
Algorithms and Data
Structures for Large
Scale Geographic
Information Systems
Bernardo Marques
basimoes@student.dei.uc.pt

Orientador:

Prof. Dr. Luís Paquete
Eng. Pedro Reino
Data: 29 de Janeiro de 2016

Mestrado em Engenharia Informática
Dissertação
Relatório Final

University of Coimbra

Department of Informatics Engeneering

M.Sc Thesis

Algorithms and Data Structures for Large
Scale Geographic Information Systems

Author: Supervisors: Jury:

Bernardo Marques Prof. Dr. Lúıs Paquete 1 Prof. Dr. Carlos Fonseca 1

Eng. Pedro Reino 2 Prof. Dr. Joel Arrais 1

1 CISUC, Department of Informatics Engineering, University of Coimbra
2 Smartgeo Solutions

January 29st, 2016

Abstract

With the increasing availability of geographically referenced data, the efficiency of Geographic

Information Systems (GIS) is becoming increasingly relevant. In this project, we address the

problem of efficiently retrieving geographic data based on spatial relationships. We describe

an implementation of a GIS solution based on Polygonal Map Quadtrees. This data structure

is kept in memory while persistent storage is handled by an underlying database management

system. To validate the implementation, we describe an experimental analysis in a wide range

of scenarios. The experimental results suggest that this approach can have better performance

than a state-of-the-art GIS framework in terms of running time.

keywords: Multi-Dimensional Indexing, Topological Relationships, Geographic Information

Systems

Sumário

A tendência de crescimento da disponibilidade de informação, contendo esta um grande número

de referências geográficas, torna premente a necessidade de tornar os Sistemas de Informação

Geográfica (SIG) mais eficientes. A presente tese aborda o problema de, dado um conjunto

de informação espacial, encontrar objetos nesse conjunto que verifiquem determinadas relações

topológicas entre si. Neste documento, é descrita a implementação de um SIG baseado em

Polygonal Map Quadtrees. Esta estrutura de dados é mantida em memória e o armazenamento

em disco é gerido por um Sistema de Gestão de Base de Dados. De forma a validar a imple-

mentação, é descrita uma análise experimental considerando diferentes cenários. Os resultados

obtidos indicam que a abordagem descrita neste documento poderá ter melhor desempenho que

um dos SIG mais usados na atualidade em termos de tempo de execução.

palavras-chave: Indexação Multi-Dimensional, Relações Topológicas, Sistemas de Informação

Geográfica

Contents

1 Introduction 1

1.1 Geometric Objects . 2

1.2 Topological Relationships . 3

1.3 Geographic Information Systems . 5

2 Requirement Elicitation 6

2.1 Core Functionality . 6

2.2 Integration with Database Management Systems 8

2.3 Integration with Geoserver . 9

2.4 Requirement Fulfillment . 9

3 System Design 11

3.1 Core Functionality – Data Model . 12

3.2 Core Functionality – Storing Spatial Data . 13

3.3 Core Functionality – Solving Topological Queries 16

3.4 DBMS Connection . 27

3.5 GeoServer Integration . 28

4 Experimental Results 29

4.1 System Quality . 29

4.2 Performance Comparison with postGIS . 32

5 Conclusions and Future Work 37

Appendices 41

A WKT Grammar 42

Chapter 1

Introduction

Considering the increasing volumes of spatially referenced data continuously generated by net-

works of people and devices, efficiency in Geographic Information Systems (GIS) is becoming

more and more challenging. This efficiency challenge also impacts deeply the usability of many

client applications. Therefore, it is necessary for the existing systems to adapt in order to

improve the processing of such amounts of data.

This work is developed within the project ”SGP - GIMS” funded by QREN whose goal is

to develop a Geographic Information System that allows management and manipulation of

georeferenced data. The project is a partnership between the Department of Mathematics and

Department of Informatics Engineering from the University of Coimbra (UC) and Smartgeo

Solutions, a company that develops GIS-based applications. The tasks developed at UC are

concerned with the development of methods to solve particular problems that arise in GIS, such

as the multi-objective shortest path problem, the traveling salesman problem with multiple

salesmen and other constraints, finding representative sets of points in a finite point set and

solving topological queries in large geographic datasets.

The goal of this work is to develop a GIS solution capable of managing and manipulating

geographic data, while providing easy integration with different Database Management Systems

(DBMS) and other platforms. Special emphasis is given to the efficiency of solving topological

queries. These are queries that filter geographic data based on the topological relationships,

i.e. queries that find all geographic data that verify a certain relationship with a reference

geographic element. The relationships considered here are based on topological predicates such

as intersects or covers as illustrated in Figure 1.1. This allows the construction of queries such

as ”find all points contained in polygon x”, which produces the effect shown in Figure 1.2. Given

that the amount of data can be very large, the practical efficiency of the algorithms and data

structures is a central concern in this thesis.

Topological queries play a very important role in most GIS. They not only provide the end user

with powerful searching features, as they also provide a way of verifying the consistency of the

1

1.1. GEOMETRIC OBJECTS 2

Figure 1.1: Examples of relationships. In both images the geometric objects intersect, but on
the right the blue circle covers the red one.

••

•

• •

•

•

•
••

•

• •

•

•

•

Figure 1.2: Example of a query: ”find all points covered by the polygon”.

spatial data. For example, if two polygons represent lakes, they should not intersect each other,

otherwise the two would be a single lake. This type of inconsistency can be detected using

topological queries. Along with this example, situations like countries overlapping each other

or a restaurant in the middle of the ocean can also be detected with this type of queries.

This document describes the design and implementation of a system compliant with the de-

scribed objectives. The document begins by introducing concepts and definitions. Most of

the introduced concepts are based on standards published by the Open Geospatial Consortium

(OGC), an organization that develops interface standards in the field of geospatial information

[1]. Chapter 2 presents the requirement elicitation for this project in order to provide an ob-

jective definition of the problem addressed. From this list of requirements an architecture is

developed and presented in Chapter 3. An experimental comparison between the developed

system and postGIS (a database management system with spatial capabilities) is described in

Chapter 4. Finally, in Chapter 5, conclusions and further research directions are discussed.

1.1 Geometric Objects

Given that the developed system has to communicate with other systems, such as Database

Management Systems (DBMS) and other GIS, it is important to follow the applicable standards

when defining the types of geometric objects supported. Therefore, the system supports the

types of geometric object point, linestring and polygon, as defined in [14]. These objects are

categorized in accordance to their Hausdorff dimension, thus the dimension of a point is 0, a

linestring 1 and a polygon 2. Next, the properties of theses geometric objects are explained in

detail.

A point is defined by its x and y coordinates, corresponding to latitude and longitude. A

linestring is defined by a set of connected line segments, except for the first and last segment in

the sequence. Finally, a polygon is defined by a ring, which is a set of connected line segments

with no self-intersections, that defines its external border. Optionally, a polygon may contain

1.2. TOPOLOGICAL RELATIONSHIPS 3

internal rings that define holes in the polygon. There can be no intersection between any pair

of rings that form a polygon.

Considering this description, the notions of interior, border and exterior of a geometric object

are introduced as follows:

• The interior of a point is the point itself.

• A point contains no border.

• The exterior of a point is the entire domain except the point.

• The interior of a linestring is the union of all line segments that compose it except for

their endpoints.

• The border of a linestring is the set of endpoints of the line segments that compose the

linestring.

• The exterior of a linestring is the set of points that are not in its interior nor in its border.

• The interior of a polygon is the set of points contained by the external ring that are

not contained by the internal rings. Moreover, any point lying in the line segments that

compose the rings is not a part of the polygon’s interior.

• The border of a polygon is the union of the line segments that compose the polygon’s

rings.

• The exterior of a polygon is the set of points of the domain that are neither in its interior

nor in its border.

Throughout this document, whenever not explicitly indicated, it is assumed that an object is

described by the union of its interior and its border.

1.2 Topological Relationships

Topological relationships can be defined as relationships between geometric objects that are in-

variant to transformations such as rotating, scaling or translating. Therefore, predicates such as

includes, touches, contains or crosses are examples of possible topological relationships between

two geometric objects. These relationships have been standardized by the Open Geospatial

Consortium using the 9-intersection model[6]. In the following, an explanation of this model is

provided.

The 9-intersection model is based on a 3 × 3 matrix in which each cell has some information

about the intersection between the two geometric objects under consideration. Consider two

1.2. TOPOLOGICAL RELATIONSHIPS 4

sets of points A and B that represent two distinct geometric objects. Let A◦ denote the interior

of A, ∂A the border of A and Ac the exterior of A. Moreover, the function hdim(x) calculates

the Hausdorff dimension of the argument point set x, whenever x is not the empty set. If x

is the empty set, then hdim(x) becomes FALSE. Therefore the range of the function hdim is

{FALSE, 0, 1, 2}, since 3-dimensional object are outside of the function’s domain. Considering

this, the 9-intersection model is then based on the following matrix.

hdim(A◦ ∩B◦) hdim(A◦ ∩ ∂B) hdim(A◦ ∩Bc)

hdim(∂A ∩B◦) hdim(∂A ∩ ∂B) hdim(∂A ∩Bc)

hdim(Ac ∩B◦) hdim(Ac ∩ ∂B) hdim(Ac ∩Bc)

This matrix allows for the verification of a wide set of topological relationships between geometric

objects using mask matrices that verify certain conditions. For example, in order to verify

whether a geometric object contains another, it is possible to take the above matrix and compare

it with the mask matrix shown below.

