

CloudAid2

Daniel Alberto Guedes Barrigas
barrigas@student.dei.uc.pt

Advisors:

Dr. Jorge Cardoso
Dra. Catarina Ferreira da Silva
Dr. Paulo Melo

Master’s Degree in Computer Science
Dissertation
Final Report

CloudAid2

Abstract

Since its appearance, cloud services and its market have grown remarkably.

Companies have begun to consider cloud services as a real solution to their problems

although, with the market growth and the appearance of an enormous quantity of cloud

service providers (CSP), when one is confronted with the situation where he/she has to

choose a Cloud service, discovering an ideal solution is not an easy task. Questions like

“Which is the best service for my situation?” or “I know what I need but there’s too many

available options, which one should I choose?” are hard to solve since it’s no longer a choice

solely based on the price of a service. Organizations nowadays have many different types

of requirements that need to be met so they can offer a product that matches the

consumer’s needs. It becomes an even harder problem to solve when one is in need of a

system composed of multiple services, each with different requirements.

In this thesis I present an augmented version of the CloudAid1 prototype, a

recommendation system that provides a suitable aggregation of cloud services given a set

of requirements. This new version of the prototype aims at overcoming the limitations of

the previous prototype, recurring to new Multi-Criteria Decision Methods (ELECTRE III,

PROMETHEE I and SMAA-2) for higher accuracy and realism on the ordering of the

decision problem’s results and, a new graph-theory based aggregation algorithm to deal

with incomparability/incomplete information between alternatives.

It also presents the Linked USDL Pricing API, a Java API that provides an abstraction

layer between developers and the semantic models (Linked USDL core and Linked USDL

pricing) thus, promoting and improving their usability. Combining the API with

scrapping/parsing techniques enabled the creation of the ServiceGatherer, a simple

application that supports the CloudAid2 prototype by providing semantic descriptions, of

real services, for processing.

Keywords: Cloud services, Multi-Criteria Decision Methods, Multi-Criteria Decision
Analysis, Cloud service aggregation, cloud services recommendation, Linked USDL service
description, Dynamic pricing

CloudAid2

CloudAid2

Contents

1. Introduction .. 5

1.1 Scope ... 5

1.2 Motivation ... 5

1.3 Problem description... 5

1.4 CloudAid – Approach and techniques... 6

1.5 Objectives and Challenges ... 7

1.6 Document structure ... 8

2. Project Management ... 9

3. State of the art ... 14

4. CloudAid1 .. 19

4.1 Overall Architecture .. 19

4.2 The Controller and the User Interface (UI) ... 20

4.2.1 User Interface .. 20

4.2.2 Controller ... 22

4.3 Search Module .. 24

4.3 Decision Module ... 25

4.3.1 Data Normalization ... 26

4.3.2 XML Encoding of Multi-Criteria Decision Aid Data 27

4.3.3 Decision Methods .. 27

 4.4.3.1 Simple Additive Weight .. 28

 4.4.3.2 Analytic Hierarchic Process ... 28

4.4 Aggregation Module ... 28

4.5.1 Admissibility test ... 29

4.5.2 Aggregated Solutions Algorithms ... 29

5. CloudAid2 .. 31

5.1 Linked USDL Pricing API .. 31

5.1.1. Overview .. 31

5.1.2. Linked USDL pricing API Java Models ... 32

5.1.3. Java to Triples and Vice-Versa ... 34

 5.1.3.1. From Java to Triples .. 35

 5.1.3.2. From Triples to Java .. 37

5.1.4. Dynamic Pricing .. 37

5.1.5. Linked USDL Pricing model validation.. 38

5.2 CloudAid2 – Service Gatherer ... 40

CloudAid2

5.3 CloudAid2 – Prototype ... 43

5.3.1. Controller ... 43

 5.3.1.1. Client-Server Communication .. 44

 5.3.1.2. Execution flow ... 46

5.3.2. Search Module ... 47

5.3.3. Decision Module .. 50

 5.3.3.1. Decision Deck, XML Encoding of Multi-Criteria Decision Aid Data . 52

 5.3.3.2. SOAP encapsulation and MCDM workflow .. 53

 5.3.3.3. Results processing ... 57

5.3.4. Aggregation Module .. 64

 5.3.4.1. Admissibility Test ... 68

5.3.5. Graphical User Interface ... 69

 5.3.5.1. Use Cases .. 70

 5.3.5.2. Resulting GUI and Mockups comparison .. 71

6. Testing ... 80

6.1. Functional testing ... 80

6.2. Search Module testing .. 83

6.3. Decision Module testing... 84

6.4. Aggregation algorithm testing .. 86

7. Conclusions .. 93

7.1. Summary ... 93

7.2. Findings ... 94

7.3. Future Work.. 95

Appendix A – CloudAid2 Requirements .. 99

Appendix B – CloudAid1 ... 107

Appendix C – Linked USDL Pricing API Class Diagram .. 127

Appendix D – Service Modeling use cases .. 129

Appendix E – ServiceTemplate1’s exclusive requirements SPARQL Query 134

Appendix F – PROMETHEE1’s step1 message exchange ... 139

References ... 155

CloudAid2

1

List of Figures

Fig. 1- Royce’s final model ... 9
Fig. 2 - Initial Gantt Diagram .. 11
Fig. 3 - Mid-term Gantt Diagram ... 11
Fig. 4 - Final Gantt Diagram .. 12
Fig. 5 - Repository/Search Module development .. 12
Fig. 6 - Decision Module development ... 13
Fig. 7 - Aggregation Module development .. 13
Fig. 8 - Graphic Interface development .. 13
Fig. 9 – CloudAid1 – High Level Architecture .. 20
Fig. 10 - CloudAid1 - CSA Menu ... 21
Fig. 11 - CloudAid1 - Service Template Menu ... 21
Fig. 12 - CloudAid1 - New Service Template ... 21
Fig. 13 - CloudAid1 - Controller’s flow of execution ... 22
Fig. 14 - CloudAid1 - Model-View Communication ... 24
Fig. 15 - CloudAid1 - Search Module ... 25
Fig. 16 - CloudAid1 - Decision Module Architectural Flow .. 26
Fig. 17 - CloudAid1 - File Communication .. 27
Fig. 18 - CloudAid1 - Aggregated Solution Example (Zi are alternatives with rank i on list Z
= {A,B,C}) ... 28
Fig. 19 - CloudAid1 - Aggregation Module Architectural Flow .. 30
Fig. 20 - Pricing API Java models .. 32
Fig. 21 - Simple external communication sequence diagram ... 45
Fig. 22 - CloudAid2’s execution flow ... 47
Fig. 23 - Offering object encapsulation .. 49
Fig. 24 - ELECTRE III workflow ... 54
Fig. 25 - PROMETHEE I workflow .. 54
Fig. 26 - SMAA-2 workflow ... 54
Fig. 27 - SAW workflow .. 54
Fig. 28 - Preference Graph example .. 57
Fig. 29 - GNode encapsulation ... 58
Fig. 30 - Aggregated Solution Example .. 64
Fig. 31 - GUI’s use cases .. 70
Fig. 32 - Login/Register panel mockup .. 72
Fig. 33 - Login/Register panel GUI... 72
Fig. 34 - Main Panel mockup .. 73
Fig. 35 - Main Panel GUI ... 73
Fig. 36 - Adding a quantitative requirement mockup .. 74
Fig. 37 - Adding a quantitative requirement GUI ... 74
Fig. 38 - Adding a qualitative requirement mockup ... 75
Fig. 39 - Adding a qualitative requirement GUI .. 75
Fig. 40 - Adding a criterion mockup .. 76
Fig. 41 - Adding a criterion GUI ... 76
Fig. 42 - Defining pricing variables values mockup .. 77
Fig. 43 - Defining pricing variables values GUI ... 77
Fig. 44 - Define qualitative criterion’s values distances mockup .. 78
Fig. 45 - Define qualitative criterion’s values distances GUI ... 78
Fig. 46 - Results panel mockup .. 79
Fig. 47 - Results panel GUI... 79
Fig. 48 - Test Case RF1 .. 82
Fig. 49 - ServiceTemplate1’s preference graph generated by the prototype (PROMETHEE I)
 .. 85

file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948399
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948400
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948401
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948402
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948403
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948404
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948405
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948406
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948407
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948408
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948409
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948410
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948411
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948412
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948413
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948414
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948415
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948416
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948416
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948417
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948418
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948419
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948420
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948421
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948422
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948423
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948424
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948425
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948426
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948427
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948428
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948429
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948430
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948431
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948432
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948433
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948434
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948435
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948436
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948437
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948438
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948439
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948440
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948441
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948442
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948443
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948444
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948445
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948446
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948447
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948447

CloudAid2

2

Fig. 50 - ServiceTemplate1’s preference graph generated by diviz (PROMETHEE I) 85
Fig. 51 - ServiceTemplate2’s preference graph generated by the prototype (PROMETHEE I)
 .. 87
Fig. 52 - First three levels of the aggregated solution’s tree from CSA Example 87
Fig. 53 - ST’s-Alts relation to the number of visited nodes .. 91
Fig. 54 - ST’s-Alts relation to the time required to visit every node .. 91
Fig. 55 – ST’s=6, Alts=8 behavior for varying values of the global price requirement 93

file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948448
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948449
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948449
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948450
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948451
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948452
file:///C:/Users/daniel/Dropbox/CloudAid2/CloudAid2-FinalReport/CloudAid2_FinalReport_v1.9.docx%23_Toc391948453

CloudAid2

3

List of Tables

Table 1 - Modeling use cases .. 39
Table 2 - Arsys Dedicated Servers features ... 41
Table 3 - Amazon’s service offerings features .. 42
Table 4 - Controller’s methods and Java models for external communication 46
Table 5 - Repository’s Usage Variables .. 50
Table 6 - XMCDAConverter methods .. 53
Table 7 - DecisionDeckSOAPClient Java class methods .. 55
Table 8 - SMAA-2 result example ... 60
Table 9 - SMAA-2 semi-ordered list example .. 60
Table 10 - SAW results example ... 61
Table 11 - Table.10 semi-ordered list description .. 62
Table 12 - XMCDA conversion and preference graph construction... 63
Table 13 - Functional Requirements List .. 81
Table 14 - CSA testing example ... 83
Table 15 - CSA Example tree traversal ... 88
Table 16 - Aggregation algorithm testing parameters .. 89
Table 17 - Aggregation algorithm performance... 89
Table 18 - Aggregation Algorithm full performance results ... 90
Table 19 - Global Requirement's Value variation for the pair ST=6,Alt=8.................................. 92

CloudAid2

4

CloudAid2

5

1. Introduction

This chapter provides an overall perspective of the project. It’s divided in 6 sections:

section 1.1 and 1.2 start by situating our project and explaining the main reasons for its

creation. Section 1.3 describes the posed problem; section 1.4 presents the approach

adopted on [6, 7] to tackle the challenge of recommending an adequate aggregation of

cloud services. Section 1.5 presents the main goals of this thesis and finally, on section 1.6,

I present a description of the structure of this document.

1.1 Scope

With the rise of the popularity of cloud services, companies have begun to consider

outsourcing their IT systems to reduce the complexity and cost of their business. The

increasing popularity of such approach lead to the appearance of new service providers

and consequently, an increase on the number of available cloud services in the market.

This high level of diversity leads, in turn, to the appearance of new service functionalities,

the pay-per-use models and many other features that companies need to make their

product stand out from the competition and, at the same time, go towards the user’s needs

[9]. Consequently, when a decision maker is confronted with the situation of deciding

which service or services to choose, he/she has great difficulty assessing the pros and cons

of each possible alternative.

This is where the CloudAid comes in. The CloudAid1 prototype was developed with the

purpose of aiding the decision maker with this kind of situation. It’s a recommendation

system that makes use of semantic web, Multi-Criteria Decision Analysis (MCDA) and

algorithmic techniques to assist the decision maker, recommending aggregations of cloud

services based on his preferences.

1.2 Motivation

According to a study made by IBM [10], organizations are gaining a competitive

advantage by integrating cloud services in their businesses. They’re reporting almost

double revenue growth and nearly 2.5 times higher profit than companies that are still

considering or reluctant about cloud computing. Furthermore, 25% of the companies saw

a reduction in IT costs, 55% saw an increase on efficiency and 49% an improvement in

employee mobility.

Considering the advantages that come with the integration of cloud services and the

complexity involved in the decision making process, we hope to deliver these tools and

methods as a mean of aiding decision makers dealing with this situation.

Given the current state of the prototype, several changes are required for it to evolve

and become a step closer to the state of a product that can be delivered with confidence to

the people who need it. Achieving this goal is the main objective of this thesis.

1.3 Problem description

As the number of cloud services and cloud providers increases, manually browsing

the web looking for services that match our needs and then aggregating said services will

become almost impossible. For example, imagine that you’re the Chief Technology Officer

CloudAid2

6

(CTO) of a relatively new company and that you’re responsible for deciding/choosing the

components for your company’s main product: an online trading platform where users can

buy/sell/trade any item they want. You’ll need 5 different classes of cloud services: a Load

Balancer, a Database, a Back-up Recovery system, a payment gateway and a Server. The

first step is to elaborate a set of pre-defined requirements for each class. Following,

manually browse the web looking for cloud services (based on the pre-defined

requirements) that can be used to create and host the application. Once you’ve found a list

of possible cloud services, the third step consists in identifying the best services from the

list of services, using the decision maker’s preferences (e.g.: security is more important

than the cost or, back-up reliability is more important than processing power). Finally, the

fourth step consists in generating possible aggregation of services (e.g.: using a

spreadsheet application like Excel to organize and analyze the data) and, discarding

aggregations that don’t meet the necessary requirements. This is a manual, time

consuming and prone to errors approach. To address this issue, the CloudAid1 prototype

was developed.

The CloudAid1 prototype is the work of a previous thesis [6, 7] whose main objective

was to provide a set of tools to assist the decision maker choosing a set cloud services. By

gathering the details of his preferences and the requirements of the services he’s looking

for, the CloudAid1 prototype is capable of recommending an adequate aggregation of

cloud services. While the results obtained by the CloudAid1 prototype are promising,

there are several aspects that need to be improved. As such, this thesis objective is to

augment the current CloudAid1 prototype, adding several new features to its modules and

improving some of its current functionalities.

1.4 CloudAid – Approach and techniques

The CloudAid1 prototype applies techniques from several areas to achieve the desired

aggregations of cloud services. This section’s purpose is to give an introduction to the key

elements of the CloudAid1 prototype and the main technologies supporting it.

There are three principle aspects that are the key components of the prototype [9],

each supported by one or more techniques/technologies:

1. Service description – Tackles the problem of how to model and structure the

cloud services data. To achieve this, Eng. Jorge Araújo adopted Linked USDL [37], a

semantic service description language based in USDL [38, 39]. It’s the most

comprehensive approach to support the description of real-world services and

supports the creation of structured descriptions covering the most relevant

characteristics, ranging from technical aspects, to socio-economic concerns or even

legal issues [17]. Due to the lack of support in the description of cloud services

using a semantic web approach, the need for a taxonomy to map the most common

characteristics of cloud services arose. Thus, on [6, 7] was created the Cloud

Taxonomy, a domain specific ontology which captures cloud service characteristics

was developed. Recurring to the Cloud Taxonomy and to the Linked USDL, [6, and

7] successfully describes and standardizes cloud services information.

2. Service selection – Achieved the desired service description, it’s necessary to

decide which of the services, based on a set of defined requirements, have more

http://www.linked-usdl.org/

CloudAid2

7

relevance to the decision maker. Service selection is directly related with this

problem. To provide an automated method to answer this question, [6, and 7]

opted for a Multi-Criteria Decision Analysis approach (MCDA). MCDA is a discipline

that explicitly considers multiple criteria in decision-making environments which,

in our case, fits perfectly. Multi-Criteria Decision Methods (MCDM) were

integrated into the prototype to obtain ordered lists of alternatives (on the new

version of the prototype, these lists are replaced with graphs); these lists are later

used to create the desired aggregation of services.

3. Service aggregation – This subject is related to the creation of the desired

aggregation of services. Taking advantage of the ranked lists created by the MCDM,

Eng. Jorge Araújo applied the notion of combinatory tree to generate all possible

combinations and developed two algorithms (section 4.5.2) based on breadth-first

search and branch-and-bound techniques to transverse the tree and create the set

of admissible aggregated solutions [7,9]. After studying and analyzing these

algorithms, a new aggregation algorithm was developed for this version of the

prototype (Section 5).

1.5 Objectives and Challenges

This internship proposes challenges at both technical and research levels. It

represents the transition from an academic environment into a professional stage and my

insertion on a team whose purpose is to provide a set of tools to aid decision makers

choosing a proper aggregation of cloud services. It requires an adaptive and responsive

attitude from the intern to the problems at hand and the adoption of an engineering

perspective to smooth/monitor the progression of the project.

Given the broad scope of the project, the objectives were classified as either Primary

or Secondary objectives. Primary objectives are the main focus of the project and where

highest effort/time was spent. Objectives classified as Primary possess a higher degree of

interest from a scientific point of view. Secondary objectives, on the other hand, are meant

to support the Primary objectives or improve the current state of the prototype.

 This section presents the main objectives and challenges of this thesis:

1. [Primary] – Dynamic price calculation: Development of a friendly Java API

that enables the use of the Linked USDL core and Linked USDL pricing (created

on [6, 7]) models programmatically.

a. Challenge – Detailed analysis of multiple pricing models adopted by

different service providers and perform a conceptual/practical

validation of both model and API by modeling said services (and their

pricing methods).

2. [Primary] – New aggregation algorithm: The results of the new MCDM are

different from those used on the earlier version of the prototype (which used

ranked lists). The new MCDM results consider the possibility of

incomparability/incomplete information between alternatives thus, a new

algorithm needs to be developed to deal with this new characteristic. Section

CloudAid2

8

5.3.3.3 provides a detailed description of these new results and Section 5.4

describes the new aggregation algorithm.

a. Challenge – Study and analysis of the old aggregation algorithms and

the problem at hand. Based on this analysis, develop and test a new

aggregation algorithm.

3. [Secondary] – Develop a friendly and ergonomic visual graphic interface: The

current graphic interface of the CloudAid1 prototype is textual. It’s intended to

apply ergonomic design guidelines to create a visual graphic interface that’ll

facilitate the interaction and usability of the prototype.

a. Challenge – Study an adequate technology to help me create a proper

graphic interface for the prototype and apply the necessary changes to

the current architecture of the CloudAid1 system.

4. [Secondary] – Apply scrape/parsing techniques to build a cloud services

repository: The repository created on [6, 7] is but a semi-real representation of

cloud services. The version of the prototype has a new service repository

created with data extracted from real Cloud services.

a. Challenge – Study the provider’s services/websites in order to create a

scrapper/JSON Parser that extracts and structures the service’s

information using the Linked USDL Pricing API [50].

5. [Secondary] – Integration of new multi-criteria decision methods: Add new

multi-criteria decision methods that consider incomplete

information/incomparability.

a. Challenge – Study and inclusion of new MCDM into the current

prototype.

This concludes the introduction of the work and what’s expected from it. Next, the

structure of this document is presented.

1.6 Document structure

In this section I present a brief description of the structure of the document and what

is discussed/presented on each of its chapters.

 Chapter 1 – Introduction to the internship, its scope, motivation and main

objectives.

 Chapter 2 – Presents the software engineering methodologies followed to

manage and control the development of the product.

 Chapter 3 – Reviews related literature, comparing and contrasting it to our

work.

 Chapter 4 – Presents a brief analysis of the CloudAid1 prototype.

 Chapter 5 – Describes in detail the new functionalities/modifications of the

CloudAid2 prototype, how they were implemented and introduces other

initiatives that emerged during the prototype’s development.

CloudAid2

9

Fig. 1- Royce’s final model

 Chapter 6 – Presents the testing devised to verify the validity of the

CloudAid2 prototype.

 Chapter 7 – Makes a summary of this thesis work, discussing overall

findings, future development and research potential.

2. Project Management

Project management is a discipline that centers on planning, motivating, controlling

and organize resources to achieve specific goals [18]. To manage and control the

development of the new prototype, it was necessary to adopt a project management

methodology.

This section handles the description of the adopted project management methodology

(section 2.1), presents the team members (section 2.2) and the devised working schedule

(section 2.3).

2.1 Methodology

 The adoption of a project management methodology is imperative. Since I had the

liberty to choose whatever methodology I felt more comfortable with and given the

proposed project schedule specified on [19], the decision fell upon the Royce’s final model

[20, 40].

 Waterfall model is sequential process, adopted and modified from the construction

model of production companies, which progresses steadily through the following stages:

Analysis, Design, Implementation/Production, Testing/Verification and finally,

Maintenance. Royce’s final model (Fig.1) is an intended improvement of the initial

waterfall model which illustrates that feedback can lead to modifications on the work

done on previous stages. For example, feedback from the testing phase can lead back to

the design phase due to some flaws encountered on the design of the product [20, 40]. It’s

also recommended to try to involve the customer as much as possible, keeping them

informed on the progress of the project and other relevant information [20]. As such, and

given that the team members are also the clients on this project, regular meetings were

scheduled, more precisely, at least one per week. In each meeting, we discussed the work

done throughout the week, findings and debated solutions to the problems at hand. After

each meeting, a report about what was discussed, decisions, and other relevant

information, was written. This report also included the tasks to be done on the following

week(s).

CloudAid2

10

2.2 Team

 This section presents the members that compose the team responsible for the

development of the CloudAid2 project:

 Daniel Alberto Guedes Barrigas – Intern responsible for the development

of the CloudAid2 prototype.

 Prof. Jorge Cardoso – Is Associate Professor and joined the Information

System Group at the University of Coimbra in 2009. He’s a Guest Professor

at the Karlsruhe Institute of Technology (KIT). CloudAid2 Advisor,

responsible for the validation of the product as well as the documentation

produced along with it.

 Prof. Catarina Ferreira da Silva – Is Associate Professor at the Computer

Science Department of the Institute of Technology of the Claude Bernard

Lyon 1 University, and joined the Service Oriented Computing team of the

Research Center of Images and Intelligent Information Systems (France) in

2012. She’s also a member of the Information System Group of the Centre

for Informatics and Systems of the University of Coimbra (Portugal) since

2009. CloudAid2 Advisor, responsible for the validation of the product as

well as the documentation produced along with it.

 Prof. Paulo Melo – Is Associate Professor at the Faculty of Economics,

University of Coimbra where he obtained his PhD in Management Science.

He has a Bachelor in Computer Science and a Master’s Degree in Systems

and Automation. CloudAid2 Advisor, responsible for the validation of the

product as well as the documentation produced along with it.

2.3 Planning

 To keep track of the progress of the project and maintain a proper perspective on

the work ahead, a working plan was designed. To help me design the plan, I recurred to a

Gantt diagram.

 This section presents three versions of the Gantt diagram: an initial plan (Fig.2), a

mid-term plan (Fig.3) and a final plan (Fig.4). The later version derived from the initial

plan which was modified as the project moved forward, my knowledge about the

CloudAid1 (and related topics) deepened and, as the development of the new prototype

progressed.

CloudAid2

11

Fig. 2 - Initial Gantt Diagram

Fig. 3 - Mid-term Gantt Diagram

CloudAid2

12

Fig. 5 - Repository/Search Module development

Fig. 4 - Final Gantt Diagram

As shown in the figures, more specific tasks either replaced the old ones or new

ones were added, leading to some deviations from the original planning. This is

consequence of the study performed along the way or, from the progressive development

of the new prototype and the challenges that emerged from it.

 The study, analysis and development of the prototype was split among the

components of the CloudAid prototype (Fig.4):

 Repository creation/Search Module

 Decision Module

 Aggregation Module

 Graphic Interface

To simplify the navigation and understanding of the plan, a different Gant Diagram

describing the tasks involved on the development of each component was created. Fig.5,

Fig.6, Fig.7 and Fig.8 show the planning for each them, respectively.

CloudAid2

13

Fig. 7 - Aggregation Module development

Fig. 8 - Graphic Interface development

Fig. 6 - Decision Module development

The most significant change to the initial plan was due to the inclusion of the

Linked USDL Pricing API. Considering the amount of time I had and the time necessary to

develop the API, some of the deadlines had to be postponed in order to meet the objectives

of this “side” project. Of course, minor deviations from the plan occurred due to the

appearance of challenges not only related to the API but also, to the remaining modules of

the prototype. While these deviations did happen, focusing on the critical points of the

modules and keeping the project’s requirements/objectives in mind, I managed to

complete the entire development cycle successfully.

CloudAid2

14

3. State of the art

In this section I present a review of literature related to the challenges presented by

the CloudAid project. I’ll compare and contrast these different approaches with our work,

identifying similarities and differences between them, or, I’ll describe how their work

contributed to the improvement/development of the CloudAid2/Linked USDL Pricing API.

The remaining of this section will cover three key scopes of the project:

 Cloud pricing

 Service selection

 Service aggregation

Further comparisons and different approaches about service selection/aggregation

can be seen on [6, 7, and 9].

 Cloud pricing

The current Cloud market’s pricing scene is complex. Pricing methods vary

between providers, each with its own characteristics, advantages and disadvantages for

both consumer and provider. While every provider has its own pricing method for the

services they provide, one can find similarities between them; similarities that can be used

to classify/categorize the pricing methods and as such, achieve some degree of

coherence/order on the topic.

The authors of [43, 44, 45, and 47] describe some of the most common similarities

between pricing methods. Exploiting those similarities, they achieve a similar

classification for the pricing methods.

According to [44, 45], every existing method can either be: a Usage/Consumption

based method where the customer is charged only by what he/she consumed; a

Subscription based method where the user pays a fee (usually monthly) to use the service

over a certain period of time or a Market based method where the cost of the service

varies according to the status of the market: high demand translates into an increase on

the cost of the service whereas, low demand translates into a decrease on the cost said

service.

On [43, 70], while the name of the categories under which the methods are

supposed to belong to is different, the meaning of each of those categories is very similar

to those presented on [44, 45]. According to them, each of the existing pricing methods can

be placed under one of the three following categories: Elastic pricing methods, where the

user is charged depending on what he/she used (similar to the Usage/Consumption

categories identified on [44, 45]); Fixed pricing methods where consumers are charged a

fixed fee per month (or any other period) independently of the usage (similar to the

Subscription category) and finally, Spot pricing methods where the price of the service

depends on the current state of the market/provider’s cloud platform (identical to the

Market based category).

The issue addressed on [46] is different from the ones addressed by the literature

presented so far. It introduces and compares two pricing methods: Instance Based

methods where the customer chooses the amount of resources he/she needs and then is

billed by the hour, and, Reserved Pool methods. It describes the situations in which the

CloudAid2

15

customer is more likely to get a better cost/value ratio by choosing one over the other. It

captured my interest since it presents a new pricing method that wasn’t addressed on the

literature presented so far: Reserved Pool pricing. Contrary to the Usage/Fixed pricing

methods, with this pricing method the user is buying quantities of resources instead of

pre-defined(or custom made) virtual machines. Using these resources, the customer is

able to create any number of virtual machines as long as the quantity of resources

allocated to the created virtual machines (VM) doesn’t exceeds the quantity of bought

resources.

Gathering this information, and reading the work performed on [48] by

451Research.com [49], provides a decent picture on the current state of the cloud’s pricing

scene. From their detailed survey, a taxonomy that classifies every existing method under

one of eight possible categories was created: PrePaid VM Access/ Recurrent PrePaid VM

Access where the user needs to pre-pay the service in order to use it (Recurrent meaning

that the customer commits to pre-paying the cost of the service in arrears, over a certain

period of time, instead of pre-paying the full amount); On-Demand where the user is

simply charged for what she/he consumed; Reserved Instances which is similar to On-

Demand but requires the up-front payment of an initial fee from the customer (in some

ways, this fee works as a proof of commitment from the user); Spot Pricing which is the

same as the Market-based methods presented earlier; PrePaid Credit access/Recurrent

PrePaid Credit which are very similar to the PrePaid VM Access method but, the payment

made by the client is transformed into a secondary currency from where usage costs are

later debited from; and finally, Recurring Resource Pooling which has already been

introduced by [46].

Aside from the 8 category taxonomy, they also presented four different types of

bundling. Bundling refers to the practice of combining several products into a single unit

and sell that unit for a single price. In any bundled offering, the customer needs to choose

from a number of pre-configured bundles whereas, on any unbundled offering, the

customer will be charged for every single billable resource. They identified four main

bundle types: Fully Bundled, where the customer needs to choose from a number of

virtual machines with predefined quantities of CPU, memory, disk and bandwidth

(however, bandwidth is usually not chargeable); VM Bundled, where the consumer needs

to choose from a number of virtual machines with predefined quantities of CPU, memory

and disk, Bandwidth is charged separately; Processor Bundled where customers need to

choose from a number of virtual machines with predefined quantities of CPU and memory,

Bandwidth and disk are charged separately; and finally, Unbundled where CPU, memory,

disk and bandwidth are all charged separately and their quantities are decided by the

customer.

Given the volatile nature of the Cloud scene, and in order to ensure that my work

addresses the most recent state of the Cloud pricing scene, I decided to narrow down the

scope of my research to a maximum of two years old since introducing a pricing method

that is no longer in use would bring little value when compared to the introduction and

modeling of the ones currently in use. From the work presented on this section, the most

detailed and complete work was the survey performed by 451Research.com [49] on [48],

The Pricing CODEX. They address and complement the pricing methods described by

other literature, giving the current cloud pricing scene a structure.

CloudAid2

16

 Service selection

Service selection is the process of selecting the best service from a pool of services; the

best being the one that better satisfies the needs of the customer/consumer.

M. Sun, T. Zang, X. Xu, and R. Wang [5] present an innovative consumer-centered

selection method based on Analytic Hierarchy Process (AHP) theory. They take advantage

of the AHP theory for quantifying qualitative or semi-quantitative service parameters into

weight values, which will later be used for the service ranking calculations. The ranking

procedure is based on NxN matrixes (one for each defined criteria), where N is the number

of alternatives, that represent pair-wise comparisons between alternatives. Combining

these matrixes with other calculated parameters, it’s possible to calculate a final weight for

each possible alternative. It’s important to note that the ranking method is also based on

the AHP theory. Through this weight value they can identify the alternative that better

satisfies the needs of the consumer. An interesting topic is the support for a scenario

where the decision maker isn’t a single entity but a group with multiple and different

preferences. In this case, weights are attributed to each entity of the group and the final

results will take into account every preference of each element of the group.

