
Masters’ Degree in Informatics Engineering
Dissertation

COSMO
Evolutionary Approach to Inverse Shortest Path in an Urban
Mobility Context

September 4, 2013

Gustavo Fernandes
gnvf@student.dei.uc.pt

Advisor at DEI:

Penousal Machado

Abstract

Cities across the world are fighting a losing battle against the increasingly

large tides of private and public transports that daily roam urban road net-

works. In an effort to tackle this problem, we present a thorough research of

the current traffic management and routing algorithm paradigm, and compare

the available traffic simulator options. We also elaborate a plan of action by

establishing goals, tasks and milestones. We propose an evolutionary approach

to generate a behavior model, based on the inverted shortest path, to later use

in SUMO (Simulator of Urban Mobility).

Keywords: inverted shortest path, evolutionary computation, traffic micro-

simulation, collaborative route planning, intelligent transport systems

iii

Acknowledgements

I would like to dedicate the first words of this thesis to thank the people

who made this work possible and led me through this important stage in my

life.

Thus firstly I would like to thank my advisor Professor Fernando Jorge Pe-

nousal Martins Machado for all the guidance, advice and insights he provided,

which were fundamental to the completion of this research.

I also would like to thank my family and friends for their unconditional sup-

port, advice and encouragement throughout my academic life. Furthermore I

would like to thank my Bachelor and Masters degree colleges for their shared

wisdom and companionship all over these years.

Gustavo Fernandes

v

Contents

Abstract ii

Acknowledgements iv

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 What is COSMO? . 2

1.3 Objectives . 3

1.4 Outline . 3

2 State-of-the-Art 5

2.1 Traffic Simulation . 5

2.1.1 Simulator Type Selection 6

2.1.2 Selection Criteria and Individual Analysis 6

2.1.3 Comparative Analysis 8

2.2 Basic Notions . 9

2.2.1 Road Networks in Graph Theory 9

2.2.2 Shortest Path Problem 10

2.3 Evolutionary Routing . 11

2.3.1 Genetic . 11

2.3.2 Memetic . 12

2.3.3 Ant Colony . 13

2.4 Route Prediction Approaches 13

2.4.1 Adaptive Route Prediction 13

2.4.2 Inverted Shortest Path Problem 14

2.4.3 Open Shortest Path First 15

3 OSPF Genetic Approach 17

3.1 The ECJ Framework . 17

3.2 How does it work . 18

CONTENTS

3.3 Using the ECJ . 18

3.4 Methodology . 20

3.4.1 Genetic Representation 21

3.4.2 Fitness Function . 21

3.4.3 Algorithm . 22

3.5 Retrieved Data . 22

3.5.1 Population Size and Generation Number 22

3.5.2 Tournament Size . 24

3.5.3 Elitism . 24

3.5.4 Mutation . 25

3.5.5 Recombination . 26

3.5.6 Analysis . 26

3.6 Validation . 27

4 Traffic Simulation 31

4.1 SUMO - Similation of Urban MObility 31

4.1.1 SUMO’s Usage Example 32

4.1.2 How to run a simple SUMO simulation 33

4.2 Connecting our algorithm with sumo 34

5 Tests and Data Analysis 37

5.1 Test Planning . 37

5.1.1 Non-real scenarios . 37

5.1.2 Real-Scenarios . 38

5.2 Analysis . 39

5.2.1 Lattice Scenario . 40

5.2.2 Radial and Ring Scenario 40

5.2.3 Real Scenario . 40

5.2.4 General Analysis . 41

6 Conclusions 43

Bibliography 45

vii

List of Figures

2.1 Comparative Simulator Performance 8

2.2 General Comparison of all Simulators 8

3.1 ECJ’s breeding pipeline-tree . 19

3.2 Average fitness of the best individual on the 1000th generation

with the increase of the size of the population 23

3.3 Average fitness of the best individual with the increase of the

number of generations . 23

3.4 Average fitness of the best individuals with for different tour-

nament sizes . 24

3.5 Average fitness of the best individuals with the variation with

the percentage of Elitism . 25

3.6 Average fitness of the best individuals with the variation of num-

ber of genes mutated and probability of mutation 25

3.7 Average fitness of the best individual of each generation using

a 1-point and a 2-point crossover 26

3.8 The parameters that produced the best results achieved in every

trial . 27

3.9 Average fitness of the best individual with the increase of the

number of generations before and after optimizing parameter . . 27

3.10 Evolution of the average fitness of the best individual with the

passing of generations with different fitness goal changing intervals 28

4.1 The required input files for running a simulation in SUMO[31] . 32

5.1 Lattice Network . 37

5.2 Radial and Ring Network . 37

5.3 Radial and Ring Network . 38

5.4 An example of a removed junction due to a deadlock. 39

5.5 This figure illustrates the results obtained through the routing

of the default algorithm and the routing produced by our own. . 40

ix

1
Introduction

In this first chapter we will present the reader with current issues that will

benefit from this study. In section 1.1 we will analyze and discuss how this

research will contribute to addressing current issues related to urban mobility,

which will ultimately have an impact on day-to-day activities in real world

scenarios. Then in section 1.2 we will contextualize the reader to problem at

hand and, finally, explain our goals in section 1.3.

1.1 Motivation

The inhabitants of metropolitan areas follow a lifestyle that stands on the

ability to travel within the city for both work and leisure. Moving has be-

come more and more essential in the urban routine, either to: run a errand;

commute; attend an event; etc. Because of this generalized need to circulate

within the city road planning and traffic handling has become a major issue in

the last decades [17]. Considering that there is a finite infrastructure of roads,

if there is a growing, vastly large amount of vehicles used for transport, they

will sooner or later overflow the road network’s capacity and ultimately cause

traffic jams or congestions and therefore lower mobility.

To cope with the rapidly decreasing ability to move from one place to the

other within urban bounds society has attempted many different approaches

and yet the problem remains. Many traditional attempts have been made to

address the issue such as: rerouting traffic; increase/decrease certain area’s

motorization factor; promote the use of public transportation; etc. Although

it temporarily eased the situation it did not manage to solve it. This problem

even transcends the advent of ubiquitous system, geo-localization and other

mobility enhancement technology, which like the other methods have worked

as a ephemeral or minor solution, as mobility within cities limits still kept

1

CHAPTER 1. INTRODUCTION

decreasing [17].

In the recent past, with the advent of car navigation systems, instead of try-

ing to work their way in the physical infrastructures researchers attempted to

shape how people navigate, developing algorithms to get people from “A to

B” following shortest (or fastest) path possible. Once we know where we are,

where we want to go and the composition of the road network, we can calculate

what is the shortest path is, but we cannot expect drivers to always follow the

theoretical shortest path, as they tend follow the paths that have lesser per-

ceived costs[7] which is mostly subjective. One way to approach this problem

would be to reconsider the distances between nodes in the road network and

adapt it to the perceived costs, or preferences, of the drivers. If we can reach

the desired outcome, in our attempt to reconsider the distances between nodes

of the road network according to driver usage, we can provide traffic modelers

information that they could use to improve city’s land-use planning [7]. In

order to achieve this we consider the Inverted Shortest Path approach.

1.2 What is COSMO?

The COSMO project (COllaborative System for Mobility Optimization), un-

dertaken by Faculdade de Ciências e Tecnologia of the University of Coimbra,

is a research study focused in developing traffic prediction algorithms and soft-

ware based on a non-invasive collaborative approach. The main target is to

study the issues detailed in the previous section and develop a collaborative

traffic control system in order to tackle them.

To achieve this COSMO takes advantage three areas of knowledge to do its

three main tasks:

• Ubiquitous Computing to get the data from real vehicles traces in

real maps, in order to achieve a realist setting build-up.

• Intelligent Transport Systems are taken in account when designing

the algorithms, which are used alongside with Vehicle Routing; Evolu-

tionary Computation; Map Matching; Geo-Referenced applications.

