
Master in Informatics Engineering
Dissertation
Thesis Report

Evaluating the robustness of theCloud

Gonçalo Silva Pereira
gsp@student.dei.uc.pt

Supervisor:
Raul Barbosa

Co-Supervisor:
Henrique Madeira

Friday 29th January, 2016

Master in Informatics Engineering
Dissertation
Thesis Report

Evaluating the robustness of theCloud

Gonçalo Silva Pereira
gsp@student.dei.uc.pt

Supervisor:
Raul Barbosa

Co-Supervisor:
Henrique Madeira

Arguing member:
Filipe Araujo

Vowel:
Alexandre Miguel Pinto

Friday 29th January, 2016

To all my family, my girlfriend and my friends.

Acknowledgements
Thisworkwas conducted under the guidance of professors Raul Barbosa andHenriqueMadeira

to whom I would like to express my sincere gratefulness for their valuable support.

I am very grateful to my girlfriend Andreia for her encouragement and patience. I would
also like to thank my friends and colleagues of Informatics Engineering Department for all those
times they have given me support.

Last but not least, I would like to express my thankfulness to my family in Portuguese. Pelo
vosso apoio incondicional, amor, compreensão e disponibilidade, o meu mais verdadeiro agradeci-
mento. Obrigado!

“ I have no special talents. I am only passionately curious.
Albert Einstein ”

Resumo

Cloud Computing é um conceito que permite aos utilizadores tomar partido da tecnologia e,
ao mesmo tempo, concentrarem-se no seu core business. Com este conceito, é possível assegurar
o funcionamento das tecnologias envolvidas, abstraindo-se de várias preocupações e dificuldades
tecnológicas, como, por exemplo, a manutenção dos equipamentos. O uso de Cloud Computing
oferece diversas vantagens como acesso alargado à rede, associação de recursos, recursos à me-
dida, elasticidade, escalabilidade e um serviço à medida através de quatro modelos diferentes
(community, híbrido, privado e público). No entanto, como a Cloud não é livre de perturbações,
como ameaças à segurança, falhas de energia, sobrecargas de trabalho e falhas de hardware e
software, é pertinente avaliar até que ponto é que a mesma é tolerante a falhas, neste caso, falhas
de software. Portanto, a presente dissertação aborda o desenvolvimento de uma ferramenta de
injeção de falhas, denominada BugTor. Para avaliar a resposta do sistema às ditas perturbações,
esta ferramenta introduz erros e defeitos no software. Este injetor tem como principal caracte-
rística a injeção de falhas diretamente em código fonte. O principal contributo desta dissertação
para a continuidade da investigação relativamente à avaliação da robustez tanto da Cloud, vai ser
a criação de um software de injeção de falhas, e de scripts auxiliares de forma a avaliar e validar
o mesmo, assim como mecanismos de avaliação dos resultados da injeção de falhas no servidor
Web Apache.

Palavras-chave: Cloud Computing, Erros, Falhas, Injecção de Falhas, Robustez, Tolerância a
Falhas, Vulnerabilidades.

Abstract

Cloud Computing is a paradigm that allows users to take advantage from the technology and,
at the same time, focus on their core business. Rather than being blocked due to technological dif-
ficulties, users can get the most of the technology without having knowledge or skills to ensure
the proper functioning of all the technologies involved. The use of Cloud Computing provides
advantages such as broad network access, resource pooling, on demand self-service resources,
rapid elasticity and a measured service through four different models (community, hybrid, pri-
vate and public). However, Cloud Computing is not free of external disturbance such as security
attacks, power surges, workload faults, hardware and software faults. For that reason, it is perti-
nent to assess its behavior in the presence of software faults. Therefore, the current dissertation
addresses the development of fault injector software, named BugTor. In order to evaluate such
disturbances, this tool introduces errors and defects into the software in several test cases. This
injector is based on the injection of software faults at source code level. The main contribution of
this work for the continuation of research in this area, is the creation of a fault injection software,
and some scripts. The purpose of these scripts is to evaluate and validate the fault injector and
to collect information about the results of fault injection at Apache.

Keywords: Cloud Computing, Errors, Failures, Fault Injection, Fault Tolerance, Faults, Ro-
bustness, Vulnerabilities.

Contents

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Objectives . 3
1.2 Document Structure . 3
1.3 Methodology . 4

1.3.1 Meetings . 4
1.3.2 Risks . 4
1.3.3 Planning and Tracking . 4

2 State of the Art 7
2.1 ODC Model . 8
2.2 Injection of software faults . 9
2.3 Cloud Computing . 10
2.4 Tools . 12

2.4.1 Management of Software Code . 12
2.4.2 Analysis of Software Code . 13

2.5 Hypervisor . 14
2.6 WebServers . 15
2.7 Analyze the effects . 16

3 Fault injector - BugTor 19
3.1 Operators . 20
3.2 Constraints . 23
3.3 WorkFlow and Implementation . 24
3.4 Requirements . 25
3.5 Usage . 26
3.6 Verification and Validation . 27
3.7 Limitations . 27

4 Work and implications 29

5 Experimental Results 33
5.1 Setup . 34
5.2 Classification of failures . 35
5.3 Results and Analysis . 36

6 Conclusion 41
6.1 Summary . 41
6.2 Future Work . 42

7 References 43

8 Webography 45

i

Appendices 47
A Gantt diagrams . 49
B Risks table . 50
C Constraints - examples . 51
D Macros . 55
E Experiments . 58
F Behaviors - examples . 59
G Patches - examples . 62

List of Figures

1 Cloud computing overview. 11
2 Cloud computing service models. 12
3 Hypervisors. 15
4 Web server developers: Market share of all. 16
5 Workflow of the injection tool. 26
6 Decision tree of first semester. 30
7 Decision tree of second semester. 32
8 First scenario (in the right) and second scenario (in the left). 33
9 Number of patches by operator. 36
10 Results of experiments. 36
11 Effects by patches. 39
12 Effects by behavior. 39
13 Experiment. 42
14 First semester Gantt. 49
15 Second semester Gantt. 49
16 Risks. 50

iii

List of Tables

1 Fault injection techniques and emulation environment. 8
2 WebServers Market Share of November 2015 and December 2015. 15
3 Other fault emulation operators. 20
4 Fault emulation operators. 20
5 Fault emulation contraints defined by Durães. 23
6 Other constraints. 24
7 Apache2 source analisys. 31
8 Hardware specifications. 34
9 Virtual machine specifications. 34
10 Number of patchs. 36
11 Results of experiments. 36
12 Results of experiments by behavior. 37
13 Classification of failures. 37
14 Kind of behaviors. Examples in the Appendix F . 37
15 Apache tests. 37
16 PHPInfo tests. 38
17 PHPBench tests. 38
18 Out tests. 38
19 Results of experiments by specific behavior. 40

v

Listings

5.1 Configuration of mod_rewrite rules in .htacess file. 35
5.2 Behavior: PHPInfo - Wrong. 40
1 Constraint example: C01 - False. 51
2 Constraint example: C01 - True. 51
3 Constraint example: C02 - False. 51
4 Constraint example: C02 - True. 51
5 Constraint example: C03 - False. 51
6 Constraint example: C03 - True. 51
7 Constraint example: C04 - False. 51
8 Constraint example: C04 - True. 51
9 Constraint example: C04 - True. 51
10 Constraint example: C05 - False. 52
11 Constraint example: C05 - True. 52
12 Constraint example: C05 - False. 52
13 Constraint example: C05 - False. 52
14 Constraint example: C06 - False. 52
15 Constraint example: C06 - True. 52
16 Constraint example: C08 - False. 52
17 Constraint example: C08 - True. 52
18 Constraint example: C09 - False. 53
19 Constraint example: C09 - True. 53
20 Constraint example: C10 - False. 53
21 Constraint example: C10 - True. 53
22 Constraint example: C11 - False. 53
23 Constraint example: C11 - True. 53
24 Constraint example: C12 - False. 53
25 Constraint example: C12 - True. 53
26 Constraint example: C12 - False. 54
27 Constraint example: C12 - True. 54
28 Example of code with macros in the beginning. 55
29 Part of mod_rewrite source code. Function with embedded macros ifndef,ifdef and else. . . 56
30 Bash script of automated experiments. 58
31 Behavior: Correct. 59
32 Behavior: Bad request. 59
33 Behavior: Forbidden. 59
34 Behavior: Found. 59
35 Behavior: Internal Server Error. 59
36 Behavior: Not found - url OK. 59
37 Behavior: Not found - wrong url. 60
38 Behavior: Apache error - Ok. 60
39 Behavior: Wrong output - behavior 1. 60
40 Behavior: Wrong output - behavior 2. 60
41 Behavior: Wrong output - behavior 3. 60
42 Behavior: Wrong output - behavior 4. 60
43 Behavior: Wrong output - behavior 5. 60
44 Behavior: Wrong output - behavior 6. 60
45 Behavior: Wrong output - behavior 7. 60

vii

46 Behavior: Wrong output - behavior 8. 61
47 Behavior: Wrong output - behavior 9. 61
48 Behavior: Wrong output - behavior 10. 61
49 Patch: _MIFS_173. 62
50 Patch: _MIEB_16. 62
51 Patch: _MIA_241. 62
52 Patch: _MIA_257. 62

Abbreviations
API Application Programming Interface

APXS APache eXtenSion tool

AST Abstract syntax tree

BPaaS Business-Process-as-a-Service

CISUC Center for Informatics and Systems of the University of Coimbra

EMP Electromagnetic pulse

G-SWFIT Generic Software Fault Injection Technique

HWIFI Hardware Implemented Fault Injection

IaaS Infrastructure-as-a-Service

IT Information Technology

NOC Network operations center

ODC Orthogonal Defect Classification

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

SFI Software Fault Injection

SSE Software and Systems Engineering

SWIFI Software Implemented Fault Injection

V&V Verification and Validation

VVM Virtual Machine Monitor

Operators
EVAV Extraneous variable assignment using another variable

MFC Missing function call

MFCT Missing functionality

MIA Missing if construct around statements

MIEB Missing if construct plus statements plus else before statements

MIFS Missing if construct and surrounded statements

MLAC Missing and sub-expr. in logical expression used in branch condition

MLOC Missing or sub-expr. in logical expression used in branch condition

MLPA Missing localized part of the algorithm

MVAE Missing variable assignment with an expression

MVAV Missing variable assignment with a value

WAEP Wrong arithmetic expression in parameters of function call

WALL Wrong algorithm - large modifications

WLEC Wrong logical expression used as branch condition

WPFV Wrong variable used in parameter of function call

WSUT Wrong data types or conversion used

WVAV Wrong value assigned to a variable

Constraints
C01 Return value of the function must not be used

C02 Call/Assignment/The if construct/The statements must not be the only statement in the
block

C03 Variable must be inside stack frame

C04 Must be the first assignment for that variable in the module

C05 Assignment must not be inside a loop

C06 Assignment must not be part of a for construct

C07 Must not be the first assignment for that variable in the module

C08 The if construct must not be associated to an else construct

C09 Statements must not include more than five statements and not include loops

C10 Statements are in the same block, do not include more than five statements, nor loops

C11 There must be at least two variables in this module

C12 Must have at least two branch conditions

C13 The if construct must be associated to an else construct

1 Introduction

The present dissertation describes the work developed in the scope of Master’s degree in
Informatics Engineering of the University of Coimbra and took place in CISUC (Center for In-
formatics and Systems of the University of Coimbra), particularly in the Software and Systems
Engineering (SSE) Research Group.

Throughout this work, the robust of a cloud platform is assessed. Cloud Computing denomi-
nates not only applications delivered as services through the Internet, but also the software and
hardware used in data centers to provide these services [Armbrust et al., 2010]. Also known as
“the cloud” or “cloud”, Cloud Computing is achieved when the components such as data storage,
software and services are extracted to remote data centers. Following this way, cloud users can
focus on their core business, without the inconvenience of spending time and resources to ensure
the proper function of all involved components.

In cloud conditions, despite its numerous benefits, applications are threatened by several
types of failures, such as network, hardware and software failures, affecting their reliability,
which means impacting the ability to perform at a specific level. The Institute of Electrical and
Electronics Engineers (IEEE) [ISO/IEC/IEEE 24765, 2010] defines reliability for software as “ca-
pability of the software product to maintain a specified level of performance when used under
specified condition”.

Regarding software failures in data centers structureswhere applications are executed [Ahmed,
2009], they are mostly caused by:

• Miscommunication;

• Software complexity;

• Programming errors;

• Changing requirements;

• Time pressures;

• Overconfident people;

• Poorly documented code;

• Software development tools;

• Obsolete automation scripts;

• Lack of skilled testers.

According to Avižienis [Avižienis et al., 2004], the failures happen when the error lead the
provided service to deviate from correct service. However, it was required to specify narrowed
categories:

• Error: Part of the total state of the system that may lead to a service failure;

• Failure: Incident in which the function of a system is not performed within the functional
specification.

• Fault: The cause of the error in a software product.

1

Evaluating the robustness of the Cloud

Software quality assurance is a demanding task, considering that software bugs and errors
are a systematic part of computer applications [Nindel-Edwards and Steinke, 2014]. If an organi-
zation requests a service from a cloud provider (for example from Microsoft Azure [1], Amazon
EC2 [2] or Google Cloud [3]), such as storage of an application, this organization should accept
the policies given by the cloud application provider.

The number of organizations (both private and public) which use Internet services and Cloud
Computing is increasing [Diez and Silva, 2014]. These technologies are used for almost all types
of systems, including critical systems. According to Sommerville [Sommerville, 2006], a critical
system “is any system whose failure can result in significant economic losses, physical damage
or threats to human life”.

Although there are solid virtualization platforms, fault tolerance is still a problem in research.
Fault tolerance is related to assuring the delivery of a correct service, even in the event of system
faults. The ability of system to recover from the failures existence, named resilience, is a critical
factor in the cloud [Jhawar et al., 2012]. In the cloud, the resilience allows applications to be
reliable, providing a specific service continuously.

Assessing cloud robustness is an important task. Robustness “is the ability of a software sys-
tem to deliver service in conditions which are beyond its normal domain of operation” [De Florio,
2012].

Several projects have been performed previously in this area. Particularly within CISUC-SSE
Research Group, it is relevant to refer the following projects:

• Faultloads baseadas em falhas de software para testes padronizados de confiabilidade [Durães,
2005];

• Achieving representative faultloads in software fault injection [Natella, 2011];

• Benchmarking de Infraestruturas de Virtualização para a Cloud [Cerveira, 2015].

In his thesis, Durães [Durães, 2005] looked into the software faults and its inclusion in the
dependability benchmarks. A dependability benchmark is a procedure that aims to provide a stan-
dardized way to measure the dependability and performance of a system or components [Vieira
and Madeira, 2009]. During his work, Durães faced a few technical issues, such as represen-
tativeness, characterization and injection techniques of software failures. Furthermore, Durães
[Durães, 2005] performed a field study based in real software faults and proposed a classification
schema for the injection faults. He classified all the faults using the Orthogonal Defect Classifi-
cation Model and, after that, he grouped the faults by the nature of the defect in the programmer
point of view (missing, wrong or extraneous construct). Finally, he specified the types accord-
ing to the possible instantiation that each fault can take and the context where the fault was
discovered.

Through this study, it was concluded that there is a group of faults which represents more
than half of the total faults. It was possible to define faultload as a set of faults and stressful
conditions that can emulate real faults, within the dependability benchmark [Durães, 2005].

Moreover, it was proposed a technique to emulate this type of faults through themodification
of executable code. This technique does not require the source code, which makes it a good tech-
nique to dependability benchmark scenarios. Finally, he presents a set of operators to perform
the emulation of these types of representative faults identified in his field-study.

During his PhD Thesis, Natella [Natella, 2011] approaches the problem of representativeness
of faults, focusing on improve it, by selecting the most favorable fault-existence components.
This allows increasing the representativeness of faults, reducing the faultload size and the cost
associated with it. Furthermore, Natella improves the precision of techniques and tools that
inject faults at binary level, such as Generic Software Fault Injection Technique (G-SWFIT). Fi-
nally, he researches the injection of concurrency faults and proposes a new technique, injecting
faults at execution environment and triggering conditions that activate these faults through the
thread management (thread scheduling and locking operations). This technique provides a closer
approach to emulating the behavior of concurrency faults, than the other techniques.

The thesis of Cerveira [Cerveira, 2015] evaluates the resilience in the Cloud Computing sys-
tems, within the process of migration from in-house to the Cloud. Such process can raise doubts

2

Evaluating the robustness of the Cloud

and mistrusts among the organizations. Thus, organizations are forced to trust in external enti-
ties on which they do not have complete control. In order to evaluate the resilience of this type
of systems, Cerveira [Cerveira, 2015] developed a watchdog mechanism to detect issues and re-
store the service of virtualized systems. At the same time, he also created the basis to achieve
resilience benchmarks for virtualized systems.

