
Grammar Based

Evolutionary Design

Filipe Guerreiro Assunção

fga@student.dei.uc.pt

Faculty of Sciences and Technology

University of Coimbra

Advisors

Dr. Penousal Machado
Dr. James McDermott

Coimbra 2015

Examiners

Dr. Luis Miguel M. L. Macedo
Dr. Marco P. Vieira

Now this is not the end. It is not
even the beginning of the end. But
it is, perhaps, the end of the
beginning.

Winston Churchill

Acknowledgements

I would like to acknowledge the contribution of the Computational Design

& Visualization Lab. (University of Coimbra, Portugal) and of the Natural

Computing Research & Applications Group (University College Dublin,

Ireland) both for mentoring, as well as for technical support. I would

specially like to thank to my advisors, Dr. Penousal Machado and Dr.

James McDermott. Without you, none of the work herein described would

be possible.

To my parents, girlfriend and friends all my gratitude for listening to

my frustrations when things were going mad. For dragging me from the

computer when I was hopelessly trying to fix code or just stuck writing

some part of this document. Those breaks were exactly what I needed to

keep going.

Finally, I would like to acknowledge project ConCreTe, for the provided

funding. The project ConCreTe acknowledges the financial support of the

Future and Emerging Technologies (FET) programme within the Seventh

Framework Programme for Research of the European Commission, under

FET grant number 611733.

Agradecimentos

Gostaria de agradecer toda a contribuição do Computational Design &

Visualization Lab. (Universidade de Coimbra, Portugal) e do Natural

Computing Research & Applications Group (University College Dublin,

Irlanda) por toda a ajuda tanto a ńıvel cient́ıfico, como técnico. Agradec-

imentos especiais aos meus orientadores, Dr. Penousal Machado e Dr.

James McDermott. Sem vocês, a realização de todo trabalho aqui de-

scrito seria imposśıvel.

Aos meus pais, namorada e amigos, toda a minha gratidão por ouvirem

as minhas frustrações quando algo não corria de acordo com o planeado.

Por me arrastarem para longe do computador quando, desesperadamente,

tentava corrigir código ou simplesmente estava preso em alguma parte da

escrita. Essas pausas eram exatamente o que precisava para conseguir

continuar.

Finalmente, gostaria de reconhecer o projeto ConCreTe, por todo o finan-

ciamento que me foi disponibilizado.

Abstract

A novel evolutionary approach for evolving grammars is presented. It is com-

posed of two main methodologies. In the first one, individuals are represented as

a graph, where nodes stand for production rules, and connections between them to

the flow of control and parameters. In the second one, a tree representation is used;

individuals are derivation trees, from a pre-defined grammar. Inner nodes represent

non-terminals, and leaves terminals. It is proved that both representations are able

to properly evolve the desired solutions (in this case, images and music).

After conducting experiments with the above approaches, running separately, we

try to merge components from both of them in order to assess if any improvement

is achieved. Graph-mutation has proven to generate the worst results, using both

tree and graph-crossovers. When tree-mutation is used the performance obtained

with tree and graph-crossovers tends to be similar. Nevertheless, an analysis at a

population level, reveals that tree-crossover outperforms the graph one.

Considering these results, we searched forms of improving the graph-crossover

operator, by means of alignment, thus taking into account the structure of the graphs.

Aligning two graphs choosing then the cutting points from the list returned by the

algorithm, where the matched pairs of nodes have the least alignment cost, has proven

to lead to better performance.

Finally, we address the problem of assessing the quality of families of images,

proposing a fitness function for the assessment of families of individuals. Families are

seen as sets of artifacts that should share common characteristics, allowing one to

intuitively classify them as belonging to the same family. Results show the validity

of the method and prove that, to evolve a family, both the qualities of the set and of

each individual must be taken into consideration.

Keywords. Genetic Programming, Grammar Evolution, Alignment, Fitness Assign-

ment

Resumo

Apresentamos uma nova abordagem evolucionária para a evolução de gramáticas. É

composta por duas metodologias principais. Na primeira, os indiv́ıduos são represen-

tados por grafos, onde os nós internos codificam regras de produção e as ligações entre

eles denotam controlo de fluxo e parâmetros. Na segunda metodologia, usamos uma

representação em árvore. Nós internos simbolizam śımbolos não terminais, enquanto

que as folhas representam śımbolos terminais. É provado que ambas as metodolo-

gias são capazes de corretamente evoluir as soluções desejadas (neste caso, imagens e

música).

Após a realização de testes com as abordagens anteriormente mencionadas, em

separado, efetuamos novas experiências juntando os operadores de cada uma delas,

com o objetivo de investigar se tal conduz a melhorias de desempenho. É demonstrado

que a mutação de grafos leva aos piores resultados, tanto utilizando o cruzamento de

grafos como o de árvores. Quando utilizada a mutação de árvores, com uma ou outra

forma de cruzamento, os resultados são semelhantes. No entanto, uma análise ao

ńıvel populacional revela que o cruzamento de grafos gera resultados considerados

superiores aos obtidos pelo cruzamento de árvores.

Tendo em conta os resultados anteriores, formas de melhorar o cruzamento de

grafos foram investigadas, recorrendo a técnicas de alinhamento e, como tal, con-

siderando a estrutura dos grafos. Alinhar dois grafos, escolhendo depois os pontos de

corte com base na lista retornada pelo algoritmo, onde os pares de nós correspondidos

tem um baixo custo de alinhamento, provou ser capaz de conduzir a uma melhoria

de desempenho.

Por fim, focamos o problema de atribuição de qualidade a famı́lias de imagens,

propondo para tal uma função capaz de classificar a qualidade de uma famı́lia de

indiv́ıduos. Uma famı́lia é considerada um conjunto de artefatos, que devem possuir

caracteŕısticas comuns, permitindo identificá-los como pertences à mesma famı́lia. Os

resultados provam que, se considerada a qualidade da famı́lia como um todo, bem

como a qualidade individual de cada um dos indiv́ıduos que a compõe, é posśıvel

evoluir conjuntos pasśıveis de serem identificados como famı́lias.

Palavras Chave. Programação Genética, Evolução de Gramáticas, Alinhamento,

Atribuição de Fitness

Table of Contents

1 Introduction 1

1.1 Scope . 2

1.2 Goals . 2

1.3 Assumptions . 3

1.4 Document Structure . 3

2 State of the Art 5

2.1 Evolutionary Computation . 5

2.2 Evolutionary Algorithms . 6

2.2.1 Components of Evolutionary Algorithms 9

2.2.2 Genetic Programming . 14

2.3 Grammars . 26

2.3.1 Grammar Evolution . 30

2.3.2 Evolution Based in Grammars 33

2.4 Conclusions . 36

3 Representation and Operators 39

3.1 Graph-Based . 39

3.1.1 Representation . 40

3.1.2 Random Initialisation . 41

3.1.3 Crossover Operator . 42

3.1.4 Mutation Operators . 44

3.2 Tree-Based . 45

3.2.1 Pre-grammars . 45

3.2.2 Representation . 47

3.2.3 Random Initialisation . 47

3.2.4 Crossover Operator . 48

3.2.5 Mutation Operator . 50

i

3.3 Fitness Assignment . 50

3.4 Conclusions . 50

4 Experimentation 51

4.1 Evolving Context Free Art . 51

4.1.1 Fitness Assignment . 53

4.1.2 Graph-Based . 58

4.1.3 Tree-Based . 69

4.1.4 Merging Both Approaches . 78

4.2 Evolving Musical Sequences . 82

4.2.1 Grammar Representation . 84

4.2.2 From Grammars to MIDIs . 85

4.2.3 Experimental Setup . 87

4.2.4 Experimental Results . 89

4.3 Conclusions . 91

5 Alignment 93

5.1 Graph Alignment . 94

5.2 Experimentation . 96

5.2.1 Experimental Setup . 97

5.2.2 Topological Similarity . 99

5.2.3 Node Similarity . 100

5.2.4 Topological and Node Similarities 101

5.2.5 Alignment Integration . 102

5.3 Conclusions . 104

6 Families 107

6.1 Evaluating Families . 108

6.2 Experimentation . 109

6.3 Conclusions . 118

7 Conclusions and Future Work 119

7.1 Work Planning . 119

7.2 Summary . 120

7.3 Future Work . 122

ii

A Evolutionary Art 125

A.1 Interactive Evolutionary Computing 126

A.2 Computational Aesthetic Evaluation 131

B Web Interface 137

B.1 Configuring a New Test . 138

B.2 Checking Test Status . 138

B.3 Exploring the Visual Results . 141

C Tree-Based Context Free Art Results 143

D Families Results 149

E Publications 157

E.1 Graph-Based Evolutionary Art . 157

E.2 ELICIT – Evolutionary Computation Visualization 191

E.3 Evolving Families of Shapes . 200

Bibliography 203

iii

iv

List of Figures

2.1 Typical Evolutionary Algorithm flow-chart [18]. 8

2.2 Genetic Programming flow-chart [65]. 15

2.3 GP syntax tree for the program max(x+ x, x+ 3 ⇤ y) [65]. 16

2.4 Tree interpretation procedure [65]. 17

2.5 Typical GP Algorithm flow-chart, focusing the variation operators ap-

plied to each individual [32]. 18

2.6 Example of subtree crossover [20]. 19

2.7 Example of subtree mutation [20]. 20

2.8 Graph representation for the expressionmax(x⇤y, 3+x⇤y) [63] (adapted). 22

2.9 CGP generic representation [49]. 24

2.10 CGP decoding example [49]. 25

2.11 Example of a derivation tree for the sentence “abbbb”. 28

2.12 Shape grammars example [77]. 29

2.13 Example of a derivation tree [86]. 30

2.14 Identification of new production rules [86]. 33

2.15 Individual’s representation example [60] (adapted). 34

3.1 On the left a generic grammar; on the right, the same grammar repre-

sented as a graph. 40

3.2 Graph-based crossover example [42]. 44

3.3 From pre-grammars to strings. 45

3.4 Example of a possible derivation tree of Grammar 3.2. 47

3.5 Random derivation tree creation, using Algorithm 4. 49

4.1 On the left, a CFDG; On the right, di↵erent renderings of the left

grammar. 52

4.2 Example of the transformation from the input colour image (left image)

to the background/foreground image (right image). 55

4.3 Representation of the CFDG of Figure 4.1 as a graph. 58

v

4.4 Best and average fitness values for di↵erent implementations of the

genetic operators. 61

4.5 Evolution of the average number of reachable and unreachable nodes

across generations for di↵erent implementations of the genetic operators. 61

4.6 Evolution of the best and average fitness across generations when using

fixed and random rendering seeds. 62

4.7 Box plots of fitness values of the fittest individuals using di↵erent ren-

dering seed setups. 63

4.8 Evolution of the fitness of the best individual across generations. . . . 65

4.9 Examples of individuals evolved using each one of the fitness functions. 66

4.10 Example of the rendering of the best individual from the initial (left

image) and last (right image) population, using Fractal Dimension and

Contrasting Colours as fitness function. 67

4.11 Evolution of the fitness of the best individual across generations using

a combination of measures. 68

4.12 Examples of individuals evolved using combined metrics as fitness func-

tion. 69

4.13 Pre-grammars flow chart adapted to the CFDGs scenario. 70

4.14 Evolution of the fitness of the best individual across generations for

the di↵erent setups. 73

4.15 Evolution of the number of tree nodes across generations, for the dif-

ferent setups. 74

4.16 Evolution of the fitness of the best individual across generations. . . . 75

4.17 Examples of individuals evolved using each one of the fitness functions. 76

4.18 Evolution of the fitness of the best individual across generations using

as fitness function a combination of Complexity, Bell and Contrasting

Colours. 77

4.19 Example of one individual evolved using Complexity, Bell and Con-

trasting Colours as fitness function. 78

4.20 Evolution of the average fitness across generations using JPEG Size as

fitness function. Results are averages of 30 independent runs. 82

4.21 Evolution of the average fitness across generations using the combi-

nation Complexity, Bell and Contrasting Colours as fitness function.

Results are averages of 30 independent runs. 83

4.22 Example of a grammar capable of representing a musical sequence. . . 85

vi

4.23 Example of part of the sequence of notes produced by an individual

generated using the unbiased version of Grammar 4.3. 90

4.24 Example of a sequence of notes produced by an individual considered

of high-quality, generated using the unbiased version of Grammar 4.3. 90

4.25 Example of a sequence of notes produced by an individual considered

of high-quality generated using Grammar 4.3. 91

5.1 Evolution of the fitness of best individual throughout generations with

and without alignment employed in the crossover operator. 103

5.2 Crossover constructive rate throughout generations with and without

using alignment. 103

5.3 Evolution of the fitness of the individuals that are generated by crossover

throughout generations with and without using alignment. 104

6.1 Samples of the fittest individuals from three independent runs with

b = 0. 111

6.2 Samples of the fittest individual of an evolutionary run with a = 0,

µ = 0.7 and � = 0.2. 111

6.3 Evolution of the f(s), fitind, �fit
ind

and sim(S) of the best individual

when µ = 0.7 and a = b = 1. 111

6.4 Evolution of the f(s), fitind, �fit
ind

and sim(S) of the best individual

when µ = 0.5 and a = b = 1. 112

6.5 Evolution of the f(s), fitind, �fit
ind

and sim(S) of the best individual

when µ = 0.3 and a = b = 1. 113

6.6 Evolution of the f(s), fitind, �fit
ind

and sim(S) of the best individual

when µ = 0.1 and a = b = 1. 113

6.7 Sample of the fittest individual from a run with µ = 0.7 and a = b = 1. 115

6.8 Sample of the fittest individual from a run with µ = 0.5 and a = b = 1. 115

6.9 Sample of the fittest individual from a run with µ = 0.3 and a = b = 1. 115

6.10 Sample of the fittest individual from a run with µ = 0.1 and a = b = 1. 115

6.11 Sample of the fittest individual from a run with µ = 0.7, a = 3 and

b = 1. 115

6.12 Sample of the fittest individual from a run with µ = 0.7, a = 1 and

b = 3. 115

6.13 Evolution of the sim(S) of the best individual when µ = 0.7 and

(a, b) 2 {(1, 1), (3, 1), (1, 3)}. 116

vii

6.14 Evolution of the fitind of the best individual when µ = 0.7 and (a, b) 2
{(1, 1), (3, 1), (1, 3)}. 117

A.1 Example of biomorphs created by one Dawkins system run [14]. . . . 127

A.2 Examples of figures generated by Karl Sims [71]. 127

A.3 Examples of figures generated by Steven Rooke [67]. 128

A.4 Examples of images generated by other expression-based systems. . . 129

A.5 Examples of shelters evolved by O’Neill et al. [54]. 130

A.6 Examples of other grammar-based EvoArt systems. 130

B.1 Form to schedule a new experiment. 139

B.2 Table containing the status of all tests. 140

B.3 Exploration of the graphical results of a specific test. 141

B.4 Drill down over a specific generation of a run. 141

C.1 Best individual of each of the 30 runs using JPEG Size as fitness function.144

C.2 Best individual of each of the 30 runs using Contrasting Colours as

fitness function. 145

C.3 Best individual of each of the 30 runs using Bell as fitness function. . 146

C.4 Best individual of each of the 30 runs using Complexity as fitness function.147

C.5 Best individual of each of the 30 runs using the combination of Com-

plexity, Bell and Contrasting Colours as fitness function. 148

D.1 Samples of the fittest individuals from several independent runs with

a = b = 1, µ = 0.1 and � = 0.2. Each row presents samples of images

produced by a single individual. 150

D.2 Samples of the fittest individuals from several independent runs with

a = b = 1, µ = 0.3 and � = 0.2. Each row presents samples of images

produced by a single individual. 151

D.3 Samples of the fittest individuals from several independent runs with

a = b = 1, µ = 0.5 and � = 0.2. Each row presents samples of images

produced by a single individual. 152

D.4 Samples of the fittest individuals from several independent runs with

a = b = 1, µ = 0.7 and � = 0.2. Each row presents samples of images

produced by a single individual. 153

D.5 Samples of the fittest individuals from several independent runs with

a = 3, b = 1, µ = 0.7 and � = 0.2. Each row presents samples of

images produced by a single individual. 154

viii

D.6 Samples of the fittest individuals from several independent runs with

a = 1, b = 3, µ = 0.7 and � = 0.2. Each row presents samples of

images produced by a single individual. 155

ix

x

List of Tables

2.1 Di↵erences between EA approaches [18]. 8

4.1 Parameters used for the graph-based approach experiments. 59

4.2 Parameters used for the tree-based approach experiments. 72

4.3 Parameters used for the experiments merging graph and tree operators. 79

4.4 Fitness of the best individual for each of the possible operators com-

binations, using as fitness function the JPEG Size and a combination

of Complexity, Bell and Contrasting Colours. 80

4.5 Fitness of the best individual using tree-mutation and both crossover

operators. Two fitness functions were used: JPEG Size and a combi-

nation of Complexity, Bell and Contrasting Colours. 81

4.6 Parameters used for the experiments evolving musical sequences. . . . 87

5.1 Parameters used for the graph alignment experiments. 97

5.2 Topological similarity alignment results. 100

5.3 Node similarity alignment results. 101

5.4 Topological and node similarities alignment results. 102

6.1 Parameters used in the experiments with families of CFDGs renderings.109

xi

xii

List of Algorithms

1 Typical Evolutionary Algorithm [18]. 7

2 Random initialisation of a graph-based individual. 41

3 Traversing the minimum spanning trees of two subgraphs. 43

4 Random initialisation of a tree individual. 48

5 Crossover in tree-based individuals. 49

6 Mapping of an individual to a sequence of notes. 86

7 Expansion of a non-terminal symbol. 87

8 Graph alignment. 95

xiii

xiv

List of Grammars

3.1 Example of a pre-grammar. 46

3.2 Grammar that results from the expansion of the pre-grammar pre-

sented in Grammar 3.1. 47

4.1 Pre-grammar used for the evolution of CFDGs where the number of

<RULE> subtrees is established upon population initialisation. . . . 71

4.2 Pre-grammar used for the evolution of CFDGs where the number of

<RULE> subtrees is dynamic, through the application of genetic op-

erators. For simplicity reasons only the rules that di↵er from Grammar

4.1 were detailed. 72

4.3 Pre-grammar used for the evolution of grammars capable of represent-

ing musical sequences. 88

xv

xvi

List of Matrices

5.1 Terminals and non-terminals dissimilarity matrix. 98

5.2 Parameters dissimilarity matrix. 98

xvii

xviii

Chapter 1

Introduction

In 1859, Darwin published a book entitled On the Origin of Species [13] that would

forever change the perceptions about the evolution of individuals across generations,

i.e., from o↵spring to o↵spring. It was in this book that the principles and evidences

of natural selection were first presented. This theory focuses on the fact that, in a

population of individuals, they will compete to survive and, therefore, only the ones

most suit to the environmental characteristics would be fit enough to breed, producing

the new o↵spring. This principle, also known as survival of the fittest is repeated in

time, leading to the evolution of the species.

Later, the above mentioned theory was adapted to Artificial Intelligence, which

can be perceived as systems able to take decisions with the information they sense

from the environment. One of the first algorithms proposed using the natural evolu-

tion theory of Darwin was Genetic Algorithms, introduced by Holland in the 1960s

[27]; simplistically, it works as a search heuristic. In this method, a set of candidate

solutions (population in nature) is evolved where, from generation to generation, the

best individuals (those best suit to the environmental characteristics) are breed in

order to form the new o↵spring.

Several other approaches based on the same theory were proposed. The one

we are going to explore during the course of the present Dissertation is Genetic

Programming (GP). In this type of technique individuals stand for complete and

executable computer programs.

Considering that several domains can be represented using grammatical formula-

tions, we aim at developing a tool capable of evolving solutions in multiple environ-

ments. As such, we are going to research and study, in the next chapters, ways of

doing so by combining GP with grammar formulations.

In the following sections we will start by defining the scope and goals of this

Dissertation (Sections 1.1 and 1.2, respectively). Then, we will introduce document

1

assumptions (Section 1.3) and, to end, in Section 1.4, document structure is going to

be described.

1.1 Scope

As mentioned earlier, we will focus on works capable of manipulating and evolving

grammars, where individuals are generated from a pre-defined grammar formulation.

In other words, individuals are themselves derivations of a higher-level grammar.

After revising the state of the art about the above subjects, we will propose

approaches that combine GP with grammar theory, as a form of tackling the problem

of generalisation, i.e., we want to develop a method to evolve individuals resembling

grammars, but it cannot be domain specific.

Notwithstanding the range of application of the work that will be developed and

detailed during the course of this Dissertation, it is our intent to apply it mainly

over the evolution of 2D images (generated by the evolution of Context Free Design

Grammars [11]). However, in a later stage, we will also test it with other grammatical

scenarios, namely music, to confirm if it has su�cient generalisation capacities to be

able to produce good quality solutions, under di↵erent circumstances.

Focus is given to both these domains because of the requirements of the European

Funded Project ConCreTe1, where the current Dissertation is placed.

1.2 Goals

The main goal of the current Dissertation is the proposal of a novel approach capable

of evolving grammars that follow a specific formulation, which is a-priori defined by

the user. By doing so, the system will bear an important property: it would be

applicable to any domain where a grammar can be used to describe it.

Building on previous research [41, 42], we will study two di↵erent approaches. In

the first one, individuals are represented as graphs, where the whole set of nodes and

connections between them represents the production rules of a grammar. Later on,

a method using derivation trees will be also inspected, following a more traditional

form of GP.

While developing both algorithms, we faced some question that would be inter-

esting to address, such as the generation of families of individuals. We decided to

tackle then, which is easily seen from the remainder of the document.

1For more informations check http://conceptcreationtechnology.eu/

2

http://conceptcreationtechnology.eu/

1.3 Assumptions

During the development of the present document, multiple times there is the need to

perform statistical tests over collected data. All statistical validations were conducted

under a 95% confidence level. Additionally, as data never follows a normal distribu-

tion, and as the initial conditions of the experiments are always the same, if more

than two categories are under comparison we use the Friedmans’s ANOVA statistical

test. If there is proven that the results are statistically di↵erent the Wilcoxon test is

then applied to compare all possible pairs. If just two categories are in comparison

only the last test is used.

1.4 Document Structure

The remainder of the document is organised as follows. Chapter 2 starts by presenting

a short overview of Evolutionary Computation, focusing then on Genetic Program-

ming and Grammar Evolution, which are the main topics of this Dissertation and are

described as the central point for the creation of the evolutionary engine approaches

herein presented, in Chapter 3.

Chapter 4 details the experiments performed over the methodologies described in

Chapter 3. Tests are conducted over di↵erent domains and setups, focusing distinct

aspects of the evolutionary engine.

After finishing the above experiments we noticed that there was still a possibility

to increase the performance of the operators introduced in Chapter 3. For that, we

explored alignment techniques. Both technical description and experiments regarding

alignment of structures can be found in Chapter 5.

In Chapter 6 we present a fitness function which aims at assessing the quality of a

set of individuals, taking into account the set as a whole instead of just the individual

quality of its members. Considering that, we evolve families, making use of the non-

deterministic nature of some forms of grammars, i.e., when they are mapped multiple

times from their grammatical representation into a concrete output (image / sound

/ etc.) di↵erent results can be generated.

To end, conclusions regarding all the work developed during the course of this

Dissertation are drawn and future work is addressed (Chapter 7).

3

4

Chapter 2

State of the Art

This chapter aims at describing and presenting the previous work that has been done

in the fields within the scope of this Dissertation. From that, it is easily understood

that most of the time will be spent analysing Evolutionary Computation (EC) works

from two di↵erent, yet, important perspectives. To start, focus will be given to

Genetic Programming, moving then to EC techniques that have been resorting to

grammatical ways of guiding evolution.

Despite not being the focus of this Dissertation but, as much of the developed work

will be tested under the evolution of artworks, some research was also conducted in

the field of Evolutionary Art. Because this is just a field of application and not the

main focus of this document its content is presented in Appendix A.

The organisation of this Chapter is as follows. In Section 2.1 an introduction to

EC, detailing the principles that guide it, is provided. An overview of what are Evolu-

tionary Algorithms (EAs) is presented in Section 2.2, introducing the di↵erent types

of EA approaches. This last section is divided into two subsections; the first one (Sec-

tion 2.2.1) details the components shared by all EAs, whereas the latter one (Section

2.2.2) focuses specifically on Genetic Programming (featuring di↵erent approaches to

it). In Section 2.3 we start by giving a formal introduction to grammars and then, in

the following subsections (2.3.1 and 2.3.2), Genetic Programming techniques capable

of dealing with their evolution are presented.

2.1 Evolutionary Computation

Evolutionary Computation (EC) [2, 18, 72] is a field of research within Computer

Science, related to the Darwinian natural evolution of species [13].

In this theory, a population of individuals, subjected to a given environment, will

struggle for survival and chance to reproduce, due to the fact that the environment

5

can only host a limited number of individuals. Higher quality individuals, those that

are best suited to the environment characteristics, will have a higher probability of

surviving and reproduction, passing their characteristics to the o↵spring.

This can all be translated into the principle of survival of the fittest, i.e., if in-

dividuals have characteristics that make them well adapted to the environment they

are propagated to the o↵spring. Else, they are discarded by dying without children.

Occasionally, changes in the genetic material (mutations) can happen, altering the

constitution of the population. All this together is what makes evolution possible.

The previously described natural evolutionary process can be intuitively adapted

to computation, mainly over generate-and-test problems (also known as trial-and-

error problems). In this type of problem it is possible to generate a possible solution

and evaluate its quality in some way, promoting evolution.

It becomes now clear that a mapping between natural evolution and problem

solving can be established. The environment in natural evolution corresponds to the

problem in problem solving, the individual becomes the candidate solution and the

fitness the quality of the candidate solutions.

As problems increase their complexity and machines still have a limited capacity, it

becomes infeasible to search for optimal solutions. This justifies the need of this kind

of heuristic approaches, which are mainly used when a good solution, not necessarily

the optimal one, is sought within an acceptable time.

In particular, there are three types of problems that normally resort to EC:

Optimisation – when it is needed to find the inputs that lead to a known

optimal output, given the model;

Modelling / System Identification – both the inputs and outputs are known,

although it is needed to find out what is the model that maps the inputs into

the outputs;

Simulation – the model and some inputs are known. There is the need to find

the outputs for the corresponding inputs.

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [10,18] are a subset of EC and, as such, they also fol-

low the natural evolution theory of Darwin. Multiple types of EAs exist: Evolutionary

Programming (EP) [20], Evolution Strategies (ES) [6], Genetic Algorithms (GA) [27]

and Genetic Programming (GP) [32]. They all share the same core components.

6

To begin, an initial population of individuals is needed. This set of candidate

solutions will be evolved over time, subjected to environmental pressure, leading to

higher quality solutions.

The whole process of evolution is guided by a function (normally referred to as

fitness function) that must be capable of measuring a candidate’s solution quality.

If solving a maximisation problem, the higher the fitness value is the better. In the

other hand, if trying to solve a minimisation problem, the lower the value the better.

Variation operators are also applied to candidate solutions. Recombination is a

well known operator that aims at generating one or more new candidates (children),

based on the exchange of genetic material between two or more individuals (parents).

The selection of the parents is a process based on the fitness value of the candidates,

where commonly the probability of choosing an individual is a function of its qual-

ity. This way, all individuals have a probability, even if low, of being chosen. The

other used operator is mutation; it only applies changes in the genotype of a selected

individual, creating a new one.

Mutation and crossover together achieve variation, a necessary component of

search. By making small variations they carry out exploitation. By making larger

variations they carry out exploration. Both operators can achieve small and large

variations in di↵erent settings. Exploration is also linked with the principle of global

search and exploitation with local search. Exploitation and exploration must work

together to achieve successful search, promoting diversity and thereby facilitating

novelty.

Upon application of these operators, and as population size is typically fixed, it

is necessary to choose which individuals form the o↵spring. Usually, they are chosen

taking into account one of the following criteria: fitness or age.

Algorithm 1 Typical Evolutionary Algorithm [18].

Initialise population with random candidate solutions;
Evaluate each candidate;
while termination condition is not satisfied do

1 - Select parents;
2 - Recombine pairs of parents;
3 - Mutate the resulting o↵spring;
4 - Evaluate new candidates;
5 - Select individuals for the next generation.

end while

All the steps above mentioned are then repeated until a stop condition is met,

7

Figure 2.1: Typical Evolutionary Algorithm flow-chart [18].