T ∗ ∗
∗ ∗ ∗
F F ∗

Symbol ∗ means that the cell may assume any value, T means that the value of the cell has to

be different from FALSE (i.e. ≥ 0) and F means it has to be FALSE. Thus, the conditions

represented by the matrix can be written as:

(hdim(A◦ ∩B◦) ≥ 0) ∧ (hdim(Ac ∩B◦) = FALSE) ∧ (hdim(Ac ∩ ∂B) = FALSE).

This means that given two geometric objects A and B, if their interiors intersect and there is no

intersection between the exterior of A and the interior or the border of B, the geometric object

A contains B.

The verification of certain topological relationships requires knowledge about the dimension of

the intersections and the objects under consideration. For example, if the goal is to find if two

geometric objects overlap, it must be first guaranteed that the two geometric objects have the

same Hausdorff dimension. After this, the mask matrices shown below may be used, matrix A

for 0 and 2-dimensional objects and matrix B for the 1-dimensional cases.

1.3. GEOGRAPHIC INFORMATION SYSTEMS 5

T ∗ T

∗ ∗ ∗
T ∗ ∗

(A)

1 ∗ T

∗ ∗ ∗
T ∗ ∗

(B)

In this case, in order to verify an overlapping relationship between two 1-dimensional objects

(line segments), the intersection of their interiors must also be a 1-dimensional object (a line

segment).

Finally, a topological query is defined by a set S of geometric objects to be filtered, a reference

geometric object q, which is referred to as ”query object” or ”reference object” throughout the

document, and a topological predicate p. From there, a topological query can be described as

finding all objects of S that verify the topological relationship p with the reference object q.

1.3 Geographic Information Systems

Geographic Information Systems (GIS) are systems that deal with the capture, storage, manip-

ulation and analysis of geographic data. Since the scope of this thesis is concerned with storing

and searching spatial data, this section gives an overview on other GIS that provide similar

features.

Some of the most used systems for storing and searching spatial data are PostGIS, Oracle

Spatial and MySQL. These are relational databases with support for spatial indexing, allowing

the creation of 2-dimensional indexes. There are several spatial indexing techniques available,

which will be discussed in detail further on in this document. However, these systems rely

mostly on indexes of the R-tree family, being Oracle Spatial the only that provides support

for Quadtree based indexes [2, 3, 4]. Since these are different indexing structures, they have

different properties and expected performances. Therefore, providing the end user with the

possibility of choosing between different indexing schemes can have a significant impact on the

performance, considering that only the user knows what operations will be performed on the

data.

Considering that we are interested in large volumes of data, another important factor to take

into account is the parallelization of work among several nodes in a cluster. An interesting

implementation of such a solution is Hadoop-GIS. This software uses an R-tree index which is

used as a basis for the Map Reduce algorithm, which distributes the work among the cluster

nodes [5].

The system developed within the scope of this thesis differentiates itself from the ones described

above because it is designed with the single purpose of fast topological querying in mind. The

resulting system can therefore be described as an in-memory database with an indexing scheme

optimized for querying.

Chapter 2

Requirement Elicitation

In this chapter, more precise definition of the problem is presented. In order to do so, the

requirements elicited from Smartgeo are presented and discussed, and a general overview of the

planned functionality is provided in this text.

The system is intended to work as a middleware between GeoServer and a collection of un-

derlying Database Management Systems (DBMS). This means that the system should be able

to connect and to fetch data from a DBMS and then, using this data, to answer topological

queries from GeoServer. Therefore, GeoServer is a client of the system, using it as a source of

geographic data. The main objective is to provide more efficient topological queries.

The requirements of this project are split into three groups: integration with GeoServer, inte-

gration with a DBMS and basic functionalities for geometry manipulation. In order to create

an easy referencing scheme, each requirement has an associated ID. These IDs have prefixes

depending on the nature of the requirement. Namely, core functionality requirements have

prefixed ”FE”, DBMS integration requirements have prefixed ”DB” and GeoServer integration

requirements have prefixed ”GS”. After this prefix follows a sequential number with two digits.

2.1 Core Functionality

2.1.1 Functional Requirements

ID: FE01

Description: The system should recognize points, linestrings and polygons (as described in

[14]) as geometric objects.

ID: FE02

Description: The system should provide a mechanism for solving queries relating a list of

6

2.1. CORE FUNCTIONALITY 7

Contains

T ∗ ∗
∗ ∗ ∗
F F ∗

Covers

T ∗ ∗
∗ ∗ ∗
F F ∗

 ∗ T ∗
∗ ∗ ∗
F F ∗

 ∗ ∗ ∗
T ∗ ∗
F F ∗

 ∗ ∗ ∗
∗ T ∗
F F ∗

Intersects

T ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ∗ T ∗
∗ ∗ ∗
∗ ∗ ∗

 ∗ ∗ ∗
T ∗ ∗
∗ ∗ ∗

 ∗ ∗ ∗
∗ T ∗
∗ ∗ ∗

isContained

T ∗ F
∗ ∗ F
∗ ∗ ∗

isCoveredby

T ∗ F
∗ ∗ F
∗ ∗ ∗

 ∗ T F
∗ ∗ F
∗ ∗ ∗

 ∗ ∗ F
T ∗ F
∗ ∗ ∗

 ∗ ∗ F
∗ T F
∗ ∗ ∗

Meets

F T ∗
∗ ∗ ∗
∗ ∗ ∗

 F ∗ ∗
T ∗ ∗
∗ ∗ ∗

 F ∗ ∗
∗ T ∗
∗ ∗ ∗

Overlaps

T ∗ T
∗ ∗ ∗
T ∗ ∗

if hdim(A) = 0 ∨ hdim(A) = 2

1 ∗ T
∗ ∗ ∗
T ∗ ∗

if hdim(A) = 1

Figure 2.1: 9 intersection matrix masks representing different topological relationships

geometric objects with a given reference geometric object through one of the topological rela-

tionships: Contains, Covers, Intersects, is Contained, is Covered by, Meets and Overlaps. These

relationships are defined by the 9 intersection matrix masks in Figure 2.1

Dependencies: FE01

ID: FE03

Description: It should be possible to insert, update and remove geometric objects from the

system.

Dependencies: FE01

2.2. INTEGRATION WITH DATABASE MANAGEMENT SYSTEMS 8

2.1.2 Non-Functional Requirements

ID: FE04

Description: The time taken by the system to answer topological queries should be as min-

imal as possible. Specifically, the system should be significantly faster than postgres with the

postGIS extension to answer topological queries.

Dependencies: FE02

2.2 Integration with Database Management Systems

2.2.1 Functional Requirements

ID: DB01

Description: The system should be able to connect to a postgres database with the postGIS

extension, provided that the database is accessible to the system.

ID: DB02

Description: The system must be capable of fetching geographic data from a postgres database

with the postGIS extension.

Dependencies: DB01

ID: DB03

Description: Changes in the data that occur in the system should be propagated to the un-

derlying database.

Dependencies: DB01

ID: DB04

Description: Changes in the data stored in the database should be propagated to the system.

Dependencies: DB01

ID: DB05

Description: The communication between the system and the DBMS should be based in open

standards in order to ease the implementation effort of extending the support to alternative

DBMSs.

2.3. INTEGRATION WITH GEOSERVER 9

2.3 Integration with Geoserver

2.3.1 Functional Requirements

ID: GS01

Description: It is possible to connect the system and Geoserver. This connection must allow

Geoserver to attempt topological queries and data editions.

ID: GS02

Description: When Geoserver attempts to use the system to solve a topological query, the

system answers the request with the correct set of geometric objects. Whenever the requested

query is malformed or generates an error within the system, a suitable error message must be

sent back.

Dependencies: GS01, FE02

ID: GS03

Description: GeoServer should be able of inserting, updating and removing data from the

system. When such operations result in errors, the system should provide GeoServer with a

suitable error message.

Dependencies: GS01, FE03

2.4 Requirement Fulfillment

The project cannot succeed without the fulfillment of requirements FE01, FE02 and FE03,

given that these represent the very basic operations of geographic data manipulation that must

be supported by the system. Considering requirement FE04, the fulfillment of this requirement

is essential to the success of this project, given that it stands as the main goal of the system.

Therefore, the final implementation of the system must fulfill all these four requirements.

Regarding requirements GS01, GS02 and GS03, full integration with GeoServer can be a very

time consuming and difficult task since it implies either the implementation of known commu-

nication standards or changing GeoServer’s code in order to facilitate communication. Since

these requirements are not essential for a working system usable by a third party, the final im-

plementation of the system does not try to fulfill them. However, the architectural plan defines

how the system can be expanded to fulfill these requirements.

