
Faculty of Sciences and Technology of the
University of Coimbra

Department of Informatics Engineering

Final Internship Report

Integration and Optimization of
Energy Data Analysis Systems

Author:

José Ribeiro

jbaia@student.dei.uc.pt

Advisors:

Professor Alberto Cardoso

M.Sc. Rafael Jegundo

Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science (Informatics Engineering)

September 2, 2014

Abstract

Internet of Things (IoT) is a concept that recently became mainstream with

the launch of numerous consumer products, some of them dedicated to Home

Energy Management. Due of its novelty and immaturity, IoT Platforms

should be designed for change. This project aimed to provide an existing

data analysis mechanism as a service to third-parties and enable the usage

of custom energy management devices by an existing data monitoring ap-

plication. To achieve this, a service-oriented system was created that allows

third-parties to send energy consumption data and receive the classifica-

tion’s result as soon as possible, in isolation of the remaining system; an IoT

communication protocol was used to allow energy management devices to

send data in degraded network conditions and with low power consumption.

This solution enables future projects of the company to reuse its components,

such as the generic time-series storage platform developed in the process.

Keywords: Internet of Things, Data Analysis as a Service, Home Energy Man-

agement, Loosely Coupled Systems

Acknowledgements

The world’s smallest Acknowledgements chapter: my coordinators, the com-

pany, my friends, my family and, most importantly, my parents. Thank you

all for your help and support during this journey.

i

Contents

1 Introduction 1

1.1 Context . 1

1.2 Goals . 1

1.3 Scope . 2

1.4 Motivation . 3

1.5 Structure . 3

2 State of the Art 5

2.1 unplugg . 5

2.1.1 Overview . 5

2.1.2 Architecture and Design 5

2.2 Modern Web Applications Architectural and Design Trends . 10

2.2.1 Service-oriented Architecture 10

2.2.2 Twelve-Factor Application Methodology 11

2.3 Internet of Things D2S Communication Protocols 12

2.3.1 MQTT . 12

2.4 Notes on other Internet of Things platforms 14

3 Methodology 16

3.1 Requirements . 16

3.2 Architecture . 17

3.3 Software Development . 18

3.4 Testing . 19

3.4.1 Verification . 20

ii

3.4.2 Validation . 20

3.5 Planning . 20

3.5.1 1st Semester . 20

3.5.2 2nd Semester . 21

3.5.3 Plan execution and analysis 22

4 Product Vision 23

4.1 Requirement Analysis . 23

4.1.1 Functional Requirements 23

4.1.2 Non-functional Requirements 25

4.2 Risk Analysis . 25

5 Current System Analysis 27

5.1 Architecture and Design . 27

5.1.1 Coupling of Components 27

5.1.2 Data Model . 29

5.2 Security . 30

5.2.1 Real-time Updates Subscription Flaw 30

5.2.2 HTTP use . 32

6 Architecture and Design 34

6.1 Architectural Style and Principles 34

6.2 Overview . 35

6.3 Components . 37

6.3.1 Aqora . 37

6.3.2 Qomb . 41

6.3.3 On-Off Classifier . 43

6.3.4 Qontrol Manager . 43

6.3.5 MQTT Broker . 44

6.3.6 Publish-Subscribe Messaging Platform/Library 45

6.3.7 MQTT Bridge . 48

6.3.8 Aqora Storer . 48

6.3.9 WebSocket Server . 49

iii

6.3.10 Reverse Proxy, SSL Termination Proxy and Load Bal-

ancer . 50

6.3.11 Specified Components 52

7 Implementation 55

7.1 General Technological Choices 55

7.1.1 Programming Language 56

7.1.2 Runtime Environment 56

7.1.3 REST APIs . 57

7.1.4 Database . 58

7.1.5 In-memory Key-value Data store 59

7.2 Implemented Components . 60

7.2.1 Reverse Proxy, SSL Termination Proxy and Load Bal-

ancer . 60

7.2.2 Aqora . 61

7.2.3 Qomb . 63

7.2.4 MQTT Broker . 63

7.2.5 NSQ . 64

7.2.6 On-Off Classifier . 66

7.2.7 Qontrol Manager . 67

7.2.8 MQTT2NSQ-Feedata 67

7.2.9 NSQ-Feedata2Aqora 68

7.2.10 NSQ-Feedata2WS . 68

8 Verification and Validation 70

8.1 Verification . 70

8.1.1 Aqora Module Tests 70

8.1.2 Integration Tests . 71

8.1.3 System Tests . 72

8.2 Validation . 73

9 Conclusions 75

9.1 Future Work . 77

iv

Appendices 78

A 2nd Semester Gantt Planning 79

B Aqora Auth Spec 80

B.1 Headers . 80

B.2 Status codes . 80

B.3 Authentication/Authorization 81

B.3.1 Create a session . 81

B.3.2 Validate a session . 81

v

List of Figures

6.1 System overview diagram . 36

6.2 Aqora and Qomb’s partial architecture view 37

6.3 Aqora Canonical Data Model Diagram 40

6.4 MQTT Broker partial architecture view 45

6.5 Publish-Subscribe partial architecture view 46

6.6 WebSocket Server partial architecture view 49

7.1 NSQ topic/channel message distribution 65

A.1 Gantt of the 2nd Semester Planning 79

vi

Abbreviations

MQTT MQ Telemetry Transport. 44, 45

MSA Microservices Architecture. 34

SOA Service-Oriented Architecture. 34, 35

SPOF single point of failure. 64

vii

Chapter 1

Introduction

1.1 Context

unplugg is an online platform and application for energy monitoring, analysis

and actuation, developed by NumberDiscover. It is based on the use of power

meters and smart plugs, devices that allow the recording of consumption

data and, in some cases, remote control.

Using these devices, the application is capable of presenting the user

with his energy consumption data over time. By analysing that data, the

application is also capable of inferring the user’s energy consumption pattern

for every plug; it is, therefore, capable of predicting whether a device will

be in use on a given time of day. This allows the system to create rules of

command for automatically controlling the consuming device; by shutting

down a plug during the periods of expected inactivity of a given device, the

application actively cuts on the standby expenses.

1.2 Goals

The company identifies two main business goals for this internship:

• It should be possible for third-parties to use the data analysis sys-

tem to obtain rules of command in isolation and independently of the

remaining unplugg application.

1

• It should be possible to receive and process high volumes of highly

granular data sent by unplugg’s energy management devices.

A revision of the current system should also be performed; during the

system’s revision, it is of the interest of the company that the main limita-

tions of maintainability, security and performance of the current version of

the system are analysed, proposing and implementing solutions that address

those limitations and problems.

1.3 Scope

It is important to define the scope of the internship, in order to clarify what

is and what is not expected to be studied and developed during its course.

• It is not expected to develop or improve any kind of data analysis algo-

rithm or mechanism; it is only expected to modify the way the overall

system interacts with the already existing data analysis components.

• It is only expected to use the already existing hardware solutions and

modify the current system in order to be easier to support the future

use of other kinds and vendors of devices. It is not expected to develop

or improve any kind of hardware.

• It is only expected that the solution’s integration process is planned

in order to be implemented by the company after the internship’s

conclusion. It is not expected to integrate the solution with the current

platform.

• There will be no involvement of the remaining team in the current

system’s revision nor in the implementation of the solutions that may

arise from such revision.

• There will be no involvement of the remaining team in the implemen-

tation of the components that will be proposed to support the new

business goals.

2

1.4 Motivation

The internship and its goals are part of the unplugg platform roadmap, a

platform developed and maintained by the company since 2011.

Initially developed as a data visualisation platform, data analysis and

control features were later added to allow active interference over the user’s

energy consumption costs.

1.5 Structure

This internship report is composed by the following chapters:

Introduction In chapter 1, a brief description of the internship’s context,

goals and motivation is presented.

State of the Art Chapter 2 describes the main modules that compose

the current unplugg system, analyses Modern Web Application Architectural

and Design Trends and Internet of Things Devices-to-Server Communication

Protocols.

Methodology Chapter 3 presents the methodology applied to determine

the internship’s Requirements, Architecture, the used Software Development

methodology, how Testing was performed and the Planning and its execution

are analysed.

Product Vision In chapter 4, the Requirement Analysis is presented, as

well as the Risks that were verified during the internship’s course, and how

they were mitigated.

Current System Analysis Chapter 5 lists particular details of the cur-

rent system’s implementation that will be improved by the proposed solu-

tion, while presenting some of the possible solutions and their rationale.

3

Architecture and Design In chapter 6, the proposed architectural style

and principles are presented. A description of the contribution of every

component of the proposed architecture to the overall system is described.

Implementation Chapter 7 describes how the proposed architecture was

implemented taking into consideration the architecture’s guidelines, present-

ing the chosen technologies and the reasoning behind those choices.

Verification and Validation Chapter 8 presents the list of the Verifica-

tion and Validation tests that were performed on the system.

Conclusions In chapter 9, some remarks about how the proposed sys-

tem achieves the business goals and complies with the requirements are

presented. In addition, possible future studies are listed regarding some

technological choices and how this future work may enable new business

opportunities.

4

Chapter 2

State of the Art

2.1 unplugg

unplugg, being an online platform and application, has already a distributed

architecture that needs to be studied before addressing the requirements of

this internship. As such, a study of the current architecture that enables un-

plugg to perform energy monitoring, analysis and actuation was performed.

It is worth noting that this description is only focused on the components

that are relevant for this internship’s scope.

An interpretation and critical analysis of its flaws is performed on Cur-

rent System Analysis chapter.

2.1.1 Overview

An architectural overview of the current system is depicted in Barbosa’s

internship[1]. This chapter describes the composing subsystems and their

components.

2.1.2 Architecture and Design

The unplugg platform is composed by three major subsystems:

unplugg Web Server Composed by the components needed for its en-

ergy monitoring features: the web application server, unplugg’s Main

5

Database and the data fetching mechanisms.

On-Off Classification System Composed by the components responsible

for unplugg’s data analysis/classification features: the On-Off Clas-

sifier and the On-Off Classification Results Database (abbre-

viated to Results Database).

Actuation System Composed by the components needed for unplugg’s

actuation features: the Classification Starter and the Actuator.

The components composing each subsystem are now analysed in more

detail.

2.1.2.1 unplugg Web Server

The unplugg Web Server is composed by three main components:

• unplugg Web Application Server

• Real-time Updates Server

• Data Fetchers

• Main Database

unplugg Web Application Server The unplugg Web Application Server

is a Ruby on Rails application, with two major functions:

• Serve the unplugg Web Application to Web Clients.

• Receive the energy data sent by one of unplugg’s energy consumption

data providers, The Energy Detective.

The application is responsible for serving the user interface to Web

Clients; this is the user’s main interaction interface with the application.

It allows the user to view his energy consumptions, statistics and control

their devices’ state when applicable.

It is also responsible for implementing an endpoint for one of the energy

data providers, The Energy Detective (TED). When a TED’s device has

6

unpublished energy data, TED’s servers do an HTTP request on a previously

specified web endpoint to allow real-time data push (in this case, unplugg

Web Application Server). This endpoint implements the expected interface

and receives and stores the energy data in unplugg’s Main Database. An

endpoint responsible for receiving data by energy data providers will be

generically referred to as Data Endpoint.

Real-time Updates Server Real-time Updates Server’s function is to

update, in real-time, the Web Clients with the users’ energy consumption

data. It is a Faye server1, a publish-subscribe messaging system. After a

Web Client subscribes to real-time updates of a specific device, the server

will send every incoming energy consumption datapoint to the client. The

server is capable of doing so by hooking to a Consumption’s after_create

Data Model callback, triggered by the creation of a Consumption’s instance.

A security flaw was detected in the subscription flow that is analysed in Real-

time Updates Subscription Flaw (section 5.2.1); a rationale for removing the

data model creation hook is exposed in section 6.3.6.1.

Data Fetchers The remaining energy data providers, Cloogy and Current

Cost, serve their data through REST-based Application Public Interfaces.

Because they don’t support real-time push, the data acquisition is triggered

by an hourly cronjob, whose function is to enqueue data acquisition tasks

on a work queue. Each task is picked by an available worker that does

the HTTP request (a pull, in contrast with TED’s push) and stores the

response on unplugg’s Main Database. These workers are referred to as

Data Fetchers.

unplugg’s Main Database The Main Database is a MongoDB database,

currently holding collections for the following resources (in their hierarchical

order):

User

An unplugg user. A user may have multiple homes.

1Faye: http://faye.jcoglan.com/

7

http://faye.jcoglan.com/

Home

A home belongs to a user. A home may have multiple meters.

Meter

A monitoring system that measures power consumption. A meter may

have multiple plugs.

Plug

A smart plug that measures instantaneous power consumption.

Consumption

A consumption represents the energy consumption on a given time

instant.

Consumptions are generated at different time rates:

The Energy Detective A consumption every 1 minutes.

Current Cost A consumption every 5 minutes.

Cloogy A consumption every 15 minutes.

It is clear that the Consumption collection has a distinct access pattern

from the remaining collections: while the Consumption collection has mas-

sive insertion operations from various components, the remaining collections

are seldom modified, being mostly operated through reads instead.

2.1.2.2 On-Off Classification System

The On-Off Classification System is responsible for analysing the user’s

usage pattern regarding a certain device. It is composed by the actual

classifier, On-Off Classifier, and a database where it outputs its result.

Their high-level functionality is described below.

8

On-Off Classifiers The classification task is CPU intensive and, as such,

the task is currently offloaded to external servers using a service, called

IronWorker2. This service provides scalable task queues for offloading the

main server. For every classification request created by Classification

Starter (described in Actuation System), an instance of On-Off Classi-

fier is created on IronWorker that, once it is complete, outputs its result

to the Rules Database.

Rules Database The On-Off Classifiers output rules of automation,

named Qontrols; these rules describe the detected patterns of energy con-

sumption. These are represented by the time intervals when the plugged

devices were classified as turned on or off, by day of the week.

Besides being used as the output database of On-Off Classifiers, the

Rules Database is used by the Actuator (described in Actuation System)

as its input. This is what enables the Actuation System to control the

devices’ state according to the outputted Qontrols.

2.1.2.3 Actuation System

The Actuation System consists of two main components:

• Classification Starter

• Actuator

Classification Starter The classification process is triggered by a cronjob

that runs Classification Starter once a week; its function is to enqueue the

devices IDs that should be classified by On-Off Classification System.