• Complex Systems are used to validate the data and tune the algo-

rithm. A traffic micro-simulator platform, such as SUMO, which deals

fairly efficiently with this kind of random disorganized networks, will be

adopted for simulation and validation purposes.

COSMO already produced contributions towards the theoretical improvement

of traffic flow, using a rerouting system based on a ant colony algorithm,

2

1.3. OBJECTIVES

which provided valuable results handling not only academic road networks but

real-world maps, namely Coimbra’s road network. This work will be focused

on using evolutionary computation on the inverse shortest path problem to

provide better guidelines to urban planners to cleverly construct and improve

road networks.

1.3 Objectives

The main objective of this thesis is to analyse the current approaches to the

Inverse Shortest Problem and provide a different alternative will be competi-

tive with the state of the art. We will adopt an evolutionary approach, with

the goal of promoting traffic flow and ease road congestion.

We will set a parallel with the Open Shortest Path First and then use the

Inverted Shortest Path Problem to alter the network perception hopping to

achieve better trip times and lengths for the road network users.

1.4 Outline

In this chapter it was presented the motivation for this work, alongside with

the area of research in which it fits. It was also exposed this work’s framing

within the COSMO project, this thesis objectives, and a brief summary of the

documents structure.

On Chapter 2 state-of-the-art research will be presented and briefly analyzed,

providing some insight on work, by other authors, related to this dissertation.

Then in Chapter 3 we explain the tool used to produce our evolutionary algo-

rithm, how it underwent a optimization process and setting side by side with

Open Shortest Path First problem.

In Chapter 4 we will begin to set the problem in a urban mobility context. In

this part, we explain how we used the chosen traffic simulator and how the

designed algorithm fits in its structure.

Afterwards in Chapter 5, we set the stage for our testing phase, detailing pro-

cess pursued while performing the test as well as the results they produced.

We then proceed to analyze and discuss said results, drawing conclusions and

comparing them to our expectations.

Finally in Chapter 6, we make a brief analyzes of the problem and the ap-

proach, suggesting ways to complement this study in the future and stating

the author’s final thought’s on this subject.

3

2
State-of-the-Art

In order to take steps in an innovative fashion we must comprehend what

was and is being done to tackle the problem at hand, thus helping the reader

understand how this work differs from others and how other works help on the

definition and execution of this one.

We will start by analyzing the current traffic simulation state-of-the-art, then

we introduce the reader to the current paradigm on path-choosing algorithms.

To do so we must start by presenting at which points do graph theory and

road networks meet. Then we will expose how other studies have addressed

path choosing, weight setting and related problems.

2.1 Traffic Simulation

Experimentation is an essential part of the scientific method as it is a mean of

confirmation of the preceding hypotheses, however it’s not always possible or

convenient to perform it in a real-world scenario [14], which leads us to search

for viable alternatives.

In our specific context, testing navigation algorithms using real drivers and

vehicles simply is not feasible. It would take too much time, resources, volun-

teers and funding [14] to perform in such a experimentation, especially during

the tunning part of the algorithm development. Because of that, tanks to cur-

rent machine power, simulators have been developed to cope with necessities

such as ours [23]. Due to the plentifulness of traffic simulator software, we are

bound to make an analysis of the area in order to make an informed decision.

Therefore, in this section, we will compare and discuss the main simulation

software choices that are currently available within the scope of our work.

5

CHAPTER 2. STATE-OF-THE-ART

2.1.1 Simulator Type Selection

Traffic simulating software can be divide in three main types:

• Macroscopic simulators which model the traffic flow in accordance

with high-level mathematical models most commonly based in fluid dy-

namic, allowing a continuous simulation. They are most commonly used

in simulating wide areas with little detail and, therefore, not adequate

to urban scenarios [28] [23].

• Microscopic simulators that comprehend individual entities separately

with high-level detail in a discrete context. This traffic modeling type is

the most realistic due to their individual approach to vehicles and drivers

and is widely use to evaluated traffic control along with vehicular routing

[28] [23] [14].

• Mesoscopic simulators are a in-between designation of an hybrid of

the latter two. Although they consider groups of entities, they still de-

scribe their interaction and behavior with the same level of detail of

macroscopic simulators [28].

Since our scope relates to individual traffic routing we found that the Macro-

scopic Simulation approach did not serve our interest as it does no deal with

individual vehicles and drivers. Furthermore it is ill advised to use this simula-

tion technique in an urban setting, which we set to use. Between the remainder

types of simulation, we found best approach for this research to be Microsimu-

lation, since it was already used at COSMO to keep the experiments as realistic

as possible.

2.1.2 Selection Criteria and Individual Analysis

Due to the abundance of microsimulation software alternatives we were forced

to cut down the list by reading third party reviews. Thus, we found the follow-

ing to be the most well reviewed amongst the virtual simulation community:

• SUMO - Simulation of Urban Mobility

• QuadStone Paramics Modeller

• Aimsum

• Trafficwere SimTraffic

6

2.1. TRAFFIC SIMULATION

. Which we proceeded to deploy and experiment (when it was possible) and

compared according to these criteria:

• Open Source and Free Usage

• Documentation and Interface

• Realism

• Performance

2.1.2.1 Open Source and Free Usage

Of the five simulators considered only SUMO, was gratis and Open-Source.

Being open-source allows the user to use it at his will with no boundaries,

shaping it to more adequately fit his intent. This degree of customization

along with it being free is apparently a rare feature in this type of software

and can provide a unique advantage.

Although none of the others were neither Open-Source and free, we experi-

mented their trial versions, and drawn conclusion from them as well as from

the available documentation.

2.1.2.2 Documentation and Interface

When dealing with other software and code it is important to have access to

a solid documentation base. Because you need to know how things work and

these are very complex pieces of computer code, if everything is well explained

it minimizes programming difficulty.

Regarding the documentation of the previously selected programs, the only

noteworthy finding is that Aimsum lacks both a user manual or documentation.

On a more positive side, we discovered that SUMO has a considerably large

community, which can be used to clarify doubts about its inner workings.

2.1.2.3 Realism

As previously stated it is of paramount importance to infuse this research with

the maximum realism in our grasp. Therefore we must consider the similarities

between the simulators and real life traffic.

Regrading this topic, our choice will go towards a simulator allowing different

kinds of vehicles (e.g. bicycle, truck, bus, car), pedestrians, traffic lights,

ability to integrate real maps, etc.

7

CHAPTER 2. STATE-OF-THE-ART

2.1.2.4 Performance

Has we have limited time to carry out this research, we must consider per-

formance as a factor in this decision. There was no need to do performance

testing as this analysis has been already performed by Kotushevski [23].

Figure 2.1: Performance analysis. Adapted from Kotushevski [23]

As Figure 2.1 displays, SUMO when used with a small number of vehicles

uses less processing resources as well as less memory than the other simulators.

However, in terms of scalability SUMO tends to perform worse than Paramics,

SimTraffic and CORSIM TRAFVU.

2.1.3 Comparative Analysis

Figure 2.2: A general comparison of all simulators according to the previously

stated criteria. * in low vehicle number scenarios.

8

2.2. BASIC NOTIONS

As you can see in Figure 2.2, Sumo has the best classification in every

criteria except realism, where is only slightly behind. In light of these, it is

our opinion that SUMO is the best microsimulation software choice for our

purposes and thereby it will be used our in the simulation period.

2.2 Basic Notions

We will now expose basic concepts regarding the to main aspects of the thesis:

Graph Theory and the Inverted Shortest Path Problem.

2.2.1 Road Networks in Graph Theory

The similarities between road networks and geometric graphs are the foun-

dations that support current route predicting approaches. In order to know

which formula’s, assessment tools and proprieties used in graph theory can be

used when dealing with road networks it is paramount to cogitate in which

type of graph do road networks are more approximated to.

A geometric graph consists on a set of objects where some of are connected

to each other, which are represented by mathematical abstractions called ver-

tices or nodes and the connections between them are named edges or arcs.