Finally, the fulfillment of requirements DB01 and DB02 can be considered as essential since

it is important to have the capacity of easily inserting existing data in the system. However,

requirements DB03 and DB04 do not represent essential features to have in the final system,

2.4. REQUIREMENT FULFILLMENT 10

since a dynamic environment is not the main focus of the current project. Regarding requirement

DB05, since the system will have to provide a way of communicating with PostGIS, it makes

sense to fulfill this requirement.

Given this, the following statement defines the requirement fulfillment threshold above which

the project is considered successful.

Develop a system capable of managing and manipulating geographic data, in which

topological queries are performed with significant better time performance than post-

GIS. Moreover, provide a standardized interface capable of fetching geographic data

from PostGIS-based databases.

Therefore, the requirements fulfilled by the final system implementation are FE01, FE02, FE03,

FE04, DB01, DB02 and DB05. Regarding the remaining requirements, the architecture of the

system defines ways of extending the system in order to provide the functionality described

in the requirements. In order to reach the stated threshold an architecture is developed and

presented in the next chapter.

Chapter 3

System Design

The current chapter proposes an architecture to comply with the requirements discussed in the

previous chapter. The source code corresponding to this architecture can be found in [17].

In the previous chapter, three sets of requirements are discussed, namely, core functionality re-

quirements, integration with an underlying DBMS requirements and integration with Geoserver

requirements. Each of these sets of requirements is translated to layers in the top-level archi-

tecture diagram presented in Figure 3.1.

HTTP Server

WFS Request
Handler

Topological
Search Interface

Data
Manipulation

Interface

Indexing Structure

Memory Manager

Database Connection

DB2DB1 DB3

GeoServer Integration Layer

Core Functionality Layer

DBMS Connection Layer

Figure 3.1: Top-level system architecture design.

In the following sections, the approaches taken to solve the particular problems addressed by

each layer are presented.

11

3.1. CORE FUNCTIONALITY – DATA MODEL 12

3.1 Core Functionality – Data Model

This section defines how geographic data is represented within the system. This is an important

subject that requires special care since the system is integrated with other GIS applications and

the data model needs to be compatible. For this reason, the data model used by the system is

based on the models proposed in the applicable standards [14]. This data model is presented in

Figure 3.2 as a class hierarchy.

Geometry

LineStringPoint

LinearRing

Polygon
Geometry
Collection

MultiPoint

MultiLineString

MultiPolygon

Figure 3.2: Geometry types and their inheritance relationships.

As shown, the type Geometry is used as a basis for all others. Since it is necessary to uniquely

identify the different geometric objects both internally and in the underlying DBMS, the class

geometry has the properties internal id and external id. Where internal id represents the id

used within the system to identify the geometric object and external id is the id used to identify

the geometric object within the source DBMS.

The type Point is simply composed by its two coordinates (x,y). The type LineString is com-

posed by a dynamic list of endpoints. The type Polygon is composed by a LineString that

defines its external border and a dynamic list of LineStrings that represent its internal rings.

Finally the type GeometryCollection is composed by a dynamic list of geometric objects. The

types LinearRing, MultiPoint, MultiLineString and MultiPolygon do not have properties of their

own. Instead they pose semantic constraints on the properties of the parent classes.

At this point, the data model for geometric data is defined. However, geographic data is also

composed by non-geometric data and a map projection or geodetic datum. The indexing of non-

geometric data is outside the scope of this project and is therefore not handled by the system

(apart from the ids). Finally, since the only operations provided by the system are based on

3.2. CORE FUNCTIONALITY – STORING SPATIAL DATA 13

topological predicates, the map projection used is not relevant for the final results as long as all

objects use the same one. Therefore, the system defines a global map projection and all indexed

objects are converted from their original projection.

3.2 Core Functionality – Storing Spatial Data

This section discusses the data structure used by the system to index the geographic data.

On simplest end of the spectrum, the data structure used would be a list. However, such

solution would lead to an iteration over the entire dataset in order to answer a topological query.

Therefore, it is necessary to investigate other data structures that provide better performance,

especially for topological querying.

Spatial indexing is the process of organizing a collection of geometric data according to its

positioning in the space. When searching for a particular set of geometric objects, this index

allows an efficient scan of the data, without considering geometric objects that are unrelated

and far away from the objects of interest. This indexing is usually achieved by partitioning the

space into cells and associating geometric objects with the cells they intersect, or by creating

hierarchically organized groups of objects.

This topic has been widely studied and several data structures have been designed for this

purpose[11, 19, 20]. It is possible to categorize the approaches according to their properties[13].

Namely, whether it is possible for the cells that result from space partitioning to overlap or

not (overlapping or disjoint cells), and whether the indexing structure partitions the space in

regular pattern or in a data-dependent dynamic pattern.

For example, data structures such as the R-tree and R*-tree, group geometric objects and index

the bounding box of the resulting collection in a hierarchical structure. This results in the

possibility of the groups of objects having overlapping bounding boxes [11]. Therefore these

data structures belong to the overlapping cells category. On the other hand, data structures

such as the R+-tree, Polygonal Map Quadtree and Cell tree, divide the space in disjoint cells

and associate with each one of them the geometric objects that intersect it in some way.

This two categories have inherent advantages and drawbacks. For example, when querying a

data structure with overlapping cells, if the query intersects an area with overlapping cells,

all of those have to be examined, which might ultimately result in the scanning of the entire

database. Data structures based on disjoint cells, despite not having this problem, will most

likely have higher memory requirements. This is because, in order to achieve disjointness, this

data structures clip geometric objects against the cell. This results in a higher overhead, due to

the storage of the clipped objects and due to possible repetition of edges that intersect multiple

cells.

Within the group of data structures based on disjoint cells it is still possible to have data-

dependent data structures and regular data structures. The first group includes data structures

3.2. CORE FUNCTIONALITY – STORING SPATIAL DATA 14

that create hierarchically organized groups of objects with disjoint bounding boxes at each

hierarchical level, such as the R+-tree and the Cell tree. These sort of decomposition is data-

dependent since the shape of the cells depends on the dispersion of the data throughout the

space. In this way, operations that require the combination of two indexing structures, force

the recalculation of a whole new indexing structure, such as the map overlay operation in which

two maps are placed over each other. The second group includes data structures that partition

the space in regular patterns, such as the Uniform Grid and the Quadtree. The Uniform Grid

divides the space into similar rectangles, while the Quadtree adapts the decomposition to the

distribution of the data and divides the space in powers of two. Given the uniformity of these

approaches, it is fairly easy to perform operations such as the map overlay with them.

According to an empirical study performed by Hoel and Samet in [13], data structures based

on disjoint cell have better performance for query operations. Moreover, since the map overlay

operation can be relevant to combine two or more layers of geographic data when solving a

query, it is also relevant to choose a data structure with regular partitioning. Therefore, the

implementation described in this document uses a Polygonal Map Quadtree to store the spatial

data. The Uniform Grid is discarded because it can be seen as a particular case of a polygonal

map quadtree but has a less powerful subdivision criterion.

Finally, the remainder of this section provides an brief overview over the functionality of the

Quadtree.

3.2.1 Polygonal Map Quadtree

The Polygonal Map Quadtree is a spatial indexing structure due to Hanan Samet [19]. It begins

with a bounding box that encloses the entire set of geometric objects to be indexed, which is

the domain of the root node of the tree. Whenever the geometric objects that intersect a given

node (and therefore are indexed in that node), violate a given criterion, the node is split in four

equal quadrants and the geometric objects distributed among them accordingly. Each of the

new quadrants corresponds to a leaf node whose parent is the node that has just been split.

Since the nodes are split in four disjoint quadrants it is possible to say that this data structure is

based on a regular partition of the space in disjoint cells. That is, all nodes have size proportional

to the tree domain scaled down by some power of two and no two cells at the same hierarchical

level overlap each other.

Construction

The Quadtree begins with an empty root node whose bounding box covers all geometric objects.

The objects are then inserted one by one in this node.Whenever a certain criterion is violated,

the node is split in four equal quadrants. The geometric objects stored at the split node are then

3.2. CORE FUNCTIONALITY – STORING SPATIAL DATA 15

inserted in its child nodes. A geometric object is indexed in a node if and only if it intersects

the box that defines the node domain.

The insertion algorithm is therefore recursive. The process begins at the root node and then

recursively proceeds to the child nodes that intersect the geometric object being inserted. The

geometric object is then added to each leaf node it intersects, resulting in node splits whenever

a node is considered invalid. The validity of a node may be defined in several ways. In the

approach proposed by Samet, three possible criteria were defined, resulting in different time

complexities and properties. The criterion considered in this section states that at most one

point may lie within the region defined by the bounding box of a leaf node.

Given this criterion and considering that the nodes are split in regular patters, in order to

separate two infinitely close points the tree would have infinite length. Thus, the depth of the

tree is inversely proportional to the distance between the closest pair of points within the set

of geometric objects. According to [19], the maximum depth of the tree can be calculated with

Equation 3.1, where d denotes the distance between the closest pair of vertexes, if the domain

of the tree is a unit square.

Depth = 1 + log2

(√
2

d

)
(3.1)

Geometry Searching

Searching the Quadtree implies finding all leaf nodes that intersect the given query geometry.