On [3], Hussain and Rehman provide a comparative study involving IaaS (in this case,

thirteen different IaaS services) and use MCDM techniques to select the best one based on

their performance values (gathered and supplied by a third party monitoring service,

Cloud Harmony Compute Unit) over 5 pre-defined criteria. The main objective of their

work is to prove that different MCDM may lead to different results over the same input of

data. To prove this, they based their study on two different types of MCDM: Multi-Attribute

Utility Theory methods (MAUT) and Outranking methods.

This work is mainly focused on result analysis, they don’t concern themselves with

service description/representation nor do they consider an interaction with a possible

decision maker, they solely focus on the MCDM components and their results analysis.

Seven different methods were studied: Min-Max method, Max-Min method, Compromise

Programming, TOPSIS method, ELECTRE II, PROMETHEE I and AHP. This work proves

worthwhile since it uses a scenario with real data to prove, as was expected, that different

MCDM can lead to different conclusions. The CloudAid2 prototype will support different

types of MCDM thus, it’s important to be aware of this issue since the user should also be

aware of this possibility.

The authors of [4] bring a new and interesting approach to the selection of cloud

services. Instead of using the average or the real-time performance of a cloud service (over

C criteria) to determine its ranking, they take into consideration their dynamic nature

which results from elasticity and on-demand provision of computing resources. Using a

third party tool to capture services information on C criteria (for this study they

considered CPU, Memory, I/O operations and Cost) over different periods of time,

applying the TOPSIS method to rank the services on each time slot and by finally

combining the results, they’re able to provide a final ranking of the services. This approach

allows for a more reliable cloud service selection than the one achieved following the

common approach (taking only in consideration current QoS values), by taking into

consideration temporal variations of the QoS parameters.

On [2], a more direct and personalized approach is considered. They use a MACBETH

based model to help the decision maker (DM) select the best cloud service based on a set

of evaluation criteria and verify its validity on a real life scenario. The model is divided in

CloudAid2

17

three steps: first, they structure their data model by identifying the evaluation criteria for

the problem at hand and asking the DM to define “neutral” and “good” references for each

criteria. Secondly, they use the MACBETH semantic categories to judge the differences in

attractiveness between the two levels of performance (neutral and good). Afterwards, they

build a value function for each criterion and use the MACBETH weighing procedure to

assess the weights for each of the criteria. Finally, when every criteria related data has

been set, the third step begins: inserting the performance data of each service and use the

MACBETH method to calculate the ranking of the services.

While this approach proves useful and reliable, it requires a high level of interaction

with the decision maker. The CloudAid2 and CloudAid1 system aim to diminish this heavy

interaction, providing a simple and automatized way to select and aggregate cloud

services.

The work on [1] uses a different approach to deal with unquantifiable evaluation

criteria of a multi-criteria decision problem. They designed a 9 steps model based on

combined fuzzy theory and a modified version of VIKOR method, which deals with various

types of incommensurable and conflicting criteria, to provide a valid ranking of the

services. This enables the selection of a cloud service using different types of

unquantifiable criteria, which we can relate to the qualitative criteria in our work.

While the usage of a fuzzy model proves to be a reliable option, this work follows a

different approach: by defining a numerical distance between linguistic terms (e.g.:

numerical distance between the concepts “Very High” and “High”) it is equally capable of

handling unquantifiable criteria.

 Service Aggregation

Service aggregation is a relatively new concept thus, a low degree of information is to

be expected. Despite this lack of information, it’s heavily related to an older concept:

service composition [41, 42]. Both aim at creating new services by putting together

smaller parts (i.e. services) but, while service composition imposes a partial order of

execution and hard technical constrains (i.e. matching input and outputs or dealing with

behavior exceptions), service aggregation relaxes these condition(s) and focuses on softer

technical aspects. For example, suppose that the customer is looking for a combination of

services with a total cost lower than y, or for the possible combinations between a

database, a back-up service and a load balancer where at least two of the three need to be

located in Tokyo. Service aggregation will take into consideration these soft constraints in

order to create the desired aggregation of services, discarding every other possible

combination that does not comply with them [9].

Regarding the composition of services, [1] describes the challenges and difficulties

that arise when trying to create an automated aggregation of services, pointing out that

each of these usually possesses a complex description. Description that might recur to

provider specific concepts to describe its attributes, increasing even further the

complexity of service discovery/selection and composition.

Considering this issue, [2, 3] focus on approaches developed to facilitate and

promote an automated aggregation of services.

On [3], Debajyoti Mukhopadhyay and Archana Chougule present twelve approaches

created in order to tackle the problem of service discovery. These methodologies are

CloudAid2

18

based on existing technologies from several fields, like semantic web or information

retrieval, and use/create new data standards (standards like WSDL/UDDI or creating

domain specific ontologies) to deal with the highly ambiguous syntax used to describe the

services and, at the same time, optimize search results.

Going a step further, [2] presents a reference model for a fully/semi-full automated

composition of services, based on WSDL1, WS-BPEL 2and WS-CDL3. Basically, the reference

model is composed of three key entities: the Web Service Orchestrator (WSO), responsible

for managing the execution of the application in-house; the Web Service (WS) (agents

designed to perform specific job(s)), and the Web Service Choreographer (WSC), which is

in charge of monitoring the interaction behaviors between different WSO’s (WSO’s from

different organizations for example). WSO’s communicate with the WSC via their

observable views. The standards WSDL and WS-BPEL are used to describe and formalize

the communications between each of the components while WS-CDL is used to describe

the Web Service Choreographer. Regarding the actual composition of the services, it

describes two of the most conventional/used approaches when dealing with this kind of

situation/problem (Petri-Nets and Process algebra) and how they can be combined with

the reference model.

This thesis proposes a similar solution to the ones described on the literature

presented so far: it adopts a mature and comprehensive description languages to reduce

the complexity and ambiguity of cloud service descriptions and combines the usage of

multi-criteria decision methods with an efficient aggregation algorithm, to select and

create (in an automatized way) suitable aggregation of services for the customer.

The two aggregation algorithms developed on [9] are a good approach for the problem

at hand however, both algorithms aren’t capable of dealing with

incomparability/incomplete information between alternatives because they rely on an

ordered list (best to worst) of alternatives to perform the aggregations. Having an ordered

list of alternatives is not always possible. In fact, in multi-criteria decision problems, the

higher the number of criteria involved in the problem, the higher is the probability of

being presented with a semi-ordered list rather than an ordered one.

The algorithm I propose in this thesis relies on graph theory to structure preferences

between alternatives and tackle situations where it’s impossible to tell which alternative is

better than the other (meaning they’re incomparable). Using this approach, the algorithm

successfully overcomes this issue thus, achieving more realistic results.

As mentioned earlier, further discussion and analysis of other different approaches

can be found on [6, 7].

1 http://www.w3.org/TR/wsdl
2 http://en.wikipedia.org/wiki/Business_Process_Execution_Language#WS-BPEL_2.0
3 http://www.w3.org/TR/ws-cdl-10/

http://en.wikipedia.org/wiki/Business_Process_Execution_Language#WS-BPEL_2.0

CloudAid2

19

4. CloudAid1

In this chapter I present an overview of the CloudAid1 prototype. I’ll present each

element of the system, their objective, how they work and interact with each other. This is

but a brief explanation of the prototype to provide an overall idea of how the previous

version of the prototype works; a more detailed description about it can be found on

Appendix B.

Section 4.1 provides an overall view of the system and its components. From section

4.2 to section 4.6 I’ll describe each of these component with further detail, presenting the

reason why they were created and their objective. This analysis of the CloudAid1 was

supported by [6, 7] and a personal study of the prototype.

4.1 Overall Architecture

The CloudAid1 application was built using a Model-View-Controller (MVC) approach.

With the help of Fig.9, which was created using the Fundamental Modeling Concepts (FMC)

notation, we can visualize a high level representation of the internal components of the

system.

FMC complements the software-description achieved by UML, providing a set of tools

to describe the system’s structures, communication channels and internal flow [21]. It

enables the description of architectural components leaving the software specification to

UML. It’s important to note that several diagrams presented on this document don’t follow

a strict FMC notation in order to provide a higher degree of detail on the system’s

architecture (while it’s not strictly followed they’re heavily based on it).

As we can see on Fig.9, the CloudAid1 prototype is composed of by five modules that

are coordinated by a sixth model (the Controller) whose main objective is to monitor and

control the flow of execution, making sure that each of the components receives the data

they need to do their job. I’ll make a brief introduction for each of the components to

provide a global idea of how the system works from the beginning. A more detailed

description of the modules will be presented on the following sections.

 UI – This component is the ‘View’ on the MVC model. It’s the interface

between the user and the application, responsible for capturing/presenting

information from/to the user.

 Controller – ‘Controller’ in the MVC model. It’s responsible for mediating

information transactions between the UI and the rest of the components. It’s

also responsible for initializing and controlling the system and its execution.

 Composite Service Architecture (CSA) [7] Evaluator – Its part of the

‘Model’ in the MVC model. Responsible for evaluating and preparing the CSA

data. The data is inserted by the user thus, some measures must be taken in

order to guarantee that there are no problems with it.

CloudAid2

20

Fig. 9 – CloudAid1 – High Level Architecture

 Search Module – It’s part of the ‘Model’ in the MVC model. Responsible for

retrieving alternatives that match the user’s requirements from the

TripleStore.

 Decision Module – Component from the ‘Model’ in the MVC model.

Responsible for ranking the alternatives of certain Service Template.

 Aggregation Module – It’s part of the ‘Model’ in the MVC model.

Responsible for computing the aggregated solutions. Aggregated solutions

are composed by one alternative from each Service Template.

4.2 The Controller and the User Interface (UI)

4.2.1 User Interface

UI stands for User Interface and as the name suggests, it’s the point of interaction

between the user and the application. It’s where the user inserts the data required by the

application and defines the characteristics he desires for his composite service

aggregation (CSA). We can categorize the data required by the application on four topics:

 Service Template – Represents an element of the aggregated solution.

 Requirements – Features of the solution desired by the decision maker.

 Criteria – Parameters used to evaluate the alternatives.

 Preferences – The decision maker’s preferences regarding the criteria.

CloudAid2

21

Fig. 10 - CloudAid1 - CSA Menu

Fig. 11 - CloudAid1 - Service Template Menu

Fig. 12 - CloudAid1 - New Service Template

Let’s see some screenshots of the current UI and how this data is captured by the

CloudAid1 prototype.

Fig.10 shows the menu that is first presented to the user. From here, the user is

capable of creating new Service Templates (option 1), global Requirements (option 2) and

global Criteria (option 3). Fig.11 shows the prompted menu when the user chooses to

create a new Service Template; from here, the user can insert create its respective

Requirements and Criteria. Fig.12 presents the creation of a new Service Template.

CloudAid2

22

Fig. 13 - CloudAid1 - Controller’s flow of execution

4.2.2 Controller

The Controller is the main component of the CloudAid 1 prototype. It’s responsible for

managing the whole system, making sure that every other component receives the data

they need and, at the same time, it controls the flow of the execution process. Fig.13

presents a diagram, created using an informal notation, that’ll help us get a clearer image

of the Controller’s objective and the flow of the execution of the CloudAid1 application.

As we can see in the picture, this module acts a data dispatcher for the other modules

in a sequential order. After one module has done its job, the flow of execution goes back to

the controller which, will initiate the next step in the process. Knowing this, and after a

brief analysis of the Fig.13, we can identify the core steps of the execution process:

1. Fetch CSA from the user

2. Evaluate CSA – CSA Evaluator

3. Search for alternatives that match the user’s needs – Search Module

4. Rank the alternatives of each Service Template – Decision Module

5. Create aggregated solutions – Aggregation Module

It’s important to note that every module has its own execution process that will be

explained on the following sections but for now, the main objective of this section is to

provide an overall perspective of the system and how it works.

CloudAid2

23

Controlling the flow of execution and acting as a data dispatcher for the other
modules is but one of the four tasks the controller is in charge of:

1. Environment setup

2. Choose Decision Method

3. Manage the flow of execution

4. Establish a link of communication between the UI and the other modules.

Task 2 and 3 are sequential while task 1 is executed only once and task 4 is executed

at the same time as tasks 2 and 3.

 Environment setup – This task is responsible for instantiating the rest of

the system’s components that is, it “creates” the UI followed by the Search

Module (Section 4.3), then the Decision Module (Section 4.4) and finally the

Aggregation Module (Section 4.5).

 Choose Decision Method – The CloudAid1 prototype supports two

different Multi-Criteria Decision Methods: Simple-Additive-Weighting (SAW)

and Analytic Hierarchic Process (AHP). To decide which of the methods

should be used a simple question is asked to the user: “Are you comfortable

giving weight to the criteria?” In case he answers ‘y’ SAW will be used

otherwise, AHP will be used.

 Manage flow of execution – Once each of the modules has been

instantiated (task 1) and the decision method has been chosen (task 2), the

application can start its main objective: find aggregated solutions of cloud

services that go towards the user’s needs. This process starts by evaluating

the CSA created by the user (performed by the CSAEvaluator module). If it

succeeds, the Controller can start the next stage: Search for alternatives. This

step is performed by the Search Module and it searches alternatives for each

ServiceTemplate on the CSA. Once the search module finishes retrieving the

alternatives, it’s necessary to rank them according to the defined criteria.

This step is performed by the Decision Module. When every Service

Templates has its corresponding alternatives ranked, the final step of the

application begins: compute the aggregated solutions. This final step is

performed by the Aggregation Module.

 Link of communication – This is the final responsibility of the controller.

The Controller is the communication link between the different modules of

the system and, between the UI and the application. Every time a module

needs to interact with the user, it calls the Controller who in turn invokes the

proper functionality on the UI to communicate with the user. When the user

finishes his interaction, the controller is then in charge of transferring the

inserted information back to the module. Fig.14 shows how this request is

processed at an architectural level.

CloudAid2

24

Fig. 14 - CloudAid1 - Model-View Communication

4.3 Search Module

This module is responsible for finding alternatives that match the decision maker

preferences. It performs three major tasks:

a. Divide the exclusive requirements from the non-exclusive requirements

b. SPARQL Query construction.

c. Fetch matching alternatives based on the exclusive requirements

d. Enrich the found alternatives with the service offering attributes

The reason a distinction between exclusive and non-exclusive requirements is made is

because of the impact they have on the results. Exclusive requirements are those that

actually work as a “filter” on the search mechanism since these represent conditions

imposed by the decision maker, alternatives that don’t obey them will be discarded.

Once we have every ServiceOffering resource, we can move to the last step of the

module: resource conversion. To ease the following steps of the CloudAid, the information

from the semantic model is “loaded” into Java classes which, are later passed onto the

following modules. The class responsible for the TTL/RDF to Java conversion is the

ResourceConverter class. Using the returned resources from the earlier search on the

TripleStore, it is able to extract the remaining information (its features and their

corresponding values) related to the ServiceOffering from the semantic model.

 Once these steps have been completed the module’s job is done and, all that is left

to do is to return the results to the Controller in order to proceed with the flow of

execution.

Fig.15 presents the module’s execution flow from an architectural point of view,

showing in an ordered way the steps described on this chapter.

CloudAid2

25

Fig. 15 - CloudAid1 - Search Module

4.3 Decision Module

After retrieving the Service Template’s alternatives, it’s time to rank them according

to the criteria defined by the Decision Maker. Here is where the Decision Module comes

in. It retrieves the criteria, the user’s preferences and asks other relevant information to

produce a valid ranking list of the alternatives for a particular service template. This list

has the form of a typical ranked list where the head of the list is the best alternative and

the last one the worst. This ranking is accomplished using Multi-Criteria Decision Methods

(MCDM) that receive data inserted by the Decision Maker, process it, and return the

desired ranked list.

To get a correct result from the MCDM, it’s necessary to normalize the data (section

4.3.1) and then, transform it into XMCDA4 format (section 4.3.2). Once the problem is in

XMCDA format, it’s published into a pre-defined directory. External applications that are

monitoring the directory will fetch the files that are newly written, calculate the ranking

of the alternatives and publish the results on another pre-defined directory. This

directory is, in turn, monitored by the Decision Module. It will fetch them as soon as

they’re created and map the results to Java Objects (section 4.3.3).

We can split the Decision Module in 5 steps:

1. Data normalization – Normalization is needed since data from the Service

Template can belong to different intervals, adding undesirable noise and

behaviors to the methods calculations.

2. Express the problem in XMCDA format – After normalizing the data, the

problem should be described in XMCDA format (section 4.4.2).

3. Publish XMCDA file – Once it’s described in XMCDA, it’s written into a file on

a pre-defined directory for the external MCDM application.

4. Read and Transform the Results – After publishing the problem, the module

will monitor a pre-defined directory waiting for the results to be published.

Once they’re published, they’ll be read and transformed into Java objects.

4 http://www.decision-deck.org/xmcda/

CloudAid2

26

Fig. 16 - CloudAid1 - Decision Module Architectural Flow

5. Obtain and Sort the ranked List – The results from the MCDM may not be

ordered correctly thus, before returning the results onto the Controller, a

descending ordering of the list is performed.

Fig.16 describes the complete flow of execution of the Decision Module.

4.3.1 Data Normalization

The data normalization process consists in a series of mathematical calculations

done by the Java class Normalizer to map the data (related to the defined criteria) on the

current Service Template into the [0, 1] interval. Let’s see an example, imagine we have a

Service Template S with two alternatives A1 and A2, A1 with attributes [Price = 40,

MemorySize = 1024] and A2 with [Price = 130, MemorySize = 4096]. Now suppose the

criterions have the following weights: Price = 5 and MemorySize = 2. With this example we

can see that the criteria MemorySize, despite having a lower weight than Price, will

overwhelm the influence of Price on the calculations [7]. With the help of the Normalizer

Java class we can avoid this type of situations.

CloudAid2

27

Fig. 17 - CloudAid1 - File Communication

4.3.2 XML Encoding of Multi-Criteria Decision Aid Data

XML Multi-Criteria Decision Analysis (XMCDA) is an XML based data standard

developed by Decision Deck [28, 29] to describe Multi-Criteria Decision problems [23]. A

Java library called J-XMCDA is also provided by the Decision Deck to help us create and

manipulate information described in XMCDA. Every XMCDA related operation is

performed by the Java class XMCDAConverter including operations related to the reading

and writing of files.

4.3.3 Decision Methods

CloudAid1 uses external applications to solve the multi-criteria decision problem. To

establish a communication link between the applications and the prototype, a file based

approach was proposed. When in need of the external applications, a file is written on a

directory monitored by them. The results obtained by the external applications are

transmitted back to the prototype using the same approach but through a different

directory. Fig.17 shows a visual representation of these transactions. To assist in this

process, the FileChecker class was created. This class listens to events on the specified

directories and calls the corresponding methods to handle them.

The CloudAid1 prototype supports two different Multi-Criteria Decision Methods:

Simple Additive Weight (SAW) and the Analytic Hierarchic Process (AHP).

CloudAid2

28

Fig. 18 - CloudAid1 - Aggregated Solution Example (Zi are alternatives with rank i on
list Z = {A,B,C})

4.4.3.1 Simple Additive Weight

SAW is a simple multi-criteria decision method that relies on criterion weighting to

determine the ranking of the alternatives [24]. Criterion weighting consists in the

definition of an importance degree for every criterion in the Service Template. These

values are at the core of the method and therefore are mandatory.

4.4.3.2 Analytic Hierarchic Process

Contrary to the SAW method, the AHP method is based on comparisons between data

in order to extract the importance weights and perform the necessary calculations to

derive the desired ranked list [25]. When I refer to comparisons, I’m referring to

something like “Alternative A1 is better than Alternative A2” or “Criterion C1 is more

important than Criterion C2”.

4.4 Aggregation Module

Once the decision module finishes ranking the alternatives of each Service Template,

we move to the Aggregation Module. This is the final step performed by the CloudAid1

prototype; after this step, a ranked list of admissible aggregated solutions that match the

Decision Maker’s requirements will be passed onto the Controller.

The purpose of the aggregation module is to exploit the ranked list of alternatives of

each Service Template to create possible aggregations of services. It’s necessary to point

out that each aggregated solution is composed by one alternative from each Service

Template. Let’s consider an example: assume we have a CSA composed by three Service

Template’s A, B, C and their corresponding ranked lists of alternatives RLA, RLB, RLC. If we

denote Ai has an alternative from RLA with rank i, a possible aggregated solution would

be: A1B1C1. Fig.18 presents a visual representation of this example.

The Java class responsible for computing these aggregated solutions is the

Combinations class. It implements two algorithms that compute all the possible

Admissible Aggregated Solutions based on the ranked lists of each Service Template. One

CloudAid2

29

version of the algorithm is able to deal with incomparability between alternatives (on a

very limited scale) while the other doesn’t consider this particular yet important aspect

of multi-criteria decision problems. I’ll cover this topic with further detail on section

4.5.2. Admissible Aggregated Solutions are solutions that match the Decision Maker

global constraints or, in other words, requirements that were defined at the CSA level.

Section 4.5.1 will provide a better description on this subject.

4.5.1 Admissibility test

When considering every possible combination of alternatives from each Service

Template, we must keep in mind that not every combination might be a valid one. For an

aggregated solution to be considered valid, and therefore to be considered as possibility

for the final solution list, needs to pass a series of tests first; these series of tests are

performed by the Java class AggChecker.

These tests depend on the global constraints (requirements) set by the decision

maker when creating his CSA. Consider an example where we have two alternatives for

two different Service Template’s; a possible global requirement might be that every

alternative needs to be compatible with Linux OS. If any alternative fails to support this

type of operating system, the solutions fails the test and will be considered inadmissible.

On CloudAid1, the only restriction supported is the global price; when the Decision

Maker defines a global Price requirement he’s telling us that every aggregated solution’s

cost needs to be inferior or equal to some value set by him.

4.5.2 Aggregated Solutions Algorithms

As mentioned earlier, an aggregated solution is composed of one alternative from

each Service Template on the CSA. Following this line of thought, we can see that the

number of possible aggregated solutions will grow exponentially depending on the

number of Service Templates and corresponding alternatives.

To avoid this issue, the algorithms take advantage of the sorted ranked lists

provided by the Decision Module. Let’s assume we have three Service Templates A, B, C,

with their corresponding sorted ranked lists of alternatives. Let’s denote Ai as an

alternative from Service Template A with rank i. With the knowledge that Ai > Ak , i < k

(alternative a is better than alternative b if a is ranked above b) we can say that any

aggregated solution AiBkCl > AoBpCq if i,k,l < o,p,q. In this case, AjBkCl dominates AoBpCq

hence, there’s no need test AoBpCq since its overall performance value will be lower.

Combining this knowledge with combinatory tree theory, the algorithms generate

all possible combinations. They’re based on the Breadth-First Search algorithm together

with the notion of the Branch and Bound technique in order to transverse the tree of

solutions and at the same minimize the computational weight of the problem. As

mentioned earlier, there’s two versions of the aggregation algorithm: algorithm1 and

algorithm2. In algorithm1, every time a new possible solution is discovered, it simply

compare it with the already found admissible solutions to check for dominance. If there’s

dominance found between the node being tested and an already found solution, this node

can be discarded along with its children. However, if no dominance is found, the node is

added to the list of admissible solutions and its children discarded.

CloudAid2

30

Fig. 19 - CloudAid1 - Aggregation Module Architectural Flow

Algorithm2 is a bit different; by considering the possibility of incomparability

between the alternatives (also known as a partial ordered list) it no longer assumes that

when an admissible aggregated solution is found its children can be discarded. It checks

for incomparability between the node and its children; if any children is incomparable

with its father (which is a solution that passed the admissibility test), it’ll be place into the

queue for later testing.

Fig.19 shows the flow of execution of the Aggregation Module on an architectural level.

In a summarized way, these are the main steps of the Aggregation Module:

1. Get Service Templates weights – After receiving the CSA from the Controller,

it’s necessary to retrieve the importance weights from the Service Templates in

order to compare and rank the aggregated solutions. There are two ways of

getting these weights: the Decision Maker explicitly defines them when

creating his CSA or, use JAHP and the Decision Make’s preferences in order to

calculate the Service Template weights.

2. Find admissible aggregated solutions – This is the main objective of the

module: compute the possible aggregated solutions. Every time a new solution

is found, the admissibility test is applied to verify if the solution meets the

requirements necessary to enter the list of admissible solutions.

3. Find the best Aggregated Solution – When every solution has been found it

ranks the solutions using the importance weights and the SAW method.

CloudAid2

31

5. CloudAid2

This chapter provides a detailed view of the new version of the prototype I

implemented, the CloudAid2, and other two side projects (the Linked USDL Pricing API

and the Service Gatherer) that were essential for its development.

I begin by introducing the Linked USDL Pricing API [53] and explaining the reasons

behinds its creations (Section 5.1). Following, on section 5.2, I introduce the Service

Gatherer, an application that is responsible for feeding the prototype’s TripleStore5. On

section 5.3, I describe in detail the modifications and additions to the CloudAid1 prototype

and finally, on section 5.4 I present the CloudAid2 graphical user interface (GUI).

5.1 Linked USDL Pricing API

A major objective of this work was to introduce the Linked USDL pricing model

developed on [9] by Eng. Jorge Araújo. While the model seemed to be a good approach to

tackle the Cloud pricing scene, there wasn’t anything alongside it to help others describe

services, using the Linked USDL Pricing and Linked USDL core models, in a simple way.

Besides this lack of support, the model itself lacked some form of validation; I had to make

sure that this model was flexible enough to model different service offerings from different

service providers. To solve these issues, two solutions were proposed:

 Develop a friendly Java API to help developers describe services using the

Linked USDL Core [17] and Linked USDL Pricing model [9] (Section 5.1.1).

 Take advantage of the taxonomy developed on [47] and of the Linked USDL

Pricing API to perform a conceptual validation the Linked USDL pricing model

(Section 5.1.2) and, at the same time, validate the Linked USDL Pricing API’s

functionalities.

On the next sections, I’ll describe the Linked USDL pricing API, how it works and the

technologies supporting it.

5.1.1. Overview

The development of the pricing API was firstly suggested by Dr. Jorge Cardoso has a

follow up of an idea that had emerged throughout the development of the CloudAid1. The

idea was to work with Eng. Jorge Araújo in order to develop a friendly Java API that would

help developers design applications/systems able to structure services information using

the Linked USDL core and Linked USDL pricing models in a simple way. This was a good

opportunity to work alongside a professional and a good approach to solve the lack of

support and usability of the Linked USDL pricing model. This way, we’d be able to reduce

the gap between developers and the Linked USDL pricing model, providing a mean to

programmatically interact with it.

After some consideration about the amount of time and effort it would be required to

develop the API and, comparing its advantages with its disadvantages, I decided to move

forward with the idea. Thus, I and Eng. Jorge Araújo worked together throughout the next

month in order to develop the first version of the Linked USDL Pricing API, which can be

followed on [50].

5 http://www.w3.org/2001/sw/wiki/Category:Triple_Store

CloudAid2

32

Fig. 20 - Pricing API Java models

To use the Linked USDL Pricing API, the developer just needs to follow the following

steps (a detailed explanation of the model is available on [6,7]):

1. Import the Linked USDL Pricing API into his Java project.

2. Import, instantiate and populate the Java Models with the corresponding data.

3. After populating the models, call the writeToModel() function to create the

semantic description of the service.

 On the following sections, I’ll explain in detail how the pricing API and its

functionalities work. Section 5.1.2 starts by explaining the Java models and their role on

the API, followed by Section 5.1.3 where I’ll explain the mapping between the Java models

and their Triple representation. On section 5.1.4 I’ll explain the reasoning behind the

dynamic price calculation and how it can be achieved using the API. Finally, on Section

5.1.5, I’ll describe the conceptual validation of the Linked USDL pricing model and how it

was executed with the Linked USDL pricing API.

5.1.2. Linked USDL pricing API Java Models

The Linked USDL Pricing API is composed of eleven main Java models. These eleven

models are at its core and are the containers for the services information. Looking at

Fig.20, we can see how these models relate to each other; this diagram is but a simpler

version of the class diagram presented on Appendix C.

Looking at Fig.20, we can see that most of these objects represents an object of either

the Linked USDL core model [17] or Linked USDL pricing model [6,7] (except the Linked

USDLModel class). Everything related, and including, to the PricePlan class are objects of

the Linked USDL pricing model. The Offering and Service class are objects from the Linked

USDL core model while the PriceSpec, QualitativeValue and QuantitativeValue classes are

objects from the GoodRelations ontology6.

6 http://semanticweb.org/wiki/GoodRelations

CloudAid2

33

Following is a brief explanation of the roles of each data model:

 Linked USDLModel – Container of the Offering class and consequently, every

other model. It’s also capable of performing reading and writing (from Java to

triples, and vice-versa) operations regarding the offerings objects it’s

currently holding.

 Offering – Java class that represents an instance of the ServiceOffering object

from the Linked USDL core [17]. Regarding the Linked USDL pricing model,

this Java class (or from the Triple-oriented point of view, this Triple object) is

the linking point between the Linked USDL pricing model and the Linked

USDL core model.

 Service – Class that represents an instance of the Service object from the

Linked USDL Core model. It’s the container for the QualitativeValue and

QuantitativeValue classes.

 QuantitativeValue – Class that is used to model quantitative features of the

service. Quantitative features are those whose value can be quantified like

MemorySize (RAM), CPU Speed, Disk size, etc.

 QualitativeValue – This class, contrary to the QuantitativeValue class, is used

to model the qualitative features of the Service. Qualitative features are those

whose value is a concept with some meaning attached to it, like the brand of a

CPU (CPUType) or the name of the operating system.

 PricePlan – Represents an instance of the PricePlan object from the Linked

USDL pricing model. It holds every piece of information necessary to

calculate the cost of the Offering’s Service. Each PricePlan can be composed of

one or more PriceComponents.