GA ES EP GP
Typical
problems

Combinatorial
optimisation

Continuous
optimisation

Optimisation Modelling

Typical repre-
sentation

Strings over a finite
alphabet

Strings (vectors) of
real numbers

Application specific
often as in ES

Trees

Role of re-
combination

Primary variation
operator

Important, but
secondary

Never applied Primary / only
variation operator

Role of
mutation

Secondary variation
operator

Important,
sometimes the only
operator

The only variation
operator

Secondary,
sometimes not used
at all

Parent
selection

Random, biased by
fitness

Random, uniform Each individual
creates one child

Random, biased by
fitness

Survivor
selection

Generational: n.a.
all individuals
replaced
Steady-state:
deterministic biased
by fitness

Deterministic, biased
by fitness

Random, biased by
fitness

Random, biased by
fitness

Table 2.1: Di↵erences between EA approaches [18].

promoting the continuous evolution of populations, one after the other. A systematic

overview of the textual description can be seen as a flow diagram, in Figure 2.1 and

as pseudo-code, in Algorithm 1.

As stated at the beginning of the current section, there are several types of Evo-

lutionary Algorithms. They all follow the previously referred steps; although, they

have di↵erences regarding the kind of problems they aim at solving and in the de-

tails of its implementation. One of the aspects that varies most from approach to

approach is the representation. This has several implications in the implementation

of the majority of the rest of the operators as they are dependent from it. The main

di↵erences between the various EAs are briefly presented in Table 2.1.

8

2.2.1 Components of Evolutionary Algorithms

In this section the components that together make an Evolutionary Algorithm are

going to be discussed and presented in a much deeper level of detail. As previously

seen, in Figure 2.1, to build an EA the following parts are needed:

• Representation of individuals;

• Population;

• Population initialisation;

• Evaluation of candidate solutions;

• Parent selection;

• Variation operators;

• Survivors selection;

• Termination condition.

2.2.1.1 Representation

Representation is one of the most important components of an EA, because it has

direct impact in several other parts, namely in recombination and mutation. In other

words, we can say that the variation operators are representation dependent, meaning

that they must be adapted to it.

A rule of thumb is to choose as representation model the one that matches the

given problem better, i.e., the one that makes the encoding of individuals easier or

more natural.

This component is of huge importance because it is here that the mapping between

the original problem context (phenotype) and the domain of the candidate solutions of

the problem (genotype) is accomplished. As in nature, the phenotype is the expression

of the individual’s physic characteristics, whereas the genotype is the set of genes1

that encodes the phenotype.

Encoding and decoding reveal an import property of representation: it has to be

invertible; there has to be one genotype that corresponds to a given phenotype and

a phenotype that corresponds to a genotype.

Examples of standard representations are binary or real-valued vectors, trees or

graphs [69].

1Genetic unit that encodes a property of the individual.

9

2.2.1.2 Evaluation Function

An evaluation function, commonly referred to as fitness function, quality function or

cost function, is what allows EAs to classify and compare di↵erent candidate solutions.

In other words, it is the definition of improvement and works as a representation of

the task to be solved.

At a more detailed level, the fitness function ranks the genotype with reference to

its phenotipic capacity of solving the problem under study. For example, if maximis-

ing, better suited solutions must have higher fitness values, and the opposite; when

minimising, better suited solutions must have lower fitness values.

In some problems, the representation allows invalid individuals; they must be

penalised. This is done by the evaluation function, that should rank those invalid

solutions with lower fitness values. In this cases, the fitness function can be seen

as the normal value that would be attributed to the genotype, minus a penalisation

value, that can be based on a linear, quadratic or logarithmic method. Another way

of dealing with invalid candidate solutions is to fix them before evaluation.

2.2.1.3 Population

In EAs the population is referred to as the unit of evolution, i.e., it is a set formed by

candidate solutions that is evolved over time with the guidance of a fitness function.

The only operator that acts directly over the population as a whole is survivors

selection (further detailed in Section 2.2.1.6).

Normally, when working with standard EAs, the population size is constant over

time. This generates a question: how big should the population be? If, in one hand,

bigger populations allow a higher diversity (number of di↵erent candidate solutions),

reducing the risk of convergence to local optima2, it is also true that more candidate

solutions require longer evaluation time. Another approach is to go for an adaptive

population size, as mentioned in [17]. Usually, in this type of methods, population

size varies in relation with diversity.

Diversity is highly linked with two concepts previously presented: phenotype and

genotype. It can be defined as a measure of rating how many di↵erent solutions are

present in the population. This may be accomplished by counting distinct genotypes,

phenotypes or fitness values. Although, it is important to bear in mind that the

same value of fitness can correspond to two genetically di↵erent individuals, but not

2Solution that is optimal within a region of the domain, although is not the best of all existent
optima.

10

vice-versa. In [52] a method for measuring the diversity of a population taking into

consideration both phenotypes and genotypes is proposed.

2.2.1.4 Parent Selection

As previously mentioned, in order to evolve, an EA must choose individuals (parents)

that when combined produce the o↵spring. Parent selection has the main goal of

being capable of distinguishing which individuals, when bred, may lead to better

solutions. This decision is taken based on the quality of the population individuals,

allowing higher-fitness members (those better adapted to the environment) to become

parents.

Even aiming at the best possible solution, this operator cannot choose only the

best individuals as parents. If so, it will risk a loss in diversity and consequent

stagnation, failing to search areas of the problem’s domain. For that reason, despite

the fact that higher quality individuals have better chances of being chosen, low

quality individuals are also given an opportunity to become parents. This relation

between the probability of choosing higher and lower fitted individuals is known as

selection pressure. High selection pressure implies less diversity, consequently leading

to a greater probability of getting stuck in a local optimum. Very low selection

pressure approximates random search and, as such, slower evolution.

Amongst the most usual parent selection methods are: roulette wheel, stochastic

universal sampling and tournament selection. The ones used in the present Disserta-

tion are now described.

Roulette Selection Also known as fitness proportionate selection. In simple words,

if the fitness of an individual, xi, is given by function f then, the probability of

choosing this individual (prob(xi)) is given by Equation 2.1, where N represents the

population size. It is now possible to pick p parents by generating p random numbers,

between 0 and 1, which will then be mapped to a specific individual, according to

their probabilities.

prob(xi) =
f(xi)

NP
j=1

f(xj)

(2.1)

11

Tournament Selection In this method, to select an individual, it is necessary to

specify the tournament size (tsize), that mentions how many candidate solutions will

participate in this “competition”. After picking, completely randomly and unbiased,

tsize individuals from the population, the one with the highest fitness is selected to

become a parent. This process is repeated as many times as the number of pretended

parents. The choice of the tsize parameter is of high importance in what concerns the

selection pressure. Higher values of tsize give higher selection pressure and vice-versa.

2.2.1.5 Variation Operators

Variation operators, namely recombination and mutation, are responsible for intro-

ducing new individuals and diversity in the population, by generating o↵spring. For

that, they use candidate solutions, picked from parent selection methods, and ap-

ply to them stochastic changes aiming at producing new genetic material. A deeper

explanation of these operators follows.

Recombination selects two or more individuals (parents) - normally two - and

recombines their genetic material giving origin to individuals that should express

qualities from both parents (refinement of candidate solutions). Preferentially, higher

fitted candidate solutions are chosen. It is stochastic due to the choice that is made

about what parts of each parent are combined in order to form the o↵spring.

Mutation is capable of generating a new individual by changing one or more genes

of the given candidate solution. The input of mutation is called parent and the output

child or o↵spring. Can be also defined as a stochastic method aimed at producing

random unbiased change. It is mainly important in the evolutionary process for

providing solutions capable of searching other areas of the problem’s domain, avoiding

stagnation and convergence to local optima.

Both operators are needed to pursue the objective of finding the optimal solution

[73]. Whereas recombination aims preferentially at a local search (exploitation) by

combining two higher fitted individuals, hoping to refine the search, mutation goes

after new areas of the domain, that may have not been explored yet, assuring a

global search (exploration). Other aspect regards the probability of occurrence of

each operator. They can be a-priori defined, which is not always easy or an adaptive

method can be used [76].

12

2.2.1.6 Survivor Selection

Survival selection mechanisms, also known as replacement, have the goal to choose

which candidate solutions pass from one generation to the other, given that, at the

end of each generation the set of candidate solutions is composed by the parents and

their o↵spring.

As already mentioned, normally, in EC, the population size is kept the same during

the evolutionary process. So, in order to choose which individuals are passed to the

next generation, a process of selection biased by their fitness value is used. Another

possibility is to take this decision with regard to their age (parents vs. children).

The most used techniques are to rank all the parents and o↵spring and select a

percentage of the best ones (fitness biased) or to select just the o↵spring (age biased).

Although, another approach is commonly used: elitism. When selecting as survivors

only the o↵spring (generational selection), there is a probability of losing the best

individuals. To avoid that, elitism is applied and it consists of passing to the next

generation a percentage, normally low, of the best candidate solutions, avoiding this

way the deterioration of quality of the population.

When comparing with parent selection an important di↵erence has to be pointed

out. While parent selection is known to be a stochastic process, replacement is often

deterministic. Being based on rankings or age, the produced results happen to be

always the same.

2.2.1.7 Initialisation

Initialisation is the process of creating the first set of candidate solutions that will form

the initial generation. To create this individuals it is first important to know whether

or not a-priori knowledge about the problem exists. If so, it should be considered in

the creation of individuals. Otherwise, they should be created in a randomised way,

assuring the covering of most of the domain, to avoid premature convergence and

stagnation.

2.2.1.8 Termination Condition

Termination condition is what defines when an evolutionary algorithm should stop

evolving, that is, stop trying to find new candidate solutions better than the previous

ones. If the optimal value is known, the most used stop criteria is its reaching, or

achieving a candidate solution which fitness is within a defined margin of error. But,

as the evolution of EAs is randomly determined it is not possible to assure that it is

13

going to reach the optimal solution. For that, other termination criteria have to be

defined. The most usual ones are:

• Definition of the maximum number of fitness evaluations, which indirectly sets

the maximum number of generations;

• Diversity between population individuals inferior to a defined threshold;

• Fitness improvement under a threshold for a given period of time (this period

of time could be, for example, a number of generations);

• Definition of a maximum allowed CPU execution time.

Instead of using just as stop criteria the convergence to an optimal value, within

an acceptable error margin, and because EAs are stochastic, meaning they do not

o↵er guarantees of getting close to the optimal solution, the possibility of combining

this condition with one of the other points presented above should be considered.

This assures that the algorithm will output solutions within an acceptable period of

time.

2.2.2 Genetic Programming

Genetic Programming (GP) [10,12,18,32,65] is a branch of Evolutionary Algorithms

which aims at automatic resolution of complex problems, requiring few information

about the form or structure of the solution.

All problems where the solution can be modelled, in any language, as a computer

program and where it is possible to define a metric of evaluation, capable of comparing

two solutions assessing which one is better are possible to solve using GP.

At a higher level, GPs objective is to evolve executable programs (through the

natural process of evolution) that provide the desired solution to a specific problem.

This can be seen as one of the main di↵erences between GP and other EAs (GA, ES

and EP) because, while the others evolve solutions that optimise a given problem,

GP is capable of evolving models (programs) that, when executed, lead to the desired

solutions. For that, it is just needed to specify what needs to be done, with no

concerns about how it should be accomplished. Other di↵erences exist; while in most

EAs individuals are normally represented by linear vectors of fixed size, in GP they

are non-linear structures of variable size.

As in any Evolutionary Algorithm, in GP, a population of candidate solutions is

evolved over time, being each candidate solution, as previously mentioned, a computer

14

Figure 2.2: Genetic Programming flow-chart [65].

program. From generation to generation, transformations are applied to individuals

(namely mutation and crossover), generating o↵spring. Then, the programs that

carry on to the next generation have to be chosen using any of the well known sur-

vivor selection mechanisms. A step that is slightly di↵erent from the standard EAs

is the assessment of quality of the candidate solutions. While in GA, ES and EP

fitness is inferred directly from the individual’s genotype here, the program has to

be executed and the ouputs compared with the expected ones. The flow described in

this paragraph is depicted, briefly, in Figure 2.2.

Genetic Programming has been applied with success to a wide range of areas,

such as, pattern recognition, symbolic regression, robotics, game strategies, image

processing, art, ...

Several types of GP branches exist, with their di↵erences mainly at the level

of representation. Although, as mentioned in several other sections, changing the

representation has direct impact in several other components of the algorithm, as

they are representation dependent. The ones that are going to be explored, in the

following subsections are Tree-Based Genetic Programming (Section 2.2.2.1) and two

types of Graph-Based Genetic Programming (Sections 2.2.2.2 and 2.2.2.3).

Tree-Based GP is going to be presented because it is the most widely used form

of GP and Graph-Based GP will be explored due to the fact that it is also going to

be used to develop the evolutionary engine of this Dissertation.

2.2.2.1 Tree-Based Genetic Programming

Proposed by Koza in 1992, it aims, as any GP technique, at solving a problem by

developing an executable program that represents the solution.

In the following subsections the details of this approach are going to be presented,

so that it becomes clear how the principles of EAs components were adapted to cope

with a tree representation.

15

Figure 2.3: GP syntax tree for the program max(x+ x, x+ 3 ⇤ y) [65].

Population, parent and survivor selection and termination conditions are not going

to be referred for the fact that no significant di↵erences exist.

Representation This form of GP has its representation based on a tree hierarchy

that should capture expressions in a formal syntax. Inner nodes represent functions,

whereas leaves represent terminal symbols. Together they form the alphabet of the

program. Figure 2.3 shows an example of a syntax tree for the program max(x +

x, x+ 3 ⇤ y), where the function set is {max,+, ⇤} and the terminal set is {3, x, y}.
An important property of the elements that compose the function set is its arity.

The arity of a function is the number of arguments it receives, given that both func-

tions and terminals can be considered. For example, the max function of Figure 2.3

has an arity of two.

The chosen alphabet must be complete, i.e., the set of functions and terminals

must be wide enough to produce at least a solution for the problem. Sometimes

this is di�cult to meet because the solution is unknown. Another property that

must be assured is the closure of the function set. This requirement has the goal

to guarantee that any function of the set is able to receive as argument any other

function or terminal, with no concerns about their type. Sometimes, typed functions

or terminals exist, requiring special care not to break the closure property.

A problem arises from this kind of representation. Being individuals represented

using a tree, and because trees of di↵erent individuals are di↵erent in size, with time

this will lead to a huge growing in the candidates solution size, making the produced

code not human-readable. This problem is known as bloat and can be prevented

by defining a maximum tree size (forcing variation operators not to exceed it) or by

penalising the fitness of individuals with relation to their size.

16

Figure 2.4: Tree interpretation procedure [65].

To decode trees, nodes are processed in a depth-first post-order way so that, when

a node with arguments is analysed, the value of its arguments is already known. In

other words, the tree is traversed recursively, starting from the root node, skipping

for later processing all those nodes which children’s value is still unknown. Figure 2.4

illustrates the decoding procedure.

Evaluation Function As in standard EAs, in GP, selection aims at measuring

the adaptivity of the candidate solutions to the environment and it has to have the

capacity of establishing a comparison between each pair of individuals.

Normally, when the optimum solution is known, the quality of an individual is

measured by assessing his distance to it. In GP, because candidate solutions usually

represent programs, this proximity to the optimum is calculated by executing it,

giving, as input, sets of arguments and comparing the produced output with the

correct solution for that set.

If no optimum is known, probably just a maximisation or minimisation with re-

lation to some criteria may be being sought .

Like mentioned above, sometimes the complexity of the individual is incorporated

in the calculation of his fitness (Equation 2.2). This is done to prevent the continuous

increasing of the individual’s size, also known as bloat. Preventing this growth will

lead to programs easier to read. Complexity may be measured using, for example,

the number of nodes in the tree.

fitness0(xi) = fitness(xi)� complexity(xi) (2.2)

17

No

Yes

Yes

PmPr

Gen := 0

Create initial
random population

Termination
criterion satisfied?

Evaluate population
fitness

Select one individual
based on fitness

Perform reproduction

Copy into new
population

Select one individual
based on fitness

Perform mutation

Insert mutant into
new population

i := i + 1

Perform crossover

Insert two offspring
into new population

i := i + 1

Designate
result

Endi := 0

i = M?

Gen := Gen + 1

Select two individuals
based on fitness

Select genetic
operation probabilistically

No

Pc

Figure 2.5: Typical GP Algorithm flow-chart, focusing the variation operators applied
to each individual [32].

Variation Operators Like in any other form of EA, GP mutation and recombi-

nation aim at generating o↵spring. Applying mutation to a parent produces a single

child and recombination takes two parents to form children. Although, the way they

are implemented, at a lower level of detail, is di↵erent.

Whereas in typical EA approaches it is normal to apply to a candidate solution

both mutation and recombination in the same iteration, in GP that does not usually

happen. Operators are generally exclusive, being a normal rate for crossover around

90% and of 1% for mutation. For that, when the sum of crossover and mutation rates

does not reach 100% another operator called reproduction is used. Reproduction

consists only on the copy of a selected candidate solution to the o↵spring, without

18

Figure 2.6: Example of subtree crossover [20].

altering its structure. A flow-chart depicting the choices made at the level of the

variation operators is presented in Figure 2.5, where Pm represents the probability of

mutation, Pc the probability of crossover and Pr the probability of reproduction.

Recombination When it comes to recombination there are at least two distinct

approaches, diverging in the number of children produced by two parents previously

chosen by a selection mechanism.

In one hand, [32] defends that the recombination of the genetic material from two

parents should origin only one child. From each parent (A and B) a crossover point

(a node of the individual’s tree) is chosen (na and nb). Then, the o↵spring is created

by replacing the subtree starting at na by the subtree with root in nb (see Figure 2.6).

In the other hand, as mentioned in [18], the reverse process should be also done, that

is, the subtree starting at nb is also replaced by the one rooted in na, giving origin to

two children. To preserve the parents, copies of them must be done and the operator

applied to their copies.

A problem was noticed by Koza [32] regarding the choice of the crossover points. If

given the same probability to all nodes, it would be much more likely to choose a leaf

than an internal node, which would lead to the exchange of little genetic material. For

that reason, as a rule of thumb, the probability of choosing internal nodes is typically

set to 90%, leaving only 10% to leaves.

Mutation The most common way of mutating a tree is to replace one of its

subtrees, starting at a randomly chosen node, by a randomly generated tree (see

Figure 2.7). That can be accomplished as if a recombination was being done. Basically

19

Figure 2.7: Example of subtree mutation [20].

the idea here would be to recombine the individual’s tree with a randomly created

one (generated in the same way as the initial population).

Other not so common mutations are: (i) node mutation, which consists in replac-

ing a function node by another of the same arity; (ii) shrinkage mutation, aiming at

the reduction of the tree, randomly chooses a node and then replaces it by one of

its children, excluding all the others and their branches; (iii) permutation mutation,

which changes the order of the arguments of a function.

Initialisation The creation of the initial population should preferentially cover all

the domain, not favouring particular configurations, unless a-priori knowledge about

the problem exists. Trees should be created in a stochastic way using the elements of

the function and terminal sets, combining instances of both, recursively, giving origin

to di↵erent tree lengths and complexities.

Before introducing the various methods that have been proposed to generate can-

didate solutions, the definition of depth must be presented. In a tree representation,

the depth of a node is given by the number of edges that need to be traversed from

the root node until the node of which the depth is sought. The depth of a tree

corresponds to the depth of the deepest node.

Full Creation Method – The depth of all leafs is the same and equal to a

specified value. That is, until the maximum depth is reached, more functions

(internal nodes) are added, given that di↵erent functions require a di↵erent

number of arguments. Then, terminal symbols are added (leaves).

Grow Creation Method – Unlike the previous method, it does not require

the tree to be complete. If in a branch, a terminal symbol appears, that path

is closed, not reaching the maximum depth.

20

Ramping Method – Consists in dividing the initial population in di↵erent

sets, applying to each one the full creation method with a maximum depth that

is in a range from the minimum real depth to the maximum real depth. For

example, if it is pretended to create 30 candidate solutions with a minimum

real depth of 2 and a maximum real depth of 4, there will be instanced, using

the full creation method, 10 individuals with maximum depth 2, 10 individuals

with maximum depth 3 and 10 individuals with maximum depth 4.

Ramped Half-and-Half Method – Based on the ramping method, divides

the initial population in sets, splitting then each set into two. To the first half

the full method is applied, the remaining candidate solutions are built with the

grow method. For example, if we want to create 30 candidate solutions with a

minimum real depth of 2 and a maximum real depth of 4, there will be instanced:

5 individuals with maximum depth 2 (full method), 5 individuals with maximum

depth 2 (grow method), 5 individuals with maximum depth 3 (full method), 5

individuals with maximum depth 3 (grow method), 5 individuals with maximum

depth 4 (full method) and 5 individuals with maximum depth 4 (grow method).

From all the above presented techniques, the most used for the creation of the

initial population is ramped half-and-half, for being capable of creating diverse can-

didate solutions, with di↵erent tree sizes and shapes.

2.2.2.2 Parallel Distributed Genetic Programming

Proposed by Poli [62,63], Parallel Distributed Genetic Programming (PDGP) aims at

a graph representation of programs. Each graph can have di↵erent sizes and shapes,

within predefined limits.

A graph representation turns it possible to express a much bigger class of programs

and to reuse nodes, consequently increasing e�ciency.

As in Section 2.2.2.1, the components of the algorithm that are going to be ap-

proached are only the ones that di↵er from the standard EAs, presented in Sec-

tion 2.2.1.

Representation The idea behind PDGP is that genotypes are represented by

graphs, where the nodes stand for functions and terminals and where the links be-

tween them represent the flow of control and results.

As in Tree-Based GP (Section 2.2.2.1), the set of functions and terminals form

the alphabet. The same properties have to be met: completeness and closure.

21

Figure 2.8: Graph representation for the expressionmax(x⇤y, 3+x⇤y) [63] (adapted).
To compare with a Tree-Based GP representation check Figure 2.3, that represents
the same expression, as a tree.

Figure 2.8 depicts the typical PDGP representation. To each node a position in a

pre-defined multi-dimension grid is assigned; additionally, connections between nodes

are limited to be upwards. Another restriction is that these connections can only

happen between nodes in adjacent lines. Function I is known as identity function

and it works as a pass-through node, returning as output what it receives as input.

It is possible to add introns to the previously presented representation. Introns

are unexpressed parts of the code; that is, despite being present, they are not used.

This can be accomplished by placing, at every free position in the grid, a function or

terminal, even if they are not directly or indirectly connected to the output.

Variation Operators Variation operators, as always in EAs, have the goal of pro-

ducing o↵spring, based on the existing candidate solutions. In PDGP, recombination

randomly picks two individuals as parents and produces one child. Mutation, from a

single individual, produces a new one.

Recombination A simple form of recombination is based on the idea that sub-

graphs are functional units whose output is used by other functions; for that, its flow

must not be broken. Sub-graph Active-Active Node (SAAN) is described in [63] as

the basic form of crossover. According to [63] the three main SAAN steps are:

1. A random active node is selected in each parent (crossover point);

2. A sub-graph including all the active nodes which are used to compute the output

value of the crossover point in the first parent is extracted;

22

3. The sub-graph is inserted in the second parent to generate the o↵spring (if the

x coordinates of the insertion node in the second parent is not compatible with

the width of the sub-graph, the sub-graph is wrapped around).

Other methods of accomplishing crossover exist and are described in [63].

Mutation Mutation is very similar to the previously presented in Tree-Based

GP. It is enough to randomly select a node that is not an intron, replacing it by a

randomly generated sub-graph (global mutation).

Mutations a↵ecting only the functions represented by each node do exist too

(node-mutation). A specific mutation was also proposed, link-mutation, that aims at

changing a randomly chosen graph connection.

Initialisation The first step in the creation of the initial population is to decide if

balanced or unbalanced candidate solutions are pretended and if there are to be used

introns. If balanced graphs are sought there has to be defined a maximum distance

between the terminals and the output nodes, else they can occur at any random place.

To complement, if introns are to be used, the grid can be filled with functions and

terminals at random positions. When a function is added, a random number of links

from that node to others must be also created.

Another possibility is to create individuals like in Tree-Based GP; that is, with root

in the output nodes, recursively add functions and terminals, taking into attention

the arity of each function. In this case, the answer to the initial question of whether

or not balanced or unbalanced graphs are pretended is also needed, as the definition

of the maximum diameter of the graph.

2.2.2.3 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [49] is a graph-based form of GP introduced

by Miller. In its basic form it aims at solving any problem where the solution can

be represented by a direct acyclic graph. Further work has been done to extend this

principle. In [83] the usage of modules (relevant blocks) is referred, [24] introduces the

capacity of handling multiple data types to CGP, and in [25] self-modifying properties

are featured.

In the following subsections the general form of CGP will be detailed, focusing

the di↵erences from other types of GP.

23

Figure 2.9: CGP generic representation [49].

Representation Standard CGP has its representation based on direct and feed-

forward acyclic graphs. The nodes are then mapped into a set of integers, where

the first one represents the identifier of the function and the others its inputs. For

that, the number of integers needed to encode each node depends on the arity of the

function, totalling 1 + arityfunction.

In the genotype of each individual there are considered two types of genes: function

and connection genes. The first ones correspond to addresses in the function look-

up table (table that establishes the correspondence between a function’s label and a

physical address), whereas the second one mentions where the node gets its inputs

from (address in a data structure, normally an array, that stores the outputs of each

node plus the program input addresses). So, in a more accurate manner, it is said

that the previously referred integers correspond, in fact, to function and connection

genes, respectively.

Prior to that, it is necessary to define the number of columns and rows of the grid

of nodes and the number of levels-back, that constrains which columns a node can

get its inputs from, i.e., the nodes prior to the current node from where it can get

connections as input.

All the explained above is depicted in Figure 2.9, where all the flow from ni inputs

to no outputs is graphically detailed. The grid has nr rows and nc columns. Each

node is identified by a function gene, F , and several connection genes, C, depending

on the arity of each function. Data inputs and outputs are labelled consecutively as

a way of guaranteeing its uniqueness. In the last line of the image the actual used

genotype is shown.

For the fact that restrictions on output nodes are less rigid than in the remaining

ones, it is possible that many of the genes are non-encoding, i.e., they are not ex-

24

pressed in the phenotype of the individual. In [50] their existence has been proven to

be important.

Figure 2.10: CGP decoding example [49].

Figure 2.10 represents the decoding algorithm. Starting from the output, it checks

which nodes are directly addressed. Next, those nodes are analysed, to find out the

nodes they are using. This process is repeated, recursively, until no more active nodes

are found. It has the advantage of ignoring introns, not spending processing time with

them.

Variation Operators Like in any other EA, CGP variation operators aim at gen-

erating o↵spring. Although, as will be discussed in the following subsections, the

initial proposal of CGP only uses mutation. Some new crossover operators suitable

to use with CGP have been later proposed, such as in [9].

Recombination Normally, when talking about standard CGP, recombination

is not used. One point crossover was tested, although found to be disruptive. More

recently, [9] proposed a new approach to recombination in CGP that has been proven

25

to speed up convergence. In this method, before applying crossover, the genotype of

the individual has to be mapped into a float representation, where all values of genes

lay in the interval [0, 1] (check Section 4 of [9] for more details). Then, o↵spring is

generated by applying Equation 2.3, where p1 and p2 represent the parents and ri is

a random generated number between 0 and 1.

oi = (1� ri) ⇤ p1 + ri ⇤ p2 (2.3)

Mutation The mutation in basic CGP aims at changing a gene by any other

random valid value. The validity concept appears due to the fact that genes are

typed. If talking about a function gene it can only take values from the function’s set

addresses. Else, if talking about input genes, values from the output of any previous

node or program inputs are possible.

This operator can be applied more than once in the same generation, to the same

individual. The maximum number of times it can be applied (mutation rate), during

the same generation is a-priori defined, as a percentage of the total number genes of

the individual’s genotype. Typically it is set to 1%.

2.3 Grammars

Before proceeding to grammars, an introduction to formal languages is presented

[28,35]. Formal languages are a way of representing a set of sentences that share the

same core concepts. Their definition is formalised using a set of symbols and rules of

formation that indicate how those symbols can be combined. Languages, at a higher

level, are any subset of ⌃⇤, which represents the set of all the sentences that can be

formed by combining zero or more symbols from the alphabet, ⌃. It always contains

the empty string, �.

In the other hand, grammars aim at assessing if a particular sentence is or not

correct. Formally, they are defined by a four-tuple (V, T, S, P), where:

• V is the set of variables, also known as non-terminal symbols;

• T is the set of terminal symbols;

• S is the start symbol and it has to be part of V ;

• P is the set of production rules. They represent mappings of the type x ! y,

x 2 (V [T)+ and y 2 (V [T)⇤.