Therefore, if the query geometry is a point, the number of steps leading to the respective nodes

are proportional to the tree depth, since the maximum number of leaf nodes intersected by the

point is constant. As for lines and polygons, the number of intersected leaf nodes is not constant.

Therefore the complexity of searching for geometric objects of these types is proportional to the

number of intersected leaf nodes multiplied by the tree depth. This is illustrated in Figure 3.3,

where the query geometric is a line segment and the intersected leaf nodes are highlighted in

blue.

Figure 3.3: A line segment query with the retrieved nodes highlighted in blue.

Finally, in order to perform range query in a Polygonal Map Quadtree, all nodes that intersect

the border of the query rectangle and all nodes that are strictly contained in it must be examined,

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 16

as illustrated in Figure 3.4 where the blue cells are intersected by the border of the query window

and the green cells are strictly contained in it. It is possible to verify that the number of nodes

whose geometric objects have to be reported is proportional to the area of the query window.

Therefore, for very large query windows it becomes less computationally demanding to iterate

over a list of the indexed geometric objects than to use the Quadtree index.

Figure 3.4: Example of a range query in a Polygonal Map Quadtree.

3.3 Core Functionality – Solving Topological Queries

Topological queries have been a core problem in spatial databases for a long time. In order

to address the problem, a pipeline is proposed by Kriegel et al.[15]. This pipeline divides the

process in three steps:

1. use an indexing data structure to discard some of the objects that are disjoint with the

reference object.

2. use simpler versions of the geometric objects (i.e. approximations) to quickly discard some

of the objects that are disjoint with the reference object.

3. calculate the topological relationships between the remaining objects and the reference

object.

This pipeline is depicted in Figure 3.5. The remainder of this section discusses the details of

each the three steps shown in the pipeline: index, geometric filter, exact shape processor.

query index

candidates

geometric
filter

false hits

exact
shape

processor

Response
set

Figure 3.5: Query processing pipeline

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 17

3.3.1 Indexing Structure

Taking advantage of the Quadtree indexing scheme, it is possible to take into consideration only

the geometric objects stored in certain nodes of the tree. Moreover, since the geometric objects

are clipped to the nodes, it is possible to consider only portions of the original geometric objects

in order to derive conclusions regarding the 9 intersection matrix between the two objects.

In Figures 3.6, 3.7 and 3.8 the nodes relevant to the construction of a 9-Intersection Matrix

(9-IM) between two objects are depicted. The nodes intersected by the border of the reference

object (Figure 3.6) have references to all geometric objects whose border intersects the reference

object. Nodes contained in the reference object (Figure 3.7) have references to the objects that

are contained in the reference object. Finally, all objects with Hausdorff dimension 2 that

contain the reference object are referenced in at least one of the nodes intersected by a straight

line coming from any point of the reference object and going in any direction (Figure 3.8). This

use of the Quadtree makes it possible to avoid scanning the entire dataset of geometric objects.

Figure 3.6: Nodes intersected by
the border of the query object (high-

lighted in blue)

Figure 3.7: Nodes strictly contained
by the query geomerty (highlighted in

blue)

Figure 3.8: Nodes intersected by polygons that contain the query object (highlighted in blue).
These nodes can be found by iterating over all nodes that are intersected by an half line that

starts at one of the points of the query geometry and going in any direction.

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 18

3.3.2 Geometric Filter

The geometric filter step consists of using geometric approximations of the geometric objects

to reach conclusions about their intersection. It is intended as a shortcut to avoid using more

complex algorithms to evaluate the intersection between the two original objects.

Within the scope of the present project, geometric approximations are simplifications of some

original geometric object which can either be a linestring or a polygon. These approximations

can be classified according to certain topological relationships with the original object in two

relevant categories [10], discussed below.

Conservative Approximations

Conservative approximations are simplifications that cover the original object, i.e. no point of

the interior or border of the original object is also a point of the exterior of the approximation

[10]. Given this, if two approximations do not intersect, the matching original objects do not

intersect. Moreover it is possible to derive other conclusions from the intersection of two ap-

proximations taking into consideration their ”false area”. The ”false area” of an approximation

is the area of the intersection between the approximation and the exterior of the original object,

i.e. the area of the approximation that does not intersect the original object as illustrated in

Figure 3.9.

Figure 3.9: conservative approximation of a red triangle with ”false area” dashed in blue

Consider two objects A and B with respective approximations A′ and B′. Moreover, consider a

function a(x) that calculates the area of object x and a function f(x, y) that calculates the ”false

area” of approximation x regarding the original object y. If a(A′∩B′) ≥ min(f(A′, A), f(B′, B))

then objects A and B must intersect. It is also possible to derive the possible intersection

matrices depending on whether the left side is strictly greater than the right side of the inequality.

If a(A′ ∩ B′) > min(f(A′, A), f(B′, B)) and no approximation covers the other, the following

matrix is obtained:

2 1 2

1 ≤ 1 1

2 1 2

If a(A′ ∩ B′) > min(f(A′, A), f(B′, B)) and one of the approximations covers the other, the

following matrix is obtained:

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 19

2 1 ∗
1 ≤ 1 ∗
∗ ∗ 2

The quality of a conservative approximation is inversely proportional to its area. This is due to

the fact that as the area of the approximations is minimized, the probability of two approxima-

tions being disjoint increases.

Progressive Approximations

Progressive approximations are simplifications which are covered by the original object, i.e.

no point of the interior or border of the approximation is also a point of the exterior of the

original object [10]. Thus, this type of approximation applies only to polygons. Since such an

approximation is covered by the original polygon, if two progressive approximations intersect

each other then the original objects must also intersect. It is then possible to derive the following

part of the intersection matrix:

2 ∗ ∗
∗ ∗ ∗
∗ ∗ 2

Moreover, it is possible to conclude that polygon A contains polygon B if a progressive approx-

imation of A contains a conservative approximation of B.

The quality of a progressive approximation is directly proportional to its area. This is due

to the fact that, by increasing the area of progressive approximations, the probability of them

intersecting is increased.

Approximations and Query Performance

The impact of approximations in the performance of query processing is not only proportional

to the quality of the approximation, but also inversely proportional to the amount of operations

needed to calculate the intersection between two approximations. This relation is empirically

shown in [10], where different conservative approximations are taken and compared in order to

verify their impact on query performance. In particular, among the conservative approximations

compared in this publication, the convex hull and the minimal convex polygon with 5 corners (5-

gon) were considered. While the convex hull is the optimal convex conservative approximation

in terms of area minimization, it was outperformed by the minimal 5-corner convex polygon

[10]. This can be considered a solid grounding of the previous observation, since the convex

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 20

hull has a variable, and in average higher, number of vertexes, which lead to a higher number

of operations when calculating intersections.

In the implementation of the system, only convex conservative approximations are considered,

since conservative approximations provide better results than conservative approximations and

calculating the intersection between non-convex polygons (O(N logN)) is less efficient than

between convex polygons (O(N)).

In order to decide which approximation type performs best in the system, the minimum bound-

ing box, minimum bounding convex N-gon (with N ranging from 4 to 8) and the convex hull

were compared against each other. The benchmark consisted in 2500 different queries of the

type ”find all polygons that intersect the reference polygon”. The calculations of false area

consider all the 2500 different reference polygons used in the queries. Finally, the number poly-

gons in the indexing structure is slightly above 350k. The data used is from Open Street Maps

regarding the geographic region of Portugal [16]. Table 3.1 shows the average percentage of false

area of each type of approximation is shown. The results indicate that the minimum bounding

rectangle has a great disadvantage in comparison to the remaining approximations. Given that

the convex hull is the most compact convex approximation available, it is, as expected, the one

with lower false area percentage.

Approximation Type Average False Area (%) standard deviation (%)

Minimum Bounding Rectangle 49.48 19.48
Minimum Bounding 4-gon 18.58 20.78
Minimum Bounding 5-gon 15.55 20.15
Minimum Bounding 6-gon 14.63 19.96
Minimum Bounding 7-gon 14.28 19.90
Minimum Bounding 8-gon 14.11 19.89

Convex Hull 13.94 19.88

Table 3.1: Average percentage of false area per approximation type.

In Table 3.2 the average time taken to answer the benchmark queries is shown. The results

show a speed-up of 4 by using approximations. It is also worth noting that the results do not

confirm the impact of the number of operations for calculating the intersection, given that the

best results are obtained using the convex hull.

Approximation Type Average Query Time (ms) standard devitation (ms)

No Approximation 31.31 39.94
Minimum Bounding Rectangle 7.39 38.80

Minimum Bounding 4-gon 6.34 19.06
Minimum Bounding 5-gon 5.82 18.52
Minimum Bounding 6-gon 5.41 17.89
Minimum Bounding 7-gon 5.30 17.92
Minimum Bounding 8-gon 5.30 17.99

Convex Hull 5.21 18.29

Table 3.2: Average time for polygon intersection queries per approximation type.

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 21

Table 3.3 shows the time taken by the system to retrieve the polygons from the database and to

calculate the corresponding approximation. The calculation of the minimum bounding rectangle

has the least computational overhead, followed by the convex hull. From there, the time rises

from the 8-gon to the 4-gon. This is due to the fact that in order to calculate a minimum

bounding N-gon, the convex hull is firstly calculated and endpoints are iteratively removed

until the expected number of vertexes is reached.