 PriceComponent – Represents an instance of the PriceComponent object

from the Linked USDL pricing model. This object/class represents the billable

(or deductions) attributes of the Service. For example, the cost per hour of a

VM from Amazon EC2 could be modeled using a single PriceComponent; in

case there are other billable attributes, like an extra fee for running a

different operating system, this could and should be modeled using a

different PriceComponent. The final cost of the Offering will be the sum of its

billable attributes and subtraction of its deductions. A relevant feature of this

class is that is capable of modeling both static and dynamic prices. This class

is the container for both PriceSpec and PriceFunction class and, as their name

implies, PriceSpec is the class responsible for modeling static prices while the

PriceFunction class is responsible for modeling mathematical expressions

that calculate the cost of the service based on some values provided by the

user. I’ll provide a more detailed explanation on the calculation of dynamic

prices, and how they can be obtained using the API, on Section 5.1.4.

CloudAid2

34

 PriceSpec – Represents an instance of the PriceSpec object from the

GoodRelations ontology. This class/triple object represents a static pricing

value.

 PriceFunction – Represents an instance of the PriceFunction object from the

Linked USDL pricing model. Using this class, developers can define

mathematical expressions to calculate a personalized price based on values

provided by the user/customer (Usage variables) and some pre-defined

values (Provider variables). Currently, this class supports two types of

expressions:

o Simple Expressions – It’s a simple mathematical expression to

calculate the cost of the service/service feature, e.g.:

NumberOfMonths (usage variable) * VMCostPerHour (provider

variable)

o Composed Expressions – Mathematical expressions whose behavior

is controlled by IF-ELSEIF-ELSE conditions. The behavior is a simple

mathematical expression. E.g.: IF(COND1) ; BEHAVIOR1 ~ ELSEIF

(COND2) ; BEHAV2 ~ ELSE BEHAV3. On section 5.1.3.1 I’ll explain

how I’m able to transform this type of expression into its

corresponding SPARQL Query.

 Usage Variable – Represents an instance of the Usage object from the Linked

USDL pricing model. This class represents the variables whose value is only

known by the customer/user; we can look at it as an empty slot that needs to

be filled with a value provided by the user. A good example of this type of

variable is the amount of time that the user is going to be using the provider’s

service.

 Provider Variable – Represents an instance of the Provider object from the

Linked USDL price model. It represents a function variable whose value is

known à priori. It’s usually a fee for a certain attribute of the service, like the

cost per hour of the virtual machine or the price of a different operating

system.

To use these Java models, the developer just needs to import them into his/her

project and populate them with either Strings, Doubles or one of the above Java models.

While these models are the core of the Linked USDL Pricing API, they need many

secondary classes to achieve their semantic representation.

5.1.3. Java to Triples and Vice-Versa

On this section I’ll explain how the API maps its Java models into a Triple

representation and, the reverse process. Using the service’s Java description, it can

transform the data contained within the models into their corresponding semantic

description.

CloudAid2

35

Section 5.1.3.1 describes how the API maps the Java models information into its

Triple representation while section 5.1.3.2 will cover the reversing process.

5.1.3.1. From Java to Triples

Once populated, the developer can transform his populated Offering objects into a

Triple7 representation following one of two possible ways:

 Call the writeToModel() function from the LinkedUSDLModel class. This will

transform every Offering object on the LinkedUSDLModel instance into its

Triple representation.

 Call the writeToModel() function from the Offering class. This way, we provide

to the developer a means to transform only one object of the Offering class

into a triple representation.

To achieve the desired Triple representation, besides the information on the Java

models, the API relies on three third party libraries and some secondary classes. Their

purpose is to assist in the transformation of the Java objects into their Triple

representation.

These three libraries are:

 Jena API 8– A TripleStore engine.

 TopBraid SPIN API9 – Library developed on top of the Jena API that enables

the use of the SPIN [11, 12 and 13] model programmatically.

 Symja10 – A mathematical expression parser.

Calling the writeToModel() function initiates a chain reaction throughout the Java

models, calling the writeToModel() function from each Java model introduced on the

previous section. Instead of developing a centralized system that would transform every

Java object into a Triple representation, we decided to scatter this task among the

corresponding Java models. As such, each of the models is in charge of converting itself

from its Java representation into its Triple representation. For example: calling the

writeToModel() function from the Offering class will create a Resource object from the Jena

API. Following, the method will populate with the Resource with the standard attributes of

the Offering instance, Strings and/or Integers, and will call the writeToModel() function of

its Java model attributes. In the case of the Offering class, it has a PricePlan instance and a

Service instance. To get their Triple representation, it needs to call their writeToModel()

function: Service.writeToModel(). This concept is the same for every Java model of the

pricing API.

Every writeToModel() function uses both Jena API library and the secondary classes

mentioned at the beginning of the section. These secondary classes are Java Enums that

work as an interface between the ontologies and the Jena API. For example, to use the

7 http://www.w3.org/RDF/
8 https://jena.apache.org/
9 http://topbraid.org/spin/api/1.2.0/
10 https://code.google.com/p/symja/wiki/MathExpressionParser

CloudAid2

36

property type of the rdf ontology, the developer needs to import and use the RDFEnum

Java enum. Calling the RDFEnum.RDF_TYPE.getProperty() returns a Property11 resource

from the Jena API representing the rdf type property.

Currently, the API has interfaces for the following ontologies:

 Cloud Taxonomy

 FOAF

 GoodRelations

 RDF

 RDFS

 Linked USDL Core

 Linked USDL Price

Each of these Enums has the most commonly used properties of the ontologies as

well as the ones necessary for the development of the CloudAid2 project.

In the case of the Cloud Taxonomy, there isn’t a getProperty() function but a

getConceptResource() function. Since the Cloud Taxonomy is but a collection of Cloud

concepts, this function returns a JENA Resource object that represents the corresponding

Cloud concept. For example, calling the CLOUDEnum.LOCATION.getConceptResource()

returns a Resource object that should be linked to a rdf type property (this is mainly used

in the QualitativeValue and QuantitativeValue classes to state which is the type of service

feature that is being modeled).

While every writeToModel() function uses the Jena API extensively, only the

PriceFunction’s writeToModel() function uses the TopBraid SPIN and Symja libraries.

These libraries are extremely important for the Linked USDL Pricing API and are used in

the following order:

 Symjya – Used by the MathExp2SPARQL class. This class is responsible for

parsing the mathematical expression inserted by the user and returning its

corresponding SPARQL representation.

 TopBraid SPIN – Used by the PriceFunction’s writeToModel() and

readFromModel() functions. Responsible for transforming the SPARQL query

received from the MathExp2SPARQL class to its SPIN [11, 12 and 13]

representation and vice-versa.

The MathExp2SPARQL class receives a String with the mathematical expression

inserted by the user and creates its AST (Abstract Syntax Tree)12 description. Traversing

through the AST, it’s able to identify each member of the expression and create the

corresponding SPARQL Query.

Having the SPARQL Query of the mathematical expression is just one of the two

steps necessary to successfully model the PriceFunction instance into its Triple

representation. Step two consists in the transformation of the SPARQL Query returned by

the MathExp2SPARQL into its SPIN objects representation. This is where the TopBraid

11 https://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/Property.html
12 http://en.wikipedia.org/wiki/Abstract_syntax_tree

CloudAid2

37

SPIN library comes in. TopQuandrant13 provides a set of examples alongside their

TopBraid SPIN API where they demonstrate its usage and its transformation process. By

studying these examples, I was able to reproduce the conversion from SPARQL into its

SPIN object representation which, is later connected to the PriceFunction’s Jena Resource.

Once every Java model has been transformed into its Triple representation, the

semantic description of the service is done.

5.1.3.2. From Triples to Java

The Linked USDL Pricing API is also capable of reading and loading the information

of a semantic model into its corresponding Java models.

Like in the writing scenario, there’s also two possible ways of reading the data

contained in the model:

 Read every Offering from the Semantic model using the createFromModel()

function of the LinkedUSDLFactory class.

 Read one Offering object from the semantic model using the

Offering.readFromModel() function.

The reading process is exactly the same for both cases but, while the

readFromModel() function receives a Jena Resource of the type Offering (that is, it receives

a Jena Resource object from where it’s supposed to fetch the Offering’s information), the

createFromModel() function receives the path of the directory where the semantic model

is located and loads every Offering on that model automatically.

This reading process follows the same methodology adopted on the writing process:

each of the Java models is responsible for extracting its own information from the model.

It takes advantage of the same libraries and classes except, now it executes the process in

the opposite direction. For example, to extract the information from a PriceComponent

Jena Resource, the PriceComponent’s readFromModel() function uses the same Enums

described on the previous section alongside the hasProperty() and getProperty() methods

from the Jena’s Resource object. This way, it’s possible to extract the necessary information

to populate its Java attributes, whether they’re Strings, Integers, Doubles or Java classes (if

the instance needs to read another Java model from the semantic model to populate one of

its attributes, it just has to call its readFromModel() function).

Regarding the PriceFunction object, only the TopBraid API is needed since what the

developer usually needs is the SPARQL Query (or function, as one wishes to call it) and not

its SPIN representation, which, due to its complex description, yields little value.

5.1.4. Dynamic Pricing

Using the Linked USDL pricing API, it’s possible to model services whose price is

dynamically calculated using mathematical expressions. These mathematical expressions

use the values from its Provider and Usage variables to calculate the cost of the service.

As previously mentioned, Provider variables are variables whose value is known à

priori while, Usage variables only have their value known during execution. This is

because they’re variables whose value needs to be supplied by the person/entity that is

13 http://www.topquadrant.com/

CloudAid2

38

going to use the service. For example, a very common Usage variable used nowadays on

the Cloud market is the number of hours/days/months the client is going to be

using/renting the service. Depending on its value, the cost for the same service can be very

different between different consumers.

The development of a semantic model able to support dynamic price calculation and

the usage of said model are two different things. As long as the PriceComponents from the

Offering’s PricePlan use a mathematical expression to calculate the cost of the service,

we’re dealing with a dynamic semantic model.

The main objective of the Linked USDL Pricing API is to provide a simple way to

create and use dynamic semantic models (namely the Linked USDL pricing model). To

achieve this goal, there’re two steps that need to be performed:

 Create a generic semantic model using the Linked USDL API. When I refer to

generic semantic models, I’m referring to the same concept used on Object

Oriented Programming where developers create Classes (templates) which

are later instantiated and populated with data. Regarding the dynamic price

calculation, it’s exactly the same.

 Import the generic model created and populate its Usage variables. After

providing values for the model’s Usage variables, the developer ends up with

an instance of the generic model, but with some information about its Usage

variables.

Once the values have been set for each of the Offering’s PriceFunction’s Usage

variables, all that is left to do is call the writeToModel() function once again to write our

instance of the generic model into a new Triple representation.

After that, to obtain the final cost for the Offerings of the model, the developer just

needs to load the instance of the model and call the calculatePrice() function from each of

its Offering’s. This function iterates over the PriceComponents of the Offering’s PricePlan

and:

 Checks if it’s a Deduction or a regular PriceComponent.

 Regardless of the type, check if we’re dealing with a dynamic or static

PriceComponent/Deduction.

 In case we’re dealing with a static PriceComponent, simply add/subtract its

value to the PricePlan’s final value; else, execute the SPARQL function and

only then add/subtract its result to the PricePlan’s final value.

5.1.5. Linked USDL Pricing model validation

To assess the flexibility of the model developed by Eng. Jorge Araújo and, at the same

time, test the functionalities, possibilities and limitations of the new API, I proposed a

challenge that takes into consideration the survey performed by 451Research [48]. While

their study is mainly focused on IaaS services, it’s a good and solid starting point for the

purpose at hands: verify if both the Linked USDL Pricing API and the pricing model can

tackle today’s cloud pricing scene (or at least, a portion of it).

Aside the pricing taxonomy, they also present the list of 52 Cloud providers that were

studied, and afterwards classified, in the survey. As each one of these use cases was

CloudAid2

39

classified into one of the 8 possible categories, I modeled (using our API) at least one

service offering from the most popular provider of each category.

To choose the best (most popular) provider from each category, I developed a script

in python that extracts the number of page hits, returned by Google’s search engine, for a

specific search about the cloud services of the selected provider (the full results can be

seen on Appendix D). After a brief analysis of the results, I selected the “winner” for each

of the eight different pricing methods. Table.1 presents the chosen use cases.

Pricing method Bundling method Provider

Recurring Resource Pooling PB VMWare vCloud Hybrid14

PrePaid Credit VB Micros. Azure Virtual Machines15

PrePaid Subscription Credit UB CloudSigma Cloud16

PrePaid VM PB IDC Frontier Cloud17

On Demand VB Amazon EC218

Spot Pricing VB Amazon EC210

Reserved Instance VB Amazon EC210

Recurring PrePaid VM FB Arsys Dedicated Servers19

Table 1 - Modeling use cases

These use cases cover every aspect of the CODEX pricing taxonomy. It considers the

eight different types of pricing methods and the four different types of bundling identified

on the survey (Fully Bundled, Processor Bundled, VM Bundled, and Unbundled).

Once selected, I performed a detailed study of their services and how their pricing

was calculated. Identifying the service features, studying their pricing methods and

identifying their billable attributes was the first step of the challenge. Afterwards, it was

necessary to model each of the selected service offerings using the Linked USDL Pricing

API and consequently, the Linked USDL Pricing model.

Every service offering was successfully modeled and tested using the API, its results

being validated either by using tools provided by the Cloud providers themselves (e.g.

Amazon EC2 calculator20) or by manually performing the necessary mathematical

operations to calculate the expected cost of the service.

These service modeling examples are included in the API’s tar ball which, can be

downloaded from [50, 51]. They’re good examples of the API’s functionalities/capabilities

and a good way of introducing the Linked USDL Pricing API to other developers that might

be interested in it. Alongside the API and its modeling examples, [50] has a wiki section

where interested parties can find and read further documentation about the API, how to

use it and future plans.

14http://www.vmware.com/files/pdf/vchs/VMware_vCloud_Hybrid_Service_Purchasing_and_Subscriptio

n.pdf
15 http://azure.microsoft.com/en-us/offers/commitment-plans/
16 http://www.cloudsigma.com/
17 http://en.www.idcf.jp/cloud/
18 https://aws.amazon.com/ec2/
19 http://www.arsys.net/
20 http://calculator.s3.amazonaws.com/index.html

CloudAid2

40

5.2 CloudAid2 – Service Gatherer

One of the proposed objectives for this thesis was to extract and model data from real

cloud services. Thus, as soon as the API was capable of modeling cloud services

information using the Linked USDL core and Linked USDL pricing models, I moved

forward to the creation of the CloudAid2’s service repository. I designed and implemented

the Service Gatherer [53], which is an application that combines scrapping/parsing

techniques to extract data from the provider’s websites, and structures it using the Linked

USDL Pricing API.

Taking advantage of the service modeling described on section 5.1.5, I developed a

few scrappers/parsers for the following use cases:

 Arsys dedicated servers21

 Amazon:

o Elastic Compute Cloud (EC2)22

o Relational Database Service (RDS)23

o Glacier24

o Elastic Load Balancing25

With the Arsys dedicated servers situation, its information is extracted by a Java class

called Arsys. Using jsoup26 to parse the provider’s webpage, extracting the offerings

information becomes simple:

1. I used Google Chrome’s inspector to get the CSS Path of the html element that is

containing the desired data.

2. Having its CSS Path, I can fetch the Element27 from the html source using the

select() function from the json-simple library. Afterwards, iterate over its

contents and extract the data.

For example, it’s relatively common to use html table’s28 to structure and present

service’s information to the user in a webpage; in this situation, we just need to fetch the

table, iterate over its rows (Elements) and process the data.

Of course, each scrapper/parser requires a preliminary study of the html webpage, the

information contained within it and the service’s pricing method to create a proper

semantic representation. While it’s not a particularly complex task, it can be very time

consuming.

Table.2 presents the service’s features modeled by the Arsys class using the Linked

USDL Pricing API.

21 http://www.arsys.net/
22 http://aws.amazon.com/ec2/
23 http://aws.amazon.com/rds/
24 http://aws.amazon.com/glacier/
25 http://aws.amazon.com/elasticloadbalancing/
26 http://jsoup.org/
27 http://jsoup.org/apidocs/org/jsoup/nodes/Element.html
28 http://www.w3schools.com/html/html_tables.asp

CloudAid2

41

Arsys Dedicated Servers
CloudTaxonomy feature Type

Data IN External Quantitative
Data IN Internal Quantitative
Data OUT External Quantitative
Data OUT Internal Quantitative
Transferrate Quantitative
CPU Cores Quantitative
CPU Speed Quantitative
MemorySize Quantitative
DiskSize Quantitative
StorageType Qualitative
Feature Qualitative
Monitoring Qualitative
Language Qualitative
Platform Qualitative
Security Qualitative
Web Qualitative
Console Qualitative
GUI Qualitative
Unix Qualitative
Windows Qualitative
Price Quantitative
Table 2 - Arsys Dedicated Servers features

Amazon’s situation is a little bit more complex. Their services descriptions can also

be found in HTML webpages however, their pricing information is kept separately and, it’s

expressed in JSON [26, 27] format, not HTML. As such, the modeling of their service

offerings is composed of two steps:

1. Extraction and creation of the service’s features from the HTML webpage

using Jsoup and the Linked USDL Pricing API – scrapping performed by a

function or class specifically created for the purpose of generating the Service

instances without their pricing components. E.g.: AmazonRDSBaseServices

Java class.

2. Extraction of the pricing information by parsing the JSON files with the

help of the json-simple 29 Java library – Parsing, just like the scrapping, is

performed by a function or a class specifically created for the job. It creates

the Offering instance, linking together the Service object created on step 1 and

a pricing description. E.g.:AmazonRDSMySQL Java class.

These two steps apply for every Amazon use case. First, I create a description of the

service without its pricing components; afterwards, I parse their JSON30 files, extracting

the pricing information and adding it to an Offering instance that contains a Service

instance. For example, the method baseServices() from the AmazonRDSBaseServices class

returns an ArrayList<Service>. Each element in the ArrayList contains the description of a

29 https://code.google.com/p/json-simple/
30 http://aws-assets-pricing-prod.s3.amazonaws.com/pricing/ec2/mswinSQLWeb-ri-heavy.js

http://aws-assets-pricing-prod.s3.amazonaws.com/pricing/ec2/mswinSQLWeb-ri-heavy.js

CloudAid2

42

service without a pricing component (e.g.: Amazon’s db.m3.medium31 instance). These

Service instances are used by the parsing classes (e.g.: AmazonRDSMySQL class) which

extracts and models the pricing information from the JSON files, creates the Offering

instance and finally links together a Service and a pricing description (a Price Plan).

This approach simplifies the modeling process since a single Offering may have

multiple prices depending on its features (e.g.: Amazon’s db.m3.medium has different fees

depending on its location).

Table.3 presents the service’s features modeled by the Amazon’s scrappers/parsers.

EC2 RDS Glacier Load Balancing

CloudTaxnomy Type CloudTaxnomy Type CloudTaxnomy Type CloudTaxnomy Type
Location Qual. I/O Ops. Quant. Location Qual. Location Qual.
Unix Qual. Storage Cap. Quant. Feature Qual. Feature Qual.
Bit64 Qual. Back-Up Rec. Qual. SSL Qual. Protocol Qual.
Bit32 Qual. Monitoring Qual. Encryption Qual. SSL Qual.
CPUCores Quant. CPUCores Quant. Durability Quant. Load Balancing Qual.
CPUSpeed Quant. CPUSpeed Quant. Storage Cap. Quant. Reliability Qual.
MemorySize Quant. MemorySize Quant. API Qual. Scalability Qual.
DiskSize Quant. Feature Qual. PUT Req. Quant. Data Processed Quant.
StorageType Qual. Performance Quant. POST Req. Quant. Console Qual.
Feature Qual. Location Qual. DELETE Req. Quant. Unix Qual.
Performance Qual. Platform Qual. LIST Req. Quant. Windows Qual.
CPUType Qual. Price GET Req. Quant. Price Quant.
Platform Qual. Price Quant.
Data IN Ext. Quant.
Data IN Int. Quant.
Data OUT Ext. Quant.
Data OUT Int. Quant.
Price Quant.

Table 3 - Amazon’s service offerings features

 It’s important to note that every parser/scrapper class uses a local copy of the

sources of information (JSON files and HTML webpages) instead of issuing a request

through the web for a “fresh” copy every time we wish to generate new service

descriptions. Choosing this approach instead of the latter seemed best for two reasons:

1. Ensure that every scrapper/parser works as intended – HTML

webpages/JSON files are constantly being updated. Most of the changes are

usually related to the content of the document rather than its structure

however, structural changes may occur. If they do, they’d probably turn the

scrapper obsolete, forcing an update to cope with these changes or even the

creation of a new one.

2. Enable the possibility of generating new Linked USDL descriptions based on

real service descriptions. Keeping a local copy ensures that we can re-create

31 http://aws.amazon.com/rds/details/

CloudAid2

43

the services descriptions with the same, or new, information any time we

want.

Every scrapper/parser supports content modifications that is, as long as the

structure of the HTML/JSON files remains intact or there aren’t any errors (e.g.: the

scrapper/parser is expecting an Integer and the new inserted value is a String), the

scrappers/parsers will be able to generate the new Linked USDL descriptions.

The current Service Gatherer generates approximately 8500 service descriptions

(~450Megabytes) from real cloud services information, including a dynamic modeling of

their pricing description, with the help of the Linked USDL Pricing API. Section 5.3.2 will

address the dynamic aspect of the Linked USDL service descriptions with further detail.

The Service Gatherer application can be followed on [53] and the full dataset can

be found on [52].

5.3 CloudAid2 – Prototype

This section describes the CloudAid2 prototype in detail. I’ll be focusing on the

additions/changes made to the prototype, describing its new functionalities and what had

to be modified to successfully achieve the proposed requirements/objectives. While

section 4 provides a brief overview of the previous version of the prototype,

accompanying the reading of this section with Appendix B is advised for it would ease and

enhance its understanding.

On section 5.3.1, I start by introducing the new Controller, explaining its new

functionalities and the architectural changes to cope with a Client-Server architecture.

From section 5.3.2 to 5.3.4, I’ll introduce the changes/additions made to the Search,

Decision and Aggregation modules respectively and on Section 5.3.5, I’ll introduce the

Graphic User Interface (GUI32) of the prototype.

5.3.1. Controller

Like in the previous prototype, the Controller class is still in charge of monitoring and

controlling the application’s flow of execution however, its communication link with the

Graphic User Interface (GUI) no longer exists thus, simplifying its execution. The new

Controller is in charge of the following tasks:

1. Initialize each of its modules – When instantiated, the controller is

responsible for initializing the Search Module, the Decision Module and the

Aggregation Module.

2. Wait for GUI requests/responses – Once every module has been initialized,

it waits for the GUI to write the JSON Request on a pre-defined directory

(Section 5.3.1.1).

3. Control the application’s execution flow – When a request is received, the

controller is in charge of reading the request and initiating the process to find

the desired aggregated solutions (Section 5.3.1.2).

32 http://www.britannica.com/EBchecked/topic/242033/graphical-user-interface-GUI

CloudAid2

44

4. Send data request to the GUI – Every time a module needs extra

information to continue the process, it asks the Controller to create and send

a request to the GUI (Section 5.3.1.1).

Task 1 is executed only once while task 2, 3 and 4 are executed every time it’s

necessary.

5.3.1.1. Client-Server Communication

This section focuses on the architectural changes that had to be made to ensure that

both the Controller and the GUI are independent of each other. As such, anything related to

the old UI module was removed and their communication is now established via JSON33

files written on specific directories.

Due to time constrains, I was unable to implement a real web communication

between the GUI and the Server. While it was a personal objective, it wasn’t part of the

initial list of objectives and it would be interesting from a usability perspective, with the

inclusion of the Linked USDL Pricing API, it had to be left aside and considered for future

work. Despite its inexistence, their communication and exchange of information is

established following a traditional web scenario through requests-responses34.

Choosing JSON as a data-interchange format enables the communication with any

type of GUI no matter the technology it was developed on.

To create a JSON description of the Java data models, I followed a simple approach

that allowed me to focus on other relevant issues of the prototype: Gson35, a Java library

that can convert Java Objects into their JSON representation, and from their JSON

representation back to Java Objects.

Figure.21 is a simple sequence diagram created to highlight the 3 possible points of

interaction with the GUI and therefore, the decision maker. Each of these steps

encompasses a writing operation to send the JSON data and a reading operation to receive

back the response from GUI:

1. When the Search Module is requesting values for the pricing variables of the

found alternatives (Section 5.3.2)

2. When there’s qualitative criteria defined on the Service Template (Section

5.3.3)

3. When the Aggregation Module finishes computing the admissible solutions

and it’s time to send the results to the GUI.

In both scenarios, reading and writing, each of the modules recurs to secondary Java

models, created specifically for external communication, to contain the information they

wants to share. These models are in turn passed onto the Controller (through a static

method) which uses the gson.toJSON()36 function to transform these Java models into their

33 http://json.org/
34 http://en.wikipedia.org/wiki/Request-response
35 https://code.google.com/p/google-gson/
36 https://google-gson.googlecode.com/svn/trunk/gson/docs/javadocs/com/google/gson/Gson.html

CloudAid2

45

Fig. 21 - Simple external communication sequence diagram

JSON representation. Finally, it writes the JSON representation of the model into file on a

pre-defined directory.

Table.4 presents a list of the Java models and methods that each model uses for

external communication.

CloudAid2

46

Search Module – step 1 Decision Module – step 2 Aggregation Module – step 3

Java Model Method Java Model Method Java Model Method
PriceVariable requestVariablesInfo() ConceptDistance requestDistancesInfo() AggregationComponent sendResults()

PricingVariables DistancesContainer AggregatedSolution

 AggregationSolutions

Table 4 - Controller’s methods and Java models for external communication

I won’t go into much detail about the models or what they’re need for, I leave that for

the following sections. What’s important to note is that each model is composed only of

simple Java attributes, like String, Integers or Lists to ease the JSON conversion. Once one

of the modules calls its method, these models will be converted into their JSON description

and written into a specific directory of the GUI.

Once the file is written into the GUI’s directory, the Controller launches a

WatchService37 that is in charge of monitoring a pre-defined directory of the Server,

waiting for the response. When a new JSON file is written on the directory, the

WatchService loads the content of the file back into its Java containers using the

gson.fromJSON()38 function and, returns them to the corresponding module in order to

resume the process.

5.3.1.2. Execution flow

Figure.21 is a simple sequence diagram that was created to highlight the points

where external communication is expected, it doesn’t show the internal execution of the

Controller. Algorithm 1 shows the entire process executed from the moment that the

request is received until the aggregated solutions are found and sent to the user.

CSA ← readJSONRequests()
ok ← EvaluateCSA(CSA)
if ok then
 for ServiceTemplate ∈ CSA
 foundAlternatives ← Search(ServiceTemplate)
 if foundAlternatives not empty then
 decisionResults ← Decide(foundAlternatives)
 add decisionResults to ServiceTemplatesPreferenceGraphs
 else
 exit(1)
 end if
 end for
 aggregatedSolutions ←
FindAggregations(ServiceTemplatesPreferenceGraphs)
 sendResults(aggregatedSolutions)
else
 exit(2)
end if

Algorithm 1 – Controller’s execution flow

37 http://docs.oracle.com/javase/tutorial/essential/io/notification.html
38 https://google-

gson.googlecode.com/svn/trunk/gson/docs/javadocs/com/google/gson/Gson.html#fromJson(com.google.g

son.JsonElement, java.lang.Class)

CloudAid2

47

Fig. 22 - CloudAid2’s execution flow

 The algorithm 1 starts by receiving a JSON description of the CSA (which contains

the problem description). Following, it evaluates the CSA recurring to the CSAEvaluator

module. Regarding the CSAEvaluator module, no significant changes were made to it since

there were no objectives that explicitly required such modifications.

 If the CSAEvaluator “says” that everything is ok with the CSA, it can start the

searching of alternatives for its ServiceTemplates. Once alternatives have been found for a

ServiceTemplate, it moves onto the Decision Module to get the alternative’s preference

graph.

 Once every ServiceTemplate has been processed, each will have its alternative’s

preference graph and is now possible to move onto the last step of the prototype:

computing the aggregated solutions. To do so, it passes every preference graph to the

Aggregation Module which, will compute the admissible aggregated solutions and then

return them back to the Controller which is responsible for sending them to the GUI.

 Figure.22 combines both Algorithm 1 and Figure.21 to help one visualize the flow

of execution of the CloudAid2.

5.3.2. Search Module

Once the CSA has been validated by the CSAEvaluator, the Controller relies on the

Search Module to find alternatives for each ServiceTemplate on the CSA.

To find the corresponding alternatives, the Search Module performs the following

tasks:

1. Extract the exclusive requirements from the CSA.

CloudAid2

48

2. Build the exclusive requirement’s SPARQL query and perform the search

over the TripleStore.

3. Use the Linked USDL Pricing API to load the alternatives information from

the TripleStore.

4. Send a request through the Controller to the GUI to obtain the values for the

pricing variables of the alternatives found.

5. Receive the response from the Controller and use the Linked USDL Pricing

API to obtain the cost of each alternative.

6. Perform a price filtering if there’s a price Requirement on the

ServiceTemplate.

A major change on the Search Module when comparing it to the previous prototype is

the inclusion of the Linked USDL Pricing API [50] to deal with the dynamic component of

the Linked USDL service descriptions. Including the Linked USDL API eases the interaction

of the ClouAid2 with the semantic side of the project thus, allowing me to focus on the

logical behavior of the module.

Regarding task 1 and 2, their behavior is the same as on CloudAid1. The module

starts by executing the getExclusiveRequirements() function to get the exclusive

requirements from the ServiceTemplate being processed. Once they’ve been identified, it

executes the queryBuilder() function to build the SPARQL query of the exclusive

requirements. While their behavior is the same, the source code had to be reworked from

scratch.

Once task 1 and task 2 have been completed, the module ends up with a ResultSet39

that contains every ServiceOffering Resource40 that matches the ServiceTemplate’s

requirements. Appendix E shows the SPARQL query built for ServiceTemplate1 from the

scenario presented on section 6.2.

On CloudAid1, the cost of each alternative was imbedded on the semantic description

of the service as a feature with a static value. On CloudAid2, to obtain the price of the

alternatives from the new semantic descriptions, the decision maker has to provide extra

information related to the service he’s looking for; more precisely, he/she needs to specify

some usage parameters such as the time he’s going to be using the service, or the amount

of data he’s expecting to receive on the machine, so the module can get cost of the

alternatives and move onto the next step.

