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Abstract

Remote video viewing is largely growing, especially in wireless devices. There-
fore, video transmission mechanisms such as retransmission and Forward Error
Correction (FEC) are very important to ensure that the video arrives at its des-
tination while retaining its quality. While some of these mechanisms can obtain
good performance, this does not mean they provide an optimal situation. There
are several factors that negatively impact Quality of Experience (QoE) in video
transmission, such as network congestion, loss and type of video being transmitted.
Adaptive Forward Error Correction schemes aim at providing protection against
loss errors by analysing several relevant characteristics of the video and/or net-
work, and using them to apply unequal error protection (UEP) to different parts
of the video. Taking this into account, it is clear that an adaptive FEC mechanism
is a viable option to achieve optimal error protection, thus increasing the video
transmission’s resilience against errors and losses, and therefore improving Quality
of Experience for the end user.

This work presents and examines the state-of-the-art mechanisms for retrans-
mission, FEC, QoE, video classification and algorithm optimization. The assess-
ment of the mechanisms presents an in-depth study of each concept and indi-
vidually explores their advantages and disadvantages. Three mechanisms which
provide adaptive FEC are developed in and evaluated in a simulation environ-
ment, with motion classification, error correction, adaptive redundancy allocation
and loss feedback components. The capabilities of the adaptive FEC mechanisms
are evaluated through a wireless network environment in order to assess their
performance against other methods.

The results obtained through the assessed mechanisms showed incremental
improvements through each stage of development. They also showed that it is
possible to accurately characterize the intensity of motion in video sequences ac-
cording to their characteristics. Furthermore, the findings highlight the impor-
tance of shielding sequences with higher amounts of motion intensity with greater
quantities of redundancy due to david their higher degradation when subjected to
error. The mechanisms achieved a considerable reduction in the amount of redun-
dancy used to shield the data being transmitted, particularly the loss prediction
mechanism. At the same time, the mechanisms maintained video quality which
combined with the overhead reduction results in an overall improvement of QoE
ultimately enhancing video transmission in wireless networks.

Keywords: Adaptive FEC, Wireless Video Transmission, Loss Prediction,
Quality of Experience, Motion Intensity
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Chapter 1

Introduction

This work presents the development of an adaptive Forward Error Correction
mechanism for resilient video transmission over wireless networks. Through the
analysis of the state-of-the-art of video transmission and error correction tech-
niques, the drawbacks and advantages of the current mechanisms are identified.

The first section presents the motivation for the work developed, while the
second and third section describe the objectives and contributions, respectively.
In the last section the organization of the thesis is explained.

1.1 Motivation

The use of real-time services over multi-hop wireless and mobile networks, more
specifically video streaming, has seen a dramatical increase in the last few years
(comScore, 2011). In Europe alone, the growth of mobile video viewing was of
162% in just one year, topping of at 48.1 million unique viewers (comScore, 2013).
The video streaming service can be used in varied ways and in several types
of devices, such as laptops connected to a wireless networks or mobile phones
connected to 3G or 4G type cellular networks. It is a means for professionals from
all kinds of companies to arrange remote meetings and to improve collaboration
amongst workers, therefore helping to reduce all travel related costs (i.e., time
and money). Home users also make use of this service to create, share and view
multimedia content, no matter if from a cabled or from a wireless connection. The
key point here, is that real-time video streaming is now an integrant part of our
everyday lifestyle.

It is known that network resources are not unlimited, and therefore, many
factors can hinder the transmission by causing packets to be corrupted or lost, thus
degrading video quality and negatively impacting the end user experience. Some
of these factors are internal such as the video codec type, the content of the video
and the bitrate. Then, there are the external factors like propagation and path
loss, node interference, channel noise, shadowing and congestion. To mitigate the

1



Chapter 1. Introduction 2

effect of the above on the quality of the transmitted video over a wireless network,
we need to employ mechanisms that combat this loss/corruption of information.
There are already three types of techniques that are commonly used. These are
retransmission by means of Automatic Repeat reQuest (ARQ), Forward Error
Correction (FEC) and Hybrid solutions.

One of the greatest problems faced with these mechanisms is that most of
them are rigid in the way they perform. In the case of retransmission, packets
are usually discarded at the receiver and the retransmission process involves the
consequent retransmission of the packet, wasting network resources and interfering
with the temporality of the service in the case of real-time services. Concerning
FEC mechanisms, the main issue is that some of them offer fixed allocation of the
protection/redundancy budget or have some type of adaptation in the form of pre-
processing. Also, these schemes tend not to take into account network conditions
for redundancy allocation. This negatively impacts the quality on the receiver’s
end. Furthermore, this strict fixed use of redundancy is not optimal in terms
of network overhead. Such approaches can lead to further network congestion,
worsening network performance and the packet drop rate, and thus negatively
impacting the received video quality.

1.2 Objectives

The goals of the work presented in this thesis aim at overcoming the current
limitations of the existent mechanisms, such as the staticity of the existing FEC
mechanisms, and the inability to take into consideration the video’s motion pa-
rameters, which are crucial to the quality of experience for the end user. This
innovative proposed scheme, solves these problems by adaptively selecting the
amount of redundancy given to individual frames, through the analysis of their
type and their motion characteristics. The adaptive protection of the most im-
portant parts of the video causes reduction in network overhead, which in turn,
increases the received video quality when compared to a fixed redundancy scheme.
This way video files which consist of scenes with a great amount of movement will
have their respective critical frames better protected against loss by the means of
added redundancy.

1.3 Contributions

This thesis provides a general overview of several types of Error Correcting Codes,
such as Linear Block Codes, Convolutional Codes and Fountain Codes. After-
wards, a series of mechanisms which use FEC are discussed through a detailed
analysis that points out their strengths and weaknesses.

Concerning the topic of video classification according to motion intensity,
the author performed an analysis of several schemes, such as Cluster Analysis,
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Principal Component Analysis and Neural Networks, exploring the concept of
Neural Networks with more depth in the case of Random Neural Networks.

In the subject related to optimization, the analysed mechanisms were those
of Game Theory, Metaheuristics and a specific case of Metaheuristics that is Ant
Colony Optimization.

The mechanism presented in this thesis performs video transmission shielding
in wireless environments. It does so through the adaptive use of redundancy in
order to mitigate the effects of packet losses. It is based on the modular concept
which is presented in a previous study (Immich et al., 2013). The mechanism
differs from the aforementioned one in the sense that it uses a Random Neural
Network (RNN) to perform motion intensity classification of the video frames,
and uses a Metaheuristic approach to adaptively perform the allocation of re-
dundancy. This mechanism improves on the base concept by taking into account
network loss information. This information is used to characterize the error bursts
present in the network, in order to protect the data being transmitted with even
more accuracy than a mechanism which uses only motion intensity to compute
the allocation of redundancy. The mechanism went through various incremental
development stages which led up to the final iteration which is comprised by the
Loss Prediction mechanism.

• The author also developed the neuralFEC mechanism presented in Chap-
ter 5 which is a motion intensity categorization module. The neuralFEC
mechanism is based on a Random Neural Network. From several charac-
teristics of a video sequence, the RNN performs a numeric categorization
of the current frame in terms of motion intensity. To do so, a RNN was
developed from scratch with the help of RNNSimv2 MATLAB module. The
RNN implementation present in RNNSIMv2 was thoroughly experimented
with and resulted in a stable system suitable for motion intensity classifica-
tion. The resulting RNN was trained and validated with the characteristics
of several video sequences in the MATLAB environment. The results of the
RNN were injected onto the Evalvid trace files corresponding to different
videos which are used for evaluation of the mechanism in NS-3. From there,
a simple selection mechanism uses an Error Correcting Code to perform re-
dundancy allocation according to the degree of motion intensity present in
a given frame.

• The AntMind mechanism presented in Chapter 6 was developed by the au-
thor and is an enhancement over neuralFEC. The AntMind mechanism per-
forms dynamic redundancy allocation based on ACO and an Error Correct-
ing Code. It takes into account several characteristics of the video, informa-
tion retrieved from neuralFec about motion intensity and the instantaneous
network loss rate. The ACO module was developed based on the libaco
C++ library which is comprised of several ant-based problem solving sys-
tems. The several ant systems were explored and the simple ant system
was selected for use and integration with Network Simulator 3 (NS-3). The
libaco implementation developed to solve the travelling salesman problem
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was modified to work with the requirements and particularities presented by
our problem. Finally, a path graph which describes the several characteris-
tics of the video and network loss state was designed, in order to enable the
use of ACO to solve our redundancy allocation problem.

• The author developed the Loss Prediction mechanism presented in Chap-
ter 6 which is an enhancement over AntMind combining the use of the ACO
dynamic redundancy allocation module with a module which performs error
prediction. The error prediction module was developed from scratch based
on the concept of good and bad gaps presented in (Karner et al., 2007). A
feedback mechanism was implemented to enable the retrieval of loss statis-
tics. These statistics provide information on the occurrence of errors based
on the size of the gaps of the already received frames. From this, the er-
ror prediction mechanism estimates if losses will occur in the next block of
packets to be transmitted. Therefore, the error prediction mechanism has
an influence on ACO leading to an adjustment in redundancy based on the
prediction of the occurrence/non-occurrence of an error.

• A detailed study of several Error Correcting Codes was performed by the
author to assess which was the Error Correcting code suitable for use on
the devised transmission scenario. The Reed-Solomon code was selected due
to its simplicity and flexibility. In order to use Error Correcting Codes in
video transmission in a simulation environment such as NS-3, an external
C++ library was used. The IT++ library and its Reed-Solomon code were
modified and integrated with the simulation scenario developed in NS-3.

Throughout the development of the mechanisms, several publications and
presentations took place:

• The development and experimental evaluation performed by the author of
the neuralFEC module resulted in a paper in collaboration with the co-
supervisor. The paper is titled Adaptive Motion-aware FEC-based Mech-
anism to Ensure Video Transmission included in Appendix A which was
presented at The Nineteenth IEEE Symposium on Computers and Commu-
nications (ISCC 2014) (Immich et al., 2014a).

• The development and experimental evaluation of the AntMind mechanism
was solely performed by the author. It resulted in a paper named AntMind:
Enhancing Error Protection for Video Streaming in Wireless Networks in-
cluded in Appendix A which was presented at The Fifth International Con-
ference on Smart Communications in Network Technologies (SaCoNet 2014)
(Immich et al., 2014b).

• Based on the work presented in this thesis, a presentation by the author
describing the mechanism in general and preliminary results with a RNN
was conducted at the Rede Temática de Comunicações Móveis (RTCM)
Seminar.
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1.4 Structure

This document is structured as follows:

The second chapter presents techniques that improve video transmission which
are used in wireless networks, namely retransmission, FEC and error correcting
codes, and hybrid. Chapter three introduces Quality of Experience metrics used
for quality assessment of the video transmitted over the network. In chapter four,
mechanisms for classification and grouping of data are studied, along with several
optimization schemes.

The basic mechanism for resilient video transmission and the methodology
followed are presented in detail in chapter five, as well as the tools used for its
modelling and evaluation. In the sixth chapter, the same procedure is followed
to describe two further enhancements to the base mechanism for resilient video
transmission.

The seventh chapter exposes the planning and progress of the project through-
out the first and second semesters.



Chapter 2

Techniques for Improved Video
Transmission

In order for someone to receive a video stream over a wireless network while
experiencing satisfying quality, the network and applications at both sides must
obey a set of parameter requirements. Quality of Service (QoS) characterizes
these and by taking them into account, the network protocols and applications
can ensure that quality is safeguarded at the network level. In turn, this does not
mean that the quality perceived by the user is ideal as there are other factors that
can affect the video transmission.

As the signal is transmitted omnidirectionally over the air, it tends to suffer
form physical effects that degrade its quality. These effects can be caused by
shadowing and multipath fading for example, which usually originate errors in
packets. These are not the only variables that cause packet corruption. Antenna
range, hidden terminal, incapacity of undergoing several tasks at the same time
by the antenna and node overpopulation of an area are also causes of packet
corruption.

To answer these problems, there are several video transmission techniques
that prevent and mitigate the effects of packet corruption or loss in the data
transmitted. To be truly effective, these techniques must ensure the in-time re-
ception of the data, as users of real-time video applications will suffer from packet
delays caused by routing, errors, error correction and retransmission.

This chapter describes different types of known video transmission techniques,
like Retransmission, Forward Error Correction, and Hybrid schemes.

The concept of a retransmission scheme is that of waiting for acknowledge-
ments from the receiver after a transmission to confirm the successful reception
of a packet. If this confirmation is not received by the sender, a retransmission
process is triggered.

Forward Error Correction mechanisms prepare the data during the trans-
mission process for expected loss. To do this, they add redundancy to it, as a

6
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means to prevent degradation of quality of the received data due to packet loss or
corruption.

Hybrid schemes aim to combine the two previous mechanisms as they combine
retransmission and Forward Error Correction schemes to achieve the best possible
outcome of a given network scenario in terms of packet loss.

2.1 Retransmission Based Techniques

Automatic Repeat ReQuest (ARQ), also known as Automatic Repeat Query, is an
error control protocol that makes the receiver initiate the process of retransmission
after a frame is received in a flawed way or incorrectly. When the transmitter
fails to receive an acknowledgement that confirms the reception of the data, it
usually retransmits the data after a predefined timeout and repeats this process
until a successful acknowledgement is received or the maximum number of retries
is reached. Three of the main types of the ARQ schemes (Shu Lin, 2004), are
Stop-and-Wait ARQ, Go-Back-N ARQ and Selective Repeat ARQ.

Stop-and-Wait ARQ is the simplest of the three, having one frame sent at a
time with no additional frames being sent until reception of the previous one is
confirmed. With this behavior, the mechanism aims to achieve the best possible
rate of packet delivery, but its drawback is that it is not suitable for real-time
applications where the in-time reception of the data is crucial for the user experi-
ence.

Go-Back-N ARQ is more complex, allowing frames to be sent even if the
previous ones were received without confirmation. This scheme keeps track of the
sequence of frames. When the last frame is received, a request for retransmission
of the frames without confirmation is issued. This process is repeated until all
the frames are received with an acknowledgement signal. This method allows for
many frames to be sent multiple times.

Selective Repeat ARQ can be used for the delivery and acknowledgement of
sent frames or the delivery of subdivided messages in sub-units. In the first case,
the scheme continues to accept and acknowledge frames after an initial error. The
process continues until a specified number of frames has been received, thus depict-
ing the window size. There is one of these for both transmitting and receiving and
they must be equal. The unreceived frames have their sequence numbers sent to
the sender for retransmission. The sender continues sending frames of unconfirmed
data until its windows size is reached. When this happens, the sender re-sends the
frame numbers given by the acknowledgement signals and continues where it left
off. To ensure the reception of all of the frames, the size of the sending/receiving
windows must be half of the maximum sequence number.

In the case of subdivided messages, each message contains a variable num-
ber of sub-blocks. Each non-acknowledged response carries an additional bit flag
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indicating each sub-block successfully received. Each re-transmission decreases in
length, as it only contains the non-acknowledged sub blocks.

Automatic Repeat ReQuest schemes with variable length messages have in-
creased difficulty with longer messages, because each repeated message is full
length. However, selective retransmission of variable length messages, when us-
ing Selective Repeat ARQ, eliminates the difficulty with delivering longer mes-
sages. This is evidenced by retention of successfully delivered sub-blocks after
each transmission and the decrease in the number of outstanding sub-blocks after
each transmission.

2.2 Forward Error Correction

A Forward Error Correction scheme can be used to improve the quality of video
being transmitted over a noisy and lossy network. To do this, the forward error
correcting scheme adds redundancy to the original data, so that it is possible to
correct, without retransmission, eventual errors or losses due to the characteristics
of the network, therefore increasing robustness of the transmitted video.

2.2.1 Categories of Forward Error Correction

There are several ways at which FEC can be used, being two of the most used
ones recent implementations of Byte-Level FEC and Packet-Level FEC are found
in (Basalamah and Sato, 2007) (Nafaa et al., 2008), respectively.

Byte-Level FEC recovers byte errors and provides small-scale error protection
on the link layer of wireless networks. Packet-Level FEC uses blocks of packets on
the MAC layer. Since these have sequence numbers, when one is lost, the decoder
has information about its position. Because coding theory defines an error as a
corrupted symbol in an unknown position and an erasure as a corrupted symbol
in a known position, the decoder can use this erasure information to improve the
FEC error correcting capability (Basalamah and Sato, 2007).

Concerning packet-level FEC there are several performance metrics that can
be used (Nafaa et al., 2008) like redundancy ratio, decoding inefficiency ratio and,
encoding/decoding times, as well as bandwidth.

Firstly, the redundancy ratio n/k where k are the source packets and n are
the redundancy packets, is usually referred to as the stretch factor of an erasure
code, and it quantifies the amount of redundancy respecting the size of the source
data. Secondly, the decoding inefficiency ratio represents the minimum number
of packets necessary to recover a FEC block divided by the number of source
packets. Lastly, through the encoding/decoding times and resulting bandwidth
we can calculate the amount of time needed to encode/decode a FEC block of a
determined size for a certain erasure code class. With this value, the achievable
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bandwidth for a real-time streaming system is computed, along with the suitability
of such codes for resource-constrained wireless devices.

Static FEC mechanisms take a source data stream and split it into separate
blocks, with each one of these holding k source packets. For each one of these
blocks the FEC encoder generates a fixed number of redundancy packets identified
by n. This is a static approach to FEC, meaning that the encoder always generates
the same number of FEC redundancy packets. This means that more network
resources are consumed to transmit this increased number of packets, which leads
to a trade-off between resilience and the degradation of video quality and network
resources usage.

Another known approach is that of interleaved FEC protection (Nafaa et al.,
2008), which is commonly used in video transmission to reduce the effects of loss.
The transmitter reorders the packets in order to separate adjacent packets by a
distance that can vary over time. The use of this mechanism disperses loss and
mitigates the effects of bursty loss in multimedia decoding. The main advantage
is that this offers better resilience to errors while not increasing bandwidth re-
quirements. Too much interleaving can lead to uncertain improvement of FEC
efficiency, depending on the loss pattern exhibited by the wireless connection. It
is important to analyze the channel dynamics through QoS metrics to determine
the suited interleaving level which maximizes the recovery efficiency of the FEC
mechanism. The drawbacks of this scheme are that it increases latency due to
additional buffering at the transmitter, and that the efficiency of the provided
protection depends on the loss pattern exhibited by the network and is severely
hindered by burst error patterns. Because of this, it should not be used in time
sensitive applications without a proper parameter configuration that takes into
account the network’s dynamics and the error pattern.

Adaptive FEC mechanisms have been gaining an increased interest because
they allow for the redundant packets to be used according to the video and network
characteristics. For example, Unequal Error Protection (UEP) techniques allow
for the unequal allocation of redundancy to parts of the video. Making it possible
to better protect the most sensitive parts of the video, taking into account its
characteristics, therefore reducing the impact of packet loss on the video quality.
Through this it is possible to distribute the FEC redundancy in a way that best
meets predefined objectives.

2.2.2 Error Correcting Codes

A FEC code can be described as an algorithm that defines a sequence of symbols
such that any errors that are introduced can be detected and corrected based on
the remaining symbols. This section presents three categories of error correcting
codes: Linear Block Codes, Convolutional Codes and Fountain Codes, which are
also known as rateless erasure codes. The choice fell on these three types of
codes for the following reasons: Firstly, Linear Block Codes are simple and widely
used in research (Lecuire, 2012) (Immich et al., 2013) Hassan2010. Secondly,
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Convolutional Codes are used in mobile communication networks (Valenti and
Sun, 2001) (Raychaudhuri and Mandayam, 2012) and WiMAX (Andrews et al.,
2007) (Berrou et al., 2005) (Reddy and Lakshmi, 2013). Lastly, Fountain Codes,
due to their performance and efficiency (Digital Fountain, 2005) (Ahmad et al.,
2011).

2.2.2.1 Linear Block Codes

A block code is a rule for converting of source bits s, of length k, into a transmitted
sequence t of length n bits. To add redundancy, n is made greater than k. In a
linear block code, the extra n − k bits are linear functions of the original k bits,
which are called parity-check bits (MacKay, 2003).

• Reed-Solomon: The RS codes were developed in 1960 by Irving S. Reed
and Gustave Solomon (Reed and Solomon, 1960). They are mostly known
by their use in digital storage devices like CD, DVD and even Blu-Ray and
digital communication, namely WiMAX, space transmission and DVB-S.
According to (Jr. and Cain, 1981) and (Wicker and Bhargava, 1994) RS
codes can recover the maximum possible number of erasures for a given
transmission overhead. These codes are not very complex and therefore
provide the capability to achieve better performance in real-time services
(Neckebroek et al., 2010).

RS codes take k data symbols of s bits each, and then parity symbols are
added to construct a n symbol codeword. With the addition of these parity
symbols, a RS decoder can recover up to t symbols with errors in a given
codeword, where 2t=n-k.

In (Chen et al., 2005) the authors compare RS codes against Low Density
Parity Check (LDPC) over noise burst channels, which the results suggest
that non-binary LDPC codes offer an advantage in magnetic recording sys-
tems with a performance increase of about 2.7dB over Reed-Solomon codes
in burst noise error recovery for a frame error rate of 10−4. Reed-Solomon
can handle variable packet sizes with low additional overhead but with com-
putational complexity and performance implications (3GPP, 2005).

• Low Density Parity Check: Despite having been introduced by Gallager
in the 1960s (Gallager, 1963), LDPC codes were mostly overlooked for more
than 30 years, and were rediscovered by MacKay And Neal in 1995 (MacKay
et al., 1995). Further research has been developed by Luby, Shokrollahi et
al., which lead to the development of other codes such as Tornado (Byers
et al., 1998), LT (Luby, 2002) and Raptor (Shokrollahi, 2006). These codes
are known for approaching the Shannon Limit (MacKay and Neal, 1996),
this is, a noise threshold can be set very closely to the theoretical maximum
for a symmetric memory-less channel (MacKay, 2003). LDPC codes are
defined by a sparse parity-check matrix which is often randomly generated,
subject to the sparsity constraints. These codes are used in the DVB-S2
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standard (Eroz et al., 2004) for satellite transmission of digital television.
Also they were selected to be used in the ITU-T G.hn standard over Turbo
codes for their lower decoding complexity at operating data rates close to
1Gbps (Oksman and Galli, 2009). They are also used as part of the IEEE
802.11 standard, specifically, the optional part of IEEE 802.11n and IEEE
802.11ac, in the High Throughput (HT) PHY specification (IEEE, 2009).

LDPC codes usually use a Belief Propagation system to correct errors. Con-
sidering two types of nodes, check nodes and message nodes, all message
nodes send a message to all their connected check nodes with the bit they
believe to be correct. Every check node calculates a response with parity-
check equations using the messages they received from before. The use of
parity-check equations forces all message nodes that connect to a particular
check node to sum to 0. Finally, the message nodes then use the messages
from check nodes to decide the value of the bit by majority rule and send this
bit value to the check nodes. This must be repeated until all the equations
at all check nodes are satisfied.

2.2.2.2 Convolutional Codes

Convolutional codes, contrary to block codes, do not divide the source stream of
data into blocks, but instead read and transmit bits continuously. Convolutional
codes use streams of bits and symbols of arbitrary length which are transformed
according to a code rate of m/n, with n ≥ m, where m is the size of the original
symbol and n is the resulting symbol size. Convolutional codes take into account
a constraint length k, that represents the input bits from the original symbol used
to perform the transformation (MacKay, 2003).

• Turbo: Turbo codes were developed by Berrou, Glavieux and Thitima-
jshima in 1993 and were the first practical codes to come close to the channel
capacity (Berrou et al., 1993). They are widely used in 3G and 4G com-
munication networks specifically in the HSPA and LTE standards (Valenti
and Sun, 2001). Other applications include the satellite communication
systems’ interaction channel (ETSI, 2009), deep space communication and
IEEE 802.16 WiMAX in the form of block turbo codes and convolutional
turbo codes (Andrews et al., 2007) (Berrou et al., 2005). There are many
forms and instances of turbo codes, using different component encoders,
interleavers, input and output ratios, and even puncturing patterns.

