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Prof. Dr. José Rui Figueira

Jury

Prof. Dr. Carlos Fonseca
Prof. Dr. Jorge Cardoso

mailto:ajesus@student.dei.uc.pt




Abstract

The main focus of this thesis is the design and analysis of algorithms to find a represen-

tative subset, with a given cardinality, of the Pareto-optimal set for the unconstrained

bi-objective knapsack problem, according to some notions of representation quality. The

representative subset should be obtained without prior knowledge of the Pareto-optimal

set. Two main algorithms are discussed in this thesis. The first reformulates the re-

currence of the existing Nemhauser-Ullman algorithm for the unconstrained bi-objective

knapsack problem by selecting a representative subset at each recursive step. The second

by pruning solutions that may not contribute to find the optimal representation based

on the sum of the weights or the set of supported solutions. Analysis on the time and

error regarding the uniformity, coverage and ε-indicator is performed.

Keywords: Unconstrained bi-objective knapsack problem, Nemhauser-Ullman algo-

rithm, Representative subset, Representation quality

Resumo

O principal foco desta tese assenta em desenhar e analisar algoritmos que permitam

encontrar um subconjunto representativo, com uma dada cardinalidade, do conjunto

óptimo de Pareto para o problema de knapsack bi-objectivo sem restrição, de acordo com

alguma noção de qualidade da representatividade. Este subconjunto deve ser encontrado

sem conhecimento prévio do conjunto óptimo de Pareto. Dois algoritmos são discutidos

neste relatório. O primeiro reformula a recorrência do algoritmo de Nemhauser-Ullman

para o problema de knapsack bi-objectivo sem restrição, adicionado a cada etapa re-

cursiva uma restrição de cardinalidade. O segundo algoritmo corta soluções que podem

não contribuir para a representação óptima através da soma dos pesos ou do conjunto

de soluções suportadas. É ainda feita uma análise de tempo e qualidade de acordo com

os indicadores de uniformidade, cobertura e ε.

Palavras chave: Problema de knapsack bi-objectivo sem restrição, Subconjunto rep-

resentativo, Algoritmo de Nemhauser-Ullman, Qualidade da representação
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Chapter 1

Introduction

Optimisation problems arise in everyday situations. Consider, for example, a person

that wants to find the fastest route between two cities. More formally, the problem

can be defined as, given a set of cities and distances between every pair of cities, find a

path that minimises the travelling time. However, in many situations, real-life problems

tend to have more than one objective, which makes them more complex to solve. For

the problem above, the minimisation of monetary cost could be an additional objective,

due to tolled highways. Problems with two or more objective are called multi-objective

optimisation problems.

One difficulty with multi-objective optimisation problems is the conflicting nature of

the objectives. For example, the faster routes tend to use highways, which usually incur

tolls. Therefore, in this scenario, finding the fastest route would conflict with finding

the least expensive one. As a result, it may be impossible to find a single solution that

satisfies all the objectives. One way to overcome this difficulty is to consider the Pareto

set, a set of efficient solutions, for which does not exist other solution that improves all

the objectives simultaneously; a solution for the problem above is said to be efficient if no

other solution exists that is both faster and cheaper. Figure 1.1 shows an hypothetical

set of solutions, in the objective space, for the problem described above, where blue

points correspond to efficient solutions, whereas red points correspond to non-efficient.

Usually, solving a multi-objective optimisation problems consists of two steps. First,

the Pareto set is found. Algorithms that find this set (or an approximations of it) has

been an important area of study. See Ehrgott and Gandibleux [5] for a general overview.

Afterwards, the decision maker is presented this set and chooses a solution according

to its preferences. In the problem above, the decision maker could choose a solution

that has low monetary cost but takes more time, if money is an essential concern, or a

1



Chapter 1. Introduction 2

Figure 1.1: Illustration of efficient solutions, in blue, and remaining feasible solutions,
in red, in the objective space

solution which is faster but more expensive, if time is more important, or even something

in between to balance both time and money.

However, multi-objective optimisation problems may generate a large amount of efficient

solutions, thus, overwhelming the decision maker. One way to overcome this problem

is to find a smaller number of efficient solutions. Furthermore, it is also important to

find a meaningful representative subset since if a poor representation is given to the

decision maker, the quality of the solutions to choose from gives few information about

the trade-off, as is depicted in Figure 1.2. However, if the quality of the representation

is good, the variety of the solutions is much more interesting, as is shown in Figure 1.3.

Figure 1.2: Illustration of a Pareto set of solutions (in blue and red), and a subset
with poor representation (in blue), in the objective space
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Figure 1.3: Illustration of a Pareto set of solutions (in blue and red), and a subset
with good representation (in blue), in the objective space

It is possible to define the quality of a representation, in the objective space, using

some existing measures. Two such measures are uniformity and coverage, which were

introduced by Sayın [14]. Uniformity, measures the minimum distance between any two

chosen points; a higher value of uniformity indicates that the points are more evenly

spread. Coverage compares the distance between the uchosen and closest chosen points.

A lower value means a better representation. A third measure which is also relevant to

this thesis is the ε-indicator [20], which is used for assessing the performance of heuristic

approaches. In a recent study by Vaz et al. [17], this measure was used as a way to

evaluate representations.

Finding a representation of the efficient set for the three measures above can be solved

in polynomial time in the bi-objective case by the approaches discussed in Vaz et al. [17].

However, for some problems, it is not possible to find the efficient set in a reasonable

amount of time, for instance, because the set may be exponentially large. For those

cases, obtaining a representative set without pre-computing the set of efficient solutions

is a more interesting alternative.

Some procedures exist, albeit relatively few, to find a representative set with quality

guarantees, e.g. the works by Sayin [15], Hamacher et al. [8], Eusébio et al. [6], and

Sayın and Kouvelis [16].

The main contribution of this thesis is the development of methods capable of finding

a representative subset with a target cardinality. Furthermore, studies are performed

on the quality of the uniformity, coverage and the ε-indicator measures. While the

theoretical results are not particularly appealing in certain scenarios, the experimental

results show that the methods presented can be quite effective. This work differs from
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[8], [6], and [16] since these do not allow the choice of cardinality. It also differs from [15],

which allows choice of cardinality, but only performs an analysis regarding the coverage

measure.

The algorithms proposed in this thesis are applied to a specific problem which has not

been studied in this context, the unconstrained bi-objective knapsack problem, which

has both minimising and maximising objectives.

The thesis is structured as follows. In Chapter 2 the necessary definitions and notation

are presented. In Chapter 3 the literature on finding representations of the Pareto set

with quality guarantees is reviewed. In Chapter 4 both existing and new algorithms

relevant to the thesis are presented. In Chapter 5 the methodology for the experimental

analysis is presented. In Chapters 6, 7, and 8 an analysis on uniformity, coverage and

ε-indicator respectively is made for the algorithms proposed in Chapter 4. Furthermore,

improvements to the algorithms are proposed for each measure. In Chapter 9 a final

discussion and some ideas for future work are presented.