1.1 Objectives

The main objective of this work is to contribute to the evaluation of the dependability and
robustness of the cloud. In order to achieve this goal, a fault injection tool will be designed and
implemented.

According to Cotroneo [Cotroneo, 2013], a fault injection tool allows the introduction of
“faults in a system in order to assess its behavior and to measure the efficiency (i.e. coverage and
latency) of fault tolerance mechanisms”.

Particularly, the purpose of this tool is to inject software faults in the source code of specific
software components.

Within the main objective, the following goals are determined:

• Implement the thirteen operators specified by Durães & Madeira [Durães and Madeira,
2006];

• Use the fault injector to emulate faults in applications and software components in general;

• Verify andmeasure the behavior of running the application, in normal conditions (typically
know as Golden Run);

• Inject faults in the target application, verify and analyze the effects.

• Compare the results between the scenario with normal conditions and the scenario with
faults;

• Create a scenario with multiple virtual machines, verify and analyze the effects. Measure
the value and the time in which the application runs, with and without faults; Evaluate the
results and conclude about the dependability and robustness of the cloud.

1.2 Document Structure

The second chapter presents the state of the art in related areas with particular emphasis
in the software fault injectors and the applications used to get source analysis. Moreover, this
chapter introduces the categories of ODC model, the characteristics of Software Fault Injection
and Cloud Computing, as well as the differences between Hypervisor and most usedWebServers.
Finally, it describes two scales to evaluate the obtained results.

The third chapter describes the development of fault injector, named BugTor, focusing the
operators that represent the most common software faults and the restrictions related with each
operator. Then, it is explained the workflow and some particularities of the implementation.
Afterwards, the requirements and usage method necessary to run the injector are presented.
Lastly chapter three, the methodology applied to perform the validation is exposed, as well as its
limitations.

The fourth chapter discusses the work done and its implications in the project; the research
involved to perform this work and the decisions taken during this project based on both research
results and knowledge.

The fifth chapter presents the results of the experiments performed during this project, with
particular emphasis on the specification of the setup where experiments are executed, the classi-
fication of different results obtained and the results and its analysis.

In the last chapter, the conclusions are reported, as well as the work that should be done in
the future.

3

Evaluating the robustness of the Cloud

1.3 Methodology
The adoption of a project management methodology is essential. It was given to the student

the freedom of choosing the best methodology to cover both project objectives and his needs.
The chosen methodology should allow a continuous improvement of the progress of the project.
Also, the student should feel comfortable in its application.

Regarding the development of this project, an Agile Life Cycle based in an Incremental Model
was used, without diminishing the ultimate objective.

The adoption of this model allows the following: reach quickly whenever the existing require-
ments are changed or new requirements are added during this project; better monitoring of the
progress of the project, through the execution of successive assessments during the developed
activities, which has the advantage of timely feedback to eventual adjustments.

1.3.1 Meetings
In order to track the progress of this work and make sure the proposed goals are achieved,

weekly meetings were scheduled between the student and Dr. Raul Barbosa. In addition, in the
first semester, the student attended a few general meetings of the project in which important con-
cepts and the course of the project were discussed together with Dr. Raul Barbosa (supervisor),
Dr. Henrique Madeira (co-supervisor), and two other colleagues with similar projects.

1.3.2 Risks
There are a few risks which can affect the development of this work. In order to overcome the

risks related to equipment failure and data lost, GitHub was used to backup all the sources of the
project and this report. These backups are done on a daily basis and every time a modification is
performed.

Nowadays, several investigation centers are focused on studying the robustness of the cloud.
Therefore, similar research can be published during the development of this project. With the
purpose of avoiding this risk, the student will, regularly, verify the latest publications on this
matter. If similar research is published, changes in the project will be addressed to make sure the
performed work will add value and benefit Science and Research.

These risks, among others, together with the respective preventive and recovery measures
are presented in Appendix B.

1.3.3 Planning and Tracking
A few tasks have been clearly assigned in the beginning of this work. Afterwards, these

tasks were adapted considering that the student felt the need of postponing the beginning of the
dissertation for about six months. Thus, the initial proposed Gantt presents a few differences
compared with the final first semester Gantt, such as the change from hardware to software. The
two Gantt diagrams of both semesters are presented in Appendix A, with the most important
tasks performed, as well as their duration.

Regarding the work performed in the first semester, a few tasks were prioritized, such as:

• study of related works, as well as technologies and tools;

• analyses of most representative faults;

• the implementation of some operators that emulate software faults.

According with the final first semester Gantt, all the tasks have been completed and carried
out according to the plan.

Regarding the second semester, all the phases of implementation previously planned were
concluded, but with a longer duration than expected. However, the second phase of fault injector
implementation occurred within the expected time, although it was overlapped with other tasks.
At this stage of the work, there was the need of starting the experiments and writing the present
report, before the planned timing. These tasks have been anticipated considering the importance
of making experiments with fault injector in order to analyze the results as soon as possible.

4

Evaluating the robustness of the Cloud

In conclusion, all the main tasks have been performed, although some delay in the tasks of
the second semester. The last tasks were anticipated, in order to obtain results on time. A few
tasks were performed in a longer period of time than expected.

5

2 State of the Art

This chapter presents the techniques used to emulate software and hardware faults. After-
wards, Cloud Computing will be introduced, as well as its main characteristics, models of deploy-
ment and levels of service. Furthermore, several tools that help inject faults in software will be
surveyed. In order to evaluate the robustness of the Cloud, it was necessary to simulate a Cloud
environment through using a hypervisor. Therefore, the different types of hypervisors will be
described in this chapter together with an analysis of the segment of webservers. Lastly, two
approaches to evaluate the effects of emulated injections will be compared.

Nowadays, Cloud Computing Services are being used more and more by both individuals
and organizations. The increasing use of the Cloud is justified by its numerous benefits, such as:

• Easy access to services at any time and from any location;

• Lower costs;

• Unlimited storage capacity;

• Scalability;

• Flexibility;

• Low usage of many dedicated servers;

• Reduction of noise margins;

• The cloud provider offers resources ready to deliver [Wolter et al., 2012].
Moreover, Cloud Computing Services are independent from the hardware. The above advan-

tages motivate the organizations to migrate their applications and services to the cloud. In other
words, several companies have their infrastructure mainly based on remote third-party cloud
service providers.

Software and hardware faults are some of the disadvantages of the Cloud Computing, which
makes resilience - the ability of the system to recover from failures - one of the critical factors. In
fact, software quality assurance is a demanding task, considering that software faults and errors
are a systematic part of computer applications [Nindel-Edwards and Steinke, 2014]. There are
several studies showing that software faults (i.e. bugs) [Avižienis et al., 2004] are the main cause
of computer failures.

Fault injection tools allows to study the effect of software faults in a system “in order to assess
its behavior and to measure the efficiency (i.e. coverage and latency) of fault tolerance mecha-
nisms”, according to Cotroneo [Cotroneo, 2013]. The first developed injectors were implemented
in hardware and targeted to the injection of hardware faults, thus these injectors are named tools
Hardware Implemented Fault Injection (HWIFI) - Hardware Implemented Fault Injection.

This type of tools is mainly based in: the inversion of bits and placing of a specified value in
some memory registers. Some examples of the application of this technique are Electromagnetic
pulse (EMP) and radiation. However, these tools are limited by: the technology where they are
implemented and the increasing of complexity of the circuits.

In order to overcome these limitations, injectors started being done using software, through
the Software Implemented Fault Injection (SWIFI) - Software Implemented Fault Injection [Madeira
et al., 2000]. The purpose of this technique is to emulate errors at the software level which happen
during the execution environment, in both hardware and software.

This technique is able to inject errors/faults at different levels and in several target points.
Some examples are:

7

Evaluating the robustness of the Cloud

• Data corruption in registers, memory or hard drive;

• Communication problems in network or Network operations center (NOC) (Network op-
erations center);

• Software faults in binary code, in object files or in source code.

As presented in the Table 1, SWIFI techniques can be used to make software emulate soft-
ware and hardware faults. Similarly, HWIFI techniques can be used to emulate hardware faults
through hardware.

Emulation environment
Software Hardware

Fault injection environment Hardware HWIFI
Software SWIFI SWIFI

Table 1: Fault injection techniques and emulation environment.

SWIFI [Madeira et al., 2000] is an attractive technique because it does not require additional
hardware, which would increase the cost of the test. However, it can not inject faults in inac-
cessible areas and it may disrupt or change the workload of testing software. The system main
targets of this technique are the applications and operating systems. This technique can be used
at:

• Compilation time (object code level) - Modify the structure of a program before the
creation of an executable file;

• Execution environment (binary code level) - Changing the binary code activated by
a timeout, an exception or a trap. At this level, less than seventy percent of the software
faults can be emulated [Madeira et al., 2000]. A technique, called G-SWFIT (Generic Soft-
ware Fault Injection Technique [Durães and Madeira, 2006]), was developed from SWIFI.
This techniquewas raised tomodify the binary code of the target, reproducing the sequence
of instructions that corresponds to the required fault injected in the source level.

• Before compile time (source code level) - Change the source code by removing, replac-
ing or inserting some simple code before the program compilation. At this level, all the
software faults can be emulated.

In order to create a software fault injector is necessary the use of one of the above techniques
and is also required faults, or groups of them. Particularly, the purpose of the fault injection tool
which will be developed in the current project is to inject software faults in the source code of
some applications.

2.1 ODC Model
Besides the technique and the environment used to inject faults, the faults need to be classi-

fied. The Orthogonal Defect Classification [Bridge and Miller, 1998] Model is a framework with
wide acceptance and widely used in the research community. It is developed by IBM [Chillarege,
2004] and created to improve the level of technology available to assist the decisions of a software
engineer, by measurement and analysis.

In the field-study of Durães & Madeira [Durães and Madeira, 2006], they collected a large set
of real software faults to analyze and take conclusions as consistent as possible. Durães started
grouping the faults in the ODC model. The grouping of this framework is based in the changes
that need to be done to correct a software fault which is characterized by eight categories:

• Algorithm - Problems that can be fixed by re-implementing an algorithm or local data
structure, include efficiency or correctness that affects the task.

8

Evaluating the robustness of the Cloud

• Assignment - An assignment defect indicates an initialization of control blocks or a data
structure.

• Build/package/merge - Errors that occur in the integration of library systems, manage-
ment of changes, or in version control.

• Checking - Based on the program logic that is checked and fails to validate data and values
before the usage, loop conditions, etc.

• Documentation - Errors in the documentation can disseminate to publications and main-
tenance notes.

• Function -This defect affects significant capability, end-user features, product Application
Programming Interface, interface with hardware architecture, or global structure(s). It
would require a formal design change.

• Interface - Problems in the interaction with other components, modules, device drivers,
call statements, control blocks, or parameter lists.

• Timing/serialization - Errors that happen in shared and real-time resources.

Durães [Durães, 2005] used this model in his field-study, as a starting point for fault clas-
sification. The categories Build/package/merge, Timing/serialization and Documentation were
excluded due to: the inexistence of information at the time of the study and the inclusion not
relevant for the study.

This categorization provides useful information for fault injection purposes and is useful for
software reliability.

2.2 Injection of software faults
Software fault injection (SFI) is a testing technique used to understand how software behaves

when stressed in unusual conditions to increase the levels of dependability of the application
under test. The SFI has the following purposes:

• Find defects in software;

• Robustness testing;

• Determine failure modes;

• Safety verification;

• Security assessment;

• Software testability analysis;

• Used with or without source code.

Fault injection is an area that has fascinated researchers, mainly due to the need of assuring
software quality, which is a tough challenge. A recent survey on software fault injection can be
found in [Madeira et al., 2015]. In the context of the present thesis, it is relevant to present and
compare some fault injection tools have contributed to advanced in this area of research and are
directly related to the goals of the thesis. This includes the following tools:

• JACA [Regina et al., 2003];

• J-SWFIT [Sanches et al., 2011];

• SAFE [Natella, 2011];

• Xception [Carreira et al., 1998].

9

Evaluating the robustness of the Cloud

JACA [Regina et al., 2003] is a source-code independent tool which has been made to validate
Java applications. It injects high-level software faults and is based on computational reflection to
inject interface faults in Java applications at bytecode level [Martins et al., 2002]. The goal of this
tool is to use high-level programming features to corrupt attribute values, methods parameters
or return values during runtime.

On the other hand, Java Software Fault Injection Tool [Sanches et al., 2011] does not need
the source code to perform the injection because the mutation of the code is performed directly
in compiled code and it is based on the G-SWFIT [Durães and Madeira, 2006].

Regarding the SAFE [Natella, 2011] is an application which uses SWIFI technique to inject
realistic software faults in programs coded in C and C++. This tool uses MCPP as parser, to get
the tree of code. The decision of using MCPP instead of GCC parser was a workaround for some
shortcomings of the GCC’s C preprocessor. After that, some variations of original files arewritten
(code with simple mutations) with the applied operators. Natella [Natella, 2011] implemented
thirteen operators in SAFE, the same number as Durães & Madeira [Durães and Madeira, 2006].
However, Natella implemented them in the source code level, while Durães & Madeira in binary
level.

Lastly, Xception [Carreira et al., 1998] is an automated testing tool which injects faults with
minimum interference in the system workload, taking advantage from both the advanced debug-
ging and performance monitoring features presented in the latest processors. Xception [Carreira
et al., 1998] presents the following advantages:

• Reduction of the interference with the workload;

• Injection of quite realistic faults;

• Monitor the activation of the faults;

• Record detailed information regarding the injection.

Furthermore, Xception [Carreira et al., 1998] allows to inject faults in applications even when
the source code is not available.

The fault injector under development in this thesis will be similar to SAFE [Natella, 2011] in
terms of output: source code files with changes made in it. However, there is the need to create
this injector considering that: the code developed by Natella [Natella, 2011] is not available and it
is intended to design a more maintainable and easy to use injector, using Java Language without
involving the MCPP preprocessor, which is already outdated.

2.3 Cloud Computing
In the current project, the injection of failures focuses in the cloud, including software com-

monly used in this environment. According to Mell and Grance [Mell and Grance, 2011]:
“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or service
provider interaction.”.

Cloud Computing, represented in Figure 1, is a new way to deliver on-demand Information
Technology (IT) services (utility-oriented and Internet-centric). These services include all the
computational power: from hardware infrastructure, as a set of Virtual Machines, to software
services, as development platforms and distributed applications. Moreover, the use of this model
enable an organization to narrow the fixed costs of having an IT infrastructure as well as allows
the system to accommodate larger loads just by adding resources.

Below, Cloud Computing is described in relation to its characteristics, deployment models
and service models [Schouten, 2013]. Some characteristics of Cloud Computing are:

• Ondemand self-service - Users can request andmanage their cloud computing resources
without requiring human interaction, over a web-based self-service portal.

• Broad network access - Provide access over the network, through using standard way
by several customers (e.g., mobile phones, tablets, laptops and workstations).

10

Evaluating the robustness of the Cloud

Figure 1: Cloud computing overview.

• Resource pooling - The computer resources are pooled to serve multiple customers
through the safe separation of the resources at logical level.

• Rapid elasticity - Capability of resources to be elastically provisioned and released. Mak-
ing sure that the application will have exactly the capacity that it needs at any point in
time.

• Measured service -The service is monitored, measured, and reported transparently based
on its usage. The customers pay in accordance with the service spent.

The Cloud can be categorized in four deployment models:

• Private Cloud - It is a single-tenant cloud solution using client hardware and software,
located inside the client firewall or even in a data center. The sensitive information is
maintained inside the organization. It has the disadvantage of not having the ability to
scale on demand.

• Community Cloud - It is shared by organizations with similar interests, supported by a
specific community, sharing the same mission or security requirements, etc.

• Public Cloud - It is available to the public or to a group of a big company. It is a multi-
tenant cloud solution owned by a cloud service provider, which delivers shared hardware
and software to costumer private networks (mostly the Internet) and data centers.

• Hybrid Cloud - Composed by two or more services (private, community or public), put
together by standard or proprietary technologies, which allows portability. It takes ad-
vantages from the best of private and public models. Example: A client can implement a
private cloud for applications with sensitive data and a public cloud for other, non-sensitive
data.

Besides the four deployment models, it should be also considered the four levels of Cloud
Computing Service Models:

• Infrastructure-as-a-Service - As the name suggests, it provides a computing infrastruc-
ture, such as virtual machines, firewalls, load balancers, IP addresses, virtual local area
networks and others. Examples: Amazon EC2, Windows Azure.

• Platform-as-a-Service - Provides a computing platformwhich usually includes operating
system, programming language execution environment, database, webserver and others.
Examples: AWS Elastic Beanstalk, Windows Azure, Heroku.