Considering this and the introduction made on section 5.1, on task 3 the Search

Module uses the Offering.readFromModel() function to load the information from each Jena

Resource, found on task 2, from the TripleStore.

Once task 3 is complete, the Search Module requests the usage information from the

decision maker. The external communication related to this task was introduced on the

previous section so I won’t be going over it again however, this task encompasses an extra

step that is yet to be addressed: getting the Usage variable’s details from the Offering

instances and, populate the PriceVariable and PricingVariables models for the external

communication.

39 http://jena.apache.org/documentation/javadoc/arq/com/hp/hpl/jena/query/ResultSet.html
40 https://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/Resource.html

CloudAid2

49

Fig. 23 - Offering
object encapsulation

The models themselves are very simple, PriceVariable has a (String) name, a (String)

description and a (Integer) value while the PricingVariables has a single

List<PriceVariable>. Iterating over the Offering instances, one easily extracts their Usage

variables information and populates the models.

Once the PricingVariables instance is populated, the Search Module calls the

requestVariablesInfo() function from the Controller to send the JSON request and then

stays on hold, waiting for its response. In this case, what the module is expecting is a new

value for the value attribute of each PriceVariable instance. Once the Controller delivers the

response back to the Search Module, the latter uses the method explained on section 5.1.4

to get the cost of the alternatives: it inserts the values provided by the Decision Maker on

their Usage variables, creates their semantic description and then uses the calculatePrice()

function to get the cost of each Offering.

Having their cost, the last step is to verify if there is a price requirement on the

ServiceTemplate. As I mentioned earlier, on CloudAid1 the price was included on the

semantic description of the service so filtering by price was possible at a SPARQL level

however, on CloudAid2 the price is calculated dynamically. To cope with this situation,

filtering service offerings by price (“At most, I’m willing to pay y for the service” or “At

least, the service I’m looking for needs to cost y”) is only performed once the cost of every

alternative has been calculated. One can look at it as a second level filtering that is applied

after the first level filtering (SPARQL query), where the Search Module discards every

alternative that doesn’t match every other (exclusive) requirement on the

ServiceTemplate.

Once task 6 is finished and before returning the results back to the Controller, the

Search Module encapsulates the remaining Offering instances in a new Java model

(Figure.23). This Java model is quite useful since it enables me to append extra

information that is not included on the Offering object and that might be of use for the

following modules, the Controller or even the decision maker.

Table.5 presents the Usage variables for each use case presented on section 5.2.

CloudAid2

50

Amazon EC2 Amazon RDS Amazon Glacier Amazon Load Balanc.
Name: gbout (Gb)
Description:
Number of Gb the decision
maker expects to send out
from Amazon EC2 to the
Internet.

Name: gbout (Gb)
Description:
Number of Gb the decision
maker expects to send out
from Amazon RDS to the
Internet.

Name: gbToStore (Gb)
Description:
Gb of data that the decision
maker is expecting to store on
Amazon Glacier

Name: gbin (Gb)
Description:
GB of data the decision maker
is expecting to receive on the
instance per month

Name: usagehours (Hours)
Description:
Number of hours that he’ll
be using Amazon EC2.

Name: usagehours (Hours)
Description:
Number of hours that he’ll be
using Amazon RDS.

Name: retrieveData (Gb)
Description:
Gb of data that the decision
maker is expecting to retrieve
from Amazon Glacier

Name: amazonnlb (unit)
Description:
Number of load balancers the
decision maker needs

 Name: IOPSWanted (unit)
Description:
Number of I/O operations the
decision maker expects to
need/require per second.

Name: retrievalTime (Hours)
Description:
The amount of time that
Amazon Glacier has to
retrieve the quantity of data
specified on the retrieveData
variable

Name: usagehours (Hours)
Description:
Number of hours that he’ll be
needing the load balancers

 Name: GBStorageWanted (Gb)
Description:
Number of Gb the decision
maker needs for his database.

Name: NRequests (unit)
Description:
Total number of
Upload/Retrieval requests the
decision maker is expecting to
perform on Amazon Glacier.

 Name: usagedays (Days)
Description:
Number of days that he’ll be
keeping the data on Amazon
Glacier.

Name: usagedays (Days)
Description:
Number of days that he’ll be
keeping the data on Amazon
Glacier.

 Name: NumberOfMonths
(Months)
Description:
Number of months that he’ll be
using Amazon RDS.

Name: gbout (Gb)
Description:
Number of Gb he expects to
send out from Amazon Glacier
to the Internet.

Arsys Dedic. Servers
Name: NumberOfMonths
(Months)
Description:
Number of months that he’ll
be using Arsys dedicated
servers.

Table 5 - Repository’s Usage Variables

5.3.3. Decision Module

Once the Search Module finishes its job, the Controller moves onto the next step: the

Decision Module. Independently of the changes made to the module, its purpose remains

the same: it provides an ordering (or semi-ordering) to the alternatives found by the

Search Module.

To achieve this, it recurs to Multi-Criteria Decision Methods (MCDM), the decision

maker’s preferences and the criteria he/she defined when creating his/her CSA.

Regarding the decision maker’s preferences, unlike its earlier version, every piece of

information that might be relevant for the decision process is requested when the decision

maker is creating his/hers CSA. For example, on CloudAid1, once the decision process

CloudAid2

51

began, it would ask the user if he/she had a preferable value for each criterion he/she had

defined earlier when creating the CSA. This no longer occurs, if the decision maker has a

preferable value, he/she needs to define it beforehand. The only information that is

requested during the module’s execution is related to qualitative values distances, e.g.: the

numerical distance between high performance and moderate performance.

Regarding the MCDM component, CloudAid1 included two different methods: the

Analytic Hierarchic Process (AHP) and the Simple Additive Weight (SAW). For the new

prototype however, new MCDM that take into consideration incomparability/incomplete

information between alternatives were a requirement. As such, new methods were

integrated into the module:

 ELECTRE III

 PROMETHEE I

 SMAA-2

Each of the methods has its own data requirements, different workflows and

provide different results however, independently of the method used, there are several

steps that are always executed:

1. Data normalization – The data normalization is performed in the same

way as in the CloudAid1 but, with two minor distinctions:

a. A new parameter was included into the criterions: thresholds, more

precisely, preference threshold, indifference threshold and veto

thresholds [14, 15 and 16]. To normalize these new attributes, a

simple mathematical expression is used: MIN(MAX(l/(a-b),0),1),

where l is the threshold value provided by the decision maker, a the

minimum value of the criterion and b the maximum value of the

criterion.

b. CloudAid1 considered three types of attributes: Numerical, Non-

Numerical binary and Non-Numerical non-binary. Regarding non-

numerical attributes, the distinction between binary and non-

binary required that either the user had a previous knowledge

about the information on the TripleStore or the attribute in

question had only two possible values (0 and 1) [7]. To not only

simplify the prototype, but also to optimize the decision itself, this

distinction between binary and non-binary was removed. It may

happen that, despite having only two possible values, both of them

are not the ideal value for the decision maker. E.g.: The decision

maker is looking for a service with performance = Excellent but,

amongst the found alternatives there’s only two possible values:

moderate and high. While it is, indeed, a binary attribute, neither of

them is the best/ideal value so neither of them should be

represented by “1”, which is the highest numerical value a

qualitative value can have. To request the concept distances from

the decision maker, it uses method similar to the one used by the

CloudAid2

52

Search Module to request the Usage variables values however, it

uses the ConceptDistance, DistancesContainer Java models and the

requestDistancesInfo() method instead.

2. Express the decision problem into XMCDA format (section 5.3.3.1) –

Once normalized, the data needs to be described into XMCDA format before

it can be passed onto the MCDM.

3. Encapsulate the XMCDA decision problem in a SOAP message and

send it to the corresponding web-service (section 5.3.3.2) – After

describing the decision problem into XMCDA format, the Decision Module

encapsulates it in a SOAP message and starts the chosen MCDM’s workflow.

4. Receive the MCDM results and create the alternatives’ preference

graph (section 5.3.3.3) – Once the MCDM’s workflow ends, the Decision

Module has to process the received XMCDA results in order to create the

alternatives’ preference graph (more precisely, its adjacency list) that will

be used by the Aggregation Module to compute the aggregated solutions.

5.3.3.1. Decision Deck, XML Encoding of Multi-Criteria Decision Aid Data

The decision deck project aims at developing tools that provide Multiple Criteria

Decision Aid methods that can be of help to anyone who needs them, whether they are

teachers who need the material for didactic purposes or practitioners who may need

MCDA tools to support real world decision problems. To achieve this, the group

implemented several Multi-Criteria Decision Methods on the programming languages they

felt more comfortable with and made them accessible to everyone through web-services,

using SOAP messages and XMCDA format [28,38] (Section 5.3.3.2).

To express the decision problem into XMCDA format, I recurred to the J-XMCDA 41

library, a Java library provided by the Decision Deck group to deal with XMCDA

transformations. Every operation related with XCMDA data manipulation is wrapped in

the XMCDAConverter class.

On CloudAid1, Eng. Jorge Araújo had control over both sides of the module, the

prototype’s side which was responsible for creating and sending the problem over to the

MCDM and, the external MCDM applications that processed the problem sent by the

prototype. As such, there wasn’t a big concern regarding the XMCDA tags (from the MCDM

external applications perspective) used to map the problem’s data. On CloudAid2, greater

care had to be given to the XMCDA data description since it replaced the old external

MCDM applications for MCDM made available through web services hosted by the Decision

Deck group. These web services are expecting a decision problem described into a XMCDA

file with a pre-defined structure.

 Currently, there’s only one MCDM that doesn’t require criterion weights for its

calculations: the SMAA-242 method. Every other method requires an importance weight

associated to every criterion in every Service Template.

41 http://www.decision-deck.org/xmcda/library.J-XMCDA.html
42 http://www.decision-deck.org/ws/wsd-smaa2-jsmaa.html

CloudAid2

53

 Table.6 presents a list of the methods in the XMCDAConverter class that are used by

the Decision Module to express the decision problem into XMCDA format, their XMCDA

tags and their description.

Method XMCDA Tag

createAlternatives(alternatives) alternatives, alternative
Description:
Creates the list of alternatives in the XMCDA object.
createCriteria(ServiceTemplate) criteria,criterion,scale,quantitative,preferenceDirection
Description:
Creates the criteria list in the XMCDA object. To each criterion is assigned a preference direction and its
thresholds, if there’s any.
createWeights(ServiceTemplate) criteriaValues,criterionValue,criterionID,value,real
Description:
Creates the criterion’s weights list in the XMCDA Object.
createAlternativesValues(alternatives,critID’s) performanceTable,alternativePerformances,alternativeID,

performance,criterionID,value,real
Description:
Creates a list of the alternatives values for each defined criterion in the XMCDA object.

Table 6 - XMCDAConverter methods

 Once the decision problem has been normalized and described in XMCDA, the

module is ready to move onto the next step: encapsulate the XMCDA problem in a SOAP

message and execute the chosen MCDM’s workflow.

5.3.3.2. SOAP encapsulation and MCDM workflow

Now that the decision problem has been described into XMCDA format, we just

need to encapsulate it in a SOAP message and send it to the Decision Deck MCDM’s web

services. Appendix F presents an example of the SOAP messages exchanged.

 Currently, CloudAid2 supports four different Multi-Criteria Decision Methods:

ELECTRE III43, PROMETHEE I44, SAW45 and SMAA-241. Each of these methods has its own

workflow that needs to be executed sequentially in order to obtain the results we’re

looking for. Figures 24, 25, 26 and 27 present the workflows for each method,

respectively. These figures were created with the help of diviz[30, 31] , an application

developed by the Decision Deck group that provides a graphical interface to ease and

improve the usability of their MCDM.

An interesting aspect is that once the decision problem is expressed into XMCDA, it

can be used by either the CloudAid2 prototype or the diviz application. Doing so also

provides a decent validation for the prototype’s XMCDA descriptions.

43 http://www.decision-deck.org/diviz/workflow.methodElectre3.html
44 http://www.decision-deck.org/diviz/workflow.methodPromethee.html
45 http://www.decision-deck.org/ws/wsd-weightedSum-PyXMCDA.html

CloudAid2

54

Fig. 24 - ELECTRE III workflow

Fig. 25 - PROMETHEE I workflow

Fig. 26 - SMAA-2 workflow

Fig. 27 - SAW workflow

CloudAid2

55

 To execute each method’s workflow and obtain their results, a specific Java class
for each of them was created:

 ELECTRE
 PROMETHEE
 SMAA
 SAW

Each of these classes has a static method named solve() that initiates the execution

of their workflows and, depending on the chosen method, the workflow’s complexity

differs. For example, ELECTRE III is the most complex MCDM method integrated on the

prototype as it’s composed of 5 web services. Each of these web-services needs to be

executed sequentially (let’s call them steps) and each needs the results from the previous

step to perform its calculations and move onto the next step.

Of course, depending on the complexity of the submitted problem, the methods

execution may vary from seconds or minutes to hours. To work around this problem, they

implemented a ticket mechanism that enables users to terminate their current connection

to the web service and retrieve their results later using the ticket sent back in the response.

For example, when we submit a request to the ElectreConcordance-1 (step 1 of the

ELECTRE III method), the web service sends a response containing a ticket (a String with

alphanumeric characters) that we can use later to fetch the results.

To simplify the development of the external communication, everything related to

the SOAP message encapsulation, connection establishment and ticket/response

management was wrapped in the DecisionDeckSOAPClient Java class. Doing so eases the

understanding of the code, keeping the logical execution of the method from the technical

aspects of the communication itself. Table.7 presents the most important methods of the

class and a brief description of them.

DecisionDeckSOAPClient methods

sendProblem(XMCDAfiles,XMCDAalias,WebServiceName)
Description:
Establishes a SOAP connection with the web service and submits the XMCDA request.
createSOAPRequest(XMCDAfiles,XMCDAalias)
Description:
Used by the sendProblem method to encapsulate the XMCDA files into a SOAP message.
getProblemResponse(WebServiceName)
Description:
Establishes a SOAP connection with the web service and submits a SOAP message to
request the solution of a previously submitted problem.
getProblemSolutionMessage(TicketID,TicketNumber)
Description:
Method used by the getProblemResponse method to create the SOAP message that
requests the solution for a submitted problem. The message contains the ticket number
and ticket id of the request.
parseSubmittedResponse(SOAPResponse)
Description:
Method that parses the response received from the web service and verifies if the
submitted problem was successfully solved.

Table 7 - DecisionDeckSOAPClient Java class methods

CloudAid2

56

Using the DecisionDeckSOAPClient class, executing the MCDM workflows becomes

simple. Algorithm 2 presents, in a simple way, how the PROMETHEE class executes

PROMETHEE I’s workflow.

DecisionDeckSOAPClient client = new DecisionDeckSOAPClient();
do
 preference = step1(XMCDAfiles,client)
while(preference == null)

if(preference != null)
 ArrayList<XMCDA> cont = new ArrayList<XMCDA>();
 cont.add(files.get(0));//alternatives XMCDA
 cont.add(preference);
 do
 positiveFlow = step2(cont,client)
 while(positiveFlow == null)
endif

if(positiveFlow != null)
 ArrayList<XMCDA> cont = new ArrayList<XMCDA>();
 cont.add(files.get(0));//alternatives XMCDA
 cont.add(preference);
 do
 negativeFlow = step3(cont,client)
 while(negativeFlow == null)
endif

if(positiveFlow != null && negativeFlow != null)
 ArrayList<XMCDA> cont = new ArrayList<XMCDA>();
 cont.add(files.get(0));
 cont.add(positiveFlow);
 cont.add(negativeFlow);
 do
 promethee1Ranking = step4(cont,client)
 while(promethee1Ranking == null)
endif

return promethee1Ranking

Algorithm 2 – PROMETHEE I workflow execution

 The solve() method of the PROMETHEE I executes four steps, as depicted on Fig.25.

Each step function uses the DecisionDeckSOAPClient instance (client) to submit the

problem to the corresponding web service (e.g.: step4 of PROMETHEE I submits the

problem to the Promethee1Ranking-1 web service) and to retrieve its results.

 Every other MCDM workflow’s execution is similar to the one depicted on

Algorithm 2, but adapted to its situation. Once their workflow execution terminates, we’ll

have a XMCDA description of the results of the chosen method.

Every every XMCDA file, be it the initial problem description, intermediary results or

the final result, are stored on a file located on a pre-defined directory (server side). For

example, the PROMETHE class will store every XMCDA file used on its calculations on

“PROMETHEE/Request_TimeSent”, a local directory of the server. This way, it’s possible to

CloudAid2

57

Fig. 28 - Preference Graph example

re-use results, check for inconsistencies or even to use them with diviz application for

results comparison/validation.

5.3.3.3. Results processing

Once task 3 is finished, the Decision Module moves onto the next, and final, task: the

creation of the alternatives preference graph. A preference graph describes the relations

between each pair of alternatives, telling us which one is preferred.

Contrary to its predecessor, ranked lists are no longer capable of describing the

results of the new Multi-Criteria Decision Methods since the concept itself implies a

complete ordering of alternatives, where we know at all times which alternative is

preferred to which. Achieving a complete ordering is not always possible, a situation might

occur where we’re unable to tell which alternative is preferable to which thus, classifying

them as incomparable. If two or more alternatives are incomparable with one another,

they need to “share” the same rank for they need to be treated equally.

Recurring to graphs rather than ranked lists, tackling this type of situations becomes

simpler.

Fig.28 presents a simple example of a preference graph.

 In a complete transitive preference graph (from now on it’ll be referred simply

as preference graph) there’s only two possible situations for each pair of alternatives: Let

x and y be two random alternatives from a preference graph

 If a connection (arc) e = (x, y), where x is the head and y the tail, exists, then

x is preferable to y.

 If a connection (arc) e = (x, y) doesn’t exist, then x and y are incomparable

and should be treated equally (strictly speaking, it’s more accurate to say

that no information about their preference relation can be inferred).

CloudAid2

58

Fig. 29 - GNode encapsulation

Looking at Fig.26, we can say that Alt3, Alt4 and Alt6 are incomparable but, all

three are preferable to Alt2, Alt1 and Alt5. The same applies to Alt1 and Alt5 however,

neither of the two has outgoing arcs which means that no matter our choice, these two

should always be our last resort for they aren’t preferable to any other alternative.

The challenge was how to transform each MCDM’s result into a preference graph

like the one depicted on Fig.28.

Before I move to the preference graph creation, first, it’s necessary to introduce the

results of each method and the class used to represent a node of the graph: GNode.

GNode is a Java class that contains the number of outgoing connections (number of

alternatives that are inferior to the alternative in question), the number of incoming

connections (number of alternatives that are superior to the alternative in question), an

ArrayList<GNode> preferableTo, that contains the alternatives to which it has an existing

connection (the ones upon which it’s preferable to), and a second ArrayList<GNode>,

incomparableWith, that contains the alternatives that are incomparable with the

alternative in question. Fig.29 illustrates the GNode encapsulation regarding the other

data models of the prototype (note that while Offering is extensively used by the

prototype, it’s a model from the Linked USDL Pricing API).

PROMETHEE I and ELECTRE III results

The results from PROMETHEE I and ELECTRE III are equal, what differs is the

calculations they perform to achieve said results. Once their workflows execution ends,

the XMCDA returned by the web service contains the preference relations for each

alternative. For example, using Fig.28, both PROMETHEE I and ELECTRE III results would

look something like the following:

 Alt3 is preferable to Alt2

 Alt3 is preferable to Alt1

 Alt3 is preferable to Alt5

 Alt1 is preferable to Alt4

 ...

 Alt2 is preferable to Alt1

 Alt2 is preferable to Alt5

CloudAid2

59

In this case, extracting preference relations for each pair of alternatives is simple,

there’s no need to include intermediary steps to do so:

 An arc/connection e = (x, y) is mapped as adjacency_matrix[x, y] = 1 and

adjacency_matrix[y, x] = -1. E.g.: adjmatrix[Alt3,Alt2] = 1,

adjmatrix[Alt2,Alt3] = -1;

 The absence of an arc e = (x, y) is mapped as adjacency_matrix[x,y] =

adjacency_matrix[y,x] = 0. E.g.: adjmatrix[Alt3,Alt4] = adjmatrix[Alt4,Alt3] =

0;

 Creating the corresponding preference graph from the adjacency matrix is simple:

we just need to create an instance of GNode for each alternative, iterate over the matrix’s

lines and columns, and update the information of the GNode’s instance.

For example, considering Fig.28 again, its adjacency matrix would be:

 Alt1 Alt2 Alt3 Alt4 Alt5 Alt6
Alt1 0 -1 -1 -1 0 -1
Alt2 1 0 -1 -1 1 -1
Alt3 1 1 0 0 1 0
Alt4 1 1 0 0 1 0
Alt5 0 -1 -1 -1 0 -1
Alt6 1 1 0 0 1 0

 Iterating over the adjacency matrix, a populated GNode instance for Alt3 would

look something like the following:

 Outgoing_arcs – 3

 Incoming_arcs – 0

 PreferableTo – Alt2, Alt5 and Alt1

 IncomparableWith – Alt4 and Alt6

 FiltRes – Alternative3

Once every alternative has their corresponding GNode instance, the preference

graph is built. At least, for the results obtained by the PROMETHEE I and ELECTRE III

methods.

CloudAid2

60

SMAA-2 results

 Unlike PROMETHEE I or ELECTRE III, SMAA-2 returns the probability that each

alternative has to be placed on a specific rank. For example, consider a Service Template to

which the Search Module found 5 matching alternatives; a possible SMAA-2 result would

be something like:

Alternative\Rank 1º 2º 3º 4º 5º

Alt1 10% 15% 25% 35% 15%
Alt2 0% 36% 39% 12% 13%
Alt3 30% 17% 47% 5% 1%
Alt4 4% 42% 28% 19% 7%
Alt5 65% 12% 5% 18% 0%

Table 8 - SMAA-2 result example

To create an adjacency matrix and therefore, a preference graph, from these

results, we provide an ordering to the alternatives by placing each alternative on its rank

with highest probability thus, creating preference relations between alternatives. In the

ideal scenario, we end up with a fully ordered list of size N, where N is equal to the number

of alternatives and, where there is only one alternative per rank. Of course, it’s a lot more

common to be faced with the situation where two or more alternatives end up sharing the

same rank. For example, looking at Table.8, Alt2 and Alt3 would both be placed third place

in the ranked list thus, becoming a semi-ordered list.

Regarding this placement of alternatives, there’s still one particular issue to

address: Alternative N may have very similar (or even equal) probabilities for multiple

ranks. For example, looking at Table.8, should we place Alt2 second or third? Is 3%

difference enough to place Alt2 in third place? It’d be more accurate to say that Alt2 has a

∼50% chance of being placed second or third. To identify this type of situations, an

indifference threshold [14, 15 and 16] was included into the placement method: Let,

 d be the percent threshold of indifference between two alternatives;

 ß the list of possible ranks for Alternative N, where N ranges from 1 to the total

number of alternatives;

 P(y), y ∈ ß, the probability of rank y;

 P(x), x ∈ ß, the probability of rank x, x being the rank with highest probability in ß;

If P(x) - P(y) < d, Alternative N will be randomly placed on either rank x or y. Going

back to the Alt2 and Alt3 scenario, with d = 4%, Alt2 would have an ~50% chance of being

placed third thus, sharing the rank with Alt3 or, being placed second and share the rank

with Alt4. Table.9 presents a possible placement for the alternatives.

Rank (d=4%) Alternative

1º Alt5
2º Alt2,Alt4
3º Alt3
4º Alt1

Table 9 - SMAA-2 semi-ordered list example

CloudAid2

61

Once the semi-ordered (or fully ordered) ranked list is constructed, we can create

the adjacency matrix of the preference graph. Each alternative on rank m is incomparable

with every other alternative on the same rank, preferable to every alternative placed on

ranks lower than m and inferior to alternatives placed on ranks higher than m. We can

relate this information to the relations mapped by 0, 1 and -1, respectively, in the

adjacency matrix of the preference graph; we just need to iterate over the list, starting at

the top and build the adjacency matrix.

Having the adjacency matrix, we build the preference graph just like we did with

ELECTRE III’s and PROMETHEE I’s results.

SAW results

SAW’s results processing method and SMAA-2’s results processing method are

very similar, they simply differ in the actual result of the MCDM itself: while SMAA-2

returns the probability that each alternative has of being placed on a specific rank, SAW

returns a performance value for each alternative that represents how good the alternative

is over the defined criteria. The higher the performance value, the better the alternative.

Table.10 presents an example of a possible result obtained by the SAW method.

Alternative Performance
Alt1 0.84
Alt2 0.14
Alt3 0.28
Alt4 0.71
Alt5 0.28

Table 10 - SAW results example

 Using the alternatives performance value (pv), we’re capable of creating a semi-

ordered (or fully ordered) list, just like we did with the SMAA-2 method and its ranking

probabilities. In this case however, the placement method is simpler since there’s only one

performance value per alternative thus, removing the “need” for the indifference threshold

mentioned earlier (we could still apply it over performance values between different

alternatives; e.g.: AltN(pv) = 0.15 and AltM(pv) = 0.17 could be considered incomparable

and be placed on the same rank). To create the alternatives ordering, we start by placing

the alternative(s) with the highest performance value first on the list (alternatives with

equal performance values are grouped together and placed on the same rank), remove

it/them from the group of alternatives that still need to be placed on the list and, repeat

these two steps until there are no more alternatives left to placed (ranked). Table.11

presents the semi-ordered list obtained from the results depicted on Table.10 (semi-

ordered because Alt3 and Alt5 have equal performance values thus, being placed on the

same rank and marked as incomparable. Should Alt5 have a different performance value

from every alternative, we’d be dealing with a fully ordered list instead of a semi-ordered

list).

CloudAid2

62

Rank Alternative
1º Alt1
2º Alt4
3º Alt3,Alt5
4º Alt2

Table 11 - Table.10 semi-ordered list description

 Once the list is constructed, we can create the corresponding adjacency matrix just

like we did on SMAA-2: Each alternative on rank m is incomparable with every other on

the same rank, preferable to every alternative placed on ranks lower than m and inferior

to alternatives placed on ranks higher than m. From the adjacency matrix we’re able to

create the alternatives preference graph.

Each method has its results described on XMCDA. To transform these results into a

more comfortable data structure for the adjacency matrix construction/extraction, several

methods were added into the XMCDAConverter class. Table.12 presents these new

methods, the data structures they use to map the XMCDA results and the methods that use

said data structures to create the adjacency matrix/preference graph.

DecisionCore.method, uses → XMCDAConverter.method, creates → Java class
PROMETHEE I and ELECTRE III
getComparabilityGraphSolution(CR, dir) processComparabilityResults(res, st) ComparabilityResult
Description:
Uses the adjacency matrix created by the
processComparabilityResults to create a
preference graph where each node is an
instance of GNode.
Parameters:
CR – ComparabilityResult instance that
contains an adjacency matrix.
Dir – Local directory path to save the
DOT46 description file of the graph.

Description:
Creates the adjacency matrix of a
preference graph from the ELECTRE III’s
and PROMETHEE I’s XMCDA results.
Parameters:
st – Service Template being evaluated.
res – XMCDA results returned by the
MCDM’s web service.

Description:
Container for the adjacency matrix
created by the
processComparabilityResults method.

SMAA-2
getSMAAGraphSolution(SR, delta, dir) processSMAAResults(res, st) SMAAResults,SMAAResult
Description:
Uses the list that contains the alternatives
and their corresponding probabilities for
each rank, to create the adjacency matrix
of the preference graph. Afterwards, it
creates the preference graph from the
adjacency matrix.
Parameters:
SR – SMAAResults instance that contains
the list of alternatives and their ranking
probabilities.
Delta – Maximum Indifference threshold
between rank probabilities of an
alternative.
dir – Local directory path to save the
DOT45 description file of the graph.

Description:
Creates a list of alternatives and their
corresponding rank probabilities, from
SMAA-2’s XMCDA results.
Parameters:
st – Service Template being evaluated.
res – XMCDA results returned by the
MCDM’s web service.

Description:
SMAAResult – Contains an alternative
(FiltRes instance) and its ranking
probabilities.
SMAAResults – Contains a list of
SMAAResult instances.

46 http://en.wikipedia.org/wiki/DOT_(graph_description_language)

CloudAid2

63

SAW
getSAWGraphSolution(SR,dir) processSAWResults(res, st) SAWResult,SAWResults
Description:
Uses the list of alternatives and their
performance values to create the
preference graph’s adjacency matrix and
therefore, the preference graph.
Parameters:
SR – SAWResults instance that contains
the list of alternatives and their
performance value.
dir – Local directory path to save the
DOT45 description file of the graph.

Description:
Creates a list of alternatives and their
corresponding performance value from
SAW’s XMCDA results.
Parameters:
st – Service Template being evaluated.
res – XMCDA results returned by the
MCDM’s web service.

Description:
SAWResult – Contains an alternative
(FiltRes instance) and its performance
value.
SAWResults – Contains a list of
SAWResult instances.

Table 12 - XMCDA conversion and preference graph construction

The final result of the Decision Module and therefore, the result that is sent back to

the Controller, is always a preference graph where each node is an instance of GNode. In

fact, it’s more accurate to say that what is built/returned by the Decision Module is the

preference graph’s adjacency list rather than the graph itself. Through the adjacency list,

the Aggregation Module is able to traverse the graph and compute the aggregated

solutions (Section 5.3.4).

Before returning the results back to the Controller, the module executes these

three final steps, independently of the chosen method:

1. Create a DOT description of the preference graph and write it into a

file – DOT is a simple plain text language used to create graph descriptions

that are easy to read for both humans and machines [54]. Once the

preference graph is described in DOT language, the module writes this

description into a file located on the same directory as the XMCDA files.

These DOT descriptions can, in turn, be loaded by applications like

Graphiz47 or ZRGViewer48, which are capable of “understanding” this

descriptions and create a graphic representation of the graph (E.g.: Fig.28).

2. Sort the preference graph’s adjacency list in ascending order, using

the number of incoming arcs - Using Collections.sort()49, sort the

following components in ascending order, using the number of incoming

arcs from each of its GNode instances, as the sorting criteria (Section 5.3.4

addresses this step with further detail):

a. The adjacency list

b. Every GNode’s preferableTo and incomparableWith lists.