Approximation Type Retrieval and Calculation time (seconds)

Minimum Bounding Rectangle 11.15
Minimum Bounding 4-gon 44.43
Minimum Bounding 5-gon 40.34
Minimum Bounding 6-gon 35.21
Minimum Bounding 7-gon 31.91
Minimum Bounding 8-gon 29.68

Convex Hull 15.02

Table 3.3: Time taken to retrieve 353484 polygons from the database and calculate their
approximation.

Finally, Table 3.4 shows the time taken by the system to index the polygons in the Quadtree.

In this case, the minimum bounding rectangle shows the best results. This can be explained

as follows: considering that the domains of the nodes are rectangles, it is intuitive that the

extent of the approximations (i.e. the minimum bounding box of the approximation) has a

great importance. This is due to the fact that since the world is divided in cells, any difference

in false area that is less than the area of the smallest cell is irrelevant in terms of performance.

Moreover, the regularity of this cells and the regularity of the minimum bounding box offer

greater advantage. This factors allied to the greater simplicity of the minimum bounding box

explain the results obtained.

Approximation Type Indexing time (seconds)

Minimum Bounding Rectangle 6.89
Minimum Bounding 4-gon 15.71
Minimum Bounding 5-gon 16.64
Minimum Bounding 6-gon 17.30
Minimum Bounding 7-gon 17.67
Minimum Bounding 8-gon 18.01

Convex Hull 19.14

Table 3.4: Time taken to index 353484 polygons in the Quadtree.

It now possible to conclude that the convex hull is the approximation type that provides best

query performance in our practical scenario. However, the indexing time and the calculation

time pose an overhead, but since there is no requirement regarding the efficiency of insertions,

this is not a problem.

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 22

3.3.3 Exact Geometry Processing

If a geometric object reaches the final stage of the pipeline, the system needs to calculate the

intersection matrix using the exact shapes of that geometric object and of the reference object.

Therefore, this section introduces the algorithms used for calculating intersections between

different types of geometric objects.

The algorithms used to calculate the intersection between two geometric objects must also

take into account that the geometric objects are defined within a constrained domain, which is

the square that defines the corresponding quadtree node. This means that if the intersection

between two polygons is being calculated, the algorithm should only report the intersections

that occur within the rectangular domain of the corresponding quadtree node.

point vs. point intersection The intersection between two points can be easily calculated

by verifying whether the two points are equal or not.

point vs. linestring intersection The intersection between a point and a linestring can be

calculated by verifying whether or not the point lies in one of the line segments that compose

the linestring. Moreover, it is also necessary to verify whether the point is equal to one of the

endpoints of these line segments, since the endpoint constitute the border of the linestring.

point vs. polygon intersection The intersection between a point and a polygon can be

calculated using a point location algorithm, that verifies whether the point lies in the interior,

border or exterior of the polygon. The algorithm implemented by the system is as follows:

Given a polygon P , a point p and a domain D:

1. Find the edge of P ∈ D that is closest to p

2. If two edges are equally distant and share a common endpoint c, choose the one that forms

the least internal angle with the edge p–c at point c.

3. Taking into account whether the chosen edge belongs to an internal or external ring, verify

if p lies to the internal side of the edge.

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 23

linestring vs. linestring intersection

Finding the intersections between two sets of line segments is a well-known problem. In the

particular case of linestrings there are certain properties that must be taken into account before

designing and implementing such an algorithm. First, the data is mainly composed by sequences

of connected line segments (may not be totally connected due to being clipped to the domain

of the quadtree node). Secondly, the problem consists of finding intersections between two sets

of line segments, i.e. intersections between segments of the same set are not relevant.

Let S1 and S2 denote two sets of line segments of size N1 and N2 respectively. Considering a

brute-force approach to the problem, verifying intersections between each segment of S1 and all

segments in S2 would take O(N1 ×N2) time complexity. The number of intersections between

S1 and S2 is at most O(N1×N2), in a scenario where each line segment in S1 intersects all line

segments in S2. Thus, in order to solve the problem more efficiently, the time complexity of the

algorithms must be output-sensitive, that is, the complexity should depend on the size of the

output in addition to the size of the input.

Considering the well-known algorithm proposed by Bentley and Ottmann in [9], applying this

algorithm to geographic data would result in a time complexity of O((N1+N2+K) log(N1+N2)),

since the size of the input is the sum of the size of the two sequences. Moreover, term K

corresponds to the number of intersections within the set S1∪S2. This term can therefore be as

high as (N1+N2)
2, while the number of reported intersections in such worst case scenario would

be N1 ×N2. Finally, since the data is composed mostly by sets of connected line segments, the

number of intersections within the same set is expected to be at least equal to the size of the

set minus one, if connections are considered as intersections.

Another algorithm for the calculation of intersections between line segments is the asymptot-

ically optimal algorithm proposed by Balaban in [7]. This algorithm has a time complexity

O((N1 + N2) log(N1 + N2) + K). Considering the same reasoning as before, K may reach as

high as (N1 +N2)
2, making it less ideal in this particular scenario.

Since the two algorithms considered were not designed for problems with two different sets

of line segments, also known as a red-blue intersection problem [8], the number of reported

line segments poses an overhead to solve the problem. However, algorithms focused on this

particular problem have been proposed, namely in [8]. The Heap Sweep algorithm is proposed

to report the so called ”purple” intersections, i.e. intersections between the two sets of line

segments (red and blue). The time complexity of the Heap Sweep Algorithm is O((N1 +N2 +

K)α(N1 +N2) log3(N1 +N2)), where α denotes the slowly growing inverse Ackermann function.

This algorithm however, despite having a non-optimal asymptotic behavior, relies on complex

data structures of difficult implementation.

Finally, another algorithm for solving this problem would be an improved version of the brute-

force approach. Such an algorithm consists in a simple line sweep, where the events are endpoints

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 24

of the line segments and are ordered ascendantly in the x-axis. The algorithm then iterates over

the event queue, and if the event corresponds to a leftmost endpoint, the corresponding line

segment is added to the set of active line segments, whereas if the event corresponds to a

rightmost endpoint, the corresponding line segment is removed from the set of active segments

and the algorithm verifies whether that line segment intersects any of the active line segments.

This leads to a O(N1 ×N2) time complexity.

In order to choose the best approach for solving this problem within the system, the algo-

rithms proposed by Bentley-Ottmann, Balaban and the improved brute-force algorithm were

implemented and benchmarked. The results obtained are shown in Figure 3.10. The compar-

ison shows that the improved brute-force algorithm has better performance, despite the worse

asymptotic behavior. This can be due to the fact that the input sizes are relatively small and

dependent on the constraints imposed on the number of vertex in each node of the quadtree.

Given this small input size, the larger constants associated with the more complex data struc-

tures used by the Bentley-Ottmann and Balaban algorithms have an high impact on their

performance. Moreover, the worst case scenario of this simple line sweep is N1 × N2, whereas

the worst case scenario of the other two algorithms can reach as high as (N1 +N2)
2 given that

they also consider intersections between line segments of the same set.

Figure 3.10: Average time taken by different algorithms to calculate line intersections on
inputs within certain intervals

Using the same reasoning, i.e. small inputs sizes are solved faster by simpler algorithms, we

found that using a regular brute-force algorithm for the smallest inputs results in better time

performance. Therefore, the system uses a brute-force implementation for small inputs and the

improved version for larger ones. The threshold that separates small inputs from large ones

was determined through empirical experimentation. It was verified that the best results were

obtained when the brute force algorithm was used for the cases where N1 < 20 or N2 < 20 and

the improved version of the algorithm for all other cases.

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 25

polygon vs. polygon intersection

The calculation of the intersection between two polygons is accomplished with a 4-step algo-

rithm:

1. clip each polygon to the rectangle that defines the domain.

2. build a planar graph (PSLG) with the resulting polygons.

3. model the planar graph as a Doubly Connected Edge List (DCEL).

4. calculate the 9-intersection matrix based on the DCEL.

The clipping of a polygon is accomplished by building a planar graph of the polygon and the

rectangle that defines the domain. The planar graph is represented as a DCEL and the faces

that are covered both by the domain and the polygon are considered as the clipped polygon.

The result of this operation can be a collection of isolated points, lines and faces.

A DCEL is a data structure that contains a record for each face, edge and vertex of the planar

subdivision defined by the planar graph. Since the data structure has information about the

edges that bound each face, it is possible to detect which areas are bounded by which polygons,

as illustrated in Figure 3.11, making it possible to calculate the 9-intersection matrix.

The clipped polygons are then passed as arguments to an algorithm that once again creates a

planar graph representing the two polygons. This graph, again represented as a DCEL, contains

information about the different faces, edges and vertexes and how they are shared between the

two polygons. It important to note that it is necessary to take into account whether the edges of

a clipped polygon are also edges of the original polygon. The reason is that a border intersection

where one of the edges of the clipped polygons is actually part of the interior of the original

polygon, is not a border intersection. Similarly, the process also needs to take into account

whether a vertex of the clipped polygon is also a vertex of the original one. This process is

illustrated in Figure 3.11.

