
Master’s Degree in Informatics Engineering
Dissertation

Group Communication for
Large Scale Computing
Projects

Daniel Lobo
dlobo@student.dei.uc.pt

Advisors:
Filipe Araújo
Patricio Domingues

September 3, 2013

FCTUC DEPARTMENT
OF INFORMATICS ENGINEERING
FACULTY OF SCIENCES AND TECHNOLOGY
UNIVERSITY OF COIMBRA

ii

Abstract

In volunteer computing systems based on the master-workers model of com-
munication, client machines receive jobs from the project’s servers, execute
them, and then return the respective results, all the while being unaware of
other nodes executing simultaneously. This kind of architecture is adequate
for massively parallel applications, but it raises problems for processes that
would benefit from communication in parallel or replicated execution, as we
would have to rely on the servers for client coordination, thus creating a
server-side bottleneck.

In this research, we propose a solution that allows parallel applications
to work in standard networked environments, via the implementation of a
library, IGCL (Internet Group Communication Library), for inter-node com-
munication and distributed task execution. This library provides clients with
peer-to-peer capabilities inside configurable groups of nodes and allows them
to communicate during execution in a server-independent way. Exchange of
data is done via basic send/receive methods, n-buffering, and several common
communication patterns.

To ascertain what kinds of applications are adequate for Internet-scale
communication, we implement a set of example algorithms and show that
it is plausible to use IGCL for such ends when applications are below cer-
tain communication requirements. We also demonstrate that the library has
performance comparable to MPI when running in local groups of machines.

Keywords distributed computing, peer-to-peer, Internet, Desktop Grids,
communication, peer group, communication patterns

iii

iv

Acknowledgments

This work has been partially supported by the project PTDC / EIA-EIA /
102212 / 2008, High-Performance Computing over the Large-Scale Internet.
The project is funded by the COMPETE program from “Fundação para a
Ciência e a Tecnologia” (Portuguese Government).

v

vi

Index

1 Introduction 1
1.1 Field of work and Motivation 1
1.2 Goals . 2
1.3 Results and contributions . 3
1.4 Document structure . 4

2 State of the Art 5
2.1 Grid and Volunteer Computing 5

2.1.1 BOINC . 6
2.1.2 HTCondor . 9
2.1.3 XtremWeb . 10
2.1.4 Others . 11

2.2 Peer-to-peer . 12
2.2.1 BitTorrent . 13
2.2.2 BAR Model . 14
2.2.3 Peer-to-peer in BOINC 15
2.2.4 NAT traversal . 16
2.2.5 Communication libraries and protocols 18

2.3 MPI . 19
2.3.1 Fault-tolerant MPI . 20

2.4 Speedup and Communication 21
2.4.1 Amdahl’s Law . 22
2.4.2 Gustafson-Barsis’s Law 23
2.4.3 Communication overhead 23

2.5 Distributed Applications . 25
2.5.1 Non embarrassingly parallel applications 25
2.5.2 Generalization . 27
2.5.3 Communication patterns 28

3 Internet Group Communication Library 31
3.1 Overview . 31

3.1.1 Usage example . 32

vii

3.1.2 Naming conventions 36
3.1.3 Group layouts . 37

3.2 Technical details . 40
3.2.1 Messages and data . 41
3.2.2 Threading and blocking queues 42
3.2.3 Performance . 43
3.2.4 Registration . 46
3.2.5 NBuffering implementation 48
3.2.6 Error handling . 49

4 Results and Discussion 51
4.1 Experimental setup . 51
4.2 Implemented examples . 52

4.2.1 Matrix multiplication 53
4.2.2 Merge sort . 54
4.2.3 Ray tracing . 55
4.2.4 Traveling Salesman Problem 57

4.3 Communication analysis . 58
4.4 Comparison of IGCL and MPI 62
4.5 N-buffering effects on speedup 64
4.6 Comparison of IGCL and threading 65
4.7 Internet-scale IGCL . 67
4.8 Connection type comparison 73

5 Conclusions 77
5.1 Future Work . 78
5.2 Reflections and other work . 81

Bibliography 85

A Documentation 91
A.1 Common node methods . 91
A.2 Coordinator class methods . 99
A.3 Peer class methods . 100
A.4 GroupLayout class methods 101
A.5 NBuffering class methods . 103

B Code Examples 107

C Result Tables 113

viii

LIST OF FIGURES ix

List of Figures

2.1 Simplified BOINC architecture with server and client side com-
ponents. 7

2.2 Simple master-workers model in computation. 8
2.3 BitTorrent architecture with peers and a tracker. Peers with

completed pieces can provide them to their downloading coun-
terparts. 14

2.4 Parallel evolutionary algorithm — each peer/node has a pop-
ulation. 27

2.5 Common communication layouts 29

3.1 Reception of messages and queue storage in IGCL. 43
3.2 Sequence diagram of the registration process in IGCL. 46

4.1 Matrix multiplication: growth of processing time and bytes
exchanged with the number of nodes. 1024 x 1024 matrices. . 53

4.2 Merge sort: growth of processing time and bytes exchanged
with the number of nodes. 1.000.000 elements. 55

4.3 Ray tracing: growth of processing time and bytes exchanged
with the number of nodes. 1280 x 720 image, 1000 pixels per
job. 56

4.4 Speedup according to Amdahl’s Law (s = 0.02, Tseq = 10 min) 59
4.5 Speedup with communication (s = 0.02, Tseq = 10 min, 100

MB + 20 MB per node) . 60
4.6 Speedup with communication in Island Model application (s

= 0.02, Tseq = 10 min, 10 MB + 1 MB per node) 61
4.7 Matrix multiplication: IGCL and Open MPI performance.

2048× 2048 matrices. Environment 1. 63
4.8 Merge sort: IGCL and Open MPI performance. 3 × 107 ele-

ments. Environment 1. 63
4.9 Ray tracing: effect of various levels of buffering. 9600× 5400

image. 10000 pixels per job. Environment 3. 64

x LIST OF FIGURES

4.10 Ray tracing: effect of various levels of buffering. 1280 × 720
image. 1000 pixels per job. Environment 2. Quantities of
nodes do not include the coordinator. 65

4.11 Ray tracing: performance of IGCL versus threads. 9600×5400
image. 10000 pixels per job. Environment 3. 66

4.12 TSP: networked performance when exchanging bounds or not.
16 locations. Environment 3 with 4. 68

4.13 Matrix multiplication: networked execution times. 1024×1024
matrices. Environment 3 with 4. 69

4.14 Merge sort: networked execution times. 500000 array ele-
ments. Environment 3 with 4. 70

4.15 Ray tracing: networked execution times. 2880 × 1620 image
(using doubles). 10000 pixels per job. Environment 3 with 4. . 71

4.16 Ray tracing: networked execution times. 2880 × 1620 image
(using chars). 10000 pixels per job. Environment 3 with 4. . . 72

4.17 Merge sort: local analysis of normal versus libnice connections.
3× 107 elements. Environment 3. 74

4.18 TSP: networked analysis of normal versus libnice connections.
16 locations. Environment 3 with 4. Plots are overlapping. . . 75

List of Tables

4.1 Ray tracing: execution times (in seconds) using IGCL and
threads, and respective difference. 9600× 5400 image. 10000
pixels per job. Environment 3. 67

4.2 Ray tracing: average number of jobs executed by the coordi-
nator only. 2880× 1620 image (using chars). 10000 pixels per
job. Environment 3 with 4. 73

C.1 Data of Figure 4.7. Matrix multiplication: IGCL and Open
MPI performance. 113

C.2 Data of Figure 4.8. Merge sort: IGCL and Open MPI perfor-
mance. 113

C.3 Data of Figure 4.9. Ray tracing: effect of various levels of
buffering. 114

C.4 Data of Figure 4.10. Ray tracing: effect of various levels of
buffering. 114

C.5 Data of Figure 4.11. Ray tracing: performance of IGCL versus
threads. 114

C.6 Data of Figure 4.12. TSP: networked performance when ex-
changing bounds or not. 114

C.7 Data of Figure 4.13. Matrix multiplication: networked execu-
tion times. 115

C.8 Data of Figure 4.14. Merge sort: networked execution times. . 115
C.9 Data of Figure 4.15. Ray tracing: networked execution times. 115
C.10 Data of Figure 4.16. Ray tracing: networked execution times

(char version). 115
C.11 Data of Figure 4.17. Merge sort: local analysis of normal

versus libnice connections. 116
C.12 Data of Figure 4.18. TSP: networked analysis of normal versus

libnice connections. Includes relayed connections. 116

xi

xii LIST OF TABLES

Chapter 1

Introduction

1.1 Field of work and Motivation

BOINC, the Berkeley Open Infrastructure for Network Computing, is an
example of a platform for volunteer computing projects1. Users around the
world provide their machines’ idle power to execute scientific applications and
contribute to research of various kinds, including the search for extraterres-
trial life, simulation of climate conditions and the study of protein structure
(respectively provided by projects SETI@home, Climateprediction.net and
Predictor@home) [1].

The middleware works under a client-server architecture. Client nodes —
the users’ machines running the BOINC client — pull jobs from the project
servers, run them and give back the respective results when finished [1]. It
is common for clients to be given a time frame of a few days to complete
each job. Reasons for this are varied: client machines are not always on,
the environment is highly volatile (machines frequently disconnect from the
network) and the system must also satisfy the users’ needs before volunteering
resources for BOINC [1] [2]. Because of this, BOINC projects focus on long
term throughput, and the system is not expected to be suitable for low
latency jobs or close to real-time applications. Despite this assumption,
there exist users with highly available machines or groups of machines that,
working in parallel, would be able to complete much larger tasks or fulfill a
particular one with lower turnaround time.

Another feature of BOINC’s architecture is that the only available path
1Official website: http://boinc.berkeley.edu/

1

http://boinc.berkeley.edu/

2 CHAPTER 1. INTRODUCTION

of communication directly links clients to the server, meaning that clients
cannot talk to each other. This implies that a large amount of bandwidth is
required from the server, creating a bottleneck [3], and that applications that
could benefit from node communication cannot run effectively. For instance,
several random search methods, such as evolutionary Island Models or a
parallel Particle Swarm Optimization systems, can require the exchange of
solutions or other kind of information between a large number of populations
to effectively explore the search space [4, 5]. This means that the expected
time to complete the search (i.e. find an acceptably good solution) is also
long, and that many clients (with their own populations) might be needed
to improve the algorithm. The inclusion of communication can also support
other application examples, like distributed models with multiple coordina-
tors/masters, branch-and-bound applications with bound sharing between
nodes, and non-embarrassingly parallel applications in general, as long as
they have a relatively small communication overhead.

To mitigate these limitations, we believe that the BOINC middleware and
possibly other similar systems could be extended with the concept of node
communication, so that clients can exchange data during program execution.
The issue can be solved by either altering the projects’ servers to act as coor-
dinators that relay messages between clients (no direct node communication
exists) or with a new extension that would allow nodes to directly commu-
nicate, as made famous by peer-to-peer (P2P) systems. In this research, we
implement the second option.

1.2 Goals

The goals of this research are, in a broader vision, to add peer-to-peer
communication capabilities to client machines running parallel algorithms
and advance towards a more distributed approach to volunteer computing.
This will ideally make it possible to run parallel applications over the Internet
and complete demanding tasks in less time — provided that these have con-
trolled communication needs —, minimizing job latency and perhaps paving
the way for real-time applications. It also implies the reduction of workload
on volunteer computing project servers, seeing as data can be passed among
peer machines instead of using the server directly, as happens in BOINC.

More concretely, this work’s goals consist in implementing and testing a
client-side library for typical home computers or clusters; one that automates
the creation of peer groups and enables the exchange of data between the

1.3. RESULTS AND CONTRIBUTIONS 3

machines during execution. The library should be able to link nodes that are
located behind Network Address Translators (NATs) and firewalls, but also
yield sufficiently high performance to locally execute algorithms in a single
machine or cluster.

However, it is not our goal to deal with the issue of node security directly.
For the time being, users can rely on available virtualization methods to
mitigate attacks coming from malicious machines. We also do not intend
to bridge the gap between the library and real world volunteer computing
in terms of implementation, although we describe what general changes it
would imply to the library and the system’s servers.

1.3 Results and contributions

In this work we implemented IGCL, the Internet Group Communication
Library, capable of executing algorithms over the Internet and creating inde-
pendent peer groups controlled by a coordinator. We also showed how using
the concept of node layouts can reduce programming overhead in general,
as well as simplify the distribution and collection of data for applications
that follow common patterns of communication, such as master-workers or
divide-and-conquer. The effects of task buffering are also analyzed, in the
scope of this work, and associated with the master-workers model and vol-
unteer computing systems as an efficient way of handling node heterogeneity
when sending jobs to remote nodes.

Our tests’ results were obtained from four parallel applications examples:
matrix multiplication, merge sort, ray tracing and the Traveling Salesman
Problem (TSP). These show that Internet-scale communication can indeed
be useful and achieve a visible speedup in the latter two — especially the
parallel TSP — but is mostly detrimental to the more network-demanding
examples. At a local scale, our tests revealed that IGCL runs our example
applications with comparable performance to equivalent implementations in
the Message Passing Interface, using Open MPI [6], and even performed
rather well against a shared memory approach that uses threads in one of
our examples.

The library’s API and features, including registration of nodes, possible
connection types, error handling and internal implementation in general, were
also described, as well as its limitations from our point of view.

From a scientific point of view, our main contribution with this work is to

4 CHAPTER 1. INTRODUCTION

show that it is possible to achieve a significant speedup in parallel applications
executing at Internet-scale, as long as they have reduced communication
needs. We also show the counterpart of this result; i.e. that many typical
parallel applications in high performance computing are simply not suitable
for Internet deployment due to excessive transfers of data in frequency or
size. As part of our research, we also give a few examples of applications
that are expected to work well in the Internet and P2P-enabled Desktop
Grid systems.

Another contribution of our work is the library itself, IGCL, which func-
tions in both local and Internet environments and automatically establishes
connections according to the nodes’ locations and NAT or firewall obstacles,
thus adding suitable support for P2P communication in volunteer computing
systems. We also describe what worked well and what could be improved in
IGCL, both of which should provide some insights for future work.

1.4 Document structure

The remaining document is structured as follows: in Chapter 2, State of
the Art, we will analyze existing Desktop Grids, peer-to-peer systems, the
applicability of peer-to-peer in the BOINC architecture, the Message Passing
Interface standard [7], fault tolerance in volatile environments, the effects of
communication on speedup, and, lastly, the application models that benefit
from distributed execution and their common patterns of communication. In
Chapter 3, Library Implementation, we detail the mode of usage, features
and technical details of our library, IGCL. Next, in Chapter 4, Results and
Discussion, we define our experimental setup, present the results achieved
and discuss their relevance to the problem at hand. Finally, in Chapter 5,
Conclusions, we summarize the outcomes of this work and propose a series
of possible improvements and extensions to it as future work.

Chapter 2

State of the Art

2.1 Grid and Volunteer Computing

A generic computer grid is an environment of connected computers that
serves the purpose of completing resource demanding tasks, generally for
research in a business, scientific or academic organization. Large grids of
these computers are costly, not only because of the required processing power
but also due to network connectors, energy consumption and physical space,
sometimes being out of reach for these organizations. Similarly, cloud com-
puting also involves hosting costs that, although not in the same order as
buying specialized hardware, are generally not desired or even possible for
some projects’ budgets.

On the other hand, for many people, computers are used for simple ac-
tivities most of the day. Browsing the Internet, writing a report or chatting
with other people are some examples. It is realistic to expect that most pro-
cessing capabilities of common personal or shared machines remain unused
for the majority of time [8]. Generally, a machine is only near its potential
when a large amount of resources is requested by demanding applications, like
computer games or video processing suites; even then, there are sometimes
system bottlenecks like disk access speed that prevent other components from
being useful at the same time.

The idea of volunteer computing (also referred to as “public-resource com-
puting”) draws from this aspect of the everyday usage of machines: to gather
the large amount of unused resources from millions of personal computers
around the world for useful computing [1]. These users’ computers form

5

6 CHAPTER 2. STATE OF THE ART

what is known as a volunteer Desktop Grid. To mitigate the aforementioned
problem of lack of processing power, organizations sometimes rely on these
Desktop Grids and outsource the required computation to machines from
volunteer users, typically for free or for a symbolic reward like public user
recognition.

Many volunteer computing projects have successfully existed over the
years. The first known public-resource computing examples are the Great
Internet Mersenne Prime Search (search for prime numbers of the Mersenne
family) and Distributed.net (an effort to break existing challenges in cryp-
tography), in 19961 and 19972, respectively. Some well-known projects still
existing today, like Folding@home3 (protein folding and related problems in
biology) and SETI@home4 (analysis of radio waves for signs of transmissions
from extraterrestrial intelligence) were also created years later, as were other
examples. In more modern days, software such as BOINC and XtremWeb
(which we will detail in Section 2.1.3) have been further expanding the con-
cept of Desktop Grids.

2.1.1 BOINC

BOINC is an open source software, responsible for the existence of many
large volunteer computing projects existing today. It is developed by the
same group responsible for SETI@home and is essentially a middleware con-
sisting of two parts — server and client — that act as a bridge between the
servers of a distributed application and several client machines of volunteer
users [1]. With this model, the combined computational power of these ma-
chines can be used to solve large problems in small tasks, as a Desktop Grid.
The average computational power of this BOINC grid at any given moment
is measured to be above 7 PetaFLOPS5 as of August 2013, which rivals the
top supercomputers at that date6. Research projects with various objectives
and requirements, and from fields as diverse as physics, chemistry, biology,
astronomy, climate, mathematics and game studies, are thus able to gather
the resources of contributing users instead of relying on supercomputers or
clusters for that purpose [9]. Some examples of BOINC projects, besides the

1See http://www.mersenne.org/various/history.php
2See http://www.distributed.net/History
3Folding@home: http://folding.stanford.edu
4SETI@home: http://setiathome.berkeley.edu
5See http://boincstats.com/en/stats/-1/project/detail/overview
6See http://www.top500.org/list/2013/06/ for a list from June 2013

http://www.mersenne.org/various/history.php
http://www.distributed.net/History
http://folding.stanford.edu
http://setiathome.berkeley.edu
http://boincstats.com/en/stats/-1/project/detail/overview
http://www.top500.org/list/2013/06/

2.1. GRID AND VOLUNTEER COMPUTING 7

previously mentioned SETI@home, are Climateprediction.net (simulation of
climate scenarios), Einstein@Home (detection of types of gravitational waves)
and MilkyWay@Home (defining a three dimensional model of our galaxy).

Figure 2.1: Simplified BOINC architecture with server and client side components.

In the BOINC architecture, shown in Figure 2.1, human users with po-
tentially reduced technology knowledge start by attaching their machines
to several projects via their respective web pages or an account manager.
Then, through the BOINC client, these machines dynamically request, pull
and process data from the project’s scheduler and data servers, returning the
achieved results upon completion. Besides the mandatory web, scheduler and
data servers, BOINC projects are generally composed of their own databases

8 CHAPTER 2. STATE OF THE ART

and servers. These are included in the project back-end shown in Figure 2.1.

The combination of server-side and clients in BOINC composes a system
that is essentially a master-workers model, with a central node (the task
server) responsible for the sending tasks to the worker nodes (clients) for
processing. This architecture, also known as master-slaves model, permits
very simple task distribution, usually embarrassingly parallel (i.e. the various
parts of the algorithm are independent and can be processed in parallel and
in any order), which means that the well-known MapReduce model of data
processing [10] is easily applied. A simple master-workers example is seen in
Figure 2.2.

Figure 2.2: Simple master-workers model in computation.

The BOINC client is responsible for the scheduling of available processing
power to the different projects, taking into account the user’s settings for us-
age of resources in the machine [11]. Scheduling is also a task for the BOINC
server, which must account for the heterogeneity of hardware and availabil-
ity of clients. In fact, clients are expected to be frequently unavailable, so
BOINC applications make use of a checkpointing system to save the running
state of each job from time to time and be able to resume it later. Depending
on the application, BOINC jobs also vary greatly in requirements of storage,
computation, communication and completion time, and are issued differently

2.1. GRID AND VOLUNTEER COMPUTING 9

according to the known features of the machines [9]. Problems related to the
validity of results coming from the users’ machines, either by malicious in-
tents or failure, are dealt with by using replicated computing. This means
that jobs are sent to several hosts to check if their returned value matches,
until either a consensus or a replication limit is reached [9].

One negative issue of the master-workers architecture is the fact that
servers become a bottleneck of the system, limiting the maximum simulta-
neous data downloaded by the clients due to bandwidth restrictions. This
happens because every client must connect to the server to pull jobs for pro-
cessing, even if other nodes, close or far away, already have the same job.
Suggestions for the use of BitTorrent to share jobs between nodes have been
made by David Anderson in [1] and later researched and implemented by
Fernando Costa et al. [12] [13]; research that is described in more detail in
Section 2.2.3.

Another problem is latency. BOINC was not designed for low latency
jobs but for maximizing throughput in long term computation, as is the case
with other large scale computing systems, like HTCondor [14] or XtremWeb
[15]. In fact, BOINC clients have a deadline for submitting results that is
usually in the order of days (but can be shorter or longer, depending on job),
which helps mitigate the previously mentioned server bottleneck problem,
as clients will not be constantly communicating with the server. Based on
this and the fact that clients cannot directly collaborate with each other for
the completion of tasks, projects that want fast results, such as weather or
seismic activity prediction, probably will not find in this unmodified BOINC
an adequate environment. To try to address this problem, Yi et al. proposed,
in 2011, RT-BOINC [16], or Real-Time BOINC, which is an improved version
of BOINC in terms of scalability and response time in general; one that could
house short-term applications with time completion requirements of about
30 seconds, assuming that hosts are highly available during the small time
fractions of processing.

2.1.2 HTCondor

Other paradigms exist for creating and using grids of computers, con-
trasting with the volunteer computing environment provided by BOINC.
HTCondor (previously named “Condor”) is a software for the management
of workload and scheduling of tasks in a system of distributed computational
resources, with a thought for high throughput computing7. More specifically,

7See http://research.cs.wisc.edu/htcondor/

http://research.cs.wisc.edu/htcondor/

10 CHAPTER 2. STATE OF THE ART

the case with HTCondor is that it allows organizations to build a cluster of
computers with commodity hardware and effectively use it for running tasks
on demand. The idea of this platform is that several “everyday” comput-
ers — dedicated or not, but pre-configured to use the software — can form
pools of workers and that authorized users in the grid can then submit jobs
for processing in a distributed manner [17].

HTCondor makes use of a task queue and a matchmaker between idle
jobs and idle machines, both part of a workload manager, thus sending the
queued jobs to certain machines according to the scheduling mechanism,
user priorities, job priorities and even job dependencies [18, 17]. HTCondor
checks the progress of these tasks until completion and is able to warn the
job submitter at that time. It possesses features like the flocking of resources
from pool to pool, checkpointing of jobs (like BOINC provides) and remote
system calls that grant the existence of a shared file system and effectively
allow machines to run jobs and use input/output as if they were running in
the job-source computer [18, 17].

2.1.3 XtremWeb

XtremWeb is another open source software project in volunteer and grid
computing. Built with Java, XtremWeb makes it easier to build Desktop
Grids using unused resources, similarly to HTCondor. Computers spread
over a Local Area Network (LAN) or the Internet can serve as workers,
donating their spare CPU, storage and network resources to the completion
of tasks [19]; therefore, XtremWeb can be used to build both institutional
grids and volunteer grids. Contrasting with BOINC, where the project’s
servers are the only source of jobs, XtremWeb is composed of three tiers: a
task coordinator, workers, and clients. Workers are allowed to submit tasks
to the coordinator service — thus acting as clients — as well as process jobs
[20]. This behavior raises security concerns with the intent of applications,
as certification and modifications of the original application are not required
to run in the system. Hence, there can exist tasks with malicious content,
and users of the platform should only run trusted applications in the grid.
Nevertheless, the workers implement sandboxing of Java byte code, and Java
applications are run in the Java Virtual Machine, which has configurable
security features [15, 19].