3. Detect and remove possible cycles in the graphs – The preference

graphs generated from SMAA-2’s and SAW’s results can’t contain cycles in

the graph since every alternative that is on a given rank m will have

connections to, at maximum, (N-y-z) alternatives where: N is the total

47 http://www.graphviz.org/
48 http://zvtm.sourceforge.net/zgrviewer.html
49 http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html

CloudAid2

64

Fig. 30 - Aggregated Solution Example

number of alternatives (nodes); y the number of alternatives on rank m; z

the number of alternatives placed above rank m; and (N-y-z) the number of

alternatives that are inferior to y. Basically, y will never be preferable to

any alternative placed on a rank higher than m. With ELECTRE III and

PROMETHEE I, this is not the case. We cannot guarantee that there won’t

be any cycles on the graph once it has been built. As such, I included an

efficient algorithm to detect elementary cycles on directed graphs, based

on Tarjan’s algorithm50, developed by Donald B. Johnson [55]. I won’t be

going into much detail about the algorithm or how it was implemented for

it falls out of the scope of the report however, it’s important to note its

time complexity, finding every cycle within the graph in O(n) time. If it

does find any cycles, the module is responsible for marking every node in

the cycle as incomparable with every other alternative in the cycle.

Once these 3 steps have been concluded, the module terminates and returns

the sorted adjacency list back to the Controller. Once every Service Template has

been processed, it can move onto the next step of execution: computing the

aggregated solutions.

5.3.4. Aggregation Module

Contrary to the Search Module and Decision Module, the Aggregation Module is

executed only once per each CSA, has shown in Algorithm.1. The Search Module finds

suitable alternatives for each Service Template and the Decision Module creates the

preference graph’s adjacency list for the alternatives found by the Search Module. The

Aggregation Module in turn, uses the preference graphs returned by the Decision Module to

compute the results the decision maker is looking for – the admissible aggregated

solutions.

Like in the previous prototype, every admissible aggregated solution is composed of

one alternative from each Service Template. Fig.30 presents an example of an aggregated

solution for a CSA with three Service Templates.

50 http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm

CloudAid2

65

 To extract these aggregated solutions from the alternatives preference graph, the

Aggregation Module uses an algorithm that was developed in this thesis.

Aggregation Algorithm

 As previously stated, the aggregation algorithms developed on CloudAid1 had a

very limited support for incomparability/incomplete information between alternatives.

Given the results of the new MCDM methods, the need for a new aggregation algorithm

was assured. While the previous algorithms are incompatible with the chosen data

structure, they served as base of study and analysis for the development of the new

aggregation algorithm.

 The first step was to uniformize the MCDM’s results: creating the preference

graphs. Once we have the preference graph from each Service Template we can traverse

them, starting at their roots and choosing the next alternative to visit (select) using the

root’s arcs (their preference relations, the alternatives that we can go to once we visit a

certain alternative). When choosing an alternative, there’re three questions that need to

be taken into consideration:

1. Where do we start? How do we chose the root of the graph from the

adjacency list?

2. Having selected the graph’s root, how do we chose the next alternative to

visit?

3. If we’re traversing the graph using only the outgoing connections from the

currently visited alternative, how do we deal with the inexistence of

connections between alternatives (incomparability)?

These questions are related to the traversal of the graph, that is, the alternative

that we want to visit next.

The sorting of the adjacency mentioned on section 5.3.3.3 addresses the first two

questions. Fitting the graph into the context of the project, the root of the graph needs to

be the least dominated alternative that is, the alternative that possesses the least incoming

connections thus, ensuring that we always start by choosing/vising the best alternative(s)

from the group of alternatives.

Once the root (first element of the list) has been identified, we start by visiting it

and marking it as visited. From the root, we can move onto the next alternative by

choosing an alternative from its preferableTo list which, is also sorted according to the

number of incoming connections (keep in mind that each node is an instance of GNode). By

sorting the preferableTo and incomparableWith lists from each GNode, we ensure that the

next alternative we visit (which is always the first element of the list) will be the least

dominated alternative from the remaining alternatives to visit. Marking a node as visited

ensures that there’s no node visited twice.

CloudAid2

66

If we were dealing with a fully ordered list, every alternative on the preference

graph would have a connection to every another alternative, be it an incoming or outgoing

arc, thus, every node would be visited sooner or later. When dealing with

incomparability/incomplete information, the preference graph contains unconnected

alternatives which, requires extra measures before we choose the next alternative to visit.

For example, consider Figure.28 from section 5.3.3. Suppose that Alt3 is the root of

the graph and that we only use the outgoing connections from Alt3 to other alternatives

(alternatives to which Alt3 is always preferred). This would be the path performed by a

moving piece on the graph: Alt3(0) → Alt2(3) -> Alt1(4) where (x) represents the number

of incoming connections of the alternative. Alt4, Alt6 and Alt5 wouldn’t be visited, and

therefore not tested, for there’s no outgoing connection to any of them from any

alternative that was visited.

As mentioned earlier, the inexistence of a connection between two alternatives

means that they’re incomparable and, we know that alternatives that are incomparable

need to be treated equally. As such, if we visit Alt3, we need to visit Alt4 and Alt6 as well

before we visit Alt2. It’s only after visiting Alt3, Al4 and Alt6 that we can visit Alt2, and so

on. The list of incomparable alternatives of every alternative is located on the

incomparableWith list of its GNode instance.

Using this approach, we provide an answer to question 3 and we make sure there’s

no node left to visit on the graph. Now, the path performed by the moving piece would be:

Alt3(0) → Alt4(0) → Alt6(0) → Alt2(3) → Alt1(4) → Alt5(4).

Now that we can traverse and select the next alternative to be tested correctly

from the preference graphs, we can move onto the actual aggregation algorithm.

Combining the study and analysis of aggregation algorithms developed on [7] with this

knowledge, it was possible to develop a new Breadth-First Search51 based aggregation

algorithm to traverse the aggregated solutions tree and, reduce its computational cost by

applying a method similar to Branch and bound52. Algorithm.3 presents the pseudo-code of

the new aggregation algorithm:

51 http://en.wikipedia.org/wiki/Breadth-first_search
52 http://en.wikipedia.org/wiki/Branch_and_bound

CloudAid2

67

Algorithm.3 – Aggregation Algorithm
Create queue Q
ArrayList<GNode> solution

for(GNode root in preferenceGraphsRoots)
 solution.add(root)
end for

Q.add(solution)

for(k < solution.size())
 incomparables = getIncomparables(solution.get(k))
 ArrayList<GNode> newSolutions = replaceAlt(solution,k,incomparables)
end for

while(Q is not empty)
 node ← Q.poll()
 add node to tested
 if(node is admissable)
 if(node is not dominated or is incomparable with some admissable)
 admissables.add(node)
 end if
 else
 for(p < node.size())
 ArrayList<GNode> children = moveForward(node.get(p),node,p)
 for(child in children)
 if(Q not contains child and tested not contains child)
 if(child is not dominated or is incomparable with some admissable)
 Q.add(child)
 end if
 end if
 end for
 end if
end while

The algorithm starts by placing into the queue the best aggregated solution

possible, which is the solution composed of by the roots of every preference graph.

Afterwards, getIncomparables(k) verifies if element k of the solution is incomparable with

any alternative. If it is, it replaces k within the aggregated solution with its incomparable

alternatives, creating new best aggregated solutions, and then adds them to the queue. For

example, consider a CSA with two Service Templates and that each of these Service

Template has a preference graph equal to the one depicted on Fig.28 of Section 5.3.3.3. If

Alt3 had no incomparable alternatives, the root of the aggregated solution’s tree would be

[Alt3, Alt3] however, Alt3 is incomparable with Alt4 and Alt6 which means that the tree has

6 possible choices for its root: [Alt3,Alt3] – [Alt3,Alt4] – [Alt3,Alt6] – [Alt4,Alt3] – [Alt6,Alt3]

and [Alt3,Alt3]. Every one of these solutions will be placed in the queue and tested by the

algorithm. Only then, will it test any solution containing Alt2.

Once the root(s) of the tree has been placed on the queue, the algorithm will start

traversing the tree. It fetches the first element of the queue, let’s say that it’s [Alt3, Alt3]. It

marks this solution has tested and, afterwards verifies if the solution passes the

admissibility test (section 5.3.4.1). If it does, it’ll compare it with every admissible solution

found so far, checking for dominance or incomparability. If the solution is not dominated

by any solution or, if it’s incomparable with all of them, it’s placed onto the list of final

CloudAid2

68

solutions else, it’s discarded. Afterwards, it terminates the search on that branch of the

tree.

On the other hand, if the solution being tested fails the admissibility test, the

algorithm needs to move one step forward in the tree to fetch the children of the solution.

Supposing [Alt3, Alt3] failed the admissibility test and the algorithm requested its children

using the moveForward() method, the new solutions that’d be placed into the queue would

be: [Alt2, Alt3] and [Alt3, Alt2]. However, we know that there’re some solutions missing since

Alt3 is incomparable with some alternatives (if we choose Alt3, we need to choose Alt4 and Alt6

as well). The full list of children for [Alt3, Alt3] would be: [Alt2, Alt3] – [Alt2, Alt4] – [Alt2,

Alt6] – [Alt3, Alt2] – [Alt4, Alt2] and [Alt6, Alt2]. Once its children have been identified, it

verifies if any of them is already on the queue or if it’s already been tested. If they haven’t, and,

if they’re not dominated by any solution on the final list of solutions or, are incomparable with

all of them, they’ll be placed into the queue for later testing.

5.3.4.1. Admissibility Test

The admissibility test has a critical role on the aggregation algorithm. Like in the

previous version of the prototype, it’s in charge of verifying if a certain aggregated solution

fulfills the global requirements of the CSA. This admissibility testing of the solution is

performed by the AggChecker class.

The previous version of the prototype only considered global requirements over the price

of the solution. The decision maker could define a pricing requirement stating the maximum or

minimum cost of the aggregated solution (the cost of an aggregated solution is equal to the sum

of the cost of its alternatives) and, every alternative that failed to meet this requirement would

fail the test.

On CloudAid2, this admissibility test has been expanded, now supporting three types of

global requirements:

 Qualitative Requirement

 Quantitative Requirement

 Price Requirement

Regarding the price requirements, their behavior is the same as in the CloudAid1

prototype: should the aggregated solution’s cost exceed a maximum or cost less than a minimum,

it’ll fails the test. Quantitative requirements follow the same ideology as the price requirements.

E.g.: The decision maker creates a global MemorySize (RAM) requirement stating that the

aggregated solution he’s looking for should possess an overall MemorySize of 10 GB or higher.

Every aggregated solution solution that possesses an overall MemorySize size lower than 10 GB

will be discarded.

Qualitative requirements however, follow a different approach: in case the decision maker

defines a global qualitative requirement (E.g.: Location), he’ll be able to define the minimum

number of alternatives (in the aggregated solution) that need to have/contain the value he’s

looking for. For example, consider that the decision maker create a CSA with 4 different Service

Templates and he needs at least two of the alternatives in the aggregated solution to be located

in Tokyo. To discard solutions with one or less alternatives located in Tokyo, he/she would need

to define the minimum number of alternatives that need to be located in Tokyo (two), when

creating the global Requirement in the CSA.

CloudAid2

69

5.3.5. Graphical User Interface

CloudAid1 had no graphic interface available, the interaction between the decision

maker and the prototype was carried out by a simple shell application which lowered its

usability and concluded in an unpleasant experience. For the new prototype, a friendly

JavaFX53 Graphical User Interface was created, easing the interaction with the decision

maker and strengthening the usability of the prototype.

Initially, the proposed objective was to develop a graphical interface using

HTML554 however, due to time constrains, I decided to switch to another technology that

had been considered but put aside in favor of HTML5: JavaFX. As the name implies, its Java

based, posing a much softer learning curve for me and allowing a faster development.

Choosing JavaFX allowed me to focus right away on the functionalities and

possibilities of the technology rather than spending extra time learning the basics and how

its components interact with each other.

As mentioned on section 5.3.1.1, the GUI and the server communicate via JSON files.

Every time they need to send or request information, they describe the data in JSON

format and write it into a file on pre-defined directory. Since the GUI is also Java based, its

JSON processing is equivalent to the JSON processing of the server side. It recurs to the

same data models and to the Gson library to load the information described in the JSON

files into their corresponding Java models and ease their manipulation.

 Regarding the development of the GUI itself, I won’t go into much detail for there’s

little value in its explanation however, it was an interesting challenge and a good

experience from a technical perspective, providing me with a good hands-on on this

technology.

 Its development was greatly enhanced by the use of JavaFX Scene Builder55. Scene

Builder is a visual layout tool that allows a quick design of JavaFX application user

interfaces without the need to code. We can drag & drop UI components, edit their

properties, and the FXML56 code for the layout will be automatically generated.

Afterwards, this FXML description of the layout is bound to the application’s logic, more

precisely, to their Controller class. This Controller class has access to the FXML (UI)

components, being capable of editing their properties, fetch their content (TextField57 is a

common UI component) or even erase them programmatically.

53 http://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
54 http://www.w3schools.com/html/html5_intro.asp
55 http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
56 http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
57 http://docs.oracle.com/javafx/2/api/javafx/scene/control/TextField.html

CloudAid2

70

Fig. 31 - GUI’s use cases

5.3.5.1. Use Cases

This section presents the possible interactions between the user and the Graphic

User Interface (GUI). Fig.31 presents every action the user is capable of doing using the

prototype’s GUI.

 Next, each of these actions is described, explaining what their purpose is and what

is expected from the decision maker:

 View History – The user is able to load ‘Search Sheets’ that he created in the past,

modify and re-use them.

 Search – The user may send Search Sheet (CSA) requests the server:

o Add Search Sheet – The user can create his Search Sheets and define the

desired characteristics for the system he’s looking for. As you can see, the action

of inserting a new Search Sheet requires a certain number of interactions from

the user. Some are mandatory, others are not.

o Add Service Template – The user should create a new Service Template for

each different component of his architecture. For example, let’s say he wants to

build a system composed of 3 different services: a server, a load balancer and a

CloudAid2

71

database. In this case the user needs 3 different Service Templates. Every

Service Template has its own set of requirements and criteria that need to be

defined by the user through the actions: Add Requirement and Add Criteria.

o Add Weight – The user can define the importance of each criterion he creates

but, it’s not mandatory since the prototype supports decision methods that don’t

require that kind of information.

 Insert Pricing Variables values – The user needs to insert the values of the

pricing variables related to the Service Template. Once he/she sends his/hers

Search Sheet (CSA) to the server, the latter will request some mandatory values for

the pricing variables of the alternatives found in order to calculate their cost.

 Insert Qualitative distance values – After evaluating his Search Sheet, if he

defined any qualitative criteria on it, a second interaction with the decision maker

will be required. The GUI will receive a list of concepts from the server and will

present the user a new popup where he needs to define the numerical distances

between his preferred value and the values that the alternatives have. E.g.:

 The user created a criterion for the Performance feature and set his

ideal value to Excellent. Assuming that the prototype only found

alternatives for the Service Template with a Performance = High and

a Performance = Low. The GUI would request from the decision

maker, the numerical distances between: Excellent – High and

Excellent – Low.

5.3.5.2. Resulting GUI and Mockups comparison

In this section, I present some screen shots of the final GUI, comparing it with the

initial specification of the interface. A video that exemplifies how to work with the GUI and

its functions is available on [52]. While the final result is very similar to the initial

specification, some changes occurred either due to some change on the logic of the

prototype, simplicity or simply due to the shortage of time. The specification mockups

were created with the help of the balsamiq mockups software. It’s an easy to use and

effective tool to build rich and understandable mockups [32].

CloudAid2

72

Fig. 32 - Login/Register panel mockup

Fig. 33 - Login/Register panel GUI

Fig.32 presents the originally proposed login panel and Fig.33 presents the current

log in panel of the interface. As you can see, they’re very similar, differing only on minor

aspects. The same applies for the Main Panel however, the GUI’s main panel presents more

information like the checkbox to create a global requirement or the combobox to select the

MCDM.

CloudAid2

73

Fig. 34 - Main Panel mockup

Fig. 35 - Main Panel GUI

CloudAid2

74

Fig. 36 - Adding a quantitative requirement mockup

Fig. 37 - Adding a quantitative requirement GUI

CloudAid2

75

Fig. 38 - Adding a qualitative requirement mockup

Fig. 39 - Adding a qualitative requirement GUI

The main difference between fig.38 and fig.39 is the removal of the Qualitative Helper

functionality.

CloudAid2

76

Fig. 40 - Adding a criterion mockup

Fig. 41 - Adding a criterion GUI

CloudAid2

77

Fig. 42 - Defining pricing variables values mockup

Fig. 43 - Defining pricing variables values GUI

Adding a criterion has a few changes as well. The Importance Helper functionality was

replaced by a slider (inspired by the AHP method) which ranges from 0 to 10. The slider

provides visual support to the decision maker, making the need for a secondary method of

support to define the importance unnecessary.

CloudAid2

78

Fig. 44 - Define qualitative criterion’s values distances mockup

Fig. 45 - Define qualitative criterion’s values distances GUI

 The main difference between the specification and the actual GUI (Fig.42 and

Fig.43) is the moment in which the values for the pricing are requested. The initial

proposal was to define some values prior to sending the request to the server however, for

simplicity sake, I decided to remove that option and request the values for the pricing

variables only once per Service Template, after the request is sent to the server.

CloudAid2

79

Fig. 46 - Results panel mockup

Fig. 47 - Results panel GUI

CloudAid2

80

 The layout for the results tab is different from the one initially proposed. Now, it’s

very similar to the layout used by a typical e-mail platform. Each aggregated solution is

presented on a clickable table which, when clicked, presents the detailed information

about each alternative of the clicked aggregated solution, on the panelview below.

6. Testing

This chapter presents and validates the results obtained by the CloudAid2 prototype.

Due to time constrains, not all of the tests presented on Table.13 were formally described

however, most of them were merged with other tests instead of being individually tested

allowing to still prove their correct implementation and functionality. Each functionality

was target of informal individual preliminary tests (Unit testing) alongside the

development phase.

It starts by presenting the list of functional requirements implementation status, and

the functional tests performed, on section 6.1. Section 6.2 presents the reliability testing

performed to the Search Module followed by section 6.3 which presents the integration

testing with the external web services and their results validation. Finally, on section 6.4, I

present the reliability and performance testing of the aggregation algorithm.

6.1. Functional testing

Functional testing aims at verifying that the prototype works as intended and that the

proposed functionalities were correctly implemented [33, 34]. Table.13 presents the

functional requirements extracted from Appendix A and their corresponding status.

There’s two possible status for a functional requirement:

1. DONE – The requirement was implemented and tested

2. NOT DONE – The requirement wasn’t implemented

As you can see, every “MUST” requirement was implemented. This allowed to have

a fully operational prototype and more importantly, allowed to meet every requirement

proposed at the beginning of the project. Regarding the NOT DONE requirements, these

derived from the self-proposal of implementing a web communication between the GUI

and the Server however, due to some shortage of time, I wasn’t able to comply with them.

While they were not implemented, they do not affect the performance and objective of the

prototype at all.

ID Name Priority Status
Functional

Search Module
RF1 Dynamic price calculation MUST DONE
RF2 Read and handle Linked USDL Cloud Services

correctly
MUST DONE

Service Set – Cloud Gen (Service Gatherer)
RF1 Use Scrape techniques to fetch and create our

Linked USDL service descriptions
MUST DONE

RF2 Create files with the RDF service description MUST DONE

CloudAid2

81

Decision Module
RF1 Decision Method selection MUST DONE
RF2 New Multi-Criteria Decision Methods MUST DONE
RF3 Group similar alternatives SHOULD NOT DONE
RF4 Thresholds definition MUST DONE
RF5 Correct XMCDA description MUST DONE
RF6 SOAP Message encapsulation MUST DONE
RF7 Multi-Criteria Decision Methods execution MUST DONE
Aggregation Module
RF1 Admissibility test expansion MUST DONE
RF2 Compatibility with the new results from the

multi-decision criteria methods
MUST DONE

Graphic User Interface (GUI) - Client
RF1 Add a new Service Template MUST DONE
RF1.1 Add a requirement to a Service Template MUST DONE
RF1.2 Add a criterion to the Service Template MUST DONE
RF2 Add a global requirement MUST DONE
RF3 Send data to server using REST protocol SHOULD NOT DONE
RF4 Receive and present results from the server MUST DONE
RF5 Re-use Search Sheets from the History MUST DONE
RF6 Insertion of the pricing variables MUST DONE
RF7 Register SHOULD NOT DONE
RF8 Login SHOULD NOT DONE
Server
RF1 Wait for data from the graphic interface MUST DONE
RF2 Send the results to the client interface MUST DONE
RF3 Send results to e-mail SHOULD NOT DONE
RF4 Keep past search sheets sent by users and their

respective result
MUST DONE

RF5 Access control SHOULD NOT DONE
Table 13 - Functional Requirements List

 To assess the correct implementation of these requirements, a series of tests were

performed. These tests also served as a mean to identify and correct several problems of

the prototype, whether they were related to implementation problems, or even conceptual

problems leading to some changes on the prototype’s logic.

Fig.48 presents an example of a formal description for the RF1 requirement where the

capability for dynamic price calculation is being tested. The test was successfully executed

and the prototype successfully passed on every step.

RF1 is also a good example of the merge testing approach followed, where multiple

functional requirements can be tested on a single test case. It tests not only RF1, but also

RF6 (GUI), RF4 (GUI) and RF2 (Search Module).

In fact, the prototype (which can be downloaded from [52]) is accompanied with two

CSA examples ready to use. The user just needs to “load” the CSA from the History and send

the request to the server. Doing this will test every functional requirement depicted on

table.13, from GUI’s functionalities to the last step of the server: returning the aggregated

solutions back to the GUI.

Note that a video presenting the usage of the prototype and its functionalities can be

found on [52].

CloudAid2

82

F
ig. 4

8
 - T

est C
ase R

F
1

CloudAid2

83

6.2. Search Module testing

The testing of the Search Module centers on reliability tests for its Performance testing

has already been evaluated by Eng. Jorge Araújo on [7]. It’s testing centered around two

topics:

1. Does the Search Module find the alternatives that match the user’s

requirements correctly?

2. Are the alternatives prices calculated correctly?

To find an answer to these questions, I recurred to the CSA example that accompanies

the prototype. It’s a simple but effective test, composed of two Service Templates, that

allows me to verify the results for these two questions. Table.14 presents its detailed

description.

CSA Example

ServiceTemplate1: VM Requirements (Minimum/Maximum) Criteria (Minimize/Maximize)

Gbout: 50 Location:Tokyo No

Usagehours: 732 CPUCores-Needs to have Yes, W=3, Max

 CPUSpeed: 2.5 Ghz, Min Yes, W=4, Max

 MemorySize (RAM): 4, Min Yes, W=4.2, Max

 DiskSize:150GB, Min Yes, W=3.5, Max

 Performance: Needs to have Yes: High,W=4.5, Min

 Price: 200, Max Yes, W=5. Ind:12, Pref:24, Veto:40, Min

 Feature: Virtual Machine No

 UNIX No

ServiceTemplate2: DB Requirements (Minimum/Maximum) Criteria (Minimize/Maximize)

Gbout: 50 IOOperations: 1500, Min No

Usagehours: 732 StorageCapacity: 100GB, Min No

IOPSWanted: 1500 Backup_Recovery: Needs to have No

NumberOfMonths: 1 MemorySize:3, Min Yes,W=4.5, Max

GBStorageWanted: 100 Performance: Needs to have Yes:High,W=4.7, Min

 Platform: MySQL No

 Price: 480, Max Yes:W=5. Ind:9,Pref:15,Veto:36, Min

 Location:Tokyo No

 CPUSpeed Yes:W=4, Max

 Feature: Database

Table 14 - CSA testing example

 Using this CSA, we can verify if the module is capable of searching for alternatives

that match a specific set of requirements and, at the same time, we can verify if the module

is capable of handling every type of requirement. The type of requirements being tested by

the CSA are:

 Qualitative Requirement with value – Location

CloudAid2

84

 Qualitative Requirement without a value (but needed) – Performance

 Quantitative Requirement with a minimum value – DiskSize

 Quantitative Requirement with a maximum value – Price

The server prints every alternative found for each Service Template (and its

attributes) so it’s easy to verify that each alternative found obeys the requirements set

by the decision maker. With this, we know for sure that the searching capabilities of the

module work as intended.

Regarding the second question, whether the prices for the alternatives are

correctly calculated or not, it’s easily to verified using third party tools supplied by the

providers, like Amazon’s web calculator58, to calculate the actual cost of the service and

see if it matches the one calculated by the prototype. At the time that this testing was

performed, every price calculated by the prototype was correct and matched the

information on the provider’s tools.

Another approach is to manually perform the necessary calculations by fetching

the values provided by the decision maker (regarding the pricing variables of the

service) and, using the mathematical expression defined when creating the description

of the service with the Linked USDL Pricing API (Section 5.3.1).

Finally, Appendix E presents the SPARQL query generated, and used, by the

Search Module to retrieve the alternatives that match ServiceTemplate1.

6.3. Decision Module testing

The testing of the Decision Module centers on two topics: XMCDA problem description

and results processing.

To assess the XMCDA description of the problem, there’re two approaches we can

follow:

 Use XMCDA schema to validate the initial XMCDA problem description

 Create the XCMDA problem description and submit the problem to check the

behavior of the web service.

For a stronger validation, both approaches were followed: first, I validated the

creation of the XMCDA description with the XMCDA schema provided by the Decision Deck

group, followed by an analysis of the responses from the web services regarding the

submitted problems.

It’s important to note that it’s only the first messages (created by the prototype)

from each workflow that need validation. Subsequent messages are provided by the web

services themselves thus, validation would be redundant.

 Appendix F presents the SOAP messages exchanged between the first step of the

PROMETHEE I’s workflow and its response, for the CSA presented on Table.14. Every

message exchanged between the prototype and each MCDM’s workflow can be consulted

in the Integration Testing document [52].

58 http://calculator.s3.amazonaws.com/index.html

CloudAid2

85

Fig. 49 - ServiceTemplate1’s preference graph generated by the prototype
(PROMETHEE I)

Fig. 50 - ServiceTemplate1’s preference graph generated by diviz
(PROMETHEE I)

 This document verifies the successful integration of the external Multi-Criteria

Decision Methods into the new prototype. (Currently, as the workflow is executed, the

server also prints every response for each of its steps).

Regarding the construction of the preference graphs, we can validate their creation

(only PROMETHEE I’s and ELECTRE III’s) using the diviz application. Diviz uses an extra

web service to generate the image of the preference graph; the prototype on the other

hand, creates the graphs programmatically. Fig.49 presents the preference graph for

ServiceTemplate1 generated by the prototype (image generated by GraphvizFiddle59).

Fig.50 presents the preference graph for ServiceTemplate1 as well, but created by the diviz

application.

59 http://stamm-wilbrandt.de/GraphvizFiddle/

CloudAid2

86

 SMAA-2 and SAW results are much easier to validate for they’re simply extracted

by parsing the XMCDA result and fetching the corresponding values. However, the

methods to transform their results into preference graphs were developed on this thesis.

These methods are simple, relying mostly on finding a maximum value within a set of

numbers and then placing an alternative based on that number. This approach is prone to

errors and loss of information, it was adopted for simplicity sake, allowing for a faster

development and to move onto the development of the aggregation algorithm. Section 7

presents other approaches that are most likely to enrich the results of the prototype and

remove the shortcomings of the current approach.

6.4. Aggregation algorithm testing

The aggregation algorithm is a key component of the CloudAid2 prototype. As

such, performance and reliability tests need to be performed in order to ensure that every

objective concerning the Aggregation Module has been achieved.

Reliability testing centers around the actual results of the algorithm verifying its

accuracy while, performance testing focuses on the behavior of the algorithm for differing

quantities of information.

Reliability testing

 As mentioned on section 5.3.4, least dominated solutions need to be visited and

tested first. Going back to the example from section 5.3.4 – where we had two Service

Templates and each had a preference graph like the one depicted on Fig.28 – we know that

[Alt3, Alt3], along with its incomparability solutions, ([Alt3,Alt4], [Alt3,Alt6], [Alt4,Alt3],

[Alt6,Alt3] and [Alt3,Alt3]. These solutions derive from the replacement of Alt3 with its

incomparable alternatives. Keep in mind that incomparable alternatives need to be treated

equally which, basically means that if we chose Alt3, we need to choose its incomparable

alternatives as well) are the first aggregated solutions that need to be placed into the

queue and the ones to be tested first. Following, each of them needs is tested for its

admissibility and, only in the case that they fail the test is that we move on to its children.

 To verify if the algorithm traverses the aggregated solution’s tree correctly, each

solution needs to forcibly fail the admissibility test so the algorithm can move on to its

children thus, preventing an early dismissal of the branch. This is easily done by creating

an impossible global requirement like, stating that the overall cost of the aggregated

solution should be equal to 0; which, of course, results into zero valid solutions. This will

force the algorithm into visiting each node until there’s no more nodes left to visit.

 Let’s take advantage of the preference graph from Fig. 49 and from the one

depicted in Fig.51, which is the preference graph of ServiceTemplate2, to verify the

behavior of the aggregation algorithm.

CloudAid2

87

Fig. 51 - ServiceTemplate2’s preference graph generated by the prototype
(PROMETHEE I)

Fig. 52 - First three levels of the aggregated solution’s tree from CSA Example

 Considering this two preference graphs (Fig.49 and Fig.51), Fig.52 presents the

first three levels of their aggregated solution’s tree. These first three levels should prove

sufficient to get a graphical idea the traversal of the aggregated solutions tree (Table.15).

To get each node of the tree, you need to “move forward” on each preference graph, one at

a time, choosing the least dominated alternative, and switch places with its father on the

aggregated solution. Keep in mind that the algorithm won’t test alternatives that have

been already tested (visited) hence the “slash” on some nodes of the tree.

 As you may notice, some of the solutions link to other solutions while some are

linked to an empty circle. This means that the alternatives connected to the empty circle

are incomparable with each other thus, needing to be treated (and considered) equally.

