataset was also balanced 
having a total of 20000 protein interactions, 10000 positives 

and 10,000 negatives. This dataset allowed to test the classifier 
when applied to a more diverse data. In fact the protein pool of 
this dataset was higher than the previous, consisting of 9686 
proteins . 

Dataset 3: This dataset contains 20,000 protein interactions 
from 14470 proteins randomly selected from the BioGRID 
dataset. The negative interactions were obtained by randomly 
construct pairs of proteins from the positive. This strategy to 
obtain negative interactions is acceptable, since the probability 
of randomly selecting a positive interaction is very low. This 
dataset was used to test if our method could keep achieving 
good results independently of the usage of the Negatome. 

 
Fig. 1. Datasets used on the present work 

B. Feature Extraction 
 At the primary level proteins are linear chains of amino-
acids. In this approach, each protein sequence is represented by 
a signal that modulates the variations of amino-acids along the 
protein sequence. 

 The DCT expresses a finite sequence of data points in terms 
of a sum of cosine functions oscillating at different frequencies. 
The DCT is well known for its practical applications in codecs 
such as MP3 or JPEG, allowing compression by discarding the 
higher frequencies. 

In his previous work Shen et al. proposed that to reduce the 
dimensions of the vector space and suit synonymous mutation 
the 20 amino-amino acids could be transformed in 7 different 
categories calculated accordingly to their physico-chemical 
properties. In the table 1 there is the substitution table initially 
used by Shen et al. based on the dipole scale and in the volume 
scale. This table was used in the present work considering that 
similar amino-acids in the protein sequence can be susceptible 
to mutation. 

TABLE I.  AMINO-ACIDS SUBSTITUTION TABLE 

a) Category b) Amino-acids 

1 Ala, Gly, Val 

2 Ile, Leu, Phe, Pro 

3 Tyr, Met, Thr, Ser 

4 His, Asn, Gln, Tpr 

5 Arg, Lys 

6 Asp, Glu 

7 Cys 

a. According to their physico-chemical properties amino-acids are grouped in categories 



The procedure used to extract features from a protein 
consists of getting its amino-acid sequence convert it to a 
vector of physico-chemical categories and then apply the DCT 
to the resulting vector. The signal is then reconstructed 
dependently of the number of features and concatenated with 
another signal in order to represent a protein interaction. 

The DCT of a signal is given by following formula: 
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And its inverse, for terms of signal reconstruction, is given 

by: 

! ! = ! !
!

!!!

! ! cos
! 2! − 1 ! − 1

2!
,     

! = 1,2,… ,!, 
 

 

! ! =

1
√!

,                                    ! = 1,

2
!
, 2 ≤ ! ≤ !,

 

(2) 

An arbitrary number of frequencies (F) can be used to 
represent a protein. If the protein is bigger than F, the first F 
frequencies are selected. If smaller, zeros are padded until the 
number of desired features is archived. 

After having the frequencies that describe the signal the 
inverse formula is used to reconstruct the original signal and to 
apply a standard normalization. This new signal is less noisy, 
since the high frequencies are ignored. It also has the same 
length for all the proteins and can be used to solve the 
classification problem. By doing this, it is possible to have 
representations of the proteins as a whole. 

On the top of Fig. 2, the protein A0AQH0 sequence after 
substitution with the physico-chemical categories is shown. On 
the bottom the same protein is shown after the reconstruction 
using the DCT with 600 features and performing a standard 
normalization ready for concatenation with other protein and 
further classification. 

 

 
Fig. 2. Example of the DCT extraction and reconstruction applied to 
A0AQH0 Protein with 600 features 

C.  Choosing the Optimal Number of Features 
The number of frequencies used in the DCT can be 

manually selected. However there is the need to test different 
values to have some indication of how many should be used in 
order to attain the optimal results.  

One of our first tests was made using the KNN classifier in 
order to choose the number of features to be used. 

Fig. 3 presents the evaluation of the classifier accuracy 
when compared with the increase in the number of features. 
The line in orange contains the raw frequencies extracted from 
the protein features. Cleary this result is not as good as the 
other methods. In red the accuracy score using the 
reconstruction of the protein amino-acid chain while 
considering the original 20 amino-acids is shown. Finally in 
blue there is the representation of a replacement of the 20 
amino-acids with the 7 categories where feature extraction and 
signal reconstruction were performed. The peak occurs in the 
blue line while using 600 frequencies achieving an accuracy of 
0.825, so for the rest of the work the strategy of using a 
reconstructed signal after substitution of the amino-acids with 
the 7 amino-acid categories. 