A classic turbo encoder sends three sub-blocks of bits. The first sub-block
is composed by m-bits of payload data. The second sub-block contains
n/2 parity bits for the payload data, computed using a recursive systematic
convolutional code (RSC). The last block contains n/2 parity bits for a
known permutation of the payload data, computed by RSC as well. This
gives us a total size of the block of m+n bits of data, thus the code has a
rate of m/(m+n).
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2.2.2.3 Fountain Codes

Digital fountain codes, like LT codes, were invented by Luby in 1998, and they
work as follows. We can look at the encoder like a fountain that produces and
endless supply of encoded packets (water drops). If we take an original file of size
Kl bits, and each drop contains l encoded bits. To receive the encoded file, we need
to receive ”drops” until the number of ”drops” is a little larger than K. With these,
the original file can be recovered. Digital fountain codes are rateless in the sense
the number of encoded packets that can be generated form the source message is
potentially limitless, and the number of packets generated can be determined in
real-time. Regardless of the error/loss rates of the given channel, as many encoded
packets as are needed can be sent in order to successfully recover the source data
(MacKay, 2003).

• Raptor: Raptor error correcting codes are very popular due to their effi-
ciency (Digital Fountain, 2005). Raptor codes presently support all identified
Multimedia Broadcast Multicast Services (MBMS) requirements, like bearer
rates, file sizes, loss rates, packet sizes, packet size variability and protection
period for streaming without negative tradeoffs. A Raptor code is a type of
fountain code, capable of producing an unlimited sequence of encoded sym-
bols from a block of k fixed-length source symbols. These codes allow the
actual number of encoded symbols and thus the code rate to be determined
as needed to combat the current level of network packet loss (Digital Foun-
tain, 2005). The performance of the code in all cases is close to the ideal
code. Concerning resource consumption, Raptor codes have a low resource
consumption, requiring at the most 0.2% of the transmission resources of an
ideal code at high loss rates (10% Block Error Rate (BLER)). Compared
to Reed Solomon erasure codes they require much less processing power for
encoding and decoding, with this factor increasing linearly with the level of
provided protection. Raptor codes have a major drawback in that they are
heavily covered with patents and that makes them a poor candidate for use
in the proposed mechanism. Other drawback is the fact that they are not
systematic, which means that the original information is not contained in
the coded message. This causes problems to some applications that require
the original information for better performance.

2.2.3 Adaptive FEC approaches

Some adaptive mechanisms use packet loss information from an access point or
the receiver as a means to regulate the amount of redundancy sent (Hassan and
Landolsi, 2010) (Tsai et al., 2011a).

The adaptive packet and block length forward error correction (APB-FEC)
general architecture is presented in Figure 2.1. This scheme aims to solve the
problem of conventional packet level FEC by the use of smaller packet length,
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while increasing the FEC block length (Tsai et al., 2011a). In turn this reduces
the packet error rate and therefore enhances the recovery performance. Due to
the smaller packet size in each FEC block, the total size of the FEC mechanism
will not increase when the FEC block length is increased. This mechanism has
low recovery impact in the sense that a small lost packet is replaced by another
smaller redundant packet. The large block length can overcome a higher error
rate, as when the transmission has a high bit error rate, where the mechanism has
more opportunities to recover the error than a conventional FEC mechanism.

Figure 2.1: APBFEC Architecture
Source: (Tsai et al., 2011a)

When the sender has a video stream to send over the wireless network, it
buffers the stream at the video streaming buffer in the transport layer. The sender
then defines and adds the appropriate packet size and block size (n,k) depending
on the network environment. After the packet is received, the receiver checks all
the packets. If the number of packets with errors is less than or equal to (n-
k), the decoder recovers the error source packet by using FEC redundancy. The
mechanism calculates the average packet loss rate and burst packet loss length
which will be fed back to the sender. These informations are what the sender
relies on to decide the packet length and FEC parameters.

The results show that through the use of APB-FEC, which determines the
appropriate FEC mechanism parameters in order to avoid too many IP headers
and FEC redundancy overheads, does give better performance and PSNR (Peak
Signal-to-Noise Ratio) value than conventional FEC mechanisms.

Similar to the first mechanism presented in this section, the need for buffers
and the transmission of data from the receiver to the sender is not optimal, since
the buffers used introduce delay, which degrades video transmission. Also, there
is no guarantee that the data transmitted from the receiver to the sender arrives
correctly, thus limiting the usability of this mechanism.
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As an alternative to using feedback information from the receivers, other
mechanisms just use the video information present at the sender side to assign the
UEP accordingly (Talari et al., 2013) (Lecuire, 2012) (Immich et al., 2013).

An optimized cross-layer forward error correction coding scheme for H.264
AVC video transmission over wireless networks is proposed where FEC codes are
used at both the application layer and the physical layer (Talari et al., 2013). At
the application layer, Unequal Error Protection Luby Transform codes are used
(Rahnavard et al., 2007) (Rahnavard and Fekri, 2006). As for the physical layer,
the choice fell on rate-compatible punctured convolutional (RCPC) codes (Hage-
nauer, 1988). Figure 2.2 presents the architecture of the OCLFEC mechanism.

In the Moving Picture Experts Group (MPEG) standard as well as in H.264
AVC the video frames are grouped into Groups of Pictures (GoP) and each one is
encoded as a unit, in this case each GoP is comprised by 30 frames. A fixed video
part size is used, which leads to the aggregation of the macro blocks of a frame
to form a fixed video part size. This mechanism assigns different priorities to the
GoPs in order to compute the adequate FEC protection. The priority is assigned
through the commutative mean squared error (CMSE) of a video par which takes
into consideration the error propagation within the entire GoP.

The video parts can either be directly passed to the physical layer or en-
coded before being passed. When no encoding is performed at the application
layer, each video part forms and application layer frame and is given to the lower
network layers. When encoding is performed, LT-coded application layer frames
are generated, keeping the same size, thus increasing the number of frames to be
processed.

At the physical layer, cyclic redundancy check (CRC) bits are added to each
application layer frame to detect RCPC decoding errors. Next, the application
layer’s frames are individually encoded using the RCPC code.

The last step involves the optimization of the FEC codes with different pa-
rameters for different situation in order to maximize the PSNR for a given available
bandwidth.

The results show that this scheme outperforms other FEC schemes that use
only UEP at the physical layer, and it also outperforms schemes that use UEP
both at the application layer and at the physical layer.

The major drawback of this scheme is its optimization feature, in the sense
that it needs to be done prior to transmission for every specific video taking into
account the video’s characteristics. Since this scheme does not account for the
storage of the optimization information of different videos, its usability is limited
in the manner that the optimization process for each different video takes time
prior to transmission, thus not being suitable for real-time video transmission.

Regarding the Transport Audiovisuel avec Protection Inégale des Objets et
Contrôle d’Admission (TAPIOCA) system, it encodes the video data units of each
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Figure 2.2: Optimized cross layer FEC scheme Architecture
Source: (Talari et al., 2013)

layer separately as opposed to Priority Encoding Transmission (PET) systems,
which usually fill a block of packets with parts of data from all layers (Lecuire,
2012). The PET systems need to collect several video frames, or Group of Pic-
tures, before starting the encoding process. This in turn, means that a longer the
GoP size incurs in a larger delay. The longer GoP size also makes for a larger k
dimension (source data) and length n (redundancy data) of the erasure code, thus
needing more computation time to process the GoP.

Considering that the video stream is divided into several layers and that the
topmost one has the most significant data in the stream, the TAPIOCA system
computes the utility of the layers to adequately distribute the global ratio of FEC
overhead. Then, the video data unit is packetized into several packets of the same
size, with the last packet being padded if its size is not a multiple of the block
size. Then, the packets are encoded with Reed-Solomon codes. For each video
data unit to be transmitted, the optimal code dimension and length, and block
size are computed prior to encoding so that two conditions are satisfied. The
first is the lowest number of packets necessary to transmit the data unit with no
protection which represents the k original data dimension of the code; The second
is the value which minimizes the error margin or the n redundancy value of the
code.

The results show that the TAPIOCA mechanism is rather simple and the FEC
assignment scheme requires only a few simple calculations. It is shown that in the
most cases for MPEG-4 video streams, TAPIOCA achieves a decodable frame rate
significantly higher than that of a Priority Encoding Transmission with the same
ratio of FEC overhead.

This mechanism requires that the original video must be split by layers. This
means that if a video file is not already in this form, it needs to be transformed
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which requires pre-processing and ultimately means that the mechanism can not
be used in real-time.

The VIdEo-aWare FEC-based mechanism (ViewFEC) (Immich et al., 2013)
for packet loss resilient video transmission with unequal error protection has two
modules that compute several parameters at the network layer: Cluster Analysis
Knowledge basE (CAKE) and Cross-LAyer inforMation (CLAM). Figure 2.3
presents a general overview of the stages which constitute the ViewFEC mecha-
nism. The CLAM module supports the functions that will compute the parameters
for the required amount of redundancy needed so that video quality is good. It
accesses information like video characteristics at the application layer, from the
network layer, with its objective being the identification of the GoP length. The
larger the GoP, the larger the influence packet loss has over the video quality.
The CAKE module’s objective is to optimize video transmission, through the use
of a database with video and motion complexity that is built using hierarchical
clustering before the video distribution.

Figure 2.3: ViewFEC stages
Source: (Immich et al., 2013)

This mechanism can be implemented at access points, routers and the video
server due to its deployment flexibility derived from the decision-process being
at the network layer. Its flexibility comes from the possibility of changing the
modules to obtain the desired behavior. When a cross-layer approach is not a
viable way to obtain information from the application layer, for example in a
router or access point, the CLAM module can be exchanged for another that can
offer the means to obtain the desired information.

The ViewFEC mechanism is comprised of three stages. The first stage is
where information from the two modules is fetched, and the mechanism identifies



Chapter 2. Video Transmission Techniques 17

several important video characteristics, namely motion, complexity levels and GoP
length. In the second stage, more information from the video data is retrieved,
such as type and relative position of the frames inside the GoP. In the third stage,
the needed amount of redundancy is calculated and adjusted in real-time according
to the details obtained from the previous stages.

The results show that the mechanism outperforms non-adaptive FEC schemes
in terms of video quality, and especially network overhead. The overhead measured
was on average 40% less than while using a standard FEC mechanism. Therefore,
this adaptive mechanism is able to enhance video transmission without adding
unnecessary network overhead, which in turn leads to a better usage of the wireless
network resources. However, this mechanism only takes into account the module’s
informations when adding redundancy to the data. This means that it discards
the network information and cannot adequately adjust the amount of redundancy
for bursty networks or other problematic network states.

2.3 Hybrid Techniques

There are some hybrid schemes which combine the Automatic Repeat ReQuest
scheme with Forward Error Correction, thus trying to improve on the use of a
single mechanism. Hybrid schemes can work in different ways: they can simply
use a retransmission based scheme when loss is detected as in HARQ, or they
can use the receiver network information to adjust previously to transmission the
amount of redundancy and configuration of retransmissions as in AHECM. There
are also hybrid adaptive FEC schemes which make use of both retransmission and
adaptive FEC protection such as ACFEC (L. Han and In, 2010).

Hybrid Automatic Repeat ReQuest (HARQ) has two types of mechanisms.
Type one HARQ (Tsai et al., 2010) (Tsai et al., 2009) contains additional symbols
for error detection and correction in transmission blocks. This scheme repairs and
accepts a block in the receiver as the correct block, if the corrupted symbol count
is lower or equal to the maximum number of repairable errors. If the number of
errors is superior to the recoverable value, the scheme rejects the block and it is
retransmitted. The type two of the HARQ scheme (Moid and Fapojuwo, 2008)
(Le et al., 2007) does not discard corrupted blocks but keeps them in a buffer for
further processing. Only the stronger protection part of the previous corrupted
block is transmitted instead of the whole block. The decoder in the receiver is
used to repair the stored corrupted block according to the protection symbols.
Due to this, the type two scheme can preserve system resources such as network
bandwidth and CPU time. On the downside, present HARQ mechanisms cannot
retransmit packets to the receiver in time, this means that the video applications
on the receiver cannot use the data carried by packets that do not arrive in time.
These HARQ mechanisms also cannot dynamically adjust the FEC redundancy
according to network conditions, raising the probability for network congestion
due to inappropriate FEC redundancy.
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The Adaptive Hybrid Error Correction Model (AHECM) mechanism collects
meta-information about the average packet loss rate, the average Round-Trip Time
(RTT), and the available bandwidth at the receiver (Tsai et al., 2011b). When
meta-information changes due to channel or network conditions, AHECM makes
the receiver send the meta-information to the sender in order to adjust its pa-
rameters. With these updates, AHECM decides the appropriate FEC redundancy
for different video frame types. With information about the average RTT and
tolerable end-to-end delay at the receiver side, AHECM can find the maximum
retransmission slot time and retransmits the lost packet to the receiver in time
to reduce FEC redundancy. With information about the average packet loss and
the available bandwidth, AHECM can calculate the appropriate FEC parameter
to avoid network congestion and unnecessary FEC redundancy. When the end-
to-end requirement is met, AHECM will only transmit the necessary number of
redundant packets to the receiver.

Another alternative is a FEC and retransmission scheme to control the chan-
nel rate (Hassan and Landolsi, 2010). It takes into account that quality is seen as
the continuity of played back video, and measures it by monitoring the occupancy
of the playback buffer. Also, this scheme has a preloading phase that is used to
stabilize the playback in the ongoing transmission. This is done by always main-
taining a number of frames in the playback buffer to combat buffer underflow and
therefore starvation. In turn, this adds delay every time a transmission is started.

The video server encodes into frames the video information that will be pack-
etized at the link layer, which then passes them to the error control module which
adds to each of the packets a certain number of FEC bits according to the channel
state. The number of FEC bits is applied in a varied fashion to the packets of
the same video frame, according to information about the channel state and the
content of the playback buffer. At the receiver side, the received video frames
are decoded for playback, while information is sent to the video server about the
channel state and the occupancy of the decoder buffer. The control packets used
to relay information to the server are small, and this means they can adequately
be protected with FEC alone and/or higher SNR. This means that in theory the
feedback channel has less probability for the occurrence of errors. Also, this infor-
mation can be fed back through the out-of-band Real Time Streaming Protocol
(RTSP) control protocol. In turn, the video sender uses this information to opti-
mize the transmission parameters to send the next frame. If a packet is received
in error, it is discarded and a retransmission is requested.

As stated above, the existence of a playback buffer means that a startup delay
is present. Adding to this is the delay inherent to all retransmission mechanisms,
which can guarantee a certain level of packet delivery, but the downside is that
it may not be in-time and/or sequence. Therefore this means that this scheme is
not well suited for real-time video streaming applications.

The Adaptive Cross-layer FEC mechanism (ACFEC) operates at the wireless
access point and follows the integrated approach paradigm, focusing on the use
of functionalities from different layers (L. Han and In, 2010). The adaptive FEC
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controller cooperates with the UDP protocol and with the MAC protocol. It has
two main components, a FEC packet generator and a packet loss monitor which
are represented in Figure 2.4.

Figure 2.4: ACFEC Architecture
Source: (L. Han and In, 2010)

The video server encapsulates the video data in Real-time Transport Protocol
(RTP) (Schulzrinne, 1996) packets and delivers them to the receiver through the
wireless access point. When a packet arrives at the wireless access point, the
adaptive FEC controller analyses the header and identifies the type of the packet.
When a frame is sent, the access point does not send any more frames until
it receives an acknowledgement form the receiver. If the acknowledgement is
not received before the time-limit, the frame is sent again. The process stops if
the retransmission counter exceeds the limit of retries, and the frame is given as
lost. Traditional transport protocols do not use this information, contrary to the
adaptive FEC controller, which uses it to control the redundancy ratios adaptively.

When the packets are routed to a receiver through the wireless access point,
the adaptive FEC controller classifies the video data packets and groups them
into blocks, which are then stored in a buffer for FEC packet generation. The
packet loss monitor analyses the results of the video data packets transmission by
obtaining the failure information from the MAC layer. If a packet is lost, the loss
counter of the monitor is increased. After sending a block of video data packets,
the loss monitor calculates the number of redundant FEC packets to be generated.
Due to the fact that the packet loss monitor detects the number of losses in each
block, the ACFEC mechanism is able to accurately produce relevant amounts of
FEC packets for several different amounts of packet losses.

This mechanism has a major drawback that is the need to use a FEC controller
in a wireless access point, which has problems in terms of scalability. Therefore its
use in wireless mesh networks or Mobile Ad Hoc Networks (MANET) is somewhat
limited in the sense that each node is a router and this will add complexity and
strain its resources.

These mechanisms can surely improve the packet loss rate, which does not
properly mean that we can expect an increase in video quality. This is due to
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the fact that in video transmission, sometimes it is not only important to receive
the highest amount of packets possible, but also to receive them in time and in
sequence, or the user will experience buffering issues and stuttering.

2.4 Summary

Several techniques for error prevention and recovery that can be used in video
transmission were studied in this section.

Retransmission techniques, as the name implies, involve the retry of the trans-
mission of the data if it fails to arrive at the destination due to errors occurred in
route. There are many retransmission techniques ranging from simpler schemes
like Stop-and-Wait ARQ to more complex ones like Go-Back-N ARQ.

FEC techniques try to recover data before it is lost. They do so by adding
redundancy to the data to be sent with the help of Linear Block Codes, Con-
volutional Codes and Fountain Codes. This can be done in a static way, with
redundancy being the same for every frame of the video, or it can be done in
an adaptive way selecting the adequate amount of redundancy according to some
specific rule. Retransmission vs FEC.

Hybrid techniques merge both of the previous techniques to offer a more
complete protection of the data thus aiming to achieve better resilience against
data loss in video transmission.



Chapter 3

QoE Assessment Methods

Quality of Experience (QoE) represents the measurement of a user’s experience
with a service. This chapter addresses video QoE assessment approaches which
use several metrics to assess video quality as perceived by the user. It differs
from Quality of Service (QoS) in the sense that it assesses the performance of the
network in terms of the video quality after transmission, as opposed to the raw
performance of the network in terms of error rates, bandwidth, throughput, delay
and jitter. There are at least three kinds of evaluations that can be used to assess
the quality of experience, namely subjective, objective and hybrid. Subjective
approaches require the use of humans in order to assess the perceived quality of
the video, while objective approaches tend to use metrics that emulate in some
way the perception of a human viewer and its consequent assessment of quality.
Hybrid evaluation mechanisms usually employ some kind of subjective human
evaluation apart from the objective evaluation. Typically, this is done to calibrate
some kind of classification mechanism that will then be used to assess the video
quality without any human interaction.

3.1 Subjective Quality of Experience Evaluation

and Metrics

The subjective type of evaluation usually produces results to which users identify
themselves more closely. This occurs because there is no better indicator of quality
than the subjective evaluation given by a panel of human beings. Nevertheless,
this assessment depends on his/her own experience. It can also be impacted by
the user’s mood and by the responsiveness of the system as well as many other
variables that affect video quality in the system where the evaluation is occurring.
This type of evaluation consists in a group of human observers that evaluate video
sequences depending on their point of view and perception of the quality of the
video.

21
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The introduction of digital television compression produces scene-dependent
time-varying impairments to the picture quality. Due to this, the quality can
rapidly fluctuate depending on the content of the scene, which results in short
bursts of quality reduction. The conventional ITU-R methods alone, some of them
presented below, like Double-Stimulus Impairment Scale (DSIS), Double-Stimulus
Continuous Quality-Scale (DSCQS) and Single-Stimulus (SS), are not enough to
assess this type of material. As the double stimulus laboratorial testing does not
replicate the SS home viewing conditions, new subjective metrics which measure
the video quality continuously have been presented in (ITU-R, 2012), namely Sin-
gle Stimulus Continuous Quality Evaluation (SSCQE) and Simultaneous double
stimulus for continuous evaluation (SDSCE).

3.1.1 Mean Opinion Score

In multimedia, the Mean Opinion Score (MOS) provides a numerical indication of
the perceived quality from the users’ perspective of received media after compres-
sion and/or transmission. This translates as a single number ranging from 1 to
5, where 1 is the lowest perceived quality, and 5 is the highest perceived quality
measurement. It was originally designed to evaluate the quality of voice telephone
calls (ITU-T, 1994) (ITU-T, 2003), but is now widely used in video quality eval-
uation as well (ITU-R, 2012) (ITU-R, 2008). Although being accurate, this type
of assessment is costly in terms of human resources and time and is not viable for
on-line video evaluation.

3.1.2 Double-Stimulus Impairment Scale

In the double-stimulus impairment scale (DSIS) method (EBU method) (ITU-R,
2012) there must be a previous selection of test material to allow for a meaningful
evaluation, as well as the establishment of which test conditions should be used.
The double-stimulus (EBU) method is cyclic. The assessor is first presented with
an unimpaired reference, then with the same reference but impaired. In evaluation
sessions that last up to half an hour, a series of pictures or sequences in random
order and with random impairments are presented to the assessor. At the end of
the group of sessions, the mean score for each test condition and test picture is
calculated. This method uses the impairment scale, which usually finds that the
results are more stable for small impairments rather than large impairments.

3.1.3 Double-Stimulus Continuous Quality-Scale

The double-stimulus continuous quality-scale (DSCQS) method (ITU-R, 2012) is
thought to be especially useful when it is not possible to provide test stimulus
conditions that exhibit the full range of quality. This method is also cyclic as
DSIS, as the assessor is subjected to the viewing of a pair of pictures. One directly
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from the source and the other via the process under evaluation. Afterwards he
is asked to assess the quality of both. The sessions last up to half an hour, the
assessor is presented with a series of random ordered picture pairs, with random
impairments. At the end of the sessions, the mean scores for each test condition
and test picture are calculated.

3.1.4 Single-Stimulus Methods

In single-stimulus (SS) methods (ITU-R, 2012), a single image or sequence of
images is presented and the assessor provides an index of the entire presentation.
The test material can include only test sequences, or it might include both the test
sequences and their corresponding reference sequence. There are three types of
SS methods that have been used for television assessments: Adjectival categorical
judgement methods in which the observers assign an image or image sequence to
one of a set of categories that are defined in semantic terms; Numerical categorical
judgement methods use an 11-grade categorical scale and offer good sensitivity and
stability for the single stimulus numerical categorical scale when no reference is
available; Non-categorical judgement methods where observers assign a value to
each image sequence shown. The value assigned can be in form of a continuous
scale with semantic labels or a numeric scale with a defined range.

3.1.5 Single Stimulus Continuous Quality Evaluation

In the (SSCQE) method (ITU-R, 2012) an electronic recording handset is used to
obtain the continuous quality assessment from the subjects. The sessions are thirty
to sixty minutes long and consist of programme segments of at least five minutes
of duration, processed according to the quality parameters under evaluation. The
assessors continuously rate the video with the help of the mechanical slider in the
recording handset device.

3.1.6 Simultaneous Double Stimulus for Continuous Eval-
uation

The (SDSCE) method(ITU-R, 2012), involves the viewing of two sequences at
the same time, one is the reference sequence and the other is the test condition
sequence. The test session consists of a series of video segments and test condition
pairs in a pseudo-random order. Each session contains every video session and
test condition but not all the combinations of the two. Subjects are requested to
observe the differences in the two sequences and to continuously judge the fidelity
by moving the slider of the handset-voting device. The device has a scale of 0 to
100, being 0 the worst quality and 100 the best.
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3.2 Objective Quality of Experience Evaluation

and metrics

Since the subjective approach is not suitable for a practical real-time implementa-
tion, there are other approaches that comprise the use of algorithms and formulas
with the current network parameters and information to automatically give a re-
sult. These are called objective QoE metrics. Even though there have been recent
advances in the fields related with objective assessment of video image quality
following human perception, there are still some setbacks related to physiology,
psychology, sight research and computer science.

Regarding the way the metrics are developed we can still differentiate between
two sets, namely signal based techniques which are designed to analyse the sig-
nal, and techniques that are developed with basis on modelling the human visual
system and its reactions.