Despite the job submission capabilities given to workers/clients, XtremWeb
still works via a pull model, much like BOINC, where workers voluntarily
get jobs from the coordinator service queue when scheduled to do so. Thus,

2.1. GRID AND VOLUNTEER COMPUTING 11

the main differences of XtremWeb when compared to HTCondor are the
pull model behavior of coordinator-workers and the possibility of running on
hardware in other networks, which might be firewall-protected [21, 19]. By
contrast, as we have seen, HTCondor uses the master-workers push model
and relies on LAN hardware.

Besides the Desktop Grid functionality, XtremWeb is also intended to
provide an environment for the exploration of the capabilities of Desktop
Grids, peer-to-peer systems and global computing in general. The platform
works as a framework for testing issues with the scalability of such systems,
research on data- and computation-bound applications, sandboxing, safe ex-
ecution of code and also benchmarking workload for scheduling algorithms
[15].

2.1.4 Others

Further projects in grid and volunteer computing are also worth mention-
ing, in this work’s scope:

SZTAKI Desktop Grid is a BOINC-related project that provides an API
to build local Desktop Grids in a hierarchical manner. This means
that smaller grids with spare resources are able to take and process
work units from a higher level grid. The model can be extended to
form a “volunteer cluster” environment for running applications that
use MPI (see Section 2.3) or other communication-based computing
method [22].

EDGeS and EDGI are linked concepts. The objectives of EDGeS (En-
abling Desktop Grids for E-Science) were to build a bridge between
cluster Service Grids (like the European Grid Infrastructure) and Desk-
top Grids such as BOINC and XtremWeb, as well as enable their inter-
operability based on authentication certificates for safe application ex-
ecution [23]. Developments over EDGeS later originated EDGI, which
was created with the challenge of extending EDGeS for academic clouds
and institutional Desktop Grids [24].

SpeQuloS is a framework with connections to cloud computing, which aims
to provide Quality of Service to Desktop Grids (which are commonly
referred to as Best-Effort Distributed Computing) by dynamically mak-
ing cloud resources ready for processing when its volunteer resources are

12 CHAPTER 2. STATE OF THE ART

unavailable8 [25]. This solves the problem of users dynamically leaving
the system — an issue difficult to avoid in volunteer Desktop Grids
— and provides a way for low latency applications to use volunteer
resources with less concern for availability.

2.2 Peer-to-peer

Peer-to-peer (often abbreviated as P2P) is a model of network commu-
nication in which every participating peer/node has the same privileges and
acts as both a client and a server, possibly with no central authority, thus
creating a fully distributed environment. In fact, the main distinction that
can be made between distributed communication like P2P and the model
of master-workers mentioned in Section 2.1.1 is that, in the former, nodes
communicate directly and do not require a central coordinator, while in the
latter they do. Consequently, because information does not pertain only to
a central unit, fully (or almost fully) distributed P2P networks avoid single-
point-of-failure issues. Knowing this, P2P networks are useful to share re-
sources like CPU or storage between nodes, based on mutual advantage, and
are commonly deployed for such ends, as is the case with BitTorrent (which
we will detail in Section 2.2.1). Other examples of P2P are seen in VoIP
(Voice over IP) communication, video streaming and collaborative applica-
tions [26, 27, 28].

Despite directly communicating, nodes in a P2P network can still not
know each other’s identity, as each node can originate from many domains
and from behind firewalls and Network Address Translators (NATs), espe-
cially if in the context of the Internet. Similarly to how volunteers in BOINC
imply the threat of data manipulation, this “blind” node communication
means that there is the possibility of data being malicious if the environment
is unknown. Another clear difference with distributed, compared with the
master-workers models, is that special care must be taken with node fault
tolerance, as there is the possibility that no one is directly responsible for
the group of connected peers. It is important to note that both described
environments (BOINC and an Internet P2P network) are highly volatile and
expected to work with many unreliable nodes.

8Official website: http://graal.ens-lyon.fr/˜sdelamar/spequlos/

http://graal.ens-lyon.fr/~sdelamar/spequlos/

2.2. PEER-TO-PEER 13

2.2.1 BitTorrent

BitTorrent is a P2P protocol created in 2001 for the direct sharing of data
files between nodes in possibly different networks. It was modeled with the
basic assumption that upload speed is generally slower than download speed
and, therefore, the number of file servers should be greater than the number
of downloading clients in order to maximize throughput [29]. BitTorrent
had a large acceptance from Internet users and content distributors, and still
today accounts for a large amount of total Internet traffic, only below HTTP,
YouTube and Netflix traffic9.

In the protocol, shared files are divided into pieces with an associated hash
[30] and can be replicated to many different nodes, named “seeders” of that
particular file. Those nodes will act as servers of the pieces in their possession,
and can provide them to the currently downloading nodes. In Figure 2.3 we
show a possible state of such a system in a given moment. Each peer has
different pieces in its possession and hence downloads the remaining ones
from other peers. In the current state of the Figure, one node already has
all of the file’s pieces, so it is a seeder of the complete file. As we mentioned
before, the more seeders a file has, the faster the potential upload stream of
data and the larger the maximum download speed achievable.

The hash in each file piece prevents tampering or corruption of data,
consequently making BitTorrent resistant to malicious nodes and faulty net-
works. The protocol can also survive low initial availability of nodes due to its
approach of fragmented files, which can start uploading as soon as acquired;
nevertheless, flash crowds (sudden increases in number of downloaders) are
still a problem in BitTorrent [31]. The whole system is, furthermore, depen-
dent on the wisdom of users, who should upload enough to maintain a good
flow of data.

Despite the apparent fully distributed model of BitTorrent, the knowledge
of which peers have the desired files in their possession generally pertains to
a server, denominated “tracker”. This is the server that peers should contact
in order to get other peers’ locations (see Figure 2.3). To reduce stress on the
tracker and, in some cases, speed up the discovery of nodes, other possibilities
are available. An example is the use of a protocol based on Distributed Hash
Tables (DHTs), like Chord [32]. Using these DHTs, each node initially knows
only a few peers with a certain file. When downloading, the node will contact
its known peers, which in turn might know the location of some more peers

9See http://www.sandvine.com/news/global_broadband_trends.asp

http://www.sandvine.com/news/global_broadband_trends.asp

14 CHAPTER 2. STATE OF THE ART

Peer Peer

PeerPeer

Tracker

Complete Piece

Incomplete Piece

3rd piece

4th piece

4th piece

1st and 3rd pieces

2nd piece

1st and 2nd pieces

Piece upload direction

Request for peer locations

Figure 2.3: BitTorrent architecture with peers and a tracker. Peers with completed
pieces can provide them to their downloading counterparts.

with the file and add them to the list. The process continues until the original
node knows a sufficient amount of seeders for that file, making the process
server-independent.

2.2.2 BAR Model

The Byzantine/Altruistic/Rational(BAR) model is a representation for
networks with multiple administrative domains that considers that every
node in the network is able to deviate from the defined protocol. Aiyer
et al., who suggested the model, argue that careful actions must be taken
according to this behavior, in order to support the robustness of distributed/
cooperative services [33].

The model defines that a participating node may disagree with the pro-
tocol — the desired course of action — because of three general reasons:

1. the node may be broken
2. the node may be malicious
3. the node wants to satisfy its needs before those of others

2.2. PEER-TO-PEER 15

Broken and malicious nodes are called Byzantine; selfish nodes are called
Rational. The third and last type, Altruistic, consists of nodes that simply
follow the protocol as expected [33]. For instance, a BitTorrent network lives
on the assumption that clients/nodes will give back around as much as they
take in terms of data. If a node follows this “protocol”, it is considered an
Altruistic node in the BAR model. If another node simply downloads a file
and then does not upload data back to others despite being able to, it is a
Rational node. These are the ones that “think” and act in a way that benefits
them the most, despite the needs of others. Finally, a node is Byzantine if it
either acts with malicious reasons, tries to corrupt data on purpose to hinder
the service operation, or is simply misconfigured and frequently disconnects
[33].

Assuming that all nodes have a certain probability of deviating from the
standard protocol, not all deviating nodes should be applied a fault when
this happens (as occurs in Byzantine Fault Tolerance). Therefore, there is
great interest in the existence of mechanisms that deal with this, benefit-
ing the nodes that follow it and penalizing others in a robust way. The
studies on the BAR model have tried to address this by using verifiable
pseudo-randomness (it is verifiable so that faulty nodes cannot hide behind
randomness of behavior), letting nodes assign “Proofs of Misbehavior” to
other nodes, and using no long-term reputation (due to the mix of Byzan-
tine and Rational nodes, which would sometimes result in the assignment of
durable bad reputations in acceptable cases). This research was centered on
a distributed backup service [33] and on data streaming applications built
with BAR model in mind [34, 35], and showed that with the use of the model
it was possible to maintain the robustness of the systems even when under a
significant percentage of malicious and deviating nodes.

2.2.3 Peer-to-peer in BOINC

The research on RT-BOINC, previously seen in Section 2.1.1, might sug-
gest that a P2P approach is not necessary if the added node communication
capabilities are not desired but there is a need for low latency. RT-BOINC fo-
cuses on the inclusion of mechanisms for deadlines and improving the BOINC
server in scheduling and database access, and not on the restructuring of the
communication paradigms in the middleware. Nevertheless, some research
has suggested that BOINC could benefit from P2P approaches.

Costa et al. argued that BOINC and Desktop Grids in general should

16 CHAPTER 2. STATE OF THE ART

care about taking advantage of the client’s network capabilities and not only
of CPU cycles in the client machines, in order to reduce the server bottleneck
and associated costs [12]. The authors suggested a hierarchical P2P approach
to data distribution in BOINC. The main idea was to address the problem of
security in a P2P network via super-peers, which were the only trusted nodes
that could relay messages, thus reducing the probability that the network is
flooded with false data from an unreliable node.

BitTorrent was also a suggested approach to data distribution in [12]. In
fact, in another paper, the authors tried to apply the BitTorrent protocol to
the distribution of jobs in BOINC, with mixed success [13]. The idea was to
take advantage of the relatively large number of user nodes running the same
or similar job and share the needed files among themselves using BitTorrent.
Hence, a large amount of bandwidth could be saved on the project servers and
the maximum data throughput achievable in the client’s network improved.
The conclusions achieved revealed savings of over 90% bandwidth in the
project servers and almost negligible influence on client processing time, even
when seeding intensively. Despite this, they also revealed that the protocol
was not efficient for sharing small files and that the sum of BitTorrent client
and tracker of peers resulted in several spikes of CPU usage and slow initial
seeding of data in the server [13].

M. Cieślak proposed a total re-implementation of BOINC using JXTA.
Several modules, like scheduler, data servers and even the reward system were
suggested according to the paradigm of P2P. The goal was to address some
BOINC limitations mentioned by the authors, such as server overload due to
redundant communication, improper task distribution and the limitation of
the project servers’ resources [36]. Nevertheless, this was a solely theoretical
work.

Another work and research project, VolpexMPI, is an example of adding
node communication to volunteer computing. It will be described in more
detail in Section 2.3.1.

2.2.4 NAT traversal

Common home networks are managed by a router that provides the only
way for communication between the machines in the network and other ma-
chines in external networks. It is one of the router’s jobs to hide the nodes
that are behind it until they specifically ask to connect to the outside. Con-
sequently, these nodes do not possess an identification/address that is valid

2.2. PEER-TO-PEER 17

in the “outside world” of the IP protocol, but only a local IP that identi-
fies them before this specific router. The router, however, does have an IP
address that is valid to the outside, and can transparently translate local
addresses for the outside and store those translations for future use, while
blocking unsolicited connections. This is done mainly for two reasons: 1. to
reduce the number of IPs in use at the Internet scale, in order to prevent
their exhaustion; 2. to avoid malicious attacks on the machines directly. The
Network Address Translator (NAT) is the router mechanism that handles the
mentioned address translation to and from the outside [37]. The router fire-
wall, on the other hand, blocks connections to certain addresses and ports
on the local network.

Both of these are obstacles to P2P communication, because a node is
not generally free to connect to other Internet nodes inside home networks.
Should one try to do so, the target node’s router will simply block the con-
nection, as the machine inside the network did not request connectivity [38].
If a connection in the reverse way is also impossible due to both nodes pos-
sessing a NAT or firewall, P2P applications must solve the problem through
so-called NAT traversal mechanisms. NAT traversal is made challenging by
the fact that several types of NATs exist, depending on if a single local IP
address is translated to only one or multiple external IPs, and the same with
the connection ports (single or multiple translations). RFC 3489 [39] defines
the original STUN (Simple traversal of UDP over NATs) standard, and the
different types of NATs can be consulted there. Nevertheless, some other
parts of the RFC were obsoleted by RFC 5389 [40], which also redefined the
meaning of STUN to be “Session Traversal Utilities for NAT”.

STUN (and STUNT [38]) cannot always achieve connectivity between
nodes behind NATs, depending on their types. Symmetric NATs, in partic-
ular, are not possible to bypass with STUN, as every connection from an
internal address to the outside will always map to a different IP and port
during translation [39]. For nodes that cannot communicate using STUN,
TURN helps them by specifying how to relay communication through a third
node [41]. Another method for NAT traversal, which motivated the creation
of TURN, is called the Interactive Connectivity Establishment (ICE) proto-
col [42]. Summarizing, ICE gathers specific connection candidates (pairs of
IP addresses and ports) in both connecting nodes using STUN and TURN,
and then tests connectivity between them until a pair of candidates is suc-
cessful in connecting through the endpoints’ NATs. This work and research
will not delve further in the description of NAT types and their traversal
methods.

18 CHAPTER 2. STATE OF THE ART

2.2.5 Communication libraries and protocols

Many existing protocol implementations let programmers build P2P net-
works. We will go over a few specifications and libraries, old and modern, in
order to define some possibilities for this research.

JXTA is an open source set of protocols for P2P networks, based on
XML messages and designed to be independent of programming language,
operating system, hardware and transport protocol [43]. JXTA is not an
API but rather a specification of several protocols for such networks, with
its main implementations (that do provide the respective APIs) existing in
Java and C10. It specifies that peers should create an overlay network, so that
communication is possible even from behind firewalls or NATs, or between
different architectures. In this overlay network, nodes are allowed to move
while still maintaining communication, as each node is assigned a unique
ID, independent of location. Peers can have several roles, depending on
their capabilities. The most evident distinction is between edge peers and
special peers — also called “super-peers”. The former generally have lower
bandwidth; the latter have better features and are commonly tasked with the
role of coordinating edge peers or relaying messages through firewalls [43].

Developments on the JXTA project are few today; though a new ver-
sion of the Java implementation was released in 2011 (JXSE 2.7), the C
implementation lagged behind and we currently assume that it is not being
developed anymore. We also found the respective website and documentation
unavailable.

Because our library should yield high performance, we have decided to
implement it in the C++ programming language. We therefore opted to re-
search C/C++ libraries for our efforts. Some current examples of free libraries
for communication with an active implementation in these languages are lib-
jingle11, ZeroMQ12 and libnice13.

Libjingle is an open-source library whose purpose is precisely to allow
programmers to build peer-to-peer applications. It is a package of functions
used by Google to handle P2P sessions in its Google Talk application14, and
it closely resembles Jingle, which in turn provides support for sessions in mul-

10JXTA website: http://jxta.kenai.com/
11libjingle website: https://developers.google.com/talk/libjingle/
12ZeroMQ website: http://www.zeromq.org/
13libnice website: http://nice.freedesktop.org
14See http://googletalk.blogspot.pt/2005/12/jingle-all-way.html, by Google’s

Software Engineer, Sean Egan

http://jxta.kenai.com/
https://developers.google.com/talk/libjingle/
http://www.zeromq.org/
http://nice.freedesktop.org
http://googletalk.blogspot.pt/2005/12/jingle-all-way.html

2.3. MPI 19

timedia applications like VoIP. Libjingle supports connections through NATs
and firewalls (it implements the ICE protocol and, therefore, also STUN),
and also provides aid with handling proxies and parsing XML messages15,
which it uses for communication, similarly to JXTA.

ZeroMQ is an open-source asynchronous socket library aimed mostly at
clusters and supercomputers and capable of providing concurrency capabili-
ties for such systems. It is designed to handle a large number of connections
simultaneously and support easy workload distribution and various types of
communication patterns, including master-workers, pipelining or all-to-all
connections16. Nevertheless, it is not its goal to handle the paradigm of P2P
networks, being more suited to build server systems. It is, nevertheless, an
example of how embedded communication patterns can simplify code.

Finally, similarly to libjingle, libnice also implements the ICE standard
and automatically handles NAT traversal, becoming useful for creating P2P
data streams with UDP or its pseudo-TCP implementation. Libnice is mostly
suitable for multimedia applications, but the TCP-over-UDP option adds the
necessary reliability for applications where packet loss is a problem, such as
when running parallel algorithms.

2.3 MPI

Message Passing Interface (MPI) is a communications protocol based on
message passing and independent of programming language, designed to work
with most models of parallel computer systems [7]. Essentially, MPI warrants
high-performing inter-process communication in a parallel program within a
distributed memory system. However, given its high portability, MPI can
also exist for shared memory architectures or hybrids of the two [7]. Two
arguably well-known public examples of MPI implementations are MPICH17

and Open MPI18, though implementations exist in many languages, the most
prominent of which being C, C++ and Fortran. These generally consist
of a programmer API that contains many primitives for point-to-point and
collective communications, both synchronous and asynchronous, making it
possible to build applications that follow several distributed models [7].

15See https://developers.google.com/talk/libjingle/developer_guide
16ZeroMQ’s patterns’ specifications can be found at http://rfc.zeromq.org/
17Official website: http://www.mpich.org/
18Official website: http://www.open-mpi.org/

https://developers.google.com/talk/libjingle/developer_guide
http://rfc.zeromq.org/
http://www.mpich.org/
http://www.open-mpi.org/

20 CHAPTER 2. STATE OF THE ART

MPI is standardized and has wide use, typically by institutions that want
to run demanding applications on a cluster of computers or a supercomputer
for their personal use. It is common to find such distributed computing envi-
ronments built with high-speed interconnects to reduce the communication
overhead limitations of the model [44]. Due to the environments, distributed
memory implementations are quite different from shared memory APIs like
pthreads19 and OpenMP20. Nevertheless, the distributed memory approach
can be used even in programs running within a shared memory model sys-
tem, as the two concepts can actually complement each other, by running
multi-threaded applications on multiple processors in the same host. MPI
implementations are free to choose which type of memory to use between
processes, based on the environment.

Contrasting with the P2P environment, MPI was built mainly for con-
tained groups of machines which are known and pose no threat. This means
that security is not necessarily a relevant aspect in MPI applications [45],
as its focus is on low latency, scalability and portability. For this reason,
MPI is not ideal to support communication between computers in different
networks, a model that faces problems with firewalls and NAT services, as
mentioned beforehand. In addition, because of the way participating pro-
cesses are started, MPI makes it hard to handle faulty nodes mid-processing
(typically, if a node becomes invalid, the whole process cannot proceed) and
the arrival of new nodes, which could still participate to some extent [46],
making it somewhat inviable for direct volunteer computing use.

2.3.1 Fault-tolerant MPI

P2P-MPI21 is a middleware running on the Java Virtual Machine that at-
tempts to provide transparent fault handling (fault recovery is handled by the
middleware and not the programmer) and automatic configuration and dis-
covery of nodes for MPI, addressing some of its inherent problems. P2P-MPI
is composed of three main modules: the Message Passing Daemon, respon-
sible for dynamically finding participating nodes via the discovery service of
JXTA, which the module uses; the File Transfer Service, for transfer of input,
output and executable code between nodes; and the Fault Detection Service,
which produces notifications of unavailable nodes during execution [47]. The
basis of P2P-MPI is on the replication of processes, which is configurable by

19See https://computing.llnl.gov/tutorials/pthreads/
20Official website: http://openmp.org/wp/
21See http://grid.u-strasbg.fr/p2pmpi/

https://computing.llnl.gov/tutorials/pthreads/
http://openmp.org/wp/
http://grid.u-strasbg.fr/p2pmpi/

2.4. SPEEDUP AND COMMUNICATION 21

the user.

Also related, Volpex MPI [48] is both a project — VolPEx: Parallel Exe-
cution in Volunteer Environment — and an MPI library, with the objective of
robustly executing MPI jobs in volatile environments such as public-resource
computing, enabling jobs to progress even under frequent node failures. It
tried to solve the aforementioned problem of mid-processing node failure and
arrival by using mainly two features:

1. the efficient replication of MPI processes in the network (an approach
frequently used to reduce this problem, as seen before with BOINC
jobs, P2P-MPI and fault-tolerant applications in general), in which
the slowest replicated nodes do not considerably hinder progress of the
fastest and system progress is made by the latter.

2. the logging of messages in the sender, so that messages are kept and
can be re-delivered later to nodes that fall behind. Nodes fail to keep
up with the progress of the fastest machines due to either their slowness
or the fact that they are recovery from a checkpoint.

A suggested improvement was the implementation of checkpoint-restart
of processes. This means that nodes that arrive can start their job from the
latest checkpoint of another node that is ahead, thus more efficiently repli-
cating the already done work in case of failure. Volpex MPI uses some ideas
previously suggested by implementations such as FT-MPI [49] and MPICH-
V [46]. The first addresses these problems through the extension of MPI’s
specification to support communicator states such as “detected”, “recovered”,
“failed”, among others, instead of the simple MPI valid/invalid distinction.
Faults are handled as desired by the application, at the MPI communicator
level [49]. On the other hand, MPICH-V uses a memory of sent messages
for posterior delivery [46], a concept similar to the message logging present
in Volpex MPI. Despite these improvements towards volunteer computing,
Volpex MPI is still not adequate for our target of running on nodes across
different networks, as it only runs locally using MPI [48].

2.4 Speedup and Communication

In the interest of our research, we need to be able to formulate to some
degree the benefits of a distributed model to volunteer jobs, so as to predict

22 CHAPTER 2. STATE OF THE ART

what speedup is realistically expected from applications running in various
nodes. Hence, we will briefly go over the Amdahl’s and Gustafson-Barsis’s
laws of speedup, review the aspects that are specific to our environment and
how communication overhead can be included in these known equations.

2.4.1 Amdahl’s Law

Amdahl’s Law, formulated after the work of Amdahl [50], states that, if
we define s as the non-parallelizable fraction of time spent by an algorithm
(its serial percentage) and Tseq the time that the same algorithm takes to
complete on a single CPU, then, on a parallel system with N processing
units, that algorithm will take Tpar time, defined as:

Tpar = s× Tseq + (1− s) Tseq

N
(2.1)

That is, the parallel section of the algorithm would be equally split among
all CPUs, so that its running time would effectively be divided by N . This
allows us to understand what speedup S that parallel system would achieve
when compared with the sequential or single-CPU system. The formula of
speedup, obtained by dividing the sequential running time by the parallel
running time, then becomes, according to Amdahl’s Law:

S(N) = Tseq

s× Tseq + (1−s) Tseq

N

(2.2)

When Amdahl’s work was first published, it brought concern that parallel
systems were very limited performance-wise. For example, even if the paral-
lelizable fraction of an algorithm is only 5% of the total time, we can observe
from the speedup formula that the maximum achievable speedup (that is, the
speedup for an infinite number N of processing units) is only 1

s
= 1

0.05 = 20.
This means that no matter how much parallel processing power we have to
run the algorithm, we would only be able to run it 20 times faster than the se-
quential version, as the algorithm can never run faster than the time it takes
to run its sequential fraction. Furthermore, this is for a parallelizable frac-
tion of 95%, which can actually be much lower and subject to several kinds
of overhead, meaning that in a real situation the benefits of parallelization
can be even fewer.

