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Abstract 
 

 

One of the most promising approaches to face the increasing complexity of 

software systems is the use of self-adaptation, in order to enable software systems to 

deal with changes themselves, autonomously. It is presented as one of the means by 

which it is possible to provide systems that are scalable,  support dynamic modifications 

and rigorous analysis, capable to respond to resource variability or user needs 

modifications, still, being flexible and robust.  

 

  Normally, by design, the methods for self-adaptation are at the system’s source 

code or network level, but recently, architecture-based methods have been widely 

considered as more promising approaches. 

One of the main barriers for greater implementation of architecture-based self-

adaptation is the lack of evidence of the advantages and compensation of applying it in 

systems with built-in adaptation mechanisms. 

 

A recent proposal to cope with this challenge uses an architecture-based 

approach which evaluates alternative adaptation mechanisms of a self-adaptive system 

by comparison, based on the identification of representative system and environmental 

conditions which may have a relevant impact on system resilience. 

The present work has one major contribution: evaluate if the application of 

architecture-based self-adaptation can improve the resilience of an already adaptive 

system. The effectiveness of the above-mentioned approach is demonstrated by using 

Rainbow, an architecture-based platform for self-adaptation, and DCAS, an industrial 

software-intensive system used to monitor and manage highly populated networks of 

devices in renewable energy production plants. 

 

 

The experimental evaluation showed that the application of architecture-based 

self-adaptation improved the resilience of the tested system. The overall runtime quality 

of the self-adaptive system can be greatly improved with acceptable costs.  

Keywords 

Self-adaptive systems, Resilience evaluation, Adaptation mechanisms, Dependability, 

Architecture-based self-adaptation. 
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Chapter 1 

Introduction 

Software systems are commonly developed based on a static approach. In other 

words, the system’s architecture is created based on static requirements and design 

decisions [1]. The decision process is carried out in most cases at design time, trying to 

predict the possible environments in which the software will run, as well as the 

available resources and the workload to which the system will be subjected. However, 

more and more of these software systems are running in highly uncertain and rapidly 

changing environments, normally requiring human supervision to continue operation in 

all conditions. Moreover, many types of systems (e.g., service-oriented, cloud-based) 

are becoming increasingly complex, leading all the maintenance tasks to become high 

costly and time-consuming procedures. 

Most of the software systems (especially industrial) are designing to be 

extremely stable in order to be constantly reliable in a production environment, meaning 

that the system usually is not designed to be self-adaptive. This feature makes almost 

impossible for the users to apply changes in the system or tune its behavior in runtime. 

The first approaches to tackle these problems consisted on simple mechanisms 

tightly coupled to the system’s source code (e.g., exceptions, fault tolerant protocols). 

These mechanisms are often highly specific to the application and as result, they were 

not able to reduce associated costs in building or modifying them, providing little more 

than local treatment of system faults. 

To tackle this situation, a promising approach is run-time adaptability, that is, 

endowing systems with the ability to respond to changes at runtime in an autonomous 

manner, adapting successfully to subsequent changes in their runtime environment in 

order to maintain normal operation [2]. IBM’s Autonomic Computing [3] [4] initiative 

was one of the first successful proposals to address this concern, with the introduction 

of a self-adaptive layer responsible of managing the target system. This approach relies 

on a closed control loop known as the MAPE-K loop [3] (Monitoring, Analyzing, 

Planning, and Executing, through the use of a Knowledge base that informs the different 

activities). This loop can be used for the management of resources exposing sensor and 

effector interfaces. The control loop monitors the system’s state and its components, as 

well as the execution context, and identifies relevant changes that may prevent the 

system from achieving its goals and providing its intended service. As the next activity 

the system triggers the planning of potential alternative adaptations in order to respond 

to the new changes on environment and system conditions, executes them, and monitors 

that its goals are being achieved once again, if possible, without any interruption. All 

these stages make use of a common knowledge that guides them and that may be 

enriched by the experience earned during execution.  

 

More recent approaches [5][6] using external self-adaptation also adopt the 

traditional control loop theory, since it has been used and proved to be an effective 

solution [7]. Additional studies describe framework-based approaches that provide 

reusable mechanisms to monitor and apply changes in the system dynamically [8][9], 

but these existing approaches still presented some flaws to resolve such as: still very 

high costs in adding external control to a system and limited reusability across systems 
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[10]. In order to respond to this problematic and improve the reuse of adaptation 

infrastructure across different systems and environments, some approaches were 

presented [5][11][12][13]. Some of these frameworks [5][13] resort to the use of 

architectural models which allowed the evolution from a previous static decision-

making process to a dynamic process, where all the decisions can  be carried out at run-

time. This provides flexibility and reduces costs regarding operation and maintenance.  