26

The process of replacing a non-terminal by a given production is called derivation

step and they are what lead to the expansion of grammars, from the start symbol.

Derivation steps are applied until no non-terminal symbol is left for expansion.

For the language L(G) = {anbn+1 : n � 0} [35], where ⌃ = {a, b}, an example of

a grammar is G = ({S,A}, {a, b}, S, P), with productions:

S ! Ab

A ! aAb

A ! �

With the grammar of the previous example, the derivation of the sentence “aabbb”

can be obtained by applying the following derivation steps:

S
S!Ab
===) Ab

A!aAb
====) aAbb

A!aAb
====) aaAbbb

A!�
==) aabbb

Several types of grammars exist. In the following paragraphs focus will be given to

Regular Grammars and Context-Free Grammars (CFGs). The main interest resides

in CFGs, although those can be considered an extension of the first ones. A graphical

type of grammars will also be presented: Shape Grammars.

Regular Grammars can be considered of two types: right or left-linear. If a

grammar, G = (V, T, S, P), has all production rules in the form A ! xB or A ! x,

A,B 2 V and x 2 T ⇤, it is said to be right-linear. Otherwise, if the production rules

are of the form A ! Bx or A ! x the grammar is said to be left-linear.

As seen, in the previous mentioned forms, the production rules can only have

one non-terminal in its right side. For example the grammar with the following

production rules: A ! xB; A ! xB and A ! xBB is not considered a regular

grammar because: (i) it has production rules both in the right and left-linear forms;

(ii) it has one production rule with more than one non-terminal in its right-side.

Despite that, if violation (ii) was not present, the grammar could still be considered

linear, meaning that at most one non-terminal symbol can occur on the right side of

any production rule, without any restriction regarding its position.

From all the above, and specially from the example, it is easily concluded that a

regular grammar is always linear but the opposite is not necessarily true, i.e., linear

grammars are not required to be regular.

Context-Free Grammars (CFGs) are in all similar to regular grammars, remov-

ing all restrictions in the right side of production rules, allowing in this way the

creation of more powerful grammars. For example, using a regular grammar it is

not possible to model the parenthesis order of programming languages; a CFG can

27

Figure 2.11: Example of a derivation tree for the sentence “abbbb” using grammar
G = ({S,A,B}, {a, b,�}, S, P), with productions: S ! aAB; A ! bBb; B ! A|�
[35].

achieve it. Being that said, a CFG, G = (V, T, S, P), has its production rules of the

form A ! x, where A 2 V and x 2 (V [T)⇤. All regular grammars are CFGs too;

the opposite is not true.

As production rules can have several non-terminals, a derivation is said to be

leftmost if it is the leftmost non-terminal symbol that is replaced in each derivation

step. An analogous procedure is taken for rightmost derivations, expanding, in each

derivation step, the rightmost non-terminal symbol first.

A way of representing derivations is by the use of derivation trees, where the

nodes are labelled with terminal (inner nodes) and non-terminal symbols (leaf nodes).

An example of the derivation tree for the sentence “abbbb” using grammar G =

({S,A,B}, {a, b,�}, S, P), with productions: S ! aAB; A ! bBb; B ! A|� is

shown in Figure 2.11.

Given the following grammar G = ({E, I}, {a, b, c,+, ⇤, (,)}) with productions:

E ! I; E ! E + E; E ! E ⇤ E; E ! (E); I ! a|b|c it is possible to derive the

expression “a + b ⇤ c” by at least two di↵erent ways [35]. This problem is known as

ambiguity and it can be solved by rewriting the grammar. This is sometimes not

enough because the ambiguity can be in the language itself. Other solution passes

by establishing precedence rules. More about this forms of solving ambiguity can be

read in [35].

One of the main applications of CFGs is in the definition of programming lan-

guages and in the construction of interpreters and compilers. Some adaptations to

it were performed, in order to improve readability, forming the Backus-Naur Form

(BNF). In BNFs non-terminals are enclosed in triangular brackets, terminals do not

use any special notation and ::= is used instead of !. Those are the main di↵erences

28

(a) Shape rules. (b) Initial shape.

(c) Generation of a shape using the shape rules in (a) and the the initial
shape in (b).

Figure 2.12: Shape grammars example [77].

between CFGs and BNFs, being the last one used as the standard for representing

programming languages.

Procedures for simplifying CFGs do exist: (i) removal of � production rules; (ii)

removal of unitary production rules; (iii) removal of useless production rules and

there are two main forms of normalisation: (i) Chomsky Normal Form; (ii) Greibach

Normal Form. As these are not the focus of the present Dissertation, if pretended,

further reading material can be found in [28,35].

Shape Grammars were introduced by Stiny and Gips in a way similar to CFGs,

but applied using shapes. Shapes are mentioned to as limited sets of lines that can be

defined in a Cartesian coordinate system with real axes and an associated Euclidean

metric, providing that no two distinct lines can be combined to form a single one [77].

Shape grammars consist on a four-tuple (S, L,R, I), where:

• S is the set of shapes (equivalent to T of CFGs);

• L is the of symbols (equivalent to V of CFGs);

• R describes the set of shape rules, in the form a ! b, where a 2 {S, L}+ and

b 2 {S, L}⇤ (equivalent to P of CFGs);

• I 2 {S, L}+ refers to the initial shape (equivalent to S of CFGs).

An example of the application of a shape grammar is shown in Figure 2.12, where

the shape rules are represented in 2.12a, the initial shape in 2.12b and a generation

29

Figure 2.13: Example of a derivation tree [86].

of a shape using the grammar in 2.12c. It is easily seen that the used grammar is not

deterministic as shape rule 1 can be applied an infinite number of times.

In the following subsections, methods that use CFGs with GP are going to be

presented. In Section 2.3.1 the grammar itself will be evolved while, in Section 2.3.2,

the GP evolution has its representation based on grammar mappings.

2.3.1 Grammar Evolution

In [84–86] Whigham proposed a method for evolving Context Free Grammars (CFGs),

CFG-GP, based on Koza’s tree GP approach.

One of the main disadvantages of the method introduced by Koza is the need to

assure the closure property, which will make it possible for crossover and mutation

operators to take place in any position of the tree, leading always to valid candidate

solutions. CFGs can overcome the need to meet this property.

2.3.1.1 Representation

As mentioned previously, Whigham aimed at evolving CFGs and, as so, the most

intuitive representation are derivation trees.

In Figure 2.13, a representation of the grammar formed by the following produc-

tion rules is depicted:

S ! B

B ! and B B | or B B | not B | if B B B | T
T ! a0 | a1 | d0 | d1 | d2 | d3

The non-terminals set is {and(2), or(2), not(1), if(3)} and the terminals are {a0, a1, d0,

30

d1, d2, d3}. The values in brackets, used in the non-terminals, represent their arity.

2.3.1.2 Initialisation

CFG-GP creates its initial population with a method based of the Ramped-Half-and-

Half from traditional Koza’s GP. After defining the maximum depth, the following

algorithm, from [86], is applied:

1. Label each production rule A ! x, where A 2 N and x 2 {N [⌃}⇤, with the

minimum number of derivation steps to create only terminals;

2. For the range of depths and number for each depth D = i...j do:

(a) Select the start symbol, S, and label it as the current non-terminal A;

(b) Randomly select a production P1 2 P of the form A ! x with minimum

derivation steps to ⌃⇤ < D;

(c) For each non-terminal B 2 x, label B as the current non-terminal and

repeat steps (b) and (c).

2.3.1.3 Variation Operators

Variation operators, as in any EA, aim at producing o↵spring. In CFG-GP both

recombination and mutation are applied, with di↵erent probabilities. Recombination

aims at, from two parents, producing o↵spring, whereas mutation is applied to a

single candidate solution.

Recombination is constrained to happen in non-terminals and, in order to guar-

antee that o↵spring is valid, the recombination algorithm picks the same node in both

parents as the crossover point. From [86] it is possible to get the algorithm, as follows:

1. Select two programs, with derivation trees p1 and p2, from the population, based

on fitness;

2. Randomly select a non-terminal A 2 p1;

3. If no non-terminal matches in p2, go to step 1;

4. Randomly select A 2 p2;

5. Swap the subtrees below these non-terminals.

31

6. If the maximum depth is exceeded, the whole process is aborted and it should

be restarted at step 1.

Mutation in this approach is the same as in traditional tree-based GP. To start, a

randomly non-terminal is chosen as the mutation point and then, a new random tree

is generated (as in the initialisation procedure), having as start node the mutation

point. Next, the new built tree is inserted in the mutation point, replacing all the

previous structure. In any case, the maximum tree depth should not be exceeded.

2.3.1.4 Bias

Usually, CFGs lead to large search spaces. It was proven in [84] that, for a specific

problem, the introduction of biases produce an improvement in the success rate of

the algorithm. Di↵erent types of bias exist, being the three major: (i) selection bias;

(ii) language bias; (iii) search bias. A deeper explanation regarding each one of them

can be found in [85]. From that, Whigham inferred that the dynamic creation of

new production rules, in run time, based on the genotypes of the fittest individuals

probably would acquire better results. That was proven to be true.

To accomplish that, it is first needed to find the most suitable areas of individuals

that conduct to new production rules and then incorporate these into the CFG.

To start, an individual is selected to extend the current grammar. The chosen

individual is the one which has a higher fitness value. If two or more happen to have

the same quality, the one with the least depth is picked. Then, the identification of

the better suited productions, that may be incorporated into the CFG, is done, using

a bottom-up method. From the leaf nodes (terminals) it climbs up the parse tree to

the next production which has, in the same level, other terminals or non-terminals.

The traversed path describes the new production rule, which will be included in the

CFG. The terminal that is chosen to be propagated in the bottom-up approach is the

deepest and left-most one. In Figure 2.14 it is possible to identify the new production

rule as B ! B if a0 B B (starting from a0).

Another concept that was proposed was the merit value, which essentially repre-

sents the probability of choosing a production rule while applying a derivation step.

When starting the whole evolutionary process, and no bias exists in the CFGs, a

default merit value of 1 is set to all production rules. Then, upon identifying suitable

production rules (like depicted in Figure 2.14), if the identified production already

exists in the production rules set, its merit is incremented by one. Otherwise, it is

added to the set and its merit set to one.

32

Figure 2.14: Identification of new production rules [86].

Changes were also proposed to the selection mechanisms, so that they would be

proportional to productions merit instead of individuals fitness. Epoch-replacement3

is used, producing, from generation to generation, individuals that incorporate this

knowledge, which is acquired over time.

2.3.2 Evolution Based in Grammars

A method of promoting evolution based in grammars is proposed in [55, 56, 60] by

O’Neill and Conor Ryan, which was named Grammatical Evolution (GE). It has been

suggested as a way of evolving a program, in any language.

In the following subsections the main components of this evolutionary algorithm

are going to be described. In particular, representation, variation operators and the

decoding operation will be specified.

2.3.2.1 Representation

In GE, individuals are represented as variable-length binary strings of bits, where

each group of 8 bits represents a codon, which denotes an integer. Those integers will

them be mapped into BNF rules in order to allow program execution and consequent

fitness assessment, as will be further detailed in Section 2.3.2.2.

From this type of linear representation, the generation of the initial population

can be easily understood as the generation of randomly, length-variable strings of bits

3Between each generation, a percentage of the worst individuals is replaced by new randomly
generated ones.

33

220 240 220 203 101 53 202 203 102 55 220 202 241 130 37 202 203 140 39 202 203 102

11011100

Figure 2.15: Individual’s representation example [60] (adapted).

(ones and zeros), within a defined minimum and maximum number of codons (groups

of 8 bits). An example of an individual’s genotype is presented in Figure 2.15 where,

for the sake of simplicity, instead of the binary representation its integer encoding is

represented.

2.3.2.2 Decoding

Beginning by the start symbol, the decoding procedure reads each codon in order

to decide which derivation step should be applied. Derivations follow a leftmost

approach, i.e., the derivation that is picked to be expanded is the first non-terminal

symbol. In order to decide with which derivation rule should the program be expanded

the mapping function shown in Equation 2.4 is used, where codon is the integer value

resulting from the 8 bits and non terminal rules is the number of production rules,

in the BNF, that the node that is to be expanded has. This process is repeated,

recursively, until no more non-terminals exist.

rule = codon MOD non terminal rules (2.4)

An example of the application of this algorithm will be now presented, using

as genotype the genetic material of Figure 2.15 and the grammar G =({expr, op,
preop},{Sin, +, �, /, ⇤, X, 1.0, (,)},<expr>,P), from [60], where the production

rules set is:

(1) <expr> ::= <expr><op><expr> (0)

| (<expr><op><expr>) (1)

| <preop> (<expr>) (2)

| <var> (3)

(2) <op> ::= + (0)

| � (1)

| / (2)

| ⇤ (3)

(3) <preop> ::= Sin

34

(4) <var> ::= X (0)

| 1.0 (1)

From the starting symbol, <expr>, that has 4 possible production rules, and the

codon representing 220 are read. As 220 MOD 4 = 0, from <expr>, <expr><op>

<expr> is originated. In the second step, with the leftmost non-terminal being

<expr> the operation 240 MOD 4 will be performed. The result is 0 and for that

<expr><op><expr><op><expr> is reached. This process is repeated until no

further non-terminal is present in the sentence. If continued, the reader will notice

that the final expression will be given by 1.0� Sin(X) ⇤ Sin(X)� Sin(X) ⇤ Sin(X).

If, for any reason, during the decoding process no more codons are available, that

is, if all of them are used, there can be performed one of the following actions. In

one hand, the individual can be declared invalid, and later replaced by the steady-

state replacement mechanism. In the other hand, wrapping can be done, i.e., genetic

material is reused, re-starting reading the codons from the initial one. The opposite

can also happen. It is possible that not all the genetic material is used. No concerns

should be given to that situation. Individual’s can also be declared invalid for being

unable to produce a complete mapping, as their grammar can be recursive.

With regard to the reading of codons, to one condition an exception should be

made. If expanding a non-terminal that has only a production rule, no codon should

be read, as only one outcome is possible. Returning to the previous example, if a

decision was needed to me made regarding the non-terminal <preop> it is obvious

that it was going to be replaced by the terminal Sin as no other option exists, as so,

no codon should be used.

The procedure herein represented is deterministic. If this process is repeated

more than once, to the same individual, as the codons order is the same the produced

output will always be equal.

To end this section, redundancy of the decoding/mapping method must be ad-

dressed. By mathematical reasons, the value of (A ⇤ B) MOD B outputs always

the same result for any integers A and B. Placing this in context with the mapping

technique under study, it becomes clear that several paths do exist that lead to the

same final expression. That should not be seen as a problem as it also happens in

nature, with proteins having multiple possible nucleotides encodings. In [59] this re-

dundancy has been proven to preserve population’s diversity, improving in this way

GE’s e�ciency.

35

2.3.2.3 Variation Operators

For the fact that GE uses a linear form of representation, the applied variation op-

erators are the typical ones for this kind of approaches. If, during the application of

this operators, an invalid individual is generated, its fitness should be penalised and

due to a steady-state replacement they will be likely replaced, whereas highly fitted

individuals will be kept.

Recombination Standard GE employs single point crossover, i.e., after choosing

the crossover points, the genetic material is exchanged between the two parents, giving

origin to o↵spring, in this case two new individuals. Those new generated individuals

then replace their parents in the population’s pool.

For example, if considering two individuals as parents, represented respectively

by 0101|01 and 1110|00, where | represents the crossover point, the o↵spring will be

010100 and 111001.

Further crossover techniques that might be suited to use with GE were also stud-

ied. The obtained results are fully described in [57] and demonstrate that other

approaches were found to be no better than the addressed in the present section.

Mutation Several di↵erent mutations can be applied to linear representations; the

ones herein presented are from [56] and [60].

In [60], point mutation and codon duplication are referred. Point mutation aims

at changing a bit value, in a given position. In the other hand, duplication aims

at randomly choosing a number of codons to duplicate, placing them at the end of

the individual’s genotype. [56] adds pruning to the previously mentioned operators.

This last mutation aims at removing all the genes that are not used to express the

characteristics of a given individual, that is, all those that are not used in the genotype

to phenotype mapping procedure (detailed in Section 2.3.2.2).

Due to the fact that many introns may exist, neutral mutations can arise, i.e., even

upon the application of mutations to individuals, their phenotype and, consequently,

their fitness may su↵er no modifications. This is potentially useful as it provides the

individual with the capacity to cope with some potentially destructive mutations.

2.4 Conclusions

In the present chapter we started by presenting Evolutionary Computation as a way of

linking computational power with the principles that guide evolution in nature. Then,

36

we drilled down over Evolutionary Algorithms, describing what they are and their

main components, focusing later on one of its branches known as Genetic Program-

ming. Regarding GP, multiple approaches to it were investigated, namely, Koza’s

Tree-based GP, Parallel Distributed GP and Cartesian GP, the last two encode indi-

viduals as graphs. To end, grammar theory and GP approaches that make use of them

were detailed and explored. Some of the considered techniques just use grammars to

guide evolution while others evolve the grammar itself.

All this overview and knowledge about such a wide range of ideas and notions

kept us thinking about some questions and issues that serve as starting point for the

current Dissertation. Is it possible to come up with a tool capable of dealing with

multiple problem environments and domains? Can grammar formulations help in this

task? If so, how? Which way of representing the solutions is more easily adaptable

and interpretable? Is it worth trying to combine multiple components of the di↵erent

approaches previously described?

During the following chapters we will provide some answers to the above questions,

ending with a broad discussion of them, in Chapter 7.

37

38

Chapter 3

Representation and Operators

In the present chapter, approaches aiming at solving some of the raised questions in

Section 2.4 are going to be addressed.

During the first stage of the Dissertation, and in line with previously developed

work, a graph-based evolutionary engine was developed (Section 3.1). The objective

of this approach is to evolve graphs resembling grammar structures. In initial work the

graphs represented Context Free Design Grammars [11] only; later, the representation

was generalised to cope with any type of grammar.

Later on, a tree-based evolutionary engine is proposed (Section 3.2). With the

objective of making the task of generalisation to other domains easier, individuals

are represented as derivation trees of a pre-defined grammar. Because this grammar

specifies the form that can be taken by the grammar that will ultimately define the

individuals, we can call it a pre-grammar, using some of the concepts introduced by

Nicolau in [53].

In each of the above referred sections (Sections 3.1 and 3.2) the used representa-

tion and operators (population initialisation, mutation and crossover) are thoroughly

detailed. As fitness assessment is similar in both approaches, we decided to merge

its description in Section 3.3. To end, conclusions regarding the theory behind both

methodologies are drawn (Section 3.4).

3.1 Graph-Based

The first tried approach for the evolution of grammar formulations is herein described.

Individuals are represented as graphs, where each node encodes a production rule.

Later, they are mapped into phenotypes and their quality assessed.

The next sections are organised as follows. Section 3.1.1 describes the represen-

tation used to encode the individuals genotype; random population initialisation is

39

metagrammar_flowchart - graph_representation

start non_term_A

rule non_term_A{

 term_B {param_a 2, param_b 0}

 non_term_b{}

}

rule non_term_B 0.5{

 non_term_B{}

 term_B{param_b -1}

}

rule non_term_B 0.7{

 non_term_B{param_a 1}

 term_A{}

}

non_term_B

W = 0.5

W = 0.7

non_term_A

term_B

term_A

param_a 2

param_2 0

param_b -1

param_a 1

Figure 3.1: On the left a generic grammar; on the right, the same grammar repre-
sented as a graph. W represents the node’s weight. Rectangles represent terminals
and rounded rectangles non-terminals.

detailed in Section 3.1.2. Finally, Sections 3.1.3 and 3.1.4 respectively present the

crossover and mutation operators.

3.1.1 Representation

In this approach each individual is represented by means of a directed graph formed

by a set of nodes and links. Each node corresponds to a symbol (terminals and

non-terminals) and each connection to a link between nodes.

Figure 3.1 depicts an example of a generic grammar and its corresponding graph

representation. Individuals are interpreted starting from the starting symbol (in this

case, non term A) and proceeding in a breadth-first fashion, expanding the produc-

tion rules. Augmented grammars are allowed, i.e., it is possible to associate parame-

ters with each symbol call, which are kept in the connection links between nodes (for

example, the parameter param a used in the call to term B from non term A). The

interpretation ends when there are no non-terminal symbols left to expand.

In order to allow the use of non-deterministic grammars, the definition of the

same non-terminal rule more than once is allowed (non term B in Figure 3.1). Then,

prior to its expansion one of them must be chosen, resorting to a stochastic process,

where the weight of each node is used. Node weights can be found in each rule

definition, right after the non-terminal name (see Figure 3.1); if no value is specified,

a default of 1 is assumed. As one may notice, node weights can sum up more than 1;

although, before choosing one node from the multiple possibilities, their probability

is re-weighted so that their sum totals 1.

40

From the example it is also clear that loops may occur (non term B in Figure

3.1).

3.1.2 Random Initialisation

The creation of the initial population for the current evolutionary engine is of huge

importance, being responsible for generating the first genetic material that will be

evolved through time. Instead of having to supply to the system the first population,

either composed of human-created grammars [41] or of a single minimal grammar

[42], we decided for a procedure that allows the creation of a random population of

individuals.

Algorithm 2 Random initialisation of a graph-based individual.

procedure RandomInitialisation(terminals, probt)
minv,maxv minimum, maximum number of non-terminal symbols
minp,maxp minimum, maximum number of production rules per non-

terminal
minc,maxc minimum, maximum number of calls per production
nonterminals RandomlyCreateNonTerminalSet(minv,maxv)
for all V 2 nonterminals do

numberofproductions random(minp,maxp)
for i 1, numberofproductions do

productionrule NewProductionRule(V)
numberofcalls random(minc,maxc)
for j 1, numberofcalls do

if random(0, 1) < probt then
productionrule.InsertCallTo(RandomlySelect(terminals))

else
productionrule.InsertCallTo(RandomlySelect(nonterminals))

end if
productionrule.RandomlyInsertProductionRuleParameters()

end for
end for

end for
individual.setProductionRules(productionrules)
individual.RandomlySelectStartNode(nonterminals)
return individual

end procedure

In simple terms, the method for creating a random candidate solution can be de-

scribed as follows: we begin by randomly determining the number of non-terminal

symbols and the number of production rules for each of the symbols (i.e., the number

41

of di↵erent options for its expansion). Since this defines the nodes of the graph, the

next step is the random creation of connections among nodes and calls to terminal

symbols. The parameters associated with the calls to terminal and non-terminal sym-

bols are also established randomly. Finally, once all productions have been created,

we randomly select a starting node, from the non-terminals set. Algorithm 2 details

this process, which is repeated until the desired number of individuals is reached. Im-

portant to mention that the method RandomlyCreatdeNonTerminalSet just creates

random symbols, without any constraints or need to match them to anything else.

More technically, it just creates a set of strings that become non-terminals.

3.1.3 Crossover Operator

Regarding the crossover operator, the rationale was to develop a method that would

promote the meaningful exchange of genetic material between individuals. Given the

nature of the representation, this implied the development of a graph-based crossover

operator that is aware of the structure of the graphs being manipulated. The proposed

operator can be seen as an extension of the one presented by Pereira et al. [61]. In

simple words, it allows the exchange of subgraphs between individuals.

The crossover of genetic code between two individuals, a and b, implies: (i) se-

lecting one subgraph from each parent; (ii) swapping the nodes and internal edges

of the subgraphs, i.e., edges that connect two subgraph nodes; (iii) establishing a

correspondence between nodes; (iv) restoring the outgoing and incoming edges, i.e.,

respectively, edges from nodes of the subgraph to non-subgraph nodes and edges from

non-subgraph nodes to nodes of the subgraph.

Subgraph selection – Randomly selects for each parent, a and b, one crossover

node, va and vb, and a subgraph radius, ra and rb. Subgraph sra is composed of

all the nodes, and edges among them, that can be reached in a maximum of ra

steps starting from node va. Subgraph srb is defined analogously. Two methods

were tested for choosing va and vb, one assuring that both va and vb are in the

connected part of the graph and one without restrictions. The radius ra and rb

are randomly chosen, between 0 and the maximum diameter of the graph.

Swapping the subgraphs – Swapping sra and srb consists in replacing sra by srb

(and vice-versa). After this operation the outgoing and the incoming edges are

destroyed. Establishing a correspondence between nodes, repairs these connec-

tions.

42

Algorithm 3 Traversing the minimum spanning trees of two subgraphs.

procedure traverse(a, b)
set correspondence(a, b)
mark(a)
mark(b)
repeat

if unmarked(a.descendants) 6= NULL then
nexta RandomlySelect(unmarked(a.descendants))

else if a.descendants 6= NULL then
nexta RandomlySelect(a.descendants)

else
nexta a

end if
**** do the same for nextb ****
traverse(nexta, nextb)

until unmarked(a.descendants) = unmarked(b.descendants) = NULL
end procedure

Correspondence of nodes – Let sra+1 and srb+1 be the subgraphs that would be

obtained by considering a subgraph radius of ra+1 and rb+1 while performing

the subgraph selection. Let msta and mstb be the minimum spanning trees

(MSTs) with root nodes va and vb connecting all sra+1 and srb+1 nodes, respec-

tively. For determining the MSTs all edges are considered to have unitary cost.

When several MSTs exist, the first one found is the one considered. The cor-

respondence between the nodes of sra+1 and srb+1 is established by traversing

msta and mstb, starting from their roots, as described in Algorithm 3.

Restoring outgoing and incoming edges – The edges from a /2 sra to sra are

replaced by edges from a /2 srb to srb using the correspondence between the nodes

established in the previous step (e.g. the incoming edges to va are redirected to

vb, and so on). Considering a radius of ra + 1 and rb + 1 instead of ra and rb

in the previous step allows the restoration of the outgoing edges. By definition,

all outgoing edges from sa and sb link to nodes that are at a minimum distance

of ra + 1 and rb + 1, respectively. This allows us to redirect the edges from sb

to b /2 sb to a /2 sa using the correspondence list.

An example of the application of the above detailed crossover operator, from [42],

is shown in Figure 3.2; on the left the parents and on the right the o↵spring. It is

considered that va = B, vb = 1 and ra = rb = 2. Subgraphs sra and srb are represented

by the grey nodes and dotted edges stand for the MSTs. It is also assumed that

43

A

B

C D

I

H

E G

0

1

2

4

3

7

5

6

F

A

I

H

G

0

7

6

B

C D

E F

1

2 4

3 5

AB

IB

FG

01

56

57

74

63

AB

IB

FG

01

74

63

56

57

Figure 3.2: Graph-based crossover example [42].

Algorithm 3, because of its stochastic nature, returns the correspondence list {B-1,
C-2, E-2, D-3, F-5, G-6, G-7, D-4}.

3.1.4 Mutation Operators

The mutation operators were designed to attend two basic goals: allowing the intro-

duction of new genetic material in the population and ensuring that the search space

is fully connected, i.e., that all of its points are reachable from any starting point

through the successive application of mutation operators. This resulted in the use of

a total of ten operators, which are succinctly described on the following paragraphs.

Startshape mutate – randomly selects a non-terminal as starting symbol.

Replace, Remove or Add symbol – when applied to a given production rule,

these operators: replace one of the present symbols with a randomly selected

one; remove a symbol and associated parameters from the production rule; add

a randomly selected symbol in a valid random position. Note that these oper-

ators are applied to terminal and non-terminal symbols.

Duplicate, Remove or Copy & Rename rule – these operators: duplicate a pro-

duction rule; remove a production rule, updating the remaining rules when nec-

essary; copy a production rule, assigning a new randomly created name to the

rule and thus introducing a new non-terminal.

Change, Remove or Add parameter – as the name indicates, these operators

add, remove or change parameters and parameter values. The change of pa-

rameter values is accomplished using a Gaussian perturbation.

44

Figure 3.3: From pre-grammars to strings.

3.2 Tree-Based

With the objective of turning generalisation into an easier step, a methodology where

the user can input the exact structure that the outputs of the system should follow

was addressed. Keeping in mind that rationale, it is easily understood the choice for a

tree approach, where each individual will represent a derivation tree of a pre-defined

grammar. In this way, individuals are themselves derivations from a higher-level

grammar.

Analogously to the previous section, after introducing what are pre-grammars and

how they were used (Section 3.2.1) we will, in Section 3.2.2, detail the individual’s

representation. Then, we will move to the implementation details of the population

initialisation, crossover and mutation operators, respectively in Sections 3.2.3, 3.2.4

and 3.2.5.