Actuator The Actuator is the component responsible for applying the

rules of automation to users’ devices. Once an hour, a cronjob triggers the

Actuator, that reads the latest rules of automation (Qontrols) from Rules

Database and turns devices on or off, accordingly.

2IronWorker: http://www.iron.io/worker

9

http://www.iron.io/worker

2.2 Modern Web Applications Architectural and

Design Trends

2.2.1 Service-oriented Architecture

Service-oriented Architecture (SOA) is an architectural and design pattern,

where logical and business functions are partitioned into self-contained units

of software designed to solve a single concern, named services.

Although no industry standards exist to define what composes an SOA,

some principles are widely accepted as the core of what SOA represents [2]:

Standardized Service Contract

Services within the same service inventory are in compliance with the

same contract design standards.

Service Loose Coupling

Services ensure the service contract is not bound to the service con-

sumers nor to the service logic implementation.

Service Abstraction

No information other than the necessary for the invocation of a service

is included in a service contract, and service contracts are the only

source of information about a service.

Service Reusability

The service is designed so that its business logic may be reused.

Service Autonomy

Services have control over their business logic, as well as over their

runtime execution environment.

Service Statelessness

Services are separated from their state data whenever possible, in order

to reduce resource consumption and be able to handle more requests

reliably.

10

Service Discoverability

Services provide metadata so that they can be discovered and inter-

preted.

Service Composability

Services are designed to be reused in solutions that may themselves be

made up of composed services.

Together, the tenets of Service Design, particularly Loose Coupling, pro-

vide agility to the organisation, since loosely-coupled business processes are

not constrained by the limitations of the underlying infrastructure.[3]

SOA is often confused with Web Services and WS-*, a set of specifica-

tions which define an interoperable platform supporting an SOA; SOA is

an architectural and design pattern, Web Services and WS-* are one SOA

implementation.[4][5]

Because of this confusion, a new trend has surfaced in recent years named

Microservices Architecture, that aims to promote the Service-Orientation

principles without being associated with Web Services/WS-*. Microservices

Architecture3 is usually associated with lightweight implementations and

loosely coupled interfaces that do not rely on a particular technology or

protocol stack.[6][7][8]

The advantages of using an SOA on this particular context are described

in Architecture and Design chapter.

2.2.2 Twelve-Factor Application Methodology

The Twelve-Factor Application is a methodology for building modern, scal-

able, maintainable software-as-a-service applications, written by Heroku co-

founder Adam Wiggins.[9] It comprises a set of 12 architectural, design and

development principles that aim to promote best software development prac-

tices and may be grouped into three distinct categories:[10]

3Microservices Architecture is usually focused on promoting a single concern or business
capability per service (Single Responsibility Principle), which usually leads to multiple
small services, hence the name.

11

Development and configuration Promote strict separation of code and

configuration, explicit declaration of dependencies and parity between

environments.

Runtime Promote the design of horizontally scalable applications using

multiple independent stateless processes with a share-nothing archi-

tecture, with fast startups and graceful shutdowns.

Management and visibility Promote continuous monitoring of the ap-

plication through the use of log streams and one-off auxiliary processes.

These three categories are loosely correlated with three of the major

phases of an application’s life cycle: development, deployment and manage-

ment.

2.3 Internet of Things D2S Communication Pro-

tocols

2.3.1 MQTT

MQTT, MQ Telemetry Transport, is a broker-based publish/subscribe mes-

saging protocol, designed for use in constrained environments such as an

Internet of Things context, where network is considered unreliable or expen-

sive and a small code footprint is required for its use in embedded devices.

On June 5, 2014, MQTT 3.1.1 entered a public review period for being ad-

vanced as a Candidate OASIS Standard, which ends September 4th, 2014

[11]. MQTT adoption has been growing and is already implemented in simi-

lar scenarios in multiple areas such as energy monitoring and healthcare.[12]

2.3.1.1 Architectural and Design Concerns

MQTT has some major architectural and design concerns, most importantly:[13]

Reduced bandwidth usage and, consequently, low power consumption.

This makes it more suitable for embedded devices scenarios.

12

This is achieved by reducing the protocol exchanges and by having a

compact binary payload with little overhead; this contrasts with text-

based protocols such as HTTP, where headers add significant size to

the payload. MQTT does not enforce any requirements over the payload

format.

One-to-Many Message Distribution by using the Publish-Subscribe pat-

tern.

This promotes the decoupling between the producers and consumers.

Multiple Quality of Service settings on a per-message basis.

This allows to use multiple Quality of Service policies over a single con-

nection, allowing to change specific messages delivery guarantees and

prioritize others according to their importance. The three available

QoS policies are 0 At most once, 1 At least once and 2 Only once.

Support for clean and durable sessions to allow the (optional) persis-

tence of QoS 1 and 2 messages until the client re-connects.

Hierarchical topic-based message filtering with single and multilevel

wildcards (+ for single-level subscriptions, # for multi-level subscrip-

tions).

This provides the subscribers with greater flexibility and enables the

reduction of the amount of undesired messages, therefore reducing

traffic waste; it also allows multiplexing different message topics on a

single connection. The wildcard mechanisms promote a semantically

organized hierarchy to enable efficient filtering.

Simple implementation in order to reduce the code footprint.

This is achieved by simplifying its API, which as of version 3.1 con-

sists of only 5 methods: connect, publish, subscribe, unsubscribe and

disconnect.

13

2.3.1.2 Security

MQTT does not provide strong Security built-in to the protocol; version 3.1

has support for Identity and username/password Authentication, although

it is performed in plaintext (since no encryption mechanism is provided

by the protocol itself).[14] Authorization mechanisms are implementation

dependent.[15]

The recommended way for providing data privacy is using SSL for en-

crypting the traffic. TPC/IP port 8883 is reserved with IANA for using

MQTT over SSL (in addition to TCP/IP port 1883, for plain MQTT); mul-

tiple implementations of MQTT brokers and clients support MQTT over SSL.

2.3.1.3 Performance and Power efficiency (versus HTTPS)

Because MQTT was designed specifically to address fragile networks, its small

payloads and protocol exchanges have direct impact in bandwidth consump-

tion and, consequently, in its power usage. A benchmark performing a

comparison between HTTPS and MQTT over SSL performance and power us-

age on an Android device showed MQTT to be both faster and use less en-

ergy when sending batches of 1024 1-byte messages, both on 3G networks

(5% power saving, 11x faster), as well as on Wi-Fi (33% power saving, 4x

faster).[16] The same benchmark also mentions MQTT over SSL as more re-

liable than HTTPS when receiving, particularly over 3G, where connection

re-establishment time is higher.

2.4 Notes on other Internet of Things platforms

During the course of this internship, particularly during the 1st Semester,

the intern aimed to study the State of the Art of other Internet of Things

platforms in terms of architectural and technological choices. However, most

of the relevant companies do not share information about their architecture

or infrastructure. Because most of them have surfaced or gained traction

in recent years, this is most likely because either they lack the resources to

document it or because they rather keep them as trade secrets.

14

Hence, the analysis was focused on Modern Web Applications architec-

tures and software design principles currently regarded as best practices.

The author also analysed distributed systems from major online companies

that tackle problems of similar nature, taking into account its architectural

considerations and rationale[17][18][19].

15

Chapter 3

Methodology

Walking on water and developing software from a

specification are easy if both are frozen.

— Edward V. Berard in Life-Cycle Approaches

3.1 Requirements

User stories were the chosen methodology for the formalisation of the func-

tional requirements. User stories capture through informal language the

expected interaction between a user and a system (or between two systems,

representing stakeholders).

The traditional template of a User story is:

As a <role>, I want <goal/functionality/desire> so that <benefit>.

According to Mike Cohn, one of the contributors of the Scrum software

development methodology, the so that clause may be considered optional[20],

which renders:

As a <role>, I want <goal/functionality/desire>.

Non-functional requirements were formalised based on the high-level

business goals of the internship.

16

This methodology was chosen for the formalisation of Functional Re-

quirements because User stories are a simple and brief way of describing

a small subset of the desired functionality, by breaking the project into small

increments. This leads to a better understanding of how the problem should

be approached and gives a method for measuring the degree to which the

solution complies with the expected behaviour of the system, as perceived

by different stakeholders.

3.2 Architecture

Before architectural decisions could be taken, every architectural constraint

needed to be determined, so the newly created system could be compliant

with those constraints. Architectural constraints comprise the requirements

(both functional and non-functional) and external limitations.

Functional requirements are specified by User stories and, therefore,

easy to verify if being addressed by the architecture. However, both non-

functional requirements and external limitations drive the architecture devel-

opment, since the qualities of the system (non-functional requirements) are a

result of its components’ interactions as a whole, while external limitations

should be constantly monitored. In order to address external limitations

such as company impositions, every major architectural decision was only

executed after consulting and receiving approval by the company.

The rationale behind the solutions taken to address problems of simi-

lar nature made by major industry companies (such as Amazon, Facebook,

Twitter, Netflix and Heroku) was studied, as well as approaches regarded as

current best practices. Particularly, the Service-Oriented Architectures were

taken as reference because of their rationale and the benefits they bring

to the overall system. Heroku’s Twelve-Factor Application Methodology

served as a guideline for the service’s design, because of the qualities it pro-

vides to its services and, at a higher level, to the system they compose. To

address the Security requirement, the current system’s major interactions

were analysed, and current API Authentication and Authorization schemes

and practices were examined, particularly for addressing possible security

17

flaws and assuring the users’ data privacy; Twitter’s use of an OAuth par-

ticular flow (Client Credentials Grant [21]) and REST APIs best practices

inspired the design of a component’s Authentication/Authorization mecha-

nism. Evolutionary Architecture and Design trends were studied to address

the Maintainability requirement, which led to the architecture and design of

loosely-coupled, high-cohesion components. Asynchronous IO and the use of

Event-oriented paradigms were considered as ways of achieving Performance

on I/O bound applications.

Together, these architectural and design patterns were studied and used

to address the requirements identified in Requirement Analysis.

3.3 Software Development

Both business goals of the internship have external dependencies: the Enterprise

Customer’s expectations of the system and its functionality and the ongoing

development of unplugg’s energy management devices. Due to the unpre-

dictable nature of the product and the external dependencies, agile method-

ologies were adopted in order to better adapt to unexpected changes on the

internship’s scope. In particular, the Lean Software Development (LSD)

methodology was used. LSD is characterised by seven principles[22]:

• Eliminate waste

• Amplify learning

• Decide as late as possible

• Deliver as fast as possible

• Empower the team

• Build integrity in (The practice of refactoring the code to keep it simple

and clear.)

• See the whole

18

These principles closely reflect the company’s approach to software de-

velopment and the mindset and personality of the intern; together, they lead

to fast development cycles, empower the developer to explore new architec-

tural and design patterns and technologies in a continuous learning process

that benefits both the developer and the company. By eliminating waste,

such as some bureaucracy imposed by waterfall-like methodologies, the de-

velopment cycles are kept as lean as possible and allow small functionality

increments. Deciding as late as possible while seeing the system as a whole

enables an evolutionary architecture to be driven to address the evolving

requirements.

The tasks were kept as small as possible in order to enable faster iteration

cycles per component.

For tracking the project progress, Trello1 was used to organise, structure

and prioritise tasks and the work in progress. Its label and lists system

allows to organise the tasks according to the affected component, phase of

development and various other metrics. As the project progressed, new

tasks were created by breaking down the user stories into small features to

be implemented and incorporated in the next release.

For tracking the multiple versions of every component, a Distributed

Concurrent Version System (DCVS) was used; the chosen system was Git.

Git is the DCVS used by the company, and the intern was already famil-

iar with it. A repository was created by component (service), since its

functionality is independent of every other service; this promotes the fu-

ture independent development of every service, since they are designed to

be loosely-coupled. Every Git repository was kept synced with an online

version kept on GitHub2, the online Git service used by the company.

3.4 Testing

In order to assess if the resulting system is adequately tackes the business

goals, Verification and Validation tests were performed.

1Trello: http://www.trello.com/
2GitHub: http://www.github.com/

19

http://www.trello.com/
http://www.github.com/

3.4.1 Verification

Verifying the system is assessing if it functions as expected; that may be

achieved through Unit Testing, Module Testing, Integration Testing and

System Testing.

Since the system follows a Service-Oriented Architecture, most of the

tests that were performed were Integration Tests and System Tests. When

considering an SOA, Unit Testing covers a very strict scope of code with

high maintenance costs; these tests were discarded following the Eliminate

waste principle of LSD, since higher-level testing will cover the same func-

tionality without the development overhead of Unit Testing. Module Tests

were implemented for a single component, and are designed to test critical

parts of its API3.

3.4.2 Validation

Validating the system consists of assuring it meets the stakeholders’ needs.

In this project, that means it is necessary to assure the business goals are

met from the perspective of the stakeholders.

Acceptance Tests were performed in order to assess the accomplishment

of the business goals; they were designed to be as system wide as possible,

in order to cover every stakeholder expectation.

Both Verification and Validation tests are described in Verification and

Validation chapter (chapter 8).

3.5 Planning

3.5.1 1st Semester

During the 1st Semester, the study of the State of the Art covered the

following topics:

• Distributed Systems Architectures

3This component is Aqora, described in section 6.3.1.

20

• Web Applications Architectures

• Internet of Things de facto standards and Devices to Server Commu-

nication Protocols

• Inter-node communication protocols and technologies for Distributed

Systems and, specifically, Service-Oriented Architectures.

• High-volume and High-Performance Storage Technologies

• Agile Methodologies and Agile Architectures

• Similar Platforms

After the study of the State of the Art, a deep analysis of the architectural

flaws of the current system took place, while emphasising the requirements.

With the acquired knowledge, a future architecture for unplugg was designed

in order to provide the desired technical support. The implementation of

the prototype took place and preliminary tests were made.

3.5.2 2nd Semester

The planning of tasks for the Second Semester is illustrated by Appendix

2nd Semester Gantt Planning. An high-level description of the tasks to be

fulfilled:

1. Finish the implementation of the unplugg-platform, integrating it with

the classification system.

2. Implementation of the WebHook mechanism and the necessary Rules

endpoint.

