

Development of an

OpenFlow controller

application for enhanced
path computation

Ricardo Ramalho dos Santos
rrsantos@student.dei.uc.pt

Advisors:

Marília Curado
Andreas Kassler
Date: July 6th, 2015

Master of Science in Informatics Engineering
MSc Thesis 2014/2015
Final Report

University of Coimbra

Master of Science in Informatics
Engineering

Final Report

Development of an Openflow
application for enhanced path

computation

Author:
Ricardo Ramalho dos Santos

Advisors:
Dr. Maŕılia Curado
Dr. Andreas Kassler

July 6, 2015

i

Acknowledgements

I would like to express my gratitude to Maŕılia Curado which, besides being my

advisor for this thesis, introduced me to the LCT and to the world of research.

It has been quite a journey until now and, when looking back, I can see how

much I have done and achieved. Thank you also for all the support, criticism and

feedback, which were always crucial for improving all my outcomes.

Thank you Bruno Sousa, working with you during my first steps in LCT was a

very important experience that surely contributed for the increase of my interest

in computer networks.

I express my gratitude to my co-advisor Andreas Kassler, for all the mentor-

ing before and during this thesis. Sweden has definitely been a more pleasant

adventure by having your guidance. A special thanks goes also to the University

of Karlstad for the excellent conditions that were offered to me while I was there.

I thank my parents for all the support in all my decisions, either inside and

outside my academic career. You have always been by my side, even when I did

not realize that.

To my sister, your conquests and your ability of overtaking all the obstacles

in your life so far are a big motivation to me, and for that, I show you my

appreciation.

Finally, last but not least, a special thanks to all my friends that, wherever I

was, made me feel at home.

ii

iii

Resumo

Redes definidas por software (SDN) é um paradigma das redes informáticas re-

cente que permite uma gestão centralizada dos dispositivos de rede através de

uma entidade (controlador), responsável pelo processamento dos dados recebidos

e instalação de fluxos nos dispositivos geridos. Ao trabalhar num ambiente SDN,

é posśıvel monitorizar o estado atual de uma rede e calcular caminhos para fluxos

novos, de acordo com esse estado.

Adicionalmente, quando caminhos diferentes estão dispońıveis, e usando um

algoritmo para o cálculo de caminhos com múltiplas restrições, vários caminhos

podem ser calculados, seguindo as restrições impostas pelas métricas recolhidas

a partir da rede. Combinando o uso de protocolos de transporte multi-homed,

como o Multipath TCP (MPTCP), os múltiplos sub-fluxos criados podem ser

atribúıdos a diferentes caminhos, contribuindo para o aumento de aspectos como

a taxa de transferência ou resiliência.

Este trabalho apresenta uma aplicação para um controlador SDN que calcula

caminhos entre nós numa rede usando diferentes algoritmos. Ela contém um

módulo de monitorização de métricas de Qualidade de Serviço (QoS) que adi-

ciona dados sobre a qualidade da ligação à topologia existente, utilizados para o

cálculo de caminhos através da utilização do algoritmo SAMCRA. Quando vários

caminhos estão dispońıveis, diferentes estratégias podem ser usadas para escol-

her o próximo caminho. A aplicação é avaliada juntamente com a utilização do

MPTCP, permitindo uma interação entre as camadas de transporte e de rede.

Os principais resultados mostraram que o uso de um algoritmo para cálculo

de múltiplos caminhos com restrições melhora os valores das métricas de QoS

medidas nas ligações estabelecidas, enquanto que a utilização de um algoritmo que

produz um conjunto maior de soluções aumenta, em geral, a taxa de transferência

dos fluxos.

Palavras-chave: Redes definidas por software, OpenFlow, MPTCP, Cálculo

de caminhos, Qualidade de Serviço, CORE, emuladores de redes.

iv

v

Abstract

Software-Defined Networking (SDN) is a recent computer networking trend that

allows a centralized management of network devices through a controller entity,

responsible for processing incoming data, and assigning matching flows in the

managed devices. When working in a SDN environment, it is possible to mon-

itor the current state of a network and perform path calculation for new flows

according to that state.

In addition, when different paths are available, and using a constrained mul-

tiple path computation algorithm, numerous paths can be calculated, following

up constrains imposed by the metrics collected from the network. Combined that

with the usage of multi-homed network transport protocols, such as Multipath

TCP (MPTCP), the multiple created sub-flows can be assigned to different paths,

contributing to the increase of aspects such as resilience or throughput.

This work presents a SDN controller application that calculates paths between

network nodes by using different path computation algorithms. It features a Qual-

ity of Service (QoS) metrics monitoring module that adds link quality information

to the existing topology data, used for calculating constrained QoS metrics paths

through the usage of the Self-adaptive Multiple Constraints Routing Algorithm

(SAMCRA) algorithm. When multiple paths are available, different flow pin-

ning strategies can be used to select the next path. This application is evaluated

along with the usage of MPTCP, allowing a cross-layer interaction between the

transport and network layers.

The main obtained results showed that the usage of a constrained multiple

path algorithm improves the QoS metrics values measured in the established

connections, while the usage of an algorithm that produces a larger set of available

paths increases the overall flows throughput.

Keywords: Software-Defined Networking, OpenFlow, MPTCP, Path com-

putation, Quality of Service, CORE, network emulators.

vi

Contents

Acknowledgements i

Resumo iii

Abstract v

Contents vii

List of Figures xi

List of Tables xv

List of Abbreviations xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Structure . 4

2 Software-Defined Networking 5

2.1 Background in SDN . 7

2.2 SDN Controllers . 9

2.3 Summary . 12

3 Transport Protocols 15

3.1 Single-homed transport protocols 15

viii Contents

3.1.1 Transmission Control Protocol 16

3.1.2 User Datagram Protocol 16

3.1.3 Datagram Congestion Control Protocol 17

3.2 Multi-homed transport protocols 18

3.2.1 Stream Control Transmission Protocol 18

3.2.2 Multi-path Transmission Control Protocol 20

3.3 Summary . 22

4 Path computation algorithms 25

4.1 Single-path algorithms . 26

4.1.1 Dijkstra’s Algorithm . 26

4.1.2 A* Algorithm . 27

4.1.3 Bellman-Ford Algorithm 27

4.1.4 Johnson’s Algorithm . 28

4.1.5 Single-path algorithms with constraints 29

4.2 Multi-path algorithms . 31

4.2.1 Link-disjoint algorithms 33

4.2.2 Node-disjoint algorithms 35

4.2.3 Multiple-path constrained algorithms 37

4.3 Path computation in Software-Defined Networking 40

4.4 Summary . 43

5 Proposed Architecture 45

5.1 Introduction and goals . 45

5.2 Used tools . 47

5.2.1 Opendaylight . 47

5.2.2 Open vSwitch . 47

5.2.3 CORE . 48

5.3 Evaluation platform . 50

5.3.1 Scenario Creator . 50

5.3.2 Experimenter framework 51

5.4 SDN controller application specification 52

5.4.1 Components description 53

Contents ix

5.4.2 Application workflow . 63

5.5 SDN controller application implementation details 64

5.5.1 Packet Handler . 64

5.5.2 Address Tracker . 65

5.5.3 TCP/UDP Packet Handler 67

5.5.4 Packet Dispatcher . 67

5.5.5 Flow Writer . 68

5.5.6 Host Manager . 69

5.5.7 Network Graph Service . 69

5.5.8 Topology Change Handler 70

5.5.9 Metrics Collector . 71

5.5.10 Path Calculator . 75

5.5.11 Flow Scheduler . 78

5.5.12 Application Main Module 81

5.6 Summary . 82

6 Evaluation results 83

6.1 Transport protocol and flow scheduler evaluation 83

6.1.1 Testing scenario . 84

6.1.2 Results . 87

6.2 Path computation algorithms evaluation 92

6.2.1 Testing scenario . 93

6.2.2 Results . 97

6.3 Summary . 105

7 Additional Contributions 107

7.1 Opendaylight OVSDB REST client 107

7.2 Multiflow . 108

7.2.1 Used architecture . 108

7.2.2 Obtained results . 110

7.3 Opendaylight workshop . 112

7.4 Summary . 113

x Contents

8 Project Management 115

8.1 First Semester . 115

8.2 Second Semester . 118

9 Final Considerations 121

References 125

Appendix A 141

Appendix B 151

Appendix C 155

List of Figures

2.1 Software-Defined Networking architecture diagram 6

4.1 Two link-disjoint paths between host A and B 34

4.2 Two node-disjoint paths between host A and B 36

5.1 OVSDB Schema [Pfaff and Davie, 2013] 48

5.2 Example of the usage of CORE’s GUI 49

5.3 Diagram of the experimenter framework 53

5.4 Architecture of the SDN controller application 54

5.5 Hash-based load-balancing . 60

5.6 Minimum-flows based load-balancing 60

5.7 Static path load-balancing . 61

5.8 Random load-balancing . 61

5.9 Round-robin load-balancing . 62

5.10 Link delay monitoring . 73

5.11 Example of the content of a delay monitoring packet 74

6.1 Topology used in the flow-based load balancing experiments . . . 84

6.2 CDF of the used file sizes in the flow schedulers evaluation exper-

iments . 85

6.3 CDF of the used waiting times in the flow schedulers evaluation

experiments . 86

6.4 All scheduler evaluation results, without SDN controller 87

6.5 All scheduler evaluation results (with delay), without SDN controller 89

xii List of Figures

6.6 Round-robin and minimum flows evaluation results (TCP and MPTCP),

using the SDN controller . 90

6.7 Hash-based and random, scheduler evaluation results (TCP and

MPTCP), using the SDN controller 91

6.8 Round-robin and minimum flows evaluation results with delay (TCP

and MPTCP), using the SDN controller 92

6.9 Hash-based and random, scheduler evaluation results with delay

(TCP and MPTCP), using the SDN controller 93

6.10 Topology used in the evaluation of path computation algorithms . 94

6.11 CDF of the used file sizes in the flow schedulers evaluation exper-

iments . 96

6.12 Average mean transfer times, normalized with SAMCRA (Round-

robin) . 98

6.13 CDF for RTT delay with 1 parallel transfer 100

6.14 CDF for RTT delay with 8 parallel transfers 101

6.15 CDF for RTT delay with 15 parallel transfers 102

6.16 CDF for throughput with 1 parallel transfer 103

6.17 CDF for throughput with 8 parallel transfers 104

6.18 CDF for throughput with 15 parallel transfers 105

7.1 Example of the GUI of the Opendaylight OVSDB REST client . . 108

7.2 Multiflow architecture . 109

7.3 Multiflow results when not using any premium clients 111

7.4 Multiflow results when using one premium client 112

7.5 Multiflow results when using two premium clients 112

8.1 First semester work plan . 117

8.2 Second semester work plan . 120

A.1 Round-robin evaluation results, no SDN controller 141

A.2 Hashed-based evaluation results, no SDN controller 141

A.3 Random scheduler evaluation results, no SDN controller 142

A.4 Minimum flow evaluation results, no SDN controller 142

A.5 RR scheduler evaluation results (with delay), no SDN controller . 142

List of Figures xiii

A.6 Hash-based scheduler evaluation results (with delay), no SDN con-

troller . 142

A.7 Random scheduler evaluation results (with delay), no SDN controller143

A.8 Min flows scheduler evaluation results (with delay), no SDN con-

troller . 143

A.9 RR scheduler evaluation results with TCP, with SDN controller . 143

A.10 RR scheduler evaluation results with MPTCP, with SDN controller 143

A.11 Min flows scheduler evaluation results with TCP, with SDN controller144

A.12 Min flows scheduler evaluation results with MPTCP, with SDN

controller . 144

A.13 Hash-based scheduler evaluation results with TCP, with SDN con-

troller . 144

A.14 Hash-based scheduler evaluation results with MPTCP, with SDN

controller . 144

A.15 Random scheduler evaluation results with TCP, with SDN controller145

A.16 Random scheduler evaluation results with MPTCP, with SDN con-

troller . 145

A.17 RR scheduler evaluation results with delay and TCP, with SDN

controller . 145

A.18 RR scheduler evaluation results with delay and MPTCP, with SDN

controller . 145

A.19 Min flows scheduler evaluation results with delay and TCP, with

SDN controller . 146

A.20 Min flows scheduler evaluation results with delay and MPTCP,

with SDN controller . 146

A.21 Hash-based scheduler evaluation results with delay and TCP, with

SDN controller . 146

A.22 Hash-based scheduler evaluation results with delay and MPTCP,

with SDN controller . 146

A.23 Random scheduler evaluation results with delay and TCP, with

SDN controller . 147

A.24 Random scheduler evaluation results with delay and MPTCP, with

SDN controller . 147

xiv List of Figures

B.1 Transfer times with Dijkstra’s (Hash-based) 151

B.2 Transfer times with Dijkstra’s (Round-robin) 151

B.3 Transfer times with Disjoint (Hash-based) 152

B.4 Transfer times with Disjoint (Round-robin) 152

B.5 Transfer times with Yen’s (Hash-based) 152

B.6 Transfer times with Yen’s (Round-robin) 152

B.7 Transfer times with SAMCRA (Hash-based) 153

B.8 Transfer times with SAMCRA (Round-robin) 153

List of Tables

2.1 Existing SDN controllers [Kreutz et al., 2014; Xia et al., 2014; Lara

et al., 2013; Nunes et al., 2014] 12

3.1 Overview of transport protocols 23

4.1 Evaluated single-path computation algorithms 32

4.2 Evaluated multiple-path computation algorithms 39

6.1 Characteristics of the link in the path computation algorithms eval-

uation topology . 95

6.2 Normalized average MPTCP transfer times using Dijkstra’s algo-

rithm . 99

A.1 Average TCP transfer times with static flow allocation and no path

delay . 147

A.2 Average TCP transfer times with static flow allocation and path

delay . 148

A.3 Average TCP transfer times using the controller application and

no path delay . 148

A.4 Average MPTCP transfer times using the controller application

and no path delay . 149

A.5 Average TCP transfer times using the controller application with

path delay . 149

A.6 Average MPTCP transfer times using the controller application

with path delay . 150

xvi List of Tables

B.1 Average MPTCP transfer times (ms) for different path computa-

tion algorithms . 153

B.2 CDF throughput values (Mbps) with 1 parallel transfer 154

B.3 CDF throughput values (Mbps) with 8 parallel transfers 154

B.4 CDF throughput values (Mbps) with 15 parallel transfers 154

List of Abbreviations

ACK Acknowledgement

ACROSS Autonomous Control for a Reliable Internet of Services

API Application Programming Interface

ARP Address Resolution Protocol

BFD Bidirectional Forwarding Detection

BGP Border Gateway Protocol

CCID Congestion Control ID

CDF Cumulative Distribution Function

CFM Connectivity Fault Management

CLI Command-line interface

CMT Concurrent Multipath Transfer

CORE Common Open Research Emulator

COST European Cooperation in Science and Technology

CSP Constrained Shortest Path

CWND Congestion window size

D-ITG Distributed Internet Traffic Generator

xviii List of Abbreviations

DCCP Datagram Congestion Control Protocol

DCLC Delay constrained least cost

DHCP Dynamic Host Configuration Protocol

DIMCRA Link-disjoint Multiple Constraints Routing Algorithm

DoS Denial of Service

EBF Extended Bellman-Ford Algorithm

ECMP Equal-cost multi-path routing

ForCES Forwarding and Control Element Separation

FQ CoDel Fair Queueing with Controller Delay

FTP File Transfer Protocol

GRE Generic Routing Encapsulation

GUI Graphical User Interface

HCMB Hop Constrained Max Bandwidth

ICMP Internet Control Message Protocol

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

JUNG Java Universal Network/Graph

KMCSP k multiple-constrained-shortest path

KSP k-shortest paths

LAN Local Area Network

LARAC Lagrange Relaxation based Aggregated Cost

List of Abbreviations xix

LLDP Link Layer Discovery Protocol

MAC Media Access Control

MADSWIP Maximally Disjoint Shortest and Widest Paths

MANET Mobile Ad Hoc Network

MCLPP Multiple Constrained Link-disjoint Path Problem

MCP Multi-constrained path problem

MD-SAL Model-Driven Service Abstraction Layer

MPTCP Multi-path Transmission Control Protocol

MuLaViTo Multi-Layer Visualization Tool

Netconf Network configuration

OF OpenFlow

OS Operating System

OSGi Open Services Gateway Initiative

OSPF Open Shortest Path First

OVS Open vSwitch

OVSDB Open vSwitch Database

OWAMP One-Way Active Measurement Protocol

P2P Peer-to-peer

POF Protocol-Oblivious Forwarding

QoE Quality of Experience

QoS Quality of Service

REST Representational state transfer

xx List of Abbreviations

RIP Routing Information Protocol

ROIA Real-Time Online Interactive Applications

ROR Resource Optimization-based with Customized Link-Disjoint Degree Rout-

ing

RSTP Rapid Spanning Tree Protocol

RTT Round-trip time

SACK Selective Acknowledgement

SAL Service Abstraction Layer

SAMCRA Self-adaptive Multiple Constraints Routing Algorithm

SCTP Stream Transmission Control Protocol

SDN Software-Defined Networking

SFQ Stochastic Fairness Queueing

SNMP Simple Network Management Protocol

SP Shortest Path

SPB Shortest Path Bridging

SS Slow-start

STP Spanning Tree Protocol

STSM Short-term scientific mission

Swe-CTW Swedish Communication Technologies Workshop

SYN Synchronize

TAMCRA Tunable Accuracy Multiple Constraints Routing Algorithm

TCP Transmission Control Protocol

List of Abbreviations xxi

UDP User Datagram Protocol

VLAN Virtual local access network

VoIP Voice over Internet Protocol

VXLAN Virtual Extensible LAN

WSN Wireless Sensor Networks

xxii List of Abbreviations

Chapter 1

Introduction

This document contains the description of the work that followed the develop-

ment and deployment of a Software-Defined Networking (SDN) controller appli-

cation capable of performing multiple path calculation using different computa-

tion strategies, along with its respective evaluation, based in the utilization of a

multiple path transport protocol.

The motivation of this work is presented in the first section, followed by its

objectives. The contributions that were made are described next, concluding with

this document’s structure.

1.1 Motivation

With the increase of the size of computer network topologies in data centers,

traffic management becomes a more complex task, as each device needs to be

configured individually and most of the used routing protocols cannot have a

complete view of the network without introducing a complex distributed message

mechanism. Additionally, the inclusion of data regarding the current network

state in terms of delay, packet-loss and other Quality of Service (QoS) metrics

when performing path computation is a difficult task due to the complexity of

obtaining those values, but also to include them on the currently used algorithms.

The number of available network interfaces in the endpoint devices that are

connected to this type of infrastructures also tends to increase. Examples can be

2 Chapter 1. Introduction

found in smartphones with a typical configuration of a 4G modem and a Wi-Fi

transmitter, laptops with an Ethernet port and a Wi-Fi transmitter and desktop

computers with more than one network card interface. However, there are not

many solutions that provide a simultaneous usage of more than one interface

when establishing and using a single connection, scenarios where the increase of

throughput and resilience are beneficial.

1.2 Objectives

The work presented in this thesis has as main goal the development of a SDN

controller application that provides multiple path computation algorithms that

follows different strategies, including link-disjoint and QoS-metrics aware paths.

The benefits of using a multipath transport protocol will be studied, along

with the usage of different flow pinning schedulers for defining in which path

the created flows are installed. The evaluation will compare the different path

computation algorithms, by the measurement of data from applications running

in endpoint nodes from the managed networks.

The final obtained results will enhance the existing documentation regarding

experimental work with SDN and the rest of the research topics addressed in this

thesis.

1.3 Contributions

This thesis introduces Software-Defined Networks as a new computer networking

paradigm and presents related work in some of its main trending research areas

such as its performance, scalability and flexibility. The coverage of this topic

includes an additional analysis of existing SDN controllers.

Regarding the network transport layer, it is identified a list of commonly used

single-homed transport protocols (e.g. User Datagram Protocol and Transmis-

sion Control Protocol), as well as more recent multi-homed capable transport

protocols, such as the Stream Control Transmission Protocol (SCTP) and the

Multiple Path Transmission Control Protocol (MPTCP).

1.3. Contributions 3

A comparative study of existing algorithms is presented, providing a back-

ground on path computation. This study is divided in 2 groups: single-path

and multi-path computation algorithms. The existence of constrained metrics in

these algorithms is also analysed.

The specification of the existing and to be developed required application

modules is described, followed up by the testing framework built for deploying

and evaluate the application, along with the used tools.

The author presents an evaluation of the implemented application, based in

experimenting work in SDN networks where the used topology allows the exis-

tence of multiple paths between its nodes. Results were achieved by using the

different implemented path computation strategies and flow pinning schedulers

in the application. All the experimenting work was conducted in an emulated

testbed environment using the Common Open Research Emulator (CORE). In

order to deploy and use the related SDN tools, new extensions to this application

were developed and added to the original installation.

A Short-Term Scientific Mission (STSM) for the European Cooperation in Sci-

ence and Technology (COST) action IC1304 Autonomous Control for a Reliable

Internet of Services (ACROSS) was submitted and accepted by the respective

COST committee. This allowed the author to visit the University of Karlstad,

in Sweden, where all the experimenting progress took place. Besides the work

directly related to the topic of this thesis, different tasks were held during this

period, which included the organization and presentation of a workshop in the

development of SDN controller applications and the development of a client appli-

cation that enabled the configuration of QoS mechanisms in Openflow switches.

Additionally, while in Sweden, the author participated in different project meet-

ings, where the progress of the ongoing work related to this thesis was presented.

A scientific poster entitled ”Multipathing in Software-Defined Networking: In-

teraction between SDN and MPTCP” was accepted and presented in the Swedish

Communication Technologies Workshop (Swe-CTW 2015) [Santos et al., 2015].

4 Chapter 1. Introduction

1.4 Structure

This document is structured as follows. Chapter 2 presents a description of the

main concepts of Software-Defined Networking, with an overview of the existing

SDN controllers. In chapter 3 the main used single and multiple-path based

transport protocols are listed.

Chapter 4 follows up describing existing path computation algorithms that

can be used in the context of flow routing in computer networks. Chapter 5

describes the architecture of the developed controller application, used testing

environments, tools and by the details of its implementation. The evaluation of

the application appears in chapter 6 and the additional contributions to this work

in chapter 7.

The planning and the management of the project are exposed in chapter 8,

based on the work performed during the first semester and on the tasks held

during the second semester.

Finally, the project final considerations are presented in chapter 9.

Chapter 2

Software-Defined Networking

In traditionally used computer networking devices, such as routers and switches,

the typical configuration resides in having the forwarding plane coupled with the

control plane, or even if decoupled, both exist inside the same device and they

need to be configured. The forwarding plane is responsible for sending incoming

packets through its output ports based on existing rules, while the control plane

handles the decision process of which action is taken for each packet, by setting

up the forwarding rules used by the forwarding plane.

Software-Defined Networking (SDN) is a recent and trending computer net-

working architecture [Feamster et al., 2014] that allows the physical separation

of the network control plane from the forwarding plane. This concept allows

the control of several forwarding planes by a control plane managed by a single

entity, allowing the abstraction of the existing network infrastructure from the

applications perspective [Fundation, 2012]. This abstraction allows the user to

manage the network from a global point of view, rather than individually from

each device.

Within SDN, the control plane can be managed with a software applica-

tion, entitled the controller. It communicates with physical and virtual switches

through a common protocol, independently from their vendors.

The mostly used protocol in SDN is OpenFlow (OF) [McKeown et al., 2008],

despite the existence of other known device configuration protocols, such as

SNMP (Simple Network Management Protocol) [Case et al., 1989] or NETCONF

(Network Configuration) [Enns et al., 2011]. This protocol and the interfaces used

6 Chapter 2. Software-Defined Networking

for establishing the communication between the controller and the OpenFlow ca-

pable devices are part of the controller Southbound interface, while the North-

bound interface allows external applications to communicate with the controller,

through specific Application Programming Interfaces (APIs) [Kim and Feamster,

2013]. While the Southbound interface only differs on the used protocol and on

its version compatibility in both devices and controller, the Northbound interface

is independent and specific for each software controller. Additionally, the concept

of East and Westbound interfaces were introduced, allowing the communication

between controllers. An example of this communication can be found in Hyper-

Flow [Tootoonchian and Ganjali, 2010], a distributed event-based control plane

for OpenFlow, where several controllers can exchange data and share a global

network view among each other. Figure 2.1 illustrates the existing interfaces and

components of the SDN architecture.

Figure 2.1: Software-Defined Networking architecture diagram

2.1. Background in SDN 7

2.1 Background in SDN

Since it is an emerging computer networks trend, there is always the resistance to

change from old network architectures perspectives to the usage and implemen-

tation of SDN capable technologies, having aspects as performance, flexibility,

scalability, security and interoperability in some of the main key challenges to

introduce further development in the industry [Sezer et al., 2013]. Besides those

aspects, its implementation is already noticeable in big data center networks, like

Google’s [Jain et al., 2013].

While performance in SDN is directly related to the processing capabilities

of the used devices (affecting latency and throughput), flexibility refers to being

able to introduce new features in systems. Scalability is focused in the controller

behaviour and its ability to communicate with other controllers and multiple

network nodes (and corresponding latency).

Due to the future expansion of the usage of SDN, security became an impor-

tant topic (an example can be a malicious user masquerading as a controller and

perform attacks in network switches). FortNox [Porras et al., 2012] is a software

extension to a SDN controller that implements role-based authorization in a SDN

system. With role-based authorization, signed security OpenFlow applications

are identified and the installation of conflicting flow rules by unknown OpenFlow

applications can be detected and the corresponding flows can be rejected.

Integrating the implementation of SDN products in existing networks is di-

rectly related to the interoperability key challenge. The replacement of all the

network devices for SDN-capable ones can be a complicated solution due to ad-

ministrative and financial costs. On the other hand, the expansion of the complex-

ity in the tasks performed by network operators is noticeable when developing

and implementing SDN solutions in existing networks [Kanaumi et al., 2010],

as there is increased work when configuring a SDN network and preserve the

connectivity of the previous existing network devices at the same time. There-

fore, putting together legacy and SDN devices requires specially driven solutions.

An example of the usage of SDN with traditional network devices is QuagFlow

[Nascimento et al., 2010], an application that integrates Quagga [Ishiguro et al.,

2007], a popular software routing suite that combines implementations of the Bor-

8 Chapter 2. Software-Defined Networking

der Gateway Protocol (BGP) [Rekhter and Li, 1995], Open Shortest Path First

(OSPF) [Moy, 1989] and Routing Information Protocol (RIP) [Hedrick, 1988]

routing algorithms, with an OpenFlow-compatible system. With QuagFlow it

is possible to provide the routing service to legacy network devices through the

usage of an OpenFlow controller application.

The current usage of Software-Defined Networking can be found in the liter-

ature through other different topics. An example can be found with the creation

and implementation of Quality of Service (QoS) services that run on OpenFlow

controllers or over SDN-capable networks. For video, voice, online gaming and

other real-time application service providers, achieving QoS guarantees is a cru-

cial goal. QoS can be offered by service providers by offering acceptable values

for different network metrics, such as guaranteed bandwidth, end-to-end delay,

jitter and packet loss rate [ITU-T, 2008]. When using SDN, the view of a global

state of a network can be a great advantage when configuring the switches, as this

network topology view can offer a significant input when calculating QoS-aware

flows.

An extension to a SDN controller Northbound API that provides QoS man-

agement support [Humernbrum et al., 2014] presents additional support to Real-

Time Online Interactive Applications (ROIA), allowing this type of applications

to request and specify their QoS and network requirements. Given examples

for ROIA presented by the authors are First-Person Shooter games, Real-Time

Strategy games and e-learning applications.

By using a SDN controller’s Northbound API, MonSamp [Raumer et al., 2014]

is a monitoring application that collects QoS metrics from existing flows in SDN

switches, taking advantage of OpenFlow capabilities. OpenSample [Suh et al.,

2014] is another network monitoring platform built over an SDN controller that

significantly lowers the sampling interval of port and flow statistic counters, by

using sFlow [Phaal et al., 2001], a traffic monitoring tool supported on a vast num-

ber of switch models, alternatively to the legacy OpenFlow capabilities. Through

the usage of an entropy-based method, another solution that uses sFlow can also

be used to detect anomalies in a network [Giotis et al., 2014].

2.2. SDN Controllers 9

2.2 SDN Controllers

As the popularity of Software-Defined Networking raises, the number of avail-

able SDN controllers is also increasing. When choosing a SDN controller, sev-

eral aspects must be considered and compared, such as the existing APIs (North,

South, East and Westbound), base network services, available management inter-

faces, used architecture frameworks, used implementation programming language

[Kreutz et al., 2014], its active development state, the size and reachability of the

user and developer community and the supported OF versions. Besides SDN con-

trollers, other topics of SDN can be found on previously made surveys, such as

OpenFlow software and hardware switches, used emulation and simulation tools,

and ongoing SDN-related research work [Xia et al., 2014; Lara et al., 2013; Nunes

et al., 2014].