Finally, after having information about the faces, edges and vertex of the planar graph, it is

possible to calculate the 9-intersection matrix using the set of rules described below. These

rules apply to the calculation of a 9-Intersection Matrix between a polygon P1 and a polygon

P2. Furthermore, the matrix cells are represented by two initials representing the three different

parts of each polygon interior, border and exterior.

II – If there is at least one face bounded by P1 and P2, then II = 2, FALSE otherwise.

IB – If there is at least one edge of P2 separating two faces bounded by P1 then IB = 1,

FALSE otherwise.

3.3. CORE FUNCTIONALITY – SOLVING TOPOLOGICAL QUERIES 26

(A) Two polygons (red, blue) and the
domain (black).

(B) The red polygon clipped.

(C) The red polygon clipped.
(D) planar graph of the two clipped

polygons.

(E) Intersecting areas between the two
polygons and the domain.

Figure 3.11: Illustration of the algorithm to compute intersections between polygons.

IE – If there is at least one face bounded by P1 and not by P2, then IE = 2, FALSE otherwise.

BI – If there is at least one edge of P1 separating two faces bounded by P2, then BI = 1,

FALSE otherwise.

BB – If there at least one edge of the graph common to both P1 and P2 then BB = 1, else if

there is at least one common node then BB = 0, FALSE otherwise.

BE – If there is at least one face bounded by P1 and not by P2 then BE = 1, FALSE

otherwise.

EI – If there is at least one face enclosed by P2 and not by P1 then EI = 2, FALSE otherwise.

EB – If there is at least one face enclosed by P2 and not by P1 then EB = 1, FALSE otherwise.

EE – Since no polygon can cover the entire domain, EE = 2.

3.4. DBMS CONNECTION 27

linestring vs. polygon intersection

Finally, for the case of linestrings and polygons, it is possible to apply a procedure similar to

the one used in the polygons scenario. By building a DCEL representation of a Planar Graph

of the linestring and the polygon clipped to the quadtree node domain, it is possible to derive

conclusions using the set of rules described below, where P is the polygon and L is the linestring.

II – If there L separates two faces bounded by P or at least one endpoint of L lies inside P

then II = 1, FALSE otherwise.

IB – If there is a common edge between L and P then IB = 1, else if there is at least one node

of L that is not an endpoint of L then IB = 0, FALSE otherwise.

IE – If there is at least one endpoint of L that lies in the exterior of P then IE = 1, FALSE

otherwise.

BI – If there is at least one endpoint of L that lies in the interior of P then BI = 0, FALSE

otherwise.

BB – If there is a node common to L and P and that node is also an endpoint of L then

BB = 0, FALSE otherwise.

BE – If there is at least one endpoint of L that lies in the exterior of P then BE = 0, FALSE

otherwise.

EI – Since a linestring is not capable of covering a polygon, EI = 2.

EB – If there at least one edge of P that is not common to L then EB = 1, FALSE otherwise.

EE – Since no linestring or polygon can cover the entire domain, EE = 2.

3.4 DBMS Connection

The Postgres project provides a library to manage connections with a Postgres databases. Using

this library it is possible to perform queries, resulting in the ability of fetching and editing data.

Since there is a need for independence in the way the system fetches data from the DBMS, the

system is equipped with parser of Well Known Text (WKT)[12]. This parser is implemented

using Lex and Yacc and recognizes the types Point, MultiPoint, LineString, MultiLineString,

Polygon, MultiPolygon, GeometryCollection. The grammar and associated lexer file can be

found in Appendix A.

Regarding the synchronization of data, providing propagation of changes performed in data

indexed by the system to the DBMS consists solely in performing an UPDATE query over the

DBMS connection. The propagation of data from the data requires a trigger to be associated

with each and every database connected to the system. This trigger should be executed upon

any change to relevant data (i.e. shared geometric data) and send a notification to the system

with information about which data was changed and how.

3.5. GEOSERVER INTEGRATION 28

3.5 GeoServer Integration

In order to integrate the system with GeoServer two possibilities arise:

1. Alter the code of GeoServer to provide integration with the system using a custom protocol

2. Implement a well-known protocol - Web Feature Service (WFS)[22]

While the first option can lead to a simpler and less extensive protocol, defining a protocol

leads to several difficulties. It is easy to create an oversimplified protocol unable to describe

slightly complex queries. Moreover, this would result in three time-consuming tasks: define the

protocol, implement the client side in GeoServer and finally implement the Server side on the

system. There is also the added complexity of understanding the implementation of a big open

source project in order to be able to modify it.

Since the second option relies on a well established protocol, it is not necessary to define it.

Moreover, GeoServer is already capable of connecting to an external WFS server off the shelf.

This means that it is only necessary to implement the server side in the system. The big

limitation of this approach is the large extension of the WFS standard. Nevertheless, this is the

solution adopted in this architecture.

The WFS standard defines different types of requests, each with different purposes. These

requests can both be encoded using xml and keyword-value pairs (KVP). In order to fulfill the

requirements in Section 2.3, the requests that need to be implemented are shown in Table 3.5

with the corresponding requirements associated.

Request Description Requirement

getCapabilities Describes the server, including the available function-
alities and data.

GS01

describeFeatureType Describes how a particular dataset is organized, in-
cluding expected encodings used for input and output.

GS01

getFeature Allows the client to fetch data from the server, provid-
ing support for topological queries.

GS02

transaction Allows the client to create, modify and delete data. GS03

Table 3.5: Description of the requests needed to fulfill the GeoServer Integration Requirements

It is worth noting that in order to implement the WFS standard, the system needs to be able to

parse and write Geography Markup Language (GML)[18]. GML is an xml grammar capable of

describing geographic information. In order to perform both the parsing and the construction,

the implementation should take advantage of the functionalities available in the Geospatial Data

Abstraction Library (GDAL).

Finally, topological queries are described using the Filter Encoding Specification [21]. This

means that the implementation must also be able of parsing xml encoding filter requests.

Chapter 4

Experimental Results

This section describes an experimental analysis to the system in order to address two question:

1. What is the quality of the answers provided by system for the topological queries.

2. How does the system compare to postGIS in terms of time performance.

4.1 System Quality

In order to provide a measurement of the quality of the answers provided by the system, the

chosen method is to compare them with those provided by postGIS. It is assumed that all

answers provided by postGIS to topological queries are correct. In the following, we report the

number of times that our approach presented a different result than that of postGIS. In order to

have a memorable way of referring to these errors, non-existing relationships that are detected

are considered “false positives”, existing relationships that are not detected are considered “false

negatives” and correctly identified relationships are considered as success. Tables 4.1 through

4.9 show the results for 600 sample queries. The error counting is done as follows: for a given

query “find all objects y that verify relation r with object x”, if our approach finds an object

y that postGIS does not find, a false positive is counted. Similarly, if an object y is found

by postGIS and not by our system, a false negative is counted. Finally, all objects y that are

found by both systems are counted as “true positives” and “false negatives” are objects that

are unrelated to the reference object and were not reported by our system. The tables present

both the absolute count for each situation and the percentage it represents.

relationship True Positivies False Positives False Negatives True Negatives

intersects 4 0 0 91604396
4× 10−6% 0% 0% 100%

Table 4.1: queries between points

29

4.1. SYSTEM QUALITY 30

relationship True Positivies False Positives False Negatives True Negatives

coveredBy 5 0 0 348844195
1× 10−6% 0% 0% 100%

Table 4.2: queries that given a point find all linestrings that are related

relationship True Positivies False Positives False Negatives True Negatives

coveredBy 804 1 0 212102195
4× 10−4% 5× 10−7% 0% 99.9996%

Table 4.3: queries that given a point find all polygons that are related

relationship True Positivies False Positives False Negatives True Negatives

contains 126 0 0 91604874
1× 10−4% 0% 0% 99.9999%

covers 132 0 0 91604868
1× 10−4% 0% 0% 99.9999%

Table 4.4: queries that given a linestring find all points that are related

relationship True Positivies False Positives False Negatives True Negatives

contains 18452 0 0 348825747
0.005% 0% 0% 99.9947%

coveredBy 3936 0 0 3936
0.001% 0% 0% 99.9989%

covers 18452 0 0 18452
0.005% 0% 0% 99.9947%

intersects 76111 31 0 76142
0.002% 8× 10−6% 0% 99.9782%

overlaps 4237 0 0 4237
0.001% 0% 0% 99.9988%

touches 30045 31 0 30076
0.008% 8× 10−6% 0% 99.9914%

Table 4.5: queries between linestrings

relationship True Positivies False Positives False Negatives True Negatives

coveredBy 1372 0 0 212101628
6× 10−4% 0% 0% 99.9994%

intersects 8196 0 0 212094804
0.004% 0% 0% 99.9961%

touches 2302 0 0 212100698
0.001% 0% 0% 99.9989%

Table 4.6: queries that given a linestring find all polygons that are related

relationship True Positivies False Positives False Negatives True Negatives

contains 31214 0 2 31216
0.034% 0% 2× 10−6% 99.9659%

covers 31217 5 0 31222
0.034% 5× 10−6% 0% 99.9659%

Table 4.7: queries that given a polygons find all points that are related

4.1. SYSTEM QUALITY 31

relationship True Positivies False Positives False Negatives True Negatives

contains 112913 0 2 112915
0.032% 0% 6× 10−7% 99.9676%

covers 114430 7 0 114437
0.033% 2× 10−6% 0% 99.9672%

touches 3497 4 0 3501
0.001% 1× 10−6% 0% 99.999%

Table 4.8: queries that given a polygon find all linestrings that are related

relationship True Positivies False Positives False Negatives True Negatives

contains 84881 0 3 84884
0.04% 0% 1× 10−6% 99.96%

coveredBy 1202 0 0 1202
6× 10−4% 0% 0% 99.9994%

covers 84881 0 0 84881
0.04% 0% 0% 99.96%

intersects 90300 29 0 90329
0.043% 1× 10−5% 0% 99.9574%

overlaps 1506 0 0 1506
7× 10−4% 0% 0% 99.9993%

touches 2912 29 0 2941
0.001% 1× 10−5% 0% 99.9986%

Table 4.9: queries between polygons

These results show that our system does not report the same results of postGIS, which is due

to lower numerical precision of our system compared to that of postGIS. This smaller precision

comes from the numerical instability associated with the use of floating point arithmetic.