In a specific type of graph each edge has an attribute called weight which is

commonly used to represent a cost once you used that edge to go from one

node to another. [33] Although road networks consist basically in geometric

graphs, has they can also be described as set of road intersections linked by

a number of roads, each of the latter with a cost of travel(length), because

a mathematical graph is an abstraction and road networks exist in the reel

world, there are some differences worth depicting. The two most noticeable of

the dissimilarities between them are related to the size of the set and weight

of the vertices: a road network as a physical man-made structure is finite

and a graph as a mathematical abstraction may be not; an edge may have a

non-negative weight, but such concept does not make sense when applied to a

road.

In graph theory graphs can be divided in two categories: planar and non-

planar. From merely graphic point of view, a graph is planar if a graph can

be drawn on a plane without having any of its edges crossed over each other,

otherwise is a non-planar graph [33]. Kuratowski’s theorem takes it to a more

mathematical point of view stating that a graph is only planar if it does not

contain as a sub-graph either a K5 (a complete graph with five vertices) or a

9

CHAPTER 2. STATE-OF-THE-ART

k3,3(complete bipartite graph on six vertices, three of which connect to each of

the other three,) [24].

As the earth consists of an approximated sphere one can easily think of a road

network as a graph drawn upon the flatten surface of a spread out earth’s

crust. Although road networks can be thought of as planar graphs, they are

non-planar. Consider the roads as the edges and the road intersections as the

nodes in a graph, if you would envision a bridge overpass or a tunnel under

another road you be envisioning the graph equivalent of a edge intersection,

making the road network a non-planar graph. Despite this, most of statistical

and measurement tools used only in planar graphs are commonly used on road

networks. For instance the gamma and alpha indexes which are a measure of

connectivity in a graph, are used to evaluate the density of roads and though

they suffice it must not be forgotten that we’re dealing with non-planar graphs

[13].

Therefore in this paper, in order to later find possible applications in the real

world, it will only be considered finite planar graphs with non-negative edge

weights.

2.2.2 Shortest Path Problem

The Shortest Path Problem (SPP) has found a considerably large number of

different approaches and strategies each one with its own complexities and it’s

own applications. Dijkstra’s algorithm design in 1956 is probably the most well

know method used to find the shortest path between two vertices in a finite

graph with non-negative edge weights. To summarize the method consists in

navigating through every vertex labeling each one with the current distance

traveled to get there and if it’s already labeled relabel with the shortest dis-

tance, until it gets to the desired destination vertex, running in a O(|V |2)
complexity [11]. Since it was conceived there have been some improvements to

it, namely by Fredman and Tarjan which by the use of a min-priority queue

implemented Fibonacci heap rendering it running in O(|E|+ |V |log|V |) [16].

More contextualized with this paper is the work of Benjamin Zhan. In his

work he conducts a comparative study between graph searching methods to

establish which would be more beneficial to be used in a large road network

scenario. Zhan begins to compare the computation time of Dijkstra’s and the

A* algorithm and then introduces the concept of ”radius” which is based in

a heuristic and pre-processes the graph enabling to determine the relevance

of certain paths (roads), thus discarding unneeded search paths, reducing the

computation time. This concept brings a certain level of inaccuracy, which in-

creases with the number of vertices, but was found an acceptable trade-off [35].

10

2.3. EVOLUTIONARY ROUTING

2.3 Evolutionary Routing

Ever since the dawn of mankind people looked at nature’s intricate mecha-

nisms mimicking them to improve quality of life and assure survival. We did

so since we first started reproducing plants to sustain ourselves, calling it agri-

culture; building our own artificial caves, which now goes by the named of

civil engineering and we still do it by imitating how burrs attach to fur and

inventing Velcro. This trend as been science’s uppermost, used and viable,

source of inspiration and computer science has not been indifferent to it.

Evolutionary computation has been is a sub-field of artificial intelligence, since

the sixties and is currently set to be used in combinatorial optimization prob-

lems which exhaustive search methods are not feasible nor fast enough [9]. Has

weight setting is a combinatorial problem is np-hard [7], evolutionary compu-

tation is a evident choice to use as an approach.

2.3.1 Genetic

Genetic algorithms (GA) adapt the principles of natural selection to eugeni-

cally reach a desired outcome. The basic principle behind this algorithms is

the same in an iterative method, a given a population and applied environ-

mental pressure, only the fittest individuals will survive and pass their genes

through the next generation. [12] In broad terms, randomly generated sets

of input data are created and put through an algorithm. Then their outputs

are compared to each other, with the use of a fitness function and the inputs

with the best outcome will then ”mate”, having some of their data mixed, thus

forming a new generation, repeating the whole process, until the maximized

results are achieved [2] [12] [9].

For He, Li and Zhang found the need to used genetic algorithms as traffic

routing is a non-linear np-complex problem, they used Linear Optimization

alongside with and Hyper-graph context and optimized it with a genetic algo-

rithm. In the latter a priority path based approach was used, with the each

path’s usage priority was a gene. Then they applied a random multi-position

crossover and ran it through the fitness function bellow where let L(j) be the

path length of the chromosome j which is also calculated.

eval(k) =

1
L(k)∑size
j=1

1
L(j)

11

CHAPTER 2. STATE-OF-THE-ART

Their ultimate goal was on improve public transportation trip times within

a city and they found the new travel times to be rather satisfactory and the

algorithm robust and convergent [19]. However their validation scenario was

very limited, as they considered non-static parameters as static, such as traffic

congestion; car-velocity; accident and other unpredictabilities and they did not

consider real-world maps or realistic routes.

Another use for this approach is predicting traffic congestions as Tahilyani’s

research depicts. His work focuses on intelligent traffic control management

exploring and comparing different approaches generated by genetic algorithms

to ease congestion on intersections by controlling the traffic flow. He uses

the traffic-light system status and timings as population for is algorithms and

he measures the congestion in each of the individual to assess fitness [32].

Although it does not technically or directly chooses routes, this work can be

applied to route making, if instead of controlling traffic flow is designed to

avoid a given area or find an alternative route.

2.3.2 Memetic

Memetic algorithms in a broad sense are in most ways like their genetic coun-

terparts, having they’re memes (genes) can evolved during their life time. A

memetic algorithms consists on the combinations of evolutionary and local-

search methods and they are postulated to be faster and more accurate than

genetic algorithms in a path finding context. [30] [5]. The search operator is

the main focus on this approach, as it can swap a specific road segment for

another if he finds it compensatory. This can improve the algorithm’s pro-

cessing time and making it more suitable to dynamic factors. In an attempt

to solve the Salesman Problem, which objective is to find the cheapest way

of visiting all the elements in a given set of cities, Botzheim employs what he

calls a Eugenic Bacterial Memetic algorithm based on a GA first produced by

Holland [20] [5] and then optimized by himself previously [4]. Bacterial Evo-

lutionary Algorithm (BEA) are an adaptation of the standard GA with main

differences residing in the mutation stage, where instead of adroitly swapping

chromosomes specimen share chunks of their genes, and in the mutation which

allows inter-generational changes in the specimen genome [5]. Focusing in the

memetic portion of his experiment, he applies a 2-opt and 3-opt algorithm to

his search method, which removes edges from the tour and reconnects them

optimally. [5] The eugenic component, is also relevant as he states that previ-

ous work indicates that this is an effective way to solve the Salesman Problem

[5]. In his work this component is located at the generation of the population

where not only random itineraries are generated but some deterministic ones

12

2.4. ROUTE PREDICTION APPROACHES

too, following the directive that the next node to visit is the closest or the

second closest to their current position. Furthermore in the mutation phase

randomly produces deterministic clones where some parts of the gene sequence

are reversed.