• Software-as-a-Service - Provides access to application software often referred as on-demand
self-service software. It is used without install, setup or run the application. Examples:
Google Apps, Microsoft Office 365.

11

Evaluating the robustness of the Cloud

• Business-Process-as-a-Service -Thismodel supplies an entire horizontal or vertical busi-
ness process and builds on top of services previously described.

Figure 2: Cloud computing service models. [4]

In Figure 2, it is possible to verify the differences between the several models.
However, such as any computer system, cloud computing is not free of external disturbances

[Wolter et al., 2012], like:

• Security attacks - any attempt to gain unauthorized access;

• Accidents - an unplanned incident, resulting in damage;

• Power surges - an interruption of the flow of electricity;

• Malfunction - bugs cause bad functioning or no function at all;

• Worms - malware computer program.

The fault injection tool developed in this MSc thesis is particularly targeted to assess the
impact of software malfunction is cloud systems.

2.4 Tools
The development of a Software Fault Injection (SFI) is a process that can be accomplished

through the use of tools for management and code analysis. In the following two sections, the
available tools for both cases will be introduced.

2.4.1 Management of Software Code
In this section, a few tools to develop the SFI are presented and compared. The evaluated

tools are Lex and Yacc, Eclipse CDT, GCC Parser and MCPP preprocessor. These tools promote
a faster development of fault injector, and should perform some of the following tasks:

• Parse the software code;

• Construct the abstract syntax tree;

12

Evaluating the robustness of the Cloud

• Modify the code generated.

Yacc is a parser generator and Bison is a GNU version of Yacc. Yacc picks up the tokens and
builds a tree from it to check the syntax of program. The Lex builds tokens and they are declared
in the Yacc specification file. In order to use this tool, it would be necessary to define the tokens
and grammar of the C language which would be laborious and time consuming.

Eclipse CDT, as the name suggests, is a plugin for Eclipse that give a fully functional C and
C++ Integrated Development Environment. Some features included in this plugin that are rele-
vant for this project are:

• Source navigation;

• Code editor with syntax highlighting;

• Source code refactoring and code generation.

It is possible to use this plugin in standalone mode, by importing the .jar files to the project.
Eclipse CDT allows the development of a fault injector in the JAVA language, which is more
maintainable and easy to use, write, compile and debug.

Nowadays, GCC uses a hand-written parser to improve syntactic error diagnostics. Through
this way, it is possible to provide meaningful messages on syntax errors to the users. Neverthe-
less, in order to use this parser in the injector, the learning curve would be very high and it would
take a long time, since it is very optimized.

MCPP is a portable C and C++ preprocessor with many features related with validation.
Natella [Natella, 2011], used it as a workaround for some shortcomings of the GCC’s C pre-
processor. Currently, this project is outdated, once the last update was in May 2013.

Finally, Eclipse CDT Plugin was selected for this project, in standalone mode and only im-
porting the necessary libraries. The decision to use Eclipse CDT Plugin was based on the main-
tainability of software developed in it, and the low learning curve that the developers need to
modify it.

2.4.2 Analysis of Software Code
One of the tasks of any software fault injector is the selection of the code where the faults

will be injected. This selection of the code or files where the software faults are injected is per-
formed through the analyses of the code in the files. These analyses can be achieved based on
the following metrics:

• Number of Methods (NOM) - Total number of methods defined in the selected scope;

• Number of Fields - Total number of fields defined in the selected scope;

• McCabe Cyclomatic Complexity [McCabe, 1976] - Counts the number of flows through
a piece of code. Each time a branch occurs (if, for, while, do, case, catch and the ?: ternary
operator, as well as the && and || conditional logic operators in expressions) this metric is
incremented by one.

• LSLOC - Lines of code intended to measure statements, normally ended by a semicolon or
a carriage return.

The metric selected for the fault injector proposed in this thesis was the McCabe Cyclomatic
Complexity, due to measure the number of independent paths in code, which in practice means
that can count the number of test conditions in a program, and at the same time because is simple
to apply. To get the McCabe Cyclomatic Complexity, it was needed to perform a script to count
the conditions, or use some tool that provides it. Bellow, it is addressed some tools that provide
metrics to evaluate code, such as Metrics, CCCC, Code Analyser and Metriculator.

Metrics is an Eclipse plugin that provides metrics calculation and dependency analyzer. It
measures various metrics with average and standard deviation and detects cycles in package and
type dependencies and graphs them. Using it, it is possible to know the McCabe Cyclomatic
complexity, but only works in Java and Apache2 is programmed in C.

13

Evaluating the robustness of the Cloud

C and C++ Code Counter is a tool which analyzes C++, Java and generates a report on various
metrics of the code. Metrics supported include lines of code, McCabe’s complexity and metrics
proposed by Chidamber&Kemerer and Henry&Kafura.

Code Analyzer is a java application for C, C++, java, assembly, html, and user-defined soft-
ware source metrics. It calculates metrics across multiple source trees as one project. It has a nice
tree view of the project with flexible report capabilities, but, do not have McCabe Complexity
metric.

Metriculator is another Eclipse plugin that creates static software metrics based on C++
source code. Some of metrics that are already implemented are McCabe Complexity, Logical
Lines of Code and Number of Params, Efferent Coupling, Number of Members. This plugin has
some advantages, such as:

• Smoothly integrated into Eclipse UI (Juno and earlier);

• Rich export functions (tag cloud image, HTML report, ASCII Text file, plain XML);

• Configurable limits per metric (e.g. maximum lines of code per function);

• Designed to easily add your own metrics (via separate plugin or via project contribution).

It was chosen metriculator, due to its calculate the metric previously selected, McCabe Cy-
clomatic Complexity. Moreover, the metriculator works with C++ language, working also with
C language, since C is enclosed in the C++ language.

2.5 Hypervisor

In order to be able to setup a small scale cloud-based environment, it is necessary to refer to
virtualization. Virtualization is amethod of dividing the system resources provided by computers
between different applications. A Hypervisor is necessary to manage the method of virtualiza-
tion.

AHypervisor [Fornaeus, 2010] or VirtualMachineMonitor is a program that creates and runs
Virtual Machines. A Virtual Machine can be characterized as an efficient and isolated duplication
of a real machine. Therefore, the Hypervisor is software that manages multiple Virtual Machines
with multiple operating systems. The most important characteristics of a Hypervisor are:

• The management of one or more operating systems;

• Loading and booting these operating systems;

• Share memory;

• CPU power;

• The peripherals with each operating system;

• The isolation between Virtual Machines allows that in the event of a failure in one of the
Virtual Machines, this will not bring down any other Virtual Machine.

As described in [Popek andGoldberg, 1974], Hypervisors can be classified asNative-Hypervisor
or Hosted-Hypervisor.

The Native-Hypervisor, represented in Figure 3, has the following characteristics:

• Only provides the minimum set of functions;

• Runs directly on the host’s hardware to control the hardware;

• Do not have operating system, only manage guest operating systems.

14

Evaluating the robustness of the Cloud

Figure 3: Hypervisors: a Native-Hypervisor (on the right) and a Hosted-Hypervisor (on the left).

Some examples of this type of Hypervisor are KVM, Hyper-V, VMWare ESX and Xen.
The Hosted-Hypervisor (Figure 3) runs above the operating system, as another computer

programs. Some examples of this type of Hypervisor are VMWare Workstation [5], VirtualBox
[6], Qemu [7].

The main difference between the Native-Hypervisor and Hosted-Hypervisor is the existence
of an extra layer which is the operating system in the host. This extra layer can cause disruption
in guests because the communication between devices is not straightforward.

2.6 WebServers
Cloud computing is used by public and private organizations. Most of its usage is based

on webservers. There are multiple uses for webservers, such as simple websites or complex
applications containing application programing interfaces (API). Due to the increasing usage of
webservers, it is considered a good study case to assess the robustness of the Cloud. In this
section, several webservers will be compared, and one webserver will be selected to perform
tests.

Nowadays, all the websites of online services need an online server in order to: accept re-
quests from clients, usually browsers; and provide answers, commonly HTML documents with
information, images, etc.

In the segment of webservers, Apache WebServer leads the market with 36%, followed by
Microsoft IIS with 27%, Nginx and Google’s GWS with 17% and 2%, respectively, as can be seen
on Table 2 [8]. It was detected a total of 901.002.770 websites and 5.579.077 web-facing computers.

Developer November 2015 Percent December 2015 Percent Change
Apache 334,095,102 37.00% 320,676,759 35.59% -1.41
Microsoft 244,906,586 27.12% 239,927,013 26.63% -0.49
nginx 149,967,733 16.61% 157,001,018 17.43% 0.82
Google 19,622,624 2.17% 20,362,678 2.26% 0.09

Table 2: WebServers Market Share of November 2015 and December 2015.

From thewebservers listed above, ApacheWebServer andNginxmust be highlighted: Apache
because of its utilization rate and Nginx due to its growth.

Apache WebServer, also named Apache 2 or HTTPD, was created by Rob McCool in 1995,
when he was employee of NCSA (National Center of Supercomputing Applications). This is the
most usedwebserver on theweb since April 1996. Recently, it lost many users who havemigrated
to other webservers, although Apache continued to lead the segment of webservers. Please refer
to Figure 4. The migration to other servers is related to the use of older versions, vulnerable and
even unsupported, causing problems in the access of websites/services and in their management.

15

Evaluating the robustness of the Cloud

Figure 4: Web server developers: Market share of all sites.[8]

Nginx is one of the most powerful and stable webservers. Moreover, it is free, open-source
and has high performance. This server has been designed and developed in 2005 by a Russian
programmer Igor Sysoev. The main purpose of Nginx is stability, its easy configuration and low
resource requirements at the level of hardware. The use of Nginx has been gradually increasing,
according to NetCraft [8].

Considering that Apache is the most widely used webserver, failures will be injected in their
source code in order to evaluate their behavior. In order to evaluate the effect of the failures injec-
tion, it is necessary to group similar results and assign them to a given classification, depending
on a given scale, which is the subject discussed in the following section.

2.7 Analyze the effects
A group of injection of faults (in source code or not) will produce results. In this specific

case, the injector BugTor was used to inject faults at source code level in order to obtain results.
Afterwards, a careful evaluation of the results was mandatory. Other research papers have been
selected and analyzed to choose the most important scales related with testing software in the
Cloud. The scales that best framed to the evaluation of the results, although they have some gaps
relating to their application directly in this work, are the CRASH Scale [Koopman et al., 1997]
and the virtualized environments failure modes created [Cerveira et al., 2015].

Crash scale is a scale created by Koopman [Koopman et al., 1997] with the objective to group
the faults of robustness tests according the severity of effect to the system user. This scale is
centered on the user’s vision of effect.

• Catastrophic - Operating System crashed or multiple tasks affected. This type of failure
means that other tasks or the system crash or hang. It is usually solved by a system reset.
They are detected using robustness benchmarks when the benchmark and starter tasks
stay unresponsive to messages from the watchdog task;

• Restart - Single task or process hangs, requiring restart. It can be solved with a kill and
restart of task, to put in the normal execution. It can be detected using robustness bench-
marks when the task is still listed by the OS as an active task, but the benchmark task fails
to respond to messages after a timeout interval;

• Abort - Single task or process aborts abnormally (i.e. “code dump” or “segmentation vi-
olation”). This type of failure is often caused by a memory access violation, when the
task attempts to access a piece of memory (to write or read), that are reserved to another
program or do not exist. If this happen during a system call, the exception is handled ap-
propriately be the OS and is not considered an Abort failure because is not user-visible. It
is detected by the robustness benchmarks when his tasks abort;

• Silent - Test Process exits without an error code returned when one should exist. This type
of failure happens when invalid parameters are sent thought an OS call and is not returned

16

Evaluating the robustness of the Cloud

any error. An example of this failure is when the call to open a file is done with the name
NULL, can be done with success rather than return an error. It can be detected using the
testing log and verify when the error codes have been generated and not returned;

• Hindering - Test Process exits with an error code not relevant to the situation or incorrect
error code returned. This type of failure can cause an erroneous recovery action. It is
detected verifying when found an incorrect return code in the testing log;

• Pass - The module exits properly, possibly with an appropriate error code.

The order of the letters in the word CRASH represents the impact to the operating system
(catastrophic is the worse and hindering the least severe). Nevertheless, the severity is related to
the type of system user and its point of view.

This CRASH Scale is a way to group the results of the effect of faults on an end-user system,
mainly from the operating system perspective. In view of virtualized systems, there is the clas-
sification made by [Cerveira et al., 2015] that classify the failure modes represented from the
external view (i.e., from the client side). This scale was created with the principle that the setup
has two or more virtual machines running above the Hypervisor, and are injected some faults
in one of the virtual machines, and observed the behavior of others. In their setup, [Cerveira
et al., 2015] used a Web server named Apache2, to perform some requests involving computing
a SHA1 hash. Obtaining the following levels:

• Incorrect content - It is characterized by the production of a syntactically correct HTML
content with wrong values. This content can be seen by another machine or a human.

• Corrupted output - Described by a syntactically incorrect output, server fails to comply
with the HTTP protocol, sending an invalid HTML code, or sends code which is not HTML
at all.

• Connection reset - The communication between the servers and the client is reset.

• Client-side timeout - The client fails to receive any response within a defined period,
causing a client-side timeout.

• Hang - The service stops producing responses to client requests. It can lead to all clients
connected finish due to client-side timeout.

• No effect - It is not perceived any effect on the provided service by the user, both at level
of performance as of correctness.

In conclusion, both scales are characterized by an end-user view and as he is aware of the er-
rors that have happened. In the other hand, both can be distinguished based on the environment
and setup of experiments. CRASH Scale [Koopman et al., 1997] is based in an Operating System
and some tasks, and the [Cerveira et al., 2015] Classification is characterized by a system using
virtualization, simulating the cloud and the communication between end-user and cloud.

17

3 Fault injector - BugTor

In this chapter is described all the work that have been done related with the development
of the fault injector. Furthermore, a fault injector is characterized and described their operating
principles, such as: faults to inject, way to inject, etc. Afterwards, the requirements for running
the tool are presented and is explained how to use it. Finally, it is outlined how the fault injector
was validated and its limitations.

In order to create a fault injector is necessary to define their characteristics, such as:

• Type of injector;

• Technique to use;

• Faults to inject;

• How to inject.

At the beginning of this project, it was considered to obtain information about the most
representative faults in software. However, after discussion with supervisor, it was decided to
take advantage of Durães’ field study [Durães, 2005]. The use of this is an advantage due to
this type of information rarely are available to the public and, this specifically have the main
feature that is based in open source software developed in C. In that field study, can be seen
information about the eighteen operators most representative in the open source software model.
Nevertheless, after gathering the information and analysis, it was verified that not all the required
information was available to implement the operators due to several reasons:

• Production of many mutations;

• Inconclusive definition of the operators;

• Little or missing information about the cases where they are applied;

• It can produce warnings or even errors while compiling;

• Low representation in relation to other operators (that can be seen in Durães’ field study
[Durães, 2005]).

In order to overtake some of these factors, it was necessary to get the data which Durães
[Durães, 2005] have been used to perform his field study, or do a new one. However, due to
time constraints, do a new one were unfeasible at this time. For these reasons, the five operators
represented in the Table 3 were excluded and only the thirteen (listed in the Table 4), from the
eighteen most representative, were implemented.

Furthermore, the fault injector can have two different schemas to trigger the faults: spatial
and temporal. In the temporal way, the insertion of the fault is given by the time associated with
the execution in system. Whereas, in the spatial way, the fault is injected when it reaches the
specified place where the particular operator can be applied.

This fault injector will be dubbed by BugTor due to the fact that it is a SFI that inject faults
in software. In other words, the name for this injector came from “injector of bugs”. BugTor
emulated faults are similar to the real software faults made by real programmers who might lead
to bugs. Therefore, this injector was developed in Java, using Eclipse CDT Plugin, and inject
faults in C code using the SWIFI technique. The injection is based in its location, because only
the code locations that validates all the constraints related to each one of operators, can be used
to inject faults.

19

Evaluating the robustness of the Cloud

Operators Description
EVAV Extraneous variable assignment using another variable
MFCT Missing functionality
WALL Wrong algorithm - large modifications
WLEC Wrong logical expression used as branch condition
WSUT Wrong data types or conversion used

Table 3: Other fault emulation operators.

Operators Description
MFC Missing function call
MIA Missing if construct around statements
MIEB Missing if construct plus statements plus else before statements
MIFS Missing if construct and surrounded statements
MLAC Missing and sub-expr. in logical expression used in branch condition
MLOC Missing or sub-expr. in logical expression used in branch condition
MLPA Missing localized part of the algorithm
MVAE Missing variable assignment with an expression
MVAV Missing variable assignment with a value
MVIV Missing variable initialization with a value
WAEP Wrong arithmetic expression in parameters of function call
WPFV Wrong variable used in parameter of function call
WVAV Wrong value assigned to a variable

Table 4: Fault emulation operators.

