
Masters’ Degree in Informatics Engineering

Dissertation

Final report

Improving game accessibility by

exploring the audio-only game genre

David Gil Domingues Barbeiro

davidgil@student.dei.uc.pt

Adviser:

Licínio Roque

January 29, 2016

mailto:davidgil@student.dei.uc.pt

Abstract

In recent years, video game developers have started to be more aware of

game accessibility, and consequently, audio-only games are getting more popular

as a genre that enables both blind and sighted audiences to appreciate

immersive gameplay experiences in similar ways. In this dissertation, we

propose two audio-only game prototypes that aim to explore different forms of

participation from the player. Both games employ innovative Human-Computer

Interaction and sonification techniques that stem from research on those areas

to improve the usability between the player and the artifact. One game is used

to assess the player’s hearing acuity, which is useful to validate all the data

collected during formal playtesting. The other game is used to fulfill two research

objectives: the first objective is to collect data that is used to understand how the

number of sound sources around a player, and their position relative to each

other, influence the ability of the player to recognize them, which is important

to level design. The second objective is to test if the proposed techniques ease the

navigation mechanic in an audio-only First-Person Shooter, which could add

value to future audio-only games. We used preliminary playtesting to get early

feedback from two participants, which allowed to detect issues that were

promptly fixed. Then, formal playtesting was done using different groups:

sighted, blind, males and females. We used traditional and technical playtesting

methodologies: different test scenarios to collect data to be analyzed, direct

observations, Q&A and verbal reports. The results show that while blind people

have much more hearing accuracy, they don’t navigate better than sighted

participants. It also indicated that males have a better sense of orientation and

memorize sound references more easily.

Keywords
Audio-only games, Game accessibility, Human-Computer Interaction, Game

development

Acknowledgements

I would like to thank my advisor, Prof. Licínio Roque, for giving me the

opportunity to work in a project I am passionate about. I would not succeed

without his guidance, words of wisdom and support. He is responsible for

teaching me the importance of critical thinking when doing science research and

of keeping an open-minded perspective about every hypothesis, and for that, I

must also thank him.

My words of gratefulness also go to my lab colleagues, for all the

encouragement words and for providing me an interesting work environment

that made me feel welcome every day. In particular, I must thank Rui

Craveirinha for all the enlightening discussions about the videogame medium

and for his fun company.

I must also express my gratitude to everyone who playtested the games or

contributed with input or feedback to the development of this dissertation.

My gratitude also goes to my friends, especially the close ones – they know

who they are. They’ve always shared their laughs with me, along with their

enthusiasm, which kept motivated throughout the whole project.

I also thank my amazing girlfriend Inês Balula for all the creative input

and fun moments she shared with me. This report would not be the same without

her support, words of motivation, and of course, last minute revisions.

Finally I have to thank with all my heart my brothers and parents.

Without their love and support, I would not have been able to come this far.

Table of Contents

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Objectives .. 2

1.3 Methodology .. 3

2 State of the Art .. 4

2.1 Audio and technology in the electronic game industry 4

2.2 Game Design Models .. 6

2.2.1 Participation-Centric Model of Gameplay Experience 7

2.2.2 MDA - Mechanics, Dynamics, and Aesthetics – framework ... 9

2.3 Game Analysis .. 11

2.3.1 Papa Sangre .. 11

2.3.2 Deep Sea .. 14

2.3.3 BlindFold ... 17

2.3.4 AudioQuake ... 22

2.3.5 Conclusions ... 25

2.4 Human-Computer Interaction .. 26

2.4.1 Input Devices .. 28

2.4.2 Sonification ... 30

3 Research ... 31

3.1 Research Objectives .. 31

3.1.1 Initial game proposals .. 32

3.1.2 Hearing acuity study .. 35

3.2 Methodology .. 36

3.4 Planning .. 38

3.4.1 Planned milestones ... 39

3.4.2 Reprioritization and executed planning 42

4 Design .. 43

4.1 Proposed HCI techniques for navigation 43

4.2 Proposed Sonification techniques for navigation 44

4.3 Sound Design .. 49

4.4 Static AI Bot .. 53

4.5 Damage dealing heuristics ... 53

4.6 Spectator Mode ... 54

4.7 Requirement Analysis... 55

4.8 Technologies used ... 58

4.8.1 Unity 5 (Game Engine) ... 58

4.8.2 RealSpace3D (Sound Engine) ... 60

4.8.3 Cardboard SDK (Controller) .. 61

4.8.4 Audacity (Audio editor) .. 63

5 Prototyping .. 64

5.1 Activities developed .. 64

5.1.1 Milestone 7 – Implementation of prototype #1 64

5.1.2 Sprint 1 – Changes to racing game and development of the FPS

 64

5.1.3 Sprint 2 – Playtesting and integration of feedback 67

5.1.4 Sprint 3 – Implementation of spectator mode and formal

evaluations 68

5.1.5 Sprint 4 – Writing of the final report 68

5.2 Architecture... 69

5.3 Class Reference ... 73

6 Evaluations .. 75

6.1 Playtest methodologies ... 75

6.2 Preliminary playtesting and feedback ... 77

6.2.1 Modified racing game ... 77

6.2.2 First-Person Shooter game ... 79

6.3 Formal playtesting .. 81

7 Future work ... 90

7.1 Objective refinement ... 90

7.2 Additional features and future usage .. 92

8 Conclusions .. 94

8.1 Reflections and Contributions .. 94

List of Figures

Figure 1-The two perspectives of the MDA Framework 9

Figure 2-Player inferring his local direction by listening two Sound

Sources simultaneously ... 19

Figure 3-Map of the Level showing most sonic references composing the

soundscape ... 20

Figure 4-Roll, Pitch and Yaw 3D representation 29

Figure 5-Waterfall model .. 36

Figure 6-Scrum model ... 37

Figure 7-Topology of a Level ... 44

Figure 8-Sound sources behavior inside chamber (8a) and outside

chamber (8b) ... 47

Figure 9-Server-Client Architecture .. 54

Figure 10-FPS project opened in Unity 5 ... 59

Figure 11-Google Cardboard VR headset ... 62

Figure 12-Dynamic View Architecture Diagram 70

Figure 13-Feedback loop between design and playtest 75

Figure 14-Playtesting with a participant ... 81

Figure 15-Test scenario for 90º, 45º in front and 30º turn left 83

Figure 16-Test scenario with 4, 5 and six adjacent chambers 85

Figure 17-Participant memorized the topology with success 86

Figure 18-Participant memorized the topology with partial success 87

Figure 19- Participant was unable to memorize the topology with success

 .. 87

Figure 20-Topology of FPS map ... 88

file:///C:/Users/David/Dropbox/Dissertação/Dissertação%20v1.9.docx%23_Toc441706318
file:///C:/Users/David/Dropbox/Dissertação/Dissertação%20v1.9.docx%23_Toc441706318
file:///C:/Users/David/Dropbox/Dissertação/Dissertação%20v1.9.docx%23_Toc441706324
file:///C:/Users/David/Dropbox/Dissertação/Dissertação%20v1.9.docx%23_Toc441706324
file:///C:/Users/David/Dropbox/Dissertação/Dissertação%20v1.9.docx%23_Toc441706329
file:///C:/Users/David/Dropbox/Dissertação/Dissertação%20v1.9.docx%23_Toc441706331
file:///C:/Users/David/Dropbox/Dissertação/Dissertação%20v1.9.docx%23_Toc441706332

List of Tables

Table 1: Characterizing players’ participation along the three foci of

analysis ... 8

Table 2- Sound patterns in Papa Sangre ... 13

Table 3-Forms of participation in Papa Sangre 14

Table 4-Sound patterns in Deep Sea .. 15

Table 5-Forms of participation in Deep Sea .. 16

Table 6-Sound patterns in Blindfold .. 17

Table 7-Forms of participation in Blindfold ... 18

Table 8-Sonification of AudioQuake ... 23

Table 9-Forms of participation in AudioQuake 23

Table 10-Description of input devices .. 29

Table 11-Sprint planning .. 39

Table 12- Rationale behind the mapping of chamber sounds to resources

 .. 50

Table 13-Rationale behind the sounds used to represent actions and

events ... 52

Table 14-Researched sound engines ... 60

Table 15-Forms of participation of the modified racing game 78

Table 16-Forms of participation of the FPS ... 79

Table 17-Solutions to problems revealed from preliminary playtesting 80

Table 18-Time (in seconds) each participant took to complete the modified

racing game .. 82

Table 19-Evaluation criteria ... 83

Table 20-Results of evaluation during phase 2 .. 84

Table 21-Results of evaluation during phase 3 .. 85

Table 22-Results of phase 4 of playtesting ... 88

Glossary

PC – Player’s Character

HCI – Human-Computer Interaction

GPS - Global Positioning System

FPS - First Person Shooter

TTS - Text-To-Speech

IDE – Integrated Development Environment

HRTF – Head Related Transfer Function

PLEX - Playful Experiences

MDA - Mechanics, Dynamics and Aesthetics

R-A-E-D - Relaxation Anticipation Engagement Decay

AI – Artificial Intelligence

BPM –Beats per Minute

HP –Health Points

API – Application Programming Interface

HLAPI - High level scripting API

HRTF - Head-Related Transfer Function

SDK – Software Development Kit

VR – Virtual Reality

GUI – Graphical User Interface

Q&A – Questions and Answers

1

1 Introduction

The advent of mobile devices such as smartphones and tablets took the

gaming industry by storm. New forms of interaction appeared, as technologies

like multi-touch interfaces, accelerometers, GPS and gyroscopes became more

and more inexpensive. Channels of distribution such as the App Store, Google

Play or Windows Store made it possible to anyone to create and share their Apps

and Games with the world. These circumstances, along with the ever growing

number of tools at the developers’ disposal, created a whole new market full of

opportunities for the mobile gaming industry, thus making it one of the more

profitable entertainment industries and effectively overtaking the console game

revenues by 2015 [1].

Despite all the potential enabled by mobile technology, audio-only games

continue to be neglected as a game genre of its own, as we can see by the lack of

offer in marketplaces. Indeed, since audio-only games don’t require the player to

be in front of a screen, they allow him freedom of movement. Therefore, the

mobile platform is the natural solution to the requirements of most audio-only

games, making it the platform which has the most potential to further push the

boundaries of this game genre. We intend to do just that by researching the

problems inherent to audio-only games and tackle them in a creative way,

allowing us to produce experiences that are engaging to both the sighted and

non-sighted community of gamers.

1.1 Motivation

It is undeniable that since the creation of Pong in 1972, video games have

been consistently evolving to an intricate and powerful form of entertainment

that can change the way we perceive the world. Nowadays, games are being used

as more than just a pastime and different applications are being discovered at a

fast pace, pushed by research on Gamification. In fact, we can already see

examples of applications in education [2], training [3] and even science research

2

[4], to name a few. However, video games have also been in the media spotlight

for bad reasons, such as the controversies about how the portrayal of sex and

violence in videogames might affect players’ behavior in real life [5].

We feel that games can have a positive effect in everyone’s life and no one

should be excluded from that. Game developers should take accessibility in

consideration, designing games in a way that maximizes the audiences that can

play them. Our major motivation for this thesis was to create games that can be

experienced the same way by blind and sighted people, while being fun and

engaging. To do that, we researched on Sonification and other techniques from

Human-Computer Interaction (HCI), creating a basis of knowledge that ended

up being useful in our own game design.

1.2 Objectives

This dissertation’s main goal was to produce audio-only game prototypes

that explored different forms of participation by the player, while giving

emphasis to the acoustic aspects that are so often neglected in videogames. To

that end, we idealized one First-Person Shooter that uses innovative HCI and

sonification techniques to ease navigation, which is a challenging mechanic in

the audio-only genre, while keeping the experience immersive.

Furthermore, we wanted to investigate how the number and angle

between sound sources around the player affect the time and accuracy to detect

each one. To that end, we did formal playtesting with different user profiles in

different circumstances. Finally, we developed a game that is used to gauge the

player’s hearing acuity which was useful to put in context subsequent playtest

results.

3

1.3 Methodology

One particularity of game development is that there is no way of knowing

if the end result will be a success because there are different definitions of

success – for instance, if the game is profitable we can call it a commercial

success. However, in our opinion, a successful game must, in some way, improve

the life of the player. Since everyone has different upbringings that affect the

way events are interpreted, both opinions and experiences, in general, tend to be

subjective. This has more implications in the game industry than in the software

industry because, as Pippin Barr argues, “People use software, but they play

video games” [6]. What this means is that software does not lend itself to

interpretation like video games do, which means that video games have a much

higher uncertainty of success than other forms of software because we can’t know

a priori if the mechanics, dynamics and aesthetics will be pleasing to the players.

Consequently, software and video game development methodologies are

divergent in many aspects.

Even though this dissertation does not follow the Scrum methodology,

some of its concepts seemed appropriate to guide us, as we dealt with audio-only

games in an exploratory manner, which inevitably lead to high risks that had to

be addressed in a expedite way. Thus, we planned sprints with specific

milestones in order to gauge our progress throughout this dissertation.

4

2 State of the Art

It is important to explore the historical background of audio-only games if

we want to understand how this game genre became what it is today. This

research will allow us to learn the motivations, technologies and works that have

been pushing the boundaries of audio games, thus creating a basis of knowledge

from which we can build upon. In this chapter, we will also look into different

Game Design Models and Frameworks that might help us create a

comprehensive analysis of several games, ultimately allowing us to find patterns

that will, hopefully, give us some insight that will be useful in the creation

process of our own games. Finally, we will explain how HCI can be used to

improve the usability of games.

2.1 Audio and technology in the electronic game industry

Audio games are a subset of electronic games that are designed with the

purpose of creating an experience that gives emphasis to the sound. More

specifically, audio-only games use sonic artefacts to create gameplay mechanics,

dynamics and aesthetics, differing from video games due to the total absence of

visual feedback. Since all the information is conveyed to the player through his

audition, this means that both the sighted and the visually impaired may

experience the game in a similar way. For this reason, audio-only games have

been mostly a genre made specifically as a way to make games accessible to the

blinded. This game genre represents, so far, a small niche in the whole gaming

spectrum, which has been a barrier to developers, as smaller audiences tend to

increase the risk of commercial failure. In fact, most audio-only games available

were developed by blind people and hobbyists [8].

The first audio game success happened in 1973 with the release of Touch

It, a handheld device that featured four buttons, each with a corresponding tone.

The device would play a sequence of tones that the player had to reproduce,

5

challenging his eidetic memory. After the successful reproduction of a sequence,

a tone would be added to increase the difficulty.

Then, the computer era finally arrived and with it came text-based

operative systems like MS-DOS that made the text-based games genre flourish.

However, it wouldn’t be until the proliferation of text-to-speech (TTS) software

like MacInTalk in 1984 that those games would become accessible to blind

gamers. Meanwhile, video games were becoming the dominant form of electronic

entertainment and the improvements on graphical technologies and techniques

were contributing to increase their popularity. Eventually, most video game

developers stopped paying attention to game accessibility altogether, preferring

to invest their efforts in more flashy features that would make their games look

sexy. This conjecture did not change for many years but luckily, the past decade

has seen a booming in independent video games and with them, came the

creativity that is only possible when there are no external driving forces

influencing game design. Since then, we have seen a handful of audio-only games

that ended up being a commercial success and game designers are, once again,

starting to be more aware of game accessibility, which is currently the most

powerful driving force behind research on sonification [9].

Technology wise, recent years have been great for game developers. Long

past is the time when game engines had to be built from scratch, as nowadays,

everyone has access to them. Game engines like Unity 5 and Unreal Engine 4

have empowered game developers with tools that allow them to spend more time

thinking about game design issues and less with implementation. The reason for

this is that most of them are powerful IDE’s that include physics, animations,

sound and graphical engines, supported by large documentation and very helpful

communities.

Finally, binaural sounds that make use of HRTF function can now be

easily integrated with games through the use of open-source middleware which

ultimately will improve the gameplay experience of both audio and video games.

6

2.2 Game Design Models

Game design models are extremely valuable to evaluate ideas in a

methodic, rational and generally structured way, empowering the game designer

with tools that help him iterate game proposals. Much like in other areas, no one

has ever created a Grand Unified Model that is able to represent games in a fully

comprehensive way. However, many different game design models have been

created, allowing different perspectives and degrees of formality. For instance,

The Playful Experiences (PLEX) Framework has shown good results when used

by expert evaluators as a checklist [10]:

“We found that the PLEX framework provided experts a

systematic and structured way to focus attention, in this case, a

particular way to look at playfulness. (…) The experts reported

that the PLEX framework provided anchor points for them to

reflect and discuss different aspects of playfulness as they

conducted their heuristic evaluations”

The authors argue that the simplicity of the Framework is its own key strength

and weakness, as it allows for some freedom of interpretation. However, its lack

of additional structure can also limit the experts’ analysis and make them miss

some key observations. On the other side of the spectrum, we can find studies

that describe games in a very formal and precise way. For instance, a study was

done by Stefan M. Grünvogel, where a formalism for describing models of games

is introduced by the use of abstract control systems [11].