2.3.3 Ant Colony

Ant Colony based algorithms imitate the biological process observable in ant

scout and scavenging for food. Each ant leaves a trail of pheromone which

attract other ants, leaving the path most traveled the most desirable. This

works great for ants but in a urban context we want the exact opposite, there-

fore we consider a Inverted Ant Colony algorithm, in which the vehicles will

avoid the less traveled roads leading to less congestion.

In their research Burrows, Reed, Templer and Walker [26] explore the benefits

and disadvantages of this kind of approach by testing Ant Colony Optimiza-

tion (ACO) under different situation both real and academic. They find that

although the algorithm’s remarkable adaptability to new situation, to prevent

a large computation time they have to lay down a set of soft constraints. They

attest that ACO is fully implementable in real world situations and that pro-

vides results in a fraction of the times other methods would .

José Capela’s research he compares the ACO to other algorithms through real

and academic maps (lattice and radial ring), shows that for a elevated number

of car ACO can vastly improve circulation alongside with fuel consumption

and CO2 emissions. [10] He also gives the agents a since of personality which

translates in the willingness to allow merges or the likeliness to attempt to

over take another agent. In he most realistic scenario he uses a real map with

actual route usage information, conferring a real world validity to his results.

2.4 Route Prediction Approaches

In this section we will explain the most commonly used route prediction ap-

proaches.

2.4.1 Adaptive Route Prediction

Considering that most urban vehicles within a city have a daily/weekly routine

and their behavior has been found to be predictable with a good level of

accuracy [34]. In his study Xue attempts to model vehicle patterns tracing

the path of 4000 taxis cars in Shangai over the course of ten months. They

tried to obtain what they call a Vehicle Mobility Pattern (VMP), using a

13

CHAPTER 2. STATE-OF-THE-ART

Variable-Order Markov (VOP) from the data they received from the traces.

One of their initial findings was that although the human choice of route was

an extremely complex problem that depended on a great number of variables,

such as individual habits, number of lanes, number of ways, etcetera, they could

still spot patterns on the travels. This algorithm chain has been vastly used in

other location prediction problems [34] .The clear downside of this algorithm

is that it generates a large number of patterns, because each variable depends

on other random variables. To avoid this pruning can be used to reduced the

processing cost.

2.4.2 Inverted Shortest Path Problem

Thus far we established that although graph theory has a great application in

road networks, there are some situations that are not applicable in the real

world. Graphs have an underlying assumption that we possess all the correct

or accurate data concerning the real world structures which is not true and

may induce errors. [8] Furthermore it may not actually interest us to know the

shortest path between two vertex but to relate our comprehension of the road

network to the driver’s perception. In a practical sense, due to for instance

morphology of the terrain, heavy traffic affluence, distance is not a singular

factor when predicting vehicular routes among a road network. People, even

the most experienced driver’s and navigator familiar with the road network,

tend to follow other paths.

The need to model route choices is paramount if we aim to explore the routes’

characteristics perceptions, in order to forecast travels, anticipate future traffic

conditions (congestions, accidents, etc.) and to understand how drivers react

to change and adapt to new data [27]. The road network itself benefits from

this pattern mining as obtained information though driver modeling can be

used to traffic assignment and coordination systems [27].

Essentially the Inverse Shortest Path Problem in this case, consists in process-

ing a weightless graph and finding its weights that are as close as possible to

the previously obtain shortest path data and compliant with the observations

of the paths more used in the network [8] [7]. More specifically in this thesis

context, we can adjust the real road lengths to the driver perception allowing

us to build a new ”road map” and which results on a enhanced view of indi-

vidual and possibly group preferences.

In his thesis Didier Burton starts to shorten the scope of graphs he works,

choosing only finite, sparse, non-negatively weighted, loop-less graphs which

is the closest approximation to the reality of road networks [7]. He proceeds

to successfully use a specialized version of Goldfarb and Idani’s method in

14

2.4. ROUTE PREDICTION APPROACHES

quadratic programming, introducing the concept of an island, which is created

when a explicit constraint to the shortest path problem is reached. In addi-

tion they modify the algorithm further in order to test the correlation between

observed data and expected data. [7]

2.4.3 Open Shortest Path First

This link-state routing protocol is most widely used in large enterprise com-

puter networks. It uses shortest paths for routing the packets applying a equal

cost multipath principle. The packets arriving at a given node are ”shipped”

to the next shortest path node, regardless of origin. Each node has a reference

to packets’ shortest path to destination.

There is an obvious parallel between computer and road networks. Therefore

it is important to take in account on which methods are being used to cope

with computer network traffic congestion.

In OSPF when a weight change occurs it has to be broadcast through the

newtwork which may lead to flooding and should be avoided. [15] In our case,

either to decrease computation resources or as a method of map stabilization,

such changes should occur separated by medium intervals. Kennington ad-

dresses the weight setting problem by trying to divide equally the amount of

flow on each arc. By limiting the number of prospective paths and selecting

a pattern of flow he assigns weights, using linear programming, to the arcs

subject to each arcs capacity. To cope with the fact that in this context linear

programming proves to use too much computation time, he tries to restrict by

a set of static rules the paths of the possible solution, trading off accuracy for

fastness, within reasonable boundaries. [22] This optimization approach based

on rule setting may be useful for the fitness function later on.

Using a cutting-edge Mixed Integer Optimization Solver (MILPS) called CPLEX

accompanied and, due to the difficult nature of the wight setting problem, by

developing a set of inequalities and incorporating a branch-and-cut algorithm,

Parma was able to some problem in an as optimal as possible way. [1] In our

work’s scope, the key-part of his study is the branch-and-cut. this algorithm

consists in on arrival to step where the MILPS is a few nodes away to the

destination a search heuristic is utilized and if it is not the best match yest is

cut off from search. This can be viewed has a kind of pruning used mainly in

tree searches.

Very much alike the idea behind this thesis, in Mulyana’s research a Heurisct/-

Gentic Algorithm (HGA) is used. The population is composed of individuals

which on their turn are comprised by chromosomes and each chromosome is

15

CHAPTER 2. STATE-OF-THE-ART

completed by net’s complete set of wights and corresponds to a certain load

distribution computed by Dijkstra’s algorithm. At the begining of each gen-

eration some vectors of high quality are selected to produce better solutions.

The heuristic search is also used to check the best chromosome of a population

and to interfere in the mating process as it mutates chromosomes always guid-

ing them towards the fitness functions. [15] This might shorten the number

of generations needed, therefore improving computation time, but it may also

lead to a local optimal state rather then a absolute one.

To avoid the local optimal solutions, Resende in his research on the OSPF

weight setting problem, introduced a partitioned mating method. The popu-

lation would be divided by 3 categories according to their fitness and in each

iteration one individual form the fittest partition would mate either with the

lower or the lowest fitness partition. Parent selection was also altered as the

same specimen could reproduce multiple times in a single generation, leading

to better offspring, given that the ones in the fittest partition always repro-

duce. Moreover when dealing with the crossover he lessened the probability of

mutation of the genes which came from the elite parents. [29]

16

3
OSPF Genetic Approach

Although this is not the main focus of the thesis there is almost no data in

an urban context to relate our future results to, so in order to measure how

our method compares to others we chose to firstly use it in a more explored

context, which has relevant data available.

Both problems refer to structures which can be represented by graphs and

the main goal is to redistribute the weights of the graph in order to improve

efficiency. The main difference is that the OSPF implies a turn based redistri-

bution and the inverted shortest path does not. So it is safe to assume that

this problem relates in many aspects to the one in hands.

In this chapter we begin by explaining how we are going to use a genetic ap-

proach on the OSPF, followed by setting the basic parameters in our genetic

algorithm, then we explain the genetic algorithm (GA) and finally we present

and discuss the tests results, comparing it to other author’s previous work.

3.1 The ECJ Framework

In order to test evolutionary scenarios a JAVA Framework called Evolutionary

Computation in Java (ECJ) was used. This framework was designed applying

design patterns to ensure its re-usability and adaptability to different scenarios

and with little programming effort.