3. Implementation of the Publish-Subscribe System.

4. Integration of the MQTT Broker, including MQTT Broker Bridge.

5. Creation of a WebSocket Server and Integration with the Publish-

Subscribe System.

21

6. Verification of the system through Module Tests and Integration Tests,

developed throughout the implementation phase.

7. Validation of the system using simulated energy data to test all of the

requirements.

8. Writing of the Final Report.

3.5.3 Plan execution and analysis

During the 2nd Semester, the plan proved to be reasonably accurate, except

for task 1 and 2 (listed in Appendix 2nd Semester Gantt Planning):

• The time-series storage service of the unplugg-platform was planned

to be finished by 15th February. However, after analysis of the possible

future uses of the time-series storage service, it was found that adding

an additional Entity to the Data Model could could dramatically im-

prove the developer’s experience when using the API; this entity would

allow to model elaborate scenarios more easily, while keeping the Data

Model simple enough for its use on this project’s scope. After dis-

cussing with the company, it was accepted the potential risk of getting

behind schedule would compensate the gain of flexibility. However,

the impact of this reimplementation was underestimated and led to

a three-week implementation cycle, in addition to the expected one-

week of remaining methods implementation, in order to rewrite both

the Data Model, the API endpoints, some of the business logic pro-

viding data integrity checks and module tests.

• The integration of the unplugg-platform with the classification system

took longer than expected, due to the underestimation of adapting

its code to the unplugg-plaform. The code of the classification system

was rewritten (the reasoning behind this decision is described in section

7.2.6), and this took approximately an extra week of implementation.

This left approximately three weeks to write the report and execute per-

formance tests, which was insufficient. Therefore, the delivery was adjourned

to the next phase.

22

Chapter 4

Product Vision

The most difficult part of requirements gathering is

not the act of recording what the user wants, it is

the exploratory development activity of helping

users figure out what they want.

— Steve McConnell

4.1 Requirement Analysis

4.1.1 Functional Requirements

The internship proposal describes the business goals that need to be ad-

dressed during the internship. Those goals correspond to high-level func-

tional requirements for the system:

Data Analysis as a Service

The system should be able to provide access to the data analysis sub-

system to third-parties in isolation and independently of the remaining

unplugg application.

unplugg’s Energy Management Devices

The system should be able to receive and process data sent by un-

plugg’s energy management devices.

23

These two high-level functional requirements may be broken down into

detailed functional requirements, formalised through user stories.

US1: Enterprise Customer’s Data Storage

As an Enterprise Customer,

I want the system to be able to store my energy consumption data

so that it may be analysed by the classification system at a later time.

US2: Enterprise Customer’s Data Classification

As an Enterprise Customer,

I want the system to be able to receive and process classification requests

over my energy consumption data,

so that I can receive rules of automation.

US3: Enterprise Customer’s Classification Availability

As an Enterprise Customer,

I want the system to notify or return the classification result as soon as

available.

US4: End User’s Real-time Visualisation

As an End User,

I want the system to be able to receive energy consumption data from

unplugg’s energy management devices,

so that I can receive that data in real-time on a browser.

US5: End User’s Data Storage

As an End User,

I want the system to be able to store energy consumption data from un-

plugg’s energy management devices,

so that I can retrieve it later.

24

4.1.2 Non-functional Requirements

Non-functional requirements (NFRs) describe the desired system or subsys-

tem attributes.

The non-functional requirements mentioned in the proposal are as fol-

lows:

• Maintainability

• Security

• Performance

Given the lack of an objective quantification of Maintainability and Security,

the system should be modified in a way that it becomes arguably equal or

better under those qualities. In terms of Performance, the new components

(and implicit system) should be architected, designed and implemented tak-

ing into account what is best for the overall performance of the system; it

is not possible to directly compare the performance of the new system with

the current one, since the internship aims to implement new features.

4.2 Risk Analysis

During the course of the internship, several risk scenarios for this project

were identified. Of those identified potential risks, two eventually became

reality. The reasons of why they happened and how they were mitigated are

described.

Overly-optimistic Planning During the implementation of the time-series

storage service of unplugg-platform, it became evident that this ser-

vice could be adopted by other projects of the company. While it was

already functional (both for the system and the other projects), some

changes were made in order to ease the adoption of the other projects.

The impact of those changes was underestimated, which delayed the

remaining project. Due to the complexity of the system, the process of

justifying every architectural, design and technological decision during

25

the writing of the report led to an incremental delay, which made the

timely delivery of the report infeasible.

unplugg Energy Management Devices not ready for validation The

initial internship’s planning took into consideration that unplugg man-

agement devices would be ready for the validation phase of the energy

management devices data interface (MQTT Broker) was ready. How-

ever, that was not verified. In order to mitigate this, an energy con-

sumption data source simulator was implemented for validation.

26

Chapter 5

Current System Analysis

Even the best planning is not so omniscient as to

get it right the first time.

— Fred Brooks, in The Mythical Man-Month

5.1 Architecture and Design

5.1.1 Coupling of Components

The current system’s interactions between its different subsystems exhibit

very high coupling, specifically Common Coupling1. This kind of coupling oc-

curs between unplugg Web Server and On-Off Classification System

and between On-Off Classification System and the Actuation System;

the interactions and the data sources involved are listed below.

• The On-Off Classification System and, in particular, On-Off Classifiers,

read the necessary consumption data directly from the unplugg’s

Master Database; both the unplugg Web Application and the On-Off

Classifiers have access to the database (the web application for

read/write access, the classifiers for read-only access).

1Common Coupling occurs when two modules share global data structures.

27

• The Actuation System and, in particular, the Actuator, reads the

rules of automation directly from Rules Database; this database is

used by the On-Off Classifiers to output the classification’s result.

Therefore, components of different subsystems (On-Off Classification

System and Actuation System) have access to a shared data source

(unplugg for read-only access, the Classification System for write-only

access).

This interaction is clearly depicted in the unplugg’s Current System di-

agram.

Sharing a database amongst multiple applications has some disadvan-

tages; in particular:

• Data model changes affect every application. Changes to the data

model structure of unplugg’s Master Database will affect the Classifi-

cation System’s code, because it is coupled to the Master Database’s

data model. This either causes changes to be more expensive (since

they affect the Classification System’s codebase as well) or forces the

changes to be done in isolation, to allow the database to keep the

lowest common denominator for every application accessing the data.

Likewise, changing the Rules Database data model affects Actuation

System’s code, even though the change driver (the owner of the database)

is the Classification System. The effects stated above are also ap-

plicable.

• Concurrency may be an issue. While a database is made to handle

concurrency, different applications manipulate data in different ways.

The order of the operations may affect the final result, depending on

timing. This may, for instance, cause an application to see outdated

data due to the operation isolation level (i.e., transaction isolation

level).

There are additional consequences to the Classification System’s use of

the Rules Database for its output:

28

• While this choice does not pose serious security concerns since the only

reader is the Actuation System (for scheduling the automation), it

raises security issues when considering the Classification System’s

use by Enterprise Customers, were it to be directly accessed by the

users. Because of this, keeping this interaction is not a viable choice.

• Since the output is written to Rules Database, the Actuation System

has to poll the database hourly to update its cronjob with the (poten-

tially new) automation rules. Even if the external access to the Rules

Database by Enterprise Customers was a viable choice, this would

not be feasible with a growing number of users, since this would dra-

matically increase the number of requests, due to every Enterprise

Customer’s polling needs.

On the Enterprise Customers use case, it would be an advantage to re-

ceive its result as soon as it is available, while also being able to request

a classification when needed, instead of a fixed-schedule classification

process.

The proposed solution addresses these issues and is described in the

Architecture and Design chapter.

5.1.2 Data Model

The Enterprise Customer expects to use the unplugg Platform to classify a

device’s consumption time series data as a sequence of operation periods.

Since the Classification System requires access to a considerable range of

historical data, it would be inefficient to require the Enterprise Customer to

send the entire time range for every classification request, since most of the

data would overlap (the amount of overlapping data depends on the request

frequency). As such, it is important that the unplugg Platform somehow

persist the consumption data in order to allow its reuse by subsequent clas-

sification requests.

The unplugg’s Data Model, because of its specific use case, presents a

highly hierarchical structure. Although this data model fits the unplugg’s

29

End User needs, it does not align with the Enterprise Customer’s use case;

there is no direct correspondence between the current unplugg’s data model

entities and the entities that describe the Enterprise Customer’s consump-

tion data. It should be noted that this takes into account the interest of an

Enterprise Customer to provide the unplugg Platform the strictly necessary

data to obtain the classification result (Principle of Least Privilege2).

A data model hierarchy capable of abstracting these differences while suf-

ficient to represent the data needed by the Classification System is described

in 6.3.1.2.

5.2 Security

5.2.1 Real-time Updates Subscription Flaw

During the Current System Analysis, a security flaw was found while analysing

the real-time update mechanism; this subsection describes the flaw, the ex-

ploitation scenario, its consequences and a possible workaround.

5.2.1.1 Summary

It is possible for an attacker, either a registered or unregistered unplugg

user, to subscribe to real-time consumption updates of any unplugg user’s

devices. The reason why this is possible is because the real-time updates’

server currently does not employ any kind of Authentication/Authorization

mechanism, accepting every subscription request as valid; in addition, the

topic name format follows a predictable structure.

5.2.1.2 Exploitation Scenario

The steps below describe the basic exploitation flow of the flaw.

1. The attacker establishes a connection with the real-time updates server.

2Principle of Least Privilege: restrain the access of a module or actor to the information
and resources strictly necessary for its legitimate purpose.

30

2. The attacker issues a subscription request to a specific device’s con-

sumption topic. The topic follows the known structure of /presence-consumptions-<device_-

id>.

3. The server will send the attacker every consumption datapoint received

in real-time.

There are multiple ways a valid <device_id> could be obtained. Since

unplugg’s traffic is unencrypted (it uses HTTP, analysed on 5.2.2), it would

be possible, for instance, to perform a network sniffing attack on a network

during an active unplugg Web Application session (an unplugg user browsing

http://unplu.gg on that network). This would allow the attacker to obtain

the device ID through the visited URLs or through the consumption updates’

traffic. The worst case scenario for the attacker would be to brute-force the

device IDs namespace by performing bulk subscriptions; this kind of attack

is also possible because the server is not employing any subscription rate

limiting mechanism.

5.2.1.3 Consequences

The direct consequence is that the attacker obtains reading permissions over

data he should not be authorized to read. While the unauthorized access

to this data may seem harmless (as this data may be perceived as useless

to users other than the legitimate user), it could, for instance, be used to

predict whether the user is at his/her home, based on the decreased energy

consumption. However, users data privacy is itself enough of a concern and,

as such, this issue should be addressed.

5.2.1.4 Workaround

This flaw may be fixed by implementing an Authentication/Authorization

mechanism. This way, the Real-time Updates Server would be able to serve

or drop a connection according to the user requesting a subscription to

real-time updates of a device; the subscribing client would first authenti-

cate before the server, so Authorization could be established for upcoming

31

subscription requests on that connection.

This approach is described in the Architecture and Design chapter, ap-

plied to WebSocket Server, the component designed to replace the current

Real-time Updates Server mechanism.

5.2.2 HTTP use

5.2.2.1 Analysis

Currently, the unplugg Web Application is served using HTTP. Since Ed-

ward Snowden’s Global Surveillance Disclosures3 the encrypted Internet

traffic has seen global increase during the first half of 2014, according to

the Sandvine Global Internet Phenomena reports of 1H 2013 [23] and 1H

2014 [24]; according to the same reports, Europe’s traffic in particular has

quadrupled (when compared with the same period of the previous year).

This increase may be caused by the recent adoption of HTTPS as the de-

fault protocol by major Internet services such as Google4 and Facebook5.

This also may suggest a raising concern of the users over their data privacy.

Because of the plaintext nature of HTTP, it is susceptible to multi-

ple attack types. While network sniffing is applicable to both HTTP and

HTTPS, it is easier for an attacker to extract meaningful information from

its plaintext form that allows him to perform powerful attacks such as Ses-

sion Hijacking or Man-in-the-Middle attacks, for example.

5.2.2.2 HTTPS implementation difficulty and costs

To use HTTPS, one needs to generate an SSL Certificate and configure the

service or a proxy server to use it.

3Edward Snowden’s Global Surveillance Disclosures refers to public disclosure made
by Edward Snowden in June 2013, through The Guardian and The Washington Post, of
top secret documents regarding multiple National Security Agency’s programs of global
surveillance (namely PRISM) of foreign nationals and U.S. citizens, as well as the involve-
ment of several other non-U.S. security and intelligence agencies.

4Google Search had SSL encryption for signed-in users since May 2012 [25], but it was
only in September 2013 it became default even for signed-out searches.[26]

5Facebook had optional SSL encryption since January 2011 [27], but it was only in
July 2013 it became default. [28]

32

Configuring a proxy server may be the easiest and most flexible approach,

since it allows to proxy multiple services using a single certificate, while also

keeping the private traffic of a network in plaintext. This is an advantage,

since the heavy work of encrypting and decrypting traffic is performed by

the proxy server, while allowing the services to reduce their resource con-

sumption; it should be noted, however, this approach assumes the private

network is secure, which is an assumption that may only be accepted after

analysing the security policies of such network.

The cost of generating a publicly-trusted SSL Certificate (issued by a

Certificate Authority trusted by the majority of the web browsers) depends

on the issuing company.

After discussing with the company, the cost of generating a certificate

was regarded as being a necessary operational cost, given the advantages of

providing an SSL connection to the service.

5.2.2.3 Conclusions

Given the multiple benefits of using HTTPS (SSL) and taking into account

the implementation difficulty and costs it presents, the author believes it is

of the interest of the company and of its users to use encrypted communi-

cations on every public facing service, both existing and to-be-implemented ;

that means the only plaintext communications I believe are acceptable are

communications performed inside the company’s private network.

33

Chapter 6

Architecture and Design

Any organization that designs a system will

inevitably produce a design whose structure is a

copy of the organization’s communication structure.

— Melvyn Conway, the Conway’s Law

The Architecture and Design chapter describes the architectural style

and the design principles followed by every proposed component. It also

specifies every component and its functionality.

6.1 Architectural Style and Principles

The chosen architecture for the system is best classified as a Service-Oriented

Architecture (SOA) and, in particular, as a Microservices Architecture (MSA).

At the service level, the design principles of the Twelve-Factor Application

Methodology were adopted.