Instead of using the aforementioned models, we chose the Participation-

Centric Model of Gameplay Experience and the MDA – Mechanics, Dynamics

and Aesthetics – framework because we believe that they give us two lenses that

complement each other and cover all the relevant aspects of game design,

allowing us to describe and discuss them in a broad but structured fashion.

7

2.2.1 Participation-Centric Model of Gameplay Experience

The motivation for this model arose from the necessity to analyze video

games in a comprehensive way, regardless of videogame genre and context of

use. The authors propose a model for “supporting the design and analysis of

videogames in order to achieve a rationalization between how the designer

intended for the game object to promote a specific playing experience and the

emerging experience as interpreted by players” [12].

This model is built upon the premise that the videogame medium has an

inherent participatory nature, which is corroborated by many authors (Aarseth

1997; Bogost 2007; Raessens and Goldstein 2005; Roque 2005; Salen and

Zimmerman 2004). The player’s participation in the game is regulated by the

elements he is able to interact with, and, from this contexts, meaning emerges.

Therefore, the game designer must think and allow the right forms of

participation that will trigger the game experience he idealized.

Furthermore, the authors suggest to think of a game as a network of

mediators of diverse nature. The reason for this interpretation comes from the

necessity to synthesize and understand how the different forms of participation,

through all the elements that compose the contexts, promote the gameplay

activity.

This study results in a model that considers six forms of participation:

Playfulness, Challenge, Embodiment, Sensemaking, Sensoriality and

Sociability. This set of dimensions allows the designer to characterize and

compare the intended gameplay activities with the actual way the player

participates in them. Additionally, each form of participation is broken into three

operative foci:

Intention: What is the participation ideal that the videogame is

suggesting?

Artifact: How does the artifact support the idealized forms of

participation?

8

Participation: What characteristics of the actual player’s participation are

consistent with or revealing of the participation idealized?

This model will be useful to analyze games through a player’s perspective,

using an empirical approach that results from playtest sessions and its summary

can be seen in Table 1.

 Intention Artifact Participation

P
la

y
fu

ln
e
ss

Exploring,

discovering,

recreating,

customizing

The nature of a player’s

agency, the variety of

interactive elements of

the game (objects,

characters, actions, etc.)

Degree, variety and

tendency of exploration

C
h

a
ll

e
n

g
e
 Overcoming a

challenge, creating a

strategy, defeating an

opponent, mastering a

skill

Nature of challenges

proposed, type of

penalties and rewards,

intensity and

organization of

challenges

Control, pace, progress,

efficiency in performing

tasks

E
m

b
o
d

im
e
n

t

Physical involvement,

physical performance

Representation of the

physical game world,

player’s representation

on the game world,

interpretation of players

movement

Control and rhythm of

movement, aesthetics of

the movement

S
e
n

se
m

a
k

in
g

Interpretation of a

role, fantasy, self-

expression

Theme and underlying

narratives, models and

representations of

phenomena, roles and

motives, significant

actions

Alignment between

actions and roles,

understanding and or

critique of the

represented

phenomenon

S
e
n

so
ri

a
li

ty

Contemplation,

wonder

Style, nature of the

stimuli, visual and sonic

compositions, synesthetic

explorations

Degree of exposure and

responsiveness to

stimuli, interaction or

engagement with

sources

S
o
ci

a
b

il
it

y
 Competition,

cooperation,

friendship,

identification,

recognition

Diversity and nature of

social interactions and

relationships, models of

social structures (team,

hierarchy, etc.)

The intensity and types

of interactions between

players, effectiveness

bonds

Table 1: Characterizing players’ participation along the three foci of analysis

9

2.2.2 MDA - Mechanics, Dynamics, and Aesthetics – framework

The multidisciplinary nature of Video Game Development presents some

cumbersome difficulties. Usually teams are divided in smaller groups that focus

on specific areas, but, sooner or later, all the parts must be integrated, which

means that teams must coordinate themselves and, consequently, learn about

areas they are not familiar with. Therefore, even the teams that are in charge of

implementing more technical features such as Physics Engine, the Rendering

Engine or Artificial Intelligence, must adhere to the overarching design goals of

the game. Inversely, the teams that are responsible for the Aesthetic side, which

includes Level Design, Sound Design, Game Testing, etc, all areas that deal more

directly with the end user experience, must be aware of the technical limitations

and idealize the basic game mechanics with them in mind. As the authors refer,

“systematic coherence comes when conflicting constraints are satisfied, and each

of the game’s parts can relate to each other as a whole. Decomposing,

understanding and creating this coherence requires travel between all levels of

abstraction - fluent motion from systems and code, to content and play

experience, and back” [13].

Consequently, the MDA – Mechanics, Dynamics and Aesthetics –

framework is proposed as a tool that promotes iterative, qualitative and

quantitative analyses through two different perspectives. The first looks at the

player’s experience to see how the basic mechanics must be changed in order to

get to the best end result. The second looks at the implementation, which

ultimately is translated as source code, and sees if the emergent system

behaviors are coherent with the desired Aesthetics.

Figure 1-The two perspectives of the MDA Framework

10

The MDA breaks down this two perspectives into three distinct

components:

Mechanics: Describes the particular components of the game, at the level

of data representation and algorithms. They define the various actions,

behaviors and control mechanisms afforded to the player within a game context.

As an example, a First-Person Shooter has mechanics like ammunitions, health

and spawn points.

Dynamics: Describes the run-time behavior of the mechanics acting on the

player inputs and each other’s outputs over time. Dynamics emerge from the

different mechanics and ultimately translate into aesthetics. For instance, in a

First-Person Shooter that has fixed, unprotected spawn points, dynamics like

camping and sniping are bound to happen.

Aesthetics: Describes the desirable emotional responses evoked in the

player, when he interacts with the game system. Mark LeBlanc defines eight

different kinds of fun [14]:

1. Sensation: Game as sense-pleasure

2. Fellowship: Game as social framework

3. Fantasy: Game as make-believe

4. Discovery: Game as uncharted territory

5. Narrative: Game as unfolding story

6. Expression: Game as soap box

7. Challenge: Game as obstacle course

8. Submission: Game as mindless pastime

A First-Person Shooter such as Quake evokes Challenge as its main aesthetic

goal. However, dynamics such as camping and sniping might degrade this goal

and ultimately, the player’s gameplay experience.

 This framework provided itself useful by giving us semantics that allow

us to better explain how and why the player’s participation, that emerge from

the artifact, are engaging and support the game’s intended aesthetics.

11

2.3 Game Analysis

In the early stages of this dissertation we decided that it was important

to research on previously developed audio-only games (prioritizing commercially

successful ones), in order to get a better grasp on the current state of the genre.

The result of this study gave us insight on the technologies and game design

patterns used, enabling us to make more informed decisions throughout the

development of our own game prototypes.

Each game analysis was produced using the two different aforementioned

game design and research frameworks: MDA-Mechanics, Dynamics, Aesthetics,

and the Participation-Centric Model of Gameplay Experience.

Using this two lenses allowed us to create a systematic and comprehensive

analysis, providing us a way to fairly discuss game experiences and ultimately

draw some conclusions that were useful to support our own implementation

decisions. We also used Sound Design Patterns [15] [16] to understand how

sonification is used to convey information to the player.

We chose to analyze more thoroughly the next four games because we

think that they showed relevant and diverse mechanics, dynamics and aesthetics

while promoting interesting forms of participation.

2.3.1 Papa Sangre

This audio-only horror adventure game is a prime example of how a

uniquely imaginative world and narrative can be conveyed to the player

exclusively through sound. In this game the player is a dead being, trapped in

the fearful Papa’s Sangre palace. This palace is full of dangerous monsters which

the player will have to avoid in his mission to save his love and leave the

Underworld.

This game requires the players to wear headphones. The screen has a

compass that relies on the smartphone’s gyroscope and defines which direction

he is facing in the virtual world. To move forward, the player has 2 buttons on

the screen’s bottom that represent the left and right foot, which he will have to

12

tap alternately to move forward. If he taps them out of sync, the character will

trip and fall, which can mean death in certain situations. Binaural audio is used

to give the player clues of the direction and distance of the musical notes he has

to collect.

Table 2 summarizes the most important sound patterns we identified

during gameplay.

Sound Pattern Description/Usage

Narrator

Helper Voice

A “fluttery watery thing” accompanies the player throughout the

game, giving him instructions and context when necessary

Aesthetics

In the beginning of the game, the helper voice sets the aesthetics

by telling the player that “in this Underworld it is pitch dark. You

cannot see a thing (…), but you can listen and move (…)”. There is

coherence between the game context and the actual player

participation because the game has no visuals and the player might

play blindfolded.

Directionality

Beacon Locator

The main gameplay mechanic is following specific sounds in order

to progress the narrative. Binaural audio is used to enable the

player to better sense the direction of the sounds.

R-A-E-D

R-A-E-D is an iterated sequence that is extensively used in Papa

Sangre. It starts in Relaxation, as the PC’s wanders through the

realm of the Underworld, followed by the Anticipation that is

caused by a threat, which leads to Engagement and lastly, it ends

in Decay, as the threat is over and the player enjoys a moment of

safety.

Death

When the player steps into an enemy, he can hear a sequence of

sounds that enable him to feel the embodied violence that is

inherent to death inflicted by an attack.

Footsteps

The footstep sounds serve three purposes. The first is to convey

information about the PC’s movement. The second is to inform the

player about the type of ground he’s on. The third has to do with a

core gameplay mechanic: if the player is heard by enemies, by

tripping or walking to close from one, he dies.

Character’s

Soundprint

Grunts

Breath

Since the player is unable to visualize the PC’s, it is important to

communicate it’s physicality through a correct use of sounds. This

is achieved with Breath sound effects, that are used to define the

pace (i.e. running or walking) or in extreme emotional conditions,

and Grunts, that can be heard when the PC’s trips and falls.

Acoustic

Ecology

Since this is an audio only game, it is of the utmost importance to

translate the PC’s surroundings through a holistic soundscape that

13

Ambience is coherent with the game design goals. The ambience pattern gives

a significant contribution to achieve this.

Acoustic

Ecology

Sound Effects

During gameplay it’s possible to hear a very diverse sonic

composition made of sound effects that contribute greatly to the

Acoustic Ecology

Table 2- Sound patterns in Papa Sangre

The aforementioned table serves to show how sonification was largely

explored by making use of different sounds to inform the player of events.

Additionally, in Table 3 we can see the forms of participation that emerged

during our playtesting session.

 Intention Artifact Participation

C
h

a
ll

e
n

g
e

Master the

ability to

pinpoint sound

sources;

Walk or run in a

controlled pace.

The core Mechanic of this

game is to locate and walk to

a sound source to progress the

storyline. However, in certain

situations, the PC’s will have

to run from enemies or lure

them if they are blocking his

path. This Dynamic proves

valuable to communicate fear,

which in turn is in accordance

with the overall game design

goal, since this is a horror

adventure. Another

important mechanic relates to

the PC’s movement. The

player must control his pace

differently, depending on the

situation. If he is unable to do

so, he might die.

The player wears

headphones and rotates

himself while holding a

smartphone until the sound

is “in front of him”. The

walking is done by tapping

the left and right foot

alternately. The speed of

the tapping translates

directly to the pace.

Tapping faster makes the

PC’s run. When running it’s

hard to coordinate booth

feet, which increases the

chances of getting the PC’s

to trip and get killed.

E
m

b
o
d

im
e
n

t The player

embodies a soul

in a realm called

Underworld that

is “pitch black”.

The world is a continuous

space described by sounds

that can be moving or not.

The direction the player is

facing in the physical world

translates to the directions

the PC’s is facing in the

virtual world. Additionally,

the way the player taps the

left and right foot simulates

movement in a well thought

manner.

14

S
e
n

so
ri

a
li

ty

A sense of

wonder and fear

is induced in the

player

throughout the

game by a rich

sonic

composition.

Most of the gameplay does not

push the player into frantic

action, allowing him to

explore his surroundings at

his own pace and letting him

create his own interpretation

of the world.

Since there are no visuals,

the player’s imagination is

set loose to fill the gaps in

the virtual world by using

the information carried by

sounds, allowing him an

immersive experience.

S
e
n

se
m

a
k

in
g

The player

interprets the

role of a soul in

the first person

The PC’s is trying to restore

soul memories that will allow

him to leave the Underworld.

The player is a soul that

explores Papa Sangre’s

palace that is filled with

memories. In his journey to

save his love and leave the

Underworld he faces many

challenges.

Table 3-Forms of participation in Papa Sangre

This game excels on its goal as a horror game: inspire fear. Being a

strongly narrative driven game, we can say confidently that it supports

Sensemaking as its main form of participation. The stepping mechanic is useful

not only as a method of input to make the PC go forward in different paces, but

also to simulate walking/running in a believable way. The use of proprietary

binaural technology also enhances the gaming experience and aids the player in

the challenge of finding the direction of certain sound sources.

2.3.2 Deep Sea

Fear is an emotion that can makes us feel vulnerable in a very effective

way and is usually induced when we sense a threat or when we feel that

something we cherish is at risk. Some of the most primal instincts are triggered

when we feel this emotion and this is exactly what Robin Arnott, the designer of

Deep Sea, wanted to achieve. Deep Sea is all about survival in the most adverse

of the environments. In this audio-only survival-horror game, the player wears

a mask that devoids him from sight and takes over his own hearing, amplifying

the sounds from his breathing and creating a sense of isolation and helplessness.

The player is surrounded by alien creatures that are converging to him at a

15

crescent rate as he produces sound by breathing, rotating and shooting. Then,

he has to use a joystick to control the direction he is facing while listening to

commands given over radio which tell him exactly where the monsters are

relative to him. When the player is confident that he has a creature directly in

front of him, he can press a button in the joystick and try to kill it. As the number

of creatures around the player increases, so does the need to suppress his own

breathing in order to ear clearly the instructions given to him over the radio,

further enhancing the sense of fear and claustrophobia. Table 4 summarizes the

most important sound patterns we identified during gameplay.

Sound Pattern Description/Usage

Voice Acting

Radio

Helper Voice

Directionality

A human voice gives instructions to the player by radio,

helping him to pinpoint the position of the enemies

Contextual Music
Used in the beginning of the experience to help create a

setting

Trance

Ambiance
Water sounds that give a sensation of being submerged

Entrainment

Breath

In-game Feedback

Breathing feedback

Beacon Locator

Directionality

Aesthetic

The sound the alien creatures produce when swimming

around the PC’s gives the player information about his

location

Sound Effects

Awareness

When the player tries to shoot a creature, he hears a sound

that tells him whether he hit or missed the target

Death
The creatures attack and kill the player, ending the

experience.

Table 4-Sound patterns in Deep Sea

Despite the limited number of sounds used in this game, the sound

designer made sure that each one would effectively contribute to an immersive

experience by making sure it was coherent with the game aesthetics. This

approach shows that a good sonic composition does not necessarily come from a

16

large variety of sounds, but rather from their high quality. In Table 5 we can see

the forms of participation that emerged during our playtesting session.

 Intention Artifact Participation

C
h

a
ll

e
n

g
e

Survive as

long as

possible by

killing

incoming

creatures.

Every sound produced by the player

attracts more creatures. Creatures

produce sounds that allow the player

to pinpoint their location.

The player must listen

carefully to pinpoint

the source of the

enemies and shoot the

incoming waves of

creatures.

S
e
n

se
m

a
k

in
g

The game is

played in the

first-person.

The player is inside an immersed

compartment, completely alone, and

shooting oncoming waves of enemies.

The player plays a role

where he is cast in a

subaquatic disaster,

forcing him to survive

while waiting to be

rescued.

S
e
n

so
ri

a
li

ty

Let the player

feel the horror

and fear that

comes with

unknown

threats

around him.

The soundscape is mysterious and

frightening and the monsters

produce sounds that provoke fear on

the player. The player’s breathing

intensity controls the Breathing

sounds the PCs produce. From this

mechanic emerges an interesting

dynamic, because the player will

have to suppress his own breathing

in order to better listen to the

monsters.

Most times there is an

anticipation that

allows the player to

fully appreciate the

soundscape.

Table 5-Forms of participation in Deep Sea

The main problem with this game is its very limited forms of participation

by the player. However, this was an experimental installation that showed how

a smart use of device inputs, like the mask with microphones in the diaphragm

that were used to “measure” the player’s breathing, can be used to create

dynamics that support the intended aesthetics.

17

2.3.3 BlindFold

This game throws the player into a situation where he is deprived from

sight, forcing him to explore a world filled with blackness, but rich in its

soundscape. The narrative starts with a traffic accident that makes the PC blind

and disoriented. Then, it’s up to him to explore his whereabouts while trying to

learn how he got in that predicament.

To do that he uses the keyboard to move himself and interact with the

objects. In Table 6 it is shown the different sound patterns used in-game.