2.4. SPEEDUP AND COMMUNICATION 23

2.4.2 Gustafson-Barsis’s Law

Taking into account how algorithms are generally run in modern parallel
systems, Amdahl’s Law might not clearly reflect what a parallel system is
capable of and how it can use its resources. When running a massive com-
puter problem in multiple machines, the problem size is usually increased
according to the number of machines, to a point where the sequential frac-
tion becomes close to negligible and we can achieve an almost linear speedup.
Furthermore, if the algorithm is simply run sequentially on each machine, we
are not even trying to reduce the parallelizable fraction and total runtime of
the algorithm; we are, in fact, keeping the running time constant and sim-
ply executing N tasks in parallel, so that all of them complete in that time.
This means that the number of work done is increased while maintaining
the sequential factor constant in the parallel part; hence, the sequential part
never dominates the parallel part as N grows, challenging Amdahl’s Law.
These different perspectives of how speedup is attained are possible operat-
ing examples of the scaled speedup equation suggested by E. Barsis and later
written by J. Gustafson [51], which created the Gustafson-Barsis’s Law:

S(N) = s + (1− s) N

s + (1− s) (2.3)

In the above equation, which can be simplified to S(N) = s+(1−s) N , the
problem size is intended to scale with the number of processors N , meaning
that the sequential time, s + (1− s) N , also grows linearly with N and, thus,
so does system speedup.

Yuan Shi later showed that Amdahl’s and Gustafson-Barsis’s laws were
mathematically equivalent, despite outputting different speedup values for
similar values of s [52]. The reason for this, as we mentioned, is a matter of
perspective, as both laws are in fact the same, but formulated with a different
concept of serial percentage of an algorithm.

2.4.3 Communication overhead

In a distributed environment, there are some additional issues that have
to be accounted for and that do not exist in a contained multi-core machine.
One very important factor in distributed computing is communication. Con-
trasting with a single-CPU machine with shared memory environment, where
a program needs no communication, in distributed computing and even in

24 CHAPTER 2. STATE OF THE ART

multiple-CPU machines, communication exists when exchanging data be-
tween multiple processes. When a processor thread is busy communicating
data, it cannot do processing at the same time. Because of this, increasing the
number of CPUs participating in the algorithm can actually be detrimental to
the running time, as more communication can be introduced between them,
depending on the application. Furthermore, the distance between connected
CPUs can influence the time it takes for data to reach the target process —
even at the speed of light — as they might be in different boards, machines
or rooms (even countries, if global communication is considered viable). The
time it takes for intermediate routers and access points to process packets of
data also adds to this latency. The laws of Amdahl and Gustafson-Barsis are,
therefore, not acceptable for calculating speedup in these environments, as
they have no consideration for the overhead that communication introduces
in such a distributed parallel system.

In [53], Li and Malek recreated Amdahl’s Law for a multiprocessor envi-
ronment. Generically, in their work, each processor/node exchanges a certain
quantity of data and does a certain number of tasks, with each of these tak-
ing some amount of time to complete. They also considered that processing
might not be uniform among nodes, implying that one or more nodes might
finish their jobs sooner or later than others and affect total execution time.
In their research, two different possibilities about communication dictate the
speedup that can be achieved: communication can range from fully parallel
(i.e. data sent between nodes is unaffected by other communications in the
network and can be done immediately) to fully sequential (i.e. every transfer
is made in order, one after the other) [53]. This is essentially the difference
between considering only the longest data communication and summing the
total time of all communications during execution.

Based on the parallel execution time of Amdahl, in Equation 2.1, a simpli-
fied formula that averages the singular communication and processing times
per node was written by the authors as:

Tpar = s× Tseq + (1− s) Tseq

N
+ Tcomm (2.4)

Where:

• Tseq: running time of the algorithm in a single processor system
• s: percentage of the algorithm that we cannot parallelize
• N : number of participating nodes
• Tcomm: total communication time in the parallel algorithm

2.5. DISTRIBUTED APPLICATIONS 25

This equation aggregates the individual jobs and communications of each
node and assumes the processing is uniform. Nevertheless, as stated above, Li
and Malek also defined the formulas for non-uniform behavior and equations
with much finer granularity of communication and processing, which we are
not going to further explore here. Based on Equation 2.4, speedup is then
given in the following range, as the system shifts from fully sequential to fully
parallel communication (left and right part of the equation, respectively):

Tseq

s× Tseq + (1−s) Tseq

N
+ Tcomm

≤ S ≤ Tseq

s× Tseq + (1−s) Tseq

N
+ Tcomm

N

(2.5)

This equation can be simplified to:

1
s + (1−s)

N
+ Tcomm

Tseq

≤ S ≤ 1
s + (1−s)

N
+ Tcomm

N×Tseq

(2.6)

2.5 Distributed Applications

Applications in most Desktop Grid systems are of the embarrassingly
parallel type. This means that, running sequentially, such applications are
easy to transfer to a parallel system, as they contain parts that can run
independently and in a random order in each processor. This is the case
with parameter sweeping applications (essentially consisting of cycles that
test each possible parameter with no relation to previous ones) and is the
kind that thrives on volunteer grids. However, many applications do not
follow this model; in fact, some are already hard to parallelize in shared
memory systems, and even harder to program in a distributed memory model.
Nevertheless, there are applications that, in fact, benefit from running on a
communication-enabled system, be it following a master-workers model or a
fully distributed one.

2.5.1 Non embarrassingly parallel applications

In [54], the authors propose a multi-objective evolutionary computing
algorithm that runs in parallel on a P2P network. The concept of Island
Models is used, in which several populations of individuals in the algorithm

26 CHAPTER 2. STATE OF THE ART

are created initially, each on a different node, and evolve in parallel, occa-
sionally exchanging their best individuals (at intervals of several generations/
iterations). In their work, the exchange consists of a subset of the Pareto
front22, letting the participating nodes diversify their search space by re-
ceiving individuals from other populations. In the authors’ research, the
distributed model follows the master-workers approach (named “dispatcher-
worker paradigm” in the paper), in which the master is tasked with handling
the migration of Pareto fronts. This is an application example that could
hardly run on a single machine or independently on multiple machines (like
happens in BOINC), as the effectiveness of using these Island Models mostly
only shows when many populations exist in parallel, exchanging elements
and affecting each other’s development.

Papers were also published regarding parallel and distributed algorithms
of Particle Swarm Optimization (PSO), which is another evolutionary com-
puting approach to search spaces, this time based on the innate movement
of birds and other animals in a group. For instance, in [5] the authors im-
plemented a fully distributed PSO based on the asynchronous propagation
of objects along nodes. Each node possesses a small swarm of particles and
sends out some of its best solutions from time to time. There is no waiting
for results on the various nodes, as communication is asynchronous, which
means that the algorithm achieves a communication overhead theoretically
close to zero. The authors also argue that this PSO algorithm has reduced
need for population size control (when compared with other distributed evo-
lutionary algorithms) and it does not require much information to be known
about the global population when creating new solutions/individuals. Figure
2.4 shows an example of communication paths in a distributed application
such as this.

Another example is the suggestion of a distributed model using MapRe-
duce, which can be seen in [55], where the authors propose a P2P MapReduce
system with the participating nodes dynamically acting as slaves or mas-
ters, with the objective of preventing the premature ending of the process
when a single master fails. Yet another work refers Ant Colony Optimiza-
tion in a distributed environment [56], similar to evolutionary approaches
previously seen. In [57], the authors implement a distributed algorithm for a
numerical simulation of the propagation of electromagnetic waves — another
non-embarrassingly parallel application. Still other examples of applications
that do not suit the default master-workers environment of volunteer com-

22Pareto fronts consist of the non-dominated individuals or, put in another way, indi-
viduals that are better than all others in at least one combination of objectives.

2.5. DISTRIBUTED APPLICATIONS 27

Figure 2.4: Parallel evolutionary algorithm — each peer/node has a population.

puting systems are, for instance, alpha/beta pruning of the search space in
game theory (which is, essentially, a type of branch-and-bound) and parallel
tempering, which consists in a simulation of physical systems with Monte-
Carlo (random) methods and the exchange of neighbor information. Replica-
Exchange Molecular Dynamics is an example of this [58].

2.5.2 Generalization

Based on the knowledge that communication overhead exists and is sig-
nificant, applications could typically work on a large-scale distributed system
if they depend on a low or, at best, moderate amount of communication data.
This means that random search methods — like evolutionary algorithms or
simulated annealing — are good fits, as each node can search a different sec-
tion of the search space and still exchange information. The degree to which
communication overhead impacts the speedup of an application is something
that we will see later in Chapter 4.

As the environment of systems like BOINC is also expected to be volatile,
applications in which nodes can improve global progress in a relatively short
time (the time they are available) are also good candidates. With branch-
and-bound methods, for example, when a node arrives it can know from other
nodes what the current best value is and start searching from there, cutting-

28 CHAPTER 2. STATE OF THE ART

off useless branches are potentially contributing to the search in a shorter
timespan. This is a kind of checkpoint-restart, as mentioned in Section 2.3.1.

Finally, like seen before in Sections 2.2 and 2.3.1, one widely implemented
solution in fault tolerance is the replication of data throughout the network.
As our work centers around P2P networks, applications that can improve
from the existence of nodes with similar information are also good examples,
if they maintain low communication rates overall. Again, random search
algorithms fit this condition, as the nodes’ states could be similar but their
current search areas different.

2.5.3 Communication patterns

Another topic of interest for us is the fact that parallel applications in
high performance computing often follow common patterns in the interac-
tions between participating nodes. As we have seen in volunteer computing
systems such as BOINC, the main pattern used is the master-workers model,
seen in Figure 2.5a. Another pattern that also shows frequently is the divide-
and-conquer model, in which the communication between nodes assumes a
tree-like structure of branchings, with each node dividing its data into sec-
tions, keeping part of the data and sending the remaining to the peers below
for processing (Figure 2.5b). This can be seen in algorithms that divide space
or objects in sections, such as a solution for the “closest pair of points” or
the Barnes-Hut simulation to the n-body problem.

In a pipeline, each node has explicit upstream and downstream peers,
from/to where the data comes/goes, respectively. The data is passed along
the nodes as a stream, each node outputting the input of the following nodes
(Figure 2.5c). One example of pipelining is the post processing of images,
where filters are applied in succession and the result sent to the next node
for further handling. Pipelining includes the more specialized ring layout
(Figure 2.5d), where nodes are disposed in a circular way and the first node
is also the last. Ring layouts are useful for more specific objectives, such as
the election process known as Chang and Roberts algorithm [59]. Lastly, we
will also mention the all-to-all pattern, where every node can communicate
with all other nodes. Some parallel evolutionary applications that we have
seen can use this pattern to freely exchange individuals between populations
in different nodes.

There are also frameworks that abstract these patterns of communication
and even some algorithmic structures of computation (branch and bound, dy-

2.5. DISTRIBUTED APPLICATIONS 29

(a) Master-workers layout

(b) Divide-and-conquer (tree) layout

(c) Pipeline layout
(d) Ring layout

Figure 2.5: Common communication layouts

namic programming, among others). These environments are generally called
“algorithmic skeletons” and enable the programmer to implement complex
algorithms with less error propensity and effort. This is achieved by writing
code in terms of generic skeleton constructs, in detriment of explicit “for”
cycles over ranges, “if” conditions and other instructions [60].

The research in [60] shows several examples of such skeleton frameworks,
their parallelism classification (task, data or resolution level) and brief de-
scription, among other things. In the language of our implementation alone,
C++, the authors name ASSIST, Muesli and SkeTo, for instance. ASSIST
defines a language to create parallel applications as a graph of modules and
their interactions. It then provides fault-tolerance, load balancing and other
mechanisms to the nodes of this structure. Muesli supplies skeletons via el-
ements typical of functional programming languages, such as currying and
high order functions, written in C++ methods. It also supports skeletons for
distributed patterns like pipelines or task farming. Finally, SkeTo is distinct
from other algorithmic skeletons in the fact that it essentially implements
operations over parallel data structures such as lists, matrices or trees. As
we will see in later Sections, we have used an approach similar to an algo-

30 CHAPTER 2. STATE OF THE ART

rithmic skeleton in implementing layouts — an essential part of our library
— nevertheless not following any of them directly.

Chapter 3

Internet Group Communication
Library

3.1 Overview

In this Chapter we will detail every relevant feature of the implemented
library, which we named “IGCL”, short for “Internet Group Communication
Library”.

The base idea of IGCL is to allow a group of nodes to execute an appli-
cation in parallel by sending and receiving data among them, much like in
MPI. The advantage of IGCL is allowing these groups to function either lo-
cally or when peers are separated by the Internet, running on common home
networks. This is possible in part because IGCL automates the process of
connecting peers to each other and includes NAT traversal techniques.

In this work, we define that a “peer group” is composed of several nodes,
one of which is special and called the “coordinator”. Other nodes in the
group are simply called “peers”. The job of the coordinator is to know all the
necessary information about the group and manage registration, connections
and termination of peers. These peers can, depending on the environment
where they run, connect to each other directly with a simple socket connect
or with the help of the ICE technique for NAT traversal, which we detailed
in Section 2.2.4. If no better option is possible, there is also the possibility
of peers sending messages to their target peer by relaying them through the
coordinator. This is essentially similar to the third node in TURN relayed
communications. IGCL tries to establish these connections automatically,

31

32 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

first trying the simplest solution — using direct socket connects — and only
then moving on to the ICE mechanism or coordinator-relayed messages, the
last of which can be disabled by the programmer if not desired.

The library allows the programmer to use basic communication primitives
such as send-to, send-to-all, blocking and non-blocking versions of receive-
from and receive-from-any, among others. It also allows the use of config-
urable or predefined group layouts, which provide a means to automatically
place peers inside a well defined graph of communication and specify which
nodes come “before” or “after” them in the structure. This makes it possible
to automate the general distribution of data in applications that use com-
mon patterns of communication, such as task-farming or divide-and-conquer.
This is a feature similar in concept to what the algorithmic skeletons men-
tioned in Section 2.5.3 provide, although it does not try to follow any of them
in design.

We will begin with a comprehensive example of IGCL usage, then mov-
ing on to some specifics about existing methods, layouts and conventions,
and finally explain the technical details of the library. We leave the full
documentation of its public API to Appendix A.

3.1.1 Usage example

Before proceeding, the reader should know that a coordinator and a
peer are respectively represented by the C++ classes igcl::Coordinator and
igcl::Peer. Both types internally function in different ways; however, most of
their API methods are the same, as they inherit the capabilities of the same
base class, igcl::Node.

In Listing 3.1, we give an example of IGCL usage by building a buffering
scheme for a matrix multiplication algorithm. As part of the algorithm, we
will need to send one of the matrices — lets call it “matrix B” — to every
node and then let each of them multiply the whole matrix B by the rows that
they receive from the other matrix — “matrix A”. The code here presented is
executed on a coordinator process and omits the origin of matrixA, matrixB
and resultMatrix, which all are pointers to memory spaces of MATSIZE ×
MATSIZE elements and are globally accessible. We will give a step by step
explanation of this code to guide the reader through the usage of IGCL.� �

1 #include "igcl/igcl.hpp"
2 using namespace igcl;

3.1. OVERVIEW 33

3
4 Coordinator * coordinator;
5
6 void work() {
7 coordinator = new Coordinator(12345);
8 GroupLayout layout = GroupLayout::getMasterWorkersLayout(8);
9 coordinator->setLayout(layout);

10 coordinator->start();
11 coordinator->waitForNodes(layout.size());
12
13 auto buffering = new NBuffering(2, MATSIZE, 1, sendJob);
14 buffering->addPeers(coordinator->downstreamPeers());
15
16 coordinator->sendToAll(matrixB, MATSIZE * MATSIZE);
17
18 buffering->bufferToAll();
19
20 while (!buffering->allJobsCompleted()) {
21 peer_id sourceId;
22 DATATYPE * result = NULL;
23
24 coordinator->waitRecvNewFromAny(sourceId, result);
25 uint row = buffering->completeJob(sourceId);
26
27 for (uint i=0; i<MATSIZE; ++i)
28 resultMatrix[row*MATSIZE+i] = result[i];
29 free(result);
30
31 buffering->bufferTo(sourceId);
32 }
33
34 coordinator->terminate();
35 }
36
37 void sendJob(peer_id id, uint row) {
38 coordinator->sendTo(id, matrixA+row*MATSIZE, MATSIZE);
39 }
 	

Listing 3.1: Coordinator code for matrix multiplication with buffering.

The first step towards using the library is including the IGCL header,
igcl.hpp, as in line 1. Afterwards, we need to create an object of either of the
previously mentioned classes. Listing 3.1 shows this construction is line 7 for

34 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

the coordinator only. In this case the constructor receives its listening port
as argument, for incoming connections. Listing 3.2 shows the constructors
for both classes. In addition to the listening port, a peer node would also be
given the port and IP address of the group coordinator.� �
igcl::Coordinator(int port)
igcl::Peer(int port, const std::string & coordIp, int coordPort)
// examples:
auto node = new igcl::Coordinator(12345);
auto node = new igcl::Peer(50123, 10.5.1.3, 12345);
 	

Listing 3.2: Creating the main IGCL objects

To prepare any of these objects for communication, we need to call their
start method. This will make the node listen on the specified port for new
connections and prepare a thread to handle received messages. In addition,
the Peer’s start method also goes through the process of registration with
the group coordinator. The complete registration process is detailed in Sec-
tion 3.2.4. Before doing that, however, we want to show the reader how to
configure a peer layout, which must be done before starting the coordinator.

In lines 8 and 9 we can see the creation and setting of a GroupLayout
object. In this case, we are using a predefined master-workers layout with 8
fixed nodes and passing it to the Coordinator object with setLayout. This
transforms the coordinator into the master of 7 worker peers that do not exist
yet. Other layouts exist in IGCL, and we will talk about them in Section
3.1.3, but we will continue the example for now.

After setting the layout, we can finally start the object. As we said before,
after starting, the object is ready to receive connections from other peers and
process messages. Nevertheless, the user’s code should normally wait for the
arrival of every peer before beginning. The waitForNodes method can be
used for this, blocking the thread until the specified number of nodes forms
the layout. This number includes the coordinator node itself, meaning that
waiting for one node will immediately return, as the coordinator is already
part of the layout.

When the method returns, we can now execute the algorithm. In this case,
we opted to showcase the NBuffering class of IGCL, which can dynamically
distribute jobs to nodes and keep them buffered with more work to do as
they complete previous jobs. The construction of the buffering object, in
line 13, essentially defines the level of buffering (in this case it is 2, which is
equivalent to double-buffering), the number of jobs (we intend to buffer rows

3.1. OVERVIEW 35

of matrix A as jobs, so there are MATSIZE of them), the size of each job (1
row per job) and what function is used to send a job. For more details about
buffering, refer to Section 3.2.5 and Appendix A.5.

An NBuffering object also needs to know which peers are available to
work. To this end, line 14 sets a group of peers as workers. We used the
method downstreamPeers, available in both Peers and Coordinators, which
returns a vector with all peers that are receivers of information from the
calling node. In the example, the master-workers layout internally defines
that the downstream peers from the coordinator are every other node — and
that these nodes have no downstream peers at all — thus making it easy to
set the peers that should be buffered.

Before starting the buffering process, we will begin by sending matrix B
to every peer. This can easily be done by calling the sendToAll method,
which in this case takes a pointer to a memory location and the number of
elements it contains. The type of the elements is not important (it can be
int, float, double, among others), as it is automatically deduced from the
type of pointer (see Section 3.2.1). The method sendToAllDownstream could
also be used, as it sends the data to all downstream peers and is, therefore,
equivalent in this case (all nodes are downstream from the coordinator).

Now we begin the buffering process. Lines 18–32 show how we start by
buffering jobs to every node and then receive data in a loop until all jobs are
completed. The bufferToAll method relies on the sendJob function that we
passed to the constructor to send the jobs themselves. The buffering class
will call this function with the target node ID and job index every time it
wants to send/buffer something. In our example, sendJob calls the sendTo
method on the Coordinator object, giving it the target ID, a pointer to a
memory location, and the number of elements to send from that memory.
This job consists of a row of matrix A, as we have mentioned.

Inside the loop, in line 24, we use the waitRecvNewFromAny method to
block until the reception of a job result — which is a row of the final result
matrix — from any peer. This method will fill the ID of the source, allocate
memory for the received data and make the given pointer reference it. The
receive methods that are named “New” (see Section 3.1.2 for more details)
can also fill a third argument with the number of elements in the pointed
memory, but in our case we know the size of the result to be MATSIZE.

Once we have the ID of the peer, we can query the buffering object for
the index of this job, letting us know where to insert the received row in the
result matrix. NBuffering keeps the indexes of sent jobs internally, precisely

36 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

to allow such usage. This, of course, implies that jobs are received in the
same order that they were sent in. If this is not the case, peers should be
given the index of their row/job along with it, and then use that index when
returning the result to identify the job.

Still inside the loop, we free the memory pointed to the received result,
which is not needed anymore, and immediately buffer another job to the peer
with bufferTo. If there are no more jobs to buffer, the buffering class will do
nothing. When the algorithm finishes, we call the terminate method on the
Coordinator to cleanly exit the library. The call will trigger a message to all
group peers that will force them to terminate, in addition to terminating the
coordinator itself.

All these methods and the remaining public API are detailed in Appendix
A for reference.

3.1.2 Naming conventions

IGCL follows some naming conventions of our choice. We previously
mentioned the labeling of downstream peers as the ones that are receivers
of information from this peer — i.e. peers that are “after” in the layout.
Similarly, upstream peers are located “before” in the layout. If a node A is
downstream from node B, B is upstream to A. Nodes are able to send data to
peers before them as they do with peers after, seeing as they have an active
connection to each of them. This generally happens when returning results
to these nodes.

We have at our disposal four basic send methods: sendTo, sendToAll,
sendToAllDownstream and sendToAllUpstream. These are detailed in Ap-
pendix A.1.1 of the documentation, but their functions should be under-
standable from their names. Methods that end in “To” or “From” have the
related target/source node ID specified as the first argument, as happens
with sendTo or the various “receive from” methods.

As can be seen from the API in Appendices A.1.2 and A.1.3, there are
8 different receive methods available, which result from all combinations of
blocking/non-blocking, receive from-one/from-any, and allocates/does not al-
locate memory. For instance, the following method provides a way to receive
a single value of any type from any peer:

3.1. OVERVIEW 37

template<typename T>
result type waitRecvFromAny(peer id & id, T & value)

In its name we can see several keywords/expressions, namely wait, recv
and from any. Recv simply means that this is a receive method. Wait means
that the method blocks until there is something to read. Finally, from any
denotes that the method will read the value from any peer (the first whose
data arrives) and not a specific one. It also sets the ID of this peer in the
argument id.

Likewise, we now present another method, which has the opposite key-
words of the previous method:

template<typename T>
result type tryRecvNewFrom(peer id id, T ∗ & data, uint & size)

In this case, the method is non-blocking (it returns NOTHING when
there is nothing to receive), as given by the keyword try. Furthermore, the
new keyword means that new memory has to be allocated, in this case to
store data of unknown size and make data point to it. Lastly, this method
uses from instead of from any, meaning that the method will only try to
receive values that come from the peer specified by the id argument.