The combination of these two styles brings desirable properties to the

system.

Scalability Since every service is executed as one or more stateless pro-

cesses, this improves the scalability of the service; vertical scalabil-

ity comes from delegating the state data management to an external

service, reducing the amount of consumed resources per interaction;

34

horizontal scalability becomes easier, since multiple instances of the

service would share no state (a Shared nothing architecture).

It is important to note that, due to its SOA nature, horizontal scalabil-

ity becomes possible on a per-service basis, meaning that it is possible

to run more instances of the services that need more resources, while

running fewer instances of the services that have a reduced resource

consumption. This contrasts with the reality of scaling out a Mono-

lithic Application, since that would require running multiple instances

of the entire application, rather than the parts that require greater

resource. [6]

Maintainability A Service-Oriented Architecture leads to multiple small

code bases (one per service) instead of a single large code base. Since

every code base maintains a reduced amount of logic, it is easier to

correct the flaws in the existing functionality in the long term because

its complexity is greatly reduced and the code is easier to navigate.

Promoting loose coupling between services also increases their main-

tainability, since modifications to their code base have low or no impact

to the remaining services. Both these aspects lead to greater main-

tainability of the overall system, since its maintainability is a result of

the maintainability of its components. [29]

Extensibility is related to the Maintainability of the system. Promoting

loose coupling between services and high cohesion per service allows

its extension to be performed without impacting the existing system

functionality, either by creating a new service (which benefits from

loose coupling) or by extending the functionality of an already existing

service (which benefits from high cohesion). [29]

6.2 Overview

A representation of the overall system is seen on Figure 6.1 (page 36).

35

D
at
a
an
d
C
la
ss
if
ic
at
io
n
P
la
tf
o
rm

(A
q
or
a
&
Q
om

b
)

P
U
B
‐S
U
B

P
la
tf
o
rm

(N
SQ

)

M
Q
TT

B
ro
ke
r

(M
o
sq
u
it
to
)

D
at
a
St
o
re
r

(N
SQ

‐F
ee
d
at
a2
A
q
or
a)

M
Q
TT

B
ri
d
ge

(M
Q
TT
2N

SQ
)

W
eb
So
ck
et
s
Se
rv
e
r

(N
SQ

‐F
ee
d
at
a2
W
S)

En
d
po
in
t
Y

Fe
tc
h
er

X

Q
on
tr
o
lM

an
ag
er

W
eb

C
lie
n
t

PU
SH

/W
eb

so
ck
et

H
T
TP

G
ET

H
T
TP

G
ET

H
T
TP

G
ET
/P
O
ST

H
T
TP
S
PO

ST
(C
la
ss
if
ic
at
io
n
Re
su
lt
)

H
T
TP

P
O
ST

SU
B
/N
SQ

SU
B
/N
SQ

PU
B
/N
SQ

PU
B
/N
SQ

SU
B
/M

Q
TT

u
np
lu
gg

W
eb

A
p
p

W
S
Se
ss
io
n
s

V
al
id
at
or

Q
on

tr
ol
Jo
bs

M
an
ag
er

PU
B
/N
SQ

... ...

un
pl
ug
g
ha
rd
w
ar
e

Pr
ov
id
er

Y

PU
SH

/H
TT
P
P
O
ST

P
O
LL
/H
T
TP

G
ET

P
U
B
/M

Q
TT

Pr
ov
id
er

x

En
te
rp
ri
se

Cl
ie
n
t

H
T
TP
S
P
O
ST

H
TT
P
P
O
ST

Ir
on
W
or
ke
r

(O
n‐
O
ff
C
la
ss
if
ie
rs
)

SS
L
Te
rm

in
at
io
n
P
ro
xy
/L
o
ad

B
al
an
ce
r

(N
gi
n
x)

H
T
TP
S
PO

ST
(C
la
ss
if
ic
at
io
n
Re
q
ue
st
)

H
T
TP
S
G
ET

(H
is
to
ri
ca
lD

at
a
R
ea
d
in
g)

H
T
TP
(S
)
P
O
ST

(C
la
ss
if
ic
at
io
n
Re
su
lt
)

F
ig

u
re

6.
1:

S
y
st

em
ov

er
v
ie

w
d

ia
gr

am
.

36

6.3 Components

In the following subsections, every service’s function will be described, in

order to clarify its contribution to the system and how it aligns with the

business goals.

6.3.1 Aqora

Aqora is a time series data storage platform. Its goal is to provide a set of

operations over a Canonical Data Model through a simple REST-ish API.

The Canonical Data Model is generic enough to fit both unplugg End

User’s and Enterprise Customer ’s use cases; that is achieved by designing

the Canonical Data Model (CDM) to have direct correspondence to the

most relevant entities of both stakeholders’ data models, given the problem

domain. The set of operations is designed to be as small as possible for the

sake of simplicity, while still providing the necessary manipulations over the

CDM to persist energy consumption data. As such, Aqora classifies as a

multitenant application, with every Enterprise Customer and unplugg itself

being its tenants. A view of Aqora and its interactions is represented in

Figure 6.2.

Data and Classification Platform
(Aqora & Qomb)

Data Storer
(NSQ‐Feedata2Aqora)

HTTP POST

unplugg Web App

Qontrol Jobs
Manager

Enterprise Client

HTTPS POSTHTTP POST

IronWorker
(On‐Off Classifiers)

SSL Termination Proxy/Load Balancer
(Nginx)

HTTPS POST (Classification Request)

HTTPS GET (Historical Data Reading)
HTTP(S) POST

(Classification Result)

Figure 6.2: Aqora and Qomb’s partial architecture view. It shows Aqora
and Qomb (colectively referred to as unplugg-classification) and their
interactions with the system’s remaining components.

37

6.3.1.1 Rationale

Because the Classification System requires access to energy consumption

historical data, the absence of a data storage platform would mean every

request would have to carry that data. This would be a waste of bandwidth,

as most of the data would have already been sent in previous requests; this

would also lead to higher transmission times per request, which could create

peak loads. Allowing the partial transmission of consumption data allows

to spread the total transmission time over multiple requests, averaging the

service load over time.

Using a Canonical Data Model (specified in 6.3.1.2) is advantageous be-

cause it abstracts the different stakeholders use cases while only preserving

the entities that are meaningful to the Classification System; this leads to

a reduced set of operations, which simplifies the API for both internal and

external consumption.

The choice of using an API as the public entry point for this persistence

system (in contrast with providing full raw access to a database) is mainly

driven by allowing the implementation of Authentication/Authorization mech-

anisms. This is an important feature, since this API is expected to be used

by multiple tenants, which expect their data to be only accessible by them

and the service provider (unplugg).

Providing the persistence system as an API that wraps the available

operations over a CDM also enables a higher degree of control over the way

the data changes state. This way, additional data consistency is guaranteed,

by encapsulating business logic rules on the application providing the API.

For instance, this allows the API to enforce the uniqueness of a Stream’s

name when associated with a given Feed (these entities are described in

6.3.1.2).

6.3.1.2 Canonical Data Model

Canonical Data Model is a design pattern that consists on the standardiza-

tion of a business domain’s entities and relationships so it may be used to

communicate between different data formats; it is canonical since it aims to

38

simplify the problem domain’s representation by being the common denom-

inator of the multiple data models involved in the interaction.

In the particular context of Aqora, the use of a Canonical Data Model en-

ables the service’s abstraction of any particular business concerns of unplugg

End Users’ or Enterprise Customers’ use case, while providing a standard

data model to be used by the Classification System.

Aqora’s entities are inspired by Xively’s data hierarchy, of which Aqora’s

data hierarchy is a subset. It has 4 entities, which are described bottom-up

in terms of hierarchy:

Datapoint A Datapoint represents a numeric value with an associated

instant in time (timestamp). A Datapoint belongs to a single Stream.

Its timestamp is unique among its Stream’s Datapoints.

Stream A Stream represents a time series of any given dimension (hu-

midity, temperature, CPU usage, ...). It is an ordered collection of

Datapoints and belongs to a single Feed. Every stream has a string

identifier that is unique among its Feed’s Streams, the Stream’s name.

Feed A Feed is a collection of related Streams. The most common use

case for a Feed is to use it as a representation of a physical device

and its Streams as the device’s multiple sensors, although many other

use cases apply. A Feed has an identifier that is unique on the Aqora

platform, the Feed’s id. Every Feed belongs to a single Application.

Application An Application represents the entity that performs requests

of time series data storage and retrieval over Feeds and Streams. It

has an API key and an API secret, used for Authentication and Au-

thorization.

A Conceptual Data Model Diagram of Aqora’s Canonical Data Model

is depicted in Figure 6.3, simply representing its entities and their relation-

ships.

39

Application

has many
Feed

Stream

Datapoint

has many

has many

Figure 6.3: Conceptual Data Model Diagram of Aqora’s Canonical Data
Model. This Canonical Data Model is a linear hierarchical data model; it is
capable of representing both major stakeholders’ data, abstracting each use
case’s particular implementations.

Because of this data model abstraction, Enterprise Customers are not

forced to use the data model hierarchy of unplugg, which models end-users’

concerns; both parties may store their data in this platform.

The following list describes the unplugg’s data model entities correspon-

dence with Aqora’s data model entities:

Plug A Plug corresponds to an Aqora’s Feed.

Consumptions (as a group) A Plug’s associated Consumptions compose

a time series that is modelled by an Aqora’s Stream.

Consumption (as a single instance) Every Plug’s Consumption instance

is modelled using an Aqora’s Datapoint and is associated with a Plug’s

consumptions Stream.

Although an Aqora’s Stream does not provide added value when used

to model the current unplugg End User’s use case, the addition of a level of

indirection is meant to future-proof the possibility of creating classifications

that use multiple time series collected by the same device. This is seen as

40

a consequence of generically using a Feed to model a physical device and

Streams to model its sensors: because of this model, a classification will be

able to use the device’s multiple sensors to produce a single result.

6.3.1.3 REST API

Aqora’s REST API is designed to provide support to the essential manipu-

lations of the CDM. Its API is kept as small as possible and closely maps

the data hierarchy of the data model. The HTTP verbs are used according

to their semantics.

6.3.2 Qomb

Qomb is a data analysis service. It aims to provide a generic interface for

handling data analysis requests over Aqora Feeds and Streams. It aims

to be loosely-coupled with its consumers and to return the classification

result using an event-driven approach. The Authentication/Authorization

of the classification requests is performed by Aqora during the classification’s

retrieval of data over which the request operates. Qomb is designed to offload

the classification task to workers that handle the requests; this way, Qomb’s

own resource consumption is kept as low as possible, assuring the service

scales as the number of requests grows. A view of Qomb and its interactions

is represented in Figure 6.2.

6.3.2.1 Rationale

Qomb is one of the main drivers of the standardization of the persistence sys-

tem through the creation of a Canonical Data Model and the corresponding

CRUD-esque API. The assumption that Qomb’s classification operations act

over a known data model allows the request payload to be kept as small as

possible, given the fact that this allows the payload to refer to the resources,

instead of sending them. Since Qomb is designed to offload the requests, keep-

ing the requests’ payload small is important for the scalability of the service

(less time will be spent sending the request’s payload to the worker). Using

this standardized persistence system as the classification operation’s only

41

data provider also enables the standardization of Qomb’s own request inter-

face; this allows the service to accommodate the future addition of different

classification operations, as long as they comply with the interface.

For this internship’s scope, the only relevant classification operation is

On-Off Classifier, described in subsection 6.3.3; however, it should be made

clear that this service was specifically designed this way to allow its future

extensibility.

Because classification operations are usually long running tasks, it would

be inefficient to keep a connection open per request during the process; in-

stead, an event-driven approach called WebHooks is taken to provide the

consumer with the classification result asynchronously. WebHooks are user-

defined HTTP(S) callbacks, triggered by web application events; in this

case, an event occurs when a Qomb Classification finishes its process-

ing and is ready to provide the result. That event occurrence triggers an

HTTP/HTTP(S) POST to be performed by the Qomb Classification on the

specified endpoint (provided on the request payload) containing the classi-

fication result.

Every Qomb Classification expects the request payload to provide the

WebHook URL where it should publish the result, and every Qomb Classification

(such as On-Off Classifier) honours this contract. This asynchronous mech-

anism grants the platform with greater scalability (by not maintaining open

connections during the process) while providing as soon as possible results.

The Implementation details of this service are described in section 7.2.3.

6.3.2.2 REST API

Qomb’s REST API is designed to provide simple methods for requesting

classification tasks. Every classification test returns a task_id, a unique id

per received classification request. task_id is later used by the requester to

validate the authenticity of the published payload.

42

6.3.3 On-Off Classifier

An On-Off Classifier is responsible for classifying an energy management

device’s time-series of consumption data into a series of on-off states (tran-

sitions between being turned on and turned off).

The original On-Off Classifier has direct access to the unplugg Web

Application’s Master Database, in order to obtain the energy consump-

tion data. A part of Aqora’s rationale is to avoid this Data Coupling be-

tween both components. On-Off Classifier has to be adapted to use

Aqora’s interface and make use of Aqora’s Data Model.

The current version also uses a database (Rules Database) to store its

output, that would be later accessed by Actuator for the automation to

occur. Since there are now multiple stakeholders, the output mechanism

will have to be replaced.

The proposed On-Off Classifier will classify an Aqora Feed’s Stream

of energy consumption values into an array of <day of week, hour of

day, on-off state> tuples. The classification request is received through

Qomb’s interface and offloaded using the IronWorker service (already used

by its previous implementation), to satisfy the CPU needs of the process

without disrupting the Qomb service.

The proposed On-Off Classifier will output its classification result

using WebHooks, as described in Qomb. This mechanism allows the result

to be provided asynchronously to the requesting client. As a consequence,

Qontrol Manager will be the service responsible for receiving classification

results on unplugg’s behalf).

An instance of On-Off Classifier is spawned for every On-Off classi-

fication request received by Qomb.

6.3.4 Qontrol Manager

Qontrol Manager is the unplugg’s service responsible for storing the On-Off

classification results of unplugg’s enqueued jobs; it is the service associated

with the WebHook used by unplugg during a request to Qomb. The service is

the owner of a database, where it persists the array of tuples mentioned in

43

On-Off Classifier.