3.1 Operators
Concerning failures that will be injected, they are produced by applying operators, the Bug-

Torwill inject thirteen of themost representative faults, previously specified byDurães&Madeira
[Durães and Madeira, 2006]. According to them data-field results, to inject each one of the most
representative faults is necessary to implement each one of the corresponding operators, as well
as the matching constraints. These operators are specified individually below:

MFC - Missing function call
The emulation of this operator is based in the removal of a function call in a context where

the returned value is not used. Nevertheless, to perform this removal, the constraints below need
to be validated.

• C01 - Return value of the function must not be used;

• C02 - Call/Assignment/The if construct/The statements must not be the only statement in
the block.

MIA - Missing if construct around statements
This operator simulates a missing if condition surrounding a set of statements. This causes

the statements to be always executed and not just when the condition of if statement is true. The
constraints to be applied in this operator are:

• C08 - The if construct must not be associated to an else construct;

• C09 - Statements must not include more than five statements and not include loops.

MIEB - Missing if construct plus statements plus else before statements
This operator generates derivations of the source code of applications by removing if con-

struct plus statements plus else before statements. In order to apply this operator, the following
constraint must be verified first:

20

Evaluating the robustness of the Cloud

• C13 - The if construct must be associated to an else construct.

This constraint does not exist in Durães & Madeira [Durães and Madeira, 2006] specification,
but as this operator can not be applied in all situations, here it was specified and implemented.
This operator can only be applied where the if construct has an associated else.

MIFS - Missing if construct and surrounded statements
The application of this operator changes the source code with the removal of one if construct

and the statements surrounded by it. To do that, it was needed to verify the following constraints:

• C02 - Call/Assignment/The if construct/The statements must not be the only statement in
the block;

• C08 - The if construct must not be associated to an else construct;

• C09 - Statements must not include more than five statements and not include loops.

MLAC - Missing and sub-expr. in logical expression used in branch condition
This operator is based on the removal of part of a logical expression used in a branch condition.

In order to apply this operator, the code must have at least two branch conditions linked together
with the logical operator AND. With an AND operator, if one of the sub-expressions is false all
the expression will be false and the condition will fail. In this case, was necessary to check the
constraint C12.

• C12 - Must have at least two branch conditions.

This operator was omitted in the original specification, but as it can only be applied where
the logical expression contains at least two sub-expressions, it was specified and implemented.

MLOC - Missing or sub-expr. in logical expression used in branch condition
This operator emulates the removal of part of a logical expression used in a branch condition.

In order to apply this operator, the code must have at least two branch conditions linked together
with the logical operator OR. It is only necessary that one of the sub-expressions is true to the
entire expression being evaluated as true. This operator has only one constraint:

• C12 - Must have at least two branch conditions.

The logical expressions can be located at IfStatements, DoStatements andWhileStatements and
can have a lots of formats.

MLPA - Missing localized part of the algorithm
As the name suggests, this operator emulates the omission of a small and localized part of

the algorithm and for that, should be verified the following two constraints:

• C02 - Call/Assignment/The if construct/The statements must not be the only statement in
the block;

• C10 - Statements are in the same block, do not include more than five statements, nor
loops.

The constraintC02 guarantees that not all the statements in a block are removed, because this
would not correspond to a realistic fault. This type of faults is never involved the removal of if or
if-else and loop constructs (the omitted statements were always function calls and assignments)
guaranteed by constraint C10.

21

Evaluating the robustness of the Cloud

MVAE - Missing variable assignment with an expression
This operator reproduces the omission of a given local variable with an expression. However,

constraint C07 ensures that this does not happen when it is the first assignment to a variable, i.e.
an initialization.

• C02 - Call/Assignment/The if construct/The statements must not be the only statement in
the block;

• C03 - Variable must be inside stack frame;

• C06 - Assignment must not be part of a for construct;

• C07 - Must not be the first assignment for that variable in the module.

MVAV - Missing variable assignment with a value
OperatorMVAV is similar to operatorMVAE, with the difference that it emulates the removal

of the assignment of a given local variable with a constant value instead of an expression. The
constraints related with this operator are the same of MVAE:

• C02 - Call/Assignment/The if construct/The statements must not be the only statement in
the block;

• C03 - Variable must be inside stack frame;

• C06 - Assignment must not be part of a for construct;

• C07 - Must not be the first assignment for that variable in the module.

MVIV - Missing variable initialization with a value
This operator represents the removal of a given local variable initialization with a constant

value. The fact that this operator only searches for variable initialization induce that only the
first occurrence of an assignment to a particular variable are eligible to apply this type of fault.
This is guaranteed by constraint C04. The constraint C05 verifies if the assignment does not
occur inside a loop, because one assignment of this type occurs several times. Nevertheless, this
operator has other associated constraints:

• C02 - Call/Assignment/The if construct/The statements must not be the only statement in
the block;

• C03 - Variable must be inside stack frame;

• C04 - Must be the first assignment for that variable in the module;

• C05 - Assignment must not be inside a loop;

• C06 - Assignment must not be part of a for construct.

WAEP - Wrong arithmetic expression in parameters of function call
This operator represents the modification of the expression used as parameter of a function

call.

WPFV - Wrong variable used in parameter of function call
Operator WPFV modifies the variables used as parameters in a function call, given a wrong

variable. The use of constraint C11 guarantees that there must be at least two variables in the
module.

• C03 - Variable must be inside stack frame;

• C11 - There must be at least two variables in this module.

22

Evaluating the robustness of the Cloud

WVAV - Wrong value assigned to a variable
This operator simulates an assignment of a wrong value to a variable. This value is obtained

by the inversion of bits of the least significant byte of the early value. In order to perform this,
the operator needs to verify the following constraints:

• C03 - Variable must be inside stack frame;

• C04 - Must be the first assignment for that variable in the module;

• C06 - Assignment must not be part of a for construct.

The above operators are implemented according to their specification. To apply an operator,
all the constraints related must be true. After apply each one of the operators in the code tree
will be generated files with the modifications, named patches. These files are used in the testing
process.

3.2 Constraints
In accordance with the Durães &Madeira [Durães andMadeira, 2006], the operators can only

be applied when all the related constraints are true. In Figure 5, are represented all the existing
constraints in the original specification. It is necessary to mention that these constraints have
been specified using a generic programming paradigm in order to be used by more than one
operator.

Constraints Description
C01 Return value of the function must not be used
C02 Call/Assignment/The if construct/The statements must not be the only state-

ment in the block
C03 Variable must be inside stack frame
C04 Must be the first assignment for that variable in the module
C05 Assignment must not be inside a loop
C06 Assignment must not be part of a for construct
C07 Must not be the first assignment for that variable in the module
C08 The if construct must not be associated to an else construct
C09 Statementsmustnot includemore than five statements and not include loops
C10 Statements are in the same block, do not includemore than five statements,

nor loops
C11 There must be at least two variables in this module

Table 5: Fault emulation contraints defined by Durães [Durães and Madeira, 2006].

In the Appendix C, some positive and negative cases of each one of the constraints can be
seen. Moreover, it is possible to verify, after a brief analysis that the constraint C07 is similar
to constraint C04, one is the negation of another. This also happens with the constraints C08
and C13. Constraint c10 is the same as constraint C09, but with one additional restriction: the
statements need to be contiguous and need to belong to the same code block.

When operators MIEB and MLOC have been implemented, it was needed to define the con-
straints C13 and C12, because these operators do not have specified constraints and not be
applied in all situations. The constraint C13 was created because of the operator MIEB can not
be applied to an if construct without an else construct. The constraint C12 has been created too,
because the operator MLOC can not be emulated in a branch with only one condition.

The absence of the constraints, represented in Figure 6, in the specification of Durães &
Madeira [Durães and Madeira, 2006] may be related to the differences of G-SWFIT, the tech-
nique that Durães used, and the technique that was used in this fault injector, the SWIFI. The
G-SWFIT is a technique which changes the binary code of the target to reproduce the sequence
of instructions that corresponds to the required fault injected in the source level. And in BugTor
the SWIFI are used directly at source code level.

23

Evaluating the robustness of the Cloud

Constraints Description
C12 Must have at least two branch conditions
C13 The if construct must be associated to an else construct

Table 6: Other constraints.

3.3 WorkFlow and Implementation
In this section will be described the work that was done with the BugTor and the most impor-

tant aspects of the implementation. One of the most important features of BugTor is the language
in which it was developed, the Java language. This language provides some advantages, like as:

• Easy to learn;

• Object-oriented;

• Platform-independent;

• Distributed;

• Secure;

• Robust;

• Multithreaded.

After the study of some software that helps in the code editing (it can be seen at subsection
2.4.1), it is concluded that the usage of CDT was the best choice, given its potential. The CDT plu-
gin provides some very useful characteristics and it was necessary to understand their workflow,
their classes and their dependencies.

During this study, it was necessary to study the visitor pattern, which are typically named
design-patterns. Visitor Pattern is a powerful behavioral pattern and it is used to manage algo-
rithms, relationships and responsibilities between objects. From [Gamma et al., 1994], “Represent
an operation to be performed on the elements of an object structure. Visitor lets you define a new
operation without changing the classes of the elements on which it operates.”.

The CDT plugin makes use of Visitor Pattern to perform a pretty print of code tree, and the
BugTor use the Visitor Pattern too, to perform the modifications with the operators. The use of
this pattern:

• Allow the addition of new operations without the need of write the same switch statement
over and over again;

• Provides a template for new operations to follow;

• Let the development of cleaner code, because the Visitor Pattern handle the conditional
logic, instead of get the processing code and conditional logic in the same code.

After the initial analyses of the structure of CDT, it is necessary to begin the implementation
of BugTor. To implement the BugTor, it is very important construct a good workflow. The main
tasks performed by the SFI are:

• Read source code;

• Create Abstract syntax tree (AST);

• Verify all the constraints related to the current operator;

• Apply the operator in AST (only if all the constraints are valid);

• Create the patch with the modifications, comparing modified code with the initially source
code.

24

Evaluating the robustness of the Cloud

Despite of the CDT Plugin have many attractive characteristics for this project, the imple-
mentation of the first operator with Eclipse CDT took a great effort. After some time spent to
understand the tool and its class structure through Javadoc/Eclipse Documentation, it was even
necessary to obtain more information from those who know and actually use it, by accessing the
official mailing list: cdt-dev@eclipse.org. After exchanging some emails with Thomas Corbat,
we conclude that Eclipse CDT does not allow the creation of a new code tree by changing the
original tree. Moreover, to overcome this limitation, there are two possible ways:

• Use reflection to get the modifications from ASTWriter and pass it to ASTRewrite to get
the code with the changes done;

• Get the source code of CDT and change it to avoid using reflection.

Reflection is a mechanism that permits the modification of structure and behavior dynami-
cally. The systems are structured with two levels, the base level and themeta level. Themeta level
contains all the information related to the system properties. The base level has the information
about application structure and its behavior. The modifications that have done at meta level are
reflected to the base level structure and behavior. A good example of reflection pattern usage is
the Constitution and the congress [Gamma et al., 1994]. The Constitution, matches to the meta
level, have the information related to how the congress is to conduct itself. The congress, as base
level, conducts itself according to the Constitution. The changes done in the Constitution change
the behavior of congress. Initially, reflection was used to implement the first operator, despite of
knowing that it is not a neat solution and is generally slower than equivalent native code. How-
ever, after understanding better the flow of Eclipse CDT, CDT’s source code has been modified
to avoid the use of reflection. However, during the implementation of the first operators, the tree
is traversed using recursion, complicating the development of code and having the logic and the
whole processing together. If the Visitor Pattern is used by the CDT to perform a pretty print of
tree, why not take advantage of this pattern for the tree and the consequent injection of faults?
Therefore, using the Visitor Pattern, makes the code simpler, cleaner and safer.

A diagram that represents an overview of the fault injection tool can be seen in the Figure
5. The fault injector starts by reading the source code, files typically coded in C or C++. The
code is analyzed by the CDT and an AST tree is then created. In order to inject a fault, the
injector finds the node where it can be injected (evaluating the truthfulness of all constraints of
the operator concerned), and modifies it, according to operator specification. After that, the AST
is rewritten, getting the code again, now with modifications. Finally, with the comparison of the
two source codes (source code and code with mutations), it is made a diff, to obtain a summary
of the changes made between files - patch. The decision to use the diff tool is related with the
possibility of create smaller files with only the changes that are made, instead of using all the
code with the modifications made in it.

3.4 Requirements

Due to the fault injector was deployed using Java and taking advantage of some features of
CDT, a plugin for Eclipse. In order to use the BugTor, we must ensure some requirements. The
main requirements are the installation of the following software:

• Java 8 - Language used for the development of the BugTor, together with the plugin CDT.

• Diff/Patch - Tools used for create patches andmanipulation thereof, based on the compari-
son of files and thus creating patches with differences (rows inserted, changed or removed).

• Gcc - Compiler for C language used to remove comments from the source code.

The use of injector in Linux is recommended instead of Windows, since it is already included
in the system path some tools necessary for their correct usage, such as diff, patch and gcc.

25

Evaluating the robustness of the Cloud

Figure 5: Workflow of the injection tool.

3.5 Usage
In order to be able to use BugTor, it is noteworthy some particularities related to its usage.

For example, the structure of command to run it:

SYNOPSIS: java -jar FaultInjetor.jar FILE [OPTION…]
FILE .c .cpp
OPTIONS

• -s Silent option - Not print the readable code by CDT. This is related to the limitations of
fault injector, presented in Section 3.7.

• -sp Silent patch option - Not print information related to the created patch, number,
modifications, etc.

• -d Debug option - Print code before the application of each operator, as well as the code to
change or remove, even as the final code, after the modifications performed by the operator.

• -o=OPERATOR - Apply the BugTor only to an operator. The operators can be seen in the
Table 4. OPERATOR is case-insensitive.

Below are presented some examples of execution of fault injector, for different situations:

• Execution of BugTor only with the application of operator MIFS, in file “file.c”:
1 $ j a v a − j a r BugTor . j a r f i l e . c −o=MIFS

• This execution differs from the previous one by the activation of DEBUG option. With
DEBUG option activated, showing information related to the steps that are doing by the
fault injector:

1 $ j a v a − j a r BugTor . j a r f i l e . c −d −o=MLAC

For a correct usage of this software, it is necessary having some knowledge regarding the
execution of commands through the console.

26

Evaluating the robustness of the Cloud

3.6 Verification and Validation

Verification and Validation (V&V) is an important process in the development of software,
and this implies the need to be done by external people. In this case and because the software
developed are done during a dissertation, this phase must to be done by the student which do
the development.

During the development of this fault injector, a script to perform automated tests to many
source codes was done. This script was created in Python language and it runs the BugTor, gen-
erating derivations to many files with code through application of each one of the operators. The
main function of this script is count the number of patches generated with each one of the opera-
tors. Using this, it can be sure that when a new operator is developed, the other operators not be
affected (the number of patches counted can not change from the last iteration). This technique
is called regression testing [Wong et al., 1997], since when a new operator or constraint is devel-
oped is verified with that script if the previous implementation of operators and constraints is
not affected.

Moreover, after the implementation of each operator, during the development of BugTor,
were checked the number of patches created, as well as its content. For example, in the case of
operators MLAC and MLOC, it was necessary to verify the branches containing the operators
&& and ||, and the removal of each one of this elements of branch will produce a new patch.

The files for testing are selected based in several characteristics, such as:

• Function calls and number of parameters;

• Conditionals, only if, if with else, etc;

• Number of statements within a function, or in a block;

• Number of logical expressions used in a branch condition and different operators.

The number of files for the testing process was increased during the development process
because when it was found a new case that was not covered by the current code files, it was
added to the test. At the beginning were approximately twenty files, and with the progress of
the development process, quickly reached more than one hundred.

3.7 Limitations

In accordance with another projects, during the development of this injector some problems
have happened. Some of them derived from choices taken. However, most of them were over-
come using the best programming practices.

The executed test that have been done during the development showed some gaps, more
specifically related with the manipulation of code that depends frommacros, if the specific macro
was defined or not. The application of this injector in real complex code that includes macros
stated that the CDT not represent the macros in the created tree, not being possible to make
changes directly, using the features of CDT.

This limitation can be overcome through two ways, such as:

• Solve the macros using per example gcc -e file. The macros will be solved and the output
can be the input of BugTor. It can not work to some application which evolve a very big
number of dependencies.

• Reduce the amount of code to be tested, selecting only a function, or more parts that are
not affected by macros.

If the injector is used in code with problematic macros, it warms the user, showing the mes-
sage “Verify limitations with macros!”. On the other hand, if the code where the BugTor will
be applied do not have macros, or only have macros at the beginning of the code, like the code
represented in Listing 28 the BugTor create the patches without any problem.