The main issue with Signal-to-Noise Ratio (SNR) based on other signal fi-
delity based techniques is that, although they are simple and widely used, they
can predict poorly the perceived video quality, namely when noise is not additive
(Karunasekera and Kingsbury, 1995) (Limb, 1979). Even though the physical al-
terations relative to Mean Squared Error (MSE), SNR and Peak Signal-to-Noise
Ratio (PSNR) can be observed in the video quality change, the above mentioned
signal fidelity based metrics fail to predict a human visual system (HVS) percep-
tion due to some problems. Firstly, not all changes in a video image are noticeable.
Secondly, through the user’s viewing, not every region of the image receives the
same level of attention. Thirdly, not every change applied to the video, be it in-
tentional or not, leads to distortion. And lastly, not every alteration to the video
has the same effect in perception with the same amount of change (Lin and Kuo,
2011).

Perceptual Video Quality Metrics (PVQM) are defined by the objective mod-
els that predict subjective visual scores. There are two categories of PVQMs:
vision-based modelling and a signal-driven approach. In the first category PVQMs
are developed with information from the systematical modelling of relevant psy-
chophysical properties and physiological knowledge like temporal, spacial and color
decomposition, contrast sensitivity function, luminance adaptation and masking
effects. The second category bases itself on signal extraction and analysis like sta-
tistical features, structural similarity, luminance or color distortion, and common
visual artifacts. In this last category, metrics take into account how pronounced
the features of the video image are, in order to estimate overall quality. In turn,
this does not means that the human vision system knowledge is disregarded, it
just means that image content and distortion analysis is the basis of the design.

Very important to the design of PVQMs is image/video decomposition, vi-
sual feature and artifact detection, just-noticeable distortion (JND) modelling and
visual attention (VA) map generation.
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Image/video decomposition follows the HVS in the sense that it has separate
processing for chromatic and achromatic signals, different visual pathways for
signals with fast and slow motion, and special cells in the brain’s visual cortex for
distinctive orientations. This leads us to the fact that by decomposing the video
image into its different constituents facilitates the evaluation of changes in the
signal, and unequal treatment of each signal component, just like in the HVS.

In features and artifact detection it is known that the detection of several
features of the signal and artifacts is a common component of visual quality eval-
uation. The HVS considers a bigger part of signal contrast than that of the
absolute signal strength, due to its specialized cells that process signal contrast.
In this sense, contrast is a central part of the Contrast Sensitivity Function (CSF),
luminance adaptation, contrast masking and VA. Adding to this, certain struc-
tural artifacts occur in the signal compression and network transmission process,
which in turn results in an annoying experience for the viewer. Some common
coding artifacts are blockiness, blurring, edge damage and ringing (Shen and Kuo,
1998) (Yuen and Wu, 1998). This is where traditional measures, such as MSE or
PSNR fail to reflect the perceptual effect the structural artifacts have.

The just-noticeable distortion modelling refers to a visibility threshold below
which a change cannot be detected by the majority if viewers (Jayant et al.,
1993) (Keelan, 2002) (Lin, 2005). This modelling addresses the problem of visual
similarity, and reflects the local characteristics of the HVS.

The VA refers to the selective awareness/responsiveness to visual stimuli
(M.M. Chun, 2001) (Bryan Kolb, 2008), as a consequence of human evolution.
There are two types of cues that shift attention to a particular point in the video
image: Bottom-up, which refer to the external stimuli; Top-down which are caused
by a voluntary shift in attention like when one is ordered to direct attention to a
specific location. The VA process can be regarded as having two stages: in the
pre-attentive stage, all information is processed across the entire visual field; in
the attention stage, the features may be bound together or the dominant feature
is selected. Most of the existing computational VA models are bottom-up, this is,
based upon the evaluation of contrast of several low-level features in video images,
with the objective to determine which locations exhibit a different behavior than
their surroundings.

Many of the existing schemes follow the methodolgy presented in Figure 3.1
where the original and distorted videos are decomposed and then pass through a
contrast gain control function. Finally the features of the information are com-
pared and a measure is generated. Some of model-based PVQM metrics are JND-
Metrix and Perceptual distortion metric for digital color video.

The signal-based PVQMs are where most of the recent research effort has been
directed to, dervived from the model-based PVQMs being more costly in terms
of computation, and also because of the disparity between the vision research
knowledge and the need for engineering the model previous to usage.
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Figure 3.1: Model-based PVQMs methodology
Source: (Lin and Kuo, 2011)

There are some metrics that make use of both PVQM categories like the
multi-metric objective picture-quality measurement model for MPEG video (Tan
and Ghanbari, 2000a) which switches between a model-based scheme and a signal-
based one, when the amount of blockiness in the video demands it. There is also
the Vision-model-based impairment metric (Yu et al., 2002) which is a model-
based metric that was used in blockiness dominated areas, through a signal-based
measure.

3.2.1 Categories of Objective Quality of Experience Met-
rics

Quality metrics can be generally classified into full-reference, reduced-reference
and no-reference with basis on the amount of information required from the ref-
erence video (Winkler, 2005).

3.2.1.1 Full-Reference

FR metrics perform a frame by frame comparison between the original video and
the test video. The entire referenced video is required in an unimpaired and
uncompressed form. This imposes some restrictions on the practical usability of
this type of metrics. Also, a precise spatial and temporal alignment of the two
videos is required in order to match every pixel in every frame between the two
videos. The registration of the temporal information is another strong restriction
in the sense that it can be very difficult to achieve due to frame drops, repeats
or variable delay. Furthermore, these metrics also do not respond well to global
shifts in brightness, contrast or color, and therefore they require a calibration of
the videos. PSNR, Structural Similarity Index (SSIM), Video Information Fidelity
(VIF) are some examples of full-reference metrics.
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3.2.1.2 No-Reference

NR metrics only analize the test video, without needing an explicit reference clip.
This makes these metrics more flexible than FR metrics as it can be difficult to
obtain the reference in some cases. It is possible to have some NR metrics that
combine the features of the video, like contrast, blurring, blockiness and motion.
And it is also possible to have single-factor NR metrics like blockiness (Tan and
Ghanbari, 2000b) (Wu and Yuen, 1997), blurring (Marziliano et al., 2002) (Wu
et al., 2007) and jerkiness (Chen and Thropp, 2007) (Yang et al., 2007). Since the
video can be classified according to four visual content classes (Oelbaum et al.,
2009), like low rate, blur, blocking and general. Different NR metrics must be
chosen to be applied to every different class of video, since a single NR metric
cannot be well tuned for all situations. Another challenge that NR metrics face is
that of the possibility of mistaking the actual content as distortion, a distinction
humans are able to make from experience. NR metrics always have to make
assumptions about the video content and distortions of interest.

3.2.1.3 Reduced-reference

RR metrics are a compromise between full-reference and no-reference metrics.
They retrieve a number of features from the reference video, and the evaluative
comparison of the videos is then based upon those features. This approach al-
lows the circumvention of some of the assumptions and drawbacks of no-reference
metrics while keeping a low amount of reference information. These metrics have
alignment requirements that are less restrictive than those of full-reference metrics,
as only the retrieved features need to be aligned.

3.2.1.4 Common Metrics

With basis on this classification we can attribute uses to each type of metrics. FR
metrics are more useful for offline video quality measurement, like codec tuning
or lab testing, where the conditions are well controlled and the precise evaluation
of the video is more important than the immediacy of the results. NR and RR
metrics have more use in monitoring or in-service video systems, where real-time
measurement is essential.

No-Reference metrics cannot be used singularly to assess several types of
videos. Since we have the whole original information set available Reduced-
Reference can be dismissed of use in this work. Therefore, below are presented
some of the most used and commonly known Full-Reference metrics (Sheikh et al.,
2006) (Pedersen and Hardeberg, 2009).

Peak Signal-to-Ratio (PSNR) is a widely used metric by researchers and is
very simple. It is the relationship between the maximum power of a signal and
the noise power that corrupts and affects the representation’s accuracy (Arun
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N. Netravali, 1995). It is defined form Mean Squared Error (MSE) between an
original frame o and the distorted frame d. The more similarity between the two
pictures the higher the PSNR value is, represented in dB. Some authors consider
that the PSNR value can be associated to a MOS for better understanding of
the results as shown in Table 3.1 The great drawbacks of PSNR are that it is
not suited to be used in real-time mechanisms because it can only be used on
the receiver side after the image is rebuilt, and also, that it does not consider
human perception, which can result in some video disruptions not being correctly
detected (Piamrat et al., 2009).

PSNR [dB] MOS
> 37 5 (Excellent)
31-37 4 (Good)
25-31 3 (Fair)
20-25 2 (Poor)
< 20 1 (Bad)

Table 3.1: PSNR to MOS convertion
Source: (Khan et al., 2010)

JNDmetrix is a model presented in (Lubin, 1995), where the Gaussian pyra-
mid is used for decomposition with luminance and chrominance components in the
video. There are several stages to the process. Taking two paired images, these
go through processes of simulating the response of the human eye due to its phys-
ical characteristics. The resulting values are then transformed into a Laplacian
pyramid with seven frequency bandpass levels. These go through filtering and
result in energy responses which mimic the response of the visual cortex. Finally
the pyramid levels are processed to take into account contrast and human foveal
sensitivity resulting in two vectors which represent each image. The result is a
spatial map of JND values, representing the degree of discriminability between the
two, and can be reduced to a single aggregate value, which shows the magnitude
and position of noticeable differences.

Structural similarity (SSIM) is presented in (Wang and Bovik, 2002) (Wang
et al., 2004) is a full reference metric which combines luminance, contrast and
structural similarity of the images to compare the correlation between the original
image and the one received. SSIM is designed to improve on other methods like
PSNR and MSE, which are inconsistent with the perception of the human eye.
The main difference between SSIM and, PSNR and MSE is that the latter estimate
perceived error and the former considers image degradation as perceived change
in structural information.

Video information fidelity (VIF), introduced in (Sheikh and Bovik, 2006) is
based on the random field (RF) from a subband from the test image D can be
expressed as D = GU + V , where U denotes the RF from the corresponding sub-
band from the reference image , G is a deterministic scale gain field, and V is a
stationary additive zero-mean Gaussian noise RF. This model takes into account
additive noise and blur distortion.
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The visual signal-to-noise ratio (VSNR) is a metric presented in (Chandler
and Hemami, 2007) which uses two stages. In the first stage, it computes the
contrast threshold for distortion detection in the image via wavelet-based models
of visual masking and visual summation, in order to determine if the distortion in
the test image is visible. If the distortion is below the threshold for detection, the
test image has perfect visual fidelity. If not, a second stage is used, which uses
the property of perceived contrast, and the mid-level visual property of global
precedence. The two properties are then modelled in terms of Euclidean distance
in the distortion-contrast space of multiscale wavelet decomposition and VSNR is
computed based on a simple linear sum of the distances.

The Video Quality Metric (VQM) improves on the PSNR and SSIM by de-
tecting artifacts perceived by humans on the images (Xiao et al., 2000), because it
is based on a simplified human spatial-temporal contrast sensitivity model. The
metric has five steps for the determination of quality. The first three are identical
to Watson’s Digital Video Quality (DVQ) model (Watson, 1998). The fourth step
is the conversion of local contrast (LC) to just-noticeable differences by applying
one spatial contrast sensitivity function (SCSF) matrix for static frames and one
matrix for dynamic frames in one step. The last step involves the weighted pool-
ing of mean and maximum distortion, where the two sequences (the original and
the transmitted one) are subtracted, and then contrast masking is incorporated
into a simple maximum operation and then it is weighted with the pooling means
distortion.

The perceptual distortion metric for digital color video metric presented in
(Winkler, 1999) is based on a contrast gain control model of the human visual
system that incorporates spatial and temporal aspects of vision as well as color
perception. This model achieves a close fit to contrast and sensitivity and contrast
masking data from several different psychophysical experiments of both luminance
and color stimuli.

3.3 Hybrid Quality of Experience Evaluation

The hybrid QoE metrics have a component of subjective evaluation as well as a
component of objective evaluation. The subjective evaluation is usually only done
once and it can then be used as many times as necessary in conjunction with the
objective parameters. To be noted that the subjective can be used several times
as a means to further refine the process.

3.3.1 PSQA

The pseudo subjective quality assessment (PSQA) (Mohamed and Rubino, 2002)
is based on statistic learning using random neural network (RNN). Before PSQA is
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used in real-time, it needs to perform three-steps beforehand. This process needs
to be done for each given application.

The first step is called Quality-affecting factors and Distorted Video Database
Generation. In this stage, a set of quality affecting factors with impact on quality
such as the codec, bandwidth, loss, delay and jitter are selected. This set of
parameters and their specific parameters is called configuration. After this a
distorted video database is generated by varying the configurations.

The second step is the Subjective Quality Assessment, where the chosen con-
figurations are evaluated by means of a subjective evaluation campaign. A panel of
human observers evaluates the distorted videos and the MOS is computed through
the average score of all the observers. The configurations and the MOS values are
stored in two separated databases called training and validation.

The last step is Learning of the quality behavior with RNN. The RNN is
trained to learn the mapping of configurations and scores defined in the training
database. Once the RNN is trained, a function f() comes into existence that
can map any possible value of parameters into MOS. The RNN is validated by
comparing the value given by f() at the point corresponding to each configuration
in the validation database.

After this, PSQA can be run anywhere in real-time. It is only necessary to
measure the parameters that affect the quality at a given time and then evaluate
these with the RNN to obtain the instant perceived quality.

3.3.2 HyQoE

The Hybrid Quality of Experience (HyQoE) mechanism presented in (Aguiar et al.,
2012) is a quality estimator specially designed to assess real-time multimedia appli-
cations. The HyQoE mechanism is designed based on the framework of the PSQA
tool. It is comprised of four main stages: (1) Quality-affecting factors in which
a set of factors relevant to service quality are defined as evaluation parameters.
They are then used in conjunction with a RNN to construct a correlation between
network level impairments and user level perceptual experience; (2) Generation
of a distorted video database. Ten videos were selected and were transmitted
through a Wireless Mesh Network which results in a realistic loss of quality; (3)
Subjective Quality Assessments where a panel of human observers evaluates the
generated database of distorted videos following ITU-T recommendations. The
results of subjective evaluation are then separated into two sets, one for training
and one for validation; (4) Learning about the quality behaviour through RNN
where a RNN constructs the structure and parameters of a HyQoE model aiming
to maximize the fit of the model output to the subjective ratings.

Once the RNN is trained and accordingly validated, the mechanism can be
used for real-time QoE prediction without any intervention by human viewers.
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The scores given by HyQoE are expressed in terms of MOS and are as close as
possible to those voted by human users.

The results show that HyQoE performs well compared to other common hy-
brid and subjective measurement schemes. Also, an improvement over PSQA of
17% for a GoP size of 10 is shown.

3.4 Summary

QoE assessment methods involve subjective, objective and hybrid approaches.

A subjective approach mandatorily involves the presence of a human partic-
ipant to perform the assessment and rate the quality of the video. These can be
very precise but the requirement of a human presence can be a hindrance in terms
of resources and real-time execution.

The objective approaches can be derived from the human physiology, signal-
based or model based. The human physiology based ones apply algorithms that
mimic the eye response to a certain stimulus for example. On the other hand
signal-based approaches take the values of the video signal and assess the quality
from the obtained values. They can be classified in three categories according to
the amount of information they use from the original source. These categories are
Full-Reference, No-Reference and Reduced-Reference.

Hybrid approaches combine both of the approaches to try to achieve a more
complete evaluation of the video quality.



Chapter 4

Mechanisms for Resilient Video
Transmission in Wireless
Networks

In order to ensure that a given video being transmitted over a wireless network ar-
rives with good quality for the user there are some methods that can be employed.
We suggest video motion intensity classification through the training and use of
a Neural Network mechanism and adaptive FEC techniques based on evolution-
ary computing to achieve this. The produced video motion intensity classification
scheme will allow for the configuration of the adequate initial parameters of the
FEC mechanism, so that the video already has beforehand, a better chance of
maintaining quality than if no protection was used. The developed adaptive FEC
mechanism, selects the way that a specific part of the video is given more pro-
tection following an evolutionary ant colony algorithm. It dynamically changes
the amount of redundancy to be attributed, through the complex relation between
the of monitoring several parameters of the video/network and path finding. This,
ensures that during transmission, the parameters are regulated in order to quickly
respond to changes in network state that can negatively impact the video quality.

4.1 Video Content Classification according to mo-

tion intensity

Video streams can have different and varied complexity in terms of movement
(Khan et al., 2010). This means that as videos have different motion intensities,
some of the information has greater importance such as the one that describes
movement in contrast to the information that describes a still part of the image
and therefore has less importance. Therefore, these streams or video files do not
behave the same way under loss conditions depending on from which part of the
video was the information lost.

32
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In video compression different algorithms are used and produce several frame
types according to the Moving Pictures Expert Group (MPEG) standard (ITU-T,
2013), I, P and B. An I frame is a complete picture in the sense that it holds
all the information needed to construct a video image. The P frame or predicted
picture contains a small quantity of spatial information and temporal information
about the changes in the picture. Finally, the B frame only contains temporal
information and is specified as the differences between the current frame and both
the previous and the following frames. According to this classification, the loss of
a I frame on a still video does not have the same impact as the same loss in a video
with greater movement complexity. This is because the P and B frames need the
information from a I frame to produce the correct video images. Therefore in a
video with a larger quantity of motion, the loss of a I frame will produce a more
severe impairment.

Therefore, in order for the proposed mechanism to improve the quality of
experience on the receiving end, the video content being sent must be categorized
(Khan et al., 2010) in a way that the amount of redundancy can be optimized
taking into account the movement characteristics of the video and motion intensity.
It is possible to do this with several methods like Cluster Analysis, Principal
Component Analysis and Neural Networks.

4.1.1 Cluster Analysis

In Cluster Analysis or Clustering, objects are grouped such that the objects in the
same group or cluster have greater similarity to each other as opposed to those
in other groups or clusters. Cluster analysis is a technique for statistical data
analysis that is used for image analysis (Immich et al., 2013) (Khan et al., 2010)
as well as pattern recognition (Jain et al., 2000), information retrieval (Manning
et al., 2008) and bioinformatics (Sturn et al., 2002).

The clustering algorithm and parameter settings to use depend on the given
individual data set and intended use of the results. The process is iterative and
comprises knowledge discovery and interactive multi-objective optimization which
involves trial and error, often being necessary to modify the data preprocessing
and model parameters to achieve the desired results. Since the notion of a cluster
cannot be precisely defined, this produces the wide variety of clustering algorithms
in existence (Estivill-Castro, 2002). Despite this, there are several typical cluster
models.

Hierarchical clustering (Johnson, 1967) is based on distance connectivity thus
a connectivity model. Objects are more related to nearby objects than to those
that are farther away. These are connected to form clusters based on their distance.
Objects at different distances form different clusters which are represented by a
dendrogram which is a graph that represents clusters.

Centroid-based Clustering (Radev et al., 1999) is the model in which cluster
are defined by a central-vector, which does not need to be a member of the data
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set. K-means clustering (Marroquin and Girosi, 1993) is used when the number
of clusters is fixed to k. This turns into an optimization problem where the goal
is to find the k cluster centers and assign the objects to the nearest cluster center,
where the squared distances from the cluster are minimized.

In Distribution-based Clustering (Xu et al., 1998) clusters are defined as ob-
jects which belong to the same distribution. This type of clustering can suffer from
overfitting, which occurs when the model is excessively complex and describes ran-
dom error or noise instead of the underlying relationship. One typical method of
this type of model is the Gaussian mixture (Banfield and Raftery, 1993) where the
expectation-maximization algorithm is used and overfitting is avoided by using a
fixed number of Gaussian distributions which are randomly initialized and with
parameters that are optimized to fit better with the data set.

Density-based Clustering (Kriegel et al., 2011) is the method in which a clus-
ter is defined as an area with higher density of objects than the rest of the data.
The objects which stand on the sparse areas are considered to be noise and bor-
der points. This method can feature a well-defined cluster model which is called
density-reachability (Ester et al., 1996). It is based on the connection of points
which satisfy a fixed distance limit. The objects are only connected if they satisfy
a density criterion which is specified as the minimum number of objects within
the radius.

Cluster analysis is good for grouping data where there are many groups.
Its limitations reside on the approaches to identify and define the clusters, as
different methods can achieve different results. Due to this, this mechanism is of
an exploratory nature, which means it is used to find relationships and group data
in order to be used for something else. These facts mean it is clearly not suitable
for video motion intensity classification in real-time.

4.1.2 Principal Component Analysis

Principal Component Analysis is a method that analyses a data set representing
observations described by several dependent variables (Abdi and Williams, 2010),
which are generally inter-correlated. It aims to extract the important information
from the data table and to express this information as a set of new orthogonal
variables called principal components. PCA also represents the pattern of simi-
larity of the observations and the variables by displaying them as points in maps
(Jolliffe, 2005) (Saporta and Niang, 2009).

The goals of PCA are divided in four steps. The first is the extraction of the
most important information from the data set. The second involves the compres-
sion of the size of the data set by keeping only important information. The third
allows for the simplification of the description of the data set. Finally, the fourth
step is the analysis of the structure of the observations and the variables.

To fulfil these goals, PCA computes new variables called principal components
which are obtained as linear combinations of the original variables (Abdi and
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Williams, 2010). The first component is required to have the largest possible
variance (inertia) which extracts the largest part of the inertia from the data table.
The second component is computed under the constraint of being orthogonal to
the first one, and to have the largest possible inertia. The remainder of the
components are calculated likewise. The values that these new variables give are
called factor scores and can be interpreted geometrically as the projections of the
observations onto the principal components.

If we take into account a set of points in Euclidean space, the first compo-
nent corresponds to a line that passes through the multidimensional mean and
minimizes the sum of squares of the distances of the points from the line. The sec-
ond component corresponds to the same process after all the correlation with the
principal component has been subtracted from the points. PCA rotates the set of
points around their mean in order to align with principal components, which moves
as much of the variance as possible into the first two dimensions. The remaining
values from the other dimensions can be discarded as they are small and represent
a very small amount of information. PCA is therefore the optimal orthogonal
transformation that keeps the subspace with the largest variance. However this
comes at the price of great computational requirements when compared to discrete
cosine transform.

The applicability of PCA is limited by certain constraints (Shlens, 2005) and
its results depend on the scale of the variables. In turn this can cause problems
to arise when the variables have different units. This means that they are not in
an Euclidean space (Pearson, 1901), which makes PCA an arbitrary method of
analysis.

PCA is good for finding patterns in data and to represent the data in a manner
it highlights its similarities and differences. The main disadvantages of PCA are
that it tends to reduce the data to its simpler, reduced form. Also it does not suit
the necessity for a mechanism that can classify video in real-time according to its
characteristics.

4.1.3 Neural Networks

Neural Networks or Artificial Neural Networks (ANN) (Abraham, 2005) in terms
of computer science and artificial intelligence are computational models inspired
by biological central nervous systems, which are able to go through the process
of machine learning and pattern recognition. These networks are represented by
neurons and their interconnections, where the inputs are computed into values by
passing information through the network.

The artificial neurons or nodes, are the basic constitutive units of an artificial
neural network and their function is to receive one or more inputs and to sum
them to produce an output as shown in Figure 4.1.

Typically the sums of each node are weighted, and the resulting sum is passed
through a non-linear function which is known as an activation function. A simple



Chapter 4. Mechanisms for Resilient Video Transmission 36

Figure 4.1: Artificial Neuron
Source: (Abraham, 2005)

representation of this type of model is one with three layers as represented in
Figure 4.2. One for input with input neurons which send data via synapses to
the second layer, usually called the hidden layer, and from there, the data is sent
again via synapses to the third layer of output neurons.

Figure 4.2: Artificial Neural Network
Source: (Abraham, 2005)

The parameters called weights are stored in the synapses, that manipulate
the data in the calculations and serve the purpose of the neural network’s learning
process. Neural networks have the possibility of learning, going from a given task
and a class of functions, they use a set of observations and find which optimally
solves the task. For this a cost function must be defined in equation 4.1, such
that for the optimal solution, no other solution has a lower cost.

