
Master’s Degree in Informatics Engineering
Dissertation

Aeroelastic Optimization of a
High Aspect Ratio Wing
September 4, 2013

Ivo Daniel Venhuizen Correia

icorreia@student.dei.uc.pt

Advisor:

Professor Carlos M. Fonseca

cmfonsec@dei.uc.pt

Abstract

Two fundamental aspects of aircraft wings are considered in this work: their

aerodynamics and their structural properties. Although originating in different

disciplines, these two aspects should be studied together because structural

behaviour influences aerodynamics and vice-versa, leading to what is known

as the aeroelastic behaviour of the wing.

With respect to aerodynamics, lift and drag are the forces that allow the

airplane to take off and sustain itself in the air. Although the absence of

drag would make it impossible for the airfoil to fly, engineers generally seek to

minimize it, as an increase in drag implies an overhead on aircraft maneuvers

and greater fuel consumption. Drag is minimized by long elliptical wings, but

such wings are difficult to manufacture in comparison to other shapes. Long

wings are generally more aerodynamic, but a longer span naturally implies

greater structural weight, thus reducing flight range. The range formulas of

Breguet relate the lift and drag produced by the wing, the amount of fuel

available and the weight of the aircraft to the maximum distance the aircraft

can fly.

Aeroelasticity, on the other hand, is concerned with the fact that when in

flight, the wing structure is under the influence of several forces that deform

its original shape. Understanding these forces and how they change the aero-

dynamic behaviour of the airfoil is very important. In particular, such forces

and the corresponding deformation may create a positive feedback loop, and

the wing may bend so much that it breaks.

Accurately modelling the aeroelastic behaviour of a given wing may be

computationally very demanding. Therefore, less accurate but simpler models

are used for optimization purposes at the initial design stages. Such models

must, nevertheless, remain valid to a certain extent, in order for optimized

preliminary designs be useful at a later stage.

In this work, the integration between wing aeroelastic models and opti-

mizers is considered, with a view to allowing more accurate and more com-

putationally demanding wing models to be used for optimization. This was

accomplished through two different approaches. In the first approach, the pre-

cision at certain intermediate steps was reduced without affecting the output.

More specifically, Gauss-Seidel iterations were used to achieve faster but less

precise solutions for systems of linear equations arising in given model. In the

i

second approach, a partial set of data was reused from one iteration to the

next, reducing running time but still preserving the precision of the original

method.

Although the models studied are not the most suited for incrementalization,

it is shown that it is possible to reduce computation time without affecting

model validity or the optimization results.

Keywords: Diederich’s method, vortex lattice method, induced drag min-

imization, numerical optimization, wing modelling

ii

Acknowledgements

I would like to thank Marc Mulkens for providing important bibliographic

references about aeronautics, validation data and answering all my questions.

Also, to my advisor Carlos M. Fonseca, for all the patience and support given

during this whole year.

Finally, to all my companions from ECOS lab, family (especially parents

and brother) and all other friends for helping me getting this far.

Coimbra, 4th September 2013

Ivo Correia

iii

Contents

Abstract i

Acknowledgements iii

List of Tables vii

List of Figures viii

List of Acronyms x

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Contributions . 2

1.4 Document structure . 3

2 Wing Modelling and Analysis 5

2.1 Aeronautical optimization . 5

2.2 Aerodynamic modelling . 6

2.2.1 Concepts and notation 6

2.2.2 Lifting-line theory . 14

2.2.3 Diederich’s method . 16

2.2.4 Vortex lattice method 21

2.3 Structural modelling . 27

2.3.1 Beam properties . 27

2.3.2 The mass markup . 28

2.3.3 Atmospheric properties 28

2.3.4 Loads . 29

2.4 Aeroelastic modelling . 29

2.4.1 Displacements . 30

2.4.2 Convergence evaluation 31

2.5 Post-processing . 31

CONTENTS

2.5.1 Diederich’s method induced drag value 31

2.5.2 Vortex lattice method lift coefficient and induced drag . 32

2.5.3 Security Margins . 33

2.5.4 Breguet Range . 33

2.6 Concluding remarks . 34

3 Optimization 37

3.1 Direct search, linear-search and trust-region interpolation meth-

ods . 38

3.2 Gradient-based optimization . 38

3.2.1 Automatic Differentiation 39

3.3 Optimization algorithms . 40

3.3.1 DIRECT . 40

3.3.2 Hill-climber . 43

3.4 Concluding remarks . 44

4 Systems of Linear Equations 45

4.1 Solving and decomposition . 45

4.1.1 LU decomposition . 46

4.1.2 Decomposition update 46

4.2 Iterative methods . 49

4.2.1 Jacobian method . 50

4.2.2 Gauss-Seidel method . 51

4.2.3 Successive over-relaxation (SOR) method 51

4.3 Concluding remarks . 51

5 The Proposed Computational Approach 53

5.1 Hardware specifications . 53

5.2 Aeroelastic optimization . 54

5.3 Problem formulation . 55

5.4 Vortex lattice method grid . 56

5.4.1 Potential speed-up analysis 57

5.4.2 Implementation of the linearized grid 59

5.5 Optimizer parallelization . 59

5.5.1 Potential speed-up analysis 60

v

CONTENTS

5.5.2 Implementation of the optimizer parallelization 60

5.6 Structural and Gauss-Seidel solutions reuse 62

5.6.1 Potential speed-up analysis 62

5.7 Gauss-Seidel precision . 63

5.8 Concluding remarks . 64

6 Results 67

6.1 Diederich’s method validation 68

6.2 Vortex lattice method validation 69

6.2.1 Case 1 - Bertin & Smith wing 71

6.2.2 Case 2 - Rigid and unswept wing 71

6.2.3 Case 3 - Flat plate airfoil (0o and 35o sweep angle) . . . 72

6.2.4 Case 4 - Warren 12 wing 73

6.2.5 Case 5 - Cessna 172 wing 75

6.3 Model comparison . 76

6.3.1 Lift-line theory and vortex lattice method 76

6.3.2 Diederich method and vortex-lattice method 77

6.4 Optimization results . 78

6.4.1 DIRECT Algorithm . 79

6.4.2 Hill-climber . 81

6.4.3 Final configurations . 83

6.5 Concluding remarks . 86

7 Concluding Remarks 89

Nomenclature 91

Bibliography 93

vi

List of Tables

2.1 The six different flight categories. 10

5.1 Design variables. 55

5.2 Speed-ups achieved with the LU update. 65

6.1 Induced drag coefficient results (normalized by 1e−5). 67

6.2 Deviations for induced drag coefficient I. 68

6.3 Deviations for induced drag coefficient II. 68

6.4 Breguet range results I, in kilometers. 69

6.5 Breguet range results II, in kilometers. 69

6.6 Deviations for Breguet range I. 70

6.7 Deviations for Breguet range II. 70

6.8 Bertin & Smith wing results. 72

6.9 Flat plate airfoil with 0o of sweep angle results. 73

6.10 Flat plate airfoil with 35o of sweep angle results. 73

6.11 Warren 12 wing results. 74

6.12 Cessna 172 wing results. 76

6.13 Results for DIRECT algorithm with a 10x28 grid. 81

6.14 Results for DIRECT algorithm with a 14x32 grid. 82

6.15 Results for DIRECT algorithm with a 16x38 grid. 82

6.16 Results for hill-climber with a 10x28 grid. 84

6.17 Results for hill-climber with a 14x32 grid. 84

6.18 Results for hill-climber with a 16x38 grid. 85

6.19 Speed-ups for hill-climber, executed in the laptop LG R510. . . 85

6.20 Optimized configurations. 86

vii

List of Figures

2.1 Wing top view. 7

2.2 Wing side view. 8

2.3 Wing profile. (from http://en.wikipedia.org/wiki/Airfoil) 8

2.4 Geometric and aerodynamic twist. 9

2.5 Circulation for elementary closed curves. 11

2.6 Horseshoe vortex representation. (from http://www.flyingstart.ca) 12

2.7 Relation between angle of attack and lift. 12

2.8 Induced drag on a non-zero angle of attack. 13

2.9 The lift distribution division over θ. 15

2.10 Plot of a wing. 19

2.11 The lift-distribution constants C1, C2 and C3, from [1]. 20

2.12 The lift-distribution function f(η,Λβ), from [1]. 20

2.13 Example of a grid used in the vortex lattice method. 22

2.14 Representation of two horseshoe vortices. 24

2.15 Velocity induced by a finite-length vortex segment. 25

2.16 Horseshoe vortex with the control point in ∞. 26

2.17 The shapes of the shear force and bending moment distributions. 29

2.18 Shape of the slope distribution. 31

3.1 Initial 2-dimensional space division in the DIRECT algorithm. . 41

3.2 Several iterations of DIRECT. 43

4.1 Hessenberg matrix resulting from Ũ 47

4.2 Hessenberg matrix resulting from L̃. 48

5.1 a) Original; b,c) augmented; d) decreased wings. 56

5.2 The original grid on the top, the linearized at the bottom. . . . 57

5.3 Time comparison for the LU factorization update. 58

5.4 Downwash calculation over CPU and GPU. 61

LIST OF FIGURES

5.5 Time growth proportion for the downwash calculation. 61

5.6 Influence of the incremental approach on successsive iterations. . 63

6.1 The Bertin & Smith wing configuration. 71

6.2 Comparison between real data and two VLM implementations. . 72

6.3 The flat plate wing configuration, with 0o and 35o sweep angle. . 73

6.4 The Warren 12 wing configuration. 74

6.5 The Cessna 172 wing. 75

6.6 Lift coefficients produced by LLT and VLM. 77

6.7 Lift distributions produced by Diederich and VLM. 78

6.8 Slope distributions produced by Diederich and VLM. 78

6.9 The convergence rate behaviour of the structural loop. 80

ix

List of Acronyms

AoA Angle of attack

AD Automatic differentiation

DSM Direct search methods

GPGPU General-purpose graphics processing unit

GPU Graphics processing unit

GS Gauss-Seidel

LLT Lifting-line theory

VLM Vortex lattice method

xi

1
Introduction

1.1 Motivation

Building a new aircraft wing requires much time and effort, and hence, it is

crucial to optimize every single step of the process. As it is costly to perform

experiments on real models, it is now common practice to do the design on

computer simulators, which will approximate the considered wing shape close

to its final form. Although computational power is expanding, it is also true

that the complexity of the simulators is evolving at a fast pace and a single

simulation run may take several days to finish.

Furthermore, simulation may be accompanied by an optimization process.

There are then two distinct entities: the simulator, which holds a model and,

given an input, will return useful values for the analysis (e.g., the drag and lift

produced by the wing); and the optimizer, which will, given a set of parameters

concerning the wing geometry, systematically perturb their values until the

results are sufficiently close to optimal. An iterative process is then established,

where the optimizer provides a set of parameters to the simulator, and the

simulator returns the results back to the optimizer, which will decide whether

and how to continue or to return a final answer.

This process is often seen as a communication between two completely

separate objects, as the optimizer has no view of the simulator’s internals

and vice-versa. This means that different simulations are performed mostly

independently and, therefore, little if anything is reused from previous compu-

1

CHAPTER 1. INTRODUCTION

tations.

The idea for this project was established after contacts with Embraer S.A.,

a Brazilian aerospace enterprise. Having Marc Mulkens as the main contact be-

tween the parties, the first models were implemented from the documentation

and information provided by the company. Although code developed inter-

nally could not be made available, pseudo-code, documentation and answers

to theoretical questions were all given. In a second phase, when looking for

more computationally demanding models, guidance towards the best choices

was offered as well.

1.2 Goals
The main goal of this work is to reduce the separation between the opti-

mizer and the simulator in a simulation-optimization loop, so that the work

performed by each component can be of use to the other. This is done by

monitoring how data changes from one iteration to the next, so as to avoid

performing the same calculations over and over again.

Even when the whole input data changes, different algorithms to address

the same problem may be considered. This is the case of finding a solution

for a system of linear equations, where full Gauss elimination may be replaced

by decomposition techniques with lower complexity, when the solution to the

original system is known. On the other, methods outputting less accurate

solutions may, due to the less precision, run faster and still produce satisfactory

results.

1.3 Contributions
Although starting from very simple models, this document presents a promis-

ing approach to speeding up simulation optimization, which may be useful for

more advanced applications in order to reduce computing time.

The contributions include the adaptation of the original models to admit

less accurate intermediate steps, namely with precision control in the Gauss-

Seidel method. Precision needed to be sufficiently low to reduce computation

time and yet, sufficiently high not to affect the output.

A way of incrementalizing the simulation process is described, although

2

1.4. DOCUMENT STRUCTURE

its impact is not as high as initially expected. This was accomplished mainly

through data reuse, including starting points of inner loops.

Finally, the document proposes a number of ideas that even though they

were not applied to the considered models, may eventually be useful in con-

nection with other approaches to wing modelling.

1.4 Document structure
This document is composed of three parts. In the first part, background on

wing modelling, numerical optimization and systems of linear equations solving

is provided. It encompasses Chapters 2, 3 and 4, respectively.

The main ideas concerning simulation and the implementation are dis-

cussed in Chapter 5. This Chapter defines the optimization design space, the

specifications of the machines used for testing and provides a discussion of the

ideas suggested to achieve greater speed-ups.

Finally, the analysis of the results, including model validation, and con-

cluding remarks are presented in the last Chapters, 6 and 7. The document

ends with the Nomenclature and the Bibliography.

3

2
Wing Modelling and Analysis

2.1 Aeronautical optimization

Optimizers and model simulators in aeronautics have naturally accompanied

the evolution of airplane design. The methods of analysis evolved with the

need for larger, faster and more aerodynamic aircraft, capable of carrying more

weight and flying at higher speeds. Creating airfoils for new flight conditions

was often driven by failures of the existing ones, with reports from the early

days describing plane crashes due to flutter, as aircraft crossed their speed

boundaries and their wings bent widely and broke [1].

To prevent such cases, aeronautical engineers started developing more and

more detailed models as the underlying physics became better and better un-

derstood. This increase in model complexity was the entry point for computa-

tional models and optimizers, as they allowed preliminary wing designs to be

produced that came closer to their final physical form, saving both time and

resources in real experiments.

The very first models appeared with thin-airfoil theory, where a zero thick-

ness airfoil with infinite wingspan was assumed. They relate the angle of attack

to the lift produced by the wing, without taking into account the critical angle

(see Section 2.2.1.1). Then, in the 1970s, linear models, such as panel methods,

were developed. These methods divide the airfoil space into panels, which are

usually flat and quadrilateral shaped. The lift distribution is calculated and,

by combining the results of all the panels, a final value for the lift coefficient

5

CHAPTER 2. WING MODELLING AND ANALYSIS

is returned [2].

However, these methods only consider subsonic flights. Boundary-layer

corrections were made during the 1980s, but still, the barrier of transonic

flights was not crossed. Supersonic and hypersonic modelling could only be

successfully achieved when fluid dynamics was taken into account. The Euler

equations were firstly used, defining a set of equations that can model the

behaviour of moving and inviscid flows, with conservation of mass, momentum

and energy. Later, they were generalized by the Navier-Stokes equations, which

no longer required that fluid viscosity be ignored.

In the 1990s, mesh-based models were introduced, which are used till the

present day, and, most recently, time-dependent flow models [3]. In mesh-

based model optimization, meshes can be structured (regular pattern) or un-

structured (irregular patternas with Delaunay triangulations, for example). In

general, these methods use a set of points, which, when properly linked, will

form a surface. The mesh has to obery to a set of rules and restrictions, leading

to mesh restructuring by changing the position of specific points during the

optimization process.

2.2 Aerodynamic modelling

2.2.1 Concepts and notation

The fundamental concepts arising in aerodynamc modelling will be introduced

next, in order to support a full understanding of every algorithm discussed here.

Alongside the concepts, the notation used in this document is also defined. For

a full listing of the variables here described, refer to the Nomenclature present

at the end of this document.

2.2.1.1 Wing geometry

The wingspan, b, is the distance from one wingtip to the other. From the

wingspan, y can be define, ranging from - b
2

to b
2
, with the zero value at the

fuselage line. The tips, denoted by the index t, are located at y = ± b
2
, while

the root, denoted by the index r, is located at y = 0.