Sound Pattern Description of use

Narrative

Cutscene

In the beginning of the game the player is presented with a

cutscene that serves as a way to set the narrative, in this case, a

vehicle accident.

Breathing Used when the PC is running to give a sense of physical strain

Grunts When the PC collides with a wall

Footsteps

Footsteps are used to inform the player about the pace (walking

or running) and the floor material (grass or asphalt). The floor

material is convenient to help the player create a mental map of

the virtual world, thus facilitating his navigation.

Ambiance

When outside, it is possible to hear a background noise that

communicates to the player the nature of the soundscape, in this

case, an urban environment.

No can do
When the player tries to interact with some object that he is not

supposed to, it.

Achievement
When an interaction occurs successfully, the player hears a

positive sound effect.

Recordings

Sound effects

Narrative

There are Recordings throughout the game that the player has

to find to try to unravel the narrative. Some sound effects are

used as Signals to create spatial references to the player.

Table 6-Sound patterns in Blindfold

Once again, the sound designer knew how important it is to create a good

sonic composition in order to give some meaning to the game’s story. This was

particularly important in this game, as it contains some scripted scenes that

allow the player a lot of interpretation freedom. This was a deliberate decision

by the game designers because it was used to test if it was possible to “build

18

understandings of user participation in the soundscape constituting the

gameplay scenario” [17] .

Table 7 contains the most relevant aspects of the game that were revealed

during the gameplay session.

 Intention Artifact Participation

C
h

a
ll

e
n

g
e

Explore the whole

world and interact

with its objects.

There is a specific order to visit

each game object in order to fully

experience the narrative. To do

that, the player will have to create

a mapping of the world in his mind

by making use of the sonic

artifacts that are placed there to

help him creating references.

The player wears

headphones and uses

the cursor keys to

move and rotate his

character, plus one

action key to interact

with objects.

S
e
n

so
ri

a
li

ty
 Put the player’s

emotions to the

test by providing

him with a rich

soundscape and

ambience.

There are several interactive

scenes that are meant to trigger

different emotions in the player

(e.g.: baby scene, dog scene).

The nature of the

experience forces the

player to focus on the

auditory senses,

enabling him to

imagine the world in

a way vision could

not.

S
e
n

se
m

a
k

in
g

The player

interprets the role

of someone who

just had a traffic

accident

This dimension is explored

through a narrative that is not

explicit, but rather gives the

player clues and is open to

interpretation.

The player tries to

decode possibilities

by discovering the

interactive scenes

that are scattered in

the game world.

Table 7-Forms of participation in Blindfold

This gameplay experience was very useful to reveal major problems that

arise from the challenge of navigation without any kind of visuals. Much like in

most narrative-driven videogame, the player starts without a way to pinpoint

his location in the Virtual Game Space/Level (the only exception are the

videogames that provide a fully revealed map right from the beginning, which is

not common). However, unlike what happens in videogames, the only way to

build a mental map in an audio-only game is through sonic references. From this

simple truth we conclude that the bigger the level, the more sonic references are

19

necessary, which leads to the difficult challenge of memorizing too many sound

sources positions. This takes us to next the next problem: knowing which

direction in 360º the PC is facing inside de Level, relative to the cardinal

directions - North, East, South and West. Without any additional source of

information, like a button that when pressed tells the player the direction the

PC is facing, it is not possible to create references based on direction. However,

if two or more sound sources are close enough and intercept each other, when

the player hears them both, he can infer which direction he is facing relative to

them (i.e.: locally, disregarding cardinal directions).

Sound Source 1

Sound Source 2

Sound Source 3

Figure 2-Player inferring his local direction by listening two Sound Sources
simultaneously

20

This triangulation, which can be seen in Figure 2, allows the player to

guide himself from one Sound Source to another as long as they keep

intercepting each other. This means that sound sources must be carefully

positioned during Level Design, since the player cannot be left without any sort

of sonic reference during the exploratory exercise.

In BlindFold, this constraints were overlooked, resulting in a lack of sonic

references in some parts of the level that made us feel lost and a bit frustrated.

Figure 3 shows most sonic references in the BlindFold level, represented by icons

inside circles. The icons represent a type of sound source, the diameter of the

circles represent their range and the white circles belong to interactive objects,

while the yellow ones serve only as references.

Figure 3-Map of the Level showing most sonic references composing the soundscape

As we can see, a big area of the Level does not contain sonic references, making

it very hard for the players to explore it in a systematic way. The last critical

barrier to the player’s navigation revealed during one of the gameplay sessions

21

was the lack of feedback for the PC’s movement. With a keyboard (or mouse) as

the only device input, the player is unable to know the PC’s walking/running

speed, rotation velocity, or as we already mentioned, the facing direction.

The BlindFold proved itself very useful not only to expose the biggest

navigation problems that are inherent with exploratory audio-only games, but

also to revealed solutions that we will talk about in later chapters.

22

2.3.4 AudioQuake

Quake is considered by many to be one of the most influential games ever

made. It popularized the first-person shooter by supporting full real-time 3D

rendering and enabling players to play against each other in multiplayer arenas.

AudioQuake is an Accessible Game that allows blind and vision-impaired people

to play Quake through a series of modifications made to the original Engine. It

applies sonification extensively to represent many different events and convey

information to the player. For this reason, in the analysis of Table 8, instead of

describing the sound patterns, we describe different events and information that

the sound engine transmits to the player using sonification.

Information Description

Toggle Sounds Used to tell the player something was turned on/off

Generic

Navigation

Sounds

Navigation Helper is the engine module responsible for

transmitting information about the PC’s surroundings. Different

sounds play when the PC is near walls, slopes and doors. The

player can also hear a specific sound if the PC is scraping the

wall, as well as wind sound, when there is plenty of space in the

direction the PC is facing.

Vertical

movement
Played when the PC’s position is being changed vertically.

Hazard

(Drop/Ledge)

Warning

Different sounds are played when the PC is near a drop,

depending on the height.

Jump

Descriptions

Knowing there is a drop nearby, the player can press a key to

obtain more information about it. If that information is

available, he gets to know if he needs to make a running or

walking jump to get through the gap and what kind of material

lies bellow (water, lava, etc.).

Waypoint
A sound is played continually to notice the player about his

location.

Compass Sounds
The player can press a key to know what direction the PC is

facing.

Detector 5000

This module is responsible for detecting and informing the

player about important items (e.g.: ammo, health, weapons, etc)

that are in the PC’s vicinities.

Weapons
The player hears different sounds when he picks/switches

weapons. He is also noticed if he runs out of ammo.

23

EtherScan

RADAR

This module informs the player of the presence of monsters,

enemies and allies, as well as their vertical position related to

the PC (higher level, same level or lower level).

End of level Played when a level is completed successfully

Table 8-Sonification of AudioQuake

AudioQuake features various game modes, but since we already had

analyzed several single-player games, we evaluated the Team Deathmatch

Mode, in which there are two teams of players that play against each other in a

server. The participation is described in Figure 9.

 Intention Artifact Participation

C
h

a
ll

e
n

g
e

The player has to

navigate through a

map and kill his

opponents.

The game provides the

player information to help

him navigate through levels

and coordinate with his

team. Inside each level it is

possible to find ammo,

health, weapons and other

resources.

The learning curve of the

game is very hard, as there

are many different sounds

which have similar tones.

Navigation is particularly

difficult in labyrinthic

maps. The player must

search for the right

resources at the

appropriate times while

killing opponents

S
o
ci

a
b

il
it

y

Two teams

compete with each

other

Players are aware of the

presence of each other

through the EtherScan

RADAR.

Players use EtherScan

RADAR to aim and shoot

the enemies/monsters or to

follow teammates.

Vocal communication with

teammates is strongly

advised to improve the

chances of winning.

Table 9-Forms of participation in AudioQuake

This game has the potential to provide a complex and exciting gaming

experience to both blind and sighted players. It has high replayability value and

puts to the test players’ reflexes, hearing, communication skills and ability to

create strategies and coordinate with other players and AI agents. However,

despite all the potential, its game design ultimately creates an experience that

is very artificial and far from immersive, as sonification is used too extensively,

creating a barrage of similar sounds with very different meanings that are

difficult to memorize, especially to newcomers in the audio-only genre. Not only

24

that, but translating an FPS video-game to an audio-only game ends up creating

some navigation challenges that don’t add anything of relevance to the intended

experience. One good example is the presence of elevators, pitfalls/gaps, slopes,

stairs, etc. With visual information, it is very easy to navigate through this kind

of artifacts which actually allow more diversity in levels, but with only sound,

they become barriers that prevent the players to focus on the intended challenges

of an FPS. While AudioQuake ends up having similar navigation problems to

BlindFold, we realized that with proper game and level design, it has a lot of

potential to create an exciting gaming experience to blind and sighted audiences.

25

2.3.5 Conclusions

After playing BlindFold and AudioQuake, we realized that a new

approach was necessary to the design of audio-only games that have navigation

as a core mechanic. As of now, there are no games that we know of which allow

navigation in an intuitive and immersive way. The biggest problems that we

detected are the following:

1. Lack of input feedback – In videogames, pressing keys and/or moving

the mouse to control the character position and rotation usually have

an effect that can be seen on the screen. However, that is not possible

in audio-only games and thus, other means of conveying information

must be designed.

2. Lack of adequate mechanisms to inform the player about the PC’s

surroundings and position in the Level – From our gameplay sessions

we realized that a new approach to how information is conveyed

exclusively through audition is necessary. In BlindFold, there weren’t

enough sonic references for the player to navigate in a premeditated

way. In AudioQuake, there were too many sonic references that would

overlap each other, hindering the player’s ability to know in which part

of the map he was. The number of sounds used to convey information

was also too big, creating a steep learning curve which is an obstacle

for novice players. Finally, the semantic of sounds have an important

role on making information easily accessible to the player, which was

also an obstacle for us, as most of the time we were more focused on

processing all the information, rather than thinking about strategies

to improve our chances to win.

We propose solutions to these problems in the Design Chapter.

26

2.4 Human-Computer Interaction

One of the founders and of human-computer interaction (HCI) is John

Carrol. He is best known for his theory of Minimalism in computer instruction

and has made large contributions to the advancement of HCI since its inception.

He claims the following: “The original and abiding technical focus of HCI was

and is the concept of usability. This concept was originally articulated somewhat

naively in the slogan "easy to learn, easy to use”. (…) However, inside HCI the

concept of usability has been re-articulated and reconstructed almost

continually, and has become increasingly rich and intriguingly problematic.

Usability now often subsumes qualities like fun, well being, collective efficacy,

aesthetic tension, enhanced creativity, flow, support for human development,

and others.” [18]. In other words, HCI is a very broad field that aims to facilitate

the use of computer technology while improving the experience of its users.

Most software can (and should) be a subject of study by HCI. However,

this field has many principles and methodologies that were created with

software in mind and thus, are not applicable to video games. Consequently, it

is important to make the distinction between software and videos games to

understand how software HCI differs from video games HCI. Video games enable

different forms of participation: exploring caves in Minecraft (Playfulness),

beating a record in Tetris (Challenge), playing Tennis on Wii (Embodiment), etc.

Furthermore, when a player enjoys a game, he usually wants the experience to

last as long as possible. Other forms of software are not prone to this kind of

participations, as they are used, most of the times, as tools to achieve some goal

in the most efficient way possible.

Pippin Barr, who created the Video Game Activity Framework [6], makes

a clear distinction between both forms of HCI by comparing a video game, Grand

Theft-Auto: San Andreas [19], to a software, Microsoft PowerPoint [20]:

27

“We can identify four key differences in interaction which help to

characterize video game play as distinct. First, in using

PowerPoint, a user’s primary objective is the creation of a

presentation and the interaction is a means to this end. In

playing Grand Theft Auto: San Andreas, however, a player’s

primary objective is play and the interaction is an end in itself.

Second, given this difference, users of PowerPoint expect the

interface to be as unobtrusive as possible, while players of Grand

Theft Auto: San Andreas are specifically focused on the interface

as they play: the interface is the game. Third, while we generally

think of PowerPoint as solely facilitating our work, Grand Theft

Auto: San Andreas frequently assigns tasks such as killing gang

members, evading the police, or navigating the world. Finally, in

PowerPoint the ideal user experience is seamless and without

error, but a successful playing of Grand Theft Auto: San Andreas

will inevitably and acceptably include mistakes, challenges, and

the frequent death of the player’s avatar.”

The author wraps it by saying: “The fundamental point of distinction can be

summed up as follows: people use software, but they play video games”.

Developing an audio-only game implies an additional focus on HCI. The

lack of visuals creates barriers to the input-output feedback loop that often forces

the developers of audio-only games to create innovative designs and applications

of input devices to circumvent those barriers.

28

2.4.1 Input Devices

Interaction implies some kind of action that affects two or more objects.

When interacting with a computer in particular, it is necessary some kind of

equipment used to send data and control signals to be processed. This kind of

peripherals are called input devices.

Since we decided to develop on the mobile platform, we have some input

devices that are available to us right out of the box and others that are also

compatible, which are described in Table 10.

Input Device Description

Touchscreen

A user can give inputs through multi-touch gestures by using a pen

and one or more fingers. Different gestures can be mapped to

different actions. For instance, tapping can be mapped as selecting,

swiping can be mapped as next/previous, pinching can be used as

zoom in/out, and so forth. Touchscreens are incredibly intuitive,

providing a way for the user to interact directly with what they are

seeing in the screen. One of their biggest uses is in applications or

games that require the user to draw.

Mouse

(optional)

The mouse is a pointing device that detects motion relative to a

surface in two dimensions with great precision. The standard

features of a mouse are two buttons. The left button is mostly used

to make selections and the right button allows an accessible way to

list alternative options. Very often there is also a scroll wheel that is

used to navigate up and down through a page and also acts as a third

button. This device is particularly useful for video games that require

the player to look around in a very fast and controlled manner, like

first-person shooters (FPS). A mouse can be plugged to a smartphone

by Bluetooth or by cable, if it supports USB OTG.

Keyboard

(optional)

A keyboard is a typewriter-style device that has many different keys,

each mapping its own symbol. It’s is possible to produce special

actions or commands by pressing and holding some keys in a pre-

determined order (e.g.: ALT+CTRL+DEL). This device is very

suitable for video games that have a discrete space (e.g.: Tetris), 2D

platformers (e.g.: Super Mario) or fighting games (e.g.: Mortal

Kombat). A keyboard can be plugged to a smartphone by Bluetooth

or by cable, if it supports USB OTG.

Accelerometer
An accelerometer is a sensor that measures proper linear

acceleration (acceleration relative to free-fall). Smartphone’s

29

accelerometers usually have 3 orthogonal axis, each measuring the

effect of earth’s gravity force on the smartphone. They are used to set

the correct orientation (portrait or landscape) of applications,

depending on the way the smartphone is held. They are also used in

video games, using the tilting of the smartphone as input.

Compass

The digital compass uses a magnetometer that provides the

orientation of the smartphone relative to the Earth’s magnetic field.

Since the smartphone knows where the north is, it can auto rotate

digital maps depending on its physical orientation, which can be used

in video games.

Gyroscope

A gyroscope is a sensor that measures angular acceleration on 3 axis,

providing a way to measure the smartphone’s rotation - roll, pitch

and yaw (Figure 4). It can be used with the accelerometer and

compass to provide more reliable measures. Like accelerometers,

gyroscope measures can be used as inputs in video games where the

physical rotation is used in-game.

GPS

Global Positioning System (GPS) is a network of orbiting satellites

that send precise information about its position relative to the earth.

GPS receivers use that information to calculate with a certain degree

of error their position, speed and time. Some games rely on the use

of a GPS (e.g.: Geocaching).

Table 10-Description of input devices

Figure 4-Roll, Pitch and Yaw 3D representation

This input devices can be used in a synergetic way, along with sonification,

to improve usability and accessibility in games and software.

30

2.4.2 Sonification

“Sonification is the use of nonspeech audio to convey information. More

specifically, sonification is the transformation of data relations into perceived

relations in an acoustic signal for the purposes of facilitating communication or

interpretation“ [21].

In video games most of the information is fed to the player through visuals

and sound is mostly used to prevent overload of information, enabling the player

to change his focus in a non-intrusive way. Moreover, sound is frequently used

to improve the immersion of the player through music and a complex

soundscape. Sound is also of the utmost importance in rhythm games like Guitar

Hero. In this particular example, it provides the player a way to detect the beat

of the music which in turn helps him to know the right time to press the

strumming bar button.

One of the biggest challenges presented to us was to convey information

to the player exclusively through sound. We already described how some audio-

only games use different Audio Patterns to guide the player and inform him

about important events. In this process we got a good sense of the different ways

sound can be explored and more importantly, what is intuitive and promotes an

interesting gameplay experience.

31

3 Research

In this chapter, we start by defining the research objectives that stemmed

from the State of the Art. This includes a brief explanation of the three game

proposals and the rationale behind the research objective that was added in the

second semester. Following, we present the initial planning for the second

semester along with the details of each milestone. Lastly, we explain and disclose

the reviewed planning after the objectives were reprioritized in the beginning of

the second semester.