 

 
Fig. 3. Number of Features versus accuracy 

D. Classifiers 
In the present work two classification methods were tested, 

the K-Nearest Neighbor (KNN) classifier and the Support 
Vector Machine (SVM). On this section the results achieved 
with them on our datasets are studied. 

 
 



1) Choosing KNN Parameters 
 

The KNN classifier uses as parameters the number of 
neighbors to consider in order classifying a sample as being of 
one class or of another. In order to optimize our classifier an 
experimentally evaluation of this parameter was made in the 
range from 3 to 19. 

As present in the Fig. 4 the optimal number of neighbors 
for classification was 9, achieving the accuracy of 0.825, the 
test was made using the dataset number one with cross-
validation with 5 folds. 

 
Fig. 4. Number of Neighbours versus accuracy 

 
2) SVM Parameters 

 
The SVM classifier with RBF kernel, as used in the present 
work uses two parameters, C and gamma. In order to test our 
method, these parameters were changed in the window shown 
in Fig 5, using the dataset number one and cross-validation 
with 5 folds. 

As shown in Fig. 5 the optimal parameters were C = 100 
and gamma = 0.001, achieving an accuracy of 0.827. Such 
parameters were afterwards used for testing with the other 
datasets. 
 

 
Fig. 5. Accuracy evalutation when comparing the Gamma and C parameters 

 

E. Classifier Evaluation 
After making the experimental estimation of the number of 

features to use with our method, and the best parameters for 
each classification method, the obtained results using dataset 
one were the following: 

TABLE II.  RESULTS ACHIEVED WITH OUR METHOD 

Classifier Accuracy Precision Recall 
Nearest Neighbor 

classifier 0.825 +/- 0.015 0.814 +/- 
0.011 

0.845 +/- 
0.008 

SVM classifier 0.827 +/- 0.016 0.817 +/- 
0.012 

0.843 +/- 
0.008 

 

 Both classifiers present clearly good results. Despite that 
the best result were obtained using the SVM classifier that 
achieved 0.827 accuracy. The KNN classifier also gave 
relatively good results 0.825 accuracy. Further testing of these 
methods efficiency alongside with their execution time is 
discussed on the following section. 

III. DISCUSSION 
On this section a discussion of the results achieved with our 

method alongside with a comparison of the existing state of the 
art is made.  

A. Accuracy comparision with the state of the art 
It is important to test our method under diverse 

circumstances and on multiple datasets. 
In our case different datasets were built, some of them 

were built using then Negatome as the database for negative 
interactions others the negative part was selected from random 
combinations of proteins from the protein pool. 

In the Table II and Fig. 6 the results achieved with the 
different methods in the different datasets are presented. Fig. 6 
presents the results of our method using the SVM classifier. It 
outperforms the existing state of the art methods while tested 
on every dataset. Although slower, the increase on the 
accuracy might compensate for the extra computing. The 
KNN method for classification of our features behaves 
acceptably. On some datasets it even outperformed the results 
achieved with the existing state of the art. However on the 
dataset 3 the results were not as good as expected revealing 
that its behavior might deteriorate on big, discrepant datasets. 
However it might still being a viable option due to its low 
amount of computing time. 

 
 
 
 
 
 
 
 
 
 
 



TABLE III.  PERFORMANCE COMPARISON 

 Guo Shen Our method using 
KNN 

Our method using 
SVM 

Dataset 1 
Accuracy 

0,804 +/- 
0,010 

0,803 +/- 
0,011 0,825 +/- 0,004 0,827 +/- 0,004 

Dataset 1 
Precision 

0,769 +/- 
0,017 

0,797 +/- 
0,014 0,814 +/- 0,011 0,817 +/- 0,012 

Dataset 1 
Recall 

0,861 +/- 
0,007 

 0,812 +/- 
0,028 0,845 +/- 0,008 0,843 +/- 0,008 

Dataset 2 
Accuracy 

0,720 +/- 
0,012 

0,746 +/- 
0,014 0,765 +/- 0,004 0,761 +/- 0,004 

Dataset 2 
Precision 

0,669 +/- 
0,010 

0,727 +/- 
0,019 0,781 +/- 0,008 0,736 +/- 0,005 

Dataset 2 
Recall 

0,867 +/- 
0,026 

0,782 +/- 
0,014 0,665 +/- 0,010 0,789 +/- 0,009 

Dataset 3 
Accuracy 

0,646 +/- 
0,014 

0,705 +/- 
0,004 0,664 +/- 0,005 0,707 +/- 0,005 

Dataset 3 
Precision 

0,639 +/- 
0,012 

0,741 +/- 
0,009 0,761 +/- 0,009 0,678 +/- 0,007 

Dataset 3 
Recall 

0,642 +/- 
0,010 

0,630 +/- 
0,012 0,639 +/- 0,003 0,723 +/- 0,004 

 