27

Evaluating the robustness of the Cloud

Listing 29 (Appendix D) shows some code of the module mod_rewrite. This code has the
macros #ifdef, #else and #endif. If the macro is already defined, the CDT will read the code be-
tween the #ifdef and #else, otherwise, the CDT will read the code between the #else and #endif.

To reduce the impact of macros in fault injector, a workaround has been created to correct
most of the problems, but empty patches can be created due to the replacement of macros in the
original files, in rare cases. This workaround is based in the comparison of the original code file
with the code file changed, and it resets the macros and the related code where it was removed.

28

4 Work and implications

When this project has been started, it was necessary to choose the technique that is used
to inject faults. However, as stated earlier, at the beginning it was supposed to inject hardware
faults, but due to the postponement of six months, and the development of the project related
to hardware faults injection [Cerveira, 2015], the project was modified to inject software faults.
After taking that decision, it was chosen the technique that we could use to inject faults, from
three different ones: at binary code level in the execution environment, at object code level
in the compilation or before the compilation at source code. There are some available tools,
which inject faults in execution environment (e.g. by [Durães and Madeira, 2006]). Also, Natella
[Natella, 2011] had previously coded a tool which injects faults at source code level, using MCPP
as a C preprocessor during his PhD thesis.

Taking all these factors into account could lead to the conclusion that choosing to inject faults
at object code level (i.e., during compilation time) would be the best option, in what concerns
research innovation. However, the usage of this technique in the development of this fault injec-
tor and the evaluation of the robustness of the cloud would be a great effort for a master’s thesis.
Hence, it was decided to inject faults before compilation time, at the source code of applications.
The use of this technique provides the emulation of realistic software faults done by real program-
mers. Despite of the existence of Natella’s tool [Natella, 2011] to inject faults at source code, the
injector under development use the capabilities of Java Language, such as the maintainability
and its easy of use, to inject faults in source code coded in the C and C++ language.

With BugTor, the faults will be injected in C and C++ code because of the extensive knowl-
edge of the supervisors with this programming language and it was developed because of the
work already done by Durães & Madeira [Durães and Madeira, 2006]. The specification of the
operators and related constraints was based on a field study of open source software coded in
that languages. After that, the software possibilities to parse the code and get the AST are eval-
uated. CDT Plugin has been chosen due to its features, such as source navigation, source code
refactoring, code generation and abilities of the student in programming in Java Language.

To do this project is necessary to develop three separated modules:

• Generate the derivations ofmain code of selected programs (function performed by BugTor,
Chapter 3);

• Compile the programs with injected faults, by using make file;

• Verify and analyze the effect of produced faults.

These modules are enough to perform tests in a Cloud Computing environment.
In Figure 6, it can be seen an overview of the main decisions taken during the first semester,

and the development of injector, including its workflow and implementation. The decisions,
that have been taken related to the development of injector (derivations of the source code), are
already described at Chapter 3, more specifically at Section 3.3. To perform experiments, Apache
was selected, since it is the most widely used webserver, can be seen more information about
Apache at Section 2.6.

After get the derivations of the source code, it was needed to apply them at the application
source code, compile and install it.

Normally, the applications have the code divided into files in order to increase the modular-
ity and simplify the structure thereof. Furthermore, it is necessary to view the effect of fault
injection from the final user view, and the injection in random files, or in all the source code files
make this type of experiments unfeasible, since they can take a long time, or even not cause any

29

Evaluating the robustness of the Cloud

Figure 6: Decision tree of first semester.

kind of anomalous behavior. For this reason, it was necessary to define the file(s), or the mod-
ule(s) to be evaluated through fault injection. There are several ways to make the file selection
to inject faults, such as the code metrics (described at Section 2.4.2), the most modified code in
the repository (usually named churn), the cohesion and coupling. To accomplish this task was
selected the McCable Cyclomatic Complexity, since this code metric measures the number of
independent patch in a program. Some advantages of this metric are: measure the minimum
effort and best areas of concentration for testing; guide the testing process by limiting the pro-
gram logic during development; and are easy to apply. In the Table 7 can be seen the files with
most McCabe Cyclomatic Complexity in source of Apache. The other code metrics can also be
seen, for example LSLOC (Lines of code intended to measure statements, normally ended by a
semicolon or a carriage return) or Number of efferent coupling per type. All the files that begins
with “mod_” are modules of Apache and they need to be activated to Apache use them.

After the measure of the McCabe Complexity, it is necessary to setup the system, and config-
ure the Apache WebServer to use the module mod_rewrite.c (the module of the file with greater

30

Evaluating the robustness of the Cloud

Scope Coupling NbParams NbMembers McCabe LSLOC
mod_rewrite.c 41 154 67 937 2269
core.c 26 326 5 653 2216
mod_include.c 37 135 55 641 1868
util.c 2 252 2 607 1565
mod_dav.c 3 136 10 603 1861
proxy_util.c 4 198 13 531 1554
mod_negotiation.c 7 99 44 481 1178
mod_proxy.c 0 165 0 453 1400
mod_autoindex.c 10 96 41 423 1133
util_ldap.c 0 148 0 408 1333

Table 7: Apache2 source analisys - sorted by McCabe Cyclomatic Complexity.

McCabe Complexity, that curiously is also which has a larger number of lines and a larger cou-
pling). The module mod_rewrite is a flexible and powerful module of Apache HTTP Server, that
permits to perform the mapping of arbitrary urls to internal structured urls, based in an unlim-
ited number of rules. The rules are created using regular expressions. Some examples of their
usage in this module are:

• Mapping a url to a filesystem path;

• Redirect one url to another url;

• Invoke an internal proxy fetch;

• Mapping the url parameters to a url with class/method/param/param;

• Redirect errors to a file (e.g. in case of a not found file or directory).

The rewriting can be done based on server variables, environment variables, HTTP headers,
or time stamps.

In order to carry out as soon as possible the experiences, it was decided to use a Hosted-
Hypervisor, instead of a native Hypervisor, thus speeding the experiments. The Hypervisor se-
lected was the VirtualBox due to its easy to use and by student’s knowledge.

The next step was the generation of derivations of mod_rewrite.c code, but some troubles
appeared, related to the content of file mod_rewrite.c - macros. It is the current limitation of
BugTor (more information and description regarding the solution found in Section 3.7).

The choices done regarding with the testing environment can be seen in the Figure 7.

31

Evaluating the robustness of the Cloud

Figure 7: Decision tree of second semester.

32

5 Experimental Results

According to the original plan, in order to assess the robustness of the Cloud, it was needed to
create a physical environment or emulate one. In this dissertation, the experiments were focused
on fault injection in Apache Web Server and collecting information about its behavior. In Figure
8, it is represented the two environments that have been done during this project. The first
scenario is in normal condition without any kind of failure. The second is with faults introduced
by BugTor in the Apache. Depending on the type of fault injected into the Apache, it will have
different behaviors, which will be evaluated and classified.

These two scenarios were chosen taking into consideration the following:

• Emulate a Cloud environment without and with the presence of faults;

• Perform some tests in the two scenarios and compare them to get conclusions;

• Use hypervisor and virtual machines as the real Cloud.

Figure 8: First scenario (in the right) and second scenario (in the left).

The following tests have been performed in the two scenarios:

• Checking if Apache is working correctly by making requests to the main page of Apache
(after installing Apache the first time, is the index.html);

• Verifying if the PHP is working with requests to the page phpinfo.php (this page has several
information of the running setup);

• Send four parameters in the url and print them using php;

• Perform some benchmarks using php performance benchmarks [9] (tests with strings and
arrays);

• Obtain some system information to verify if the system is running correctly.

33

Evaluating the robustness of the Cloud

These tests, represented in the script in the Appendix E, are the most basic test that can be
done in order to check the operation of Apache, in various situations:

• Requests to files in the DocumentRoot of Apache, HTML and PHP;

• Requestswith some parameters in order to effectively test the behavior ofmodulemod_rewrite.
In this case are selected four parameters to send in the request, and they will be show at
the content of PHP page returned. This is the more important test due to the effective use
of mod_rewrite. ;

• Some little benchmarks to PHP functions.

It was scheduled to run more tests, particularly with JMeter in a more complex scenario,
with two virtual machines. Due to time constrains, it was not possible the completion of the new
scenario and therefore, it was not possible to make the associated tests.

5.1 Setup
The above mentioned experiments were performed in the student’s computer, Asus G71v,

which has the specifications referred in the Table 8 below. It should be noted that the experi-
ments were performed at the same time as daily tasks, such as checking email, browsing, writing,
programming, etc.

Below, it is possible to check the virtual machine specifications too - Table 9.

CPU Intel Core 2 Duo T9400 2.53Ghz
Ram 8GB DDR3 1066Mhz
SSD OCZ Vertex2 128GB
HDD Seagate Momentus XT 750GB
Virtualization Technologies VT-x, Nested Paging

Table 8: Hardware specifications.

CPU 2 Cores
Ram 2048MB
HDD 20GB
Operating System Ubuntu 15.10

Table 9: Virtual machine specifications.

Themain idea of the setup configuration is to have the ApacheWebserver installed and allow
the use of pages in HTML and PHP. In order to make Apache work properly, the following is
necessary:

• Install Apache2 HTTP Server (version 2.4.12);

• Install Apache Portable Runtime;

• Install Perl Compatible Regular Expressions (PCRE);

• Install PHP: Hypertext Preprocessor (PHP5 - including the package libapache2-mod-php5);

• Some configurations at Apache (p.e. enable mod_rewrite module).

At the beginning of setup configuration, it was a need to download the sources of software,
compile and install it. However, after some experiments, the script of compilation, installa-
tion and configuration takes more than ten minutes to perform one experiment, which is time-
consuming and unaffordable. Therefore, it was found a solution to reduce the execution time

34

Evaluating the robustness of the Cloud

of each experiment, a kind of mechanism which is able to bypass the runtime. After some con-
versations with supervisor, the solution found was to use mechanisms of caching in compiling
the Apache source, because we need to compile Apache each time that the mod_rewrite.c file is
changed, taking over more that 90% of the runtime. After some time spent in the study of the
GCC caching mechanisms, and attempt to apply it in Apache, it was concluded that given the
complexity and high number of dependencies of module mod_rewrite, its use would not be fea-
sible. Following this and given the unsolved problem, after further research, we found a APache
eXtenSion tool (APXS). This tool makes possible the installation of new modules without the
need to compile all the Apache again, and that actually what was intended. The use of APXS
made possible the execution of experiences in useful time.

In order to setup properly Apache WebServer and consequently the rewriting module, it
was necessary to make changes at the following files: 000-default.conf, apache2.conf, httpd.conf,
.htaccess. The rewriting module was based in rules and that rules for that are in file .htaccess, as
represented in Listing 5.1.

1 # . h t a c e s s mod_ r ewr i t e
2
3 Rewr i t eEng ine On
4
5 # i f d i r e c t o r y e x i t s , n o t app ly any r u l e
6 RewriteCond %{REQUEST_FILENAME } !−d
7 # i f f i l e e x i t s , n o t app ly any r u l e
8 RewriteCond %{REQUEST_FILENAME } !− f
9

10 Rewr i t eRu l e ^ (. *) $ index . php? u r l =$1 [QSA , L]

Listing 5.1: Configuration of mod_rewrite rules in .htacess file.

The first command line RewriteEngine On activates RewriteEngine, if it is not already acti-
vated. The next two lines “RewriteCond %REQUEST_FILENAME !-d” and “RewriteCond %RE-
QUEST_FILENAME !-f” specify that just if the file with the specified name in the browser does
not exist, or the directory in the browser does not exist, the rewriting proceed to the rewrite
rule below. The last and most important rule are “RewriteRule ^(.*)$ index.php?url=$1 [QSA,L]”
because if the file or directory does not exist, the Rewrite Engine will change the request based
in the rule. The QSA, in the rule, means Append query string. In other words, each parameter in
the url will be passed to the destination url as parameter, first parameter as $1, second parameter
as $2, third parameter as $3 and so on. The L means that is the Last and RewriteEngine can stop
processing rules, there are no more rules to process.

5.2 Classification of failures
In the beginning of this work, a study was done on two severity scales of the behavior of

two different systems: a computer system and a cloud scenario. Both scales are not applicable to
evaluate the results of the setup in question, because the components of the system are different.
In the first system only exists a computer with some processes or tasks, and in the second, a
cloud environment with a native-hypervisor and are injected faults in hypervisor. In this case,
we have a computer with the emulation of a Cloud service and do the injection of software
faults in a Web Server, named Apache. After the injection of several faults, the behaviors were
evaluated using three steps. In the first are selected only the unique behaviors, in second step are
analyzed and compared to create a classification, and in the end, a script will execute to evaluate
all the behaviors, one by one, through the classification. The behaviors were being grouped in
three categories:

• Correct - The webserver;

• Wrong output - Occurs when the webserver returns incorrect information, or no informa-
tion;

• Apache error - All the errors directly related with the behavior of apache2, not found
with/without correct url, Internal Server Error, Ok, Forbiden, Bad request.

35

Evaluating the robustness of the Cloud

After the classification, all the results need to be evaluated to can take conclusions about
them. In the Appendix F is showed some behaviors of Apache and their classification.

5.3 Results and Analysis
During the fault injection stage, the BugTor evaluates the source code nodes to identify where

can apply each one of the operators (all the constraints, related with the operator, need to be true
in that location). For that reason, by evaluating the code of the Apache module “mod_rewrite”,
1474 locations were identified to inject faults.

In the Table 10, it can be seen the number of patches created by each one of the operators.
It should be noted that the number of patches created by the application of operator MLPA is
quite large, as can be seen in Figure 9, due to it removes a small part of algorithm. That part of
algorithm is any combination of up to five function calls and/or statements. It produced more
than 1/3 of patches created.

Operator Nr. of Patches
MIFS 239
MLAC 79
MFC 162
MIA 260
MLOC 41
MLPA 526
MVAE 25
MVAV 15
MIEB 54
MVIV 14
WVAV 24
WAEP 34
WPFV 1
Total 1474

Table 10: Number of patchs.

Number Percentage
No effect 1261 85,55%
With effect 213 14,45%
Experiments 1474 100%

Table 11: Results of experiments.

Figure 9: Number of patches by operator.

Figure 10: Results of
experiments.

On the other hand, it is curious the existence of only one patch created through the appli-
cation of operator WPFV. This operator is based on the replacement of a function parameter by
another of the same type. This limitation is related to the environment in which the fault is in-
jected, since the lack of it could trigger compilation errors, at the source code environment. The
existence of only one patch is related to the need of parameter changed to be exactly of the same
type of initial parameter. In C and C++ languages, the programmers create their own structures
of a specific type, to be easier to represent the data in the application. For this reason, the types
of variables used are quite different in a function and its number of occurrences low.

36

Evaluating the robustness of the Cloud

The injected faults produced anomalous effects in 213 trials (as can be seen in the Table 11
and Figure 10), corresponding to 14,45% of injected faults. The number of experiences is justified
due to the constraints that need to be evaluated in each potential local in the code. If all the
constraints of one operator are valid, then the operator will be applied.

After an initial assessment of the results of experiments performed, it was needed to verify
each one of the anomalous behavior and identifying correctly what differences exist between
each one and its correct behavior. The anomalous behaviors of the performed tests are showed
in the Table 12.

Apache PHPInfo Out PHPBench System N
1 W W W W C 86
2 C C A C C 61
3 A A A A C 25
4 C C W C C 19
5 W W C W C 19
6 C W A W C 1
7 A W W W C 1
8 A A A C C 1

Table 12: Results of experiments by behavior (Ordered by number of
occurrences).

Classification of failures
A Apache Error
C Correct
W Wrong output

Table 13: Classification of
failures.

They are ordered by the number of occurrences - N, divided into the following categories:

• Apache - This is the most basic test that should be done at Apache after installation. It is
based on a request to index.html. The response is typically a page with some information
about the Apache installation, with the string: “It works”, at the beginning;

• PHPInfo - This test was done to check the operation of PHP. It gives a large amount
of information to the user, related to the configuration settings, PHP version, OS version
information, etc;

• Out - Request with parameters that will be shown at the response;

• PHPBench - Verify and measure the time that certain PHP functions take related with the
manipulation of strings and arrays;

• System - Tests at the system to verify if it works properly.

It can be seen that the operation of Apache is affected by the faults introduced too. However,
there is no rule that rewrite files when they are available in the directory, which is the case of
Apache “It works!”.

In the Tables 15, 16, 17, 18 are shown the individual results for each one of the performed
tests. In these tables, the behavior was not restricted to the initial classification due to the very
different types of errors in the Apache Web Server, see Table 14.