Since the service is publicly accessible1, it must perform a validation of

the incoming classification results, in order to avoid data tampering and

unauthorized interactions. To allow this, Qontrol Jobs Manager, the ser-

vice responsible for requesting the classification task, generates a random

token (qontrol-token) that, in conjunction with task_id (a unique to-

ken) is capable of identifying the validity of the request. qontrol-token is

provided to Qomb (and therefore, the worker) as a query parameter of the

WebHook URL; because of this scheme, this is extensible to provide a more

complex method of validation.

When receiving a result, Qontrol Manager proceeds to confirm the au-

thenticity of the result by requesting Qontrol Jobs Manager to validate

the combination of task_id, qontrol-token and feed_id. It does so by

performing an HTTP request to Qontrol Jobs Manager; if the HTTP return

status is 200 OK, the result will be accepted and stored in the database;

otherwise (401 Unauthorized), the result is discarded and the connection

with the rogue publisher is dropped.

6.3.5 MQTT Broker

The MQTT Broker is the component that receives consumption data directly

from unplugg’s energy management devices. It is one of the public-facing

components of the system. Being a message broker, this is the component

that maintains central control over the flow of messages, since it also acts

as a message router. As a consequence, it is the only component capable of

imposing Authentication and Authorization to MQTT publish and subscribe

requests.

6.3.5.1 Rationale

Previous research of the company on the area of the Internet of Things

pointed to MQTT as a probable and preferred choice for a lightweight pro-

1Qontrol Manager must be publicly accessible since it corresponds to the WebHook URL
and must be reachable by On-Off Classifier.

44

MQTT Broker
(Mosquitto)

MQTT Bridge
(MQTT2NSQ)

SUB/MQTT

...
...

unplugg hardware

PUB/MQTT

Figure 6.4: MQTT Broker and its interactions on the system.

tocol that suited an IoT scenario and aligned with the company’s goal of

receiving highly granular energy consumption data from unplugg’s energy

management devices.

After performing some personal research over the protocol’s design prin-

ciples and performance benchmarks, it was found suitable for the purpose of

interacting with the expected kind of devices. However, in order to better

comply with the security concern of the company (in this particular case, the

privacy of users’ data), the protocol’s plaintext nature had to be addressed,

since this is one of the public-facing servers. As the recommended way to

implement encryption on the protocol is to use MQTT over SSL, the privacy

of the data is enforced by making this the only mode of operation supported

by MQTT Broker.

6.3.5.2 Authentication and Authorization

Since these mechanisms are dependent of the MQTT Broker implementation,

they are discussed in the MQTT Broker section, in the Implementation.

6.3.6 Publish-Subscribe Messaging Platform/Library

This subsection does not describe a component per se; instead, it describes

an Enterprise Integration Pattern that has consequences on the remaining

Design and Implementation of the system. The implementation of this pat-

tern may spawn no or multiple components2, that being the reason as to why

2A brokered implementation of the Publish-Subscribe pattern will spawn at least one
component (the broker), while a brokerless implementation does not spawn any compo-

45

the title is kept generic. A representation of every component that relies on

this pattern is represented in Figure 6.5.

PUB‐SUB
Platform
(NSQ)

Data Storer
(NSQ‐Feedata2Aqora)

MQTT Bridge
(MQTT2NSQ)

Endpoint Y

Fetcher X

SUB/NSQ

SUB/NSQ

PUB/NSQ

PUB/NSQ

PUB/NSQ

WebSockets Server
(NSQ‐Feedata2WS)

Figure 6.5: Publish-Subscribe Producers and Consumers of Energy Con-
sumption Data.

6.3.6.1 Rationale

Some of the services that compose the system can be seen as Producers

of energy consumption data. These are the Data Fetchers, responsible

for collecting energy consumption data from Third-Party Providers, and the

MQTT Broker, responsible for collecting energy consumption data produced

by unplugg’s energy management devices.

Some of them, on the other hand, may be seen as Consumers of energy

consumption data. These are the Aqora Storer, responsible for storing en-

ergy consumption data into Aqora (described in 6.3.8), and the WebSocket

Server, responsible for streaming real-time updates through WebSockets to

web clients (described in 6.3.9).

nents.

46

In order to promote loose coupling between energy consumption data

Producers and Consumers, a Publish-Subscribe messaging platform or li-

brary is used.

Currently, real-time updates of energy consumption data provided to

Web Clients are bound to the Consumption Data Model implementation

of unplugg Web Application: the creation of a Consumption instance on

unplugg Web Application Data Model triggers the broadcast event of an

energy consumption update. This implementation shows low cohesion, since

it is not the responsibility of a Data Model Implementation to provide real-

time updates to web clients.

One of the main reasons to implement this solution is to avoid the cou-

pling between a Producer (in this particular case, the responsible for creat-

ing a Consumption instance) and a Consumer (in this case, the Real-time

Updates Server). Because of the current implementation, the only way to

extend the access to new energy consumption data to further Consumers

would be to add additional triggers, which implies that the Consumption

Data Model Implementation’s cohesion would become even lower.

By using the Publish-Subscribe messaging pattern, either implemented

using a broker or a broker-less solution, it is possible to add and remove

Producers and Consumers of energy consumption messages without chang-

ing the remaining participants’ code.

Implementing this pattern using a solution that is capable of delivering

messages with low latencies enables its Consumers to receive real-time en-

ergy consumption updates. This allows unplugg’s End Users to be updated

in real-time through the Web Client while also making the data available as

soon as possible to the Aqora service and, consequently, to the Qomb service

and the On-Off Classifier. This enables unplugg’s Enterprise Customers

to trigger On-Off Classifications using the most recent energy consump-

tion data as soon as possible.

One of the long-term goals of using such a solution is to enable real-time

access and processing of this data by multiple services, which may enable

future business opportunities for the company, without ever disrupting the

platform’s normal activity.

47

In order for this solution to be reliable, it should also support reliable de-

livery of messages; ideally, this would correspond to a delivery with Exactly

Once semantics, but At least once semantics delivery is also acceptable,

as long as the Consumers’ operations are designed as idempotent operations.

The implementation details of this pattern are described in NSQ (7.2.5).

6.3.7 MQTT Bridge

MQTT Bridge is the service that bridges MQTT Broker and NSQ; it is a Messaging

Bridge according to Enterprise Integration Patterns. It is both a subscriber

of MQTT Broker and a publisher of NSQ, which means every message received

by the MQTT Broker will be published on NSQ for the interested NSQ Con-

sumers (Subscribers) access. Its topic subscription is feedata/#; in MQTT,

this corresponds to a multi-level subscription of feedata, which matches

the energy consumption data topics used by every plug.

6.3.8 Aqora Storer

Aqora Storer is the service responsible for persisting every Feedata mes-

sage on Aqora using unplugg’s credentials. Because the exposed interface

for the Aqora platform uses HTTPS, some latency may be introduced by the

overhead of establishing an encrypted connection per message received, if

performed synchronously. This latency may be mitigated by concurrently

establishing parallel HTTPS connections, by running multiple instances of this

service. This is possible because:

• This is a stateless service; no state needs to be shared across instances.

• If an Aqora Storer instance suffers an unclean shutdown, no message

will be lost because of the at least once message delivery guarantee.

• Aqora was designed to ignore duplicates, in order to comply with an

at least once message guarantee.

The Implementation details of this component are described in NSQ-

Feedata2Aqora (7.2.9).

48

6.3.9 WebSocket Server

A WebSocket Server is used to provide real-time updates to web clients.

Using WebSockets, the service is able to maintain full-duplex connections

with web clients and push the data whenever available, while retaining the

possibility of implementing request-based functionality. It provides similar

functionality to the Real-time Updates mechanism described in Current

System Analysis; however, it is designed to do so while promoting loose-

coupling. While the previous mechanism relies on Data Model operations’

callbacks, this service will be a Subscriber of the energy consumption data

published on the Publish-Subscribe Platform. A representation of the

partial view of WebSocket Server is depicted in Figure 6.6.

PUB‐SUB
Platform
(NSQ)

WebSockets Server
(NSQ‐Feedata2WS)

Web Client

PUSH/Websocket SUB/NSQ

Figure 6.6: WebSocket Server partial architecture view.

In order to avoid the security issue described in Real-time Updates Sub-

scription Flaw, Authentication and Authorization is mandatory before any

client starts receiving energy consumption data. The flow of this mechanism

is as follows:

1. A user authenticates before unplugg Web Application using the web

client, by requesting the www.unplu.gg page and providing correct

credentials (username and password).

2. When serving a page with real-time updated data (an Aqora’s Feed

graph representing an Energy Management Device), the unplugg Web

Application generates a random token of sufficient length and adds

it to the page. unplugg Web Application stores the token and the

49

user associated with it,

3. The web client establishes a connection with the WebSocket Server

and provides the token (from now on referred to as ws-token) and the

list of Feeds it is interested in receiving energy consumption updates

from.

4. The WebSocket Server, unaware of the user requesting the subscrip-

tion, performs an HTTP request to the WS Sessions Validator request-

ing it to assess if the provided ws-token is authorized to receive the

intended Feeds; this follows the same flow as the one described in

Qontrol Manager. If the return HTTP status code is 200 OK, it

proceeds to store this association and will begin sending every in-

coming Feedata message that matches one of the Feeds through the

web client’s Web Socket. Otherwise, if the return status code is 403

Forbidden, the connection is immediately closed, denying unautho-

rized access to the data.

6.3.10 Reverse Proxy, SSL Termination Proxy and Load Bal-

ancer

6.3.10.1 Reverse Proxy

The use of a Reverse Proxy is essential for providing a Unified API: the

perception that a single API exists, while in reality it maps to multiple

proxied applications. Both Aqora and Qomb APIs are designed and imple-

mented as REST-ish APIs (as described in 7.2.2.1); as these are different

applications, they would be reachable through different ports or even IPs or

hostnames. The Reverse Proxy allows to abstract the deployment details of

these applications by publicly serving both applications through the same

host and port (the Reverse Proxy’s), with traffic being routed based on the

requested resource. Since their URL schemas were designed to be similar,

and because Qomb uses the same Authorization scheme as Aqora, Qomb’s

API may seem as an extension of Aqora’s to external users and developers,

contributing to the perception that the resulting API (the combination of

50

both APIs) corresponds to a single application, rather than multiple APIs.

This contributes to a better API usage experience, while enabling a dynamic

deployment scenario.

6.3.10.2 SSL Termination Proxy

To satisfy the need of using HTTPS, as analysed in 5.2.2, an SSL termination

proxy is used to secure every public facing application. This brings some

advantages:

• A single certificate may be used to encrypt every request made to the

proxied applications, instead of multiple certificates (one per applica-

tion), which would have costs. This advantage is also related with the

Unified API aspect of using a Reverse Proxy.

This also reduces the access surface of the certificate, since only one

process is required to access the certificate. The alternative would

be to either make the certificate accessible to multiple applications

through the network (insecure) or provide every application with a

copy of the certificate (also insecure).

• SSL termination enables public communication to be secured by HTTPS

while decrypting the traffic for consumption inside the private network.

Allowing the traffic to flow inside the private network in plaintext form

saves bandwidth (since the payload is smaller) and CPU usage (since

the encryption/decryption process is CPU intensive); it is a good com-

promise between resource usage and security, given the assumption the

private network is secured. This allows the applications to communi-

cate between themselves in plaintext form inside the network while

doing their public communications in encrypted form.

The CPU offload consequence of using an SSL termination proxy is of

extreme importance in a SOA context from a scalability point of you,

since this allows independent scaling of the SSL termination proxy

and every application public-faced by it. This also allows complex

51

deployment scenarios; for instance, the deployment of the SSL termi-

nation proxy on encryption specialised hardware, while deploying the

applications in commodity hardware.

6.3.10.3 Load Balancer

In order to be possible for the applications to scale horizontally, it is impor-

tant that the request load is balanced between every application’s instance.

Since the Reverse Proxy is the system’s entry point for client requests, either

the proxied requests are delivered to a load balancer that is aware of the ap-

plication instances, or the Reverse Proxy is itself the load balancer, therefore

being able to proxy the requests directly to the least loaded instance.

The Load Balancer is therefore an important component for the scala-

bility of the overall system.

6.3.11 Specified Components

The components described below were specified components that were not

implemented nor planned to be implemented during the internship’s course;

this is because they need to be implemented in direct integration with the

current system, which was clarified as out of scope in the Introduction chap-

ter (section 1.3). Possible implementations are described, and the author’s

preference and reasoning is provided.

6.3.11.1 WS Sessions Validator

WS Sessions Validator is the component responsible for validating the

permissions of a ws-token to request specific Feeds real-time updates. Since

the Authentication of a web client’s user is provided by unplugg Web Application,

this application is the only component that is able to establish the relation

between an authenticated user and a ws-token. ws-token is the piece of

data that enables a web client to authenticate before WebSocket Server,

allowing the server to assess the user’s authorization to access the requested

Feeds. This component has two possible implementations:

52

• It may be implemented on unplugg Web Application. When serving

the web page, a call to its code would generate, serve and persist the

(ws-token, authenticated user relation on a database. An addi-

tional web endpoint would be added to unplugg Web Application’s

API, in order to serve WebSocket Server validation requests.

• It may be implemented as a service. When serving the web page,

unplugg Web Application would call this service to generate a ws-token,

while providing the authenticated user (so it may be retrieved during

Authorization). unplugg Web Application would serve the ws-token

returned by the service, while the service would persist the relation,

allowing it to respond to future requests by WebSocket Server.

WebSocket Server expects this component to be compliant with the

HTTPS API for validating a request, independently of its implementation.

Following the Service-Oriented Architecture approach promoted through-

out this internship, the suggested implementation is the latter. This has the

advantage of allowing the independent deployment of both components, to

address their different workload needs.

6.3.11.2 Qontrol Jobs Manager

Qontrol Jobs Manager is the component responsible for requesting On-Off

Classification requests to Qomb on behalf of unplugg (End Users); as such,

it is the only component able to validate the (qontrol-token, task_id)

combination3.

Because Qontrol Manager is publicly accessible, it must be able to au-

thenticate the received results before storing them. Qontrol Manager was

designed to expect the Qontrol Jobs Manager component to implement an

HTTP API with a single method. This method must receive the task_id,

qontrol-token and the feed_id fields and must return 200 OK, in the case

of a valid combination of fields. Otherwise, the return status code should

3As mentioned in Qontrol Manager, qontrol-token is generated by Qontrol Jobs

Manager and added as a query parameter to the WebHook URL.