 
Fig. 6. Accuracy per method using different datasets 

B. Execution time comparision with the state of the art 
The differences in the execution time were noticed since 

the start of testing the existing methods. When testing in small 
datasets such differences are low and unnoticeable, however 
when working with bigger datasets similar to the ones that need 
to be tested in biological testing they increase significantly and 
need to be considered. 

The following tests were made with the dataset number one 
since it was the smallest of them all there was limitations in 
terms of time. The execution times are showed in seconds and 
correspond to executions of feature extraction and cross-
validation (training and test) of the dataset using 5 folds. The 
tests were made using i7-4700mq CPU and 8 GB of RAM. 

Both in Table IV and Fig. 7 the execution time results are 
presented. Using KNN classifier with our feature extraction 
method is the fastest method tested by us. The classification 
method used by Shen et al. and Guo et al. is based on SVM, 
when using an SVM classifier our method was the slowest. 

TABLE IV.  PERFORMANCE COMPARISON 
 

Method Execution Time (Seconds) Mean 
Std  

Deviation 

 
Execution 

1 
Execution 

2 
Execution 

3 
  

Guo 5913 6212 5984 6036,33 127,55 

Shen 7259 6496 6748 6834,33 317,42 
Our method 
using KNN 595 568 617 593,33 20,04 
Our method 
using SVM 11739 12791 11865 12131,67 469,05 

 

 
Fig. 7. Comparison of execution times 

 As we can see in the Fig. 6 our method using the SVM 
classifier outperforms the existing state of the art methods 
while tested on every dataset. It is slower, but the increase on 
the accuracy might compensate for the time spent on 
computing. The KNN method for classification of our features 
behaves acceptably. On some datasets it even outperformed the 
results achieved with the existing state of the art. However on 
the dataset 3 the results were not as good as expected revealing 
that its behavior might deteriorate on big, discrepant datasets. 
However it might still being a viable option due to its low 
amount of computing time. 

C. Using a Validation Dataset 

A further step of validation was made in this study in order 
to infer our classifiers capabilities under real conditions. 

The dataset 2 was used for training the classifiers on this 
sub-section since it has a good balance between two factors. It 
includes the Negatome, providing a good indication of the 
negative interactions, but not limiting the information to the 
proteins contained on such dataset proteins pool. 

In order to test the classifier perfomance on real data, 1000 
random interactions were selected from the BioGRID to build 
the independent validation dataset. 

Performing training and validation with these datasets we 
obtained the results present in Fig. 8.  

Our method was the one that achieved the best 
performance hitting 80.7% of the known positive interactions 
and with a great margin of performance above the other tested 
classifiers. 
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Fig. 8. Comparison of methods using an independent validation dataset 

IV. CONCLUSIONS 
The representation of the protein sequence as a whole 

allows the classifiers to predict interactions seeing proteins as 
a whole instead of dividing it in smaller problems as is 
explored by other machine learning techniques.  

Most of the times authors do not provide the datasets used 
in their works or just select smaller sub-sets selected by them. 
Consequently it is not possible to replicate the metrics 
presented in the state of the art in order to make direct 
comparisons. To this end we tried to be as systematic as 
possible in the definition of training/validation datasets. In 
addition to the performance improvement the SVM classifier 
allied to our method proven to be more resilient to changes. 

Based on the results achieved, our method can compete 
with the state of the art methods. Considering the accuracy 
results our method outscored the existing methods while using 
the SVM classifier on every dataset tested. Independently of 
number of interactions, number of proteins, and method of 
choosing negative samples for the dataset, the results achieved 
were always better, achieving the peak of 0.827 accuracy on 
our golden dataset. 

The KNN classifier showed good results while using the 
Negatome as a source for non-interacting protein pairs. 
However when tested with randomly selected protein pairs 
from the protein pool as negative examples the results were 
poor. Despite this, it is still a viable classification method to 
do some experiments since it execution time is ten times faster 
than the next classifier. 
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