Chapter 2

Preliminaries

In this chapter, some necessary definitions are introduced. In Section 2.1 the uncon-

strained bi-objective knapsack problem is presented. In Section 2.2 the notions of opti-

mality are defined. Lastly in Section 2.3 three quality measures for representations are

presented.

2.1 Unconstrained bi-objective knapsack

In a general multi-objective optimisation problem there are t ≥ 2 objective functions,

which can be either minimising or maximising. For the purposes of this thesis a specific

problem with t = 2 objectives is considered, the unconstrained bi-objective knapsack

problem. The problem is related to the knapsack problem, where there is maximising

objective on the profit and the constraint on the weight is transformed into a minimising

objective.

More formally, consider a set of items I, where each item i has an associated profit pi

and weight wi, i = 1, . . . , n where n = |I|. The two objective functions are defined as:

max P (x) =

n∑
i=1

pixi (2.1)

min W (x) =
n∑

i=1

wixi (2.2)

where x represents a feasible solution to the problem, as a subset of items where xi = 1

denotes that item i is in the solution, and xi = 0 otherwise. The set of all feasible

solutions is denoted by X.

5



Chapter 2. Definitions 6

2.2 Notions of Pareto Optimality

Associated to each solution x ∈ X, an objective vector f(x) = (P (x) ,W (x)) is defined.

In the objective space the dominance relation is defined as follows:

Definition 1. A solution x ∈ X is said to dominate a solution x′ ∈ X if P (x) ≥ P (x′),

W (x) ≤W (x′) and f (x) 6= f (x′). If x dominates x′ then f(x) > f(x′).

Using the dominance relation previously defined, efficient solutions and non-dominated

points are defined.

Definition 2. A feasible solution x ∈ X is called efficient if there is no other feasible

solution x′ ∈ X such that f(x′) > f(x). As a consequence, if x is efficient, then f(x) is

a non-dominated point.

The set of all efficient solutions is called the Pareto set, and is denoted as Xeff . The set

of all non-dominated points is called the Pareto front and denoted as Y .

Another important definition is supported solutions, which are those that belong to the

convex hull of the Pareto front. Otherwise, those that do not belong to the convex hull

are called unsupported solutions. The set of all supported solutions is denoted as Xs,

and the set of points associated to those solutions is denoted as Ys. Figure 2.1 shows

a Pareto front where points in blue represent supported solutions and points in red

unsupported solutions. Note that an optimal solution to a weighted sum formulation of

the multi-objective problem is also a supported solution.

Figure 2.1: Illustration of supported (in blue) and unsupported (in red) solutions
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2.3 Quality Measures for Pareto front Representations

One of the difficulties when dealing with multi-objective optimisation problems is the

dimension of the Pareto front. Since having a large number of points can overwhelm

a decision maker, it is important to be able to find good representations of the Pareto

front according to some measures. In the following sub-sections three such measures

are defined with respect to the Pareto front of an unconstrained bi-objective knapsack

problem.

2.3.1 Uniformity

Uniformity was proposed by Sayın [14] and can be used to measure how far apart the

elements of a given set R ⊆ Y are from each other. It represents the minimum distance

between any given distinct pair of points, and is formulated as

U(R) = min
u,v∈R
u6=v

‖u− v‖ (2.3)

where ‖·‖ is a p-norm with 1 ≤ p ≤ ∞. The problem of finding a representation in terms

of uniformity can be formalized as finding the subset R∗ ⊆ Y , with cardinality k, that

maximises U(R), that is,

U(R∗) = max
R⊆Y
|R|=k

U(R) (2.4)

2.3.2 Coverage

Coverage was also proposed by Sayın [14] and it relates the distance of the unchosen

elements to their closest chosen elements. Coverage can be defined in terms of a set R

with respect to Y as

C(R, Y ) = max
y∈Y

min
r∈R
‖r − y‖ (2.5)

The problem of finding a representation in terms of coverage can be formalized as finding

the subset R∗ ⊆ Y , with cardinality k, that minimises C(R, Y ), that is,

C(R∗, Y ) = min
R⊆Y
|R|=k

C(R, Y ) (2.6)
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2.3.3 ε-indicator

The ε-indicator corresponds to the smallest factor that when multiplied to each element

of a set R ⊆ Y , every point in the set Y becomes dominated. It can be defined as

E(R, Y ) = max
y∈Y

min
r∈R

ε(r, y) (2.7)

where

ε(r, y) = max((rp + α)/(yp + α), (Ŵ − rw + α)/(Ŵ − yw + α)) (2.8)

for a very small α (since (0, 0) is always a non-dominated point), where r = (rp, rw),

y = (yp, yw) and Ŵ =
∑n

i=1wi.

The problem of finding a representation in terms of the ε-indicator can be formalized as

finding the subset R∗ ⊆ Y , with cardinality k, that minimises E(R, Y ), that is,

E(R∗, Y ) = min
R⊆Y
|R|=k

E(R, Y ) (2.9)



Chapter 3

State-of-the-art

Most approaches to solve multi-objective optimisation problems are based on evolution-

ary algorithms, since the notion of population and set of solutions fits well together.

However, these algorithms can in general give no guarantee on the quality of the so-

lutions. There are, however, methods capable of returning the Pareto set of a multi-

objective problem, but most, either due to the nature of the problem or the method

itself, can not solve the problem in polynomial time in general. Moreover, the number of

solutions in the Pareto set can be exponentially large which can overwhelm the decision

maker.

In this chapter, the literature regarding the solution to the two problems referred above,

the dimension of the Pareto set, and the intractability of the problem, will be reviewed.

In Section 3.1 some methods used to find a representation of the Pareto set, when the

set is known are analysed. These methods are useful when the problem is tractable or

the size of the Pareto front is small. In Section 3.2 four methods, which are capable of

finding a representation without knowledge of the Pareto set, are presented. These are

useful when the problem is not tractable.

3.1 Representation with knowledge of the Pareto front

Multi-objective optimisation problems may generate a great number of efficient points,

which can overwhelm the decision maker. One way to overcome this is to use subset

selection methods. These are also relevant for the selection process of heuristic methods

used to solve multi-objective optimisation problems.

Subset selection can be defined as finding the best subset with a given cardinality with

respect to some quality measure. In the following, a summary of currently relevant

9
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methods for solving the subset selection problem for various quality indicators is pre-

sented.

For the uniformity indicator [14] a dynamic programming algorithm was proposed by

Wang and Kuo [18], and later improved by Vaz et al. [17]. At each step the best unifor-

mity value for a given cardinality and containing certain elements, can be calculated by

looking at the uniformity values from the previous step and distance calculation between

the considered elements.

For the coverage indicator [14], a similar dynamic programming approach to that for

the uniformity indicator, is proposed by Vaz et al. [17]. This approach follows the same

principle for uniformity, but a correction is needed at the end of the procedure.