As we said, all combinations of these keywords exist; the list of possi-
ble receive methods is then composed of waitRecvFrom, waitRecvFromAny,
waitRecvNewFrom, waitRecvNewFromAny, tryRecvFrom, tryRecvFromAny,
tryRecvNewFrom and tryRecvNewFromAny. All of these are further ex-
plained in Appendices A.1.2 and A.1.3.

3.1.3 Group layouts

As seen in Section 3.1.1, the IGCL group coordinator supports specify-
ing a group layout via a set method, setLayout, which takes a GroupLayout
object that defines which peers communicate with which, and uses that in-
formation when registering arriving peers. The GroupLayout objects can be
created either manually, using from and to methods, or via some predefined
common layouts, seen in Listings 3.3 and 3.4. We will focus on predefined
layouts. For more information about manual layouts refer to A.4.3 in the
documentation Appendix.

38 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

Listing 3.3 shows all fixed layouts of IGCL; i.e. those that take a fixed
number of participating nodes as argument (always including the coordina-
tor). These layouts are used in algorithms that expect a specific number of
nodes; the coordinator can wait for that number of peers to arrive by using
waitForNodes. As a specific of the tree layout, we also provide the argument
degree, which is number of sections in which data is divided at each tree
depth level (i.e. its branching factor). In all these predefined layouts, IDs
are attributed in a certain order, from 0 to nNodes− 1. This order and gen-
eral pattern layout should be clear from Figures 2.5a to 2.5d, from Section
2.5.3.� �
const GroupLayout getMasterWorkersLayout(uint nNodes)
const GroupLayout getTreeLayout(uint nNodes, uint degree)
const GroupLayout getPipelineLayout(uint... nNodesOfSection)
const GroupLayout getRingLayout(uint nNodes)
const GroupLayout getAllToAllLayout(uint nNodes)
 	

Listing 3.3: Predefined fixed group layouts

Furthermore, IGCL defines two free-formed layouts, which do not need a
specific number of peers. Free-forming works in layouts that have a lenient
structure in which the addition of a new node might not change the way
an algorithm works. Listing 3.4 reveals these two layouts to be the master-
workers and all-to-all. These kinds of layouts with no specific number of
nodes can be helpful in an embarrassingly parallel application, where nodes
can arrive at the system during execution and still receive data to process.
They can also be used in applications with replication of nodes, where an
arriving node can receive from other nodes the current state of processing
(for example, the current best solution found, which works as a bound).
Likewise, nodes can leave at any time and let their data be processed by
other nodes. This is especially useful when used in conjunction with IGCL’s
buffering class.� �
const GroupLayout getFreeMasterWorkersLayout()
const GroupLayout getFreeAllToAllLayout()
 	

Listing 3.4: Predefined free-formed group layouts

Layouts directly affect the values returned by methods downstreamPeers
and upstreamPeers, as well as the related nDownstreamPeers and nUpstream-
Peers that return their sizes. They also affect the usage of higher order
functions. These functions are two groups of methods seen in Appendices

3.1. OVERVIEW 39

A.1.4 and A.1.5 of the documentation, which are used to ease the distribution
and collection of results in two common interaction patterns: master-workers
and divide-and-conquer/tree. Later, in Section 4.4, we will briefly demon-
strate their usage. We should note that methods for the master-workers and
divide-and-conquer patterns are only compatible with the layouts returned
by functions getMasterWorkersLayout and getTreeLayout, respectively.

Layouts also define if the non-coordinator peers know the total number of
peers in the group or not, given by the method getNPeers. This is affirmative
in the case of fixed layouts and negative otherwise, as the value is set upon
registration with the coordinator. Nevertheless, peers know their connected
nodes and their location in the layout (up or downstream), whatever the used
layout.

Similarly to MPI, we can use getId, which returns the ID of the node,
to write code like in Listing 3.5, in which different methods are called for
the coordinator (ID 0) and the remaining nodes. In conjunction with getId,
getNPeers can be used by peers in fixed layouts to calculate their share of
work based on their ID and number of working peers. In the given example,
however, we take a simpler approach to the matrix multiplication example,
this time without buffering.� �

1 if (node->getId() == 0) // master distributes data to slaves
2 {
3 node->sendToAll(matrixB, MATSIZE * MATSIZE);
4 node->distribute(matrixA, MATSIZE, MATSIZE, iniRowIndex,

endRowIndex);
5 }
6 else
7 {
8 node->waitRecvNewFromAny(masterId, matrixB);
9 node->recvSection(matrixA, iniRowIndex, endRowIndex, masterId);

10 }
 	
Listing 3.5: Different calls by checking the ID

As seen, sendToAll is used to send matrix B to every peer and wait-
RecvNewFromAny to receive it in each node. Dividing matrix A equally
among all nodes is, in this case, done through the specialized methods for
master-workers task distribution, provided by distribute and recvSection.
These are part of the higher-order methods we mentioned before. Comple-
mentary methods exist for collection of final results, aptly named sendResult
and collect. These four methods and a more complete example of matrix

40 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

multiplication are exemplified in Listing B.3 from the “code examples” Ap-
pendix.

3.2 Technical details

IGCL is implemented in C++ and uses some features of its most re-
cent version, C++11. Among these, we can mention std::function pointers,
std::thread, the related std::mutex and std::condition variable, for each cy-
cles, the “auto” keyword, variadic templates, and perfect forwarding of object
references, which can be done through rvalues [61]. We took advantage of
these features for commodity and, in some cases, performance, without rely-
ing on external libraries.

Since C++11 does not provide a new socket programming interface[61] and
we did not want to depend on the Boost1 or POCO2 libraries, IGCL utilizes
the default C sockets — the Berkeley (BSD) socket interface3 — internally to
send and receive messages using TCP, assuming nodes can establish a direct
connection without the help of the ICE technique.

For communication between nodes behind NATs we decided to use libnice,
which we previously described in Section 2.2.5. Libnice is the only depen-
dency of the library, though libnice itself depends on GLib4. As IGCL is
not pre-compiled, the programmer is required to include the igcl.hpp header
file to access the public API. If he/she wishes to run an algorithm in a lo-
cal cluster where nodes know each other’s locations, libnice is not needed;
consequently, we decided to include a preprocessor definition recognized by
IGCL to compile without libnice functionality: DISABLE LIBNICE. Thus,
the programmer can use the library by first defining DISABLE LIBNICE
and then including the library, as shown in Listing 3.6.� �

1 #define DISABLE_LIBNICE
2 #include "igcl/igcl.hpp"
 	

Listing 3.6: Including IGCL while disabling libnice.

1See http://www.boost.org/
2See http://pocoproject.org/
3See http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_

chap02.html#tag_15_10
4See https://developer.gnome.org/glib/

http://www.boost.org/
http://pocoproject.org/
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_10
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_10
https://developer.gnome.org/glib/

3.2. TECHNICAL DETAILS 41

3.2.1 Messages and data

In IGCL, a message involves three sends of data: firstly the message type,
then the size of the data block, and finally the data block itself. The type
of message is never seen by the programmer, as it is only used internally to
recognize messages and execute the actions associated with them. Several
types are used during registration, some more for send-to and send-to-all
operations, relayed communication, termination, among others. The size
of the data block lets the application know exactly how many bytes are
coming, allocate the necessary space and progressively read data from the
socket descriptor until everything is received. As the number of bytes in the
message type (1 byte) and in the size header (4 bytes) are known, IGCL can
deal with all messages in the same way, first reading a type, then a size and
lastly the data block, whose size becomes known via the size header.

It would be possible to send these three message parts as a single block
instead of using one send call for each, if all were written to a secondary
buffer before sending. We did not test this approach to see how it compared
to ours, performance-wise. On a related note, we are aware of the existence
of Nagle’s algorithm, which can end up joining data from multiple sends into
one block at the cost of slightly higher send delays. Disabling the algorithm
did not bring us performance advantages, as far as our tests could tell.

As for handling of data in IGCL, send and receive methods are C++
templates that allow the programmer to send any type of data through the
network without runtime checks (methods with different type parameters are
automatically create by the compiler). This approach releases the program-
mer from the necessity of having to cast memory pointers and specify sizes
in bytes whenever he/she wants to send or receive data. With templates,
the compiler can easily infer the total size in bytes of an array just from
the number of elements it contains, as it already knows the size of the type.
Send methods also work independently of connection types, as the library
understands all possibilities. If a send-to-all method involves sending data to
peers with different connection types, IGCL will handle this automatically.

Although any (reasonably sized) type of object can be sent through a
connection, IGCL does not provide serialization — objects are, in fact, inter-
nally sent as arrays of bytes —, which means that pointer references inside
objects will not be followed and only their value will be sent (becoming in-
valid on another process). Nevertheless, IGCL can correctly send and receive
std::string objects as a special case. To avoid programming errors, the send-
ing of a pointer type as a value is not allowed and will trigger a compile

42 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

time error. We should note that IGCL currently only supports little endian
systems, due to being tested only on Intel x86 architectures.

3.2.2 Threading and blocking queues

The reception of messages is handled through a socket select or libnice
callback functions; either way, messages are immediately checked and pro-
cessed based on their type. Most types represent messages that are internal
to the library, but others are sent by the programmer’s application and are
not always processed by his/her code the moment they arrive, as the algo-
rithm can be doing other things. IGCL’s solution to avoid blocking until
the user’s code handles the message is to use queues for the application’s
messages, where they can be stored for later extraction. Thus, public API
receive methods are not directly linked to sockets, but to queues of data.

When a message from user code arrives, its source node is obtained from
the socket descriptor or stream it arrived from, and the message itself is
placed in a queue that ICGL associated with that source as part of the
node’s registration. Figure 3.1 illustrates this process. This is all done by
the receiving thread and involves allocation of memory to save the received
message. A performance difference exists between calling malloc (C function)
and calling new (C++ operator), as the latter also calls the objects’ type con-
structor. We decided to use the faster of the two, malloc, as we allocate
memory to immediately write over it with the received bytes, invalidating
any useful construction of objects from new. This implies that the user must
take care of freeing the received data at some point, as written in the docu-
mentation for the relevant methods (see Section A.1.2 of the Documentation
Appendix).

Although only one queue is used per source, there is another global queue,
simply called the “main queue”, where IGCL puts references to received mes-
sages from all sources, in the order they are received. These is IGCL’s mech-
anism to support receive-from-any methods, when the source is unimportant.
What this means internally is that, when dequeuing elements from the main
queue, they are also removed from the respective queue; likewise, when de-
queuing from an individual queue, the front of the main queue is checked for
a reference to this queue for deletion. If it is not found because it is behind
a reference to another queue (of another node’s message that arrived first), a
counter will be set with the current number of invalid references that exist in
the main queue for this queue. These counters will be used in the next check

3.2. TECHNICAL DETAILS 43

Figure 3.1: Reception of messages and queue storage in IGCL.

of the queue front. With this approach, we avoid using a secondary thread
for periodic garbage collection on this special queue, at the cost of letting it
temporarily grow to a potentially large number of invalid elements — until
a dequeue in some individual queue removes them from the front.

All these queues are thread-safe and have a blocking dequeue method,
which supports that threads wait until there are elements to dequeue (plac-
ing elements in these queues wakes threads that are waiting). This is useful
to implement the blocking receive methods in the public API (seen in Ap-
pendix A.1.2). The queues also implement a try-dequeue, that lets threads
test the queue for the presence of elements and return a negative value if
they could not dequeue anything (in Appendix A.1.3). Although the use of
these internal queues is thread-safe, they are not used or seen by the pro-
grammer directly (only indirectly, in calls to receive methods), and IGCL
itself does not guarantee thread safeness if multiple threads access the public
API concurrently.

3.2.3 Performance

When implementing send and receive methods, the handling of messages,
and the library in general, some care was taken with the performance of code.
Whenever possible, we avoided repeating our own instructions and allowed
the compiler to generate code that was efficient. See Listing 3.7 for the IGCL

44 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

implementation of the public method sendTo. We can see that the method
is templated to support multiple types and one of its arguments is actually
a variadic template (which can be composed of several arguments, even of
different values) passed via an rvalue reference (see [61]). As the method
itself does not even touch the arguments in data, it simply forwards them
along to an auxiliary method, exactly as they were received.� �

1 template <typename ...T>
2 result_type sendTo(peer_id id, T && ...data)
3 {
4 if (!knownPeers.idExists(id))
5 return FAILURE;
6
7 const descriptor_pair & desc = knownPeers.idToDescriptor(id);
8 result_type res = auxiliarySendTo(desc,

std::forward<T>(data)...);
9 return res;

10 }
 	
Listing 3.7: Implementation of the sendTo method.

The use of a variadic template might seem nonsensical, due to the fact
that only two constructions of send methods exist: one that sends a single
value and another that sends an array of values with a certain size. Neverthe-
less, by building sendTo in this way, we can implement both cases in a single
method instead of two, by forwarding the arguments to functions below and
let the compiler decide which methods to call. Naturally, the lowest-level
send methods in the library need to have implementations for both cases.
In this case, a “Communication” class possesses these basic send and receive
methods, which provide some error handling for socket writes/reads when
not every byte could be written/read at once (unless the error was severe,
the class can retry writing/reading the remaining bytes).

The choice of internal structures is also important for performance. For
example, every IGCL node possesses a structure that represents the nodes
currently known to it. This structure, a peer table named “knownPeers” is
frequently accessed to check the existence of peers, convert their IDs into the
respective socket or stream descriptors (or the reverse), get the type of their
connection or a list of all peer IDs, among other functions. If these checks
and conversions were slow, it would affect almost every part of the library.
Therefore, it uses C++ maps for logarithmic time searches. This also happens
in other structures, such as the ones that map descriptors to their respective

3.2. TECHNICAL DETAILS 45

receive queues (see Section 3.2.2).

Some relevant and mostly small methods in the library are also inlined,
thus hinting the compiler to directly inject the inline method’s instructions
in the place of calls to it. This happens, for instance, in most calls to the
NBuffering class and methods of the frequently accessed peer table we men-
tioned before (of which an example can be seen in Listing 3.7). It avoids
having too many functions calls for a single IGCL operation in some places,
which can be expensive. However, ultimately, the compiler decides if it wants
to inline functions or not, and, when optimizations are turned on, it might
do so even in functions that are not hinted as inlined.

Some other things we did in IGCL, such as passing complex structures by
reference or returning constant references, also bring performance advantages
and sometimes hint the compiler to place the result of an operation directly
at the target, without copying objects around. In the case of the down-
streamPeers and upstreamPeers methods, for example, the returned value is
a constant reference to the internal vector that contains such peers, making
it easier for the compiler to understand that it is not necessary to copy the
vector if the programmer declares the recipient as also a constant vector (thus
never changing its contents). A similar thing can be seen again in Listing
3.7, where the result of the call to idToDescriptor can be optimized by the
compiler and never produce copies of the respective object. Once again, these
are not guaranteed to happen — apart from passing values by reference —,
as compilers are mostly free to choose how they translate instructions.

Something that hinders performance and that we could not solve is related
to libnice. When IGCL wants to send data through one stream created by
libnice, it may not be able to send all data at once, which is not a rare
occurrence, and can also happen with normal sockets especially if the block
of data we are trying to send is relatively large. However, when libnice fails
to send all data at once in its reliable TCP-over-UDP mode, in forces the
CPU to wait for a library callback to retry writing the remaining bytes in
the stream. This wait is sufficient to introduce severe performance loss when
sending a lot of information (see Section 4.8), but should not occur otherwise.
For us, the option of using simple UDP connections in libnice (thus avoiding
this callback at the cost of reliability) is not viable, as a failure in delivering
one packet to the target or receiving packets in the wrong order is enough to
completely break an algorithm.

46 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

3.2.4 Registration

IGCL provides an automated method of registration for peers in the
group, which requires no further action of the programmer than specify-
ing the coordinator listening IP and port. We refer to Figure 3.2 for the
following explanation.

Figure 3.2: Sequence diagram of the registration process in IGCL.

Like every other node, the coordinator of the group has an address to
listen for new connections. When a new peer arrives and connects to this
address, it then sends a register message to the coordinator to start the
registration process. The coordinator, which always has an ID equal to 0,
will reply with the ID it attributed to this peer. These nodes’ IDs are given
starting from 1 and in increments of one, so that the last peer that registers
in a fixed layout will receive an ID equal to the size of the layout minus
one. Along with the ID, the peer will also receive the list of IDs of other
nodes that it should directly connect to (as defined by the layout), as well as
which peers are after and before in the layout, in case of fixed layouts. For
free-formed layouts, the peer will automatically consider all connect-to peers
to be “next” (it only happens in the free-formed all-to-all layout).

The next step is for the peer to individually ask the coordinator for in-
formation about each node it should connect to, based on their IDs. These
are now the only piece of data the peer has about other nodes. As part of
the request, the peer can also provide its own information — information
which we will interchangeably call “peer credentials” — for the target peer,

3.2. TECHNICAL DETAILS 47

if needed for the connection.

It was a requisite for us that the registration process was asynchronous
from the viewpoint of the coordinator and target peer, despite several mes-
sages and responses being involved. This was because these nodes could
already be working on a job (when in free-formed layouts) or have to re-
spond to other peers, and thus could not block waiting for another peer
to register. Therefore, every node only responds to registration/connection
messages when requested, although the requesting peer will, by design, have
to establish connection to a peer before requesting the credentials of fur-
ther peers. For this asynchronism, the coordinator and requesting peer both
maintain state about ongoing requests for connections.

Upon receiving a request for peer information, the coordinator acts as an
broker and contacts the target peer. This peer then provides the requested
credentials to the coordinator, at which point these can then be sent back to
the requesting peer. In libnice connections, both connecting peers need each
other’s information to successfully connect; thus, in this case, the requesting
peer is obliged to provide its own information along with its original request,
which the coordinator temporarily saves. Later, when the target credentials
are acquired and given to the requester, there is an additional step in which
the coordinator also gives the (previously saved) credentials of the requesting
peer to the target. Both peers should now have the necessary information to
directly connect to each other.

One important thing to note in this process is that the coordinator does
not retain peer credentials for giving them to other peers. This is inten-
tional. For ICE-free connections, credentials are simply the address and
listening port of the peer and, indeed, should always be the same; however,
the credentials in ICE connections include a list of address candidates, which
vary each time they are requested. For consistency, we opted to maintain
the same scheme for the two connection types.

Figure 3.2 does not show that nodes can connect in three different ways,
which we previously mentioned: 1. using C sockets; 2. using the ICE mech-
anism provided by libnice; or 3. indirectly, by relaying messages through the
coordinator. This is also the priority order for testing connectivity. The Fig-
ure shows, however, the global process undertook by the requester for cases
1 and 2.

When first requesting peer info through the process in Figure 3.2, the
node requests enough information to try a connection using normal sockets.
After the coordinator receives that information from the target peer, it sees

48 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

if the public IPs of the requester and target node are the same. If they are,
it will alert the requesting node when it gives it the target credentials. The
requester can now try to connect locally, using the listening port provided
by the target, which should result in an optimal, local, connection. If this
fails, it will then try to connect on its public IP. If both of these fail, peers
need the help of ICE to establish a connection, so the requester repeats the
process by now asking for the respective “libnice credentials” as per Figure
3.2. Finally, if libnice cannot establish the connection due to very protective
routers, the node can simply set the connection to the node as relayed through
the coordinator. For performance reasons in some algorithms, IGCL provides
the function setAllowRelayedMessages(bool active) in the Peer class, which
can disable relaying. If relaying is inactive and a connection to some peer is
impossible, peers simply send a de-register message to the coordinator.

3.2.5 NBuffering implementation

For several applications, a problem arises if the heterogeneity of the par-
ticipating machines implies, for example, that one will finish much later than
others. When this happens, dividing the data in equal sections, one for each
peer, is not adequate, as a lot of time is wasted waiting for the results. It is
for this reason that we implemented a class for N-buffering, whose usage we
showed in Section 3.1.1. This class — NBuffering — is intended for applica-
tions following the master-workers model, and allows data to be buffered in
smaller quantities to the worker nodes.

The summary of what the class does internally is to control what and
how many jobs are sent to each node. Jobs are sent via calls to a user-
defined send function until they fill the queue for each peer (which has a
size equal to the buffering level). When a result arrives, in the programmer
code, he/she only has to call a method on the NBuffering object to mark
the job as completed and request buffering again for that peer, as we saw
on Section 3.1.1. The NBuffering class is completely oblivious to what the
user is sending as jobs, because these are internally represented only by their
index in the total number of jobs to process — which in turn is given in the
object constructor. Queues of jobs are associated with their respective peers
via a map, much like the blocking queues in Section 3.2.2.

As we mentioned before, buffering is a good complement to the free-
formed master-workers layout, as nodes can enter and leave at will and still
do jobs. If a connection to a peer fails, the class supports removing a peer

3.2. TECHNICAL DETAILS 49

from its internal structures. This will effectively re-assign the jobs that were
pending for that peer (jobs that were sent but are not completed yet) to a
special queue that is prioritized when buffering data to other peers in the
future. Appendix A.5 should be consulted for more details.

3.2.6 Error handling

IGCL provides basic forms of error handling to the programmer, depend-
ing on the layout and algorithm. Some methods return a result type value,
which contains one of three possible indicators: SUCCESS, NOTHING or
FAILURE. These values denote whether, respectively, the operation was suc-
cessful, there was nothing to do (ex.: in a non-blocking read operation), or the
operation failed. This enables the programmer to handle the result. When
errors happen, the library can also automatically clean up after disconnecting
peers or terminate execution, depending on the group layout used.

As we saw in Section 3.1.3, there are fixed-size layouts that are espe-
cially suited to controlled environments, and which would incur in error if
a node suddenly disconnected. When a connection fails while using this
type of layout, the group coordinator automatically ends execution in every
node by sending them a termination message and then proceeding to exit
itself. By contrast, in free-formed layouts, the coordinator or any connected
node that notices the disconnection of the peer will automatically handle its
de-registration, cleaning its reception queues, node information and other in-
ternal structures. Methods that return lists of known peers, connected peers
or their sizes are immediately affected by the de-registration.

As connection errors can be found in user threads calling IGCL send
methods, the internal thread that receives messages, seen in Section 3.2.2,
could be blocked in the socket select method at that time and not be informed
of the error. To solve this problem, this thread uses a timeout in select, which
lets it check from time to time for an existing termination state and cleanly
quit. The libnice API also has its own methods to exit cleanly, which IGCL
uses.

50 CHAPTER 3. INTERNET GROUP COMMUNICATION LIBRARY

Chapter 4

Results and Discussion

4.1 Experimental setup

For our tests, we utilized several environments, all of them virtualized.
We will refer to these environments by their numbers throughout the next
sections:

1. The first is a cluster composed of 8 virtual machines existing on a
physical computer possessing an 8-core Intel R© Xeon R© E5-2650 CPU
with 2 GHz.

2. The second environment is also a cluster, made of 6 virtual machines,
each with access to a Intel R© CoreTMi7-2600 CPU with 3.4 GHz. This
CPU has 4 hyperthreaded cores, essentially giving us the ability to run
eight processing threads at once.

3. The third environment is a single machine with an Intel R© CoreTMi7-
3632QM CPU with 2.2 GHz. This CPU also has 4 hyperthreaded cores.
The machine was connected by cable to the network’s router and using
an Internet connection capable of a theoretical download rate of around
12 megabytes per second (MBps) and upload rate of 5 MBps.

4. Lastly, to allow us to execute tests with communication through the
Internet, we made use of a public IP server, also virtualized. This
server runs on the same physical machine as environment 1, and thus
has the same features. For tests, we will never refer to this environment
alone, but in conjunction with others, as its main purpose was to allow
Internet scale communication as a coordinator.