 Now that we have both preference graphs and the aggregated solution’s tree, we

just need to create the impossible global requirement and see the order in which the ones

are visited. The algorithm outputs the following order:

CloudAid2

88

Order Visited solution

1 Alt2 Alt1

2 Alt3 Alt1

3 Alt2 Alt2

4 Alt2 Alt3

5 Alt5 Alt1

6 Alt3 Alt2

7 Alt3 Alt3

8 Alt2 Alt5

9 Alt1 Alt1

10 Alt5 Alt2

11 Alt5 Alt3

12 Alt3 Alt5

13 Alt2 Alt4

14 Alt6 Alt1

15 Alt1 Alt2

16 Alt1 Alt3

17 Alt5 Alt5

18 Alt3 Alt4

19 Alt4 Alt1

20 Alt6 Alt2

21 Alt6 Alt3

22 Alt1 Alt5

23 Alt5 Alt4

24 Alt4 Alt2

25 Alt4 Alt3

26 Alt6 Alt5

27 Alt1 Alt4

28 Alt4 Alt5

29 Alt6 Alt4

30 Alt4 Alt4

Table 15 - CSA Example tree traversal

 Looking at Fig.52 and comparing it with the visiting order of the nodes presented

on Table.15, we can conclude that the algorithm does traverse, and test, the aggregated

solution’s tree on the correct order.

Performance testing

 To test the performance of the algorithm, an isolated testing class was created:

AggregationAlgorithm class. This class creates results similar to those returned by SMAA-2

(section 5.3.3) to generate fictitious preference graphs. It creates a number of alternatives

for a certain ServiceTemplate, attributes a random cost to each alternative (between 50

and 500) and afterwards, randomly attributes a (random) percentage to each possible

rank of the alternative. Once it has generated the alternatives for each ServiceTemplate, it

CloudAid2

89

uses the getSMAAGraphSolution() method to create the adjacency list of each

ServiceTemplate.

Once we have a set of preference graphs (adjacency lists), we can evaluate the

performance of the aggregation algorithm.

 The purpose of this test is to observe and evaluate the behavior of the algorithm

with differing workloads of information. It focuses on two aspects: first we test the

algorithm in the worst case scenario that is, when the algorithm needs to traverse the

entire tree, visiting each node, to find a solution. Afterwards, we evaluate the behavior of

the algorithm when it’s not dealing with a worst case scenario.

Testing in the worst case scenario has an advantage: If we’re not dealing with a

worst case scenario (where no solution is found or the solution found is in the last node to

be visited), the algorithm should solve the problem in less time than the one presented on

Table.17. Table.16 presents the CSA generation parameters used for this test.

Parameter Value

#Alternatives [5,10,20]
#ServiceTemplates [2,4,6,8]
SMAA indifference threshold 4%

Table 16 - Aggregation algorithm testing parameters

For example, looking at the first elements of #Alternatives and #ServiceTemplates

from Table.16, the AggregationAlgorithm class would generate 2 preferences graphs, each

with 5 alternatives.

For each test case, we evaluate the time (T, in seconds) it took to traverse the

entire tree of aggregated solutions and the number of nodes (n) visited. Table.17 presents

the results for each test case.

N
u

m
b

er
 o

f
A

lt
er

n
a

ti
v

es

Number of Service Templates

2 4 6 8

T (s) n T (s) n T (s) n T (s) n

5 0,003 25 0.016 575 1.951 12800 1666.8 3.5*10^5

10 0.005 100 1.044 10000 10773.9 9.72*10^5 - -

20 0.014 400 201.612 16*104 ≻25000 ≻15*10^5 - -

Table 17 - Aggregation algorithm performance

Looking at table.17, we can see that the higher the number of Service Templates is,

the higher should be the search parameter’s specificity of the decision maker’s problem.

As you can see, in case there’re two Service Templates, even if the decision maker isn’t very

specific about his requirements, the algorithm will still be capable of dealing with a

considerably high amount of alternatives. However, if the decision maker maintains the

same level of specificity for a higher number of Service Templates, the algorithm’s

performance deteriorates very rapidly due to the exponential increase in the number of

possible solutions. As such, a balance between both would be the best approach.

CloudAid2

90

As the number of Service Template increases, the decision maker should make a

stronger effort in getting as much information about his target architecture as possible.

Doing so, will strongly alleviate the working load of the algorithm, improving both

accuracy of the results and the time required to compute them.

 Augmenting the testing range, we can get a graphical perspective of the behavior of

the algorithm for differing workloads. Recurring to the mesh60 function from matlab, we

get the surface presented on Fig.53 which, relates the number of Service Templates and the

number of Alternatives with their corresponding number of visited nodes. Fig.54, in turn,

presents the relation between the number of Service Templates-Alternatives and the

amount of time it took the algorithm to visit every node of the tree.

 Table.18 presents the full results in a table similar to Table.17. The parameter’s

ranges are.

 Service Templates (ST) – [2:8]

 Number of Alternatives(Alt) – [2:8]

 Indifference threshold – 4%

 Alternatives cost – [50,500]

A
lt

s Number of Service Templates
2 3 4 5 6 7 8

T(s) n T(s) n T(s) n T(s) n T(s) n T(s) n T(s) n
2 0.0002 4 0.00005 7 0.0001 11 0.0001 21 0.0003 37 0.0007 53 0.0007 103

3 0.0001 9 0.0001 24 0.0003 73 0.001 195 0.0046 522 0.039 1491 0.236 3583

4 0.0001 16 0.00015 61 0.0011 220 0.009 893 0.13 3228 2.20 11074 28.3 43161

5 0.0001 25 0.00015 123 0.0033 600 0.082 2817 2.10 13344 48.9 61154 1415.5 308156

6 0.0005 36 0.0008 209 0.0131 1240 0.511 7262 16.9 40888 781.8 246240 8044 808564

7 0.0001 49 0.0012 333 0.048 2326 2.45 15720 105.4 105043 7606.2 749112 144328 3404288

8 0.0003 63 0.0023 502 0.138 4007 7.37 30992 611.47 249059 38234 1651888 183688 6851951

Table 18 - Aggregation Algorithm full performance results

 Looking at the figures, the relation between the number of ServiceTemplates and
Alternatives with the time required to compute the aggregated solutions becomes evident.
As the decision maker increases the number of Service Templates on the CSA, he/she
should take into consideration the degree of specificity of the requirements.

 Now that we know how the algorithm behaves in its worst scenario, we can

evaluate its behavior in a not worst situation, we just need to make sure that its global

price requirement doesn’t have its value set to zero. While it might not be set to zero, its

value still has an impact on the behavior of the algorithm. For example, setting its value to

600 will find different admissible solutions than if it was set to 300 or 400. It might find

(and probably will) admissible solutions on a higher level of the tree thus, terminating the

search earlier than it would with 300 or 400 and as such, leading to a lower number of

visited (tested) nodes.

 Evaluating the algorithm on these situations it’s important because the testing of

the algorithm in a worst case scenario “skips” one of its steps: testing for dominance or

incomparability of an admissible solution. As there’re no admissible solutions in the worst

60 http://www.mathworks.com/help/matlab/ref/mesh.html

CloudAid2

91

Fig. 53 - ST’s-Alts relation to the number of visited nodes

Fig. 54 - ST’s-Alts relation to the time required to visit every node

case scenario, the time required to perform this operation is nearly zero as the list is

always empty. With a “normal” global requirement, this (probably) won’t be the case. The

list will contain the aggregated solutions that match the decision maker’s requirements

(found so far) and, each time a new admissible solution is found, it needs to find out if it

can be placed on the list as well. Of course, if the list no longer has a size equal to zero, the

computational cost of this operation will be higher than on the worst case scenario.

 To evaluate the algorithm’s behavior on these situations, each ServiceTemplate-

Alternatives pair was tested with differing values for its global price requirement.

Table.19 presents the results of this testing for the pair ServiceTemplates=6, Alternatives=8.

CloudAid2

92

Service Templates = 6 , Alternatives = 8

Price Visited Admissable Time(s)

300 247936 0 1170.2

600 247936 0 996.5

900 228378 300 693.6

1200 196622 6675 716.02

1500 165865 27706 709.93

1800 78908 29175 345.02

2100 8030 3852 13.78

2400 4 4 0

2700 4 4 0
3000 4 4 0

Table 19 - Global Requirement's Value variation for the pair ST=6,Alt=8

Looking at Table.19, we can see that the higher the value of the global requirement,

the lower is the time required to compute the aggregated solutions. As the condition

imposed by the global requirement softens, the time required to compute the aggregated

solution highly diminishes due to the decrease in the number of nodes we need to visit.

The softness of a global requirement is directly related to its value; for example, looking at

the example presented on Table.19, assume that the maximum cost of any existing

aggregated solution is 3000 (each alternative costs at max 500, and each aggregated

solution is composed of one alternative from each Service Template). If the global

requirement states that no aggregated solution should cost more than 300, it’ll be

extremely hard to find a solution with an overall cost lower or equal to that value thus,

forcing the algorithm to visit almost every node of the tree, if not all, looking for an

admissible solution. On the other hand, if the global requirement states that an aggregated

solution may cost up to 2700, the probability of finding one is much higher (the constrain

of the admissibility test has been softened) which means that the search on a branch of the

tree will cease as soon as it finds an admissible solution. Terminating the search on higher

levels leads to a decrease on the number of nodes that the algorithm will have to visit later

on.

We can conclude that, while checking for incomparability/dominance has a certain

computational cost, it’s much less than the one required to traverse and visit every node of

the tree. While the number of Service Templates and Alternatives play an extremely

important role on the algorithm, its global requirements are also a critical point in the

computation of the aggregated solutions. Fig.55 presents a graphical relation between

Table.19’s price, visited and time attributes.

CloudAid2

93

Fig. 55 – ST’s=6, Alts=8 behavior for varying values of the global price
requirement

Unfortunately, we cannot compare the results of the algorithm developed on the

previous prototype (the algorithm with incomparability support), with the results of the

new algorithm due to their diverging approaches and the way they deal with

incomparability.

Briefly, the previous algorithms relied on a fully ordered list to create the

aggregated solutions which led to some loss of information (solutions that were never

visited or even considered), not only because the data structure itself is unfit for the

purpose at hand and the MCDM used didn’t even consider the existence of such concept,

but also, because the algorithm too had its shortcomings regarding the concept of

incomparability. To cope with this situation, the new algorithm relies on graphs which

provides a much more suitable and reliable data structure, preventing the loss of

information and at the same time, enhancing the performance of the algorithm.

Finally, every testing result presented on this section can be found on [52], under

the Testing folder of the prototype.

7. Conclusions

This chapter presents the final conclusions of this thesis as well as contributions

during its research and development phases. Section 7.1 begins by summarizing the work

done, focusing on the key elements explained throughout this document. Contributions

and some final conclusions are presented on section 7.2. Finally, section 7.3 presents

future work that would most certainly improve the current state of the prototype.

7.1. Summary

The purpose of this thesis was to augment and improve the CloudAid1 prototype, an

application that aims at supporting decision makers choose an appropriate aggregation of

cloud services. To do so, it combines knowledge from several scientific areas as described

on chapter 1.

CloudAid2

94

Despite its promising results, there was a lot of room for improvement from a

usability perspective and more importantly, from a technical perspective. In the earlier

version of the prototype, services were fictional with a mere static value representing its

cost. Not only that, it had very low support for the most common situation when one is

faced with a Multi-Criteria Decision Problem: incomparable alternatives, where we can’t

say that alternative x is better than y or y better than x thus, needing to consider them both

as viable choices. Another issue was the lack of a friendly graphical interface that’d ease

the interaction of the decision maker with the prototype. The previous prototype’s

interaction was in charge of a simple shell application that had a rather limited usability

and delivered an unpleasant experience to its users.

Given these shortcomings, this thesis started by presenting the Linked USDL Pricing

API, a Java API created to ease and promote the adoption of Linked USDL core and pricing

models for cloud service’s descriptions. This API enables a programmatic interaction with

the models, providing a mean to calculate the cost of a service dynamically.

Combining the API with scrapping/parsing techniques, the creation of service

descriptions from real services data becomes much simpler. This created the

ServiceGatherer project, a simple application that generates semantic descriptions using

data extracted from the cloud provider’s web pages. Including the API and these dynamic

descriptions of the services highly improves the accuracy and realism of the prototype for

it’s now capable of calculating a personalized price for the user.

This thesis also presented a new aggregation algorithm that is capable of dealing with

incomparability/incomplete information between alternatives, proposing a graph-theory

based (more precisely, preference graphs) solution for the problem at hand. As well as, an

augmented version of the admissibility test which is now capable of dealing with

quantitative and qualitative requirements, aside the pricing requirement.

Finally, these concepts can be put in practice using the new graphical interface which

provides a much smoother and comfortable experience to the decision maker. The

prototype (the server side and its GUI) can be downloaded from [52], where it’s also

possible to find a video that demonstrates their usage.

7.2. Findings

Throughout the development of the project, a considerable amount of

conclusions/findings were reported and discussed however, there’re a few that we need

to highlight.

 The pricing validation performed on section 5.1 allowed to not only confirm that

the Linked USDL pricing model (and API) is capable of tackling today’s cloud pricing

methodology, but also to prove its flexibility. The modeling of a service’s pricing method

can be done in multiple ways and each could be just as correct as the other, as long as the

calculated cost matches the real one. For example, the user might decide to model a

certain feature’s discount directly on the service’s PriceComponent responsible for

calculating the cost of said feature or, create a new PriceComponent and marking it as a

deduction.

CloudAid2

95

In fact, this validation also proved useful to “point out” some of the limitations of the

Linked USDL Pricing API allowing its continuous adjustment to the problems as they

emerged.

The testing presented on chapter 6 allowed us to evaluate the influence of the

Composite Service Architecture (CSA) on the prototype’s behavior. A balance between the

number of Service Templates and the specificity of its requirements (global and local) is

something to strive for. The time it takes to visit a node depends on the number of Service

Templates, the number of Alternatives that each possesses and, the CSA’s global

requirements. For example, a lower number of Service Templates will have higher

tolerance for a low specificity on the Service Template’s requirements (low specificity

relaxes the filtering of alternatives) however, as the number of Service Templates

increases, the Service Template’s requirements should possess a higher specificity than the

ones used with a lower number of Service Templates. Independently of the number of

Service Templates, it’s still necessary to be cautions when specifying its requirements for a

(very) high number of alternatives will have serious repercussions on the time required

by the prototype to compute the aggregated solutions.

On the other hand, constrains imposed by global requirements (GR) have the opposite

effect. Independently of the number of Service Templates and Alternatives, if the constrains

imposed by the GR have low specificity (are soft) the algorithm will rapidly compute the

aggregated solutions. Low specificity on GR is especially useful for a high number of

Service Templates and Alternatives for it broadens the admissibility test thus, preventing

the search on lower levels of the tree where there’s a higher number of possible

aggregated solutions (especially, if there’s a high degree of incomparability between

alternatives).

Overall, we can say that the new version prototype (CloudAid2) is an improvement of

its earlier version (CloudAid1) and that the proposed objectives were accomplished. Of

course, despite its improvement, there’s still room for improvement regarding several

aspects of the prototype. The following section presents some improvements that could be

considered for future work.

7.3. Future Work

Given the highly broad scope of the project, covering every scientific field to an

extreme detail is impossible thus, leaving room for future development. Not only that, but

as the project moves forward, new solutions and possible approaches can be

proposed/discussed however, due to shortage of time, putting them to practice is near to

impossible as well. Therefore, we hope that by presenting these possible solutions and the

current state of the prototype, further research and development will build upon this

concept. A list of possible improvements is presented below. This list encompasses two

perspectives: improvements to the prototype from a technical perspective and, further

researching topics;

 Technical perspective:

 [CloudAid2] GUI improvement – The current GUI is still “raw”, having a lot of

room for improvement. Especially since we’re talking about an extremely

recent technology (JavaFX) and the functionalities inherent to it.

CloudAid2

96

 [Linked USDL Pricing API] Dynamic population of the Enum ontology

interfaces – The current version of the Linked USDL Pricing API uses static

Enums to provide an interface between the semantic ontologies and the API.

This approach should be replaced by a more dynamic approach (using The

Owl API 61for example), enabling the modification of the ontologies without

the need of adapting the source code to said modifications.

 [Linked USDL Pricing API] Mathematical Expression Converter expansion –

The current Mathematical Expression to SPARQL converter of the Linked

USDL Pricing API is still very raw, supporting only basic mathematical

operators (multiplication, division, addition, etc.) and a very limited group of

functions (CEIL for example). SPARQL, however, has a much wider range of

functionalities and as such, including those functionalities into the converter

would greatly enhance its usability.

 [CloudAid2] Web communication – While the prototype doesn’t recur to a

standard web protocol to establish a communication between the server and

it’s GUI, its architecture enables its integration with ease. Both entities follow

a request-response architecture which aims at emulating a typical web

interaction. This however, does not dismiss future architectural changes for

the chosen protocol.

 [ServiceGatherer] Exceptions handling – The current ServiceGatherer

application has a fragile exception handling mechanism and a low degree of

information regarding its exceptions. Further effort on this aspect would most

certainly improve the usability of the application.

 Research perspective:

 Bayesian Aggregation62 – The current approach to transform the results

from SMAA-2 to a preference graph is prone to errors and loss of information.

To prevent this, a Bayesian Aggregation approach could be considered.

 Aggregation Algorithm optimization – There’s two approaches that can be

considered to optimize the current aggregation algorithm: add an extra step

to the algorithm that removes from the queue solutions that are dominated by

the solution that is going to be placed into the queue or, create a new

aggregation algorithm that follows a distributed approach (similar to Divide-

and-Conquer63), dividing the problems into smaller problems, attributing each

sub-problem to a worker instance and finally combining every result to get the

final result.

61 http://owlapi.sourceforge.net/
62 http://www.stat.duke.edu/~mw/MWextrapubs/West1984.pdf
63 http://www.cs.berkeley.edu/~vazirani/algorithms/chap2.pdf

CloudAid2

97

 Second layer of decision – Once every admissible aggregated solution has

been found, it’s possible to request extra information from the decision maker

to create a second Multi-Criteria Decision Problem but this time, evaluating the

aggregated solutions as a whole thus, getting yet another preference graph.

 Higher semantic service descriptions diversity – The current

ServiceGatherer project generates the description of approximately 9000

services however, they’re only from two service providers. Having a higher

diversity of service descriptions could lead to new findings and further

improvement of the prototype or, at the very least, allows us to observe the

behavior of the prototype in a much more interesting scenario.

 Further aggregation algorithm testing – From the results obtained on

section 6.4, it was possible to observe and draw some conclusions about the

algorithms behavior. However, further and a more thorough testing of the

algorithm should be performed to assess the nature of the algorithm.

CloudAid2

98

Appendices

CloudAid2

99

Appendix A

CloudAid2 – Requirements

This document presents the requirements for the CloudAid2 prototype. These

requirements were defined following a FURPS structuring and prioritized with the

MoSCoW method [35]. They’re divided into two major categories: Functional

Requirements and Non-Functional Requirements. The last one (Non-Functional) is sub-

divided into 4 different categories: Usability, Reliability, Performance and Support [36].

Functional Requirements

In this first section we present every functional requirement of the CloudAid2

prototype. Functional requirements are heavily linked to the general behavior and

functionalities of the prototype [36]. For an easier understanding of the requirements, we

decided to group them according to the module they belong to.

CloudAid2 – Functional Requirements

ID Name Priority
 Search Module

RF1 Dynamic Price Calculation
 Description:

The price of each Service Offering needs to be determined
dynamically through the use of SPIN functions. These
functions will possess two types of variables (usage and
constant) and will be linked to the Service Offerings through
the property price:hasPriceFunction (chapter 4 for further
detail).

MUST

RF2 Read and handle Linked USDL Cloud Services correctly
 Description:

The Search Module needs to retrieve the relevant information
of the services, along with their new Social property, from the
TripleStore.

MUST

 Service Set - ServiceGatherer
RF1 Use Scrape techniques to fetch and create our Linked

USDL service descriptions

 Description:
Fetch service description data from the web using scrape
techniques. Once the data has been collected it’ll be modeled
using the JAVA data model described on section 4.4. Using this
JAVA object representation we’ll be able to create an RDF
based description of the service.

MUST

RF2 Create files with the RDF service description
 Description:

The RDF service description needs to be exported to a file on
the disk.
This file will be later on imported into the TripleStore.

MUST

CloudAid2

100

 Decision Module
RF1 Decision Method selection

 Description:
The Decision Method to use should be able to select the MCDM
to use based on information provided by the user.

MUST

RF2 New Multi-Criteria Decision Methods
 Description:

New decision methods need to be added into the prototype.
After a discussion with the project managers, the chosen
methods were:

 ELECTRE3
 PROMETHEE1
 SMAA-2

MUST

RF3 Group similar alternatives
 Description:

Alternatives with similar values on the defined criteria should
be grouped into a singular entity and be treated as such.
Let’s imagine two alternatives, A1 and A2, being evaluated on
criteria C1 e C2. Suppose gC1(A1) returns the performance of
alternative A1 on the criteria C1. In case that gC1(A1) ≈ gC1(A2)
and gC2(A1) ≈ gC2(A2), they should be grouped and from then
on be considered as a single alternative.

SHOULD

RF4 Thresholds definition
 Description:

The user should be able to define several types of thresholds
that can supplied to the decision methods and can improve
the results. There are three different types of thresholds:

1. Indifference
2. Preference
3. Veto

MUST

RF5 Correct XMCDA description
 Description:

Every relevant piece of information related to the problem,
submitted by the decision maker and required by the chosen
decision method, need to be mapped correctly into XMCDA.

MUST

RF6 SOAP Message encapsulation
 Description:

The XMCDA problem description needs to be encapsulated
within a SOAP message that is to be sent to an external web-
service made available by the decision deck. It’s these web-
services that perform the actual calculations of the methods.

MUST

RF7 Multi-Criteria Decision Methods execution
 Description:

The decision module is responsible for managing the
execution of the MCDM chosen by the prototype. Depending
on the method, its execution might be divided into several
steps where each step is performed by a different web-
service. Since the method needs to be executed on a
sequential order, the decision module should keep track of the
evolution of the calculations at all time.

MUST

 Aggregation Module
RF1 Admissibility test expansion

 Description:
In the current prototype, the only restriction that is possible
to apply on an aggregation of services is a pricing restriction.
Whenever the decision maker creates a global requirement of

MUST

CloudAid2

101

the type price, he’s telling us that his aggregated solution
cannot cost more than the amount specified. To obtain a more
flexible and realistic aggregation of services, new type of
restrictions should be added. Examples can be the
requirement of the same OS on every machine or a
guaranteed overall availability of 95% or higher.

RF2 Compatibility with the new results from the multi-
decision criteria methods

 Description:
The aggregation algorithms of the current prototype were
developed assuming a specific structure for the ranked lists
returned by the decision module. Since the structure of the
new results has changed, we either need to adapt the current
algorithms or create a new one based on the existing ones, in
order to support the new structure of the preference
relations.

MUST

 Graphic Interface – Client
RF1 Add a new Service Template

 Description:
The user needs to be able of adding new Service Template’s to
his search sheet. A Service Template represents a set of
features, desired by the decision maker, for a component of
his final aggregation of services.

MUST

RF1.1 Add a requirement to a Service Template
 Description:

The user needs to be able of inserting new requirements
inside his Service Template. Defining a requirement is the way
the decision maker has of informing us that he/she desires a
certain feature on the corresponding alternatives. An example
of a requirement can be Memory(RAM)=8192.

MUST

RF1.2 Add a criteria to the Service Template
 Description:

The user needs to be able of inserting criteria onto the Service
Template. Criteria can be of the same type as the
requirements but, contrary to the requirements which
represent desires, criteria represent the features that will be
used to evaluate the corresponding alternatives of the Service
Template. An example of criteria might be the DiskSize , which
can be used to evaluate alternatives of a service template
whose main targets are databases.

MUST

RF2 Add a global requirement
 Description:

The user needs to be able of adding global requirements to his
search sheet. These requirements will be shared by every
alternative on the final aggregated solution.

MUST

RF3 Send data to server using REST protocol
 Description:

The client’s graphic interface will gather every relevant
information for the prototype, describe it using JSON format
and send it to the server using the REST protocol.

SHOULD

CloudAid2

102

RF4 Receive and present results from the server
 Description:

The graphic interface needs to be able of receiving the results
sent by the server. These results will be on JSON format and
should be handled accordingly.

MUST

RF5 Re-use Search Sheets from the History
 Description:

Past search sheets created by the user will be available for re-
use on the History. This way the user won’t be obliged to
insert every piece of information again thus easing the
interaction with the application.

MUST

RF6 Insertion of the pricing variables
 Description:

It’ll be possible to define some of the most common pricing
variables prior to the search of the alternatives. After
searching for the alternatives, a list of variables (send by the
server) that are missing can be presented and should be
inserted in order to calculate the personalized price.

MUST

RF7 Register
 Description:

Given the nature of the new prototype, registration becomes
imperative in order to avoid negative abuse of the application
(e.g: spam). The user should provide the following
information when registering:

1. Username
2. Password
3. E-mail

SHOULD

RF8 Login
 Description:

Completed the registration, the user will be able of logging
into the application and will be given access to the full
functionalities of the prototype.

SHOULD

 Server
RF1 Wait for data from the graphic interface

 Description:
The server needs to listen for information sent by the graphic
interface and handle it accordingly.

MUST

RF2 Send the results to the client interface
 Description:

Once the results have been obtained, these should be
transformed into JSON and sent to the user that posted the
corresponding problem.

MUST

RF3 Send results to e-mail
 Description:

In the case that some results take longer than expected, these
should be sent to the e-mail provided by the user upon
registration. This enables the user to keep using the
application instead of waiting for the results of the problem.

SHOULD

CloudAid2

103

RF4 Keep past search sheets sent by users and their
respective result

 Description:
Past search sheets submitted by the user and their
corresponding results should be saved. Due to the complexity
of the information required by the system, the usage of a
system to keep a history of search sheets becomes imperative.
Even with the addition of a graphic interface to aid in the
process of the problem description, this remains a
bothersome tasks. In case a specific search sheet doesn’t
return the expected results or none at all, instead of
introducing the same information again the user will be able
to modify and re-use the respective search sheet.

MUST

RF5 Access control
 Description:

The server is responsible for managing the access of users to
the application. Only registered users will be able to use the
prototype.

SHOULD

Non-Functional Requirements

On the previous section we presented the requirements that fell under the

Functional (‘F’) category of the FURPS structuring. This section will tackle the non-

functional requirements which are divide into the following categories: Usability – ‘U’,

Reliability – ‘R’, Performance – ‘P’ and Support – ‘S’. These requirements are related to the

properties and needs of the system rather than its functionalities [36].

- Usability Requirements

 These requirements are related to the graphic design of the user interface and how

the information is presented. Basically, they’re focused on the client’s needs [36].

Usability Requirements – CloudAid2

ID Name Priority
RU1 Present the results on a clear and objective way

 Description:
The presentation of the results on the graphic interface
should be performed in simple, yet clear and objective way.
When looking for the first time to the results, the user should
be able to identify immediately which is best aggregation for
his needs.

MUST

RU2 Dynamically retrieve relevant data
 Description:

Every relevant data should be retrieved by the graphic
interface, prior or in the middle of the process.

MUST

RU3 Simple and objective History
 Description:

The history provided to the user should be an easy and rather
intuitive tool to use.

MUST

CloudAid2

104

RU4 A friendly and ergonomic graphic interface
 Description:

The interaction between the user and the graphic interface
needs to be as smooth as possible. The functionalities should
be presented in a simple and objective way, easing the tasks
required by the user.

MUST

RU5 MCDM choice
 Description:

The multi-criteria decision method to use should be inferred
from a series of questions or through other indirect methods,
completely transparent from the user.

SHOULD

- Reliability Requirements

 Reliability requirements are related to the availability of the system, fail-over

mechanisms and system accuracy [36]. The user is waiting for results that may play a

critical role on his/hers business/project therefore, we need to ensure their correctness

and validity.

Reliability Requirements – CloudAid2

ID Name Priority
RR1 Correct price calculation

 Description:
The price component usually plays a critical role in the
decision making process of the user. In order to promote a
valid decision and avoid inducing the user into wrong
conclusions, the price calculation needs to be correct at all
time.

MUST

RR2 Correct aggregated solutions
 Description:

The recommended service compositions need to respect the
user’s requirements (global and local) as much as possible.

MUST

RR3 Results delivery
 Description:

The results need to reach the user, be it via direct delivery
through the user interface or via e-mail, which he provided
upon registration.

MUST

CloudAid2

105

- Support Requirements

 These requirements are related with the structure of the system and the degree of

extensibility/changeability it possesses [36]. This is a rather important characteristic since

this is a prototype that will probably be changed in the future.

Support Requirements – CloudAid2

ID Name Priority
SR1 Modular development

 Description:
Independently of the changes made to the system, its modular
characteristic needs to be maintained. This means that every
change/new functionality needs to be implemented inside it’s
corresponding module ensuring the ease of extension and
modifiability of the prototype.

MUST

- Performance Requirements

 These type of requirements are related to the general performance of the system

[36]. Given the nature of the new architecture for this version of the prototype, we need to

take into consideration some metrics like response time or, the number of concurrent

client’s our server can handle in order to ensure a minimum quality of service. While

important, these won’t be considered as mandatory but they shall be taken into account in

the development stage.

Performance requirements – CloudAid2

ID Name Priority
PR1 Acceptable response time

 Description:
The time it takes for the server to answer a request from the
user should be around 200ms [8].

COULD

PR2 Acceptable number of concurrent clients
 Description:

Optimize the server in order to support a reasonable amount
of concurrent users. A minimum of 5 to 10 concurrent users
should be able of using the application without, or with
minimum, loss of quality.

COULD

CloudAid2

106

CloudAid2

107

Appendix B

CloudAid1

In this section I present an overview of the current CloudAid1 prototype. I’ll present

each element of the system, their objective, how they work and interact with each other.

Section 4.1 provides an overall view of the system and its components. From section

4.2 to section 4.6 I’ll describe each of these component with further detail, presenting the

reason why they were created and their objective. This analysis of the CloudAid1 was

supported by [7] and a personal study of the prototype.