The above mention adaptability along with the advisor’s advice and its large

documentation collection, were the main reasons supporting the usage of this

framework [25].

17

CHAPTER 3. OSPF GENETIC APPROACH

3.2 How does it work

The top-level object is Evolve and has the sole purpose of initializing a subclass

of EvolutionState. This subclass includes the number of generations to run

and/or the ending condition that maybe set in case we need to stop it when

we reach a ideal individual.

It also comprises other top-level objects which include:

• The Initializer class responsible for creating the initial population;

• The Population class which stores an array of sub-population classes

that in its turn stores an array of individuals. We will only be using a

population with a single sub-population;

• A Evaluator class where our fitness function will be defined;

• A Breeder class which is responsible for the breeding stage;

• An Exchanger, who trading individuals between sub-populations (which

we wont be using);

• The Finisher which cleans up when the system is about to quit, which

wont be used since we will be running it through a batch file and wont

require cleaning up;

• And the Statistics component which gathers produced data and returns

the statistics from tests.

Further information on each component may be found in the ECJ’s documen-

tation on its website [25].

3.3 Using the ECJ

This following set-up was used as a basis to produce the first results displayed

in Figure 4.1 and every test after was a result of tempering with some of this

parameters.

To start setting up our Genetic Algorithm we must configure the Population

Object.

18

3.3. USING THE ECJ

Listing 3.1: Population Parameter Configuration

1 pop.subpops = 1

2 pop.subpop.0.size = 300

3 pop.subpop.0.duplicate-retries = 0

4 pop.subpop.0.species = ec.vector.VectorSpecies

5 pop.subpop.0.species.genome-size = 100

6 pop.subpop.0.species.mutation-prob = 0.05

Listing 3.1 reflects in setting a single sub-population comprised by 300 unique

individuals with a genome size of 100, with a probability of mutation of 0.05.

The ECJ has a breeding mechanism is designated by “breeding pipeline”, which

is not an accurate description as it is represented by a tree. The leaves of the

tree are selection methods, which purpose is selecting individuals from the

current generation. Non-leaf nodes then are breeding operators, which use

Figure 3.1: ECJ’s breeding pipeline-tree

19

CHAPTER 3. OSPF GENETIC APPROACH

individuals/specimens from the child-nodes (originated from the leaves) and

breed them, sending them to a parent node. The root of the tree then returns

the fully bred specimen to be inserted in the new population, as displayed

in Figure 3.1. Breeding parameters may be establish withing the Breeding

sub.class.

Listing 3.2: Breeding Parameter Configuration

1 pop.subpop.0.species.pipe =

2 ec.vector.breed.VectorMutationPipeline

3

4 pop.subpop.0.species.pipe.source.0 =

5 ec.vector.breed.VectorCrossoverPipeline

6

7 pop.subpop.0.species.pipe.source.0.source.0 =

8 ec.select.TournamentSelection

9

10 pop.subpop.0.species.pipe.source.0.source.1 =

11 ec.select.TournamentSelection

The parameter configuration displayed in Listing 3.2, stipulates that the mu-

tation and cross-over will be handled by the mutation and cross-over operating

pipelines accordingly. The last two lines of code stipulate that the selection

will be handled by the tournament selection pipeline. We can establish the

size of the tournament if we wish to do so by setting it in the breeding class

also:

pop.subpop.0.species.pipe.source.0.source.0.size = 3

pop.subpop.0.species.pipe.source.0.source.1.size = 3

We can set two different tournament sizes for each selection operator, but in

this study we will use the same

Although we can run the statistics class anywhere on the algorithm, we chose

only to run it after the program has ended and have it produce the best

individual’s fitness and the execution time, so we can draw conclusions from

it.

3.4 Methodology

Having explained how the parameters for the GA are in ECJ we will put them

in the OSPF context, explain how the tests were executed and draw conclusions

from their analysis.

20

3.4. METHODOLOGY

3.4.1 Genetic Representation

In order to approach the OSPF problem within the scope of this study we must

establish a connection between the genetic representation in the ECJ and the

OSPF pardigm. In the genetic algorithm we consider a population comprised

by specimens which are on its turn comprised by genes. So on the OSPF in a

Gentic Algorithm scenario an individual is the network graph and its genome

contains an array of weights which are the connection from an node to another.

3.4.2 Fitness Function

In order to pass the best individuals to the next generation a way of accessing

if the individual’s fitness is required. In order to achieve this we created a

Target Graph with random connections between them. Our goal will be to

achieve on a similar graph using a Genetic Algorithm. Between generations

the specimen will be compared to the Target Graph and if they are similar

enough they will pass to the next generation. This method is illustrated in the

Listing 3.3.

Listing 3.3: Fitness Function Pseudo-code

1 for (i=0; i<numberOfGenes; i++)

2 weight_difference = abs(specimen_weight[i] - target_weight[i])

3

4 if(weight_difference < 2*target_weight)

5 difference_factor_sum +=(weight_difference * 100)/

target_weight

6 else

7 difference_factor_sum +=100

8

9 difference_factor_sum = weight_sum/numberOfGenes

10

11 similarity_factor = 100 - difference_factor_sum

The function begins by checking if the difference between the specimen and

the target’s weight is over two times the latter. If it is not it calculates a

percent value of the disparity between the specimen and the target, through

a simple cross-multiplication. If the difference is greater than two times the

target’s weight it considers that the disparity between the specimen’s gene and

the target is 100%. Then it calculates an avarage of the disparity factor among

the genes of the current specimen and it subtracts it to 100 converting it into

a parity factor which is used as a fitness value for that specimen.

21

CHAPTER 3. OSPF GENETIC APPROACH

3.4.3 Algorithm

To simulate a load balancing scenario, in an initial phase we started out by

randomly generating a graph composed of 100 connections and its weights,

which will be further addressed as the Target Graph, representing a network

in its perfect load balancing state. We then proceeded to use the Initializer

class to generate a population of graphs with the same number of weights as

the Target Graph to be used as our first generation. This initial generation was

devised randomly using the Initializer class and restrict it’s random function,

so that all genes would have a value between 0 and three times the value of the

corresponding gene on the target graph. These restrictions were set in place

because in this context, weights are positive and if the weight is over 2 times

the target value it is considered to be of a 0 fitness by our fitness function, so

there will be no interest in creating greater disparities.

Now that stage is set, we can initiate the cyclic part of the algorithm. Each

iteration of this part consists in:

• Selection

• Mutation

• Recombination

• New generation

3.5 Retrieved Data

Firstly we need to determine what are the best parameters to be used in our

genetic algorithm so we can achieve the best results possible.

Each of the following plots represent the data obtained from 30 different tests,

all of which underwent the same parameters except the one in focus, but with

different first generations and Target Graphs, in order to produce coherent re-

sults. The fitness value displayed on the following figures in a percent factor of

similarity to the Target Graph, explained on the fitness function section above.

3.5.1 Population Size and Generation Number

As can be observed in the Figure 3.2 the fitness is proportional to the size of

the population but after a size of 300 it increases slowly.

Through the analysis of this figure it can be ascertained that 300 specimen

was the most adequate size of population considering that testing time greatly

22

3.5. RETRIEVED DATA

Figure 3.2: Average fitness of the best individual on the 1000th generation with

the increase of the size of the population

increases after this number. It is also observable that with this population size

we were able to have results fairly close to the desired balanced original graph.

Figure 3.3: Average fitness of the best individual with the increase of the

number of generations

In a similar way we determined that best number of generations considering

fitness and test running time. As it can be observed in Figure 3.3, when we

reach 1000 generations we have achieved a good fitness value and after that

point the improvements are not significant enough to compensate for the extra

testing tine.

23

CHAPTER 3. OSPF GENETIC APPROACH

3.5.2 Tournament Size

This parameter fits in the Selection phase of the algorithm. This type of se-

lection, places a individual against an defined number of individuals and the

fittest among them is chosen to proceed to the next generation.