The leading edge is the set of points at the front of the airfoil that has

maximum camber curvature. The trailing edge is defined similarly as the set

6

2.2. AERODYNAMIC MODELLING

Figure 2.1: Wing top view.

of points of maximum camber curvature at the rear of the airfoil.

The chord c is a straight line joining the trailing and leading edge, parallel

to the fuselage line. Taking chord length as a function of the position y along

the wing leads to the chord-length distribution c(y). As can be seen in Figure

2.3, the chord line does not necessarily need to be inside the wing profile. The

quarter-chord line is the line which joins every point located at the quarter

(from the leading edge) of every chord.

The sweep angle Λ.25 (or simply Λ) is the angle defined by the quarter-

chord and the vertical plane perpendicular to the fuselage. Although not

usually considered, two more sweep angles may be defined. They are ΛTE

and ΛLE, using respectively the trailing and the leading edge instead of the

quarter-chord line.

The dihedral angle φ is the angle between the wing and the horizontal

plane passing through the fuselage line. The wing taper ratio λ is the ratio

between the lengths of the chord at the tip and the at the root:

λ =
ct
cr

�
 �	2.1

The planform (or wing area) S is the total area of the wing projected on

the horizontal plane. The aspect ratio AR is then the square of the wingspan

divided by the planform. They are defined as:

S = 2

∫ b
2

0

c′(y) dy
�
 �	2.2

AR =
b2

S

7

CHAPTER 2. WING MODELLING AND ANALYSIS

where c′(y) is the distribution of chord-lengths projected in the horizontal

plane.

Figure 2.2: Wing side view.

The angle of attack α is the angle formed by the chord line of the wing and

the direction of the air flow, while the downwash angle is the angle between

the direction of air movement as it approaches the wing and as it leaves it.

The camber is an asymmetry between the top and the bottom of the wing.

A cambered (or asymmetric) airfoil appears as opposed to a symmetric airfoil,

where the two parts are shaped symmetrically. The thickness is the distance

between the top and the bottom surface, defining a thickness distribution along

the chord (see Figure 2.3).

Figure 2.3: Wing profile.

(from http://en.wikipedia.org/wiki/Airfoil)

8

2.2. AERODYNAMIC MODELLING

The twist ε is the difference between the angle of attack at given wing

section and the root section. When the leading edge points upwards, we have

a positive twist, named washin. When it points down, the most common

situation, the twist is negative and is denominated washout.

Twist can be further split into geometric and aerodynamic twist. The

geometric twist is the twist of the chord line with respect to the root’s chord

line. Aerodynamic twist is the angle formed by the corresponding zero-lift

lines instead of the chord lines. The zero-lift line is influenced by the wing’s

geometry and thickness, and is the position of the given chord when the angle

of attack is such that the wing section will produce no lift.

Figure 2.4: Geometric and aerodynamic twist.

2.2.1.2 Mach number

The Mach number is a dimensionless quantity that represents the speed of an

object moving through a fluid, normalized by the local speed of sound:

M =
V

a

�
 �	2.3

where M is the Mach number, V is the speed of the source relatively to the

medium and a is the speed of sound in the medium. Throughout this doc-

ument, the Gallilean transformation from the ground-fixed-reference to the

vehicle-fixed-reference will be applied more often. This means that the wing

velocity ~V is null, while the fluid is considered to move with a velocity ~U∞.

9

CHAPTER 2. WING MODELLING AND ANALYSIS

Regime Subsonic Transonic Sonic Supersonic Hypersonic
High-

hypersonic

Mach < 1.0 0.8 - 1.2 1.0 1.0 - 5.0 5.0-10.0 > 10.0

Table 2.1: The six different flight categories.

Aerodynamically speaking, six different flight categories may be defined,

depending on the Mach speed of the airplane. The categories do not overlap,

with exception of the transonic regime. It defines a transition region between

subsonic and supersonic speeds. In fact, during the transonic period, a wing

will experience different speeds along its structure, some defined under (sub-

sonic), at (sonic) and above (supersonic) the speed of sound.

2.2.1.3 Aerodynamic forces

Four different forces acting on the wing may be considered, namely thrust,

weight, drag and lift. The last two are called aerodynamic forces. Generally

speaking, we can say that the lift, L, is the component of the aerodynamic force

perpendicular to the relative wind velocity; the drag, D, is the component par-

allel to the same relative velocity and the weight is the gravity force, pointing

towards the center of the earth. Finally, the thrust is the force produced by

the airplane engines.

2.2.1.4 Lift

Lift is the component of the total aerodynamic force that allows the airplane

to elevate itself. In other words, it is the force exerted on the wing surface by

the flowing air, perpendicular to this same flow. Lift can be increased either

by increasing the aircraft’s forward speed or by the angle of attack, though

in the last case, when the critical angle is reached, a phenomenon known as

stalling causes lift to decrease.

Lift can, in a simple way, be explained by the creation of different pressures

above and under the wing. By Bernoulli’s principle, an increase of speed is

translated into a decrease of pressure, the opposite statement being correct

too. This means that on the upper side of the wing, where the air flows

more rapidly, the pressure is lower. The difference between particle speed is

explained by the Kutta-Joukowsky theorem [2].

10

2.2. AERODYNAMIC MODELLING

2.2.1.5 Kutta-Joukowski theorem and circulation

Circulation defines the line integral of the fluid velocity around any closed

curve C [24]. The mathematical form is then:

Γ =

∮
C

~V .~dl
�
 �	2.4

where Γ is the circulation, ~V is the velocity and ~dl is the length of the element

at which the velocity is considered.

Figure 2.5: Circulation for elementary closed curves.

The Kutta-Joukowski theorem can be enumerated in three topics:

1. The force applied by a two-dimensional flow around a airfoil is perpen-

dicular to the flow direction, the induced drag force being null.

2. The force depends directly on the circulation around the airfoil section.

3. The direction of the force is obtained rotating the fluid velocity vector,

with a value of π
2

and in the direction opposed to the circulation.

The value of circulation is then used to calculate the lift generated by the

airfoil. By the Kutta-Joukowski theorem, the lift is calculated by:

L = −ρU∞Γ
�
 �	2.5

where L is the lift, ρ is the fluid density and Γ is the circulation. The lift

value is positive due to the fact that by convention, the value of constructive

circulation is negative [2].

11

CHAPTER 2. WING MODELLING AND ANALYSIS

A potential vortex (or simply vortex) is defined as a singularity about

which the fluid flows with concentric circular streamlines, perpendicularly to

the wing surface [24] (see Figure 2.6).

Figure 2.6: Horseshoe vortex representation.

(from http://www.flyingstart.ca)

Associated with the circulation are the horseshoe vortices, used for exam-

ple in the vortex latticed method (see Section 2.2.4). An horseshoe vortex is

composed by a wing bounded vortex, with constant circulation and denoted

as the control point, and two trailing vortices, located on the wingtips or even

outside the wing surface. The circulation will then be the value of the overall

vortex strength.

Figure 2.7: Relation between angle of attack and lift.

The angle of attack is of extreme importance, both to the airplane’s speed

12

2.2. AERODYNAMIC MODELLING

and to the lift produced by the airfoil. In fact, as shown in Figure 2.7, an

increase on the angle of attack will be accompanied by an increase in lift,

though it will reach a point where this starts producing the opposite effect.

This point is the critical angle beyond which the aircraft will experience stalling

and the consequent reduction of lift.

2.2.1.6 Drag

Drag is the set of forces that act on a solid object in the direction of the fluid

flow and are dependent of its velocity, usually resulting in a loss of energy by

the object. Hence, the airfoil should be built in order to minimize drag. The

following equation translates the sum of the forces:

D =
1

2
ρV 2CDS

�
 �	2.6

where D is the drag, ρ is the density of the fluid, V the speed of the object

relative to the fluid, CD the drag coefficient and S is the wing area.

Drag can be divided into three main categories: parasitic drag (related to

the size, shape and properties of the material), wave drag (resistance created

by shock waves, which radiate energy out of the airplane) and lift-induced

drag (or just induced drag). In this project, only lift-induced drag Di will

be considered, as the other forms of drag are used only in more advanced

modelling stages.

Figure 2.8: Induced drag on a non-zero angle of attack.

The induced drag occurs when the air flow must change its direction due

to the pressure of the wing, usually in order to produce lift. As can be seen in

13

CHAPTER 2. WING MODELLING AND ANALYSIS

Figure 2.8, whenever the chord line is not aligned with the air flow, the normal

force produced by the wing will not be perpendicular to the air flow. In those

cases, the vertical component of the normal force will produce lift, while the

horizontal component will contribute to the increase of the drag and hence the

name, lift-induced drag. Note that when the downwash angle is zero, no lift is

produced and consequently, induced drag is also zero.

2.2.2 Lifting-line theory

The lifting-line theory (LLT) was the first model studied and implemented in

this work, a simple model with several restrictions. One of the first consider-

ations to make is that, although the lift distribution is in fact 3-dimensional,

it can be satisfactorily approximated by a 2-dimensional view. Because of this

assumption, this model does not consider the thickness distribution, assum-

ing instead a flat airfoil. It does not support flexible or swept wings (with

sweep angle other than zero) either. Nevertheless, it can still be used to model

tapered (trapezoid-shaped instead of rectangular) and twisted wings. All it

needs as input are the following parameters:

1. Wing span;

2. Spanwise distribution of the following quantities:

(a) Sectional profile or airfoil chord length;

(b) Airfoil geometric angle of attack;

(c) Airfoil zero-lift angle of attack;

(d) Airfoil lift curve slope.

As previously referred, with increased angle of attack, lift increases in a

roughly linear relation (see Figure 2.7), and the slope of the lift curve corre-

sponds to the last item of the input. This parameter replaces some of the wing

geometric characteristics not explicity defined in the model formulation, such

as the wing profile.

In order to estimate the unknown spanwise lift distribution, sectionally

divided by N points, LLT uses a Fourier series to approximate the vortex

14

2.2. AERODYNAMIC MODELLING

strength distribution. As seen in Section 2.2.1, the Kutta-Joukowsky lift the-

orem states that the overall lift is directly proportional to the value of the

vortex strength, also known as circulation.

Assuming that the wings are symmetric and so is the lift distribution, even

components of the distribution will all be zero. The circulation distribution is

then approximated as:

Γ(θ) = 2bV

N
2∑

m=1

A2m−1 sin((2m− 1)θ)
�
 �	2.7

The lifting-line equation 2.8 that needs to be solved is:

D(k) =

N
2∑

m=1

C(k, 2m− 1)A2m−1, k = 1, ...,M
�
 �	2.8

C(y, n) =
N∑
n=1

(
4b

a(y)c(y)
+

n

sin(nθ(y))

)
D(y) = α− α0(y) + ε(y)

where α is the angle of attack, α0(y) is the zero-lift angle distribution (usually

assumed to be linear, from the tip and root), ε(y) is the twist angle distribution

(again, may be calculated linearly) and Am represents the vector with the

Fourier series coefficients.

Figure 2.9: The lift distribution division over θ.

In these formulas, we also find θ, which is the angular component of the

lift distribution, starting and ending at the wing tips (see Figure 2.9). Given

that these angles must be evenly spaced over the wing, we have that θ(k) is

obtained by the formula:

θ(k) =
(2k + 1)π

2N
, k = 1, ...,

N

2

�
 �	2.9

15

CHAPTER 2. WING MODELLING AND ANALYSIS

where N is the number of control points defined in the input. As the distri-

bution is symmetric, the results can be mirrored for the other half wingspan.

These angles are translated into the wing span coordinate using:

y(k) =
b cos(θ(k))

2

�
 �	2.10

where y(k) is consequently a set of control points, located along half of the

span. LLT will calculate lift coefficient values for those points, which will

ultimately approximate the final lift distribution. These formulas insure that

no control point is located at either the tip or the midpoint, as these positions

provide no new information regarding the values of the Fourier coefficients.

Once the lift curve slope distribution is (linearly) computed from the input,

as well as the chord distribution, from:

c(k) = cr −
2y(k)(ct − cr)

b

�
 �	2.11

C(k,m) can be calculated. Then, it is only a matter of solving the system

of equations described by equation 2.8, which will return the Fourier series

coefficients. The wing’s lift coefficient is:

CL = πAR.A0

�
 �	2.12

The Oswald efficiency factor is defined as:

e =
1

1 + δ

�
 �	2.13

where:

δ =
M∑
m=1

(2m− 1)

(
Am
A0

)2�
 �	2.14

And finally the induced drag coefficient:

CDi =
C2
L

πAR.e

�
 �	2.15

A more detailed explanation can be found in [4].

2.2.3 Diederich’s method

The overall idea of Diederich’s method is to divide the final lift distribution

into two components, the basic and the additional lift distributions. According

16

2.2. AERODYNAMIC MODELLING

to Diederich, the basic distribution for a certain twist angle is defined as the

lift distribution for a given wing with the angle of attack reduced equally at

every point until the total lift is zero. The additional lift distribution is defined

as the distribution which the wing would carry if it were untwisted and the

lift coefficient were equal to 1 [5].

The aeroelastic correction extends Diederich’s method in order to consider

the bending moment as the airplane shifts through the air. It basically uses

the overall Diederich’s method, but iteratively corrects the angle of attack dis-

tribution, repeating the basic lift calculation until it eventually (and hopefully)

converges (see Section 2.4).

It also takes a larger number of input parameters when comparing to LLT.

They are:

Aerodynamic inputs:

1. M : Mach number;

2. h: Cruising height;

3. Nc: Load factor;

4. CL: Wing’s lift coefficient.

5. CD0 : Markup value for the drag

coefficient.

6. Wing geometry:

(a) AR: Aspect ratio;

(b) S: Wing area;

(c) λ: Taper ratio;

(d) Λ.25: Sweep angle at the

quarter-line.

7. clα : 2D lift curve slope;

8. clmax : Critical lift coefficient;

9. γ: Air Cp/Cv ratio (specific heat

capacity);

10. εt: Twist at the tip;

2.2.3.1 Wing properties

Given the input data, the algorithm starts by calculating the effective sweep

angle:

Λβ = arctan

(
tan(Λ.25)

β

)�
 �	2.16

where β is the Prandtl-Glauert factor, which depends on the Mach number M

and is given by
√

1−M2; and the planform parameter, used in the additional

distribution, which is given by:

F =
2πAR

clα cos(Λ.25)

�
 �	2.17

17

CHAPTER 2. WING MODELLING AND ANALYSIS

An assumption made in the current work is that the initial twist distri-

bution can be calculated as a (linear) interpolation between the value at the

tip and at the root, which must be zero. This approach is not generic, as the

shape of the wing does not necessarily need to follow this structure.

Other values needed are:

• Mean geometric chord: cg =

√
S

AR

• Wingspan: b =
√
S.AR

• Root chord: cr =
2.cg

1 + λ

• Tip chord: ct = λcr

For a straight-tapered (straight leading and trailing edges) wing, we also

have that: (
c

cg

)
(η) =

cr
cg

+

(
ct − cr
cg

)
η

�
 �	2.18

where η is the adimensional half-spanwise variable, with η = 2y
b
, 0 ≤ η ≤ 1.

The sweep angles of the trailing and leading edge (not necessarily the same

as the sweep angle measured from the quarter-chord line) can be obtained by:

ΛTE = arctan

(
tan(Λ.25) +

1− λ
AR(1 + λ)

)�
 �	2.19

ΛLE = arctan

(
tan(Λ.25) +

3(1− λ)

AR(1 + λ)

)
Finally, the Jone’s edge velocity factor is given by:

E =
1

2 cos(ΛTE)
+

1

2 cos(ΛLE)
+
ct
b

�
 �	2.20

At this point, it is possible to draw the undeflected wing, as shown in Figure

2.10.

2.2.3.2 Additional lift distribution

The additional lift distribution is calculated as:

La(η) = C1
c

cg
+ C2

4

π

√
1− η2 + C3f(η,Λβ)

�
 �	2.21

18

2.2. AERODYNAMIC MODELLING

Figure 2.10: Plot of a wing.

where C1, C2 and C3 can be obtained from Figure 2.11 (with the plan form pa-

rameter F as input, explained in Section 2.2.3.1) and f() is the lift-distribution

function from Figure 2.12 (with η and the effective sweep angle Λβ as input).