As it was previously mentioned, Southbound APIs are used to perform the

communication between the control plane and forwarding plane of the existing

devices. While OF is the main used protocol in this part of the SDN architecture,

extensions and implementations to other known protocols can be found in SDN

controllers. Examples of these protocols as alternatives to OpenFlow used to

communicate and configure the device’s forwarding plane through the control

plane are OpFlex [Smith et al., 2014], POF (Protocol-oblivious forwarding) [Song,

2013] or ForCES (Forwarding and control element separation) [Yang et al., 2004].

Other protocols can be used as a complement to configure managed devices,

such as OVSDB (Open vSwitch Database Protocol) [Pfaff and Davie, 2013], a

protocol used to communicate with Open vSwitch (OVS) [Pfaff et al., 2009] and

manage its configurable features. Open vSwitch is a software switch suite that

besides its support for OF flow rules, it contains additional features (e.g. QoS

configuration, Internet Protocol (IP) tunneling, connectivity fault management

and VLAN support). SNMP and NETCONF are also used, mostly to configure

and communicate with legacy network devices.

For the controllers that adopted OpenFlow as Southbound interface protocol,

the used version is also a variable factor, as new fields and capabilities have been

added through the past versions.

The Northbound APIs are used to establish the communication between the

10 Chapter 2. Software-Defined Networking

SDN controller and existing applications. This communication can have differ-

ent purposes, including fetching flow statistics, managing existing or adding new

flows, connecting to new devices or editing administrative user permissions. The

used protocol for this communication is open to the controller developers, as there

is not a defined interface for this purpose, and even when the interface uses the

same architecture, e.g. Representational State Transfer (REST), there is not an

existing standardization of the provided functions and respective API nomencla-

ture. The existing controller management interfaces’ are directly related to the

Northbound API, as it is common to manage and configure the controller through

the provided northbound interface. Additionally, other common used mechanisms

can be used (e.g. Command-line interface (CLI) or a web management page).

When it comes to the controller architecture, it can be distinguished between

being distributed or centralized. The scalability issue seen in the previous sec-

tion plays an important rule in this topic. While having a centralized controller

makes the task of implementing a SDN network simpler, it can be the cause of a

network’s bottleneck, as it might not be able to process all the network requests

[Yeganeh et al., 2013]. Hence, having a distributed solution among controllers

can be a solution for more complex networks, as the workload can be distributed

along different machines. On the other hand, by maintaining a typical SDN global

network state among distributed controllers can introduce new trade-offs and ad-

ditional issues, such as inconsistency when there is an increase of the application’s

logic complexity [Levin et al., 2012].

Currently there are several available controllers than can be installed in order

to configure a SDN-based network, which can be distinguished and evaluated

through the aspects previously listed in this section.

One of the first developed OF controllers is NOX [Nicira, 2008]. Written with

C++ and with support to OF 1.0, later its development was followed by POX, a

Python based controller. However, while these two applications had a active user

and developer community until 2013, currently it is almost non-existent, when

comparing to other current solutions. Additionally, an OF 1.3 capable version of

NOX was also developed by CPqD [CPqD, 2012].

The same happened with Beacon [Erickson, 2013], a OF controller developed

using Java, with a multithreaded architecture built over an Open Services Gate-

2.2. SDN Controllers 11

way Initiative (OSGi) framework, allowing the enhancement of its modularity

and service-oriented capabilities. Despite the robustness of this controller it is

also outdated, having its last version released in 2013. Similarly to Beacon, Mae-

stro is a multithreaded Java-based OF controller developed by members of Rice

University, with its last version released in 2011.

Ryu [Ryu SDN Framework Community, 2012] is a controller that supports OF

1.0, 1.2, 1.3 and 1.4 and offers a wide number of applications that run on top of

it, including a switching hub, a link aggregation and a spanning tree application.

In addition to its Northbound REST API methods used to perform flow manage-

ment, it contains a basic set of methods for managing the QoS functionalities of

Open vSwitch instances.

A C-based OF controller entitled OpenMul [Kulcloud, 2012] contains an ar-

chitecture that allows applications to run and communicate with the controller

through the same addressing space (due to its low-level programming language it

is possible to take that aspect in consideration), contributing to the improve of

its performance. Nevertheless, by using C and despite its performance benefits,

the creation and modification of controller applications becomes a more complex

task, in comparison to the other controllers that use high-level languages, such

as Java or Python. It supports OF 1.0, 1.3 and 1.4.

The Floodlight controller [Big Switch Networks, 2012] is based on Java, and

uses an OF Java library that supports OF 1.0 and 1.3 versions, with additional

experimental support for OF 1.1, 1.2 and 1.4. Its most recent version was re-

leased by the end of December 2014 and includes built-in applications, such as an

OpenStack integration plug-in, a virtual switch, a firewall and a circuit pusher,

responsible for assigning flows to designated paths between hosts.

Opendaylight [Medved et al., 2014] is an OF controller managed by the Linux

Foundation and backed by important computer networks-related companies, with

Cisco, Brocade, HP, IBM and Intel being examples of those. It provides a struc-

tured layered architecture that provides several built-in functionalities, supported

by their respective northbound and southbound APIs. It supports OF 1.0 and

1.3 and similarly to Beacon, it is structured by the OSGi framework, simplifying

the management of the installed and active features. On the other hand, due

to the same highly-assembled architecture, the development of new controller

12 Chapter 2. Software-Defined Networking

Table 2.1: Existing SDN controllers [Kreutz et al., 2014; Xia et al., 2014; Lara
et al., 2013; Nunes et al., 2014]

Name Platform Developers OpenFlow Versions

NOX C++ Nicira 1.0
POX Python Nicira 1.0
Beacon Java Stanford 1.0
Floodlight Java Big Switch Networks 1.0, 1.1, 1.2, 1.3, 1.4
Maestro Java Rice University 1.0
Ryu Python Ryu SDN Community 1.0, 1.2, 1.3 and 1.4
nox13oflib C++ CPqD 1.3
OpenDayLight Java Linux Foundation 1.0 and 1.3
OpenMul C Kulcloud 1.0, 1.3 and 1.4

applications is more difficult due to the need of understanding all the required

framework management proceedings. However, due to its community support,

having mailing-lists, an Internet Relay Chat (IRC) channel, a dedicated Wiki

page and a website for questions and answers, it is simple to get help by other

users and developers.

Table 2.1 presents a list of the current existing SDN controllers and their sup-

ported OF versions, implementation programming language and the responsible

company.

2.3 Summary

The definition and specification of SDN were described in this section. Along

with its architecture that divides the control plane from the forwarding plane on

compatible network devices, the SDN controller was also introduced.

The used protocols in SDN were also listed, being OpenFlow the most common

among SDN-capable devices.

The different API that SDN controllers used were described, having the North-

bound API for communicating with applications, the Southbound with forward-

ing plane devices and East and Westbound with other controllers. Besides these

different APIs, existing SDN extensions regarding security, flexibility, perfor-

2.3. Summary 13

mance, scalability and interoperability were discussed.

A survey and analysis of the existing SDN controllers were presented, compar-

ing the existing solutions. While there is a significant number of OF controllers,

many are deprecated or did not have a new version for a considerate amount of

time. From the analysed controllers, NOX, POX, Beacon, Maestro and nox13oflib

can be included in that list.

Despite OpenMul being a computational efficient controller due to having C

as its programming language, the expansion of its components gets more com-

plex and prone to programming errors due to the low-level programming re-

quirements needed, having other solutions based on higher-level programming

languages preferable to use when implementing controller applications.

While Ryu, Floodlight and Opendaylight seem to be great candidates when

choosing an OF controller, and despite the level of complexity required to develop

controller applications due to its OGSi-based architecture, Opendaylight reveals

being the most suitable controller to use at the moment, due to its community

size, available resources (either documentation and supporting communication

channels) and its development perspectives, with further releases already sched-

uled and a team composed by members of important companies.

14 Chapter 2. Software-Defined Networking

Chapter 3

Transport Protocols

This section presents an overview of existing transport protocols, TCP (Transmis-

sion Control Protocol) [Cerf and Icahn, 2005], UDP (User Datagram Protocol)

[Postel, 1980], DCCP (Datagram Congestion Control Protocol) [Kohler, 2006],

SCTP (Stream Control Transmission Protocol) [R. Stewart, 2007] and MPTCP

(Multi-path Transmission Control Protocol) [Ford et al., 2011], respectively. By

the end of this section, Table 3.1 presents a comparative list of the features of

these transport protocols.

3.1 Single-homed transport protocols

As transport protocols are used to successfully transmit and deliver data between

applications, they use different mechanisms to distinguish and multiplex the sent

traffic, such as labelling source and destination port numbers. Besides that type

of configuration, transport protocols were created and are used according to the

user and applications needs (e.g. data transfer, multimedia streaming, device

signalling). The most typical and common configuration uses one source and

destination IP address when communicating, as most protocols were designed for

supporting only one network interface (single-homed). The next subsections will

describe how some of this type of transport protocols behave.

16 Chapter 3. Transport Protocols

3.1.1 Transmission Control Protocol

Transmission Control Protocol (TCP) is a transport protocol vastly used among

the Internet and local networks, presented in 1974 and later defined [Postel,

1981]. It is connection-oriented and provides reliable data transfer between two

endpoints. With TCP, data is transferred through streams while maintaining the

order through which packets are sent. Reliability is reached through the exchange

of Acknowledgement (ACK) messages upon packet receiving, and at the same

time flow control occurs by adapting the transfer window size, specifying the

maximum number of bytes that can be transferred to the receiver. Since it is also

full-duplex, it allows simultaneous data transfers in both directions.

The congestion-control of TCP exists among different implementations. The

first proposed algorithm was Tahoe TCP and its first modification was Reno TCP.

These two introduced the usage of a congestion window that limits the number

of sent packets until the previous ones are acknowledged Jacobson [1988]. The

slow-start (SS), congestion avoidance and fast retransmit mechanisms were also

included. Additionally, Reno TCP presents a the Fast Recovery state.

Vegas TCP [Brakmo and Peterson, 1995] is another variation of a TCP con-

gestion control mechanism that monitors and uses the round-trip time (RTT)

variation for setting up the congestion window, reacting to the packet delay, con-

trary to the previous mechanisms that are focused in the loss of packets.

Another implementation of the TCP congestion window algorithm is West-

wood [Mascolo et al., 2001]. It uses bandwidth end-to-end calculations on the

sender side by measuring the rate of incoming ACK packets. This rate is used

when calculating the congestion window size after a congestion situation is de-

tected (the sender receives three duplicated ACKs). This mechanism is particu-

larly efficient when connected to wireless networks, due to the variable bandwidth

caused by the variations on the received wireless signal.

3.1.2 User Datagram Protocol

Contradictory to TCP, User Datagram Protocol (UDP) is a transport protocol

that is not connection-oriented, making it a stateless protocol. It allows data

to be sent by packet datagrams, and as it does not provides reliability, it is not

3.1. Single-homed transport protocols 17

possible to know if a sent packet was delivered to its destination. Due to its

simplicity and lack of retransmission delays, it is suitable to be used in real-time

applications, such as Voice over IP (VoIP), video streaming or online gaming.

Additionally it allows multicast and broadcast communication.

Though it is used mostly for multimedia applications due to its unreliability,

the lack of congestion-control mechanisms in the implementation of UDP can

represent a problem when multiple flows are sharing the same link. A practical

example can be a typical house Local Area Network (LAN) with a low bandwidth

internet access, where several users are streaming videos. In this situation, either

congestion-control is implemented on the used applications and the stream quality

is adjusted in the server, or the network becomes easily congested, degrading the

overall QoS for all the users. In order to present a solution to these kind of

scenario, the Datagram Congestion Control Protocol (DCCP) was introduced.

3.1.3 Datagram Congestion Control Protocol

The Datagram Congestion Control Protocol is a recent (standardized in 2006)

transport protocol. As it name indicates, and similarly to UDP, it communicates

through the usage of datagrams. It provides unreliable congestion control, a

feature not present in UDP, and consequently required to be implemented by

the applications that used it as a transport protocol. The usage of a congestion-

controlled unreliable communication is beneficial to multimedia streaming and

communication applications, where the end-to-end delay needs to be taken in

consideration in order to achieve quality in the transmitted sessions, while being

aware of the existing link capacity in the used connections [Kohler et al., 2006].

DCCP was built considering mostly scenarios where traffic is transferred uni-

directionally (e.g. a server streaming a video to a client). Based on that feature,

and since it is connection-oriented, it supports half-connections (when only one

endpoint sends data to the other). Since it also uses the exchange of ACK mes-

sages to aid in the congestion control mechanism (but in opposition to TCP,

without retransmissions), a half-connection can be formed having a host sending

data to another and receiving only the ACK packets.

The congestion support of DCCP allows the application to pick between dif-

18 Chapter 3. Transport Protocols

ferent congestion control mechanisms, through the usage of a Congestion Control

ID (CCID). This identifier can be configured for each existing half-connection.

Although DCCP is supported in the most recent Linux distributions as a

module, its current usage is limited. Developers are required to define the protocol

constant values (e.g. IPPROTO DCCP, for identifying the protocol number), and

need to use basic socket system calls with the defined options with programming

languages that allow this customization, as DCCP specific libraries and wrappers

are not publicly available for application development yet, keeping short the list

of applications that use DCCP.

3.2 Multi-homed transport protocols

The increase of the number of network interfaces in existing devices enabled the

specification, creation and utilization of transport protocols that take in consid-

eration more than one interface (multi-homed), when establishing and using a

network connection. The following subsections describe two of the most rele-

vant multi-homed protocols, Stream Control Transmission Protocol (SCTP) and

Multi-path Transmission Control Protocol (MPTCP) and their most important

features and usage examples.

3.2.1 Stream Control Transmission Protocol

Stream Control Transmission Protocol is a transport protocol that offers multi-

homing support, as opposite to the previous seen transport protocols, TCP, UDP.

Multi-homing allows the usage of all the existing network interfaces in a device,

contributing to the existence of multiple paths on a single connection (SCTP

association) and therefore providing resilience support.

Two communication models can be distinguished when using SCTP, the pri-

mary backup Model and the Concurrent Multipath Transfer (CMT) [Iyengar

et al., 2006]. In the first one, a primary path is used to perform data transfer.

All the remaining available paths are backup paths that are used to replace the

primary path upon link failure, detected through the increase of packet retrans-

mission time-outs. With CMT, all the available paths are used to transfer data

3.2. Multi-homed transport protocols 19

on a SCTP association between two endpoints, contributing to the increasing of

the used applications’ throughput.

SCTP can handle multiple and independent streams per association, allowing

data to be partitioned across multiple streams when transferring, hence benefiting

from an independently sequenced delivery. This feature allows packets from other

streams to continue to be sent when packet loss occurs in one stream. Although

it supports streams, it organizes data transfer through datagrams.

In order to treat packet delivery, SCTP also offers a Selective ACK (SACK)

mechanism, allowing the transmission of multiple Acknowledgement messages for

different sent packets on a single message. Other key aspect of SCTP is the usage

of a 4-way handshake when establishing an association, adding protection against

SYN (Synchronize) flooding Denial of Service (DoS) attacks. For congestion

control, SCTP uses the same algorithms as TCP. While its native implementation

offers reliable communication, existing extensions allows it to implement full or

partial unreliability [Stewart et al., 2004; Huang and Lin, 2013].

SCTP support is becoming a native feature in Linux distributions and there

are available libraries for other operating systems (OS). However, similarly to

DCCP, it is not an application transparent protocol, as it is required to invoke

specific SCTP system functions in order to use it. This implies that existing ap-

plications cannot use SCTP, unless they were specially coded with SCTP support

features, negatively affecting its widespread through users and developers.

Similar support issues are also found when using SCTP across different net-

works, as middle box devices (e.g. firewalls and network address translators), due

to the lack of native SCTP support or the non-existence of specific SCTP-aware

policies [Chen et al., 2013; Hayes et al., 2008].

When using the legacy path switching strategy with the primary backup

model, SCTP lacks decision mechanisms for when there are faulty conditions in

the network (e.g. transmission delay or in advanced scenarios, hardware resources

saturation). Hence, further proposals and extensions to the original SCTP im-

plementation were presented, with the main goal as keeping this selection aware

of these variables [Sousa et al., 2013; Funasaka et al., 2005].

20 Chapter 3. Transport Protocols

3.2.2 Multi-path Transmission Control Protocol

The Multi-path Tranmission Control Protocol is a protocol based on the original

implementation of TCP with multi-homing support. Similarly to SCTP, it allows

the usage of multiple network interfaces simultaneously on a single connection,

increasing the overall throughput. Each individual connection made through a

MPTCP connection is called a subflow and is seen as a regular TCP connection

with a byte-stream oriented data transfer. On the other hand, in opposition to

SCTP, where only one connection can be established between each address for

both endpoints, MPTCP allows the creation of cross-path subflows.

Concerning the usage of MPTCP, specific kernel modifications need to be

performed, as the existing implementation is still under development, and are not

included in standard Linux distributions. However, contrary to SCTP, MPTCP

is transparent from the applications’ point of view, as the standard TCP system

calls are used in a MPTCP connection. Therefore, after enabling MPTCP in a

system, it is not required to perform any modifications on the used applications

in order to use it.

When starting a MPTCP connection, the endpoint sends a regular TCP SYN

packet, as if it was starting a regular TCP connection. The difference resides in

the packet options field, where it is added a MP CAPABLE option, including a 64 bit

key, used to identify the sender endpoint when establishing additional subflows.

Upon receiving this packet, if the receiver endpoint also supports MPTCP, it

sends a SYN/ACK packet with a MP CAPABLE option and its 64 bit key, used for

identification as well. If the receiving device does not support MPTCP, it will

send a SYN/ACK packet without the MP CAPABLE option, and the rest of the com-

munication between the two devices will behave like a regular TCP connection.

This makes MPTCP backwards compatible with the original TCP version.

After a MPTCP connection is established and the first subflow is created, ad-

ditional subflows can be created using the remaining existing network addresses

from the hosts. These subflows are formed through the process of initiating a

normal TCP connection, but the SYN, SYN/ACK and ACK are sent contain-

ing a MP JOIN option that includes the address to be added from the sending

device, along additional options. When the other device received this message,

3.2. Multi-homed transport protocols 21

it will reply with a SYN/ACK packet containing also a MP JOIN option with its

corresponding address.

Another possible situation can occur when a host wants to inform the other

host about additional potential addresses to be used in a MPTCP connection,

either because an address changed on one of the network interfaces, or a new

connection is established (e.g. the device connected to a WiFi network). For

these situations, the endpoint wanting to announce its address sends a TCP

packet with an ADD ADDR option, containing the address to be announced.

Regarding congestion control, additionally to the inherited congestion mech-

anisms from TCP, MPTCP introduces a new multi-path aware congestion algo-

rithm [Wischik et al., 2011]. This algorithm allows load-balancing along the used

paths and respective subflows, contributing to improve the fairness when using

bottleneck links. For reliability, MPTCP also inherits it from TCP, as well as its

packet retransmission mechanisms, with an additional feature that allows data

to be retransmitted through a different subflow instead of the original one.

Several work regarding the usage of multi-homed protocols can be found in

the literature. An intercontinental experiment comparing the performance of

CMT-SCTP with MPTCP was performed [Becke et al., 2013], achieving higher

throughput with MPTCP due to its capability to create a full mesh of paths with

all the available interfaces. The performance of MPTCP in modern data center

network topologies was also examined [Raiciu et al., 2011], showing that the load

balancing mechanisms of MPTCP provides an important advantage when dealing

with existing bottlenecked traffic patterns in the network.

The combination of SDN and MPTCP is also a trending topic in computer

networks research work. Multiple experiments were performed when testing the

capabilities of MPTCP in SDN network environments [van der Pol et al., 2012,

2013], where an OpenFlow-based network was connected across different countries

and the overall throughput behaviour was monitored when transferring data, ob-

serving that due to MPTCP’s congestion control, it would stabilize using only two

disjoint paths. MPTCP was also deployed in a SDN capable network [Chawanat

et al., 2014], measuring the raise of the throughput, but in a smaller-sized net-

work. Previous work also includes a set of tools that allow researchers to do

experimenting work over a multi-path network through an OpenFlow configured

22 Chapter 3. Transport Protocols

network [Németh et al., 2013].

A QoS-oriented mechanism built to increase the support and performance of

multimedia applications was introduced as an extension for MPTCP that adds

partial reliability [Diop et al., 2012]. This is achieved by implementing selective

discarding when sending packets, a technique that removes packets with less

importance when the network is saturated, such as B frames when streaming

encoded video, decreasing the loss rate of I and P frames, the most important

video frames, and consequently improving the resulting QoS. Another proposed

solution is the introduction of time-constrained partial reliability, a technique

that drops queued packets that exceed a waiting time limit. However, using these

two introduced mechanisms it could not be achieved significant QoS improving,

showing that further work in QoS-aware service providing needs to be enforced.

QoS and Quality-of-Experience (QoE) when using MPTCP is a subject also

studied [Konsgen et al., 2012], where the variation of these parameters in disaster

situations is explored, showing that MPTCP’s resilience support and congestion

control provides an advantage in these extreme conditions. Yet, the authors also

pointed that there is still further work to be performed regarding multipath trans-

port that would affect QoE/QoS metrics, using as examples packet scheduling and

resource allocation.

MPTCP can also already be found in commercial products, as Apple imple-

mented it in iOS7 and it is used to provide connectivity support to Siri, its virtual

assistant software package. When the phone is connected to more than one net-

works (Wi-Fi and cellular data), it will use Wi-Fi as a primary TCP connection,

and the second as a backup connection. This implementation of MPTCP is differ-

ent from the previously described behaviour, since its main goal is the installation

of resilient paths (instead of increasing the connection’s throughput).

3.3 Summary

This section presented a description of relevant single and multi-homed transport

protocols, which included TCP, UDP and DCCP as single-homed protocols and

SCTP and MPTCP in the multi-homed protocols section. Finally a comparative

table with its most important features was presented.

3.3. Summary 23

Table 3.1: Overview of transport protocols

Feature TCP UDP DCCP SCTP MPTCP

Connection-oriented Yes No Yes Yes Yes
Transfer mode Byte-Stream Datagram Datagram Datagram Byte-Stream
Stateful Yes No Yes Yes Yes
Reliability Yes No No Yes Yes
Congestion-control Yes No Yes Yes Yes
Multi-homing No No No Yes Yes
Native OS integration Yes Yes Module No No
Application compatibility Yes Yes No Specific API Yes

The usage of a multi-homed capable transport protocol takes advantage of the

existence of multiple connected network interfaces, aiding in the improvement of

resilience and throughput. Yet, it is difficult to change existing network infras-

tructures and applications in order to support new protocols. While SCTP can

offer multiple backup paths or use them at the same time, it requires specific

system calls to establish and maintain an association, as well a distinct protocol

number on IP packets. These two disadvantages make MPTCP a more suitable

option, since it is transparent to applications, as they keep using the regular TCP

system calls, and each MPTCP sub-flow is a TCP connection, having just addi-

tional header options on each packet, contributing to the increase of compatibility

with middleboxes.

While the increase of throughput over a multi-homed connection might be

beneficial to data transfers, e.g. File Transfer Protocol (FTP) traffic, the usage

of different network paths might cause problems with delay-sensitive traffic, as

the presence of heterogeneity on the observed QoS metrics values for different

paths can degrade the perceived QoE. Hence, single-path transfers remains the

most trustful choice for unreliable multimedia traffic.

Although DCCP, being an unreliable datagram transport protocol, provides

congestion control that can be benign to multimedia applications, similarly to

SCTP it requires specific application system calls and its traffic can be blocked

in middleboxes since it is a recent protocol with a different IP protocol number

identifier (i.e. comparing to the vastly used TCP and UDP). Despite UDP being

a simple transport protocol it is massively used for transferring unreliable traffic.

24 Chapter 3. Transport Protocols

Though it does not implement any congestion control or other different optimiza-

tion features, the combination of its usage with efficient QoS routing policies can

contribute to the improvement of the perceived user experience.

Chapter 4

Path computation algorithms

In everyday science, path computation is a relevant field of study. One of the

most common applications is the calculation of an existing shortest path (SP),

which can involve the calculation of a SP either between two points of interest in

a city, between two vertexes in a graph, or between two nodes inside a network.

When performing path calculation, some parameters can be used to identify

and distinguish the used methods and algorithms. These can be the weight of

each link (the length of a road, for example), the existence of negative weighted

paths, having single or multiple constraints applied to each link, or the number

of considered paths (single or multiple path-aware algorithms).

Regarding the performance of algorithms, there are common metrics that are

used when evaluating one. These can include its temporal and spatial complexity.

The temporal complexity is used to quantify the running time of an algorithm,

while spatial complexity indicates the amount of data that is needed to store

in memory while running an algorithm. In order to measure these two metrics,

it is often used the Big-O notation (e.g. O(n2), with n as an argument of the

algorithm input), a method used to asymptotically measure complexity [Sipser,

2006].

This section will present some of the most significant solutions for path com-

putation, either through the calculation of single or multiple paths.

26 Chapter 4. Path computation algorithms

4.1 Single-path algorithms

There is a significant number of existing algorithms that perform single-path

path calculation. However, each of the known and most used solutions are more

suitable when the used input matches a given criteria. The following subsections

will explore some of the most used single-path algorithms and their variations.

4.1.1 Dijkstra’s Algorithm

Dijkstra’s Algorithm [Dijkstra, 1959] was designed to solve efficiently problems

where it was required to find the SP between a given source node and the re-

maining nodes in a graph with non-negative weights. The algorithm works by

iteratively traversing the existing nodes, starting from the source node and fin-

ishing when it reaches the destination node. When it passes through a node it

calculates the distance from the starting point until where it is, and if its smaller

than the previously stored value (in the beginning all the distances are set to

+∞), it saves the new distance.

Its original implementation examines all the existing nodes paths, running

in O(n2) time [Cherkassky et al., 1996], having n as the number of nodes in the

graph. However, additional versions were implemented with better overall perfor-

mances. One example of those implementations uses Fibonnaci heaps [Fredman

and Tarjan, 1987], maintaining additional queue data structures for keeping the

cumulative lengths sorted between each node and runs in O(m + n log n), faster

than the original version, with m being the number of edges/links.

A restriction in this algorithm, as previously said, is that it won’t compute

when having negative weights on its input, as it behaves like a greedy algorithm,

presuming that for each iteration it is found the best solution. The appearance

of negative weight links allows a previous calculated choice (meant to be the

best), stop being the optimal one, making the algorithm fail to compute the SP

in these situations. Other solutions have been developed in order to solve the

shortest-path problem when having negative weights, as seen in 4.1.3 and 4.1.4.

In path computation in computer networks the most known application of

Dijkstra’s algorithm is included in the OSPF routing protocol.

4.1. Single-path algorithms 27

4.1.2 A* Algorithm

The A* Algorithm [Hart et al., 1968] calculates the SP between a source and

a destination node with the usage of a heuristic function, h(n). This function

computes an estimation of the distance of the node that is being visited to the

destination goal. Through each iteration, the algorithm calculates the travelled

distance from the source node to the current visited node, known as g(n), and

adds the value of the calculated heuristic, forming the distance function f(n) =

g(n)+h(n). It then picks the shortest calculated f(n) value for all the surrounded

unvisited nodes, iteratively repeating the same steps until the destination node

is reached.

It is mostly used for the path computation among artificial intelligence in video

games, as it is possible to achieve admissible heuristic functions when perform-

ing path calculation with grid-based input representations, such as the Euclidean

distance (the absolute distance between the two considered points). If the A*

algorithm uses a non-admissible heuristic (if it overestimates the distance to the

end node), it may produce non-optimal solutions. Similarly to Dijkstra’s Al-

gorithm (as it behaves identically if it uses a heuristic function h(n) = 0), the

A* algorithm does not work correctly when there are negative edge weights. Its

complexity depends on the heuristic function; in a worst case scenario its com-

plexity runs in O(bd), having b as the branching factor (average number of nodes

to expand per iteration) and d as the length of the existing SP, as it travels trav-

els all the nodes exponentially. However, the big drawback in the usage of this

algorithm is its spatial complexity, as it keeps in memory all the data used to

compute the node distances while it is running [Russell et al., 1995].

Nevertheless, when calculating the SP in computer networks, where its repre-

sentation is graph based and the prediction of the remaining distance to a node is

hard to calculate, it becomes a difficult task to maintain a good heuristic function,

making Dijkstra’s algorithm a preferable solution against the A* algorithm.

4.1.3 Bellman-Ford Algorithm

A possible solution for solving the shortest-path problem between a source node

and all the existing ones in a graph in situations where there are negative weight

28 Chapter 4. Path computation algorithms

paths is the usage of the Bellman-Ford algorithm [Bellman, 1956]. Its functioning

is similar to Dijkstra’s algorithm, as it updates the distance between the source

node and ones that it crosses for each iteration.

The main difference between the Bellman-Ford and Dijkstra’s algorithms is

that while Dijkstra’s works by iteratively visiting the node with the shortest

distance to the previously visited node, the Bellman-Ford algorithm visits every

node’s edge and calculates the respective distance, crossing all the existing input

nodes with a complexity of O(nm).