C : F → R (4.1)

f : X → Y (4.2)

The cost function is a measure of how far away a determined solution is from
the optimal one. The choice of the cost function depends on the desired task. A
neural network has to be configured in such a way that the use of a set of inputs
produces the desired outputs. There are several methods to set the strengths of



Chapter 4. Mechanisms for Resilient Video Transmission 37

the connection between the nodes. One of these methods is to explicitly set the
weights, using previous knowledge. Another way is to train the neural network by
feeding it teaching patterns and letting it change the weights according to some
learning rule. The three main sorts of learning tasks are Supervised Learning,
Unsupervised Learning and Reinforcement Learning.

4.1.3.1 Neural Network Learning

In Supervised Learning a set of example pairs is given and the goal is to find
a function as shown in Equation 4.2 that matches the examples. A commonly
used cost function is the mean-squared error, which tries to minimize the average
squared error between the network’s output and the target value over all the
example pairs. When the cost is minimized by gradient descent for the class
of neural networks called multilayer perceptrons, the backpropagation algorithm
for training neural networks is obtained. Supervised learning uses a function to
provide continuous feedback on the quality of the solutions and is useful for pattern
recognition, also known as classification and regression or function approximation.

In Unsupervised Learning only some uncategorised data is given as well as
the cost function to be minimized, which can be any function of the data, and
the output of the network. The system is supposed to discover statistically salient
features of the input population. The cost function is dependent on the task and
on the previously defined assumptions about the model or variables/parameters.
The tasks that can be performed by unsupervised learning are estimation problems
like clustering, statistical distributions, compression and filtering.

Reinforced learning is the task where no data is given, but is generated by an
agent’s interactions with the environment which is modelled as a Markov decision
process. The agent performs a determined action in a given time, and the environ-
ment generates an observation as well as an instantaneous cost. The goal is to find
a policy defined as a conditional distribution over actions given the observations
for the choice of actions that minimize some measure of a determined long-term
cost. If we take the environment and the policy together, their combination de-
fines a system which we a Markov Chain. The tasks performed by reinforcement
learning are control problems, games and sequential decision tasks.

These techniques result in an adjustment of the weighted connections between
the neurons with the help of a modification rule. One of the most influential
contributions was that of Hebb (Hebb, 2002), by presenting a theory of behaviour
close to the physiology of a biological nervous system. The concept of learning
emerged in the sense of how it occurred. It is based on the modification of the
synaptic connections between neurons. Basically when an axon of a determined
cell is near enough to another in order to excite it, and this second cell takes part
continuously in firing it, a metabolic change or growth process takes place in one
or both the cells in a way that the efficiency of the first cell in firing the second
is increased. This process is then called Hebbian Learning, which is the base for
most of neural networks’ learning techniques. The point is that if two neurons are
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active at the same time, their connection must be strengthened. The downside of
Hebbian Learning is that it continually strengthens the weights without bound if
the input data is not normalized.

The perceptron is a single layer neural network with weights and biases can
be trained to produce a correct target output when fed with the corresponding
input (Raudys, 1998). The training technique for this is called the perceptron
learning rule and this mechanism is particularly suited for simple problems in the
classification of patterns. This procedure is very similar to Hebbian Learning with
the only difference being that when the network responds correctly, no weights are
modified. To build on the simplicity of these mechanisms comes backpropagation
learning.

To build upon the simplicity of these mechanisms comes backpropagation
learning. While the simple perceptron is not able to handle anything more than
linearly separable or linearly independent problems. Backpropagation takes the
negative of partial derivative of the error of the network and adds it to the weight.
This decreases the error until it reaches a local minima. In other words, if the
error is increasing with the increase of weights, a negative value must be added
to the weight and vice versa. Because this process takes place from the output
layer to the hidden layer and then to the input layer, this algorithm is called
backpropagation learning.

Also related to training are two different modes in which it can be performed,
namely online and batch modes. In the online mode the weight updates are
computed for each input data sample, and the weights are modified after each of
the samples. In batch mode, the weight update is computed for each sample but
is then stored through the execution of the training set which is called an epoch.
At the end of the epoch, all the contributions are added and the corresponding
composite weight update is performed. This method follows the gradient more
closely due to the cumulative weight update.

4.1.3.2 Types of Artificial Neural Networks

There are several types of Artificial Neural Networks inspired in the real life be-
haviour of neurons and the electrical messages they produce.

The Feed-forward Neural Network (Bebis and Georgiopoulos, 1994) is prob-
ably the most simple type or artificial neural network besides the perceptron. In
this type of ANN, the data only moves in one direction which is forward, as there
are no directed cycles or loops in the network. They can be built from the pre-
viously mentioned perceptron in a single-layer form and in a multi-layer form.
In the multi-layer perceptron form, each neuron of a layer has connections to the
neurons of the next layer. Usually the activation function in these types of units is
a sigmoid function. The most popular learning technique in multi-layer networks
is the backpropagation algorithm which was previously described. By using it, the
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network converges to a state where the error is minimized. The use of backpropa-
gation is hindered if the number of training samples is small because the network
can overfit the data and fail to capture the true statistical process generating the
data. Another problem of backpropagation is the speed of convergence and the
possibility of stalling in a local minimum of the error function.

In the Radial Basis Function Network (Lippmann, 1989) radial basis functions
(RBF) are used as activation functions (Broomhead and Lowe, 1988). A RBF is
a powerful technique for interpolation in multidimensional space in which it is a
function that has built into a distance criterion with respect to a center. They
can be used as a replacement to the sigmoidal hidden layer activation function
of multi-layer perceptrons in feed-forward networks. The RBF network has two
layers of processing. In the first, the input is mapped onto each RBF in the
hidden layer, usually through a Gaussian distribution. When they are used in
regression problems, the output layer is a linear combination of hidden layer values
representing mean predicted output, where the output value is interpreted in the
same way as a statistics’ regression model. In both cases the performance is
improved by a shrinkage technique known as ridge regression which corresponds to
using small parameter values to produce smoother output functions in a Bayesian
framework.

These networks do not suffer from the local minima problem in the same way
as the multi-layer perceptrons, because the only parameters that are adjusted in
the learning process are the linear mappings from the hidden layer to the output
layer. The disadvantage of RBFs is that they require good coverage of the input
space by the radial basis functions. This is because RBF centres are determined
with reference to the distribution of the input data but without reference to the
prediction task, which leads to a waste of representational resources on irrelevant
areas of the input space for the learning task.

Recurrent Neural Networks are models with bi-directional data flow where
data is also propagated from later processing stages to previous stages. They
can follow several architectures, such as the fully recurrent network, the Hopfield
network (Hopfield, 1982), the Elman network (Elman, 1990) and Jordan network
(Jacobs and Jordan, 1993) and more. The fully recurrent network is the basic
architecture where each neuron has a directed connection to every other neuron as
shown in Figure 4.3. Each of the neurons has a time-varying real-valued activation
and each connection has a modifiable real-valued weight. Some of the nodes are
for input and output and the rest are called hidden nodes. For supervised learning
training sequences of real-valued inputs become sequences of activations for the
input nodes, one input at a time. There can be teacher-given target activations for
some of the output units at certain points in time. At any time-step the non-input
units can compute their current activation as a non-linear function of the weighted
sum of the activations of all units from which it receives connections.

The error for each sequence is the sum of the deviations of all target signals
from the corresponding activations computed by the network, which for a training
set with numerous sequences, corresponds to the total error being the sum of the
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Figure 4.3: Fully Recurrent Neural Network

errors of individual sequences. For reinforcement learning there are no teacher-
given targets. Instead, a fitness function or reward function is used to evaluate the
performance of the RNN, which influences the input stream through output units
connected to actuators affecting the environment. To minimize the total error,
gradient descent can be used to change each weight in proportion to its derivative
with respect to the error, granted that the activation functions are differentiable.

Random Neural Networks are simplified models of biophysical neural be-
haviour described in (Kandel et al., 2000), in which the neurons exchange spiking
signals to modify an integer value in the neuron. At any time t, the state of a
neuron i can be described by its signal potential ki(t) which is the integer associ-
ated with the added positive signals received by the neuron. A neuron is excited
if ki(t) > 0 and is idle or quiescent if ki(t) = 0. Equation 4.3 shows the excitation
probability of a neuron.

qi(t) = Pr[ki(t) > 0] ≤ 1 (4.3)

The random neural network is a recurrent model in the way that it is allowed
to have complex feedback loops. Some interesting features of the random neural
network are the closer representation of the manner in which signals are transmit-
ted in a biophysical neural network where they travel as spikes rather than as fixed
analogue signals. Also, they are easy to simulate and implement, as each neuron
can be simply represented by a counter. Also, the neuron potential is represented
as an integer which leads to more detailed information on system state, since a
neuron is in a firing state if the potential is positive. The spikes can originate
from outside the network or they can come from other cells in the network. Cells
with a positive excitatory state can randomly send out spikes according to the
exponential distribution presented in equation 4.4 with rate ri. If a neuron fires,
its total input potential is reduced by one. The signal can reach another neuron as
a positive signal with probability P+(i, j) or as a negative signal with probability
P−(i, j), or it departs from the network with probability d(i). These probabilities
must sum up to equation 4.5. When a neuron is excited it fires positive and
negative signals with the rates shown in equations 4.6 and 4.7.
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ri = (d(i))−1
N∑
j=1

[w+(i, j) + w−(i, j)] (4.4)

N∑
j=1

[p+(i, j) + p−(i, j)] + d(i) = 1,∀i (4.5)

w+(i, j) = rip
+(i, j) ≥ 0 (4.6)

w−(i, j) = rip
−(i, j) ≥ 0 (4.7)

The signals that arrive from the outside of the network are represented by
Poisson processes of rates Λi and λi. The neuron’s potential rises by one if it
receives an excitatory spike, and drops by one if it receives an inhibitory spike.
Nevertheless if the value is zero, receiving an inhibitory spike has no effect on the
signal.

At a time t, the state of the network is described by the vector of signal
potentials k(t) = [k1(t), ..., kN(t)]. The stationary probability distribution can be
described by the steady-state Chapman-Kolmogorov equations 4.8 for continuous
time Markov chain systems.

π(k)
N∑
i =1

[Λi + (λi + ri)1ki<0]

=
N∑
i=1

{
π(k+

i )rid(i) + π(k−i )Λi1ki>0 + π(k+i )λi

+
N∑
j=1

[
π(k+−ij rip

p(i, j)1kj>0 + π(k++
ij rip

−(i, j) + π(k+i )rip
−(i, j)1kj=0

]}
(4.8)

The values of the stationary parameters of the network, the stationary excita-
tion probabilities and the stationary probability distribution, are derived from the
total arrival rates of the positive and negative signals λ+(i) and λ−(i), i = 1, ...N
that are given by the equations found in the theorem (Gelenbe, 1989) from 4.9
through 4.11.

λ+(i) = Λi +
N∑
j=1

rjqjp
+(j, i) (4.9)
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λ−(i) = λi +
N∑
j=1

rjqjp
−(j, i) (4.10)

qi = min

{
1,

λ+(i)

ri + λ− (i)

}
(4.11)

The theorem shows that whenever a solution to the signal flow can be found
such that qi < 1,∀i, therefore the stationary joint probability distribution of the
network has the simple product form of equation 4.12 associated with the marginal
probabilities from each neuron, πi(ki).

π(k) =
N∏
i=1

πi(ki) =
N∏
i=1

(1− qi)qkii (4.12)

Thus, the condition qi < 1 is a stability condition that guarantees that the
excitation level of each neuron remains finite with probability one. The prod-
uct form implies that the neurons are independent even though they are coupled
through the exchanged signals. The network is stable if the signal potential of
each neuron does not tend to increase without bounds. In order words, stability
is guaranteed if a unique solution exists for the non-linear system of equations
4.9- 4.11 and qi < 1, ∀i. Furthermore, if a solution exists with qi < 1,∀i then
it is unique (Gelenbe, 1990). This is shown by taking equations 4.9- 4.10 and
eliminating the qi terms and combining them to obtain equation 4.13.

λ−−λ = λ+FP− = Λ(I−FP+)−1FP−λ−,λ+,λ,Λ,∈ R1×NandI,F,P± ∈ [0, 1]N×N

(4.13)

λ±,Λ and λ are vectors that represent the total and external arrival rates of
excitatory-inhibitory signals, P+ and P− are square matrices whose elements are
the transition probabilities p± (i, j), I is the identity matrix and F is a diagonal
matrix with elements fii = ri/(ri + λ−(i)) ≤ 1. Because P+ is sub-stochastic
and all elements of F are smaller than 1, the series

∑∞
m=0(FP+)m is geometrically

convergent we have equation 4.14.

(I− FP+)−1 =
∞∑
m=0

(FP+)m (4.14)

By defining y = λ− − λ the system can be written in the fixed point form
shown in equation 4.15.
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y = g(y) =
∞∑
m=0

(FP+)mFP− (4.15)

The implication of this is that according to Brouwer’s fixed point theorem,
equation 4.15 has at least one fixed point solution. In this case, exactly one point
must exist y∗ since solution uniqueness has already been established, therefore a
solution to equations 4.9- 4.11 always exists and is unique.

With respect to learning in the random neural network, Gelenbe proposed an
approach based on gradient descent supervised learning, where the training exam-
ples represented by k are sequentially processed and the weights of the network
are updated according to the gradient descent rule until a minimum of the error
function is reached. Assuming that the error function to be minimised is a general
quadratic function as shown in equation 4.16 where Ek is the error function of
the kth input-output pair, ci ∈ 0, 1 shows whether neuron i is an output neuron
and fi(qik) is a differentiable function of neuron i.

E =
K∑
k=1

Ek =
1

2

K∑
k=1

N∑
i=1

ci(fi(qik)− yik)2 (4.16)

The generic term w(u, v) denotes either w+(u, v) or w−(u, v) and the rule for
updating the weights using the k− th input-output pair at step (τ + 1) is defined
by equation 4.17.

wτ+1(u, v) = wτ (u, v)− η
[

∂Ek

∂w(u, v)

]
τ

(4.17)

The partial derivative of the error function with respect to w(u, v) can be
calculated based on equation 4.16 and results in equation 4.18, where []τ defines
that all the calculations are performed using the weight values of step τ and the
qik values are derived from solving equations 4.9- 4.11 when the current weights
(wτ (u, v)) are used.

[
∂Ek

∂w(u, v)

]
τ

=
N∑
i=1

ci(fi(qik − yik)×
[
∂fi(qi)

∂qi

∂qi
∂w(u, v)

]
τ

(4.18)

Gelenbe reached equation 4.19 which is the derivation of a closed expres-
sion for the term [∂qi/∂w(u, v)]τ from equations 4.17- 4.18 that depends on the
nonlinear system of equations 4.9- 4.11.

∂q

∂w(u, v)
= γ(u, v)(I−W)−1 (4.19)
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The steps for the gradient descent learning algorithm are then the following:
Firstly, initialize the weights w+(u, v) and w−(u, v)∀u, v and appropriately choose
the learning rate η. Secondly for each successive input-output pattern k, initialize
Λik and λik according to xik which are the training values, then solve the system
of equations 4.9- 4.11 using the current weight values. Based on the values ob-
tained, calculate W, γ+(u, v) and γ−(u, v),∀u, v. Calculate [∂q/∂w+(u, v)]τ and
[∂q/∂w−(u, v)]τ according to equation 4.19. Update the weights from equations
4.17- 4.18. To satisfy the weight non-negativity constraint either the negative
values can be set to zero or the iteration can be repeated with a smaller value
of η. The last step implies the repetition of the second step until convergence is
reached.

RNNs are used in (Mohamed et al., 2004) for evaluation of the quality of
real-time speech in a packet network. In (Mohamed and Rubino, 2002) they are
used to quantify the quality of a video flow. The results from that study show
that they correlate well with the human perception.

Neural Networks in general are useful for video classification. They can be
trained with a determined set of training videos from different classes so that they
produce results that distinguish each video class accurately. Then, they can be
used with a random video that needs to be can classified and identify the class it
belongs from according to the training.

Neural networks are highly successful in pattern recognition and classification
problems. This results from their capability for learning and generalization. By
training the network successfully with an adequate range of video samples, we
can afterwards use it to classify a given video file or part according to the com-
plexity of the movement present in the scene. This is useful as we can then feed
this information to the adaptive FEC mechanism so it can define the amount of
redundancy needed for optimal QoE according to the network conditions.

4.2 Adaptive Forward Error Correction

Static FEC mechanisms use a fixed amount of redundancy for error protection.
This means that every video unit has the same protection as any other. While this
may seem fair, in reality it results in poor usage of the available and sometimes
scarce network resources. Not every video unit needs the same quota of error
protection due to the different characteristics of the video units or the state of
the network. The excessive and indiscriminate use of redundancy can ultimately
lead to network congestion. This can be overcome if an adaptive FEC mechanism
is used based on optimizing the amount of redundancy to fit the needs of the
characteristics of the video and of the state of the network. Some mechanisms
that can be used to optimize the error protection allocation problem can be Game
Theory, Heuristics and Ant Colony Optimization.
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4.2.1 Game Theory

Game Theory (GT) or interactive decision theory, is presented in (Myerson, 2013)
as the study of mathematical models of conflict and cooperation between intel-
ligent rational decision-makers. When game theory was invented, it was used
for zero-sum games where one of the player’s gains are exactly equal to the net
losses of the other players. The Nash Equilibrium (NE) is a strategic equilib-
rium discovered by Nash for non-cooperative games. The NE states that if each
player has chosen a strategy and no player can benefit by changing strategies
while the other players keep theirs, then the current set of strategy choices and
the corresponding payoffs constitute a NE (Nash, 1951). GT was initially used in
Economics (Von Neumann and Morgenstern, 1944) to understand a large set of
behaviours, but has expanded to Social Sciences (Krishna, 2009), Biology (Hof-
bauer and Sigmund, 1998), Political Science (Morris et al., 1986) and Computer
Science (Roughgarden, 2004).

The games which are studied in GT are well-defined mathematical objects.
To fully define a game, we must specify the players of the game, the information
and actions available to each player at a determined decision point and the gains
for each outcome. These elements are used in conjunction with a solution concept
to construct a set of equilibrium strategies for each player such that, when they
are employed, a player can not profit by unilaterally deviating from their strategy.
These equilibrium strategies determine a stable state in which either one outcome
occurs or a set of outcomes occur with known probability. There are several forms
in which games can be represented like the extensive and normal form which are
used to define noncooperative games and the characteristic form function which
is used to define most of the cooperative games.

The extensive form is used to formalize games with a time sequencing of moves
and can be seen as a multi-player generalization of a decision tree (Fudenberg and
Tirole, 1991). Games are played on trees where each node represents a point of
choice for a player. The player is specified by a number listed on the node, and
the lines out of the node represent a possible action for that player. The payoffs
are specified at the bottom of the tree.

The normal form is usually represented by a matrix which shows the players,
strategies and payoffs. If we generalize, this form can be represented by any
function that associates a payoff for each player with every possible combination
of actions. In this strategy, one player chooses the row and the other chooses
the column. There are as many strategies in the game for each player as there
are rows or columns respectively, whose payoffs are represented in numerical pairs
inside the matrix. In normal form games it is presumed that each player acts
simultaneously or without knowing the actions of the other.

In games which have removable utility separate, the rewards are not given
and the characteristic function decides the payoff of each unity, where if a unity is
empty, it does not receive any reward. A characteristic function is seen as (N, v),
where N represents the group of people and v : 2N → R is a normal utility.
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Games in game theory can be classified according to various types (Osborne,
1994):

• Cooperative, if the players are able to form binding commitments, or non-
cooperative, if not. The latter can model games to the finest detail.

• Symmetric when payoffs for a particular strategy depend only on the other
strategies used with no regard for the player who is playing them, and asym-
metric when the strategy sets are not identical for both players.

• Zero-sum when the games do not increase or decrease the available resources
and the sum of all the benefit to all players always adds to zero, this is what
one player wins, another player must loose. In non-zero-sum, a gain by one
player does not necessarily imply a loss by another.

• Simultaneous are those games where players move at the same time or do
not have knowledge of other players movements, and sequential games are
those where one plays with some knowledge about previous actions.

• Perfect information if all the players know the moves previously made by all
other players and imperfect information if there is some omission of infor-
mation about previous moves.

• Combinatorial games refer to those where finding an optimal strategy in-
volves exploring the multiplicity of possible moves.

Game Theory is very useful if we have a competitive problem that needs
to be solved where it brings to light the concept of bargaining. However, for
dynamic optimization problems with a large number of variables, its problem
solving techniques have difficulties when the matrix of pay-offs is large which
makes the process very complex.

4.2.2 Heuristics

In Computer Science a heuristic is a technique designed for solving a problem
when basic deterministic global optimization approaches fail (Gilli and Winker,
2009). Although aiming at high-quality solutions, due to the intrinsic complexity
of the problems and stochastic elements of the algorithms, they cannot pretend to
produce the exact solution in every case with certainty.Nevertheless, a stochastic
high quality approximation of a global optimum is probably more valuable than
a deterministic poor-quality local minimum provided by a classical method or no
solution at all. Generally a heuristic can be based on the properties of an al-
gorithm (Winker and Gilli, 2004). Firstly, a heuristic should be able to provide
high-quality stochastic approximations to the global optimum at least when the
amount of computational spent on a single run of the algorithm or repeated runs
is increased. Secondly, a well behaved heuristic should be robust to changes in
problem characteristics, this is, it should not fit only one problem but the whole
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class. Therefore, a heuristic should be easily implemented to many problem in-
stances including new ones. Finally, a heuristic might be stochastic, but should
not have any subjective elements.

Heuristic optimization methods can be divided into two broad classes, namely,
construction methods and local search methods. Construction methods determine
a tour according to some construction rules, but they do not try to improve upon
this tour. A tour is successively built and parts already built remain unchanged
through the algorithm. Local search uses only information about the solutions
in the neighbourhood of a current solution, and for this it is very similar to hill
climbing, where the choice of a neighbour solution locally maximizes a criterion.
Local search methods can be divided into trajectory methods which work on a
single solution and populations-based methods or evolutionary algorithms.

In trajectory methods, the concept of neighbourhood is very important and
depends on the problem under consideration. It can be challenging to find efficient
neighbourhood functions that lead to high-quality local optima.

Simulated annealing (Van Laarhoven and Aarts, 1987) is a method which is
a refinement of local search which is based on a parallelism between combinatorial
optimization and the annealing process of solids. This method is similar to local
search but an improvement of the solution for a move is always accepted. The
algorithm also accepts a move uphill but only with a given probability. This prob-
ability depends on a parameter called temperature that is gradually decreasing
during the process.

Tabu search (Glover et al., 1997) is particularly designed for the exploration
of discrete search spaces where the set of neighbour solutions is finite. This method
implements the selection of a neighbourhood solution in a way to avoid cycling.
To do this, a short-term memory is employed, known as the tabu list and which
contains the solutions that were most recently visited.

Population-based methods work simultaneously on a whole set of solutions
called the population. They are more efficient in exploring the whole search space
but have a higher computational cost and more complex structures.

Genetic algorithms (Holland, 1975) (Eiben et al., 1994) are a technique that
imitates the evolutionary process of species that reproduce sexually. New candi-
dates for the solution are generated by an evolutionary mechanism called crossover,
where part of the genetic composition from each parent is combined and then a
random mutation is applied. If the result has good characteristics, it will have a
higher probability of being used.

Differential Evolution (Storn and Price, 1997) is a population-based heuristic
optimization technique for continuous objective functions. The algorithm updates
a population of solution vectors by addition, subtraction and crossover, and then
selects the fittest solutions among the original and updated population.