51

52 CHAPTER 4. RESULTS AND DISCUSSION

Due to the necessity of testing IGCL when using computers behind NATs,
the ideal environment was very specific, possibly with several collaborating
users running a parallel application on their computers from various remote
locations. Unfortunately, we were not able to find such an environment to
execute tests in. It did not help that environments 1, 2 and 4 were located in
the same network area, separated by a few milliseconds of router hops, and
neither did it help that this network was institutional and contained a type of
NAT that could not be traversed by libnice, invalidating direct connections
from the outside, from common home networks. Therefore, we note that
Internet-scale IGCL tests in Section 4.7 are less than ideal, although meant
to represent general applicability of the library when deployed in the Internet.

We will start with a generalization for which applications are suitable for
Internet deployment in terms of communication requirements. Afterwards,
our tests consist of several comparisons of local IGCL execution times versus
the equivalent threaded or MPI applications, the effects of N-buffering on
speedup, the performance of several algorithms when using Internet commu-
nication and the differences in performance between using normal sockets,
libnice streams and relayed connections.

In every test here presented, algorithms were compiled using the O3 op-
timization flag in the compiler, which is either GCC’s g++ or, in the case
of MPI applications, Open MPI’s mpic++. Results are always an average
of 30 executions and only the main processing algorithm is timed, to ignore
setups or cleanups of data needed for each execution. Values are given in sec-
onds. Furthermore, in environments 1 and 2, composed of multiple virtual
machines, tests were executed with no more than a single IGCL process per
virtual machine. In this Chapter we will mostly present evolution plots; the
mean values that generated those plots are included in Appendix C, along
with their standard deviation values.

4.2 Implemented examples

To test the library and demonstrate some of its features, we implemented
a set of example algorithms that follow several communication patterns and
requirements. For each algorithm, we present a figure with the evolution of
processing time and communication requirements as the number of partici-
pating nodes grows.

4.2. IMPLEMENTED EXAMPLES 53

4.2.1 Matrix multiplication

Matrix multiplication is an example of O(n3) time complexity that can be
solved through the master-workers pattern. Assuming we want to multiply
two matrices A and B, and every node already has the whole matrix A, we
can trivially decompose B in a way that each computing node gets a section
of B to multiply with matrix A. Doing so is simple because the multiplication
of each matrix section is completely independent of others. After doing their
calculations, each node will have computed its own section of the final prod-
uct matrix and can therefore send it to the master (which can also compute
its own matrix section, if needed). This results in a total time complexity of
O(n3

k
) for this parallel version, where k is the number of participating nodes,

assuming that the distributed sections are equally sized for each node.

To achieve this distributed algorithm, each worker must have either direct
access to matrix A or receive it in full from the master. Assuming the latter
case, which we applied in our example, the growth in number of nodes can
reach a point where further dividing matrix B becomes counterproductive,
due to the significant loss incurred from broadcasting matrix A to all nodes.
Figure 4.1 shows the linear growth of communicated data, along with the
expected decrease in processing time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of nodes

0

200

400

600

800

1000

#
 o

f
m

ill
io

n
s

o
f

o
p
e
ra

ti
o
n
s

Matrix multiplication: processing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of nodes

0

10

20

30

40

50

60

#
 o

f
se

n
t

M
B

Matrix multiplication: communication

Figure 4.1: Matrix multiplication: growth of processing time and bytes exchanged
with the number of nodes. 1024 x 1024 matrices.

54 CHAPTER 4. RESULTS AND DISCUSSION

4.2.2 Merge sort

Another pattern that also frequently shows up is the divide-and-conquer
model. One example of this pattern appears in the implementation of merge
sort [62], which is a recursive process with a descending and ascending part.
The algorithm starts with an array of values to sort. The descending part
consists in dividing this array into two equal halves in a recursive way (i.e.
each half is further divided in two, like the original array; these halves also
are divided in two, and so on). The division continues until the smaller
arrays contain one or no elements, thus being ordered by definition. This
descending part of the algorithm will have created a recursive “tree” of calls,
and now the ascending part goes up this tree. Ordered halves are successively
joined into a single sorted array, passed up the tree and joined again with
their other equal sized half. This continues until we get the original array,
now fully sorted, at the top of the call tree. The whole algorithm has a time
complexity of O(n log n), as we process all n elements at each of the logn
tree levels.

In a possible parallelized version of this algorithm, each node acquires a
section of the array, retaining half of it and sending the other half to another
node for sorting. Each node can then split its section in half again, for nodes
further down in the division tree. Afterwards, each node sorts its half using
a normal merge sort and returns it to its parent, which will join both halves
into a sorted array and return it up the tree, and so on. This version achieves
a time complexity of O(n

k
log n

k
+ n log k) when the number of nodes is a

power of the branching factor — the base of log —, which is usually 2. Like
in the matrix multiplication example, k is the number of nodes participating
in the algorithm. The n

k
log n

k
part comes from running a non-distributed

merge sort in each of the k nodes, all of which retain n
k

elements each. All
of these sorts are done independently. The n log k part is the merging of
array halves at each tree level in the tree of k nodes, implying that the total
n elements are processed log k times. This time complexity is not exact
when the number of nodes is not a power of the branching factor, as the
unbalancing of the tree causes some nodes to possess more elements than
others.

We would like to note that this implementation of a parallel merge-sort
is far from being the most efficient. Using this structure, a node receives a
certain number of elements and then immediately passes half of them along to
a child node, half of that to another child, and so on until no more children are
available. It would be better if the master node did the full distribution itself,

4.2. IMPLEMENTED EXAMPLES 55

directly, as the nodes do not process the elements before re-sending them.
This merge-sort example stands as a simple model of the tree structure,
albeit not the most efficient one. Figure 4.2 shows that this method has
some irregularities in its evolution with the number of nodes, due to the fact
that numbers of nodes that are not a power of 2 create unbalanced trees.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of nodes

0

5

10

15

#
 o

f
m

ill
io

n
s

o
f

o
p
e
ra

ti
o
n
s

Merge sort: processing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

#
 o

f
se

n
t

M
B

Merge sort: communication

Figure 4.2: Merge sort: growth of processing time and bytes exchanged with the
number of nodes. 1.000.000 elements.

4.2.3 Ray tracing

Another implemented example is a ray tracing application. Ray tracing is
a computer graphics’ image rendering technique that is based on the emission
of invisible rays from the pixels of a virtual camera in space, following the
reverse path of light across the scene. Each of these rays will recursively
collide with objects in the scene, reflect, refract and perform calculations
based on the objects’ materials and scene’s light sources, ultimately returning
the color of its respective pixel. The technique is simple in concept and
design, and allows almost native implementation of realistic complex effects
like reflections, shadows and global illumination models, generally associated
with high visual fidelity. It is nevertheless usually deemed inadequate for
real-time rendering, due to its high computational requirements [63].

For this work, a ray tracing application represents, similarly to matrix
multiplication, a massively-parallel example, due to the fact that every casted
ray is different and independent of every other. In a parallel version of ray
tracing, nodes receive the bounding indexes of sections of an image (which
can fit in a very low number of bytes) and then compute the color of each

56 CHAPTER 4. RESULTS AND DISCUSSION

pixel in that section, thus generating part of the total image1. To contrast
with the matrix multiplication example, this means that much more data is
sent back from the workers to the master than the other way around.

Images can have very unbalanced processing power requirements for its
different sections. In the rendering of a room with a lot of reflective marbles
on a table, for instance, the part of the image with the marbles implies
many reflections for the ray to follow to the light sources, thus taking more
time to render than a hypothetical empty wall right behind the table. This
essentially means that nodes should not get the same amount of pixels to
process and should instead be progressively buffered new sections/jobs as
they complete previous ones. We talked about buffering in Sections 3.1.1 and
3.2.5. Despite these inequalities and the heavy dependency on the complexity
of the scene itself, it can be said that a ray tracing algorithm has a general
time complexity of O(n) if n is the number of pixels to render and the
scene is fixed. With buffering to balance the processing requirements, the
respective parallel time complexity will be approximately O(n

k
). The node

evolution for this application is visible in Figure 4.3. We note that, as shown,
communication time should remain constant with a growth in number of
nodes, as the number of jobs per image is only dependent on the image
resolution and number of pixels per job.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of nodes

0

200

400

600

800

#
 o

f
th

o
u
sa

n
d
s

o
f

o
p
e
ra

ti
o
n
s

Ray-tracing: processing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of nodes

0

5

10

15

20

25

30

#
 o

f
se

n
t

M
B

Ray-tracing: communication

Figure 4.3: Ray tracing: growth of processing time and bytes exchanged with the
number of nodes. 1280 x 720 image, 1000 pixels per job.

1We assume that every node has easy access to the description of the scene to render.

4.2. IMPLEMENTED EXAMPLES 57

4.2.4 Traveling Salesman Problem

Finally, we implemented an algorithm for the Traveling Salesman Problem
— henceforth “TSP” —, which has a time complexity of O(n!) in its brute-
force approach. In the TSP, the objective is to find the shortest route that
visits all nodes in a graph exactly once. Different variations of the problem
exist, with varying restrictions. In our case, the graphs are complete, which
means that each point has a connection to every other point. Furthermore,
the route through the nodes is not a cycle; i.e. the route does not return to
the starting node after visiting all others. Our implementation is a branch-
and-bound algorithm that tests all possible routes and simply discards paths
that have no chances of beating the current best path.

Parallelization of this approach to TSP can be achieved by defining a
set of different starting points for each computing node and letting each try
all path possibilities from each starting point in the set2. Unfortunately,
and although the searches for paths are indeed independent, such a parallel
approach discards most of the performance advantage of using the current
best as a bound, as peers do not know if better paths have already been
found by other peers and, consequently, will expectedly try more paths than
they have to. To counter this tendency, we improved this parallel method
by occasionally exchanging bounds between nodes to speed up their search.
A secondary thread checks, from time to time, if a new (better) bound was
found, and sends the value to other nodes. This kind of parallel algorithm
requires little exchanging of data and is an adequate demonstration of prob-
lems where Internet-scale communication between nodes should be plausible,
performance-wise.

We do not present a figure about the parallel TSP growth. Reasons for
this are varied. Firstly, the number of exchanges of bounds is not constant
and tends to be smaller as time progresses and findings of better bounds
become harder. Furthermore, the increase in number of nodes yields a theo-
retical increase in communication in the factorial order (because every node
sends its bounds to every other), but sending bounds implies very little band-
width and it also decreases the time the total algorithm takes, which becomes
especially hard to model in a generic way. Lastly, processing time is affected
by the division of the problem instance’s points and how often nodes find
new bounds. For these reasons, it suffices to say that the total quantity of
sent data, from our observations, is in the order of hundreds of bytes. As for

2This means that more than one node can search the same path, in reverse ways, but
it is a detail that does not affect our tests.

58 CHAPTER 4. RESULTS AND DISCUSSION

the evolution of processing time, it is expected to decrease in a way that is
similar to the previous examples. We will return to this matter in Section
4.7.

4.3 Communication analysis

We came up with a formula for multiprocessor environments that allows
us to have an estimation of the achievable speedup for applications with
communication requirements. We base our formulas in the research by Li and
Malek [53], seen in Section 2.4.3. As communication depends on a number
of factors, namely data size, bandwidth and distance between nodes, for a
minimally accurate model we need to account for these, instead of simply
providing Tcomm to the equation.

In our definition, Tcomm, which we henceforth label TC, is divided in
two parts: 1. the duration of the initial plus final transfers of data between
coordinator and workers, TCseq, and 2. the total duration of intermediate
communications between nodes, TCnode. As with Equation 2.4, we assume
that times are uniform across all nodes, because it is hard to predict how
much they will deviate from the average time. These parts are calculated as
follows:

TCseq = data size

connection speed
+ network overhead (4.1)

TCnode =
(

data size

connection speed
+ network overhead

)
× no. of comms. (4.2)

In these equations, data size represents the quantity of data transferred
through the network (in the case of Equation 4.1, all initial and final data; in
Equation 4.2, the average transferred per node communication); connection
speed characterizes the speed achieved by the network (cabled or wireless) in
data-per-time units; network overhead deals with the time that information
takes to travel the medium, independently of data being sent; lastly, no. of
comms indicates the number of times each node sends data size units through
the network, in an average run.

Based on what we have seen in Section 2.4.3 regarding speedup under

4.3. COMMUNICATION ANALYSIS 59

fully parallel or fully sequential communication and, particularly, Equation
2.6, we suggest a final formula for the likely speedup range of an application:

1
s + (1−s)

N
+ T Cseq+T Cnode

Tseq

≤ S ≤ 1
s + (1−s)

N
+ T Cseq+T Cnode

N×Tseq

(4.3)

Consider an application that takes 10 minutes to run sequentially, with a
non-parallelizable part of only 2% of the total sequential time. In these con-
ditions, Amdahl’s Law predicts a speedup as seen in Figure 4.4. Note that
speedup growth progressively slows down, and that, for 500 nodes, the par-
allel version merely surpasses 45 times the speed of the original application.
This is a common consequence of using Amdahl’s Law, as we saw before.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500

sp
ee

du
p

of nodes

Speedup for a varying number of nodes

Speedup according to Amdahl

Figure 4.4: Speedup according to Amdahl’s Law (s = 0.02, Tseq = 10 min)

Maintaining these conditions, consider that the application’s initial data
transmission from coordinator to workers consists of 100 MB in total, and
that the total data transferred by each node mid-algorithm, including the
final results, is about 20 MB each in a 100 Mbps network. It is important to
note that, in this case, we assume the network overhead to be quite low due
to participating nodes being located close to each other. Using Equation 4.3,
Figure 4.5 presents four plots: the case where all communication can be made
in parallel (therefore adding the same overhead for any N), the case where all
communication is done sequentially, the average of these two, and, finally, the
original speedup according to Amdahl. With fully sequential communication,

60 CHAPTER 4. RESULTS AND DISCUSSION

instead of speedup simply growing poorly, we actually observe its decline
when even less than 20 nodes are used, due to processing time being largely
surpassed by communication overhead from that point on.

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60

sp
ee

du
p

of nodes

Speedup for a varying number of nodes

Original Amdahl speedup
Fully sequential communication

Fully parallel communication
Average of sequential and parallel

Figure 4.5: Speedup with communication (s = 0.02, Tseq = 10 min, 100 MB + 20
MB per node)

This is a problem that is non-existent in both Amdahl’s and Gustafson’s
formulas, but that reveals itself in real world problems and has consequences
in the design of distributed systems, network speed and even connection ma-
terials. Essentially, depending on the problem at hand, it might be infeasible
to consider running applications that transfer a lot of data in a distributed
environment like the one considered.

Because of these results, we recommend that volunteer computing systems
only work with applications that truly benefit from such environments. As
we mentioned in Section 2.5, applications that are expected to perform well in
a distributed network are those that have low communication requirements
and that can benefit from replication of data. It also helps that such an
application is resistant to the unreliability of nodes, as we might be executing
it in a highly volatile environment; nevertheless, this is not a requirement.

For comparison with the previous example, the evolutionary Island Model
mentioned in Section 2.5 is, similarly to our parallel TSP example3, estimated

3We modeled the evolutionary algorithm instead of the TSP due to its more predictable
communication requirements.

4.3. COMMUNICATION ANALYSIS 61

to possess a relatively low amount of communication between nodes (only the
Pareto fronts are exchanged), and, besides the application itself and eventual
configurations, as little as a pseudo-random seed might be enough to start
the evolutionary algorithm.

Keeping the same values of network speed, overhead, Tseq and s as in the
example before, if an assumption is made that the initial transfer is around
10 MB and each node transfers about 5 KB of data 200 times4 — which
totals 1 MB of data — to propagate the best individuals of its island, we get
speedup values much closer to the original Amdahl speedup, as can be seen
in Figure 4.6.

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60

sp
ee

du
p

of nodes

Speedup for a varying number of nodes

Original Amdahl speedup
Fully sequential communication

Fully parallel communication
Average of sequential and parallel

Figure 4.6: Speedup with communication in Island Model application (s = 0.02,
Tseq = 10 min, 10 MB + 1 MB per node)

Again, we do consider in both cases that the network overhead is small.
If nodes are many kilometers away from each other, as could happen with
BOINC users’ machines, the overhead might make it hard to run applications
with many exchanges of information. Nevertheless, we should note that most
— if not all — communication in the described evolutionary application can
be done asynchronously, as in the TSP, so network delays are not expected
to hinder the process significantly.

4These times are a theorization of what is expected of the Island Model example, and
do not originate from a real application.

62 CHAPTER 4. RESULTS AND DISCUSSION

4.4 Comparison of IGCL and MPI

We will first demonstrate the advantages of IGCL versus MPI in terms
of code simplicity when using the master-workers and divide-and-conquer
communication patterns. We will resort to two examples for this, namely the
parallel merge sort and ray tracing applications that we described in Section
4.2. As the two libraries’ approaches are naturally distinct, we tried to use
code that is equivalent or as similar as possible in functionality. The Listings
referenced in the following paragraphs can be consulted in this document’s
Appendix B.

Listing B.1 demonstrates the main part of the implementation of a par-
allel merge sort that uses IGCL. We omit variable declarations, the joinSort
function and all initializing or terminating code. For comparison, we present
the equivalent MPI implementation in Listing B.2. As can be seen, specify-
ing the send and receive nodes and sizes in MPI looks cumbersome and takes
many more lines of code than the IGCL example. Besides making the code
simpler to write, the high level patterns should as well indirectly contribute
to make programs more reliable, as fewer and simpler lines of code should
reduce programmer mistakes.

Likewise, we present in Listing B.3 the implementation of the matrix
multiplication algorithm in IGCL, which we compare with the respective
MPI code in Listing B.4. It is noticeable how calculations and IDs are mostly
handled by IGCL and not the programmer.

To evaluate the local performance of our library, we now compare its
execution times with Open MPI’s, using the previous implementations. Our
tests consisted in executing the parallel merge sort example on an array of
3×107 elements and the parallel matrix multiplication algorithm on two 2048-
row square matrices, both on environment 1 (refer to Section 4.1). Executions
with Open MPI and IGCL utilized the exact same node layouts.

In Figure 4.7 we show the average execution times of the matrix multi-
plication algorithm in IGCL and Open MPI using 1 to 8 nodes. It can be
seen that IGCL is very close to Open MPI in execution times. Figure 4.8
presents a similar comparison, this time for the merge sort algorithm. Both
libraries perform similarly, with a slight edge for IGCL when the number of
nodes increases.

4.4. COMPARISON OF IGCL AND MPI 63

1 2 3 4 5 6 7 8

of nodes

0

2

4

6

8

10

12

14

16

ti
m

e
 (

s)

IGCL
OpenMPI

Figure 4.7: Matrix multiplication: IGCL and Open MPI performance. 2048×2048
matrices. Environment 1.

1 2 3 4 5 6 7 8

of nodes

2.5

3.0

3.5

4.0

ti
m

e
 (

s)

IGCL
OpenMPI

Figure 4.8: Merge sort: IGCL and Open MPI performance. 3 × 107 elements.
Environment 1.

64 CHAPTER 4. RESULTS AND DISCUSSION

4.5 N-buffering effects on speedup

We wanted to measure the effects of buffering in our ray tracing appli-
cations, thus we generated an image of 9600× 5400 pixels in parallel, using
environment 3. The test ran in 8 nodes (the group coordinator also generated
sections), used a job size of 10000 pixels and a varying level of buffering. Re-
sults are seen in Figure 4.9, which shows how processing time changes with
the increase in level of buffering.

1 2 3 4 5 10

level of buffering

0

2

4

6

8

10

12

14

ti
m

e
 (

s)

Figure 4.9: Ray tracing: effect of various levels of buffering. 9600 × 5400 image.
10000 pixels per job. Environment 3.

We can conclude from this Figure that a buffering level of 1 — which
essentially means no buffering at all — leads to a very poorly performing ray
tracing application. This is essentially caused by nodes processing their job of
10000 pixels rather quickly, sending the generated section to the coordinator
and then having to wait for more jobs to come, resulting in a lot of time
wasted in wait. We should note that all nodes are processes in the same
machine, thus communication time between coordinator and peers is very
reduced. If the master/coordinator was separated from the worker nodes
by many kilometers and router hops, the waiting time could be significantly
worse.

When using a buffering level of 2, a considerable performance improve-
ment is seen. In this case, nodes will almost always have a job buffered to
work on right after sending the generated pixels of the previous one. As a
node processes the second job, the coordinator has the opportunity to send

4.6. COMPARISON OF IGCL AND THREADING 65

another one to fill the now empty buffer, reducing the total waiting time.
Increasing the buffering level to 3 and 4 still yields an improvement, covering
cases where nodes are processing their sections faster than they are buffered
to them (which can happen if the job pixels were in a part of the image that
was easy to generate). As seen in Figure 4.9, this environment does not seem
to benefit much from buffering levels of above 4.

The ray tracer was also run in environment 2, with a smaller image of
1280× 720 pixels, jobs of 1000 pixels and using a separate coordinator that
only buffered jobs and did not help generate the image. Figure 4.10 shows
a behavior consistent with what we previously showed, where an increase in
buffering level from one to two jobs brings the most visible improvement.
We also see that increasing the number of nodes while using high levels of
buffering tends to produce few improvements, as the image is smaller than
in the previous example and already generated in little more than 2 seconds.

1 2 3 4 5

level of buffering

0

5

10

15

20

25

30

35

ti
m

e
 (

s)

1 node
2 nodes
3 nodes
4 nodes
5 nodes

Figure 4.10: Ray tracing: effect of various levels of buffering. 1280 × 720 image.
1000 pixels per job. Environment 2. Quantities of nodes do not include the
coordinator.

4.6 Comparison of IGCL and threading

Another comparison we wanted to do was between the IGCL ray tracing
application and the respective multi-threaded version, to ascertain the over-
head introduced by locally using IGCL in an algorithm. With this objective,

66 CHAPTER 4. RESULTS AND DISCUSSION

we ran the ray tracer to generate a 9600 × 5400 image using both versions,
in test environment 3. Our IGCL example ran with a buffering level of 10.
The threaded version uses OpenMP5 to parallelize the main processing cycle
with the following directive:

#pragma omp parallel for schedule(dynamic, 10000) num_threads(N)

We did not use the default parallel for directive to parallelize the code,
as it uses a static schedule and therefore implies dividing the image in equal
sized sections for each thread [64]. This was not accurate to compare to
our buffering scheme because, as we have seen, images can be unbalanced,
potentially resulting in bad performance. Therefore, we set the schedule to
dynamic, so that threads can progressively get new chunks, and then set the
chunk size to 10000 indexes, to mimic the jobs of that size that we used in
IGCL. Figure 4.11 shows results of this comparison.

1 2 4 6 8

of nodes

0

5

10

15

20

25

ti
m

e
 (

s)

IGCL
threads

Figure 4.11: Ray tracing: performance of IGCL versus threads. 9600×5400 image.
10000 pixels per job. Environment 3.

It is clear that OpenMP threads have a slight but consistent edge when
using any number of nodes, which is expected, due to the fact that there
is no communication involved between processes. IGCL overhead is placed
not only on the communication of data between the coordinator and worker
nodes, but also on the extra memory allocations and buffering mechanism
itself, the latter of which can reduce performance even for a single node.

5Do not confuse OpenMP with Open MPI. The former is an API for shared memory
programming; the latter is a library that implements the MPI standard for parallel systems.

4.7. INTERNET-SCALE IGCL 67

Execution times from IGCL are nevertheless close, increasing in the range of
2.95–5.73% for the tested quantities of nodes, as seen from Table 4.1.

of nodes 1 2 4 6 8
OpenMP 27.748 14.334 7.721 6.303 5.678

IGCL 28.567 14.786 8.023 6.664 5.953
diff. +2.951% +3.156% +3.912% +5.728% +4.851%

Table 4.1: Ray tracing: execution times (in seconds) using IGCL and threads, and
respective difference. 9600× 5400 image. 10000 pixels per job. Environment 3.