3.2.1 Pre-grammars

As mentioned earlier, in this type of approach the user is required to input a structure

similar to a BNF, which specifies how the derivation tree should be expanded. It

cannot be considered a BNF because some of the used symbol representations are not

permitted in that form of representing grammars. In fact, this structure is still not

the one that will ultimately be used for creating the derivation trees. It only specifies

how must that grammar be formed, allowing for that, in addition to BNFs, the use

of coding blocks, which are explained in the next paragraphs. As so, we call it pre-

grammar, following notation similar to the one introduced by Nicolau and Dempsey,

in [53].

45

Figure 3.3 depicts the steps that are needed to produce a derivation tree. As

shown, first the pre-grammar (structure input by the user) must be converted into

the actual grammar. Only then it is possible to generate random derivation trees.

Later on, the leaves of the derivation tree are read (from left to right) and their values

concatenated.

In the following paragraphs, to simplify writing, production rules of the pre-

grammar will be referred to as pre-rules. Production rules of the actual grammar,

i.e., the one derived from the pre-grammar, will be called grammar-rules.

The main di↵erence between pre-grammars and the actual grammars resides on

the existence of special coding blocks, that need to be further expanded. More pre-

cisely, we developed three coding blocks:

<non-term>(x, y) – when mapping from the pre-rule to the grammar-rule,

this block should be replaced by a random number of calls (between x and y)

to the non-terminal <non-term>;

<non-term1>(x, non-term2, type, bool) – implies that this block is to

be replaced by x <non-term1> non-terminals and that, in each one, the non-

terminal <non term2> is to be assigned a random value of type type. Moreover,

if bool is set to True the random values generated should be kept, in order to

create a new grammar-rule, <non-term2>, with them;

[x, y] – when mapping from a pre-rule into a grammar-rule nothing is changed

in this block. It encodes a range, between x and y and later, while generating

the derivation tree, if a grammar-rule with this encoding is found, it provides a

value between the defined interval. Above all, it acts like a terminal symbol.

<non term A> ::= <non term B>(2, non term C, string, True)
<non term C>(0,3)

<non term B> ::= <non term C> [0,1]

Grammar 3.1: Example of a pre-grammar.

An example of an expanded grammar is shown in Grammar 3.2, which results

from the pre-grammar depicted in Grammar 3.1. It is assumed that the two randomly

created strings are “a” and “b” and that the random value 1 is returned (to perform

the expansion of the second block). In the first grammar-rule of Grammar 3.2 the non-

terminal non term C, called from the two non term B non-terminal rules, should

derive the terminals a and b, respectively.

46

<non term A> ::= <non term B> <non term B> <non term C>
<non term B> ::= <non term C> [0,1]
<non term C> ::= a | b

Grammar 3.2: Grammar that results from the expansion of the pre-grammar pre-
sented in Grammar 3.1.

Figure 3.4: Example of a possible derivation tree of Grammar 3.2. Squares represent
terminals and rounded rectangles non-terminals. To check the steps need to build the
derivation tree refer to Figure 3.5.

3.2.2 Representation

As the name suggests, in this approach individuals are encoded as trees, more specif-

ically, as derivation trees. Therefore, each inner node represents a non-terminal rule,

i.e., a rule that still has to be expanded, whereas leaves stand for terminal symbols,

which require no further processing.

Moreover, the proposed method aims at dealing with di↵erent domains. In order

to make that possible, it receives as input a pre-grammar, as explained in Section

3.2.1.

An example of a derivation tree, generated using Grammar 3.2, is depicted in

Figure 3.4. To get the production encoded in a derivation tree it is just needed to

read all the leaves, discarding internal nodes. To do so, the derivation tree must be

traversed in a depth-first pre-order way. In this method, after arriving to a new node,

it expands its children nodes from left to right, until a terminal node (leaf) is reached.

From that, it is possible to conclude that the derivation tree of Figure 3.4 gives origin

to: “a 0.5 b 1 b”.

3.2.3 Random Initialisation

In order to randomly create the initial population that will feed the evolutionary

process it is first necessary to define the desired BNF grammar as well as the start

47

Algorithm 4 Random initialisation of a tree individual.

procedure TreeRandomInitialisation(TreeNode, BNF)
if TreeNode is not terminal then

expansion ChooseExpansion(TreeNode,BNF)
for symbol 2 expansion do

newnode NewTreeNode(symbol)
TreeRandomInitialisation(newnode, BNF)
TreeNode.addChild(newnode)

end for
end if

end procedure

symbol. Then, beginning with the root symbol the derivation trees will be expanded,

recursively, in a leftmost order, until no non-terminal symbol is left.

Algorithm 4 details the process. Taking into account that each symbol (terminal

and non-terminal) is stored in a tree node, it expands the non-terminals from left to

right, until a non-terminal is reached. The expansion rule is chosen randomly, from

the set of possibilities, a-priori defined by the user. The algorithm must be repeated

until the desired number of individuals is reached.

An example of the application of the above mentioned algorithm with the grammar

introduced in Grammar 3.2 is shown in Figure 3.5.

3.2.4 Crossover Operator

As a result of the tree nature of representation, this operator can be easily understood

as the typical one for this kind of approach, as previously detailed in Section 2.2.2.1,

with the addition of some restrictions.

In order to produce o↵spring (o↵a, o↵b) from two parents (para, parb) it is first

needed to choose the cutting points in each tree (cuta,cutb) and then swap them.

Because we are dealing with derivation trees, it is necessary to assure that the cutting

points correspond to the same production rule; if not, the produced individuals would

likely be ungrammatical. Moreover, the probability of choosing the cutting points

from leaf nodes (probleaves) should be also specified; otherwise, as leaves tend to be

more numerous than inner nodes, the change of genetic material would be, most of

the times, minimal. Algorithm 5 details the above procedure.

48

Figure 3.5: Random derivation tree creation, using Algorithm 4. For simplification,
only the first 5 steps of the algorithm are depicted. Squares represent terminals and
rounded rectangles non-terminals.

Algorithm 5 Crossover in tree-based individuals.

procedure TreeCrossover(para, parb, probleaves)
o↵a Copy(para)
o↵b Copy(parb)
if random()  probleaves then

nodesa FindLeafNodes(offa)
nodesb FindLeafNodes(offb)

else
nodesa FindInnerNodes(offa)
nodesb FindInnerNodes(offb)

end if
(cuta, cutb) ChooseCuttingPoint(nodesa, nodesb)
o↵a[cuta] cutb
o↵b[cutb] cuta
return (o↵a,o↵b)

end procedure

49

3.2.5 Mutation Operator

Mutation over derivation trees is a simple technique, resembling aspects from both

crossover and population initialisation operators. First, a subtree of the individual

has to be picked; once again probabilities for avoiding the selection of terminal sym-

bols only are applied. Next, a new subtree to replace the previously chosen one is

generated, as in Algorithm 4, taking as starting point the root of the subtree being

mutated.

3.3 Fitness Assignment

In order to allow the use of the evolutionary algorithm in multiple domains, fitness

assignment must be kept as a separate module. In simple words, the fitness function

provided by the system’s user receives as input an individual that represents a gram-

mar (graph/tree), performs its mapping to a phenotype and then returns its quality

value.

Examples of the assessment of fitness over two di↵erent domains are addressed in

Chapter 4.

3.4 Conclusions

With the current chapter we aim at presenting the technical specifications of the

developed GP approaches, which are going to be used from now on.

We started by introducing a graph-based evolutionary engine, where individuals

are represented by nodes connected through a set of edges. Nodes mean production

rules, whereas the links between them stand for the control of flow and parameters.

On the other hand, we have an approach where the candidate solutions are deriva-

tion trees, associated with a pre-defined grammar. In this situation, inner nodes

correspond to non-terminals of the pre-grammar and leaves to terminals.

Regarding the used operators, it is important to notice that they obviously are

di↵erent because they focus on manipulating di↵erent types of structures. However,

the tree-based operators are much easier to implement and understand than the

graph-based ones. For instance, focusing on mutation, the graph-based mutation is

comprised of ten operators, while the tree-based only has one which, in turn, is very

similar to the initialisation method.

The impact of the di↵erent approaches as well as a detailed analysis of their

operators will be carried out during the next chapter.

50

Chapter 4

Experimentation

After introducing, in the previous chapter, the theoretical concepts behind the pro-

posed approaches, it is our intention now to design experiments that confirm their

validity and capacity to evolve what is desired.

To prove that the methods are capable of dealing with di↵erent domains, i.e., that

they have su�cient generalisation capacities we will apply them to the creation of

images and musical sequences, where both of them result from the mapping from a

grammar genotype, represented as a graph or derivation tree, to a phenotype (image

or music).

In Section 4.1 the performance of tests for the evolution of Context Free Design

Grammars [11] will be carried out. Both graph and tree-based approaches will be

tested, independently. Later, a standardisation that merges components from both

forms of representation will be investigated and tried. From the results of that last

step we will then proceed to conducting experiments for the evolution of MIDI [1]

files, leading this way to the output of musical sequences (Section 4.2). To end, in

Section 4.3 conclusions will be drawn.

4.1 Evolving Context Free Art

Context Free Design Grammar (CFDG) [11] is a language capable of representing im-

ages through a compact set of production rules. In essence, a CFDG is an augmented

context free grammar represented by a 4-tuple (V,⌃, R, S), where:

• V is a set of non-terminal symbols;

• ⌃ is a set of terminal symbols;

• R is a set of production rules that map from V to (V [⌃)⇤;

51

startshape Edera
rule Edera {
 CIRCLE {s 5}
 Ciglio {}
 Edera {x -5 y -1 s 0.90} }
rule Ciglio {
 SQUARE {hue 200 sat 0.5}
 Pelo {r 5 hue 200 sat 0.5}
 Ciglio {y -1 r 0.5 s 0.998 b 0.005} }
rule Ciglio {
 SQUARE {hue 200 sat 0.5}
 Pelo {r 5 hue 200 sat 0.5}
 Ciglio {y -1 r 0.5 s 0.998 b 0.005 flip 90} }
rule Ciglio .008 {
 SQUARE {hue 200 sat 0.5}
 Pelo {r 5 hue 200 sat 0.5}
 Ricciolo {y -1 s 0.998 b 0.005} }
rule Ricciolo {
 SQUARE {hue 200 sat 0.5}
 Pelo {r 5 hue 200 sat 0.5}
 Ricciolo {y -1 r 3 s 0.998 b 0.005} }
rule Ricciolo .005 {
 SQUARE {hue 200 sat 0.5}
 Pelo {r 5 hue 200 sat 0.5}
 Ricciolo {y -1 r 3 s 0.998 b 0.005 flip 90} }
rule Pelo {
 CIRCLE {s 5 0.1} }

Figure 4.1: On the left, a CFDG adapted from www.contextfreeart.org/gallery/
view.php?id=165; On the right, di↵erent renderings of the left grammar.

• S is the initial symbol.

More specifically, the set of allowed terminals is {SQUARE, TRIANGLE, CIR-

CLE}. As previously mentioned, CFDGs are augmented grammars1, where the set

of allowed parameters can be grouped into two main groups: (i) colour parameters,

such as hue or saturation; (ii) geometric parameters, like size or rotate. More in-

formation regarding the parameters’ meaning and their allowed values can be found

in [11]. Non-terminals can be defined as any string of variable size, requiring that

they have to be di↵erent from terminals and parameters names. Finally, the initial

symbol should be part of the non-terminals set.

Figure 4.1 shows an example of a CFDG along with multiple renderings of it.

This is possible due to the fact that CFDGs are non-deterministic grammars, i.e.,

rendering the same grammar with di↵erent rendering seeds possibly leads to visually

distinct results. In other words, CFDGs can have the same rule defined more than

once. If this happens, when one of those rules is called, one of them is chosen using

roulette wheel selection, based on their probabilities. Rule probabilities are defined

after their name (see Figure 4.1); if no value is specified, a default of 1 is assumed.

The following subsections are organised as follows. To start, how individuals are

mapped from a grammar to an image, as well as the assessment of their quality,

1Calls to non-terminals and terminals can take parameters as input.

52

www.contextfreeart.org/gallery/view.php?id=165
www.contextfreeart.org/gallery/view.php?id=165

will be addressed (Section 4.1.1). Later, in Sections 4.1.2 and 4.1.3, tests with both

graph and tree-based approaches are going to be described, respectively. Experiments

comparing both approaches for the evolution of CFDGs are also to be detailed, in

Section 4.1.4.

4.1.1 Fitness Assignment

Context Free Art [29] is an open-source software tool that aims at performing the

rendering of CFDGs into images, in this case, into the Portable Network Graphics

(PNG) format. In order to deal with the possible recursivity of grammars, which

leads to non-terminating programs, the code of Context Free Art was changed to

guarantee an output in a maximum number of expansion steps (set by the user).

After the above mentioned adjustment to the software, to produce a single render-

ing from a grammar it is needed to input to the program the width, height and saving

path of the output image along with the input grammar and maximum number of

expansion steps. Another important parameter is the rendering seed, which is also

part of the rendering’s input and assures the replicability of results.

At this step, instead of CFDGs we will have PNG files, from which quality can be

measured according to several di↵erent metrics. Sections 4.1.1.1 to 4.1.1.5 describe

some of these metrics, which will be used during the performance of experiments in

the following sections. Then, Section 4.1.1.6 mentions a way of merging multiple

metrics into a single one, so that the optimal output should aim at maximising all

the characteristics that are sought by each single component.

4.1.1.1 JPEG Size

The image returned by Context Free Art is encoded in JPEG format using the maxi-

mum quality settings. The size of the JPEG file becomes the fitness of the individual.

The rationale is that, complex images, with abrupt transitions of colour, are harder

to compress and hence result in larger file sizes, whereas simple images will result in

small file sizes [37, 44]. Although this assignment scheme is rather simplistic, it has

the virtue of being straightforward to implement and yielding results that are easily

interpretable. As such, it was used to assess the ability of the evolutionary engine to

complexify and to establish adequate experimental settings.

53

4.1.1.2 Number of Contrasting Colours

As the name indicates, the fitness of an individual is equal to the number of con-

trasting colours present in the image returned by Context Free Art. To calculate the

number of contrasting colours we: (i) reduce the number of colours using a quan-

tization algorithm; (ii) sort all colours present in the image by descending order of

occurrence; (iii) for all the colours, starting from the most frequent ones, compute

the Euclidean distance between the colour and the next one in the ordered list; if it is

lower than a certain threshold it is removed from the group; (iv) return as fitness the

number of colours present in the list when the procedure is over. In these experiments

the Red, Green, Blue (RGB) colour space was adopted. We quantize the image to

256 colours using the quantization algorithm from the Graphics Interchange Format

(GIF) format [30]. The threshold was set to 1% of the maximum Euclidean distance

between colours (
p
3⇥ 2552 for the RGB colour space).

4.1.1.3 Fractal Dimension and Lacunarity

The use of fractal dimension estimates in the context of computational aesthetic has

a significant tradition [51, 75]. Although not as common, lacunarity measures have

also been used [7, 8]. For the experiments herein described, the fractal dimension is

estimated using the box-counting method and the � lacunarity value estimated by

the sliding box method [31]. By definition, the estimation of the fractal dimension

and lacunarity requires identifying the “object” that will be measured. Thus, the

estimation methods take as input a binary image (i.e., black and white), where the

white pixels define the shape that will be measured and the black pixels represent the

background. In our case, the conversion to black and white is based on the CFDG

background primitive. All the pixels of the same colour as the one specified by the

CFDG background primitive are considered black, and hence part of the background.

The ones that are of a di↵erent colour are considered part of the foreground (see

Figure 4.2). Once the estimates are computed we assign fitness according to the

proximity of the measure to a desired value, as follows:

fitness =
1

1 + |targetvalue � observedvalue|
. (4.1)

We use the target values of 1.3 and 0.9 for fractal dimension and lacunarity,

respectively. These values were established empirically by calculating the fractal

dimension and lacunarity of images that have desirable aesthetic qualities.

54

Figure 4.2: Example of the transformation from the input colour image (left image)
to the background/foreground image (right image) used for the Fractal Dimension
and Lacunarity estimates.

4.1.1.4 Complexity

This fitness function, based on the work of Machado et al. [37,43,44], assesses several

characteristics of the image related to complexity. In simple terms, the rationale is

valuing images that constitute a complex visual stimulus but that are, nevertheless,

easy to process. A thorough discussion of the virtues and limitations of this approach

is beyond the scope of this section; as such, we focus on practical issues pertaining its

implementation. The approach relies on the notion of compression complexity, which

is defined and calculated using the following formula:

C(i, scheme) = RMSE(i, scheme(i))⇥ s(scheme(i))

s(i)
, (4.2)

where i is the image being analysed, scheme is a lossy image compression scheme,

RMSE stands for the root mean square error, and s is the file size function.

To estimate the complexity of the visual stimulus (IC(i)) the authors calculate

the complexity of the JPEG encoding of the image (i.e., IC(i) = C(i, JPEG)). The

processing complexity (PC(i)) is estimated using a fractal (quadratic tree based) en-

coding of the image [19]. Considering that as time passes the level of detail in the

perception of the image increases, the processing complexity is estimated for di↵er-

ent moments in time (PC(t0, i), PC(t1, i)) by using fractal image compression with

di↵erent levels of detail. In addition to valuing images with high visual complexity

and low processing complexity, the approach also values images where PC is stable

for di↵erent levels of detail. In other words, according to this approach, an increase

in description length should be accompanied by an increase in image fidelity. Taking

all these factors into consideration, Machado et al. [37,43,44] proposed the following

formula for fitness assignment:

55

IC(i)a

(PC(t0, i)⇥ PC(t1, i))b ⇥
⇣

PC(t1,i)�PC(t0,i)
PC(t1,i)

⌘c , (4.3)

where a, b and c are parameters to adjust the importance of each component.

Based on previous work by the same authors [43], the ability of the evolution-

ary engine to exploit the limitations of the complexity estimates was minimised by

introducing limits to the di↵erent components of the above formula, as follows:

8
<

:

IC(i) ! max(0,↵� |IC(i)� ↵|)
PC(t0, i)⇥ PC(t1, i) ! � + |(PC(t0, i)⇥ PC(t1, i))� �|
PC(t1, i)� PC(t0, i) ! � + |(PC(t1, i)� PC(t0, i))� �|,

(4.4)

where ↵, � and � operate as target values for IC(i), PC(t0, i) ⇥ PC(t1, i) and

PC(t1, i) � PC(t0, i), which were set to 6, 24 and 1.1, respectively. These values

were determined empirically through the analysis of images that were considered de-

sirable. Due to the limitations of the adopted fractal image compression scheme, this

approach only deals with greyscale images. Therefore, all images have to be converted

before processing, as in Figure 4.2.

4.1.1.5 Bell Curve

This fitness function is based on the work of Ross et al. [68] and relies on the ob-

servation that many fine-art works exhibit a normal distribution of colour gradients.

According to Ross et al. [68], the gradients of each colour channel are calculated, one

by one, in the following manner:

|rri,j|2 =
(ri,j � ri+1,j+1)2 + (ri+1,j � ri,j+1)2

d2
, (4.5)

where ri,j, gi,j, bi,j are the image pixel intensity values for position (i, j) for the

red, green and blue channels, respectively, and d is a scaling factor that allows the

comparison of images of di↵erent size; this value was set to 0.1% of half the diagonal

of the input image (based on [68]). Then, the overall gradient stimulus, Si,j, is

computed, as follows:

Si,j =
q

|rri,j|2 + |rgi,j|2 + |rbi,j|2. (4.6)

Next, the response, Ri,j, is calculated as:

Ri,j = log
Si,j

S0

, (4.7)

56

where S0 is a detection threshold (set to 2 as in [68]). After that, the weighted mean

(µ) and standard deviation (�2) of the response values are determined, as in the

following equations:

µ =

P
i,j Ri,j

2

P
i,j Ri,j

, (4.8)

�2 =

P
i,j Ri,j(Ri,j � µ)2

P
i,j Ri,j

. (4.9)

At this point we introduce a subtle, but important change to Ross et al. [68] work;

we consider a lower bound for the �2, which was empirically set to 0.7. This prevents

the evolutionary engine from converging to monochromatic images that, due to the

use of a small number of colours, would trivially match a normal distribution. This

change has a profound impact on the experimental results, promoting the evolution

of colourful images that match a normal distribution of gradients.

Using µ, �2 and the values of Ri,j a frequency histogram with a bin size of �/100

is created, which allows the calculation of the deviation from normality (DFN). The

DFN is computed using qi, which is the observed probability and pi, the expected

probability considering a normal distribution. Ross et al. [68] use:

DFN = 1000 ·
X

pi log
pi
qi
. (4.10)

However, based on the results of preliminary runs using this formulation, we found

that we consistently obtained better results using:

DFNs = 1000 ·
X

(pi � qi)
2, (4.11)

which measures the squares of the di↵erences between expected and observed proba-

bilities. Therefore, in the experiments described in this section, Bell fitness is assigned

according to the following formula:

fitness =
1

1 +DFNs

. (4.12)

4.1.1.6 Combining Di↵erent Functions

In addition to the tests where the fitness functions described above were used to guide

evolution, we conducted several experiments where the goal was to simultaneously

57

Ciglio

Ciglio

Ciglio

Ciglio

Ricciolo

Ricciolo

Ricciolo

Edera

Pelo

Figure 4.3: Representation of the CFDG of Figure 4.1 as a graph (edges labels, weight
of nodes and terminal symbols were omitted for the sake of clarity).

maximise several of these functions. This implied producing a fitness score from

multiple functions, which was accomplished using the following formula:

combinedfitness(i) =
Y

j

log (1 + fj(i)), (4.13)

where i is the image being assessed and fj refers to the function being considered.

Thus, to assign fitness based on the Complexity and Bell functions we compute:

log(1 + Complexity(i)) ⇥ log(1 + Bell(i)). By adopting logarithmic scaling and a

multiplicative fitness function we wish to promote the discovery of images that max-

imise all the measures being addressed in the experiment.

4.1.2 Graph-Based

In this approach, individuals are directed graphs, the latter being the object of evo-

lution. An example of a graph capable of depicting a CFDG is given in Figure 4.3,

where the grammar introduced in Figure 4.1 is used.

In simple words, the translation between a CFDG and the representation of Fig-

ure 4.3 is accomplished, as follows:

1. Create a node for each non-terminal symbol. The node may represent a single

production rule (e.g., symbol Edera of Figure 4.3) or encapsulate the set of all

production rules associated with the non-terminal symbol (e.g., symbols Ciglio

and Ricciolo of Figure 4.3);

58

Initialisation (see Algorithm 2) Values
min, max number of symbols (1,3)
min, max number of rules (1,3)
min, max calls per production rule (1,2)
Evolutionary Engine Values
Number of runs 30
Number of generations 100
Population size 100
Crossover probability 0.6
Mutation probability 0.1
Tournament size 10
Elite size Top 2% of the population
CFDG Parameters Values
Maximum number expansion steps 100000
Limits of the geometric transformations rotate 2 [0,359], size 2 [-5,5]

x 2 [-5,5], y 2 [-5,5], z 2 [-5,5]
flip 2 [-5,5], skew 2 [-5,5]

Limits of the colour transformations hue 2 [0,359], saturation 2 [-1,1]
brightness 2 [-1,1], alpha 2 [-1,1]

Terminal symbols SQUARE, CIRCLE, TRIANGLE

Table 4.1: Parameters used for the graph-based approach experiments.

2. Create edges between each node and the nodes corresponding to the terminals

and non-terminals appearing in its production rules;

3. Annotate each edge with the corresponding parameters (e.g., in Figure 4.3 the

edges to Pelo possess the label ‘{r 5 hue 200 sat 0.5}’).

Experiments using the above mentioned form of representing individuals and the

operators suit to it (described in Section 3.1) will be detailed in the upcoming sub-

sections. First, in Section 4.1.2.1, we will specify the experimental setup. Next, focus

is given to aspects regarding the graph-topology of graphs (Section 4.1.2.2) and the

non-determinism of grammars (Section 4.1.2.3). To end, experiments featuring the

application of the previously presented fitness assignment schemes are performed, in

Sections 4.1.2.4 and 4.1.2.5.

The work herein described led to the publication of a book chapter [40] (see

Appendix E.1), on which the following subsections are partially based. As part of a

deliverable to ConCreTe EU Funded Project a web-interface for the performance of ex-

periments and the visualisation of the results had also to be developed (Appendix B).

Data from this section was used in a publication focusing ways to enhance the visu-

alisation of this type of representations in evolutionary algorithms (Appendix E.2).

59

4.1.2.1 Experimental Setup

In order to assess the adequacy of the evolutionary engine for the evolution of CFDGs

and to determine a reasonable set of configuration parameters, several tests using

JPEG Size as fitness function were performed. The rationale behind the use of this

metric is just the ease of analysing the results. Table 4.1 summarises the experimental

parameters that are going to be used throughout all the experiments herein described.

One can argue that the presented parameters are not the optimal ones, due to

the fact that only one fitness function is being used to propose them. This is correct;

although, during tests, results showed that the engine is not overly sensitive. The

search for an optimal parametrisation set is then considered out of the scope of this

Dissertation, aiming instead at determining the capacity of the system to properly

evolve CFDGs.

4.1.2.2 Graph Topology

An aspect directly related with the graph representation of individuals is the possibil-

ity of existence of unconnected nodes2. This was also a target of study and, in order

to have better insight on its consequences, three setups were tested:

Unrestricted – crossover points are randomly chosen;

Restricted – crossover points are randomly chosen from the list of reachable

nodes of each parent;

Restricted with Cleaning – in addition to enforcing the crossover to occur

in a reachable region of the graph, after applying crossover and mutation all

unreachable nodes are deleted.

Figure 4.4 displays the evolution of the best and average fitnesses across all gener-

ations and runs of the above setups. As can be observed, although the behaviours of

the three di↵erent approaches are similar, the restricted versions consistently outper-

form the unrestricted implementation by a small, yet statistically significant, margin.

The di↵erences between the restricted approaches are not statistically significant.

The di↵erences among the three approaches become more visible when we consider

the evolution of the number of reachable and unreachable nodes through time. As

it can be observed in Figure 4.5, without cleaning, the number of unreachable nodes

grows significantly, clearly outnumbering the number of reachable nodes. The number

2Nodes that are not reachable from the startshape.

60

0

5K

10K

15K

20K

25K

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

Max UnrestrictedAvg Unrestricted
Avg Restricted Max Restricted
Avg Restricted w/ Cleaning Max Restricted w/ Cleaning

Figure 4.4: Best and average fitness values for di↵erent implementations of the genetic
operators using JPEG Size as fitness function. Results are averages of 30 independent
runs.

0

25

50

75

100

125

0 10 20 30 40 50 60 70 80 90 100

←
 N

U
M

B
ER

 O
F

N
O

D
ES

 →

← GENERATION →

Unreachable UnrestrictedReachable Unrestricted

Reachable Restricted Unreachable Restricted

Reachable Restricted w/ Cleaning Unreachable Restricted w/ Cleaning

Figure 4.5: Evolution of the average number of reachable and unreachable nodes
across generations for di↵erent implementations of the genetic operators using JPEG
Size as fitness function. Results are averages of 30 independent runs.

of reachable nodes of the restricted versions is similar, and smaller than the one

resulting from the unrestricted version. Although cleaning does not significantly

improve fitness in comparison with the restricted version, the reduction of the number

of rules implies a reduction of the computational cost of interpreting the CFDGs and

61

0

5K

10K

15K

20K

25K

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

Max FixedAvg Fixed Avg Random Max Random

Figure 4.6: Evolution of the best and average fitness across generations when using
fixed and random rendering seeds using JPEG Size as the fitness function. Results
are averages of 30 independent runs.

applying the crossover operator. As such, taking these experimental findings into

consideration, we adopt the Restricted with Cleaning variant in all further tests.

4.1.2.3 Non-Determinism

The non-deterministic nature of the CFDGs implies that each genotype may be

mapped into a multitude of phenotypes (see Figure 4.1). The genotype to pheno-

type mapping of a non-deterministic grammar depends on a rendering seed, which is

passed to Context Free Art. We considered two scenarios: (i) using a fixed rendering

seed for all individuals; (ii) randomly generating the rendering seed whenever the

genotype to phenotype mapping occurs. The second option implies that the fitness

of a genotype may, and often does, vary from one generation to the next, since its

phenotype may change.