3.1 Research Objectives

One of the major difficulties we faced in the first semester was the problem

definition. It was extremely important to set relevant objectives, guided by the

right motives, as all the work to be executed in the second semester would be a

direct result of them. After long deliberation, we decided that this dissertation

would be about audio-only games and set out to learn more about the genre. This

was achieved mainly through gameplay sessions with different games, followed

by formal analysis of their game design. These gameplay sessions made us

realize that most problems of the audio-only genre lie with the way information

is conveyed to the player. That conclusion led us to research on sonification and

HCI, two fields that exist to improve the usability of software and consequently,

improve the user’s experience.

After we identified the most troublesome problems in audio-only games,

we started to hypothesize methods to solve them. At this point, we were able to

start creating game proposals that were suitable to test our solutions, while

exploring different forms of participation by the player.

Finally, during the second semester, after having a working prototype of

the First-Person Shooter, we started to experiment different topologies, which

made us notice that level design would need a more careful approach than we

were initially expecting. We decided that a systematic study would be useful to

32

learn more about the human hearing and would allow us to design levels in a

more informed way.

3.1.1 Initial game proposals

During the definition and refinement of the objectives and requirements

of this dissertation, in the first semester, we committed to the decision that the

best way to explore the potential of audio-only games was not to create one game

with high production value, but rather create several prototypes in which

different forms of participation and genres can be explored. The rational for this

decision also took in consideration the possibility of researching a broader range

of sonification techniques, which we hoped that would result in a relevant

contribution to HCI.

In order to show that it is possible to create different forms of participation

from the same mechanics and to shorten the development time of each game,

some game mechanics are shared across the different games.

Each of the next game proposals describes briefly the mechanics,

dynamics and aesthetics that we hope emerge from the gameplay experience. It

was not possible to fully describe the game design model centered on

participation in an early stage, because the actual forms of participation were

only revealed during playtesting, after having working prototypes. As we already

said, the next game proposals were made in the first semester and are brief

because they only served as guidelines for the work to be developed. Additionally,

due to changes in our research objectives that occurred during the second

semester, the first game was changed and the second dropped. Those changes

and a more detailed view into the planned design is given in the Design chapter.

3.1.1.1 Game #1 – Racing

In this game the player is controlling a spaceship that is navigating

through a “wormhole”. Since the wormhole is slowly closing, the player must

reach its end as fast as possible, or he risks to be trapped inside it forever. The

33

player sets the direction of the spaceship by moving his head while using a head-

tracking device, and controls the throttle and breaks with two buttons. If he gets

too close to the boundary of the wormhole (which can be thought as a tortuous

tunnel), the player’s spaceship top speed is limited to a lower value.

Consequently, the player has to stare straight to the audio source as best as he

can through the whole track, as that audio source moves around in front of him

at a speed controlled by the player. Finally, tracks are procedurally generated

using ad-hoc methods, which in turn contribute to a bigger replay value.

3.1.1.2 Game #2 – Rhythm

This game builds upon the Racing game and introduces some new features

that haven’t been explored in the audio-only game genre. This is a rhythm based

game that, similarly to the aforementioned Racing game, procedurally generates

tracks, based on the music the player selects. That music must be stored in his

smartphone and influences different features on the track generated. When

playing a track, it has sound cues that inform the player that he should do some

gesture with his head or tap a button at specific times. This implies the

implementation of an algorithm of pattern recognition. Furthermore, a beat

detection algorithm should be used to get the tempo – or beats per minute (BPM)

– to allow the synchronization of the sound cues with the music. Additionally,

we suggest the possibility of having more sound cues in the most energized parts

of the music, which might contribute to improve the immersiveness that is

consequence of the embodiment of the music.

3.1.1.3 Game #3 – First-Person Shooter

Our goal with this game is to explore the FPS genre, which we think that

has much potential but hasn’t been approached the right way by audio-only

games so far, for the reasons already mentioned. Most of the information was

collected during the analysis of AudioQuake. We found that it is very hard to

make a proper sonification of all the elements of a game as complex as Quake,

34

since too many sound cues result in overload of information and consequently, a

gameplay experience that is frustrating. For this reason, our implementation of

a FPS is stripped from all the unnecessary elements and tries to fix the major

problem we found in AudioQuake: navigation. It’s important to mention that one

of the strengths of this genre is multiplayer, which has the potential to greatly

improve its sociability value. This value is particularly important, as there is a

shortage of accessible games (especially audio-only) that allow players to interact

between themselves.

The gameplay of our prototype is similar to the visual counterpart of a

competitive FPS like Quake or Unreal Tournament. It is played as a 1vs1

Deathmatch with time limited rounds. At the end of each round, which lasts

some minutes, the player who has more kills, wins. Each player has a weapon

(longbow) and limited ammo (arrows). As the player navigates through the level,

he might encounter an opponent. The adversaries’ presence is announced by a

continuous sound that informs the player of his presence. At this point, the

player must turn to his enemy the best he can, similarly to the first game, and

fire. If the shot doesn’t miss, the damage is calculated and its health drops. When

any players’ health drops to below 0, he is killed and respawns at a different

location with full health and ammo. However, when a player survives a

confrontation, it is expected that he tries to restore the lost health and ammo.

To do so, he has to navigate to places where those resources can be collected. We

call those places Chambers, of which there are 5 types: Ammo, Health, Shield,

Firing Speed and Neutrals. The first four will provide a resource to the player

and the later act like a regular Chamber. Players can only accumulate resources

to a certain point, so, for instance, a player with full health cannot collect a

health resource when visiting a Health chamber. On the other hand, if his health

is not full, he collects it and that resource only becomes available at that chamber

30 seconds later. The firing speed and shield are non-essential survival resources

that can be obtained to get an edge against opponents and add some flavor to the

game by motivating the players to navigate through the map to collect them.

35

3.1.2 Hearing acuity study

This research objective was added during the second semester, when it

became apparent that the nature of sounds, their number and even the angles

between them affected the gameplay experience by changing the time it took for

the players to process information and act accordingly. For instance, when

having two similar sounds sources too close to each other in front of him, the

player sometimes would not be able to rotate and move to the intended sound

source. Additionally, we realized that players have different sensitivities

regarding sounds, and that should be taken in account when designing levels.

This showed us an opportunity to research something that, to our knowledge,

was never investigated in the academic world.

Fitt’s law is an empirical model that predicts that the time required to

rapidly move a cursor to a target area is a function of the ratio between the

distance to that target its width. This means that an user takes less time to point

and click in large targets, but that time increases if the target is far away from

the initial position of the cursor. This scientific law has already been proven

under a variety of conditions, using different limbs, physical environments and

user profiles, but it was never tested with sound.

We think that it is of paramount importance to audio-only game genre to

know the limits of our audition when hearing several sound sources at the same

time. Thus, we decided to redirect some of our efforts to research that and

dropped the development of the second prototype in order to have enough time

to further improve the FPS, enabling it to also serve as a testbed. Additionally,

we made changes to the racing prototype in order to use it to assess the testers

hearing acuity and ability to follow sound sources, which was useful to validate

the data gathered in subsequent tests.

36

3.2 Methodology

During our search for the design methodology that best suited our

interests we found that good lessons can be extracted from almost everywhere.

The most orthodox design methodology is Waterfall: it starts with the design of

the entire game using extensive documentation, followed by the implementation

phase, then the testing phase after which the game is ready for shipment.

Figure 5-Waterfall model

In the waterfall model (Figure 5), the project is developed in sequential,

unidirectional phases. Thus, this model is very adequate in projects where

there’s little risk and uncertainty, like sequels or expansions. However, since

each phase can only start when the previous one has been finished, the project

ends up having little room for evaluation and iteration, which is the major

disadvantage of this model.

 The second game design methodology we researched was Scrum. Its roots

are based on the Manifesto for Agile Software Development [7]:

“Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan”

This methodology promotes the division of the project in tasks that are allocated

to small, multi-disciplinary teams that work closely to each other. At the

37

beginning of every week, some of those tasks are chosen by the Scrum Master,

and are developed in short work cycles called Sprints (see Figure 6). However,

the duration of those cycles depend on the nature of the project and are decided

by the Scrum Master, whose responsibility is to keep the team focused on

meeting the Sprints and serves as a mediator of the different teams. Every day

the teams have a short meeting with the Scrum Master so that problems can be

detected and corrective measures taken.

Figure 6-Scrum model

This approach stimulates iterative development, from which stems features that

can be evaluated and tested for functionality, which is great to assess the

progress of the whole project. These iterations also help to decrease some risks –

being design risks and implementations risks the ones that we are more

concerned with. Design risk is the risk of designing a game that is not engaging,

while implementation risk is the possibility of facing technical challenges that

prevent the development to continue without making some changes to the

design.

 For the aforementioned reasons, we followed a methodology that borrows

concepts from Scrum. Our requirements were used as backlog, which allowed us

to gauge our progress along the whole development by completing milestones.

38

3.4 Planning

In this chapter is described – in a chronological fashion - the work done

during the first semester and projected milestones for the second semester. This

dissertation’s nature is highly exploratory, which leads to high degrees of

uncertainty and in turn, prevented us to create a thorough planning. That being

said, the projected milestones were useful to lead the development of the

prototypes and allowed the assessment of their progress.

In the first semester we started without a well-defined problem. We knew

that audio-only games have the potential to improve game accessibility, but had

no idea how much this game genre in particular was being neglected by the

gaming industry. Research on audio-only games that included gameplay sessions

gave us insight on the major barriers to interesting gaming experiences. We

found that some forms of participation and genres were really frustrating to play

because of the poor HCI and sonification techniques used to convey information

to the player. That made us recognize an opportunity in research and from there,

the specifics of the problem definition started to be clear, which enabled us to

actually start the documentation of the State of the Art, which ended up taking

the whole semester. During this time we researched on many different areas

that influence audio-only games. We researched Acoustic Ecology and Sound

Design Patterns to understand the usefulness of sound to convey information to

the player and create aesthetics that allow immersive experiences. This, along

with the research on Game Design Models and Frameworks, allowed us to create

formal evaluations of several games that are archetypes of different genres and

support distinct forms of participation by the player. This analysis also allowed

us to systematize the interaction problems we faced in those games and think

about possible solutions to them using different input devices. Finally, we made

some proof of concept tests to mitigate design and implementation risks, by

making sure we had the technology to create interesting mechanics.

The main challenge of the second semester was the implementation of the

three game proposals. After the conclusion of each prototype, we planned to

39

playtest and evaluate them using different metrics in order to assess if they are

engaging to both blind and sighted audiences and use the players’ feedback to

improve and refine implemented features. Finally, we planned the integration

of all these learning in this dissertation final report.

3.4.1 Planned milestones

Since we decided to some concepts borrowed from the Scrum methodology

to gauge the progress of this dissertation, we planned one-month sprints with

specific milestones to be achieved in each one. However, due to the exploratory

nature of this dissertation, we did several adjustments to the milestones

throughout the year, always prioritizing the aforementioned research objectives.

Table 11 includes all the milestones of this dissertation and their

description, as planned in the final of the first semester.

Milestones Sprint Description

M1 February Definition of the problem

M2 March-May State of the Art

M3 April Methodology

M4 May Proof of concept prototypes

M5 June Intermediate report

M6 July Implementation of prototype #1

M7 September Implementation of prototype #2

M8 October Implementation of prototype #3

M9 November Playtest and evaluation

M10 December Integration of feedback

M11 January Final report

Table 11-Sprint planning

3.4.1.1 Milestone 1 – Definition of the problem

Before starting the draft of the State of the Art, it was necessary to have

a clear problem definition and propose a solution that would guide this whole

40

dissertation. This milestone was completed successfully, even though the

research objectives were changed during the second semester.

3.4.1.2 Milestone 2 – State of the Art

The documentation of the State of the Art was one of the most challenging

milestones to complete. It started with gameplay sessions of various audio-only

games and as we researched about all relevant topics, the results would be added

to the draft.

3.4.1.3 Milestone 3 – Methodology

In this milestone we researched about the methodologies used by the

gaming industry. This milestone was completed in mid-April.

3.4.1.4 Milestone 4 – Proof of concept prototypes

During this milestone, we created a tech demo to make sure that we had

all the technology necessary to develop the planned prototypes.

3.4.1.5 Milestone 5 – Intermediate report

The last milestone of the first semester was to write all the remaining

chapters of the intermediate report.

3.4.1.6 Milestone 6 – Implementation of the first prototype

The first projected milestone after the delivery of the intermediate report

was the development of the first game prototype. It was important to familiarize

ourselves with the Unity development pipeline and learn more about the

vicissitudes of audio-only games. The simple nature of this game, which is

following sound sources by using a head-tracking device, would also provide

itself an excellent opportunity to improve that feature, which would be used in

the other two games

41

3.4.1.7 Milestone 7 – Implementation of the second prototype

Once the first prototype was completed, we could then start to implement

an algorithm to recognize head gestures. This would allow us to start introducing

sound cues in a song and experiment different mechanics, until we fulfilled the

goal of producing an experience that explored the embodiment dimension in a

fun, immersive way.

3.4.1.8 Milestone 8 – Implementation of the third prototype

Once the previous game was mature enough, we would be able to start our

most ambitious milestone: the development of an FPS in which our proposed

solutions for navigation could be implemented.

3.4.1.9 Milestone 9 – Playtest and evaluation

The expected output from this milestone was to test the three game

prototypes with different user profiles, while evaluating their performances and

making interviews to gather feedback that could be later integrated.

3.4.1.10 Milestone 10 – Integration of feedback

At this point, we should review all the feedback gathered during the

previous milestone, and prioritize them in order to fix the most important

aspects of the three prototypes.

3.4.1.11 Milestone 11 – Final report

The last milestone is the integration of all the learnings in the final report.

All the writing and reviewing should be completed by the end of this milestone.

42

3.4.2 Reprioritization and executed planning

Even though we had planned to develop three prototypes, we started the

second semester by prioritizing the work and realized that before polishing the

first prototype, we should initiate the development of the FPS game, which was

the one that offered most potential for research and allowed us to implement and

test our proposed HCI and sonification techniques, with the purpose to solve

navigation problems in audio-only games. Furthermore, the high complexity of

the planned prototype resulted in implementation risks (technical issues,

prolonged developing time, etc) that we wanted to suppress as soon as possible.

Finally, we added a research objective to this dissertation and for this reason,

the milestones for the second semester were redefined as follows:

 Sprint 1 – September-October: Changes to the racing game and

development of the FPS.

 Sprint 2 –November: Preliminary playtests to gather feedback and

following integration of changes to the FPS.

 Sprint 3 – December: Implementation of spectator mode using client-

server architecture and formal playtesting.

 Sprint 4 – January: Writing of the final report.

All the sprint goals were completed successfully, and their output will be

explained in the following chapters.

43

4 Design

As exploration/navigation is a recurring mechanic in most videogames, we

think that the audio-only genre should not discard such mechanic solely for

accessibility difficulties. The playtesting sessions gave us the opportunity to

detect problems with navigation in more than one game which motivated us to

create a set of HCI and sonification techniques with the aspiration to solve these

problems, enabling the players to redirect their focus from navigation to more

important goals. In this section we will explain those techniques and the

rationale behind the important game and sound design decisions. Finally, we

detail the requirements that emerged from the design.

4.1 Proposed HCI techniques for navigation

To deal with the problem of lack of input-output loop feedback, we propose

the use of a head-tracking device. Fortunately, most models of smartphones have

a gyroscope, an accelerometer and a compass, sensors that when combined, can

give accurate readings of the orientation (roll, pitch and yaw) of the smartphone.

Because of this, the player can have direct control over the rotation of the PC, as

it is mapped directly to the orientation of his head. Furthermore, we propose

external stimuli to give the player references for the cardinal directions. For

instance, a regular fan can be used as a reference to North. To allow 360º

navigation, the player should be sitting on a revolving chair, which also enables

the use of different floor materials or objects that serve as spatial references (e.g.:

carpets, pillows, etc). By combining the information provided by these external

sources, the player can know which direction he is facing because he is able to

feel the air flow on his face and the different materials on his feet. With this

solution, the player always knows which cardinal direction he is facing, and has

intuitive feedback for orientation, since the speed he rotates his head affects

directly the speed the PC rotates. With the intricacies of orientation cracked, we

44

will now explain how we used sonification to convey information about the PC’s

surroundings in the FPS prototype.

4.2 Proposed Sonification techniques for navigation

Just like Quake, Unreal Tournament and other competitive FPS games,

our Levels have resources spread throughout the map. In our case, these

resources are:

1. Health – When collected, PC restores his HP completely.

2. Ammo – When collected, PC refills all his Ammo

3. Shield – When collected, PC gains an additional protection of 50 HP.

4. Firing Speed Boost – When collected, PC’s weapon reload time drops

to 1 second, instead of 2 seconds.