4.1 Overall Architecture

The CloudAid1 application was built using a Model-View-Controller (MVC) approach.

With the help of Fig.1, which was created using the Fundamental Modeling Concepts (FMC)

notation, we can visualize a high level representation of internal components of the

system.

FMC complements the software-description achieved by UML, providing a set of tools

to describe the system’s structures, communication channels and internal flow [21]. It

enables the description of architectural components leaving the software specification to

UML. It’s important to note that several diagrams presented on this document don’t follow

a strict FMC notation in order to provide a higher degree of detail on the system’s

architecture (while it’s not strictly followed they’re heavily based on it).

As we can see on Fig.1, the CloudAid1 prototype is composed by five modules that are

coordinated by a sixth model (the Controller) whose main objective is to monitor and

control the flow of execution, making sure that each of the components receives the data

they need to do their job. I’ll make a brief introduction for each of the components to

provide a global idea of how the system works from the beginning. A more detailed

description of the modules will be presented on the following sections.

 UI – This component is the ‘View’ on the MVC model. It’s the interface

between the user and the application, it’s responsible for

capturing/presenting information from/to the user.

 Controller – ‘Controller’ in the MVC model. It’s responsible for mediating

information transactions between the UI and the rest of the components. It’s

also responsible for initializing and controlling the system and its execution.

 Composite Service Architecture (CSA) [7] Evaluator – Its part of the ‘Model’ in

the MVC model. Responsible for evaluating and preparing the CSA data. The

data is inserted by the user thus, some measures must be taken in order to

guarantee that there are no problems with it.

CloudAid2

108

 Search Module – It’s part of the ‘Model’ in the MVC model. Responsible for

retrieving alternatives that match the user’s requirements from the

TripleStore.

 Decision Module – Component from the ‘Model’ in the MVC model.

Responsible for ranking the alternatives of certain Service Template.

 Aggregation Module – It’s part of the ‘Model’ in the MVC model. Responsible

for computing the aggregated solutions. Aggregated solutions are composed

by one alternative from each Service Template.

Fig.1 – CloudAid 1 – High Level Architecture

4.2 The Controller and the User Interface (UI)

4.2.1 User Interface

UI stands for User Interface and as the name suggests, it’s the point of interaction

between the user and the application. It’s where the user inserts the data required by the

CloudAid2

109

application and defines the characteristics he desires for his composite service

aggregation (CSA). We can categorize the data required by the application on four topics:

 Service Template

 Requirements

 Criteria

 Preferences

The first two are related to the service characteristics desired by the user while the

other two are metrics and information that’s be used by the prototype to find alternatives

that match the user’s preferences.

To capture and represent this information, a Java data model was created. Following, I

present its class diagram and describe of each of its components.

As mentioned earlier, the CSA is the container for the aggregation’s

features/characteristics; we can look at it as a sort of template into which the alternatives

need to fit. If we look at Fig.2 we can identify five entities:

 CSAData – It’s the container for every entity listed below. Every time the user

wishes to request a new service aggregation, a new CSAData is created to hold

its description.

 ServiceTemplate – It’s the representation of a service. This class holds a set

of characteristics that a certain alternative on the final aggregated solution

needs to possess. An example:

o ServiceTemplate1:

 Disk Size: 500Gb

 RAM: 5Gb

 CPUCores: 2

 …

o ServiceTemplate2:

 Disk Size: 100Gb:

 RAM: 8Gb

 CPUCores: 4

 CPUArchitecture: 64bits

Each alternative on the final solution needs to respect the rules specified on

their corresponding ServiceTemplates.

CloudAid2

110

Fig.2 – CSA Java Data Model

CloudAid2

111

 Requirement – Is a resource or a capability the cloud service needs to or

should possess. If we look at the examples above, a Requirement would be for

example Disk Size: 500 Gb. A requirement can either be exclusive or non-

exclusive. An exclusive requirement means that every alternative that does not

comply with it will be discard. With non-exclusive, even if the alternative fails

to comply, it will still be considered a valid alternative. A requirement can

also be classified has a Qualitative or a Quantitative requirement but I’ll

address this again with further detail on Section 4.5. Finally, a requirement

has two possible scopes: ServiceTemplate (local level) or CSA (global level). If

a requirement is defined inside a ServiceTemplate, only the alternatives of

that template will be under its influence else, we’re dealing with a

requirement that’ll influence the aggregation of the cloud services.

 Criteria – A criterion is created in the same way as the requirements and it

too respects the same rules however, its purpose is different. While

requirements represent rules that allows the prototype to discard

alternatives with no interest to the user, a criterion is a variable that will be

used by the decision methods to evaluate the alternatives. When the user

creates a criterion, he’s saying that each alternative of that ServiceTemplate

will be evaluated using that attribute’s value.

There’s another important aspect about criteria that needs to be

addressed: preference direction. This is the way the user tells us if he wants to

maximize or minimize the attribute’s value. An example of maximization

might be StorageCapacity where the user might say that the higher the disk

size the better; a good minimization example is Price where one usually wants

to spend as minimum as possible but at the same expect a good/decent

product. Of course, it might happen that both maximization and minimization

are not good enough to find the optimum value; when this happens the user

has the possibility to define the value he considers best.

 Result – Entity responsible for holding the results obtained by the decision

module. It holds the alternative’s data and its corresponding performance

value.

Preferences are pieces of information that are needed by the modules to perform

their job and are requested throughout the execution process. It’s usually related to a

preference value or a criterion weight.

Now, let’s see some screenshots of the current UI and how the data is captured by the

CloudAid1 prototype.

Fig.3 – CloudAid1 – CSA Menu

CloudAid2

112

Fig.4 – CloudAid1 – Service Template Menu

Fig.3 shows the menu that is first presented to the user. From here, the user is capable

of creating new Service Templates (option 1), global Requirements (option 2) and global

Criteria (option 3). Fig.4 shows the prompted menu when the user chooses to create a

new Service Template; from here, the user can insert create its respective Requirements

and Criteria.

Fig.5 – CloudAid1 – New Service Template

Fig.6 – CloudAid1 – New Requirement and Criterion

CloudAid2

113

 Fig.5 presents an example of the creation of a Service Template while Fig.6 presents

an example of the insertion of a new Requirement and a new Criterion.

Fig.7 – CloudAid1 – New Qualitative Requirement

Finally, Fig.7 presents an example of the insertion of a Qualitative requirement and its

respective value.

4.3.2 Controller

The Controller is the main component of the CloudAid 1 prototype. It’s responsible for

managing the whole system, making sure that every other component receives the data

they need and, at the same time, it controls the flow of the execution process. Fig.8

presents a diagram, created using an informal notation, that’ll help us get a clearer image

of the Controller’s objective and the flow of the execution of the CloudAid1 application.

As we can see in the picture, this module acts a data dispatcher for the other modules

in a sequential order. After one module has done its job, the flow of execution goes back to

the controller who will initiate the next step in the process. Knowing this, and after a brief

analysis of the Fig.8, we can identify the core steps of the execution process:

a. Fetch CSA from the user

b. Evaluate CSA – CSA Evaluator

c. Search for alternatives that match the user’s needs – Search Module

d. Rank the alternatives of each Service Template – Decision Module

e. Create aggregated solutions – Aggregation Module

CloudAid2

114

Fig.8 – CloudAid1 – Controller’s flow of execution.

It’s important to note that every module has its own execution process that will be

explained on the following sections but for now, the main objective of this section is to

provide an overall perspective of the system and how it works.

Controlling the flow of execution and acting as a data dispatcher for the other
modules is but one of the four “jobs” the controller is in charge of:

1. Environment setup

2. Choose Decision Method

3. Manage the flow of execution

4. Establish a link of communication between the UI and the other modules.

Task 2 and 3 are sequential while task 1 is executed only once and task 4 is executed

at the same time as tasks 2 and 3.

 Environment setup – This task is responsible for instantiating the rest of the

system’s components that is, it “creates” the UI followed by the Search

Module (Section 4.3), then the Decision Module (Section 4.4) and finally the

Aggregation Module (Section 4.5).

 Choose Decision Method – The CloudAid1 prototype supports two different

Multi-Criteria Decision Methods: Simple-Additive-Weighting (SAW) and

Analytic Hierarchic Process (AHP). To decide which of the methods should be

used a simple question is asked to the user: “Are you comfortable giving

weight to the criteria?” In case he answers ‘y’ SAW will be used otherwise,

AHP will be used.

CloudAid2

115

 Manage flow of execution – Once each of the modules has been instantiated

(task 1) and the decision method has been chosen (task 2), the application

can start its main objective: find aggregated solutions of cloud services that

go towards the user’s needs. This process starts by evaluating the CSA

created by the user (performed by the CSAEvaluator module). If it succeeds,

the Controller can start the next stage: Search for alternatives. This step is

performed by the Search Module and it searches alternatives for each

ServiceTemplate on the CSA. Once the search module finishes retrieving the

alternatives, it’s necessary to rank them according to the defined criteria.

This step is performed by the Decision Module. When every Service

Templates has its corresponding alternatives ranked, the final step of the

application begins: compute the aggregated solutions. This final step is

performed by the Aggregation Module.

 Link of communication – This is the final responsibility of the controller.

The Controller is the communication link between the different modules of

the system and, between the UI and the application. Every time a module

needs to interact with the user, it calls the Controller who in turn invokes the

proper functionality on the UI to communicate with the user. When the user

finishes his interaction, the controller is then in charge of transferring the

inserted information back to the module. Fig.9 shows how this request is

processed at an architectural level.

Fig.9 – CloudAid1 – Model-View Communication

CloudAid2

116

4.4 Search Module

This module is responsible for finding alternatives that match the decision maker

preferences. It performs three major tasks:

1. Divide the exclusive requirements from the non-exclusive requirements

2. SPARQL Query construction.

3. Fetch matching alternatives based on the exclusive requirements

4. Enrich the found alternatives with the service offering attributes

The reason a distinction is made between exclusive and non-exclusive requirements is

because of the impact they have on the results. Exclusive requirements are those that

actually work as a “filter” on the search mechanism since these represent conditions

imposed by the decision maker, alternatives that don’t obey them will be left out. Non-

exclusive requirements are features that are desired by the Decision Maker however,

they’re not relevant enough to discard alternatives that don’t match up to them.

To be considered exclusive, a requirement should meet at least one of the following

conditions:

 Linked to a criterion – By specifying a certain feature as a criterion the user is

saying that every alternative will be evaluated by their performance on it. In

case the feature isn’t linked to a criterion the user is simply saying “I want this

feature but it’s not important enough to discard alternatives that don’t match

my target value for this feature”.

 Has a maximum value – If the Decision Maker defines a maximum value on a

feature, every alternative that surpasses said value needs to be discarded thus,

every feature with a maximum value is considered to be exclusive.

 Has a minimum value – Follows the same principle as the one described above.

Once this distinction between requirements has been established, we can move to the

following step: the SPARQL Query construction.

There are three types of requirements:

 Quantitative Requirements

 Qualitative Requirements

 Price Requirement

The SPARQL query that retrieves every service offering from the TripleStore is

composed of multiple nested SPARQL selects, also known as sub-queries. For example,

assume that the consumer creates a Service Template with three requirements:

 Maximum cost of 300 euros (price requirement)

 Running MySQL (qualitative requirement)

 With at least 150Gb of disk (quantitative requirement)

Ignoring SPARQL syntax, the final query would be something like:

CloudAid2

117

SELECT offering

WHERE ((every offering with price <= 300)

Ω (every offering running MySQL)

Ω (every offering with at least 150Gb disk))

Once the SPARQL query is build, we move to the next step: fetching the actual services

from the TripleStore. To retrieve the service offerings we just need to run the SPARQL

query over the TripleStore. When finished, it returns every ServiceOffering resource64 that

respects every exclusive requirement defined by the user.

The exclusive requirements identification and the SPARQL query building are

responsibilities of the JenaEngine class which, as the name implies, uses the Apache Jena

Framework for RDF objects manipulation and storage [22].

Once we have every ServiceOffering resource, we can move to the last step of the

module: resource conversion. To ease the following steps of the CloudAid, the information

from the semantic model is “loaded” into Java classes which, are later on passed onto the

following modules. The class responsible for the TTL/RDF to Java conversion is the

ResourceConverter class. Using the returned resources from the earlier search on the

TripleStore, it is able to extract the remaining information (its features and their

corresponding values) related to the ServiceOffering from the semantic model.

 Once these steps have been completed the module’s job is done and, all that is left

to do is to return the results to the Controller in order to proceed with the flow of

execution.

Fig.10 presents the module’s execution flow from an architectural point of view,

showing in an ordered way the steps described on this chapter.

Fig.10 – CloudAid1 Architecture - Search Module

64 http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/Resource.html

CloudAid2

118

4.5 Decision Module

After retrieving the Service Template’s possible alternatives, it’s time to rank them

according to the criteria defined by the Decision Maker. Here is where the Decision

Module comes in. It retrieves the criteria, the user’s preferences and asks other relevant

information to produce a valid ranking list of the alternatives for a particular service

template. This list has the form of a typical ranked list where the head of the list is the

best alternative and the last one the worst. This ranking is accomplished using Multi-

Criteria Decision Methods (MCDM) that receive data inserted by the Decision Maker,

process it, and return the desired ranked list.

In order to get a correct result from the MCDM, it’s necessary to normalize the data

(section 4.4.1) and then, transform it into XMCDA65 format (section 4.4.2). Once the

problem is in XMCDA format, it’s published into a pre-defined directory. External

applications that are monitoring the directory will fetch the files that are newly written,

calculate the ranking of the alternatives and publish the results on another pre-defined

directory. This directory is, in turn, monitored by the Decision Module. It will fetch them

as soon as they’re created and map the results to Java Objects (section 4.4.3).

We can split the Decision Module in 5 steps:

1. Data normalization – Normalization is needed since data from the Service

Template can belong to different intervals, adding undesirable noise and

behaviors to the methods calculations.

2. Express the problem in XMCDA format – After normalizing the data, the

problem should be described in XMCDA format (section 4.4.2).

3. Publish XMCDA file – Once it’s described in XMCDA, it’s written into into a file

on a pre-defined directory for the external MCDM application.

4. Read and Transform the Results – After publishing the problem, the module

will monitor a pre-defined directory waiting for the results to be published.

Once they’re published, they’ll be read and transformed into Java objects.

5. Obtain and Sort the ranked List – The results from the MCDM may not be

ordered correctly thus, before returning the results onto the Controller, a

descending ordering of the list is performed.

Fig.11 describes the complete flow of execution of the Decision Module.

65 http://www.decision-deck.org/xmcda/

CloudAid2

119

Fig.11 – CloudAid1 – Decision Module Architectural Flow

4.5.1 Data Normalization

The data normalization process consists in a series of mathematical calculations

done by the Java class Normalizer to map the data (related to the defined criteria) on the

current Service Template into the [0, 1] interval. Let’s see an example, imagine we have a

Service Template S with two alternatives A1 and A2, A1 with attributes [Price = 40,

MemorySize = 1024] and A2 with [Price = 130, MemorySize = 4096]. Now suppose the

criterions have the following weights: Price = 5 and MemorySize = 2. With this example we

can see that the criteria MemorySize, despite having a lower weight than Price, will

overwhelm the influence of Price on the calculations [7]. With the help of the Normalizer

Java class we can avoid this type of situations.

In the previous example, the criteria fell inside the numerical (quantitative) type

that is, they possess a specific value and are therefore quantifiable. However, this is not

always the case; sometimes, the attributes to be normalized are non-numerical, also

known as qualitative attributes. In this case, the Decision Module needs to stop the

execution and ask some questions to the decision maker in order to assess preferred

values and differences between them and the other possible values.

There are three types of attributes:

 Non-numerical

o Multi-Valued – Necessary to choose the best value and define

distances with other values.

CloudAid2

120

o Binary – Only two possible values, one is the best and the other is

the worst.

 Numerical

The Normalizer class also asks the decision maker if there’s a preferable value to

the quantitative criteria being evaluated or if he/she prefers the simple

maximization/minimization (also known as preference direction). In case he/she answers

yes, the new value will be used instead of the maximum/minimum default value present in

the alternatives.

We can identify 4 major steps in the normalization:

1. Check the attribute’s type – Check if we’re dealing with a non-numerical

binary, non-numerical or numerical attribute.

2. Ask for preferred value – The Decision Maker can define a specific value to

the criteria being evaluated.

3. Normalize the attribute – Once everything has been set the data can be

mapped into the interval [0, 1] (0 is the worst and 1 the best).

4. Return the results – When the process is over, the results are stored on a

new HashMap. This new version has the normalized values of the attribute

and not the original ones.

This process is executed for every criteria defined by the decision maker.

4.5.2 XML Encoding of Multi-Criteria Decision Aid Data

XML Multi-Criteria Decision Analysis (XMCDA) is an XML based data standard

developed by Decision Deck to describe Multi-Criteria Decision problems [23]. A Java

library called J-XMCDA is also provided by the Decision Deck to help us create and

manipulate information described in XMCDA. Every XMCDA related operation is

performed by the Java class XMCDAConverter including operations related to the reading

and writing of files.

4.5.3 Decision Methods

CloudAid1 uses external applications to solve the multi-criteria decision problem. To

establish a communication link between the applications and the prototype, a file based

approach was proposed. When in need of the external applications, a file is written on a

directory monitored by them. The results obtained by the external applications are

transmitted back to the prototype using the same approach but through a different

directory. Fig.12 shows a visual representation of these transactions. To assist in this

process, the FileChecker class was created. This class listens to events on the specified

directories and calls the corresponding methods to handle them.

CloudAid2

121

Fig.12 – CloudAid1 – File Communication

The CloudAid1 prototype supports two different Multi-Criteria Decision Methods:

Simple Additive Weight (SAW) and the Analytic Hierarchic Process (AHP).

4.4.3.1 Simple Additive Weight

SAW is a simple multi-criteria decision method that relies on criterion weighting to

determine the ranking of the alternatives [24]. Criterion weighting consists in the

definition of an importance degree for every criterion in the Service Template. These

values are at the core of the method and therefore are mandatory.

4.4.3.2 Analytic Hierarchic Process

Contrary to the SAW method, the AHP method is based on comparisons between data

in order to extract the importance weights and perform the necessary calculations to

derive the desired ranked list [25]. When I refer to comparisons, I speak of something like

“Alternative A1 is better than Alternative A2” or “Criterion C1 is more important than

Criterion C2”.

4.6 Aggregation Module

Once the decision module finishes ranking the alternatives of each Service Template,

we move to the Aggregation Module. This is the final step performed by the CloudAid1

prototype; after this step, a ranked list of admissible aggregated solutions that match the

Decision Maker’s requirements will be passed onto the Controller.

The purpose of the aggregation module is to exploit the ranked list of alternatives of

each Service Template to create possible aggregations of services. It’s necessary to point

out that each aggregated solution is composed by one alternative from each Service

Template. Let’s consider an example: assume we have a CSA composed by three Service

Template’s A, B, C and their corresponding ranked lists of alternatives RLA, RLB, RLC. If we

CloudAid2

122

denote Ai has an alternative from RLA with rank i, a possible aggregated solution would

be: A1B1C1. Fig.13 presents a visual representation of this example.

Fig.13 – Aggregation Module – Aggregated Solution Example (Zi are alternatives
with rank i on list Z = {A,B,C})

The Java class responsible to compute these aggregated solutions is the class

Combinations. It implements two algorithms that compute all the possible Admissible

Aggregated Solutions based on the ranked lists of each Service Template. One version of

the algorithm is able to deal with incomparability between alternatives (on a very limited

scale) while the other doesn’t consider this particular yet important aspect of multi-

criteria decision problems. I’ll cover this topic with further detail on section 4.5.2.

Admissible Aggregated Solutions are solutions that match the Decision Maker global

constraints or, in other words, requirements that were defined at the CSA level. Section

4.5.1 will provide a better description on this subject.

Once the possible admissible aggregated solutions have been found, the module

performs one last step to optimize the results: ranking of the aggregated solutions. To get

this ranked list of admissible solutions, each ServiceTemplate needs to either have their

importance weight previously defined or, use the AHP method to indirectly “ask” them to

the user. After, it uses once again the SAW method to rank the aggregated solutions.

4.5.1 Admissibility test

When considering every possible combination of alternatives from each Service

Template, we must keep in mind that not every combination might be a valid one. For an

aggregated solution to be considered valid, and therefore to be considered as possibility

for the final solution list, needs to pass a series of tests first; these series of tests are

performed by the Java class AggChecker.

These tests depend on the global constraints (requirements) set by the Decision

Maker when creating his CSA. Consider an example where we have two alternatives for

two different Service Template’s; a possible global requirement might be that every

alternative needs to be compatible with Linux OS. If any alternative fails to support this

type of operating system, the solutions fails the test and will be considered inadmissible.

On CloudAid1, the only restriction supported is the global price; when the Decision

CloudAid2

123

Maker defines a global Price requirement he’s telling us that every aggregated solution’s

cost needs to be inferior or equal to some value set by him.

4.5.2 Aggregated Solutions Algorithms

As mentioned earlier, an aggregated solution is composed of by one alternative

from each Service Template on the CSA. Following this line of thought, we can see that the

number of possible aggregated solutions will grow exponentially depending on the

number of Service Templates and corresponding alternatives.

To avoid this issue, the algorithms take advantage of the sorted ranked lists

provided by the Decision Module. Let’s assume we have three Service Templates A, B, C,

with their corresponding sorted ranked lists of alternatives. Let’s denote Ai as an

alternative from Service Template A with rank i. With the knowledge that Ai > Ak , i < k

(alternative a is better than alternative b if a is ranked above b) we can say that any

aggregated solution AiBkCl > AoBpCq if i,k,l < o,p,q. In this case, AjBkCl dominates AoBpCq

hence, there’s no need test AoBpCq since its overall performance value will be lower.

Combining this knowledge with combinatory tree theory, the algorithms generate

all possible combinations. They’re based on the Breadth-First Search algorithm together

with the notion of the Branch and Bound technique in order to transverse the tree of

solutions and at the same minimize the computational weight of the problem. As

mentioned earlier, there’s two versions of the aggregation algorithm: algorithm1 and

algorithm2. In algorithm1, every time a new possible solution is discovered, it simply

compare it with the already found admissible solutions to check for dominance. If there’s

dominance found between the node being tested and an already found solution, this node

can be discarded along with its children. However, if no dominance is found, the node is

added to the list of admissible solutions and its children discarded. Algorithm 1 shows the

complete algorithm in a simplified way.

queue Q
add root to Q
while Q is not empty do
 node <- Q.pop()
 if node is Admissible then
 if node is not dominated by some admissibleSolution then
 add node to admissibleSolutions
 endif
 else
 for all possible children c of node do
 if((c Ɇ Q) and (c Ɇ tested)) then
 if c is not dominated by some admissibleSolution then
 add c to Q
 endif
 endif
 endfor
 endif
endwhile

Algorithm 1 – No incomparability

CloudAid2

124

Algorithm2 is a bit different; by considering the possibility of incomparability

between the alternatives (also known as a partial ordered list) it no longer assumes that

when an admissible aggregated solution is found its children can be discarded. It checks

for incomparability between the node and its children; if any children is incomparable

with its father (which is a solution that passed the admissibility test), it’ll be place into the

queue for later testing. Algorithm 2 shows the full algorithm2 in a simplified way.

queue Q
add root to Q
while Q is not empty do
 node <- Q.pop()
 add node to tested
 if node is admissible then
 if node is incomparable with all admissibleSolutions then
 add node to admissibleSolutions
 for all possible children c of node do
 if((c Ɇ Q) and (c Ɇ tested)) then
 if c is incomparable with node then
 add c to Q
 endif
 endif
 endfor
 endif
 else
 for all possible children c of node do
 if((c Ɇ Q) and (c Ɇ tested)) then
 If c is not dominated by some admissibleSolution then
 add c to Q
 endif
 endif
 endfor
 endif
endwhile

Algorithm 2 – Incomparability support

Fig.14 shows the flow of execution of the Aggregation Module on an architectural level.

CloudAid2

125

Fig.14 – CloudAid1 – Aggregation Module Architectural Flow

In a summarized way, these are the main steps of the Aggregation Module:

1. Get Service Templates weights – After receiving the CSA from the Controller, it’s

necessary to retrieve the importance weights from the Service Templates in order to

compare and rank the aggregated solutions. There are two ways of getting these

weights: the Decision Maker explicitly defines them when creating his CSA or, use

JAHP and the Decision Make’s preferences in order to calculate the Service Template

weights.

2. Find admissible aggregated solutions – This is the main objective of the module:

compute the possible aggregated solutions. Every time a new solution is found, the

admissibility test is applied to verify if the solution meets the requirements necessary

to enter the list of admissible solutions.

3. Find the best Aggregated Solution – When every solution has been found it ranks the

solutions using the importance weights and the SAW method.

CloudAid2

126

CloudAid2

127

Appendix C

Linked USDL Pricing API – Class Diagram

CloudAid2

128

CloudAid2

129

Appendix D

Service modeling Use Cases assessment

Recurring Resource Pooling

Query (Provider + Service Name) Results

colt' 'IaaS/Flexible vCloud' 541000

VMWare' 'vCloud Hybrid' 367000

Cloudsigma' 'Cloud' 167000

iLand' 'Cloud' 154000

Orange Business Services' 'Flexible Computing' 106000

IBM' 'SmartCloud Enterprise' 81600

NTT Communications' 'Enterprise Cloud' 44600

Windstream' 'Public Cloud' 34900

GoGrid' 'Cloud Servers' 18800

Bluelock' 'Virtual Data Center' 16600

Singtel' 'PowerON Compute' 13200

Carrenza' 'cloud' 12400

CSC' 'BizCloud' 10900

Peak 10' 'Enterprise Cloud' 7130

LeaseWeb' 'Virtual Servers' 6200

ElasticHosts' 'Cloud Servers' 5650

GDS Services' 'HiA Cloud' 1310

Claranet' 'virtual datacenter' 1190

Table.18 CloudAid2 – Recurring Resource Pooling use cases

PrePaid Credit

Query (Provider + Service Name) Results

Microsoft' 'Azure Virtual Machines' 4890000

Internap' 'Public Cloud' 22000

LunaCloud' 'Cloud Servers' 8690

ElasticHosts' 'Cloud Servers' 5650

Gandi' 'Cloud Servers' 3730

Table.19 CloudAid2 – PrePaid use cases

CloudAid2

130

Table.20 CloudAid2 – PrePaid Subscription Credit use cases

PrePaid VM

Query (Provider + Service Name) Results

IDC' 'Frontier CLoud' 41000

GoGrid' 'Cloud Servers' 18800

Peak 10' 'Enterprise Cloud' 7130

Table.21 CloudAid2 – PrePaid VM use cases

Spot Pricing

Query (Provider + Service Name) Results

Amazon' 'EC2' 62300000

CloudSigma' 'Cloud' 167000

Table.22 CloudAid2 – Spot pricing use cases

Table.23 CloudAid2 – Reserved Instance use cases

PrePaid Subscription Credit

Query (Provider + Service Name) Results

Microsoft' 'Azure Virual Machines' 4890000

CloudSigma' 'Cloud' 167000

LunaCloud' 'Cloud Server' 42700

Internap' 'Public Cloud' 22000

GoGrid' 'Cloud Servers' 18800

ElasticHosts' 'Cloud Servers' 5650

Reserved Instance

Query (Provider + Service Name) Results

Amazon' 'EC2' 62300000

Colt' 'IaaS/Flexible vCloud' 541000

Joyent' 'Compute' 107000

CSC' 'BizCloud' 10900

Fujitsu' 'IaaS Public' 1590

CloudAid2

131

On-Demand

Query (Provider + Service Name) Results

Amazon' 'EC2' 62300000

Arsys' 'CloudBuilder' 2310000

AT T' 'Synaptic' 1800000

Google' 'Compute Engine' 562000

Colt' 'IaaS/Flexible vCloud' 541000

IIJ' 'GIO' 519000

Tier 3' 'Virtual Servers' 214000

Verizon Terremark' 'vCloud Hybrid' 187000

iLand' 'Cloud' 154000

Joyent' 'Compute' 107000

Orange Business Services' 'Flexible Computing' 106000

Hewlett Packard' 'Cloud Compute' 101000

IBM' 'SmartCloud Enterprise' 81600

ProfitBricks' 'Cloud' 72200

Microsft' 'Azure Virtual Machines' 62000

CenturyLink' 'Savvis' 'Cloud Servers' 48600

NTT Communications' 'Enterprise Cloud' 44600

LunaCloud' 'Cloud Server' 42700

Markley Group' 'Public Cloud' 37500

Singtel' 'PowerON' 36100

Windstream' 'Public Cloud' 34900

Internap' 'Public Cloud' 22000

Rackspace' 'CloudServers' 20100

GoGrid' 'Cloud Servers' 18800

Atlantic.net' 'Cloud Servers' 15800

Greenclouds' 'IaaS' 15100

Swisscom' 'Dynamic Server/DC' 14400

XO Communications' 'Compute' 13300

Carrenza' 'Cloud' 12400

CSC' 'BizCloud' 10900

Bluelock' 'Virtual DataCenter' 9340

IDC Frontier' 'Cloud' 8480

SoftLayer' 'CloudLayer' 7960

LeaseWeb' 'Virtual Servers' 6200

Fujitsu' 'IaaS Public' 1590

Dimension Data' 'Public CaaS' 1560

GDS Services' 'HiA Cloud' 1310

Claranet' 'Virtual DataCenter' 1190

Calligo' 'CloudCore' 194

Digital Ribbon' 'Hybrid Cloud' 29

Table.24 CloudAid2 – On Demand use cases

CloudAid2

132

Recurring PrePaid VM

Query (Provider + Service Name) Results

Arsys' 'CloudBuilder' 2310000

Colt' 'IaaS/Flexible vCloud' 541000

IIJ' 'GIO' 519000

UK2 Group' 'Web Hosting' 210000

Hosting.com' 'Cloud Hosting' 94000

Numergy' 'Cloud' 57100

CenturyLink' 'Savvis' 'Cloud Servers' 48600

Connectria' 'Cloud Servers' 39200

Markley Group' 'Public Cloud' 37500

Windstream' 'Public Cloud' 34900

Bit Refinery' 'Cloud Hosting' 31800

XO Communications' 'Compute' 13300

IDC Frontier' 'Cloud' 8480

SoftLayer' 'CloudLayer' 7960

Peak 10' 'Enterprise Cloud' 7130

CloudCentral' 'Compute' 5360

Gandi' 'Cloud Servers' 3730

Cyberindo' 'IaaS' 891

KDDI' 'Virtual DC' 51

Table.25 CloudAid2 – Recurring PrePaid VM use cases

CloudAid2

133

CloudAid2

134

Appendix E

ServiceTemplate1’s exclusive Requirements SPARQL Query

(NOTE: Every requirement on ServiceTemplate1 is exclusive)

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX pf: <http://jena.hpl.hp.com/ARQ/property#>
PREFIX price: <http://www.linked-usdl.org/ns/usdl-price#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX spin: <http://spinrdf.org/spin#>
PREFIX core: <http://www.linked-usdl.org/ns/usdl-core#>
PREFIX cloudtaxonomy: <http://rdfs.genssiz.org/CloudTaxonomy#>
PREFIX gr: <http://purl.org/goodrelations/v1#>

SELECT REDUCED ?offering
WHERE
 { { SELECT REDUCED ?offering
 WHERE
 { ?offering rdf:type core:ServiceOffering .
 ?offering core:includes ?serv
 { ?serv gr:qualitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:Location .
 ?f rdfs:label ?value
 FILTER regex(?value, "tokyo", "i")
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:qualitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:Location .
 ?f rdfs:label ?value
 FILTER regex(?value, "tokyo", "i")
 }
 }
 }
 { SELECT REDUCED ?offering
 WHERE
 { ?offering rdf:type core:ServiceOffering .
 ?offering core:includes ?serv
 { ?serv gr:quantitativeProductOrServiceProperty cloudtaxonomy:CPUCores .
 ?f gr:hasValue ?value
 }
 UNION
 { ?serv gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:CPUCores .
 ?f gr:hasValue ?value
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty cloudtaxonomy:CPUCores .
 ?f gr:hasValue ?value
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:CPUCores .
 ?f gr:hasValue ?value
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:CPUCores .