In order to overcome this numerical instability, the implementation of the system uses an error

margin ε = 1×10−6 for comparison between coordinates, uses integer arithmetic by multiplying

the floating numbers by 107 when operations such as summations and subtractions are per-

formed, and finally, whenever coordinates are multiplied or divided, e.g. during the calculation

of intersections between two lines, the implementation uses the GNU multiple precision library.

This approach to deal with numerical instability justify the lesser precision and the subsequent

differences in results, since the described approach guarantees only up to 6 decimal digits of

precision. For example, when the distance between a point and a polygon is less than ε, the

point is considered to be on the border of the polygon. Similarly, if the distance between two

polygons is less than ε, they will be considering as touching each other. Knowing that the

implementation uses the “world mercator” map projection (srid 3395) and that a distance of

1 × 10−6 between two points subject to this projection amounts to less than 1 × 10−9 meters,

the lesser precision should be acceptable.

4.2. PERFORMANCE COMPARISON WITH POSTGIS 32

4.2 Performance Comparison with postGIS

In order to compare the performance of the system against that of postgres with the postGIS

extension, data from Open Street Maps regarding the geographic region of Portugal is used [16].

Similarly to the approach used before for the validation of the system, we consider 600 sample

queries for each relevant combination of topological predicate, type of reference object (point,

linestring or polygon) and the type of the objects that are reported.

These results were computed in a laptop equipped with an Intel Core i5 M 450 (2.4GHz, dual-

core), 8GB DDR3 SDRAM and a solid state drive “Samsung 850 EVO”, connected using SATA

II technology. The operating system is a minimal Arch Linux installation without graphical

environment. The source code is written in C++ and compiled using GNU Compiler Collection.

Tables 4.10 through 4.18 present the average running times of both systems.

postGIS our system

relationship average time standard deviation average time standard deviation

intersects 1.11 0.28 0.83 0.64

Table 4.10: average query time for queries that given a point find all points that are related
to it.

postGIS our system

relationship average time standard deviation average time standard deviation

coveredBy 15.48 8.64 0.91 0.64

Table 4.11: average query time for queries that given a point find all linestrings that are
related to it.

postGIS our system

relationship average time standard deviation average time standard deviation

coveredBy 2.01 0.96 1.69 1.30

Table 4.12: average query time for queries that given a point find all polygons that are related
to it.

postGIS our system

relationship average time standard deviation average time standard deviation

contains 2077.48 11456.26 3.35 7.68
covers 2082.11 11506.55 3.26 5.95

Table 4.13: average query time for queries that given a linestring find all points that are
related to it.

Tables 4.10 through 4.18 show that for most topological queries, the system developed outper-

forms postGIS significantly. Namely, out of 26 types of queries, postGIS only showed better

average performance in two and only showed lower standard deviation in two. This is justifiable

with the fact that the developed system does not provide many of the features that postGIS

does. Namely, there is no concern with persistent storage, the amount of precision is reduced

to ε to avoid the heavy use of variable precision and there are no ACID transactions, to name

4.2. PERFORMANCE COMPARISON WITH POSTGIS 33

postGIS our system

relationship average time standard deviation average time standard deviation

contains 7364.78 44229.91 416.40 554.92
covers 7227.70 43372.30 404.68 545.76

intersects 322.93 1679.19 387.07 517.38
coveredBy 336.38 1528.06 403.92 535.08

touches 7938.34 46420.29 398.23 525.11
overlaps 7934.83 46404.14 401.21 533.74

Table 4.14: average query time for queries that given a linestring find all linestrings that are
related to it.

postGIS our system

relationship average time standard deviation average time standard deviation

intersects 231.75 1326.19 142.56 247.59
coveredBy 189.99 1100.65 142.67 246.38

touches 5173.92 33905.16 148.09 258.77

Table 4.15: average query time for queries that given a linestring find all polygons that are
related to it.

postGIS our system

relationship average time standard deviation average time standard deviation

contains 32.21 565.96 2.42 13.11
covers 32.13 564.58 2.50 13.26

Table 4.16: average query time for queries that given a polygon find all points that are related
to it.

postGIS our system

relationship average time standard deviation average time standard deviation

contains 150.78 2502.86 80.49 134.81
covers 150.36 2498.52 77.26 130.64

touches 1998.74 36855.72 71.37 120.69

Table 4.17: average query time for queries that given a polygon find all linestrings that are
related to it.

postGIS our system

relationship average time standard deviation average time standard deviation

contains 159.67 2214.09 57.88 79.48
covers 158.95 2202.81 56.16 77.24

intersects 122.11 2133.86 55.31 73.26
coveredBy 138.81 2046.51 58.14 77.60

touches 1588.75 31069.58 52.23 71.91
overlaps 1589.17 31066.36 52.23 72.59

Table 4.18: average query time for queries that given a polygon find all polygons that are
related to it.

4.2. PERFORMANCE COMPARISON WITH POSTGIS 34

a few. Moreover, the fact that the developed system uses an indexing structure with typical

better querying performance, provides an added advantage.

An additional observation is the higher efficiency of point searching in our system, i.e. given

a point finding the nodes of the index where it is contained. This conclusion can be drawn

from Table 4.10, since the query “find all points that intersect point x” amounts to locating the

nodes of the index and iterating over the objects stored in those nodes. It can be further seen

that this process is approximately 1.34 times faster in the developed system. Given that this

represents a recurrent operation in the indexing structure, having such better performance sets

a good starting point to display better performance in other operations.

The running time is now related to some quantitative information related to the properties of

the reference object, such as the area of its bounding box, its number of edges and the number

of objects that are related to it considering the given predicate, i.e. the output size of the query.

Figure 4.1: Average query time for the query “Find all linestrings contained by a reference
polygon” with the number of edges of the reference polygon increasing along the x-axis.

It can be observed in Figures 4.1, 4.2 and 4.3 that postGIS shows an higher sensitivity to all

three variations, since the respective curve usually begins lower and ends higher. Firstly, when

the number of edges in the query polygon increases, the query time increases faster in postGIS

than in the implemented system. This can possibly be caused by the fact that the Quadtree

data structure clips the geometric objects to the nodes, therefore performing the intersection

calculations between portions of the objects, thinning the impact of the edge number increase.

Secondly, the impact of the output size in the implemented system is weaker than in postGIS.

Finally, the impact of the area increase is more evident in postGIS. This can be explained by

referring back to Table 4.10, which shows that the developed system has significantly higher

performance on searching for the nodes that intersect a given point. Given that increasing

4.2. PERFORMANCE COMPARISON WITH POSTGIS 35

Figure 4.2: Average query time for the query “Find all linestrings contained by a reference
polygon” with the number of contained linestrings increasing along the x-axis.

Figure 4.3: Average query time for the query “Find all linestrings contained by a reference
polygon” with the area of the polygon’s bounding box increasing along the x-axis

4.2. PERFORMANCE COMPARISON WITH POSTGIS 36

the area of the query polygon amounts to increasing the number of search points, the different

behavior is understandable.

Finally, it is also observable that postGIS performs generally better than the developed system

when the reference objects are smaller. This can be an indication of large constants in the

implemented system, in comparison to postGIS.

Chapter 5

Conclusions and Future Work

This work describes a system capable of fetching geographic data from a spatial database using

a standardized language (WKT). Moreover, this system is capable of indexing this data and

answer topological queries on it. Moreover, as a by product, a geometry library with good

intersection support was developed. Finally, when compared to postGIS, another tool equipped

with the same functionality, the performance of the system was slightly superior. This set of

contributions is summarized in the list below.

• ”well known text” (WKT) parser

• implementation of two dimensional data indexing using a Polygonal Map Quadtree

• implementation of a geometry library with extensive intersection support

• implementation of a topological query engine

• assessment of the practical performance of algorithms for intersection detection between

two sets of line segments, namely a brute-force approach, an improvement over the brute-

force approach using a line sweep, the algorithm proposed by Balaban [7] and the Bentley-

Ottmann algorithm.