4.7 Internet-scale IGCL

For Internet-scale tests, we started with the TSP example with 16 graph
nodes, running with the coordinator located in the public IP machine from
environment 4 and all the remaining nodes on environment 3. The latter
environment is, in fact, the only one that was truly separated from the server
and on a completely different network, as environments 1 and 2 were in the
same area as 4.

In the first test, we intended to see if it was possible to achieve speedup
using TSP, as it is the example that has less data being exchanged. We
executed it both with and without bound exchanges during execution, as
Figure 4.12 shows. Essentially, in one case, nodes send their current best
bound occasionally to every node; in the other case, they only send their
final result to the coordinator, after finishing their search. It can be seen
that there is a significant improvement in the first case and a substantially
more reduced one in the second. Exchanging bounds seems, therefore, to
be the better solution, leading to improved times and validating our parallel
approach to the branch-and-bound TSP.

One detail that surprised us was the fact that using 8 nodes with no ex-
change of bounds resulted in a worse total running time than when using
4 or 6 nodes. We believe that adding more nodes affected the CPU nega-
tively in environment 3, as using many nodes on the same virtual machine
in this example yielded an almost full CPU occupation. Furthermore, as
TSP bounds are not shared (though the search space is still divided), adding
nodes does not benefit us much in terms of execution time. Consequently, a
loss in performance is possible.

68 CHAPTER 4. RESULTS AND DISCUSSION

1 2 4 6 8

of nodes

0

5

10

15

20

25

30

35

40

ti
m

e
 (

s)

with bound exchanges
without bound exchanges

Figure 4.12: TSP: networked performance when exchanging bounds or not. 16
locations. Environment 3 with 4.

The fact that we can indeed achieve speedup in an Internet-scale envi-
ronment, especially in the bound-exchange version of TSP, is important to
our work, and demonstrates our conjecture that when little communication
is involved, applications can indeed improve when run in remote nodes. We
again note that all non-coordinator nodes were located in the same machine,
thus very quickly trading bounds between them. This is expected to improve
times when compared with an environment where they are all located in very
distant networks. Nevertheless, we have an upper bound on speedup here,
given by the example in which no exchange of bounds is done, and it still
yields a visible improvement.

We also tested the matrix multiplication and merge sort applications with
the same setup, but these did not perform well. Figure 4.13 shows our
tests with the multiplication of two 1024 × 1024 matrices, again with the
remote server (environment 4) acting as the coordinator and environment 3
running the remaining nodes. All nodes, including the coordinator, processed
an approximately equal share of the matrix. The figure easily shows that
introducing more remote nodes in the system actually degraded performance.
The more nodes were used, the more data the networks of environments 3
and 4 had to support. In this example, matrix B has to be sent to all
participating nodes except the coordinator. As matrices have 1024×1024×4
bytes, the total data sent with 4 nodes, just for matrix B, is (4− 1)× 1024×
1024 × 4 bytes, which totals 12 megabytes. This already requires a rather

4.7. INTERNET-SCALE IGCL 69

large upload rate from a single point — the coordinator/server —, assuming
that environment 3 is also capable of downloading at this rate (as we have
seen from the experimental setup in Section 4.1, this value already fills the
maximum theoretical speed of the network, 12 MB). By further noticing that
the algorithm still needs to distribute matrix A among the worker nodes
and that there is some communication latency involved, we easily justify the
negative performance observable in Figure 4.13. Using 8 nodes, the algorithm
was already taking more than 10 seconds to complete on average; more than
5 times the sequential time in the coordinator alone.

1 2 4 6 8

of nodes

0

2

4

6

8

10

ti
m

e
 (

s)

Figure 4.13: Matrix multiplication: networked execution times. 1024 × 1024 ma-
trices. Environment 3 with 4.

Figure 4.14 shows a similar result for the merge sort application when
sorting an array of 500000 elements. We expected this behavior from the
merge sort application, as the growth in data transfers when increasing the
number of nodes is high, as seen in Figure 4.2. In addition, our setup goes
against the optimal placement of tree nodes, because the coordinator has to
send several pieces of the array to environment 3, as all its downstream nodes
are located there. Nevertheless, we could not exactly predict the degree to
which execution time increased when we added even a single node to the
process, compared to using the coordinator only. In the plot of Figure 4.14,
we can see a very noticeable increase from a time of some milliseconds (the
exact value is 59 ms) to more than one second, as the network overhead
dominated processing time. Some other tests were done with larger array
sizes, which take longer to process, but revealed the same type of growth, as
transferred data sizes are also naturally increased.

70 CHAPTER 4. RESULTS AND DISCUSSION

1 2 4 6 8

of nodes

0.0

0.5

1.0

1.5

2.0

ti
m

e
 (

s)

Figure 4.14: Merge sort: networked execution times. 500000 array elements. En-
vironment 3 with 4.

We also tested the networked ray tracing application when generating an
image of 2880× 1620 pixels, again with the coordinator also processing jobs.
We used two equivalent versions of the algorithm; one where the exchanged
pixel colors were given in values of the char type (0–255 for each RGB color
intensity), and another where they were doubles (0.0–1.0, also in RGB)6. The
sizes of these values in the tested architectures were, respectively, 1 and 8
bytes, meaning that the second case transfers 8 times more data than the
first when returning image sections.

We can measure the number of total jobs in this example if we divide
the image size by the number of pixels per job (jobs are sections of 10000
pixels), which yields the value 467. In this application, the stress placed over
the networks is theoretically better distributed in time than in the matrix
multiplication or merge sort examples, as data exchanged is buffered and
also approximately constant with the number of nodes (as we showed in
Figure 4.3). Nevertheless, our observations for the version using doubles,
seen in Figure 4.15, showed that the coordinator was processing between
90% and 95% of these jobs, depending on the level of buffering, meaning
that the results were so slow to transfer between nodes that the coordinator

6This is actually the result of our ray tracer doing calculations with doubles that are
only converted to chars when saving the generated images to disk. We exploited this to
build two versions, where one converts the doubles to chars before sending and the other
does not.

4.7. INTERNET-SCALE IGCL 71

was producing most of the image on its own. The unstable number of jobs it
processes throughout these examples is reflected on the standard deviation
values of the execution times, seen in Table C.9 (and Table 4.16, for the
second ray tracer version), which are relatively high when compared with
the total processing time of the algorithm. We believe these deviations in
work balance are caused by the unpredictability of network usage.

1 2 4 6 8

of nodes

0

2

4

6

8

ti
m

e
 (

s)

no buffering
2-buffering
5-buffering

Figure 4.15: Ray tracing: networked execution times. 2880 × 1620 image (using
doubles). 10000 pixels per job. Environment 3 with 4.

To explain why the process takes more time when using more than the
coordinator itself, first consider that there is a certain moment in the al-
gorithm when all jobs were sent and only the results of some are pending.
After this moment, we are dependent on whichever nodes have the remaining
jobs to complete the image. Now, we can see that the coordinator typically
completes its jobs much faster than other nodes, because it does not have to
send data to itself to complete the job. This leaves the process waiting for
the results from other nodes, which traverse the network.

We note that even if the coordinator is able to process all jobs that
were not buffered to remote nodes, and do it before the first result of arrives
from these, a high-level buffering to all other nodes will nevertheless decrease
the number of jobs it processes. This happens because we initially buffer a
number of jobs equal to the buffering level to every peer. For example, when
using a buffering level of 5, 5 jobs are sent at once to each node, and none
of these will be processed by the coordinator, hence diminishing its number
of jobs.

72 CHAPTER 4. RESULTS AND DISCUSSION

In this networked example, sending 5 initial jobs to a node can already
be more than the total number of jobs the node would receive in the whole
algorithm with, for example, a buffering level of 2, as the coordinator can
complete its jobs faster than these nodes can send data through the network.
This leads to a further increase in the final waiting time, exposed by the
evolution in Figure 4.15, where we can see that increasing the buffering level
(or number of nodes) tends to worsen the algorithm performance.

For comparison, we now show in Figure 4.16 the second ray tracer version,
which transfers approximately 8 times less data through the network. We
can observe that a small speedup is actually achieved in this case, with every
level of buffering tested.

1 2 4 6 8

of nodes

3.0

3.5

4.0

4.5

5.0

ti
m

e
 (

s)

no buffering
2-buffering
5-buffering

Figure 4.16: Ray tracing: networked execution times. 2880 × 1620 image (using
chars). 10000 pixels per job. Environment 3 with 4.

There are some things to note here, namely the fact that using no buffer-
ing leads to a general improvement when increasing the number of nodes
(which corroborates results from Figure 4.9), but not immediately when
adding just one node. This is probably due to the fact that adding a single
node which takes a long time to receive, process and return a result, hinders
the coordinator more than if it did not exist. In fact, the average number of
jobs completed by the coordinator in this case, as seen in Table 4.2, was 432.3
— approximately 92.5% of them — and this is similar to the percentages in
the previous version, which should help explain this evolution.

Another thing to note is that, similarly to how increasing the number of

4.8. CONNECTION TYPE COMPARISON 73

of nodes 1 2 4 6 8
no buffering 467 432.3 393.5 383.4 351.0
2-buffering 467 368.6 338.3 332.8 332.8
5-buffering 467 328.3 334.1 327.0 320.9

Table 4.2: Ray tracing: average number of jobs executed by the coordinator only.
2880× 1620 image (using chars). 10000 pixels per job. Environment 3 with 4.

nodes while using no buffering leads to better performance, higher levels of
buffering with no change in the number of nodes seem to also increase per-
formance to a certain point. This means that the coordinator benefits from
sending jobs to other nodes, but this benefit is diminished when sending too
many jobs to the outside. As comparisons between Table 4.2 and Figure 4.16
can show, a correlation between number of jobs processed by the coordinator
and performance does not seem to exist. From our tests, it does seem that
the networks of the coordinator and of environment 3, which includes all
non-coordinator nodes, were being overloaded when increasing the number
of jobs. This can certainly explain why the application suffers from using too
many nodes in our tests.

4.8 Connection type comparison

As we said in Section 3.2, libnice streams incur in performance degrada-
tion when used to transfer large chunks of data. This is due to the waiting
time for the TCP-over-UDP stream to become “writable” again. In this Sec-
tion, we compare libnice streams with normal sockets, first in a local scenario
and then in a networked one with another application.

Figure 4.17 shows a local example of merge sort where nodes were forced
to link using libnice connections. As can be seen, there is a significant per-
formance loss when moving from normal sockets to libnice.7 This example
is particularly bad for libnice, as our parallel merge sort includes large and
redundant data transfers in both descending and ascending parts of the al-
gorithm.

Our readings showed that libnice streams are not capable of sending more
7When using one or two nodes, we cannot use libnice, as peers connect to the coordina-

tor using normal sockets. Only when more peers are introduced in the tree and connections
are established between them can we test all connections types.

74 CHAPTER 4. RESULTS AND DISCUSSION

1 2 4 6 8

of nodes

0

1

2

3

4

5

6

ti
m

e
 (

s)

normal connections
libnice connections

Figure 4.17: Merge sort: local analysis of normal versus libnice connections. 3×107

elements. Environment 3.

than 100.000 bytes at once in our test machines. Once we try to do so, IGCL
generally has to wait for the stream to be writable and try again. Depending
on the time elapsed between attempts, the next one can either result in a few
thousand bytes being written or several tens of thousands. Notice that this
is not a very large quantity of data, and the merge sort example illustrated
in Figure 4.17 actually tries to send millions of bytes at once, which, in our
tests, did not cause problems when C socket connections where used.

It is relevant to note that this kind of performance hit only happens in
applications that send large quantities of data and cause libnice to trigger
several callbacks per sending. These are already not suitable for Internet
communication, as our tests have showed. As the ICE connectivity provided
by libnice only makes sense in the Internet, it means that we would be using
libnice in applications that already have low communication needs, therefore
not causing problems to begin with. For our TSP example, running in the
same conditions as the ones used to generate Figure 4.12 with networked ex-
changes of bounds, Figure 4.18 shows that sockets and libnice streams seem
to yield performances so similar that their plots are overlapping. Note that
running this test with every node on a different remote computer (thus incre-
menting time of data exchanges between peers) should result in equivalent
observations, as a libnice stream is naturally indistinguishable from simple
sockets after data is sent from the machine itself. This test is, therefore,
essentially for performance at the application level.

4.8. CONNECTION TYPE COMPARISON 75

1 2 4 6 8

of nodes

0

5

10

15

20

25

30

35

40
ti

m
e
 (

s)
normal connections
libnice connections

Figure 4.18: TSP: networked analysis of normal versus libnice connections. 16
locations. Environment 3 with 4. Plots are overlapping.

In fact, the TSP example is so light in communication that we can see
from Table C.12 (in the Results Appendix) how all connection types, in-
cluding relayed through the coordinator, result in very similar performance.
Differences here are most likely attributed to fluctuations in CPU occupation
and network usage.

76 CHAPTER 4. RESULTS AND DISCUSSION

Chapter 5

Conclusions

Over the course of this work, we have confirmed our expectations that
distributed execution of applications over the Internet is hard, but possible
under some restrictions. Due to the distance between nodes and the speed
of connections, performance suffers significantly, sometimes even decreasing
with the addition of more processing nodes, instead of improving. Our tests
demonstrated that, from our four example algorithms, only two appear to
be suitable for large scale Internet execution: the bound-exchanging paral-
lel TSP and, to a lesser extent, the ray tracing application. The TSP is
precisely the example that represents the class of algorithms with low com-
munication needs; class that we believe to benefit from execution scattered
throughout remote nodes. On the other hand, the ray tracer is an applica-
tion with respectable communication requirements that can run effectively
over the Internet if nodes have great network capabilities, the master node
in particular.

For the other examples, matrix multiplication and merge sort, we recom-
mend that Internet environments are discarded in favor of clusters of com-
puters (either independent or connected via a common front end), or even
single machines with independent jobs (for example, a full pair of matrices
to multiply), if parallelization is not viable or at all desired. We must note
that our test environments do not give us full confidence about the validity
of remote communication for these examples; however, judging from our re-
sults, we believe that they are very likely to perform badly when using nodes
in common home networks that are not sufficiently fast. Perhaps with the
evolution of technology and network speeds around the world we can achieve
better results years from now.

77

78 CHAPTER 5. CONCLUSIONS

We also saw that direct connection at the Internet scale presents some
other problems, such as the existence of NATs and firewalls. We showed that,
when direct connections using sockets is impossible, it is viable to counter this
problem by using NAT traversal mechanisms like ICE. For cases where these
are insufficient, relayed connections through a third node are also possible for
certain applications, as the parallel TSP proves. Our implemented library,
IGCL, dynamically makes use of these three possibilities, making it useful
for either local or Internet communication.

In our tests, we further showed that IGCL performs well when compared
with a similar Open MPI implementation of merge sort and matrix multipli-
cation running in a cluster of machines. It also revealed minimal overhead in
the ray tracer example versus a version using multi-threading. In fact, some
care was taken in developing IGCL for high performance computing, while
still providing some error-control when connections fail.

Functionality similar to algorithmic skeletons is also natively implemented
in IGCL, and we presented how the abstraction could make programmer’s
code shorter and possibly less error-prone. As part of IGCL’s features, N-
buffering was also demonstrated for master-workers applications where work
division can be unpredictable, such as our ray tracing example. Using buffer-
ing, masters can keep their worker nodes fed, while also automatically scal-
ing work among them by only providing more work when results of previous
jobs are collected. This seems especially important in volunteer computing,
where nodes have heterogeneous features and some nodes might complete
work faster than others.

Indeed, for volunteer computing, we conclude that there are advantages
in having nodes with direct connection capabilities, as it makes possible for
several algorithms to run efficiently without excessively tasking the servers.
In addition, even if direct communication is not desired, IGCL’s peer groups
make it possible to use a known public IP coordinator as a secondary server
for volunteer computing projects; one that controls and relays data between
other nodes.

5.1 Future Work

The direct communication of unknown nodes naturally implies some prob-
lems for volunteer computing. Security and reliability immediately come to
mind, due to, respectively, the possibility of malicious nodes introducing in-

5.1. FUTURE WORK 79

correct or viral data in the system, and nodes randomly disconnecting, as is
common in volatile environments such as BOINC. This work did not delve
in the first problem, but we believe it is a candidate for future work research.
The problem of reliability could also be further analyzed and developed, as
IGCL only presents basic error control mechanisms. The research we pre-
sented in Section 2.3.1, for instance, gives some hints on how reliability can
be achieved in distributed systems, by checkpointing and replication.

We have mentioned that possible targets for IGCL deployment are volun-
teer computing systems like BOINC. It would be interesting if future related
work completed the bridge between the two. Several changes must be exe-
cuted in the BOINC server application to support the concept of peer groups.
Firstly, the BOINC server application must be able to assign certain nodes
as group coordinators. These are typically the ones with better network
connections and more resources, especially if the coordinator will also work
directly on the algorithm. In our work, only coordinators with a public IP
can manage a group, as a direct socket connection to it is needed. In BOINC,
volunteer nodes are not expected to have public IPs and, hence, we need the
project’s servers to help establish connections between nodes and the coor-
dinator. This can be done with a similar method to the one IGCL uses for
connections, by letting coordinator and peer exchange credentials through
the BOINC servers and connect using libnice or other library that provides
an implementation of ICE. The proximity of nodes could also be analyzed by
these servers, prioritizing groups where nodes are closely located. It might
even possible to detect that some nodes are in the same network, as IGCL
itself does, and create a small group of peers that efficiently process some
work locally, taking advantage of their local connections.

Directly related to IGCL, it could be useful to account for node hetero-
geneity and location in group layouts, letting the coordinator assign layout
positions/IDs according to these (in contrast to simply assigning the next
available ID). In an example similar to our parallel merge sort, for instance,
we expect that better performance would be achieved if the division of work
at a certain tree level — which results in two branches that never communi-
cate with one another (see Figure 2.5b) — was done between machines whose
downstream peers are spatially close to them. This should yield better re-
sults than randomly distributing machines throughout the tree, as every data
transfer would take more on average on the latter case than if nodes were
organized by location in the tree.

Towards other kind of future work, there are some things we would like
to improve about IGCL. For example, the library could have been made

80 CHAPTER 5. CONCLUSIONS

thread safe with some more work, making it easier for the programmer to
have a thread receiving data while another handles sending and the algo-
rithm itself. Right now, such a setup requires the programmer to rely on
mutual exclusion constructs to avoid race conditions. The complexity and
possible performance loss of handling race conditions inside IGCL made us
reject that possibility in this work. With what we now know, we would have
started development with threading in mind, instead of attaching mutexes
and conditional variables later in development. This might have resulted in
a thread safe library or, at least, a better understanding of the associated
performance issues.

Another thing we would like to change was described in Section 3.1, where
we mention that error alerts are returned as SUCCESS, NOTHING or FAIL-
URE, in a result type object. Though we believe this approach to be simple,
it created the problem of having to frequently check for errors in calls to
functions, both internally and in programmer code. This handling of errors
is also mostly C-like, a language where exceptions do not exist. Because we
used C++, try-catch blocks and exception throwing were a potentially more
adequate mechanism for catching errors in higher level functions, with the
added potential of carrying more information about the error.

We have mentioned that our layouts and patterns of communication are
similar to what algorithmic skeletons provide (see Section 2.5.3). Our ap-
proach does not try to mimic any of their features, however. It is possible
that some existing skeletons could be adapted to work with our idea of lay-
outs, releasing us from the responsibility of implementing them at a lower
level. They could even better prepare IGCL for new patterns or make the
use of layouts more generic and useful for the programmer. At the time
of implementation, however, algorithmic skeletons were unknown to us, and
this feature of IGCL was considered simple enough to code from zero. In the
future, we would like to try existing skeletons in IGCL.

We would also like to add better support for the GroupLayout class in-
side IGCL. For example, the NBuffering class should ideally not require a
call to addPeers to add worker nodes, as the layout and the coordinator itself
already know that information and could use it. The same can be said for
the method waitForNodes, which the coordinator could use automatically
if the layout is fixed. Another improvement would be related to the com-
munication patterns. As of now, it is easy for the programmer to try and
use a pattern with an incorrect layout. If IGCL had a better support for
layout functionality, these methods could exist inside the layouts themselves
and each layout could implement the pattern methods that are relevant to

5.2. REFLECTIONS AND OTHER WORK 81

it. These are all limitations of the library that we consider important for
further developments.

5.2 Reflections and other work

As we approach the end of this document, we would like to use one last
section to reflect about a few more things that we learned from these past
months or that might have been done differently with the knowledge we now
possess. This section also serves the purpose of sharing some details about
work that ended up not being included in the remaining document.

C++ does not make it easy on the programmer to debug his/her appli-
cation. As it is inherently low-level and some of its most recent constructs
were added on top of already existing features, it is also a very error-prone
language. The use of templates also sometimes produces cryptic compilation
error messages, which programmers find frequently when using the prede-
fined classes, where templating abounds. Furthermore, this is a work about
process communication — over the Internet, even —, fact that introduces a
new layer of complexity that is hardly negligible when writing and debug-
ging code. The use of threads and frequent allocation and deallocation of
memory further increase the already high complexity of developing the li-
brary. This is not to say that we should have used another programming
language, as the performance of C++ and the possibility of easier extensions
to volunteer computing were very important; nevertheless, with all of these
summed, we do want to mention that the effort required to build and test a
library like IGCL “from scratch” over one semester was underestimated and
led to many hours of frustration, debugging and restructuring of code. As
features accumulated, additions also became more complex to implement,
especially when modifying the internal state of objects and/or implicating
race conditions between threads.

We also found that most libraries we tried for NAT traversal, even others
that are not mentioned in this document, were either underdeveloped, overly
complex, lacked documentation, support forums or had different goals in
mind than ours. Libjingle is a good example, as it was the first library that
we tried with ICE support and immediately showed to be hard to compile
and understand, having examples with many hundreds of lines of code that
made the learning curve prohibitively steep. It was also mostly directed at
VoIP and video streaming and not at a more “bare-bones” approach that
could be used in distributed computing. Libnice itself presented us with

82 CHAPTER 5. CONCLUSIONS

problems in understanding its examples and documentation, but ended up
being the one that better worked for us. In the end, many weeks were spent
trying to get libraries to compile and work — sometimes in several machines,
as NAT traversal implies — and then understanding how to use them for our
purposes, often with little or no success. We also talked about the issue with
libnice and writing on streams, which could probably be solved by using
another, perhaps more low-level library. Unfortunately, our search did not
find a more adequate C/C++ one.

During library development, parts were rebuilt because some design choices
were not working well. An example of this is realizing that IGCL once made
extensive use of callback functions when receiving messages, and required the
programmer to write his/her code inside them. In addition, these user call-
backs were all running inside the main thread of the library, meaning that,
while each callback executed, every new arrival of data from a peer would be
ignored until completion of the callback. This was a rather bad design choice
that should have been deemed so earlier in the process, and it was becoming
hard to circumvent. In the end, we made large changes to the internal code
and made use of the threaded mechanism described in section 3.2.2, where
received data is handled by a thread and either processed immediately or
put into a queue that is later accessed by the application code. The suc-
cess of this approach in code organization and functionality was immediate
for us, though it had the disadvantage of forcing many more allocations of
memory than were previously necessary. However, some brief tests revealed
that the respective performance hit was practically unnoticeable when com-
pared to the callback version, with the added bonus that the execution of
user callbacks did not block other activities anymore.