The ε-indicator [20] is also a common and important metric. A method was proposed

by Ponte et al. [13] initially, and improved by Vaz et al. [17]. This method is similar to

the one used for the coverage indicator. Koltun and Papadimitriou [10] also propose a

greedy algorithm for a variant of the ε-indicator where the cardinality is not considered

but rather the quality of the indicator. More recently, Bringmann et al. [3] present an

algorithm which performs a binary search over a sequence of possible sets with different

ε-indicator values.

One extra indicator which has been gaining some attention, due to its relevance in

the performance assessment of heuristic methods, is the hypervolume indicator [19]

which measures the volume of the dominated objective space for a set of solutions.

Although the following approaches have been used in the context of subset selection of

solutions, within multi-objective evolutionary algorithms, these approaches can be used

to find a representative subset of efficient solutions. Auger et al. [1] propose a dynamic

programming method based on the idea that a point only needs its two neighbours to

calculate its contribution to the hypervolume. Similarly, Bader [2] proposes a dynamic

programming algorithm, based on the idea that the left most point depends only on its

immediate neighbour. Bringmann et al. [3] present a method for the problem where at

each step i all maximum hypervolume values containing i elements and certain points

are calculated. Kuhn et al. [11] show that the hypervolume subset selection problem

can be modelled as a k-link shortest path problem in a directed graph. This particular

shortest path problem with a cardinality constraint can then be solved with a dynamic

programming approach. Lastly, it is also worth mentioning Guerreiro et al. [7] who

propose a greedy algorithm that returns an approximation of the optimal subset. At

each iteration the algorithm adds the point which contributes the most hypervolume

to the set of already selected points. The results are especially interesting for three

dimensions where optimal algorithms are very computationally expensive.
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3.2 Representation without knowledge of the Pareto front

Finding the Pareto set can be a computationally expensive task. For those cases, finding

a representation of it may be preferable. Not many approaches exist, which are capable

of doing this with quality guarantees. In the following, approaches capable of computing

a representation with quality guarantees and containing only elements of the Pareto set

are reviewed.

Sayin [15] proposes a method to find the representation for multi-objective optimisation

problems with coverage guarantees or a target cardinality. Up to our knowledge, it is

the only method capable of returning a representation with a given cardinality. The

method consists of an iterative process that at every step finds the point which results

in the largest coverage value. It stops when either a given cardinality or a given coverage

value is reached.

Sayın and Kouvelis [16] present a method using a parametric search algorithm to cal-

culate the set of efficient solutions, and propose an alteration to the method to be able

to find a representation by stopping the parametric search pre-emptively based on a

distance criterion.

Hamacher et al. [8] introduce a method to find a representative subset for the bi-objective

optimisation problem, using box algorithms. The idea is to start with a box given by

two points which contains all non-dominated points. Whenever a new non-dominated

point is found the box is split into smaller boxes. The algorithm stops when a given

criterion based on the area of the box is reached. In the method proposed, there is a

guarantee on the maximum cardinality with respect to the criterion.

Eusébio et al. [6] propose a method to find a representation for the Pareto set on the

bi-objective network flow problem. At each iteration a constraint problem is solved to

find a new non-dominated point until the representation has the guaranteed quality.





Chapter 4

Representation Algorithms

In this chapter the main contributions of this thesis are introduced. First, a state-of-

the-art dynamic programming algorithm, to solve the unconstrained bi-objective knap-

sack problem, proposed by Nemhauser and Ullmann [12] is presented in Section 4.1.

Moreover, a dichotomic search algorithm to calculate the set of supported solutions is

presented in Section 4.2. Then, in Section 4.3 several modifications to the Nemhauser-

Ullman algorithm are presented to find a representation to each of the three measures.

4.1 Nemhauser-Ullman Algorithm

The Nemhauser-Ullman [12] algorithm is a dynamic programming approach that keeps,

at each iteration, only the efficient solutions for each sub-problem. It was originally

proposed to solve the knapsack problem but it can be easily modified to solve the un-

constrained bi-objective variation.

The sequential process consists of n stages. At any stage i, the algorithm generates

a set of states Si that corresponds to a subset of the feasible solutions made up of

items belonging exclusively to the i first items, i = 1, . . . , n. A state s = (s1, s2) ∈ Si
represents a solution of profit s1 and weight s2. At each stage i = 1, . . . , n, the states

are generated according to the following recursion:

Si = ∆(Ti = Si−1 ∪ {(s1 + pi, s
2 + wi) : s ∈ Si−1}) (4.1)

with the basis case S0 = {(0, 0)}. Operator ∆(·) corresponds to the use of the dominance

relation to remove dominated states. Note that Sn = Y .

13
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4.2 Dichotomic search

The dichotomic search [12] algorithm is a method to find the set of supported points.

At each step, two previously calculated supported points, a = (aw, ap) and b = (bw, bp)

are used to find a point v, where vw = |aw − bw|, vp = |ap − bp|. A new supported point

d = (dw, dp) can then be calculated as follows:

dp =
n∑

i=1

pi if vw · pi − vp · wi ≥ 0

0 if vw · pi − vp · wi < 0
(4.2)

dw =

n∑
i=1

wi if vw · pi − vp · wi ≥ 0

0 if vw · pi − vp · wi < 0
(4.3)

where n is the number of existing items, and wi, pi the weight and profit of each item.

If point d matches either a or b, it means that no new point can be found between those

points and there is no need to search further. Otherwise, point d is added to the set of

supported solutions and two searches are performed between points a and d, and also b

and d.

The basis case for the algorithm are the extreme points of the efficient set: {0, 0} and

{
∑n

i pi,
∑n

i wi}. A recursive approach is presented in Algorithm 1.

4.3 Nemhauser-Ullman modifications

In this subsection two modifications to the Nemhauser-Ullman are presented. First an

algorithm which solves the subset selection problem at every stage of the Nemhauser-

Ullman algorithm, is presented. Second, the problem of finding a representative set is

redefined as a sequence of k knapsack problems with capacity constraints. A pruning

technique based on the computation of lower and upper bounds for the Nemhauser-

Ullman algorithm is then presented in order to solve the problem. Lastly, a modification

to the previous approach based on the set of supported solutions is introduced.

4.3.1 Filter Algorithm

As mentioned in Section 4.1, the Nemhauser-Ullman algorithm keeps a set of non-

dominated points Si at each stage i = 1, . . . , n. The idea behind this algorithm is to

solve the representation problem at every i-th stage, obtaining a representative subset
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Algorithm 1 Dichotomic search for a min-max bi-objective problem

input: Set of weights w and profits p. Number of items n
output: Set of supported points Ys
Ys = {}
aw, ap = 0
bw =

∑n
i wi

bp =
∑n

i pi
rec(a,b)
function rec(a,b)

vw = |aw − bw|
vp = |ap − bp|
dw, dp = 0
for i = 1 to n do

if vw · pi − vp · wi ≥ 0 then
dw = dw + wi

dp = dp + pi

if d = a or d = b then
return

Ys = Ys ∪ {d}
rec(a,d)
rec(b,d)

S∗i−1 ⊆ Si−1 with |S∗i−1| = k to use in the recursion of the Nemhauser-Ullman algorithm

when |Si−1| > k. Therefore, the recurrence equations can be reformulated as

Si =

∆(Ti = Si−1 ∪ {(s1 + pi, s
2 + wi) : s ∈ Si−1}), if |Si−1| ≤ k

∆(Ti = S∗i−1 ∪ {(s1 + pi, s
2 + wi) : s ∈ Si−1}), if |Si−1| > k

(4.4)

Note that, this algorithm does not guarantee that the elements of set Sn belong to the

Pareto front.