Since it visits every node and computes all the respective distances, it is

possible to apply this algorithm in inputs with negative weights, contrary to

Dijkstra’s algorithm that uses a greedy approach, crossing only once each node

and failing to present a correct result when there are paths with negative weights

that can present a solution with a shorter distance. Due to the possibility of

existing negative cycles, by the end of the execution of the algorithm, it cycles

through all the edges again, and if it detects any changes in the stored values it

detects the existence of a negative cycle.

Similarly to Dijkstra’s, The Bellman-Ford algorithm is also applied in routing

protocols, being the used algorithm in RIP.

4.1.4 Johnson’s Algorithm

While the explored algorithms in the previous sections were designed to solve the

SP problem from a single source through a destination node (A*) or through all

the remaining nodes (Dijkstra’s and Bellman-Ford), sometimes it is required to

solve this problem for all the source nodes, in order to get the SP between all

the nodes in the input graph. A possible resolution can be Johnson’s algorithm

[Johnson, 1977], an algorithm built to solve the all-pairs SP problem.

This algorithm combines the usage of Bellman-Ford and Dijkstra’s algorithms

and runs in O(n2 log n + nm log n) (having n as the number of nodes and m

the number of edges), calculating the distance between all the existing nodes,

iteratively.

It starts by calculating the SP from a single node to all the others using the

Bellman-Ford algorithm. After that distance is calculated, it updates the weight

4.1. Single-path algorithms 29

of all the edges by using the calculated distance between the previously source

node and the nodes that form the edge to be updated. This update allows the

replacement of all the distances with non-negative equivalent ones. Following this

first iteration, it is applied Dijkstra’s algorithm for all the remaining nodes (since

there are not any remaining negative distances).

The algorithm ends its execution when the distance between all the nodes is

calculated or when it is found a negative cycle while running the Bellman-Ford

algorithm.

4.1.5 Single-path algorithms with constraints

The typical SP problem solution involves the calculation of a path between one

or more nodes through by minimizing the sum of the existing weights in the

travelled nodes, from the source to the destination nodes. Mathematically this

represents an optimization problem where the objective function is to minimize

one variable. However, there are situations where this method of path calculation

does not comply with the requirements of specific applications, e.g. QoS-aware

applications and services, where multiple metrics and constraints need to fulfil

the required demands. This problem is often referred as the Constrained Short-

est Path (CSP) or Multi-constrained path problem (MCP), when the number of

constraints is bigger than one. When the problem is to minimize the cost of a

path following a delay constraint it is called Delay constrained least cost (DCLC)

path problem.

Those multiple metrics must be calculated considering the measured values

in all the links that form a path between the source and destination node. Since

all these metrics have a different impact on the quality of a link (for example, it

might be preferable to have a link with low end-to-end delay but high bandwidth

availability), there are known three types of metrics that can be distinguished

[Wang and Crowcroft, 1996]:

• Additive metrics: When the measured value of a path is given by the

sum of the same metric values for each link;

• Multiplicative metrics: When the measured value of a path is given by

the multiplication of the same metric values for each link;

30 Chapter 4. Path computation algorithms

• Concave metrics: When the measured value of a path is given by the

minimum achieved value from all the links.

Delay, jitter, link cost and hop count are additive metrics, as they need to

be minimized in order to improve QoS. Bandwidth is a concave metric (the link

with the lowest bandwidth affects the remaining link in the path) and packet loss

is included in the multiplicative metrics. Additive and multiplicative constrained

metrics can also be identified as path constraints, while concave constrained met-

rics can also be referred as link constraints [Lee et al., 1995].

When solving SP problems with multiple constraints, the complexity of the

existing problem also needs to be considered. Algorithms with constraints on two

or more metrics are said to NP-complete [Garey et al., 1980; Chen and Nahrsted,

1998], making huge input scenarios almost impossible to solve in real-time, a

feature required when dealing with reactive flow path calculations.

Another concern about running algorithms that involve the input from dif-

ferent metrics among several network devices is the inaccuracy of the collected

data. The sources of this inaccuracy can be related to not being possible to col-

lect the metrics timely, or due to the overhead generated by the propagation of

advertisements regarding state changes in the network nodes [Guérin and Orda,

1999]. For these situations, the usage of Software-Defined Networking solutions

can be beneficial, due to the existence of a centralized controller with a global

view of the network that can play an important role when fetching metrics data

across the network.

A common approach to build a solution for the MCP is through the modifi-

cation of existing path calculation algorithms, adding the remaining constraint

requirement verifications. However, due to its complexity, additional adaptations

that reduce the algorithm’s complexity need to be implemented, in order to solve

this problem in polynomial time.

One example of a presented solution for solving the MCP in polynomial time,

when having two constrained additive metrics, is through the creation of a new

weight function based on one of the constrained variables [Chen and Nahrstedt,

1998], simplifying the original problem by replacing one constraint and respec-

tive weight values with equivalent finite integer ones (being the constraint an

4.2. Multi-path algorithms 31

adjustable part of the algorithm, independently of the used input values). With

this method, when using a modified Dijkstra’s algorithm that performs the dou-

ble constraint verification, the MCP was proved to be solved with a O(x2n2) time

complexity, with x being a integer bound to the algorithm implementation. The

equivalent solution using an extended Bellman-Ford algorithm (EBF) has a time

complexity of O(xnm). Both implementations with these two algorithms have

a polynomial time complexity, simplifying the original NP-Complete problem.

This integer bounding approach is also used in other similar related work with

the Bellman-Ford algorithm, and is named Limited granularity heuristic [Yuan,

1999].

The Lagrangian Relaxation Method [Fisher, 2004] is used in LARAC (La-

grange Relaxation based Aggregated Cost) [Juttner et al., 2001], an algorithm

built to solve the DCLC problem in polynomial time. Through the usage of a

multiplier variable (λ), the original cost function is modified in order to include

the path delay in the equation to be solved. This way, by varying λ, it can found

paths that respect the delay constraint bounds and have the cost value minimized,

taking the path’s delay in consideration. The example of an optimal solution can

be achieved when λ = 0 and the sum of the path delay respects the constraint,

since the cost function is not affected by the path delay. This algorithm runs in

O(m2 log4m) [Upadhyaya and Dhingra, 2010].

Additionally, more extensive and comprehensive lists of the existing path com-

putation problems and solution proposals can be found in existing surveys [Chen

and Nahrsted, 1998; Kuipers et al., 2002; Upadhyaya and Dhingra, 2010].

A summary of the evaluated single path computation algorithms can be seen

in table 4.1.

4.2 Multi-path algorithms

When computing different paths in computer networks, there are situations when

it is beneficial to have more than one path calculated from a source to a destina-

tion node. These can include the increase of resilience by having backup paths

available to provide a fail-over mechanism in a faulty network, or increasing the

throughput of the network connection, when using a multi-path protocol (such

32 Chapter 4. Path computation algorithms

Table 4.1: Evaluated single-path computation algorithms

Name Problem Constraints Complexity Observations

[Dijkstra, 1959] SP No O(m+n log n) Does not work with negative
weight paths

[Hart et al.,
1968]

SP No O(bd) Uses a heuristic function to calcu-
late shortest paths

[Bellman, 1956] SP No O(nm) Can compute with negative
weight paths

[Johnson, 1977] SP No O(n2 log n +
nm log n)

Uses Dijkstra’s and the Bellman-
Ford algorithm

[Juttner et al.,
2001]

DCLC Delay and Cost O(m2 log4m) Computes using the Lagrange Re-
laxation method

[Chen and
Nahrstedt, 1998]

MCP Any 2 O(xnm) Simplifies the constraints using a
limited granularity heuristic

as MPTCP), that can create multiple sub-flows for each connection.

Existing routing protocols (e.g. OSPF) already offer multi-path routing sup-

port. Equal-cost multi-path routing (ECMP) can be used in routing devices,

allowing the existence of multiple possible paths for a single destination address.

Each path is evaluated according to routing (QoS) metrics and if multiple paths

are tied with the same results, the routing device can use its defined scheduling

methods for picking one. Additionally, in order to replace traditional loop pre-

venting protocols, such as Spanning Tree Protocol (STP) or Rapid Spanning Tree

Protocol (RSTP) [IEEE Standards Association, 2004], a new protocol specified in

the IEEE 802.1aq standard entitled Shortest Path Bridging (SPB) [Allan et al.,

2010] was created, allowing more than one path to be active in a network.

The problem for finding multiple shortest paths is often know as the k-shortest

paths (KSP) problem. Several characteristics can be distinguished between multi-

ple path computation algorithms, that can be more suitable to specific situations.

One of them is the existence of loops in existing paths, something that frequently

exists in complex computer networks topologies, but cannot be included in the

calculated paths. This variation of the KSP problem is called the k-shortest sim-

ple (loopless) paths problem. The existence of paths with negative weights should

also not be considered in computer networks graph representations.

Yen’s algorithm [Yen, 1971] is an approach for obtaining the k-shortest simple

paths from a source to a destination can be made through the calculation of de-

4.2. Multi-path algorithms 33

viations from the previous calculated paths. This can be achieved by temporarily

redefining the distance between some of the edges contained in the last shortest

paths to +∞, then re-applying a shortest-path algorithm to the modified network

graph. When using Dijkstra’s algorithm for calculating the shortest paths (see

4.1.1), the algorithm runs in O(kn(m+n log n)), as it computes kn shortest paths

while running. An improvement for this algorithm was also presented, reducing

its complexity through discarding the paths that would be calculated more than

once [Lawler, 1972].

Other technique for computing the KSP is by using Eppstein’s algorithm

[Eppstein, 1998], which includes computing an auxiliary tree that represents the

sidetrack distance difference of each incoming node’s edge to the shortest-path

found from a source to that node . This tree can be calculated from an original

shortest-path tree (generated by a single-shortest-path algorithm, e.g. Dijkstra’s)

and allows to sort the remaining shortest paths by their length, providing a

subset of shortest paths between a pair of nodes. While this algorithm runs in

O(m + n log n + k), it allows the existence of loops, making it not suitable for

computer networks path calculation.

Furthermore, other solutions for the KSP can be found in a previously done

comparative study [Brander and Sinclair, 1996].

The avoidance of network bottlenecks is another factor that motivates the

calculation of different paths. There are two specific scenarios where these kind

of algorithms can differ from its classification, in order to attempt to remove

this type of obstacles, respectively by being link-disjointed or node-disjointed

solutions. The following two sections will describe how each of these two operate,

additionally identifying existent work.

4.2.1 Link-disjoint algorithms

The existence of routing solutions through the usage of link-disjoint paths can

offer alternative paths to redirect existing traffic upon link failure, or provid-

ing different paths for multiple traffic flows. This approach can aid in avoiding

reaching a congestion state, often perceived when sharing several flows through

the same path. A simple example can occur when two clients are connected to

34 Chapter 4. Path computation algorithms

the Internet through a domestic network and one of them is downloading a huge

amount of data through a peer-to-peer (P2P) client application. In this scenario

the other user often perceives a congested connection if the used network does not

have enough bandwidth for supporting both clients at the same time. Figure 4.1

illustrates an example of two disjoint paths between two nodes.

Figure 4.1: Two link-disjoint paths between host A and B

Between link-disjoint path calculation problems, there are different versions

concerning the source and destination nodes of the paths:

• Finding k disjoint paths between k pairs of vertices [Shiloach and Perl,

1978];

• Finding 2 disjoint paths between a source node and every possible destina-

tion node [Suurballe and Tarjan, 1984];

• Finding k disjoint paths between a source and destination node [Li et al.,

1992].

The first version can be used to solve printed circuits design or routing prob-

lems in computer networks, whether there are k pairs of components that need to

be independently connected or k pairs of nodes that are required to be connected

without sharing the used links for providing load-balancing fairness.

Finding a pair of disjoint paths between a source node and all the remain-

ing nodes can be applied when building fail-over solutions in a network, e.g. a

server needs to build a primary and a backup path between each other node in a

mobile ad hoc network (MANET) in order to be able to provide reliability when

transferring data.

4.2. Multi-path algorithms 35

As previously said when describing MPTCP, different sub-flows are created

when establishing a connection between two hosts. A common configuration is

to create a sub-flow for each existing available network interface, so when 2 hosts

have k connected network interfaces, k MPTCP sub-flows are created. For this

scenario it is helpful to have k link-disjoint paths (one for each sub-flow), in

order to maximize the obtained connection throughput. However, due to the

complexity of this problem, it is difficult to find algorithms that run in efficient

time and are suitable to implement in computer networks path computation. For

example, the solution proposed by Li et al. [Li et al., 1992] calculates k disjoint

paths, but it only works with acyclic and directed input graphs.

An alternative to the computation of fully link-disjoint paths is the calculation

of partially disjoint paths through the introduction of a link-disjoint degree, cor-

responding to the percentage of link-disjoint paths between an existing path and

a second one, when it is not possible to find link-disjoint paths and at the same

time fill existing network requirements. This approach is used with the Resource

Optimization-based with Customized Link-Disjoint Degree Routing (ROR) algo-

rithm [Chap et al., 2011].

4.2.2 Node-disjoint algorithms

In the node-disjoint path problem, visited nodes are not repeated among the cal-

culated paths (besides the source and destination ones). This problem is also

called the vertex-disjoint multiple path problem and it an example of it is rep-

resented in Figure 4.2. The calculation of node-disjoint paths is, identically to

link-disjoint path computation algorithms, used mainly for reliability and load-

balancing in computer networks. An important example of its applications can be

with Wireless Sensor Networks (WSN), where the power consumption of the used

devices needs to be minimized. The usage of an efficient load-balancing mech-

anism through the usage of node-disjoint paths is a solution in aid to conserve

energy resources [Cardei and Wu, 2006].

As all the other path computation algorithms, several variants of this problem

can be formed, such as the existence of negative weights or the edges being

directed or undirected. Since a node cannot be visited more than once, there are

36 Chapter 4. Path computation algorithms

Figure 4.2: Two node-disjoint paths between host A and B

no loops in the generated solutions for this problem, making all the node-disjoint

paths simple.

Many distributed algorithms were proposed for finding multiple node-disjoint

paths through a network, through a mechanism of message exchanging between

nodes for finding paths among them [Sidhu et al., 1991; Lee and Gerla, 2001].

Likewise distributed routing algorithms, with SDN this type of approach becomes

obsoleted, since the SDN controller has full knowledge of the network topology,

sparing the overhead of the generated messages and simplifying the algorithm’s

behaviour.

In order to solve this problem through existing generalized algorithms, a node-

disjoint problem with directed edges can be easily turned into a link-disjoint

problem, by creating an adjacent auxiliary node for each existing node, connected

by a weightless edge and with all the outbound arcs of the original node linked

to this second. An undirected graph can also be turned into a directed one by

turning each undirected edge to two edges with opposite directions [Suurballe,

1974]. By making these modifications, one can turn a node-disjoint into a link-

disjoint problem and apply one of the solutions previously proposed.

A solution presented for calculating either node or link-disjoint paths by

Meghanathan [Meghanathan, 2007] implements an algorithm that runs Dijkstra’s

algorithm iteratively multiple times for finding different paths. Yet, after running

Dijkstra’s algorithm during each iteration, the algorithm firstly removes either ev-

ery link or node (if calculating link or node-disjoint paths respectively) that were

in the previous calculated path from the used graph. Given the fact that the first

shortest-path found might contain edges or nodes that can be used to build dif-

ferent disjoint paths, by preliminarily removing these edges/nodes the algorithm

4.2. Multi-path algorithms 37

does not allow finding other paths, even when they were present in the original

graph, making it not suitable for situations when more paths are required to be

found.

4.2.3 Multiple-path constrained algorithms

Similarly to the single path computation algorithms, we can also impose con-

straints to be fulfilled or parameters to minimized. Again, this type of problem

ends up having a huge complexity, aggravated by the increased number of calcu-

lations to perform, a factor directly proportional to the number of paths that are

required to calculate, in most of the cases.

The A* Prune algorithm [Liu and Ramakrishnan, 2001] solves the KMCSP (k

multiple-constrained-shortest path) problem by providing an adaptation to the

original A* algorithm (see 4.1.2). It builds paths from a source to a destination

node, expanding the visited nodes and discarding the paths that violate the im-

posed constraints. Like the A* algorithm, this algorithm uses a heuristic function

for projecting an assumption of the cost of a path, based on all the constrained

variables. This heuristic calculates admissible paths by using an additional algo-

rithm for computing the lower bounds of each constrained weight (examples the

authors referred are Dijkstra’s algorithm or the Lagrangian relaxation method).

It runs in O(khd2(h+ r + log(khd))), having k as the number of paths to find, d

the degree of the input graph (maximum number of edges connected to a node

in the graph), r the number of constrained metrics and h as the maximum hops

of the computed k paths.

A Limited Path Heuristic [Yuan, 1999] can be used along with an EBF im-

plementation that originally computes all the optimal paths between the source

node and all the remaining nodes [Widyono et al., 1994]. In the original algo-

rithm extension, the number of existing optimal paths can grow exponentially,

depending on the number of nodes and links in the input data. Hence, with the

Limited Path Heuristic this number of paths is limited by a variable (x), reducing

the time complexity of the algorithm to O(x2nm), making it solvable in polyno-

mial time. Nevertheless, when using this heuristic the best optimal path can not

always be found, since at least x optimal paths can be discovered before finding

38 Chapter 4. Path computation algorithms

the best optimal one.

Li et al. [Li et al., 1990, 1992] present algorithms for finding both node

and link-disjoint paths with multiple restrictions. However, they are restricted to

acyclic networks, a restriction hard to find in complex network topologies, making

the algorithms not suitable for being used in those scenarios.

The self-adaptive multiple constraints routing algorithm (SAMCRA)

[Van Mieghem et al., 2001] and the tunable accuracy multiple constraints routing

algorithm (TAMCRA) [De Neve and Van Mieghem, 2000] are two algorithms

that use a non-linear representation of a path length by combining all the path

weights and constraints, obtaining the final path length through the calculation

of the maximum value of the quotient of the division between the path weight and

respective constant, for each metric. Both algorithms allow the calculation of k-

shortest paths, with k being specified on the input of the algorithm in TAMCRA

and optimally found with SAMCRA. TAMCRA runs in O(kn log(kn) + k3Cm)

and SAMCRA in O(kn log(kn) + k2Cm), having n as the number of nodes, k

the number of calculated paths, m the number of edges and C the number of

constraints.

DIMCRA (link-disjoint multiple constraints routing algorithm) [Guo et al.,

2003] is an adapted version of SAMCRA that computes disjoint paths with mul-

tiple constraints, but it only provides solutions for the multiple constrained link-

disjoint pair problem (MCLPP), therefore only producing a maximum number

of 2 disjoint paths. As seen before, a pair of disjoint paths can be used as a fail

over or load balancing solution in a computer network. Nonetheless, in order to

maximize the throughput of each subflow created in a multipath transport pro-

tocol, more than 2 paths can be required, if the number of created subflows is

also greater than 2, which makes this algorithm unsuitable for generic situations

where multipath protocols create multiple subflows per connection. Similarly to

DIMCRA, the Maximally Disjoint Shortest and Widest Paths (MADSWIP) algo-

rithm [Taft-Plotkin et al., 1999] calculates a pair of maximally disjoint paths, but

focusing in maximizing the path bandwidth and minimizing the delay (shortest-

widest paths [Wang and Crowcroft, 1996]).

An overview of the analysed multiple path computation algorithms can be

found in table 4.2.

4.2. Multi-path algorithms 39

Table 4.2: Evaluated multiple-path computation algorithms

Name Problem Constraints Complexity Observations

[Yen, 1971] k-shortest sim-
ple paths

No O(kn(m +
n log n))

Uses Dijkstra’s algorithm mul-
tiple times

[Eppstein, 1998] KSP No O(m + n log n +
k)

Computes solutions with cy-
cles

[Li et al., 1992] Disjoint KSP No O(nk−1)m) Only works with acyclic di-
rected graphs

[Suurballe and
Tarjan, 1984]

Pairs of link dis-
joint paths

No O(m log(1+m/n) n) Finds a pair of disjoint paths
between a source and all the
other graph nodes

[Chap et al.,
2011]

Disjoint KSP No Not mentioned Uses a link-disjoint degree
to calculate partially disjoint
paths

[Yuan, 1999] KMCSP Any 2 O(k2nm) Positive / negative weight
graph

[Liu and Ra-
makrishnan,
2001]

KMCSP Yes O(khd2(h + r +
log(khd)))

Extends the A* algorithm

[De Neve and
Van Mieghem,
2000]

KMCSP Yes O(kn log(kn) +
k3Cm)

Combines all the path metrics
into a single one

[Van Mieghem
et al., 2001]

KMCSP Yes O(kn log(kn) +
k2Cm)

Similar to TAMCRA, but op-
timally finding the existing k
paths

[Guo et al., 2003] Link-disjoint
KMCSP

Yes Not mentioned Calculates a pair of disjoint
paths using SAMCRA

40 Chapter 4. Path computation algorithms

4.3 Path computation in Software-Defined Net-

working

Due to the centralized management architecture present in SDN, the used con-

troller application can have full knowledge of the existing network topology, mak-

ing path computation a simpler task (despite the need of mechanisms that allow

the controller to know the managed network state), rather than use distributed

algorithms among the existing nodes. Along with path calculation, a number of

different specific tasks can be performed; installing alternative paths upon path

failure, enhancing the QoS and QoE of the existing traffic demand, providing

load balancing for dynamic installed flows and enhance the scalability of network

nodes in data centers are some of the applications of path calculation inside SDN.

Regarding the installation of alternative paths as a fast failover solution when

using OpenFlow, auxiliary protocols can be used to monitor the state of the

present links, such as Bidirectional Forwarding Detection (BFD) [Katz, 2010] or

Connectivity Fault Management (CFM) [van der Pol et al., 2011]. Additionally,

different link reconfiguration schemes can be used; Lee et al. [Lee et al., 2014] cre-

ated a pre-planned path protection solution that covers three different schemes;

Link Protection (existing spare capacity in links can be used by different links),

Destination Only (alternative paths are calculated based on the flow destina-

tion address) and Interface Specific Forwarding (packet forwarding rules take in

consideration the source node id and destination address). By using preplanned

paths, when link failure occurs in the network, it is only required to modify the

flow entries in the source and destination nodes, rather than reconfiguring each

node of the new path.

Through the monitoring capabilities of OpenFlow, it is possible to collect

network traffic metrics from big topologies (e.g. fat-tree networks), a function

sometimes hard to perform with traditional load-balance-aware routing mech-

anisms, like the equal-cost multipath routing protocol (ECMP) [Hopps, 2000],

due to the high overhead caused by the huge density of the network. A dy-

namic load-balancer with multi-path support was built as an OpenFlow con-

troller application, supporting traffic adaptations in the network [Li and Pan,

2013]. This load-balancer runs an algorithm that selects links with more avail-

4.3. Path computation in Software-Defined Networking 41

able bandwidth when performing path computation (by monitoring the respective

OpenFlow switch port statistics). This is a simple recursive algorithm that cal-

culates paths running either from a lower to a higher topology layer level or in

the opposite direction, depending in where the destination node is located. Be-

sides its better results comparing to other existing load-balancing techniques, the

algorithm is specific only to be used with fat-tree topology networks, not being

an actual solution to other existing network topology problems.

QoS routing, as said before, is another example of an usage of path compu-

tation within SDN. OpenQoS [Egilmez et al., 2012] distinguishes incoming flows

in a network as multimedia or data flows, distributing them among two types

of paths; multimedia flows are assigned to QoS guaranteed paths and data flows

are placed among existing shortest-paths. QoS-reserved routes are calculated

through the resolution of the DCLC problem with the application of the LARAC

algorithm, using constrained path delay values and through the minimization of

a cost function built from the path congestion and path delay.

The CSP is also solved as a mean to provide QoS routing in an optimization

framework used for streaming video in an OpenFlow network [Egilmez et al.,

2013]. In this framework, video transmission can be distinguished by two levels of

QoS, when the used codec allows video encoding through different layers (a feature

not always present in commonly used video codecs). This way, the base layer of

a video (with the most significant information) is assigned to the highest QoS

level, the enhancement video layer to the lower QoS level and all the remaining

(data) flows are routed through the shortest path (with an best-effort approach).

This routing problem is solved again recurring to the LARAC algorithm, with a

delay constraint and a cost function based on the weighed sum of packet loss and

on the delay variation.

The optimization of path computation in order to maximize the aggregated

QoE of a network domain is demonstrated in Q-POINT [Dobrijević et al., 2014],

a framework that uses a mixed integer linear programming model that calculates

the most QoE-aware suitable paths for each existing flow, distinguishing between

audio, video and data flows, setting up the originated flow rules in each OpenFlow

switch through a SDN controller.

Regarding the usage of the algorithms compared in the previous sections for

42 Chapter 4. Path computation algorithms

path computation in SDN, different choices can be made according to the type of

problem. For the calculation of a single SP between a source and a destination

node, both Dijkstra’s or Bellman-Ford algorithms are suitable, but since Dijk-

stra’s time complexity is lower than Bellman-Ford and in this specific scenario

the weight of a path cannot be negative, Dijkstra’s algorithm can be considered a

more efficient choice. The A* problem requires a good heuristic function, that can

be hard to implement, having an exponential complexity in a worst case scenario,

making it not affordable for the calculation of SP in a SDN-based network.

Yen’s algorithm is a simple solution for solving the KSP problem, as it can be

easily implemented as a SDN controller module, having a as input a computer

network graph. The remaining analysed algorithms for this specific problem

would not suit this type of scenario, as either their input cannot contain cycles

or the generated solutions can include a node more than once in a single path.

The problem of computing multiple disjoint paths is more complex and it

is considered NP-Complete. The studied solutions are built for specific input

scenarios or they do only generate a pair of disjoint paths. While the calculation

of a pair of link or edge disjoint paths is meant principally to provide a backup

path solution, more than 2 paths might be required to find when using MPTCP

(if the number of existing network interfaces is greater than 2). Hence, while it

might not be possible to find k fully disjoint paths between 2 nodes, an approach

that computes partially disjoint paths needs to be chosen.

In order to apply the knowledge of collected QoS metrics in a SDN network,

a controller can also implement a path computation module using one of the de-

scribed algorithms, based on different heuristic approximation functions. Though

the listed MCP single path algorithms were designed to contain 2 QoS metrics

(delay and cost with LARAC or any 2 metrics with EBF with the limited gran-

ularity heuristic), in more complex scenarios it might be required to take more

than 2 network performance variables in consideration. Nonetheless, easily any

KMCSP algorithm can be turned to a MCP one when k = 1. In a similar way,

when removing the number of constraints from the algorithm input, one can turn

a KMCSP algorithm into one that computes KSP.

Either the A* Prune or the SAMCRA algorithms can be suitable for solving

the KMCSP, MCP and KSP problems, as they have similar complexity. The A*

4.4. Summary 43

Prune efficiency depends in the quality of the used heuristic function, but as it

occurs in the original implementation of A*, it consumes a big amount of memory

when expanding the existing nodes, which can be problematic with huge SDN

network topologies. Therefore, since SAMCRA relies in the linear approximation

weight function, it is a more proper solution.

4.4 Summary

An overview of existing path computation algorithms was presented in this sec-

tion. The simpler single-path algorithms studied (Dijkstra’s, A*, Bellman-Ford)

are used to calculate solve the SP problem and are used as a reference or as

subroutine calls in other algorithms. More constraints can be added to the SP

problem, originating the MCP problem, which is proved to be NP-Complete. In

order to reduce this complexity, approximation and heuristic functions can be

used and still be able to solve this problem in polynomial time (although some-

times the best solution found might not be the best existing one).

Additionally, existing solutions to compute multiple paths (KSP problem)

and 3 variants of this problem were introduced: Link-disjoint (each link that

forms a path cannot be used again by other calculated paths), node-disjoint (the

same as link-disjoint but a node cannot be included in more than one path) and

KMCSP. While the KSP problem can be solved with polynomial complexity,

these 3 versions are more complex, and similarly to the MCP problem, the used

algorithms require approximation and heuristic methods in order to compute with

admissible times.

The usage of path computation with SDN were discussed and the usage of the

previously analysed algorithms in a SDN context were reviewed. After analysing

the current state of the art in SDN controllers and related work, it is notice-

able that currently there are not any publicly available applications that perform

constrained multiple path computation. This makes the development of an appli-

cation with support for multiple path transport protocols and constrained path

computation based in the existing network QoS metrics a significant contribution

for the existing work in SDN and related areas.

44 Chapter 4. Path computation algorithms

Chapter 5

Proposed Architecture

In order to build and evaluate the proposed controller application that will allow

enhanced path computation in a SDN network, it is needed to define the testing

environment where the experiments will be held, along with the specification of

the application to be developed. These initial steps will support the future work to

be done, making it more structured, organized and with reference documentation

to follow.

This chapter will firstly introduce the goals to be achieved with the evalua-

tion of the developed application, followed by a description of the tools that are

required to build its testing environments.

An elaborated definition of the framework that will allow the creation and

modification of experimenting scenarios is presented, combining the usage of the

tools previously described. The specification of the developed SDN controller

application is exposed, listing and detailing each of its modules. Finally, details

regarding the implementation of the application are shown.