Figure 3.4: Average fitness of the best individuals with for different tournament

sizes

Has we can see in Figure 3.4 the greater the tournament size the better

fitness is seen since the first generations, which led us to choose a tournament

size of 7 individuals.

3.5.3 Elitism

The Elitism factor is best describe by choosing the top fitness percentage of

individuals and having them directly inserted in the next generation without

recombine their genome with others.

We can predict that the higher the elitism less improvements we will observe

from a generation to the next, as there are more repeating individual and thus

less newer ones.

A high percentage of elitism will translate in less changes from on generation

to the next, which will mean that from a certain percentage of elitism onward,

for the same number of generations the fitness will decrease as the elitism

increases. With a quick observation of Figure 3.5 we can obverse that, as

we predicted when a high percentage of elitism is enforced the fitness value

decreases. It can also be observe that it reaches it’s best value when the elitism

percentage is 25%

24

3.5. RETRIEVED DATA

Figure 3.5: Average fitness of the best individuals with the variation with the

percentage of Elitism

3.5.4 Mutation

In this section we consider how likely it is for a gene be randomly altered. In

the ECJ this randomness factor us applied to each gene, meaning that different

individuals will possibly have distinct amounts of genes mutated.

Figure 3.6: Average fitness of the best individuals with the variation of number

of genes mutated and probability of mutation

As Figure 3.6 portrays we can achieve a better fitness than before, with a

higher the probability of mutation. Mutation factors are commonly introduced

to avoid the production of local extrema in a Genetic Algorithm [21].

25

CHAPTER 3. OSPF GENETIC APPROACH

3.5.5 Recombination

Recombination is the process where two selected individuals from a population

have their genome combined generating a new individual which will continue

on to the next generation.

We will study the advantages of using a 1-point and a 2-point crossover method.

In a 1-point situation there is 1 cutting point on the genome of the parents

resulting in two halves, then the genome is put back together producing the

individual that will be inserted in the next generation.

Figure 3.7: Average fitness of the best individual of each generation using a

1-point and a 2-point crossover

As we can observe in Figure 3.7 it seems there is little impact on the

crossover amount of cutting points. We will use the 1-point default crossover,

as it is the default recombination method in the ECJ.

3.5.6 Analysis

Every test was performed without changing any other variable than the one ex-

plicitly expressed on that subsection. There are endless other tests that could

be performed and we could even cross-test parameters to see how each would

influence the others, but such study wasn’t performed has it is too extensive

to be done in the required time of this thesis.

To better expose the of the best values obtained in every test we produced a

table which holds all parameters which originated the best fitness. All of them

surpassed the original fitness values.

As it is displayed in Figure 3.8 we managed to improve the fitness through

26

3.6. VALIDATION

Figure 3.8: The parameters that produced the best results achieved in every

trial

the several by testing individual parameters of the genetic algorithm. We man-

age to improve our fitness from 92.01 to 94.37%. Though we only achieved a

slight optimization it will translate to be significant when we extend the size

of the network in an urban context later on.

Figure 3.9: Average fitness of the best individual with the increase of the

number of generations before and after optimizing parameter

To enhance the understanding of the extent of the optimization performed

we display in Figure 3.9 a comparison between the fitness values achieve before

and after the optimization.

3.6 Validation

So far we have explained and optimized our algorithm’s approach, order to

validate it we must compare its results to others produced by credited sources.

27

CHAPTER 3. OSPF GENETIC APPROACH

Most of the available data, in the OSPF context is produced solely under

computer network scenarios which elude the focus of this dissertation. Thus

instead of interfacing our algorithm with network simulator we proceeded to

change it in order to mimic the conditions met in a computer network.

The OSPF is mainly used to balance the loads on each connection in order to

improve traffic flow. This means that it is used in a turn-based paradigm, so

that whenever the traffic flow changes or the algorithm sets new route priori-

ties to accommodate the traffic variance.

To parallelize our algorithm with this paradigm we must change the way it

works. Thus firstly we let the algorithm adjust himself to the evaluation func-

tion in the same amount of generations has before, at this stage it is as if

our “network” has stable traffic flow. Then we periodically introduce slight

changes the Target Graph in the evaluation function between generations, to

simulate the modifications in the traffic flow. The rate that we change the

graph it’s similar to the way the OSPF as to adjust to an change in traffic

flow in a computer network context. If there is a rapid variation of the traffic

flow, then is little time to allow the algorithm to set new and better route

priorities to the network, so if we shorten the number of generations between

our changes to the Target Graph of the evaluation we will mimic this process.

Having said that it is important to know that it is not the objective of this

work to improve algorithms or data on this paradigm. We are only aiming

to set a parallel so that we can establish that this algorithm behaves in the

similarly to those applied to the OSPF.

Figure 3.10: Evolution of the average fitness of the best individual with the

passing of generations with different fitness goal changing intervals

28

3.6. VALIDATION

In Figure 3.10 we can observe the different behaviors of the fitness de-

pending on how many generations we give the algorithm to adjust. As it was

predictable less generations you it to adapt to the new desired output (es-

tablished within the evaluation function) progressively worst there will be the

outcome. This observation agrees with the findingss of both Eueung Mulyana

[15] and Luciana Buriol [6].

Mulyana’s research which uses a Hybrid Gentic approach (as reference before)

of the OPSF, portrays this exact behavior, demonstrating that when traffic

congestion rapidly decreases the ability of their algorithm adjust to the new

conditions as observable in Figure 3.10

In this way we were able to validate our algorithm, establishing similarities

with the OSPF, so we can use it later on an attempt to use the Inverted

Shortest Path in a urban context, which is the main scope of this thesis.

29

4
Traffic Simulation

In this chapter we will describe the tool used to simulate traffic and how we

modeled the behavior pattern of the users to simulate their preferences. We will

follow by describing the tests performed and finish off by making predictions

of what results are expected to be observed.

In this way we will put to test our premise, that evolutionary computation may

be used to provide more individually custom made routes, watch the impact

on the user and the whole network system.

4.1 SUMO - Similation of Urban MObility

SUMO is a Open-Source traffic microscopic simulation package designed to

reproduce vehicle movements withing a road network. It was implemented in

C++ on Linux and Windows.

It is by a core module which collects the information about the routes, agents

and network using XML files and then performs a discrete simulation. Other

modules such as NETCONVERT, which plan and format the routes which can

be inputed in the core module later and the TRaCi module which can be used

to control a running simulation using a TCP connection to interface with it.

It comprehends multi-modal simulation modeling not only cars are modeled

but also public transportations such as buses and trains. The most basic

unit in the simulation is considered to be an individual rather than a vehicle.

This individual is defined by its departure time and the route it takes which

comprises several sub routes, which describe a modality.

Despite the atomic unit of the simulator is the human being it does not consider

the pedestrian traffic, which might make it not the most realistic of its are,

but it is safe to assume that it would greatly increase the already significant

large average test time.

31

CHAPTER 4. TRAFFIC SIMULATION

4.1.1 SUMO’s Usage Example

To have a better and detailed understanding of how SUMO was used on this

project we will present a description of its usage.

Figure 4.1: The required input files for running a simulation in SUMO[31]

Figure 4.1 portrays how SUMO handle it’s input data. Before the data

reaches the SUMO’s core it must be processed by the NETCONVERT tool.

This tools is what allows us to import road networks, from different types,

in our case OpenStreetMap, formating them to fit the input system od the

SUMO simulator.

Although there are four XML files on the input of the NETCONVERT the last

two: Link Propriety File and Lane Connection File are optional, being used

the alter default values, such as lane connections and traffic movements. The

traffic demand file contains the agents that will participate in the simulation,

their personal characteristics and routing information. Additionally configura-

tion specifications can be provided in a file or otherwise in the command line

which can comprehend the output style, starting and finishing times, among

other parameters.