Figure 4.6 summarises the results of these tests in terms of the evolution of fitness

through time. As expected, using a fixed rendering seed yields better fitness, but the

di↵erence between the approaches is surprisingly small and decreases as the number

of generations increases. To better understand this result we focused on the analysis

of the characteristics of the CFGDs being evolved. Figure 4.7 depicts box plots

of fitness values of the fittest individuals of each of the 30 evolutionary runs using

di↵erent setups:

Fixed – individuals evolved and evaluated using fixed rendering seeds;

62

0

5K

10K

15K

20K

25K

30K

Fixed Random Fixed
Random

Random
Random

�
 F

IT
N

ES
S

 �

Figure 4.7: Box plots of fitness values of the fittest individuals of each of the 30
evolutionary runs using di↵erent rendering seed setups.

Random – individuals evolved using random rendering seeds and evaluated

using the same seeds as the ones picked randomly during evolution;

Fixed Random – individuals evolved using fixed rendering seeds and evalu-

ated with 30 random seeds each;

Random Random – individuals evolved using random rendering seeds and

evaluated with 30 random seeds each.

In other words, we take the genotypes evolved in a controlled static environment

(fixed random seed) and place them in di↵erent environments, proceeding in the same

way for the ones evolved in a changing environment. The analysis of the box plots

shows that, in the considered experimental settings, the fitness of the individuals

evolved in a fixed environment may change dramatically when the environmental

conditions are di↵erent. Conversely, using a dynamic environment promotes the dis-

covery of robust individuals that perform well under di↵erent conditions. Although

this result is not unexpected, it was surprising to notice how fast the evolutionary

algorithm was able to adapt to the changing conditions and find robust individuals.

In future tests we wish to explore, and exploit, this ability. Nevertheless, for the

purposes of this section, and considering that the use of a fixed rendering seed makes

the analysis and reproduction of the experimental results easier, we adopt a fixed

rendering seed in all further tests.

63

4.1.2.4 Single Fitness Guiding

We will now focus on the evolution of CFDGs, using the previously defined fitness

functions. Figure 4.8 summarises the results of these experiments in terms of evolution

of fitness. Each chart depicts the evolution of the fitness of the best individual when

using the corresponding fitness function to guide evolution. The values yielded by

the other 5 fitness functions are also depicted for reference to illustrate potential

inter-dependencies among fitness functions. The values presented in each chart are

averages of 30 independent runs (180 runs in total). To improve readability we have

normalised all the values by dividing each raw fitness value by the maximum value

for that fitness component found throughout all the runs.

The most striking observation pertains the Fractal Dimension and Lacunarity

fitness functions. As it can be observed, the target values of 1.3 and 0.9 are easily

approximated even when these measures are not used to guide fitness. Although this

is a disappointing result, it is an expected one. Estimating the fractal dimension (or

lacunarity) of an object that is not a fractal and that can be described using Euclidean

geometry yields meaningless results. That is, even though you obtain a value, this

value is meaningless in the sense that there is no fractal dimension to be measured. As

such, these measures may fail to capture any relevant characteristic of the images. In

the considered experimental conditions, the evolutionary algorithm was always able

to find, with little e↵ort, non-fractal images that yield values close to the target ones.

Most often than not, these images are rather simplistic. We conducted several tests

using di↵erent target values, obtaining similar results.

An analysis of the results depicted in Figure 4.8 reveals that maximising JPEG

Size promotes Contrasting Colours and Complexity, but does not promote a distribut-

ing of gradients approaching a normal distribution (Bell). Likewise, maximising Con-

trasting Colours originates an improvement in JPEG Size and Complexity during the

early stages of the evolutionary process; Bell is mostly una↵ected. Using Complex-

ity to guide evolution results in an increase of JPEG Size and Contrasting Colours

during the early stages of the runs, but the number of Contrasting Colours tends to

decrease as the number of generations progresses. The Complexity fitness function

operates on a greyscale version of the images, as such, it is not sensitive to changes

of colour. Furthermore, abrupt changes from black to white create artefacts that

are hard to encode using JPEG compression, resulting in high IC estimates. Fractal

image compression, which is used to estimate PC, is less sensitive to these abrupt

changes. Therefore, since the approach values images with high IC and low PC, and

64

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

JPEG Size Contrasting Colours Fractal Dimension Lacunarity Complexity Bell

JPEG Size Contrasting Colours

Fractal Dimension Lacunarity

Complexity Bell

Figure 4.8: Evolution of the fitness of the best individual across generations. The
fitness function used to guide evolution is depicted in the title of each chart and is
represented with a thicker line. The other values are presented for reference. Results
are averages of 30 independent runs for each chart and have have been normalised to
improve readability.

since it does not take colour information into consideration, the convergence to im-

ages using a reduced palette of contrasting colours is expected. Like for the other

measures, Complexity and Bell appear to be unrelated. Finally, maximising Bell

promotes an increase of JPEG Size, Contrasting Colours and Complexity during the

first generations. It is important to notice that this behaviour was only observed after

65

(a) JPEG Size (b) Contrasting Colours (c) Fractal Dimension

(d) Lacunarity (e) Complexity (f) Bell

Figure 4.9: Examples of individuals evolved using each one of the fitness functions.

enforcing a lower bound for �2 (see Section 4.1.1.5). Without this limit, maximising

Bell results in the early convergence to simplistic monochromatic images (typically a

single black square on a white background). The adoption of a quadratic deviation

from normality estimate (DFNs) also contributed to the improvement of the visual

results.

Sample individuals of each fitness function can be seen in Figure 4.9. More ex-

amples are available in Appendix E.1. As expected, JPEG Size tends to converge to

colourful circular patterns, with high contrasts of colours. The tendency to converge

to circular patterns, which is observed in several runs, is related with the recursive

nature of the CFDGs and the particularities of the Context Free rendering engine.

For instance, repeatedly drawing and rotating a square while changing its colour will

generate images that are hard to encode. Furthermore, the rendering engine auto-

matically “zooms in” the shapes drawn, cropping the empty regions of the canvas.

As such, rotating about a fixed point in space tends to result in images that fill the

canvas, maximising the opportunities for introducing abrupt changes and, therefore,

maximising file size.

Contrasting Colours, as predictable, converges to images that are extremely colour-

ful. Complexity tends to promote convergence to monochromatic and highly struc-

tured images. Moreover, since fractal image compression takes advantage of the

self-similarities present in the image at multiple scales, the convergence to structured

and self-similar structures that characterises these runs was expected.

Images evolved using Bell depict a structured variation of colour, which is easily

explained by the need to match a natural distribution of colour gradients.

66

Figure 4.10: Example of the rendering of the best individual from the initial (left
image) and last (right image) population, using Fractal Dimension and Contrasting
Colours as fitness function. As observed, despite depicting a high number of colours,
no fractal pattern is identifiable.

Finally, using Fractal Dimension and Lacunarity leads to uninteresting results, as

explained earlier in this section.

4.1.2.5 Multiple Fitness Guiding

We performed several experiments where a combination of measures was used to

assign fitness (see Section 4.1.1.6). We conducted tests combining Fractal Dimension

and Lacunarity with other measures. Results confirm that these metrics are ill-

suited for aesthetic evolution in the considered experimental settings (see Figure 4.10).

Tests using JPEG Size in combination with other measures were also performed.

The analysis of the results indicates that they are subsumed and surpassed by those

obtained when using Complexity in conjunction with other metrics. This results

from two factors: on one hand Complexity already takes into account the size of

the JPEG encoding; on the other, the limitations of Complexity regarding colour

are compensated by the use of measures that are specifically designed to handle

colour information. As such, taking into account the results described in the previous

section, we focus on the analysis of the results obtained when combining: Contrasting

Colours, Complexity and Bell.

Figure 4.11 summarises the results of these experiments in terms of evolution of

fitness. Each chart depicts the evolution of the fitness of the best individual when

using the corresponding combination of measures as fitness function. The values

yielded by the remaining measures are depicted but do not influence evolution. The

values presented in each chart are averages of 30 independent runs (120 runs in total).

As previously, the values have been normalised by dividing each raw fitness value by

the maximum value for that fitness component found throughout all the runs.

67

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

JPEG Size Contrasting Colours Fractal Dimension Lacunarity Complexity Bell Combined

Contrasting Colours & Bell

Complexity & Bell & Contrasting Colours

Contrasting Colours & Complexity

Complexity & Bell

Figure 4.11: Evolution of the fitness of the best individual across generations using
a combination of measures. The combination used to guide evolution is depicted in
the title of each chart. The other values are presented for reference, but have no
influence in the evolutionary process. Results are averages of 30 independent runs for
each chart and have have been normalised to improve readability.

As can be observed, combining Contrasting Colours and Complexity leads to a

fast increase of both measures during the early stages of the runs, followed by a

steady increase of both components throughout the rest of the runs. This shows that,

although the runs using Complexity alone converged to monochromatic imagery, it is

possible to evolve colourful images that also satisfy the Complexity measure.

Combining Contrasting Colours and Bell results in a rapid increase of the number

of contrasting colours during the first generations. Afterwards, increases in fitness are

mainly accomplished through the improvements of the Bell component of the fitness

function. This indicates that it is easier to maximise the number of contrasting colours

than to attain a normal distribution of gradients. This observation is further attested

by the analysis of the charts pertaining the evolution of fitness when using Contrasting

Colours, Complexity and Bell individually, which indicates that Bell may be the

hardest measure to address. The combination of Complexity and Bell is characterised

68

(a) Contrasting Colours & Complexity (b) Contrasting Colours & Bell

(c) Complexity & Bell
(d) Complexity & Bell & Contrasting
Colours

Figure 4.12: Examples of individuals evolved using combined metrics as fitness func-
tion.

by a rapid increase of complexity during the first populations, followed by a slow, but

steady, increase of both measures throughout the runs. The combination of the three

measures further establishes Bell as the measure that is most di�cult to address, since

the improvements of fitness are mostly due to increases in the other two measures.

Similarly to the last section, sample images obtained during the performance of

the previously described tests can be seen in Figure 4.12. More examples are available

in Appendix E.1. Combining Contrasting Colours and Complexity led to individuals

that depict not only the structures already seen while using Complexity but that

are also colourful, instead of monochromatic. Analogously for the scenario where

Contrasting Colours and Bell are used as one fitness function. In this case, images

tend to show a normal distribution of the colour’s gradient but, when comparing to

the ones only evolved with Bell they outstand for being more colourful.

To conclude, using Complexity and Bell produces images that have more colours

than those output using only Complexity, although they are not as colourful as ex-

pected. For that, Contrasting Colours was added to the combined fitness function,

increasing, as predicted, the number of colours.

4.1.3 Tree-Based

As previously mentioned, in Section 3.2, in the tree-based approach individuals are

represented as derivation trees. In order to accomplish that, the user must first input

69

Figure 4.13: Pre-grammars flow chart adapted to the CFDGs scenario.

the pre-grammar, as a BNF with the addition of special coding blocks, which spec-

ifies how the allowed derivation steps should be formed (Section 3.2.1). Figure 4.13

adapts the flow chart of Section 3.2.1 to the domain of CFDGs. First, a pre-grammar

specifying the structure that the grammar that is able to produce CFDGs should

follow has to be provided. Then, from this grammar, derivation trees for CFDGs

are built. However, CFDGs are also grammars and, as so, we do in fact have three

grammatical levels (pre-grammar – expanded pre-grammar – CFDG). From this last

level, it is later possible to generate PNGs and in this way assess the quality of the

CFDG. Evolution acts directly over the derivation tree and consequently, indirectly

over the CFDG.

For the current application scenario the used pre-grammar can be seen in Gram-

mar 4.1, where the first rule to be expanded is always the first production rule of the

input pre-grammar, in this case, <S>.

A brief analysis of the pre-grammar shown in Grammar 4.1 allows some conclu-

sions regarding the composition of the derivation trees it generates. Beginning from

the start symbol (<S>), every generated derivation tree is composed of subtrees re-

ferring to the startshape, background and a variable number of rules (from 4 to 6). As

the reader may remember, CFDGs are non-deterministic grammars. That is, there

are non-terminal rules which can be defined multiple times and then, while rendering,

one of the possibilities is chosen every time the non-terminal is called. This property

is assured by the use of the special blocks, previously detailed in Section 3.2.1. The

first pre-rule of Grammar 4.1 initially generates each of the 3 non-terminal symbols

(<RULE>(3, NONTERMINAL, STRING, True)) and then repeats some of them

(<RULE>(1,3)) a random number of times (between 1 and 3).

70

<S> ::= <STARTSHAPE> <BACKGROUND>
<RULE>(3, NONTERMINAL, STRING, True) <RULE>(1,3)

<STARTSHAPE> ::= startshape <NONTERMINAL>
<BACKGROUND> ::= background { <COLORPARAMETERS> }

| �
<RULE> ::= rule <NONTERMINAL> <PROB> { <CALLS> }
<COLORPARAMETERS> ::= <COLORPARAMETER> <COLORPARAMETERS>

| �
<COLORPARAMETER> ::= brightness [-1, 1]

| hue [0, 359]
| saturation [-1, 1]
| alpha [-1, 1]

<PROB> ::= [0,1]
| �

<CALLS> ::= <SYMBOL> { <PARAMETERS> } <CALLS>
| �

<SYMBOL> ::= <TERMINAL>
| <NONTERMINAL>

<PARAMETERS> ::= <COLORPARAMETER> <PARAMETERS>
| <GEOMETRICPARAMETER> <PARAMETERS>
| �

<TERMINAL> ::= SQUARE
| CIRCLE
| TRIANGLE

<GEOMETRICPARAMETER> ::= x [-5, 5]
| y [-5, 5]
| skew [-5, 5] [-5, 5]
| z [-5, 5]
| flip [-5, 5]
| rotate [0, 359]
| size [-5, 5]

Grammar 4.1: Pre-grammar used for the evolution of CFDGs where the number of
<RULE> subtrees is established upon population initialisation.

In the following subsections we will present the experimental setup used for the

tests herein described (Section 4.1.3.1), moving then to detailing the performed ex-

periments (Sections 4.1.3.2, 4.1.3.3 and 4.1.3.4), most of them similar to the ones

done in the previous section, with the graph-based approach.

71

Evolutionary Engine Values
Number of runs 30
Number of generations 100
Population size 100
Crossover probability 0.6
Mutation probability 0.3
Leaves probability 0.2
Tournament size 10
Elite size Top 2% of the population
CFDG Parameters Values
Maximum number expansion steps 100000
Limits of the geometric transformations Check used pre-grammar
Limits of the colour transformations Check used pre-grammar
Terminal symbols Check used pre-grammar

Table 4.2: Parameters used for the tree-based approach experiments.

4.1.3.1 Experimental Setup

This section aims at detailing the setup used to assess the adequacy of the system to

properly evolve CFDGs. Table 4.2 contains the parameters used during the following

experiments. As in Section 4.1.2.1, they were reached after running preliminary tests

with the JPEG Size fitness function and are, almost certainly, not the optimal ones

for all fitness functions.

<S> ::= <STARTSHAPE> <BACKGROUND>
<RULE>(3, NONTERMINAL, STRING, True) <OTHERRULES>

<OTHERRULES> ::= <RULE> <OTHERRULES>
| �

...

Grammar 4.2: Pre-grammar used for the evolution of CFDGs where the number of
<RULE> subtrees is dynamic, through the application of genetic operators. For
simplicity reasons only the rules that di↵er from Grammar 4.1 were detailed.

4.1.3.2 Pre-grammar Formulation

As one may have noticed, the previous introduced pre-grammar (Grammar 4.1) forces

individuals to follow a restricted structure, at least in what concerns the number of

<RULE> subtrees, which are created upon individual initialisation. For that, another

pre-grammar formulation was tested, in order to determine if the limitation of the

number of allowed rules constrains the capacity of the engine to evolve the desired

results. Grammar 4.2 raises this limitation, by replacing, in the production rule S, the

72

0

8K

16K

24K

32K

40K

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

Constrained Non-Constrained
Non-Constrained w/ CleaningConstrained w/ Cleaning

Figure 4.14: Evolution of the fitness of the best individual across generations for the
di↵erent setups. Results are averages of 30 independent runs.

block <RULE>(1,3) by the non-terminal <OTHERRULES>, allowing the individual

to grow or decrease in the number of <RULE> subtrees when mutation or crossover

are applied to him.

Moreover, we are also going to address the unreachable rules situation. In the

context of a tree representation we can state that this problem variable is di↵erent

then when using graphs, because unreachable rules of the CFDG are not explicitly

present in a tree. Although, when thinking about the CFDGs structure, it is easy

to identify that not all <RULE> subtrees will be called from <CALL> subtrees. In

line with the previous, we developed a method for mapping a CFDG derivation tree

into the representation used in the graph approach, and vice-versa. Consequently,

after applying the mapping from a tree to a graph, we erase all the unreachable rules

subtrees, reconverting then the graph back to a derivation tree.

From the above, we designed four tests, addressing the following experimental

conditions:

Constrained – using Grammar 4.1, which does not allow the number of<RULE>

subtrees to change;

Non-Constrained – using Grammar 4.2, that has the possibility of increasing

or decreasing the number of <RULE> subtrees, which is facilitated by the

<OTHERRULES> derivation step;

Constrained with Cleaning – based on the constrained testing scenario and,

additionally, erases all the unreachable parts of the CFDGs;

73

0

160

320

480

640

800

0 10 20 30 40 50 60 70 80 90 100

←
 N

U
M

B
ER

 O
F

N
O

D
ES

 →

← GENERATION →

Constrained Non-Constrained
Non-Constrained w/ CleaningConstrained w/ Cleaning

Figure 4.15: Evolution of the number of tree nodes across generations, for the di↵erent
setups. Results are averages of 30 independent runs.

Non-Constrained with Cleaning – based on the non-constrained testing

scenario and, additionally, erases all the unreachable parts of the CFDGs.

Figure 4.14 shows the evolution of the fitness of the best individual over 30 inde-

pendent runs. Care was taken so that both tests start with the same initial popu-

lation, in order to facilitate comparison. As depicted, regardless of the experimental

conditions, all setups converge similarly, attaining the same results.

Although, if instead of fitness evolution, we look at the number of nodes (internal

and leaves) in the derivation tree, Figure 4.15, as expected, the non-constrained

approach leads to the higher number of nodes. All the remaining setups have similar

results, being in the first generations the number of nodes in the constrained one a bit

superior to both approaches with cleaning. However, approximately from generation

80 onwards both setups using the constrained pre-grammar yield very similar results,

with less nodes than the non-constrained with cleaning.

From the stated in the previous paragraphs, in the remaining tests we adopt the

Constrained setup. We opt for not using cleaning because a subtree, even if not

meaningful to one individual, upon crossover it can become relevant to another one.

The Non-Constrained approach is not chosen because, despite the similarity in fitness,

an higher number of nodes implies a more costly level of computation.

74

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

JPEG Size Contrasting Colours ComplexityBell

Contrasting Colours

Complexity

JPEG Size

Bell

Figure 4.16: Evolution of the fitness of the best individual across generations. The
fitness function used to guide evolution is depicted in the tittle of each chart and is
represented with a thicker line. The other values are presented for reference, but have
no influence in the evolutionary process. Results are averages of 30 independent runs
for each chart and have been normalised to improve readability.

4.1.3.3 Single Fitness Guiding

Taking into account the experiments performed with only one guiding fitness and

the graph-based approach (Section 4.1.2.4), we will only design tests using as fitness

function the JPEG Size, Contrasting Colours, Bell and Complexity. Fractal Dimen-

sion and Lacunarity are not going to be addressed due to their lack of capacity to

promote the evolution of non-fractal images into fractals.

Figure 4.16 depicts the results of these experiments in terms of fitness evolution.

Each chart summarises the evolution of the fitness of the best individual when using

the corresponding fitness function to guide evolution. The values yielded by the other

fitness functions are also shown to illustrate possible inter-dependencies. Moreover,

the values presented in each chart are averages of 30 independent runs (120 runs in

total). In order to improve readability the values have been normalised, by dividing

the raw value by the maximum one for that fitness component found in all performed

75

(a) JPEG Size (b) Contrasting Colours

(c) Bell (d) Complexity

Figure 4.17: Examples of individuals evolved using each one of the fitness functions.

runs.

An analysis of the results leads to conclusions similar to those of Section 4.1.2.4,

where the same tests were performed with the graph-based approach. Maximising

JPEG Size promotes Contrasting Colours and Complexity, but not Bell, which only

has a little increase during the first 10 generations and then stabilises. The same

can be stated about Contrasting Colours ; maximising it conducts to enhancements

in JPEG Size and Complexity. Bell is una↵ected, meaning that despite the increase

in the number of colours present in images they do not have a normal distribution of

colour gradients, resembling instead random patterns. Maximising Bell boosts JPEG

Size and Contrasting Colours, the latter at a slower rate; Complexity does not seem

to be related, as its behaviour is erratic during the course of the experiment. Fi-

nally, maximising Complexity is accompanied by a steady increase in JPEG Size and

Contrasting Colours, at least during the first generations. The number of contrasting

colours then stabilises because the Complexity metric operates over greyscale images

and, as such, colours are not taken into consideration. Bell appears to be uncorre-

lated.

Sample individuals of each fitness function can be found in Figure 4.17. More ex-

amples are available in Appendix C. As expected, the results confirm the predictable,

being the images similar to those evolved with the graph-based approach and, as such,

the conclusions the same. JPEG Size tends to converge to high contrast colourful

patterns. Contrasting Colours, results in images that are extremely colourful, where

no structure in the colours placement seems to exist. On the other hand, Bell depicts

76

0

0.2

0.4

0.6

0.8

1.0

JPEG Size

Combined
BellComplexity
Contrasting Colours

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

ES
S

 →

← GENERATION →

Figure 4.18: Evolution of the fitness of the best individual across generations using as
fitness function a combination of Complexity, Bell and Contrasting Colours (thicker
line). The other values are presented for reference, but have no influence in the
evolutionary process. Results are averages of 30 independent runs for each chart and
have been normalised to improve readability.

a structured variation of colour, explained after the need to match a normal distribu-

tion of colour gradients. Finally, using Complexity generates structured images, most

of them monochromatic, because of the need to convert them to greyscale before

assessing fitness.

4.1.3.4 Multiple Fitness Guiding

As previously done with the graph-based approach, Section 4.1.2.5, experiments where

the fitness function acts as a combination of others were also performed. The aim

of the present section is to prove the capacity of the approach to deal with di↵erent

objectives during evolution, as such, only one test will be presented, where the com-

bination of Complexity, Bell and Contrasting Colours is sought. JPEG Size was not

used because Complexity already takes it into consideration.

Figure 4.18 shows the results of the experiment in what regards fitness evolution,

as a combined measure, and individually. An example of a produced individual is

depicted in Figure 4.19 (for further examples check Appendix C).

The combination of Complexity, Bell and Contrasting Colours is characterised by

a fast increase in the Complexity component during the first 40 generations, which

77

Figure 4.19: Example of one individual evolved using Complexity, Bell and Contrast-
ing Colours as fitness function.

is followed by a steady evolution of the number of Contrasting Colours. Bell can

be identified as the most di�cult metric to address, since the improvements in the

combined fitness function are mostly result of the evolution of the two other mea-

sures. JPEG Size, despite not being treated in the combined guiding function, is also

improving, which is expected because the Complexity metric considers it.

Visually, results often depict characteristics that can be identified with each one

of the three measures. That is, highly structured images, with a great number of

contrasting colours, usually depicting a normal distribution of gradients.

4.1.4 Merging Both Approaches

After proving, in Sections 4.1.2 and 4.1.3, that both graph and tree-based approaches

are capable of promoting evolution, in this case, of CFDGs, we wonder if combining

distinct parts from each one may or not lead to better results. This new form of

addressing the problem is going to be tackled in the next paragraphs.

To initialise the population that will seed the evolutionary process we opt for the

one used in the tree-based approach, i.e., the creation of random derivation trees

based on an a-priori defined pre-grammar. This choice was made with regard to

which initialisation procedure is most easily generalisable.

The question now turns to which combination of crossover and mutation operators

to use. For that, tests using all the possibilities are going to be performed in the

following subsections. In order to assure the validity of the solutions we use a method

that maps derivation trees into graphs, and vice-versa. This procedure is used before

the application of the graph-crossover and graph-mutation operators to map from

a derivation tree to graph and then, after the operators application, to map the

individuals back to a derivation tree.

78

Evolutionary Engine Values
Number of runs 30
Number of generations 300
Population size 100
Crossover probability 0.6
Mutation probability 0.3
Tournament size 10
Elite size Top 2% of the population
CFDG Parameters Values
Maximum number expansion steps 100000
Limits of the geometric transformations rotate 2 [0,359], size 2 [-5,5]

x 2 [-5,5], y 2 [-5,5], z 2 [-5,5]
flip 2 [-5,5], skew 2 [-5,5]

Limits of the colour transformations hue 2 [0,359], saturation 2 [-1,1]
brightness 2 [-1,1], alpha 2 [-1,1]

Terminal symbols SQUARE, CIRCLE, TRIANGLE
Other Parameters Values
Graph per-gene mutation probability 0.1
(Tree, Graph) combined crossover probabilities {(0.3, 0.7), (0.5, 0.5), (0.3, 0.7)}

Table 4.3: Parameters used for the experiments merging graph and tree operators.

At this point, another change had to be made, to guarantee that no invalid so-

lutions are produced. In one hand, in graph-based operators, rule names do not

really matter, because a correspondence list is built upon crossover application and

connections re-established. In the other hand, considering the tree-based approach,

CFDG rule names are of huge importance, as later, in mutation, <NONTERMINAL>

subtree nodes can be swapped, linking to non-existing rules. So, when using graph-

crossover with tree-mutation it is important to make sure that the NONTERMINAL

derivation rule is updated, according to the individual’s rule names. From this, an-

other problem emerges. If rule names are not the same in both individuals being

crossed over, the generation of invalids may occur. To cope with that, a repair pro-

cedure was developed, which changes all the calls to non-existing rules by valid ones.

In the following sections the parameterisation of the experiments is detailed (Sec-

tion 4.1.4.1) and a thorough analysis of the results is carried out (Section 4.1.4.2).

4.1.4.1 Experimental Setup

The setup herein detailed, Table 4.3, merges the configurations from both approaches,

when ran in isolation. Additionally, as the initial population is defined using the

procedure from the tree-based approach, we decided for the use of the pre-grammar

introduced in Grammar 4.1, for the same reasons as in Section 4.1.3.1.

As one may notice, tests will be performed with slightly longer runs (300 genera-

tions instead of 100). This decision was taken with regard to the experimental results

79

Mutation Crossover JPEG Size Combined
Graph Tree 32800.133(1)(2) 0.01123433(1)(2)(3)

Graph Graph 31769.367(3)(4) 0.01006618(3)(4)(5)

Tree Tree 37260.567(2)(3)(5) 0.01316316(2)(4)

Tree Graph 35959.167(1)(4)(5) 0.01355605(1)(5)

Table 4.4: Fitness of the best individual for each of the possible operators combi-
nations, using as fitness function the JPEG Size and a combination of Complexity,
Bell and Contrasting Colours. Results are averages of 30 independent runs. Within
each column, a digit is placed next to a pair of setups whose results are statistically
di↵erent.

of the previous sections where, in some cases, longer runs could have led to better

insights over the results.

Taken all this into consideration, in the next section, results of the following exper-

iments will be discussed: tree and graph mutation with tree and graph crossover and

a combination of tree mutation with tree and graph crossover, where both crossovers

are applied during the experiments. In this last scenario, before applying an operator,

it is first needed to decide if mutation, crossover or reproduction is going to be used;

if the decision favours crossover it is then necessary to decide whether tree or graph

crossover is to be employed, using the probabilities defined in Table 4.3 (last row).

4.1.4.2 Experimental Results

Following what was mentioned in the last section, we carried out experiments using

all the possible pairs of mutation and crossover operators, namely: (graph-mutation,

tree-crossover), (graph-mutation, graph-crossover), (tree-mutation, tree-crossover),

(tree-mutation, graph-crossover). We have also taken into consideration the di�-

culty of evolving a certain fitness function and, as such, tests were performed using

two distinct fitness functions: JPEG Size and a combination of Complexity, Bell and

Contrasting Colours.

Table 4.4 shows the results of these tests in what concerns the maximum reached

fitness (averages of 30 runs). Within each column, a digit (e.g. 1) is placed next

to a pair of setups whose results are statistically di↵erent. For example, the (1)

in the JPEG Size column denotes that the graph-mutation / tree-crossover setup is

statistically di↵erent from tree-mutation / graph-crossover one.