Note that Figure 2.12 only provides curves for a finite set of angles and hence,

for all other values, some sort of interpolation must be performed.

Once La is calculated, we can obtain:

(
clac

cg

)
(η) = CLLa(η)

�
 �	2.22

To assert the correctness of the implementation, the distribution may be

checked through the value of the following integral:

∫ 1

0

La(η) dη ≈ 1
�
 �	2.23

The additional distribution, as it considers the untwisted version of the

wing, does not require any type of correction after the structural analysis, as

only the twist distribution is affected by the bending of the wing.

19

CHAPTER 2. WING MODELLING AND ANALYSIS

Figure 2.11: The lift-distribution constants C1, C2 and C3, from [1].

Figure 2.12: The lift-distribution function f(η,Λβ), from [1].

2.2.3.3 Basic lift distribution

In the original Diederich’s implementation, the basic distribution was calcu-

lated only once. With the structural correction, it will be iteratively updated

20

2.2. AERODYNAMIC MODELLING

till convergence. Though the form of calculation of the basic distribution will

remain untouched, the effective twist distribution will be changing iteratively

and so, it will influence the final result. The effective twist distribution can be

calculated as:

ε(η) = εtη − sin(Λ.25)Θ(η)
�
 �	2.24

where Θ(η) distribution is the correction factor, also known as “slope”. In the

first iteration, this distribution can be set to all zeros, so the effective twist

distribution will be the same as that given as input. When considering only

the aerodynamic side of the project, in fact Θ(η) is not necessary, as it will

remain zero throughout the method. As it will be explained in Section 2.4.1, it

only varies when considering the structural and aeroelastic components. The

basic distribution can then be derived by the following formula:

Lb(η) = La(η)C4 cos(Λβ)

(
ε(η)

εt
+ α0

)
β E

�
 �	2.25

Just like the additional distribution, we can also check the validity of the

implementation with: ∫ 1

0

Lb(η) dη ≈ 0
�
 �	2.26

The two distributions may be summarized by the following statement: The

basic lift is the twist without the total lift, while the additional lift is the total

lift without twist.

2.2.3.4 Total distribution

The sectional lift coefficients can now be calculated using the following:(
clc

cg

)
(η) =

(
clac

cg

)
(η) +

(
clbc

cg

)
(η)

�
 �	2.27

The sectional lift coefficient cl can be isolated by multiplying the result by

the mean geometric chord cg and dividing it by the chord c.

2.2.4 Vortex lattice method

The vortex lattice method (VLM) defines a discrete sheet of horseshoe vor-

tices to calculate the induced drag, typically using trapezoidal panels to build

21

CHAPTER 2. WING MODELLING AND ANALYSIS

this grid. The interactions between them define a system of linear algebraic

equations for finding the vortex strengths that satisfy the boundary conditions

of no flow through the wing [24]. The solution of the system will provide an

approximation of the circulation distribution, used to calculate the wing’s lift

coefficient. The effects of wing thickness and fluid viscosity are not considered.

Before constructing the grid, a bound vortex line is initially placed along

the quarter-chord line of the leading panels, making it in accordance with the

sweep angle. The rest of the wing is then covered with panels, whose sides,

parallel to the chord axis, are aligned with the free-stream follow.

Each panel has an associated control point, located on the chord axis at the

three-quarter chord and located on wingspan axis at the mid-point between

the lateral boundaries of the panel. An horseshoe vortex is influenced by the

simple vortices located on both the wing and far from the aircraft, a position

referred in this document as∞. Figure 2.13 shows an example of a grid design.

Figure 2.13: Example of a grid used in the vortex lattice method.

22

2.2. AERODYNAMIC MODELLING

2.2.4.1 Velocity induced by a horseshoe vortex

As stated in 2.2.1.5, circulation and flow velocity are closely related. By the

law of Bio-Savart [2], the velocity induced by a vortex filament of strength Γn

is defined by:

~dV =
Γn.(~dl × ~r)

4πr3

�
 �	2.28

with magnitude (see Figure 2.15 for the nomenclature) given by:

dV =
Γn sin θdl

4πr2

�
 �	2.29

where Γ is the circulation, ~V is the velocity, ~dl is the length of the element at

which the velocity is considered, ~r the vector pointing to the control point and

θ its angle.

Let us define points A and B as the extremities of the leadinge edge, while C

is the control point. A horseshoe vortex is then constituted by three segments:

~AB, representing the leading edge, and the segments ~AC and ~BC, joining the

extremities to a control point.

Figure 2.14 illustrates two different types of horseshoes. The red one repre-

sents a horseshoe confined to a single panel, while the green vortex represents

the case where the extremities and the control point are located on different

panels. The three segments are mathematically defined as:

~r0 = ~AB = (x2n − x1n)̂i+ (y2n − y1n)ĵ + (z2n − z1n)k̂
�
 �	2.30

~r1 = ~AC = (x− x1n)̂i + (y − y1n)ĵ + (z − z1n)k̂

~r2 = ~BC = (x− x2n)̂i + (y − y2n)ĵ + (z − z2n)k̂

The basic expression for the calculation of the induced velocity by a horse-

shoe vortex n in the VLM is:

~Vn =
Γn
4π

~r1 × ~r2
|~r1 × ~r2|2

[
~r0.(

~r1
~r1
− ~r2
~r2

)

]�
 �	2.31

Using 2.31 to calculate the velocity induced at the control point by ~AB,

we can set:

~VAB =
Γn
4π
.{Fac1AB}.{Fac2AB}

�
 �	2.32

23

CHAPTER 2. WING MODELLING AND ANALYSIS

Figure 2.14: Representation of two horseshoe vortices.

where Fac1AB and Fac2AB are replacing:

Fac1AB =
~r1 × ~r2
|~r1 × ~r2|2

�
 �	2.33

= {[(y − y1n)(z − z2n)− (y − y2n)(z − z1n)]̂i

−[(x− x1n)(z − z2n)− (x− x2n)(z − z1n)]ĵ

−[(x− x1n)(y − y2n)− (x− x2n)(y − y1n)]k̂}/

{[(y − y1n)(z − z2n)− (y − y2n)(z − z1n)]2

−[(x− x1n)(z − z2n)− (x− x2n)(z − z1n)]2

−[(x− x1n)(y − y2n)− (x− x2n)(y − y1n)]2}

�
 �	2.34 Fac2AB = [~r0.(
~r1
~r1
− ~r2
~r2

)]

=
(x2n − x1n)(x− x1n) + (y2n − y1n)(y − y1n) + (z2n − z1n)(z − z1n)√

(x− x1n)2 + (y − y1n)2 + (z − z1n)2

−(x2n − x1n)(x− x2n) + (y2n − y1n)(y − y2n) + (z2n − z1n)(z − z2n)√
(x− x2n)2 + (y − y2n)2 + (z − z2n)2

When extending the filaments from A or B to a control point located at

24

2.2. AERODYNAMIC MODELLING

Figure 2.15: Velocity induced by a finite-length vortex segment.

∞ (see Figure 2.16), ~VA∞ and ~VB∞ are defined as:

�
 �	2.35 ~VA∞ =
Γn
4π

{
(z − z1n)ĵ + (y1n − y)k̂

[(z − z1n)2 + (y1n − y)2]

}
×[

1.0 +
x− x1n√

(x− x1n)2 + (y − y1n)2 + (z − z1n)2

]

�
 �	2.36 ~VB∞ = −Γn
4π

{
(z − z2n)ĵ + (y2n − y)k̂

[(z − z2n)2 + (y2n − y)2]

}
×[

1.0 +
x− x2n√

(x− x2n)2 + (y − y2n)2 + (z − z2n)2

]

The vortex strength or downwash of the n horseshoe vortex will be the sum

of the three induced velocity components:

~Γn = ~VAB + ~VA∞ + ~VB∞
�
 �	2.37

This downwash can be decomposed into its three axis components (X for

chord axis, Y for the wingspan and Z for the chamber axis), respectively

represented by the unit vectors ~u, ~v and ~w. The condition to be solved is:

− ~um sin δ cosφ− ~vm cos δ sinφ+ ~wm cosφ cos δ
�
 �	2.38

+ ~U∞ sin(α− δ) cosφ = 0

25

CHAPTER 2. WING MODELLING AND ANALYSIS

Figure 2.16: Horseshoe vortex with the control point in ∞.

where α is the angle of attack, δ is the mean camber line slope, φ is the

dihedral angle, ~U∞ is the velocity of the free stream and ~um, ~vm, ~wm are the

vortex strength or downwash components.

Note that although for the shaping of the grid only the first halfspan vor-

tices are considered, the influence of the ones placed on the second halfspan

are also taken into account. The procedure is exactly the same, but the A

and B points will be located in the other halfspan, keeping the positions of the

vortex control points C untouched. In the end, the two results are added. The

total vortex strength is:

�
 �	2.39

~wm − ~um − ~vm =
N∑
n=1

(~wm,ns − ~um,ns − ~vm,ns) +
N∑
n=1

(~wm,np − ~um,np − ~vm,np)

where m, ns and np represent the indexes of the considered panels. ns stands

for starbord halfspan and np for port halfspan.

As a final remark, the downwash matrix will hold, for each position (m,n),

the interaction between the vortex of panel m and the two extremities on panel

n (as well as its corresponding panel on the other halfspan). Therefore, the

position (1, 1) will only consider the interaction within the first panel, while

the position (1, N) will consider the interaction between the control point of

the first panel and the leading edge of the last panel.

26

2.3. STRUCTURAL MODELLING

2.3 Structural modelling
When considering only the above aerodynamic models, we assume that the

wing does not suffer any deformations during the flight. However, this is not

what happens in reality, as the forces that act on the airfoil will eventually

produce a bending moment on the structure. Due to the wing’s curvature, the

considered angles will also be modified and consequently, there is the need to

correct them. This is achieved in the wing’s structural analysis.

Structural inputs:

1. Beam’s material properties:

(a) Es: Young’s module;

(b) σs: Yield stress;

(c) ρs: Structural density.

2. Beam’s geometric properties:

(a) rr: Internal root radius;

(b) rt: Internal tip radius;

(c) tr: Root thickness;

(d) tt: Tip thickness.

3. Other:

(a) mm: Mass markup;

2.3.1 Beam properties

Given the internal radius and the thickness, the external radius is defined by:

• External root radius: Rr = rr + tr

• External tip radius: Rt = rt + tt

For the beam properties, we will need the external R(η) and the internal

r(η) distributions. Just like the twist distribution, the two can be calculated

using a (linear) interpolation from the values of Rr,t and rr,t. The following

distributions can be calculated:

• Transversal section surface: A(η) = π(R2(η)− r2(η))

• Inertial moment: I(η) =
π

4
(R4(η)− r4(η))

• Beam’s mass: ms =
bρs

2 cos(Λ.25)

∫ 1

−1A(η) dη

• Stiffness: st(η) = EsI(η)

• Chord distribution: c(η) =

(
c

cg

)
(η).cg

27

CHAPTER 2. WING MODELLING AND ANALYSIS

• Wing’s relative thickness:

(
t

c

)
(η) =

2R(η)

c(η)

• Beam’s linear density: ρl(η) = ρsA(η)

2.3.2 The mass markup

The contents in this section provide the aircraft’s mass.

1. Dynamic pressure: q =
1

2
γ.p.M2

2. Lift: L = CL.q.S

3. Mean cruise flight mass: m =
L

Ncg

The mass markup mm, defined in the input, encompasses both the payload

and other additional masses not explicitly included on the model, such as the

mass of the fuselage, crew or oil. The fuel mass compatible with the wing

shape is given by mf = 2× (m−mm−ms). The factor of 2 is due to the fact

that m is the mean flight mass instead of the initial cruise mass.

For the cruising flight, the beam’s mass is limited by the total massms < m.

On the other hand, the fuel mass is limited by the condition mf > 0. Violating

these restrictions would mean that the airplane was not capable of transporting

payload (e.g, luggage).

From those, we can calculate the initial and final cruising masses, for the

Breguet range (a estimate of the distance a airplane can travel under certain

conditions, see Section 2.5.4):

m0 = m+
mf

2

�
 �	2.40

m1 = m− mf

2

2.3.3 Atmospheric properties

Given the flight altitude h, the static pressure p, temperature T and gravity

acceleration g must be obtained (likely given as input). For the Breguet range,

the speed of sound at sea level will also be required.

28

2.4. AEROELASTIC MODELLING

2.3.4 Loads

For loads, we start by calculating the shear force, given by:

Fs(η) = qS

∫ (
clc

cg

)
(η)dη − bNcg

2 cos(Λ.25)

∫
ρl(η)dη

�
 �	2.41

where q is the dynamic pressure, S is the wing area, ρl the beam’s linear

density and Nc the load factor.

From the shear force, we obtain the bending moment:

Mb(η) =
b

2

∫
Fs(η)dη

�
 �	2.42

These three integrals, for the shear force and bending moment, must be

calculated from the tip to the root [6]. The distributions Fs and Mb typically

have the shape shown in figure 2.17.

Figure 2.17: The shapes of the shear force and bending moment distributions.

2.4 Aeroelastic modelling
The aeroelastic component will be responsible for gathering the aerodynamic

and structural parts into a single method. Previously, in Section 2.2.3.3, we

have seen that only the basic distribution is dependent on the twist distribu-

tion, which is changed by the deformation of the wing. Hence, the aeroelastic

analysis will consist of a loop, starting with the calculation of the basic dis-

tribution and updating it according to the values returned by the structural

29

CHAPTER 2. WING MODELLING AND ANALYSIS

component. A convergence criteria will be set to define when this loop should

terminate.

Aeroelastic inputs:

1. δf : Maximum wing bending al-

lowed;

2. ηd: Typical section for diver-

gence calculation.

Propulsion inputs:

1. CT0 : Specific fuel consumption

parameter;

2. CT1 : Specific fuel consumption

parameter.

CT0 and CT1 are used to calculate CT , the kerosene mass consumption per

second:

CT = (CT0 + CT1M)
√
θST

�
 �	2.43

where θST is the static temperature ratio for the flight altitude.

2.4.1 Displacements

In this section, the slope distribution is calculated, which allows the new effec-

tive twist and the deflection of the wing during flight to be determined. The

slope Θ(η) and the deflection ∆Y (η) equations are given by:

Θ(η) =
b

2

∫ (
Mb

EsI

)
(η)dη

�
 �	2.44

∆Y (η) =

(
b

2

)2

E

∫ (
Mb

EsI

)
(η)dη

Note that in opposition to the integrals of 2.3.4, these are calculated from

the root to the tip. As example of a Θ(η) distribution is displayed in Figure

2.18. The deflection ∆Y (η) can be used for plotting purposes, as it gives the

elevation of each section according to the horizontal plane.

30

2.5. POST-PROCESSING

Figure 2.18: Shape of the slope distribution.

2.4.2 Convergence evaluation

The convergence evaluation will determine whether the loop should continue

or not. The relevant values are:

δbi = Lbi − Lbi−1

�
 �	2.45

Ln(~δbi) =

(
N∑
k=1

|δk|n
′

) 1

n′�
 �	2.46

where N is the number of control points and n′ is the type of norm. The usual

setting is n′ = 2 for the Euclidean norm. When Ln(~δbi) < ξ, where ξ is the

convergence bound provided as input, the solution is said to be convergent.

If |Θ|max ≥ π
2

or the number of iterations exceeds the maximum allowed,

the solution is considered divergent. Divergence may indicate an inappropriate

beam design when considering its flexibility against the structural load.

2.5 Post-processing

2.5.1 Diederich’s method induced drag value

When the process converges, the induced drag value can be calculated with the

Garner Method for untwisted wings, as long as, in the end, the corresponding

31

CHAPTER 2. WING MODELLING AND ANALYSIS

correction for twisted wings is applied [1]:

δ = 46.264.