5.1 Introduction and goals

When performing experiments with computer networks where it is required more

than one device to build the desired testing scenarios, there are usually three

possible approaches to achieve that goal: either the network scenario can be

build using physical devices, using an emulated environment or using a hybrid

46 Chapter 5. Proposed Architecture

approach, combining the usage of physical devices with emulated ones.

While the usage of physical devices represents typically existing network en-

vironments in a more accurate level, such as the components physical delay or

existing radio interference (when considering a wireless environment), its setup,

configuration and device synchronization becomes more complex as the number of

used devices increases, or when it is required to perform a topology modification.

Since the emulation of network environments is made through software, it

becomes easy to create and modify new network topologies. However, there are

some limitations when choosing this approach, such as the processing power of the

device used to run the emulator (which can restrict the number of emulated notes

or even its running performance), running specific software or different operating

systems versions inside the emulated nodes or the difference in the transmis-

sion/propagation times from the ones obtained in physical testbeds. Therefore,

by taking in consideration the previously aspects, it is crucial to have a machine

with a huge amount of processing power and a network emulator that maximises

the independence of shared resources between the host machine and the emulated

nodes.

A combination of emulated and physical network devices can be specially

useful when testing a scenario where there are fixed components in a network

(e.g. a SDN controller) and components that change among scenarios (endpoints

or OpenFlow switches, for example).

Through the configuration of different computer networks through the usage

of an network emulator, it will be possible to perform tests in SDN-environments,

while exploring its behaviour when using MPTCP, along with different path com-

putation and flow scheduling approaches that take in consideration the actual

state of a network, obtained through the monitoring of statistics regarding the

consumption of existing network resources.

These experiments will have as a main goal the proposal of an application

that will run inside an OpenFlow controller and will allow the computation of

paths inside a managed network using different strategies, for existing and new,

unmatched flows.

5.2. Used tools 47

5.2 Used tools

This section will describe the tools that will be used for performing experiments

in the context of SDN.

As referred in chapter 2, a fundamental component in SDN experiments is

the controller, responsible for managing the SDN-capable devices. Therefore,

Opendaylight will be presented, along with Common Open Research Emulator

(CORE), a network emulator capable of creating multiple nodes that will support

OF. This will be possible by using Open vSwitch, a software-based switch vastly

used in SDN environments, as an alternative to hardware switches.

5.2.1 Opendaylight

As it was previously mentioned in section 2.2, Opendaylight was chosen as the

preferable SDN controller to use, mostly due to its well structured architecture

and its huge and active user and developer community. From its large set of

features, some of the most important that will be used include the OVSDB and

Flow Manager Northbound APIs, and the Topology Manager and OpenFlow

Plugin internal module.

A more detailed explanation regarding how Opendaylight will be explored in

order to create a dynamic path calculation application can be found in section

5.4.

5.2.2 Open vSwitch

Open vSwitch (OVS) is a software-based switch, implemented at kernel level.

Besides its native switching feature, it supports a huge number of networking

features, targeted mostly to a production level usage.

Some of the more important features include the configuration of QoS policies,

VLAN tagging, STP, tunnelling protocols (e.g. Generic Routing Encapsulation

(GRE) [Hanks et al., 2000] and Virtual Extensible LAN (VXLAN) [Mahalingam

et al., 2014]) implementation and usage of OpenFlow for setting up flow rules

and the implementation of monitoring protocols, such as BFD, CFM, NetFlow

[Claise, 2004], sFlow and others.

48 Chapter 5. Proposed Architecture

Since it is software-based, it is vastly used on network virtualization envi-

ronments, bridging physical network interfaces (connected, for instance, to a hy-

pervisor) with multiple virtual network interfaces connected to locally deployed

virtual machines.

Open vSwitch supports remote management onnections through the usage of

the OVSDB protocol, which is often implemented in SDN controllers, such as

Opendaylight, as explained in section 5.2.1. Since the configuration of OVSDB is

based on a database, a manager can easily configure an instance of OVS through

the manipulation of table row entries (e.g. from the Port, Bridge, QoS, Queue

tables). The current design of OVSDB schema can be seen in figure 5.1.

Figure 5.1: OVSDB Schema [Pfaff and Davie, 2013]

5.2.3 CORE

The Common Open Research Emulator (CORE) [Ahrenholz, 2010] is a network

emulation framework that uses Linux containers to create network nodes and

existing operating system bridging tools to establish links among them. Addi-

tionally to the emulated networks, it can be used to connect to existing networks

connected through the device’s network interfaces.

In order to create and manage network nodes and links there exist two pos-

sibilities. The first one is through its graphical user interface (GUI), as it can

be seen in figure 5.2, which facilitates the design and drawing of network topolo-

gies on a visual canvas. The second method is through scripts written using an

5.2. Used tools 49

existing Python API, making it possible to specify and define network program-

matically. This was the method used to build the framework that allowed the

creation of the testing scenarios, referred in section 5.3.

Figure 5.2: Example of the usage of CORE’s GUI

Besides the creation of network nodes, it is possible to run services inside the

created nodes. These can be either previously shipped with CORE’s software

package (e.g. Secure Shell (SSH), Quagga, Dynamic Host Configuration Protocol

(DHCP) server), or customized by the user, through the specification of the

desired start-up and shutdown commands, along with the directories used by the

service. This allows SDN-related applications to be run inside a CORE node,

such as OVS or Opendaylight.

When analysing with other network emulators that are suitable for SDN-

based network prototyping, Mininet [Lantz et al., 2010] is vastly used among

the researcher community. It provides an easy CLI that enables users to deploy

already defined network topologies, or a Python API that allows them to manually

define the topology to be created.

Mininet also uses OVS and automatically configures it on each of the switch

50 Chapter 5. Proposed Architecture

nodes of the topology (it creates the required, bridges and ports, and connects

it to the specified controller IP address, if specified). However, despite its sup-

port to OVS, it is not as versatile as CORE when it comes to customizing the

topology’s endpoints. While CORE allows the users to easily specify predefined

or customized services to run inside the node, startup and shutdown scripts and

node folders, Mininet does not offer similar support to node customization, only

allowing to run command-line commands from its management CLI, making it

more difficult to perform that same operations that are possible with CORE.

Consequently, this makes CORE a more suitable option in terms of customize

experimenting scenarios, which is the main reason for its choice as the used net-

work emulator.

5.3 Evaluation platform

In this section there will be presented the components that allowed the con-

struction of a testing framework environment, supporting the tools listed in the

previous section.

This framework is based on a Scenario Creator, responsible for creating sce-

nario files that describe the used topology and events that occur during the ex-

periment, and on an Experimenter framework, that parses scenario files, builds

the respective network topology and runs all the events specified in the scenario

file.

5.3.1 Scenario Creator

In order to explore the capabilities of the Python API provided by CORE and

facilitate the creation of new topologies to be used on testing scenarios, a Scenario

Creator auxiliary application was built. Besides the scenario topology, it also

allows the specification of different types of nodes to be run in CORE (Endpoint,

Router, Opendaylight and OVS), QoS configurations in OVS nodes and events

to be held during the experiments.

Through the definition of the topology nodes, existing links (along with their

parameters, such as bandwidth, delay or packet loss rate) and how they are

5.3. Evaluation platform 51

connected to each other, the Scenario Creator instantiates the proper CORE

objects and configures them according to the provided specifications.

The following events can be included in a scenario, each following a timestamp

that determines when they occur:

• Start and stop sending network traffic

• Start and stop receiving network traffic

• Setting up a node’s interface up or down

• Add a network route to a node

• Modify an existing link in real time (bandwidth, delay, jitter, packet loss

and duplicate rate)

After running the Scenario Creator, it is produced a JSON output file con-

taining all the data regarding the specified scenario. This output format allows

other applications to easily read and parse its contents with existing libraries,

independently of their programming languages.

5.3.2 Experimenter framework

Concerning the requirements of performing experiments in different scenarios

(previously specified by the Scenario Creator), this Experimenter framework al-

lows an user to run experiments with additional configurations, adjusted to the

context where they are run. Examples of these configurations could be setting

up MPTCP in the host machine, or starting traffic sniffers before starting the

experiment.

The following enumeration explains each of the steps that this framework

takes when running an experiment, as described in figure 5.3.

1. A scenario file is created by the Scenario Creator, specifying the scenario

topology (nodes and links), existing OVS QoS configurations and network

events;

2. The experimenter framework reads the scenario file, provided as input;

52 Chapter 5. Proposed Architecture

3. The Opendaylight controller is started, along with the developed applica-

tion;

4. Using CORE’s Python API, the framework builds the network topology,

as described in the scenario file. This includes the creation of network

nodes, links and its parametrization. Any other experiment configuration,

if specified in the executable file, does also run in this phase;

5. The OVS nodes connect to the controller and start to be managed by the

path calculator application;

6. According to the traffic demand data present in the events section scenario

file, the traffic generators senders and receivers are instantiated in the re-

spective nodes and the senders start to generate traffic. During this phase,

all the other events are taken in consideration and run according to their

start time;

7. By the end of the experiment, log files are produced, based on the re-

sults perceived in the endpoint nodes. These log files contain information

regarding the average, minimum and maximum delay, packet loss percent-

age, average bitrate, number of transmitted packets and number of received

bytes, for each flow.

5.4 SDN controller application specification

In this section it is presented the specification of an application to be run within

the Opendaylight SDN-controller.

This application will allow different path routing strategies; besides a tradi-

tional single-path routing strategy, it will also including multiple-path routing

and low-latency aware path computation. Additionally, when multiple paths are

available, different flow allocation mechanisms will also be evaluated.

The main goal of using these different strategies is to evaluate and compare

their behaviours among each other.

5.4. SDN controller application specification 53

Figure 5.3: Diagram of the experimenter framework

Following up this section, it will be made a detailed description of the com-

ponents that integrate the application (figure 5.4), having this description com-

plemented with the workflow of the application when the controller receives an

incoming packet from a managed OF switch.

5.4.1 Components description

Opendaylight is built over an elaborated modular and service-oriented architec-

ture. Its last stable version uses Karaf, an OSGi-based framework that manages

the installation and deployment of services inside the controller.

This controller uses a model-driven approach to create a service abstraction

layer (MD-SAL), contributing to the standardization of the existing north and

southbound APIs, and specifying how services use the application internal data

storage and communicate with each other internally.

With MD-SAL, a service is described using the YANG data modelling lan-

guage. With it, it is possible to specify its data structures (and respective rela-

tionships), methods, dependencies and notifications. Based on this specification,

54 Chapter 5. Proposed Architecture

Figure 5.4: Architecture of the SDN controller application

it is possible to generate the Java source code of the service through the usage of

code generators that parse YANG models.

The current distribution of the Opendaylight controller already includes mod-

ules that will be used for supporting the application to be develop. These are the

OpenFlow Plugin, Address Tracker, Packet Handler and Topology Manager, re-

spectively. In addition, new components will be also created, in order to support

the previously described application features, which include the Metrics Collec-

tor, the Path Calculator, the Flow Scheduler, the Host Manager, the Packet

Dispatcher, the Topology Change Listener and the Flow Writer.

The following subsections will describe each one of the components that the

application will use.

5.4. SDN controller application specification 55

5.4.1.1 OpenFlow Plugin

The OpenFlow Plugin is an integrated component of Opendaylight that provides

the required means of communication between Opendaylight and the managed

network where it is connected. The usage of the OpenFlow Plugin can be dis-

tinguished between two different types of interaction with other Opendaylight

components.

The first involves the communication between high-level components of Open-

daylight and it is specially based on the MD-SAL architecture. One of the most

important features of MD-SAL that the OpenFlow Plugin uses is the publication

of notifications upon receiving a packet from an OF switch. The registered ser-

vices in Opendaylight can subscribe to these notifications and access the packet

data. It also provides an API that other services can use for managing flows on

the OF switches, converting MD-SAL stored objects into OF API calls.

The second part of the usage of the OpenFlow Plugin is related with the

communication with the network devices that support OF. This is made through

the usage of an OF protocol library that is implemented according to the proto-

col specification (currently the used OF version is 1.3). With the required OF

libraries it communicates with the OF devices through that are compatible with

the same version of the protocol.

5.4.1.2 Topology Manager

The Topology Manager is responsible for maintaining coherent the information

stored in the topology database provided by Opendaylight. This includes the

information about active endpoints in the network and OF-capable devices, along

with the respective links between the components.

The topology data is obtained by parsing Link Layer Discovery Protocol

(LLDP) messages exchanged by the network devices that support the proto-

col and through packets sent and received by the endpoints that and forwarded

through the OF switches.

56 Chapter 5. Proposed Architecture

5.4.1.3 Address Tracker

The Address Tracker is a built-in component of Opendaylight, originally imple-

mented on the sample L2 Switch application.

When the controller receives a packet forwarded from an OF switch, the Ad-

dress Tracker keeps track of the node that originally sent it and associates it to

the OF switch where it is connected. These informations include the attachment

points (identifier of the node and port of the respective OF switch), IP and MAC

addresses, a timestamp of when it was firstly seen, a timestamp of when it was

lastly seen and an identifier field for the node.

With this type of information, it is possible for other components to know

where each endpoint is located in the network (e.g. when performing path com-

putation to establish new flow rules between two endpoints).

5.4.1.4 Topology Change Handler

As the name suggests, the Topology Change Listener handles modifications in

the managed topology. These modifications includes the appearance and removal

of new network links, nodes and addresses (IP and MAC).

Link modification notifications are generated by the Topology Manager, and

upon receiving a notification of a change, the Topology Change Handler updates

the existing Network Graph data structure with the respective modifications.

Node changes are tracked Opendaylight Inventory Listener, a built-in compo-

nent in ODL that sends notifications whenever an OF-capable device joins/leaves

the managed network. The Topology Change Handler reacts to notifications re-

garding new nodes in the network, and for each one it instructs the Flow Writer

to install the base OF flow rules (IP and LLDP packets sent to controller. Re-

maining packets are dropped).

When new addresses are added to the topology information by the Address

Tracker, the Topology Change Handler maps the new addresses to the respective

node connectors (typically switch ports) from the OF nodes where the hosts with

the addresses are attached in the network. This mapping is made through the

Host Manager, whose functionalities are described in the next section.

5.4. SDN controller application specification 57

5.4.1.5 Host Manager

The Host Manager is responsible for providing data related to the existing end-

point and OF nodes connected to the network managed by Opendaylight. It

keeps maps of the L2 and L3 addresses and the respective switch ports where

they are attached, along with each OF node controller port connector (the switch

port that is used to establish communication with Opendaylight).

The tracked data is stored locally, avoiding making a new database transaction

for each request from other components. The Host Manager will only read data

from MD-SAL regarding controller-switch connectors, but only in the case where

the requested data is not locally available.

5.4.1.6 Packet Handler

Incoming packets received by the controller are processed by the Packet Handler.

Similarly to the Address Tracker, it is a component originally present in ODL’s L2

Switch application, but modified to also handle TCP and UDP packets, addition-

ally to Address Resolution Protocol (ARP), Internet Protocol version 4 (IPv4)

and Internet Protocol version 6 (IPv6) packets.

When a TCP/UDP packet is received, the source and destination port num-

bers are extracted from the packet header, along with the fields from the lower

layers (source and destination IP and Media Access Control (MAC) addresses)

and the original packet payload. Then, the Packet Handler passes the collected

data to the used Flow Scheduler.

5.4.1.7 Metrics Collector

The Metrics Collector module is responsible for adding network performance met-

rics to the existing topology information. Currently the supported metrics are

the link throughput, percentage of available and used bandwidth and one-way

delay.

While some network metrics can be obtained passively without any additional

configuration on the existing nodes by accessing existing statistics through the

existing configurations (link throughput and bandwidth), in order to obtain the

link delay it is required to periodically send packets through each link and keep

58 Chapter 5. Proposed Architecture

track of the time difference between when the packet was sent and when the

packet was received. This requires an additional monitoring of the link-delay

between the controller and the OF switches where the link is formed, which is

subtracted from the final interval between when the packet was sent and when it

was received back in the controller.

This module polls the monitored devices following an adjustable interval of

time. For all the collected network performance metrics, the existing topology

link data is augmented, making it possible to be independently accessed by other

components in Opendaylight.

5.4.1.8 Flow Scheduler

The Flow Scheduler has as main task choosing an available calculated path be-

tween two hosts by following a flow pinning strategy. It is invoked by the Packet

Handler, receiving as input the incoming packet header fields (TCP/UDP header

data, IP and MAC source and destination addresses) and the original packet

payload.

Based in the source and destination addresses, it gets the information about

the switch ports where the endpoints are connected from the Host Manager (they

need to previously have sent at least a packet to the network, so the Address

Tracker can add the endpoint information). Then, if there are not calculated

paths between the OF switch where the source and destination nodes are con-

nected, the Flow Scheduler queries the Path Calculator for new paths.

The path where the new flow rules will be installed is then calculated following

the configured flow pinning strategies. Currently, there are 5 flow scheduling

strategies implemented:

Static path flow scheduling All the flows are assigned to the same path;

Random path selection As the name suggests, a flow is assigned to a random

existing path between the available ones. It does not require to maintain

any state variables, regarding the next path to calculate. However, it is a

totally unpredictable strategy that does not take in consideration any input

from the existing network/flow data;

5.4. SDN controller application specification 59

Hash-based path selection A path number is calculated based on the result of

a hash function that uses the incoming packet header fields as input, having

its the output result restricted by the number of existing paths (similarly

to ECMP). This strategy guarantees a deterministic behaviour, as flows

with the same characteristics are always mapped to the same path, while

keeping different flows generally mapped to different paths. By using a

hash function, it is not required to keep stored information about the last

flows assigned. Nonetheless, all the flow mapping is done without taking in

consideration the existing network state;

Round-Robin path selection A new flow is assigned to the next path in the

list of existing paths, in a circular manner (after the last path is assigned,

the next one is the first). This behaviour makes Round-robin a predic-

tive and easy to implement algorithm. However, when considering network

paths, this approach can result in a worse behaviour when having paths

with different characteristics, as the flows are not pinned according to the

available resources. Additionally, it is required to keep in memory the cur-

rent state of the algorithm, in order to be able to select the next path to

assign to a new flow;

Flow-based path selection This algorithm assigns a flow to one of the paths

that has the minimum number of assigned flows. It requires the monitoring

of the existing flow counters for the managed links. Hence, the collected

data must be accurate and precise, or the collected values can be incorrect,

making this approach ineffective.

The Flow Scheduler then sends the calculated path information to the Flow

Writer (for installing the new flow rules) and the original packet payload to the

Packet Dispatcher, that will send it to the destination endpoint node.

5.4.1.9 Path Calculator

The Path Calculator is responsible for the calculation of network paths between

existing nodes. The calculated paths are used for installing new flow rules that

60 Chapter 5. Proposed Architecture

Figure 5.5: Hash-based load-balancing

Figure 5.6: Minimum-flows based load-balancing

will allow network traffic to be routed between endpoint nodes connected to

managed OF switches.

When it is required to establish one or multiple paths between two nodes, the

Path Calculator uses the existing Network Graph and the currently configured

path computation strategy and input to calculate the new paths. Three different

path computation strategies were implemented. However, it is possible to easily

implement new ones, without having extensive knowledge about the rest of the

application architecture. The implemented strategies are the following:

Single path routing In this simple approach a single path is calculated by using

Dijkstra’s algorithm and all the traffic between two endpoints is routed

through this path. When using MPTCP this strategy also routes all the

sub-flows to the same path;

Multiple disjoint path selection Taking in consideration a shortest-path met-

ric, multiple paths are calculated by using Yen’s algorithm. This approach

5.4. SDN controller application specification 61

Figure 5.7: Static path load-balancing

Figure 5.8: Random load-balancing

is made without taking in consideration node or link disjointness, which

can result in having multiple shortest paths with repeated links. While the

obtained paths are still valid solutions for connecting the source node to

the destination, by having the same links shared in different paths, there is

an increase of the risk of having bottlenecks in the used topology;

Link disjoint path selection Multiple paths are calculated by using sequen-

tially Dijkstra’s algorithm between the source and destination. For each

time that the algorithm runs, the links present in the previously calculated

path are ignored, guaranteeing link disjointness. However, this solution is

not always effective, as it does not work when there must exist partial dis-

jointness in the calculated paths (at least one link is shared between the

existing paths);

Constrained multiple path selection Besides the length of the computed paths,

this approach will also have as input the quality of the links, based on the

62 Chapter 5. Proposed Architecture

Figure 5.9: Round-robin load-balancing

metrics gathered by the Metrics Collector (delay and bandwidth usage),

through the usage of the SAMCRA KMCSP algorithm.

Independently of the used strategy, after calculating the resulting paths, the

Path Calculated sends the generated solution to the Flow Scheduler. The path

computation strategy can be configured by reading a configuration file when the

application starts.

5.4.1.10 Flow Writer

This module receives as input calculated path solutions from the Flow Scheduler

and the original packet header data that the controller previously received.

According to each node and port that is included in the generated solution,

the Flow Writer creates flows with the header data of the packet being used in the

matches part of the flow (i.e. source and destination IP address and source and

destination port numbers). For each flow that is created, the OpenFlow plugin

is used, handling the encoding of the flow to a standard OF call.

Additionally, in order to make communication between the source and desti-

nation nodes bidirectional, the Flow Writer also creates flows with the source and

destination fields reversed (original source addresses and port numbers become

the destination fields in the created flows’ matches and vice versa).

5.4.1.11 Packet Dispatcher

The Packet Dispatcher is responsible for sending OF packet-out messages from

the controller to the managed OF nodes through the Packet Processing Service,

5.4. SDN controller application specification 63

a built-in ODL component. These messages contain a packet payload and the

respective ingress and egress OF switch ports that are used to identify the source

and destination port of the packet.

The Flow Scheduler uses the Packet Dispatcher for delivering the original

packet that arrived to controller to the destination endpoint node.

5.4.2 Application workflow

This section describes to workflow of the developed controller application, present-

ing the chain of events and the interaction between components that is triggered

upon the reception of a new packet in the SDN controller. The same workflow is

represented in figure 5.4.

1. The OpenFlow Plugin triggers a Packet Received notification that is han-

dled by the Packet Handler. The packet payload is decoded and header

fields are extracted from the obtained information;

2. If the received packet is a TCP or UDP packet, the Packet Handler sends

it to the Flow Scheduler for further processing;

3. Based in the source and destination MAC and IP addresses of the received

packet, the Flow Scheduler obtains from the Host Manager the information

about the OF switch ports where the endpoints are connected;

4. If there were not any previous calculated paths between the source and

destination OF switch, the Flow Scheduler queries the Path Calculator for

new paths. The Path Calculator uses the configured path computation

strategy to calculate one or multiple paths, with or without constrained

network metrics. The topology information is obtained from the Network

Graph storage data structure;

5. With the set of links that form the path between the source and destination

nodes, the Flow Writer module produces a set of OF rules that are matched

in the incoming packet header fields;

6. Each created flow from the calculated path is sent to the OpenFlow Plugin

and then installed in the respective OF switch nodes;

64 Chapter 5. Proposed Architecture

7. The original received packet is sent to the Packet Dispatcher, along with

the information about the ingress and egress destination switch ports;

8. The Packet Dispatcher pushes a packet-out message to the destination OF

switch through the Openflow plugin, so it can reach the endpoint with the

corresponding address.

5.5 SDN controller application implementation

details

Following up the specification presented in the last section, this section describes

in detail the implementation of each component from the application.

5.5.1 Packet Handler

The Packet Handler module is responsible for subscribing to incoming OpenFlow

PacketIn messages received by the controller. These messages contain the data

from packets who were not matched by any installed flow rule in the OF switch

from where they were sent.

The notifications are subscribed using MD-SAL’s

NotificationProviderService and each packet type is processed accordingly

using a dedicated packet decoder. The packet decoders are started when the

Packet Handle module is loaded in Opendaylight. The following section details

the implementation of the decoders.

5.5.1.1 Decoders

Each packet decoder is responsible for listening to one type of notification gener-

ated by MD-SAL, corresponding to one type of packet from the ones supported

(Ethernet, Ipv4, TCP and UDP).

After receiving a notification, firstly the decoder verifies if the packet fields

correspond to the ones from the decoder packet type (canDecode method). This

is made mainly through the inspection of the protocol fields present in the packet

header.

5.5. SDN controller application implementation details 65

Upon this confirmation, the decode is invoked, and accordingly to the packet

type, its header fields are extracted from the received packet payload and stored

in the new packet object. In order to store the packet fields in adequate data

structures, a YANG model of the new packet types must exist in the Packet Han-

dler model module, which specifies the existing packet header fields and respective

data types.

Besides the new packet fields, the YANG model also specifies a new notifi-

cation type, used to signal when a packet is decoded from the decoder, which

can be received by other components in Opendaylight. The Ethernet and Ipv4

YANG packet models were already present in the L2 Switch application and were

used without any additional modifications. The TCP and UDP models were im-

plemented as a requirement for the transport layer OF packet matching, being

one of the contributions presented in this work.

5.5.2 Address Tracker

The Address Tracker is divided in two main components: the Address Observers

and the Address Observation Writer. The first one keeps track of new network

addresses from incoming packets in the controller and the second one writes the

changes made in the MD-SAL database storage.

When the Address Module starts, firstly it starts the Address Observation

Writer, passing it the used instance of MD-SAL data broker service and setting its

timestampUpdateInterval variable value (read from the module’s configuration

file).

The Address Observers are started after, and each of them its registered as a

MD-SAL notification listener. This is made through calls to the

registerNotificationListener method of MD-SAL’s notification provider ser-

vice.

5.5.2.1 Address Observers

The Address Observers listen to incoming packet notifications received by the

controller and collects address information about the existing endpoint nodes.

It can subscribe to IPv4, IPv6 and ARP packets which are received through

66 Chapter 5. Proposed Architecture

the Ipv4PacketReceived, the Ipv6PacketReceived and ArpPacketReceived

notifications, respectively. The type of packet notification subscriptions is de-

fined by the observeAddressesFrom variable, set in the module’s configuration

file.

For each received notification, the Address Observers extract each packet from

the packet chain built by the Packet Handler (RawPacket,

EthernetPacket and Ipv6Packet/Ipv4Packet/ArpPacket, depending on the

type of packet the Address Observer is responsible to handle). The ingress port

where the packet came is obtained from the RawPacket, the source MAC address

from the EthernetPacket and the packet source IP address from the respective

IPv4, IPv6 or ARP packet.

With the collected fields, the Address Observer calls the addAddress from the

Address Observation Writer to add the new address to the MD-SAL database

storage.

5.5.2.2 Address Observation Writer

As it was previously mentioned, the Address Observation Writer stores new IP

and MAC addresses from endpoint hosts and the respective OF switch port where

it is connected in the MD-SAL data tree.

For each address that is added, it is also added a timestamp to set the first

and last time the address was seen in the network. If an address was previously

associated to a switch port and the interval since the last address apparition is

greater than the value set for the timestampUpdateInterval variable, the last

seen value is updated. This verification is made through a read-only transaction

that gets the existing seen addresses in the respective switch port.

All the changes are updated in the MD-SAL database through a write-only

transaction that inserts an ArrayList of instances of the Addresses class into the

AddressCapableNodeConnector augmentation of the switch port object instance

reference (NodeConnectorRef) where the address was seen. Additionally it is used

a lock-safe mechanism that allows only one address observation to be made at

the same time on a switch port.

5.5. SDN controller application implementation details 67

5.5.3 TCP/UDP Packet Handler

The TCP/UDP Packet Handler module is implemented in the

IncomingPacketHandler class, and as the name suggests, it processes incoming

TCP and UDP packets received by the controller. These packets originally are

processed by a TCP or UDP decoded from the Packet Handler module, as referred

in section 5.5.1, and are obtained by subscribing to the TcpPacketReceived and

UdpPacketReceived notifications, respectively.

When one of these packets enter the onTcpPacketReceived or

onUdpPacketReceived methods, all the previous layers packet data is extracted

by accessing the built packet chain, which contains all the previous accessed

packets. This procedure involves the extraction of the source and destination

MAC and IP addresses, as well as the original packet payload (later used to send

it to the packet destination node).

Following this step, the TCP/UDP packet data and the other collected val-

ues are sent to the used Path Scheduler, through the processTcpPacket and

processUdpPacket methods.

5.5.4 Packet Dispatcher

By using Opendaylight’s Packet Processing Service, the Packet Dispatcher mod-

ule is able to send PacketOut messages to OF switches managed by the con-

troller. These messages contain the payload from packets received previously by

the controller, and are sent after the path calculation, flow scheduling and flow

installation is completed.

The dispatchPacket method receives as input the byte array corresponding

to the packet payload, the identifier of the node where to send the packet and the

destination IP address. Using the Host Manager, the Packet Dispatcher obtains

the identifier of the switch port that is connected to the controller (to be set as the

ingress port) and the switch port where the host with the destination IP address is

connected (to be set as the egress port). It then uses the sendPacketOut method

to build a TransmitPacketInput object with all the obtained fields, which is

used as input in the transmitPacket method of the Packet Processing Service.

68 Chapter 5. Proposed Architecture

5.5.5 Flow Writer

The Flow Writer module creates Flow objects that are transmitted to OF switches

by using Openflowplugin’s SAL Flow Service.