4.3.2 Capacity Constraint Pruning Algorithm

For the second algorithm, the problem of finding a representative set is redefined as

finding the set of k solutions with the lexicographically largest profit and smallest weight,

each satisfying a given capacity constraint value Wj , j = 1, . . . , k. Wj are assumed to

be equally spaced in the range (0,
∑n

i=1wi), that is:

Wj =
j − 1

k − 1

n∑
i=1

wi (4.5)

Figure 4.1 illustrates the capacity constraints for a given cardinality of k = 4.
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Figure 4.1: Illustration of capacity constraints for k = 4

More formally, the goal is to find set Rlex

Rlex = { lex
x∈X

(P (x),W (x)) |W (x) ≤Wj , j = 1, . . . , k} (4.6)

where lex denotes the lexicographic operator.

Definition 3. For x ∈ X, we define that x is lexicographically optimal if there is no

x′ ∈ X such that P (x′) > P (x) or (P (x′) = P (x) and (W (x′) < W (x)).

Note that due to the lexicographic operator, set Rlex only contains non-dominated so-

lutions. However, it may only provide an approximation to the optimal representation

value. Furthermore, Proposition 1 shows that finding a representation for a given k may

not be possible.

Proposition 1. There exists an instance for which |Rlex| < k ≤ |Y | holds.

Proof. Consider an instance with two variables and the following profits and weights:

p1 = w1 = θ and p2 = w2 = 3 − ε, with 0 < θ < 1. Then, set Y = {(0, 0), (θ, θ), (3 −
θ, 3−θ), (3, 3)}. For k = 4, we define W2 = 1 and W3 = 2. Then, there exists no efficient

solution, with total weight in the range (1, 2), therefore |Rlex| < k ≤ |Y |.

Figure 4.2 illustrates the proof of Proposition 1.
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Figure 4.2: Illustration of the proof for Proposition 1

Note that, an optimal solution for the related knapsack problem for each constraint value

Wj , may not be an efficient solution for the unconstrained bi-objective knapsack problem

[9]. A suitable approach to find set Rlex is to use the Nemhauser-Ullman algorithm since

it keeps a set of non-dominated states at each iteration. A technique for the Nemhauser-

Ullman algorithm that allows to prune additional states that will not contribute to set

Rlex is presented in the following.

4.3.2.1 Pruning technique

The pruning technique is based on the computation of lower and upper bounds for a

sequence of related k knapsack problems with capacity constraint valuesWj , j = 1, . . . , k.

For each state s ∈ Si, i = 1, . . . , n, a lower bound on the maximum profit value that can

be achieved for that state for each constraint Wj is calculated; note that if this lower

bound is sufficiently tight, then it may be a candidate element for the representation.

In addition, the upper bound on the profit value of state s for each constraint Wj is also

computed; if the upper bound is inferior or equal to the profit of the candidate element

for the representation of every constraint Wj , then state s can be discarded.

Let W be the value of a capacity constraint. At stage i = 1, . . . , n, let eW (s) =

(e1W (s), e2W (s)) denote the extension of a state s ∈ Si as follows

eW (s) =

s1 +
∑
j∈J

pj , s
2 +

∑
j∈J

wj

 (4.7)
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where J ⊆ {i + 1, . . . , n} such that e2W (s) ≤ W . This extension can be obtained by

Dantzig’s greedy algorithm for the knapsack problem [4]. Without loss of generality,

assume that i < j implies that pi/wi > pj/wj . Equation 4.7 can be reformulated as

follows

eW (s) =

s1 +
c−1∑

j=i+1

pj , s
2 +

c−1∑
j=i+1

wj

 (4.8)

where c ∈ {i + 1, . . . , n} denotes the index of the critical variable whose weight cannot

be added to e2W (s) without breaking the capacity constraint W .

An upper bound uW (s) on the profit value of a given state s ∈ Si, i = i, . . . , n is also

given by Dantzig [4]. Let W (s) = W − s2 be the residual capacity associated to state s.

Let

c = W (s)−
c−1∑

j=i+1

wj (4.9)

Thus given the same ordering of the items, the upper bound is computed as

uW (s) = s1 +

c−1∑
j=i+1

pj +

[
c
pc
wc

]
(4.10)

Let `Wj denote the profit of an extension or state that lexicographically maximises

the profit and minimises the weight for each constraint Wj , j = 1, . . . , n; then set

{`W1 , . . . , `Wn} is a potential approximation to the representation. A state s can be

pruned from Si, i = 1, . . . , n if and only if uWj ≤ `Wj for every j = 1, . . . , k.

The calculation of the extension and upper bounds for a given state, take O(n)-time for

all capacity constraints Wj , j = 1, . . . , k.

4.3.2.2 Using the set of supported solutions

In the approach described in the previous section, the distance between each constraint

takes only into account the weight. While this is an easy way to formulate the problem

it might not be ideal for most problems. Figure 4.3 shows a Pareto front, and four

capacity constraints. The circled points represent the points that would be chosen by

solving the problem considering these capacity constraints. While the chosen solutions
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are somehow separated they are not optimal for any measure. Figure 4.4 shows the

optimal solution for the uniformity indicator.
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Figure 4.3: Illustration of solution for a problem given four capacity constraints
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Figure 4.4: Illustration of optimal solution for the uniformity representation problem

Instead of using only the weight, the idea of this modification is to take into account

some knowledge of the Pareto front, specifically the set of supported solutions. This set

can be calculated with the dichotomic search algorithm described in Section 4.2. To find

the capacity constraints, first the total distance between the points must be calculated

as follows:

D =

|Ys|∑
i=1

‖Y i
s − Y i+1

s ‖ (4.11)
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where Ys is the set of supported points and Y i
s represents the i-th in this set. It is

assumed that Ys is ordered according to one of the coordinates. The distance between

each constraint is then calculated by:

d =
D

k − 1
(4.12)

Afterwards, the constraints are calculated through a series of steps:

1. Set j = 1, Wj = 0, i = 1 and z = 0.

2. Set a = Y i
s and b = Y i+1

s .

3. Set t = |a− b|.

4. If z + t < d, then set z = z + t, increment i by one and go back to Step 2. Else if

z + t = d, then set z = z + t, and go to Step 5. Else if z + t > d go to step 6.