We can make a parallelism with the way sound works in sewers to better

explain the way sound works in our Levels. Each Level (seen in Figure 7) can be

viewed as a graph that has Nodes connected by Edges. Each Node is a Chamber

and each Edge is a Corridor connecting two Nodes/Chambers. Chambers are

circular with a specific radius and in their center, there is a sound source that

represents the resource that Chamber has.

Figure 7-Topology of a Level

45

Obviously, not every Chamber can have a resource, because that would

make the PC’s navigation almost meaningless, as he would always have some

benefit, no matter wherever he was navigating to. Since this is not desirable from

a Game Design perspective, some Chambers have no resource, even though they

still have a sound source in their center.

When the PC is inside a Chamber, the player can hear the sound sources

coming from adjacent Chambers and the sound source coming from the center of

the chamber he is currently in. If he decides to move in the direction of one of the

adjacent chambers, once he leaves the radius of the Chamber he is in, he enters

the Corridor and starts to listen only to the sound sources coming from both ends

of it (i.e.: the Chamber he came from and the one he is heading to). As the PC

continues to travel along the Corridor, the sound source volume he is facing

continues to linearly increase to a maximum. Once the player gets to the end of

the Corridor, he enters the Chamber and that sound drops rapidly to a minimum,

in order to allow the player to better listen the sound sources coming from

adjacent Chambers. This is not a realistic behavior of sound, but after several

iterations we decided that this was the best option. The three options we tried,

in chronological order of iterations, are the following:

1. Fully realistic approach – The closer the PC is to a sound source, the

louder it is. This means that when a player is inside a chamber, the

sound is at its maximum volume. This was actually our first approach

because it represents sounds in a natural, intuitive fashion, but we

concluded that, in this conditions, it was too hard to listen to the

adjacent Chambers, so we discarded it. In other words, this approach

is the best to inform the player of his current location, at the expense

of the adjacent locations.

2. Half realistic, half functional approach – This approach is equivalent

in everything to the aforementioned, with the exception that whenever

a player is inside a Chamber, its volume is decreased to lower than the

46

adjacent Chambers. This facilitates the listening of adjacent

Chambers, but creates two unrealistic situations. If the player is in a

Corridor and enters a Chamber, its sound volume decreases rapidly,

and if he leaves a Chamber and enters a Corridor, the sound source

volume of the chamber on his back increases rapidly.

3. Fully functional approach – In this approach, the sounds furthest from

the PC are louder and as we get closer to them, they decrease linearly,

being at their minimum volume when the player is close to them.

Consequently, when a player is inside a chamber he can listen clearly

the sounds coming from adjacent Chamber. This approach is

completely unrealistic and very counter intuitive for untrained

players, but excels at informing the player about the adjacent

Chambers, without having abrupt changes in sound sources volume.

As our goal was to produce a game with a high degree of challenge and

competitiveness, there was a necessity to keep the player constantly well

informed about certain aspects inherent to a FPS, enabling him to create

strategies and navigate in the Level accordingly to them. For instance, when a

player is low on health, he should navigate to a Health Chamber or he risks

getting killed in a confrontation. For this reason, we favored functional

approaches over realistic ones in most game design decisions. However, we

discarded the fully functional approach because even though it allowed an

informed navigation with smooth sound transitions, we found it so counter

intuitive that immersiveness was broken, and for that reason we ended up

discarding it.

With the aforementioned approach, the player can be in on of two situations

when navigating the level:

1. The PC is inside the radius of a chamber and can only hear the sound of

that chamber and the adjacent chamber(s) (Figure 8a).

47

2. The PC is inside a corridor and can only hear the sound of the chambers

coming from both ends (Figure 8b).

Unlike many FPS videogames, where sound is implemented with a natural and

realistic approach, we do not apply sound occlusion, but rather omit entirely all

the chamber sounds the player isn’t supposed to hear, even if those chambers

are physically close to the PC. This design decision was made in order to keep

the player without sound overload that contains information that does not

contribute much to the way he plays. As an example, even though the PC is much

closer to Node (1) than Node (3) in Figure 8, he cannot actually listen to Node (1)

chamber sound.

Figure 8-Sound sources behavior inside chamber (8a) and outside chamber (8b)

48

Additionally, it is necessary that, when the PC is inside a chamber, the player

can hear equally well the sound coming from adjacent chambers, disregarding of

their distance. For this reason, we decided that sound sources should be

disattached from the objects they belong to (i.e.: center of each chamber).

Instead, every update they should be repositioned in order to make sure they are

at the same distance from the player. Then, depending on the position of the PC

relative to both ends of the corridor he is in, the volume of each of the two

chamber sound sources is updated. If, in the other hand, the PC is inside a

chamber, that sound source is repositioned to its center and the chamber sound

is reduced to lower than adjacent sound sources to allow him to focus on them.

To make everything clearer, we can once again use Figure 8 as an

example. When the PC is inside a chamber (i.e.: Node (4) in the 8a) the player

can listen the sound sources of Node (2), Node (3) and Node (4), but not Node (1).

However, we can see that the distance from the PC to Node (3) is much bigger

than the distance from the PC to Node (2). This happens because, as previously

discussed, we decided that it is more important to inform the player about the

adjacent nodes rather than the distance to them, the latter being usually done

by making the volume of closer objects higher than distant ones. With our design,

the sound sources of Node (3) and Node (2) are at similar volumes and the sound

source volume of Node (4) is lower than the other two. Additionally, after the PC

leaves the chamber and enters the corridor of Node (4)-Node (3), navigating

towards Node (3), he ceases to hear the sound source of Node (2) and starts to

hear Node (3) increasingly louder. As for Node (4), right after the PC left the

chamber and entered the corridor, its volume increased very fast to the

maximum value and then, decreased as the PC continued to walk along the

corridor towards Node (3).

49

4.3 Sound Design

It is important that players are able to immediately tell the meaning of a

sound when earing it. Sonification can be used to transmit information to the

players, but this implies careful game and sound design to prevent information

or sound overload.

The possibilities to represent chambers with sonic references are virtually

limitless and, in the end, the easiest thing to do would be to teach the players

about the meanings of each sound explicitly. However, we wanted to avoid the

creation of a tutorial using text-to-speech because we value experience as a

teaching tool, rather than (tedious) instructions. While some events can be

intuitively conveyed to the players exclusively through sound, that does not hold

true to the most abstract ones. Our analysis to Audioquake made us realize that

when sonification is made with a lot of “artificial” sounds that aren’t prone to

any kind of interpretation, they are hard to memorize because they don’t hold

any kind of meaning or semantics. With this in mind, we realized that natural

sounds always carry some information, and decided to use that to our advantage.

Additionally, by using natural sounds, players would also be able to have some

freedom of interpretation, which was useful to create a sense of aesthetic inside

the level.

After brainstorming with more than 10 people about possible options to

represent different types of chamber using sound, the final mapping between

resources and sounds, as well as their rationale is presented in Table 12.

50

Resource Chamber sound Rationale

Health Waterfall

Water is commonly associated with rejuvenation,

peace and purity. For that reason, we used the

sound of a waterfall to represent a place where

players can cleanse themselves from their wounds,

gaining Health.

Shield
Forge/Hammer

hitting an anvil

We wanted to convey a sense of protection to the

player. Since, the most widely known shields are

made in metal (e.g.: shields seen on movies) and

are used as means of protection, it seemed logical

to use forging sounds to represent a place where

shields are made.

Firing

Speed

Super Sayan aura

from Dragon Ball

series

It is very hard to represent a concept as abstract as

“the increase of speed/power” exclusively through

sound. However, almost all interviewees that

recognized the sound from Dragon Ball (a popular

series that most people is familiar with) could

correspond correctly the resource to the sound.

Ammo Handsaw/Sawmill

After knowing that the PC uses a longbow and

arrows as a weapon, which are commonly made in

wood, most interviewees could guess by intuition

that arrows need a handsaw to be made.

Neutral
Peacocks / Crows /

Eagles / Parakeet

We wanted to represent all the neutral chamber

with sounds containing equivalent semantics.

Consequently, we decided to use bird sounds, since

they also contributed the intended aesthetics of the

game.

Table 12- Rationale behind the mapping of chamber sounds to resources

After deciding which sounds would better represent each resource, we

needed a way to inform the player if a resource was available or in cooldown,

preferably through sound and without the need to be inside the chamber. In

videogames, a player can see if a certain place has a resource by simply looking

for the icon or model that represents it. If the resource is not there, then the

player doesn’t waste time with it. This is particularly important when we think

about resources that spawn in the end of an alley, because the time wasted to go

there doubles. Even though in our prototype every resource’s cooldown is 30

seconds, the possibility of having more powerful resources with longer cooldowns

51

still exists. Consequently, we thought of several options to inform the player

about the availability of a resource. The first we tried was to get a similar sound,

semantically related to each chamber sound when its resource is available. For

instance, the sound of a waterfall represents abundance and thus, the presence

of the health resource, while slow dripping water represents the same resource,

which has been depleted. However, it eluded us how to represent this kind of

duality with other resources in an intuitive manner. Additionally, this meant

that the players would have to memorize twice the number of chamber sounds,

which would make the learning curve steeper. Eventually, we realized that every

sound has inherent properties that we could explore in our advantage to solve

our conundrum: volume, reverb, speed and pitch. The volume property was

already being used to inform the player of the PC distance to chambers, so it

didn’t seem wise to use it to convey any more information because the sound

could become ambiguous and confusing. Reverb seemed an interesting option if

used the right way. For instance, resources on cooldown could have reverb

applied to their sound source, which would decrease with time until they were

available again, in which case no reverb would be applied. This option ended up

being discarded because it was impossible to notice the applied reverb to sounds

with too much noise, like a waterfall or super sayan. Likewise, speed could be

used in a similar fashion of reverb, deaccelerating a chamber sound when its

resource disappeared, and then gradually accelerating it until the resource was

available again. Although we could have used speed, pitch showed itself the best

option because players could easily perceive the difference between the high and

low pitched versions of each chamber sound, and we could even modify the pitch

using RealSpace3D sound engine.

In order to ease the player navigation even more, we thought that the

footsteps layer of sound could be used to inform the player of his whereabouts

inside the level. For instance, we could divide the map in two regions: while

inside the east region, the PC would hear steps on sand and in the west side, the

player would hear steps on rocks.

52

It was also necessary to inform the player about the presence of enemies,

which occurs when they are in the same corridor, including both chambers on

each end. Our approach mimics what happens in a videogame FPS, where

characters suddenly appear or disappear from the corridor the PC is in, just by

going around the corner. We decided to use zombies because they represent evil

and could convey a sense of fear to the players.

Finally, we decided that we would also need to inform the player about

several actions and events, which are described in Table 13.

Action/Event Sound used Description/Rationale

Shooting Arrow release

Since we decided that the FPS aesthetics would

relate to wilderness, it made sense that the

weapon would be longbow and arrows.

Reloading

Pulling

longbow

string

A longbow produces a characteristic sound of

straining wood when its string is being pulled.

This sound duration is 2 seconds.

Fast reloading
Accelerated

reloading

Same sound as the above, but faster. This sound

duration is 1 second.

Taking Damage Random grunt

A list of grunting sounds is used to prevent

repetitive sounds. In this case, the sound source is

also positioned around the player in the direction

of the enemy that shot the PC, helping the player

to better notice his direction.

Dealing

Damage
Zombie grunt

When the player hits the zombie with an arrow, a

grunting sound is produced from the zombie

location, informing the player of his success.

Different sounds can also be used to inform the

player about critical hits (e.g.: headshot).

Killing Zombie sigh
When this happens, the player will hear a sigh in

the position where the zombie was killed.

Dying Human sigh
This informs the player that he was just killed and

will respawn in a Node.

Zombie

presence

Zombie

sniffing

When the player sees enemies, he starts to hear

their sound which informs about their position.

Table 13-Rationale behind the sounds used to represent actions and events

53

4.4 Static AI Bot

Before even thinking of developing a multiplayer version of the audio-only

shooter, many iterations would be needed. However, this would be difficulty

because we didn’t have available testers. Consequently, the creation of a Bot that

could simulate some of the most basic behaviors of a human player was the

natural solution. Those behaviors are the following, in decreasing order of

priority:

1. If possible, fire against the closest visible enemy target.

2. If the Bot has less than 50 Health, go to the Health Chamber.

3. If the Bot has less than 5 Ammo, go to the Ammo Chamber.

4. Navigate randomly

To allow the search for specific Chambers in behavior 2 and 3, we

implemented a simple pathfinding algorithm based on Depth-First Search. This

task was simplified by the previous decision to have our Levels represented as a

graph, with each node having a list of connections to adjacent nodes.

Furthermore, since it is hard to simulate the way a human aims to a target, we

implemented a heuristic that calculates damage as a function that is inversely

proportional to the distance of the target. This also allows us to easily control the

difficulty of the AI, by changing the upper bound of the damage dealt.

4.5 Damage dealing heuristics

Unlike videogame FPSs, where a player can actually see his enemies on

the screen, in audio-only games the only source of information about the location

of enemies is conveyed through sonification. Consequently, the players’ accuracy

was expected to be much lower in the FPS and thus, an alternative method of

calculating damage was needed. We decided that when a player fires, the angle

between the PC’ facing direction and the enemy is calculated. A lower angel will

then mean that the player is looking straight to his target and, consequently,

more damage is dealt. An angle bigger than 30º will completely miss its target.

54

Finally, since bots do not aim like humans, we decided that the closer they are

to their target, the more damage they deal.

4.6 Spectator Mode

Once it became apparent that we would need to create a battery of tests

in order to assess the users’ ability to hear sounds, the necessity of visualizing

their actions as they played in real-time became evident. However, since the

game runs directly on the smartphone, which is inside the Cardboard, we

couldn’t simply look at a screen like in videogames. Instead, we decided to design

a server-client architecture (see Figure 9) that would allow us the visualization

of the game remotely and change some variables remotely.

Figure 9-Server-Client Architecture

In particular, it should be possible to change remotely these variables:

 The current loaded level.

 The presence of a Bot.

 Toggle aiming aid.

When the client notices a change in any of this variables, he updates the local

game accordingly.

55

4.7 Requirement Analysis

In this subsection we detail the requirements that were extracted from

the design as a way to gauge our progress during sprints. Each requirement’s

rationale is detailed, along with its importance using the MoSCoW prioritization

system [22].

Requirement R1 – Navigate easily

Description

The player always knows which direction the PC is facing through

external stimuli given by different floor materials and air blown by

a regular wind fan. He also is informed and controls the speed the

PC rotates.

Rationale
As we previously argued, this is a crucial requirement in an audio-

only game that has a navigation mechanic.

Priority Must

Requirement R2 – Map editor

Description

The level designer must be able to create nodes, edit their positions,

set their type (e.g.: neutral, ammo, health, etc.), add and visualize

connections with adjacent nodes, define if characters may spawn in

them and set the refresh time for resource nodes.

Rationale
Levels should be created and edited with minimal effort, making it

easier to iterate them.

Priority Must

Requirement R3 – Automated sound loading

Description
When the level is initializing, each node automatically loads the

sound that represents its type.

Rationale
Avoid errors that could happen by manually defining the sound of

each node.

Priority Must

Requirement R4 – Level sonification

Description
Each node repositions and sets the volume of its own sound source,

depending on the position of the PC in the level.

Rationale

The player must always be well informed about his position in the

level. This is achieved by knowing which sound sources are around

him and by having a sense of distance given by changes in volume.

Priority Must

56

Requirement R5 – Intuitive sound design

Description
Players are able to learn and memorize easily the meaning of each

sound.

Rationale

Being an audio-only game, there are many sounds representing

different events and actions. Ideally, the player can learn the

information conveyed by every sound intuitively.

Priority Should

Requirement R6 – Collision system

Description

When the PC moves inside the level, there is a verification that forces

it to stay inside corridors and chambers without having to use the

physics engine.

Rationale

In videogames, colliders are usually attached to models like walls,

floor and ceiling and are used by the physics engine to enable the PC

navigation through the map. However, we didn’t have the need for

those models, just their colliders. Our own collision system simplifies

the creation of levels by avoiding the trouble of manually dragging

colliders to make up chambers and corridors. Its simple nature also

takes off some the overload of calculating collisions through the

physics engine, which is particularly important because the game

runs directly on a smartphone, which has limited processing power.

Priority Must

Requirement R7 – Realistic sounds

Description
The sound engine must support HRTF to synthesize realistic

binaural audio.

Rationale

Players must be able to accurately locate sounds sources around

them. In particular, they should be able to tell if sounds are above,

bellow, in front, in back, or at their side.

Priority Must

Requirement R8 – Computer controller

Description It must be possible to control the PC with mouse and keyboard

Rationale

It would be very problematic if we would have to build for mobile

every time we wanted to test out a new feature during development,

especially considering the long building times. Consequently, to

simplify the workflow, it must be possible to control the PC in

computer builds.

Priority Must

57

Requirement R9 – Spectator Mode

Description
It must be possible to visualize on a computer what is happening in-

game.