Its addPathFlows method is called by a Flow Scheduler every time a new path

need to be established, using the incoming packet header fields as the flows’ match.

It receives as input the source and destination Nodes, IP and MAC addresses and

TCP/UDP port numbers, as well as the protocol number (for identifying UDP or

TCP) and the switch port identifiers where the source and destination hosts are

connected. Firstly it installs the flows that will send the matching packets to the

endpoint nodes, by calling the addSrcToDestFlow (twice, according to the source

and destination node, respectively), which creates a Flow object and installs it

in the respective switch. After that, flows with the same match are installed for

each link presented in the built path. Since it is common to have bidirectional

communication between two nodes, two flows are installed per link, having all

the match fields reversed (source and destination addresses and port numbers) in

the second one.

The flows installed in the path are temporary, as they are configured with an

idle time out, making them expire and consequently being deleted from the switch

after this timer is reached. The idle time out (in seconds) can be configured by

setting the pathFlowsIdleTimeout in the application main module configuration

file.

Besides the creation and installation of the flows required to maintain a path

for incoming TCP and UDP packets between a source and destination node, the

Flow Writer is also responsible for the installation of the initial flow rules that are

installed when a new node establishes a connection with the controller. These

flows use as match the IP and LLDP packet types and are used to send the

respective incoming packets to the controller, being installed statically (hard and

idle time out are not set).

A unique identifier is used for each flow, being stored in the flowIdInc vari-

able, which is synchronously incremented every time a new flow is created. This

procedure guarantees that new flows will not override existing configurations from

old existing flow rules.

5.5. SDN controller application implementation details 69

For each flow that is installed, the Flow Writer uses the

writeFlowToController method. This method builds the Node and Table (set

to 0, the one used by default when looking for a flow match in OF) instance

identifiers that are required to configure the path where the flows will be installed

in MD-SAL’s database. Along with the created Flow class object, SAL Flow

Service’s addFlow procedure is called, installing the new flow.

5.5.6 Host Manager

The mapping between existing network addresses (IP and MAC) and the switch

ports where they are connected, as well as the switch ports that are used for

connecting each OF switch to the controller are stored in the Host Manager.

This data is available to other components whenever it is required to compute a

new path, install new flow rules or send packets to OF switches.

The IP and MAC address map is updated externally by the Topology Change

Handler, whenever new addresses are observed in the network and stored in the

corresponding HashMap instances entitled ipv4AddressMapping and

macAddressMapping, respectively. The information about the switch port can be

obtained by providing one of these address types and calling either the getIpNodeConnector

or getMacNodeConnector methods.

When it is required to get the switch port used by an OF node to con-

nect to the controller (through the getControllerSwitchConnector method),

firstly the Host Manager tries to obtain this information locally by accessing

the controllerSwitchConnectors map. If it is not available, all the existing

node information is pulled from MD-SAL for further inspection by using the

readInventory method. For each port present on each node, the one used to

connect to the switch is extracted and added to the local map instance. This

identification is possible by analysing the port name, since it is always named

LOCAL.

5.5.7 Network Graph Service

The Network Graph Service is a service that allows the construction of a network

graph using data from the links present in the managed network topology. It

70 Chapter 5. Proposed Architecture

is declared as an interface, declaring methods for managing the graph links and

signalling when there are changes in the network graph. By using an interface

class, it allows the creation of different implementations of the service.

The current implementation of this service was adapted from the original

L2 switch Network Graph Service implementation. It uses the Java Universal

Network/Graph (JUNG) framework, which provides libraries for creating and

manipulating the network graph.

Additionally to the graph data structure, a map of the existing links in the

graph is maintained by storing a key computed with the source and destina-

tion port of the link. This allows the verification if a link is already present

in the graph, when adding new links. The verification is made by using the

linkAlreadyAdded method.

5.5.8 Topology Change Handler

The Topology Change Handler listens to data change events on topology links,

nodes and new addresses.

The link and address data monitoring is made by listening to data change

events created by MD-SAL’s Data Service (DataBroker class). When there are

changes in MD-SAL’s internal data, the created data is obtained from the gener-

ated notification, and each object is analysed.

If it corresponds to an instance of the Addresses class, it means that a new

endpoint node was observed in the managed network and the corresponding

network addresses were extracted from exchanged packet data. Therefore, the

Topology Change Handler updates the Host Manager with the address data and

corresponding switch port where the host is connected.

If the changed data is an instance of the Link class, there were changes in

the network topology (a new link was observed by the Topology Manager, or

an existing one was removed from the network), and the module needs to run

the TopologyDataChangeEventProcessor thread after, in order to update the

Network Graph.

The TopologyDataChangeEventProcessor thread is programmed to run when

scheduled by the Topology Change Handler. It adds the new links firstly by clear-

5.5. SDN controller application implementation details 71

ing the previous existing links from the graph, and adding the ones currently

present in the network topology, by performing a MD-SAL database query to

the corresponding information (which returns all the network links). By schedul-

ing this thread it is possible to add multiple links to the Network Graph at the

same time, instead of running a thread individually for each link that was created,

since the retrieved information always contains all the topology links. The thread

scheduling interval can be adjusted by configuring the graphRefreshDelay option

in the application configuration file.

New nodes are monitored by receiving NodeUpdated notifications from the

Opendaylight Inventory Listener. When a new node connects to the network, the

Topology Change Handler starts a InventoryChangeProcessor thread. This

thread is responsible for using the Flow Writer to install the initial flows to the

new node, by calling its addIpToControllerFlow and addLldpToControllerFlow

methods, setting up incoming IP and LLDP packets to be sent to the controller,

respectively.

This component was adapted from the L2 Switch original implementation to

be used in the current Path Calculator application project.

5.5.9 Metrics Collector

The Metrics Collector is part of the developed controller application but, simi-

larly to the Packet Handler and the Address tracker, it runs independently as a

standalone module that can be used by other applications.

Some of the components from the main application were also required in this

module, such as a Flow Writer, a Topology Change Handler and a Host Manager.

Therefore, the same components were introduced in the Metrics Collector, with

modifications adapted to the requirements of the module.

The current implementation of the Metrics Collector supports delay and band-

width monitoring, which can be enabled/disabled by setting the collectDelay

and collectBandwidth options from the module configuration file to true or

false, respectively. The next sections describe in detail how these two were

implemented.

72 Chapter 5. Proposed Architecture

5.5.9.1 Delay Monitoring

Opendaylight does not provide any delay monitoring tools by default and, conse-

quently, the existing topology statistics lack data regarding link and path delay.

In order to add delay information about the existing topology, two possibil-

ities were considered: the first one involved using external software tools in the

topology nodes for extracting latency information, e.g. One-Way Active Mea-

surement Protocol (OWAMP) or the native Internet Control Message Protocol

(ICMP) ping tool. The second consisted in implementing a delay monitoring

component in the Metrics Collector module.

While using an existing tool would simplify the implementation of the appli-

cation, since it would only be required to implement a scrapper for parsing the

output interface of the tool, it would bring other issues such as the requirement

of the monitoring application to be installed on each managed OF switch, which

can not always be possible, or having to deal with clock synchronization issues.

Including a new monitoring tool in the controller application would add ad-

ditional complexity to its implementation, and consequently increase the risk of

having bugs in the produced code. However, by implementing a delay monitor-

ing tool in the controller it would be guaranteed that it would work on every

managed SDN network. Hence, the delay monitoring was implemented by using

an active monitoring technique that measured the interval between the moment

packets were inserted in the network, and the one when they were received. This

approach was found previously used in existing work [Phemius and Bouet, 2013;

Van Adrichem et al., 2014], but implemented in different SDN controllers (Flood-

light and POX, respectively).

The delay monitoring implementation is divided in two different different link

delay metrics: the controller-switch delay and the delay between inter-switch links

(figure 5.10). The final delay value that is used for the link metric consists in

the one-way delay between the inter-switch ports and is obtained by subtracting

the timestamp of when the delay monitoring packet was sent and half of both

controller-switch observed round-trip times, from the timestamp when the inter-

switch delay monitoring packet was received. Considering the following values:

• Tlinkpktreceived the timestamp when the packet arrived from s2

5.5. SDN controller application implementation details 73

• Tlinkpktsent the timestamp when the packet was sent to s1

• s1
2

the one-way delay between the controller and s1

• s2
2

the one-way delay between the controller and s2

The link delay (in ms) between two switches, Delay(s1, s2, link), can be ex-

pressed by the following equation:

Delay(s1, s2, link) = Tlinkpktreceived − Tlinkpktsent −
s1

2
− s2

2
(5.1)

Figure 5.10: Link delay monitoring

For being possible to perform delay monitoring through the injection of pack-

ets in the network without interfering with existing network traffic and installed

flow rules, a new type of packet was created using the EtherType value 0xbeef.

While the corresponding Ethernet frame contains a source and destination MAC

address calculated based in the used OF switch datapath identifiers and port

numbers, the 0xbeef packet payload only contains an 8-byte value correspond-

ing to a timestamp, mapped from a long value. The content of the Ethernet

frame uses only 22 bytes, making it minimally bandwidth intrusive in the mon-

itored network links. An example of one of this packet payload can be found in

figure 5.11.

Since each delay monitoring packet needs to be sent back to the controller

after being sent, a Flow Writer module is responsible for installing new flows that

match the used 0xbeef packet type, every time a Node Change Handler detects

74 Chapter 5. Proposed Architecture

Figure 5.11: Example of the content of a delay monitoring packet

a new node through a NodeUpdated notification, similarly the behaviour of the

Topology Change Handler, described in section 5.5.8.

The interval used between each time the module sends delay monitoring pack-

ets to the controller-switch and inter-switch links can be adjusted by modifying

the controllerSwitchDelayInterval and linkDelayInterval options in the

Metrics Collector configuration file.

In the first version of the implementation of this module, all the links were

monitored at the same time, which resulted in frequently having a large number

of packets arriving back to the controller approximately in the same instances,

contributing to the increase of the observed delay values due to the processing

overhead (the Openflow plugin only generates the next packet received notifi-

cation after the previous one is processed). In order to avoid this, an interval

(in ms) between each sent packet was introduced in the module implementation.

This value can be configured by setting the delayPacketSendMaxInterval and

delayPacketSendMinInterval options. The interval generation strategy can

also be set to be static (using only the maximum value) or randomized (hav-

ing a value between the maximum and minimum option values) by setting the

delayPacketSendIntervalStrategy option to static or random, respectively.

5.5.9.2 Bandwidth Collector

The Bandwidth Collector extracts bandwidth usage information from the existing

OF switch ports. Contrary to delay monitoring, it obtains this data passively,

by reading existing statistics from MD-SAL. The collected statistics include the

number of transmitted bytes and current link speed.

By obtaining these values repeatedly over an interval of time, configured by

the bandwidthInterval option (in ms), it is possible to estimate the current used

bandwidth (in bits per second), as well as the available bandwidth, by subtracting

the used bandwidth to the link speed.

5.5. SDN controller application implementation details 75

After calculating the bandwidth estimation values, they are merged into the

correspondent link MetricsCapableLink augmentation and stored in MD-SAL

for further use by other components.

When monitoring the bandwidth utilization from the managed network nodes,

several issues were found, regarding the update rate of these values. The compo-

nent in Opendaylight responsible for updating the data required for calculating

the used bandwidth (byte counters) only updates these values every 3 seconds,

which turned into a restriction when configuring the update interval of the Band-

width Collector.

5.5.10 Path Calculator

As it was previously described in section 5.4.1.9, the Path Calculator is responsible

for computing paths between the existing network nodes. The application allows

the usage of different path computation strategies, configurable by modifying the

pathStrategy option in the application configuration file.

The AbstractPathCalculator class is used as an abstract base class required

to be extended by every implemented path calculator strategies. It receives as its

constructor input the used Network Graph Service and contains the declaration

of the 2 getPaths methods that are used to calculate paths. Both these methods

receive as input the identifier of the source and destination node of that paths

to calculate, having the maximum number of paths to calculate as an additional

parameter in the second one.

The following subsections will describe the currently implemented Path Cal-

culation strategies.

5.5.10.1 Single Path Calculator

The Single Path Calculator is implemented in the ShortestPathCalculator

class. It uses Dijkstra’s shortest path algorithm, present in JUNG’s algorithms

libraries, which returns a list with the corresponding path links, sorted by the

visiting order between the source and destination.

Since this strategy only computes one shortest path between a source and

destination, both path calculation methods are forced to generate only one path

76 Chapter 5. Proposed Architecture

in their output, having the n paths parameter ignored in the second getPath

method.

The Single Path Calculator strategy can be used by setting up the

pathStrategy option to singlepath in the application configuration file.

5.5.10.2 Multiple Path Calculator

The Multiple Path Calculator is used by the MultiplePathCalculator class and

it calculates multiple paths by solving the KSP problem. Paths are calculated us-

ing Yen’s algorithm, which computes the k-shortest paths in the network graph,

implemented in the Multi-Layer Visualization Tool (MuLaViTo) framework. Sim-

ilarly as in the Single Path Calculator, this implementation uses JUNG’s libraries.

Since the used Yen’s algorithm implementation operates with directed edges

and the used Network Graph implementation uses undirected edges for repre-

senting the existing network links, an additional procedure creates an auxiliary

graph with directed edges with unitary weight from the existing topology before

running the algorithm. It can be called by using the getShortestPaths from the

Yen class object.

The n parameter from the getPaths is used for specifying the number of paths

to calculate. If it is not specified, a predefined value of 5 paths is used as input

for the algorithm.

The Multiple Path Calculator strategy can be used by setting up the

pathStrategy option to multipath in the application configuration file.

5.5.10.3 Link-disjoint Path Calculator

The Link-disjoint Path Calculator is implemented in the

DisjointPathCalculator class and calculates multiple disjoint paths through

multiple calls to the DijkstraShortestPath class (JUNG’s libraries).

For each call to the getPaths method, a temporary network graph is created

from the previous existing one, removing the edges that were used in the last cal-

culated path. If there are not as many disjoint paths as requested, the algorithm

stops and returns the computed paths.

5.5. SDN controller application implementation details 77

The Link-disjoint Path Calculator strategy can be used by setting up the

pathStrategy option to disjoint in the application configuration file.

5.5.10.4 SAMCRA Path Calculator

The SAMCRA Path Calculator can perform multiple path computation with mul-

tiple constraints through the usage of the SAMCRAPathCalculator class, which

uses instances of the SAMCRA class for obtaining new paths.

It receives as input a length function parameter, set by the

samcraLengthFunction option, defined in the application configuration file, which

sets the objective function used to calculate the link and path lengths in the algo-

rithm (getPathLength). Additionally, the length function is also used to specify

the criteria that defines the path domination criteria (isDominated). The MCP

length function is configured by setting the length function variable as mcp, the

DCLC with dclc and the HCMB as hcmb.

The samcraMetrics option can be used to specify the link metrics that will

be used for path computation with the MCP, separated by commas. Currently

the supported metrics are delay (delay), used bandwidth (usedBw), available

bandwidth (availableBw) and hop count (hops). Besides hop count, which is

basically the sum of all the path links, all the metrics are extracted from the

corresponding link by obtaining the values stored in their MetricsCapableLink

augmentation.

The respective constraints are provided as input to the SAMCRA class as a

double array and obtained through the samcraConstraints configuration op-

tion, in the same order as they were declared in the samcraMetrics one.

Extending the behaviour of the original algorithm, if a path is required to be

found with given constraints but the algorithm fails to find it, the application

proceeds to relax the algorithm constraints and run it again. This relaxation can

occur up to three times, by multiplying the original constraints by 2, 4 and 8

respectively. If by then, SAMCRA did not find a path, a final iteration runs by

setting up the algorithm with an unique minimum-hops metric with an infinity

constraint, in order to guarantee that a path is found between the source an

destination node, if it exists. An alternative to this policy was blocking the

78 Chapter 5. Proposed Architecture

incoming flow, not allowing the respective rules to be installed in a path and

consequently, forbidding the communication between the two nodes. The impact

of the used policy by the application when a path is not found by SAMCRA can

be studied as future work.

If the application requires multiple paths to be found, but SAMCRA fails

to compute the desired number (e.g. due to the path domination criteria used

to remove redundant paths in the algorithm), it creates an auxiliary copy of

the existing network graph, where it excludes the links that are present in the

previous calculated paths, and runs the algorithm again, until either when the

number of required paths is filled or the algorithm fails to find a path. This

extension to the original application was done, since in scenarios where multiple

flows between the same source and destination were established in a short amount

of time (e.g. when creating a new MPTCP connection with multiple sub-flows),

the link characteristics would not be different when running SAMCRA, forcing

the algorithm to always return the same path.

5.5.11 Flow Scheduler

The Flow Scheduler is implemented on a high level by the

AbstractFlowScheduler class. This class contains two abstract methods, processUdpPacket

and

processTcpPacket, which are responsible for handling incoming UDP and TCP

packets and need to be implemented in each Flow Scheduler that will be con-

figured. The used scheduler is defined by the schedulingStrategy variable,

specified in the main module configuration file.

Currently, all the implemented schedulers have the same initial behaviour,

when a new packet is received. Firstly, through by using the source and desti-

nation IP and MAC address from the packet header, the scheduler queries the

Host Manager, and if the addresses were previously seen in the network, it gets

the respective OF switch and port where they are connected.

With the source and destination OF nodes, it checks if they are different from

the ones existing in memory (changedNodes function), and if they are reversed

(incoming packet source address corresponds to the stored destination one and

5.5. SDN controller application implementation details 79

vice versa), through the reversedPath function. If the nodes are different, then

it requests new paths to be calculated by the existing Path Calculator.

The scheduler then gets the next path number, according to the used flow

pinning strategy. If the obtained path is valid, it calls the Flow Writer to install

the required path flows and finally, it uses the Packet Dispatcher to send the

original packet to the destination node.

The next subsections will detail how each of the implemented flow schedulers

chooses the next path.

5.5.11.1 Hashed Flow Scheduler

The Hashed Flow Scheduler uses a hash function for computing the next path

number (getHashBasedPath). This function gets as input the received packet

source and destination IP addresses and TCP/UDP port numbers and computes

the hash code of a string containing those fields together (e.g.

10.0.0.110.0.0.215000150001).

With the obtained value it is applied a mask to turn any negative value into a

positive, finishing the procedure by returning the modulo of the existing number

of paths.

This scheduler can be used by configuring the schedulingStrategy variable

option of the application main module to hash.

5.5.11.2 Minimum Flows Flow Scheduler

This scheduler uses information from existing OF flow counter statistics in order

to obtain the number of flows assigned to each path. It can be configured by

setting the schedulingStrategy variable option of the application main module

to flows.

The FlowManager class is used for obtaining these values from the MD-SAL

data storage. Its getTableFlowOutputCounters returns the present flow coun-

ters, for each one of the OF switch ports, by parsing the OutputAction value of

each flow (if applicable) installed in the node default table (0) and incrementing

the respective port flow counter.

The MinFlowsFlowScheduler maps the obtained switch port flow counters to

80 Chapter 5. Proposed Architecture

the existing path numbers, sorting them by ascending order and extracting the

path assigned to the minimum value.

When getting the flow counters from MD-SAL, some issues were found with

its refresh rate: when adding multiple flows in a short interval of time (e.g. 10

flows installed in less than 1 second), it was observed that the flow counters were

not updated immediately after each flow was configured, consequently making

the flow counters stay with the previous observed values (0 if they were the first

flows to be installed, for example).

In order to tackle this problem and keep an approximation of the current

installed flow counters, local counters were implemented in the FlowManager

class. By saving the timestamp from the last MD-SAL flow counter query and

configuring a variable that specifies the minimum interval of time between MD-

SAL queries (localFlowCounterDuration, configured in the application main

module configuration file), it was possible to have an approximation of the current

flow counters. These counters were incremented when a new flow was installed

and replaced by the values presented in the MD-SAL database every time a new

query was made.

This solution did not solve entirely this flow counting problem, since when

new flows are installed shortly before the validity of the local flow counters expire,

those values will not be registered in the new flow counter query. Also, when using

the local counters with this approach, it is not possible to keep track of flows that

expired (and decremented the flow counters). Nonetheless, this solution allowed

this flow scheduler to obtain better results, comparing to the original strategy.

5.5.11.3 Random Flow Scheduler

The Random Flow Scheduler uses an instance of the Random class to generate

random numbers. The randInt function limits the obtained values between 0

and the maximum number of available paths, returning a randomized next path

number, used to establish the next path to be used.

This scheduler can be used by configuring the schedulingStrategy variable

option of the application main module to random.

5.5. SDN controller application implementation details 81

5.5.11.4 Round-robin Flow Scheduler

The Round-robin Flow Scheduled is configured by setting the

schedulingStrategy variable option of the application main module to rr.

The nextRoundRobinPath variable keeps track of the next path to be used by

the scheduler. When a new packet arrives with the same source and destination

address, the current value of this variable is used to specify the path where the

flows will be assigned, following by an increment of 1 and a modulo operation

with the number of existing paths. This last operation assures that the used path

number never exceeds the number of existing ones, by setting its value to 0 after

the last path is used, as it can be seen in figure 5.9.

5.5.11.5 Static Flow Scheduler

The Static Flow Scheduler can be used by setting the schedulingStrategy vari-

able option of the application main module to static. For every received packet

and respective existing paths between the source and destination nodes, even if

there is more than one available path, the first path from the path list is chosen,

as it can be observed in figure 5.7.

This configuration can be changed by changing the STATIC PATH NUMBER vari-

able value to a different number (predefined as 0).

5.5.12 Application Main Module

When Opendaylight is initialized, the Path Calculator application main module

is also loaded. This module is responsible to retrieve all the application con-

figuration options and obtain the required MD-SAL dependencies (Notification

Provider Service, Data Broker, RPC Provider Registry, SAL Flow Service and

Packet Processing Service), used by the other application components in order to

communicate with MD-SAL and their required functionalities.

After all the configurations and dependencies are loaded, all the application

components are initialized, which include the Network Graph Service, Host Man-

ager, Flow Writer, Packet Dispatcher, Topology Change Handler, TCP/UDP

Packet Handler, Path Calculator and Flow Scheduler. The only exceptions are

82 Chapter 5. Proposed Architecture

the Metrics Collector, the Address Tracker and the Packet Handler, which run

independently from the main application module.

Concerning the Path Calculator and the Flow Scheduler, since a different class

needs to be instantiated according to the chosen strategies, the

getPathCalculator and getFlowScheduler methods are called, instantiating

the adequate classes, by reading the pathStrategy and schedulingStrategy

options from the application configuration file, respectively.

5.6 Summary

In this chapter it was described the specification of the SDN controller applica-

tion, according to this thesis proposal. The tools that will be used in the used

experimenting environment were listed, which included Opendaylight, the cho-

sen SDN controller where the application will be developed, Open vSwitch, an

OpenFlow capable software switch that can be instantiated in the nodes meant

to support OpenFlow, following by CORE as the network emulator to be used.

A framework built for performing experiments in computer network scenarios

was presented, based on the previously described tools. This framework allows the

specification of network topologies and respective configurations through a Sce-

nario Creator application that generates scenario files, used as input for the Ex-

perimenter application, responsible for creating the described topology in CORE

and running all the configuration and network events additionally specified in the

input scenario file.

The application specification was detailed, focusing in presenting the modules

that will run in the application and respective roles, along with their work flow

during the application’s life cycle. This specification was then concluded by the

contents of the application implementation, where its internal behaviour was

outlined, as well as its most important configuration options.

Chapter 6

Evaluation results

In order to analyse the behaviour of the developed application and the impact

of the implemented flow pinning strategies and path computation algorithms, it

is necessary to conduct experiments that evaluate the performance of network

connectivity by different hosts in a SDN based network.

This chapter is divided in two distinct sections. The first is oriented to the

evaluation of the implemented flow schedulers, either when using a single-path

or a multiple-path transport protocol. The second section aims to test the im-

plemented path calculators when using MPTCP for performing multiple data

transfers between endpoints in a network where multiple paths with different

characteristics are available.

6.1 Transport protocol and flow scheduler eval-

uation

In the article by Bredel et al. [Bredel et al., 2014], the authors performed ex-

perimental work in a OpenFlow environment by testing different flow allocation

strategies on a SDN controller, along with the usage of MPTCP.

The experiment consisted in performing multiple parallel file transfers between

two endpoints, connected through a network formed by interlinked OpenFlow

switches. These experiments showed that a strategy that takes in consideration

the current status of the network (in this context, the number of flows assigned

84 Chapter 6. Evaluation results

to each path between the endpoints) achieves better results than one that does

not use this type of input. Additionally, Bredel et al. accomplished improved

outcomes when using MPTCP (comparing to TCP experiment results).

The setup of this environment was recreated in CORE and the same exper-

iments were performed with the same flow pinning strategies (Minimum-flows,

Round-robin, Hash-based and Random), following testing conditions identical

to the original ones. These experiments had the goal of validating the imple-

mented flow scheduling algorithms and comparing the obtained results when us-

ing MPTCP and TCP. As a reference, the original results were used as a baseline

for comparing the obtained ones. The next sections will describe in detail the

testing scenario and experiment results, respectively.

6.1.1 Testing scenario

The scenario where the experiments are held is based on the OpenFlow testbed

presented in the article and its topology is illustrated in figure 6.1.

Figure 6.1: Topology used in the flow-based load balancing experiments

The topology contains two endpoints and four nodes running OVS. The end-

points are linked to the respective OVS nodes through a 100 Mbps link and the

OVS nodes are connected through 10 Mbps links. There are a total of 6 link-

disjoint possible paths between the endpoints (without considering the link that

connects them to the network).

Considering the topology link delay, two variants of this scenario were con-

sidered. In the first one, every link had a fixed one-way delay of 2ms, making all

paths having equal characteristics (besides hop count). In the second variant, a

200ms one-way delay was added to the links that formed paths 1 and 2, in order

6.1. Transport protocol and flow scheduler evaluation 85

to purposely increase the end-to-end latency in the topology shortest paths. Hav-

ing these two versions of the testing scenario, it was possible to evaluate the flow

scheduling strategies and transport protocols when having both homogeneous and

heterogeneous available network paths.

The experiments measured the mean transfer time of multiple parallel file

transfers (from 1 to 15) using the path selection strategies previously described in

section 5.4.1.8 and compared the obtained results when using TCP and MPTCP.

Each transfer consisted in sending 50 MB of data split between files with the re-

spective size varying between 1 and 20 MB, generated by using a Zipf distribution

with an exponent factor α = 1.0 (for achieving an even distribution fo the values

[Brakman et al., 1999]), having waiting times between each file sent defined by an

exponential distribution with a rate parameter λ = 1.2. The cumulative distri-

bution function (CDF) for the used values can be observed in figures 6.2 and 6.3,

respectively. When using MPTCP, it is used a path-manager configuration that

creates 3 sub-flows per connection, through the configuration of the ndiffports

option.

Figure 6.2: CDF of the used file sizes in the flow schedulers evaluation experiments

The evaluation of this scenario was primarily made without using an SDN

controller. Since the topology was managed by the used testing framework, it was

86 Chapter 6. Evaluation results

Figure 6.3: CDF of the used waiting times in the flow schedulers evaluation
experiments

possible to know in advance the traffic that was going to be generated and create

the matching flow rules in the OF switches locally (using management commands

in OVS), according to the implemented flow schedulers and by having a static

configuration of the existing disjoint paths. The obtained results were used as a

baseline to compare the implementations to the ones in the original article with

the chosen configurations (described in section 5.5.11), and later used to compare

the same results when using the developed controller application.

However, this primary evaluation was made by using only TCP. Since MPTCP

creates additional sub-flows with randomized source port numbers, it was not

possible to predict the new created sub-flows without a controller that would

parse the incoming packet data. In order to perform path computation in this

scenario, the Link-disjoint path calculator algorithm was used, due to the fully-

disjointness of the available paths in the tested topology.

Each test was run with 5 iterations that were used to generate the final average

results.

6.1. Transport protocol and flow scheduler evaluation 87

6.1.2 Results

The results of the analysis of the different flow scheduling strategies are divided

in two categories. The first presents the obtained results of the different sched-

ulers when using TCP by statically installing the flows, without using the SDN

controller. Finally, the same evaluation is presented by using the SDN controller

application along with TCP and MPTCP. Complementary results can be found

in Appendix A.

6.1.2.1 Static flow allocation

Without additional path delay

Figure 6.4 presents the average transfer time for the evaluated scheduling

strategies, when using TCP and by installing the flows prior to the traffic gener-

ation. The x-axis represents the number of parallel file transfers that was done

and the y-axis the mean transfer time, in seconds. More detailed results, with

the respective confidence intervals were included in Appendix A.

Figure 6.4: All scheduler evaluation results, without SDN controller

Comparing all the flow pinning strategies, it is visible that the Round-robin

and the Minimum-flows approaches present the lowest mean transfer completion

88 Chapter 6. Evaluation results

times, with the second one reaching slightly lower results, comparing to Round

Robin. It is also visible that the average transfer completion time begins to

significantly increase after 6 parallel transfers, which is explained by the existence

of only 6 link-disjoint paths. After having more parallel transfers than available

paths, each path starts to become congested, explaining the growth of the transfer

times.