5. Set Wj+1 = bw, z = 0 and increment j by one. If j = k the algorithm terminates.

Else increment i by one and go back to Step 2.

6. Set aw = aw+((d− z) /t)·aw, ap = ap+((d− z) /t)·ap and Wj+1 = aw. Increment

j by one, if j = k the algorithm terminates, else go to Step 3.



Chapter 5

Methodology

In the following chapters, several algorithms are presented to solve the representation

problems presented above. Two measurements are used to compare the algorithms, the

CPU-time, and the ratio between the representation value obtained by the algorithms

above and the optimal according to each representation measure. In Chapter 6, an

analysis is made on the uniformity indicator and because the representation problem

is a maximising one, the ratio is given by the fraction of the uniformity value of the

representation divided by the optimal uniformity. In Chapters 7 and 8, an analysis is

made on the coverage and ε-indicator respectively. Since the representation problems for

these measures are minimising problems, the ratio is given by the fraction of the optimal

value divided by the indicator value of the representation obtained. These ratios were

chosen so that the values are always between 0 and 1, where 1 represents a representation

equal to the optimal.

The implementations were written in C and compiled with GCC 5.2.0 using the opti-

mization flag -O2. The tests were run in a computer with the following specifications:

• OS : ArchLinux 4.1.6-1

• CPU : Intel i5 750 @ 2.67 GHz

• RAM : 4 Gb (2x2Gb) 1600MHz

The instances were generated for three different parameters: n = {20, 40, . . . , 240}, k =

{0.1n, 0.2n, . . . , 1n}, and correlation ρ = {−0.8,−0.4, 0.0, 0.4, 0.8}. For each parameter

combination, 10 instances were generated. Therefore, in total there are n·k ·ρ·10 = 6000

instances. Each algorithms was run once for each instance. For each run, we recorded

21
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Figure 5.1: Pareto front for ρ = −0.8 (in red) and ρ = 0.8 (in blue) for an instance
of size n = 80

the CPU-time and the value for each of the three measures (uniformity ,coverage , ε-

indicator). The experimental analysis is performed in terms of the average CPU-time

and the (harmonic) average error ratio.

While the importance of values n, and k for the problem is easy to understand, the

importance for the correlation might not be. The correlation parameter is important

because it allows the study of instances of the same size which result in Pareto fronts

of different size and shape. In general a smaller negative correlation will result in a

wider curve and a smaller number of points in the Pareto front, and a higher positive

correlation in the opposite. Figure 5.1 illustrates this.



Chapter 6

Uniformity

In this chapter, an analysis on the algorithms previously described is performed. In

Section 6.1 the filter algorithm is analysed, which calculates the optimal subset of size

k at each stage considering the uniformity indicator. In order to retrieve the optimal

subset, two algorithms are presented which take into account the optimal uniformity

value calculated by the dynamic programming algorithm of Vaz et al. [17]. In Section

6.2 the capacity constraint pruning algorithm is analysed.

6.1 Filter Algorithm for Uniformity

The filter algorithm described in Section 4.3.1 works by solving the representation prob-

lem at each stage Si of the Nemhauser-Ullman algorithm. In the following analysis, the

dynamic programming algorithm to solve the uniformity representation problem by Vaz

et al. [17] is used. This algorithm calculates the optimal uniformity value for a given

set of non-dominated points and cardinality k. However, there might be more than one

optimal subset S∗i for a given stage Si as shown through Proposition 2.

Proposition 2. There exists an instance for which there are
(|Si|

k

)
combinations for

possible optimal subsets with uniformity value
√
ε for the euclidean distance.

Proof. Consider an instance with three variables and the following profits and weights:

p1 = w1 = ε and p2 = w2 = p3 = w3 = 2ε with ε > 0. Then, at stage S3 =

{(0, 0), (ε, ε), (2ε, 2ε), (3ε, 3ε), (4ε, 4ε), (5ε, 5ε), }. For k = 4, we have 15 =
(
6
4

)
=
(|S3|

k

)
possible optimal combinations.

23
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Figure 6.1: Illustration of the proof for Proposition 2

Since testing all possible combinations would be infeasible, two methods to generate

an optimal subset are presented below. For the following methods, consider that Si is

ordered according to one of the objective functions.

Subset Generation Method 1 Given the optimal uniformity value V = U (Si),

and the points sj ∈ Si with j = {1, . . . ,m} where m = |Si|, the first point s1 is added

to the subset S∗i , and the next point s2 is selected. Afterwards, the distance between

the last chosen point and the currently selected point is calculated. If the distance is

equal or greater than V the currently selected point is added to S∗i . Otherwise, the next

point is selected. The procedure is repeated until k points have been added to the set.

Algorithm 2 depicts the procedure.

Algorithm 2 Subset Generation Method 1

input: A set of solutions Si = {s1, . . . , sm}, uniformity value V , and cardinality value
k.
output: The subset S∗i .
S∗i = {s1}
j = 1
for ` = 2 to m do

if ‖sj − s`‖ ≥ V then
S∗i = S∗i ∪ {s`}
j = j + 1
if j = k then

break
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The choices made by this method are biased towards the first elements of Si. This can

be seen in Figure 6.2 where the circled dots are the chosen points for the subset for

V = d
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d

Figure 6.2: Example of subset selection method #1 for k = 4

Subset Generation Method 2 One way to overcome the problem mentioned above,

is to consider k/2 points starting from the first point s1 and checking the following points,

s2, s3, . . . , sm, and the remaining k/2 + (k mod 2) points starting from the last point

sm, and checking the points in the opposite direction, that is, sm−1, sm−2, . . . , s1. The

pseudo-code for this method is described in Algorithm 3. Figure 6.3 shows the points

selected by the second method.
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Figure 6.3: Example of subset selection method #2 for k = 4
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Algorithm 3 Subset Generation Method 2

input: A set of solutions Si = {s1, . . . , sm}, uniformity value V , and cardinality value
k.
output: The subset S∗i .
S∗i = {s1}
j = 1
for ` = 2 to m do

if ‖sj − s`‖ ≥ V then
S∗i = S∗i ∪ {s`}
j = j + 1
if j = k/2 then

break
S∗i = S∗i ∪ sm
j = j + 1
for ` = m− 1 to 1 do

if ‖sj − s`‖ ≥ V then
S∗i = S∗i ∪ {s`}
j = j + 1
if j = k then

break

6.1.1 Results

In this subsection the results for the filter algorithm with the the subset selections

presented above are presented. The results are compared with the exact algorithm

which consists of solving the unconstrained bi-objective knapsack problem, and running

the dynamic programming algorithm by [17] to calculate the optimal uniformity.