Rationale

During formal playtesting, it is convenient to evaluate the player’s

performance using direct observation. Since the game runs on the

smartphone, there is the need of implementing a spectator mode.

Priority Should

Requirement R10 – Static AI Bot

Description
A Bot that simulates the behavior of a human must be present to

serve as an opponent and thus, allow the iteration of the game.

Rationale
An alternative to human testers is to develop a bot that simulates

their behavior.

Priority Must

Requirement R11 – Balanced damage dealing heuristics

Description
When the player or bot the shoot, the damage dealt must be

calculated in a balanced manner.

Rationale

The behavior of the bot is hardcoded and the behavior of a human

player emerges naturally when he interacts with the artifact.

Consequently, the aiming system of the bot must be implemented in

a way that, when combat occurs, neither party has advantage over

the other.

Priority Should

Requirement R12 – Gauge playtest participants hearing acuity.

Description
The racing game must be modified to gauge the performance of the

player when following a moving sound source.

Rationale

People have different hearing acuity and thus, that affects how they

perform in audio-only games. Consequently, there’s the need to

relativize those results.

Priority Must

58

4.8 Technologies used

It would be impossible to complete our endeavor without using some

technologies. During this dissertation, we had the necessity to use a game

engine, an external audio engine that supported binaural audio, an API to get

the output from the smartphone’s gyroscope and a software that allowed us to

do some post-processing to the audio used in-game. In this subsection, we give

an overview of those technologies.

4.8.1 Unity 5 (Game Engine)

Unity 5 is a cross-platform game engine that is used to develop video

games for PC, consoles, mobile devices and websites. It has made game

development universally accessible and thus, created a new wave of

independently produced titles. Additionally, since it has a large, helpful and

responsive community and we already had experience with it, we decided that it

was the best option and used it to develop our prototypes.

In Unity (seen of Figure 10), every game must have at least one scene that

contains game objects that may interact with each other. This game objects, are

essentially containers that support components. When we select a game object

in the scene, we can see in the inspector which components it contains. While

unity provides access to many useful native components (e.g.: cameras, text

labels, etc.), games always require some degree of personalization, which can be

achieved with scripting. Scripts are behavior components that can be added to

game objects, and are the cogs of the larger wheel that is a game. An overview of

every script/class can be found in the Prototyping chapter.

It is also important to mention that Unity 5 has a multiplayer system

(UNET), which would allow us to implement a server-client architecture to view

remotely in the PC what was happening in-game in the smartphone. UNET has

a High level scripting API (HLAPI) with some very useful features that allow us

to:

 Control the networked state of the game using a Newtork Manager.

59

 Send and receive network messages.

 Send networked commands from clients to servers.

 Send networked events from servers to clients.

Unity Engine and Editor integrate UNET by providing the following:

 A NetworkIdentity component for networked objects.

 A NetworkBehaviour for networked scripts.

 Configurable automatic synchronization of object transforms.

 Automatic synchronization of script variables.

 Support for placing networked objects in Unity scenes.

 Network components

The existence of UNET was essential because it allowed us to save weeks

in development time.

Figure 10-FPS project opened in Unity 5

60

4.8.2 RealSpace3D (Sound Engine)

The sound engine is extremely important in audio-only games because

realism is necessary to promote immersive experiences. Additionally, certain

sound characteristics can be used to carry information to the players, which is

essential when using sonification. In particular, sounds should carry the

information of their position relative to the listeners’ head, which can be

achieved using a head-related transfer function (HRTF).

A HRTF is a transfer function that describes the modifications that sound

suffers due to the shape of the listener’s outer ear, the physiognomy of its head

and body, the acoustic characteristics of the space in which the sound is played,

etc. It can be used to synthesize binaural sounds that accurately inform the

listener where that sound is coming from in three dimensions – in range

(distance) and in direction (above, below, front, back, or either side) – which

requires the use of headphones.

Since we wanted to use binaural sounds to facilitate navigation and allow

the players to accurately aim against enemies, we researched several sound

engines that support HRTF. The results are detailed in Table 14.

Name Realistic Open-source Unity support

OpenAL Soft No Yes No

3Dception No No Yes

RealSpace3D Yes No Yes

Rapture3D Yes No No

Table 14-Researched sound engines

The most important criterion was the realism each sound engine could

provide. After testing them, we concluded that, in our opinion, the most realistic

engine was RealSpace3D. Since it was proprietary, we contacted VisiSonics

Corporation and talked with their CEO, which was kind enough to provide us

with a development license, allowing us to use any number of sound sources

instead of just four, for a renewable period of three months.

61

4.8.3 Cardboard SDK (Controller)

Since we wanted to create a prototype that wouldn’t require expensive

hardware like Oculus Rift or Samsung Gear VR, we initially decided to use a

smartphone strapped to a headband or the headphones to serve as a head-

tracking device.

In the initial phase of development of the first prototype, we developed a

script that could be attached to a Game Object to control its orientation by using

the Unity API that gives access to the gyroscope and accelerometer sensors. It

allowed us head-tracking, thus mapping the physical orientation of the

smartphone to the orientation of the PC head. However, we noticed that

occasionally, the readings of the Yaw Axis would become unstable. For instance,

the smartphone would be rotating at a constant pace while the readings showed

rapid/slow rotation that did not make sense. We concluded that it had to do with

lack of calibration and researched ways to solve that issue. We were unable to

find a reliable solution at first, but eventually, we found Google Cardboard SDK

(Software Development Kit), which is used to simplify the development of

Android and Unity VR apps by providing head-tracking, binocular rendering and

magnetic input. Its biggest advantage is the automatic calibration of the sensors

and corrections that help stabilize their output and eliminate the drift that

naturally occurs over time.

Eventually, we also decided that our solution to strap the smartphone to

the headphone was not very solid, because rapid head movements, especially

when looking up or down, would make the smartphone slide on the head.

Consequently, we purchased a Google Cardboard (see Figure 11), which is a VR

viewer in which a smartphone can be coupled.

62

Figure 11-Google Cardboard VR headset

Despite all the corrections made by the Cardboard SDK to the gyroscope

output, we were still experiencing drift that was noticeable after rotating the

head a bit. In other words, after resetting the Cardboard, making the physical

North direction correspond exactly to the North in the virtual world, the player

would rotate his head a bit, and afterward, the north of the virtual world would

not be the same as the north in the virtual world. This meant that we had to fix

that problem, or the player wouldn’t be able to use external stimuli to know

which direction he was facing in the virtual world. The solution, we later found,

included the use of the smartphone’s compass

The smartphone compass is a magnetometer, used to measure the Earth's

magnetic field. It has the same problem of the gyroscope, which is inaccurate

readings that render it useless to map the rotation on the Yaw Axis from the

physical world to the virtual world. However, even though that mapping is not

possible, when the smartphone is rotated to a certain direction, its compass

output is always the same, with a negligible deviation. Knowing that, our

solution is to make an initial calibration, by asking the player to face the four

cardinal directions and saving the compass output for each one. Then, after 15

seconds, which is usually enough time to create noticeable drift, if the player

rotates to one of the cardinal directions, a reset is made and the PC is rotated to

the corresponding cardinal direction in the virtual world, correcting the drift.

https://en.wikipedia.org/wiki/Earth%27s_magnetic_field
https://en.wikipedia.org/wiki/Earth%27s_magnetic_field

63

4.8.4 Audacity (Audio editor)

Most audio clips used in-game needed some kind of post-processing before

being imported to the Unity project. To do that, we used Audacity, a free open

source digital audio editor and recording computer software application. The

most used features are the following:

1. Amplify: This effect is used to change the volume of the selected audio

track by changing the peak amplitude in decibels. This feature was

used extensively to make all audio clips have similar loudness.

2. Change Pitch: This effect is used to modify the pitch of the audio track,

without changing its tempo. This means that we can modify the

perceived frequency of sound, without changing the speed/pace of the

track. This was useful to create the audio clips that would inform the

player about a resource in cooldown, by creating a low pitched version

of the original audio clip.

3. Change Tempo: This effect is used to modify the tempo of the audio

track, without changing its pitch. This was useful to fix the duration

of the normal reload sound to 2 seconds and the fast reload sound to 1

second.

4. Fade In: This effect is used to make a transition from absolute silence

to the original amplitude of the audio track.

5. Fade Out: This effect is used to make a transition from the original

amplitude of the audio track to absolute silence. Both Fade In and Fade

Out were particularly useful during the creation of audio loops.

6. Reverse: This effect is used to make the selected audio track play

backwards. It was useful to create “seamless” audio loop.

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Digital_audio_editor
https://en.wikipedia.org/wiki/Computer_software

64

5 Prototyping

Once we felt that the game design was mature enough and had a good idea

of how most features would be implemented, the development phase begun. In

this chapter, we explain what was done in each sprint and detail the architecture

of the FPS, complementing it with an overview of all the classes we coded.

5.1 Activities developed

In this subsection we describe the activities developed chronologically,

along with the rationale that guided our decisions along the second semester.

5.1.1 Milestone 7 – Implementation of prototype #1

During this milestone, we developed the Gyroscope class that would allow

us to control the orientation of the PC using the smartphone’s hardware. Our

initial solution seemed to work just fine, but it wouldn’t be until the development

of the FPS that we noticed some drifting problems associated with full rotations

on the Yaw Axis. During this milestone, we also coded the Wormhole class, which

contained the game logic that allowed the player to control the velocity of the

moving sound source, as well as a scoring system based on periodic assessments

of the angle between the sound source and the player’s facing direction. Before

the end of the first semester (and summer break) we made the first preliminary

playtesting session with two users. This made us realize that following a sound

in constant movement resulted in considerable lag and poor accuracy when the

speed of the sound source was increased.

5.1.2 Sprint 1 – Changes to racing game and development of the FPS

We started the second semester by prioritizing the work and realized that

before polishing the first prototype, we should initiate the development of the

FPS game, which was the one that offered most potential for research and gave

us the chance to implement and test the HCI and sonification techniques that

65

we proposed to solve navigation problems in audio-only games. Furthermore, the

high complexity of the planned prototype resulted in implementation risks

(technical issues, prolonged developing time, etc.) that we wanted to suppress as

soon as possible.

We needed controllers to move the PC inside the level, which requires the

collision system. Consequently, these dependencies forced us to develop three

main features simultaneously, which occurred during the first month: level

builder, system collision and PC/Mobile controllers.

The level builder uses the Unity Scene View Window to allow the

visualization of nodes and their connections. Furthermore, the inspector exposes

some options that can be edited: chamber type, spawnable or not, refresh time

and adjacent nodes. This was achieved by coding the Node class and proved itself

very useful to quickly visualize and edit map topologies. It was also during this

phase that we started to collect sounds that would convey intuitively the type of

each chamber to the player, which was an iterative process that involved

brainstorming with at least 10 persons. We then used Audacity to post-process

most of the sounds we chose, which allowed us to create sound loops, normalize

loudness and experiment which sound properties were more suitable to

represent a chamber in cooldown.

The system collision, used by the player controller, was coded to allow

movement in 3D because we wanted to explore sound both horizontally and

vertically through binaural audio, supported by Realspace3D. In other words,

players would be able to move and strafe in the horizontal, like in regular

videogame FPSs, but also change their altitude. Our intention was to create an

interesting dynamic, where players could be above or below each other, forcing

them to turn their head in 360º to aim, which would add flavor to the game. It

also allowed the creation of maps with more than one level, slopes and vertical

corridors. This was never explored in playtesting because we knew that it would

increase the difficulty of the gameplay and wanted to keep it simple. However,

our implementation gives us the possibility to experiment that in future versions

66

without much hassle. Instead, the version used during playtesting didn’t allow

the players to change the altitude of the PC, which meant that all the chambers

were in the same horizontal plane.

The player controller was initially coded to only support PC builds, using

the input of keyboard to move the player character and the mouse to control its

orientation. Later on, when the level builder and collision system reached an

acceptable state of maturity, we used the Gyroscope class that we coded during

the development of the racing game to also support Mobile builds. At this point,

we were finally able to do a preliminary playtesting and assess if the proposed

HCI and sonification techniques would actually work. The results were

promising, but exposed some problems that we hadn’t foreseen. These

complications were all related with the difficulty of the players to hear certain

sounds and turn to their direction, something that was essential for navigation.

This difficulties were exposed in the following situations:

 Player was in a chamber which had adjacent chambers with similar

sounds.

 Player was in a chamber with more than three adjacent chambers.

 Player was in a chamber with three adjacent chambers which had a

small angle between them.

Initially, all neutral chambers used different parakeets sounds because

we wanted to use the lighthearted aesthetics of a forest to suppress some of the

discomfort of sensory deprivation. Nonetheless, whenever the player was in a

situation where he could listen to two different parakeets sounds

simultaneously, he couldn’t tell the difference between them. This made us

realize that we needed sounds semantically equivalent, but different enough for

the player to hear them distinctly, which is why we ended up using different bird

sounds to represent neutral chambers.

The other two problems weren’t quite as easy to solve and, at the same

time, influenced heavily the level design. We saw the similarities to Fitts’s Law

and decided that we should approach those problems systematically. However,

67

at that stage, the time allocated for the development of the FPS had already been

used and we didn’t even had implemented the FPS mechanics and static AI bot.

For that reason, we decided to invest all our efforts in the FPS and dropped the

Rhythm game. We also committed to the task of creating a formal evaluation

that explored the aforementioned problems in a systematic way, and that proved

itself very useful in future level design activities. Furthermore, since we had

already noticed that the hearing acuity was affecting results, we decided to

change the racing game so that it could be used to assess the ability of players

to look for sounds, allowing us to relativize the results in the formal evaluation.

During the rest of October, we coded the Generic Bot class, putting the

methods and attributes that were shared with Player Controller class in the

Character class, from which they could be extended. We also implemented the

Game Manager and Footsteps Handler classes, integrating all the planned

features and gameplay logic on schedule.

5.1.3 Sprint 2 – Playtesting and integration of feedback

As we prepared to start the preliminary playtesting in November, we

noticed that the Gyroscope would not behave consistently when rotating in the

yaw axis, a problem that was not acceptable. Since we didn’t find any definitive

solution, we imported the Google Cardboard SDK to our project and solved that

problem with apparent success. However, eventually we noticed that the PC

orientation would sometimes drift after a while. A description of this problem

and its solution is discussed in the Technology subsection.

After having a working prototype, we decided to get two users to playtest

it, which revealed several lacking features and some others that needed fixing

or refinement. The results can be consulted with more detail in the Evaluation

chapter.

Finally, we became aware of the necessity to visualize what was

happening in-game during these playtesting sessions, instead of relying on

logging and the description of the players, whose interpretations were subjective.

68

5.1.4 Sprint 3 – Implementation of spectator mode and formal evaluations

We started the implementation of the spectator mode in the last week of

November and it took us two weeks to complete this task, which was more time

than we had planned. However, by visualizing the actions of the player in real-

time, we were able to analyze formal evaluations in a more objective way,

because we were able to give tasks to the players and see how they performed

them. The results are detailed in the Evaluation chapter.

5.1.5 Sprint 4 – Writing of the final report

This last sprint was initiated in the third week of December and took a

month to be completed. During this time, we did some more formal evaluations

that gave us useful data for the final conclusions.

69

5.2 Architecture

The inherent complexity of software often requires thoughtful planning.

To the process of documenting a system by describing all of its relevant elements

and their relations, along with the structural high level design decisions, we call

Software Architecture. The necessity of a good document tends to increase along

with the complexity of a project, but the overhead of good documentation can

prevent the necessity of costly modifications later in development. Furthermore,

it also allows a good communication between all the stakeholders, which

encourages the exchange of ideas and reasoning.

As we already said videogames differ from software in many aspects, but

ultimately, their biggest difference is their purpose. Therefore, videogames may

need much more iterations before reaching a state of maturity that results in the

intended game experience. This was the case with our prototype, which

corroborated the idea that following an agile methodology based on Scrum was

the right decision.

In Figure 12, we can see the architecture of our project, with all the game

objects of a level and their respective children, as well as the relations between

them, which will then be detailed.

70

Figure 12-Dynamic View Architecture Diagram

 Level: Every Level is stored as a prefab that contains all the nodes and

their connections, and can be instantiated at runtime. This means that

there is no need to change the entire scene when changing levels,

which would imply the destruction and creation of many game objects.

By changing the Level Container instead of the whole scene, we

managed to decrease loading times from 15 seconds average to less

than 1 second.

71

 Node: Each Node represents a Chamber of a certain type and even

though it’s not represented in the diagram above, each Node contains

a game object (as a child) which is the “NodeSoundSource”. During the

Level loading, each Node loads an audio clip to the respective

“NodeSoundSource”, based on its type (e.g.: the Health Chamber loads

the sound of a waterfall). Finally, every node contains a list of adjacent

nodes and it is possible to visualize a line when two nodes are correctly

connected in the scene editor. It is also possible to define in the

inspector if the node is spawnable and its refresh time.