All of the previously presented strategies are a type of heuristic called meta-
heuristic. A metaheuristic is a set of algorithmic concepts that can be used to
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defined heuristic methods applicable to a wide set of different problems, this is,
a metaheuristic is a general-purpose heuristic method designed to guide an un-
derlying problem-specific heuristic toward promising regions of the search space
containing high-quality solutions. In this way, a metaheuristic is a general algo-
rithmic framework which can be applied to different optimization problems with
relatively few modifications to make them adapted to a specific problem, which
brings us to the Ant Colony optimization metaheuristic.

4.2.3 Ant Colony Optimization

Ant Colony optimization (ACO) is a metaheuristic that was first introduced in
1996 by Marco Dorigo’s Ant System (Dorigo et al., 1996). It has been extensively
developed and is the main focus of this section (Dorigo and Stutzle, 2004).

ACO works as a colony of artificial ants that cooperate in finding good so-
lutions for discrete optimization problems. The computational resources are allo-
cated to a set of simple agents that communicate indirectly through the environ-
ment, where good solutions emerge through the cooperative interaction. These
algorithms can be used to solve both static and dynamic combinatorial optimiza-
tion problems.

In ACO an artificial ant is a stochastic constructive procedure that incremen-
tally builds a solution by adding opportunely defined solution components to a
partial solution under construction. This makes it applicable to any combinato-
rial optimization problem for which a constructive heuristic can be defined. The
artificial ants build solutions by performing randomized walks on the completely
connected graph GC = (C,L) whose nodes are components C, and the set L fully
connects the components C. To the GC graph we call construction graph and to
the elements of L we call connections. In most cases, the ants build acceptable so-
lutions, but sometimes, it may be necessary or advantageous to let them explore
solutions that are least plausible. To the components ci ∈ C and connections
lij ∈ L can be associated a pheromone trail τ (τi if associated with components
and τij if associated with connections), and a heuristic value η (ηi and ηij respec-
tively). The pheromone trail serves the purpose of encoding a long-term memory
about the entire ant search process, and is updated by the ants themselves. The
heuristic value or heuristic information represents previously known information,
generally the η represents the cost or an estimate of the cost, of adding the com-
ponent or connection to the solution under construction.

Each ant in the colony has the following properties: It explores the construc-
tion graph Gc to search for optimal solutions; It has a memory Mk that can be
used to store information about the path followed so far; It has a start state xks
and one or more termination conditions ek; If the ant is in a state xr = 〈xr−1, i〉,
if no termination condition is satisfied, it moves to a node j in the neighbour-
hood N k(xr). If at least one of the termination conditions ek is satisfied, the ant
stops; It selects a move by applying a probabilistic decision rule, which is a func-
tion of, firstly the locally available pheromone trails and heuristic values, secondly
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the ant’s private memory storing its current state and finally the problem con-
straints; When a component cj is added to the current state, the ant can update
the pheromone trail τ associated with it or the corresponding connection; Once a
solution is created, the ant can retrace the same path backward and update the
pheromone trails of the used components.

Ants in the solution finding process act simultaneously and independently,
nevertheless each ant is capable to find a solution to the problem, but it is only
through the collective interaction of the whole colony that good-quality solutions
emerge. This is obtained through the indirect communication mediated by the
information the ants read and write to in the variables storing pheromone values.
Therefore, one can say that this is a distributed learning process in which the single
agents, are not adaptive themselves but, adaptively modify the representation and
perception of the problems for the other ants.

Regarding the ACO algorithm, it can be seen as the interactions of three
distinct processes. Specifically, there is a process through which a colony of ants
is managed and whose ants concurrently and asynchronously visit the adjacent
nodes of the considered problem graph Gc. They travel by means of stochastic
local decision rules that make use of pheromone trails and heuristic information.
Through this, a solution to the optimization problem is incrementally built by the
ants. When an ant has a solution, or even while the solution is being constructed,
the ant can evaluate the partial solution that will be used by the process that
updates the pheromones to decide how much pheromone it must deposit.

The pheromone updating process modifies the pheromone trails. The value of
the trails can both increase or decrease. It can increase through the ants depositing
of pheromone on the components connections they use and it can decrease through
pheromone evaporation. The increase of pheromone results in an increase of the
probability that the components or connections that were used by one or many
ants and that have produced a very good solution will be used again by other ants.
The evaporation of the pheromone serves the purpose of avoiding a too sudden
convergence to a suboptimal solution and favours the exploration of new areas of
the search space.

The third and last process is that of performing operations that cannot be
performed by individual ants. These tasks comprise the activation of a local
optimization procedure, or the collection of global information that can be used
to decide whether or not it is useful to intensify the quantity of pheromone in
order to somewhat bias the search process.

ACO is an optimization methodology but it is already used to solve problems
from several areas that reach from network routing problems (Varela and Sin-
clair, 1999), to assignment (Lourenço and Serra, 2002), scheduling (Blum, 2002),
machine learning (Parpinelli et al., 2002) and more.

ACO can adaptively change the solution’s value according to the viability of
the path, by taking into account the path and node weights. Also, its ability to run
in real time, iteration by iteration, makes it suitable for use in a situation where
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there are several paths with changing conditions. For example, if we express the
video and network characteristics as a series of paths in a graph, we can run the
algorithm one step at a time and if the video or the network change, it will adapt
to it. This mechanism will be presented with more emphasis on detail in the next
chapter which describes the interactions between the parameters and the working
of the algorithm.

4.3 Summary

In this section we presented some mechanisms like Cluster Analysis, Principal
Component Analysis and Neural Networks which could serve the purpose of the
classification of video sequences, more specifically the motion intensity in these
video sequences. Also several techniques that could provide for the optimization
of the redundancy attribution of the adaptive FEC mechanism were reviewed,
namely Game Theory, Metaheuristics and Ant Colony Optimization which is a
type of Metaheuristic.



Chapter 5

Advances Towards Video
Transmission Optimization:
neuralFEC

This document has presented several approaches to improve video transmission
resilience in adverse network conditions. Even though some of them offer worthy
contributions, such as video protection in a bursty error environment or FEC
allocation according to video characteristics, they fail to satisfy both at the same
time in a dynamic and adaptive way. The presented mechanism fulfils the goal of
having dynamic FEC protection according to the characteristics of the video.

The next sections will describe the objectives of the neuralFEC mechanism,
its specification and the results obtained with it.

5.1 Objectives

The neuralFEC mechanism’s main objective is to provide FEC protection accord-
ing to the motion intensity characteristics of a frame in the video sequence. The
challenge resides in the adjustment of the quantity of redundancy according to
the changing characteristics of the scenes in the video. For example, a video with
high motion complexity will have more redundancy allocated compared to a video
with low motion complexity. Therefore, the most QoE sensitive frames which are
the ones with a greater amount of movement will be better protected.

In the end, by fulfilling this objective, the mechanism can achieve a reduction
of the impact of packet loss on the video quality while using a lesser amount of
redundancy. Through this, it is possible to distribute the redundancy in a way
that will improve the QoE for the end user while sparing network resources.
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5.2 neuralFEC Mechanism Specification

In order to achieve the aims of the proposal, there is the need for a video motion
intensity classification mechanism. The neuralFEC mechanism takes into account
the characteristics of the video and decides the amount of redundancy to be allo-
cated through the use of an error correcting code (ECC), for a given video frame
at a given time. To do this, we resort to the use of a Random Neural Network
(RNN) (Kandel et al., 2000). The RNN mechanism was selected, because of its
flexibility and ease of use, which allow it to be used for real-time video classifica-
tion (Aguiar et al., 2012) (Mohamed and Rubino, 2002).

Figure 5.1 shows a general overview of the neuralFEC mechanism. Firstly,
the off-line training and validation of the RNN created for motion intensity cat-
egorization purposes was performed. After completing its training, the RNN is
ready to be used to categorize the videos off-line (i.e., previous to transmission).

Based on the output given by the RNN, the value which represents the amount
of redundancy to be used by the Reed-Solomon (Reed and Solomon, 1960) algo-
rithm is computed in real-time for each frame. This is done in a way which
minimizes network overhead and maximizes Quality of Experience (QoE). After
the video has the redundancy applied to it, the transmission occurs.

Figure 5.1: Stages of the neuralFEC

Regarding the hierarchical cluster analysis exploratory study, data concerning
each individual video collected from the analysis of the trace files obtained for
use with Evalvid was fed to the clustering process. The information collected
consisted in the sum of the byte sizes of each type of frame, and a ratio r given
by Equation 5.1 where the upper part of the equation represents the sum of the
number of motion vectors and the lower part of the equation represents the sum
of the distance those vectors travel from all the frames in the video.
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r =

∑ttlfrms−1
i=0 MVi∑ttlfrms−1

j=0 distMVj
(5.1)

The R Project for Statistical Computing software (R Core Team, 2013) com-
monly known as just R was used to perform the cluster analysis. The clustering
method used was the Ward method (Mojena, 1977) (Ward Jr, 1963), which min-
imizes the total within-cluster variance. At each step of the process the pair of
clusters with minimum between-cluster distance are merged. Thus the lines of the
dendogram represent the dissimilarity between each of the video files. The longer
the path between them, or the farther away they are, the more different the videos
are in terms of motion intensity and the inverse is also valid, the shorter the path,
the more similar the videos are.

The dendogram represented in Figure 5.2 shows the videos grouped accord-
ing to degrees of motion, which corresponds to resulting classifications present in
the literature (Khan et al., 2010). Video characteristics such as frame size, frame
type and motion vectors were used during the analysis. From this result, a train-
ing set representing video sequences of low motion intensity (Akiyo and Silent),
medium motion intensity (City and Football) and high motion intensity (Mobile
and Flower) was selected. This result implies that even in the form of a prelim-
inary classification of the videos it is possible to build sets of videos grouped by
their motion characteristics. Not only that, but it serves as a proof of concept
of the RNN video motion intensity classification mechanism, showing that it is
indeed possible to use the aforementioned parameters in the RNN for real-time
frame-by-frame video motion intensity classification.

The training of the RNN consisted in feeding the information of this set of
selected videos to the inputs of the network for about 600 iterations which was
the point at which the Minimum Mean Squared Error (MSE) stabilized. During
the training process the RNN’s weights adjust themselves, such that the output
corresponds to the expected values. After the training process is completed, the
network is validated with a different set of video sequences. Afterwards, the RNN
can be used for motion intensity classification in distinct scenarios. The training
and validation steps of the RNN were performed in the RNNSimv2 module (Ab-
delbaki, 1999) within MATLAB (MATLAB, 2013). The RNN, which is used to
classify all the video sequences in the evaluation of the mechanisms is the same
due to the fact that it was trained with different video sequences with different
characteristics. Therefore, it is able to correctly classify the motion intensity of
the individual frames of the video sequences.

For each frame, the RNN receives as input the frame size, the frame type, the
number of motion vectors present and the distance travelled by the motion vectors
in the form of the ratio 5.1. These depict the three input neurons of the RNN.
It processes these inputs and outputs a numerical value through a single output
neuron as shown in Figure 5.3, which represents the classification of the frame in
analysis according to a complexity scale defined during the training stage.
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Figure 5.2: Cluster Analysis Results

The RNN mechanism has several features that make it suitable for use as
a video motion intensity classification tool, such as: a probability distribution
that is easily computed by an analytical equation; the learning algorithm has low
complexity and strong generalisation capacity; the neuron potential is described
by an integer instead of a binary value; it represents the signals of a biological
neural network better than other Artificial Neural Networks.

In order to have a working FEC mechanism, an Error Correcting Code is
needed. Reed-Solomon was the ECC selected in detriment of Low Density Parity
Check (LDPC) (MacKay et al., 1995) and Turbo Codes (Berrou et al., 1993) due
to its characteristics, such as the ability to use original data blocks of arbitrary
sizes, which makes it very flexible, and its simplicity, which allows its modification
to comply with the requirements of this study. Also, there is some previous famil-
iarity with the Reed-Solomon code by part the advisors which provided additional
support in terms of particularities regarding the encoding and decoding process.
Hence, it was integrated with the Evalvid (Klaue et al., 2003) and NS-3 (Riley
and Henderson, 2010) tools with the help of an external mathematical library with
ECCs, namely IT++ (IT+). This required the use of data structures specific to
the library in order to feed the encode and decode functions of the ECC. Therefore,
extensive modifications had to be done in the Evalvid scripts in the functions that
handle packet creation and processing so that the data from the encoder function
could be translated to a packet and vice-versa for the decoder function.
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Figure 5.3: Random Neural Network Structure

During the exploratory analysis of the Error Correcting Codes it became ev-
ident that the information from the generated video trace files for Evalvid had
to suffer modifications prior to encoding. Thus, the video trace files for Evalvid
consist of lines each describing a frame. Each frame has a different size, which
conflicts with the implementation present in the IT++ library. The implementa-
tion requires that the size of each data unit to be encoded is of the form present
in Equation 5.5, where n is given by Equation 5.2, and with m being the expo-
nent of the alphabet size of the code factor. The iterations parameter is given by
Equation 5.4 where iterations is the number of iterations of the code, encbitssize
is the number of bits of the frame to be encoded, and k is the parameter described
by Equation 5.2, involving the m and t parameters of the Reed-Solomon code.

n = 2m − 1 (5.2)

k = 2m − 1− 2 ∗ t (5.3)

iterations = encbitssize/k ∗m (5.4)

pktsize = iterations ∗ n ∗m (5.5)

Therefore, by taking the frame sizes of the video trace files used and by adding
some bytes to them (i.e., perform padding), the frame sizes become a multiple
number of the ratio described in Equation 5.4. This is required for correct and
successful decoding of the received packet or else the decoded packets would be
smaller than the original packets by the remainder of bytes that exceed the ratio.
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5.3 neuralFEC Mechanism Evaluation

This section presents the evaluation of the neuralFEC mechanism.

5.3.1 Evaluation Objectives

The main goal of this evaluation is to assess if the neuralFEC mechanism can
perform an adaptive protection of different video sequences according to their
motion intensity in a lossy network scenario. The performance of the neuralFEC
mechanism is assessed in terms of redundancy overhead and QoE.

Regarding the redundancy overhead used by the adaptive neuralFEC mecha-
nism, it was measured from the data which is added to the original packets being
transmitted. This provides a means of comparison between different protection
mechanisms on how different video sequences with different motion intensities
affect the allocation of redundancy.

The performance of neuralFEC according to a human user viewpoint was
assessed by objective QoE metrics. The metric chosen for this assessment was
Structural Similarity (SSIM) (Wang and Bovik, 2002). This objective evaluation
metric is a method based on the analysis of luminance, contrast and structural
similarity of images. SSIM is one of the most commonly used metrics for objec-
tive evaluation of QoE (Chikkerur et al., 2011). The SSIM was assessed through
the Moscow State University (MSU) Video Quality Measurement (VQM) (Vatolin
et al., 2011) tool. The Moscow State University (MSU) Video Quality Measure-
ment Tool (VQMT) is a software for objective video quality assessment. It provides
functionality for both full-reference and single reference comparisons.

5.3.2 Evaluation Scenario

The video files used for the experiments are encoded in the MPEG-4 part 14 stan-
dard (ISO/IEC, 2003). Each video was encoded following the same parameters:
a resolution of 352x288 pixels; a GoP size of 19; two B frames after an I-frame or
P-frame.

In order to use the video files in the simulation environment, the Evalvid tool
is used for processing of video traces during transmission and reception.

Evalvid is a framework and tool-set for the evaluation of the quality of video
transmitted over a real or simulated communication network. It can measure
the QoS parameters of the underlying network as well as it can provide standard
video quality metrics like PSNR and SSIM. This is done by taking video traces
that represent the original video. Those traces are then used to create dummy
packets and a sent packet trace file. The dummy files are received and added
to a received packet trace file. When the transmission ends, Evalvid attempts
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to rebuild the original file with information from all three traces and can then
compute the quality metrics mentioned above.

The video trace files generated consist of a description of each frame of the
video with characteristics such as frame type, frame size and number of pack-
ets needed for each frame considering a 1024 bytes Maximum Transmission Unit
(MTU).

The performance of the neuralFEC mechanism was assessed across several
simulation experiments in Network Simulator-3 (NS-3) (Riley and Henderson,
2010). The evaluation scenario is comprised of 25 nodes in a grid disposition (5x5),
located 50 meters apart. The Optimized Link State Routing Protocol (OLSR)
(Clausen et al., 2003) was used as the routing protocol since all nodes have a
route table with information to every node in the network. Therefore, routes are
immediately available on request and as such, no increased delay due to protocol
route discovery is added to the video transmission. Ten video sequences were used
in this scenario, namely Bowing, Coastguard, Container, Crew, Foreman, Hall,
Harbour, Mother and Daughter, News and Soccer. These sequences were selected
in order to provide a wide variety of motion intensities.

To approximate the behaviour of a wireless network, a two-state discrete-time
Markov chain model was implemented following a simplified Gilbert-Elliot packet-
loss model (Razavi et al., 2009). This model produces error representations which
are closely related to those of burst loss patterns of wireless channels (Wilhelmsson
and Milstein, 1999) and real time services on the internet (Haßlinger and Hohlfeld,
2008). The simplified Gilbert-Elliot Model is shown in Figure 5.4, where the
probability of packet loss in the Good state (G) was set at 0, which means no losses,
and the probability of packet loss in the Bad state (B) was set at 1, where all the
packets are lost. The Packet Loss Rate (PLR) can be obtained by Equation 5.6,
where P(BG) represents the probability of transitioning from the Bad state to the
Good state and vice-versa with P(GB).

Figure 5.4: Gilbert-Elliot simplified model

PLR =
PBG

PBG + PGB
(5.6)
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5.3.3 Results

In this section, the results of the simulation experiments with the neuralFEC
mechanism are analysed and discussed.

Three distinct experiments with different schemes were performed. The first
experiment serves the purpose of providing a baseline to the neuralFEC mechanism
as there is no FEC mechanism in use. The second experiment was performed with
a non-adaptive video-aware FEC mechanism (Video-aware FEC), where a fixed
amount of redundancy (38%) was added to only I- and P- frames. This amount
of redundancy was selected according to an extensive set of experiments repre-
senting the best trade-off between between video quality and the characteristics
of the experimental scenario. The last experiment is focused on the neuralFEC
mechanism.

Figure 5.5 illustrates the added overhead of the experiments during video
transmission. Regarding the use of the non-adaptive Video-aware FEC mecha-
nism, the added network overhead situated itself between 34% and 43%. If the
neuralFEC mechanism is used, the added overhead is reduced to values between
13% and 24%. This means that the average redundancy added by the non-adaptive
FEC mechanism has a value of 38%. On the other hand the adaptive neuralFEC
mechanism achieved an average amount of redundancy of 19%. From the overhead
results it is also observable that a greater amount of redundancy was attributed to
video sequences such as Crew, Soccer, Harbour and Coastguard. On the contrary,
video sequences with less motion intensity such as Bowing, Mother and Hall are
given less redundancy. This is due to the RNN selecting higher amounts of redun-
dancy to frames with a high degree of movement and lower amounts of redundancy
to frames with a low degree of movement. This shows that the neuralFEC mech-
anism can correctly assess the importance of frames of frames according to their
motion intensity.

Figure 5.6 depicts the SSIM scores for each video sequence while using the
three aforementioned mechanisms. These show that the average SSIM value ob-
tained for the neuralFEC mechanism is of 0,831 against a value of 0.819 for the
video-aware FEC mechanism. Both FEC mechanisms obviously surpass the mech-
anism with no protection and thus results in an average SSIM value of 0,726. The
average neuralFEC SSIM score represents a slight improvement of almost 1,5%
over the video-aware mechanism. Also, from the analysis of the results for video
sequences which are very distinct in terms of motion intensity such as Bowing and
Harbour the following is observable: if we take into account the Without FEC
mechanism, the video-aware FEC mechanism and the neuralFEC mechanism for
the Bowing video sequence the SSIM scores obtained for the three mechanisms
were of 0,886, 0,924 and 0,925, respectively. As for the Harbour video sequence
the SSIM scores are of 0,474, 0,663 and 0,673, respectively. This is explained by
the disparity in motion intensity characteristics between the two sequences. The
Harbour video sequence is much heavier in terms of movement compared to the
Bowing video sequence which means packet loss has a greater impact on this type
of sequences. Ultimately, this results in lower SSIM scores in sequences with a
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Figure 5.5: Network Overhead

higher degree of motion intensity. Also it highlights the greater resilience that
video sequences with low motion intensity have to packet loss.
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Figure 5.6: Network Overhead

Table 5.1 summarizes the results in terms of average overhead and SSIM of
all of the video sequences for the three studied mechanisms. It shows that there
was a slight improvement in the video quality by the neuralFEC mechanism, but
most importantly the used amount of added redundancy was halved.
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Table 5.1: Average SSIM and network overhead

neuralFEC Video-aware FEC Without FEC

SSIM 0,831 0,819 0,726

Overhead 19,334% 38,460% –

5.4 Summary

This chapter presented the base mechanism which functions solely based on a
RNN. The neuralFEC mechanism, through an accurate motion intensity classi-
fication of video sequences with distinct characteristics, is able to add a precise
amount of protection according to the degree of motion present in the video se-
quence. This shields video transmission, protecting the most QoE-sensitive data,
maximizing the video quality while saving network resources by not sending un-
necessary redundancy. Reducing overhead in wireless networks is of great im-
portance, due to the limited nature of the wireless channel resources, which is
hindered by packet loss from concurrent transmissions and network congestion.
This contribution resulted in the presentation and publication of a paper titled
Adaptive Motion-aware FEC-based Mechanism to Ensure Video Transmission in-
cluded in Appendix A which was presented at The Nineteenth IEEE Symposium
on Computers and Communications (ISCC 2014) (Immich et al., 2014a).



Chapter 6

Advances Towards Video
Transmission Optimization:
Enhanced Mechanisms

This chapter describes two enhancements performed on the base neuralFEC mech-
anism to further improve the adaptation of the allocated redundancy to the video
and network characteristics. The following sections are organized in this fashion:
Firstly, the objectives of the enhancements are described; Secondly, the tools used
for the implementation and evaluation of the enhancements are presented; Finally,
the improvements are specified and the obtained results are analysed.

6.1 Objectives

The main goal of the enhanced mechanisms is to improve on the neuralFEC base
mechanism by further reducing the weight of redundancy needed to protect a
given frame during transmission, while at the same time increasing the frame’s
resilience to errors due to packet loss. This can be done with an Ant Colony Op-
timization (ACO) scheme which takes into account several video characteristics
and the network loss error rate. With this added information the enhanced mech-
anisms can perform a more accurate characterization of the video frame being
transmitted which results in a more precise allocation of redundancy.

6.2 AntMind

The AntMind enhanced mechanism uses the Ant Colony Optimization algorithm
in order to provide an even more accurate redundancy allocation than neuralFEC.
This is performed by jointly using video characteristics and network loss informa-
tion to assess the amount of redundancy needed for a given frame.
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A directed graph was built so that the virtual ants were able to search for a
solution. The graph comprises nodes representing the types of frames, movement
complexity and error rate.

The graph’s path weights were selected through an exploratory analysis of
several different weight distributions. Each individual layer representing a video
characteristic was tested with different weight relations to the nodes of the same
characteristic and the nodes of other characteristics. This helped to determine
which video characteristics are more important (i.e., motion intensity is more
important than frame type, and higher motion intensity is more important than
lower motion intensity). The distribution which produced results closer to those
expected for all the motion intensity cases and video/network characteristics was
used, producing the values presented in the results section.

6.3 AntMind Mechanism Specification

The main component present in this enhancement of the neuralFEC mechanism
is the redundancy attribution mechanism. It is based on ACO. Other adaptive
FEC mechanisms such as APB-FEC (Tsai et al., 2011a) and OCLFEC (Talari
et al., 2013), and optimization methods such as Game Theory (Myerson, 2013)
and several other Heuristics (Gilli and Winker, 2009) were considered. They were
dismissed due to the fact that ACO allows for the dynamic change in the conditions
of the problem and works around this to adaptively build a solution every time
the said conditions change.

Figure 6.1 shows a general overview of the AntMind adaptive FEC mecha-
nism. It is composed of three main modules, where the two first are based on the
neuralFEC mechanism. The RNN module is trained and validated with several
video sequences and is then used to classify each video sequence according to its
motion intensity. The relationship between the neuralFEC and ACO is described
by the path which represents the passing of the motion intensity classification
information to the ACO module.