(
ncp −

4

3π

)2�
 �	2.47

where the spanwise centre of pressure ncp is given by:

ncp =

∫ 1

0

(
clc

CLcg

)
(η) dη

�
 �	2.48

with a correction:

∆CDi = 3.7e−5εt
2

�
 �	2.49

and having the twist angle at the tip εt in degrees, the final value of the induced

drag can be approximated as:

CDi = (1 + δ)
CL

2

πAR
+ ∆CDi

�
 �	2.50

The total drag is given by:

CD = CDi + CD0

�
 �	2.51

where CD0 is the markup value for the drag coefficient, given in the input.

2.5.2 Vortex lattice method lift coefficient and induced drag

Once the lift distribution is returned by the VLM, the lift coefficient and the

induced drag are calculated. The lift coefficient can be defined as:

CL = 16π sinα cosφ U∞ρ∞

N∑
n=1

(Γn∆yn)× 1

S

�
 �	2.52

where α is the angle of attack, φ the dihedral angle, U∞ is the free-follow speed

and ρ∞ its density, Γn the circulation value and ∆yn the wingspan step.

The value of the induced drag is obtained through the following expression:

CDi =
CL

2

π.AR.e

�
 �	2.53

where CL is the lift coefficient, AR the aspect ratio and e the Oswald efficient

factor, which, for our particular case, was set to 0.95. The value for the total

drag is calculated exactly as in Equation 2.51.

32

2.5. POST-PROCESSING

2.5.3 Security Margins

Another important aspect to consider are the security margins. As they define

maximum values that the wing can support, they will serve as constraints

during the optimizing process. The flutter security margin can be obtained

by:

SMflutter =
δf − δmax

δf

�
 �	2.54

with δf (the maximum wing deformation allowed) given at the input and δmax

calculated in section 2.4.1.

The divergence security margin is given by:

SMdivergence =
qd − q
qd

�
 �	2.55

where q is the dynamic pressure at flight condition (calculated in 2.3.2) and qd

is the divergence dynamic pressure, calculated from [7].

Finally, there is the stress security margin, given by:

SMtension =
σs − σmax

σs

�
 �	2.56

where the maximum allowed tension, σs, is given as input, and σmax is calcu-

lated from:

σ(η) =
|Mb(η)|R(η)

I(η)

�
 �	2.57

where Mb(η) is the bending moment, R(η) the external beam diameter distri-

bution and I(η) the inertial moment, all previously calculated.

2.5.4 Breguet Range

Finally, the Breguet range provides an estimation of the distance an airplane

can fly, given the atmospheric conditions, the drag coefficient and the structural

mass.

Rb =
Ma0
√
θSTCL

CTCD
ln

(
m0

m1

)�
 �	2.58

where M is the Mach number, a0 the speed of sound at sea level, θST the static

temperature ratio for the flight altitude, CT the specific fuel consumption, CL

33

CHAPTER 2. WING MODELLING AND ANALYSIS

the lift coefficient, CD the drag coefficient, m0 the mass of the airplane at the

beginning of the flight and m1 the mass at the end of the flight.

The CT parameter is calculated as:

CT = (CT0 + CT1M)
√
θST

�
 �	2.59

Since the Breguet range represents an efficiency measure of the propulsion,

aerodynamics and structural components, it can be used as a multi-disciplinary

objective function for the optimizer.

A limitation of the estimate is that M , CL and CD vary during the flight,

whereas the mass is measured at beginning and the end. To solve this prob-

lem, the inputs of the formula are mean values, with m0 and m1 obtained as

explained in Section 2.3.2.

This Section concerning Diederich’s method was written based on a docu-

ment provided by Marc Mulkens, which in turn, was based on [6], [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21] and [22].

2.6 Concluding remarks
Diederich’s method takes quite a different approach when compared to the

lifting-line theory (LLT) and vortex lattice method (VLM). It drops the vortex

distributions and introduces a strong empirical component. In order to perform

the calculations, there are some steps that use values returned by functions

constructed from real data.

Another, and likely more important, difference is the starting point that

each method takes to accomplish induced drag calculation. VLM requires as

input the angle of attack and the wing geometry. In addition, LLT also needs

the slope of the lift function in order to calculate the lift coefficient CL. On

the contrary, Diederich’s method receives the value of CL as input, assuming

that the wing will be built in a way that the defined angles of attack of each

section will lead to the desired CL.

In general, we can say that both LLT and the original Diederich’s method

are fairly straightforward from a computational point of view. The differences

are more notorious if we consider Diederich’s method with the aeroelastic cor-

rection, as the convergence of the algorithm may take longer than the other

approaches. The relative computational simplicity of Diederich’s is due to the

34

2.6. CONCLUDING REMARKS

fact that it approximates the final lift distributions through the use of a chord-

length sectioned wing, and that most calculations, if not all, can be performed

in constant time per section.

On the other hand, VLM (and LLT too, though this method is lighter gen-

erally than VLM) carries the additional weight of having to solve a potentially

huge system of linear equations and having to maintain a grid of panels as

well. Although the method is easy to understand and implement, solving the

system of equations can make this method computationally heavy and hence,

the opportunity for looking for incremental approaches.

35

3
Optimization

Optimization is the minimization or maximization of a function subject to

constraints on its variables [25]. We can define:

• x as the vector of variables;

• f() as the objective function, a function of x to be minimzed or maxi-

mized;

• ci() as the constraint functions, scalar functions of x which define the set

of constraints the vector x must respect during the optimization.

Then, an optimization problem can be defined as:

minimize f(x), x ∈ Rn
�
 �	3.1

s.t. ci(x) = 0, i ∈ E,

cj(x) ≥ 0, j ∈ I

where E is the set of equality constraint indices and I the set of inequal-

ity constraints indices. A maximization problem can be transformed into a

minimzation problem by using the symmetric of the inverse of the objective

function f().

37

CHAPTER 3. OPTIMIZATION

3.1 Direct search, linear-search and trust-region
interpolation methods

In[26], three different families of optimization approaches are presented, namely

direct search methods (DSM), line-search algorithms and trust-region interpo-

lation based methods. All of them share the fact that they avoid using function

derivatives, as they may be hard or even impossible to compute, for example,

because the objective function is not continuous.

Briefly, DSM use an iterative process over a set of finite points to assess

which of them present a better value for the objective function. By comparing

pairs of points, it does not need to consider representations of the objective

function or its derivatives.

The method can also define two different steps, namely a poll step and a

search step. The first will ensure that the algorithm converges (delimiting the

searching area to a finite set of points), while the second defines the range of

a local search around the current iterate. At the end of each iteration, if a

better point is found, the iteration will be marked as successful. The step size

will be consequently increased or reduced, depending on whether the iteration

was successful or not.

As stated before, the alternatives are line-search algorithms and trust-

region interpolation based methods, both inspired on derivative approaches.

The first class of algorithms defines a search direction which it follows while

looking for a better solution, while the second uses an interpolated model from

a set of points to approximate the objective function.

3.2 Gradient-based optimization
Gradient-based optimization is an iterative process which, by analyzing the

derivative at certain points, decides which direction the algorithm will take

next, by moving to the next evaluation point in search for the minimum of a

scalar function of N real variables.

Each iteration is given by:

xk+1 = xk + αkpk
�
 �	3.2

38

3.2. GRADIENT-BASED OPTIMIZATION

where αk is the step length, which must be carefully selected [25]. Vector pk

is called the steepest descent direction, the direction for which the function

varies the most. It can be represented as:

pk = −B−1k 5 fk
�
 �	3.3

where Bk is a symmetric and nonsingular matrix. This matrix can vary from

the identity matrix in the simple steepest descent method to the Hessian

52f(xk) in Newton’s method. If Bk is positive definite, then we have that:

pk
T 5 fk = −5 fTk B

−1
k 5 fk < 0

�
 �	3.4

The following loop will be executed till convergence:

1. Check the convergence criterion of f(xk); terminate with x = xk if the

solution if fulfilled.

2. Compute a direction pk and a step length αk.

3. Evaluate the new point xk+1 = xk + αk.pk; compute the target f(xk+1)

and go back to step 1.

The step αk should be large enough to promote fast convergence, but not

too large, or the minimum will not be found. For further discussion, please

refer to [25].

Surrogate models can also be considered. They are built from real training

data to later produce an output when in the presence of unseen values. Some

of the best examples are least-squares polynomials, multi-layer perceptrons,

radial basis functions (RBF) and Kriging (techniques to interpolate unknown

values in geostatistics, though successfully applied to other areas of engineer-

ing, including aeronautics [27]).

3.2.1 Automatic Differentiation

Associated with the gradient methods, we can find the automatic differentia-

tion (AD) techniques. The AD can be seen as a way of efficiently computing all

the necessary derivatives of a given function [28]. Basically, all the functions

present in a computer algorithm can be decomposed into primitive functions

and constants. By applying the chain rule to the decomposition of the overall

39

CHAPTER 3. OPTIMIZATION

function, we get the resulting tree-graph. Numerical evaluations of the suc-

cessive operations applied over the nodes are also stored in this graph. The

derivation of the nodes is applied to the original graph, resulting in the deriva-

tive tree.

Table [29], illustrates the process, considering that we are evaluating the

derivative at the point x = 3:

Function Derivative

x = 3 x′ = 1

y1 = x2 = 9 y′1 = 2xx′ = 6

y2 = sin(y1) = 0.4212 y′2 = cos(y1)y
′
1 = −5.46668

y = xy2 = 1.2363 y′ = x′y2 + xy′2 = −15.9883

3.3 Optimization algorithms

3.3.1 DIRECT

The implementation of DIRECT, a direct-search algorithm, was based in [37].

The algorithm starts by transforming the optimization space into an unit

hyper-cube by normalizing all the variables. Working from the centre of this

hyper-cube, the space is successively divided into sections, generating new

centres for new subspaces. Each centre is verified to check if it is potentially

optimal. If it is not, it is simply discarded. The process continues until no

more points are considered potentially optimal, outputting the best evaluation

found.

3.3.1.1 Initialization

The first step is to normalize the problem domain into an hyper-cube:

Ω̄ = x ∈ RN : 0 ≤ x ≤ 1
�
 �	3.5

After the normalization, the value of the objective function f(c1) is calcu-

lated for the hyper-cube’s centre. The subspace of each variable is divided into

thirds, creating the new centres at c1± δei, for i = 1, ..., n, as shown in Figure

40

3.3. OPTIMIZATION ALGORITHMS

3.1. δ represents the third of the side-length of the current hyper-cube, while

ei is the unit vector corresponding to the ith design variable.

Each dimension is assigned the minimum value of the objective function of

its two centres, designated as υ:

υi = minimize (f(c1 + δei), f(c1 − δei)), 1 ≤ i ≤ N
�
 �	3.6

After ordering all the dimensions by the corresponding values of υ, new

hyper-cubes (that may turn into hyper-rectangles) are successively divided.

The centres of the current dimension previously defined by c1±δei, get a third

of the current dimension length. Then, for all the other centres, the length of

the current dimension is shrunk also by a factor of three.

This means that the dimension with the highest υ will be the one whose

hyper-cubes are smallest, as all its dimensions’ lengths have been shrunk. Fig-

ure 3.1 depicts the process for the first iteration, where the horizontal di-

mension has a smaller value of υ and hence, gets a greater subspace for its

hyper-rectangles. Pseudo-code description of DIRECT is given in Algorithm

1, and a set of images representing several iterations of DIRECT is provided

in Figure 3.2.

Figure 3.1: Initial 2-dimensional space division in the DIRECT algorithm.

3.3.1.2 Potentially optimal hyper-cubes

Given all the new defined subspaces, the potentially optimal hyper-cubes must

be defined. Once selected, the new hyper-space is divided in the same way as

41

CHAPTER 3. OPTIMIZATION

Algorithm 1 DIRECT algorithm

Input: Optimization bounds

Output: Maximum solution

1: P ← {} // The potential optimal list

2: evaluate(centre) // Evaluate the normalized hyper-cube centre

3: insert(P, centre)

4: while P > 0 & diff < TOLERANCE do

5: A ← {} // The analysis points list

6: for all c in P do

7: for i← 1, NUMBER OF DESIGN VARIABLES do

8: sc.position[i] ← c.position[i] - δei

9: pc.position[i] ← c.position[i] + δei

10: evaluate(sc, pc)

11: insert(sc, pc, A)

12: update(current best value)

13: end for

14: sort(A)

15: for m← 1, A.size() do

16: dim← A[m].dimension;

17: for j ← m+ 1, A.size() do

18: if A[j].dimension 6= dim then

19: A[j].dimension lengths[dim] ∗ = 1
3
;

20: end if

21: end for

22: if is potentially optimal(A[m]) then

23: insert(A[m], P)

24: end if

25: end for

26: diff = previous best value - current best value

27: end for

28: end while

42

3.3. OPTIMIZATION ALGORITHMS

previously described, although now the length of each dimension has been

reduced and may not be the same for all the dimensions.

Figure 3.2: Several iterations of DIRECT.

3.3.2 Hill-climber

An alternative to DIRECT is the hill-climber. Given a set of neighbours, it

selects the one that has the best value to continue exploring the optimization

space. From the starting point, which can be chosen randomly, the value of

the objective function f(x) is calculated. Given a finite set S of the neighbours

of x, the one presenting the best objective function value, min f(s), s ⊂ S,

is selected. It then enters in a loop, restarting the process from the selected

neighbour s. The algorithm stops when none of the neighbours present a

greater value of the objective function.

In the implementation used in this work, to define the neighbourhood set

S, a vector of step sizes for each dimension is maintained. Then, for each

dimension, the value of the step is subtracted/added to the current solution,

meaning the number of neighbours will euqal to the double of the dimensions.

The implementation is also an adaptation of the original hill-climber to

support a variable step size, to promote faster convergence. When a solu-

43

CHAPTER 3. OPTIMIZATION

tion is chosen, the size of the step for the selected dimension is increased. If

not selected in the current iteration, the step is decreased, till a lower bound

previously defined.

3.4 Concluding remarks
In this Chapter, various optimization approaches were briefly reviewed. Gradient-

based optimizers are suited to problems where the derivatives are available or

can be easily approximated, whereas alternatives such as direct search method

can be used when the functions are discontinuous. Concerning this last topic,

two optimizers were presented, namely DIRECT and a hill-climber.

For this project, direct search methods are the more suitable, as the shape

of the objective function is relatively unknown. Although the model functions

seem to be smooth, there are no guarantees about discontinuty points and

therefore, gradient-based methods cannot be confidently used.

44

4
Systems of Linear Equations

Many engineering problems make use of systems of linear equations. There are

different ways of finding a solution and so, the best approach must be carefully

selected. In this Chapter, some of those options will be presented and their

advantages concerning our specific problem will be discussed.

4.1 Solving and decomposition
The basic way to solve a system Ax = b is to successively transform the matrix

of left side coefficients A, in a process known as Gaussian elimination, in order

to find the solution x. In each step, all the coefficients beneath the current

diagonal element (named the pivot) are eliminated, by subtracting a scalar

multiple of the current row from each of the remaining rows.

Two types of pivoting are defined. In partial pivoting, the largest abso-

lute value in the current column is chosen as the next pivot, only considering

row permutations. In complete pivoting, all the remaining matrix positions

can be considered for pivoting, selecting again the largest absolute value and

considering both row and column permutations. Complete pivoting offers the

highest accuracy at the expense of additional computations. Usually, partial

pivoting is suitable for most applications.

Provided that the system has a single solution, the original matrix is trans-

formed into an upper triangular matrix, with all the subdiagonal elements

equal to zero.

45

CHAPTER 4. SYSTEMS OF LINEAR EQUATIONS

4.1.1 LU decomposition

An alternative to Gaussian elimination is to perform the LU decomposition.

Given the matrix A, the method decomposes it into three matrices (or four,

if column permutations are applied for complete pivoting), namely P , L and

U . P is the row permutation matrix, while L and U are lower and upper

triangular matrices, respectively. If complete pivoting is used, some columns

may be permuted as well, resulting in a fourth matrix Q.