53

be different (401 Unauthorized), allowing the Qontrol Manager to drop a

rogue client and the published result.

The most important feature of Qontrol Jobs Manager is to be able to

validate a result received by Qontrol Manager. That is achieved by persist-

ing (task_id, qontrol-token, feed_id) during a classification request for

later retrieval. However, the implementation itself may be performed in two

distinct ways:

• It may be implemented on unplugg Web Application. An additional

web endpoint would be added to unplugg Web Application’s API,

in order to serve Qontrol Manager validation requests.

• It may be implemented as a service. A simple HTTP API would pro-

vide the web endpoint necessary to validate the classification result.

An additional method would be created to provide a method for per-

sisting the validating combination, either performing the request itself

or performed by another component of the system.

54

Chapter 7

Implementation

With proper design, the features come cheaply. This

approach is arduous, but continues to succeed.

— Dennis Ritchie

After the System’s Architecture and Design comes Implementation. Im-

plementation is nothing more than a realization of the technical specifi-

cations provided by the Architecture and Design phases. Therefore, this

chapter describes the reasoning behind some of the technological choices

and service-specific implementation details.

7.1 General Technological Choices

Some of the services described in the Architecture and Design chapter are

already available with known implementations such as Reverse Proxy, SSL

Termination Proxy and Load Balancer; however, most of the described com-

ponents/services needed to be implemented from scratch. For implementing

those services, the same programming language and runtime environment

were used: JavaScript was the chosen programming language, while the

chosen runtime environment was Node.js. A brief description of the lan-

guage and the runtime are provided, as well as the reasoning behind the

choice. A description of the chosen library for implementing the REST

APIs is also provided.

55

7.1.1 Programming Language

JavaScript is a prototype-based scripting language with dynamic typing. It

is a multi-paradigm language: it supports object-oriented, imperative and

functional programming. Being a multi-paradigm language with dynamic

typing gives a greater flexibility in terms of programming style, but the

choice of the language is essentially a consequence of using the Node.js

runtime environment, described in the following subsection.

7.1.2 Runtime Environment

Node.js is a runtime environment for server-side and networking applications

that uses Google V8 JavaScript engine to execute code. As an asynchronous

event driven framework, it is designed to maximize throughput and efficiency

by using non-blocking I/O and asynchronous events that are processed in a

single-threaded event-based loop.

7.1.2.1 Rationale

All the services required by the system are I/O bound, due to the nature of

their operations: since the CPU intensive tasks (Classification operations)

are offloaded to external systems, most of the operations performed inside

the system are:

• Maintaining real-time clients’ connections, with both incoming and

outgoing messages: MQTT and NSQ-Feedata2WS.

• Retransmitting messages between two different message channels: MQTT2NSQ-

Feedata.

• Handling requests that either cause database or networking (external

APIs) operations: Aqora, Qomb, NSQ-Feedata2Aqora and Qontrol

Manager.

Since these operations are I/O bound (no CPU intensive tasks are per-

formed by these services), their performance will most likely benefit from

the Node.js runtime and its non-blocking I/O and event-oriented approach.

56

7.1.3 REST APIs

The chosen Node.js libray for implementing REST APIs was express.js.

It is the de facto web application framework for Node.js applications, be-

ing the most depended upon web application framework by the packages

registered on npm (Node.js’s public package registry and package manager),

the 6th most depended upon package [30] and the 24th most starred code

repository on GitHub [30] (as of August 2014); high profile users include [31]

MySpace, Segment.io, Mozilla’s Persona, Ghost, LinkedIn[32] and others.

express.js is built on top of Connect1, an extensible HTTP server

framework; its extensibility is based on the use of plugins known as mid-

dleware; a middleware is essentially a function that operates over a client

request (for instance: body validation). Every request received by Connect is

passed through a middleware chain, defined by the developer. This approach

has greater flexibility, as it allows the developer to define the exact oper-

ations to be performed and adapt them and their order to the developer’s

needs. There is a wide range of already implemented Connect middleware

available that performs common operations such as compression, request

body parsing, cookie sessions’ handling, routing, logging and others.

7.1.3.1 Rationale

Multiple reasons play behind the choice of express.js:

• My familiarity with the framework, having implemented various projects

with it, both personal and academic.

• Although there are other Node.js libraries specifically created for API

development, they do not provide the same support and flexibility as

Express.js, either because they aren’t as popular as Express.js (re-

duced amount of available information) or because they are designed

to solve particular patterns, such as REST APIs. Some of the designed

APIs’ methods have complex business logic that does not align with

CRUD semantics; they also have route-specific middleware needs (i.e.,

1Connect: https://github.com/senchalabs/connect

57

https://github.com/senchalabs/connect

there are routes that need Authentication, routes that need Autho-

rization, while some are public).

Express.js support for route-specific middleware chains and support

of a finer control over the request routing (complex URL schemas)

allows a more modular structure of the code by reusing middleware

chains on multiple routes. This leads to cleaner code, since non-global

middleware can be chained on a route’s middleware chain.

• Its popularity plays an important role on the amount of available doc-

umentation, related libraries, the wide range of middleware libraries

covering numerous common use cases and the amount of discussion of

common issues. All these factors allow faster implementation cycles

and easier maintenance of the APIs on the long term.

7.1.4 Database

The chosen database for persisting data was MongoDB2. It is used to persist

both Aqora and Qontrol Manager’s data.

MongoDB is the most popular NoSQL database system, as of August 2014.

[33] It is a document-oriented, dynamic schemas database; these dynamic

schema documents are stored as BSON (Binary JSON), a JSON-like format.

BSON data types are a superset of JSON types, but BSON is designed to have a

minimum spatial overhead and to be easily traversable, necessary for search

operations.

MongoDB allows data queries using user-defined JavaScript functions

and provides an aggregation framework based on the MapReduce paradigm

for condensing large volumes of data. It is capable of providing high avail-

ability and horizontal scaling through the use of replica sets (two or more

copies of the data) and sharding (horizontal data partition). MongoDB also

grants the user the control over the Write concern of the database (the guar-

antee that MongoDB provides on a write operation); this allows to fine-tune

the trade-off between write guarantee and performance.

High-profile users include eBay [34], Foursquare[35] and SAP [36].

2MongoDB: https://www.mongodb.org/

58

https://www.mongodb.org/

7.1.4.1 Rationale

Multiple reasons lead to the choice of MongoDB as the database:

• Proven capability to handle high volumes of data while maintaining

performance [37].

• Having dynamic schemas adds flexibility to the data model, allowing

future modifications without the need for performing expensive oper-

ations.

• Since the chosen Programming Language is JavaScript and the REST

APIs payloads are in JSON format, using a database that stores JSON-

like structures benefits the development of the project by allowing the

usage of a single language and format across the full stack. Further-

more, it is a better and simpler approach to store the structures as-is

that reducing them to multiple relations in a relational database. [38]

• The MongoDB Node.js Driver3 fully implements the MongoDB API and

provides an asynchronous interface for making use of Node.js’s event-

oriented model.

7.1.5 In-memory Key-value Data store

The chosen In-memory Key-value Data store was Redis4. It is used by

Aqora and NSQ-Feedata2WS to maintain an in-memory key-value data store

for fast storage and retrieval of small chunks of data; their use cases are

described in 7.2.2.3 and 7.2.10.1.

Redis is a key-value cache and store with optional durability. Redis is

the most popular key-value store (as of August 2014 [39]), with high-profile

users including [40] Twitter, GitHub, StackOverflow and Flickr.

It is a remotely-accessible dictionary which maps keys to values; its values

are not only strings, but also lists, sets, sorted sets, bitmaps, hashes and

HyperLogLogs (a data structure used to estimate the cardinality of a set)

3node-mongodb-native: https://github.com/mongodb/node-mongodb-native
4Redis: http://redis.io/

59

https://github.com/mongodb/node-mongodb-native
http://redis.io/

[41]. Because durability is optional, the in-memory nature of Redis grants

it with great performance, both on writing and reading operations [42]; the

documentation details the time complexity of every operation [43]. It is

implemented as a single-threaded single process. It supports transactional

operations, replication and sharding.

7.1.5.1 Rationale

Redis was chosen due to its proven performance for reading and writing

small chunks of data, since durability was not necessary for the needs. Redis

is used to store temporary data on both (Aqora and NSQ-Feedata2WS) use

cases: session details. Since session data is verified for every request, it is

necessary to use a storage medium that was capable of providing read/write

performance; due to a session’s temporary nature, the durability trade-off is

acceptable and fit the semantics of the use case.

Because of Redis in-memory nature (when durability is off), it is capable

of delivering the necessary performance.

7.2 Implemented Components

7.2.1 Reverse Proxy, SSL Termination Proxy and Load Bal-

ancer

The chosen software for the functions of Reverse Proxy, SSL Termination

Proxy and Load Balancing was Nginx5. Nginx is an open source reverse

proxy server with a strong focus on high concurrency, high performance and

low memory usage.

On 3rd of July, 2013, according to W3Techs, Nginx became the most used

web server among the Alexa’s Top 1000 websites (surpassing Apache)[44],

serving 41.1% of those websites (as of 13 August 2014); it currently serves

21.2% of all the websites which the web server is known to W3Techs[45] (as

of 13 August 2014). High profile users include Netflix[46] and Wikipedia

and Wikimedia sites[47] (as an SSL termination proxy).

5Nginx: http://nginx.org/

60

http://nginx.org/

It has an asynchronous event-driven architecture (in contrast with the

typical multi-thread or multi-process approach), which provides more pre-

dictable performance under high loads. Nginx has additional functionalities

besides reverse proxying, namely load balancing (with health checks), HTTP

caching, static file web serving, gzip compression and decompression, IPv6,

SPDY and WebSockets support, among others. Since it is capable of reverse

proxying HTTPS, Nginx is also a capable SSL termination proxy.

7.2.1.1 Rationale

Nginx was the chosen software because its modular, event-driven, asyn-

chronous, single-threaded, non-blocking architecture achieves greater per-

formance, density and economical use of server resources when compared

to Apache, the most used open source web server (being Nginx the second

most used). This is because process or thread-based models of concurrency

handling have degraded performance when scaling due to thread trashing or

excessive context switching. Nginx was created from scratch to handle the

C10K problem and, as such, its architecture is made to control both CPU

and memory usage and maintain them to a minimum, which allows Nginx to

scale non-linearly with the growing number of connections and requests; Ng-

inx claims to handle 10000 simultaneous HTTP keep-alive idle connections

using only 2.5MB.[48]

This allows the focus to be on its particular features, since Nginx’s impact

on performance won’t be perceivable.

7.2.2 Aqora

The implementation details of Aqora are now provided.

7.2.2.1 REST API

Aqora’s REST API was implemented using Node.js and Express.js, follow-

ing the rationale described in section 7.1.3.1.

The code was organized following a resource-oriented approach: every

resource directory contains its routes and model source code. This contrasts

61

with a function-oriented source code organization, where models and routes

are grouped together.

Routes were implemented using namespaces; this allows routes to be

hierarchically extended by other routes. This facilitates the process of ex-

tending a resource’s functionality.

The implemented Authorization and Authentication flow is provided in

Appendix B.

7.2.2.2 Database and Data Model

Aqora provides an API for persisting time-series data, used by unplugg End

Users and Enterprise Customers; as such, this service is expected to have

high usage. Particularly, its use case consists of a high volume of write

operations and a moderately high volume of read operations. MongoDB’s

lazy writing to disk (using journaling) with the appropriate Write concern

fits this kind of usage. [49]

The Data Model manipulation was implemented using Mongoose, a MongoDB

object modelling library that provides equivalent functionality to an ORM

(Object-relational mapping) for SQL databases.

Aqora provides a route for bulk insertions of Datapoints; because Mongoose

provides an abstraction for the native MongoDB driver by wrapping help-

ing methods and fields around objects, the performance of this multiple-

document insertion was not optimal, since the process of wrapping objects

with those methods and fields causes some overhead. In this particular

method, the native MongoDB driver was used. Furthermore, every lookup

method (API methods that fetched energy consumption data) was imple-

mented with additional configuration in order to prevent Mongoose from

adding those methods and fields. This modification is reported to have had

3.5x speedup on particular find queries and sets of data. [50]

7.2.2.3 Session Data store

Since the majority of the requests requires Authentication and Authoriza-

tion, the verification of such conditions should be performed as fast as possi-

62

ble in order to avoid impacting the round-trip time of every request. A Redis

instance is used to cache (Aqora session token, Aqora Application ID)

associations after applications (either unplugg Web Application or Enterprise

Customers) perform Authentication.

7.2.3 Qomb

Qomb’s REST API was also implemented using Node.js and Express.js,

following the rationale described in section 7.1.3.1. The JSON payload re-

ceived during the request is transformed before spawning a Qomb Classifier;

the Authorization header is added to the payload, so the worker may be

capable of authenticating itself before Aqora as the requesting application.

It is important to note that, although this internship’s scope only re-

quired the On-Off Classification to be provided as a service, this plat-

form was designed and implemented to be easily extended to support other

classification mechanisms. This was possible due to the definition of the

request payload format as abstract enough to represent any classification

operation that operates over a time-series.

7.2.4 MQTT Broker

The chosen MQTT Broker implementation was Mosquitto. Mosquitto is an

open source broker implementation of MQTT 3.1 and 3.1.1. It supports

Authentication, Authorization, Certificate based SSL/TLS, Pre-shared-key

based SSL/TLS, MQTT Broker Bridging6 and its functionality is extended by

plugins, namely complex Authentication/Authorization schemes. In order

to guarantee the privacy of the messages, the Certificate based SSL/TLS is

the appropriate one, as suggested in section 6.3.5.1. mosquitto-auth-plug

(https://github.com/jpmens/mosquitto-auth-plug) supports multiple back-

ends for storage and integration with the existing system. A PostgreSQL

as back-end for the mosquitto-auth-plug covers both Authentication and

Authorization concerns.

6Bridging multiple brokers allows them to publish topics on other brokers, allowing
client segmentation and data aggregation.