Figures 6.4, 6.5, 6.6 show the comparison between the CPU-time. The algorithms are

quite fast, rarely taking more than 0.1 seconds to complete. They are especially in-

teresting for lower values of k and increasing values of n and correlation. Figures 6.7,

6.8 and 6.9 show the ratio between the uniformity value of the filter algorithm and the

optimal uniformity value. As predicted in the algorithm analysis the second algorithm

for subset selection performs slightly better. In conclusion both approaches are quite

fast, although the quality of the representation is not very good.
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Figure 6.4: Time comparison for a
varying k, n = 160, correlation = 0

Figure 6.5: Time comparison for a
varying n, k = 0.3n, correlation = 0

Figure 6.6: Time comparison for a
varying correlation, n = 160, k = 0.3n

Figure 6.7: Error comparison for a
varying k, n = 160, correlation = 0

Figure 6.8: Error comparison for a
varying n, k = 0.3n, correlation = 0

Figure 6.9: Error comparison for a
varying correlation, n = 160, k = 0.3n
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6.2 Capacity Constraint Pruning Algorithm Analysis

In this section, the uniformity guarantee for the capacity constraint pruning algorithm

described in Chapter 4 is analysed with respect to the uniformity measure. Afterwards,

the experimental results are presented.

6.2.1 Uniformity Guarantee

The following proposition shows that as the sum of weights and profits increases with a

fixed cardinality, the relation between the optimal uniformity and the uniformity of the

set Rlex, using the capacity constraints defined by the sum of the weights of the items,

can be arbitrarily large.

Proposition 3. There exists an instance for an odd k, θ =
∑n

i=1wi =
∑n

i=1 pi and

Wj = j−1
k−1

∑n
i=1wi, for which, given the Euclidean norm, U(Rlex) =

√
2, and U(Y ∗) ≈

2 · θ
k − 1

holds, where Y ∗ denotes an optimal solution for a representation with cardinality

k.

Proof. Consider an instance with θ ≥ 8 and five variables where:

• p1 = θ/2− 3, w1 = 1

• p2 = θ/2− 2, w2 = 1

• p3 = 3, w3 = θ/2− 2

• p4 = 1, w4 = θ/2− 1

• p5 = 1, w5 = 1

Then, set Y = {(0, 0), (θ/2−2, 1), (θ−5, 2), (θ−4, 3), (θ−2, θ/2), (θ−1, θ/2+1), (θ, θ)}.
For k = 5 we define W2 = θ/4,W3 = θ/2 and W4 = 3θ/4, and obtain the sets

Rlex = {(0, 0), (θ − 4, 3), (θ − 2, θ/2), (θ − 1, θ/2 + 1), (θ, θ)} (6.1)

Y ∗ = {(0, 0), (θ/2− 2, 1), (θ − 5, 2), (θ − 2, θ/2), (θ, θ)} (6.2)

Then it holds that U(Y ∗) ≈ 2θ/4 = θ/2 and U(Rlex) =
√

2.

Figures 6.10 and 6.11 illustrate the proof of Proposition 3, where it can be seen that

there is a point on the bound W3 and another one above. These two points would
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be chosen by the algorithm and the uniformity value would be quite small. A similar

conclusion can be taken for an even k and for the capacity constraints defined with the

set of supported solutions.
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Figure 6.10: Illustration of the proof
for Proposition 3 with set Rlex circled.
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Figure 6.11: Illustration of the proof
for Proposition 3 with set Y ∗ circled.

6.2.2 Results

In the following the capacity constraint method with weights, and the capacity constraint

method with supported points, both presented in Chapter 4, are compared. Figures 6.12,

6.13 and 6.14 show that both capacity constraints methods take approximately the same

time. It is also interesting to note that for higher values of n and correlation, and lower

values of k, the algorithms are very fast obtaining values near the 0.01 second mark.

For the ratio between the uniformity value obtained and the optimal uniformity value,

where a higher value is better, there are some interesting results. Figure 6.15 shows

that the algorithms perform worst for increasing values of k. However, it is interesting

to note that the algorithm with capacity constraints defined by the set of supported

solutions performs very well for low values of k obtaining uniformity values very near

the optimal at k = 16. Figure 6.16 shows that the variation of n does not affect the

results very much. Figure 6.17 shows that for large values of correlation, which imply

more points in the Pareto front, the results are also very good. For correlation values

of 0.8 the uniformity value obtained is very near the optimal for the algorithm with the

set of supported solutions. In conclusion, the algorithms, especially the algorithm using

the set of supported solutions perform very well for low values of k and high values of

correlation, in terms of uniformity values, while providing a significant improvement in

time.
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Figure 6.12: Time comparison for a
varying k, n = 160, correlation = 0

Figure 6.13: Time comparison for a
varying n, k = 0.3n, correlation = 0

Figure 6.14: Time comparison for
varying correlation, n = 160, k = 0.3n

Figure 6.15: Error comparison for a
varying k, n = 160, correlation = 0

Figure 6.16: Error comparison for a
varying n, k = 0.3n, correlation = 0

Figure 6.17: Error comparison for
varying correlation, n = 160, k = 0.3n



Chapter 7

Coverage

In this chapter, an analysis on the algorithms previously described with respect to the

coverage indicator is performed. In Section 7.1 the filter algorithm is analysed. In

Section 7.2 the capacity constraint pruning algorithm is analysed and an improvement

is suggested.

7.1 Filter Algorithm for Coverage

The filter algorithm described in Section 4.3.1 works by solving the representation prob-

lem at each step of the Nemhauser-Ullman algorithm. In the following analysis, the

dynamic programming algorithm to solve the coverage representation problem by Vaz

et al. [17] is used. This algorithm calculates the optimal coverage value for a given set of

non-dominated points Y and a cardinality k. The subset of optimal points is retrieved

from the matrix returned by the dynamic programming algorithm.

7.1.1 Results

Figures 7.1 tp 7.6 show the results for the filter algorithm regarding the coverage measure.

Time-wise the results are similar to those of the uniformity, being between 10 to 100

times better than those for the exact algorithm. The ratio results, however, are not

good, which is expected since the coverage indicator takes into the account the non-

selected points of the Pareto front and the points returned by the filter algorithm are

not necessarily part of the Pareto front and can be at a large distance. One positive

change, however, is that the ratio for increasing values of k is also increasing because

the algorithms filters less points at each stage.
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Figure 7.1: Time comparison for a
varying k, n = 160, correlation = 0

Figure 7.2: Time comparison for a
varying n, k = 0.3n, correlation = 0

Figure 7.3: Time comparison for a
varying correlation, n = 160, k = 0.3n

Figure 7.4: Error comparison for a
varying k, n = 160, correlation = 0

Figure 7.5: Error comparison for a
varying n, k = 0.3n, correlation = 0

Figure 7.6: Error comparison for a
varying correlation, N = 160, k = 0.3n
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7.2 Capacity Constraint Pruning Algorithm Analysis

In this section, the coverage guarantee for the capacity constraint pruning algorithm

described in Chapter 4 is analysed. Afterwards, an improvement is suggested and lastly

the experimental results are presented.

7.2.1 Coverage Guarantee

The following Proposition 4 shows a similar result to that of Proposition 3.