The novel ACO module present in this enhancement takes the previous mod-
ule’s (neuralFEC) numeric classification of the video frame and starts with a pre-
defined path graph as shown in Figure 6.2. The numeric motion intensity classifi-
cation value and size of the frames are translated into three intervals each. These
intervals can accurately represent the situation at hand and facilitated the con-
struction of the graph. The search graph itself consists of five layers with fourteen
nodes depicting video and network characteristics. The distribution of the nodes
in five layers has to do with the several characteristics of the video/network being
analysed. Therefore, the first layer only has one node which serves merely as a
starting point. Then the next layer has three nodes which represent the classifica-
tion given by the RNN in terms of motion intensity, namely low, medium and high
obtained by the hierarchical cluster analysis presented in Figure 5.2. The third
layer has two nodes which represent the frame type, I- or P-. The fourth layer has
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Figure 6.1: AntMind mechanism

three nodes depicting the frame size as small, medium and large. The last layer
has five nodes representing the instantaneous network loss rate. The placement
of the layers relative to each other is irrelevant, except for the first node, since
the solution is not affected by the position of each layer. By attributing different
orders of significance to each variation in a characteristic, we specify what will
have more weight and consequent impact in the final redundancy value.

The ACO algorithm is executed, populating the graph with 10 virtual ants,

Figure 6.2: ACO graph used in AntMind
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which according to the algorithm’s path-finding routines will find the most ad-
equate path according to the graph’s path weights. This process is repeated 10
times for each of the frames being transmitted. The number of ants and repeti-
tions was calibrated so that the execution of the ACO algorithm would not have
a significant effect on the delay of the video transmission. The resulting path cost
determines the redundancy value to be used by the Reed-Solomon Error Correct-
ing Code. Should the network’s error characteristics or the video’s characteristics
change, the ACO algorithm selects other corresponding paths, thus resulting in a
different value of redundancy which is more adequate to the current set of param-
eters.

6.4 AntMind Mechanism Evaluation

This section presents the evaluation of the AntMind mechanism.

6.4.1 Evaluation Objectives

The performed evaluation aims at showing that the AntMind mechanism can
effectively reduce network overhead while preserving video quality in comparison
to other adaptive mechanisms. Similarly to neuralFEC, the redundancy overhead
and objective QoE metrics are used to examine the performance of the mechanism.
An additional objective QoE metric, Video Quality Metric (VQM) (Xiao et al.,
2000) is used in order to more thoroughly assess the quality of the transmitted
video. Contrary to SSIM, where higher values are an indicator of higher quality,
in VQM, values closer to 0 are the ones which represent superior image quality.

6.4.2 Evaluation Scenario

The same network scenario developed for the neuralFEC mechanism’s evaluation
is used. Additionally, the Gilbert-Elliot packet-loss model was configured for four
distinct packet loss rate values such as 5%, 10%, 15% and 20% to provide a greater
insight into the effects of loss in the transmitted video.

6.4.3 Results

Four distinct data protection schemes were used, namely one with no protection,
one with non-adaptive protection and two with adaptive protection. As with
neuralFEC, the first scheme serves as a baseline for assessment of improvements
in the video quality and measurement of the generated overhead. The second
scheme is the Video-aware Equal Error Protection (VaEEP) scheme and the third
scheme is the Video-aware UEP (VaUEP). VaEEP corresponds to the video-aware
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FEC scheme used in the neuralFEC mechanism. In VaEEP a fixed amount of
redundancy is added to I- and P- frames. In VaUEP the same frames are protected
with fixed but distinct amounts of redundancy for each type. These amounts were
selected from a thorough set of simulation experiments which resulted in values
that represent the best possible trade-off between redundancy overhead and video
quality in terms of QoE. Thus, the resulting values are of 38% and 30% for VaEEP
and VaUEP, respectively. The last studied mechanism is AntMind which combines
the use of an RNN and ACO for Unequal Error Protection.

Table 6.1 shows the results in terms of the average added overhead applying
all of the PLRs using the three FEC schemes. The use of VaEEP resulted in an
amount of overhead ranging from 35% to 43% averaging at 38%. Using VaUEP,
the resulting overhead ranged from 25% to 36% averaging at 30%. The AntMind
mechanism achieved overhead values which ranged from 9% to 19% averaging at
15%. This means that in some cases the reduction of added overhead was in the or-
der of 77% over VaEEP and 72% over VaUEP. Therefore, far less redundancy data
is used by the AntMind mechanism, opposed to VaEEP and VaUEP translating
into reductions of 61% and 50%, respectively.

Table 6.1: Average Overhead

VaEEP VaUEP AntMind AntMind STDEV

Bowing 42% 36% 10% 0,239

Coastguard 37% 27% 19% 0,504

Mother 41% 33% 9% 0,323

Soccer 36% 27% 16% 0,293

Hall 35% 27% 13% 0,304

Container 43% 35% 18% 0,493

Crew 35% 25% 16% 0,376

Foreman 37% 28% 15% 0,361

News 43% 35% 17% 0,400

Harbour 36% 26% 18% 0,378

Overall 38% 30% 15% 0,367

From these results it is already clear that the adaptive AntMind mechanism
assesses the importance of frames according to their MI characteristics. Therefore,
the mechanism attributes a lesser amount of redundancy to videos with a low
degree of motion intensity and a greater amount of redundancy to frames with
a higher degree of motion intensity. This is clearly observable for Bowing and
Mother which are categorized as low motion intensity video sequences, opposed to
Coastguard, Harbour and Container which are categorized as high intensity video
sequences. Additionally it is possible to notice that in the Mother and Soccer
video sequences the VaEEP mechanism allocates a higher amount of redundancy
to Mother (41%) than to Soccer (36%). In this video sequence the proportional
size of the I- and P- frames is higher than that of the B- frames due to its low
motion intensity. In the Soccer video sequence this is not valid because it has a



Chapter 6. Advances Towards Video Transmission Optimization: Enhanced
Mechanisms 66

higher motion intensity. Therefore, the AntMind mechanism allocated a higher
amount of redundancy to Soccer (16%) in contrast to Mother (9%).

Two sets of assessments were preformed using the SSIM and VQM objective
QoE metrics. The different values which can be observed are due to the particular
characteristics of each video sequence. This highlights the importance of perform-
ing the experiments with videos with different types of motion spanning a broad
array of motion intensity levels/characteristics.

Figure 6.3 shows the obtained SSIM results for each of the transmission
schemes and for all of the video sequences. The average SSIM value was com-
puted from all PLRs for each individual video sequence. The mechanism with no
FEC averaged a value of 0,805. The VaEEP and VaUEP mechanisms obtained
values of 0,881 and 0,882, respectively, which are closely matched by a value of
0,876 for the AntMind mechanism.
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Figure 6.3: Objective QoE assessment (SSIM)

In Table 6.2 the Coastguard and Mother sequences are analysed in further
detail. For Coastguard, a higher PLR represents SSIM scores which are consid-
erably worse than for a lower PLR. If we take the AntMind results for 20% PLR
and 5% PLR, the SSIM scores are 0,688 and 0,906, respectively. This represents
a reduction of quality of about 25%. The Mother video sequence does not exhibit
this type of behaviour. If we take the same PLRs of 20% and 5% the SSIM scores
are 0,971 and 0,915,respectively. In turn, this represents a reduction of quality of
about 5%. Such reduction of quality of the video sequence is expected as the PLR
increases. Nevertheless, a variation of such magnitude as observed for Coastguard
and Harbour means that packet loss has a greater impact on video sequences with
a higher intensity of motion, contrary to Mother and Bowing. This highlights the
resilience towards packet loss that video sequences with lower motion intensity
have.



Chapter 6. Advances Towards Video Transmission Optimization: Enhanced
Mechanisms 67

Table 6.2: SSIM variation through the different PLRs

Without FEC AntMind

Coastguard Mother Coastguard Mother

PLR 20% 0,482 0,868 0,688 0,915

PLR 15% 0,574 0,899 0,784 0,938

PLR 10% 0,678 0,923 0,841 0,959

PLR 5% 0,859 0,955 0,906 0,971

Figure 6.4 shows the VQM results of the four schemes. The VaEEP and
VaUEP mechanisms achieved an average VQM of 3,895 and 3,860, respectively,
while the AntMind mechanism obtained an average of 3,940. This means that
AntMind was able to maintain video quality. These results follow a similar trend
to that of SSIM which helps corroborate the improvements of the proposed mech-
anism in overhead reduction with video quality shielding.
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Figure 6.4: Objective QoE assessment (SSIM)

Table 6.3 summarizes the SSIM, VQM, and network overhead results. It
shows that the AntMind mechanism managed to achieve a considerable reduction
in network overhead by avoiding the addition of unnecessary redundancy. Fur-
thermore, it did so while preserving video quality. This is of great importance in
wireless network environments due to their limited network resources.

Overall the results showed that the AntMind mechanism can considerably
reduce network overhead. AntMind performs a dynamic protection of the data
which impacts QoE the most. Video quality is preserved while greatly reducing the
use of network resources. The simulation results evidenced interesting behaviours
from some video sequences, showing that those with a higher amount of motion
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Table 6.3: Average SSIM, VQM and network overhead

AntMind VaEEP VaUEP Without FEC

SSIM 0,876 0,881 0,882 0,806

VQM 3,940 3,895 3,860 5,278

Overhead 14,898% 38,460% 29.827% –

intensity require a distinct amount of protection, contrary to video sequences
with lower amounts of motion intensity. AntMind takes into account motion
intensity and network loss to adequately shield a video stream with varying video
characteristics in a lossy wireless network scenario. AntMind was able to reduce
network overhead by 61% on average, while keeping video quality similar to a best-
case scenario, thus showing an improvement over both non-adaptive and adaptive
FEC mechanisms.

6.5 Loss Prediciton

The Loss Prediction mechanism further improves on AntMind by performing error
prediction from feedback data, instead of just using the instantaneous network loss
rate to attribute redundancy to the video sequence being transmitted. The use of a
loss prediction scheme enables a further reduction of added overhead by balancing
the allocation of redundancy data between the network’s good and bad states.

6.6 Loss Prediction Enhanced Mechanism Spec-

ification

The main improvement the Loss Prediction mechanism offers over AntMind is
the prediction the occurrence of errors according to feedback information from
the receiver. This feedback information comprises the distribution of good and
bad gaps during transmission. As shown in Figure 6.5, a good gap is considered
as the interval of packets that were successfully received between two bad gaps
(white squares). A bad gap is the interval of packets during which a burst of
errors is occurring (Dark red squares). The feedback information is collected by
the receiver and sent to the transmitter in the form of a vector containing the
size of every gap of each type. From this, the average gap size is computed on
the server side to be used as a predicting value of a higher probability for the
occurrence of an error burst.

Since the distribution of the size of both types of gaps tends to be located
around a specific value for each packet loss rate, the average size of the good and
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Figure 6.5: Packet gaps during transmission

bad gaps can be used to estimate if an error will occur during transmission of
block of packets.

In order to be able to use error prediction, instead of performing redundancy
allocation on a frame-by-frame basis, the mechanism was modified to support the
transmission of each frame on blocks of 10 packets of original data. The size of the
blocks was selected through extensive experimentation to provide more flexibility
of the mechanism, while dealing with the error correcting code, and better control
over the data. Furthermore, this provides enough granularity to comply with the
sizes of the gaps. That is, it was observed that the sizes of gaps ranged from 9 to 22
packets for the good gaps and from 1 to 3 packets for the bad gaps. Therefore, the
selected packet block size was that which allowed for the block to be isolated (i.e.,
whole block inside a good gap) from an error gap through error prediction in all
the packet loss rate conditions.

Figure 6.6 represents the redesigned ACO graph for Loss Prediction. It is
the same as for the AntMind mechanism but the last layer of nodes represents
the possibility of occurrence of an error instead of the instantaneous packet loss
rate. The five nodes represent five different scenarios which can occur: NE (No
Error) is a scenario where no error is accounted for the current block; SSE (Shared
Single Error) is a scenario where a single error which will be shared by this block
and the next is predicted; SE (Single Error) is a scenario where a single error is
predicted only for the current block; SLE (Shared Large Error) is a scenario where
the occurrence of two error gaps is predicted in the current block continuing to
the next one; LE (Large Error) is a scenario where two blocks of errors occur only
on the current block.

6.7 Loss Prediction Mechanism Evaluation

This section presents the evaluation of the Loss Prediction mechanism.

6.7.1 Evaluation Objectives

The performed evaluation aims at showing that the Loss Prediction mechanism
can effectively reduce network overhead while preserving video quality in compar-
ison to other adaptive mechanisms. Similarly to AntMind and neuralFEC, the
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Figure 6.6: ACO graph used in Loss Prediction

redundancy overhead and objective QoE metrics are used to examine the perfor-
mance of the mechanism. The objective QoE metrics used are again SSIM and
VQM to provide a means of comparison with AntMind.

6.7.2 Evaluation Scenario

The same network scenario developed for the AntMind and neuralFEC mecha-
nisms’ evaluation is used as well as the Gilbert-Elliot error loss model with the
same parameters.

6.7.3 Results

Following the same methodology used for the AntMind mechanism, four distinct
data protection schemes were used, namely one with no protection, one with non-
adaptive protection and two with adaptive protection. The results are presented
in terms of the average of the values for all the four studied PLRs.

Figure 6.7 represents the average added redundancy overhead for all the stud-
ied video sequences. It is observable that the Loss Prediction mechanism managed
to achieve an even better result than the AntMind mechanism. On average the
gains obtained with Loss Prediction are in the order of 10% less added redun-
dancy, ranging from 2,728% to 16,860%. The biggest reductions were achieved
on the video sequences which have greater amounts of motion intensity, such as
Harbour (16,860%), Hall (12,933%) and Foreman(11,745%). The lowest reduc-
tions were found on the videos that are opposite to these three in terms of motion
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intensity, specifically Mother (2,728%), Bowing (6,001%) and Container (7,152%).
Since the Loss Prediction mechanism is an enhancement of AntMind, the greater
gain in the overhead reduction has already been achieved. Therefore, this explains
why the video sequences with lower intensities of motion had small amounts of
reduction compared to AntMind. Regarding the standard deviation, it is observ-
able that the overhead has a greater variation in the Loss Prediction mechanism
contrary to AntMind. The reduced variation of the overhead with different packet
loss rates for AntMind is due to the division of the frame in blocks which absorbs
the fluctuation of the added redundancy. Also, the packet loss rate parameter was
given a lower importance than the video characteristics in the ACO mechanism
present in AntMind.
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Figure 6.7: Average Overhead

Figure 6.8 shows the results in terms of SSIM of the Loss Prediction mech-
anism over the AntMind mechanism. The Loss Prediction mechanism achieved
an average SSIM score of 0,884 versus 0,886 of the AntMind mechanism. This
means that in terms of SSIM, the Loss Prediction mechanism behaved as intended
presenting results similar to those of AntMind.

Figure 6.9 presents the VQM results of the Loss Prediction mechanism against
the AntMind mechanism. With Loss Prediction the average VQM situated around
3,664 against 3,611 for the AntMind mechanism. This shows that VQM follows a
similar trend to that of SSIM.

These results show therefore, that the Loss Prediction mechanism offers in
terms of video quality an identical behaviour to that of AntMind. Taking this
into account and the reduction of the added overhead we can say that it provides
an even more precisely tailored protection scheme than the AntMind mechanism.
This is due to enhancement performed over the AntMind-based mechanism which
already combines motion intensity classification with ACO. In conjunction with
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Figure 6.8: Objective QoE assessment (SSIM)
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Figure 6.9: Objective QoE assessment (VQM)

the prediction of when good or bad gaps will occur, the Loss Prediction mechanism
enables further reduction of the added overhead due to redundancy. At the same
time, it shields the video against loss due to network errors with results similar to
those obtained for AntMind meaning that the video quality is maintained.
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6.8 Computational Complexity of the Enhanced

Mechanisms

The AntMind and Loss Prediction mechanisms resort to implementations of two
somewhat complex components such as the Reed-Solomon code Ant Colony Op-
timization system. The motion intensity classification is performed previously by
the RNN off-line and has no runtime impact on computational complexity. Also,
the feedback mechanisms, namely the instantaneous network loss feedback mecha-
nism and the loss prediction mechanism, only perform a few simple operations and
therefore their impact on computational complexity is negligible. Nevertheless, it
is important to understand that these processes have a computational impact
while being executed during runtime the developed mechanisms.

Regarding ACO, the complexity of finding a solution with an expected num-
ber of iterations is represented by Equation 6.1 (Attiratanasunthron and Fakcharoen-
phol, 2008) in a graph with n nodes, m edges and where ρ is the evaporation rate
of the pheromone used by the ants.

O(
1

ρ
n2mlog n) (6.1)

Concerning Reed-Solomon, the encoding computational complexity is com-
prised of two steps, namely the pre-computing of the Generator Matrix (GM) of the
code, followed by the multiplication of the source vector by the GM. Equation 6.2
represents the total computational complexity of the encoding per element (La-
can, 2009), where k represents the rows and n represents the columns of the GM
matrix.

O(
k

(n− k)
∗ (log k)2 + log k) (6.2)

The decoding steps of the Reed-Solomon code involve he computation of the
k ∗ k sub-matrix of the GM. Afterwards, this matrix is inverted and multiplied
by the received vector in order to recover the original vector. The computational
complexity (Lacan, 2009) per element of these steps is represented by Equation 6.3
where k is the number of received elements.

O((log k)2) (6.3)

6.9 Summary

This chapter presented the enhancements developed upon the base neuralFEC
mechanism, namely the AntMind mechanism and the Loss Prediction mechanism.
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The AntMind Mechanism utilizes Ant Colony Optimization metaheuristic which
consists of representing the behaviour of a colony of ants in real life to a problem
solving evolutionary algorithm. The ACO module receives the motion intensity
classification values of the video sequences provided by the Random Neural Net-
work already present in the neuralFEC mechanism. Along with this, it takes into
account the characteristics of the video and the instantaneous network error loss
rate to perform an adaptive allocation of redundancy and therefore shield the
video against errors. The Loss Prediction mechanism improves on AntMind by
replacing the use of the instantaneous network error loss rate with a module which
retrieves transmission statistics. It performs the prediction of when good or bad
periods of transmission will occur and allocates more redundancy to the periods
of when loss is expected and less redundancy to the periods of when loss is not
expected.

From the examination of the results it is observable that the Loss Prediction
mechanism managed to provide an improvement against the AntMind mechanism.
This is due to the fact that AntMind already provided the greatest amount of
enhancement over the VaUEP and VaEEP mechanisms. Nevertheless, the results
provided by the Loss Prediction must not be neglected since they provide an
even further enhancement to an already good mechanism such as AntMind. Such
improvement is advantageous since it managed to provide good video quality with
reduced amounts of overhead leading to a better utilization of network resources
and further improved QoE in general.

The contribution presented with the AntMind mechanism resulted in the pre-
sentation and publication of a paper titled AntMind: Enhancing Error Protection
for Video Streaming in Wireless Networks included in Appendix A which was
presented by the author at The Fifth International Conference on Smart Commu-
nications in Network Technologies (SaCoNet 2014) (Immich et al., 2014b).



Chapter 7

Project Management

This chapter presents the work plans for the first and second semesters of the
Master Thesis proposal presented in this document.

The work plan for the first semester is presented in the first section and the
next section describes the second semester’s work plan.

7.1 First semester work plan

In the first semester, due to the nature of exploring several libraries and dealing
with some bugs and particularities of the code, some delays occurred which are
shown in Figure 7.2 .

• Study of state-of-the-art in video transmission techniques

This task involved the study of techniques like Forward Error Correction
and Retransmission schemes.

• Analysis of error correction techniques and QoE assessment meth-
ods

The analysis of error correction techniques involved the study of several types
of error correcting codes, namely linear block codes, convolutional codes
and fountain codes. The second step involved the study of QoE assessment
techniques, which can be subjective, objective and hybrid.

• Identification of issues in existing mechanisms related to video
optimization and the perceived video quality (QoE)

In this step, several research contributions were studied and the respec-
tive advantages and disadvantages were identified, thus providing a starting
ground on what the main problems are when trying to design a mechanism
for resilient video transmission.
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• Specification for mechanisms for resilient video transmission in
wireless networks

With the issues for resilient video transmission identified, this task involved
the study of mechanisms for video classification and also adaptive redun-
dancy allocation that could then be used in the design of the proposal.

• Design, implementation and evaluation of a proof-of-concept mech-
anism in a simulation environment

After the suitable methods for the achievement of the objects were identi-
fied, the design of the mechanism was defined as having a video classification
mechanism which uses Random Neural Networks and an adaptive redun-
dancy allocation mechanism based on Ant Colony Optimization. This task
is delayed due to the non-existence of dedicated C libraries for RNNs and
also to the inexperience of working with such a mechanism. Also there have
been problems with the error correcting codes, namely Reed-Solomon that
was producing unexpected results but are now soved. Therefore this step of
the project only involves the implementation of the classification mechanism
and preliminary results obtained by testing the RNN for classification.

• Writing a paper with the state-of-the-art and preliminary results
of the proposed mechanism

This task has not yet been started.

• Writing of intermediate report

This task involved the writing of the intermediary report and has been un-
derway since the beginning of the project.

Figure 7.1: Projected first semester work plan

By the analysis of the diagrams of the first semester work plan, it is easily
seen that some tasks have suffered delays.

The second task was delayed due to the study of state-of-the-art in video
transmission techniques, and an exploratory analysis of three types of error cor-
recting codes in the NS-3 simulation environment to assess the performance and
particularities of each of them.
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Figure 7.2: Final first semester work plan

The fourth task also suffered a minor delay from some indecisions regarding
which optimization method to use, and how it could be used with the available
parameters.

The fifth task is a task that has been continuously in progress and will con-
tinue on as the first task of the second semester.

The sixth task has not yet been started derived from the setback of not yet
having fully functioning classification and adaptive FEC mechanisms.

The seventh task prolonged itself onto the date of the submission of the inter-
mediate report for improvements from the suggestions given by the supervisors.
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7.2 Second semester work plan

The second semester work plan is presented in this section. Due to delays on some
tasks in the first semester, these will follow on through the second semester and
will be integrated in the work plan.

• Implementation of the proposed mechanism for resilient video trans-
mission in wireless networks

This task involves the complete integration of both the classification and
adaptive FEC mechanisms and consequent implementation in the NS-3 sim-
ulator in wireless network environments.

• Implementation and evaluation of the state-of-the-art mechanisms

In this task the performance of the existing state-of-the-art mechanisms such
as the ViewFEC mechanism (Immich et al., 2013) is assessed to provide
for a baseline to compare and evaluate the performance of the proposed
mechanism.

• Proposal validation, assessment and comparison with state-of-the-
art mechanisms

This task involves the validation of the proposal with extensive testing with
several network conditions and different video files. Firstly, each scenario
will be evaluated with all of the selected videos. Secondly, the network loss
conditions will be increased gradually and the performance of the mechanism
will assessed. Finally, the results will be compared against the results of the
state-of-the-art mechanisms assessed in the previous task.

• Writing of two papers with the proposed mechanism compared to
state-of-the-art mechanisms

Throughout the semester, two articles will be written exploring the perfor-
mance of the proposed mechanism against other ones.

• Writing of the final report

This task involves the writing of the final report comprising the completed
proposed mechanism and the obtained results throughout the semester.

Figure 7.3: Projected second semester work plan
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Figure 7.4: Final second semester work plan

Taking into account the diagram corresponding to the final second semester
work plan, it is observable that some of the tasks work effort differed from what was
projected. Nevertheless, there were no major delays, meaning that the variations
are due to adjustments to the work plan.

The first task lasted until the end of May because after performing the im-
plementation of the proposed mechanism, it was decided to enhance it further in
the form of loss prediction instead of using the network error loss rate from the
feedback information received.