In this simulator the network is comprised by one way arcs with their own

set of features such as number of lanes, speed limit and the nodes which they

connect to and from. The nodes must have coordinates and may have differ-

ent types which reflects on how traffic will behave on arriving at that node,

if it will yield to the left; stop; wait for the green light or if it is unregulated,

the latter being the default type. Moreover there can additionally be created

restrictions to certain connections between lanes or routes.

32

4.1. SUMO - SIMILATION OF URBAN MOBILITY

Vehicles are defined on the traffic demand file and possess their own character-

istics, such as departing time; maximum and minimum acceleration; driving

skill and vehicle length.

4.1.2 How to run a simple SUMO simulation

To run a simulation we firstly need to generate three XML files containing

the data which will be used in the simulation. To convert the network data

file so it can be interpreted by the SUMO core we must pass it through the

NETCONEVRT module, we do this in the following way:

netconvert --xml-node-files=lattice.nod.xml--xml-

edge-files=lattice.edg.xml--output-file=lattice.net.xml

netconvert --osm-files= lattice.nod.xml

--output-file= lattice.net.xml

While the first converts node and edge information the second one allows

the conversion from OpenStreetMap files.

Next we need to generate the trips, which tell SUMO the start and end point

of each journey made by the vehicle during the simulation. As in our work the

we will be tempering with the routes and not the trips we will use a random

trip generator provide by SUMO called randomTrips.py. To generate these

random trips we simply type this command in the command line:

Python randomTrips2.py -n lattice/lattice.net.xml

-r lattice/lattice.rou.xml -e 100 -p 1 -B 1

In this particular case we are generating a set of trips which are comprised by

100 agents(-B), every simulation step (-p), until the 100th step (-e).

As mention before we can produce a configuration file for the simulation. That

configure file must follow the XML syntax displayed and can have many cus-

tomizable options. In Listings 4.1 is a simple example of a configuration file

which expresses our input, output and the port where the TRaCi server will

be ready for us to connect and follow the simulation as it unfolds.

33

CHAPTER 4. TRAFFIC SIMULATION

Listing 4.1: XML Configuration File

1 <configuration>

2 <input>

3 <net-file value="lattice.net.xml"/>

4 <route-files value="lattice.rou.xml"/>

5 </input>

6 <output>

7 <tripinfo value="lattice.out.tripinfo.xml"/>

8 </output>

9 <traci_server>

10 <remote-port value="8814"/>

11 </traci_server>

12 </configuration>

After readying all the files the simulation can begin using a command such

as this:

python cosmoController.py

../simulations/lattice/lattice.sumo.cfg

The “.sumo.cfg” extension defines the XML file which we have beforehand ex-

emplified, which connects all the generated files and tell SUMO which they

are.

For more information regarding simulation running and generating the neces-

sary files to do so is explained with further detail on SUMO’s website and its

wiki [31].

4.2 Connecting our algorithm with sumo

Now that we establish how we can run a simulation we will explain how we

will link it with our routing algorithm. We will also clarify how will our al-

gorithm behave and set up a basis of comparison to our findings. To actively

affect a running simulation we must access it through the TRaCi module. To

interface with the SUMO using the TRAcI took advantage of an implementa-

tion performed by José Capela’s[10], also in the COSMO project, which was

programed in python and modified it to serve our purpose. Two routing algo-

rithms were tested.

The first algorithm simply finds the shortest path between origin and destina-

tion, which we will use later on the establish a comparison.

The second one we implemented our GA, explained in the last chapter. The

Initializer on our GA is prepared by setting the size of the genome correspond-

ing to the number of arcs/edges in each city. Then we randomly generates

34

4.2. CONNECTING OUR ALGORITHM WITH SUMO

the values of each gene wich in the simulator correspond to distance. Each

individual will then be outputted into a file which will then be parsed by the

interface we altered which will process this data and then send it to sumo so

that a next simulation that is executed produces the average trip time which

will be used in the Evaluator class which will rate the individuals according to

their trip time.

35

5
Tests and Data Analysis

In this chapter we will explained the reasons which led us to pursuit this test

course, detailing its execution and data recovered. Then we will analyze the

data produced by the test of best individual generated by our G.A. and discuss

its impact of the algorithm in the vehicular mobility in an urban context.

5.1 Test Planning

As there is a randomness factor within the algorithm (in the mutation stage)

all tests were performed only 10 times with the same parameters to ensured

a relatively small standard deviation and coherency among the results and

guarantee that testing time was within reasonable limits.

5.1.1 Non-real scenarios

It is important to see how the algorithm measures up in diverse conditions

and so we experimented with standard road simulation scenarios and then real

data.

Figure 5.1: Lattice Network Figure 5.2: Radial and Ring Network

37

CHAPTER 5. TESTS AND DATA ANALYSIS

The Lattice network which can be observed in Figure 5.1 corresponds to a

stereotypical typology of road networks called “grid”. This type of city plan

can be observe since the Romans which used it extensively to plan their cities

and can now be observed in almost every capital city in the United States

[18]. The Radial and Ring road typology in portrayed in Figure 5.2 is more

commonly seen in old European cities, as the city grew larger a broader road

was built around it to improve traffic flow, which would be later encapsulated

by the city it self [3].

We used both this stereotypical scenarios as a way of testing our hypothesis

in less realistic scenario absent real ones.

5.1.2 Real-Scenarios

To try to make our results as close to those that would be obtained in real life

testing we representation from OpenStreetMap of the city of Coimbra shown

in Figure 5.3 and imported it as explained before to the simulator.

Figure 5.3: Radial and Ring Network

In figure 5.3 we can observe the generated network in SUMO’s GUI which is

accessed by the TRaCi. The main challenge here was to work around the large

testing times and bad network representations which the NETCONVERTER

mis-formated, to do so we elminated them, in order to have a workable rep-

resentation of the city of Coimbra without deadlocks or unreal junctions. We

know that this infers less realism to the simulation but otherwise there would

be no viable data. This was a very extenuating task but no other solution was

available.

38

5.2. ANALYSIS

Figure 5.4: An example of a removed junction due to a deadlock.

In figure 5.4 we can see a example of these deadlocks which made the

output data useless as it either did not the test finish as there are still trips to

be concluded or sent trip times and road congestions values through the roof

on the rare occasion the deadlock was inexplicably broken.

5.2 Analysis

In this section all the tests were only repeated 10 times, as the test’s execution

duration is overwhelming. Each test was set perform 1000 trips, which origin

and destination were generated through the randomTrips.py.

39

CHAPTER 5. TESTS AND DATA ANALYSIS

Figure 5.5: This figure illustrates the results obtained through the routing of

the default algorithm and the routing produced by our own.

Figure 5.5 displays the results produced by the SUMO simulator, when

taken into account the best individual of the last generation, produced by the

G.A. we developed and explained earlier.

5.2.1 Lattice Scenario

As we can observe in Figure 5.5, there is a slight difference between both the

average trip and length of the both the untempered algorithm and our GA.

Although implementation of the GA produced a better occupancy average,

but the maximum occupancy was of around 31% which is worse the default

routing algorithm which only as 23%.

5.2.2 Radial and Ring Scenario

In the radial and ring scenario although improvement a little better than latter,

concerning average trip length, trip time and occupancy, it still produces a

worse maximum occupancy than the default algorithm.

5.2.3 Real Scenario

In this scenario we found the results somewhat better than in the previous

ones. When we compare the values from the default algorithm and our own

we are able that the G.A. was able to produce better results than the default

algorithm, with a greater difference than in the previous scenarios. This might

be due to the existence of more routing options. The maximum occupancy

is 30% which is as bad as the default algorithm’s but all studied variables:

average trip time; average trip length and average road occupancy have in a

small way, but further than on the other scenarios.