• assessment of the practical performance implications of using different approximations to

polygons, namely the minimum bounding box, the convex hull and the minimum bounding

convex N-gon with N ranging from 4 to 8.

It is also possible to draw some relevant conclusions from this project. Namely, as stated

above, the performance gain in comparison to postGIS, which can be due to a variety of factors,

including using a different indexing structure and disregarding certain functionalities such as

persistent storage or ACID transactions. Moreover, some of the practical results obtained

were somewhat surprising, for example, the convex hull being the approximation with the

best performance and the improved brute-force algorithm for linestring intersection having best

performance. These conclusions are summarized in the list below.

37

38

• The developed system achieved a very good performance when compared to postGIS.

• The improved version of the brute force algorithm for calculating the intersection between

linestrings shows very good performance.

• The performance of topological querying is greatly impacted by the quality of the geo-

metric approximations to the geometric objects involved.

In summary, we consider this project to be successful, given that the requirements we committed

to fulfill were achieved. However, we do not consider this project to be production ready due

to the lack of white box testing, despite the black box testing against postGIS.

The next steps could be in the direction of implementing the remainder of the requirements.

Namely, implementing the Web Feature Service standard and implementing propagation of

changes in the data between the database and the system. Moreover, extensive white box

testing should be developed.

Considering a more scientific direction, the continuation of the project could contemplate the

assessment of the practical performance change of using approximations composed by multiple

shapes. For example, instead of using the convex hull, using a polygonal covering of the geo-

metric object composed by a variable number of rectangles, circles or any other simple shape.

Bibliography

[1] About OGC. http://www.opengeospatial.org/ogc. Accessed: 27-1-2016.

[2] MySQL 5.7 Reference Manual, creating spatial indexes. http://dev.mysql.com/doc/

refman/5.7/en/creating-spatial-indexes.html. Accessed: 10-1-2016.

[3] Oracle spatial documentation, spatial concepts - indexing of spatial data. https:

//docs.oracle.com/cd/B10501_01/appdev.920/a96630/sdo_intro.htm#i877656. Ac-

cessed: 10-1-2016.

[4] PostGIS 1.5 Manual, data management and queries - building indexes. http://postgis.

net/docs/manual-1.5/ch04.html#id361810. Accessed: 10-1-2016.

[5] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz. Hadoop-GIS: a high

performance spatial data warehousing system over map reduce. Proceedings of the VLDB

Endowment, 6(11):1009–1020, 2013.

[6] Anonymous. OpenGIS simple features specification for SQL. Technical report, Open

Geospatial Consortium, 1999.

[7] I. J. Balaban. An optimal algorithm for finding segments intersections. In Proceedings of

the eleventh annual symposium on Computational geometry, pages 211–219. ACM, 1995.

[8] J. Basch, L. J. Guibas, and G. D. Ramkumar. Reporting red-blue intersections between two

sets of connected line segments. In Proceedings of the Fourth Annual European Symposium

on Algorithms, pages 302–319. Springer, 1996.

[9] J. L. Bentley, T. Ottmann, et al. Algorithms for reporting and counting geometric inter-

sections. IEEE Transactions on Computers, 100(9):643–647, 1979.

[10] T. Brinkhoff, H.-P. Kriegel, and R. Schneider. Comparison of approximations of complex

objects used for approximation-based query processing in spatial database systems. In

Proceedings of Ninth International Conference on Data Engineering, pages 40–49. IEEE,

1993.

[11] A. Guttman. R-trees: A dynamic index structure for spatial searching. In International

Conference on Management of Data, volume 14, pages 47–57. ACM, 1984.

39

http://www.opengeospatial.org/ogc
http://dev.mysql.com/doc/refman/5.7/en/creating-spatial-indexes.html
http://dev.mysql.com/doc/refman/5.7/en/creating-spatial-indexes.html
https://docs.oracle.com/cd/B10501_01/appdev.920/a96630/sdo_intro.htm#i877656
https://docs.oracle.com/cd/B10501_01/appdev.920/a96630/sdo_intro.htm#i877656
http://postgis.net/docs/manual-1.5/ch04.html#id361810
http://postgis.net/docs/manual-1.5/ch04.html#id361810

BIBLIOGRAPHY 40

[12] J. Herring. OpenGIS implementation standard for geographic information-simple feature

access-part 1: Common architecture. 2011.

[13] E. G. Hoel and H. Samet. A qualitative comparison study of data structures for large line

segment databases. In ACM SIGMOD Record, volume 21, pages 205–214. ACM, 1992.

[14] T. ISO. Geographic information–spatial schema. Technical report, Second Draft of ISO

19107 (15046-7), International Organization for Standardization, 1999.

[15] H.-P. Kriegel, T. Brinkhoff, and R. Schneider. Efficient spatial query processing in geo-

graphic database systems. IEEE Data Engineering Bulletin, 16(3):10–15, 1993.

[16] O. S. Maps. Open street maps data for the region of portugal. http://download.

geofabrik.de/europe/portugal.html.

[17] B. Marques. Gims - topological query solver. https://bitbucket.org/futuo/gims.

[18] C. Portele. OpenGIS geography markup language (gml) encoding standard. Technical

report, Open Geospatial Consortium, 2007.

[19] H. Samet and R. E. Webber. Storing a collection of polygons using quadtrees. ACM

Transactions on Graphics (TOG), 4(3):182–222, 1985.

[20] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index for multi-

dimensional objects. In Proceedings of the 13th International Conference on Very Large

Data Bases, pages 507–518. VLDB endowments, 1987.

[21] P. Vretanos. OpenGIS filter encoding 2.0 encoding standard v2. 0.0. Technical report,

Open Geospatial Consortium, 2010.

[22] P. A. Vretanos. OpenGIS web feature service 2.0 interface standard. Technical report,

Open Geospatial Consortium, 2010.

http://download.geofabrik.de/europe/portugal.html
http://download.geofabrik.de/europe/portugal.html
https://bitbucket.org/futuo/gims

Appendices

41

Appendix A

WKT Grammar

1

2 "POINT" return POINT;

3 "LINESTRING" return LINESTRING;

4 "POLYGON" return POLYGON;

5 "MULTIPOINT" return MULTIPOINT;

6 "MULTILINESTRING" return MULTILINESTRING;

7 "MULTIPOLYGON" return MULTIPOLYGON;

8 "GEOMETRYCOLLECTION" return COLLECTION;

9 "," return COMMA;

10 "(" return LPAR;

11 ")" return RPAR;

12

13 [-+]?[0 -9]*\.?[0 -9]+ return NUMBERLIT;

14

15 <<EOF >> return 0;

16

17 [\t] /* skip whitespace */

18 \n /* skip whitespace */

19 . /* error */

Listing A.1: Input data for Lex for WKT parsing

1

2 start: POINT LPAR point_def RPAR {geom = $3;}
3 | LINESTRING LPAR linestring_def RPAR {geom = $3;}
4 | POLYGON LPAR polygon_def RPAR {geom = $3;}
5 | MULTIPOINT LPAR multipoint_def RPAR {geom = $3;}
6 | MULTILINESTRING LPAR multilinestring_def RPAR {geom = $3;}
7 | MULTIPOLYGON LPAR multipolygon_def RPAR {geom = $3;}
8 | COLLECTION LPAR collection_def RPAR {geom = $3;}
9 ;

10

11 point_def: _NUMBERLIT_ _NUMBERLIT_

12 ;

42

43

13

14 linestring_def: point_def _COMMA_ point_def

15 | linestring_def _COMMA_ point_def

16 ;

17

18 polygon_def : LPAR linestring_def _COMMA_ point_def RPAR

19 | LPAR linestring_def _COMMA_ point_def RPAR _COMMA_ interior_def

20 ;

21

22 interior_def: LPAR linestring_def _COMMA_ point_def RPAR

23 | interior_def _COMMA_ LPAR linestring_def _COMMA_ point_def RPAR

24 ;

25

26 multipoint_def: point_def

27 | LPAR point_def RPAR

28 | multipoint_def _COMMA_ point_def

29 | multipoint_def _COMMA_ LPAR point_def RPAR

30 ;

31

32 multilinestring_def: LPAR linestring_def RPAR

33 | multilinestring_def _COMMA_ LPAR linestring_def RPAR

34 ;

35

36 multipolygon_def: LPAR polygon_def RPAR

37 | multipolygon_def _COMMA_ LPAR polygon_def RPAR

38 ;

39

40 atomic: POINT LPAR point_def RPAR {$$ = $3;}
41 | LINESTRING LPAR linestring_def RPAR {$$ = $3;}
42 | POLYGON LPAR polygon_def RPAR {$$ = $3;}
43 | MULTIPOINT LPAR multipoint_def RPAR {$$ = $3;}
44 | MULTILINESTRING LPAR multilinestring_def RPAR {$$ = $3;}
45 | MULTIPOLYGON LPAR multipolygon_def RPAR {$$ = $3;}
46 ;

47

48 collection_def: atomic

49 | atomic _COMMA_ collection_def

50 ;

Listing A.2: Grammar used in Yacc for WKT parsing