The idea behind the LU decomposition is to perform Gaussian elimination,

saving the elimination coefficients in L, while U will hold the result of the elim-

ination. When these matrices are obtained, the original system of equations

can be solved in two steps:

Ly = b
�
 �	4.1

Ux = y

As matrices L and U are triangular matrices, the system can be easily

solved by forward and back substitution. The speed of solving these linear

systems is greater when comparing to the application of Gaussian elimination

to the original matrix. However, it is also true that to perform the LU decom-

position, Gaussian elimination will have to be performed in first place, making

the whole process just as slow (or even slower) as the first approach.

In the special case where the same linear system must be solved for different

values of b, however, once the LU factorization is available, the system can be

solved quickly as many times needed.

4.1.2 Decomposition update

For some models, it is reasonable to apply optimization steps which only affect

few rows and/or columns of matrix A. Therefore, it is wise to consider updates

of lower complexity for low rank changes.

Being aware that, due to pivoting, some of the rows in the LU decompo-

sition may have changed their places comparatively to the original positions,

some conversions must be made in the ongoing calculations to take this in

account.

46

4.1. SOLVING AND DECOMPOSITION

4.1.2.1 Column exchange

If one column is exchanged in the original matrix, the resulting matrix is

defined as:

S ′ = PLŨQ
�
 �	4.2

where Ũ is the altered U matrix. Let c be the column altered in the original

matrix. Then, c′ is defined as the correspondent column in Ũ , given by:

Lc′ = P−1c
�
 �	4.3

If q is the length of c′ (row number of the last nonzero element), c′ can be

shifted to the q − 1 position in the altered matrix Ũ , meaning the columns

c+ 1, c+ 2, ..., q− 1 are shifted to the left one position, as shown in Figure 4.1.

This results in an upper Hessenberg matrix H, with subdiagonal nonzeros at

the shifted positions. If more than one column is exchanged simultaneously,

there may be more than a single nonzero subdiagonal element. This column

permutation can be defined in the matrix Q̄.

Figure 4.1: Hessenberg matrix resulting from Ũ .

The matrix H must be turned back into an upper triangular matrix, re-

sulting in the following equation:

S ′ = (PP̃−1)(P̃LM−1)(MŨQ̄Q̃)(Q̃−1Q̄−1Q) = P ′L′U ′Q′
�
 �	4.4

To find the missing matrices P̃ , Q̃ and M , one can follow this procedure.

For getting the product of MŨQ̄, the normal Gaussian elimination is applied

to ŨQ̄, getting an upper triangular matrix. During the elimination, the elimi-

nation coefficients are stored in the subdiagonal positions of the matrix M−1,

whose diagonal is equal to the identity matrix. If during the Gauss elimination

no pivoting is made, P̃ and Q̃ will be equal to the identity matrix, different

otherwise to take in account the permutations applied.

47

CHAPTER 4. SYSTEMS OF LINEAR EQUATIONS

4.1.2.2 Row exchange

Row exchange is quite similar to column exchange, taking the symmetric op-

erations to accomplish the final result. If one row is exchanged in the original

matrix, the resulting matrix is defined as:

S ′ = PL̃UQ
�
 �	4.5

where L̃ is the altered L matrix. Let r be the row altered in the original

matrix. Then, r′ is defined as the correspondent row in L̃, given by:

UT r′T = rTQ−1
�
 �	4.6

If q is the length of r′ (column number of the last nonzero element), r′ can

be shifted to the q − 1 position in the altered matrix L̃, meaning the rows

r + 1, r + 2, ..., q − 1 are shifted up one position, as shown in Figure 4.2. This

results in an upper Hessenberg matrix H, with superdiagonal nonzeros at the

shifted positions. If more than one row is exchanged simultaneously, there may

be more than a single nonzero superdiagonal element. This row permutation

can be defined in the matrix P̄ .

Figure 4.2: Hessenberg matrix resulting from L̃.

The matrix H must be turned back into an lower triangular matrix, result-

ing in the following equation:

S ′ = (PP̄−1P̃−1)(P̃ P̄ L̃M−1)(MUQ̃)(Q̃−1Q) = P ′L′U ′Q′
�
 �	4.7

To find the missing matrices P̃ , Q̃ and M , one can follow this procedure.

For getting the product of P̄ L̃M−1, the transposed Gaussian elimination can

be applied to P̄ L̃, getting a lower triangular matrix. The transposed Gaussian

elimination consists in starting at the first column and successively eliminating

the nonzero elements in the row, counting from the position i + 1 and on.

During the process, the elimination coefficients are stored in the superdiagonal

48

4.2. ITERATIVE METHODS

positions of the matrix M , whose diagonal is equal to the identity matrix. If

during the Gauss elimination no pivoting is made, P̃ and Q̃ will be equal to

the identity matrix, different otherwise to take in account the permutations

applied.

4.2 Iterative methods
Iterative methods appear as an alternative to the traditional approaches for

solving systems of linear equations. The problem with, for example, the LU

factorization or Gaussian elimination, is that in cases where the size of the

matrix is very large, it may be impossible to save all the fill-in resulting from

these methods. In contrast, iterative methods work in-place and they do not

require more than a few extra vectors [31].

However, Gaussian elimination always produces exact results. Iterative

methods, if desired, may produce not so accurate results, but still applicable

for many situations.

Given the left side coefficient matrix A and the solution vector b, the linear

system to be solved is:

Ax = b
�
 �	4.8

However, instead of looking for an exact solution x, an approximation x̃

can be used. Define the residual as:

r = b− Ax̃
�
 �	4.9

and the error e = x− x̃ that satisfies the equation:

Ae = r
�
 �	4.10

In iterative methods, the approach is to solve:

Se = r
�
 �	4.11

where S is an approximation to A. Corrections will be added to ~x till it is

close enough to the exact solution x, executing the following loop:

1. Define xold, the current approximation to x.

2. Compute the residual r = b− Axold.

49

CHAPTER 4. SYSTEMS OF LINEAR EQUATIONS

3. Solve Se = r.

4. Set xnew = xold + e and go back to step 1.

When multiplying xnew = xold + e by S, the following equation is obtained:

Sxnew = Sxold + Se
�
 �	4.12

= Sxold + b− Axold

= (S − A)xold + b

= Txold + b�
 �	4.13

where T = (S − A) is called the splitting of matrix A. All the three methods

here presented (Jacobian, Gauss-Seidel and Successive over-relaxation (SOR)

methods) have a similar terminology.

The choice of S gives rise to different iterative schemes [31]. For instance,

matrix A can be split as:

A = D − L− U
�
 �	4.14

where D is its diagonal, −L the strictly lower triangular and −U the strictly

upper triangular matrix. On SOR, there are two additional constants. They

are σ and ω, related by ω = 1
σ
. A value of ω > 1 will speed up convergence

of the process; ω < 1 slows it down or establishes convergence in a divergent

process; ω = 1 will turn SOR into the Gauss-Seidel method. The mathematical

description of the methods is presented in the following sections.

4.2.1 Jacobian method

S = D; T = L+ U
�
 �	4.15

Dxnew = (L+ U)xold + b
�
 �	4.16

xi
new =

1

aii

(
bi −

i−1∑
j=1

aijxj
old −

n∑
j=i+1

aijxj
old

)�
 �	4.17

50

4.3. CONCLUDING REMARKS

4.2.2 Gauss-Seidel method

S = D − L; T = U
�
 �	4.18

(D − L)xnew = Uxold + b
�
 �	4.19

xi
new =

1

aii

(
bi −

i−1∑
j=1

aijxj
new −

n∑
j=i+1

aijxj
old

)�
 �	4.20

4.2.3 Successive over-relaxation (SOR) method

S = σD − L; T = (σ − 1)D + U
�
 �	4.21

(D − ωL)xnew = (1− ω)Dxold + ωUxold + ωb;ω =
1

σ

�
 �	4.22

x̂newi =
1

aii

(
bi −

i−1∑
j=1

aijxj
new −

n∑
j=i+1

aijxj
old

)�
 �	4.23

xi
new = (1− ω)xi

old + ωx̂newi

�
 �	4.24

4.3 Concluding remarks
The LU decomposition update is a method that clearly promotes the use of an

incremental approach, with greater impact when using large matrices subject

to small changes.

From another point of view, the iterative solving methods can be quite

useful when applied together with the structural model. As the structural

model uses an iterative approach as well, there is no need to solve the linear

system with great accuracy in the first steps, as it will not immediately output

the final solution.

Therefore, the precision required may be increased as the solution ap-

proaches the final state, allowing saving iterations during the solving in earlier

stages of the structural loop.

51

5
The Proposed Computational Approach

In this Chapter, the fundamental ideas of the project will be presented. It

is an exploratory view about the potential speed-up the implemented work

can achieve. Simple cases will be studied and their speed-ups will give an

approximation of what can be achieved in the optimization process, or in

other cases, in future work.

5.1 Hardware specifications
The programming languages used for this project were Python (including the

packages Numpy and Scipy) for the early development, and C++ (including

the BLAS and OpenMP libraries) for the final implementation. Matlab was

also considered as an alternative to Python, but preliminary tests showed that

it was slower (around 5% to 10%), besides not offering any special advantage

in terms of code development. Finally, OpenCL was used to interact with the

GPU.

For running most of the tests, a laptop LG R510 with the following speci-

fications was used:

• CPU: Intel(R) Core 2 Duo 2.4GHz

• Cache: 3MB L2 Cache

• RAM: 4GB

• Swap: 3GB

53

CHAPTER 5. THE PROPOSED COMPUTATIONAL APPROACH

• Graphics: NVIDIA GeForce 9600M GS

– Cores: 32

– Dedicated memory: 512MB

– Maximum PCIe Link Speed: 2.5 GT/s

• Operating system 1: Linux, Mint 13, 64bits

• Operating system 2: Windows, 7, 32bits

While the Linux operating system was the main choice, Windows was re-

served for running the GPU tests. This was due to the problems encountered

in setting up OpenCL for Linux Mint.

Since the hill-climber registered considerably longer executions when com-

pared to DIRECT, the tests involving this algorithm where ran in the cluster

kindly provided by the ECOS group. The specification of a cluster machine is

the following:

• CPU: AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ 2.0GHz

• Cache: 512 KB L2 Cache

• RAM: 3.8GB

• Swap: 3.9GB

• Operating system: Linux, Ubuntu 12.04, 32bits

5.2 Aeroelastic optimization
Wing optimization based on the proposed aeroelastic model involved the design

variables summarized in Table 5.1, the values of which are set by the optimizer

in the search for the best solution. They are grouped into two sets, namely wing

geometry and beam properties related variables. Values range between the

given lower and upper bounds and they serve as constraints for the optimizer.

54

5.3. PROBLEM FORMULATION

Design variables

Variable L-bound U-bound Units

Wing geometry

Wing span 15.00 32.00 m

Root chord 2.00 5.00 m

Tip chord 1.00 4.00 m

Sweep angle -45.00 45.00 deg

Twist angle -12.00 12.00 deg

Dihedral angle 0.00 15.00 deg

Beam properties

Root inner radius 0.000 1.000 m

Root thickness 0.002 1.002 m

Tip inner radius 0.000 0.500 m

Tip thickness 0.002 0.502 m

Table 5.1: Design variables.

5.3 Problem formulation
The problem formulation can be defined as:

maximize breguet (b, rc, tc,Λ, ε, φ, rinner, rthick, tinner, tthick)
�
 �	5.1

s.t. b ∈ [15, 32],

rc ∈ [2, 5],

tc ∈ [1, 4],

Λ ∈ [−45, 45],

ε ∈ [−12, 12],

φ ∈ [0, 15],

rinner ∈ [0, 1],

rthick ∈ [0.002, 1.002],

tinner ∈ [0, 0.5],

tthick ∈ [0.002, 0.502]

where b is the wingspan, rc is the root chord length, tc is the tip chord length,

Λ is the sweep angle, ε is the twist angle, φ is the dihedral angle, rinner is the

55

CHAPTER 5. THE PROPOSED COMPUTATIONAL APPROACH

root internal radius, rthick is the root thickness, tinner is the tip internal radius

and tthick is the tip thickness. This design space is summarized in Section 5.2

and the meaning of each variable is explained in Chapter 2.

Note that the breguet() function presented in this formulation may use

any of the three models presented in Section 2.2, namely lifting-line theory,

Diederich’s method or the vortex lattice method.

5.4 Vortex lattice method grid
One of the explored techniques was the incrementalization of the downwash

calculation, applied to the vortex lattice method (VLM). For this purpose, an

alternative grid format was considered, built from linearized theory concepts.

Figure 5.1: a) Original; b,c) augmented; d) decreased wings.

Figure 5.1 gives a general idea of the process. Imagine that induced drag

has been calculated for the original wing a). Then, in a next iteration, the op-

timizer would decide to increase the wingspan, without changing the direction

of both trailing and leading edge. In a perfect situation, this would simply

require calculate the drag contribution on the shadowy area. We can also con-

sider the cases shown by c) and d), where the wing is modified in different

ways.

The problem of implementing this idea is that the original VLM adapts the

panels’ size to fit in the considered wing (top of Figure 5.2). This approach

has a clear inconvenience. If, for example, the root chord is modified, even

with a small step, it will affect all the panels and the downwash matrix must

56

5.4. VORTEX LATTICE METHOD GRID

be fully recalculated.

Another approach, more in accordance with the incremental view, is repre-

senting the grid has depicted at the bottom of Figure 5.2. By building a fixed

grid, with the panels’ borders aligned with the chords, the panels are simply

marked as being in or out of the wing coverage. This will lead to rectangular

panels on the wing’s centre and triangular or trapezoidal shapes in the borders.

The advantage of this second grid is that, for the same example of changing

the root chord’s length, only the panels located at the borders are affected.

Hence, it is only needed to update part of the downwash matrix, which can

be accomplished by the factorization update techniques previously described

in Chapter 4.

Figure 5.2: The original grid on the top, the linearized at the bottom.

5.4.1 Potential speed-up analysis

The LU update analysis concerning the optimization process was performed

through the replacement of columns and rows in a matrix of size 400x400, with

the results shown in Figure 5.3 and Table 5.2 (at the end of this Chapter). The

changes are made in pairs, i.e. one column update is always accompanied by

a row update. The justification is that in the VLM, due to the interactions

between all the panels, changing a column necessarily means changing a row

too. Therefore, Figure 5.3 shows a total of 2 to 800 changes.

A Python version of a Gaussian elimination solver was implemented, in-

stead of using the optimized BLAS [35] libraries via the Numpy and Scipy

57

CHAPTER 5. THE PROPOSED COMPUTATIONAL APPROACH

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Pairs changed

T
im

e
(s

)

Full Gauss elimination
LU update

Figure 5.3: Time comparison for the LU factorization update.

packages. The reason for this is that the LU update code was all developed in

Python, while BLAS is compiled in C and Fortran, making the time compari-

son unfair.

Finally, the decomposition time is not taken into account. This is justified

by the fact that the decomposition, in the LU update, is performed only once.

This time will then be diluted in the total execution of the algorithm and

consequently, can be considered negligible for the current analysis.

A maximum speed-up of 50 is reached, though this value corresponds to

a single pair change, an unlikely event in a VLM run. To get a better idea

of the average speed-up, let us take the example of a wing covered by a grid

of 14x28 panels (392 panels in total). If only the panels in the edges are

altered, the group will be sized around 28 to 46 panels, depending on whether

both the leading and trailing edges are affected or not. For the chord axis, 14

panels would be changed at most, as the root panels are fixed and only the

tip position is changed. This gives a lower and an upper bound of 14 and 46

panels. Looking at Table 5.2, these values match speed-ups between 10 and

27. Even in the worst case scenario, a speed-up of 10 is quite remarkable.

58

5.5. OPTIMIZER PARALLELIZATION

5.4.2 Implementation of the linearized grid

The idea of incrementalization through a linearized grid was not further ex-

plored due to unstable preliminary results. It required a much large number of

panels (up to 100 times more) to achieve the same lift coefficient as the rigid

grid. Divergence was also registered for configurations where it did not occur

with the original vortex lattice method.