 

In spite of major advances in self-adaptive systems, building them in a 

predictable manner (i.e. fulfilling all the requirements and objectives) is a major 

engineering challenge that remains to be tackled. How to ensure that the application of 

self-adaptation mechanisms in a system under different environmental conditions will 

produce the expected results without any adverse effects (e.g., that the system behavior 

will not deteriorate instead of improving)? Can the system recover from a failure in a 

critical component within an acceptable period of time [14]? Summarizing, there is an 

important need to assess the ability of a self-adaptive system to recover in a timely 

manner when subjected to changes that influence negatively the provision of service, 

therefore guaranteeing that the system is persistently dependable in time despite 

changes either in the system itself, its environment, or its goals (i.e., that it is resilient 

[15]) .  

 

In this work we evaluate the resilience of a particular kind of self-adaptive 

system, using an industrial software-intensive system as a case study. Concretely, this 

dissertation aims at answering the question: Does applying architecture-based self-

adaptation improve the resilience of an already adaptive system? 

 

To answer this question, we rely on an architecture-based approach which 

evaluates alternative adaptation mechanisms of a self-adaptive system by comparison, 

based on the identification of representative system and environmental conditions which 

may have a relevant impact on system resilience, which are used as the basis to establish 

a comparison. To apply architecture-based self-adaptation in the context of this work 

was necessary to create a prototype of our tested system, with its own new adaptations 

mechanisms and compare these mechanisms with the original built-in adaptation 

mechanisms of the tested system. By evaluating the results from the original adaptations 

against the new created adaptations (architecture-based) is how it is possible to conclude 

if the system’s resilience is improved or not. 

 

Concretely, this approach is applied in the context of the integration between 

DCAS (Data Acquisition and Control Service), an industrial middleware developed by 

Critical Software, and the Rainbow framework, which provides a reusable infrastructure 

for architecture-based self-adaptation.  

DCAS aims at providing a reusable infrastructure to manage monitoring and 

(non-automatic) control of highly populated networks of devices. The main objective of 

DCAS is collecting data from the connected devices at a rate as close as possible to the 

one retrieved from the devices configuration, supporting at the same time as many 

connected devices as possible. 

The prototype of our tested system was created using the Rainbow framework 

[5] This framework purpose is to decrease engineering effort  by providing an explicit 

representation of adaptation knowledge. Rainbow provides the support for architecture-

based self-adaptation mechanisms trough the following features: explicit architecture 
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model of the target system, a collection of adaptation strategies, and utility preferences 

to guide adaptation. 

 

1.1. Contributions 
 

The goal of this dissertation work is to access if the application of architecture-based 

self-adaptation improves the resilience of an already adaptive system.   

The contribution of this dissertation can be divided in two main objectives: 

Rainbow-DCAS Integration:  

 Abstraction of existing adaptations from the system: being a system 

already in use, several adaptations mechanisms are implemented inside 

DCAS. These mechanisms purpose is to maintain the performance of the 

system under different loads, responding to failing devices, the addition of 

new devices and modification in data rates. In some specific cases these 

mechanisms proved to be slow in recovering the system's performance. Our 

first challenge is removing these mechanisms and developing a prototype of 

DCAS (Rainbow-DCAS) in which different adaptation mechanisms for the 

system are implemented using Rainbow. These mechanisms are created to 

improve the system’s performance by providing a better and faster recovery. 

Resilience Evaluation: 

 DCAS adaptations vs. Rainbow-DCAS adaptations: compare the adaptations 

created using the Rainbow framework with the existing adaptations embedded 

within DCAS to assess whether the use of architecture-based self-adaptation 

really improves the results of the original adaptation mechanisms in DCAS. 

 

As a secondary objective to complement the work performed after completing the 

main tasks: 

 Implementation of a sophisticated adaptation mechanism currently not 

implemented in DCAS (Scale out) using Rainbow: support the deployment of 

several instances of the service within the same system if necessary. Currently, 

Scale Out can only be carried out manually by a human operator. 
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1.2. Thesis Structure 
 

The document contents are divided in chapters, organized as follows.  