Description
1 Bad request
2 Empty
3 Forbidden
4 Found
5 Internal Server Error
6 Not found - url OK
7 Not found - wrong url
8 Apache error - Ok
9 Wrong output

Table 14: Kind of behaviors. Examples in
the Appendix F

Behaviors
1 2 3 4 5 6 7 8 9 Total

MIFS 0 4 0 0 2 0 0 0 2 8
MLAC 0 0 0 0 0 0 0 0 1 1
MFC 0 2 0 0 1 0 0 0 0 3
MIA 0 3 1 0 11 0 0 0 3 18
MLOC 0 0 0 0 1 0 0 0 0 1
MLPA 0 68 1 0 6 0 1 0 14 90
MVAE 0 4 0 0 1 0 0 0 2 7
MVAV 0 0 0 0 0 0 0 0 0 0
MIEB 0 1 0 0 1 0 0 0 1 3
MVIV 0 0 0 0 1 0 0 0 0 1
WVAV 0 0 0 0 0 0 0 0 0 0
WAEP 0 0 0 0 0 0 0 0 0 0
WPFV 0 0 0 0 0 0 0 0 0 0
Total 0 82 2 0 24 0 1 0 23 132

Table 15: Apache tests.

37

Evaluating the robustness of the Cloud

In the Table 15, it is possible to see that the Apache test have 132 anomalous behaviors from
the 213 trials with effects. The operator that causes most failures is theMLPA, being related to the
number of patches created, already explained. The most frequent behavior is a Empty response
The other most frequent behaviors are the Internal Server Error andWrong output. There are two
other anomalous behaviors but with a very low frequency, a Forbidden and a Not found - wrong
url, with frequency two and one, respectively.

The results obtained in PHPInfo and PHPBench tests, represented in the Tables 16 and 17,
were similar. This happens because the PHPInfo and the PHPBench are based in two pages with
different PHP code and the rewriting process for both are the same. This is related with the
incidence of these tests on the same principles, the same workflow in Apache.

Behaviors
1 2 3 4 5 6 7 8 9 Total

MIFS 0 4 0 0 2 0 0 0 2 8
MLAC 0 0 0 0 0 0 0 0 1 1
MFC 0 2 0 0 1 0 0 0 0 3
MIA 0 3 1 0 11 0 0 0 4 19
MLOC 0 0 0 0 1 0 0 0 0 1
MLPA 0 69 0 0 6 0 1 0 14 90
MVAE 0 4 0 0 1 0 0 0 2 7
MVAV 0 0 0 0 0 0 0 0 0 0
MIEB 0 1 0 0 1 0 0 0 1 3
MVIV 0 0 0 0 1 0 0 0 0 1
WVAV 0 0 0 0 0 0 0 0 0 0
WAEP 0 0 0 0 0 0 0 0 0 0
WPFV 0 0 0 0 0 0 0 0 0 0
Total 0 83 1 0 24 0 1 0 24 133

Table 16: PHPInfo tests.

Behaviors
1 2 3 4 5 6 7 8 9 Total

MIFS 0 4 0 0 2 0 0 0 2 8
MLAC 0 0 0 0 0 0 0 0 1 1
MFC 0 2 0 0 1 0 0 0 0 3
MIA 0 3 1 0 11 0 0 0 4 19
MLOC 0 0 0 0 1 0 0 0 0 1
MLPA 0 69 0 0 6 0 0 0 14 89
MVAE 0 4 0 0 1 0 0 0 2 7
MVAV 0 0 0 0 0 0 0 0 0 0
MIEB 0 1 0 0 1 0 0 0 1 3
MVIV 0 0 0 0 1 0 0 0 0 1
WVAV 0 0 0 0 0 0 0 0 0 0
WAEP 0 0 0 0 0 0 0 0 0 0
WPFV 0 0 0 0 0 0 0 0 0 0
Total 0 83 1 0 24 0 0 0 24 132

Table 17: PHPBench tests.

Behaviors
1 2 3 4 5 6 7 8 9 Total

MIFS 1 5 0 0 4 3 0 0 5 18
MLAC 0 0 0 0 1 2 0 0 0 3
MFC 0 3 0 0 1 2 0 0 1 7
MIA 1 4 1 1 13 17 0 2 3 42
MLOC 0 0 0 0 1 0 0 0 1 2
MLPA 0 73 0 0 8 23 1 0 2 107
MVAE 0 5 0 0 1 0 0 0 1 7
MVAV 0 1 0 0 0 0 0 0 0 1
MIEB 0 1 0 0 1 2 0 0 1 5
MVIV 0 0 0 0 1 1 0 0 0 2
WVAV 0 0 0 0 0 0 0 0 0 0
WAEP 0 0 0 0 0 0 0 0 0 0
WPFV 0 0 0 0 0 0 0 0 0 0
Total 2 92 1 1 31 50 1 2 14 194

Table 18: Out tests.

38

Evaluating the robustness of the Cloud

In the Table 18, it is possible to see the results of tests with some parameters. It is also possible
to verify that four anomalous behaviors just happen in this test, Not found - url ok, Bad Request,
OK and Found. As might be expected, this is the test where there are more errors due to greater
use of module “mod_rewrite”. All the requests are rewritten, and the parameters are presented
on a page in PHP.

Figure 11: Effects by patches.

In the chart, represented in the Figure 11, it can be verified that the operators that produced
more errors were MLPA, MIA, MIFS and MVAE. The first three correspond also to those who
injected more failures.

Figure 12: Effects by behavior.

As discussed above, the most anomalous behaviors occurred during the test Out, which is
represented in Figure 12. In the same figure can be verified that the anomalous behavior that
happens more often is the behavior Empty.

Moreover, it should be noted that the error Not found - url ok occurs often. This behavior
means that the request is done correctly, and received properly by the Apache, but for some
reason it is not rewritten correctly, and because there is no file by that name and in that directory,
returns Not Found.

39

Evaluating the robustness of the Cloud

Apache PHPInfo Out PHPBench N
1 Empty Empty Empty Empty 82
2 Correct Correct Not found - url OK Correct 49
3 Internal Server Error Internal Server Error Internal Server Error Internal Server Error 24
4 Wrong output Wrong output Correct Wrong output 19
5 Correct Correct Wrong output Correct 10
6 Correct Correct Empty Correct 9
7 Correct Correct Internal Server Error Correct 7
8 Wrong output Wrong output Wrong output Wrong output 4
9 Correct Correct Ok Correct 2
10 Correct Correct Bad request Correct 2
11 Not found - wrong url Not found - wrong url Not found - wrong url Correct 1
12 Correct Wrong output Not found - url OK Wrong output 1
13 Forbidden Empty Empty Empty 1
14 Correct Correct Found Correct 1
15 Forbidden Forbidden Forbidden Forbidden 1

Table 19: Results of experiments by specific behavior (Table 14, Ordered by number of occurrences).

In the Table 19, it is possible to verify that the results are the same in the four tests, involving
111 (sum of number of occurrences of lines 1, 3, 8 and 9) of 213 cases. Moreover, this only happens
to the errors: Empty, Internal Server Error, Wrong output and Forbidden. In the same table, it is
possible to see that only the test Out is erroneous in 81 experiments (visible in lines 2, 5, 6, 7, 9,
10, 12 and 14), the others are correct. The produced errors have many types, but the errors: Not
found - url ok, Bad Request, Ok and Found, only happen in these cases.

Curiously, in some cases, instead of getting the right result, it is possible to get the exactly
path where the HTML or PHP files are located, the DocumentRoot of Apache, something like
each parameter is a folder of path. The DocumentRoot is /home/master/www, and are shown to
the user at the Listings 45 and 46. This can be a serious security fault and it happened with, for
example, operators MIEB_16 and MIFS_173, represented in Listings 50 and 49, respectively.

In another case, it is possible to view part of the rewriting rule of mod_rewrite, as can be
seen in the Listing 39. Furthermore, there are two situations, applying the patches MIA_241 and
MIA_257 (represented in Listings 51 and 52) where it is possible to see the page of php code in
question, rather than the result of execution, as in the example represented in the Listing 5.2.

1 <?php
2
3 / / Show a l l i n f o rma t i on , d e f a u l t s to INFO_ALL
4 php in fo () ;
5
6 ?>

Listing 5.2: Behavior: PHPInfo - Wrong.

This suggests that a problem has occurred during the loading of the PHP module. Thereby
showing a single fault introduced into Apache module affects the operation of other, as is the
case of PHP module.

40

6 Conclusion

In this chapter, the main conclusions regarding the work performed during this MSc will be
described. Furthermore, it will also point out some possible future research directions.

6.1 Summary

The Cloud is a new model that allows to deliver on-demand IT services. The usage of this
model is increasing, because it provides several advantages to the users and organizations, such
as accommodation of larger loads only by adding resources. Lower costs is another significant
benefit, considering that, for example, when an organization transfers an application to the cloud,
they also do not have anymore to pay the fixed costs of having an IT infrastructure. However,
the Cloud is not free from disturbances. Therefore, the ability of a critical system to handle bugs
must be verified. This verification requires the use of fault injector tools, which are created on
the software or hardware level. The development of a fault injector tool based on software level is
presented in the current dissertation to contribute to the dependability and robustness evaluation
of cloud systems.

This fault injector, named BugTor, is able to inject thirteen of the most representative fault
types at source code (according to the specification of Durães & Madeira [Durães and Madeira,
2006]). This tool has been developed using the CDT Plugin, which has some interesting charac-
teristics to manipulate source code, create an AST from source and change the nodes.

However, the use of this Plugin presents some limitations, for example the macros are not
mapped in the created tree. Therefore, the code expanded through the macros are unreadable to
the CDT. Nevertheless, there are two ways to solve this problem: solve the macros before inject
faults, using GCC, or reduce the amount of code. If none of these options are feasible, it was
created a workaround allowing the replacement of macros. Using this workaround, the faults
are not injected into the expanded code of macros.

The development of this project required facing several challenges related to the decisions
taken, such as the use of reflection to obtain the modifications to perform in the code of the tree
(which later became native code), as well as the problem of macros, described above.

In the experiments performed to demonstrate the tool, faults are injected in Apache Web
Server, which is one of the most usedWeb Server. The faults are injected through the application
of each one of the most representative operators, in the module mod_rewrite of Apache. This
module has the greater McCabe complexity in the source code of Apache Web Server.

Nevertheless, the experiments done can be considered satisfactory. The results of the per-
formed tests with Apache show that the tool actually works, which is useful for future testing
in Cloud environments. The injected faults induced Apache to behave anomalous in 213 times,
from the total of 1474 experiments, equivalent to 15%. These experiments presented some prob-
lems that occur in Apache, such as the information related to the DocumentRoot path or the code
of web page, instead of the result of its execution. These problems, among others (the use of
old versions, combined with the security vulnerabilities [10]) caused a reduction in the Apache
usage rate in recent years, although it is still the most widely used.

Finally, the outcome of this work is a fault injector ready for further testing with other appli-
cations in cloud environments. The use of this tool revealed some Apache Web Server problems
regarding the way it reacts in the presence of faults. Even considering that the environment
where the tests were performed is similar to a real cloud environment, it would be difficult to
proceed with a full assessment of the cloud system.

41

Evaluating the robustness of the Cloud

6.2 Future Work
This work was based mainly in the creation of a SFI. Therefore, the number of experiments

carried out was relatively low. Thus, in the future, it is important to carry out experiments in
different scenarios, such as:

• Two virtual machines, one to repeat the performed tests with the presence of faults,
and other without faults to verify if the isolation between virtual machines is not affected,
represented at Figure 13. The goal of this experiment is to evaluate whether through fault
injection in one of the virtual machines, the others are affected, checking if there was
propagation of failures;

Figure 13: Experiment.

• Another type of hypervisor, native-hypervisor, instead of hosted-hypervisor, to check
if the obtained results are the same;

• Faults injected in the hypervisor, to verify its behavior in the presence of software
faults;

• A real cloud service provider.

Moreover, as mentioned in this dissertation, macros have been one of the main limitations
encountered. Therefore, it would be pertinent and interesting to develop amechanism that allows
the reading and editing of macros in CDT Plugin.

42

7 References

[Ahmed, 2009] Ahmed, A. (2009). Software Testing as a Service. CRC Press.

[Armbrust et al., 2010] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2010). A view of cloud computing.
Commun. ACM, 53(4):50–58.

[Avižienis et al., 2004] Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic con-
cepts and taxonomy of dependable and secure computing. Dependable and Secure Computing,
IEEE Transactions on, 1(1):11–33.

[Bridge and Miller, 1998] Bridge, N. and Miller, C. (1998). Orthogonal defect classification using
defect data to improve software development. Software Quality, 3(1):1–8.

[Carreira et al., 1998] Carreira, J., Madeira, H., and Silva, J. G. (1998). Xception: A technique
for the experimental evaluation of dependability in modern computers. Software Engineering,
IEEE Transactions on, 24(2):125–136.

[Cerveira, 2015] Cerveira, F. (2015). Benchmarking de infraestruturas de virtualização para a
cloud. Thesis, pages 0–53.

[Cerveira et al., 2015] Cerveira, F., Barbosa, R., Madeira, H., and Araujo, F. (2015). Recovery for
virtualized environments.

[Chillarege, 2004] Chillarege, R. (2004). Orthogonal Defect Classification. Handbook of Software
Reliability Engineering, ed. Michael R. Lyu (Los Alamitos, CA: IEEE Computer Science Press.

[Cotroneo, 2013] Cotroneo, D. (2013). Innovative Technologies for Dependable OTS-Based Critical
Systems: Challenges and Achievements of the CRITICAL STEP Project. Springer Publishing
Company, Incorporated.

[De Florio, 2012] De Florio, V. (2012). Technological Innovations in Adaptive and Dependable Sys-
tems: Advancing Models and Concepts: Advancing Models and Concepts. Premier reference
source. Information Science Reference.

[Diez and Silva, 2014] Diez, O. and Silva, A. (2014). Resilience of cloud computing in critical
systems. Quality and Reliability Engineering International, 30(3):397–412.

[Durães, 2005] Durães, J. A. (2005). Faultloads baseadas em falhas de software para testes
padronizados de confiabilidade. Thesis, pages 0–269.

[Durães and Madeira, 2006] Durães, J. A. and Madeira, H. S. (2006). Emulation of software
faults: A field data study and a practical approach. Software Engineering, IEEE Transactions
on, 32(11):849–867.

[Fornaeus, 2010] Fornaeus, J. (2010). Device hypervisors. In Proceedings of the 47th Design Au-
tomation Conference, pages 114–119. ACM.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns:
elements of reusable object-oriented software. Pearson Education.

43

Evaluating the robustness of the Cloud

[ISO/IEC/IEEE 24765, 2010] ISO/IEC/IEEE 24765 (2010). Systems and software engineering –
vocabulary.

[Jhawar et al., 2012] Jhawar, R., Piuri, V., and Santambrogio, M. (2012). A comprehensive con-
ceptual system-level approach to fault tolerance in cloud computing. In Systems Conference
(SysCon), 2012 IEEE International, pages 1–5. IEEE.

[Koopman et al., 1997] Koopman, P., Sung, J., Dingman, C., Siewiorek, D., and Marz, T. (1997).
Comparing operating systems using robustness benchmarks. In Reliable Distributed Systems,
1997. Proceedings., The Sixteenth Symposium on, pages 72–79. IEEE.

[Madeira et al., 2000] Madeira, H., Costa, D., and Vieira, M. (2000). On the emulation of soft-
ware faults by software fault injection. In Dependable Systems and Networks, 2000. DSN 2000.
Proceedings International Conference on, pages 417–426. IEEE.

[Madeira et al., 2015] Madeira, H., Natella, R., and Cotroneo, D. (2015). Assessing dependability
with software fault injection: A survey. volume 48.

[Martins et al., 2002] Martins, E., Rubira, C. M., and Leme, N. G. (2002). Jaca: A reflective fault
injection tool based on patterns. In Dependable Systems and Networks, 2002. DSN 2002. Pro-
ceedings. International Conference on, pages 483–487. IEEE.

[McCabe, 1976] McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE Trans-
actions on, (4):308–320.

[Mell and Grance, 2011] Mell, P. and Grance, T. (2011). The nist definition of cloud computing.

[Natella, 2011] Natella, R. (2011). Achieving representative faultloads in software fault injection.

[Nindel-Edwards and Steinke, 2014] Nindel-Edwards, J. and Steinke, G. (2014). Ethical issues in
the software quality assurance function. Communications of the IIMA, 8(1):6.

[Popek and Goldberg, 1974] Popek, G. J. and Goldberg, R. P. (1974). Formal requirements for
virtualizable third generation architectures. Communications of the ACM, 17(7):412–421.

[Regina et al., 2003] Regina, L., Martins, E., et al. (2003). Jaca—a software fault injection tool.
page 667. IEEE.