 Player: This game object represents the PC inside the level. It has

several components: an audio listener, that serves as the “ingame

microphones”, the Player Controller, which is used to control the PC

inside each level, and Simple Smooth Mouse Controller, used during

development to look around with the mouse.

 Generic Sounds: This game object has an audio source that contains

all the sounds that don’t have any kind of directionality and are played

“inside” the player’s head.

 Grunts: All the Grunting sounds are stored in an audio source

belonging to this game object. Unlike Generic Sounds, Grunting

Sounds have directionality and are useful to inform the player about

not only the damage he is taking, but also the direction of the enemy

that just shot him. This is done by repositioning this object around the

player.

 UI: This game object is used only for debugging purposes, allowing the

rendering of text to be read while using the Cardboard.

 Cardboard Main: This game object is an instantiation of Cardboard

Main prefab, which was imported from Google Cardboard SDK. Among

many other features, it cleans the smartphone’s gyroscope output data,

corrects drift and applies a shader to distort the rendered image to be

72

visualized through the bifocal lenses of the cardboard. For this reasons,

it was used to allow head-tracking.

 Footsteps: This game object has a sound source with all the footstep

audio clips and the Footsteps Handler script that is responsible for

managing the playing of sounds. To allow a more immersive approach,

the script also positions this game object in a way that simulates sound

coming from the feet of the player, requiring a reference to the Player

to get its position.

 Game Manager: This object contains the Game Manager class.

 Bot: This object has an audio source that contains all the audio clips

played by the Bot. It also has the Generic Bot script running, which

controls the bot behavior and has a reference to reposition the Enemy

Death object.

 Enemy Death: This game object contains an audio source with an audio

clip that plays when the Bot is killed by the player. We created it so we

could respawn the Bot in another location, and have the player hear a

sound informing him of the location of the Bot’s death.

 Player Visualizer: This game object is used during playtesting to

visualize remotely the PC position. It has a reference to the Player

object to change its position accordingly to the Network Manager.

 Bot Visualizer: Similarly to the Player Visualizer, this game object is

used to visualize the Bot remotely.

 Network Manager: This game object contains two native multiplayer

components: Network Manager and Network Manager HUD. They

were used to implement the client-server architecture and expose a

ready-to-use GUI.

 Event System: This game object has an Event System component that

enables the management of events coming from the Cardboard Main

object.

73

5.3 Class Reference

It is necessary a more detailed explanation about all the scripts we coded

in order to better understand how the whole system works.

 Character: This class contains all the properties and methods that are

common to the Player Controller and Generic Bot classes.

 Player Controller: This class handles the player’s input on the

keyboard that controls the movement of the PC. It also contains all the

logic for the collision system, preventing the player to walk through

the walls, defined by chambers and corridors, along with damage

dealing heuristic.

 Generic Bot: This class contains the logic that defines the basic Bot

behavior, which includes his movement and damage dealing heuristic.

 Game Manager: This class is responsible for loading levels, spawn

characters and manage input that is not related to gameplay: volume

cardboard reset, current level, aiming aid and presence of bot.

 Gyroscope: This class uses the gyroscope API to control the orientation

of a target game object.

 Footsteps Handler: This class handles the reproduction of the footsteps

in a realistic manner.

 Score UI: This class is used to render some information used for

debugging, like the player’s score.

 Simple Smooth Mouse Controller: This class allows the player to

control the camera vertically and horizontally using a mouse. It was

used during development for PC builds.

 Wormhole: This class handles the logic of the first game prototype.

 Node: This class is responsible for loading the proper sounds and

control the position and volume of the respective sound sources.

 Player Sync: This class is attached to the Player Visualizer prefab,

which is automatically spawned when a client connects to a server.

Then, in the server, the Player game object position is updated,

74

mimicking the position of the PC in the client. This class is also used

to control certain variables from the server.

 Bot Sync: This class works similarly to the Player Sync. It is attached

to the Bot Visualizer prefab and is used in the server to visualize the

bot’s position in the client.

75

6 Evaluations

In this chapter we detail the playtest methodologies we used.

Additionally, we present and analyze the results from preliminary and formal

playtesting.

6.1 Playtest methodologies

The exploratory nature of this dissertation implied many design risks,

because we couldn’t know a priori if the proposed HCI and sonification

techniques would work as expected, or if the experience that emerged from the

players’ participation would be consistent with the intended participation. For

that reason, we knew that many iterations would be needed, which should be

done in a methodic and informed way.

The Valve’s approach to Game Design and Playtesting seemed very

appropriate to this dissertation, because it promotes iteration through the

creation of a feedback loop between game design and playtesting (Figure 13).

The research of this methodology (and others) was important, not only for us to

understand which techniques exist, but also to learn their advantages and

disadvantages and in which situations they are best suited.

In “Valve’s approach to playtesting: the application of empiricism” [23],

the authors talk about some pertinent aspects of playtesting. In particular, they

explain the difference between traditional and technical methodologies. The first

one is more qualitative and usually resorts to:

 Direct observation: Watch the player play the game.

 Implementation

 Feedback

Game design

+

Content

Playtesting

Figure 13-Feedback loop between design and playtest

76

 Verbal reports: The player thinks aloud while playing the game.

 Q&A: Structured querying of playtesters (e.g.: interviews).

Traditional playtest methodologies are best suited to get a feel of what the actual

player’s participation looks like: which dynamics and behaviors emerge, what

the players feel, what gameplay, navigation and content issues exist etc. Even

though this kind of feedback can be very valuable, it must be used with caution

because it usually requires some interpretation.

When there is need for more objective and measured approaches, technical

playtest methods are more suitable:

 Stat Collection & Data Analysis: Logging of actions and events during

gameplay.

 Design Experiments: Hypothesis testing and following validation with

data.

 Surveys: Set of standardized questions with player categorization.

 Physiological Measurements: Analysis of body responses to stimuli.

This methodology allows the game design to evolve by using empirical data that

can be collected in bigger scale (e.g.: logging). However, even though it can be

used to tackle specific questions in a more methodic and objective way, it does

not provide an insightful perspective to gameplay like traditional methods do.

 We used traditional playtesting methods such as direct observation,

verbal reports and Q&A, to evaluate the players’ participation with the games

produced, and later those findings were synthesized using the two studied game

design models. On the other hand, technical playtest methods such as stat

collection & data analysis and surveys were used to evaluate objectively the

hearing acuity of players and how the number of sound sources and the angle

between them influence their performance.

77

6.2 Preliminary playtesting and feedback

Having planned features facilitated the whole development process

because it allowed us goals to have goals to achieve. However, in game

development, the sole implementation of features does not guarantee a gaming

experience that meets the intentions of the game designer and thus, there is need

for playtesting to get feedback from the players. In the following subsections we

present the results of the feedback of two testers using the two studied game

design models. Additionally, we will discuss several game design details that

were made relevant during interviews.

6.2.1 Modified racing game

During the preliminary playtesting of the FPS, we realized that the hearing

acuity of a player has great impact on his performance when audio is the only

source of feedback. For this reason, it was expected that people with lower

hearing acuity would not do so well in the formal tests, which suggested that we

needed a metric to relativize results. Because of this, we decided that the racing

game could be used as a way to gauge each of the player’s hearing acuity before

starting the formal tests.

In order to do so, we changed the gameplay mechanics to make the scoring

depend exclusively on the ability of the player to follow a sound, using time as a

metric for success. The results are synthesized in Table 15.

78

 Intention Artifact Participation

C
h

a
ll

e
n

g
e

The player has to

follow a moving

sound source the

best he can,

moving his head.

The sound source is a music

playing on loop. When the

player manages to look directly

into it (i.e.: less than 5

degrees), he listens to an

Achievement Sound and the

sound source moves to a new,

“random” location and stops.

Once the player manages to

stare at it again, it moves

again. This is repeated 30

times, and a time record is

printed on screen. The seed is

fixed, so that the moving

pattern of the sound source is

always the same.

During preliminary

playtesting we realized

that players who moved

their head in a more paced

way performed better. It

also seemed apparent that

players who closed their

eyes had their

performance enhanced.

Finally, every player was

much better at

recognizing sound source

movements in the Yaw

Axis (horizontal) than in

the Pitch Axis (vertical).

E
m

b
o
d

im
e
n

t The player gets

feedback from

the movement of

his own body,

navigating more

easily in the

level.

The game uses the output of the

gyroscope to rotate the PC in-

game.

Player always knows

which cardinal direction

he is facing, and controls

the PC rotation speed

because it is mapped

directly to the head-

tracking device

(Cardboard).

Table 15-Forms of participation of the modified racing game

During the formal evaluations, we were able to contextualize the testers’

performance by recording the time needed to complete this game. However, some

players were able to come up with a “strategy” that facilitated the pinpointing of

sounds. That strategy could be divided in two simple phases:

1. Pinpoint the sound source in the Yaw Axis (horizontally).

2. Pinpoint the sound source in the Pitch Axis (vertically).

Since the sound source position changed mostly horizontally, this strategy

minimized the time needed to locate it, which might have biased the results.

79

6.2.2 First-Person Shooter game

When all the main features (except spectator mode) were implemented,

we finally started the preliminary playtesting of the FPS with two participants.

This was our first external source of feedback and it ended up providing itself

very useful to detect issues with navigation, gameplay, level design, lack of sonic

feedback, etc. We also used this opportunity to assess the player’s reaction to the

aesthetics of the game and to see if the sound semantics could convey the

information with success. The results were synthesized in Table 16.

 Intention Artifact Participation

C
h

a
ll

e
n

g
e

Memorize the

level and

navigate in it in a

thoughtful way,

shooting the

enemies and

creating

strategies to

improve

survivability.

Each level is

represented as a

graph: nodes are

chambers and edges

are corridors. Some

chambers can have

resources that are

represented by specific

sounds. Those

resources are: health,

ammo, shield and

temporary firing

speed. They can be

picked, and when that

happens, they

reappear 30 seconds

later.

There is also a bot,

navigating in the level,

trying to kill the PC.

His behavior

simulates, in a basic

way, the behavior of a

human player.

Both players understood easily the

navigation system. They also

found the aesthetics/theme

adequate. However, resource

sounds semantics were not

intuitive. Both players were

unable to memorize the whole map

due to its size. Having two Health

and Ammo nodes, represented by

the same sound, made them

confused because they thought

there was only one of each. One of

the players had difficulty in

pinpointing the exact direction of

audio sources. Both were unable to

tell the nature of the bot’s attacks

(i.e.: melee or ranged). Sonic

feedback was also lacking, as

player couldn’t tell when they were

running against a wall or picked

resources. They also felt uniformed

about the remaining health and

ammo.

Table 16-Forms of participation of the FPS

Verbal reports and Q&A exposed many issues that made us realize that

there were still adjustments to be made and that we definitely would need to

visualize what was happening in-game during formal evaluations, so that our

80

direct observations could become more informative. Each of the issues, their

priority and our implemented solutions are detailed in Table 17.

Issue Solution Priority

No way to visualize what

was happening in-game

Implement a server-client architecture to

visualize the PC and Bot in real-time.

Very

High

The map was too big to be

memorized in such a

short time, especially by

players who don’t have

experience with audio-

only games.

Create a smaller map to be used during

formal evaluations.
High

Lack of information about

remaining ammo

The player hears a voice when he reaches 10,

5 and 0 arrows.
High

Lack of information about

remaining health

Player starts to hear a heavy

breathing/panting sound when he is below 50

health.

High

Resources semantics

were ambiguous.

We continued proposing alternatives until we

found more suitable sounds to represent

resources.

Medium

Lack of sonic feedback

when collecting

resources.

An achievement sound plays when the player

collects a resource. A better alternative would

be a different sound playing depending on the

resource collected. For instance, the player

could hear a relieved sigh after collecting

health.

Medium

Lack of sonic feedback

when running/walking

against a

corridor/chamber wall.

Player hears footsteps whenever the PC

moves. A better alternative would be to play

the footsteps in a way that informs the player

about the speed he is moving. For instance, if

the PC is walking right against a wall, his

movement will be really slow, and footsteps

playing speed should be too.

Medium

Players’ were unable to

tell if the bot attacks were

melee or ranged.

Our proposed solution is the implementation

of realistic projectiles, which inform the

player of oncoming attacks and allow the

implementation of a dodge mechanic.

Low

Table 17-Solutions to problems revealed from preliminary playtesting

 All the issues with high or very high priority were solved, but some of the

lower priority ones could not be fixed in time. However, we gave precedence to

the issues that had easy-to-implement solutions.

81

6.3 Formal playtesting

After the issues revealed during preliminary playtesting were fixed and

we could visualize remotely and in real-time what was happening in-game, we

were finally able to start formal playtesting (Figure 14).

Figure 14-Playtesting with a participant

We were curious if certain participants’ characteristics could in anyway

influence their performance. For that reason, we created 3 groups: sighted male,

sighted female and blind participants. All the sighted participants play

videogames regularly, including shooters. The blind participant never had

contact with any kind of electronic game.

82

Every evaluation followed the same structure and participants were given

the same instructions before each phase to guarantee unbiased results. It is also

important to refer that our results should not be used to confirm or refute

hypotheses, since the participants’ population is not large enough to be

representative. Instead, we hoped that some patterns emerged from the results,

which allowed us to propose hypothesis to be tested in future evaluations.

In the first phase, participants played the modified racing game, which

requires them to follow a sound source that moves 30 times. The output was the

time they could complete this challenge, in seconds. The results are shown in

Table 18.

Sighted Blind

Male Female Female

A B C D E F

166 165 144 179 136 60

Table 18-Time (in seconds) each participant took to complete the modified racing game

Intuition made us expect that the blind participant would perform better.

What we did not expect though, was such a large difference between the

performances of the two groups. During Q&A, we were also told by participants

that they found it easier to perceive horizontal movements than vertical

movements of the sound source.

In the second phase, we evaluated how the angle between sound sources

affected the participants’ performance. Before starting, we told the participants

which chamber sound they should navigate to (e.g.: waterfall, crows, sayan, etc).

To do that, they had to start every test scenario facing north and walk forward

until they reached the chamber at the end of the corridor. Then, they would hear

two new adjacent chambers, and would need to walk towards the chamber sound

we told them in the beginning of the test. Each test scenario had different angles:

90º in front, 45º in front and 30º turn left/right (see Figure 15). For each angle,

participants had to perform the task three times, always with different sounds

to make sure they couldn’t memorize the previously executed actions.

83

While they did this, we observed and evaluated their performance according the

criteria in Table 19, which was used throughout all the test scenarios.

Difficulty performing task Score

Very easy (t<15 seconds) 5

Easy (15<=t<25 seconds) 4

Moderate (25<=t<35 seconds) 3

Hard (only on second try) 2

Unsuccessful (failed twice) 1

Table 19-Evaluation criteria

Figure 15-Test scenario for 90º, 45º in front and 30º turn left

84

The results are detailed in Table 20 and show that the only circumstances

where players had some degree of difficulty was in the third test scenario. In

particular, sighted female participants performed worse than the other groups.

Sighted Blind

Male Female Female

Level A B C D E F

90º

5 5 5 5 5 5

5 5 5 4 5 5

5 5 5 4 5 5

45º

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

30º

turn

5 5 4 5 5 5

5 5 5 2 4 4

4 5 5 3 3 5

Table 20-Results of evaluation during phase 2

The third phase of tests used the same evaluation criteria, but this time,

the task was to rotate and walk towards the chamber sound we asked. The test

scenarios had 4, 5 and 6 adjacent sound sources and can be viewed in Figure 16.

 The results, which can be seen in Table 21, are a bit unexpected. We found

no correlation with the number of sound sources and the difficulty the players

had to find a specific chamber sound. Instead, their performance depended more

on the loudness/timbre of the sound they had to reach. For instance the easiest

sound to recognize for every participant was the waterfall. We suspect that the

noisy nature of that sound, which is accentuated by its constant presence, makes

it more recognizable. On the other hand, sounds with intervals of silence were

more difficult to recognize. In particular, one of the sighted female participants

was not able to hear the super sayan sound at all.

85

Sighted Blind

Male Female Female

Level A B C D E F

4

5 5 5 4 3 5

5 2 5 4 5 5

5 5 5 5 5 3

5

5 4 5 4 5 4

4 1 5 5 5 5

5 2 5 5 5 5

6

4 4 5 4 5 5

5 4 5 4 5 5

5 5 5 5 5 5

Table 21-Results of evaluation during phase 3

Figure 16-Test scenario with 4, 5 and six adjacent chambers

86

The fourth phase of the formal playtesting was actually playing the FPS.

By this time, players were already familiarized with all the chamber sounds and

how sonification worked.

Each participant was given 15 minutes to explore the level without

enemies. After those 15 minutes, we asked them to draw the topology of the map

and make the correspondence between chamber sounds and resources. An

example of a case of success, where the participant was able to memorize

correctly all the chambers, their connections and position relative to each other

can be seen in Figure 17.