63

https://github.com/jpmens/mosquitto-auth-plug

7.2.4.1 Authentication

Authentication is supported by using a username and password combination,

with the password stored using PBKDF27. Since unplugg energy management

devices do not exist at the time of implementation, the integration with the

database that creates the credentials used by the devices will be performed

manually until an automated process of deploying the devices (with bundled

software and credentials) is available.

7.2.4.2 Topic Authorization

Authorization is supported by the Access Control List (ACL) functionality

of Mosquitto and mosquitto-auth-plug. For every topic published by

an unplugg energy management device, an entry associating the topic and

the device’s username must be created, as well as the device’s permission

regarding the topic (write-only). Since the device’s topic corresponds to an

Aqora Feed, this process will be performed manually for the same reasons

above until an automated process of device deployment is arranged. After

the relation is established, Mosquitto is able to perform an ACL check and

either allow or reject the message published by the client.

7.2.5 NSQ

NSQ8 was the chosen distributed messaging platform to implement the Publish-

Subscribe pattern described in Publish-Subscribe Messaging Platform/Library.

NSQ is a distributed messaging platform. It is designed for distributed

topologies with no SPOF, horizontal scalability, low latencies, data format

agnosticism, both suitable for low-throughput and high-throughput work-

loads; it provides at-least-once message delivery semantics. [51]

NSQ implements the Publish-Subscribe Pattern with topic-based mes-

sage filtering, with an additional level of message distribution: channels.

While a topic is a stream of data, a channel is a logical grouping of consumers

7PBKDF2 is a key derivation function, that applies a pseudorandom function over a
salted password and repeats the process a number of times.

8NSQ: http://nsq.io

64

http://nsq.io

subscribed to a given topic. When a consumer performs a subscribe, it sub-

scribes to a topic on a given channel; for every message produced on a given

topic, every channel of the topic will receive a copy of the message, while

only one subscriber per channel will receive the message, in a distributed

fashion. This provides load-balancing amongst the channel’s consumers.

The topic/channel message distribution is represented in Figure 7.1.

Figure 7.1: NSQ topic/channel message distribution. A copy of mes-
sage B is received by every channel, while only one of the metrics’ con-
sumers receives it. It is worth noting that it was distributed (i.e., not
sent to the consumer that just received message A). Taken from http:

//nsq.io/overview/internals.html.

NSQ provides the necessary message passing mechanisms to promote

loose-coupling between unplugg’s services, particularly between energy con-

sumption data producers and consumers. Consequently:

• unplugg’s energy consumption data sources may be added to the un-

plugg’s system without modifying any of the consumers. The data will

be stored and broadcasted to its corresponding destination(s) indepen-

65

http://nsq.io/overview/internals.html
http://nsq.io/overview/internals.html

dently of the source, as long as it complies with the expected message

format. This is what enables NSQ-Feedata2Aqora, for instance, to

persist the consumption data on Aqora published to NSQ both by

hardware devices and Fetchers/Crawlers, independently of the data’s

producer.

• Other data consumers may be added to the system to provide different

data processing capabilities without causing any code changes to the

remaining services; a different channel for the topic would be created

so the new consumers could receive a copy of each message.

The low latency provided by NSQ is what enables near real-time broad-

casting of energy consumption data to the web clients, as described in 6.3.9.

7.2.6 On-Off Classifier

Although On-Off Classifier’s functionality was not modified, it was re-

implemented. Several reasons lead to this re-implementation:

• Since the original code was written during a previous internship, most

of its code base was not related to the classification process itself. Mul-

tiple classification-unrelated code dependencies were therefore removed

during this process.

• The classification algorithm was rewritten on a compact, single file in

idiomatic JavaScript for easier reading and future development, since

some of the logic was unnecessarily scattered across multiple files.

• A library implementing Aqora’s interface was created. This library was

also used by NSQ-Feedata2Aqora. This library was named node-aqora-client.

It is used to provide a simple method interface for Aqora’s API.

• The request payload provided by Qomb was modified to include the

necessary data: the Bearer Token provided by the requesting ap-

plication, necessary to authenticate before Aqora; the Feed ID and

Stream name, in order to obtain the energy consumption data; and

66

the WebHook URL, so the worker is capable to perform an HTTP re-

quest on the requesting entity’s web server.

The use of the Bearer Token allows the worker to obtain its con-

sumption data using the same authorization method an application

would, instead of a root user implementation. This reduces the risk

of privilege escalation in the case of a security breach.

7.2.7 Qontrol Manager

For Qontrol Manager’s implementation, the REST API was implemented

using express.js. The implementation of the service was kept as small as

possible due to the low complexity of this problem: one file for the routing

code, one for the data model implementation.

7.2.7.1 Database

For Qontrol Manager, both writing and reading are less of a concern when

compared to Aqora’s use case, since it will be used less frequently (causing a

much lower volume of writes); it is used solely by unplugg Web Application

when it requests On-Off Classifications. MongoDB was chosen mainly

because it operates over dynamic schema documents, which enables future

development over the On-Off Classification to be made easily, since the

format’s flexibility allows the addition or removal of fields without updating

every document. The Data Model of a rule of automation (a Qontrol) was

implemented using the same library used in Aqora’s implementation (section

7.2.2.2), mongoose.js.

7.2.8 MQTT2NSQ-Feedata

MQTT2NSQ-Feedata is the service that bridges MQTT Broker and NSQ; it is

a Messaging Bridge according to Enterprise Integration Patterns[52]. It

is the component that implements MQTT Bridge as described in section

6.3.7. It is implemented in JavaScript and acts both as a subscriber of

MQTT Broker and a publisher of NSQ. Its topic subscription is feedata/#;

67

in MQTT, this corresponds to a multi-level subscription of feedata, which

matches the energy consumption data topics used by every plug. This way,

the service forwards every MQTT message with a feedata/{feed_id} topic

and publishes it on NSQ under the feedata topic. In order to be authorized

to subscribe to every topic, it is implemented as a superuser, a user whose

subscriptions do not trigger an ACL check.

7.2.9 NSQ-Feedata2Aqora

NSQ-Feedata2Aqora is the component responsible for persisting the en-

ergy consumption data in Aqora; it implements the component described as

Aqora Storer in section 6.3.8. It subscribes to NSQ messages with feedata

as topic, under the channel store. It uses unplugg Aqora’s credentials to

persist the data in the corresponding Feeds; to do so, it uses the same Aqora

library used by On-Off Classifier, node-aqora-client.

NSQ-Feedata2Aqora, as all the other services, was designed to be hori-

zontally scalable. Running multiple instances naturally fits into the message

load-balancing provided by the NSQ channel mechanism; this is also enabled

by the rejection of duplicates by Aqora (purposely implemented this way to

allow this), since NSQ’s At-least-once delivery guarantees may cause duplica-

tion of messages in case of a failed delivery. By running multiple instances,

it is possible to establish multiple connections to Aqora in parallel.

7.2.10 NSQ-Feedata2WS

NSQ-Feedata2WS is the Web Socket server responsible for sending Feedata

published on NSQ to the corresponding web clients; it implements WebSocket

Server as described in the Architecture and Design chapter (section 6.3.9).

It uses the Node.js Socket.IO9 library. Socket.IO uses a multi-transport

abstraction to provide real-time bi-directional event-based communication

between server and clients. This transport abstraction (named Engine.IO)

transparently chooses the best transport method available to establish the

connection. WebSocket is the best method implemented by the library,

9Socket.IO: https://socket.io

68

https://socket.io

which means other methods are used only when WebSockets are not avail-

able on the client-side. The library’s API is event-oriented in order to benefit

from the Node.js runtime and supports rooms (groups of clients), names-

paces (for multiplexing a single connection), streaming of binary and has

both support for volatile messages and used-defined callbacks per-message.

[53]

NSQ-Feedata2WS was designed to allow horizontal scalability, meaning

multiple instances may be run to serve a greater number of concurrent users.

In order to receive the NSQ Feedata messages in a load-balanced way, every

instance of the service subscribes to the same NSQ channel for the feedata

topic. This has a side-effect: the instance receiving a certain message may

not be the instance maintaining the Web Socket connection with the web

client. To solve this, a multi-node adapter is used by Socket.IO that re-

quires a Redis instance to enable the multiple instances of the service to

communicate with each other, in order to send and broadcast messages to

each others’ web clients. After configuring the adapter, an instance trans-

parently forwards the message to the correct instance without any further

modifications to the code.

7.2.10.1 Feed-Socket Cache

Every time an incoming Feedata message arrives, the service needs to obtain

the socket IDs (a Socket.IO internal identifier for a connection) the Feed

is associated to, in order to send them the data. In order to cache the

(feed_id => [socket_id]) association, a Redis instance is used. This

association has an expiration time, in order to guarantee inactive connections

are removed from the system, invalidating the WebSocket Session Token.

This temporary data with high-frequency lookups pattern fits with the Redis

internals, as used in Aqora’s case.

It is worth noting that this effectively creates a reverse-lookup dictionary

necessary for this message routing to be possible, since ws-session-validator

is only aware of the inverse relation ((ws_session_token => [feed_id]),

ws_session_token corresponding to a unique socket_id).

69

Chapter 8

Verification and Validation

The following chapter lists the Verification and Validation tests that were

executed and their result.

8.1 Verification

8.1.1 Aqora Module Tests

8.1.1.1 Public Endpoints

It should redirect / to the correct version without Authorization.

Result: Passed 3

It should allow access to /v1 without Authorization.

Result: Passed 3

It should give 404 on accesses other than /v1.

Result: Passed 3

8.1.1.2 Authentication Errors on reserved endpoints

It should throw a 401 when no Authorization is provided.

Result: Passed 3

70

It should throw a 401 when an invalid Authorization is provided.

Result: Passed 3

It should throw 401 when Basic Authorization is provided.

Result: Passed 3

It should throw 401 when invalid Bearer Authorization is provided.

Result: Passed 3

8.1.1.3 Authentication endpoint

It should throw 401 when not authenticating using Basic Authorization.

Result: Passed 3

It should throw 401 when using an invalid Authorization format.

Result: Passed 3

It should throw 401 when using an invalid API Key/API Secret pair.

Result: Passed 3

8.1.2 Integration Tests

Integration Test 1

Qomb is able to spawn a On-Off Classifier per received On-Off Classification

request.

Result: Passed 3

Integration Test 2

On-Off Classifier is only able to retrieve energy consumption data from

Aqora when provided with valid Authentication credentials.

Result: Passed 3

Integration Test 3

On-Off Classifier is able to retrieve energy consumption data from Aqora

71

in behalf of an authorised owner.

Result: Passed 3

Integration Test 4

unplugg is capable of requesting On-Off Classification requests to Qomb

and receive its classification result on Qontrol Manager.

Result: Passed 3

Integration Test 5

Qontrol Manager is capable of validating the result by requesting Qontrol

Jobs Manager and analysing its return status code, storing the result if

valid.

Result: Passed 3

Integration Test 6

Feedata published through MQTT is available to any NSQ client.

Result: Passed 3

Integration Test 7

WebSocket Server is capable of authenticating and authorising users by

requesting WS Sessions Validator, either accepting or dropping the con-

nection depending on the status code.

Result: Passed 3

Integration Test 8

WebSocket Server is capable of publishing Feedata to Web Clients.

Result: Passed 3

8.1.3 System Tests

System Test 1

It is possible to send datapoints to Aqora, request Qomb to analyse those

datapoints and receive the classification result using a WebHook.

Result: Passed 3

72

System Test 2

It is possible to send datapoints through MQTT and retrieve them through

Aqora.

Result: Passed 3

System Test 3

It is possible to send datapoints through MQTT and receive them through

WebSockets on a browser, in real-time.

Result: Passed 3

8.2 Validation

These tests are used to validate the achievement of both business goals. Ac-

ceptance Test 1 validates the Enterprise Customer’s business goal achieve-

ment, while Acceptance Test 2 validates the unplugg’s energy manage-

ment devices business goal.

Acceptance Test 3 validates a use case not required by the business

goals; although specific on the data source (unplugg energy management

devices), it should be noted that Integration Test 6 assures that it applies

to any energy consumption data source, even Data Fetchers. However, the

test was not generically formulated since Data Fetchers were not adapted to

the system during the internship.

Acceptance Test 1

As an Enterprise Customer,

I want to be able to send energy consumption data

so that I can receive rules of automation.

Result: Passed 3

Acceptance Test 2

As an unplugg’s End User,

I want my unplugg energy management devices to be able to send energy

consumption data

73

so that it is available in real-time on a browser.

Result: Passed 3

Acceptance Test 3

As an unplugg’s End User,

I want my unplugg energy management devices’ energy consumption data

to be stored

so that it can be later retrieved and analysed.

Result: Passed 3

74

Chapter 9

Conclusions

This internship aimed to study and implement a system capable of exposing

the functionality of an existing classification system to third-parties in an

isolated way, and capable of receiving energy consumption data sent by

the company’s own energy management devices. To achieve it, a system

was developed that, using a canonical data model, abstracts the different

stakeholders data, allowing the existing unplugg Web Application and third-

parties to store energy consumption data through a simple REST API; this

allows the data’s later retrieval and classification into rules of automation.

In addition, an Internet of Things protocol was chosen to enable energy

management devices to reliably send data to the system even on degraded

network conditions, with low energy consumption.

On a first phase, after the Requirement Analysis of the project was

completed, the current system limitations were analysed. A study of the

state of the art regarding Modern Web Application Architectures, Service-

Oriented Architectures and Internet of Things Communication Protocols

was performed, in order to contextualise the problem domain. A solution

was planned and designed; a prototype regarding a crucial component of its

design was implemented to validate its use.

On a second phase, the remaining components were implemented while

continuously validating their contribution to the system through the use of

user stories.

75

The author chose to redesign and reimplement a part of the prototype

in order to simplify its use by other projects. This led to a delay of the

remaining implementation, since the plan had no error margin. While SOA

provides benefits to the overall system, it is also complex because of the

degree of choices that must be made; this complexity also delayed the system

validation phase and the writing of the thesis, due to the justification of the

reasoning behind the architectural and technological choices.

The resulting system addresses both business goals. In addition, it is

capable of providing the energy consumption data sent by the company’s

energy management devices in real-time, and lays the foundations for an

easier extension of the system by implementing it in a loosely-coupled fash-

ion. No implemented component is a Single Point of Failure of the system,

and every implemented component is horizontally scalable, to allow the sys-

tem to address any number of requests when needed. Energy data producers

and consumers may be added to the system without changing any other ser-

vice’s code by making use of the Publish-Subscribe infrastructure.