With 200ms path delay

Figure 6.5 presents the mean transfer completion time over the number of

parallel transfers, with the same conditions as in the previously described test,

but with a fixed delay of 200ms configured in the first 2 available paths (the

shortest, considering a hop count metric). Overall, the general mean transfer

time did not increase significantly, when comparing to the previous test without

the increased path delay.

It is still possible to observe that the Hash-based and Random strategies

achieve higher transfer times, comparing to Round-robin and the Minimum-flows

strategies. However, it is visible that the Round-robin scheduler has higher trans-

fer times than the Minimum flows. This is caused because the flows that are

pinned to the paths with increased delay take more time to finish transferring the

respective data, and Round-robin keeps assigning new flows to these paths, while

the Minimum-flows scheduler is aware of the current flow counters, noticing the

existent flows in the paths with delay, when that is the case.

6.1.2.2 Controller application

Without additional path delay

In figure 6.6 it is presented the results of the tests performed applying the

Round-robin and Minimum-flows schedulers with TCP and MPTCP, when using

the developed controller application, by presenting the mean transfer completion

time in the y-axis against the number of parallel flows. Similarly to the results

obtained with the static flow allocation, these schedulers have identical values

when using TCP.

6.1. Transport protocol and flow scheduler evaluation 89

Figure 6.5: All scheduler evaluation results (with delay), without SDN controller

When using MPTCP, it is possible to notice significant lower transfer comple-

tion times when having a number of parallel transfers up to 8. This is explained

by the saturation of the available network capacity. Additionally, it is observ-

able that the average transfer time begins to increase after 2 parallel transfers

are used. Since the current scenario configurations use 3 sub-flows per MPTCP

connection, after 2 transfers the number of total created sub-flows is greater than

6, allocating more than one flow per path. In conclusion, when using MPTCP

the outcome of these 2 flow pinning strategies was similar.

The mean transfer time over the number of parallel transfers when using the

Random and Hash-based flow schedulers in the controller application with TCP

and MPTCP is depicted in figure 6.7. Comparing to the results obtained from

the tests without using the controller application, the Random scheduler also

achieves the worst performance from all the remaining schedulers.

However, the Hash-based scheduler presents significantly better results in the

tests using the controller application (e.g. when testing with 15 parallel transfers,

the mean completion time in the tests without the controller application is 126s

and with the controller application version the same result is 108s). This is

explained by the fact that the implementation of both flow schedulers, despite

90 Chapter 6. Evaluation results

Figure 6.6: Round-robin and minimum flows evaluation results (TCP and
MPTCP), using the SDN controller

using the same input fields in the hash function (refer to section 5.5.11.1), is

made with different programming languages (Python and Java), having different

built-in hash functions for String objects, resulting in different output results.

The usage of MPTCP results in diminished transfer times when using both

schedulers, when comparing to TCP. Yet, similarly to the results with the Round-

robin and Minimum-flows strategies, the obtained mean transfer times are close

to each other, only varying by 3s in a worst case scenario.

With 200ms path delay

When applying the 200ms delay in the shortest paths, the results obtained

with TCP are identical to the ones without delay, as it can be observed in fig-

ures 6.8 and 6.9. However, the same does not happen when using MPTCP, as

the respective results are notably greater when comparing to the first ones.

Both Round-robin and Minimum-flows schedulers achieve, in general, lower

average transfer times with TCP, as MPTCP only outperforms TCP when hav-

ing 1 to 3 parallel transfers. With the Hash-based and Random strategies, the

performance of MPTCP is situated in the middle of the TCP Hash-based and

6.1. Transport protocol and flow scheduler evaluation 91

Figure 6.7: Hash-based and random, scheduler evaluation results (TCP and
MPTCP), using the SDN controller

Random schedulers, having the best results in the Hash-based TCP tests, and

the worst ones with Random TCP.

In conclusion, the mean transfer times were lower when using MPTCP in the

tests performed without increased path delay, comparing to TCP. In the experi-

ments with delay, it was observed that the performance of MPTCP significantly

decreased, being in general, worse than TCP when considering the Hash-based,

Round-robin and Minimum-flows strategies. However, this downgrade of perfor-

mance was influenced by the lack of available network capacity in all the topology

links. As the number of parallel transfers increased, the benefit of having multi-

ple sub-flows for performing data transfer diminished. Additionally, when having

paths with different delay configurations, the default packet scheduler used by

MPTCP does not efficiently assign packets to the available paths, contributing

to the increase of the application delay [Arzani et al., 2014; Grinnemo and Brun-

ström, 2015].

Considering the different flow pinning strategies, the most significant differ-

ences in the obtained results were registered in the tests with TCP. The Random

scheduler performed worst in the tests conducted with the controller, following up

92 Chapter 6. Evaluation results

Figure 6.8: Round-robin and minimum flows evaluation results with delay (TCP
and MPTCP), using the SDN controller

by the Hash-based flow scheduler. However, as it could be observed in the results

with and without using the controller application, they can vary depending in

the function used to calculate the corresponding hash path.

The Round-robin and Minimum-flows strategies were, in general, the ones

with the best results. However, due to the flow counter monitoring restrictions

explained in section 5.5.11.2, it is not always possible to have accurate values with

the Minimum-flows approach. Consequently, this strategy did not outperform

Round-robin, when comparing to the results presented in the original article by

Bredel et al.

6.2 Path computation algorithms evaluation

Following up the previous experiments and given the different path computation

algorithms implemented in the SDN controller application, a second evaluation

phase engaged in validating, testing and analysing the behaviour of each algo-

rithm.

Based in the results obtained in the last section, the experiments conducted

6.2. Path computation algorithms evaluation 93

Figure 6.9: Hash-based and random, scheduler evaluation results with delay (TCP
and MPTCP), using the SDN controller

in this section will be focused on the performance of MPTCP along with the com-

bination of the usage of different flow pinning strategies with the implemented

path computation algorithms. The results will be focused in presenting an evalu-

ation of the quality of the established connections regarding network performance

metrics.

6.2.1 Testing scenario

The topology used for performing this second evaluation phase is also formed

by two endpoint nodes, connected through a network formed by multiple OF

switches that provide a different number of paths between the two nodes, as it

can be observed in figure 6.10.

The topology links connecting each node have different characteristics: the

first-hop switches that connect the endpoint nodes (1 and 5) have 1 Gbps links,

while the remaining have 100 Mbps. With the current topology configuration, it

is possible to achieve a maximum throughput of 600 Mbps, following the possible

paths formed by expanding the links from the 2, 9 and 16 nodes.

Concerning delay, there are 3 different configurations: The links that form a

94 Chapter 6. Evaluation results

Figure 6.10: Topology used in the evaluation of path computation algorithms

path between node 2 and nodes 4, 7 and 8 have a one-way delay of 60ms, while the

ones between nodes 9-10-11 and 16-17-18 have a 15ms delay. All the remaining

network links have a default one-way delay of 2ms. Table 6.1 provides a detailed

description of the characteristics of the topology links. The link latency values

were selected as an assumption, in order to create 3 different types of paths,

considering their end-to-end delay value.

These configurations create a scenario interesting for performing the evalua-

tion of the different path computation strategies implemented in the developed

SDN controller application, as through the existing different available paths, the

shortest ones (considering a hop count metrics) are not the ones that have the

least end-to-end delay. The evaluated path computation algorithms are the ones

described in detail in 5.4.1.9 (Single path, Multiple paths, Link disjoint paths and

SAMCRA).

6.2. Path computation algorithms evaluation 95

Table 6.1: Characteristics of the link in the path computation algorithms evalu-
ation topology

Node A Node B Bandwidth Latency Node A Node B Bandwidth Latency

Sender 1 1 Gbps 2 ms 12 13 100 Mbps 2 ms
Receiver 5 1 Gbps 2 ms 12 14 100 Mbps 2 ms
1 9 1 Gbps 2 ms 12 15 100 Mbps 2 ms
1 2 1 Gbps 2 ms 13 15 100 Mbps 2 ms
1 16 1 Gbps 2 ms 13 14 100 Mbps 2 ms
2 3 100 Mbps 60 ms 14 15 100 Mbps 2 ms
2 6 100 Mbps 60 ms 16 17 100 Mbps 15 ms
3 4 100 Mbps 60 ms 17 18 100 Mbps 15 ms
4 5 1 Gbps 2 ms 18 5 1 Gbps 2 ms
6 7 100 Mbps 60 ms 16 19 100 Mbps 2 ms
7 5 1 Gbps 2 ms 18 22 100 Mbps 2 ms
6 8 100 Mbps 60 ms 19 20 100 Mbps 2 ms
8 5 1 Gbps 2 ms 19 21 100 Mbps 2 ms
9 12 100 Mbps 2 ms 19 22 100 Mbps 2 ms
9 10 100 Mbps 15 ms 20 22 100 Mbps 2 ms
10 11 100 Mbps 15 ms 20 21 100 Mbps 2 ms
11 15 100 Mbps 2 ms 21 22 100 Mbps 2 ms
11 5 1 Gbps 2 ms

Considering the flow pinning strategies test results presented in section 6.1.2.2,

the experiments were made by using the Round-robin and the Hash-based flow

schedulers, as the respective outcomes presented greater stability, comparing to

the remaining testing strategies. Besides being a solution aware of the OF switch

flow configurations, the controller implementation limitations decreased the mon-

itoring accuracy of the Minimum flows scheduler, comparing to the intended im-

plementation results, making it not suitable for a further evaluation when using

the different path computation algorithms.

The conducted experiments were based in the usage of MPTCP, focusing in

maximizing the benefits of using multiple sub-flows for a single file transfer by

splitting them across different network paths, comparing to the standard single

flow approach as in TCP. Similarly to the previous experiments, each MPTCP

connection generated 3 TCP sub-flows.

Identically to the experiments used to evaluate the flow scheduling strategies,

these experiments also consisted in performing a different number of parallel file

transfers between the sender and receiver node. However, the total amount of

96 Chapter 6. Evaluation results

data in these experiences was set to 500 MB due to the increase of the available

bandwidth in the network links from this scenario, having the file sizes varying

between 1 and 40 MB following a Zipf distribution, again with an exponent factor

α = 1.0, as it can be observed in figure 6.11. The waiting times before each file is

sent also follow an exponential distribution with a rate parameter λ = 1.2 (refer

again to figure 6.3).

Figure 6.11: CDF of the used file sizes in the flow schedulers evaluation experi-
ments

Regarding the parametrization of the configured algorithms, SAMCRA was

configured to find at least 3 paths that would fill a 150ms delay constraint and a

5Mbps minimum available bandwidth constraint. Yen’s algorithm was configured

to return a maximum number of 8 paths.

Additionally to the average transfer completed time, other factors were taken

in consideration for specifying the evaluation of the used algorithms, such as:

MPTCP Round-trip time The Round-trip time of the connections created to

transfer the files is used to perceive the end-to-end latency in the transport

layer after the path calculation is performed. This metric was collected by

using mptcptrace [Hesmans and Bonaventure, 2014], a tool that analyses

6.2. Path computation algorithms evaluation 97

packet trace files generated by packet sniffing tools, such as tcpdump [Jacob-

son, Van and Leres, Craig and McCanne, S, 2010], and generates statistics

from the MPTCP sub-flows, based in the packet header data.

Throughput This metric is presented as a complement to the average transfer

completion time, as it can be obtained through the division of the size of

the transferred files its respective completion time.

6.2.2 Results

The evaluation of the different path calculation algorithms is analysed by studying

the variation of 3 different metrics: The average transfer completion time, the

throughput of the completed file transfers, and the perceived round-trip time

delay from the established MPTCP connections. The following sections describe

each one of those parameters.

6.2.2.1 Transfer completion time

The obtained values for the average transfer time are depicted in figure 6.12. They

are normalized, taking as baseline the values from the tests with SAMCRA, with

Round-robin as the flow pinning scheduler, making all the other illustrated values

the difference between the reference ones. Similarly as in the transport protocol

and flow scheduler experiments, the detailed results with confidence intervals can

be found in Appendix B.

The results obtained in the tests made with the single-path (Dijkstra’s algo-

rithm) strategy were not presented in the figure, as they were vastly greater than

all the other tests. Combining that with each test running time and the existing

time constraints for this project, only the first 5 transfer tests were made with

this algorithm. These values are displayed in table 6.2 instead.

Still, while analysing the values for this path computation algorithm, it can be

observed that the mean transfer times oscillate without having a relation with a

number of parallel transfers from the tests. Given the testing scenario topology, it

is visible that there are a different number of shortest paths, considering a number

of hops metric. However, these paths do not have the same delay characteristics

98 Chapter 6. Evaluation results

Figure 6.12: Average mean transfer times, normalized with SAMCRA (Round-
robin)

(e.g. there are paths with a total of 10ms and paths with 124ms end-to-end delay),

and the implemented Dijkstra’s algorithm implementation can select different

shortest paths from the existing mapped topology in Opendaylight, which can

corresponding to paths with different delay characteristics, affecting the final

values perceived during the file transfers conducted during each test. Since this

algorithm only computes one path, the used flow scheduling approach does not

influence the final results.

The Disjoint paths algorithm presents, in general, the third highest values,

when comparing all the algorithms. Since this algorithm implementation com-

putes fully link-disjoint paths by removing the links from the previously calculated

paths, when combining it with the testing topology from this scenario, it is lim-

ited to a maximum number of 3 paths. When comparing the used flow scheduler,

it is visible that the hash-based solution has worst performance, when compar-

ing to the round-robin one, identically to the results obtained in the initial tests

performed in section 6.1.

When comparing the path schedulers used with SAMCRA, Round-robin (the

base values for the normalized function) reached lower transfer times, when con-

6.2. Path computation algorithms evaluation 99

Table 6.2: Normalized average MPTCP transfer times using Dijkstra’s algorithm

Transfers Round-robin Hash-based

1 4.911 2.915
2 2.725 3.106
3 2.111 1.657
4 1.871 1.562
5 2.127 2.009

trasting the values with the Hash-based strategy.

For all tests made with more than 2 parallel transfers, Yen’s algorithm finished

the tests with the minimum transfer times. Due to its implementation, it can

calculate more paths than any of the previously described algorithms (limited by

8 paths in the current implementation), and consequently distribute new flows

across a bigger number of different paths. Between the tests made using Round-

robin and the Hash-based flow schedulers, the mean transfer completion time is

lower in the Round-robin, due to its fairness when selecting the next path when

a new flow is created.

Considering the average transfer time values for 1 and 2 parallel transfers

with Yen’s algorithm, it can be concluded that during these tests the number of

existing flows was still short (comparing to the tests with a greater of parallel

transfers). Despite having a larger number of available paths, the ones selected

by SAMCRA had lower delay, while the paths computed by Yen’s had different

delay configurations. Hence, since the traffic demand for these scenarios was still

not vast enough to create congestion in the different used paths, the usage of the

paths with lower end-to-end delay values contributed to achieve lower transfer

completion times.

6.2.2.2 Round-trip time delay

Equivalently to the results shown for the obtained throughput, the RTT delay

was illustrated in 3 plots, corresponding to the value obtained with 1, 8 and 15

parallel file transfers.

100 Chapter 6. Evaluation results

The CDF distribution of the RTT delay for the experiments with 1 parallel

transfer is displayed in figure 6.13. Analysing individually the results from Dijk-

stra’s, and based in the preconfigured delay in the topology from the evaluation

scenario, it is visible that for the experiments made with Round-robin (though

the flow scheduler had no influence in the results), the algorithm selected one of

the shortest paths with the greatest end-to-end delay (1-2-3-4-5, 1-2-6-7-5 or 1-2-

6-7-5). On the other hand, in the tests with the Hash-based scheduler, in 3 out of

5 iterations of the test one of the paths with 34ms end-to-end delay (1-9-10-11-5

or 1-16-17-18-5) was used and in the remaining 2 the same paths were used as in

the Round-robin experiments.

For the tests with the Disjoint path algorithms it can be observed that, in-

dependently of the flow scheduler, the majority of the packets were sent through

the 34ms paths, having some packets using one of the largest delay paths. Yen’s

algorithm used a diversity of paths with all the delays (including the paths with

the lowest delay, e.g 10ms), while SAMCRA calculated mostly paths with the

lowest delay.

Figure 6.13: CDF for RTT delay with 1 parallel transfer

The RTT values obtained during the tests executed with 8 parallel transfers

are depicted in figure 6.14. Though the results look similar when comparing Yen’s

6.2. Path computation algorithms evaluation 101

algorithm and SAMCRA, it is noticeable a bigger difference when considering

packet delays from approximately 175ms to 200ms, consequence of the effort of

SAMCRA from using the measured link delay as a metric for calculating paths

and returning paths with the smallest available delay.

The Disjoint path algorithm presents the highest delay values, an outcome

from always using the same 3 paths for all the new installed flow rules, one of

them with the highest end-to-end path delay, configured in the scenario topology.

Figure 6.14: CDF for RTT delay with 8 parallel transfers

Finally, the delay values for the experiments with 15 parallel transfers are

represented in the CDF distribution chart presented in figure 6.15. Despite the

high maximum delay values (more than 1 second), it is observable that when

considering the used path calculation algorithm, the obtained values are similar

for both flow pinning solutions (Round-robin and Hash-based).

The Disjoint paths algorithm achieved the largest delay values, with nearly

all packets having at least a RTT delay close to 100ms, following up by greater

values, when comparing to the other algorithms. In general, it is visible a curve

near the 240ms mark in the x-axis, corresponding to the delay from the packets

routed through the paths that had a pre-configured 124ms end-to-way delay.

However, the percentage of packets that match these values is small in the results

102 Chapter 6. Evaluation results

from SAMCRA, since it was programmed to always find paths with the least

delay possible, despite its constraints, when comparing to Yen’s algorithm, for

example.

Figure 6.15: CDF for RTT delay with 15 parallel transfers

6.2.2.3 Throughput

The throughput from the file transfers performed during each test was plotted in

different CDF charts and presented in this section, for a number of 1 (minimum),

8 (median) and 15 (maximum) parallel transfers.

The values for the tests made with 1 parallel transfer are illustrated in fig-

ure 6.16. While interpreting the results from Dijkstra’s algorithm, and based in

the RTT delay measurements described in the previous section, the low through-

put values from the Round-robin tests are justified by the usage of paths with

the highest delay, when comparing to the ones obtained in the tests with the

Hash-based scheduler.

Following up the remaining algorithms, it is observable that in general, SAM-

CRA achieved the highest throughput, following up by Yen’s and the Disjoint

paths algorithms. Considering the flow schedulers used with SAMCRA and

the Disjoint path algorithms, the tests with Round-robin achieved the highest

6.2. Path computation algorithms evaluation 103

throughput while contrasting it with the Hash-based solution. However, when

using Yen’s algorithm, the Hashed flow scheduler had slightly better results than

Round-robin. This can be explained by the existence of multiple paths with dif-

ferent delay configurations and, while Round-robin always sets up the next flow

to the next available path (even if it is one of the paths with the highest end-to-

end delay), while with the hashed paths can be assigned to paths with a lower

delay, skipping the high delay paths.

Figure 6.16: CDF for throughput with 1 parallel transfer

Figure 6.17 pictures the CDF distribution of the throughput measured during

the tests with 8 parallel transfers. Contrary to the tests with 1 parallel trans-

fer, Yen’s algorithm achieves higher transfer rates than SAMCRA. Due to the

existing number of sub-flows (24, corresponding 3 MPTCP sub-flows for each

one of the 8 transfers), in order to achieve higher throughput measurements, it

was more beneficial to use a wider number of different paths (even if with differ-

ent characteristics). SAMCRA used a smaller number of paths with lower delay

configurations, as it would only find a maximum number of 3 paths.

For this scenario, the Round-robin scheduler strategy achieved higher through-

put measurements during the tests with Yen’s algorithm, which showed that a

more stabilized load-balancing approach was a more beneficial solution in a sce-

104 Chapter 6. Evaluation results

nario with a high traffic demand.

Following up the remaining algorithms with respective flow pinning strategies,

the obtained results are similar as the ones in the previous tests, having the

Disjoint paths algorithm completing the tests with lower transfer rates due to the

flow pinning being made on only 3 paths (with the Hash-based scheduler having

a worse behaviour than Round-robin), followed up by SAMCRA (again, with

Round-robin achieving the best results).

Figure 6.17: CDF for throughput with 8 parallel transfers

When analysing the throughput for the tests with 15 transfers, as presented

in figure 6.18, it is visible that Yen’s algorithm achieves the highest throughput

values. When comparing the Disjoint paths and SAMCRA results, the difference

between these two algorithms is not very significant. While for the Disjoint paths

algorithm the obtained values can be easily explained by the limitation of using

only a maximum number of 3 paths for all the installed flows in this scenario,

the SAMCRA algorithm has a more complex behaviour. For these experiments,

a 150ms end-to-end path delay constraint and a 5 Mbps available bandwidth

constraint were configured in the algorithm, but, due to the high traffic demand,

it was not always possible to discover paths that would fulfil these conditions,

forcing the algorithm to relax the constraints and find paths with worse link

6.3. Summary 105

quality metrics. Additionally, in order to force the algorithm to find a different

number of paths, the removal of the links present in the previous calculated

paths contributed to obtain a limited number of solutions (in a similar manner as

the Disjoint paths algorithm behaved), and consequently, limited the maximum

throughput values achieved for each file transfer.

Figure 6.18: CDF for throughput with 15 parallel transfers

6.3 Summary

This chapter presented the results for all the experiments conducted, in order to

evaluate the developed OpenFlow controller application.

Initially, the outcomes for tests using different transport protocols (TCP and

MPTCP) showed that the usage of MPTCP contributed to lower transfer time

values in almost every scenario, when comparing to TCP. However, when having

a high traffic demand in a topology with different delay characteristics along the

existing paths, with some flow pinning strategies (Round-robin and Minimum

flows), TCP obtained better results than MPTCP, as the default packet scheduler

used in the current MPTCP implementation performance decreases significantly

in scenarios with these characteristics.

106 Chapter 6. Evaluation results

When analysing the different path scheduling strategies, it was showed that

strategies that would guarantee fairness in the resulting solutions produced better

results when comparing to strategies that would not take in consideration where

the previous flows were allocated. Ideally, the Minimum flows scheduler promised

better results, as it would assign new flows to the path with least installed flows

(despite not taking in consideration other factors, such as the bandwidth uti-

lization for each existing flow), but due to restrictions in monitoring the active

flow counters in Opendaylight, it was not possible to use this flow pinning strat-

egy with accurate values. Comparing the remaining tested strategies, the results

achieved with Round-robin were the second best, following up by the Hash-based

and the Random schedulers. In addition, the tests made with MPTCP showed

that due to its coupled congestion control, the usage of a different flow scheduler

did not have a large impact in the final results.

In the tests made with the different path computation algorithms, it was

visible that using multiple paths for assigning new flows was more beneficial than

using a single path, as it could be seen by the results obtained by using the single

path Dijkstra’s algorithm, while comparing it to the other evaluated solutions.

The link disjoint algorithm presented paths with fully link-disjointness, but it was

possible to see that in scenarios where complete disjointness cannot be achieved,

such as the one with the evaluated topology, all the flows were distributed across

a smaller number of paths, resulting in a lower achieved throughput values or

higher RTT delays.

Considering the average transfer completion times and achieved throughput,

Yen’s algorithm presented the best results, as it would distribute the incoming

new flows across a wide number of paths. However, when evaluating the measured

RTT delay, SAMCRA presented lower values, as it would always compute paths

using the link delay as one of the algorithm metrics, making it the most promising

solution for scenarios where new flows need to be assigned to paths with low end-

to-end delay.

Chapter 7

Additional Contributions

Along with the work performed directly for the main project of this thesis, other

tasks were held by the author, which were not initially planned in the proposal.

This chapter briefly describes the main outcomes reached for each one of these

tasks.

7.1 Opendaylight OVSDB REST client

Opendaylight allows the configuration of managed OF devices that support the

OVSDB protocol, typically software switches running Open vSwitch, through a

REST API.

Having as main goal the development of a tool for testing different QoS con-

figurations in OVS, a client for the OVSDB protocol was made, providing a GUI

that implemented different features, which included:

• Connecting to new switches (from the controller);

• Managing (adding, editing or removing) bridges from a switch;

• Managing switch ports;

• Managing QoS configurations associated with existing ports, and respective

queues. This feature added support for novel QoS schedulers in OVS, such

as Stochastic Fairness Queueing (SFQ) or Fair Queueing with Controller

108 Chapter 7. Additional Contributions

Delay (FQ Codel), which are not present in its current distribution version

[Vestin and Kassler, 2015].

A screen capture of the application’s GUI can be observed in figure 7.1.

Figure 7.1: Example of the GUI of the Opendaylight OVSDB REST client

7.2 Multiflow

Multiflow was a joint project between researchers from the University of Coimbra,

Instituto Pedro Nunes and PT Inovação. Its main goal was the improvement

of the gains obtained from connections in Wi-Fi hotspots, based in an efficient

management of the existing and created flows between the users of the provided

services, through the usage of SDN capabilities.

7.2.1 Used architecture

An illustration of the architecture used in the Multiflow project is depicted in

figure 7.2.

7.2. Multiflow 109

Figure 7.2: Multiflow architecture

The architecture was composed by different components, each with different

roles:

Clients Mobile clients that would connect and use the network as a Wi-Fi

hotspot, to communicate with an external network. Each client could be

classified as normal or premium. Normal clients would use available net-

work resources without benefiting from QoS guarantees, sharing the same

QoS configurations with all the other clients from the same type. Premium

clients would benefit from connectivity privileges, configured by using indi-

vidual QoS queues with minimum assured bandwidth values;

Access Points Providers of network access to the clients. Internally they would

provide statistics related to the managed network (e.g. number of re-

ceived/transmitted bytes and packets) through the SNMP protocol;

Router Forwards packets between the external and internal networks. Runs a

DHCP server for providing IP addresses to the connected clients;

SDN Controller Instance of Opendaylight, responsible for the connectivity to

the OpenFlow Switch. Runs a REST API that is used for receiving com-

mands related to the installation and configuration of flow rules and QoS

110 Chapter 7. Additional Contributions

queues. Communicates with the OpenFlow switch through its OVSDB

Southbound interface for managing the QoS configurations and uses its

OpenFlow Southbound interface for managing flow rules;

Multiflow Manager Responsible for the management of the services offered to

the Wi-Fi hotspot clients. Manages the authentication of premium clients

and configuration of its respective QoS queues and installation of flow rules,

through calls to the SDN controller’s REST API. Collects QoS metrics

from the network, through the monitoring of network statistics from the

used access points, present in the network. With the collected metrics, it

runs periodically an algorithm that indicates premium clients the access

point with the most available resources, while considering the bandwidth

utilization of each client wireless network interface at the moment;

OpenFlow Switch Interconnects the external network to the router present in

the internal network. Runs Open vSwitch, which is configured through the

OVSDB protocol, in order to manage the existing QoS configurations and

respective queues;

External Network Used to represent an Internet connection to the inside net-

work. It was used to run traffic generator servers that would receive connec-

tions from the clients and register the perceived connection quality values,

such as throughput, delay and packet loss.

7.2.2 Obtained results

In order to evaluate the quality of the connections established by the clients, dif-

ferent tests were made, which were focussed in the measurement of the perceived

throughput, delay and packet loss by the clients through the usage of traffic gen-

erators. This section presents some of the main obtained results regarding the

measured end-to-end delay and packet loss percentage, when varying the number

of premium clients in the network.

For each test, 2 clients were used. In a first client, a single connection rep-

resenting a VoIP call was made using the Distributed Internet Traffic Generator

(D-ITG), where in the second client, a different number of connections using the

7.2. Multiflow 111

Netperf traffic generator was made along different tests, in order to consume the

most available network resources.

The results when having 2 regular clients connected to the network (without

any premium clients connected) can be observed in figures 7.3a and 7.3b. When

considering the measured delay, high values were always perceived in the first

client, for all the tests with a different number of connections in the second client

(between approximately 1100ms and 1200ms), while the packet loss percentage

varied between 1.6% and 3.0%.

(a) Measured delay (b) Measured packet loss

Figure 7.3: Multiflow results when not using any premium clients

When using one premium client connected to the network, the results were

significantly better, as it can be seen in figures 7.4a and 7.4b. For all the tests

made, the delay had values approximately between 4.8ms and 6ms, while no lost

packets were perceived.

When having two premium clients connected in the network, the average delay

was greater than when having only one premium client (reaching a maximum

value of approximately 15ms, which is still acceptable for VoIP calls [ITU-T,

2003]), but still extremely lower than the first scenario, where there were not

any premium clients. The packet loss percentage was also lower in the first

client, varying between 0.3% and 0.6%. These values are depicted in figures 7.5a

and 7.5b, respectively.

112 Chapter 7. Additional Contributions

(a) Measured delay (b) Measured packet loss

Figure 7.4: Multiflow results when using one premium client

(a) Measured delay (b) Measured packet loss

Figure 7.5: Multiflow results when using two premium clients

7.3 Opendaylight workshop

An Opendaylight application development workshop was organized and attended

by several members of Karlstad’s University faculty and a visiting researcher

from the Technical University of Denmark. The workshop had as main goal the

explanation of the initial steps required to develop customized modules for ODL

in a step-by-step tutorial approach. Therefore, during the workshop different

topics related to Opendaylight were covered:

Creation of new ODL modules The procedures necessary for creating and

using new modules in Opendaylight were covered, along with creating a new

project from a Maven archetype and configure the required dependencies.