In a more technical perspective, we understood that a valuable tool would
have been to write or use a logger tool that enabled us to use hierarchically
configured debug messages in our code (i.e. messages that have levels of
relevance and can be logged or not, as needed). Sometimes we found that
we had too many debug messages being printed and often ended up deleting
or commenting some of them to reduce clutter. Other times, messages were
too few, or we wanted to specialize in debugging only a specific part of code.
A specialized tool or C++ class would have helped in this matter, though we
did not further research this topic to present good examples.

If we had the time, we could have also bridged our work with volunteer
computing, including IGCL in the BOINC client, as we have mentioned in
Section 5.1. Several things prevented us from reaching this point, namely the
already mentioned underestimation of development time and problems with

5.2. REFLECTIONS AND OTHER WORK 83

the NAT traversal libraries; but this was also due to the fact that we decided
to implement several more example algorithms than initially planned and ex-
tend the peer groups to support layouts, which ended up being a significant
IGCL feature. We had originally planned to implement a single example
application: an evolutionary algorithm based on Island Models, as described
in Section 2.5.1. In fact, we did implement the algorithm, applied to the
Traveling Salesman Problem, and added the basic exchanging of individuals
to resemble the Island Model. However, the stochastic nature of the evolu-
tionary process was, in our opinion, going to lead us to significant difficulties
in obtaining results about IGCL and Internet communication. Unless we
had access to many nodes and enough time to tweak and test the exchange
of individuals to not harm population diversity, the algorithm could not be
useful to us; consequently, we decided to implement the easier-to-test TSP
algorithm we described in Section 4.2.

It is also inconvenient that we could not present tests that better repre-
sent Internet communication and NAT traversal, as we would, had we been
able gather a more adequate setup of remote computers in different home
networks. Unfortunately, tests with communication from home network to
home network would have implied the simultaneous collaboration of multiple
people for a long period of time and good network connections for the harder
applications. The symmetric NAT configuration of our clustered environ-
ments did not help, either. Furthermore, even a simulated test environment
was difficult to use, due to configuration requirements and a lack of real
communication latency. The lack of more adequate and stable environments
to test IGCL and Internet-scale execution in some of our experiments is,
admittedly, a shortcoming of this work.

84 CHAPTER 5. CONCLUSIONS

Bibliography

[1] D. P. Anderson, “BOINC: A System for Public-Resource Computing and
Storage,” Fifth IEEEACM International Workshop on Grid Computing,
pp. 4–10, 1999.

[2] D. P. Anderson and J. McLeod, “Local Scheduling for Volunteer Com-
puting,” 2007 IEEE International Parallel and Distributed Processing
Symposium, pp. 1–8, 2007.

[3] D. Anderson, E. Korpela, and R. Walton, “High-Performance Task Dis-
tribution for Volunteer Computing,” First International Conference on
e-Science and Grid Computing (e-Science’05), pp. 196–203, 2005.

[4] W. N. Martin, J. Lienig, and J. P. Cohoon, “Island (migration) models
: evolutionary algorithms based on punctuated equilibria,” Evolutionary
Computation, vol. 2, pp. 1–16, 1997.

[5] I. Scriven, A. Lewis, and D. Ireland, “Decentralised distributed multiple
objective particle swarm optimisation using peer to peer networks,” 2008
IEEE Congress on Evolutionary Computation (IEEE World Congress on
Computational Intelligence), pp. 2925–2928, June 2008.

[6] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-
tain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, Concept, and Design of a Next Generation MPI Implemen-
tation,” Proceedings 11th European PVMMPI Users Group Meeting,
vol. 3241, no. Springer-Verlag Berlin Heidelberg, EuroPVM/MPI 2004,
LNCS 3241, 2004, pp. 97–104, 2004.

[7] Message Passing Interface Forum, “MPI : A Message-Passing Interface
Standard,” 2012.

85

86 BIBLIOGRAPHY

[8] P. Domingues, P. Marques, and L. Silva, “Resource Usage of Windows
Computer Laboratories,”

[9] D. Anderson and K. Reed, “Celebrating diversity in volunteer comput-
ing,” System Sciences, 2009. HICSS’09. . . . , 2009.

[10] J. Dean and S. Ghemawat, “MapReduce : Simplified Data Processing on
Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 1–13,
2008.

[11] D. Anderson, C. Christensen, and B. Allen, “Designing a Runtime
System for Volunteer Computing,” ACM/IEEE SC 2006 Conference
(SC’06), pp. 33–33, Nov. 2006.

[12] F. Costa, L. Silva, I. Kelley, and I. Taylor, “Peer-to-peer techniques for
data distribution in desktop grid computing platforms,” Making Grids
Work, pp. 1–12, 2008.

[13] F. Costa, L. Silva, G. Fedak, and I. Kelley, “Optimizing the data dis-
tribution layer of BOINC with BitTorrent,” in 2008 IEEE International
Symposium on Parallel and Distributed Processing, pp. 1–8, IEEE, Apr.
2008.

[14] C. Chapman, P. Wilson, T. Tannenbaum, M. Farrellee, M. Livny,
J. Brodholt, and W. Emmerich, “Condor Services for the Global Grid,”
National Environment . . . , 2004.

[15] G. Fedak, C. Germain, V. Neri, and F. Cappello, “XtremWeb: a generic
global computing system,” in Proceedings First IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, pp. 582–587,
IEEE Comput. Soc, 2001.

[16] S. Yi, E. Jeannot, D. Kondo, and D. P. Anderson, “Towards Real-Time,
Volunteer Distributed Computing,” 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 154–163, May
2011.

[17] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor: a dis-
tributed job scheduler,” Beowulf cluster computing . . . , 2001.

[18] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the Grid,” Grid
computing: Making the . . . , 2003.

BIBLIOGRAPHY 87

[19] O. Lodygensky, G. Fedak, F. Cappello, V. Neri, M. Livny, and D. Thain,
“XtremWeb & Condor : sharing resources between Internet connected
Condor pool,” in CCGrid 2003. 3rd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, 2003. Proceedings., pp. 382–
389, IEEE, 2003.

[20] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Néri,
and O. Lodygensky, “Computing on large-scale distributed systems:
XtremWeb architecture, programming models, security, tests and con-
vergence with grid,” . . . Computer Systems, 2005.

[21] “Introduction to XtremWeb. Retrieved January 2013, from
http://www.xtremweb.net/introduction.html,”

[22] Z. Balaton and G. Gombás, “Sztaki desktop grid: a modular and scalable
way of building large computing grids,” . . . , 2007. IPDPS 2007. . . . ,
2007.

[23] E. Urbah, P. Kacsuk, Z. Farkas, G. Fedak, G. Kecskemeti, O. Lody-
gensky, A. Marosi, Z. Balaton, G. Caillat, G. Gombas, A. Kornafeld,
J. Kovacs, H. He, and R. Lovas, “EDGeS: Bridging EGEE to BOINC
and XtremWeb,” Journal of Grid Computing, vol. 7, pp. 335–354, Sept.
2009.

[24] E. Urbah, “EDGeS / EDGI: Bridging Institutional Grids, Desktop Grids
and Academic Clouds Applications.”

[25] S. Delamare, G. Fedak, D. Kondo, and O. Lodygensky, “SpeQuloS: a
QoS service for BoT applications using best effort distributed computing
infrastructures,” . . . Distributed Computing, no. February, 2012.

[26] X. Wan, “Analysis and design for VoIP teleconferencing system based
on P2P-SIP technique,” 2011.

[27] E. Setton, J. Noh, and B. Girod, “Low latency video streaming over
peer-to-peer networks,” Multimedia and Expo, 2006 IEEE . . . , pp. 569–
572, 2006.

[28] M. M. Driss, B. Fatima, and I. Abdessamad, “A multi-agent system for
collaborative editing in mobile networks and P2P,” 2009.

[29] B. Cohen, “Incentives Build Robustness in BitTorrent,” 2003.

[30] “BitTorrent Protocol Specification. Retrieved January 2013, from
http://www.bittorrent.org/beps/bep 0003.html,”

88 BIBLIOGRAPHY

[31] L. D’Acunto, T. Vinkó, and H. Sips, “Bandwidth Allocation in
BitTorrent-like VoD Systems under Flashcrowds,” no. June, 2011.

[32] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on Net-
working, vol. 11, pp. 17–32, Feb. 2003.

[33] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth, “BAR fault tolerance for cooperative services,” ACM SIGOPS
Operating Systems Review, vol. 39, p. 45, Oct. 2005.

[34] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin, “BAR Gossip,” Systems Research, pp. 191–204, 2006.

[35] H. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robison, L. Alvisi,
and M. Dahlin, “Flightpath: Obedience vs. choice in cooperative ser-
vices,” Proceedings of the 7th . . . , 2008.

[36] M. Cieślak, “BOINC on JXTA - suggestions for improvements,” pp. 1–
42, 2007.

[37] V. Paulsamy and S. Chatterjee, “Network convergence and the NAT/-
Firewall problems,” 2003.

[38] S. Guha and P. Francis, “Characterization and Measurement of TCP
Traversal through NATs and Firewalls,”

[39] J. Rosenberg, R. Mahy, C. Huitema, and J. Weinberger, “STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs),”

[40] D. Wing, P. Matthews, J. Rosenberg, and R. Mahy, “Session Traversal
Utilities for (NAT) (STUN),”

[41] P. Matthews, R. Mahy, and J. Rosenberg, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities
for NAT (STUN),”

[42] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A
Methodology for Network Address Translator (NAT) Traversal for Of-
fer/Answer Protocols,”

BIBLIOGRAPHY 89

[43] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J.-c. Hugly, E. Pouy-
oul, S. Microsystems, and S. A. Road, “Project JXTA-C: enabling a Web
of things,” Proceedings of the . . . , vol. 00, no. C, pp. 1–9, 2003.

[44] S. Sur, M. Koop, and D. Panda, “High-performance and scalable MPI
over InfiniBand with reduced memory usage: an in-depth performance
analysis,” Proceedings of the 2006 ACM/IEEE . . . , 2006.

[45] X. Ruan, Q. Yang, I. A. Mohammed, S. Yin, Z. Ding, J. Xie, J. Lewis,
and X. Qin, “ES-MPICH2: A Message Passing Interface with enhanced
security,” International Performance Computing and Communications
Conference, pp. 161–168, Dec. 2010.

[46] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P. Lemarinier,
and F. Magniette, “MPICH-V2: a fault tolerant MPI for volatile nodes
based on pessimistic sender based message logging,” Proceedings of the
. . . , 2003.

[47] S. Genaud and C. Rattanapoka, “P2P-MPI: A peer-to-peer framework
for robust execution of message passing parallel programs on grids,”
Journal of Grid Computing, pp. 1–25, 2007.

[48] T. Leblanc, R. Anand, E. Gabriel, and J. Subhlok, “VolpexMPI: an MPI
library for execution of parallel applications on volatile nodes,” Recent
Advances in Parallel . . . , 2009.

[49] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault tolerant MPI, sup-
porting dynamic applications in a dynamic world,” Recent Advances in
Parallel Virtual Machine and . . . , pp. 1–8, 2000.

[50] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” Proceedings of the April 1820 1967
spring joint computer conference, vol. 30, no. 3, pp. 483–485, 1967.

[51] J. Gustafson, “Reevaluating Amdahl’s Law,”

[52] Y. Shi, “Reevaluating Amdahl’s Law and Gustafson’s Law,” 1996.

[53] X. Li and M. Malek, “Analysis of speedup and communication/compu-
tation ratio in multiprocessor systems,” . . . -Time Systems Symposium,
1988., Proceedings . . . , pp. 282–288, 1988.

[54] N. Melab, M. Mezmaz, and E.-G. Talbi, “Parallel Hybrid Multi-
Objective Island Model in Peer-to-Peer Environment,” 19th IEEE Inter-
national Parallel and Distributed Processing Symposium, pp. 190b–190b.

90 BIBLIOGRAPHY

[55] F. Marozzo, D. Talia, and P. Trunfio, “P2P-MapReduce: Parallel data
processing in dynamic Cloud environments,” Journal of Computer and
System Sciences, 2011.

[56] E. Ridge, E. Curry, D. Kudenko, and D. Kazakov, “Parallel, asyn-
chronous and decentralised ant colony system,” . . . for Parallel, Asyn-
chronous and . . . , pp. 174–177, 2006.

[57] L. Baduel, D. Caromel, C. Delb, N. Gama, and S. E. Kasmi, “A parallel
object-oriented application for 3d electromagnetism,” Parallel and . . . ,
2004.

[58] Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynam-
ics method for protein folding,” Chemical Physics Letters, vol. 314,
no. November, pp. 141–151, 1999.

[59] E. Chang and R. Roberts, “An Improved Algorithm for Decentralized
Extrema-Finding in Circular Configurations of Processes,” Communica-
tions of the ACM, vol. 22, no. 5, pp. 281–283, 1979.

[60] H. Gonz, “A survey of algorithmic skeleton frameworks: high-level struc-
tured parallel programming enablers,” Software Practice and Experi-
ence, vol. 40, no. 12, pp. 1135–1160, 2010.

[61] B. Stroustrup, “C++11 - the new ISO C++ standard,” 2013.

[62] J. Katajainen and J. Träff, A meticulous analysis of mergesort programs,
vol. 2. 1997.

[63] I. Wald and P. Slusallek, “State of the Art in Interactive Ray Tracing,”
Eurographics Association, 2001.

[64] OpenMP Architecture Review Board, “OpenMP Application Program
Interface,” 2011.

Appendix A

Documentation

This Appendix consists in documenting the full public API of IGCL,
presenting an overview of the library’s methods and providing reference for
examples in the document. As of the writing of this document, the library’s
sources and this work’s example algorithms can be accessed at:

https://github.com/CanisLupus/igcl

A.1 Common node methods

void start()

Initializes the Peer or Coordinator functionality, including binding the
receiving socket and starting the message receiver thread. In a Peer, this
method also handles the registration process with the group coordinator and
subsequent establishment of connections to other peers, if available. This
method must be called before using most other methods in the object; the
exceptions are methods that set parameters which must be known before
initialization.

void terminate()

Cleanly terminates the object, freeing resources and closing connections.
In a Peer, the termination process alerts the group coordinator that this node
terminated. In a Coordinator, the method sends a termination request to all
connected peers.

91

https://github.com/CanisLupus/igcl

92 APPENDIX A. DOCUMENTATION

void hang()

Forces the calling thread to block forever, unless an error occurs or a
termination request is received from the group coordinator (only happens
in Peer objects). This method allows Peers to wait until the Coordinator
dismisses them, so that their exit does not trigger unnecessary connection
failures and cleanups in the coordinator.

peer id getId()

Returns the ID associated with this node. When called on a Coordinator
it always returns 0. On Peer objects it returns the ID attributed by the
group coordinator upon registration. The returned value is undefined until
this registration completes.

uint getNPeers()

In a Coordinator, returns the number of peers currently executing the
algorithm in the group. In a Peer, this function returns the number of peers
executing the algorithm if the group layout is fixed, or 0 if the layout is
free-formed (see Section 3.1.3).

const std::vector<peer id> & downstreamPeers()

Returns a constant reference to the vector of nodes that are positioned
after this node, according to the specified group layout. These are usually
the nodes to which data is sent (and results are received from).

const std::vector<peer id> & upstreamPeers()

Returns a constant reference to the vector of nodes that are positioned
before this node, according to the specified group layout. These are usually
the nodes from which data is received (and results are sent to).

uint nDownstreamPeers()

Convenience method that returns the number of downstream peers. This
is equivalent to calling the size method of the vector reference returned by
downstreamPeers.

uint nUpstreamPeers()

A.1. COMMON NODE METHODS 93

Convenience method that returns the number of upstream peers. This
is equivalent to calling the size method of the vector reference returned by
upstreamPeers.

std::vector<peer id> getAllIds()

Returns a vector with the IDs of nodes that are known to this node.
The coordinator will know every node in the group; peers will know the
coordinator and any other nodes that are currently registered with them.

A.1.1 Send methods

template <typename ...T>
result type sendTo(peer id id, T ∗ data, uint size)
result type sendTo(peer id id, T value)

Sends either a value of any non-pointer type or an array of such values
— with length size — to the node with the given ID, id, which must be
connected to this node. Nodes connected to a Peer are downstream peers,
upstream peers and the group coordinator. The Coordinator is connected
to every node, excluding itself. The method automatically handles sending
depending on the connection to the peer: C sockets, libnice streams or relayed
through the coordinator.

template <typename ...T>
result type sendToAll(T ∗ data, uint size)
result type sendToAll(const T & value)

Sends either a value of any type or an array of such values — with length
size — to every connected node. This is equivalent to calling the sendTo
method for each connected node and, as before, automatically handles any
potential connection type used.

template <typename ...T>
result type sendToAllDownstream(T ∗ data, uint size)
result type sendToAllDownstream(const T & value)

94 APPENDIX A. DOCUMENTATION

These are equivalent to the sendToAll, but only send data to downstream
peers instead of all connected peers.

template <typename ...T>
result type sendToAllUpstream(T ∗ data, uint size)
result type sendToAllUpstream(const T & value)

These are equivalent to the sendToAll, but only send data to upstream
peers instead of all connected peers.

A.1.2 Blocking receive methods

template<typename T>
result type waitRecvFromAny(peer id & id, T & value)

Blocking function that waits until data arrives from any peer. When it
does, data is stored in value and the ID of the sending peer is stored in id.

template<typename T>
result type waitRecvNewFromAny(peer id & id, T ∗ & data, uint & size)
result type waitRecvNewFromAny(peer id & id, T ∗ & data)

Blocking function that waits until data arrives from any peer. When it
does, data is stored in data and its size in number of elements is stored in
size. The ID of the sending peer is stored in id. The programmer should
eventually free the memory allocated for data using the free function. For
cases where the size of the array is known and fixed, the function can be
called without the size argument.

template<typename T>
result type waitRecvFrom(peer id id, T & value)

Blocking function that waits until data arrives from the peer with ID id.
When it does, data is stored in value.

template<typename T>
result type waitRecvNewFrom(peer id id, T ∗ & data, uint & size)
result type waitRecvNewFrom(peer id id, T ∗ & data)

A.1. COMMON NODE METHODS 95

Blocking function that waits until data arrives from the peer with ID id.
When it does, data is stored in data and its size in number of elements is
stored in size. The programmer should eventually free the memory allocated
for data using the free function. For cases where the size of the array-to-
receive is known, the function can be called without the size argument.

A.1.3 Non-blocking receive methods

template<typename T>
result type tryRecvFromAny(peer id & id, T & value)

Non-blocking function that tests if data arrived from any peer. If it did,
that data is stored in value, the ID of the sending peer is stored in id and
the function returns SUCCESS. If there was no data, the function returns
NOTHING and does not set any values.

template<typename T>
result type tryRecvNewFromAny(peer id & id, T ∗ & data, uint & size)
result type tryRecvNewFromAny(peer id & id, T ∗ & data)

Non-blocking function that tests if data arrived from any peer. If it
did, that data is stored in data, its size in number of elements is stored in
size and the function returns SUCCESS. If there was no data, the function
returns NOTHING and does not set any values. In case the function returns
SUCCESS, the programmer should eventually free the memory allocated for
data using the free function. For cases where the size of the array-to-receive
is known, the function can be called without the size argument.

template<typename T>
result type tryRecvFrom(peer id id, T & value)

Non-blocking function that tests if data arrived from the peer with ID
id. If it did, that data is stored in value and the function returns SUCCESS.
If there was no data, the function returns NOTHING and does not set any
values.

template<typename T>
result type tryRecvNewFrom(peer id id, T ∗ & data, uint & size)
result type tryRecvNewFrom(peer id id, T ∗ & data)

96 APPENDIX A. DOCUMENTATION

Non-blocking function that tests if data arrived from the peer with ID id.
If it did, that data is stored in data, its size in number of elements is stored in
size and the function returns SUCCESS. If there was no data, the function
returns NOTHING and does not set any values. In case the function returns
SUCCESS, the programmer should eventually free the memory allocated for
data using the free function. For cases where the size of the array-to-receive
is known, the function can be called without the size argument.

A.1.4 Higher order functions: master-workers

These are generic functions that provide a simpler interface for sending
and receiving data when using the master-workers layout or a similar cus-
tomized one. See Figure 2.5a for a representation of the master-workers
pattern. Internally, these methods use the downstream and upstream peers
of the node, defined by the layout.

template<class T>
result type distribute(T ∗ data, uint sizeInUnits, uint unitSize, uint &

startIndex, uint & endIndex)

This method is called by the master node to distribute data among all
the slave (downstream) nodes and itself for processing.

data: pointer to an array of T-type values to distribute.
sizeInUnits: length of data, given in number of units (see unitSize).
unitSize: minimum unit of division for data. As an example, this allows

sending a matrix using rows as units, instead of cells, which would
likely cause incomplete rows to be sent.

startIndex: if the call is successful, it will contain the index of the start of
the data section retained by the master.

endIndex: if the call is successful, it will contain the index of the end of the
data section retained by the master.

template<class T>
result type recvSection(T ∗ & data, uint & startIndex, uint & endIndex,

peer id & masterId)

Method called by the receiving nodes to get their respective section and
its indexes. This is the distribute method counterpart.

A.1. COMMON NODE METHODS 97

data: if the call is successful, it will contain the pointer to the received data.
The memory it points should eventually be freed using free.

startIndex: if the call is successful, it will contain the index where the data
section for this node begins.

endIndex: if the call is successful, it will contain the index where the data
section for this node ends.

masterId: if the call is successful, it will contain the sender node ID.

template<class T>
result type sendResult(T ∗ data, uint sizeInUnits, uint unitSize, uint

index, peer id masterId)

After processing data, nodes call this method to return the results to the
master. The type T of the elements in data is not necessarily the same as
in recvSection, as the result can be completely different from the data that
originated it. Likewise, the unitSize and index are related to this type and
not the T of recvSection.

data: pointer to an array of T-type values with the results.
sizeInUnits: size of data in number of units.
unitSize: minimum unit of division for data.
index: index of the result in the final array.
masterId: ID to send result to. This is the ID acquired in recvSection.

template<class T>
result type collect(T ∗ data, uint sizeInUnits, uint unitSize)

Counterpart of sendResult that collects every result generated by slave
nodes. This is called on the master node. The node should place its own
section of results into the data array before calling this method.

data: pointer to an array of T-type values with the results.
sizeInUnits: size of data in number of units.
unitSize: minimum unit of division for data.

A.1.5 Higher order functions: divide-and-conquer

Similar to the higher order functions for master-workers pattern, these are
generic communication functions for the tree layout or a similarly customized

98 APPENDIX A. DOCUMENTATION

one. See Figure 2.5b for a representation of the tree pattern for divide-and-
conquer.

template<uint DEGREE=2, class T>
result type branch(T ∗ data, uint sizeInUnits, uint unitSize, uint &

ownSize)

This method is called by a node to successfully branch data among its
downstream peers. The branching factor defines the degree of ramification
in the tree (i.e. the number of sections in which data is split at each level in
a node). By default it is 2.

data: pointer to an array of T-type values to branch/divide.
sizeInUnits: length of data, given in number of units.
unitSize: minimum unit of division for data.
ownSize: if the call is successful, it will contain the size of the data section

retained by this node for processing.

template<class T>
result type recvBranch(T ∗ & data, uint & sizeInUnits, peer id &

masterId)

Method called by the receiving nodes to get their respective section. This
is the branch method counterpart.

data: if the call is successful, it will contain the pointer to the received data.
The memory it points should eventually be freed using free.

sizeInUnits: if the call is successful, it will contain the size of data, in units.
masterId: if the call is successful, it will contain the sender node ID.

template<class T>
result type returnBranch(T ∗ data, uint sizeInUnits, uint unitSize, peer id

masterId)

After the algorithm handles the branch, nodes call this method to return
it to the sender, already processed. The type T of the elements in data is
not necessarily the same as in the recvBranch method, and unitSize is also
related to this type and not the original T.