Proposition 4. There exists an instance for an odd k, θ =
∑n

i=1wi =
∑n

i=1 pi and

Wj = j−1
k−1

∑n
i=1wi, for which, given the Euclidean norm, C(Rlex) ≈ θ/2, and C(Y ∗) =

√
2 holds, where Y ∗ denotes an optimal solution for a representation with cardinality k.

Proof. Consider the same instance in the proof of Proposition 3. Then, it holds that

C(Y ∗) =
√

2 and C(Rlex) ≈ θ/2.

A similar conclusion can be reached for an even k and using the capacity constraints

based on the set supported solutions.

Figures 7.7 and 7.8 illustrate the proof of Proposition 4, the capacity constraint pruning

algorithm would not choose point (θ/2−2, 1) which is part of the optimal solution, thus

leading to a large coverage value.

W

P
θθ/2

θ

W2

W3

W4

Figure 7.7: Illustration of the proof
for Proposition 4 with set Rlex circled.

W

P
θθ/2

θ

W2

W3

W4

Figure 7.8: Illustration of the proof
for Proposition 4 with set Y ∗ circled.
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7.2.2 A Possible Improvement

Since the coverage representation searches for clusters of points a possible improvement

might be to not consider the first and last constraints at the first and last points, as

these will be at the edge of a cluster, but rather points a bit closer to the centre. Figure

7.9 illustrates this improvement, over the capacity constraints given by the weights.

W

P

d/2

d

d

d

d/2

W1

W2

W3

W4

Figure 7.9: Illustration of possible improvement for constraints

7.2.3 Results

In the following, the capacity constraint method based on weights, and the capacity

costraint method based on the set of supported points, both presented in Chapter 4,

are compared. Also the improvement presented in the previous section is applied to the

later algorithm.

Figures 7.10 to 7.12 show that the time improvements are similar to those of the uni-

formity case. However, the ratio results in Figures 7.13 to 7.15 show that the algorithm

with the capacity constraint based on the set of supported solutions performs very well

obtaining values near the optimal except for higher values of k. Furthermore, the im-

provement is not as good as expected, although, it provides slightly better results for

smaller values of k and n and larger values of correlation.

In conclusion the experimental results for the coverage algorithms are quite good, and

the capacity constraint pruning technique considering the set of supported solutions can

be a good alternative to optimal methods.
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Figure 7.10: Time comparison for a
varying k, n = 160, correlation = 0

Figure 7.11: Time comparison for a
varying n, k = 0.3n, correlation = 0

Figure 7.12: Time comparison for
varying correlation, n = 160, k = 0.3n

Figure 7.13: Error comparison for a
varying k, n = 160, correlation = 0

Figure 7.14: Error comparison for a
varying n, k = 0.3n, correlation = 0

Figure 7.15: Error comparison for
varying correlation, n = 160, k = 0.3n





Chapter 8

ε-indicator

In this chapter an analysis on the algorithms developed is presented with respect to the

ε-indicator. In Section 8.1 the filter algorithm is analysed and the results are presented.

In Section 8.2 the capacity constraint pruning technique is analysed and afterwards the

experimental results are presented.

8.1 Filter Algorithm for ε-indicator

The filter algorithm described in Section 4.3.1 works by solving the representation prob-

lem at each step of the Nemhauser-Ullman algorithm. In the following analysis, the

dynamic programming algorithm to solve the ε-indicator representation problem by Vaz

et al. [17] is used. This algorithm calculates the optimal ε-indicator value for a given set

of non-dominated points Y and a cardinality k. The subset of optimal points is retrieved

from the matrix returned by the dynamic programming algorithm like in the coverage

case.

8.1.1 Results

The results for the filter algorithm regarding the ε-indicator measure, as shown in Fig-

ures 8.1 to 8.6, are quite good. With respect to CPU-time the algorithm has similar

performance to the coverage and uniformity cases, as expected. Furthermore, with re-

spect to the ratio the results are very good, obtaining a ratio very close to 1 for larger

values of k. This is expected because as k gets larger, each individual point of the rep-

resentation will have to cover less points of the Pareto front thus lowering the ε needed.

Similarly, the ratio decreases with a larger correlation, because the number of points in

the Pareto front is increasing while maintaining a fixed k.
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Figure 8.1: Time comparison for a
varying k, n = 100, correlation = 0

Figure 8.2: Time comparison for a
varying n, k = 0.3n, correlation = 0

Figure 8.3: Time comparison for a
varying correlation, n = 100, k = 0.3n

Figure 8.4: Error comparison for a
varying k, n = 100, correlation = 0

Figure 8.5: Error comparison for a
varying n, k = 0.3n, correlation = 0

Figure 8.6: Error comparison for a
varying correlation, n = 100, k = 0.3n
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8.2 Capacity Constraint Pruning Algorithm Analysis

8.2.1 ε-indicator Guarantee

As in the previous indicators, the ε-indicator can take arbitrarily large values as shown

in Proposition 5.

Proposition 5. There exists an instance for an even k, θ =
∑n

i=1wi =
∑n

i=1 pi and

Wj = j−1
k−1

∑n
i=1wi, for which, E(Rlex) = θ, and E(Y ∗) = θ/(θ− 1) ≈ 1 holds, where Y ∗

denotes an optimal solution for a representation with cardinality k.

Proof. Consider the following items:

• p1 = θ − 1, w1 = 1

• p2 = 1, w2 = θ − 1

Then, set Y = {(0, 0), (θ−1, 1), (θ, θ)}. For k = 3 define W1 = 0 and W2 = θ and obtain

the sets

Rlex = {(0, 0), (θ, θ)} (8.1)

Y ∗ = {(0, 0), (θ − 1, 1)} (8.2)

Then it holds that E(Y ∗) = θ/(θ − 1) ≈ 1 and E(Rlex) = θ.

Figures 8.7 and 8.8 illustrate the proof of Proposition 5. A similar conclusion can be

reached for an odd k and considering the set of supported solutions for the capacity

constraints.

W

P

θ

θ

W1

W2

Figure 8.7: Illustration of the proof
for Proposition 5 with set Rlex circled.
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θ

θ

W1

W2

Figure 8.8: Illustration of the proof
for Proposition 5 with set Y∗ circled.
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8.2.2 A Possible Improvement

The improvement is equal to that presented for the coverage case in Section 7.2.2.

8.2.3 Results

In the following, the capacity constraint pruning technique based on the weights for

the constraints, and based on the set of supported points, are compared. Also the

improvement presented in the previous section is applied to the capacity constraint with

supported solutions.

Figures 8.9 to 8.11 show that the time improvements are similar to those of the uniformity

and coverage case. However, the ratio results in Figures 8.12 to 8.14 show that all the

algorithms perform very well obtaining values very close to the optimal. Similarly to

the results in Section 8.1.1 the algorithms perform worse for smaller values of k and n.

In conclusion the experimental results for the algorithms in regard to the ε-indicator are

very good, and make a very viable alternative.