Figure 17-Participant memorized the topology with success

An example of partial success, where the participant was able to memorize

correctly all the chambers and their connections, but not the angle between

them, can be seen in Figure 18.

87

Figure 18-Participant memorized the topology with partial success

Finally, an example of failure, where the participant was unable to

memorize correctly the connections of chambers neither their position relative to

each other, can be seen in Figure 19.

Figure 19- Participant was unable to memorize the topology with success

After this phase, all participants (except the blind one that got a

description instead) were shown the actual topology of the map, shown on Figure

20.

88

Figure 20-Topology of FPS map
We also explained the actual mapping between chamber sounds and

resources, followed by an explanation of the FPS rules. Then, we let the

participants play for about 10 minutes against the bot. The results of the

drawings, mappings and final score against the bot are shown in Table 22.

Sighted Blind

Male Female Female

A B C D E F

Drawings Success Success Partial Success Failure Failure Failure

Sound mapping Success Success Success Success Failure Failure

Score (Kills-Deaths) 7-4 12-9 8-3 6-2 6-8 4-6

Table 22-Results of phase 4 of playtesting

Since we didn’t have a representative amount of people of each group

playing the game, we couldn’t confirm or refute hypothesis. However, our

intuition told us the following:

1. Blind participants should memorize and draw/describe the topology

more easily than sighted participants, regardless of genre, because

that is a skill they use on a regular basis to navigate independently.

2. Participants who have experience with videogames regularly should

perform better at playing the shooter than those who don’t (blind

participants).

89

The results showed that all male players were able to memorize and draw

the topology with a high degree of success. All female players were unable to

succeed in this task, which might indicate that this is a skill inherent to gender.

It also shows that blind people aren’t necessary better at memorizing sounds.

This was unexpected by us, but was corroborated during Q&A by our blind

participant, who had trouble describing the connections of nodes.

Additionally, all male participants and one female participant could

correspond correctly chamber sounds to resources. It is worth mentioning that

both participants who failed, did so by not recognizing the super sayan sound

from dragon ball series and swapping it with ammo or shield. All players

associated correctly health to the waterfall.

Furthermore, all males were able to win against the bot, with one

participant being able to navigate with such ease that he was able to come up

with a winning strategy: after each fight, collect health and collect fire speed

boost, getting ammo only when needed. Finally, one sighted female player also

performed very well, but the other was defeated. The blind participant was

defeated, but we would need much more tests to know if the lack of experience

with electronics games, actually influences the outcome.

This evaluations made us realize that there are many variables that might

influence players’ performance. Hearing sensitivity and acuity varies

significantly, and consequently sounds are heard differently. Furthermore, the

nature of the shooter genre might also influence the results, giving advantage to

players who have more experience with shooting videogames. However, all the

participants told us that they never had played a game that forced them to focus

so much on audio, which in theory should make previous experience less

relevant.

Finally, we were unable to see any correlation with hearing acuity and

ability to play an audio-only shooter. Once again, more evaluations should be

conducted to validate or refute the proposed hypothesis.

90

7 Future work

Throughout this dissertation, we continuously refined our problem

definitions and proposed solutions, always guided by the motivations we set in

the beginning. However, some of the modifications were made because of time

and technology constraints, and even though we completed successfully all the

research objectives, we feel there is still room for improvement of our

implemented solutions.

In this chapter we present the improvements and corrections to research

objectives during the development of the project. Furthermore, we propose

additional features and share our vision for the future of the audio-only shooter.

7.1 Objective refinement

The exploratory nature of this dissertation forced us to adopt an agile

methodology similar to Scrum, which allowed us to continually adapt and refine

the proposed design and implementation solutions. In this subsection, we talk

about several key moments and important decisions made along the way.

In the beginning of this project, we wanted to make an audio-only

exploration game with high production value. This would require the investment

of much of the development time learning about sound design, technologies and

software, and since this dissertation is in the context of a Master’s Degree in

Informatics Engineering, more specifically in Software Engineering, we wanted

to avoid spending most of our time with unrelated areas.

We started by researching and playtesting several audio-only games to

learn more about the genre. That output was integrated in the State of the Art

and was crucial to make us realize that the best way to explore this genre was

not by developing one game with high production value, but instead, several

game prototypes that had the core mechanics implemented, from which most of

dynamics and aesthetics could emerge.

91

To that end, we idealized three game prototypes. Their game design had

in consideration our requisite to explore different forms of participation. In

particular, we wanted to explore the embodiment dimension because it showed

much potential to create interesting mechanics. We saw two opportunities:

embodiment as physical involvement and embodiment as physical performance.

When blind people navigate, they use feedback from many sources to help

them perform that task: the material of the ground, its inclination and even

certain characteristics of the nearby sound sources around (e.g.: room size

influences greatly the way sound arrives at the eardrum). They also use their

own footsteps as a source of information, counting them to gauge distances and

always knowing how much they rotate. This made us realize that we could

actually use our own body to create an input-output feedback that could help the

player navigate in a level. At this point, we proposed HCI and sonification

techniques that could solve the navigation problems that we found during

playtesting of several games. The FPS showed itself the genre that better

allowed us to test these techniques and at the same time, promoted the

dimensions we wanted to explore, which is why we proposed its development.

 The second opportunity, embodiment as physical performance, showed

itself when we realized the lack of audio-only games that explore the body

movements to create interesting gameplay experiences. There are many Rhythm

videogames where players have to dance and play instruments, and it makes

sense that this genre also is accessible to the blind community. With this in

mind, we proposed an audio-only Rhythm game where interpretation of

movements of the players was gamified.

 Since the distilled mechanic of the rhythm game proposal was following a

moving sound while wearing a head-tracking device, we decided that we could

also employ this mechanic in the game design of a racing game with almost no

extra effort. Additionally, the proposed game design of the racing game was so

simple to implement that it would allow us to use it as a preliminary prototype,

92

or proof of concept. Consequently, the racing game ended up being the first to be

developed.

 The second key moment of this dissertation was the reprioritization of

sprints in the beginning of the second semester. We decided that it was more

important to test the proposed techniques in a game that promoted interesting

forms of participation such as the FPS and thus, started to develop it and put

the Rhythm game on hold. The audio-only shooter proved itself a bigger

challenge than we expected, but at the same time, showed us an opportunity that

we hadn’t seen yet: research how the number of sound sources and their angle

around a listener’s influence the time he takes to make a decision. By designing

test scenarios and employing a methodic approach, this research could prove

itself valuable to level design of audio-only games and even the HCI field.

 This marked the third key moment of the whole project, where, after some

debate, we decided to drop the rhythm game and focus on designing and

preparing test scenarios that would let us collect data to be analyzed, from which

we could draw some conclusions.

 Finally, after the preliminary playtesting phase, we were in a position

where we could say confidently that verbal reports would not suffice and direct

observations would be needed to draw more informed conclusions. Consequently,

we had to invest some of the development time designing and implementing a

client-server architecture to visualize remotely what was happening in-game.

7.2 Additional features and future usage

We feel that the FPS prototype served its purpose, since it created an

interesting game experience that was enjoyable by both blind and sighted

groups, and, at the same time, allowed us to test the proposed HCI and

sonification techniques to solve navigation issues. However, we cannot forget

that it is still a prototype and that implies that there is still much room for

93

improvement until it reaches a level of maturity that makes it worth being

distributed to the community.

Due to time constraints, we had to do some modifications that were not part

of the intended game design and some of the feedback we got during preliminary

playtesting could not be implemented on time. For instance, it would be helpful

to integrate more intuitive achievement sounds for when the player collects

resources. We also think the game would benefit immensely from an expert

sound designer, which certainly could contribute to a more diverse and

interesting soundscape.

Furthermore, it would also be interesting to create bigger maps. This would

be a pretext to implement different footstep layers that would be associated with

different regions of the map to inform the player of his whereabouts. This was

not implemented because early feedback made us realize that the duration of the

playtests was not enough for players to memorize so many sound sources.

Additionally, we propose that adding verticality to the level design would

contribute to create a more challenging, but at the same time, diverse experience.

Another obvious improvement would be to include a sociability dimension

in the game. The FPS genre is very suitable to multiplayer and different game

modes: team deathmatch, capture the flag, dominion, etc. We envision a game

that can be played by blind and sighted players, who must communicate with

each other to create tactics that improve their chances of winning. This would

break the barrier that currently exists to blind players, currently confined to

game genres that are not prone to sociability.

Finally, it is apparent the need for further testing and evaluation using

traditional and technical methodologies. It would be interesting to validate or

refute our hypothesis, creating bigger and more diverse groups from where we

could draw data to be analyzed, and in our opinion, future audio-only games and

the HCI field would benefit from such a study.

94

8 Conclusions

In this chapter we reflect upon all the work developed along this

dissertation and mention the contributions that emerged from it.

8.1 Reflections and Contributions

We started this dissertation by emphasizing the positive impact that

games can have in people’s lives. However, blind people have been discriminated

by the game industry and that motivated us to explore the audio-only game

genre, which can be played by blinded and sighted audiences, as a way to

improve game accessibility.

We contextualized the reader by explaining how the audio-only genre has

evolved throughout the years. Then, we argued that Game Design Models

empower game designers with tools that help them iterate game proposals,

allowing the process of evaluation to be done in a methodic, rationale and

structured way. We also explained the rationale behind the choice we made when

we selected the Participation-Centric Model of Gameplay Experience and the

MDA – Mechanics, Dynamics and Aesthetics – framework to evaluate several

games.

This explanation was followed by several game analysis that were made

using the aforementioned game design models. Since there is a panoply of audio-

only games and we were time constrained, we had to choose four that we found

representative of the genre. The main criterion we used to decide which games

would be evaluated was the presence of diverse mechanics, dynamics and

aesthetics that promoted interesting forms of participation. Those game analysis

allowed us to learn about common practices in the audio-only genre and were

useful to make us realize one recurrent problem: navigation. Then, we argued

that navigation is an essential mechanic that should not be discarded from

audio-only games and summarized the problems we detected, which facilitated

the process of designing solutions later on.

95

Additionally, we discoursed on the usefulness of fields like HCI and

sonification. This fields allowed us to extract knowledge that ended up being

integrated in the artifacts we developed, facilitating interactions and using

sound as a carrier of information. We concluded the State of the art with a review

of the available hardware that the mobile platform offers.

Once we had our problem definition, we were able to outline several

research objectives. The first was to develop audio-only games that explored

different forms of participation. The second was to design and implement several

HCI and sonification techniques that could solve the navigation issues we

detected early on. After some thought, we proposed the development of an audio-

only FPS that allowed us to fulfill these two research objectives simultaneously

and a racing game that would later be used in formal evaluations to measure the

participants hearing acuity. Additionally, during the development of the FPS,

we also added one important research objective that could contribute to the

audio-only genre and HCI: evaluate how the number of sound sources and their

angle around a listener influence his performance.

The intelligence of the proposed HCI techniques lies on the use of the

player’s own body to create an input-output feedback that gives him control and

information during navigation. This idea mimics the actual navigation of blind

people in the real world. These techniques, synergized with sonification that

informs the player in a thoughtful way, were all integrated in the game design

of the FPS.

After we completed the FPS game prototype, we did preliminary

playtesting using traditional methodologies, consisting in verbal reports and

Q&A. It exposed issues with gameplay that were corrected in the following

weeks, and made us notice that direct observations should be used in later

evaluations to draw more information from the tests.

Formal playtesting was then conducted, which included traditional and

technical methodologies. We devised several test scenarios, with different

number of sound sources and angles between them, and created three groups of

96

participants: sighted males, sighted females and blind female. All the sighted

participants play videogames regularly, including shooters. The blind

participant had no experience with electronic games. The number of participants

was small, so we were unable to confirm or refute hypothesis. However, formal

playtesting results allowed us to propose several hypothesis that should be

evaluated with a more representative population.

Hearing acuity was measured using the time to complete the modified

racing game as a criterion. Results show that the performance of the blind

participant was much better than all the sighted participants.

In the next phase of tests, the results showed that males performed better

at creating mental maps than females. It also showed that the blind participant

had some difficulty memorizing the map, which indicates that experience

navigating using exclusively sound in real life may not translate to the

experience that emerges when navigating in our test scenarios. From this results

we hypothesize that gender might influence the ability to create and memorize

mental maps.

Finally, some players adapted themselves very well to the way navigation

is performed, while others didn’t. We also didn’t see any correlation between

hearing acuity and performance when playing the FPS against the bot.

We think that navigation can, in fact, be used as a mechanic in audio-only

games, not only in shooters, but also in exploratory genres such as RPGs. We

hope that this document and the developed audio-only first-person shooter may

be of use to game designers and feel like our goals were achieved. Game

accessibility is now richer, and we expect with optimism to see the audio-only

genre flourish in the future.

97

References

[1] J. Gaudiosi, “Mobile game revenues will overtake console games in 2015.

Here’s why. - Fortune.” [Online]. Available:

http://fortune.com/2015/01/15/mobile-console-game-revenues-2015/.

[Accessed: 20-May-2015].

[2] “Free Online Educational Games for Kids - Education.com.” [Online].

Available: http://www.education.com/games/educational/. [Accessed: 02-

Jul-2015].

[3] “X-Plane 10 Global | The World’s Most Advanced Flight Simulator | X-

Plane.com.” [Online]. Available: http://www.x-plane.com/desktop/home/.

[Accessed: 02-Jul-2015].

[4] “The Science Behind Foldit | Foldit.” [Online]. Available:

https://fold.it/portal/info/about. [Accessed: 02-Jul-2015].

[5] S. J. Kirsh, “The effects of violent video games on adolescents: The

overlooked influence of development,” Aggress. Violent Behav., vol. 8, no.

4, pp. 377–389, 2003.

[6] P. Barr, J. Noble, and R. Biddle, “Video Game Values: Play as Human–

Computer Interaction,” Interact. Comput., vol. 19, no. 2, pp. 180–195, 2007.

[7] “Manifesto for Agile Software Development.” [Online]. Available:

http://www.agilemanifesto.org/. [Accessed: 03-Jul-2015].

[8] “AudioGames, your resource for audiogames, games for the blind, games

for the visually impaired!” [Online]. Available:

http://www.audiogames.net/list-games/. [Accessed: 05-Jul-2015].

[9] K. Bierre, M. Hinn, T. Martin, and M. McIntosh, “Accessibility in Games:

Motivations and Approaches,” … Pap. Int. Game …, 2004.

[10] A. Lucero, J. Holopainen, E. Ollila, R. Suomela, and E. Karapanos, “The

playful experiences (PLEX) framework as a guide for expert evaluation,”

Proc. 6th Int. Conf. Des. Pleasurable Prod. Interfaces - DPPI ’13, p. 221,

2013.

[11] S. M. Grünvogel, “Game Studies 0501: Formal Models and Game Design

by Stefan M. Grünvogel.” [Online]. Available:

http://www.gamestudies.org/0501/gruenvogel/. [Accessed: 11-Dec-2015].

[12] L. Pereira and L. Roque, “Understanding the Videogame Medium through

Perspectives of Participation,” Authors Digit. Games Res. Assoc., pp. 1–15,

2013.

[13] R. Hunicke, M. LeBlanc, and R. Zubek, “MDA: A Formal Approach to Game

Design and Game Research,” Work. Challenges Game AI, pp. 1–4, 2004.

[14] M. LeBlanc, “The collected game design rants of Marc LeBlanc.” [Online].

Available: http://8kindsoffun.com/. [Accessed: 31-May-2015].

98

[15] “SoundInGames.com - Sound Design in Games.” [Online]. Available:

http://www.soundingames.com/. [Accessed: 06-Jul-2015].

[16] V. Alves, “Design Patterns in Games : the case for Sound Design.”

[17] D. Pires, B. Furtado, and T. Carregã, “The blindfold soundscape game: a

case for participation-centered gameplay experience design and

evaluation,” … 8th Audio Most. …, 2013.

[18] J. M. Carroll, “Human Computer Interaction - brief intro,” Encycl. Human-
Computer Interact. 2nd Ed., 2014.

[19] “Rockstar Games: Grand Theft Auto San Andreas.” [Online]. Available:

http://www.rockstargames.com/sanandreas/. [Accessed: 29-Jun-2015].

[20] Wikipedia, “Microsoft PowerPoint.” [Online]. Available:

https://en.wikipedia.org/wiki/Microsoft_PowerPoint. [Accessed: 29-Jun-

2015].

[21] T. Hermann, “Taxonomy and Definitions for Sonification and Auditory

Display,” Icad.Org, pp. 1–8, 2008.

[22] “MoSCoW Prioritisation | DSDM CONSORTiUM.” [Online]. Available:

http://www.dsdm.org/content/10-moscow-prioritisation. [Accessed: 24-Jan-

2016].

[23] “Valve’s Approach to Playtesting: The Application of Empiricism.”

[Online]. Available:

http://www.valvesoftware.com/publications/2009/GDC2009_ValvesApproa

chToPlaytesting.pdf. [Accessed: 21-Jan-2016].