[Sanches et al., 2011] Sanches, B. P., Basso, T., and Moraes, R. (2011). J-swfit: A java software
fault injection tool. In Dependable Computing (LADC), 2011 5th Latin-American Symposium
on, pages 106–115. IEEE.

[Schouten, 2013] Schouten, E. (2013). IBM® SmartCloud® Essentials. Packt Publishing Ltd.

[Sommerville, 2006] Sommerville, I. (2006). Software Engineering: (Update) (8th Edition) (Interna-
tional Computer Science). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Vieira and Madeira, 2009] Vieira, M. and Madeira, H. (2009). From performance to dependabil-
ity benchmarking: a mandatory path. In Performance Evaluation and Benchmarking, pages
67–83. Springer.

[Wolter et al., 2012] Wolter, K., Avritzer, A., Vieira, M., and van Moorsel, A. (2012). Resilience
assessment and evaluation of computing systems. Springer.

[Wong et al., 1997] Wong, W. E., Horgan, J. R., London, S., and Agrawal, H. (1997). A study of
effective regression testing in practice. In Software Reliability Engineering, 1997. Proceedings.,
The Eighth International Symposium on, pages 264–274. IEEE.

44

8 Webography

[1] “Microsoft azure,” Microsoft, @15-January-2016. [Online]. Available: https://azure.
microsoft.com/pt-pt/

[2] “Amazon ec2,” Amazon, @15-January-2016. [Online]. Available: https://aws.amazon.com/
ec2/

[3] “Google cloud,” Google, @15-January-2016. [Online]. Available: https://cloud.google.com//

[4] “Difference between different Cloud services,” @15-January-
2016. [Online]. Available: http://www.hanusoftware.com/azurezone/
whats-the-difference-between-different-cloud-services-like-iaas-paas-and-saas/

[5] VMware, “Vmware workstation pro,” 2016, @15-January-2016. [Online]. Available:
http://www.vmware.com/products/workstation

[6] “Virtualbox.org,” @15-January-2016. [Online]. Available: http://www.virtualbox.org

[7] “Qemu - open source processor emulator,” @15-January-2016. [Online]. Available:
http://wiki.qemu.org/Main_Page

[8] NetCraft, “December 2015 - web server survey,” @15-January-2016. [Online]. Available:
http://news.netcraft.com/archives/2015/12/31/december-2015-web-server-survey.html

[9] T. Mättig, “My php performance benchmarks,” @22-January-2016. [Online]. Available:
http://maettig.com/code/php/php-performance-benchmarks.php

[10] NetCraft, “Are there really lots of vulnerable apache web servers?” @27-
January-2016. [Online]. Available: http://news.netcraft.com/archives/2014/02/07/
are-there-really-lots-of-vulnerable-apache-web-servers.html

[11] “Gs managing your thesis,” @15-January-2016. [Online]. Available: https://www.scribd.
com/doc/243445171/GS-ManagingYourThesis

45

https://azure.microsoft.com/pt-pt/
https://azure.microsoft.com/pt-pt/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://cloud.google.com//
http://www.hanusoftware.com/azurezone/whats-the-difference-between-different-cloud-services-like-iaas-paas-and-saas/
http://www.hanusoftware.com/azurezone/whats-the-difference-between-different-cloud-services-like-iaas-paas-and-saas/
http://www.vmware.com/products/workstation
http://www.virtualbox.org
http://wiki.qemu.org/Main_Page
http://news.netcraft.com/archives/2015/12/31/december-2015-web-server-survey.html
http://maettig.com/code/php/php-performance-benchmarks.php
http://news.netcraft.com/archives/2014/02/07/are-there-really-lots-of-vulnerable-apache-web-servers.html
http://news.netcraft.com/archives/2014/02/07/are-there-really-lots-of-vulnerable-apache-web-servers.html
https://www.scribd.com/doc/243445171/GS-ManagingYourThesis
https://www.scribd.com/doc/243445171/GS-ManagingYourThesis

Appendices

47

A Gantt diagrams

Figure 14: First semester Gantt.

Figure 15: Second semester Gantt.

49

B Risks table

Figure 16: Risks (Adapted from Managing Your Thesis: a Quick Reference Guide by Curtin University [11]).

50

C Constraints - examples
Constraint C01 - Return value of the function must not be used

• Related with the operator: MFC

1 (. . .)
2
3 i = f u n c t i o n () ;
4
5 (. . .)

Listing 1: Constraint example: C01 - False.

1 (. . .)
2
3 f u n c t i o n () ;
4
5 (. . .)

Listing 2: Constraint example: C01 - True.

Constraint C02 - Call/Assignment/The if construct/The statements must not be the only
statement in the block

• Related with the operators: MIFS, MFC, MLPA, MVAE, MVAV, MVIV

1 (. . .)
2 {
3 i = 1 ;
4 }
5
6 (. . .)

Listing 3: Constraint example: C02 - False.

1 (. . .)
2 {
3 i = 1 ;
4 i = f u n c t i o n () ;
5 }
6 (. . .)

Listing 4: Constraint example: C02 - True.

Constraint C03 - Variable must be inside stack frame

• Related with the operators: MVAE, MVAV, MVIV, WVAV, WPFV

1 (. . .)
2
3 in t i = 0 ;
4
5 (. . .)

Listing 5: Constraint example: C03 - False.

1 (. . .)
2 {
3 in t i = 1 ;
4 }
5 (. . .)

Listing 6: Constraint example: C03 - True.

Constraint C04 - Must be the first assignment for that variable in the module

• Related with the operators: MVIV, WVAV

1 (. . .)
2
3 in t i = 0 ;
4 i = 2 0 ;
5
6 (. . .)

Listing 7: Constraint example: C04 - False.

1 (. . .)
2
3 in t i ;
4 i = 0 ;
5
6 (. . .)

Listing 8: Constraint example: C04 - True.

1 (. . .)
2
3 in t i = 0 ;
4
5 (. . .)

Listing 9: Constraint example: C04 - True.

51

Constraint C05 - Assignment must not be inside a loop

• Related with the operator: MVIV

1 (. . .)
2 while (i < 1 0) {
3 in t j = 0 ;
4 }
5 (. . .)

Listing 10: Constraint example: C05 - False.

1 (. . .)
2 in t f u n c t i o n () {
3 in t i = 0 ;
4 }
5 (. . .)

Listing 11: Constraint example: C05 - True.

1 (. . .)
2 do {
3 in t j = 0 ;
4 } while (i < 1 0) ;
5 (. . .)

Listing 12: Constraint example: C05 - False.

1 (. . .)
2 for (in t i = 0 ; i < 10 ; i ++) {
3 in t j = 0 ;
4 }
5 (. . .)

Listing 13: Constraint example: C05 - False.

Constraint C06 - Assignment must not be part of a for construct

• Related with the operators: WVAV, MVIV, MVAV, MVAE

1 (. . .)
2
3 in t i = 0 ;
4
5 (. . .)

Listing 14: Constraint example: C06 - False.

1 (. . .)
2 for (in t i = 0 ; i < 10 ; i ++) {
3 (. . .)
4 }
5 (. . .)

Listing 15: Constraint example: C06 - True.

Constraint C07 - Must not be the first assignment for that variable in the module

• Related with the operators: MVAE, MVAV

Is the negation of constraint C04.

Constraint C08 - The if construct must not be associated to an else construct

• Related with the operators: MIFS, MIA

1 (. . .)
2 i f (i < 1 0) {
3
4 } e l se {
5
6 }
7 (. . .)

Listing 16: Constraint example: C08 - False.

1 (. . .)
2 i f (i < 1 0) {
3
4 }
5 i = 2 0 ;
6
7 (. . .)

Listing 17: Constraint example: C08 - True.

52

ConstraintC09 - Statementsmust not includemore thanfive statements andnot include
loops

• Related with the operators: MIFS, MIA

1 (. . .)
2 in t i = 0 ;
3 while (j < 1 0) {
4 i ++ ;
5 }
6 (. . .)

Listing 18: Constraint example: C09 - False.

1 (. . .)
2 in t i = 0 ;
3 in t j = 1 0 ;
4 in t coun t e r = 0 ;
5 (. . .)

Listing 19: Constraint example: C09 - True.

Constraint C10 - Statements are in the same block, do not include more than five state-
ments, nor loops

• Related with the operator: MLPA

1 (. . .)
2 {
3 in t i = 0 ;
4 while (j < 1 0) {
5 i ++ ;
6 }
7 }
8 (. . .)

Listing 20: Constraint example: C10 - False.

1 (. . .)
2 {
3 in t i = 0 ;
4 in t j = 1 0 ;
5 in t coun t e r = 0 ;
6 }
7 (. . .)

Listing 21: Constraint example: C10 - True.

Constraint C11 - There must be at least two variables in this module

• Related with the operator: WPFV

1 (. . .)
2 in t f u n c t i o n ()
3 {
4 in t i = 0 ;
5 while (i < 1 0) p r i n t (i) ;
6 }
7 (. . .)

Listing 22: Constraint example: C11 - False.

1 (. . .)
2 in t f u n c t i o n ()
3 {
4 in t i = 0 ;
5 in t j = 0 ;
6 return c a l c (i , j) ;
7 }
8 (. . .)

Listing 23: Constraint example: C11 - True.

Constraint C12 - Must have at least two branch conditions

• Related with the operators: MLAC, MLOC

1 (. . .)
2 i f (j < 5 0) {
3
4 }
5 (. . .)

Listing 24: Constraint example: C12 - False.

1 (. . .)
2 i f (i < 10 | | i > 2 0) {
3
4 }
5 (. . .)

Listing 25: Constraint example: C12 - True.

53

1 (. . .)
2 while (j < 5 0) {
3
4 }
5 (. . .)

Listing 26: Constraint example: C12 - False.

1 (. . .)
2 i f (i < 10 | | i > 20 && j < 5 0) {
3
4 }
5 (. . .)

Listing 27: Constraint example: C12 - True.

Constraint C13 - The if construct must be associated to an else construct

• Related with the operator: MIEB

Is the negation of constraint C08.

54

D Macros

1 # include <AL/ a l . h>
2 # include <AL/ a l c . h>
3 # include <AL/ a l u t . h>
4 # include <GL/ g l . h>
5 # include <GL/ g lu . h>
6 # include <GL/ g l u t . h>
7
8 # include < s t d i o . h>
9 # include < s t d l i b . h>

10 # include <math . h>
11 # include < s t r i n g >
12 # include < s t r i n g . h>
13 # include ” RgbImage . h ”
14 # include <ss t ream >
15 # include < s t r i n g >
16 # include < ios t r eam >
17 # include <vec to r > / / f o r s t d : : v e c t o r
18 # include ” m a t e r i a i s . h ”
19
20 #define BLUE 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0
21 #define RED 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0
22 #define GREEN 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0
23 #define WHITE 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0
24 #define BLACK 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0
25
26 #define NUM_PARTICLES 1000 / * Number o f p a r t i c l e s * /
27 #define NUM_DEBRIS 70 / * Number o f d e b r i s * /
28 #define NUM_PARTICLES_RAIN 10000
29
30 void i n i t () {
31 in t x , z ;
32
33 g l Enab l e (GL_FOG) ;
34 g lC l e a rCo l o r (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
35 g lC l e a rDep th (1 . 0) ;
36 g l Enab l e (GL_DEPTH_TEST) ;
37
38 for (z = 0 ; z < 2 1 ; z ++) {
39 for (x = 0 ; x < 2 1 ; x ++) {
40 g round_po in t s [x] [z] [0] = x − 1 0 . 0 ;
41 g round_po in t s [x] [z] [1] = accum ;
42 g round_po in t s [x] [z] [2] = z − 1 0 . 0 ;
43
44 g round_co l o r s [z] [x] [0] = r ; / / r e d v a l u e
45 g round_co l o r s [z] [x] [1] = g ; / / g r e e n va l u e
46 g round_co l o r s [z] [x] [2] = b ; / / b l u e v a l u e
47 g round_co l o r s [z] [x] [3] = 0 . 0 ; / / acummulat ion f a c t o r
48 }
49 }
50 }
51
52 (. . .)

Listing 28: Example of code with macros in the beginning.

55

1 s t a t i c char * lookup_map_program (r e q u e s t _ r e c * r , a p r _ f i l e _ t * fp in , a p r _ f i l e _ t *
↪→ fpout , char * key)

2 {
3 char * buf ;
4 char c ;
5 a p r _ s i z e _ t i , nbytes , combined_ len = 0 ;
6 a p r _ s t a t u s _ t rv ;
7 const char * e o l = APR_EOL_STR ;
8 a p r _ s i z e _ t e o l c = 0 ;
9 in t f ound_n l = 0 ;

10 r e s u l t _ l i s t * b u f l i s t = NULL , * cu rbu f = NULL ;
11 # ifndef NO_WRITEV
12 s t ruc t i o v e c i ova [2] ;
13 a p r _ s i z e _ t n iov ;
14 #endif
15 i f (f p i n == NULL | | f pou t == NULL | | a p _ s t r c h r (key , ’ \ n ’)) {
16 return NULL ;
17 }
18 i f (r ew r i t e _map r _ l o c k_ a c qu i r e) {
19 rv = ap r_g l oba l _mu t ex_ l o ck (r ew r i t e _map r _ l o c k_ a c qu i r e) ;
20 i f (rv != APR_SUCCESS) {
21 a p _ l o g _ r e r r o r (APLOG_MARK, APLOG_ERR , rv , r , APLOGNO(0 0 6 5 9)
22 ” ap r _g l oba l _mu t ex_ l o ck (r ew r i t e _map r _ l o c k_ a c qu i r e) ␣ ”
23 ” f a i l e d ”) ;
24 return NULL ;
25 }
26 }
27 # i fde f NO_WRITEV
28 nby te s = s t r l e n (key) ;
29 a p r _ f i l e _ w r i t e _ f u l l (f p in , key , nbytes , NULL) ;
30 nby te s = 1 ;
31 a p r _ f i l e _ w r i t e _ f u l l (f p in , ” \ n ” , nbytes , NULL) ;
32 # e l se
33 i ova [0] . i o v _ba s e = key ;
34 i ova [0] . i o v _ l e n = s t r l e n (key) ;
35 i ova [1] . i o v _ba s e = ” \ n ” ;
36 i ova [1] . i o v _ l e n = 1 ;
37 n iov = 2 ;
38 a p r _ f i l e _ w r i t e v _ f u l l (f p in , iova , niov , &nby te s) ;
39 #endif
40 buf = a p r _ p a l l o c (r−>pool , REWRITE_PRG_MAP_BUF + 1) ;
41 nby te s = 1 ;
42 a p r _ f i l e _ r e a d (fpout , &c , &nby te s) ;
43 do {
44 i = 0 ;
45 while (nby t e s == 1 && (i < REWRITE_PRG_MAP_BUF)) {
46 i f (c == e o l [e o l c]) {
47 i f (! e o l [++ e o l c]) {
48 −−e o l c ;
49 i f (i < e o l c) {
50 curbuf−>l en −= e o l c − i ;
51 i = 0 ;
52 } e l se {
53 i −= e o l c ;
54 }
55 ++ found_n l ;
56 break ;
57 }
58 } e l se
59 i f (e o l c) {
60 e o l c = 0 ;
61 } e l se
62 i f (c == ’ \ n ’) {
63 ++ found_n l ;
64 break ;
65 }
66
67 buf [i ++] = c ;
68 a p r _ f i l e _ r e a d (fpout , &c , &nby te s) ;
69 }

56

70 i f (b u f l i s t | | (nby t e s == 1 && ! found_n l)) {
71 i f (! b u f l i s t) {
72 cu rbu f = b u f l i s t = a p r _ p a l l o c (r−>pool , s i z eo f (* b u f l i s t)) ;
73 } e l se
74 i f (i) {
75 curbuf−>next = a p r _ p a l l o c (r−>pool , s i z eo f (* b u f l i s t)) ;
76 cu rbu f = curbuf−>next ;
77 }
78
79 curbuf−>next = NULL ;
80 i f (i) {
81 curbuf−>s t r i n g = buf ;
82 curbuf−>l en = i ;
83 combined_ len += i ;
84 buf = a p r _ p a l l o c (r−>pool , REWRITE_PRG_MAP_BUF) ;
85 }
86 i f (nby t e s == 1 && ! found_n l) {
87 continue ;
88 }
89 }
90 break ;
91 } while (1) ;
92 i f (b u f l i s t) {
93 char * p ;
94 p = buf = a p r _ p a l l o c (r−>pool , combined_ len + 1) ;
95 while (b u f l i s t) {
96 i f (b u f l i s t −>l en) {
97 memcpy (p , b u f l i s t −>s t r i n g , b u f l i s t −>l en) ;
98 p += b u f l i s t −>l en ;
99 }

100 b u f l i s t = b u f l i s t −>next ;
101 }
102 * p = ’ \ 0 ’ ;
103 i = combined_ len ;
104 } e l se {
105 buf [i] = ’ \ 0 ’ ;
106 }
107 i f (r ew r i t e _map r _ l o c k_ a c qu i r e) {
108 rv = ap r_g loba l _mutex_un lo ck (r ewr i t e _map r _ l o c k_ a c qu i r e) ;
109 i f (rv != APR_SUCCESS) {
110 a p _ l o g _ r e r r o r (APLOG_MARK, APLOG_ERR , rv , r , APLOGNO(0 0 6 6 0)
111 ” ap r_g loba l _mutex_un lock (r ew r i t e _map r _ l o c k_ a c qu i r e) ␣ ”
112 ” f a i l e d ”) ;
113 return NULL ;
114 }
115 }
116 i f (i == 4 && ! s t r c a s e cmp (buf , ”NULL”)) {
117 return NULL ;
118 }
119 return buf ;
120 }

Listing 29: Part of mod_rewrite source code. Function with embedded macros ifndef,ifdef and else.