Reference [39] states that the panels should have an aspect ratio between

one and three. While a value of three is suited for a transonic flight, supersonic

flights require an aspect ratio close to one. Besides, for better results, the shape

of the panels should follow the wing geometry, having a greater concentration

on discontinuity points, i.e. at the tip borders.

Both conditions cannot be guaranteed by the linearized grid, although the

first, keeping a correct aspect ratio, is easier to achieve than the panel density.

This might be the reason why the linearized grid did not produce correct and

stable results during the experiments conducted.

Nevertheless, the idea may still be held for future work because this grid

format has actually been considered before [24]. Following the linearized theory

of airfoils, Carlson and Miller proposed an approach valid for calculating the

pressure distributions in supersonic flows.

5.5 Optimizer parallelization

The advantage of using direct search algorithms, which samples new points

around the current iterate, is that it makes the optimization process embar-

rassingly parallel. As the design variables are tested independently from one

another, the evaluations can potentially be split by the same number of cores.

The construction of the downwash matrix can be easily parallelized as well.

Since the matrix elements are independent, in the limit, they could be assigned

to a different thread each. Besides, with the working space so well defined,

there will not be any conflicts in memory access. Locks are then unnecessary,

avoiding in this way one of the pitfalls of parallelization effectiveness.

Therefore, tests were made concerning the use of general-purpose graphics

processing unit (GPGPU) in the downwash calculation.

59

CHAPTER 5. THE PROPOSED COMPUTATIONAL APPROACH

5.5.1 Potential speed-up analysis

In order to assess the potential of the GPGPU in downwash calculation, a

simple case test was conducted, using the wing design that will be presented

for the Diederich’s method validation (see Section 6.1). All the code was

developed using the standard OpenCL [36], a language for GPGPU. Code was

developed in C/C++.

As can be seen in Figure 5.4, the CPU has a clear advantage over GPU,

presenting values around 4 to 6 times faster. However, it is also clear from

Figure 5.5 that the CPU time grows quicker than the GPU. This graph was

built with the ratios between the time of each evaluation and the time of the

base test with 150 panels.

This leads to the conclusion that eventually, for a large number of panels,

the GPU may actually outperform the CPU. However, due to the difference

in execution time registered for this wing, it is also true that this breakpoint

may not stand for a reasonable number of panels.

One of the problems encountered was that the GPU was limited to 4100

working units, meaning not all the positions could be calculated at the same

time for the larger test cases. The solution was to implement a loop, only

filling a single row on each turn. Although the time complexity decreases

from O(N2) to O(N), it is still slower than constant time, achieved if all the

positions were calculated in parallel.

5.5.2 Implementation of the optimizer parallelization

While the parallelization of the downwash calculation was made using GPGPU,

the optimizer parallelization was accomplished using the OpenMP API [38],

which provides an easy and simple solution for multithread management.

Concerning the parallelization of the algorithms, refer that the analysis of

the design variables was split into two by its two categories (wing geometry

and beam variables, see Table 5.1). The reason behind this is that when was

tried an uniform approach, treating all the variables together, the solutions

tended to diverge or stop too early.

Therefore, a first iteration is conducted, looking for the best Breguet range

increase in the wing geometry design space. For the potentially optimal points

of this space, a second phase is conducted, now using the beam variables.

60

5.5. OPTIMIZER PARALLELIZATION

150 200 250 300 350 400 450 500 550 600
0

0.5

1

1.5

2

2.5

3

Number of panels

T
im

e
(s

)

CPU
GPU

Figure 5.4: Downwash calculation over CPU and GPU.

150 200 250 300 350 400 450 500 550 600
0

2

4

6

8

10

12

14

Number of panels

R
at

io

CPU
GPU

Figure 5.5: Time growth proportion for the downwash calculation.

61

CHAPTER 5. THE PROPOSED COMPUTATIONAL APPROACH

Again, for reaching stable results, the optimization in this phase is cumulative,

meaning the internal diameters are tested and, if modified, the new values are

used in the thickness.

Because of this, it was hard to create a parallel solution for the structural

analysis and still promote a good optimization performance in terms of ob-

jective function evaluation. Consequently, the structural optimization is done

sequentially.

5.6 Structural and Gauss-Seidel solutions reuse
Taking advantage of the fact that optimization evaluations are not independent

from each other but consist in a progressive refinement of the current iterate,

there is no need to start every analysis from the scratch. Instead, the structural

distributions may be initialized with the values found by the parent node, only

using zero values in the first iteration.

The same technique may be applied to the Gauss-Seidel method. Instead

of initializing the approximation x̃ with zero or random values, the method can

start from the vector reached by the node that originated the current iterate,

hopefully bringing the initial guess closer to the true solution.

5.6.1 Potential speed-up analysis

To assess the speed-up offered by the reuse of solutions, the following exper-

iment was made. A normalized configuration was used (for the optimization

boundaries, see Section 5.2) with a wingspan of 0.8, root chord of 0.1, tip chord

of 0.07, sweep angle of 0.5, twist of 0.95, dihedral angle of 0.3, root and tip

internal radius of 0.01, thickness in the root of 0.14 and thickness in the tip of

0.01. The angle of attack was set to 7.5o and the precision to 1e−5.

Starting from this point, each variable’s value is modified by a given per-

centage, from 0.5% to 5% and with a 0.5% step. In order to promote feasible

solutions, the percentage of change reflects increments in the wingspan, sweep

angle, twist and dihedral angle, decreasing the values for all the other design

variables.

The results obtained are illustrated in Figure 5.6, with a decreasing speed-

up of around 1.3 for 0.5% of change and 1.15 for 5% of change. The “Standard”

62

5.7. GAUSS-SEIDEL PRECISION

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

Percentage of variation

T
im

e
(s

)

Standard
Slope reuse

Figure 5.6: Influence of the incremental approach on successsive iterations.

label corresponds to the execution of two consecutive VLM evaluations without

any solutions reuse. Note that the percentage of change is always applied to

the original wing and so, the modifications are not cumulative.

The results indicate that, as expected, the smaller the variation, the greater

is the speed-up. However, this improvement is not as significant as initially

expected, speeding up only to around 30% for the best case.

Besides, it was also concluded that the incrementalization of the structural

loop has a greater importance than in the Gauss-Seidel method. In fact, the

speed-up for the Gauss-Seidel seems negligible, although when combining both

solutions, it tends to be greater than the sum of the individual contributions.

5.7 Gauss-Seidel precision
Due to nature of the structural loop, it does not require full precision in all

iterations, as the first iteration will likely be relatively distant from the final

solution. The trick here is to start with a smaller precision for the Gauss-

Seidel method (either by reducing the maximum number of iterations allowed

or increasing the convergence tolerance) for the initial iterations of the loop,

and by tightening it as the algorithm progresses, provided both loops converge

successfully.

63

CHAPTER 5. THE PROPOSED COMPUTATIONAL APPROACH

This technique has some problems that should be carefully considered.

First, reducing excessively the number of Gauss-Seidel iterations may have

undesired effects, as it will require more iterations from the structural loop.

Since this loop is computationally heavier than Gauss-Seidel’s, it will have the

opposite effect, increasing the solving time.

Second, a lower precision may make the evaluation results invalid. Imagine

that two wings, A and B, are evaluated, A having a greater Breguet range

when using high precision. However, B has an associated Breguet range close

to the one of A, so close that when evaluating it with lower precision, the value

output by the model may actually be greater than the one of A.

If this happens too many times, the optimizer may be misguided and take

directions that should otherwise avoided. Once in the wrong path, it may be

hard for the optimizer to recover, even when precision is later increased.

5.8 Concluding remarks
Several algorithmic improvements were discussed. They encompass changes

to the original method, introducing a linearized grid instead of the standard

format. Also, alternative views to the problem of solving systems of linear

equations were considered, both in terms of the LU factorization update and

iterative approaches, which can directly use incrementalization by starting

from previously calculated distributions.

The speed-ups for the simpler cases show that it is valid to consider each

one of them for the optimization process, though the real results of their im-

plementations are going to be viewed on the next Chapters. Some of the ideas,

such as the use of the GPGPU, will not be developed any further, as the results

presented are not sufficiently satisfactory.

64

5.8. CONCLUDING REMARKS

Pairs changed Full solving time (s) LU update time (s) Speed-up

1 2.6800 0.0535 50.09

2 2.5705 0.0598 42.98

4 2.5849 0.0678 38.13

6 2.5923 0.0747 34.70

8 2.6126 0.0816 32.02

12 2.6460 0.0979 27.03

16 2.6373 0.1115 23.65

20 2.6377 0.1291 20.43

25 2.5923 0.1489 17.41

32 2.6398 0.1840 14.35

36 2.6195 0.2058 12.73

45 2.5784 0.2546 10.13

55 2.5749 0.3168 8.13

70 2.7597 0.4208 6.56

90 2.5920 0.5821 4.45

120 2.6380 0.8963 2.94

150 2.6131 1.2632 2.07

200 2.6605 2.0145 1.32

250 2.6873 2.1691 1.24

300 2.5777 2.3279 1.11

350 2.6995 2.4662 1.09

400 2.6114 2.5812 1.01

Table 5.2: Speed-ups achieved with the LU update.

65

6
Results

The results can be divided into three main categories. The first is related to the

validation of the models, an aspect highly valued, in order to guarantee that all

the improvements implemented may have a real application. For the validation

of Diederich’s method, the base of comparison was provided by Marc Mulkens,

while for the vortex-lattice method, it was taken from the bibliography.

The second category encompasses a comparison using the three the meth-

ods analyzed, namely the lifting-line theory, Diederich’s method and the vortex

lattice method. The lift coefficient and the shape of the lift distribution are

compared.

Finally, the third category is related to the optimization results, by running

DIRECT and the hill-climber over grids with different panel densities. Each

improvement discussed in Chapter 5 was firstly activated alone, to assess the

Diameter

/ Twist
-10 -8 -6 -4 -2 0 2 4 6 8 10

dr*1.5 122 109 98 90 85 83 84 87 94 103 115

dr*1.4 123 110 99 90 85 83 83 87 92 102 114

dr*1.3 126 111 100 92 86 83 83 86 91 100 111

dr*1.2 130 115 103 94 88 84 83 84 89 95 106

dr*1.1 146 129 115 104 95 88 84 83 84 87 92

Table 6.1: Induced drag coefficient results (normalized by 1e−5).

67

CHAPTER 6. RESULTS

Diameter

/ Twist
-10 -8 -6 -4 -2

dr*1.5 -0.82% 0.0% 0.0% 0.0% 0.0%

dr*1.4 -1.63% -0.91% 0.0% -1.11% -1.18%

dr*1.3 -0.79% -1.8% -1.0% 0.0% 0.0%

dr*1.2 -1.54% -1.74% -1.94% -1.06% 0.0%

dr*1.1 -0.68% -0.78% -0.87% -0.96% -1.05%

Table 6.2: Deviations for induced drag coefficient I.

Diameter

/ Twist
0 2 4 6 8 10

dr*1.5 0.0% 1.19% 0.0% 1.06% 1.94% 0.87%

dr*1.4 0.0% 0.0% 1.15% 0.0% 0.98% 1.75%

dr*1.3 0.0% 0.0% 1.16% 0.0% 1.0% 1.8%

dr*1.2 0.0% 0.0% 0.0% 1.12% 0.0% 1.89%

dr*1.1 -1.14% -1.19% 0.0% 1.19% 1.15% 0.0%

Table 6.3: Deviations for induced drag coefficient II.

speed-up it could provide. In the end, all the improvements were used simul-

taenously to return the speed-ups obtained with the overall solution. The wing

configurations achieved by each optimizer are also presented.

6.1 Diederich’s method validation
The first validation set concerns Diederich’s method. Tables 6.1 and 6.4 de-

scribe the output of the author’s implementation, while Tables 6.2, 6.3, 6.6

and 6.7 refer to deviations registered relatively to Marc Mulkens’s output.

Here, a single wing was used. It has an aspect ratio of 7.8, area of 51.18m2,

taper ratio of 0.25, sweep angle of 22.73o, an internal root radius of 0.205m,

an internal tip radius of 0.06m and a thickness at the tip of 0.001m. Only the

thickness at the root suffered variations, from 0.1% to 0.5% relatively to the

internal root radius, with steps of 0.1% (as described in the first column of the

Tables here presented).

68

6.2. VORTEX LATTICE METHOD VALIDATION

Diameter

/ Twist
-10 -8 -6 -4 -2

dr*1.5 2334 2446 2542 2614 2660

dr*1.4 3447 3613 3754 3862 3929

dr*1.3 4502 4719 4903 5043 5131

dr*1.2 5498 5763 5987 6159 6266

dr*1.1 6437 6747 7010 7211 7337

Table 6.4: Breguet range results I, in kilometers.

Diameter

/ Twist
0 2 4 6 8 10

dr*1.5 2676 2660 2614 2542 2446 2334

dr*1.4 3952 3929 3862 3754 3613 3447

dr*1.3 5161 5131 5043 4903 4719 4502

dr*1.2 6303 6266 6159 5987 5763 5498

dr*1.1 7379 7337 7211 7010 6747 6437

Table 6.5: Breguet range results II, in kilometers.

Relatively to the results, there is little to be said, as the deviations regis-

tered are quite low and are likely due to different approaches when approximat-

ing the empiric functions defined in [5]. Therefore, this work’s implementation

of the Diederich’s method can be considered valid.

6.2 Vortex lattice method validation
Unlike the validation accomplished for the Diederich’s method, more than a

single wing was used to validate the vortex lattice method (VLM). Several

properties of the wing are separately tested throughout five different cases,

considering aspects such as the flexibility of the wing (in the aeroelastic anal-

ysis) or the use of twist and dihedral angle.

The test cases are arranged by their features’ coverage. The results are

compared with the ones provided in the bibliography. It encompasses results

from other VLM software, namely Tornado [32] and SURFACES [33].

69

CHAPTER 6. RESULTS

Diameter

/ Twist
-10 -8 -6 -4 -2

dr*1.5 0.22% 0.21% 0.16% 0.12% 0.04%

dr*1.4 0.35% 0.31% 0.24% 0.18% 0.1%

dr*1.3 0.43% 0.39% 0.33% 0.26% 0.18%

dr*1.2 0.49% 0.47% 0.4% 0.33% 0.24%

dr*1.1 0.41% 0.39% 0.37% 0.32% 0.28%

Table 6.6: Deviations for Breguet range I.

Diameter

/ Twist
0 2 4 6 8 10

dr*1.5 -0.07% -0.19% -0.27% -0.39% -0.49% -0.59%

dr*1.4 0.0% -0.1% -0.23% -0.34% -0.49% -0.6%

dr*1.3 0.08% -0.08% -0.2% -0.34% -0.48% -0.63%

dr*1.2 1.72% 0.0% -0.16% -0.32% -0.48% -0.64%

dr*1.1 0.21% 0.12% 0.03% -0.08% -0.21% -0.32%

Table 6.7: Deviations for Breguet range II.

70

6.2. VORTEX LATTICE METHOD VALIDATION

6.2.1 Case 1 - Bertin & Smith wing

The Bertin & Smith wing is represented in Figure 6.1, with the image scale

variable b (not to be confused with the b for the wingspan) set to 1. This

means the tested wing has a span of 1m, a constant chord along the chord of

0.2m, a sweep angle of 45o. No dihedral angle or twist are applied and the

number of panels used was 1 along the chord axis and 4 for the wingspan.

This example is taken from [24], where it is accompanied by a detailed exa-

planation of the implementation, including intermediate results. The deviation

of 0.32% for this first case is explained by the round-off applied in the original

example, a situation which does not occur in SURFACES, which outputs the

same lift coefficient value as the author’s implementation.

Figure 6.1: The Bertin & Smith wing configuration.