The additional prototype reimplementation effort enabled an easier adop-

tion of the time-series storage platform by multiple company side-projects,

currently using it. The genericness of the classification platform allows its

easy extension to support different types of classification over time-series

data, in addition to the On-Off classification.

Its major contribution is its service-oriented architectural vision that,

in conjunction with good software development practices, architecture and

design principles enables future service and system-wide extensions to have

lower implementation costs. It lays the foundations to future development

of different classification mechanisms and real-time data analysis. It shifts

the paradigm of the system’s pull-based interactions to be push-based; it

became an event-driven architecture. The author believes this paradigm

shift is important to enable future business opportunities such as Complex

Event Processing over energy consumption.

Every identified User Story and Test is addressed by the implemented

system. After performing the integration changes, it may be integrated with

the current unplugg system.

76

9.1 Future Work

While the system was designed to enable future extensibility, there’s room

for improvement on service and system-wide aspects.

• The use of a Time-Series Database as storage database for Aqora,

such as OpenTSDB, should be studied in terms of read and writing

performance. Besides the performance benefits, a complete time-series

database solution such as OpenTSDB offers highly optimised aggre-

gation operations, optimised storage space and tagging mechanisms;

these features, particularly tagging, enable complex use cases.

• The use of alternative Internet of Things Communication protocols

and protocol stacks should be studied, particularly the recently emerg-

ing Thread protocol. Because of the system’s loosely-coupled architec-

ture, it will be possible to add support for additional Internet of Things

Communication protocols without changing the remaining system.

• The use of alternative binary formats as message and API calls’ pay-

loads such as MessagePack and Protocol Buffers should be analysed in

terms of performance (comparing to JSON. In a more advanced study,

the use of binary communication protocols such as Apache Thrift

should also be studied in terms of serialisation performance and band-

width usage.

77

Appendices

78

Appendix A

2nd Semester Gantt Planning

Figure A.1: Gantt of the 2nd Semester Planning

79

Appendix B

Aqora Auth Spec

B.1 Headers

Every request must have the following headers set:

Content-type: application/json

Authorization: Bearer <base64(bearer_token)>

The obtention of a bearer_token is explained in POST /v1/auth method.

Note: Methods may override these headers when specifically specified.

B.2 Status codes

200 (OK) : Operation was successful.

201 (Created) : The resource(s) was/were created successfully.

400 (Bad Request) : Invalid JSON payload, missing/invalid parameters.

401 (Unauthorized) : Invalid, incorrect or expired Authorization.

404 (Not found) : The specified resource does not exist.

500 (Internal Server Error) : An unexpected condition has occurred.

501 (Not Implemented) : A future method, expected to be implemented.

80

B.3 Authentication/Authorization

B.3.1 Create a session

POST /v1/auth (requires Authorization: Basic)

This method is used to obtain a Bearer token: this token is used by

the platform to authenticate and authorize an application when requesting

authorized methods.

It has a method-specific header: Authorization: Basic <base64(api_-

key:api_secret)>

The Authorization header must be set to Basic and should be followed

by the Base64 of the concatenation of the API key and API secret, separated

by :.

The Authentication mechanism implements Twitter’s Application-only

authentication, itself based on Client Credentials Grant flow of the OAuth

2 specification[21]. The only differences lie on the expected request and

response payloads (both in JSON).

The expected success response is as follows:

{

"status": 200,

"auth_type": "Bearer",

"token": <bearer_token>

}

This bearer_token should be provided on following API calls that require

Authorization, using the format Bearer <base64(bearer token)>.

B.3.2 Validate a session

GET /v1/auth (requires Authorization: Bearer)

This method is used to verify the success of the obtention of a Bearer

token. It is nullipotent : it has no side-effects.

The expected success response is as follows:

81

{

"status": 200

}

82

Bibliography

[1] João Barbosa. Automating Energy with the Internet of Things, 2013.

[2] Thomas Erl. SOA: Principles of Service Design. Prentice Hall, 2007.

[3] Microsoft. MSDN: SOA in the Real World, Chapter 1 - Ser-

vice Oriented Architecture (URL: http://msdn.microsoft.com/en-

us/library/bb833022.aspx), 2014.

[4] Arnon Rotem-Gal-Oz. InfoQ: SOA != Web Services (URL:

http://www.infoq.com/news/2007/07/soa-ws-relation), 2007.

[5] Jason Bloomberg. ZapThink: Divorcing SOA and Web Services

(URL: http://www.zapthink.com/2007/06/20/divorcing-soa-and-web-

services/), 2007.

[6] Martin Fowler and James Lewis. Microservices (URL:

http://martinfowler.com/articles/microservices.html), 2014.

[7] Chris Richardson. Microservices: Decomposing Ap-

plications for Deployability and Scalability (URL:

http://www.infoq.com/articles/microservices-intro), 2014.

[8] James Hughes. Micro Service Architecture (URL:

http://yobriefca.se/blog/2013/04/28/micro-service-architecture/),

2013.

[9] Adam Wiggins. The Twelve-Factor App (URL: http://12factor.net/),

2012.

83

[10] Heroku. Architecting Applications for Heroku (URL:

https://devcenter.heroku.com/articles/architecting-apps), 2014.

[11] OASIS MQTT Technical Committee. 60-day Public Review for MQTT

Version 3.1.1 COS01 - ends September 4th (URL: https://www.oasis-

open.org/news/announcements/60-day-public-review-for-mqtt-version-

3-1-1-cos01-ends-september-4th), 2014.

[12] Richard MacManus. MQTT Poised For Big Growth - an RSS For

Internet of Things? (URL: http://readwrite.com/2009/07/22/mqtt -

poised for big growth), 2009.

[13] Dave Locke. MQ Telemetry Transport (MQTT) V3.1 Protocol

Specification (URL: http://www.ibm.com/developerworks/library/ws-

mqtt/), 2010.

[14] MQTT.org. MQTT.org: Frequently Asked Questions (URL:

http://mqtt.org/faq), 2013.

[15] Ian Craggs. MQTT security: Who are you?

Can you prove it? What can you do? (URL:

https://www.ibm.com/developerworks/community/blogs/c565c720-

fe84-4f63-873f-607d87787327/entry/mqtt security), 2013.

[16] Stephen Nicholas. Power Profiling: HTTPS Long

Polling vs. MQTT with SSL, on Android (URL:

http://stephendnicholas.com/archives/1217), 2012.

[17] Jeremy Cloud. Decomposing Twitter: Adventures in Service-Oriented

Architecture (URL: http://www.slideshare.net/InfoQ/decomposing-

twitter-adventures-in-serviceoriented-architecture), 2013.

[18] Neil Hunt. Netflix Development Patterns

for Scale, Performance & Availability (URL:

http://www.slideshare.net/AmazonWebServices/dmg206), 2013.

[19] Niklas Gustavsson. Spotify services (URL:

http://www.slideshare.net/protocol7/spotify-services-scc-2013), 2013.

84

[20] Mike Cohn. Advantages of the “As a user, I want” user story template.

(URL: http://www.mountaingoatsoftware.com/blog/advantages-of-

the-as-a-user-i-want-user-story-template), 2008.

[21] Twitter. Application-only authentication (URL:

https://dev.twitter.com/docs/auth/application-only-auth), 2013.

[22] Tom Poppendieck Mary Poppendieck. Lean Software Development: An

Agile Toolkit. Addison-Wesley, Boston, Mass, 2003.

[23] Sandvine. Sandvine Global Internet Phenomena Report: 1st Half of

2013 (URL: https://www.sandvine.com/downloads/general/global-

internet-phenomena/2013/sandvine-global-internet-phenomena-report-

1h-2013.pdf), 2013.

[24] Sandvine. Sandvine Global Internet Phenomena Report: 1st Half of

2014 (URL: https://www.sandvine.com/downloads/general/global-

internet-phenomena/2014/1h-2014-global-internet-phenomena-

report.pdf), 2014.

[25] Michael Safyan. Google Inside Search - Bring-

ing more secure search around the globe (URL:

http://insidesearch.blogspot.com/2012/03/bringing-more-secure-

search-around.html), 2012.

[26] Danny Sullivan. Post-PRISM, Google Confirms Quietly Mov-

ing To Make All Searches Secure, Except For Ad Clicks (URL:

http://searchengineland.com/post-prism-google-secure-searches-

172487), 2013.

[27] Alex Rice. Facebook - A Continued Commitment to Secu-

rity (URL: https://www.facebook.com/notes/facebook/a-continued-

commitment-to-security/486790652130), 2011.

[28] Scott Renfro. Facebook - Secure browsing by default (URL:

https://www.facebook.com/notes/facebook-engineering/secure-

browsing-by-default/10151590414803920), 2013.

85

[29] Randall Degges. Service Oriented Side Effects (URL:

http://www.rdegges.com/service-oriented-side-effects/), 2012.

[30] npm Registry. npm Registry: Most Depended-upon Packages (URL:

https://www.npmjs.org/browse/depended), 2014.

[31] ExpressJS. ExpressJS Applications (URL:

http://expressjs.com/applications.html), 2014.

[32] Shravya Garlapati. Blazing fast node.js: 10

performance tips from LinkedIn Mobile (URL:

http://engineering.linkedin.com/nodejs/blazing-fast-nodejs-10-

performance-tips-linkedin-mobile), 2011.

[33] DB-Engines. DB-Engines Ranking of Document Stores (URL:

http://db-engines.com/en/ranking/document+store), 2014.

[34] Yuri Finkelstein. ZZZ (URL: http://www.slideshare.net/mongodb/mongodb-

at-ebay), 2012.

[35] Cooper Bethea. Foursquare: Experiences Deploying MongoDB

on AWS (URL: https://www.mongodb.com/presentations/experiences-

deploying-mongodb-aws), 2011.

[36] Richard Hirsch. The Quest to Understand the Use of MongoDB in

the SAP PaaS (URL: http://www.slideshare.net/mongodb/mongodb-

at-ebay), 2011.

[37] MongoDB. MongoDB Performance At Scale (URL:

http://www.mongodb.com/scale), 2014.

[38] Zach Cross. IBM developerWorks: Developing

mobile apps with Node.js and MongoDB (URL:

http://www.ibm.com/developerworks/library/mo-nodejs-

1/index.html), 2013.

[39] DB-Engines. DB-Engines Ranking of Key-value Stores (URL:

http://db-engines.com/en/ranking/key-value+store), 2014.

86

[40] Redis. Redis: Who’s using Redis? (URL: http://redis.io/topics/whos-

using-redis), 2014.

[41] Redis. Redis: An introduction to Redis data types and abstractions

(URL: http://redis.io/topics/data-types-intro), 2014.

[42] Redis. Redis: How fast is Redis? (URL:

http://redis.io/topics/benchmarks), 2014.

[43] Redis. Redis Command Reference (URL: http://redis.io/commands),

2014.

[44] Matthias Gelbmann. W3Techs: Nginx just became the

most used web server among the top 1000 websites (URL:

http://w3techs.com/blog/entry/nginx just became the most used -

web server among the top 1000 websites), 2013.

[45] W3Techs. W3Techs: Usage of web servers broken down by ranking

(URL: http://w3techs.com/technologies/cross/web server/ranking),

2014.

[46] Netflix. Netflix: Open Source Software (URL:

https://www.netflix.com/openconnect/software), 2014.

[47] Ryan Lane. Wikimedia: SSL Termination (URL:

https://wikitech.wikimedia.org/wiki/Https#SSL termination), 2011.

[48] Andrew Alexeev. The Architecture of Open Source Applications: nginx

(URL: http://www.aosabook.org/en/nginx.html), 2012.

[49] David Mytton. MongoDB Benchmarks (URL:

https://blog.serverdensity.com/mongodb-benchmarks), 2013.

[50] Vitaly Puzrin. Google Groups/Mongoose Node.JS ODM/Performance

of find() with moderately large result sets (URL:

https://groups.google.com/d/msg/mongoose-orm/u2 DzDydcnA/Lp-

Wq14ShZ4J), 2012.

87

[51] NSQ. NSQ: Features and Guarantees (URL:

http://nsq.io/overview/features and guarantees.html), 2014.

[52] Gregor Hohpe. Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. Addison-Wesley, Boston, 2004.

[53] Socket.IO. Socket.IO Documentation (URL: http://socket.io/docs/),

2014.

88

	Introduction
	Context
	Goals
	Scope
	Motivation
	Structure

	State of the Art
	unplugg
	Overview
	Architecture and Design

	Modern Web Applications Architectural and Design Trends
	Service-oriented Architecture
	Twelve-Factor Application Methodology

	Internet of Things D2S Communication Protocols
	MQTT

	Notes on other Internet of Things platforms

	Methodology
	Requirements
	Architecture
	Software Development
	Testing
	Verification
	Validation

	Planning
	1st Semester
	2nd Semester
	Plan execution and analysis

	Product Vision
	Requirement Analysis
	Functional Requirements
	Non-functional Requirements

	Risk Analysis

	Current System Analysis
	Architecture and Design
	Coupling of Components
	Data Model

	Security
	Real-time Updates Subscription Flaw
	HTTP use

	Architecture and Design
	Architectural Style and Principles
	Overview
	Components
	Aqora
	Qomb
	On-Off Classifier
	Qontrol Manager
	MQTT Broker
	Publish-Subscribe Messaging Platform/Library
	MQTT Bridge
	Aqora Storer
	WebSocket Server
	Reverse Proxy, SSL Termination Proxy and Load Balancer
	Specified Components

	Implementation
	General Technological Choices
	Programming Language
	Runtime Environment
	REST APIs
	Database
	In-memory Key-value Data store

	Implemented Components
	Reverse Proxy, SSL Termination Proxy and Load Balancer
	Aqora
	Qomb
	MQTT Broker
	NSQ
	On-Off Classifier
	Qontrol Manager
	MQTT2NSQ-Feedata
	NSQ-Feedata2Aqora
	NSQ-Feedata2WS

	Verification and Validation
	Verification
	Aqora Module Tests
	Integration Tests
	System Tests

	Validation

	Conclusions
	Future Work

	Appendices
	2nd Semester Gantt Planning
	Aqora Auth Spec
	Headers
	Status codes
	Authentication/Authorization
	Create a session
	Validate a session