A brief perusal of the results immediately presents the graph-mutation as worse

than the tree one. All experiments where graph-mutation is used provide lower re-

80

Tree-Crossover Graph-Crossover JPEG Size Combined
0 1 35959.167(1) 0.01355605
0.3 0.7 35190.2 0.01321375
0.5 0.5 36954.767 0.01360797
0.7 0.3 37287.23 0.01363978
1 0 37260.567(1) 0.01316316

Table 4.5: Fitness of the best individual using tree-mutation and both crossover oper-
ators. Two fitness functions were used: JPEG Size and a combination of Complexity,
Bell and Contrasting Colours. Results are averages of 30 independent runs. Within
each column, a digit is placed next to a pair of setups whose results are statistically
di↵erent.

sults than those where tree-mutation is used; moreover, this di↵erence is statistically

significant.

Focusing on JPEG Size results, apart from the previously stated conclusion, it

is also possible to claim that the best results were obtained with the tree-mutation

/ tree-crossover setup, which is statistically better than the tree-mutation / graph-

crossover. On the other hand, it is not possible to state, with confidence, which

combination of operators leads to the best results in the experiments where Complex-

ity, Bell and Contrasting Colours are used as fitness function, because no statistically

di↵erence exists between the two best combinations. Although, it is possible to infer

that graph-mutation / graph-crossover is worse than graph-mutation / tree-crossover,

establishing it as the worst option for guiding evolution with this fitness function.

Bearing the previous conclusions in mind, and with the intention to try to better

understand which combination of operators is must suited for multiple fitness func-

tions, we designed tests where we used tree-mutation in conjunction with both graph

operators, under di↵erent probabilities. Results of these tests are presented in Table

4.5.

Once again, other than the marked pair, there are no statistical di↵erences in the

results. However, a clear trend is visible. Increasing the tree-crossover probability

(consequently reducing the graph-crossover one) promotes higher fitness values. At

this point we decided, for this set of experiments, to focus on the evolution of the

population’s average fitness across generations. Figures 4.20 and 4.21 depict these

results for the JPEG Size and the combination of Complexity, Bell and Contrasting

Colours, respectively.

The trend that was already visible now becomes highly noticeable. Statistical

tests confirm it; although, there are less tests that show statistical di↵erence in the

81

0

7K

14K

21K

28K

35K

0 30 60 90 120 150 180 210 240 270 300
← GENERATION →

tree=1, graph=0

tree=0.7, graph=0.3
tree=0.5, graph=0.5tree=0.3, graph=0.7
tree=0, graph=1

←
 F

IT
N

ES
S

 →

Figure 4.20: Evolution of the average fitness across generations using JPEG Size as
fitness function. Results are averages of 30 independent runs.

evolutionary runs with the combined fitness function than when just using the JPEG

Size, which also confirms the di�culty of the problem.

From all this data it is then possible to appoint the tree-mutation / tree-crossover

as the best setup.

4.2 Evolving Musical Sequences

In order to compose and evolve musical sequences we first need to choose a way

of representing and reproducing them. That is the scenario under which Musical

Instrument Digital Interface (MIDI) [1] appears. Among many functionalities, MIDI

allows the composition and storage of electronic music, through a wide set of control

and data commands.

In simple words, MIDI files store status and data bytes. The first ones define

the type of message that is then followed by a variable number of data bytes. These

types of messages are what control each one of the possible 16 MIDI channels. The

maximum number of 16 channels means that we can play a maximum of 16, from the

available 128, di↵erent instruments independently, i.e., each channel corresponds to

an instrument. Usually, the 10th channel is reserved to percussion instruments.

82

0

0.004

0.008

0.012

0.016

0.02

0 30 60 90 120 150 180 210 240 270 300
← GENERATION →

tree=1, graph=0

tree=0.7, graph=0.3
tree=0.5, graph=0.5tree=0.3, graph=0.7
tree=0, graph=1

←
 F

IT
N

ES
S

 →

Figure 4.21: Evolution of the average fitness across generations using the combination
Complexity, Bell and Contrasting Colours as fitness function. Results are averages
of 30 independent runs.

The two most important commands are note on and note o↵, and they are the

ones responsible for playing a sound in a specific channel. To define a note, we need

its pitch and velocity. Pitch value defines the frequency of the note to be played,

whereas the velocity defines the strength with what it should be played (in most

systems this can be translated into volume). The di↵erence in time between the note

on and note o↵ commands describes the note duration.

It is important to mention that MIDI files are not playable by themselves. If one

wants to listen the sequence of notes stored in this format, a synthesiser must be used.

To some extent, this can be considered as a drawback because, di↵erent synthesisers

can have di↵erent sounds for each instrument, turning the quality of reproduction

variable, in accordance to the quality of the synthesiser.

There is much more to explain about the MIDI protocol. Although, MIDI is

not the true aim of this Dissertation and, as so, considered out of scope. Having

explained the concepts necessary for the understanding of the following sections, if

more information is sought refer to [21].

With the objective of evolving musical sequences, encoded as MIDI files, we will,

in the upcoming sections, show how we have used the previously described approaches

83

(Chapter 3) to accomplish it. We decided to focus on the method where components

from both of them are merged, so that we assess the capacity of both operators to

promote evolution, at once.

In Section 4.2.1 the grammar representation of the individuals will be addressed.

Section 4.2.2 details the mapping from the grammars to MIDI. Following, the exper-

imental setup (Section 4.2.3) and results (Section 4.2.4).

4.2.1 Grammar Representation

Analogously to CFDGs, we propose an augmented context free grammar capable of

representing sequences of notes. This augmented grammar is formed by a 5-tuple

(V, F,⌃, R, S), where V , ⌃, R and S have the same meaning as in CFDGs. The

new symbol, F , stands for a set of functions, that grammatically act similarly to

non-terminals, namely:

• mirror(arg) – reverses the order of arg;

• playandmirror(arg) – plays arg and then its reverse;

• playtwice(arg) – arg is played two times in a row;

• playtwo(arg, arg) – the two input arguments are played in simultaneous;

where arg 2 (V [F). This means that the arguments received by the functions

can be any non-terminal or function. When functions are nested, for example:

playtwice(mirror(non-terminal)), the inner functions have to be evaluated first. For

that, in the example, before applying the playtwice function it is needed to assess

the output of mirror(non-terminal). The rationale of functions relates to the need of

giving some sort of structure to what the user will ultimately listen.

In this particular domain only the terminal symbols note and chord are needed

(⌃ = {note, chord}). Moreover, assuming that the volume is always 100%, to define

a note, at least two values are needed, its pitch and duration. Grammatically, this

requirement can be seen as two mandatory parameters associated with the calls to

terminals because, as previously mentioned, the grammar is augmented. To define a

chord, analogously to note, the base pitch and duration of the chord must be specified,

as two mandatory parameters. The chord is later mapped into three notes played at

the same time, with the same duration and a defined di↵erence of pitch between them.

Having that said, we are only missing the non-terminals (V). In CFDGs non-

terminals perform calls to multiple non-terminals and terminals. Here, the rationale

84

metagrammar_flowchart - Untitled

start A

rule A{

 note {pitch 60 duration 1}

 B {}

 playtwice (B) {pitch 1 duration -0.125}

}

rule B{

 note {pitch 65 duration 0.5}

 chord {pitch 65 duration 1}

 mirror (B) {}

}

Figure 4.22: Example of a grammar capable of representing a musical sequence.

is exactly the same, with the addition of calls to functions. This way, whereas in

CFDGs non-terminals would stand for a part of the image, here non-terminals encode

a subsequence of notes, which is part of the main musical piece. The start symbol

(S) is randomly chosen from the set of non-terminal symbols.

Likewise to CFDGs, it is also possible to define the same non-terminal more than

once, providing in this way the grammar of a non-deterministic nature.

Both non-terminal and functions calls can be also parameterised. For simplicity

reasons we only allow pitch and duration as parameters. When used, they can increase

or decrease the pitch and duration of the terminals note of the calling target.

Figure 4.22 shows an example of a grammar that complies with the previously

enunciated principles. The way to interpret this grammar is explained in Section 4.2.2.

4.2.2 From Grammars to MIDIs

The method for converting from a grammar to a sequence of notes is in all similar to

what happens with Context Free Art.

Beginning from the start symbol, an ordered sequence of notes, chords (terminal

symbols) and non-terminal symbols is created. It is considered that, after processing

a function, its output is a set of non-terminals that is added to the ordered sequence.

This sequence is then traversed multiple times, until no non-terminals are left to

expand, or a maximum number of expansions is reached (maxexpansions). Setting

a maximum number of expansions works as a way of dealing with loops.

The procedure of expansion of a non-terminal must take into consideration the

non-deterministic nature of the grammar, i.e., all rules with the same name as the

non-terminal participate into a roulette wheel selection, where its probability of being

85

chosen is the one defined after the rule name (see Figure 4.22). If no value is specified,

a default of 1 is assumed.

Algorithm 6 Mapping of an individual to a sequence of notes.

procedure NotesSequence(ind, maxexpansions)
sequence ExpandNonTerminal(ind.rules, ind.startshape)
expansions 1
while sequence has non-terminals and expansions < maxexpansions do

for symbol in sequence do
if symbol is non-terminal then

subsequence ExpandNonTerminal(ind.rules, symbol)
Replace(symbol, subsequence)
expansions = expansions+ 1
if expansions > maxexpansions then

break
end if

end if
end for

end while
return sequence

end procedure

It is also needed to keep in mind the parameters used in functions and calls to

non-terminal symbols. These, as previously mentioned, a↵ect the pitch and duration

of the notes of the target non-terminal symbol. For example, in the call that is made

to non-terminal B, from rule A (see Figure 4.22), the actual pitch and duration of

the first note are 65 and 0.5, respectively. Although, when calling the non-terminal

B that is passed as argument to the function playtwice, the pitch and duration of the

first note of non-terminal B are 66 and 0.375, respectively. In another hypothetical

situation, if we have a rule A, calling a rule B, which by consequence calls a rule C,

the notes in rule C must consider the parameters passed from A to B and from B to

C, i.e., parameters used in calls are cumulative.

The above mentioned principles are presented, in a more formal way, in Algo-

rithms 6 and 7. The first one details the complete procedure of mapping from an

individual’s genotype into the sequence of notes. The other focuses the expansion of

a non-terminal symbol.

At this point, we have a set of notes (output from Algorithm 6), which can be

easily saved to MIDI. To accomplish that, we used a Python’s library3. Adopting

3MIDIUtil – https://code.google.com/p/midiutil/

86

https://code.google.com/p/midiutil/

Algorithm 7 Expansion of a non-terminal symbol.

procedure ExpandNonTerminal(productionrules, rulename)
sequence EmptyList()
rule ChooseExpansion(productionrules, rulename)
for call 2 rule do

if call is terminal or call is non-terminal then
sequence.add(call)

else
sequence.extend(ExpandFunction(call))

end if
end for
return sequence

end procedure

Evolutionary Engine Values
Number of runs 10
Number of generations 15
Population size 20
Graph-crossover probability 0.18 (0.6 ⇥ 0.3)
Tree-crossover probability 0.42 (0.6 ⇥ 0.7)
Tree-mutation probability 0.3
Tournament size 2
Elite size Top 5% of the population
Grammar Parameters Values
Maximum number expansion steps 10
Limits of the calls transformations pitch 2 [-2,2], duration 2 [-0.25,0.25]
Terminal symbols note
Functions playtwice, mirror, playandmirror, playtwo

Table 4.6: Parameters used for the experiments evolving musical sequences.

this library, to produce a MIDI file we only need to provide, for each note, its pitch,

starting time, duration, channel and volume. For simplicity reasons, we assume that

the volume is always 100% and that we are only playing an instrument (piano), so

we only need one channel.

4.2.3 Experimental Setup

As previously mentioned, we decided to focus on the method where components of

both approaches from Chapter 3 are merged. We chose not to carry full extensive

tests with all possibilities (as done with CFDGs) because the aim of this section is

di↵erent. We only want to prove that it is possible to apply the evolutionary engine

to di↵erent domains and, as so, the experiments herein presented work as a proof of

concept.

87

<S> ::= <STARTSHAPE> <RULE>(3, NONTERMINAL, STRING, True)
<RULE>(1,3)

<STARTSHAPE> ::= startshape <NONTERMINAL>
<RULE> ::= rule <NONTERMINAL> <PROB> { <CALLS> }
<PROB> ::= [0,1] | �
<CALLS> ::= <SYMBOL> <CALLS> | <SYMBOL> <CALLS>

| <SYMBOL> <CALLS> | �
<SYMBOL> ::= <TERMINAL> | <TERMINAL> | <TERMINAL>

| <NONTERM> | <NONTERM> | <FUNCTION>
<TERMINAL> ::= note { pitch <PITCH> ; duration <DURATION> }

| note { pitch <PITCH> ; duration <DURATION> }
| note { pitch <PITCH> ; duration <DURATION> }
| chord { base <PITCH> ; duration <DURATION> }

<PITCH> ::= 60 | 61 | 62 | 63 | 64 | 65
| 66 | 67 | 68 | 69 | 70 | 71

<DURATION> ::= 1.0 | 0.5 | 1.0 | 0.5
| 1.0 | 0.5 | 0.25 | 0.125

<NONTERM> ::= <NONTERMINAL> <PARAMETERS>
<FUNCTION> ::= playtwo (<FUNCARG> ; <FUNCARG>) <PARAMETERS>

| playtwice (<FUNCARG>) <PARAMETERS>
| mirror (<FUNCARG>) <PARAMETERS>
| playandmirror (<FUNCARG>) <PARAMETERS>
| playtwice (<FUNCARG>) <PARAMETERS>
| mirror (<FUNCARG>) <PARAMETERS>
| playandmirror (<FUNCARG>) <PARAMETERS>
| mirror (<FUNCARG>) <PARAMETERS>
| playandmirror (<FUNCARG>) <PARAMETERS>

<FUNCARG> ::= <FUNCTION> | <NONTERMINAL> | <NONTERMINAL>
<PARAMETERS> ::= pitch [-2, 2] <PARAMETERS>

| duration [-0.25, 0.25] <PARAMETERS>
| �

Grammar 4.3: Pre-grammar used for the evolution of grammars capable of represent-
ing musical sequences.

Being a proof of concept we opted for guiding evolution in a user-guided manner.

One may argue that, by doing so, results are subjective to the users aesthetic pref-

erences. That is correct but, once again, this is a proof of concept. The aim is only

to assess the adequacy of the system to evolve candidate solutions in other domains,

regardless of the used fitness function.

In the used evolutionary algorithm, individuals are represented by derivation trees

of an a-priori defined pre-grammar and are mapped into a graph representation before

88

application of the graph-crossover. For that, the first step is the definition of a pre-

grammar capable of providing grammars such as the one presented in Figure 4.22.

The used pre-grammar is presented in Grammar 4.3. As seen, it contains a lot of

repeated productions. This was done with purpose, in a way to bias the grammar, in

order to produce more audible note sequences, avoiding too much repetition or notes

played at once. More about the motivation for the grammar biasing will be discussed

in the next section.

Table 4.6 details the remaining parameters needed for the performance of exper-

iments. The low value in the number of runs, generations and population size are a

result of the user-guided fitness. Just for this setup, the user is required to ear about

3000 MIDI files, classifying each one of them, in a scale from 0 to 5, with regard to

all the remaining. This can easily be understood as an exhausting process.

4.2.4 Experimental Results

In this section we will discuss and present the results obtained while testing the

evolution of musical sequences. To start, the motivation that let to biasing the gram-

mar and how it was accomplished will be described. Later, we will show samples of

the evolved musical pieces, using a user guided-method that, despite subjective, we

considerer convincing to prove the capacity of the evolutionary engine to cope with

di↵erent domains.

An unbiased pre-grammar of the one shown in Grammar 4.3 can be understood

as composed by the exact same production rules, although without repetitions in

its derivation steps. For example, the production rule <RULES> would consist of

the derivations <SYMBOL> <CALLS> and �, with no repetitions of <SYMBOL>

<CALLS>. The same reasoning should be applied for the remaining production rules.

From that, an important consequence emerges; when deciding which derivation step

should replace the non-terminal, they all have the same probability.

As a result, using the unbiased grammar, the following happens. When expand-

ing a rule, i.e., adding calls to it, the same chance is given to � and <SYMBOL>

<CALLS>. In theory this means 50% of the rules will be empty (no calls to terminals,

non-terminals or functions). Furthermore, when expanding a function, its argument

can be a non-terminal or another function. Being the probabilities the same, it leads

to multiple nested functions, which hardly produce interesting musical compositions.

The first pointed situation guides to the output of sequences of notes that are either

too simple, or even empty, due to the lack of calls to terminals, non-terminals and

functions. In the other hand, it easily produces highly complex musical pieces, such

89

Figure 4.23: Example of part of the sequence of notes produced by an individual
generated using the unbiased version of Grammar 4.3.

Figure 4.24: Example of a sequence of notes produced by an individual considered of
high-quality, generated using the unbiased version of Grammar 4.3.

as the one depicted in Figure 4.23, where constantly there is a high number of notes

played at the same time. This is often the consequence of nested playtwo function

calls. In the example it is also clear the dominance of short duration notes, because in

the unbiased grammar we were allowing shorter time durations (0.0625 and 0.03125),

which were later discarded. Despite all that, using an unbiased grammar it is also

possible to evolve simple aesthetic musical pieces, such as the one in Figure 4.24.

Biasing the grammar arises as a solution for the above mentioned problems. Al-

though, it is intrinsically related with the user’s aesthetics notion. Following this line

of thought, we increased the probability of creating calls to non-terminals, terminals

and functions, by making <SYMBOL> <CALLS> present in the grammar more

than once. We also enhanced the type of call that should be made, giving higher

rates to terminals, non-terminals and functions, in this order. Focusing terminals, we

established that the terminal note should be used more often than chord, in order

to discourage the noise produced by a huge amount of notes played at once. Fur-

thermore, with the same problem in mind, the function playtwo is the one with the

lowest probability of being used. Playtwice, also has lower probability of being picked

90

(a) Example A

(b) Example B

Figure 4.25: Example of a sequence of notes produced by an individual considered of
high-quality generated using Grammar 4.3.

than the others, although higher than playtwo, because it leads to the same pattern

over time, producing monotonous sequences of notes. Function arguments were bi-

ased, setting a preference for non-terminals, avoiding this way wide nested functions.

Action was also taken to change the notes duration, after noticing that low values

are not perceptible when playing the MIDI file. For that, the options focus higher

durations.

After introducing the above mentioned changes into the used pre-grammar, more

of the output results were considered useful. To start, there were less empty and highly

complex note sequences. It was possible to actually see that, across generations an

improvement in the quality of the individuals was being accomplished, leading to

the evolution of simple and structured musical pieces. Examples of outputs of the

system are shown in Figure 4.25. In the attached CD, we include an evolutionary

run performed using the setup specified in Section 4.2.3 as well as more samples of

individuals that were considered of high quality by the users, during the evolutionary

process.

4.3 Conclusions

In the present chapter we perform multiple experiments over the approaches detailed

in Chapter 3. This tests focus two di↵erent domains.

First, we try the evolution of Context Free Design Grammars that, when rendered,

give origin to images in the PNG format. With this domain, both graph and tree-

based approaches were tested. It was proved that one and the other are capable of

evolving CFDGs, with all the used fitness functions except two (Fractal Dimension

91

and Lacunarity) which were later ruled out, for being inappropriate for the assessing

of fitness of non-fractal images. As so, they are ill-suited to promote the evolution

of non-fractals into fractal images. We also demonstrated the capacity of the system

to guide evolution according to a fitness which takes several others into account

producing results that must bespeak characteristics of each one of them.

After showing that, in isolation, both approaches work as expected, we tried to

merge operators from each one of them, i.e., try to evolve CFDGs for example with

tree-mutation and graph-crossover. The procedure for population initialisation was

fixed to the tree-based one, due to generalisation purposes. For that, individuals are

derivation trees and, as so, before applying any graph operation a mapping from a tree

to a graph is needed, converting then them back to a tree. Results clearly show that

when using graph-mutation results are worse. They also establish the tree-crossover

as the best crossover operator. For that, in the next chapter, solutions to improve

the performance of the graph-crossover are going to be explored.

To end, experiments in another domain, namely music, were carried out. The goal

of this last section of the chapter is to assess the capacity of the evolutionary engine to

deal with di↵erent environments. For that, it can be perceived as a proof of concept

and, therefore, only one of the above discussed approaches was used; more precisely,

the one that combines tree-mutation with tree and graph crossovers (preference set

to tree-crossover). After introducing bias in the used grammar, showing that in

some scenarios it can be useful to lead to aesthetic results, we performed user guided

runs. Even tough the results can be seen, up to some extent, as subjective, we

demonstrate that the method is adequate as, over time, the output musical sequences

are considered of higher quality.

92

Chapter 5

Alignment

Alignment can be defined as the procedure that establishes a mapping between two

structures, such as trees or graphs. Moreover, the output mapping should aim at

maximising the similarity among the parts of each structure that are to be aligned.

In other words, it should try to preserve most of the characteristics of the structures,

i.e., blocks in one structure should be mapped to similar ones in the other.

The most common way to measure similarity is using topological metrics. All

methods within this class of approach see nodes as equal parts and compute their

similarity with regard to the relation between them.

On the other hand, we have procedures which take into consideration only the

similarity among nodes. Although, in some situations, this type of methods fail for

being domain dependent, requiring a-priori knowledge.

The optimal way to tackle this problem is, in our opinion, to merge the concepts

from the previous paragraphs, i.e., consider both topological and node similarities.

The following sections are organised as follows. Section 5.1 focuses methods for

graph alignment. Algorithms for the alignment of trees are not going to be explored,

because derivation trees are constrained to ensure the generation of valid individuals,

by restricting cutting points to nodes with the same derivation rule. From the previ-

ous, the application of any sort of alignment is not expected to generate any better

results. The objective of this study is then to try improving the graph-crossover per-

formance, by choosing cutting points in a more informed way. By doing so, we can

pick the first crossover point at random and the second one as its alignment or we can

go for the alignment that maximises the similarity measure. These possibilities will

be addressed in the experimentation section, Section 5.2. To end, conclusions will be

drawn (Section 5.3).

93

5.1 Graph Alignment

Multiple algorithms for aligning graphs exist, most of them divided into two phases.

Usually, the first one focuses in computing the cost of aligning every pair of nodes of

the two graphs, while the second extracts the actual alignment from the previously

built cost matrix.

Regarding the alignment method, it should be able to produce a one-to-one map-

ping between the two graphs that are being aligned. Most often than not, that is

impossible because the number of nodes in each structure is di↵erent. In that case,

a one-to-one mapping from the smallest to the largest structure is sought, i.e., every

single node of the graph with less nodes should be aligned to exactly one node of the

graph with more nodes.

Taking all the above into account, and after analysing the survey by Döpmann [16],

where several graph alignment algorithms are benchmarked, we opt by adapting the

Graph Aligner (GRAAL) algorithm [33] to our current scenario.

GRAAL, as the majority of the alignment algorithms follows a two phase struc-

ture where, to produce the cost matrix, both topological and node similarities are

considered.

Denoting by G and H the two graphs we aim at aligning, the topological similarity

(topsim) between each pair of nodes v 2 G and u 2 H is computed according to the

following equation:

topsim(v, u) = 1� deg(v) + deg(u)

max deg(G) +max deg(H)
, (5.1)

where deg represents the degree of a node in the graph and max deg the maximum

degree of a graph. Consequently, the output is a value in the interval [0, 1], where

lower values stand for nodes that are more similar.

At this point, we introduce changes in the algorithm. In the original paper, node

similarity is computed using the signature similarity algorithm [48], that measures lo-

cal topological similarity between two given nodes, taking into account their graphlet

degrees (for more informations refer to [48]). In order to align the approach with our

current scenario, to assign similarity to two nodes, we ask the user to initially define

a dissimilarity matrix, where every possible terminal, non-terminal and parameter

that the evolutionary engine is allowed to use are compared. This way, every cell in

the matrix means how dissimilar two symbols are. The higher the value in the cell

is, the more dissimilar the elements are. For the fact that one node can have more

94

terminals and non-terminals than the other, the comparison to � is also contained in

the dissimilarity matrix. The same rationale is applied to parameters.

Node similarity is then calculated by comparing the terminals, non-terminals and

parameters from each pair of nodes, scoring their alignment with regard to the dis-

similarity matrix defined by the user. E↵orts to scale the output value to the [0, 1]

interval were also made. As in the topological similarity, values close to 0 represent

nodes that are closer to each other.

If we then denote by nodesim the node similarity we can compute the cost of

aligning each node v of the smallest graph to a single node u of the largest one as:

cost(v, u) = ↵⇥ topsim(v, u) + (1� ↵)⇥ nodesim(v, u), (5.2)

where ↵ 2 [0, 1] represents the weight given to the topological part of the alignment.

Moreover, as both topsim and nodesim output values are between 0 and 1 it is easy to

understand that the output of the cost function will also be within the same interval.

Algorithm 8 Graph alignment.

procedure GraphAlign(G, H, CostMatrix)
alignments EmptyList()
markedG EmptyList()
markedH EmptyList()
while |markeda| < |G| do

(nodeG, nodeH) FindLowestCost(markedG,markedH , CostMatrix)
markedG.append(nodeG)
markedH .append(nodeH)
alignments.append((nodeG, nodeH))

end while
return alignments

end procedure

With the end of the first phase, which terminates with the calculation of a cost

matrix for all pairs of nodes, it is now possible to move to the actual alignment phase,

where a mapping based on the previously computed heuristics will be performed.

Algorithm 8 depicts how the one-to-one mapping is computed. In simple words, the

lowest cost alignment will be chosen until all nodes from the smallest graph (G) are

aligned to exactly one node of the largest graph (H).

The produced alignment can then be used to pick the crossover point in a more

informed way. In one hand we can go for the alignment that has the lowest cost, i.e.,

the first element of the list returned by Algorithm 8. In the other hand, we can select

95

from the smallest graph one node randomly, and then choose as crossover point, in

the other graph, the one to which it is aligned to. Experiments focusing alignment

where one pair of nodes is chosen at random will be performed in the next section.

This pair of nodes will then be used as the cutting point for the graph-crossover

operator. We avoid choosing the best possible pair of nodes because that will lead

to a deterministic process, which in evolutionary algorithms can easily conduct to

stagnation of the evolution. We will also address di↵erent options for computing the

degree of a node (used in topological similarity). More precisely, we will test the

computation of the degree considering only the incoming connections of the node,

only the outgoing connections and both.

5.2 Experimentation

As mentioned in the previous section, the followed alignment methodology consists

of two important components: (i) topological similarity, which assesses the a�nity of

two nodes with respect to the existing relations between them; (ii) node similarity,

that takes into account the domain of the problem and measures the likeliness of

two nodes, concerning their meaning, i.e., what they represent in the environment

context.

First, we performed tests considering just the multiple alignment possibilities, i.e.,

instead of incorporating alignment in the evolutionary algorithm we decided first to

run it in isolation. That is, we create a population composed of randomly generated

individuals and then, we apply to all of them the graph-crossover operator, choosing

the cutting points using di↵erent versions of alignment. Then, for each setup we assess

its constructive rate (percentage of crossovers that generate o↵spring greater or equal,

in terms of fitness, than the worst of the parents) and average fitness. Each one of

the tests is then compared with the same setup under the standard graph-crossover,

i.e., the one without any sort of alignment.

To better understand the impact of alignment, when testing its di↵erent possi-

bilities (topological and node similarities) we varied several parameters. The first

one that we tested is the number of nodes in a graph. It is expected that alignment

performs better when applying crossover to large graphs than the opposite because,

if the number of nodes is low, it is likely that choosing the cutting points at random

leads approximately to the same results than when choosing them in a wiser manner.

Finally, we tested two forms of sorting the set of individuals to whom crossover will

be applied. The two possibilities under study are no sorting at all (i.e., they are

96

Evolutionary Engine Values
Number of runs 30
Number of generations 300
Population size 100
Graph-crossover probability 0.6
Tree-mutation probability 0.3
Leaves probability 0.3
Tournament size 5
Elite size Top 2% of the population
CFDG Parameters Values
Maximum number expansion steps 100000
Limits of the geometric transformations Check used pre-grammar
Limits of the colour transformations Check used pre-grammar
Terminal symbols Check used pre-grammar
Alignment Parameters Values
Number of nodes {10, 30, 100}
Node degree incoming connections, outgoing connections,

incoming and outgoing connections
Terminals and non-terminals dissimilarity matrix Check Matrix 5.1
Parameters dissimilarity matrix Check Matrix 5.2
↵ 0.5

Table 5.1: Parameters used for the graph alignment experiments.

essentially in a random order) or sorting them by fitness. The second choice implies

that individuals that have higher quality values are always crossed with highly fitted

individuals too, and the opposite. If no sorting is used, individuals of di↵erent quality

are breed.