57

E Experiments

1 # ! / b i n / bash
2
3 l s p a t ch s / | grep pa tch > f i l e s . t x t
4 for f in $ (cat f i l e s . t x t)
5 do
6 cp pa t ch s / mod_rewri te . c mod_rewri te . c
7 cp pa t ch s / $ f $ f
8
9 da t e >> log . t x t

10 echo ” app ly ␣ pa t ch ␣ $ f ” >> log . t x t
11 pa t ch −f < ” $ f ”
12 t imeou t −sKILL 30m apxs −c − i mod_rewri te . c
13
14 / e t c / i n i t . d / apache2 r e s t a r t
15
16 # ## Apache T e s t
17 t imeou t −sKILL 10m w3m −dump 1 2 7 . 0 . 0 . 1 / index . html > ” $ f . $ (d a t e ␣ +%Y−%m−%

↪→ d_%H−%M) . apache ”
18 # ## Mod_Rewr i t e T e s t
19 t imeou t −sKILL 10m w3m −dump 1 2 7 . 0 . 0 . 1 / ABCDEFGHIJKLMNOPQRSTUVWXYZ/

↪→ abcde fgh i j k lmnopqr s tuvwxyz / 0123456789 /%C3%8B%27%E2%80%9D%C3%87%
↪→ E2%80%B9%C3%AE%C3%9D%20%C2%A5%C2%B6%C5%92%C3%95%E2%80%9C%C3%B1%
↪→ C3%BF%C2%BA%C3%B2%C3%9A%C3%A5%3C%CB%86 > ” $ f . $ (d a t e ␣ +%Y−%m−%d_%H
↪→ −%M) . out ”

20 # ## PHP T e s t
21 t imeou t −sKILL 10m w3m −dump 1 2 7 . 0 . 0 . 1 / php in fo . php > ” $ f . $ (d a t e ␣ +%Y−%m

↪→ −%d_%H−%M) . php in fo ”
22
23 # ## PHP BENCHMARK
24 t imeou t −sKILL 10m w3m −dump 1 2 7 . 0 . 0 . 1 / php−performance−benchmarks . php >

↪→ ” $ f . $ (d a t e ␣ +%Y−%m−%d_%H−%M) . phpbench ”
25
26 # ## Sys tem T e s t
27 uname −a > ” $ f . system ”
28 echo ”ABCDEFGHIJKLMNOPQRSTUVWXYZ/ abcde fgh i j k lmnopqr s tuvwxyz / 0 123456789 ”

↪→ >> ” $ f . system ”
29 upt ime >> ” $ f . system ”
30 d f −h >> ” $ f . system ”
31 dmesg >> ” $ f . system ”
32
33 # ## Apache Benchmark
34 t imeou t −sKILL 10m ab −n 10 −c 2 −g ” $ f . $ (d a t e ␣ +%Y−%m−%d_%H−%M) . l og ”

↪→ 1 2 7 . 0 . 0 . 1 / ABCDEFGHIJKLMNOPQRSTUVWXYZ/ abcde fgh i j k lmnopqr s tuvwxyz
↪→ / 0 123456789 /%C3%8B%27%E2%80%9D%C3%87%E2%80%B9%C3%AE%C3%9D%20%C2%
↪→ A5%C2%B6%C5%92%C3%95%E2%80%9C%C3%B1%C3%BF%C2%BA%C3%B2%C3%9A%C3%
↪→ A5%3C%CB%86

35
36 pa t ch −R −f < $ f
37 rm $ f
38 da t e >> log . t x t
39 echo ” ano the r ␣ e x p e r i e n c e ” >> log . t x t
40 done

Listing 30: Bash script of automated experiments.

58

F Behaviors - examples

1
2 Array ([0] => ABCDEFGHIJKLMNOPQRSTUVWXYZ [1] => abcde fgh i j k lmnopqr s tuvwxyz [2]
3 => 0123456789 [3] => Ë” ’ ‹ÇîÝ Œ“¥¶ÕñÿºòÚåˆ<)

Listing 31: Behavior: Correct.

1 Bad Reques t
2
3 Your browser s en t a r e qu e s t t h a t t h i s s e r v e r cou ld not under s t and .
4
5
6
7 Apache / 2 . 4 . 1 2 (Ubuntu) S e r v e r a t 1 2 7 . 0 . 0 . 1 Po r t 80

Listing 32: Behavior: Bad request.

1 Forb idden
2
3 You don ’ t have pe rm i s s i on to a c c e s s /ABCDEFGHIJKLMNOPQRSTUVWXYZ/
4 abcde fgh i j k lmnopqr s tuvwxyz / 0 1 2 3 4 5 6 7 8 9 / Ë” ’ ‹ÇîÝ Œ“¥¶ÕñÿºòÚåˆ< on t h i s s e r v e r .
5
6
7
8 Apache / 2 . 4 . 1 2 (Ubuntu) S e r v e r a t 1 2 7 . 0 . 0 . 1 Po r t 80

Listing 33: Behavior: Forbidden.

1 Found
2
3 The document has moved here .
4
5
6
7 Apache / 2 . 4 . 1 2 (Ubuntu) S e r v e r a t 1 2 7 . 0 . 0 . 1 Po r t 80

Listing 34: Behavior: Found.

1 I n t e r n a l S e r v e r E r r o r
2
3 The s e r v e r encoun te red an i n t e r n a l e r r o r or m i s c o n f i g u r a t i o n and was unab l e to
4 comple te your r e qu e s t .
5
6 P l e a s e c o n t a c t the s e r v e r a dm i n i s t r a t o r a t webmas te r@loca lhos t to in form them
7 o f the t ime t h i s e r r o r occur red , and the a c t i o n s you per formed j u s t b e f o r e t h i s
8 e r r o r .
9

10 More i n f o rma t i on about t h i s e r r o r may be a v a i l a b l e in the s e r v e r e r r o r l og .
11
12
13
14 Apache / 2 . 4 . 1 2 (Ubuntu) S e r v e r a t 1 2 7 . 0 . 0 . 1 Po r t 80

Listing 35: Behavior: Internal Server Error.

1 Not Found
2
3 The r e qu e s t e d URL /ABCDEFGHIJKLMNOPQRSTUVWXYZ/ abcde fgh i j k lmnopqr s tuvwxyz /
4 0123456789 / Ë” ’ ‹ÇîÝ Œ“¥¶ÕñÿºòÚåˆ< was not found on t h i s s e r v e r .
5
6
7
8 Apache / 2 . 4 . 1 2 (Ubuntu) S e r v e r a t 1 2 7 . 0 . 0 . 1 Po r t 80

Listing 36: Behavior: Not found - url OK.

59

1 Not Found
2
3 The r e qu e s t e d URL / s was not found on t h i s s e r v e r .
4
5
6
7 Apache / 2 . 4 . 1 2 (Ubuntu) S e r v e r a t 1 2 7 . 0 . 0 . 1 Po r t 80

Listing 37: Behavior: Not found - wrong url.

1 OK
2
3 The s e r v e r encoun te red an i n t e r n a l e r r o r or m i s c o n f i g u r a t i o n and was unab l e to
4 comple te your r e qu e s t .
5
6 P l e a s e c on t a c t the s e r v e r a dm i n i s t r a t o r a t webmas te r@loca lhos t to in form them
7 o f the t ime t h i s e r r o r occur red , and the a c t i o n s you per formed j u s t b e f o r e t h i s
8 e r r o r .
9

10 More i n f o rma t i on about t h i s e r r o r may be a v a i l a b l e in the s e r v e r e r r o r l og .
11
12
13
14 Apache / 2 . 4 . 1 2 (Ubuntu) S e r v e r a t 1 2 7 . 0 . 0 . 1 Po r t 80

Listing 38: Behavior: Apache error - Ok.

1
2 Array ([0] => ABCDEFGHIJKLMNOPQRSTUVWXYZ [1] => abcde fgh i j k lmnopqr s tuvwxyz [2]
3 => 0123456789 [3] => Ë” ’ ‹ÇîÝ Œ“¥¶ÕñÿºòÚåˆ< [QSA , L])

Listing 39: Behavior: Wrong output - behavior 1.

1
2 Array ([0] => [1] => ABCDEFGHIJKLMNOPQRSTUVWXYZ [2] =>
3 abcde fgh i j k lmnopqr s tuvwxyz [3] => 0123456789 [4] => Ë” ’ ‹ÇîÝ Œ“¥¶ÕñÿºòÚåˆ< [5]
4 => abcde fgh i j k lmnopqr s tuvwxyz [6] => 0123456789 [7] => Ë” ’ ‹ÇîÝ Œ“¥¶ÕñÿºòÚåˆ<)

Listing 40: Behavior: Wrong output - behavior 2.

1
2 Array ([0] => ABCDEFGHIJKLMNOPQRSTUVWXYZ [1] => abcde fgh i j k lmnopqr s tuvwxyz [2]
3 => 0123456789 [3] => Ë” ’ ‹ÇîÝ Œ“¥¶ÕñÿºòÚåˆ<?? u r l =ABCDEFGHIJKLMNOPQRSTUVWXYZ [4]
4 => abcde fgh i j k lmnopqr s tuvwxyz [5] => 0123456789 [6] => Ë” ’ ‹ÇîÝ Œ“¥¶ÕñÿºòÚåˆ<)

Listing 41: Behavior: Wrong output - behavior 3.

1
2 Array ([0] => ABCDEFGHIJKLMNOPQRSTUVWXYZ)

Listing 42: Behavior: Wrong output - behavior 4.

1
2 Array ([0] => $1)

Listing 43: Behavior: Wrong output - behavior 5.

1
2 Array ([0] =>)

Listing 44: Behavior: Wrong output - behavior 6.

1
2 Array ([0] => [1] => home [2] => maste r [3] => www [4] =>
3 ABCDEFGHIJKLMNOPQRSTUVWXYZ [5] => abcde fgh i j k lmnopqr s tuvwxyz [6] => 0123456789
4 [7] => Ë” ’ ‹ÇîÝ Œ“¥¶ÕñÿºòÚåˆ<)

Listing 45: Behavior: Wrong output - behavior 7.

60

1
2 Array ([0] => [1] => home [2] => master [3] => www [4] =>
3 ABCDEFGHIJKLMNOPQRSTUVWXYZ)

Listing 46: Behavior: Wrong output - behavior 8.

1
2 Array ([0] =>)

Listing 47: Behavior: Wrong output - behavior 9.

1
2 Array ([0] => C)

Listing 48: Behavior: Wrong output - behavior 10.

61

G Patches - examples

1 −−− mod_rewri te . c
2 +++ mod_rewri te . c . _MIFS_173 2015−12−16 1 9 : 1 4 : 0 5 . 7 6 9 0 2 3 5 0 0 +0000
3 @@ −2810 ,11 +2810 , 6 @@
4 ctx−>ur i , c tx−>ur i , r−>pa t h _ i n f o)) ;
5 c tx−>u r i = a p r _ p s t r c a t (r−>pool , c tx−>ur i , r−>pa th_ in fo , NULL) ;
6 }
7 − i f (! i s _ p r o xy r e q && s t r l e n (c tx−>u r i) >= d i r l e n && ! strncmp (c tx−>ur i , c tx−>

↪→ pe rd i r , d i r l e n)) {
8 − r ew r i t e l o g ((r , 3 , c tx−>pe rd i r , ” s t r i p per−d i r p r e f i x : %s −> %s ” ,
9 − c tx−>ur i , c tx−>u r i + d i r l e n)) ;

10 − c tx−>u r i = ctx−>u r i + d i r l e n ;
11 −}
12 }
13 r ew r i t e l o g ((r , 3 , c tx−>pe rd i r , ” app l y ing p a t t e r n ’% s ’ t o u r i ’% s ’ ” ,
14 p−>pa t t e rn , c tx−>u r i)) ;

Listing 49: Patch: _MIFS_173.

1 −−− mod_rewri te . c
2 +++ mod_rewri te . c . _MIEB_16 2015−12−16 1 9 : 1 1 : 3 6 . 8 0 5 3 3 6 7 0 0 +0000
3 @@ −1902 ,9 +1902 , 7 @@
4 i f (pa th == NULL) {
5 a−>d i r e c t o r y = NULL ;
6 } e l s e {
7 − i f (pa th [s t r l e n (path) − 1] == ’ / ’) {
8 − a−>d i r e c t o r y = ap r_p s t r dup (p , pa th) ;
9 − } e l s e {

10 + {
11 a−>d i r e c t o r y = a p r _ p s t r c a t (p , path , ” / ” , NULL) ;
12 }
13 }

Listing 50: Patch: _MIEB_16.

1 −−− mod_rewri te . c
2 +++ mod_rewri te . c . _MIA_241 2015−12−16 1 9 : 1 5 : 1 9 . 0 7 0 5 7 3 4 0 0 +0000
3 @@ −3245 ,7 +3245 , 7 @@
4 }
5 o f i l ename = r−>f i l e n ame ;
6 oa rg s = r−>a rg s ;
7 − i f (r−>f i l e n ame == NULL) {
8 + {
9 r−>f i l e n ame = ap r_p s t r dup (r−>pool , r−>u r i) ;

10 r ew r i t e l o g ((r , 2 , dconf−>d i r e c t o r y , ” i n i t r ew r i t e eng ine with ”
11 ” r e qu e s t e d u r i %s ” , r−>f i l e n ame)) ;

Listing 51: Patch: _MIA_241.

1 −−− mod_rewri te . c
2 +++ mod_rewri te . c . _MIA_257 2015−12−16 1 9 : 1 5 : 3 2 . 6 9 2 4 8 9 0 0 0 +0000
3 @@ −3362 ,7 +3362 , 7 @@
4 ap_ s e t _ c on t e n t _ t y p e (r , t) ;
5 }
6 t = a p r _ t a b l e _ g e t (r−>notes , REWRITE_FORCED_HANDLER_NOTEVAR) ;
7 − i f (t && * t) {
8 + {
9 r ew r i t e l o g ((r , 1 , NULL , ” f o r c e f i l e n ame %s to have the ”

10 ” Content−hand l e r ’% s ’ ” , r−>f i l ename , t)) ;
11 r−>hand l e r = t ;

Listing 52: Patch: _MIA_257.

62

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Document Structure
	1.3 Methodology
	1.3.1 Meetings
	1.3.2 Risks
	1.3.3 Planning and Tracking

	2 State of the Art
	2.1 ODC Model
	2.2 Injection of software faults
	2.3 Cloud Computing
	2.4 Tools
	2.4.1 Management of Software Code
	2.4.2 Analysis of Software Code

	2.5 Hypervisor
	2.6 WebServers
	2.7 Analyze the effects

	3 Fault injector - BugTor
	3.1 Operators
	MFC
	MIA
	MIEB
	MIFS
	MLAC
	MLOC
	MLPA
	MVAE
	MVAV
	MVIV
	WAEP
	WPFV
	WVAV

	3.2 Constraints
	3.3 WorkFlow and Implementation
	3.4 Requirements
	3.5 Usage
	SYNOPSIS:

	3.6 Verification and Validation
	3.7 Limitations

	4 Work and implications
	5 Experimental Results
	5.1 Setup
	5.2 Classification of failures
	5.3 Results and Analysis

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	7 References
	8 Webography
	Appendices
	A Gantt diagrams
	B Risks table
	C Constraints - examples
	Constraint C01 - C01
	Constraint C02 - C02
	Constraint C03 - C03
	Constraint C04 - C04
	Constraint C05 - C05
	Constraint C06 - C06
	Constraint C07 - C07
	Constraint C08 - C08
	Constraint C09 - C09
	Constraint C10 - C10
	Constraint C11 - C11
	Constraint C12 - C12
	Constraint C13 - C13

	D Macros
	E Experiments
	F Behaviors - examples
	G Patches - examples