6.2.2 Case 2 - Rigid and unswept wing

The tested wing is the same as the one used in the previous case. The

only difference is that instead of setting a fixed angle of attack, Figure 6.2

71

CHAPTER 6. RESULTS

Method CL coefficient Deviation

Bertin & Smith 0.05992% 0.32%

SURFACES 0.06011 0.00%

Tornado 0.06080 1.13%

VLM 0.06011 - - -

Table 6.8: Bertin & Smith wing results.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

α, deg

C
L

Real data
Tornado VLM

VLM

Figure 6.2: Comparison between real data and two VLM implementations.

shows the variation of the lift coefficient CL with the angle of attack α. The

graph is plotted from the results available in [24], [32] and [33]. The line la-

beled as “Tornado VLM” represents the results for the Tornado VLM software

[32], while the line “Real data” is, as the name indicates, built from real data

collected and described in [24]. The graph shows that the author’s implemen-

tation has the same deviation relatively to the real data as the Tornado line,

a deviation resulting from approximations of the theoretical model.

6.2.3 Case 3 - Flat plate airfoil (0o and 35o sweep angle)

The classic method referred in Tables 6.9 and 6.10 is the one described in [34],

which gives the expected results based on theoretical results. The number of

panels used was 8 along the chord axis and 32 for the wingspan. The wing has

72

6.2. VORTEX LATTICE METHOD VALIDATION

Figure 6.3: The flat plate wing configuration, with 0o and 35o sweep angle.

an aspect ratio of 20, unity root and tip chords and with the sweep angle 0o

for the first example and 35o for the second.

Though the implementation used deviates 4.29% from the classic method,

it returns a result close to SURFACES, with variations only for the third

decimal place of significant digits.

Method CL coefficient Deviation

Classic method 0.885 4.29%

SURFACES 0.845 0.29%

VLM 0.847 - - -

Table 6.9: Flat plate airfoil with 0o of sweep angle results.

Method CL coefficient Deviation

Classic method 0.748 3.07%

SURFACES 0.723 0.24%

VLM 0.725 - - -

Table 6.10: Flat plate airfoil with 35o of sweep angle results.

6.2.4 Case 4 - Warren 12 wing

In reference [33] this wing is represented as the standard wing for VLM valida-

tion. Three different grids were considered, with panels along the chord axis

73

CHAPTER 6. RESULTS

and wingspan being respectively 6x16, 8x24 and 16x36. The wing configura-

tion can be found in Figure 6.4.

Figure 6.4: The Warren 12 wing configuration.

For the three cases, the author’s implementation gives the same results as

SURFACES. This is the last validation case where no twist or dihedral angle

is applied. All the wings analyzed so far do not consider the Z camber axis.

Method CL coefficient Deviation

SURFACES (6x16) 0.487 0.0%

VLM (6x16) 0.487 - - -

SURFACES (8x24) 0.485 0.0%

VLM (8x24) 0.485 - - -

SURFACES (16x36) 0.483 0.0%

VLM (16x36) 0.483 - - -

Table 6.11: Warren 12 wing results.

74

6.2. VORTEX LATTICE METHOD VALIDATION

Figure 6.5: The Cessna 172 wing.

6.2.5 Case 5 - Cessna 172 wing

The Cessna 172 wing has a wingspan of 11m, 1.62m for root chord, 1.13m for

tip chord, an angle of attack of 1.3o, an approximated sweep of 2.6o, -3o of

twist in the tip and finally, 1.44o of dihedral angle. The lift coefficient CL was

calculated using a grid of panels with size 16x32. As can be seen in Figure

6.5, the Cessna 172 wing is not completely uniform, having two sections with

different sweep angles. As this cannot be achieved by this implementation and

the variation in the original wing is not significant, the global sweep angle was

approximated.

Despite these shortcomes, this example was used due to the difficulty in

finding another with full wing description and the corresponding lift coeffi-

cient. Besides, the variation of the sweep angle is not very large and hence,

an approximation at this level is compatible with the validation of the overall

model. This example encompasses all the wing properties, requiring the use

the three analysis axis, including the Z camber axis.

The author’s implementation does not exactly match any of results pro-

duced by the other software, though the lift coefficient returned is neither too

distant from any of them (except maybe for “TEST Data”). The deviations

can be explained, for the cases of SURFACES and Tornado, by the greater

detail implemented by their software, as for example, they consider the ef-

fect of the chamber thickness. This difference was not visible when validating

the untwisted and dihedral-less wings. As for “TEST Data” and AVL, the

documentaion was vague and therefore, little explanations can be drawn for

75

CHAPTER 6. RESULTS

Method CL coefficient Deviation

TEST Data 0.080285 14.22%

AVL 0.086917 5.5%

Tornado 0.092089 0.42%

SURFACES 0.090413 1.42%

VLM 0.091699 - - -

Table 6.12: Cessna 172 wing results.

them.

6.3 Model comparison

In this Section, a comparison between the three models will be presented, in

order to understand what is at stake when choosing between one of them. The

wing configurations were naturally chosen for scenarios where the compared

models are valid, also to guarantee that, when used correctly, they are in

accordance with each other.

The comparison starts with LLT and VLM, considering the lift curve slope,

followed by Diederich’s method against VLM, comparing the shapes of the lift

and slope distributions.

6.3.1 Lift-line theory and vortex lattice method

The first case of study concerns lifting-line theory (LLT) and the vortex lattice

method (VLM), where the coefficients produced by the wing are compared.

The example comes from [24], where the untwisted wing used is shaped by a

wingspan of 4.572m, root chord of 0.726m, tip chord of 0.290m and a -1.2o

zero-lift angle of attack.

Figure 6.6 shows that the LLT and VLM are in accordance with lift coef-

ficient produced by the different angles of attack. This was expected, as [1]

states that the LLT can produce reliable results for unswept and thin wings,

for low values of the angle of attack.

76

6.3. MODEL COMPARISON

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

α, deg

C
L

LLT
VLM

Figure 6.6: Lift coefficients produced by LLT and VLM.

6.3.2 Diederich method and vortex-lattice method

Next, Diederich’s method and the VLM lift and slope distributions are com-

pared. For collecting data, the Diederich’s validation wing was used (see Sec-

tion 6.1). As referred in Chapter 2, the two methods model the lift coefficient

differently. While Diederich’s method received this coefficient as input, VLM

uses the angle of attack to adjust it. Therefore, to match the 0.45 lift coefficient

used in Diederich’s, the angle of attack in VLM was set to 5.497o.

Figure 6.7 shows that the shapes for the lift distributions produced by

the Diederich’s method and the VLM are distinct for the same wing. They

have a mean difference of 16.98%, with a maximum difference of 21.66% and

minimum of 12.60%. The VLM distribution ranges from a minimum of 0.205

and a maximum of 0.755, while the Diderich’s distributions ranges from 0.063

to 0.598.

This naturally leads to different slopes reached by each method, with their

differences depicted in Figure 6.8. The deviations registered are according to

what is stated in [1], which refers that Diederich’s method may differ from

real values by a margin of 10% to 15%. Taking in account that the VLM is

neither a highly precise method, the mean difference of around 17% may be

considered acceptable.

77

CHAPTER 6. RESULTS

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Wing span (m)

C
L

Diederich method
VLM

Figure 6.7: Lift distributions produced by Diederich and VLM.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

Half wing span (m)

S
lo

p
e

(c
m

)

Diederich method
VLM

Figure 6.8: Slope distributions produced by Diederich and VLM.

6.4 Optimization results
All the tests were made using a precision value of 1e−5 and with grids of 10x28,

14x32 and 16x38 panels. The blue lines correspond to the use of the Gaussian

elimination (GE) to solve the system of equations, while orange stands for

the Gauss-Seidel (GS) method (see Section 4.2). If this text was printed in

78

6.4. OPTIMIZATION RESULTS

greyscale, lines 1, 3, 5 and 9 are related to the GE, while the others correspond

to the GS.

The first line of the Tables (“Standard”) corresponds to the version of the

code without any improvements and using Gauss-elimination. The speed-ups

are relative to the standard version of the optimizer, while the last column

corresponds simply to the mean time taken by each iteration, in order to

calculate a relative speed-up.

All the tests, for both DIRECT and hill-climber, were run 30 times. As

stated in Section 5.1, they were executed on different machines, as the hill-

climber, took 2 to 3 times longer to conclude in the LG R510. The Tables show

the mean execution time, the standard deviation, the number of iterations, the

gross speed-up and the speed-up proportional to the number of iterations, for

each set of runs.

6.4.1 DIRECT Algorithm

The first set of Tables shows the results for DIRECT (see Section 3.3.1). The

maximum-speed up reached by the different grids varies from 1.92 to 4.09,

depending on the number of panels. Note that these speed-ups concern the

ration between the absolute times, eventually differing if the time taken by a

single iteration is considered.

The incremental approaches used for speeding up the execution were not

as successful as initially hoped. This was expected after analysing the pre-

liminary results of Section 5.6. Nevertheless, they still provide a relatively

significant contribution to the final speed-up. Also, when activated simultane-

ously, the data reuse in both the structural loop and the Gauss-Seidel solution

proved to be faster than being separately activated and having the individual

contributions added.

The reason for a low performance of the solutions reuse, both in the Gauss-

Seidel method and the structural loop, was naturally investigated. Both loops

share a common behaviour, which can be seen in Figure 6.9. It represents the

sum of the differences between the current slope distribution and the previous

one (see Section 2.4.2). At the beginning, the loop has a fast convergence

speed, significantly modifying the distributions, but it quickly drops as the

number of iterations increase.

79

CHAPTER 6. RESULTS

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

Iteration

C
on

ve
rg

en
ce

N ∑ k
=
1

(L
n
(
~ δ b
i
))

Figure 6.9: The convergence rate behaviour of the structural loop.

Regardless of the precision used, activating this option invariably reduced

by a factor of two the number of iterations. Looking at the graph, these first

two iterations present the greater variation. By reusing the solution, this initial

phase is cut off, but unfortunately, it is quite small when compared to the time

taken to conclude the slow convergence phase.

This means that the reuse has a greater impact in terms of speed-up for

lower precision. If with lower precision the structural loop used four iterations,

cutting two of them means a speed-up of 2. If the precision is increased and

the loop now takes eight iterations, cutting the same two iterations result in

a speed up of only one third. This explains why the solutions reuse tend to

provide poor performance in the optimization execution.

Finally, the speed-up gained by using parallelization increases with the

number of panels. As was stated before in Section 5.5.2, only the wing geom-

etry analysis was parallelized and therefore, the speed-up may be lower than

the number of cores, ideally achieved. However, the speed-up achieved solely

by this component grows from the first case to the last, meaning that as the

number of panels is increased, the weight of the wing geometry analysis over

optimization grows comparatively to the structural analysis.

In terms of effectiveness, the improvements tend to produce the same ef-

80

6.4. OPTIMIZATION RESULTS

Improvement Mean time (std)
No.

iterations
Speed-up

Mean it.

speed-up

Standard 0min 58s (72ms) 26 - -

Standard 0min 47s (69ms) 26 1.23 1.23

Parallelization 0min 43s (156ms) 26 1.34 1.34

Parallelization 0min 34s (90ms) 26 1.71 1.71

Structural reuse 0min 40s (30ms) 26 1.45 1.45

Structural reuse 0min 32s (41ms) 23 1.81 1.60

GS solution reuse 0min 46s (61ms) 26 1.26 1.26

GS Precision 0min 43s (54ms) 28 1.34 1.45

All 0min 27s (160ms) 28 2.14 2.31

All (Sequencial) 0min 21s (23ms) 32 2.76 3.40

All 0min 30s (270ms) 32 1.92 2.38

Table 6.13: Results for DIRECT algorithm with a 10x28 grid.

fect when using Gauss-elimination or the Gauss-Seidel method, with a small

advantage to the second. Although the results show a greater difference, the

time is always compared to the “Standard” Gauss-elimination. If compared

with the “Standard” Gauss-Seidel, the differences tend to be less significant.

6.4.2 Hill-climber

The results for the hill-climber show a different perspective than the one for

DIRECT. Although the improvements applied to both of them deliver greater

speed-ups for a larger number of panels, in the first grid configuration, Gaus-

sian elimination actually runs faster than the Gauss-Seidel method, even if the

difference is less notorious when all the improvements are used.

However, as the number of panels grows, this situation is inverted. This

can be explained by the fact that loops tend to have a fast convergence at

the beginning, slowing down as the final solution is approached, as mentioned

earlier. Also, DIRECT and the hill-climber have a different approach. While

the first defines larger steps at the beginning, reducing the jump progressively,

the hill-climber has a more local approach, defining smaller steps along the

whole optimization process.

81

CHAPTER 6. RESULTS

Improvement Mean time (std)
No.

iterations
Speed-up

Mean it.

speed-up

Standard 3min 30s (139ms) 31 - -

Standard 2min 41s (150ms) 31 1.30 1.30

Parallelization 2min 26s (258ms) 31 1.44 1.44

Parallelization 1min 54s (182ms) 31 1.84 1.84

Structural reuse 2min 31s (202ms) 31 1.39 1.39

Structural reuse 2min 1s (141ms) 31 1.74 1.74

GS solution reuse 2min 41s (194ms) 31 1.30 1.30

GS Precision 2min 25s (144ms) 31 1.45 1.45

All 1min 29s (171ms) 33 2.36 2.51

All (Sequencial) 1min 31s (188ms) 34 2.31 2.53

All 1min 4s (117ms) 34 3.28 3.60

Table 6.14: Results for DIRECT algorithm with a 14x32 grid.

Improvement Mean time (std)
No.

iterations
Speed-up

Mean it.

speed-up

Standard 6min 45s (166ms) 28 - -

Standard 4min 47s (164ms) 28 1.41 1.41

Parallelization 4min 41s (459ms) 28 1.44 1.44

Parallelization 3min 20s (279ms) 28 2.02 2.02

Structural reuse 4min 38s (224ms) 28 1.45 1.45

Structural reuse 3min 41s (178ms) 28 1.83 1.83

GS solution reuse 4min 46s (453ms) 28 1.42 1.42

GS Precision 3min 42s (521ms) 28 1.82 1.82

All 3min 8s (300ms) 28 2.15 2.15

All (Sequencial) 2min 21s (355ms) 28 2.87 2.87

All 1min 39s (628ms) 28 4.09 4.09

Table 6.15: Results for DIRECT algorithm with a 16x38 grid.

82

6.4. OPTIMIZATION RESULTS

This means that in the hill-climber, the loops’ faster convergence period is

shorter than in DIRECT. Therefore, it is natural that the several improvements

implemented cannot achieve the same speed-ups. Nonetheless, a maximum

speed-up of 2.61 shows that the cases studied here can be successfully deployed

in different contexts, although with less effect.

Also, note that in the transition from a grid of 14x32 to 16x38 panels, the

overall speed-up is actually reduced for both telimination and Gauss-Seidel

method. Nevertheless, the increasing gap between the two methods, in favour

of Gauss-Seidel, is maintained.

The same tests were executed too on the same machine as DIRECT, al-

though for only 5 runs. This was made in order to find the influence of the

architecture and the compiler version (G++ 4.6 on the ECOS cluster against

the G++ 4.7 on the LG R510) over the results. Table 6.19 shows that for

the same environment, the results between the two algorithms are much more

similar than when executed in different machines.

Although the maximum speed-up is only of 3.00 when DIRECT reached a

maximum of 4.09, the tendency is that for a larger number of panels, the speed-

up is increased, too. Also, the Gauss-Seidel always produces better results

than the elimination version, something that did not necessarily happen when

executing the code in the cluster machines.

6.4.3 Final configurations

Table 6.20 summarizes the configurations reached by the two optimizers. The

column “Value” defines the optimization output, while the column “Per.”

translates it into the normalized design space (see Table 5.1 for the optimiza-

tion bounds).

Both DIRECT and the hill-climber reached similar configurations, arriving

at long and thin wings. In fact, the upper and lower bounds are reached by

several variables, with special incidence on the wingspan and the chords.

Concerning the sweep, twist and dihedral angles, those are kept in values

around the 0o. As for the structural model, clearly the wings with greater

weight at the root are favoured. Looking at Table 6.20, although presenting

low values as well, the diameter and the thickness at the root are still relatively

far from the lower bound, a situation that does not occur for the tip.