A.2. COORDINATOR CLASS METHODS 99

data: pointer to an array of T-type values with the results.
sizeInUnits: size of data in number of units.
unitSize: minimum unit of division for data.
masterId: ID to send result to. This is the ID acquired in recvBranch.

template<class T, class Func=std::function<void (T∗,uint,T∗,uint,T∗)>>
result type merge(T ∗ data, uint sizeInUnits, uint unitSize, T ∗ ownData,

uint ownSizeInUnits, Func merger)

Method that joins the branches of results of all nodes into a final array
via a merger function. These are the results sent by calls to sendBranch.
The function should work independently of the branching factor.

data: pointer to an array of T-type values where the results will be gathered.
sizeInUnits: size of data in number of units.
unitSize: minimum unit of division for data.
ownData: pointer to an array of T-type values with this node’s results.
ownSizeInUnits: size of ownData in number of units.
merger: function that takes two pointers to arrays (branches) of results

and their sizes, and joins them into the location of another array. This
function is simply called several times if the branching factor is higher
than 2.

A.2 Coordinator class methods

The Coordinator object has every previously described method, which
are common to both the Coordinator and Peer classes. In addition, a few
additional methods are provided.

Coordinator(int ownPort)

This is the only constructor of the Coordinator class. It receives as argu-
ment the port for the listening socket.

void setLayout(const GroupLayout & layout)

This method defines the layout used for the group. For a description of
the available GroupLayouts and how to use them, refer to Section 3.1.3. This
method must be called before invoking start on the object.

100 APPENDIX A. DOCUMENTATION

result type waitForNodes(uint n)

For fixed-size layouts — used in algorithms that run on fixed quantities
of nodes — this method lets the coordinator wait until the specified number
of nodes are present. This means that n− 1 peers should register and signal
their “ready” state. Usually, the number of peers to wait for in a call to this
method should simply be layout.size().

A.3 Peer class methods

As is the case with the Coordinator, the Peer class also adds some addi-
tional methods to the shared ones that are described.

Peer(int ownPort, const std::string & coordinatorIp, int coordinatorPort)

This is the only constructor of the Peer class. It receives as argument the
port for the listening socket, as well as the IP address and port of the group
coordinator to which this peer will connect.

result type barrier()

Synchronization method that blocks the peer until every other peer reaches
a barrier. Note that this does not include the coordinator. When every peer
arrives at the barrier, the coordinator sends an internal message that un-
blocks all of them.

void setAllowRelayedMessages(bool active)

Enables or disables the possibility of automatically setting connections
between this and other peers as relayed through the coordinator, when no
direct connection is possible.1 If the option is disabled and the connection
was unsuccessful but mandatory, the peer will automatically unregister with
the coordinator. By default, messages are allowed to be relayed, but some
algorithms might be inefficient when relaying messages, and thus should dis-
able them. This method must be called before invoking start on the object.

1This does not affect methods sendToPeerThroughCoordinator and sendToAllPeer-
sThroughCoordinator, which are explicitly called by the programmer; only the automatic
definition of connections as relayed during connection establishment is affected.

A.4. GROUPLAYOUT CLASS METHODS 101

template <typename ...T>
result type sendToPeerThroughCoordinator(peer id & id, T ∗ data,

uint size)
result type sendToPeerThroughCoordinator(peer id & id, T value)

Sends either a value of any type or an array of such values — with length
size — to the coordinator, which will relay it to the node with the given ID,
id. This includes nodes that have no direct connection to the sending peer.

template <typename ...T>
result type sendToAllPeersThroughCoordinator(T ∗ data, uint size)
result type sendToAllPeersThroughCoordinator(T value)

Sends either a value of any type or an array of such values — with length
size — to the coordinator, which will relay it to every peer in the group
excluding the sender. This will include nodes that have no direct connection
to the sending peer.

A.4 GroupLayout class methods

A.4.1 Fixed layouts

static const GroupLayout getMasterWorkersLayout(uint nNodes)

Obtains a fixed master-workers layout composed of nNodes nodes (see
Figure 2.5a). In this layout, the coordinator has every other peer as a down-
stream peer. Those peers have no downstream peers and connect only to the
coordinator (which is an upstream peer for them).

static const GroupLayout getTreeLayout(uint nNodes, uint degree)

Obtains a fixed tree layout composed of nNodes nodes (see Figure 2.5b).
In this layout, the coordinator is the root node of the tree. Each node has
several nodes as downstream peers; a quantity that is, at its maximum, equal
to degree (the tree branching factor) times the number of tree levels below
the node. If nNodes is not a power of degree, some nodes will have missing
downstream peers at the last tree level.

102 APPENDIX A. DOCUMENTATION

static const GroupLayout getPipelineLayout(uint... nNodesOfSection)

Obtains a fixed pipeline layout composed of several nodes per section
(see Figure 2.5c). This layout is called with several arguments, which are
the number of nodes at each level in the pipeline. The peers from one sec-
tion are downstream from the section that comes before. For example, in
getPipelineLayout(1, 2, 2), peers 1 and 2 are downstream from 0 and peers
3 and 4 are downstream from 2 and 3.

static const GroupLayout getRingLayout(uint nNodes)

Obtains a fixed ring layout composed of nNodes nodes (see Figure 2.5d).
Each peer is sequentially placed in the layout with a connection to the current
last peer (thus being downstream from it). In this layout, the coordinator is
both the root and sink node, being simultaneously upstream of the second
peer and downstream of the second to last.

static const GroupLayout getAllToAllLayout(uint nNodes)

Obtains a fixed all-to-all layout composed of nNodes nodes. Each peer is
downstream of every other peer, including the coordinator.

A.4.2 Free-formed layouts

static const GroupLayout getFreeMasterWorkersLayout()

Obtains a free-formed master-workers layout. In this layout, the coordi-
nator has every other peer as a downstream peer. Those peers have no down-
stream peers and connect only to the coordinator (which is an upstream peer
for them). There is no fixed size for this layout, as the coordinator will dy-
namically add or remove nodes to and from it as they register or de-register,
respectively.

static const GroupLayout getFreeAllToAllLayout()

Obtains a free-formed all-to-all layout. Each peer is downstream of every
other peer, including the coordinator. There is no fixed size for this layout,
as the coordinator will dynamically add or remove nodes to and from it as
they register or de-register, respectively.

A.5. NBUFFERING CLASS METHODS 103

A.4.3 Manual layouts

In the manual creation mode, the programmer has to explicitly insert
IDs of nodes and their connections, knowing that the group coordinator
always has ID 0. In the layout example in Listing A.1, the coordinator is
directly connected to the nodes with ID 1 and 2, these are both connected
to nodes 3 and 4 (i.e. 1 has a connection to 3 and 4, and so does 2), and
these in turn connect to 5. This layout is actually equivalent to calling
getPipelineLayout(1, 2, 2, 1), which uses as arguments the number of nodes
at each level in the pipeline.� �

1 GroupLayout layout;
2 layout.from(0).to(1,2);
3 layout.from(1,2).to(3,4);
4 layout.from(3,4).to(5);
 	

Listing A.1: Manually defined group layouts

This is possible because the from method returns a special object of type
Sources, which implements the to method and can change the layout’s con-
tents.

A.4.4 Other layout methods

uint size() const;

Returns the current size of the layout.

void print() const;

Prints the current layout text description in terms of nodes and their
connections.

A.5 NBuffering class methods

NBuffering (uint bufferingDepth, uint nJobs, uint blockSize,
std::function<void (peer id, uint)> sendJob)

104 APPENDIX A. DOCUMENTATION

This is IGCL’s N-Buffering class declaration. The programmer needs
to provide the level of buffering he or she requires (double, triple, etc.),
the number of jobs there will be, how much jobs are sent at once (this is
different from the buffering level, as we will explain), and a function that
sends a job with a certain index to a given peer. The third argument for
the NBuffering constructor is merely an optimization that avoids internally
creating a different object for each job. Instead, the programmer can define
that jobs are sent in groups of X, thus making these blocks the units that are
buffered. For example, for a buffering level of 5 and groups of 3 jobs, only a
maximum of 5 calls to sendJob will be made, but the respective maximum
number of jobs sent until the peer queue is filled is 15.

void addPeer(peer id id)

Adds a peer with a given ID to the buffering class, meaning that it is now
available to receive jobs.

void addPeers(std::vector<peer id> peerIds)

Adds a vector of peer IDs to the buffering class, meaning that they are
all now available to receive jobs.

void removePeer(peer id id)

Removes a peer with a given ID from the buffering class, making it no
longer receive jobs and putting the jobs that were previously sent to it in a
high priority queue that will eventually be consumed by other nodes as part
of their buffering (i.e. the jobs will be sent again but to new peers).

void bufferToAll()

Tries to buffer jobs to all available peers, accounting for the buffering
level and number of already sent jobs.

void bufferTo(peer id id)

Tries to buffers jobs to a specific peer, accounting for the buffering level
and number of already sent jobs.

uint completeJob(peer id id)

A.5. NBUFFERING CLASS METHODS 105

Marks the first job in the given peer queue as completed (jobs are simply
assumed to be completed in order). Returns the index of the job.

bool allJobsSent()

Returns true when all jobs were sent; false otherwise. Note that this
function can return a true value and later a false value, if a peer disconnects
and its jobs are re-assigned.

bool allJobsCompleted()

Returns true when all jobs are marked complete; false otherwise.

106 APPENDIX A. DOCUMENTATION

Appendix B

Code Examples

This Appendix contains some code listings comparing IGCL usage to
MPI’s in two examples: matrix multiplication and merge sort.� �

1 // ...
2 GroupLayout layout = GroupLayout::getSortTreeLayout(nParticipants,

2);
3 node->setLayout(layout); // in Coordinator
4 // ...
5 if (id > 0)
6 node->recvBranch(array, originalSize, parent);
7
8 node->branch<2>(array, originalSize, 1, size);
9 std::sort(array, array+size);

10
11 if (node->nDownstreamPeers() > 0) {
12 finalArray = (DATATYPE*) malloc(originalSize*sizeof(DATATYPE));
13 node->merge(finalArray, originalSize, 1, array, size, joinSort);
14 free(array);
15 array = finalArray;
16 }
17
18 if (id > 0)
19 node->returnBranch(array, originalSize, 1, parent);
20 // ...
 	

Listing B.1: Implementation of a parallel merge sort using IGCL

� �
107

108 APPENDIX B. CODE EXAMPLES

1 //...
2 if (id > 0) {
3 MPI_Recv(&originalSize, 1, MPI_INT, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
4 array = (DATATYPE*) malloc(originalSize*sizeof(DATATYPE));
5 parent = status.MPI_SOURCE;
6 MPI_Recv(array, originalSize, num_mpi_type, status.MPI_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
7 }
8
9 std::stack< std::pair<int, uint> > sentSizes;

10 uint size = originalSize;
11 int mult = 1;
12 int sendId = 2*mult * id + mult;
13
14 // send according to tree layout
15 while (sendId < nNodes) {
16 uint sendSize = size / 2;
17 size = size - sendSize;
18
19 MPI_Send(&sendSize, 1, MPI_INT, sendId, 99, MPI_COMM_WORLD);
20 MPI_Send(array+size, sendSize, num_mpi_type, sendId, 99,

MPI_COMM_WORLD);
21
22 sentSizes.push(std::pair<int, uint>(sendId, sendSize));
23 mult *= 2;
24 sendId = 2*mult * id + mult;
25 }
26
27 std:sort(array, array+size);
28
29 // upstream section that merges sections
30 if (size < originalSize) {
31 DATATYPE * other = (DATATYPE*)

malloc(originalSize*sizeof(DATATYPE));
32
33 while (size < originalSize) {
34 const std::pair<int, uint> & elem = sentSizes.top();
35 sentSizes.pop();
36
37 MPI_Recv(array+size, elem.second, num_mpi_type, elem.first,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
38

109

39 joinSort(array, size, array+size, elem.second, other);
40 size += elem.second;
41 std::swap(array, other);
42 }
43 free(other);
44 }
45
46 if (id > 0)
47 MPI_Send(array, size, num_mpi_type, parent, 99, MPI_COMM_WORLD);
48 //...
 	

Listing B.2: Implementation of a parallel merge sort using MPI

� �
1 // ...
2 if (id == 0) { // master distributes data to slaves
3 node->sendToAll(mat_b, MATSIZE * MATSIZE);
4 node->distribute(mat_a, MATSIZE, MATSIZE, iniRowIndex,

endRowIndex);
5 }
6
7 if (id > 0) {
8 node->waitRecvNewFromAny(masterId, mat_b);
9 node->recvSection(mat_a, iniRowIndex, endRowIndex, masterId);

10 }
11
12 for (uint i = 0; i < endRowIndex-iniRowIndex; i++) { // multiply
13 for (int j = 0; j < MATSIZE; j++) {
14 DATATYPE sum = 0;
15 for (int k = 0; k < MATSIZE; k++) {
16 sum += mat_a[i*MATSIZE+k] * mat_b[j*MATSIZE+k];
17 }
18 mat_result[i*MATSIZE+j] = sum;
19 }
20 }
21
22 if (id > 0)
23 node->sendResult(mat_result, endRowIndex-iniRowIndex, MATSIZE,

iniRowIndex, masterId);
24
25 if (id == 0) // master gathers results from all slaves
26 node->collect(mat_result, MATSIZE, MATSIZE);
27 // ...

110 APPENDIX B. CODE EXAMPLES

 	
Listing B.3: Implementation of a parallel matrix multiplication algorithm using
IGCL

� �
1 //...
2 MPI_Bcast(mat_b, MATSIZE * MATSIZE, num_mpi_type, 0,

MPI_COMM_WORLD);
3
4 if (id == 0) // master distributes data to slaves
5 {
6 int ini, end;
7 int nRowsPerProcess, remainder;
8
9 // calculate portion for each node

10 nRowsPerProcess = MATSIZE / nNodes;
11 remainder = MATSIZE % nNodes;
12
13 iniRowIndex = 0;
14 endRowIndex = nRowsPerProcess + (remainder-- > 0 ? 1 : 0);
15 ini = endRowIndex; // first rows stay with the master
16
17 for (int i = 1; i < nNodes; i++) // for each slave
18 {
19 end = ini + nRowsPerProcess + (remainder-- > 0 ? 1 : 0);
20
21 MPI_Send(&ini, 1, MPI_INT, i, MASTER_TO_SLAVE_TAG,

MPI_COMM_WORLD);
22 MPI_Send(&end, 1, MPI_INT, i, MASTER_TO_SLAVE_TAG,

MPI_COMM_WORLD);
23 MPI_Send(&mat_a[ini*MATSIZE+0], (end - ini) * MATSIZE,

num_mpi_type, i, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD);
24
25 ini = end;
26 }
27 }
28
29 if (id > 0)
30 {
31 MPI_Recv(&iniRowIndex, 1, MPI_INT, 0, MASTER_TO_SLAVE_TAG,

MPI_COMM_WORLD, &status);
32 MPI_Recv(&endRowIndex, 1, MPI_INT, 0, MASTER_TO_SLAVE_TAG,

MPI_COMM_WORLD, &status);

111

33 mat_a = (DATATYPE *) malloc((endRowIndex - iniRowIndex) *
MATSIZE * sizeof(DATATYPE));

34 MPI_Recv(mat_a, (endRowIndex - iniRowIndex) * MATSIZE,
num_mpi_type, 0, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD,
&status);

35 }
36
37 if (id > 0)
38 {
39 for (uint i = 0; i < endRowIndex-iniRowIndex; i++) { // multiply
40 for (int j = 0; j < MATSIZE; j++) {
41 DATATYPE sum = 0;
42 for (int k = 0; k < MATSIZE; k++) {
43 sum += mat_a[i*MATSIZE+k] * mat_b[j*MATSIZE+k];
44 }
45 mat_result[i*MATSIZE+j] = sum;
46 }
47 }
48 }
49
50 if (id > 0)
51 {
52 MPI_Send(&iniRowIndex, 1, MPI_INT, 0, SLAVE_TO_MASTER_TAG,

MPI_COMM_WORLD);
53 MPI_Send(&endRowIndex, 1, MPI_INT, 0, SLAVE_TO_MASTER_TAG,

MPI_COMM_WORLD);
54 MPI_Send(&mat_result[iniRowIndex*MATSIZE+0], (endRowIndex -

iniRowIndex) * MATSIZE, num_mpi_type, 0,
SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD);

55 }
56
57 if (id == 0) // master gathers results from all slaves
58 {
59 int nSlaves = nNodes-1;
60 while(nSlaves--) // receive from all slaves
61 {
62 int ini, end;
63 MPI_Recv(&ini, 1, MPI_INT, MPI_ANY_SOURCE,

SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD, &status);
64 MPI_Recv(&end, 1, MPI_INT, status.MPI_SOURCE,

SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD, &status);
65 MPI_Recv(&mat_result[ini*MATSIZE+0], (end - ini) * MATSIZE,

num_mpi_type, status.MPI_SOURCE, SLAVE_TO_MASTER_TAG,

112 APPENDIX B. CODE EXAMPLES

MPI_COMM_WORLD, &status);
66 }
67 }
68 //...
 	

Listing B.4: Implementation of a parallel matrix multiplication algorithm using
MPI

Appendix C

Result Tables

In this Appendix we present the result tables that created the plots from
Chapter 4. These contain the mean values of 30 executions along with their
standard deviations. All values are given in seconds.

of nodes 1 2 3 4 5 6 7 8

IGCL 17.385 8.984 6.714 5.310 5.054 5.082 4.625 4.334
±0.039 ±0.118 ±0.120 ±0.142 ±0.107 ±0.110 ±0.088 ±0.108

Open MPI 17.398 9.282 7.148 5.665 5.490 5.557 4.879 4.525
±0.046 ±0.103 ±0.126 ±0.127 ±0.134 ±0.172 ±0.138 ±0.136

Table C.1: Data of Figure 4.7. Matrix multiplication: IGCL and Open MPI
performance.

of nodes 1 2 3 4 5 6 7 8

IGCL 4.283 3.670 3.425 3.002 3.028 2.873 2.894 2.847
±0.039 ±0.118 ±0.120 ±0.142 ±0.107 ±0.110 ±0.088 ±0.108

Open MPI 4.277 3.888 3.359 3.077 3.189 3.032 3.013 3.030
±0.046 ±0.103 ±0.126 ±0.127 ±0.134 ±0.172 ±0.138 ±0.136

Table C.2: Data of Figure 4.8. Merge sort: IGCL and Open MPI performance.

113

114 APPENDIX C. RESULT TABLES

of nodes 1 2 3 4 5 10

IGCL 15.680 6.725 6.082 5.930 5.911 5.953
±0.052 ±0.085 ±0.054 ±0.038 ±0.015 ±0.022

Table C.3: Data of Figure 4.9. Ray tracing: effect of various levels of buffering.

buffering level 1 2 3 4 5

1 node 37.282 15.034 5.795 2.167 1.925
±0.027 ±0.018 ±0.013 ±0.009 ±0.010

2 nodes 18.661 9.030 2.688 2.027 1.922
±1.885 ±0.281 ±0.187 ±0.114 ±0.093

3 nodes 12.454 5.944 2.186 1.991 1.980
±1.404 ±0.707 ±0.265 ±0.085 ±0.108

4 nodes 9.345 4.503 2.013 1.981 1.955
±0.475 ±0.185 ±0.082 ±0.077 ±0.056

5 nodes 7.489 3.635 2.023 1.957 1.967
±0.004 ±0.009 ±0.098 ±0.058 ±0.060

Table C.4: Data of Figure 4.10. Ray tracing: effect of various levels of buffering.

of nodes 1 2 4 6 8

IGCL 28.567 14.786 8.023 6.664 5.953
±0.115 ±0.157 ±0.099 ±0.017 ±0.022

threads 27.748 14.334 7.721 6.303 5.678
±0.128 ±0.061 ±0.112 ±0.012 ±0.048

Table C.5: Data of Figure 4.11. Ray tracing: performance of IGCL versus threads.

of nodes 1 2 4 6 8

with bound exchanges 43.650 21.750 13.757 8.157 6.716
±2.408 ±1.116 ±0.845 ±0.683 ±0.098

without bound exchanges = 34.435 33.804 31.300 33.830
= ±2.030 ±0.948 ±0.414 ±0.153

Table C.6: Data of Figure 4.12. TSP: networked performance when exchanging
bounds or not.

115

of nodes 1 2 4 6 8

IGCL 1.989 4.023 6.308 8.148 10.489
±0.354 ±0.181 ±0.587 ±0.755 ±0.846

Table C.7: Data of Figure 4.13. Matrix multiplication: networked execution times.

of nodes 1 2 4 6 8

IGCL 0.059 1.216 1.810 2.036 2.440
±0.021 ±0.020 ±0.125 ±0.109 ±0.200

Table C.8: Data of Figure 4.14. Merge sort: networked execution times.

of nodes 1 2 4 6 8

no buffering 4.272 4.612 5.181 5.182 5.334
±0.603 ±0.544 ±0.770 ±0.625 ±0.608

2-buffering = 5.383 6.003 5.817 6.668
= ±0.701 ±0.779 ±0.644 ±0.593

5-buffering = 6.413 6.096 8.054 9.682
= ±0.679 ±0.554 ±0.620 ±0.769

Table C.9: Data of Figure 4.15. Ray tracing: networked execution times.

of nodes 1 2 4 6 8

no buffering 4.785 5.107 4.783 4.651 4.167
±0.566 ±0.688 ±0.490 ±0.531 ±0.425

2-buffering = 4.722 4.294 4.159 4.369
= ±0.658 ±0.511 ±0.470 ±0.323

5-buffering = 4.119 4.228 4.105 4.422
= ±0.422 ±0.385 ±0.359 ±0.369

Table C.10: Data of Figure 4.16. Ray tracing: networked execution times (char
version).

116 APPENDIX C. RESULT TABLES

of nodes 1 2 4 6 8

normal connections 2.743 1.710 1.210 1.220 0.974
±0.029 ±0.080 ±0.130 ±0.049 ±0.107

libnice connections - - 4.210 4.463 6.587
- - ±0.080 ±0.090 ±0.210

Table C.11: Data of Figure 4.17. Merge sort: local analysis of normal versus
libnice connections.

of nodes 1 2 4 6 8

normal connections 43.650 21.750 13.757 8.157 6.716
±2.408 ±1.116 ±0.845 ±0.683 ±0.098

libnice connections - - 13.367 8.431 6.904
- - ±0.562 ±0.767 ±0.108

relayed connections - - 13.567 8.214 7.108
- - ±0.962 ±0.490 ±0.303

Table C.12: Data of Figure 4.18. TSP: networked analysis of normal versus libnice
connections. Includes relayed connections.

	Introduction
	Field of work and Motivation
	Goals
	Results and contributions
	Document structure

	State of the Art
	Grid and Volunteer Computing
	Peer-to-peer
	MPI
	Speedup and Communication
	Distributed Applications

	Internet Group Communication Library
	Overview
	Technical details

	Results and Discussion
	Experimental setup
	Implemented examples
	Communication analysis
	Comparison of IGCL and MPI
	N-buffering effects on speedup
	Comparison of IGCL and threading
	Internet-scale IGCL
	Connection type comparison

	Conclusions
	Future Work
	Reflections and other work

	Bibliography
	Documentation
	Common node methods
	Coordinator class methods
	Peer class methods
	GroupLayout class methods
	NBuffering class methods

	Code Examples
	Result Tables