Results of these experiments are presented in Sections 5.2.2, 5.2.3 and 5.2.4, re-

spectively with, topological similarity, node similarity and topological and node sim-

ilarities. Then, in Section 5.2.5 we will integrate the best of the alignment alterna-

tives into the evolutionary algorithm previously tested in Chapter 4 (tree-mutation /

graph-crossover).

5.2.1 Experimental Setup

The objective of this chapter is to try to increase the performance of the evolutionary

engine by choosing the graph-crossover cutting points more wisely. From that, we opt

first to try to figure out which of the alignment possibilities produces the best results,

incorporating it later in the evolutionary engine (tree-mutation and graph-crossover)

for the evolution of CFDGs.

Table 5.1 details the needed parameterisation for the evolutionary engine and to

the alignment methods. To initialise the population we use the same pre-grammar as

in previous experiments (Grammar 4.1).

97

As mentioned in the previous section, for computing the similarity between nodes

a dissimilarity matrix must be defined. Matrices 5.1 and 5.2 compare all possible calls

and parameters, respectively. The rationale behind the first one is that the di↵erence

between terminals and non-terminals should be higher than the one between two

terminals or two non-terminals. Moreover, it is considered that it is better to have a

terminal aligned with a non-terminal than with nothing (�). To propose Matrix 5.2

we divided the parameters into two main groups: geometric (geom = transl [transf)

and colour (col = {brightness, hue, saturation, alpha}). Furthermore, it is possible to

subdivide the geometric ones in: translations (transl = {x, y, z}) and transformations

(transf = {skew, flip, rotate, size}). Then, denoting by C the cost of alignment, we

established that the following conditions have to be met:

C(geom, col) > C(geom, geom) = C(col, col),

C(transf, transl) > C(transl, transl) = C(transf, transf).

0

BBBB@

non-terminal SQUARE TRIANGLE CIRCLE �

non-terminal 0 2 2 2 3
SQUARE 2 0 1 1 3
TRIANGLE 2 1 0 1 3
CIRCLE 2 1 1 0 3
� 3 3 3 3 0

1

CCCCA

Matrix 5.1: Terminals and non-terminals dissimilarity matrix.

0

BBBBBBBBBBBBBBBBBB@

x y z skew flip rotate size brightness hue saturation alpha �

x 0 2 2 2.5 2.5 2.5 2.5 4 4 4 4 3
y 2 0 2 2.5 2.5 2.5 2.5 4 4 4 4 3
z 2 2 0 2.5 2.5 2.5 2.5 4 4 4 4 3
skew 2 2 0 2.5 2.5 2.5 2.5 4 4 4 4 3
flip 2.5 2.5 2.5 0 2 2 2 4 4 4 4 3
rotate 2.5 2.5 2.5 2 0 2 2 4 4 4 4 3
size 2.5 2.5 2.5 2 2 0 2 4 4 4 4 3
brightness 4 4 4 4 4 4 4 0 2 2 2 3
hue 4 4 4 4 4 4 4 2 0 2 2 3
saturation 4 4 4 4 4 4 4 2 2 0 2 3
alpha 4 4 4 4 4 4 4 2 2 2 0 3
� 3 3 3 3 3 3 3 3 3 3 3 0

1

CCCCCCCCCCCCCCCCCCA

Matrix 5.2: Parameters dissimilarity matrix.

98

5.2.2 Topological Similarity

Like mentioned earlier, when performing alignment with topological similarity, part of

its computation relies on the degree of the nodes being aligned. As we are applying

it to directed graphs, several possibilities for assessing the degree of a node exist,

namely:

Incoming Connections – the degree of a node corresponds to the number of con-

nections that reach it. For example, the node Pelo of Figure 4.3 has 5 incoming

connections and, as so, a degree of 5;

Outgoing Connections – the degree of a node is equal to the number of links that

start from it. In Figure 4.3, Pelo has an outgoing degree of 1 (note that the

calls to terminals are not depicted in the figure);

Incoming and Outgoing Connections – the degree of the node corresponds to

the number of incoming and outgoing connections. Using this option, node

Pelo of Figure 4.3 has a degree of 6.

In order to try to figure out which of the options for computing the node degree

is best, we performed a wide range of tests using all of them. Results are shown in

Table 5.2. The ones that are statistically di↵erent from the standard crossover (not

using alignment), for each set of tests, are marked with an asterisk.

An analysis of the results confirms the expected. Increasing the size of the graph,

i.e., the number of nodes, leads to crossover with topological alignment performing

better than the one where no alignment is used. Furthermore, it is possible to conclude

that the one where the degree of nodes is computed taking into account only the

number of outgoing connections outperforms the remaining options, both in terms

of constructive rate and fitness. That conclusion arises from the fact that with both

population sorting options and di↵erent number of nodes, the outgoing connections

option is the one that yields, most often, results that are statistically di↵erent from

the version of crossover without any sort of alignment.

Another interesting point pertains the population sorting. Sorting the population

by fitness always provides lower results than without any sorting. This conclusion

can be regarded as follows; when combining two individuals with similar fitnesses it

is harder to surpass the worst parent’s quality. On the other hand, if breeding two

individuals with di↵erent fitness values, the o↵spring tends to be better than the

worst of the parents. However, this result is expected because it is often harder to

overcome two good solutions than one good and one bad.

99

Num. Nodes Pop. Sort. Alignment Const. Rate (%) Fitness (⇥10�5)

10

Yes

None 70.47 2.94
Incoming 69.73 3.45
Outgoing 72.73⇤ 3.55⇤

Inc. + Out. 71.47 3.57

No

None 85.07 3.73
Incoming 85.23 3.66
Outgoing 85.13 3.49

Inc. + Out. 85.43 3.35

30

Yes

None 69.57 3.04
Incoming 69.7 2.81
Outgoing 70.3 3.15

Inc. + Out. 69.47 3.20

No

None 84.1 3.00
Incoming 84.43 3.62⇤

Outgoing 85.33 3.98⇤

Inc. + Out. 84.27 3.85⇤

100

Yes

None 66.57 2.39
Incoming 70.33⇤ 3.37⇤

Outgoing 69.77⇤ 3.70⇤

Inc. + Out. 67.17 2.71

No

None 83.2 3.07
Incoming 83 4.01⇤

Outgoing 84.57⇤ 3.87⇤

Inc. + Out. 81.9 3.18

Table 5.2: Topological similarity alignment results. Cells marked with an asterisk
mean that their value is statistically significant when comparing with the crossover
without alignment for that set of tests. Results are averages of 30 independent sets
of individuals.

From the previous analysis, later, in Section 5.2.4, we will use, in the topological

part of the cost function, the option that considers only the outgoing connections of

a node to compute its degree.

5.2.3 Node Similarity

Similarly to the previous section, we have also designed experiments focusing only

the node similarity of the cost function. As one may remember, before applying

this procedure, dissimilarity matrices comparing all possible symbols (terminals and

non-terminals) and parameters must be provided to the system. These matrices are

presented, respectively, in Matrices 5.1 and 5.2.

100

Num. Nodes Pop. Sorting Alignment Const. Rate (%) Fitness (⇥10�5)

10
Yes

None 70.47 2.94
Node Sim. 72.5* 3.17

No
None 85.07 3.73

Node Sim. 87.47⇤ 3.50

30
Yes

None 69.57 3.04
Node Sim. 72.33⇤ 3.08

No
None 84.1 3.00

Node Sim. 87.17⇤ 2.85

100
Yes

None 66.57 2.39
Node Sim. 71.8⇤ 2.99

No
None 83.2 3.07

Node Sim. 85.47⇤ 3.23

Table 5.3: Node similarity alignment results. Cells marked with an asterisk mean
that their value is statistically significant when comparing with the crossover without
alignment, for that set of tests. Results are averages of 30 independent populations
of individuals.

Table 5.3 details the results of the performed experiments. From its analysis it

becomes clear that node similarity plays an important role in the computation of the

cost function. Concerning the constructive rate, in all tested scenarios this form of

alignment provides statistically better results than the crossover where no alignment

is used. Values related to fitness average do not depict any statistical di↵erence in

any of the tests.

Analogously, a relation between the number of nodes and the constructive rate

seems to exist. As we increase the number of nodes, constructive rate decreases. In

contrast, fitness appears unrelated.

5.2.4 Topological and Node Similarities

Taking into account the experiments performed in the last two sections, where the

cost matrix of the alignment is computed only considering one of its components, we

now run tests using both. To assess the value corresponding to the topological part we

only count the outgoing connections of the nodes, for the reasons above mentioned,

in Section 5.2.2.

Table 5.4 details the results of the executed tests. As expected, a mixture be-

tween the results of both topological and node similarities, when run in isolation, is

obtained. In one hand, the constructive rate of the setups with alignment constantly

outperforms the standard crossover. Additionally, with alignment, the average of the

101

Num. Nodes Pop. Sorting Alignment Const. Rate (%) Fitness (⇥10�5)

10
Yes

None 70.47 2.94
Node + Top. 73.83⇤ 3.65⇤

No
None 85.07 3.73

Node + Top. 87.00 3.51

30
Yes

None 69.57 3.04
Node + Top. 72.13⇤ 3.25

No
None 84.1 3.00

Node + Top. 85.9 3.75⇤

100
Yes

None 66.57 2.39
Node + Top. 71.3⇤ 3.28⇤

No
None 83.2 3.07

Node + Top. 83.57 3.48

Table 5.4: Topological and node similarities alignment results. Cells marked with
an asterisk mean that their value is statistically significant when comparing with
the crossover without alignment, for that set of tests. Results are averages of 30
independent sets of individuals.

fitness values does usually surpass the tests without alignment too. Furthermore,

most of these results are backed up by statistical significant tests, as marked in Table

5.4 cells.

From all the performed tests we then propose the setup where both topological

and node similarities are used to compute the cost matrix of the alignment method

as the best possible option, for the motives presented in the last three sections. We

will now, in the next section, conduct experiments using this type of crossover in the

evolutionary algorithm (tree-mutation / graph-crossover).

5.2.5 Alignment Integration

As stated in the previous sections, after successfully employing graph-crossover with

alignment over a set of randomly generated individuals we now incorporate it in the

evolutionary algorithm.

The cost matrix of the alignment algorithm takes into account topological and

node similarities. Moreover, topological similarity is computed just using the outgoing

node connections. Graph size was set to 100 because, from previous sections results,

it seems to be the most di�cult setup to tackle and, as such, the one where the

alignment results should be more clearly perceptible. To guide evolution we used a

combination of Bell, Complexity and Contrasting Colours.

102

0

0.003

0.006

0.009

0.012

0.015

0 30 60 90 120 150 180 210 240 270 300
← GENERATION →

Crossover without alignment Crossover with alignment

←
 F

IT
N

ES
S

 →

Figure 5.1: Evolution of the fitness of best individual throughout generations with
and without alignment employed in the crossover operator. Results are averages of
30 runs.

0

20

40

60

80

100

0 30 60 90 120 150 180 210 240 270 300
← GENERATION →

Crossover without alignment Crossover with alignment

←
 C

O
N

ST
R

U
C

TI
VE

 R
AT

E
 →

Figure 5.2: Crossover constructive rate throughout generations with and without
using alignment. Results are averages of 30 runs.

Results of the evolution of fitness of the best individuals (Figure 5.1) show that, the

use of alignment in the crossover operator allows the evolutionary engine to achieve

better results. Moreover, the di↵erence between both crossovers, with and without

alignment, is statistically significant.

With the intention of understanding what is exactly promoting this di↵erence, we

moved into assessing the average percentage of constructive crossover across genera-

tions. Results are depicted in Figure 5.2. A perusal analysis clearly shows that, the

percentage of individuals generated by crossover that have a fitness greater or equal

103

0

0.002

0.004

0.006

0.008

0.01

0 30 60 90 120 150 180 210 240 270 300
� GENERATION �

Crossover without alignment Crossover with alignment

�
 F

IT
N

ES
S

 �

Figure 5.3: Evolution of the fitness of the individuals that are generated by crossover
throughout generations with and without using alignment. Results are averages of
30 runs.

than the worst of their parents is far greater using alignment (almost three times

superior). Furthermore, they tend to have higher fitness values (Figure 5.3).

From all the previous analysis it is then clear that using alignment improves the

quality of the graph-crossover.

5.3 Conclusions

Motivated by the results produced by the graph-crossover we investigate possible ap-

proaches for its improvement. One major drawback that seemed clear while analysing

the theory behind it is related with the way how its cuttings points are chosen. While

in tree-crossover they are picked in a way that assures that at least, the swapped

subtrees have some degree of similarity, in graph-crossover that does not happen.

Alignment emerges as a solution for the above problem. By establishing a one-

to-one mapping, from the smallest to the largest graph, it returns a list of pairs of

nodes that have low alignment cost. Then, from this list, we randomly choose one of

the pairs, using its nodes as cutting points.

To compute the cost matrix that is used by the alignment algorithm we adapt the

formulation introduced in GRAAL. As such, we consider that, to compute the cost

of aligning two nodes, two components are needed: topological and node similarities.

While the first considers the connections between nodes, through its degree, the

second analyses them in a much fine and semantic level of granularity.

104

To compute the topological similarity of a node, and because its degree is required,

we test three forms of assessing it: (i) considering only the incoming connections; (ii)

only the outgoing connections; (iii) both incoming and outgoing connections. From

these three possibilities, the second has proved to be the best and, for that, in all

subsequent tests where topological similarity is used, we calculate it using the outgoing

node connections to compute its degree.

Focusing on the node similarity we establish that, in order for two nodes to be

compared, a dissimilarity matrix indicating the cost of aligning each terminal, non-

terminal and parameter has to be defined, so that the method is easily generalisable.

Results show that in the majority of tests, performing crossover using node similarity

outperforms the standard crossover (i.e., no alignment is used).

Then, after analysing both the topological and node similarities, in isolation, we

perform tests using both similarities to compute the cost matrix. Results demonstrate

that this option is the one that yields better results.

Finally, and taking into account the previous results, we replace the standard

crossover with the version with alignment (considering topological and node similar-

ities) and perform evolutionary runs. Results show that crossover with alignment

yields better results than the standard one.

105

106

Chapter 6

Families

Typically, when we observe a set of works from a given artist, or artistic movement,

we naturally classify them as belonging to the same class, genre, or style. Often, the

collection is more interesting than the individual works, revealing more information

about the artistic goals, intentions and aesthetics of the author. To some extent, the

work of artists implies creating a visual language and expressing themselves using the

power, and constraints of that language. As the research of Stiny and Gips [78] on

Shape Grammars (Section 2.3) demonstrates, even when this language is not explicitly

defined by the author, in some cases it is possible to derive and formally express the

rules that capture the underlying principles of a set of artifacts (e.g. Frank Lloyd

Wright’s prairie houses), and then use this grammar to create new instances that are

consistent with the author’s artistic practice. This observation is the main motivation

for this chapter.

An additional motivation comes from the following observation, based on our

previous experiments on the evolution of images: often, when we look at an evolved

population, we find that it is more interesting as a whole than the images it contains

when observed in isolation. This can be explained as follows; an evolved population

tends to be composed of images that share a common genetic background, their

genotypes tend to be similar and, as such, the images they give rise to tend to share

several visual characteristics. Therefore, each image is perceived in a context which

is supplied by the others and, as a whole, as variations on the same theme1.

In the following sections, a scheme to evaluate families is going to be proposed

(Section 6.1) and tested (Section 6.2). Whereas previous works on GP tend to ignore

the characteristics among a set of phenotypes, we consider: the quality of each one;

1Some spurious images tend to exist.

107

the di↵erences of quality among them; the consistency of the set; the diversity of the

set.

Important to mention that the work described in this chapter has been submitted

and accepted as a demo paper in the International Joint Conference on Artificial

Intelligence 2015 (Appendix E.3).

6.1 Evaluating Families

As previously mentioned, we are primarily interested in the evolution of families. In

the present scenario, families derive from grammars and from their non-deterministic

nature. From that, it is clear that mapping them multiple times to phenotypes, using

di↵erent seeds, may lead to di↵erent outputs, forming the family. To that end, we

developed a fitness function that takes into account several aspects of each individual

of the family and of the family as a whole. The principles that guided the development

of this formula are:

1. The quality of each individual belonging to the family should be maximised;

2. The di↵erences in quality should be minimised;

We consider that these are necessary conditions, since a collection of individuals

that are deprived of interest on their own or a collection composed of extremely good

and extremely bad ones cannot be considered of high quality. These conditions are

not, however, su�cient. For instance, a collection composed exclusively of the same

high quality individuals would meet those two criteria, but it could hardly be found

interesting. Thus, we must take into account the relations between the elements of

the collection:

3. A proper degree of diversity should exist.

Thus, the set of individuals should be diverse, to avoid monotony, but, at the

same time, they should share some similarities, otherwise they would no longer be

intuitively classified as belonging to the same family. The way these principles were

translated into a fitness function and computationally implemented is described in

the following paragraphs.

Being S a set of ordered I phenotypes, which belong to the same family, we begin

by calculating fitind(I), 8I 2 S, allowing us to compute the mean quality of the set,

fitind, and the standard deviation of quality, �fit
ind

, thus addressing the first two

principles we have enunciated.

108

Parameters Values
Number of runs 30
Number of generations 100
Population size 100
Crossover probability 0.6
Mutation probability 0.1
Tournament size 10
Elite size Top 2%
Maximum expansion steps 100000
|S| 10
µ {0.1, 0.3, 0.5, 0.7}
� 0.2
a, b {(1, 1), (3, 1), (1, 3)}

Table 6.1: Parameters used in the experiments with families of CFDGs renderings.

To address the third principle, we calculate the similarity among all pairs of in-

dividuals belonging to the sample and its average. This raises a major di�culty

because, for many domains, finding a suitable similarity metric is an open problem.

Taking all the previous into account, it is then possible to propose a fitness function

for the assessment of families that addresses the three principles we enunciated, as

follows:

f(S) = log

✓
1 +

fitind
1 + �fit

ind

◆a

⇥ log(1 +N(sim(S), µ, �))b, (6.1)

where N is the normal distribution function and sim the similarity of a set of phe-

notypes, which yields values in the [0, 1] interval. By establishing di↵erent values for

µ we can adjust the desired degree of similarity, and by setting di↵erent � values we

adjust the penalisation for deviating from that desired similarity. In this way, the

use of the normal distribution rewards individuals which produce sets of phenotypes

whose mean similarity is close to µ. The log function prevents evolution from focusing

exclusively in one of the components of the formula. Finally, the exponents a and b

allow us to adjust the importance given to each component.

6.2 Experimentation

To assess the validity of the proposed fitness function and the ability of the evolution-

ary engine to maximise it we conducted a wide variety of tests using the graph-based

evolutionary engine (Section 3.1) to evolve families of images, which are the outcome

of multiple renderings of individuals resembling CFDGs. The sample size, |S|, was

109

set to 10, meaning that each genotype is rendered 10 times using di↵erent render-

ing seeds. Table 6.1 summarises the parameter settings used in the course of the

experiments.

As in some experiments during previous sections, we used a combination of “aes-

thetic measures” adapted from evolutionary art literature to evolve CFDGs. We

resort to one of these combinations to assess the quality, fitind, of each image, I, in

the sample, S. This particular combination focuses on the chromatic characteristics

of the image, and uses two aesthetic measures: Bell Curve and Contrasting Colours,

as following:

fitind(I) = log(1 + bell(I))⇥ log(1 + cont colours(I)). (6.2)

For simplicity reasons, and because the aim of this section is only to assess the

validity of the proposed fitness function, we chose to estimate the similarity of in-

dividuals (in this case, images) on a pixel by pixel basis, calculating the root mean

square error, rmse, over the three channels of the RGB colour space among pairs of

images. R, G and B values are scaled to [0, 1] prior to this calculation. Therefore,

for the purpose of this study, the similarity of the set of samples S is given by the

following formula:

sim(S) =

|S|�1P
i=1

|S|P
j>i+1

(1� rmse(Si, Sj))

|S|⇥(|S|�1)
2

(6.3)

We will now move into the designed experiments, focusing the importance of each

part of the proposed fitness assignment scheme.

As a first step, we conducted experiments with b = 0, thus ignoring the similarity

among the images of S. As expected, these runs typically converged to families

composed of repetitions of the same image or minor variations of it. In some cases,

however, the algorithm was able to find visual families composed of diversified images.

Figure 6.1 illustrates these three types of results. The main conclusion is that ignoring

the similarity among images implies having no control over the diversity of the family,

which often leads to disappointing results due to lack or excess of diversity.

We also conducted experiments where we only took into account the diversity

of the images (i.e., a = 0). As predictable, the results of these runs are poor. In

the considered experimental conditions, and without any pressure to evolve images

of high quality, it is trivial to match any given target similarity value using simple

shapes (see Figure 6.2).

110

Figure 6.1: Samples of the fittest individuals from three independent runs with b = 0.
Each line presents samples of images produced by a single individual.

Figure 6.2: Samples of the fittest individual of an evolutionary run with a = 0,
µ = 0.7 and � = 0.2.

f (S) sim (S) f it ind σ f it ind

0 10 20 30 40 50 60 70 80 90 100

0

1.0

0.8

0.6

0.4

0.2

← G e n e r a t i o n →

Figure 6.3: Evolution of the f(s), fitind, �fit
ind

and sim(S) of the best individual
when µ = 0.7 and a = b = 1. Results are averages of 30 independent runs and have
been normalised to improve readability.

111

f (S) sim (S) f it ind σ f it ind

0 10 20 30 40 50 60 70 80 90 100

0

1.0

0.8

0.6

0.4

0.2

← G e n e r a t i o n →

Figure 6.4: Evolution of the f(s), fitind, �fit
ind

and sim(S) of the best individual
when µ = 0.5 and a = b = 1. Results are averages of 30 independent runs and have
been normalised to improve readability.

Based on these preliminary results, which in essence, confirm that the assessment

of the quality of a family requires taking into account the quality of the images as well

as their diversity, we conducted runs where both these aspects were considered (i.e.,

a 6= 0^ b 6= 0). Figures 6.3, 6.4, 6.5, 6.6 summarise the results obtained in these runs

when using µ values of 0.7, 0.5, 0.3 and 0.1, respectively, with a = b = 1. They present

the evolution of the fitness of the best individual, f(S), as well as the corresponding

fitind, �fit
ind

and sim(S). To promote readability, all values except those of sim(S),

that are already in the [0, 1] interval, have been normalised by dividing the raw value

by the maximum value found in the course of the experiments. The results of each

figure are averages of 30 independent runs.

A brief perusal of the results and comparison among charts reveals that as the

target similarity, µ, decreases, the di�culty of the task increases since, in general,

lower targets for µ lead to lower f(S) throughout the entire course of the runs. This

confirms an intuitive idea: it is harder to evolve a family composed of high quality

images that are dissimilar than one composed of high quality similar images.

Focusing on the results depicted in Figure 6.3, one can observe that the target

similarity value of 0.7 is quickly reached. As so, the increase in f(S) results, mainly,

from increases on the average individual quality of the images of the sample, fitind.

After some initial fluctuations, the standard deviation of quality, �fit
ind

, appears to

decrease at a very slow rate. Comparing this behaviour with the one observed when

µ = 0.5, depicted in Figure 6.4, reveals the influence of this parameter and how it

a↵ects the di�culty of the task: the value reached by f(S) is lower than the one

112

f (S) sim (S) f it ind σ f it ind

0 10 20 30 40 50 60 70 80 90 100

0

1.0

0.8

0.6

0.4

0.2

← G e n e r a t i o n →

Figure 6.5: Evolution of the f(s), fitind, �fit
ind

and sim(S) of the best individual
when µ = 0.3 and a = b = 1. Results are averages of 30 independent runs and have
been normalised to improve readability.

f (S) sim (S) f it ind σ f it ind

0 10 20 30 40 50 60 70 80 90 100

0

1.0

0.8

0.6

0.4

0.2

← G e n e r a t i o n →

Figure 6.6: Evolution of the f(s), fitind, �fit
ind

and sim(S) of the best individual
when µ = 0.1 and a = b = 1. Results are averages of 30 independent runs and have
been normalised to improve readability.

obtained with µ = 0.7 and, even though sim(S) gradually decreases throughout the

runs, the target similarity value is never reached. This quest for diversity a↵ects

other components of fitness; as it can be observed, after some initial fluctuations,

�fit
ind

steadily rises, which is an undesired side e↵ect. In other words, although the

average quality of the sampled images is still steadily increasing, the consistency of

their quality is being sacrificed to serve diversity. Interestingly, as is the case of

µ = 0.7, the lines for f(S) and fitind follow similar paths throughout the runs, which

may indicate that individual image quality exerts a dominant evolutionary pressure

in these circumstances.

113

The results depicted in Figure 6.5, concerning the runs with µ = 0.3, reveal the

same overall trend as the ones obtained for µ = 0.5, in the sense that maximising

f(S) is becoming significantly harder, the target µ value is not reached, and consistent

quality is being sacrificed to attain diversity. However, the behaviour is more erratic,

which highlights the tension between contradictory evolutionary pressures.

The analysis of the results obtained for µ = 0.1 (Figure 6.6) shows that the

evolutionary algorithm was unable to find solutions that are a good compromise

between the di↵erent components of f(S). In this case, the target µ value is not

reached, �fit
ind

increases throughout most of the run, and although average quality

increases during the first half of the runs, then it stabilises and decreases during the

second half. Thus, in these circumstances, the quest for diversity appears to overpower

other evolutionary pressures, and maximising f(S) becomes extremely di�cult.

The analysis of the visual results obtained in the course of the experiments un-

avoidably entails some degree of subjectivity. Furthermore, it is impossible to present

all the visual families that were evolved. As such, rather than making a thorough

analysis of the visual outcomes, or showing the families that we prefer, we focus on

presenting to the reader results that are representative and that can be expected with

di↵erent experimental settings. For each µ setting we randomly select 1 out of the

30 evolutionary runs conducted. We then pick the fittest individual found in each

of these runs and present samples of the family it defines. These are presented in

Figures 6.7, 6.8, 6.9, 6.10, which correspond to runs with µ = 0.7, 0.5, 0.3 and 0.1,

respectively. More examples of evolved families can be found in Appendix D.

Analysing the visual results obtained with µ = 0.7, Figure 6.7, one can observe

that: the colourful nature of the images and the colour gradients they exhibit reflect

the aesthetic measures used to assess the individual quality of the images; all the

samples produced by an individual share the same visual characteristics, and we

consider that it is safe to state that one would naturally perceive these images as

belonging to the same family. Unlike the results obtained when diversity is ignored

(see Figure 6.1) there is some degree of diversity among the samples, which is also

desirable. The same statements can be made for the results obtained with µ = 0.5

(Figure 6.8). Comparing the visual results obtained with these two settings we can

also observe that the diversity of the samples of the visual families evolved with

µ = 0.5 is higher than the ones evolved with µ = 0.7. In our subjective opinion, we

tend to prefer the sets of images evolved with µ = 0.5, since we consider that they

can consistently produce diversity without a significant loss of image quality. This

aspect becomes more visible as the number of samples per family increases.

114

Figure 6.7: Sample of the fittest individual from a run with µ = 0.7 and a = b = 1.

Figure 6.8: Sample of the fittest individual from a run with µ = 0.5 and a = b = 1.

Figure 6.9: Sample of the fittest individual from a run with µ = 0.3 and a = b = 1.

Figure 6.10: Sample of the fittest individual from a run with µ = 0.1 and a = b = 1.

Figure 6.11: Sample of the fittest individual from a run with µ = 0.7, a = 3 and
b = 1.

Figure 6.12: Sample of the fittest individual from a run with µ = 0.7, a = 1 and
b = 3.

115

0 10 20 30 40 50 60 70 80 90 100
← GENERATION →

0

0.2

0.4

0.6

0.8

1.0

←

 →
si
m
(S
)

0 10 20 30 40 50 60 70 80 90 100
← GENERATION →

0

0.02

0.04

0.06

0.08

0.1

←

→

si
m
(S
)

σ

a=1, b=3 a=1, b=1 a=3, b=1

Figure 6.13: Evolution of the sim(S) of the best individual when µ = 0.7 and (a, b) 2
{(1, 1), (3, 1), (1, 3)}. Results are averages of 30 independent runs and have been
normalised to improve readability. On the left it is depicted the evolution of the
average of the best individual and on the right the standard deviation.