83

CHAPTER 6. RESULTS

Improvement Mean time (std)
No.

iterations
Speed-up

Mean it.

speed-up

Standard 1min 7s (11ms) 46 - -

Standard 1min 10s (70ms) 46 0.96 0.96

Parallelization 0min 38s (41ms) 46 1.74 1.74

Parallelization 0min 40s (7ms) 46 1.67 1.67

Structural reuse 0min 47s (11ms) 46 1.42 1.42

Structural reuse 0min 49s (3ms) 46 1.38 1.38

GS solution reuse 1min 10s (2ms) 47 0.97 0.99

GS Precision 1min 10s (7ms) 46 0.96 0.96

All 0min 28s (24ms) 46 2.34 2.34

All (Sequencial) 0min 47s (1ms) 46 1.43 1.43

All 0min 29s (1ms) 46 2.33 2.33

Table 6.16: Results for hill-climber with a 10x28 grid.

Improvement Mean time (std)
No.

iterations
Speed-up

Mean it.

speed-up

Standard 3min 5s (8ms) 44 - -

Standard 3min 5s (16ms) 44 1.0 1.0

Parallelization 1min 51s (109ms) 44 1.67 1.67

Parallelization 1min 51s (28ms) 44 1.66 1.66

Structural reuse 2min 3s (10ms) 44 1.51 1.51

Structural reuse 2min 2s (11ms) 44 1.51 1.51

GS solution reuse 3min 4s (15ms) 44 1.01 1.01

GS Precision 3min 3s (17ms) 44 1.01 1.01

All 1min 13s (9ms) 44 2.51 2.51

All (Sequencial) 1min 57s (11ms) 44 1.57 1.57

All 1min 10s (29ms) 44 2.61 2.61

Table 6.17: Results for hill-climber with a 14x32 grid.

84

6.4. OPTIMIZATION RESULTS

Improvement Mean time (std)
No.

iterations
Speed-up

Mean it.

speed-up

Standard 5min 24s (176ms) 42 - -

Standard 5min 28s (14ms) 42 0.99 0.99

Parallelization 3min 12s (132ms) 42 1.68 1.68

Parallelization 3min 16s (49ms) 42 1.65 1.65

Structural reuse 3min 44s (25ms) 42 1.44 1.44

Structural reuse 3min 44s (19ms) 42 1.44 1.44

GS solution reuse 5min 42s (94ms) 42 0.95 0.95

GS Precision 5min 44s (7532ms) 42 0.94 0.94

All 2min 52s (17290ms) 42 1.88 1.88

All (Sequencial) 3min 49s (182ms) 42 1.41 1.41

All 2min 18s (42ms) 42 2.34 2.34

Table 6.18: Results for hill-climber with a 16x38 grid.

Improvement Grid Mean time Speed-up

Standard

10x28

2min 04.43s -

Standard 1min 45.65s 1.17

All 1min 11.26s 1.75

All 0min 51.56s 2.41

Standard

14x32

4min 46.43s -

Standard 3min 30.32s 1.36

All 2min 38.16s 1.81

All 1min 53.81s 2.52

Standard

16x38

10min 33.73s -

Standard 6min 08.92s 1.71

All 5min 19.48s 1.98

All 3min 31.22s 3.00

Table 6.19: Speed-ups for hill-climber, executed in the laptop LG R510.

85

CHAPTER 6. RESULTS

Finally, although the two optimizers reached similar configurations, the

hill-climber returns a greater Breguet range. Due to a more steady pace, with

shorter optimization steps, the hill-climber is likely to better explore the whole

optimization space than DIRECT. However, this greater accuracy comes at the

expenses of running time, which is considerably longer for the hill-climber.

6.5 Concluding remarks
Concerning model validation, the small deviations registered for both Diederich’s

method and the vortex lattice method show that the author’s implementation

used for this work can be trusted, under the considered conditions.

Design variables
DIRECT Hill-climber

Value Per. Value Per.

Wingspan 31.97m 99.9% 32.0 100.0%

Root chord 2.0m 0.0% 2.0m 0.01%

Tip chord 1.0m 0.0% 1.0m 0.01%

Sweep angle 0o 50.0% 4.5o 55.0%

Twist 0o 50.0% -1.2o 45.0%

Dihedral angle 0o 0.0% 0o 0.01%

Root diameter 0.037m 3.7% 0.04m 4.0%

Tip diameter 0m 0.0% 0.001m 0.01%

Root thickness 0.14m 14.0% 0.1m 10.0%

Tip thickness 0.007m 0.7% 0.02m 2.0%

Breguet range 10173.5m - 11279.0m -

Table 6.20: Optimized configurations.

The software used to compare the vortex lattice method results is more

complete, as it encompasses variations of the camber along the wing. This is

even more noted when the wing is under the influence of twist and dihedral

angle, as the camber thickness plays an more important role in this cases.

Aside that, the implementation used in the current work can produce satisfying

results.

As for the optimization results, it was concluded that the parallelization

86

6.5. CONCLUDING REMARKS

of the algorithms and the introduction of the Gauss-Seidel method for solv-

ing the linear system had the most impact in the speed-ups achieved, with

the incremental use of the distributions not contributing as much as initially

expected.

Finally, the improvements produced different effects on the optimizers. DI-

RECT, which uses a less local search, benefited more than the hill-climber,

achieving greater speed-ups. For both the optimizers, the speed-ups grow

with the number of panels, although this condition may be affected depending

on the machine where the code is executed.

87

7
Concluding Remarks

Aeroelastic modelling is of great importance in aeronautics. Ideally, it should

be considered right at the preliminary stage, but aeroelastic optimization de-

pends on the availability of simple enough, yet sufficiently accurate models.

For that reason, any effort that allows more faithful models to be used at this

stage is likely to be of interest to the aircraft industry.

The goal of this dissertation was to define a new optimization approach over

the conceptual design of a wing, eventually extending it to further development

stages. To fulfill such an objective, several techniques were proposed. They

encompasse iterative methods for solving linear algebraic systems of equa-

tions (more specifically, the Gauss-Seidel method), the control of the solving

precision, parallelization of the optimization and finally, the use of incremen-

talization in order to avoid repeated computation.

Being an exploratory work, the potential of the proposal could not be fully

predicted at the beginning and so, the speed-ups achieved were not as good

initially hoped. Nevertheless, they certainly cannot be considered irrelevant.

Looking through a more industrial perspective rather than academic, these are

actually promising results, especially if the same speed-up can be successfully

obtained in later stages of development, where the execution time is far greater.

The results have also shown that the speed-up grows with the number

of panels. This is an interesting starting point for future work, if extending

optimization further than solely wing analysis.

Although more than 600 panels can be considered excessive (at least for

89

CHAPTER 7. CONCLUDING REMARKS

the basic vortex lattice method, more advanced methods may require denser

surface coverage), in the limit, the whole aircraft can be shaped by panels, as

every section contributes to both lift and drag generation. If, besides the wing,

the fuselage, breaks, fin, rudder, tails and engines are taken into account too,

a larger number of panels must be used.

However, it was also registered that the performance of the Gauss-Seidel

method deteriorates with the increase of the precision required by the opti-

mizer. This can be a severe problem for the more advanced stages, as at that

point, it is no longer feasible to simply have good approximations of the final

wing.

Nevertheless, if maintaining a speed-up of at least 4 for those stages, it

would be an achievement. The whole development process in Embraer can

reach up to between 12 and 17 hours of computation. Reducing this time to

simply 3 or 4 hours is certainly an option to analyze. Of course, the develop-

ment process does not only include optimization, so this reduction would be

smaller, unless the other parts of the cycle could be speeded up as well.

More than only setting a new approach for the models studied, this docu-

ment also opens another door for future work, by proposing some incremental-

ization ideas to be implemented. The LU factorization update may be suitable

for more complex models, that eventually use meshes for modelling and due

to the greater volume of data, may benefit more from incrementalization.

All this considered, this project has served its initial purpose and the results

obtained show that it is possible to reduce computation time without jeopar-

dizing the accuracy of the models. As long as optimization is well structured

and organized, recalculations and other unnecessary and heavy steps may be

avoided or simplified.

90

Nomenclature

Variables

A(η) Transversal section surface

AR Aspect ratio

CT Specific fuel consumption pa-

rameter

CD0 Drag coefficient markup value

CDi Induced drag coefficient

CD Drag coefficient

CL Lift coefficient

D Drag

Di Induced drag

E Jone’s edge velocity factor

Es Young’s module

Fs(η) Shear force

I(η) Inertial moment

L Lift

La(η) Additional lift distribution

Lb(η) Basic lift distribution

M Mach number

Mb(η) Bending moment

Nc Load factor

R(η) External radius

S Planform or wing area

T Temperature

U∞ Fluid speed

V Object speed

X Chord axis

Y Wingspan axis

Z Camber axis

∆Y Wing deflection

Γ Circulation

Λ Sweep angle

Λβ Effective sweep angle

Θ(η) Slope

α Angle of attack

α0 Zero-lift angle

β Prandtl-Glauert factor

δ Mean camber line slope

δf Maximum wing bending al-

lowed

ε Twist angle

η Adimensional half-spanwise

ηd Typical section

91

CHAPTER 7. CONCLUDING REMARKS

γ Specific heat capacity

λ Wing taper ratio

φ Dihedral angle

ρ Fluid density

ρl(η) Beam’s linear density

ρs Structural density

σs Yield stress

θ LLT angular component

θST Static temperature ratio

~u Chord axis unit vector

~v Wingspan axis unit vector

~w Camber axis unit vector

a Speed of sound

b Wingspan

c(y) Chord

cg Mean geometric chord

cla(η) Sectional additional lift

clb(η) Sectional basic lift

clα 2D lift curve slope

cl(η) Sectional lift

e Oswald efficiency factor

g Gravity acceleration

h Cruising height

m Mean cruise flight mass

mf Fuel mass

mm Mass markup

ms Beam’s mass

ncp Spanwise centre of pressure

p Static pressure

q Dynamic pressure

r(η) Internal radius

st(η) Stiffness

t(η) Thickness

y Ordinate of wingspan

Subscribers

.25 Quarter-chord line

LE Trailing edge

TE Leading edge

r Root

t Tip

92

Bibliography

[1] Torenbeek, Egbert: “Synthesis of Subsonic Airplane Design”; Delft Uni-

versity Press, 1981.

[2] Oliveira, L.; Lopes, A.: “Mecânica dos Fluidos”; Lidel, 2006.

[3] Zang, Thomas A.: “Aifoil/Wing Optimization”; NASA Langley Research

Center, Hampton, USA, 2010.

[4] Hadi Winarto: “Lifting Line Theory - Tutorial Example (AERO 2258A)”;

RMIT University, May 2004.

[5] Diederich, F.W.: “A simple approximate method for calculating span-

wise lift distributions and aerodynamic influence coefficients at subsonic

speeds”; NACA TN 2751, 1952.

[6] Young, Warren C.; Budynas, Richard G.: “Roark’s Formulas for Stress

and Strain”; 7th Edition, McGraw- Hill, 2002.

[7] Hodges, Dewey H.; Alvin Pierce, G.: “Introduction to Structural Dynamics

and Aeroelasticity”; Cambridge University Press, 2002.

[8] Abbot, I.H.; von Doenhoff, A.E.: “Theory of wing sections”; Mc.Graw-Hill,

New York, 1949.

[9] Bisplinghoff, R.L.; Ashley, H.; Halfman, R.L.: “Aeroelasticity (Corrected

Version)”; Dover Publications, 1996.

[10] Anderson, John D.: “Fundamentals of Aerodynamics. Second edition”;

McGraw-Hill International Editions, Aerospace Science Series, 1991.

[11] Raymer, Daniel P.: “Aircraft Design: A Conceptual Approach”; AIAA

Education Series, American Institute of Aeronautics and Astronautics,

1999.

[12] Wright, Jan R.; Cooper, Jonathan E.: “Introduction to Aircraft Aeroe-

lasticity and Loads”; AIAA Education Series, John Wiley and Sons, 2007.

93

BIBLIOGRAPHY

[13] Bruhn, E.F.: “Analysis and Design of Flight Vehicle Structures’; Jacobs

Publishers, 1975.

[14] Martins, Joaquim R.R.A.: “A Coupled-Adjoint Method for High-Fidelity

Aero-Structural Optimization”; Doctoral Thesis, Stanford University,

2002.

[15] Mattingly, Jack D.; Heiser, William H.; Pratt, David T.: “Aircraft Engine

Design”; 2nd edition, American Institute of Aeronautics and Astronautics,

2002.

[16] Diederich, Franklin W.; “Calculation of the aerodynamic loading of swept

and unswept flexible wings of arbitrary stiffness”; NACA Report 1000,

1948.

[17] Philips, W.F.: “Lifting-Line Analysis for Twisted Wings and Washout-

Optimized Wings”; AIAA Journal of Aircraft, January-February 2004,

Vol.41, no.1.

[18] DeYoung, John; Harper, Charles W.: “Theoretical Symmetric Span Load-

ing at Subsonic Speeds for Wings Having Arbitrary Plan Form”; NACA

Report 921, 1948.

[19] Giunta, Anthony A.: “Sensitivity analysis method for aeroelastic aircraft

models”; Elsevier Science, 1999.

[20] Pant, Rajkumar; Fielding, J.P.: “Aircraft configuration and flight profile

optimization using simulated annealing”; Elsevier Science, 1999.

[21] Mason, W.H.: “Analytic Models for Technology Integration in Aircraft

Design”. AIAA Paper 90-3262, September 1990.

[22] Malone, Brett; Mason, W,H.: “Multidisciplinary Optimization in Aircraft

Design Using Analytic Technology Models”; Journal of Aircraft, Vol. 32,

No. 2, March-April, 1995.

[23] Moran, Jack: “An Introduction to Theoretical and Computational Aero-

dynamics”; John Wiley & Sons, 1984.

[24] Bertin, John; Smith, Michael: “Aerodynamics for Engineers”, Prentice

Hall, Third Edition, 1998.

94

BIBLIOGRAPHY

[25] Nocedal, J. and Wright, S. J., “Numerical Optimization”, second edition,

Springer, 2006.

[26] A.L Custódio, M. Emmerich and J.F.A. Madeira, “Recent Developments

in Derivative-free Multiobjective Optimization”, April 5, 2012.

[27] W. Yamazaki, M. Rumpfkeil and D. Mavriplis, “Design Optimization

Utilizing Gradient/Hessian Enhanced Surrogate Model”, University of

Wyoming, American Institute of Aeronautics and Astronautics, USA, 2010.

[28] Reed, James A.; Utke, Jean; Abdel-Khalik, Hany S.: “Combining Auto-

matic Differentiation Methods for High Dimensional Nonlinear Models”;

North Carolina State University, 2010.

[29] Neidinger, Richard D.: “Introduction to Automatic Differentiation and

MATLAB Object-Oriented Programming”; Siam Review, Vol. 52, No. 3,

2010.

[30] Gondzio, J.: “Stable algorithm for updating dense LU factorization af-

ter row or column exchange and row and column addition or deletion”,

Optimization: A Journal of Mathematical Programming and Operations

Research, 1992.

[31] Chu, M. T.: “System of Linear Equations - Iterative Approach”, Lecture

notes on Numerical Analysis I, Chapter 3, 2007.

[32] Melin, Tomas: “A Vortex Lattice MATLAB Implementation for Linear

Aerodynamic Wing Applications”, Master Thesis, Royal Institute of Tech-

nology (KTH), 2000.

[33] User manual: “Surfaces - Vortex Lattice Module”, Great OWL Publishing

- Engineering Software, August 2009.

[34] Abbott, I. H.; von Doenhoff, E.: “Theory of Wing Sections”, Dover Books,

June 1959.

[35] “Basic Linear Algebra Subprograms” (BLAS) libraries:

http://www.netlib.org/blas/.

[36] “Open Computing Language” (OpenCL):

http://www.khronos.org/opencl/

95

BIBLIOGRAPHY

[37] Finkel, Daniel: “DIRECT Optimization Algorithm User Guide”, North

Carolina State University, March 2003.

[38] OpenMP: http://www.openmp.org/

[39] User’s guide: “MSC.FlightLoads and Dynamics User’s Guide”, MSC Soft-

ware, 2006.

[40] Shewchuk, Jonathan Richard: “Lecture Notes on Delaunay Mesh Gener-

ation”; University of California at Berkeley, 1999.

96