The second task which is the implementation of the state-of-the-art mecha-
nisms was extended. This was due to the necessity of modifying the mechanisms to
be used as comparison to asses the performance of the Loss Prediction mechanism.

Regarding the third task, since it was decided to enhance the AntMind mech-
anism, the performance assessment and validation of the mechanism required more
time, thus explaining the larger work effort.

The fourth task represents the writing of the two published papers. This
task was performed in a shorter time than expected in order to meet deadline
constraints. The first submission deadline was at the end of March and the second
submission deadline was at the end of April. Considering this, the work effort for
the papers was of about one month to each.

The fifth comprised the writing of the final report and suffered no adjust-
ments.



Chapter 8

Final Considerations

This document has addressed the subject of techniques for resilient video transmis-
sion in wireless networks. There are already several mechanisms in the literature
which make video transmission less subject to degradation due to losses and there-
fore improve its Quality of Experience. However, these techniques alone are not
enough to achieve an optimal protection of the video data during transmission
which calls for a new approach. In order to attain an acceptable video Quality
of Experience, the mechanisms used to ensure a resilient video transmission have
to be prepared to deal with error losses(i.e., Forward Error Correction), specifi-
cally burst error losses which are very common in wireless networks. Nevertheless,
in order to avoid the unnecessary transmission of excessive data, the use of an
adaptive FEC mechanism instead of a static one is important.

From the analysis of Forward Error Correction Techniques it became clear
that static FEC schemes do not offer optimal allocation of the redundancy, there-
fore compromising the protection of the transmitted video. The examination of the
types of codes revealed that the Reed-Solomon code is simple and flexible enough
to allow for its use in an adaptive FEC solution. Furthermore, the use of an
adaptive FEC scheme has an obvious advantage over a static FEC scheme: it can
protect the data more efficiently by allocation of different amounts of redundancy
to each individual frame, while also helping to reduce network overhead.

The study of the QoE metrics revealed that the subjective evaluation metrics
are very precise in terms of assessing the quality of the video. However, they have
a relevant downside, which is the requirement for a human intervenient. This
makes them not suitable for use in an environment requiring real-time assessment
of the video, such as the developed adaptive FEC mechanism. Therefore, in this
study were only used objective QoE metrics such as SSIM and VQM to assess the
quality of the video.

As the adaptive FEC approach needed a mechanism that classifies the video
motion intensity, the analysis of several classification schemes was performed. The
mechanism that was shown to be the most adequate to the requirements was the
Random Neural Network because it provides a low complexity and adjustable
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environment for training, as well as strong generalisation characteristics. In addi-
tion, mechanisms for dynamic allocation of redundancy were explored, with Ant
Colony Optimization revealing itself as being an interesting and suitable candidate
for the task. It allows the alteration during execution of the weights of the paths
of the graph enabling us to feed external parameters to it during transmission.
This results in the modification of the solution which gives the FEC mechanism
its dynamic nature in redundancy allocation.

The goals of achieving a better allocation of redundancy while improving/-
maintaining QoE led to the development of three mechanisms. Each mechanism
provides an enhancement to the previous one in succession (i.e. AntMind improves
on neuralFEC and Loss Prediction improves on AntMind).

The first developed mechanism was the neuralFEC and comprises a Random
Neural Network for video motion intensity classification. This RNN works together
with a simple selection mechanism which attributes amounts of redundancy ac-
cording to the motion intensity classification value. The video frame is then coded
by the Reed-Solomon error correcting code and is sent. The results showed that
by classifying the video frames according to motion intensity the mechanism can
provide an adaptive and adequate amount of protection while at the same time
saving network resources in the form of reduced overhead.

The AntMind mechanism improves on neuralFEC by using an Ant Colony
Optimization algorithm to perform an even more accurate characterization of the
video combined with information about the instantaneous network loss rate. The
ACO algorithm takes into account the values of the RNN and combines it with
video/network parameters, adaptively selecting an amount of redundancy which
better suits the current conditions. The AntMind mechanism improved on neu-
ralFEC providing further reduction of added overhead while maintaining the video
quality assessed.

The Loss Prediction mechanism is a modification of AntMind where the in-
stantaneous network loss rate scheme is replaced with a statistical analysis of
intervals of transmission comprised of successful transmission and errors. The
analysis of this information is translated into gaps of good and bad packets which
are used to construct a model of the current transmission in terms of the size of
the successful and unsuccessful transmissions. These gaps can be used to perform
the prediction of when an error burst will occur. Therefore, combined with the
calculated redundancy for protection according to the characteristics of the video,
further redundancy is added to account for the occurrence of the error burst. The
Loss Prediction mechanism managed to attain even further reduction in added
overhead over AntMind which already managed to do so in a large amount. Fur-
thermore, the mechanism achieved this while maintaining the video quality of the
sequences according to the two studied metrics (SSIM and VQM). Taking this
into account, the Loss Prediction mechanism proved to be the best of the three
providing a suitable amount of protection according to video characteristics and
the network loss patterns.
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Taking into account the limitations of the performed study, future work should
be focused on the use of other network scenarios involving mobility such as cellular
mobile networks. Also, it would be of interest to explore a better implementation
of Reed-Solomon or another more efficient error correcting code. Furthermore, in
order to further assess the performance of the mechanism, it would be pertinent
to experiment with videos which are larger and involve varying motion intensity.

Nevertheless, the work presented in this thesis shows that through the analysis
of all the related mechanisms and the implementation of these in the adaptive
FEC scheme, the goal of providing a robust and resilient mechanism for video
transmission error protection in a wireless network environment was achieved.
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Abstract—Video transmission over wireless networks has
shown a great increase in recent years and it is becoming part
of our daily life. Meanwhile, several difficulties can impair the
success of the transmission, such as limited network resources,
high error rates and fluctuating signal strength that may lead
to variable bandwidth. Therefore there is the need for adap-
tive mechanisms that can provide a good video transmission.
Adaptive Forward Error Correction (FEC) techniques which
assure Quality of Experience (QoE) are a convenient means of
delivering video data to wireless users in dynamic and error
prone networks, while taking into account the content of the
transmitted data. This paper proposes an adaptive content-
aware and Random Neural Network (RNN) based mechanism to
provide protection of real-time video streams against packet loss
in wireless networks, improving user experience and optimising
network resources. The benefits of the proposed mechanism
are demonstrated through simulations and assessed with QoE
metrics.

Index Terms—Motion Vectors (MV); Forward Error Correc-
tion (FEC); Video-aware FEC; QoE; Neural networks; Unequal
Error Protection (UEP)

I. INTRODUCTION

In the last few years the use of real-time video services
in wireless and mobile networks has seen a dramatical in-
crease [1], namely in Europe where the growth in mobile
video views was of 162% from 2011 to 2012. The outlook for
growth, according to Cisco, is even greater and will represent
over 90% of the global IP traffic by 2015 [2]. This viewpoint
can be explained by the substantial amount of new forms of
entertainment and information, which include news websites,
social networking communities, e-learning as well as large
amounts of user-generated content.

Due to the video traffic growth, it becomes critical to
improve its transmission quality. However, the network re-
sources are not unlimited, and therefore, many factors, such
as propagation loss, congestion, and channel noise, can hinder
the transmission. This may cause packet loss which in turn
degrades video quality and negatively impacts the end user
experience. The quality of the video should be assessed in
terms of Quality of Experience (QoE), because contrary to
Quality of Service (QoS), it assesses the quality of the video as
perceived by the end user. Therefore, QoE must be considered

1CNPq Fellow - Brazil

in the process of building a mechanism that can adapt to the
video and network characteristics.

An adaptive mechanism is needed to combat the infor-
mation loss on networks with different characteristics. This
mechanism should improve the video transmission to ensure
that the viewing experience of the users is not negatively
affected by the impairing factors of the wireless environment.
Retransmission and Forward Error Correction (FEC) are two
commonly used techniques to handle network limitations.
Retransmission mechanisms are suitable for systems where
delivery must be guaranteed. However, in a real-time video
transmission environment, what is most important is the timely
delivery of the content, because if a frame arrives after its
decoding deadline it can no longer be displayed. On the
other hand, FEC mechanisms have delay-constraints. These
mechanisms add redundancy to the original data so that it is
possible to correct, without retransmission, eventual errors or
losses caused due to the characteristics of the network. The
problem is that many times they are non-adaptive and strict.
This means that the mechanism only offers a fixed amount
of protection/redundancy to the data to be transmitted, not
taking into account the video characteristics. This can lead
to a poor utilization of network resources and it can cause
network congestion due to unnecessary overhead.

Taking these problems into account, this paper proposes a
novel adaptive Video-aware Random Neural Networks (RNN)
based mechanism (neuralFEC). It aims at overcoming the
limitations of non-adaptive schemes, such as the inability to
take into consideration the video’s motion intensity, which is
crucial to a high QoE. An efficient way to quantify the motion
intensity is through Motion Vectors (MV). These vectors play
a key part in the video compression process, allowing to store
changes from adjacent frames, including both previous and
future frames. Therefore it is possible to quantify the motion
intensity of a given frame using the information inside his MV.
The proposed mechanism mitigates these problems by adap-
tively selecting the amount of redundancy given to individual
frames, through the analysis of their type and their motion
characteristics through a RNN [3]. Neural networks (NN) are
computational models inspired by biological central nervous
systems, which are able to go through the process of machine
learning and pattern recognition. They can be trained by feed-



ing them with learning patterns and letting them change the
weights according to some learning rule. The choice of RNN
is related to their particular characteristics that enable their
success in pattern recognition and classification problems [4].

Another important feature of neuralFEC is the use of a
Unequal Error Protection (UEP) scheme. This allows the use
of different amounts of redundancy to different parts of the
data. The proposed UEP scheme protects frames with a greater
intensity of movement with a larger amount of redundancy
opposed to those with lower intensities of movement. This
scheme reduces network overhead through the adaptive and
selective use of redundancy while also improving or at least
maintaining the level of QoE of the transmitted videos when
compared to non-adaptive FEC mechanisms.

The remainder of this paper is structured as follows. The
related work is presented in Section II. Section III describes
the neuralFEC and its evaluation is presented in Section IV.
Conclusions and Future Work are summarized in Section V.

II. RELATED WORK

Adaptive FEC mechanisms have been gaining an increased
interest because they allow for the redundant data to be
used according to the video and network characteristics. The
APB-FEC scheme aims to solve the problem of conventional
packet level FEC by the use of a smaller packet length,
while increasing the FEC block length [5]. By using feedback
information from the receiver regarding the correct reception
of the packets, the mechanism adapts the video in the stream-
ing buffers to the network conditions. The use of buffers
is not optimal and can increase the delay. Also, relying on
information from the receiver can be problematic due to the
fact that if the communication is hindered it is very probable
that the feedback information will not reach the sender.

The ViewFEC module-based mechanism [6] uses a database
module with motion and complexity information from several
videos that is built prior to video distribution. It also uses
another module to assess the length of the Group of Pic-
tures (GoP) which has a greater influence in the received video
quality if packets are lost during transmission. The motion
intensity classification adopts a heuristic based comparison
with the database, which may lead to non-optimal results.

Another FEC mechanism uses a layer-based approach which
processes each GoP and divides it into layers of different utility
to adequately distribute FEC among them [7]. This process
is very time consuming and takes more time with larger GoP
sizes, which in turn adds delay to the transmission. If the layer-
division is not already processed, this mechanism requires a
great amount of processing which means it cannot be used in
real-time video transmission.

Also related to the use of GoP information is the optimized
cross layer FEC mechanism which assigns different priorities
to the GoPs according to the commutative mean squared error
of the entire GoP [8]. The GoPs are encoded and cyclic redun-
dancy check bits are added to detect coding errors. Afterwards
the FEC codes are optimized with different parameters for
different situations. This mechanism has several optimization

phases, for each frame, that are very time consuming, increas-
ing the delay and degrading the QoE.

III. ADAPTIVE MECHANISM

The issues presented above, together with the need to further
optimize the use of network resources, make way for the
novel mechanism proposed in this paper. The neuralFEC goal
is to use an optimized UEP scheme according to the video
frame’s motion intensity characteristics. Making it possible
to better protect the most QoE-sensitive frames, therefore
providing both, the reduction on the impact of packet loss
on the video quality and the use of only the necessary amount
of redundancy. Through this, it is possible to distribute the
redundancy in a way that will improve the QoE for the end
user while sparing precious network resources.

Figure 1 depicts the overall operation of the neuralFEC
mechanism. First of all, in the offline process, an exploratory
analysis using hierarchical clustering was carried out to train
the RNN. Through the human experience about the intrinsic
video characteristics and several simulation experiments the
RNN was also validated. After this, the RNN can be used
in real-time. The offline process is very important because
it leads to accurate results in real-time. Then the decision
making process conducted by the RNN determines a specific
amount of redundancy needed by each frame. This allows the
neuralFEC to shield only the QoE-sensitive data against packet
loss, resulting on better video quality as perceived by the end-
users while saving network resources. A detailed explanation
of the proposed mechanism is presented afterwards.

In order to perform the classification of each frame accord-
ing to its motion intensity a RNN was employed. As other
NNs, this model has the capability for learning and gener-
alization, but excels in pattern recognition and classification
problems [4]. By training the network successfully with an
adequate range of video samples, it can be used in real-time
to classify a given video sequence according to the intensity
of the movement. This is achieved by attributing a specific
value to determine frames with different motion intensities.
After that, the neuralFEC is able to select in real-time the
appropriate amount of redundancy to be transmitted so that
the network overhead is minimized and QoE is maximized.

The RNN structure consists of three input nodes, seven
hidden layer nodes and one output. The three input nodes
represent each frame’s characteristics specifically frame size,
frame type, and MV ratio (total number of motion vectors
divided by the distance described by them). The MV in a
video sequence was adopted from the classical mechanics and
vector-oriented model of motion used by them. This is a simple
model that defines the movement of objects as the progression
of small translations on a plane. A MV ratio was used because
a certain frame can have several vectors pointing to a close
distance while other frames can have less vectors pointing
further away however, and consequently defining a situation of
higher motion intensity. Finally, the output node provides the
motion intensity classification value, computed by the network
from the given inputs. Through these parameters it is possible



Fig. 1. neuralFEC mechanism

to characterize the video motion intensity and choose the
optimal amount of redundancy on a frame-by-frame basis.

To adequately train the RNN, an exploratory hierarchical
cluster analysis using Ward’s method [9] was performed to
categorize selected video sequences which represent different
types of movement. The video sequences were selected ac-
cording to the recommendations of the Video Quality Experts
Group (VQEG) [10] and the International Telecommunications
Union (ITU) [11], and represent sequences that cover different
distortions and content that are commonly seen in online
videos. A set of 15 videos was selected to perform the
hierarchical cluster analysis. Each video was broken down into
three parameters, namely about the frame size and type, and
the total number of motion vectors divided by the distance
described by these vectors.

Using the exploratory analysis results, the video sequences
were classified into three categories of motion intensity,
namely low, median and high intensity. Afterwards, two videos
of each motion intensity category were randomly selected to
train the RNN. The training of the RNN consisted in feeding
the information of this set of selected videos to the inputs of
the network for about 600 iterations which was the point at
which the Minimum Mean Squared Error (MSE) stabilized.
After the training of the RNN was completed, the RNN was
validated with a different set of video sequences, the remaining
9 videos from the exploratory analysis, which also cover all
three motion intensity characteristics. The results obtained
proved to be correct classifications of the video sequences
present in the validation set.

After the training and validation phases, the RNN can be
used in the real-time process. Using cross-layer techniques, the

neuralFEC is able to obtain important information about sev-
eral video characteristics, namely frame type and size, as well
as the number of motion vectors and the Euclidean distance
pointed by them. All these details are fed to the RNN which
in turn provides, in real-time, an accurate motion intensity
value for each frame. After the video frame is classified it
is encoded by the Reed-Solomon (RS) [12] with the amount
of redundancy selected by the RNN. This erasure code has
low complexity, and therefore provides better performance for
real-time services [13]. The RS is a linear block code that
has a rule to convert of source bits s, of length k, into a
transmitted sequence t of length n bits. To add redundancy,
n is made greater than k. In a linear block code, the extra
(n−k) bits are linear functions of the original k bits, which are
called parity-check bits. It allows us to use different block sizes
represented by each individual frame. Through this procedure,
a precise UEP amount can be assigned to each frame, where
only the QoE-sensitive data will be protected. In turn, this
results in better video quality while reducing the amount
of redundancy data needed, thus not adding unnecessary the
network overhead. This reduction is very important because it
can be the source of serious interference problems. In this way,
not adding unnecessary redundancy will allow more users to
access services with better QoE, improving the overall system
performance.

Figure 2 shows the pseudo-code portraying the neuralFEC
real-time operation. All procedures are performed inside a for-
loop, at line 01, which will go through all the frames in the
video sequence. At line 02, the frame type is identified to be
used in the selection control mechanism (if statement) at line
03. This allows the change in the control flow according to



neuralFEC needs, which is, to assign a tailored redundancy
amount to I- and P-Frames, and send B-Frames without addi-
tional data. At lines 05, 06, 07, and 08 it is possible to observe
the identification of the frame size, the computation of the MV
ratio, the classification of the video frame motion intensity
using the RNN, and the assignment of an unequal amount
of redundancy to the most QoE-sensitive data, respectively.
Lines 09 and 11 are responsible for sending the frame with or
without redundancy.

01 for each Frame
02 FT=getFrameType(Frame)
03 if(FT equal (I- or P-Frame))
04 then
05 FS=getFrameSize(Frame)
06 MVratio=calculateRatio(getMV(Frame))
07 MotionIntensity=RNN(FT, FS, MVratio)
08 addRedundancy(RS(MotionIntensity))
09 sendFrame(Frame+Redundancy)
10 else
11 sendFrame(Frame)
12 end if
13 end for

Fig. 2. neuralFEC pseudo-code

IV. PERFORMANCE EVALUATION AND RESULTS

The main objective of the neuralFEC is to reduce the
network overhead by not adding unnecessary redundancy
while having a light improvement or at least maintain the
same video quality. In order to assess the performance of
the proposed mechanism in wireless networks, several ex-
periments were performed using Network-Simulator 3 (NS-
3) [14]. The scenario for evaluation is comprised of 25 nodes
in a grid disposition (5x5), separated by 50 meters. The
Optimized Link State Routing Protocol (OLSR) [15] was used
as the routing protocol. Ten video sequences were used in
this scenario, namely Bowing, Coastguard, Container, Crew,
Foreman, Hall, Harbour, Mother and Daughter, News and
Soccer. These particular sequences were selected in order to
have a great variety of motion intensities. They are in Common
Intermediate Format (CIF) with a resolution of (352x288) and
coded with the H.264 codec. The GoP size was set to 19 and
after each I- or P-frames, come two B-frames.

A two-state discrete-time Markov chain model was im-
plemented following a simplified Gilbert-Elliot packet-loss
model [16], which approximates the behaviour of a wireless
network. It produces simulation results which are closely
related to those of burst loss patterns of wireless channels [17].
The simplified Gilbert-Elliot is shown in Figure 3, where the
probability of packet loss in the Good state (G) was set at 0,
which means no losses, and the probability of packet loss in
the Bad state (B) was set at 1, where all packets are lost. The
Packet Loss Rate (PLR) can be obtained by Equation 1, where
PBG represents the probability of transitioning from the Bad
state to the Good state and vice-versa with PGB .

PLR =
PBG

PBG + PGB
(1)

Fig. 3. Gilbert-Elliot simplified model

To validate and compare the results, three experiments with
different schemes were performed. The first experiment serves
as a baseline as there was no FEC mechanism in use. The
second experiment was performed with a non-adaptive video-
aware FEC mechanism (Video-aware FEC), where a fixed
amount of 38% of redundancy was added only to I- and P-
frames. This amount of redundancy was selected according to
an extensive set of experiments, which showed the best video
quality situation taking into consideration the characteristics of
the scenario defined for the experiment. The last experiment is
the proposed adaptive mechanism with RNN and UEP (neu-
ralFEC). Each of the three experiments was simulated 10 times
with an error rate of 20% representing an average loss [18]
obtained through the simplified Gilbert-Elliot model.

The video quality of each evaluation scenario was assessed
through an objective measurement, namely the Structural
Similarity (SSIM) Index. This objective evaluation metric is
a method based on the analysis of luminance, contrast and
structural similarity of images. SSIM is one of the most
commonly used metrics for objective evaluation of QoE [19].
The objective quality assessment of the video sequences was
performed with EvalVid [20] and the MSU Video Quality
Measurement Tool (VQMT) [21].

A set of ten video sequences different from those used to
train the RNN was used. They represent distinctive situations
with a broad type of motion intensity characteristics. Three
different mechanisms were used to perform the experiments on
the mentioned sequences, namely without protection, with the
non-adaptive Video-aware FEC mechanism and finally with
the adaptive neuralFEC mechanism.

Figure 4 shows the results in terms of overhead of the
experiments. While using the non-adaptive Video-aware FEC
mechanism the network overhead added was between 35%
and 43%. On the other hand, when the neuralFEC mechanism
was employed the amount of overhead remained between 13%
and 24%. This means that the average redundancy added by
the non-adaptive mechanism was around 38% on contrast
to only 19% added by neuralFEC. It is also clear that the
proposed mechanism can assess the importance of frames
according to motion intensity. This assessment is performed
by the RNN, which attributes a higher classification for frames
with a great amount of movement, and a lower classification
for frames with less amount of movement. In doing that,
a greater amount of redundancy was attributed to video se-
quences such as Crew, Soccer, Harbour and Coastguard. On
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the contrary, video sequences which are classified as being of
lesser motion intensity, such as Bowing, Mother and Hall are
given less redundancy. These results show that the neuralFEC
mechanism performs better than the non-adaptive Video-aware
FEC mechanism in terms of overhead, by reducing in average
a half of the redundancy needed to protect the data.
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Besides saving the already scarce network resources by
not adding unnecessary redundancy, it is also important to
provide good video quality. In order to verify this situation,
a set of assessments were performed using the SSIM metric.
Figure 5 depicts the SSIM values for each video sequence
while using the three aforementioned protection schemes. The
results show the neuralFEC mechanism obtained an average
SSIM value of 0,831 against a value of 0,819 for the video-
aware FEC mechanism and 0,726 for the mechanism that
did not use any type of protection. This represents a slight
improvement of almost 1,5% , on average, in terms of SSIM

value for the adaptive neuralFEC mechanism in comparison
to the non-adaptive video-aware FEC mechanism. In further
detail, the SSIM score achieved by neuralFEC for the Harbour
video sequence was of 0,675 against 0,662 for the video-
aware mechanism and 0,485 for the mechanism without FEC.
Although all video were transmitted with the same PLR, the
SSIM score obtained by the same three mechanisms for the
Bowing sequence was of 0,915, 0,914 and 0,920 respectively.
This can be explained by the different characteristics of these
two sequences. The Harbour video sequence has a greater
amount of motion compared to the Bowing sequence, meaning
that packet loss has a greater effect on this type of sequences.
This results in lower SSIM scores for sequences with a higher
degree of motion intensity, and also shows that videos with
a lower degree of motion intensity have greater resilience to
packet loss. Due to this, it is important to employ adaptive FEC
mechanisms, such as neuralFEC to protect the contents of the
video taking into account its motion intensity characteristics.

TABLE I
AVERAGE SSIM AND NETWORK OVERHEAD

neuralFEC Video-aware FEC Without FEC
SSIM 0,831 0,819 0,726
Overhead 19,334% 38,460% –

Table I summarizes the results presenting the average SSIM
and network overhead for all video sequences. It demonstrates
that the proposed neuralFEC mechanism had a slightly im-
proved video quality. Most importantly, it was able to do
so while drastically reducing the network overhead by not
adding unnecessary redundancy. This is of great importance
in wireless networks, due to the limited nature of the wireless
channel resources, which can be aggravated by packet loss
due to interference from concurrent transmissions and network
congestion.

The results showed that the neuralFEC mechanism, through
an accurate motion intensity classification of video sequences
with distinct characteristics, is able to add a precise amount
of protection. In doing that, it can offer less overhead during
transmission in a wireless mesh network setting while provid-
ing as good video quality as non-adaptive FEC mechanisms.