Figure 8.9: Time comparison for a
varying k, n = 100, correlation = 0

Figure 8.10: Time comparison for a
varying n, k = 0.3n, correlation = 0



Chapter 8. ε-indicator 41

Figure 8.11: Time comparison for
varying correlation, n = 100, k = 0.3n

Figure 8.12: Error comparison for a
varying k, n = 100, correlation = 0

Figure 8.13: Error comparison for a
varying n, k = 0.3n, correlation = 0

Figure 8.14: Error comparison for
varying correlation, n = 100, k = 0.3n





Chapter 9

Conclusion

In this thesis, two modifications to the Nemhauser-Ullman algorithm were presented to

find a representation of the Pareto front for the unconstrained bi-objective knapsack

problem, considering three representation measures: uniformity, coverage, and the ε-

indicator. These approaches take into account limited or even no knowledge of the

Pareto front. The first approach, the filter algorithm, filters out unrepresentative points

at each stage of the Nemhauser-Ullman algorithm, whereas the second, the capacity

constraint pruning technique, uses information from upper and lower bounds to select

potential representative points. Moreover, the second approach guarantees that the

solutions found belong to the Pareto front.

An in-depth experimental analysis was carried out in order to investigate the perfor-

mance of these approaches in several types of instances. The results for the filter algo-

rithm were not very appealing in terms of quality, except for the ε-indicator. For the

capacity constraint pruning technique, the results show that the error could be arbi-

trarily large for the three representation measures. The experimental results, however,

showed that the algorithms can have a very good performance in terms of CPU-time

and error.

9.1 Future Work

Even though the results were good, it may be possible to develop more efficient algo-

rithms. The major bottleneck at the moment seems to be in the pruning technique,

which has to calculate the bounds at each stage of the Nemhauser-Ullman algorithm. It

could be interesting to investigate other notions of bounds that allow the reduction on

the number of calculations needed. Another interesting approach could be to develop
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methods based on a different algorithm paradigm or analyse this approach for more

complex problems.

It would also be interesting to develop similar algorithms for the hypervolume-indicator,

since it is gaining popularity due to its utility in the selection process for heuristic

methods.

Lastly, the theoretical results presented in this thesis were negative in terms of repre-

sentation quality, which is in contrast with the experimental results obtained. It would

be more interesting to develop a better theoretical support that takes into account some

property of the problems, e.g., assuming some distribution on profits and weights.
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[6] A. Eusébio, J. R. Figueira, and M. Ehrgott. On finding representative non-

dominated points for bi-objective integer network flow problems. Computers &

Operations Research, 48:1–10, 2014.

[7] A. P. Guerreiro, C. M. Fonseca, and L. Paquete. Greedy hypervolume subset se-

lection in the three-objective case. In Proceedings of the 2015 on Genetic and

Evolutionary Computation Conference, pages 671–678. ACM Press, 2015.

[8] H. W. Hamacher, C. R. Pedersen, and S. Ruzika. Finding representative systems

for discrete bicriterion optimization problems. Operations Research Letters, 35(3):

336–344, 2007.

[9] K. Klamroth and T. Jørgen. Constrained optimization using multiple objective

programming. Journal of Global Optimization, 37(3):325–355, 2007.

45



Bibliography 46

[10] V. Koltun and C. H. Papadimitriou. Approximately dominating representatives.

In Proceedings of the 2005 International Conference on Database Theory, pages

204–214. Springer, 2005.

[11] T. Kuhn, C. M. Fonseca, L. Paquete, S. Ruzika, M. M. Duarte, and J. R. Figueira.

Hypervolume subset selection in two dimensions: Formulations and algorithms.

2015.

[12] G. L. Nemhauser and Z. Ullmann. Discrete dynamic programming and capital

allocation. Management Science, 15(9):494–505, 1969.

[13] A. Ponte, L. Paquete, and J. R. Figueira. On beam search for multicriteria combi-

natorial optimization problems. In Proceedings of the International Conference in

Integration of AI and OR Techniques in Contraint Programming for Combinatorial

Optimzation Problems, pages 307–321. Springer, 2012.

[14] S. Sayın. Measuring the quality of discrete representations of efficient sets in multi-

ple objective mathematical programming. Mathematical Programming, 87(3):543–

560, 2000.

[15] S. Sayin. A procedure to find discrete representations of the efficient set with

specified coverage errors. Operations Research, 51(3):427–436, 2003.

[16] S. Sayın and P. Kouvelis. The multiobjective discrete optimization problem: A

weighted min-max two-stage optimization approach and a bicriteria algorithm.

Management Science, 51(10):1572–1581, 2005.

[17] D. Vaz, L. Paquete, C. M. Fonseca, K. Klamroth, and M. Stiglmayr. Representa-

tion of the non-dominated set in biobjective discrete optimization. Computers &

Operations Research, 63:172 – 186, 2015.

[18] D. Wang and Y.-S. Kuo. A study on two geometric location problems. Information

Processing Letters, 28(6):281 – 286, 1988. ISSN 0020-0190.

[19] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algo-

rithms—a comparative case study. In Proceedings of the International Conference

on Parallel problem solving from nature—PPSN V, pages 292–301. Springer, 1998.

[20] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca. Performance

assessment of multiobjective optimizers: an analysis and review. IEEE Transactions

on Evolutionary Computation, 7(2):117–132, April 2003.


	1 Introduction
	2 Preliminaries
	2.1 Unconstrained bi-objective knapsack
	2.2 Notions of Pareto Optimality
	2.3 Quality Measures for Pareto front Representations
	2.3.1 Uniformity
	2.3.2 Coverage
	2.3.3 -indicator


	3 State-of-the-art
	3.1 Representation with knowledge of the Pareto front
	3.2 Representation without knowledge of the Pareto front

	4 Representation Algorithms
	4.1 Nemhauser-Ullman Algorithm
	4.2 Dichotomic search
	4.3 Nemhauser-Ullman modifications
	4.3.1 Filter Algorithm
	4.3.2 Capacity Constraint Pruning Algorithm
	4.3.2.1 Pruning technique
	4.3.2.2 Using the set of supported solutions



	5 Methodology
	6 Uniformity
	6.1 Filter Algorithm for Uniformity
	Subset Generation Method 1
	Subset Generation Method 2

	6.1.1 Results

	6.2 Capacity Constraint Pruning Algorithm Analysis
	6.2.1 Uniformity Guarantee
	6.2.2 Results


	7 Coverage
	7.1 Filter Algorithm for Coverage
	7.1.1 Results

	7.2 Capacity Constraint Pruning Algorithm Analysis
	7.2.1 Coverage Guarantee
	7.2.2 A Possible Improvement
	7.2.3 Results


	8 -indicator
	8.1 Filter Algorithm for -indicator
	8.1.1 Results

	8.2 Capacity Constraint Pruning Algorithm Analysis
	8.2.1 -indicator Guarantee
	8.2.2 A Possible Improvement
	8.2.3 Results


	9 Conclusion
	9.1 Future Work

	Bibliography