40

5.2. ANALYSIS

5.2.4 General Analysis

When set out to explore this approach we were expecting to make a significant

impact on the average trip time and length and the road occupancy on the road

network. Instead we were only able to improve it slightly. We consider that

the results were not what we expected but we find that there is much that can

be improved with enough time and tweaking our algorithm. Surprisingly the

best improvements were observe in the real scenario which can also indicate

that this approach works better on a more complex network than on a simple

stereotypical academic one. We can also conclude that in the non-real scenarios

although the algorithm produces slight general improvements it does so by

creating a point during the simulation where traffic congestion is a necessary

evil to later ease the traffic flow.

41

6
Conclusions

For the past decades attempts to cope with the increase of traffic flow within

cities have not serve it right as road congestion is still a part of the dayly life

in big cities. Route generator does not account for the human factor, as it only

targets a driver to the theoretical shortest path, not having into to account

the human factory of the equation.

Facing the road choosing process from the human perspective can be very

thought as a multi-variable complex system of the Inverted Shorted Problem.

Being NP-Hard, it’s no viable to make a combinatorial exhaustive search,

thereby to get around it we designed a evolutionary approach.

We aimed explore the hypotheses that and an evolutionary approach taken

upon the urban mobility paradigm would offer solutions to improve traffic

routing and thus decrease congestion rates within road networks.

Our main focus was to include in our Evolutionary approach the Inverted

Shortest Path Problem, in a way that we would alter the perception of the road

network. We did so by firstly addressing it in a computer network context and

established similarities between our genetic algorithm and other approaches to

the OSPF in a computer network context. Then using SUMO and an real-time

interface designed in python we were able to put to test the Genetic Algorithm

introducing changes in road perception and extracted data from it.

Although the algorithm did not measure up to the expectations, having not

revealed an significant advantage in its usage, it is still important to mention

that it can be later used for basis further research. Some examples of further

work are:

• Implementation of a different fitness function that would rely on CO2

emissions instead of average trip time or road congestion;

• Rerouting only a percentage of the population;

43

CHAPTER 6. CONCLUSIONS

• Design a real-time implementation;

• Optimize the algorithm further by cross testing the tested values among

themselves or adding new evolution parameters;

• Design a tag system to classify what roads would prioritized to decrease

the traffic threshold and take it in to account on the fitness function.

As a final thought, this approach needs a large collection of vehicle informa-

tion to be enforced in real life. This might be a problem as it raises many

privacy, because of the sensitivy of the general public to release personal data.

Although we know that privacy has been decreasingly being a subject of im-

portance considering the amount of information people are willing to share on

social networks and similar systems, there are always some people that wont

give up their right to be private. This algorithm will only work if we can

obtain the most accurate vehicular position and route. So we hope that one

day privacy will still be preserved and data can be shared without causing any

concerns.

44

Bibliography

[1] S. A. Amandeep Parmar and J. Sokol. An integer programming approach

to the ospf weight setting problem. 2006.

[2] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Pro-

gramming : An Introduction : On the Automatic Evolution of Computer

Programs and Its Applications (The Morgan Kaufmann Series in Artifi-

cial Intelligence). Morgan Kaufmann Publishers, Nov. 1997.

[3] R. Bartlett. The Making of Europe. Conquest, Colonization and Cultural

Change 950-1350.

[4] J. Botzheim, C. Cabrita, L. T. Kóczy, and A. E. Ruano. Fuzzy rule extrac-

tion by bacterial memetic algorithms. Int. J. Intell. Syst., 24(3):312–339,

Mar. 2009.

[5] J. Botzheim, P. Földesi, and L. T. Kóczy. Solution for fuzzy road transport

traveling salesman problem using eugenic bacterial memetic algorithm. In

J. P. Carvalho, D. Dubois, U. Kaymak, and J. M. da Costa Sousa, editors,

IFSA/EUSFLAT Conf., pages 1667–1672, 2009.

[6] L. S. Buriol, M. G. C. Resende, C. C. Ribeiro, Mikkel, and L. S. B. U.

Campinas. A memetic algorithm for ospf routing, 2002.

[7] D. Burton. On the inverse shortest path problem, 1993.

[8] T. Cui and D. S. Hochbaum. Complexity of some inverse shortest path

lengths problems. Netw., 56(1):20–29, Aug. 2010.

[9] K. De Jong. Evolutionary computation: a unified approach. In GECCO

’08: Proceedings of the 2008 GECCO conference companion on Genetic

and evolutionary computation, pages 2245–2258, New York, NY, USA,

2008. ACM.

[10] J. A. C. Dias. Using error to optimize the city, 2012.

[11] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1:269–271, 1959.

[12] A. Eiben and J. Smith. Introduction to Evolutionary Computing. 2003.

[13] D. Eppstein and M. T. Goodrich. Studying (non-planar) road networks

through an algorithmic lens. CoRR, abs/0808.3694, 2008.

45

BIBLIOGRAPHY

[14] J. Esser and M. Schreckenberg. Microscopic simulation of urban traffic

based on cellular automata, 1997.

[15] U. K. Eueung Mulyana. A hybrid genetic algorithm approach for

ospfweight setting problem.

[16] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in

improved network optimization algorithms. J. ACM, 34(3):596–615, July

1987.

[17] R. Gakenheimer. Urban mobility in the developing world. Transportation

Research Part A: Policy and Practice, 33(7-8):671 – 689, 1999.

[18] M. Gelernter. A history of American architecture: buildings in their cul-

tural and technological context.

[19] R. He, Y. Li, and X. Feng. Models and genetic algorithms for the optimal

stochastic riding routes in urban public transportation and its applica-

tions. In Natural Computation, 2007. ICNC 2007. Third International

Conference on, volume 5, pages 431 –435, aug. 2007.

[20] J. H. Holland. Adaptation in Natural and Artificial Systems: An In-

troductory Analysis with Applications to Biology, Control and Artificial

Intelligence. MIT Press, Cambridge, MA, USA, 1992.

[21] M. A. . M. C. K. Tesch. Genetic algorithm search for stent design im-

provements.

[22] J. Kennington. An arc-path model for ospf weight setting problem, 2009.

[23] G. Kotushevski and K. A. Hawick. A review of traffic simulation software.

Technical Report CSTN-095, Computer Science, Massey University, Al-

bany, North Shore 102-904, Auckland, New Zealand, 2009.

[24] K. Kuratowski. Sur le Probleme des Courbes Gauches en Topologie. Fun-

damenta Mathematicae, 15:271–283, 1930.

[25] T. E. O. Manual. The ecj owner’s manual, 2010.

[26] K. T. J. W. Philip Burrows, Kate Reed. Efficient traffic routing using

acom, 2009.

[27] C. G. Prato. Route choice modeling: Past, present and future research

directions. Journal of Choice Modelling, 2(1):65–100, 2009.

46

BIBLIOGRAPHY

[28] N. T. Ratrout and S. M. Rahman. A comparative analysis of currently

used microscopic and macroscopic traffic simulation software, 2008.

[29] M. G. C. Resende. A memetic algorithm for ospf routing. 2002.

[30] N. Shahidi, H. Esmaeilzadeh, M. Abdollahi, and C. Lucas. Memetic al-

gorithm based path planning for a mobile robot. In A. Okatan, editor,

International Conference on Computational Intelligence, ICCI 2004, De-

cember 17-19, 2004, Istanbul, Turkey, Proceedings, pages 56–59. Interna-

tional Computational Intelligence Society, 2004.

[31] SUMO. Import tutorials. http://sumo-sim.org/wiki/Main_

Page, 2013. Last visited in 12 June 2013.

[32] S. Tahilyani. A new genetic algorithm based lane-by-pass approach for

smooth traffic flow on road networks, 2012.

[33] R. J. Trudeau. Introduction to Graph Theory. Dover Publications, New

York, 1993.

[34] G. Xue, Y. Luo, J. Yu, and M. Li. A novel vehicular location prediction

based on mobility patterns for routing in urban vanet. EURASIP Journal

on Wireless Communications and Networking, 2012(1):222, 2012.

[35] F. B. Zhan. Three fastest shortest path algorithms on real road networks:

Data structures and procedures, 1997.

47