V. CONCLUSION AND FUTURE WORKS

The growth of the online video transmission over wireless
networks calls for adaptive QoE-aware mechanism to ensure
the video quality. To fill this gap, the neuralFEC provides
the possibility to shield the video transmission in wireless
networks, protecting only the most QoE-sensitive data, max-
imizing the video quality while saving network resources by
not sending unnecessary redundancy. This is important to
better use the already scarce wireless resources. Both impact
and advantages of the neuralFEC approach were demonstrated
through a set of experiments using real video sequences.

The experimental simulation results showed that neuralFEC
was able to highly reduce the amount of network overhead
by 50% while maintaining or even improving the QoE for



the end user. This is a great enhancement over non-adaptive
FEC mechanisms and also reinforces the importance of using
adaptive FEC mechanisms which take into account motion
intensity when protecting a video stream with varying char-
acteristics. Future work should emphasize further refinement
of the mechanism by taking into account a larger set of video
sequences. Additionally, other adaptive FEC mechanisms will
be used to evaluate the performance of neuralFEC. Different
scenarios should be explored by introducing mobility and
cross-traffic to assess the resilience of the mechanism in such
conditions.
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Abstract—On-line video services are becoming a large part of
the daily routines of people all over the world, where most of
the content is accessed through wireless networks. Therefore, it
is of ever growing importance that the negative aspects of these
types of error prone networks are lessened in order to ensure
adequate quality of the delivered video streams. Forward Error
Correction (FEC) techniques allow the stream to be protected
with an amount of redundancy to preserve the video quality
during transmission. Nevertheless, some FEC schemes do not
make an efficient usage of the available network resources due to
unnecessary use of redundancy as a result of video-unawareness.
The adaptive FEC mechanism proposed in this paper uses the
motion intensity characteristics of the video and the network
loss state to deliver the video streaming with adequate Quality
of Experience (QoE), while keeping the use of network resources
to a minimum level. It does so from a combined use of a Random
Neural Network (RNN) for motion intensity classification and an
Ant Colony Optimization (ACO) scheme for dynamic redundancy
allocation. QoE metrics are used to assess the performance of
the mechanism showing its advantages over adaptive and non-
adaptive protection schemes.

Index Terms—Motion Vectors (MV); Forward Error Correc-
tion (FEC); Video-aware FEC; QoE; Neural networks; Unequal
Error Protection (UEP); Ant Colony Optimization

I. INTRODUCTION

The usage of real-time video services on the go has grown in
recent years [1]. This leap can be explained by the technologi-
cal advances in mobile devices and the increasing popularity of
content sources which flood the wireless systems every day.
As video traffic increases, the probability of errors derived
from network congestion and interference rises, especially in
a wireless network environment. Such factors will negatively
impact the video stream quality, leading to diminished Quality
of Experience (QoE) for the end user.

Video sequences have different characteristics which de-
scribe a different Motion Intensity (MI), such as steady
camera sequences (low MI), and panning and zooming se-
quences (high MI). When losses occur on a high MI frame,
video quality will be more degraded than on a frame with less
movement. Therefore, videos with a greater MI need better
protection than those with a lower one. To preserve the video
quality while maximizing the QoE, it is of utmost importance
to employ a protection mechanism that can adapt to the video
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and network’s characteristics. Hence, in order to assess the
impact of such characteristics in the perceived video quality
by humans, QoE metrics must be used.

Two commonly used techniques for error recovery are
Retransmission and Forward Error Correction (FEC). Retrans-
mission schemes, such as Automatic Repeat Request (ARQ),
require a data reception acknowledgement in order to re-
transmit lost data. This ensures complete delivery of the data
but introduces delay which is unsuitable for real-time video
transmission over wireless scenarios. If a frame is received
after its playout deadline it will be discarded, thus leading
to degradation of the video sequence. FEC mechanisms avoid
such situations using redundancy to account for errors during
transmission. In this way QoE is ensured without the need for
retransmission. Nevertheless, FEC mechanisms can be non-
adaptive, meaning that the amount of redundancy allocated
is fixed and does not account for the variations in the MI
characteristics of the video and in the network state. This is
a greedy utilization of the already scarce wireless network
resources ultimately leading to an aggravation of network
traffic congestion due to a disorderly use of redundancy.

On the other hand, to surpass the aforementioned limi-
tations, adaptive FEC mechanisms can be used. These per-
form Unequal Error Protection (UEP) by allocating different
amounts of redundancy to different units of data accord-
ing to a given rule in their design. Random Neural Net-
works (RNN) [2] and Ant Colony Optimization (ACO) [3]
are dynamic and adaptive mechanisms which enable the use of
UEP. Therefore, an adaptive video- and loss-aware mechanism
based on RNN and ACO is proposed. The main goal is to
improve overall QoE for the end user through the analysis of
the video MI parameters and network loss state to adequately
allocate an amount of redundancy which minimizes overhead
without degrading video quality from the human point-of-view.

The Motion Vectors (MV) are extracted from a video
sequence to infer about the MI. They are a crucial part of
the compression process of the video, containing information
related to nearby frames. By analysing the number of MVs
and their Euclidean distance, it is possible to attribute a MI
category to the video sequence, hereby allowing the FEC
mechanism to use this information during redundancy allo-
cation. The proposed mechanism uses a combination of MV,



frame size, and frame type information to categorize motion
intensity through a RNN. This is then combined with further
information from network losses in a ACO scheme to produce
a tailored amount of redundancy suited for each situation.

Neural Networks (NN) are information processing
paradigms based on the way biological central nervous
systems (e.g., the brain) process data. They can be configured
for specific applications through a learning process, comprised
of pattern reading and connection weight adjustment following
determined rules to produce a desired output. Some common
uses of such type of systems, specifically RNNs, are pattern
recognition and data classification [4] [5].

The ACO system is a metaheuristic technique which is
based on the behaviour of ants in the presence of pheromones.
This technique is used to dynamically solve computational
problems that can be expressed as path-finding in a graph.
From a given starting point on the graph, ants traverse the
paths between each node to reach a solution. During each trip,
a pheromone marker is deposited. This aids the construction
of a solution because the path which has the greater amount
of deposited pheromone is a solution for the problem.

The AntMind mechanism processes information on a frame-
by-frame basis to adaptively perform QoE-aware data protec-
tion, thus being a video-aware UEP scheme. A frame will have
a larger amount of redundancy if it is categorized of higher
importance and vice-versa. This helps to minimize the impact
of overhead on the wireless network as well as preserving
the quality of the video, ultimately improving QoE when
compared to adaptive and non-adaptive FEC mechanisms.

The remainder of this paper is structured as follows. The
related work is presented in Section II. Section III describes
the AntMind and its evaluation is presented in Section IV.
Conclusions and Future Work are summarized in Section V.

II. RELATED WORK

There has been a growing interest in adaptive FEC mecha-
nisms to improve video quality over wireless networks. This
is due to their tailored redundancy allocation from the analysis
of characteristics of the video/network without added delay.

Optimized Cross-Layer FEC (OCLFEC) is a Group of
Pictures-based (GOP) mechanism which attributes a priority
value to the GoP for transmission from the mean squared error
of each frame [6]. It uses two error correcting codes, Luby
Trasform (LT) and Rate-compatible Parity Check (RCPC).
The data is first encoded with LT codes and then redundancy
check bits are added to prevent coding errors. These codes are
optimized with different parameters for specific situations. The
only metric used to assess the performance of the mechanism
is Peak Signal-to-Noise Ratio (PSNR) which by itself does not
tell much information about QoE. This mechanism does not
take into account the MI of the video. This is problematic
because the mechanism may have a good Quality of Ser-
vice (QoS) performance, but this does not mean that QoE is
guaranteed. Also the several phases of the mechanism are time
consuming which increases delay reducing the overall QoE.

”Transport Audiovisuel avec Protection Ingale des Objets et
Contrle d’Admission” (TAPIOCA) is a non MI-based mecha-
nism which divides each GoP by layers and attributes different
priority values to them [7]. This enables the distribution
of redundancy through the layers of most importance. To
assess the performance of the mechanism two metrics were
devised, specifically the Decodable Frame Rate (DFR) and
the Protection System Efficiency (PSE). These are so unique
that they do not provide much information about the QoE
performance of the scheme. The process of dividing each GoP
into layers is both computationally heavy and time-dependent,
making this scheme unsuitable for real-time use.

Adaptive Packet and Block length FEC (APB-FEC) is a
non MI-based mechanism which uses packet lengths that are
smaller than usual in order to increase the size of the FEC
block [8]. It uses packet loss rate feedback information to
adapt the video to the network loss characteristics. The metrics
used to assess its performance are the network overhead, the
effective packet loss rate, and PSNR. However, these do not
provide adequate information to evaluate the QoE.

The Video Aware (viewFEC) mechanism is a module-based
scheme which analyses MI [9]. It uses an off-line database of
several video sequences with MI and complexity information.
A heuristic comparison is performed between the GoP and the
database to assess the MI of the video being transmitted. The
metrics used to assess the performance of the mechanism are
suited for a QoE evaluation, but relying too heavily on the
database may not provide optimal results when using videos
different than those present in it. Also, this mechanism does
not rely on packet loss rate information to adapt itself to the
current network state while keeping the video QoE high.

The neuralFEC mechanism is a MI based mechanism [10]
which performs the categorization of each frame of a video
sequence according to its characteristics. It employs a RNN
to use the video characteristics to compute an adequate re-
dundancy value in real-time. The metric used to evaluate the
performance of the mechanism is Structural Similarity (SSIM).
It does not use any type of network loss information, which
can introduce unnecessary amounts of added redundancy.

The AntMind mechanism takes into account all the above
limitations and improves on them to create a novel QoE-aware
adaptive system which provides adequate protection in video
distribution over wireless networks.

III. ANTMIND MECHANISM

Using the AntMind Mechanism, the aforementioned lim-
itations can be surpassed by taking into account the MI
characteristics and the network loss state. Precious wireless
network resources are thus spared and the impact of losses
is reduced, leading to an overall QoE improvement. Figure 1
shows a general overview of the AntMind mechanism.

Firstly, the off-line training and validation of the RNN
created for MI categorization purposes is performed. An
exploratory hierarchical cluster analysis using Ward’s method
for clustering [11] assessed video characteristics and grouped
video sequences according to MI. It formed clusters of similar



Fig. 1: AntMind mechanism

MIs (Figure 2) from a high intensity of motion to a low inten-
sity. Video characteristics such as frame size, frame type and
motion vectors were used during the analysis. From this result,
a training set representing video sequences of low motion
intensity (Akiyo and Silent), medium motion intensity (City
and Football) and high motion intensity (Mobile and Flower)
was selected. The RNN was trained using this set so that a
different value can be attributed to distinct motion scenarios.
After completing its training, the RNN is ready to be used to
categorize the videos off-line (i.e., previous to transmission).
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Fig. 2: Hierarchical Clustering of video sequences according
to motion intensity

The RNN comprises four input nodes, seven hidden nodes
and one output node. The four input nodes represent the video
frame’s parameters such as frame size, frame type, number of
motion vectors and the distance described by those vectors.
The single output node represents the computed MI value. Two
MV parameters were used due to distinct situations: when a
frame has a high number of MVs which have no distance
value; when there are fewer MVs but these have higher
distance values describing a scenario of greater movement.

Afterwards, the real-time process begins. The network loss

information is retrieved from feedback packets sent from the
receiver. These contain information representing the rate of
erroneous packets in the previously sent frame.

After the identification of the MI characteristics by the
RNN and the retrieval of network loss information, the ACO
mechanism starts its operation. Based on the RNN assessment
and the known characteristics of the video/network, the value
representing the amount of redundancy to be used is computed
in real-time for each frame. This is done in a way which
minimizes wireless network overhead and maximizes QoE.

The graph used for this study, shown by Figure 3, consists
of fourteen nodes depicting video and network characteristics.
The first node serves as a starting point. Then, the next three
nodes represent the classification given by the RNN in terms
of MI, namely low, medium, and high. This classification was
obtained from the hierarchical cluster analysis’ results shown
in Figure 2. The following two nodes represent the frame type,
I- or P-. The next three nodes depict the frame size as small,
medium, and large. The last five nodes represent the network
loss rate for the previously transmitted frame.

Fig. 3: Graph used in the ACO mechanism

Through the deposition of pheromone in the paths cor-
responding to the current situation, a preliminary path is
generated for the ants. Both the number of iterations and ants
is 10 and the simple ACO model was used. The amount of
ants and preliminary pheromone was selected through exten-



sive experimentation in order to obtain a plausible solution
which did not worsen the processing delay of the AntMind
mechanism. During runtime, the ants search the graph while
leaving pheromone in the travelled path, resulting in a possible
solution for the problem. The results are stored and can be re-
used for similar conditions. This avoids re-running ACO again,
thus allowing the use of ACO in real-time.

The value computed by the ACO mechanism represents
the parameter which will be used in the Reed-Solomon (RS)
algorithm [12]. This allows the addition of a specific amount
of redundancy according to the video/network characteristics.

RS is of low complexity, resulting in low computational
overhead making it suitable for real-time processing of streams
of video. The RS code belongs to the family of linear block
codes. It converts a source of s bits of an arbitrary length k
, into a sequence of n bits of length. In order to protect the
data, extra (n−k) bits are added to the original data set. These
extra bits are commonly known as parity-check bits.

Through this streamlined process, a tailored amount of
protection is allocated to each frame, thus better protecting
the most error-sensitive data. The overall QoE and network
performance are improved from the minimization of overhead
which also reduces the probability for congestion.

Figure 4 shows the AntMind mechanism pseudo-code for
each frame. It first retrieves the frame type (02) and checks
it against a condition to assess whether it is of type I- or
P- (03), as only I- and P- frames will be protected. If a
frame is of type B- it is immediately sent (13), otherwise,
additional frame characteristics are retrieved, such as frame
size (05), number of MVs (06) and the distance pointed by
those MVs (07). Then, these characteristics are fed to the RNN
for MI categorization (08). From the MI value, the information
about the loss rate along with the video characteristics are fed
into the ACO mechanism, which computes a value for the
parameter of the RS code. This parameter governs the amount
of added redundancy (09). Afterwards, RS encodes the data
with the RSpar parameter (10) and the frame is sent (11). The
packet loss rate is retrieved from feedback information sent
from the receiver and the value is updated (15).
01 for each Frame
02 FT=getFrameType(Frame)
03 if(FT equal (I- or P-Frame))
04 then
05 FS=getFrameSize(Frame)
06 MV=getMotionVectors(Frame)
07 MVDist=computeDistance(MV)
08 MotionIntensity=RNN(FT, FS, MV, MVDist)
09 RSpar=ACO(MotionIntensity, FT, FS, LR)
10 addRedundancy(RS(RSpar))
11 sendFrame(Frame+Redundancy)
12 else
13 sendFrame(Frame)
14 end if
15 LR=getLossRate(ReceiverFeedback)
16 end for

Fig. 4: AntMind pseudo-code

From this accurate classification of the MI characteristics
and network loss rate, the adaptive AntMind mechanism can

minimize overhead. It does so while preserving the quality
of the video. Therefore, it reduces the footprint of video
transmission on the network while improving overall QoE.

IV. PERFORMANCE EVALUATION AND RESULTS

The main goal of AntMind is to improve the use of wire-
less network resources through the reduction of the network
overhead derived from the allocation of redundancy by FEC
mechanisms while assuring QoE. The performed evaluation
aims at showing that the AntMind mechanism can effectively
reduce network overhead while preserving video quality. A
wireless mesh network scenario was devised, consisting of 25
nodes disposed on a 5 by 5 grid with a distance of 50 meters
between them. The Network-Simulator 3 (NS-3) [13] was
used to perform the evaluation of the proposed mechanism.
The Optimized Link State Routing Protocol (OLSR) [14]
was used as the routing protocol. The data set consisted
of ten video sequences with different characteristics. These
videos represent content commonly found in on-line video
services. The video sequences are coded with the H.264 video
codec and are in the Common Intermediate Format (CIF).
Furthermore the sequences have a GoP of 19 with two B-
frames after each I- and P- frames.

With the objective to describe the burst loss patterns of a
wireless network [15], a two-state discrete-time Markov chain
model following the Gilbert-Elliot packet-loss model [16] was
implemented. The simplified Gilbert-Elliot packet-loss model
consists of two nodes representing G, a Good state where no
packets are lost, and B, a Bad state where all the packets
are lost. These two states are connected by the probability of
transitioning from G to B PGB and the probability of transi-
tioning from B to G PBG. By adjusting these probabilities we
can obtain different patterns of error which represent specific
Packet Loss Rate (PLR) values (5%, 10%, 15%, and 20%)
commonly present in wireless networks.

In order to thoroughly assess the results provided by
AntMind, four distinct data protection schemes were used,
namely one without protection, one with non-adaptive protec-
tion and two with adaptive protection. The first scheme is used
to obtain a baseline value, to further assess the improvements
of the FEC mechanisms. The second and third schemes are
Video-aware Equal Error Proctecion (VaEEP) and Video-
aware UEP (VaUEP) respectively. In the VaEEP mechanism
a fixed amount of redundancy is added I- and P- frames. In
the VaUEP mechanism, the same frames are protected with
different fixed amounts of redundancy depending on the frame
type. The protection of only I- and P- frames is a common
practice in video transmission. The redundancy amounts were
attained after a thorough set of simulation studies, where the
best possible trade-off regarding the amount of redundancy
and QoE in terms of video quality was found. This translates
into a value of 38% average added redundancy for VaEEP and
of 30% for VaUEP. The proposed mechanism (AntMind) is the
last scheme used consisting in a combination of an RNN and
ACO for Unequal Error Protection.



Two objective QoE metrics were employed [17], namely
the Structural Similarity (SSIM) Index and the Video Quality
Metric (VQM). The SSIM analyses luminance, contrast and
structural similarity of images to assess the similarity/likeness
of the pictures. VQM is a Discrete Cosine Transform (DCT)-
based metric which uses the spatial-temporal property of the
human visual system’s perception to assess the distortion of the
pictures. In SSIM, higher values represent better video quality,
while in VQM lower values represent higher video quality.
To enable the objective evaluation of video quality two tools
were used, namely EvalVid [18] and the MSU Video Quality
Measurement Tool (VQMT) [19].

The selected sequences are different from those used to
train the RNN in order to guarantee that the mechanism will
function with any other random video sequence, thus ensuring
the validity of the classification performed by it.

Table I shows the results in terms of the average added
overhead of all PLRs using the three FEC schemes. VaEEP’s
overhead ranged from 35% to 43% averaging at 38%, and
VaUEP’s added overhead ranged from 25% to 36% averaging
at 30%. AntMind’s overhead ranged from 9% to 19% aver-
aging at 15%. This means that in some cases the reduction
of added overhead reached 77% over VaEEP and 72% over
VaUEP. Therefore, far less redundancy data is used by the
AntMind opposed to VaEEP and VaUEP translating into
reductions of 61% and 50%, respectively.

From the results, it is shown that the AntMind mechanism
assesses the importance of frames according to their MI
characteristics. Therefore, attributing a less redundancy to
videos with a lower MI and a more redundancy to videos with
a higher MI. This is clearly observable for Bowing and Mother
which are categorized as low MI video sequences versus
Coastguard, Harbour and Container which are categorized
as high MI video sequences. Additionally, in the Mother
and Soccer video sequences, the VaEEP mechanism allocates
a higher amount of redundancy to Mother (41%) than to
Soccer (36%). In Mother, the proportional size of I- and P-
frames is higher than that of the B- frames due to its low MI. In
Soccer, this is not valid because it has a higher MI. Therefore,
our mechanism allocated a higher amount of redundancy to
Soccer (16%) in contrast to Mother (9%).

TABLE I: Average Overhead
VaEEP VaUEP AntMind

Bowing 42% 36% 10%
Coastguard 37% 27% 19%
Mother 41% 33% 9%
Soccer 36% 27% 16%
Hall 35% 27% 13%
Container 43% 35% 18%
Crew 35% 25% 16%
Foreman 37% 28% 15%
News 43% 35% 17%
Harbour 36% 26% 18%
Overall 38% 30% 15%

The SSIM and VQM metrics were used to perform the
evaluation of the AntMind mechanism in order to complement

the results obtained for the added overhead and to ensure that
video quality was preserved. The different observable values
are due to each video sequence’s uniqueness, highlighting
the importance of performing the experiments with video
sequences with a broad array of MI levels/characteristics.

Figure 5 shows the values obtained in terms of SSIM for
each of the schemes and for all of the video sequences. The av-
erage SSIM value was computed from all the video sequences
for all PLRs. The mechanism without FEC averaged a value of
0,805. The VaEEP and VaUEP mechanisms obtained values of
0,881 and 0,882, respectively, which are closely matched by a
value of 0,876 obtained for the adaptive AntMind mechanism.
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Fig. 5: Objective QoE assessment (SSIM)

Analysing in further detail the Coastguard video sequence
in Table II, for a higher PLR the SSIM scores are considerably
worse than for a lower PLR. The Mother video sequence
does not show this kind of behaviour between distinct PLRs.
Such reduction of quality is of course expected due to the
increased PLR. Nevertheless, a change of such magnitude as
observed for Coastguard and Harbour means that packet loss
has a greater impact on video sequences which have a higher
intensity of motion, contrary to Mother and Bowing. This
shows that video sequences with a lower intensity of motion
have a greater resilience towards loss.

TABLE II: SSIM variation through the PLR
Without FEC AntMind

Coastguard Mother Coastguard Mother
PLR 20% 0,482 0,868 0,688 0,915
PLR 15% 0,574 0,899 0,784 0,938
PLR 10% 0,678 0,923 0,841 0,959
PLR 5% 0,859 0,955 0,906 0,971

Figure 6 shows the VQM results. The VaEEP and VaUEP
mechanisms achieved an average VQM of 3,895 and 3,860,
respectively, while the adaptive AntMind mechanism obtained
an average of 3,940, meaning that video quality was main-
tained. These results follow a trend similar to that of SSIM.
This helps corroborate the improvements of the proposed
mechanism in overhead reduction with video quality shielding.

Table III summarizes the SSIM, VQM, and network over-
head results. It shows that the proposed adaptive mechanism
managed to achieve a considerable reduction in network
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Fig. 6: Objective QoE assessment (VQM)

overhead by avoiding the addition of unnecessary redundancy.
Furthermore, it did so while preserving video quality. This is
of great importance in wireless network environments due to
their limited network resources.

TABLE III: Average SSIM, VQM and network overhead
AntMind VaEEP VaUEP Without FEC

SSIM 0,876 0,881 0,882 0,806
VQM 3,940 3,895 3,860 5,278
Overhead 14,898% 38,460% 29.827% –

Overall, the results showed that the AntMind mechanism
can considerably reduce network overhead. It does so by
performing an accurate classification of the MI components
of the video. This information is used in conjunction with
network loss state information to dynamically allocate redun-
dancy on a frame-by-frame basis. By doing so, it ensures
adequate protection of video sequences with different MIs
while preserving video quality.

V. CONCLUSION AND FUTURE WORKS

The growing interest in video streaming on the go in-
creases the stress upon the existing wireless networks. To
make an efficient use of the resources while ensuring video
quality, adaptive FEC mechanisms must be used. The AntMind
mechanism performs a dynamic protection of the data that
impacts QoE the most. Video quality is preserved while greatly
reducing the use of network resources. The footprint and
benefits of the AntMind scheme were demonstrated through a
set of experiments using real video sequences.

The simulation results evidenced interesting behaviours
from some video sequences, showing that those with a higher
amount of MI require more protection. The AntMind mecha-
nism uses MI and network loss to adequately shield a video
stream with changing video characteristics in a lossy wireless
network. It reduced network overhead by 61% on average,
showing an improvement over non-adaptive and adaptive FEC
mechanisms. Future improvements should further enhance of
the mechanism considering other video sequences and the
position of frames inside the GoP. Mobility and cross-talk
scenarios should be explored to assess the performance of the
mechanism under such conditions.
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