7.4. Summary 113

Specification of YANG models An overview of YANG models was made,

which included the specification of the data types used by YANG and its

respective Java mapping, the generation of code from a YANG model by

using the plugins provided in Opendaylight, and building and using objects

from the created data structures in the internal application code.

MD-SAL data storage usage The basic concepts of Opendaylight’s database

storage were covered, consisting in creating and using instance identifier

objects in order to retrieve or add storage data. Practical examples were

made, combining the data structures previously created by a YANG model.

The workshop took place in Karlstad’s University and lasted two days. The

first day covered the creation of new ODL modules and the remaining tasks were

held during the second day. By the end of the workshop, a working copy of the

created and used Opendaylight distribution code was shared to all the workshop

participants.

7.4 Summary

This chapter described the additional tasks held by the author in parallel with

the main topics described in this document.

While the performed work did not contribute directly to the final obtained re-

sults, they were still related to its main covered research fields, such as Software-

Defined Networking and the development of applications in Opendaylight, re-

sulting in a complementary increase of the achieved experience from the related

research topic fields.

114 Chapter 7. Additional Contributions

Chapter 8

Project Management

In this chapter it is presented the planning of the work for both first and second

semesters, regarding the Master Thesis described in this document.

In section 8.1 it is presented the work plan for the first semester and in sec-

tion 8.2 it is described the planning of the work performed during the second

semester.

8.1 First Semester

The work performed during the first semester focused initially on studying the

state-of-the-art regarding the concepts related to the practical work to be done,

following by an initial specification of the controller application to be implemented

and its respective implementation.

However, due to delays on some of the study of the state-of-the-art concepts

and some problems concerning the implementation of new controller modules in

Opendaylight, the original work plan suffered some modifications, as it can be

seen in figure 8.1.

A more detailed description of each of the tasks completed during this semester

is presented next:

• Task 1 - Study of the state-of-the-art on SDN (22/09/2014 -

06/10/2014): The basic SDN architecture concepts were described, fol-

lowing up by research work regarding the existing surveys and applications

116 Chapter 8. Project Management

used in this environment. This task was concluded with a study about the

existing SDN controllers and the features that distinguished each of them.

The greatest difficulties during this task was finding proper documentation

about the controllers and determining if some of the analysed controllers

were still with an active development and with an user community;

• Task 2 - Study of the state-of-the-art on transport protocols

(29/09/2014 - 20/10/2014): For this task, initially it was made a study

of the existing and most used single-path transport protocols, which in-

cluded UDP, TCP (and some of its different congestion control mechanisms)

and DCCP.

The second phase of this task involved a more detailed study regarding

multi-homed transport protocols (SCTP and MPTCP), where they are cur-

rently used, and their differences, advantages and drawbacks comparing to

previously studied single-homed protocols;

• Task 3 - Study of the state-of-the-art on path computation algo-

rithms (06/10/2014 - 03/11/2014): This task was the one that suffered

the greatest delay, concerning the original work plan. Due to the complexity

of this field and the abundant number of existing of proposed algorithms, a

greater effort had to be done when studying the state-of-the-art of this field,

specially when analysing the scientific papers related to solving problems

with multiple constraints, because of the original complexity of the type of

problem;

• Task 4 - Specification of the first version of the routing approaches

to be developed (03/11/2014 - 17/11/2014): Based on the study

performed in the previous tasks, an initial version of the specification of

the application to be developed was made. This involved the selection of

Opendaylight as the SDN controller for building the application, and the

path calculation algorithms to be used in the different routing strategies

(Dijkstra’s for the single-path routing, Yen’s algorithm for the multiple-path

routing and SAMCRA for the constrained multiple-path routing problem).

8.1. First Semester 117

Additionally, the construction of a baseline testing topology for further

results comparison was defined, regarding the experimentation of different

flow-load balancing approaches;

• Task 5 - Implementation of the first version of the controller ap-

plication (17/11/2014 - 27/01/2015): For this task, initially it was

required to learn and understand the internal architecture of Opendaylight.

Since this controller is under development, between the previous official

release and the latest one, the developers changed a significant amount of

features and steps required to build an internal module, due to the adoption

of the Karaf OSGi-based framework.

However, the existing documentation, by the time the intermediate thesis

report was written, did not cover these new required steps that followed the

new version, increasing the effort required to understand how to successfully

deploy customized modules;

• Task 6 - Writing of the first semester report (29/09/2014 -

27/01/2015): The intermediate report was written from the beginning of

this semester, as the state-of-the-art tasks began. This was followed up by

describing the steps taken in the specification of the application to develop

and in the tools and frameworks required to build and run a testing platform

used to evaluate the behaviour and performance of the application.

2014 2015
Sep Oct Nov Dec Jan

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Figure 8.1: First semester work plan

118 Chapter 8. Project Management

8.2 Second Semester

During the second semester the final part of the work of this Master thesis was

done. This work was performed concerning more practical aspects of the im-

plementation and evaluation of the SDN controller application, followed by an

analytical evaluation of the obtained results. A diagram presenting how this work

was performed can be seen in figure 8.2 and the illustrated tasks are presented

next:

• Task 1 - Implementation of the first version of the controller ap-

plication (09/02/2015 - 02/04/2015): This task consisted in finishing

the ongoing work from the first semester. This included finishing creat-

ing a service to be run in Opendaylight, which needed the domain of the

required dependencies and steps for integrating the created modules inside

the application. Following the creation of the service, it was be necessary to

instantiate and access data and methods from other modules (e.g. Topol-

ogy Manager), which required accessing the MD-SAL data storage system.

By having the knowledge required for accessing other modules, one of the

biggest obstacles was passed, facilitating the remaining work to be done

when implementing applications.

The implementation continued by creating the main application modules

that were responsible for obtaining the topology details from the network,

installing new flow rules and keeping in storage the existing endpoint ad-

dress data, following by the implementation of the path computation algo-

rithms previously described.

The created application was later tested on the previously created topol-

ogy, in order to analyse its behaviour when adding new flows based on a

computed path;

• Task 2 - Specification of the final version of the controller applica-

tion (02/04/2015 - 16-04-2015): The specification of the final version

of the controller application defined the flow allocation strategies that were

used, for each of the multiple path routing strategies when multiple flow

rules needed to be installed. In addition, with the intent of specifying the

8.2. Second Semester 119

behaviour of the Metrics Collector module, a set of network performance

metrics were defined, including how they were collected and the frequency

of the data collecting;

• Task 3 - Implementation of the final version of the controller appli-

cation (16/04/2015 - 20/05/2015): This final version of the controller

application consisted in adding the features referred in the previous task,

to the first version of the application. Hence, firstly problems regarding the

last version were fixed, following by the implementation of the functionality

that allowed the previously specified flow allocation strategies to be used in

the Path Calculator module.

The Metrics Collector module was created, along with the methods required

to successfully retrieve the metrics specified in the previous task;

• Task 4 - Evaluation of the final version of the controller application

(30/04/2015 - 15/06/2015): This evaluation phase initially specified the

scenarios where the controller application was tested. This specification

includes the topology that was used, the duration of the experiments, the

traffic demand (which included aspects as the number of flows to be created,

the size and rate of the packets to be sent, the total amount of data to

transfer and the interval between data transfers).

The evaluation was followed by running the application along with the

traffic generators and analysing of the obtained results. This analysis con-

tributed to understand aspects as the importance of the used collected

metrics in the algorithms’ decisions and their impact in the application

behaviour, the time interval that was used for data collecting, the appli-

cation’s performance over the testing time when modifying the parameters

previously marked as evaluation criteria and, most importantly, the quality

of the obtained results in the traffic generator receiver log files.

The results obtained from the previously built flow load-balancing applica-

tion will also be compared with the developed application, in order to verify

if improvements were made with the new path routing approaches;

• Task 5 - Writing of the final report (11/05/2015 - 03/07/2015):

120 Chapter 8. Project Management

This final report included a fully-detailed version of all the steps that were

required to complete all the previous tasks, presenting the final conclusions

obtained through the year, during the execution of this thesis.

2015
Fev Mar Apr May Jun

Task 1
Task 2
Task 3
Task 4
Task 5

Figure 8.2: Second semester work plan

Chapter 9

Final Considerations

This document approached the concepts of Software-Defined Networking as a new

networking paradigm, where the control plane is separated from the forwarding

plane, having the first one present on a single (or more, if it is a distributed

solution) controller, and the second one on switches managed by the controller.

Relevant ongoing research work in this field was analysed, including existing SDN

controllers and their included features. One of the most relevant controllers is

Opendaylight, an open source controller with a significant developer and user

community, built over a structured service-based architecture.

The increase of the number of network interfaces in the existing devices con-

tributed significantly to the exploration of the usage of transport protocols that

are aware of more than one interface when establishing and transmitting data over

a connection. In this document, through the analysis of MPTCP, it was shown

that in a scenario where multiple network paths are available, the throughput of

a single connection can greatly improve when having multiple sub-flows over a

MPTCP connection.

When it comes to path calculation in a network, there are multiple variants

of the problem to be solved. One of the most simple and most studied is the

shortest single-path problem. Between the many existing alternatives to solve

this problem, Dijkstra’s remains on of the most simpler and efficient algorithms.

The same problem can exist, but with the addition of constraints that need to

be respected in order to obtain a valid solution. The constrained shortest path

problem brings a higher type of computational complexity, since exact solutions

122 Chapter 9. Final Considerations

cannot be solved in polynomial time. Hence, it is required to find solutions that

use approximations that reduce the problem’s complexity.

In the topic of having multiple possible paths between a source and destination

node, it is also required to use algorithms that are able to compute different paths

with a maximum degree of disjointness, either considering only the involved links,

or expanding that constraint to the nodes in the calculated paths. If one desires to

solve this problem with added constraints, the same approach needs to be taken

as in the single-path problem, as it is required to simplify the original problem to

be able to perform fast calculations. SAMCRA was presented as a solution that

uses a linear approximation of the existing constraints and variables, computing

multiple paths while respecting the imposed constraint rules.

Following these introductory topics regarding SDN, transport protocols and

path computation algorithms, a proposal for a SDN controller application running

on Opendaylight was presented. This application was designed to deliver path

computation in a SDN network, where multiple devices are managed and multi-

ple paths can be formed between the existing endpoints. This would allow paths

to be computed in real time, following events where the controller receives an

unmatched packet from one of the managed switch devices, and offering different

path computation strategies that would include single-path routing (using Dijk-

stra’s algorithm), multiple path computation (with Yen’s algorithm), link-disjoint

path calculation (by using an iterative Dijkstra’s approach) and latency-aware

multiple-path computation (using SAMCRA), by monitoring QoS metrics in the

managed network. When more than one path was available, it was possible to

configure the application to use 4 different flow pinning strategies: Round-robin,

Hash-based, Minimum flows and Random.

The performed evaluation initially compared the behaviour of the different

multiple flow scheduler solutions, along with the usage of TCP and MPTCP,

taking in consideration the completion time of multiple file transfers across a

topology where multiple paths were available. A second phase of the evaluation

combined the usage of MPTCP with the different implemented path computation

algorithms in a different topology where multiple paths were also available, but

with different delay configurations. For this evaluation, the average transfer com-

pletion time was also considered, along with the individual file throughput and

123

the measured end-to-end delay. Contrary to the previous experiments, during

this second phase only the Round-robin and Hash-based flow pinning strategies

were used.

The obtained results showed, in general, lower transfer times when comparing

MPTCP and TCP, specially when using the Minimum flows and Round-robin flow

schedulers. The interpretation of the results for the tests made with the different

path computation algorithms produced different outcomes. When considering the

measured average transfer time and throughput from the multiple file transfers,

the results from the experiments with the link disjoint path algorithm showed

that using an algorithm that computes multiple fully link-disjoint paths is only

efficient in a topology where there are a high number of paths that fulfil that

condition. Otherwise, as seen in the conducted experiments, the algorithm will

only obtain a short number of paths and, for scenarios with large traffic demands,

the used paths, despite being disjointed, will easily be congested.

On the other hand, Yen’s algorithm produced the lower transfer times and

highest throughput almost every test, proving that for high traffic demand sce-

narios, using a greater number of different paths, even if with different end-to-end

delay configurations or repeated links (across the different paths) was beneficial.

For the evaluation of SAMCRA, while analysing the throughput and average

transfer time, the obtained results were not as good as Yen’s algorithm, due to

restrictions in its implementation when finding different paths, since the links

from the previous calculated paths were not taken in consideration for the new

paths every time the algorithm needed to run multiple times. However, by the

evaluation of the round-trip time delay from each one of the established MPTCP

sub-flows, SAMCRA presented lower delay values in its results, even in scenarios

with a high traffic demand, by taking in consideration this type of metric when

calculating new paths (even if the imposed constraint could not be fulfilled). The

other algorithms, since they operated with a shortest path metric, did not con-

sider the existing path delays, always preferring scenarios paths with the least

hop count first, even despite its high end-to-end delay.

124 Chapter 9. Final Considerations

References

[Ahrenholz, 2010] Jeff Ahrenholz. Comparison of CORE network emulation platforms.

In MILITARY COMMUNICATIONS CONFERENCE, 2010-MILCOM 2010,

pages 166–171. IEEE, 2010. 48

[Allan et al., 2010] David Allan, Peter Ashwood-Smith, Nigel Bragg, János Farkas,

Don Fedyk, Michel Ouellete, Mick Seaman, and Paul Unbehagen. Shortest

path bridging: efficient control of larger ethernet networks. Communications

Magazine, IEEE, 48(10):128–135, 2010. 32

[Arzani et al., 2014] Behnaz Arzani, Alexander Gurney, Shuotian Cheng, Roch Guerin,

and Boon Thau Loo. Impact of path characteristics and scheduling policies on

mptcp performance. In Advanced Information Networking and Applications

Workshops (WAINA), 2014 28th International Conference on, pages 743–748.

IEEE, 2014. 91

[Becke et al., 2013] M. Becke, H. Adhari, E.P. Rathgeb, Fu Fa, Xiong Yang, and Xing

Zhou. Comparison of multipath tcp and cmt-sctp based on intercontinental

measurements. In Global Communications Conference (GLOBECOM), 2013

IEEE, pages 1360–1366, Dec 2013. 21

[Bellman, 1956] Richard Bellman. On a routing problem. Technical report, DTIC

Document, 1956. 28, 32

[Big Switch Networks, 2012] Big Switch Networks. Project Floodlight. http://http:

//www.projectfloodlight.org/, 2012. Accessed: 2015-01-12. 11

[Brakman et al., 1999] Steven Brakman, Harry Garretsen, Charles Van Marrewijk, and

Marianne Van Den Berg. The return of zipf: towards a further understanding

http://http://www.projectfloodlight.org/
http://http://www.projectfloodlight.org/

126 References

of the rank-size distribution. Journal of Regional Science, 39(1):183–213, 1999.

85

[Brakmo and Peterson, 1995] Lawrence S. Brakmo and Larry L. Peterson. Tcp ve-

gas: End to end congestion avoidance on a global internet. Selected Areas in

Communications, IEEE Journal on, 13(8):1465–1480, 1995. 16

[Brander and Sinclair, 1996] Andrew William Brander and Mark C Sinclair. A com-

parative study of k-shortest path algorithms. Springer, 1996. 33

[Bredel et al., 2014] Michael Bredel, Zdravko Bozakov, Artur Barczyk, and Harvey

Newman. Flow-based load balancing in multipathed layer-2 networks using

openflow and multipath-tcp. In Proceedings of the third workshop on Hot topics

in software defined networking, pages 213–214. ACM, 2014. 83

[Cardei and Wu, 2006] Mihaela Cardei and Jie Wu. Energy-efficient coverage problems

in wireless ad-hoc sensor networks. Computer communications, 29(4):413–420,

2006. 35

[Case et al., 1989] Jeffery Case, Mark Fedor, Martin Schoffstall, and C Davin. A simple

network management protocol (snmp), 1989. 5

[Cerf and Icahn, 2005] Vinton G Cerf and Robert E Icahn. A protocol for packet net-

work intercommunication. ACM SIGCOMM Computer Communication Re-

view, 35(2):71–82, 2005. 15

[Chap et al., 2011] Tithra Chap, Xin Wang, Sugang Xu, and Yoshiaki Tanaka. Link-

disjoint routing algorithms with link-disjoint degree and resource utilization

concern in translucent wdm optical networks. In Advanced Communication

Technology (ICACT), 2011 13th International Conference on, pages 357–362.

IEEE, 2011. 35, 39

[Chawanat et al., 2014] Nakasan Chawanat, Ichikawa Kohei, and Uthayopas Putchong.

Performance evaluation of mptcp over openflow network. Information Process-

ing Society of Japan SIG Notes 2014, 2014(30):1–6, 2014. 21

References 127

[Chen et al., 2013] Shengyang Chen, Zhenhui Yuan, and G-M Muntean. An energy-

aware multipath-tcp-based content delivery scheme in heterogeneous wireless

networks. In Wireless Communications and Networking Conference (WCNC),

2013 IEEE, pages 1291–1296. IEEE, 2013. 19

[Chen and Nahrsted, 1998] Shigang Chen and Klara Nahrsted. An overview of qual-

ity of service routing for next-generation high-speed networks: problems and

solutions. Network, IEEE, 12(6):64–79, 1998. 30, 31

[Chen and Nahrstedt, 1998] Shigang Chen and Klara Nahrstedt. On finding multi-

constrained paths. In Communications, 1998. ICC 98. Conference Record. 1998

IEEE International Conference on, volume 2, pages 874–879. IEEE, 1998. 30,

32

[Cherkassky et al., 1996] Boris V Cherkassky, Andrew V Goldberg, and Tomasz

Radzik. Shortest paths algorithms: Theory and experimental evaluation. Math-

ematical programming, 73(2):129–174, 1996. 26

[Claise, 2004] Benoit Claise. Cisco systems netflow services export version 9. 2004. 47

[CPqD, 2012] CPqD. nox13oflib. http://github.com/CPqD/nox13oflib, 2012. Ac-

cessed: 2015-01-12. 10

[De Neve and Van Mieghem, 2000] Hans De Neve and Piet Van Mieghem. Tamcra: a

tunable accuracy multiple constraints routing algorithm. Computer Commu-

nications, 23(7):667–679, 2000. 38, 39

[Dijkstra, 1959] Edsger W Dijkstra. A note on two problems in connexion with graphs.

Numerische mathematik, 1(1):269–271, 1959. 26, 32

[Diop et al., 2012] Codé Diop, Guillaume Dugué, Christophe Chassot, and Ernesto

Exposito. Qos-oriented mptcp extensions for multimedia multi-homed systems.

In Advanced Information Networking and Applications Workshops (WAINA),

2012 26th International Conference on, pages 1119–1124. IEEE, 2012. 22

[Dobrijević et al., 2014] Ognjen Dobrijević, Andreas Kassler, Lea Skorin-Kapov, and

Maja Matijašević. Q-point: Qoe-driven path optimization model for multi-

http://github.com/CPqD/nox13oflib

128 References

media services. Computer Communication Networks and Telecommunications,

8458:134–147, 2014. 41

[Egilmez et al., 2012] H.E. Egilmez, S.T. Dane, K. T. Bagci, and A. M. Tekalp. Open-

qos: An openflow controller design for multimedia delivery with end-to-end

quality of service over software-defined networks. In Signal & Information

Processing Association Annual Summit and Conference (APSIPA ASC), 2012

Asia-Pacific, pages 1–8. IEEE, 2012. 41

[Egilmez et al., 2013] Hilmi E Egilmez, Seyhan Civanlar, and A Murat Tekalp. An

optimization framework for qos-enabled adaptive video streaming over openflow

networks. Multimedia, IEEE Transactions on, 15(3):710–715, 2013. 41

[Enns et al., 2011] R Enns, M Bjorklund, J Schoenwaelder, and A Bierman. Network

configuration protocol (netconf). Internet Engineering Task Force, RFC, 6241,

2011. 5

[Eppstein, 1998] David Eppstein. Finding the k shortest paths. SIAM Journal on

computing, 28(2):652–673, 1998. 33, 39

[Erickson, 2013] David Erickson. The Beacon OpenFlow Controller. In HotSDN. ACM,

2013. 10

[Feamster et al., 2014] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road

to sdn: an intellectual history of programmable networks. ACM SIGCOMM

Computer Communication Review, 44(2):87–98, 2014. 5

[Fisher, 2004] Marshall L Fisher. The lagrangian relaxation method for solving integer

programming problems. Management science, 50(12 supplement):1861–1871,

2004. 31

[Ford et al., 2011] Alan Ford, Costin Raiciu, Mark Handley, Olivier Bonaventure, et al.

Tcp extensions for multipath operation with multiple addresses. RFC RFC

6824, RFC Editor, 2011. 15

[Fredman and Tarjan, 1987] Michael L Fredman and Robert Endre Tarjan. Fibonacci

heaps and their uses in improved network optimization algorithms. Journal of

the ACM (JACM), 34(3):596–615, 1987. 26

References 129

[Funasaka et al., 2005] Junichi Funasaka, Kenji Ishida, Hiroyasu Obata, and Yukiyoshi

Jutori. A study on primary path switching strategy of sctp. In Autonomous

Decentralized Systems, 2005. ISADS 2005. Proceedings, pages 536–541. IEEE,

2005. 19

[Fundation, 2012] Open Networking Fundation. Software-defined networking: The new

norm for networks. ONF White Paper, 2012. 5

[Garey et al., 1980] Michael R Garey, David S Johnson, Gary L Miller, and Christos H

Papadimitriou. The complexity of coloring circular arcs and chords. SIAM

Journal on Algebraic Discrete Methods, 1(2):216–227, 1980. 30

[Giotis et al., 2014] K Giotis, Christos Argyropoulos, Georgios Androulidakis, Dim-

itrios Kalogeras, and Vasilis Maglaris. Combining openflow and sflow for an

effective and scalable anomaly detection and mitigation mechanism on sdn en-

vironments. Computer Networks, 62:122–136, 2014. 8

[Grinnemo and Brunström, 2015] Karl-Johan Grinnemo and Anna Brunström. A first

study on using mptcp to reduce latency for cloud based mobile applications.

In 6th IEEE International Workshop on Performance Evaluation of Commu-

nications in Distributed Systems and Web based Service Architectures (PEDIS-

WESA). IEEE Computer Society, 2015. 91

[Guérin and Orda, 1999] Roche A Guérin and Ariel Orda. Qos routing in networks

with inaccurate information: theory and algorithms. IEEE/ACM Transactions

on Networking (TON), 7(3):350–364, 1999. 30

[Guo et al., 2003] Yuchun Guo, Fernando Kuipers, and Piet Van Mieghem. Link-

disjoint paths for reliable qos routing. International Journal of Communication

Systems, 16(9):779–798, 2003. 38, 39

[Hanks et al., 2000] Stan Hanks, David Meyer, Dino Farinacci, and Paul Traina.

Generic routing encapsulation (gre). 2000. 47

[Hart et al., 1968] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis

for the heuristic determination of minimum cost paths. Systems Science and

Cybernetics, IEEE Transactions on, 4(2):100–107, 1968. 27, 32

130 References

[Hayes et al., 2008] David A Hayes, Jason But, and Grenville Armitage. Issues with

network address translation for sctp. ACM SIGCOMM Computer Communi-

cation Review, 39(1):23–33, 2008. 19

[Hedrick, 1988] C. L. Hedrick. RFC 1058: Routing information protocol, June 1988. 8

[Hesmans and Bonaventure, 2014] Benjamin Hesmans and Olivier Bonaventure. Trac-

ing multipath tcp connections. In Proceedings of the 2014 ACM Conference on

SIGCOMM, SIGCOMM ’14, pages 361–362, New York, NY, USA, 2014. ACM.

ISBN 978-1-4503-2836-4. doi: 10.1145/2619239.2631453. 96

[Hopps, 2000] C. Hopps. Analysis of an equal-cost multi-path algorithm. Internet

Engineering Task Force, RFC, 2000. 40

[Huang and Lin, 2013] Chung-Ming Huang and Ming-Sian Lin. The unreliable-

concurrent multipath transfer (u-cmt) protocol for multihomed networks.

Telecommunication Systems, 52(1):245–259, 2013. 19

[Humernbrum et al., 2014] Tim Humernbrum, Frank Glinka, and Sergei Gorlatch. A

northbound api for qos management in real-time interactive applications on

software-defined networks. Journal of Communications, 9(8), 2014. 8

[IEEE Standards Association, 2004] IEEE Standards Association. IEEE Stan-

dard for Local and Metropolitan Area NetworksMedia access control

(MAC) Bridges. http://standards.ieee.org/getieee802/download/802.

1D-2004.pdf, 2004. Accessed: 2014-11-27. 32

[Ishiguro et al., 2007] Kunihiro Ishiguro, T Takada, Y Ohara, AD Zinin, G Natapov,

and A Mizutani. Quagga routing suite, 2007. 7

[ITU-T, 2003] ITU-T. G.114 : One-way transmission time. https://www.itu.int/

rec/T-REC-G.114-200305-I/en, 2003. Accessed: 2015-06-30. 111

[ITU-T, 2008] ITU-T. Definitions of terms related to quality of service. Recommen-

dation E.800, International Telecommunication Union, Geneva, 2008. 8

http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
https://www.itu.int/rec/T-REC-G.114-200305-I/en
https://www.itu.int/rec/T-REC-G.114-200305-I/en

References 131

[Iyengar et al., 2006] Janardhan R Iyengar, Paul D Amer, and Randall Stewart. Con-

current multipath transfer using sctp multihoming over independent end-to-end

paths. Networking, IEEE/ACM Transactions on, 14(5):951–964, 2006. 18

[Jacobson, 1988] Van Jacobson. Congestion avoidance and control. In ACM SIG-

COMM Computer Communication Review, volume 18, pages 314–329. ACM,

1988. 16

[Jacobson, Van and Leres, Craig and McCanne, S, 2010] Jacobson, Van and Leres,

Craig and McCanne, S. tcpdump. http://www.tcpdump.org/, 2010. Ac-

cessed: 2015-06-28. 97

[Jain et al., 2013] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon

Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min

Zhu, et al. B4: Experience with a globally-deployed software defined wan.

In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages

3–14. ACM, 2013. 7

[Johnson, 1977] Donald B Johnson. Efficient algorithms for shortest paths in sparse

networks. Journal of the ACM (JACM), 24(1):1–13, 1977. 28, 32

[Juttner et al., 2001] Alpar Juttner, Balazs Szviatovski, Ildikó Mécs, and Zsolt Rajkó.

Lagrange relaxation based method for the qos routing problem. In INFOCOM

2001. Twentieth Annual Joint Conference of the IEEE Computer and Commu-

nications Societies. Proceedings. IEEE, volume 2, pages 859–868. IEEE, 2001.

31, 32

[Kanaumi et al., 2010] Yoshihiko Kanaumi, Shuichi Saito, and Eiji Kawai. Deploy-

ment of a programmable network for a nation wide r&d network. In Network

Operations and Management Symposium Workshops (NOMS Wksps), 2010

IEEE/IFIP, pages 233–238. IEEE, 2010. 7

[Katz, 2010] David Katz. Bidirectional forwarding detection (bfd). Internet Engineer-

ing Task Force, RFC, 2010. 40

http://www.tcpdump.org/

132 References

[Kim and Feamster, 2013] Hyojoon Kim and Nick Feamster. Improving network man-

agement with software defined networking. Communications Magazine, IEEE,

51(2):114–119, 2013. 6

[Kohler, 2006] Eddie Kohler. Datagram congestion control protocol (dccp). Internet

Engineering Task Force, RFC, 2006. 15

[Kohler et al., 2006] Eddie Kohler, Mark Handley, and Sally Floyd. Designing dccp:

Congestion control without reliability. In ACM SIGCOMM Computer Com-

munication Review, volume 36, pages 27–38. ACM, 2006. 17

[Konsgen et al., 2012] A Konsgen, Amanpreet Singh, Ma Jun, Thushara Weerawar-

dane, and Carmelita Goerg. Responsiveness of future telecommunication net-

works under disaster situations. In Ultra Modern Telecommunications and

Control Systems and Workshops (ICUMT), 2012 4th International Congress

on, pages 892–899. IEEE, 2012. 22

[Kreutz et al., 2014] Diego Kreutz, Fernando Ramos, Paulo Verissimo, Christian Es-

teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined net-

working: A comprehensive survey. arXiv preprint arXiv:1406.0440, 2014. xv,

9, 12

[Kuipers et al., 2002] Fernando Kuipers, Piet Van Mieghem, Turgay Korkmaz, and

Marwan Krunz. An overview of constraint-based path selection algorithms for

qos routing. IEEE Communications Magazine, 40(12):50–55, 2002. 31

[Kulcloud, 2012] Kulcloud. OpenMUL Controller. http://www.openmul.org/

openmul-controller.html, 2012. Accessed: 2015-01-12. 11

[Lantz et al., 2010] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a

laptop: rapid prototyping for software-defined networks. In Proceedings of the

9th ACM SIGCOMM Workshop on Hot Topics in Networks, page 19. ACM,

2010. 49

[Lara et al., 2013] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. Network

innovation using openflow: A survey. Communications Surveys & Tutorials,

IEEE, 16(1):493 – 512, 2013. xv, 9, 12

http://www.openmul.org/openmul-controller.html
http://www.openmul.org/openmul-controller.html

References 133

[Lawler, 1972] Eugene L Lawler. A procedure for computing the k best solutions to

discrete optimization problems and its application to the shortest path problem.