CloudAid2

135

 ?f gr:hasMinValue ?value
 }
 }
 }
 { SELECT REDUCED ?offering
 WHERE
 { ?offering rdf:type core:ServiceOffering .
 ?offering core:includes ?serv
 { ?serv gr:quantitativeProductOrServiceProperty cloudtaxonomy:DiskSize .
 ?f gr:hasValue ?value
 FILTER (?value >= 150.0)
 }
 UNION
 { ?serv gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:DiskSize .
 ?f gr:hasValue ?value
 FILTER (?value >= 150.0)
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty cloudtaxonomy:DiskSize .
 ?f gr:hasValue ?value
 FILTER (?value >= 150.0)
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:DiskSize .
 ?f gr:hasValue ?value
 FILTER (?value >= 150.0)
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:DiskSize .
 ?f gr:hasMinValue ?value
 FILTER (?value >= 150.0)
 }
 }
 }
 { SELECT REDUCED ?offering
 WHERE
 { ?offering rdf:type core:ServiceOffering .
 ?offering core:includes ?serv
 { ?serv gr:qualitativeProductOrServiceProperty cloudtaxonomy:Performance
}
 UNION
 { ?serv gr:qualitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:Performance
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:qualitativeProductOrServiceProperty cloudtaxonomy:Performance
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:qualitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:Performance
 }
 }
 }
 { SELECT REDUCED ?offering
 WHERE
 { ?offering rdf:type core:ServiceOffering .
 ?offering core:includes ?serv
 { ?serv gr:qualitativeProductOrServiceProperty ?f .

CloudAid2

136

 ?f rdf:type cloudtaxonomy:Feature .
 ?f rdfs:label ?value
 FILTER regex(?value, "Virtual Machine", "i")
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:qualitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:Feature .
 ?f rdfs:label ?value
 FILTER regex(?value, "Virtual Machine", "i")
 }
 }
 }
 { SELECT REDUCED ?offering
 WHERE
 { ?offering rdf:type core:ServiceOffering .
 ?offering core:includes ?serv
 { ?serv gr:qualitativeProductOrServiceProperty cloudtaxonomy:Unix }
 UNION
 { ?serv gr:qualitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:Unix
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:qualitativeProductOrServiceProperty cloudtaxonomy:Unix
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:qualitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:Unix
 }
 }
 }
 { SELECT REDUCED ?offering
 WHERE
 { ?offering rdf:type core:ServiceOffering .
 ?offering core:includes ?serv
 { ?serv gr:quantitativeProductOrServiceProperty cloudtaxonomy:MemorySize
.
 ?f gr:hasValue ?value
 FILTER (?value >= 4.0)
 }
 UNION
 { ?serv gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:MemorySize .
 ?f gr:hasValue ?value
 FILTER (?value >= 4.0)
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty cloudtaxonomy:MemorySize
.
 ?f gr:hasValue ?value
 FILTER (?value >= 4.0)
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:MemorySize .
 ?f gr:hasValue ?value
 FILTER (?value >= 4.0)
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:MemorySize .

CloudAid2

137

 ?f gr:hasMinValue ?value
 FILTER (?value >= 4.0)
 }
 }
 }
 { SELECT REDUCED ?offering
 WHERE
 { ?offering rdf:type core:ServiceOffering .
 ?offering core:includes ?serv
 { ?serv gr:quantitativeProductOrServiceProperty cloudtaxonomy:CPUSpeed .
 ?f gr:hasValue ?value
 FILTER (?value >= 2.5)
 }
 UNION
 { ?serv gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:CPUSpeed .
 ?f gr:hasValue ?value
 FILTER (?value >= 2.5)
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty cloudtaxonomy:CPUSpeed .
 ?f gr:hasValue ?value
 FILTER (?value >= 2.5)
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:CPUSpeed .
 ?f gr:hasValue ?value
 FILTER (?value >= 2.5)
 }
 UNION
 { ?serv core:hasServiceModel ?model .
 ?model gr:quantitativeProductOrServiceProperty ?f .
 ?f rdf:type cloudtaxonomy:CPUSpeed .
 ?f gr:hasMinValue ?value
 FILTER (?value >= 2.5)
 }
 }
 }
 }

CloudAid2

138

CloudAid2

139

Appendix F

PROMETHEE I’s step1 message exchange

Web Service: PrometheePreference-J-MCDA.py Message Number: 1
Message sent (decision problem XMCDA description)
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ZSI="http://www.zolera.com/schemas/ZSI/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <submitProblem>
 <alternatives xsi:type="xsd:string"><XMCDA xmlns="http://www.decision-deck.org/2009/XMCDA-
2.1.0">
 <alternatives xmlns="">
 <alternative id="Alt1" name="m1.xlarge_5020_TIME248205626989940linux-
AmazonSpotInstance_TIME248205626996782"/>
 <alternative id="Alt2" name="c3.2xlarge_5158_TIME248205635160313linux-
AmazonSpotInstance_TIME248205635168866"/>
 <alternative id="Alt3" name="c1.xlarge_5342_TIME248205645931555linux-
AmazonSpotInstance_TIME248205645941818"/>
 <alternative id="Alt4" name="m1.large_4974_TIME248205624872297linux-
AmazonSpotInstance_TIME248205624879139"/>
 <alternative id="Alt5" name="m2.2xlarge_5503_TIME248205656212301linux-
AmazonSpotInstance_TIME248205656219143"/>
 <alternative id="Alt6" name="m2.xlarge_5457_TIME248205654175481linux-
AmazonSpotInstance_TIME248205654182751"/>
 </alternatives>
</XMCDA></alternatives>
 <criteria xsi:type="xsd:string"><XMCDA xmlns="http://www.decision-deck.org/2009/XMCDA-2.1.0">
 <criteria xmlns="">
 <criterion id="Crit0" name="cloudtaxonomy:CPUCores">
 <scale mcdaConcept="PreferenceDirection">
 <quantitative>
 <preferenceDirection>max</preferenceDirection>
 </quantitative>
 </scale>
 </criterion>
 <criterion id="Crit1" name="cloudtaxonomy:CPUSpeed">
 <scale mcdaConcept="PreferenceDirection">
 <quantitative>
 <preferenceDirection>max</preferenceDirection>
 </quantitative>
 </scale>
 </criterion>
 <criterion id="Crit2" name="cloudtaxonomy:MemorySize">
 <scale mcdaConcept="PreferenceDirection">
 <quantitative>
 <preferenceDirection>max</preferenceDirection>
 </quantitative>
 </scale>
 </criterion>
 <criterion id="Crit3" name="cloudtaxonomy:DiskSize">
 <scale mcdaConcept="PreferenceDirection">
 <quantitative>

CloudAid2

140

 <preferenceDirection>max</preferenceDirection>
 </quantitative>
 </scale>
 </criterion>
 <criterion id="Crit4" name="cloudtaxonomy:Performance">
 <scale mcdaConcept="PreferenceDirection">
 <quantitative>
 <preferenceDirection>max</preferenceDirection>
 </quantitative>
 </scale>
 </criterion>
 <criterion id="Crit5" name="price">
 <scale mcdaConcept="PreferenceDirection">
 <quantitative>
 <preferenceDirection>min</preferenceDirection>
 </quantitative>
 </scale>
 <thresholds>
 <threshold mcdaConcept="ind">
 <constant>
 <real>0.09204628</real>
 </constant>
 </threshold>
 </thresholds>
 <thresholds>
 <threshold mcdaConcept="pref">
 <constant>
 <real>0.18409257</real>
 </constant>
 </threshold>
 </thresholds>
 <thresholds>
 <threshold mcdaConcept="veto">
 <constant>
 <real>0.30682093</real>
 </constant>
 </threshold>
 </thresholds>
 </criterion>
 </criteria>
</XMCDA></criteria>
 <weights xsi:type="xsd:string"><XMCDA xmlns="http://www.decision-deck.org/2009/XMCDA-2.1.0">
 <criteriaValues mcdaConcept="Importance" name="significance" xmlns="">
 <criterionValue>
 <criterionID>Crit0</criterionID>
 <value>
 <real>0.12470588</real>
 </value>
 </criterionValue>
 <criterionValue>
 <criterionID>Crit1</criterionID>
 <value>
 <real>0.16705883</real>
 </value>
 </criterionValue>
 <criterionValue>
 <criterionID>Crit2</criterionID>
 <value>
 <real>0.16705883</real>

CloudAid2

141

 </value>
 </criterionValue>
 <criterionValue>
 <criterionID>Crit3</criterionID>
 <value>
 <real>0.14588235</real>
 </value>
 </criterionValue>
 <criterionValue>
 <criterionID>Crit4</criterionID>
 <value>
 <real>0.1882353</real>
 </value>
 </criterionValue>
 <criterionValue>
 <criterionID>Crit5</criterionID>
 <value>
 <real>0.20705882</real>
 </value>
 </criterionValue>
 </criteriaValues>
</XMCDA></weights>
 <performances xsi:type="xsd:string"><XMCDA xmlns="http://www.decision-deck.org/2009/XMCDA-
2.1.0">
 <performanceTable xmlns="">
 <alternativePerformances>
 <alternativeID>Alt1</alternativeID>
 <performance>
 <criterionID>Crit4</criterionID>
 <value name="cloudtaxonomy:Performance">
 <real>1.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit2</criterionID>
 <value name="cloudtaxonomy:MemorySize">
 <real>0.29411766</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit0</criterionID>
 <value name="cloudtaxonomy:CPUCores">
 <real>0.33333334</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit1</criterionID>
 <value name="cloudtaxonomy:CPUSpeed">
 <real>0.16666667</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit5</criterionID>
 <value name="price">
 <real>0.62380683</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit3</criterionID>

CloudAid2

142

 <value name="cloudtaxonomy:DiskSize">
 <real>1.0</real>
 </value>
 </performance>
 </alternativePerformances>
 <alternativePerformances>
 <alternativeID>Alt2</alternativeID>
 <performance>
 <criterionID>Crit4</criterionID>
 <value name="cloudtaxonomy:Performance">
 <real>1.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit2</criterionID>
 <value name="cloudtaxonomy:MemorySize">
 <real>0.29411766</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit0</criterionID>
 <value name="cloudtaxonomy:CPUCores">
 <real>1.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit1</criterionID>
 <value name="cloudtaxonomy:CPUSpeed">
 <real>1.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit5</criterionID>
 <value name="price">
 <real>0.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit3</criterionID>
 <value name="cloudtaxonomy:DiskSize">
 <real>0.0</real>
 </value>
 </performance>
 </alternativePerformances>
 <alternativePerformances>
 <alternativeID>Alt3</alternativeID>
 <performance>
 <criterionID>Crit4</criterionID>
 <value name="cloudtaxonomy:Performance">
 <real>1.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit2</criterionID>
 <value name="cloudtaxonomy:MemorySize">
 <real>0.0</real>
 </value>
 </performance>
 <performance>

CloudAid2

143

 <criterionID>Crit0</criterionID>
 <value name="cloudtaxonomy:CPUCores">
 <real>1.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit1</criterionID>
 <value name="cloudtaxonomy:CPUSpeed">
 <real>0.6666667</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit5</criterionID>
 <value name="price">
 <real>0.2981471</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit3</criterionID>
 <value name="cloudtaxonomy:DiskSize">
 <real>1.0</real>
 </value>
 </performance>
 </alternativePerformances>
 <alternativePerformances>
 <alternativeID>Alt4</alternativeID>
 <performance>
 <criterionID>Crit4</criterionID>
 <value name="cloudtaxonomy:Performance">
 <real>0.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit2</criterionID>
 <value name="cloudtaxonomy:MemorySize">
 <real>0.018382354</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit0</criterionID>
 <value name="cloudtaxonomy:CPUCores">
 <real>0.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit1</criterionID>
 <value name="cloudtaxonomy:CPUSpeed">
 <real>0.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit5</criterionID>
 <value name="price">
 <real>1.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit3</criterionID>
 <value name="cloudtaxonomy:DiskSize">

CloudAid2

144

 <real>0.4473684</real>
 </value>
 </performance>
 </alternativePerformances>
 <alternativePerformances>
 <alternativeID>Alt5</alternativeID>
 <performance>
 <criterionID>Crit4</criterionID>
 <value name="cloudtaxonomy:Performance">
 <real>0.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit2</criterionID>
 <value name="cloudtaxonomy:MemorySize">
 <real>1.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit0</criterionID>
 <value name="cloudtaxonomy:CPUCores">
 <real>0.33333334</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit1</criterionID>
 <value name="cloudtaxonomy:CPUSpeed">
 <real>0.375</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit5</criterionID>
 <value name="price">
 <real>0.20830993</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit3</criterionID>
 <value name="cloudtaxonomy:DiskSize">
 <real>0.45394737</real>
 </value>
 </performance>
 </alternativePerformances>
 <alternativePerformances>
 <alternativeID>Alt6</alternativeID>
 <performance>
 <criterionID>Crit4</criterionID>
 <value name="cloudtaxonomy:Performance">
 <real>0.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit2</criterionID>
 <value name="cloudtaxonomy:MemorySize">
 <real>0.37132353</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit0</criterionID>

CloudAid2

145

 <value name="cloudtaxonomy:CPUCores">
 <real>0.0</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit1</criterionID>
 <value name="cloudtaxonomy:CPUSpeed">
 <real>0.104166664</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit5</criterionID>
 <value name="price">
 <real>0.7922515</real>
 </value>
 </performance>
 <performance>
 <criterionID>Crit3</criterionID>
 <value name="cloudtaxonomy:DiskSize">
 <real>0.17105263</real>
 </value>
 </performance>
 </alternativePerformances>
 </performanceTable>
</XMCDA></performances>
 </submitProblem>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web Service: Message Number: 2
Response from the web service, to Message Number 1
<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ZSI="http://www.zolera.com/schemas/ZSI/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <submitProblemResponse>
 <message id="o7f95441ac850" xsi:type="xsd:string">The problem submission was
successful!</message>
 <ticket id="o123ebc8" xsi:type="xsd:string">grLoQlr2ZjIKyaye</ticket>
 </submitProblemResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

CloudAid2

146

Web Service: PrometheePreference-J-MCDA.py Message Number: 3
Message to request the solution of the problem sent by Message Number:1
<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ZSI="http://www.zolera.com/schemas/ZSI/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <requestSolution>
 <ticket id="o123ebc8" xsi:type="xsd:string">grLoQlr2ZjIKyaye</ticket>
 </requestSolution >
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web Service: Message Number: 4
Response from the web service, to Message Number 3. Contains the preferences values which are
required for the next step of the workflow.
<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ZSI="http://www.zolera.com/schemas/ZSI/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <requestSolutionResponse>
 <service-status id="o92c350" xsi:type="xsd:int">0</service-status>
 <ticket id="od2b4e0" xsi:type="xsd:string">KJn1rn2VqhZLPUdd</ticket>
 <messages id="od71f90" xsi:type="xsd:string"><?xml version="1.0" encoding="UTF-8"?>
<xmc:XMCDA xmlns:xmc="http://www.decision-deck.org/2009/XMCDA-2.1.0">
 <methodMessages>
 <logMessage>
 <text>Everything is ok.</text>
 </logMessage>
 </methodMessages>
</xmc:XMCDA></messages>
 <preference id="od7bc80" xsi:type="xsd:string"><?xml version="1.0" encoding="UTF-8"?>
<xmc:XMCDA xmlns:xmc="http://www.decision-deck.org/2009/XMCDA-2.1.0">
 <alternativesComparisons>
 <pairs>
 <pair>
 <initial>
 <alternativeID>Alt1</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt1</alternativeID>
 </terminal>
 <value>
 <real>0.0</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt1</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt2</alternativeID>
 </terminal>

CloudAid2

147

 <value>
 <real>0.14588235</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt1</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt3</alternativeID>
 </terminal>
 <value>
 <real>0.16705883</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt1</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt4</alternativeID>
 </terminal>
 <value>
 <real>1.0</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt1</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt5</alternativeID>
 </terminal>
 <value>
 <real>0.33411765</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt1</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt6</alternativeID>
 </terminal>
 <value>
 <real>0.7977412</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt2</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt1</alternativeID>
 </terminal>
 <value>
 <real>0.49882352</real>
 </value>
 </pair>

CloudAid2

148

 <pair>
 <initial>
 <alternativeID>Alt2</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt2</alternativeID>
 </terminal>
 <value>
 <real>0.0</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt2</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt3</alternativeID>
 </terminal>
 <value>
 <real>0.54117644</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt2</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt4</alternativeID>
 </terminal>
 <value>
 <real>0.85411763</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt2</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt5</alternativeID>
 </terminal>
 <value>
 <real>0.6870588</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt2</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt6</alternativeID>
 </terminal>
 <value>
 <real>0.6870588</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt3</alternativeID>
 </initial>

CloudAid2

149

 <terminal>
 <alternativeID>Alt1</alternativeID>
 </terminal>
 <value>
 <real>0.49882352</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt3</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt2</alternativeID>
 </terminal>
 <value>
 <real>0.14588235</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt3</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt3</alternativeID>
 </terminal>
 <value>
 <real>0.0</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt3</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt4</alternativeID>
 </terminal>
 <value>
 <real>0.8329412</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt3</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt5</alternativeID>
 </terminal>
 <value>
 <real>0.6258824</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt3</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt6</alternativeID>
 </terminal>
 <value>

CloudAid2

150

 <real>0.8329412</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt4</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt1</alternativeID>
 </terminal>
 <value>
 <real>0.0</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt4</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt2</alternativeID>
 </terminal>
 <value>
 <real>0.14588235</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt4</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt3</alternativeID>
 </terminal>
 <value>
 <real>0.16705883</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt4</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt4</alternativeID>
 </terminal>
 <value>
 <real>0.0</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt4</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt5</alternativeID>
 </terminal>
 <value>
 <real>0.0</real>
 </value>
 </pair>
 <pair>

CloudAid2

151

 <initial>
 <alternativeID>Alt4</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt6</alternativeID>
 </terminal>
 <value>
 <real>0.14588235</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt5</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt1</alternativeID>
 </terminal>
 <value>
 <real>0.54117644</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt5</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt2</alternativeID>
 </terminal>
 <value>
 <real>0.3129412</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt5</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt3</alternativeID>
 </terminal>
 <value>
 <real>0.16705883</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt5</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt4</alternativeID>
 </terminal>
 <value>
 <real>0.8117647</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt5</alternativeID>
 </initial>
 <terminal>

CloudAid2

152

 <alternativeID>Alt5</alternativeID>
 </terminal>
 <value>
 <real>0.0</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt5</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt6</alternativeID>
 </terminal>
 <value>
 <real>0.8117647</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt6</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt1</alternativeID>
 </terminal>
 <value>
 <real>0.16705883</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt6</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt2</alternativeID>
 </terminal>
 <value>
 <real>0.3129412</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt6</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt3</alternativeID>
 </terminal>
 <value>
 <real>0.16705883</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt6</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt4</alternativeID>
 </terminal>
 <value>
 <real>0.54117644</real>

CloudAid2

153

 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt6</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt5</alternativeID>
 </terminal>
 <value>
 <real>0.0</real>
 </value>
 </pair>
 <pair>
 <initial>
 <alternativeID>Alt6</alternativeID>
 </initial>
 <terminal>
 <alternativeID>Alt6</alternativeID>
 </terminal>
 <value>
 <real>0.0</real>
 </value>
 </pair>
 </pairs>
 </alternativesComparisons>
</xmc:XMCDA></preference>
 </requestSolutionResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

CloudAid2

154

CloudAid2

155

References

[1] H. M. Alabool and A. K. Mahmood, “Trust -Based Service Selection in Public
Cloud Computing Using Fuzzy Modified VIKOR Method,” vol. 7, no. 9, pp.
211–220, 2013.

[2] P. Costa, J. C. Lourenço, and M. Mira, “Evaluating Cloud Services using a
Multiple Criteria Decision Analysis Approach,” no. Dm.

[3] Z. U. Rehman, O. K. Hussain, and F. K. Hussain, “Iaas Cloud Selection using
MCDM Methods,” 2012 IEEE Ninth Int. Conf. E-bus. Eng., pp. 246–251, Sep.
2012.

[4] Z. U. Rehman, O. K. Hussain, and F. K. Hussain, “Multi-criteria IaaS Service
Selection Based on QoS History,” 2013 IEEE 27th Int. Conf. Adv. Inf. Netw.
Appl., pp. 1129–1135, Mar. 2013.

[5] M. Sun, T. Zang, X. Xu, and R. Wang, “Consumer-Centered Cloud Services
Selection Using AHP,” 2013 Int. Conf. Serv. Sci., pp. 1–6, Apr. 2013.

[6] J. Araújo, “CloudAid.” [Online]. Available:
https://github.com/jorgearj/CloudAid .

[7] J. Araújo, J. Cardoso, and C. Ferreira, “CloudAid,” 2013.

[8] “Internet Traffic Report.” [Online]. Available:
http://www.internettrafficreport.com/.

[9] J. Araujo, J. Cardoso, C. F. da Silva, and P. Melo, “Cloud Services Aggregation,”
Trans. Serv. Comput., 2014.

[10] “IBM News room - 2013-10-24 IBM Study Reveals Businesses Using Cloud
Computing for Competitive Advantage Can Generate Double Revenue and
Profit Compared to their Peers - United States,” 24-Oct-2013. [Online].
Available: http://www-03.ibm.com/press/us/en/pressrelease/42304.wss.

[11] “SPIN - SPARQL Inferencing Notation.” [Online]. Available:
http://spinrdf.org/.

[12] “Composing the Semantic Web: Introducing SPIN: the SPARQL Inferencing
Notation.” [Online]. Available: http://composing-the-semantic-
web.blogspot.pt/2009/01/introducing-spin-sparql-inferencing.html.

[13] “Composing the Semantic Web: Understanding SPIN Functions.” [Online].
Available: http://composing-the-semantic-
web.blogspot.pt/2009/01/understanding-spin-functions.html.

[14] D. Bouyssou, “Outranking Methods,” pp. 1–12.

http://www-03.ibm.com/press/us/en/pressrelease/42304.wss

CloudAid2

156

[15] J. Figueira, S. Greco, and M. Ehrgott, Multiple CriteriaDecision Analysis: State
of the Art Surveys. Springer,2005.

[16] C. Zopounidis and M. Doumpos, Multicriteria Decision Aid Classification
Methods. 2004.

[17] “LinkedUSDL core - github.” [Online]. Available: https://github.com/linked-
usdl/usdl-core.

[18] “Project Management.” [Online]. Available:
http://en.wikipedia.org/wiki/Project_management.

[19] “Propostas de Estágio 2013/2014 - CloudAid2.” [Online]. Available:
http://estagios.dei.uc.pt/cursos/mei/2013-2014/propostas-de-
estagio/?id=1412.

[20] “Modified Waterfall Model.” [Online]. Available:
http://en.wikipedia.org/wiki/Modified_waterfall_models.

[21] F. Consortium, “FMC - Books about the Fundamental Modeling Concepts.”

[22] “Apache Jena - Home.” [Online]. Available: http://jena.apache.org/.

[23] “About XMCDA — XMCDA.” [Online]. Available: http://www.decision-
deck.org/xmcda/about.html.

[24] “Weighted sum.” [Online]. Available:
http://en.wikipedia.org/wiki/Weighted_sum_model.

[25] “The Analytic Hierarchy Process.” [Online]. Available:
http://www.dii.unisi.it/~mocenni/Note_AHP.pdf.

[26] “JavaScript Object Notation.” [Online]. Available:
http://en.wikipedia.org/wiki/JSON.

[27] “JSON .” [Online]. Available: http://www.w3schools.com/json/.

[28] “The Decision Deck project — Decision Deck.” [Online]. Available:
http://www.decision-deck.org/project/.

[29] “The Decision-Deck Project - Developing a Multiple Criteria Decision
Analysis Software Platform.” [Online]. Available: http://ercim-
news.ercim.eu/en72/rd/the-decision-deck-project-developing-a-multiple-
criteria-decision-analysis-software-platform.

[30] “Design, execute and share MCDA methods — diviz.” [Online]. Available:
http://www.decision-deck.org/diviz/.

CloudAid2

157

[31] “Sample workflows — diviz.” [Online]. Available: http://www.decision-
deck.org/diviz/workflows.html.

 [32] “Balsamiq. Rapid, effective and fun wireframing software.” [Online].
Available: http://balsamiq.com/.

 [33] “What is Functional Testing? - Definition from Techopedia.” [Online].
Available: http://www.techopedia.com/definition/19509/functional-
testing.

[34] “Functional Testing.” [Online]. Available:
http://en.wikipedia.org/wiki/Functional_testing.

[35] “MoSCoW Method for Requirements Prioritization ~ Business Analysis.”
[Online]. Available: http://www.businessanalysis.in/2013/06/moscow-
method-for-requirements.html.

[36] “Supplementary Specification / FURPS | Refslund.” [Online]. Available:
http://refslund.me/cs/systemdevelopment/miscellaneous/specification.

[37] P. Wang, Y. Mu, W. Susilo, and J. Yan, “Privacy preserving protocol for service
aggregation in cloud computing,” Software: Practice and Experience, vol. 42,
no. 4,pp. 467–483, 2012.

[38] J. Cardoso and A. Sheth, “Semantic e-workflow composition,” Journal of
Intelligent Information Systems (JIIS),vol. 21, no. 3, pp. 191–225, 2003.

[39] T. Erl, Service-Oriented Architecture: Concepts, Technology,and Design.
Prentice Hall PTR, 2005.

[40] “Posts about royce waterfall model on Galib’s virtual identity.” [Online].
Available: https://imgalib.wordpress.com/tag/royce-waterfall-model/.
[Accessed: 25-Jan-2014].

[41] E. Sirin, J. Hendler, and B. Parsia, “Semi-automaticcomposition of web
services using semantic descriptions,” in Web Services: Modeling,
Architecture and Infrastructure Workshop, 2002, pp. 17–24.

[42] D. Liu, N. Li, C. Pedrinaci, J. Kopeck ´ y, M. Maleshkova,and J. Domingue, “An
approach to construct dynamic service mashups using lightweight
semantics,” in Current Trends in Web Engineering, ser. LNCS. Springer,2012,
vol. 7059, pp. 13–24.

[43] “Cloud Computing: Cloud Pricing Models – Part 4 - CloudTweaks.com: Cloud
Information.” [Online]. Available: http://cloudtweaks.com/2012/04/cloud-
computing-cloud-pricing-models-part-4/.

[44] “The Cloud Computing Blog: Cloud Pricing Models.” [Online]. Available:
http://cloud-articles.blogspot.pt/2012/10/cloud-pricing-models.html.

CloudAid2

158

[45] “The present and future of cloud pricing models - Thoughts on Cloud.”
[Online]. Available: http://thoughtsoncloud.com/2013/06/present-future-
cloud-pricing-models/.

[46] “Cloud Pricing Models that Work.” [Online]. Available:
http://newswire.telecomramblings.com/2013/04/cloud-pricing-models-
that-work/.

[47] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, “Cloud Computing
Pricing Models: A Survey,” Int. J. Grid Distrib. Comput., vol. 6, no. 5, pp. 93–
106, Oct. 2013.

[48] T. H. E. C. Pricing, “THE CLOUD PRICING CODEX,” no. December, 2013.

[49] “451 Research Home.” [Online]. Available: https://451research.com/.

[50] D. Barrigas and J. Araujo, “Linked USDL Pricing API,” 2014. [Online].
Available: https://github.com/jorgearj/USDLPricing_API.

[51] D. Barrigas and J. Araújo, “Linked USDL Pricing API Tar,” 2014. [Online].
Available: https://jorgearj.github.io/USDLPricing_API/.

[52] D. Barrigas, “CloudAid2,” 2014. [Online]. Available:
https://github.com/dguedesb/CloudAid2.

[53] D. Barrigas, “ServiceGatherer,” 2014. [Online]. Available:
https://github.com/dguedesb/CloudAid2-ServiceGatherer.

[54] Wikipedia, “Adjacency List.” [Online]. Available:
http://en.wikipedia.org/wiki/Adjacency_list.

[55] S. J. C. Vol, “FINDING ALL THE ELEMENTARY,” vol. 4, no. 1, pp. 77–84, 1975.

[1]–[55]