An analysis of the visual results obtained with µ = 0.3 reveals the di�culties

of the evolutionary algorithm to find a compromise between the di↵erent aspects

of fitness and, as such, to maximise f(S). As we can observe in Figure 6.9, some

spurious images exist, that could hardly be classified as belonging to the same image

family as the others. More often than not, these images tend to be composed of a few

simple shapes. In other words, diversity is being attained through the generation of

images that, although di↵erent, are of very low quality (according to the considered

aesthetic measures). These visual results provide insight regarding the behaviour

of �fit
ind

during the course of these runs (see Figure 6.5), as average image quality

increases the generation of these images of extreme low quality makes �fit
ind

increase.

Furthermore, if we manually remove these spurious images from the samples, the

diversity values become similar to those obtained with µ = 0.5. Thus, to some

extent, the evolutionary algorithm is not increasing the diversity of the set, at least

in the manner that we wished, since it is increasing diversity by generating images

that do not belong to the same family. The visual results obtained with µ = 0.1

depict, and exaggerate the same tendencies.

Overall, the visual results confirm, and help to explain, the quantitative results ob-

tained in the course of the experiments, providing additional clues to the explanation

of the observed behaviour.

We will now focus on the results achieved while varying the weights a and b of the

proposed fitness function. During this tests we used µ = 0.7 and � = 0.2.

Figure 6.13 depicts the evolution of the similarity for (a, b) 2 {(1, 1), (3, 1), (1, 3)}.
As expected, incrementing the weight of the quality part of the fitness function, i.e.,

116

0

0.002

0.004

0.006

0.008

0.01

0 10 20 30 40 50 60 70 80 90 100
← GENERATION →

←

 →
fit
in
d

a=1, b=3 a=1, b=1 a=3, b=1

Figure 6.14: Evolution of the fitind of the best individual when µ = 0.7 and (a, b) 2
{(1, 1), (3, 1), (1, 3)}. Results are averages of 30 runs.

a = 3 and b = 1, the evolution struggles to reach the target similarity (µ = 0.7)

because the individual’s quality is what is leading evolution. On the other hand, if

preference is set towards the similarity of the set which defines the family (a = 1,

b = 3) results get near those reached by the experiment where both components have

the same weight (a = b = 1) in what concerns the average of the similarity of the

best individuals. Although, if looking at the standard deviation of the similarity, it is

clear that the experiment where a = 1 and b = 3 surpasses those where the weight is

the same, which leads to the conclusion that families evolved giving a higher weight

to the similarity component tend to be closer to the similarity target, µ, than those

evolved with a = b = 1.

Considering the evolution of the fitind for the same testing scenarios, Figure 6.14,

it is possible to observe that both weight variations provide better results than those

presented by a = b = 1. When increasing the pressure of the quality part (a = 3,

b = 1) the results are easily perceived as an outcome of this rise in the weight of a, and

consequently to a bigger pressure to evolve high quality individuals. Although, the

same does not happen when b = 3; here, the fact that the results are better than those

produced by a = b = 1 is explained after the fact that an increase in the similarity

component leads to individuals that are more closer to the target similarity value, µ.

Moreover, this individuals due to the first part of the fitness scheme, tend to be of

high individual quality and, as in this case, µ is set to a high value (µ = 0.7), images

tend to be very similar and of high quality, promoting an increase in the quality of

the family.

117

Visual results for the tests where the weights of a and b are varied can be found

in Figures 6.11 and 6.12, where a = 3 and b = 3, respectively. If more results are

pretended, refer to Appendix D. As perceived in the results evolved with a = 3 and

b = 1, families tend to have smoother transitions between colours than those evolved

with a = b = 1, which is a result of higher fitness values, namely from the Bell

component of the used combined fitness function. Results from a = 1 and b = 3 have

no clear distinction from those evolved with a = b = 1 (with respect to similarity)

which is explained by what had already been mentioned before; similarity is easy to

achieve.

6.3 Conclusions

We present a novel approach for the evolution and assessment of families. Unlike

previous e↵orts, we assign fitness based on the properties of the generated set of indi-

viduals and their diversity. The proposed fitness function promotes the maximisation

of the individual quality, the minimisation of di↵erences in quality, and a given degree

of diversity among the individuals of the same family.

After proving that without taking into account similarity it is impossible to assure

that families are composed of individuals that are not repetitions of the same pattern

or minor variations of it, and that, if considering only the similarity the outputs are

not the expected ones due to their lack of quality, we moved into varying the target

similarity.

Subjectively, we have successfully achieved an important goal; the families that

result from the evolution with an appropriate fitness function genuinely have a family-

like appearance and are of great interest. Moreover, when the weight of both com-

ponents of the fitness function is the same it is proven that, in the majority of the

cases, the results can be seen as families. Although, if the similarity target is set to

a low value (such, as µ = 0.3 or µ = 0.1) the similarity component is attained by

evolving families where some of the elements are very simple and, as so, lower the

average similarity of the set.

Changing the weights a and b has proven to produce the expected results if in-

creasing the one related with the quality part of the individuals. The same cannot be

stated when varying b; that can be explained by the ease with what a target similarity

is reached.

118

Chapter 7

Conclusions and Future Work

Aiming at briefly describing all the work developed during the course of this Disser-

tation we will, in Section 7.1, start by detailing how work was planned, dividing it

into several tasks. Then, in Section 7.2, the summary of the results of each one of

the tasks will be conducted. To end, focus is given to future work (Section 7.3).

7.1 Work Planning

The planning of the present Dissertation has been divided into two main stages:

completion and expansion of previous work.

During the first term, we intended to search and write about the state of the

art surrounding the creation of an evolutionary engine capable of evolving generative

grammars, using graph-based Genetic Programming and grammatical formulations.

After accomplishing that, refinements to the previously developed engine were done,

testing it against distinct automated fitness assignment schemas.

The above engine was developed only taking into account the evolution of Con-

text Free Design Grammars [11]. As so, in the second term, e↵orts to generalise it,

turning the adaptation to other domains easier were investigated and implemented.

In an attempt to improve the operators used by the proposed evolutionary algorithm,

methodologies which are structure aware were also tried.

Simplifying, we can divide the developed work in 9 tasks, which are now presented:

1. Revision of the bibliography and survey of the state of the art;

2. Refinement of the graph based evolutionary engine for generative grammars;

3. Development of automated fitness assignment schemes;

119

4. Writing of intermediate report and refinement of the work plan for the sec-

ond semester;

5. Development of a grammatical evolution engine for generative grammars;

6. Development of semantic and structure aware methods for generative gram-

mars;

7. Development of a fitness function capable of assessing the quality of a set

of individuals;

8. Experimentation;

9. Dissemination: Dissertation and Papers.

7.2 Summary

Beginning with the State of the Art (Chapter 2), we detailed and searched approaches

related with two di↵erent but related fields. First of all we referred to Evolutionary

Computation and Algorithms, where focus was given mainly over Genetic Program-

ming approaches. Later, a section focusing Grammars intuitively emerges, where the

revision of several techniques aiming at grammar evolution is accomplished. Upon

absorbing all the previously mentioned literature, and aiming at developing an evo-

lutionary engine capable of successfully evolving solutions in di↵erent environments

we raised the following questions, that will be answered during the next paragraphs:

1. Is it possible to come up with a tool capable of dealing with multiple problem

environments and domains?

2. Can grammar formulations help in this task? If so, how?

3. Is it worth trying to combine multiple approaches from distinct types of method-

ologies?

In order to gain some insights that may lead us to be able to provide answers

to the above questions we developed two evolutionary approaches (Chapter 3), with

di↵erent forms of representation and, as so, with di↵erent operators (crossover, mu-

tation and population initialisation). Starting with the graph-based approach, as the

name indicates, individuals resemble a graph structure, where each node stands for a

production rule and connections between them indicate flow of control, which can or

120

not pass parameters within calls. In this way, the graph itself represents a grammar,

where the set of all nodes and links defines the system of production rules. In the

other hand, a tree-based representation was used. Individuals represent derivation-

trees from a user-provided pre-grammar, which is no more than a BNF with the

addition of coding blocks.

Chapter 4 describes a set of comprehensive experiments over the two previous

mentioned forms of representation. We tested them in two di↵erent domains. First,

we evolved Context Free Design Grammars that were ultimately rendered into PNG

images. We begin, in this scenario, by running tests with the tree and graph-based

approaches. Both have proven to be capable of promoting the evolution of several dis-

tinct automatic fitness functions, in isolation and combined. From this point we tried

to merge components from one and the other representation to see if that would lead

to an increase in the performance of the evolutionary algorithm. As such, limiting the

population initialisation to the one used for the creation of random derivation trees

(for generalisation purposes), we test several combinations of mutation and crossover.

Graph-mutation has proven to lead to the worse results. All the remaining setups

where tree-mutation is used have shown no significant statistical di↵erence. At this

point we designed experiments using both crossover operators in the same evolution-

ary algorithm, e.g. tree-mutation with tree and graph crossover, with probabilities

of 70% and 30%, respectively. Results show no clear di↵erence in what regards the

fitness of the best produced individuals. However, focusing the average fitness at a

population level, a trend towards the tree mutation exits, i.e., increasing the rate of

tree-crossover leads to higher fitnesses at a population level, which is an outcome of

tree-crossover having a higher constructive rate than the graph one. For all this, we

point the combination of tree-mutation with tree-crossover as apparently performing

better than the ones where graph-crossover is employed.

Apart from the experiments where CFDGs were evolved, we have also tried to pro-

mote the evolution of grammars resembling musical sequences, that are later mapped

into MIDI files, to ease reproduction. This part of the experimentation had the ob-

jective of working as a proof of concept for the capacity of the evolutionary engine

to cope with di↵erent domains. As so, we used an evolutionary algorithm that uses

operators from both representations. Because it is just a proof of concept, instead of

an automatic fitness evaluation procedure we used a user-guided one. Results show

that the evolutionary engine can promote the evolution of aesthetic results and, as

so, that it has su�cient generalisation properties, answering this way to the first and

second questions. That is, it is possible to develop an evolutionary engine capable

121

of addressing di↵erent tasks, which is facilitated by having a system where only the

pre-grammar has to be changed, in order to produce the pretended results.

As the reader may remember, we have above mentioned that the graph-crossover

operator was not providing results that were considered as good as the tree-crossover

ones. Therefore, we investigated ways to improve it. In Chapter 5, alignment of

structures is addressed. Graph-crossover, as opposed to tree-crossover, chooses the

crossover cutting points at random locations. As such, the genetic material that is

swapped can be completely incompatible. Alignment provides a one-to-one mapping

from the smallest (H) to the largest graph (G), returning a list of nodes, where

each pair (v, u) of nodes, v 2 H and u 2 G, has the lowest alignment cost, i.e.,

they are similar. The computation of the cost matrix in alignment is made of two

components, topological and node similarities. The first analysis the connections

established between nodes, whereas the second takes a most semantic approach to

similarity. Obtained results show that the computation of the cost matrix yields

better results when using both components. Furthermore, it has also been proven

that the alignment introduces improvements in the performance of the graph-crossover

operator. It is then now possible to answer to the third question. As shown, in some

circumstances, merging graph-crossover with tree-crossover leads to better results,

proving that it may be worth combining components from several approaches.

Finally, in Chapter 6 we introduce a fitness function for the assessment of the

quality of families of individuals. This is particularly interesting, as our main fo-

cus has been over the evolution of both images and music, which are encoded by

non-deterministic grammars. That means that, if we perform their mapping to the

phenotype (image / music) several times, providing di↵erent rendering seeds, the re-

sults may be distinct. As such, in our current scenario we do not actually have a

family of individuals but a family of mappings of the same individual instead. The

proposed fitness function promotes the maximisation of the individual quality, the

minimisation of di↵erences in quality, and a given degree of diversity among the indi-

viduals of the same family. We prove that all its components are important and that,

together, they are capable of evolving sets of phenotypes that are easily identified as

belonging to the same family.

7.3 Future Work

Concerning future work, there are several aspects that were not analysed, mainly due

to the lack of time or because they were out of the scope of this Dissertation.

122

First of all, we could try applying automatic fitness evaluation procedures into

the evolution of musical sequences. That would certainly speed up the process of

evolution and, ultimately allow the reproduction of results. Still focusing the work

done with music, the grammars that represent individuals, like CFDGs, are also non-

deterministic. For that, the same rationale that was used for the evolution of families

of images could be easily adapted to music, promoting the evolution of musical se-

quences that share a degree of similarity. Later, the multiple individuals that compose

a family could be merged in order to form a single musical piece.

As one may remember, in experiments performed for the evolution of families

of images, RMSE was used for computing the distance between the images. This

metric is simplistic and, as such, other possibilities should be searched and tried in

the future.

Alignment of individuals was just used to accomplish the choosing of crossover’s

cutting points in a more informed manner. However, what is in fact swapped between

the two parents are subgraphs. For that, instead of using alignment to choose only

the cutting points, we can try to also use it in the part of the crossover where a

mapping between the two subgraphs, that are exchanged, is performed. Another

aspect connected with the improvement of the evolutionary algorithm is related with

the way that parents are selected. It would be interesting to, instead of applying

the tournament selection based on fitness, try, for example, to base it on semantic

similarity between individuals.

To end, and perhaps one of the most import points to be addressed in future

work, the application of the graph-crossover operator and of the alignment rationale

to Cartesian Genetic Programming, testing it then in classical optimisation problems,

such as symbolic regression.

123

Bibliography

[1] International MIDI Association et al. Midi musical instrument digital interface

specification 1.0. Los Angeles, 1983.

[2] Thomas Back, David B. Fogel, and Zbigniew Michalewicz. Handbook of evolu-

tionary computation. IOP Publishing Ltd., 1997.

[3] Ellie Baker and Margo Seltzer. Evolving line drawings. In ICGA, page 627, 1993.

[4] Shumeet Baluja, Dean Pomerleau, and Todd Jochem. Towards automated arti-

ficial evolution for computer-generated images. Connection Science, 6(2-3):325–

354, 1994.

[5] Wolfgang Banzhaf. Interactive evolution. Evolutionary Computation, 1:228–236,

2000.

[6] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies–a comprehen-

sive introduction. Natural computing, 1(1):3–52, 2002.

[7] Jon Bird, Phil Husbands, Martin Perris, Bill Bigge, and Paul Brown. Implicit

fitness functions for evolving a drawing robot. In Applications of Evolutionary

Computing, pages 473–478. Springer, 2008.

[8] Jon Bird and Dustin Stokes. Minimal creativity, evaluation and fractal pattern

discrimination. Programme Committee and Reviewers, page 121, 2007.

[9] Janet Clegg, James A. Walker, and Julian F. Miller. A new crossover technique

for cartesian genetic programming. In Proceedings of the 9th annual conference

on Genetic and evolutionary computation, pages 1580–1587. ACM, 2007.

[10] Ernesto Costa and Anabela Simões. Artificial Intelligence: foundatons and ap-

plications (in portuguese). FCA, 3rd edition, 2008.

203

[11] C. Coyne. Context Free Design Grammar. http://www.chriscoyne.com/cfdg/,

last accessed in June 2015.

[12] coord. Cunha, Lúcio, coord. Takahashi, Ricardo, and coord. Antunes, Carlos Al-

berto Henggeler de Carvalho. Manual de computação evolutiva e metaheuŕıstica.

Imprensa da Universidade de Coimbra, Coimbra, 2012 2012.

[13] Charles Darwin. On the origins of species by means of natural selection. 1859.

[14] Richard Dawkins. The blind watchmaker: Why the evidence of evolution reveals

a universe without design, 1986.

[15] Eelco den Heijer and Agoston E. Eiben. Comparing aesthetic measures for

evolutionary art. In Applications of Evolutionary Computation, pages 311–320.

Springer, 2010.

[16] Christoph Döpmann. Survey on the graph alignment problem and a benchmark

of suitable algorithms. 2013.

[17] Agoston E. Eiben, Elena Marchiori, and VA Valko. Evolutionary algorithms

with on-the-fly population size adjustment. In Parallel Problem Solving from

Nature-PPSN VIII, pages 41–50. Springer, 2004.

[18] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.

Springer, Verlag, 2003.

[19] Yuval Fisher, editor. Fractal Image Compression: Theory and Application.

Springer, London, 1995.

[20] David B. Fogel. Evolutionary programming: an introduction and some current

directions. Statistics and Computing, 4(2):113–129, 1994.

[21] Steve De Furia and Joe Scacciaferro. MIDI programmer’s handbook. IDG Books

Worldwide, Inc., 1990.

[22] Philip Galanter. What is generative art? complexity theory as a context for art

theory. In In GA2003–6th Generative Art Conference. Citeseer, 2003.

[23] Philip Galanter. The problem with evolutionary art is... In Applications of

Evolutionary Computation, pages 321–330. Springer, 2010.

204

[24] Simon Harding, Vincent Graziano, Jürgen Leitner, and Jürgen Schmidhuber. Mt-

cgp: Mixed type cartesian genetic programming. In Proceedings of the fourteenth

international conference on Genetic and evolutionary computation conference,

pages 751–758. ACM, 2012.

[25] Simon L. Harding, Julian F. Miller, and Wolfgang Banzhaf. Self-modifying carte-

sian genetic programming. In Proceedings of the 9th annual conference on Genetic

and evolutionary computation, pages 1021–1028. ACM, 2007.

[26] David A. Hart. Toward greater artistic control for interactive evolution of im-

ages and animation. In Applications of evolutionary computing, pages 527–536.

Springer, 2007.

[27] John H. Holland. Genetic algorithms. Scientific american, 267(1):66–72, 1992.

[28] John E. Hopcroft. Introduction to automata theory, languages, and computation.

Pearson Education India, 1979.

[29] J. Horigan and M. Lentczner. Context Free. http://www.contextfreeart.org/,

last accessed in September 2009.

[30] Compuserve Incorporated. GIF Graphics Interchange Format: A standard defin-

ing a mechanism for the storage and transmission of bitmap-based graphics in-

formation. Columbus, OH, USA, 1987.

[31] A. Karperien. Fraclac for imagej. In http: // rsb. info. nih. gov/ ij/

plugins/ fraclac/ FLHelp/ Introduction. htm , 1999-2013.

[32] John R. Koza. Genetic programming: on the programming of computers by means

of natural selection, volume 1. MIT press, 1992.

[33] Oleksii Kuchaiev, Tijana Milenković, Vesna Memǐsević, Wayne Hayes, and

Nataša Pržulj. Topological network alignment uncovers biological function and

phylogeny. Journal of the Royal Society Interface, 7(50):1341–1354, 2010.

[34] Matthew Lewis. Evolutionary visual art and design. In The Art of Artificial

Evolution, pages 3–37. Springer, 2008.

[35] Peter Linz. An introduction to formal languages and automata. Jones & Bartlett

Publishers, 2011.

205

http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm
http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm

[36] Heikki Maaranen, Kaisa Miettinen, and Antti Penttinen. On initial populations

of a genetic algorithm for continuous optimization problems. Journal of Global

Optimization, 37(3):405–436, 2007.

[37] P. Machado and A. Cardoso. All the truth about NEvAr. Applied Intelligence,

Special Issue on Creative Systems, 16(2):101–119, 2002.

[38] Penousal Machado. Artificial Intelligence and Art (in portuguese). PhD thesis,

University of Coimbra, Coimbra (Portugal), 2006.

[39] Penousal Machado and Amı́lcar Cardoso. Computing aesthetics. In Advances in

Artificial Intelligence, pages 219–228. Springer, 1998.

[40] Penousal Machado, João Correia, and Filipe Assunção. Graph-Based Evolu-

tionary Art. In Amir Gandomi, Amir Hossein Alavi, and Conor Ryan, editors,

Handbook of Genetic Programming Applications. Springer, Berlin, 2015.

[41] Penousal Machado and Henrique Nunes. A step towards the evolution of vi-

sual languages. In First International Conference on Computational Creativity,

Lisbon, Portugal, 2010.

[42] Penousal Machado, Henrique Nunes, and Juan Romero. Graph-based evolution

of visual languages. In Applications of Evolutionary Computation, pages 271–280.

Springer, 2010.

[43] Penousal Machado, Juan Romero, Amı́lcar Cardoso, and Antonio Santos. Par-

tially interactive evolutionary artists. New Generation Computing – Special Issue

on Interactive Evolutionary Computation, 23(42):143–155, 2005.

[44] Penousal Machado, Juan Romero, and Bill Manaris. Experiments in computa-

tional aesthetics: an iterative approach to stylistic change in evolutionary art. In

Juan Romero and Penousal Machado, editors, The Art of Artificial Evolution:

A Handbook on Evolutionary Art and Music, pages 381–415. Springer Berlin

Heidelberg, 2007.

[45] Krešimir Matković, László Neumann, Attila Neumann, Thomas Psik, and

Werner Purgathofer. Global contrast factor-a new approach to image contrast. In

Proceedings of the First Eurographics conference on Computational Aesthetics in

Graphics, Visualization and Imaging, pages 159–167. Eurographics Association,

2005.

206

[46] Jon McCormack. Interactive evolution of l-system grammars for computer graph-

ics modelling. Complex Systems: from biology to computation, pages 118–130,

1993.

[47] Jon McCormack. New challenges for evolutionary music and art. ACM SIGEVO-

lution, 1(1):5–11, 2006.

[48] Tijana Milenkoviæ and Nataša Pržulj. Uncovering biological network function

via graphlet degree signatures. Cancer informatics, 6:257, 2008.

[49] Julian F. Miller. Cartesian genetic programming. In Julian F. Miller, edi-

tor, Cartesian Genetic Programming, Natural Computing Series, pages 17–34.

Springer Berlin Heidelberg, 2011.

[50] Julian F. Miller and Stephen L. Smith. Redundancy and computational e�ciency

in cartesian genetic programming. Evolutionary Computation, IEEE Transac-

tions on, 10(2):167–174, 2006.

[51] Toshio Mori, Yoshimichi Endou, and Akira Nakayama. Fractal analysis and aes-

thetic evaluation of geometrically overlapping patterns. Textile research journal,

66(9):581–586, 1996.

[52] Ronald W. Morrison and Kenneth A. De Jong. Measurement of population

diversity. In Artificial Evolution, pages 31–41. Springer, 2002.

[53] Miguel Nicolau and Ian Dempsey. Introducing grammar based extensions for

grammatical evolution. In IEEE Congress on Evolutionary Computation, pages

648–655, 2006.

[54] Michael O’Neill, James McDermott, John Mark Swa↵ord, Jonathan Byrne, Erik

Hemberg, Anthony Brabazon, Elizabeth Shotton, Ciaran McNally, and Martin

Hemberg. Evolutionary design using grammatical evolution and shape grammars:

Designing a shelter. International Journal of Design Engineering, 3(1):4–24,

2010.

[55] Michael O’Neill and Conor Ryan. Grammar based function definition in gram-

matical evolution. In GECCO, pages 485–490, 2000.

[56] Michael O’Neill and Conor Ryan. Grammatical evolution: evolutionary auto-

matic programming in an arbitrary language, volume 4. Springer, 2003.

207

[57] Michael O’Neill, Conor Ryan, Maarten Keijzer, and Mike Cattolico. Crossover in

grammatical evolution. Genetic programming and evolvable machines, 4(1):67–

93, 2003.

[58] Michael O’Neill, John Mark Swa↵ord, James McDermott, Jonathan Byrne, An-

thony Brabazon, Elizabeth Shotton, Ciaran McNally, and Martin Hemberg.

Shape grammars and grammatical evolution for evolutionary design. In Proceed-

ings of the 11th Annual conference on Genetic and evolutionary computation,

pages 1035–1042. ACM, 2009.

[59] Michael O’Neill and Conor Ryan. Genetic code degeneracy: Implications for

grammatical evolution and beyond. In Advances in Artificial Life, pages 149–

153. Springer, 1999.

[60] Michael O’Neill and Conor Ryan. Grammatical evolution. In Grammatical Evo-

lution, pages 33–47. Springer, 2003.

[61] Francisco B. Pereira, Penousal Machado, Ernesto Costa, and Amı́lcar Cardoso.

Graph based crossover–a case study with the busy beaver problem. In Proceedings

of the 1999 Genetic and Evolutionary Computation Conference, 1999.

[62] Riccardo Poli. Evolution of graph-like programs with parallel distributed genetic

programming, 1997.

[63] Riccardo Poli. Parallel distributed genetic programming. Technical report,

School of Computer Science, University of Birminham, 1999.

[64] Riccardo Poli and Stefano Cagnoni. Evolution of pseudo-colouring algorithms

for image enhancement with interactive genetic programming. Cognitive Science

Research Papers - University of Birminham CSRP, 1997.

[65] Riccardo Poli, William B. Langdon, Nicholas F. McPhee, and John R. Koza. A

field guide to genetic programming. Lulu. com, 2008.

[66] Aristid Lindenmayer Przemyslaw Prusinkiewicz, Aristid Lindenmayer, James S.

Hanan, F. David Fracchia, and Deborah Fowler. The algorithmic beauty of

plants. 1990.

[67] Steven Rooke. The evolutionary art of steven rooke. http://srooke.com/. last

accessed in December 2014.

208

http://srooke.com/

[68] Brian J. Ross, William Ralph, and Zong Hai. Evolutionary image synthesis

using a model of aesthetics. In Gary G. Yen, Simon M. Lucas, Gary Fogel,

Graham Kendall, Ralf Salomon, Byoung-Tak Zhang, Carlos A. Coello Coello,

and Thomas Philip Runarsson, editors, Proceedings of the 2006 IEEE Congress

on Evolutionary Computation, pages 1087–1094, Vancouver, BC, Canada, 16–21

July 2006. IEEE Press.

[69] Franz Rothlauf. Representations for genetic and evolutionary algorithms.

Springer, 2006.

[70] Rob Saunders and Kazjon Grace. Teaching evolutionary design systems by ex-

tending “context free”. In Applications of Evolutionary Computing, pages 591–

596. Springer, 2009.

[71] Karl Sims. Artificial evolution for computer graphics, volume 25. ACM, 1991.

[72] William M. Spears, Kenneth A. De Jong, Thomas Bäck, David B. Fogel, and

Hugo De Garis. An overview of evolutionary computation. In Machine Learning:

ECML-93, pages 442–459. Springer, 1993.

[73] William M. Spears et al. Crossover or mutation? In FOGA, pages 221–237,

1992.

[74] Lee Spector and Adam Alpern. Criticism, culture, and the automatic generation

of artworks. In AAAI, pages 3–8, 1994.

[75] Branka Spehar, Colin Cli↵ord, Ben R. Newell, and Richard P. Taylor. Universal

aesthetic of fractals. Computers and Graphics, 27(5):813–820, October 2003.

[76] M. Srinivas and Lalit M. Patnaik. Adaptive probabilities of crossover and muta-

tion in genetic algorithms. Systems, Man and Cybernetics, IEEE Transactions

on, 24(4):656–667, 1994.

[77] George Stiny. Introduction to shape and shape grammars. Environment and

planning B, 7(3):343–351, 1980.

[78] George Stiny and James Gips. Shape grammars and the generative specification

of painting and sculpture. In IFIP Congress (2), pages 1460–1465, 1971.

209

[79] Nils Svang̊ard and Peter Nordin. Automated aesthetic selection of evolutionary

art by distance based classification of genomes and phenomes using the universal

similarity metric. In Applications of Evolutionary Computing, pages 447–456.

Springer, 2004.

[80] Hideyuki Takagi. Interactive evolutionary computation: Fusion of the capa-

bilities of ec optimization and human evaluation. Proceedings of the IEEE,

89(9):1275–1296, 2001.

[81] Tatsuo Unemi. A design of multi-field user interface for simulated breeding. In

Proceedings of the third Asian Fuzzy Systems Symposium, pages 489–494, 1998.

[82] Tatsuo Unemi. Sbart 2.4: an iec tool for creating 2d images, movies, and collage.

In Workshop on Genetic Algorithms in Visual Art and Music, pages 21–23, 2000.

[83] James A. Walker and Julian F. Miller. The automatic acquisition, evolution and

reuse of modules in cartesian genetic programming. Evolutionary Computation,

IEEE Transactions on, 12(4):397–417, 2008.

[84] Peter A. Whigham. Inductive bias and genetic programming. 1995.

[85] Peter A. Whigham. Search bias, language bias and genetic programming. In

Proceedings of the First Annual Conference on Genetic Programming, pages 230–

237. MIT Press, 1996.

[86] Peter A. Whigham et al. Grammatically-based genetic programming. In Pro-

ceedings of the workshop on genetic programming: from theory to real-world ap-

plications, volume 16, pages 33–41. Citeseer, 1995.

[87] Mitchell Whitelaw. Metacreation: art and artificial life. Mit Press, 2004.

[88] L. World. Aesthetic selection: The evolutionary art of steven rooke. Computer

Graphics and Applications, IEEE, 16(1):4, 1996.

210