Management Science, 18(7):401–405, 1972. 33

[Lee et al., 2014] Steven SW Lee, Kuang-Yi Li, Kwan-Yee Chan, Guan-Hao Lai, and

Yao-Chuan Chung. Path layout planning and software based fast failure de-

tection in survivable openflow networks. In Design of Reliable Communica-

tion Networks (DRCN), 2014 10th International Conference on the, pages 1–8.

IEEE, 2014. 40

[Lee and Gerla, 2001] Sung-Ju Lee and Mario Gerla. Split multipath routing with

maximally disjoint paths in ad hoc networks. In Communications, 2001. ICC

2001. IEEE International Conference on, volume 10, pages 3201–3205. IEEE,

2001. 36

[Lee et al., 1995] Whay C Lee, Michael G Hluchyi, and Pierre A Humblet. Routing

subject to quality of service constraints in integrated communication networks.

Network, IEEE, 9(4):46–55, 1995. 30

[Levin et al., 2012] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol,

and Anja Feldmann. Logically centralized?: state distribution trade-offs in

software defined networks. In Proceedings of the first workshop on Hot topics

in software defined networks, pages 1–6. ACM, 2012. 10

[Li et al., 1990] Chung-Lun Li, S Thomas McCormick, and David Simchi-Levi. The

complexity of finding two disjoint paths with min-max objective function. Dis-

crete Applied Mathematics, 26(1):105–115, 1990. 38

[Li et al., 1992] Chung-Lun Li, S Thomas McCormick, and David Simchi-Levi. Finding

disjoint paths with different path-costs: Complexity and algorithms. Networks,

22(7):653–667, 1992. 34, 35, 38, 39

[Li and Pan, 2013] Yu Li and Deng Pan. Openflow based load balancing for fat-tree

networks with multipath support. In Proc. 12th IEEE International Conference

on Communications (ICC13), Budapest, Hungary, pages 1–5, 2013. 40

134 References

[Liu and Ramakrishnan, 2001] Gang Liu and KG Ramakrishnan. A* prune: an algo-

rithm for finding k shortest paths subject to multiple constraints. In INFOCOM

2001. Twentieth Annual Joint Conference of the IEEE Computer and Commu-

nications Societies. Proceedings. IEEE, volume 2, pages 743–749. IEEE, 2001.

37, 39

[Mahalingam et al., 2014] M Mahalingam, D Dutt, K Duda, P Agarwal, L Kreeger,

T Sridhar, M Bursell, and C Wright. Virtual extensible local area network

(vxlan): A framework for overlaying virtualized layer 2 networks over layer 3

networks. Internet Req. Comments, 2014. 47

[Mascolo et al., 2001] Saverio Mascolo, Claudio Casetti, Mario Gerla, Medy Y Sana-

didi, and Ren Wang. Tcp westwood: Bandwidth estimation for enhanced

transport over wireless links. In Proceedings of the 7th annual international

conference on Mobile computing and networking, pages 287–297. ACM, 2001.

16

[McKeown et al., 2008] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru

Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan

Turner. Openflow: enabling innovation in campus networks. ACM SIGCOMM

Computer Communication Review, 38(2):69–74, 2008. 5

[Medved et al., 2014] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Open-

daylight: Towards a model-driven sdn controller architecture. In 2014 IEEE

15th International Symposium on, pages 1–6. IEEE, 2014. 11

[Meghanathan, 2007] Natarajan Meghanathan. Stability and hop count of node-

disjoint and link-disjoint multi-path routes in ad hoc networks. In Wireless

and Mobile Computing, Networking and Communications, 2007. WiMOB 2007.

Third IEEE International Conference on, pages 42–42. IEEE, 2007. 36

[Moy, 1989] J. Moy. RFC 1131: OSPF specification, October 1989. 8

[Nascimento et al., 2010] Marcelo Ribeiro Nascimento, Christian Esteve Rothenberg,

Marcos Rogério Salvador, and Mauŕıcio Ferreira Magalhães. Quagflow: part-

nering quagga with openflow. In ACM SIGCOMM Computer Communication

Review, volume 40, pages 441–442. ACM, 2010. 7

References 135

[Németh et al., 2013] Felicián Németh, Balázs Sonkoly, Levente Csikor, and András

Gulyás. A large-scale multipath playground for experimenters and early

adopters. In Proceedings of the ACM SIGCOMM 2013 conference on SIG-

COMM, pages 481–482. ACM, 2013. 22

[Nicira, 2008] Nicira. NOXRepo. http://www.noxrepo.org/nox/about-nox/, 2008.

Accessed: 2015-01-12. 10

[Nunes et al., 2014] B Nunes, Marc Mendonca, X Nguyen, Katia Obraczka, and

Thierry Turletti. A survey of software-defined networking: Past, present,

and future of programmable networks. Communications Surveys & Tutorials,

IEEE, 16(3):1617–1634, 2014. xv, 9, 12

[Pfaff and Davie, 2013] B Pfaff and B Davie. The open vswitch database management

protocol. Technical report, RFC 7047, IETF, December, 2013. xi, 9, 48

[Pfaff et al., 2009] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Ko-

ponen, and Scott Shenker. Extending networking into the virtualization layer.

In Hotnets, 2009. 9

[Phaal et al., 2001] Peter Phaal, Sonia Panchen, and Neil McKee. Inmon corporations

sflow: A method for monitoring traffic in switched and routed networks. Tech-

nical report, RFC 3176, 2001. 8

[Phemius and Bouet, 2013] Kévin Phemius and Mathieu Bouet. Monitoring latency

with openflow. In Network and Service Management (CNSM), 2013 9th Inter-

national Conference on, pages 122–125. IEEE, 2013. 72

[Porras et al., 2012] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong,

Mabry Tyson, and Guofei Gu. A security enforcement kernel for openflow

networks. In Proceedings of the first workshop on Hot topics in software defined

networks, pages 121–126. ACM, 2012. 7

[Postel, 1980] Jon Postel. User datagram protocol. Internet Engineering Task Force,

RFC, 1980. 15

[Postel, 1981] Jon Postel. Transmission control protocol. Internet Engineering Task

Force, RFC, 1981. 16

http://www.noxrepo.org/nox/about-nox/

136 References

[R. Stewart, 2007] Ed. R. Stewart. Stream control transmission protocol. IETF Re-

quest for Comments: 4960, September 2007. 15

[Raiciu et al., 2011] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam

Greenhalgh, Damon Wischik, and Mark Handley. Improving datacenter per-

formance and robustness with multipath tcp. In ACM SIGCOMM Computer

Communication Review, volume 41, pages 266–277. ACM, 2011. 21

[Raumer et al., 2014] Daniel Raumer, Lukas Schwaighofer, and Georg Carle. Mon-

samp: A distributed sdn application for qos monitoring. Federated Conference

on Computer Science and Information Systems, 2014. 8

[Rekhter and Li, 1995] Y. Rekhter and T. Li. RFC 1771: A Border Gateway Protocol

4 (BGP-4), March 1995. 8

[Russell et al., 1995] Stuart Russell, Peter Norvig, and Artificial Intelligence. Artificial

intelligence: A modern approach. Prentice-Hall, Egnlewood Cliffs, 25, 1995. 27

[Ryu SDN Framework Community, 2012] Ryu SDN Framework Community. Ryu SDN

Framework. http://osrg.github.io/ryu/, 2012. Accessed: 2015-01-12. 11

[Santos et al., 2015] Ricardo Santos, Marilia Curado, and Andreas Kassler. Multi-

pathing in software defined networking: Interaction between sdn and mptcp.

In Swedish Communication Technologies Workshop (Swe-CTW) 2015, 2015. 3

[Sezer et al., 2013] S. Sezer, S. Scott-Hayward, P.K. Chouhan, B. Fraser, D. Lake,

J. Finnegan, N. Viljoen, M. Miller, and N. Rao. Are we ready for sdn? im-

plementation challenges for software-defined networks. IEEE M COM, 51(7):

36–43, 2013. doi: 10.1109/MCOM.2013.6553676. 7

[Shiloach and Perl, 1978] Y Shiloach and Y Perl. Finding two disjoint paths between

two pairs of vertices in a graph. Journal of the ACM (JACM), 25(1):1–9, 1978.

34

[Sidhu et al., 1991] Deepinder Sidhu, Raj Nair, and Shukri Abdallah. Finding disjoint

paths in networks. ACM SIGCOMM Computer Communication Review, 21(4):

43–51, 1991. 36

http://osrg.github.io/ryu/

References 137

[Sipser, 2006] Michael Sipser. Introduction to the Theory of Computation. Cengage

Learning, 2006. 25

[Smith et al., 2014] M Smith, M Dvorkin, Y Laribi, V Pandey, P Garg, and N Weiden-

bacher. Opflex control protocol. IETF, http://datatracker. ietf. org/doc/draft-

smith-opflex, 2014. 9

[Song, 2013] Haoyu Song. Protocol-oblivious forwarding: Unleash the power of sdn

through a future-proof forwarding plane. In Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined networking, pages 127–

132. ACM, 2013. 9

[Sousa et al., 2013] Bruno Sousa, Ricardo Santos, Marilia Curado, Soila Pertet, Rajeev

Gandhi, Carlos Silva, and Kostas Pentikousis. Expedient reconfiguration in the

cloud. In Computer Aided Modeling and Design of Communication Links and

Networks (CAMAD), 2013 IEEE 18th International Workshop on, pages 243–

247. IEEE, 2013. 19

[Stewart et al., 2004] R Stewart, M Ramalho, Q Xie, M Tuexen, and P Conrad. Stream

control transmission protocol (sctp) partial reliability extension. Technical re-

port, RFC 3758 (Proposed Standard), 2004. 19

[Suh et al., 2014] Junho Suh, Ted Taekyoung Kwon, Colin Dixon, Wes Felter, and John

Carter. Opensample: A low-latency, sampling-based measurement platform for

commodity sdn. In Distributed Computing Systems (ICDCS), 2014 IEEE 34th

International Conference on, pages 228–237. IEEE, 2014. 8

[Suurballe and Tarjan, 1984] John W Suurballe and Robert Endre Tarjan. A quick

method for finding shortest pairs of disjoint paths. Networks, 14(2):325–336,

1984. 34, 39

[Suurballe, 1974] JW Suurballe. Disjoint paths in a network. Networks, 4(2):125–145,

1974. 36

[Taft-Plotkin et al., 1999] Nina Taft-Plotkin, Bhargav Bellur, and Richard Ogier.

Quality-of-service routing using maximally disjoint paths. In Quality of Ser-

138 References

vice, 1999. IWQoS’99. 1999 Seventh International Workshop on, pages 119–

128. IEEE, 1999. 38

[Tootoonchian and Ganjali, 2010] Amin Tootoonchian and Yashar Ganjali. Hyperflow:

A distributed control plane for openflow. In Proceedings of the 2010 internet

network management conference on Research on enterprise networking, pages

3–3. USENIX Association, 2010. 6

[Upadhyaya and Dhingra, 2010] Shuchita Upadhyaya and Gaytri Dhingra. Exploring

issues for qos based routing algorithms. International Journal on Computer

Science and Engineering, 2(5), 2010. 31

[Van Adrichem et al., 2014] Niels LM Van Adrichem, Christian Doerr, Fernando

Kuipers, et al. Opennetmon: Network monitoring in openflow software-defined

networks. In Network Operations and Management Symposium (NOMS), 2014

IEEE, pages 1–8. IEEE, 2014. 72

[van der Pol et al., 2011] Ronald van der Pol, S Boele, F Dijkstra, J Mambretti,

J Chen, FI Yeh, M Savoie, B Ho, and L Sun. Monitoring and troubleshooting

openflow slices with an open source implementation of ieee 802.1 ag, 2011. 40

[van der Pol et al., 2012] Ronald van der Pol, Sander Boele, Freek Dijkstra, Artur Bar-

czyk, Gerben van Malenstein, Jim Hao Chen, and Joe Mambretti. Multipathing

with mptcp and openflow. In High Performance Computing, Networking, Stor-

age and Analysis (SCC), 2012 SC Companion:, pages 1617–1624. IEEE, 2012.

21

[van der Pol et al., 2013] Ronald van der Pol, Michael Bredel, Artur Barczyk,

B Overeinder, NLM van Adrichem, and FA Kuipers. Experiences with mptcp in

an intercontinental multipathed openflow network. In Proceedings of the 29th

Trans European Research and Education Networking Conference, D. Foster,

Ed. TERENA, 2013. 21

[Van Mieghem et al., 2001] Piet Van Mieghem, Hans De Neve, and Fernando Kuipers.

Hop-by-hop quality of service routing. Computer Networks, 37(3):407–423,

2001. 38, 39

References 139

[Vestin and Kassler, 2015] Jonathan Vestin and Andreas Kassler. Qos enabled wifi

mac layer processing as an example of a nfv service. In Network Softwarization

(NetSoft), 2015 1st IEEE Conference on, pages 1–9. IEEE, 2015. 108

[Wang and Crowcroft, 1996] Zheng Wang and Jon Crowcroft. Quality-of-service rout-

ing for supporting multimedia applications. Selected Areas in Communications,

IEEE Journal on, 14(7):1228–1234, 1996. 29, 38

[Widyono et al., 1994] Ron Widyono et al. The design and evaluation of routing algo-

rithms for real-time channels. International Computer Science Institute Berke-

ley, 1994. 37

[Wischik et al., 2011] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark

Handley. Design, implementation and evaluation of congestion control for mul-

tipath tcp. In NSDI, volume 11, pages 8–8, 2011. 21

[Xia et al., 2014] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and

Haiyong Xie. A survey on software-defined networking. Communications Sur-

veys & Tutorials, IEEE, 2014. xv, 9, 12

[Yang et al., 2004] Lily Yang, Ram Dantu, T Anderson, and Ram Gopal. Forwarding

and control element separation (forces) framework. Technical report, RFC

3746, April, 2004. 9

[Yeganeh et al., 2013] Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Gan-

jali. On scalability of software-defined networking. Communications Magazine,

IEEE, 51(2):136–141, 2013. 10

[Yen, 1971] Jin Y Yen. Finding the k shortest loopless paths in a network. management

Science, 17(11):712–716, 1971. 32, 39

[Yuan, 1999] Xin Yuan. On the extended bellman-ford algorithm to solve two-

constrained quality of service routing problems. In Computer Communications

and Networks, 1999. Proceedings. Eight International Conference on, pages

304–310. IEEE, 1999. 31, 37, 39

140 References

Appendix A - Transport protocol
and flow scheduler evaluation
results

This appendix presents all the additional figures and tables containing results

from the transport protocol and flow scheduler evaluation experiments, detailed

in section 6.1.

Figure A.1: Round-robin evaluation re-
sults, no SDN controller

Figure A.2: Hashed-based evaluation re-
sults, no SDN controller

142 Appendix . Appendix A

Figure A.3: Random scheduler evalua-
tion results, no SDN controller

Figure A.4: Minimum flow evaluation re-
sults, no SDN controller

Figure A.5: RR scheduler evaluation re-
sults (with delay), no SDN controller

Figure A.6: Hash-based scheduler evalu-
ation results (with delay), no SDN con-
troller

143

Figure A.7: Random scheduler evalua-
tion results (with delay), no SDN con-
troller

Figure A.8: Min flows scheduler evalu-
ation results (with delay), no SDN con-
troller

Figure A.9: RR scheduler evaluation re-
sults with TCP, with SDN controller

Figure A.10: RR scheduler evaluation re-
sults with MPTCP, with SDN controller

144 Appendix . Appendix A

Figure A.11: Min flows scheduler evalu-
ation results with TCP, with SDN con-
troller

Figure A.12: Min flows scheduler eval-
uation results with MPTCP, with SDN
controller

Figure A.13: Hash-based scheduler eval-
uation results with TCP, with SDN con-
troller

Figure A.14: Hash-based scheduler eval-
uation results with MPTCP, with SDN
controller

145

Figure A.15: Random scheduler evalu-
ation results with TCP, with SDN con-
troller

Figure A.16: Random scheduler evalu-
ation results with MPTCP, with SDN
controller

Figure A.17: RR scheduler evaluation
results with delay and TCP, with SDN
controller

Figure A.18: RR scheduler evaluation re-
sults with delay and MPTCP, with SDN
controller

146 Appendix . Appendix A

Figure A.19: Min flows scheduler evalu-
ation results with delay and TCP, with
SDN controller

Figure A.20: Min flows scheduler eval-
uation results with delay and MPTCP,
with SDN controller

Figure A.21: Hash-based scheduler eval-
uation results with delay and TCP, with
SDN controller

Figure A.22: Hash-based scheduler eval-
uation results with delay and MPTCP,
with SDN controller

147

Figure A.23: Random scheduler evalu-
ation results with delay and TCP, with
SDN controller

Figure A.24: Random scheduler evalu-
ation results with delay and MPTCP,
with SDN controller

Table A.1: Average TCP transfer times with static flow allocation and no path
delay

Transfers Random Hash-based Number of flows Round-robin

1 41.046 40.938 43.186 39.536
2 49.620 41.294 43.872 40.579
3 51.800 60.715 43.755 40.136
4 55.171 60.847 43.318 40.987
5 60.592 64.740 43.374 42.451
6 71.208 67.758 43.431 44.469
7 73.785 82.662 50.059 51.088
8 79.582 81.391 55.415 56.010
9 80.221 88.484 60.680 62.840
10 91.363 86.446 67.281 68.608
11 99.194 100.135 74.793 75.922
12 98.045 109.472 84.122 83.477
13 108.485 120.166 89.278 89.416
14 118.501 120.402 94.221 95.692
15 118.935 126.195 100.419 101.461

148 Appendix . Appendix A

Table A.2: Average TCP transfer times with static flow allocation and path delay

Transfers Random Hash-based Number of flows Round-robin

1 46.570 40.616 53.208 43.306
2 49.803 46.413 53.630 45.286
3 53.684 64.291 50.596 45.661
4 61.319 61.693 48.807 48.176
5 63.365 66.511 47.524 48.839
6 74.034 74.660 47.213 52.809
7 84.041 85.291 53.535 56.458
8 85.725 84.257 58.147 59.884
9 87.019 92.018 63.106 65.379
10 95.180 90.272 69.135 71.715
11 99.918 101.076 76.553 77.785
12 102.451 112.062 85.862 85.052
13 113.360 120.569 90.368 91.154
14 114.884 121.118 95.388 97.348
15 127.099 125.976 100.671 104.063

Table A.3: Average TCP transfer times using the controller application and no
path delay

Transfers Random Hash-based Number of flows Round-robin

1 41.850 41.630 40.576 43.268
2 46.035 41.858 41.491 43.264
3 52.676 44.580 42.954 41.850
4 62.332 53.559 44.764 41.747
5 65.056 54.235 47.153 43.037
6 72.883 57.696 46.281 46.205
7 70.704 56.974 54.693 52.150
8 82.989 61.700 59.268 57.620
9 91.412 73.291 63.289 63.162
10 91.669 79.082 71.329 68.871
11 97.329 82.378 76.700 76.029
12 105.748 89.721 83.067 82.972
13 108.218 95.882 88.586 89.659
14 116.143 103.864 95.779 96.740
15 122.226 108.604 103.007 102.382

149

Table A.4: Average MPTCP transfer times using the controller application and
no path delay

Transfers Random Hash-based Number of flows Round-robin

1 20.302 24.090 20.702 20.452
2 26.233 26.253 20.955 19.519
3 31.313 32.374 25.501 25.605
4 34.333 36.557 32.578 30.342
5 39.156 41.171 37.744 35.858
6 46.072 46.812 43.596 42.526
7 51.841 51.868 49.357 48.700
8 57.964 57.708 56.196 56.159
9 63.937 62.952 63.420 62.371
10 69.299 70.489 69.777 68.261
11 76.966 75.133 75.630 75.542
12 81.583 81.637 83.280 81.429
13 89.192 89.122 90.515 87.492
14 94.711 95.847 95.624 94.814
15 100.362 101.146 102.141 98.932

Table A.5: Average TCP transfer times using the controller application with path
delay

Transfers Random Hash-based Number of flows Round-robin

1 42.350 40.852 40.668 40.950
2 46.543 40.550 41.912 40.962
3 58.204 44.714 43.714 41.519
4 61.302 50.093 43.805 41.897
5 65.512 51.189 44.800 43.128
6 63.484 55.932 47.702 45.189
7 75.424 55.426 55.896 51.474
8 82.332 61.988 57.901 57.285
9 84.060 76.399 65.320 62.226
10 93.559 79.707 70.682 69.673
11 91.413 84.895 76.281 75.523
12 98.960 91.474 83.091 83.404
13 108.380 97.727 89.545 90.220
14 116.405 105.161 96.056 96.189
15 128.595 107.036 102.469 102.092

150 Appendix . Appendix A

Table A.6: Average MPTCP transfer times using the controller application with
path delay

Transfers Random Hash-based Number of flows Round-robin

1 31.414 26.594 28.572 28.578
2 32.333 32.343 28.430 27.119
3 39.802 35.150 34.187 31.809
4 45.631 42.135 37.231 37.927
5 52.394 51.716 44.103 42.718
6 54.402 57.528 52.334 51.458
7 62.726 67.561 60.600 59.471
8 69.313 68.659 66.898 61.484
9 73.550 74.585 72.468 70.097
10 81.649 80.299 78.600 78.659
11 83.182 86.523 84.178 84.791
12 93.015 92.760 90.752 91.730
13 98.762 101.861 96.556 93.981
14 104.868 103.846 105.069 104.156
15 112.900 107.788 112.414 108.862

Appendix B - Path computation
algorithms evaluation results

This appendix presents all the additional figures and tables containing results

from the path computation algorithms evaluation experiments, detailed in sec-

tion 6.2.

Figure B.1: Transfer times with Dijk-
stra’s (Hash-based)

Figure B.2: Transfer times with Dijk-
stra’s (Round-robin)

152 Appendix . Appendix B

Figure B.3: Transfer times with Disjoint
(Hash-based)

Figure B.4: Transfer times with Disjoint
(Round-robin)

Figure B.5: Transfer times with Yen’s
(Hash-based)

Figure B.6: Transfer times with Yen’s
(Round-robin)

153

Figure B.7: Transfer times with SAM-
CRA (Hash-based)

Figure B.8: Transfer times with SAM-
CRA (Round-robin)

Table B.1: Average MPTCP transfer times (ms) for different path computation
algorithms

Transfers Dijkstra
RR

Dijkstra
Hash

Disjoint
RR

Disjoint
Hash

Yen RR Yen
Hash

SAMCRA
RR

SAMCRA
Hash

1 226.480 134.428 82.208 87.786 75.886 72.886 46.120 56.148
2 175.107 199.592 91.009 95.849 107.165 83.180 64.268 70.254
3 211.311 165.867 107.371 110.773 81.007 99.141 100.115 100.644
4 195.980 163.623 109.652 116.183 91.893 117.805 104.766 123.146
5 238.946 225.774 116.823 161.125 112.313 107.889 112.365 120.907
6 - - 123.998 198.044 95.144 124.396 127.849 126.326
7 - - 202.726 201.344 112.412 115.139 133.817 145.036
8 - - 172.793 208.526 106.067 126.202 138.939 167.823
9 - - 222.848 190.462 113.538 115.703 162.780 185.211
10 - - 250.004 249.519 124.918 150.016 174.621 195.207
11 - - 206.283 207.687 123.274 165.327 199.821 214.078
12 - - 227.089 263.555 129.086 153.737 210.995 221.720
13 - - 240.545 259.950 141.559 175.448 225.019 233.872
14 - - 248.142 267.038 160.844 182.785 238.813 243.406
15 - - 239.483 273.584 176.011 176.856 245.138 251.965

154 Appendix . Appendix B

Table B.2: CDF throughput values (Mbps) with 1 parallel transfer

Algorithm Scheduler Minimum 25% Median 75% Maximum

Disjoint Hash 4.237 15.252 30.320 58.075 81.945
Disjoint RR 9.533 15.534 32.897 58.187 81.526
Dijkstra’s Hash 3.369 13.752 22.897 45.756 82.156
Dijkstra’s RR 3.316 4.993 13.315 21.363 25.461
Yen’s Hash 4.877 23.967 48.396 74.750 115.196
Yen’s RR 5.084 22.192 43.019 75.122 117.668
SAMCRA Hash 4.438 31.775 60.787 87.970 119.837
SAMCRA RR 13.981 34.953 74.565 102.527 119.182

Table B.3: CDF throughput values (Mbps) with 8 parallel transfers

Algorithm Scheduler Minimum 25% Median 75% Maximum

Disjoint Hash 2.383 11.185 16.777 28.356 73.253
Disjoint RR 3.264 12.710 18.516 32.708 69.053
Yen’s Hash 1.980 16.132 29.263 44.151 115.705
Yen’s RR 3.938 18.641 32.622 49.345 126.734
SAMCRA Hash 0.448 16.029 23.069 32.577 90.126
SAMCRA RR 0.449 19.284 26.631 35.349 89.878

Table B.4: CDF throughput values (Mbps) with 15 parallel transfers

Algorithm Scheduler Minimum 25% Median 75% Maximum

Disjoint Hash 1.436 9.754 13.865 19.065 51.509
Disjoint RR 2.943 9.908 14.717 22.221 52.429
Yen’s Hash 1.885 10.585 18.641 30.254 108.943
Yen’s RR 1.334 11.984 19.973 31.536 106.185
SAMCRA Hash 0.435 10.755 14.538 20.214 81.659
SAMCRA RR 0.427 11.336 15.534 21.409 86.037

Appendix C - Application
configuration instructions

Main application configurations

The configurations for the main application can be found in the file named

65-pathcalculator.xml in the

distribution-karaf/target/assembly/etc/opendaylight/karaf directory. The

application need to be at least be initialized once after being compiled with maven.

The following options can be configured:

• scheduling-strategy

Description: Flow strategy used by the application;

Type: String;

Allowed values: rr (Round-robin), hash (Hash-based), flows (Minimum

flows), random (Random).

• path-strategy

Description: Used path computation algorithm;

Type: String;

Allowed values: singlepath (Dijkstra’s), multipath (Yen’s), disjoint

(Disjoint paths), samcra (SAMCRA).

• graph-refresh-delay

Description: Delay (in ms) for updating the topology when a new link

appears in the network (in the TopologyChangeHandler class);

156 Appendix . Appendix C

Type: Integer.

• local-flow-counters-duration

Description: Duration (in ms) of the local flow counters in the minimum

flows scheduler;

Type: Integer.

• path-flows-idle-timeout

Description: Timeout (in seconds) of the flows installed;

Type: Integer.

• samcra-length-function

Description: Function used to calculate the length of the paths in SAM-

CRA;

Type: String;

Allowed values: mcp (Multiple constrained path), dclc (Delay constrained

least cost - not fully implemented), hcmb (Hop constrained maximum

bandwidth - not fully implemented).

• samcra-metrics

Description: Metrics used by SAMCRA;

Type: String, separated by commas;

Allowed values: delay (Delay), availableBw (Available Bandwidth), hops

(Number of hops), usedBw (Used bandwidth).

• samcra-constraints

Description: Constraints used for each metric used by SAMCRA;

Type: Double, separated by commas.

• min-samcra-paths

Description: Number of paths that SAMCRA will always try to find;

157

Type: Integer.

• samcra-path-timeout

Description: Duration of the paths calculated by SAMCRA, until it com-

putes new ones;

Type: Integer.

Metrics Collector module configurations

The configurations for the metrics collector module can be found in the file

named 62-metricscollector.xml in the

distribution-karaf/target/assembly/etc/opendaylight/karaf directory. The

application need to be at least be initialized once after being compiled with maven.

The following options can be configured:

• collect-delay

Description: Perform link delay monitoring;

Type: Boolean.

• controller-switch-delay-interval

Description: Delay (in ms) for collecting the delay between the controller-

switch connections;

Type: Integer.

• link-delay-interval

Description: Delay (in ms) for collecting the link-delay;

Type: Integer.

• delay-packet-send-max-interval

158 Appendix . Appendix C

Description: Maximum delay (in ms) for sending delay monitoring pack-

ets;

Type: Integer.

• delay-packet-send-min-interval

Description: Minimum delay (in ms) for sending delay monitoring pack-

ets;

Type: Integer.

• delay-packet-send-interval-strategy

Description: Strategy for defining the interval between sending delay mon-

itoring packets;

Type: String;

Allowed values: static (Static, using only the maximum interval), random

(Randomized, with values between configured maximum and mini-

mum)

• collect-bandwidth

Description: Perform used bandwidth monitoring;

Type: Boolean.

• bandwidth-interval

Description: Delay (in ms) for collecting the used bandwidth statistics;

Type: Integer.