 

 Chapter 2 presents some background and related work on the relevant areas to 

this work. The main topics are background on self-adaptive software and resilience 

evaluation of software systems. 

 

Chapter 3 presents a more detailed description of the context in which the work 

was developed, more concretely the main project that is the origin of this work: project 

ADAAS (Assuring Dependability in Architecture-based Adaptive Systems). The 

chapter includes a detailed description of the integration between the two main 

components of the work: The Rainbow platform, used to apply architecture-based self-

adaptation, and DCAS, the software system used as a case study. 

 

Chapter 4 presents the work on assessing the system resilience by comparing the 

new adaptation mechanisms, created using Rainbow with the original DCAS’s 

adaptations. The chapter includes a detailed description of the approach and its 

experimental evaluation. 

 

Finally, chapter 5 concludes this thesis and briefly introduces the future work. 
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Chapter 2    

Background and Related Work 

2.1. The need for self-adaptation 
 

The successful launch of a software system can lead to unexpected changes in the 

desired path for the evolution of the system. It may bring new user demands and 

requirements that imply changes and improvements in the system. The opposite is also 

possible. The software may not get the desired success or contains serious faults and 

errors that were not detected during its implementation. These reasons make it almost 

inevitable the activity of constant maintenance and software evolution. Software 

maintenance was earlier defined as “the modification of a software product after 

delivery to correct faults, to improve performance or other attributes, or to adapt the 

product to a modified environment” [16].  

An early survey [17] showed that around 75% of the maintenance effort is spent in 

adaptive (changes in the software environment) and perfective (new user requirements) 

maintenance while corrective maintenance consumed only about 21%. Later studies 

[18][19] confirmed the same results. 

Nowadays, software systems have to deal with growing and highly dynamic and 

unpredictable environments, also gathered with new and more complex system 

requirements. Traditional approaches for the development and management of software 

systems are thus confronted with a very hard challenge to solve. 

 

2.1.1. Tradittional maintenance and evolution approaches 

 

Commonly, software maintenance activity was accomplished in two different ways.  

 The first way was to be conducted by human operators and is referred as 

preventive maintenance (prevent problems in the future).  Human supervision 

was used in order to maintain the intended system configuration in all conditions 

[20]. However, this approach reached its limits as systems become more 

complex, thus more difficult to maintain and understand. At the same time, 

human supervision entailed high costs. 

 

 

 In the second technique. the software system suffers modification to the source 

code, introducing error-handling code (e.g. exception handling, timeouts) 

directly due either to a problem or a need to improve the system (referred as 

corrective maintenance) [13][21].This technique can already be classified as a 

self-adaptation technique, being classified as an internal adaptation. These 

error-handling techniques have the advantage of trapping an error at the moment 

of detection, and also are well supported by modern programming languages 

(e.g., Java exceptions) and run-time libraries (e.g., timeout function for jQuerys). 

However, these techniques present several weaknesses. They result in very 

complex interactions and are tightly coupled to the source code (e.g., exceptions, 
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fault tolerant protocols). They showed to be useful for handling local 

adaptations; however, in general, it is necessary a global vision and information 

about the system and several actions/events to interact simultaneously in order to 

perform system adaptation.  

 

2.1.2. Runtime adaptation 
 

The lack of success of the aforementioned techniques lead to a key research 

challenge: Discovering new approaches for developing software that could be more 

easily and reliably changed during runtime. Also, more recent developed software 

systems, including some known as safety-critical systems [22] presented as a critical 

requirement continuous availability. A. G. Ganek et al. [23] presents a good example 

where one hour with offline service causes a loss of 1 Million USD volume of sales 

within bank industry and 2.8 Million USD within the energy industry. 

 

This research lead to the development of new approaches capable of enabling 

systems with the ability to reconfigure their structure and behavior at runtime 

[24][25][26][27] in order to perform repairs or improve their operation without any 

human intervention.  

 

Gupta et al. [26] describes a formal framework for studying on-line software version 

adaptation, applied at the “statement-and procedure-level”. An online software 

replacement system replaces parts of the software while it is in execution, thus 

eliminating the shutdown. The technique is based on locating the program control points 

at which all variables affected by the adaptation are guaranteed to be redefined before 

use. They show that in general case locating all such control points is almost impossible 

and still based on analyzing techniques very connected to the source code and requires 

knowledge from the provider. Another problem is to apply this approach in large 

systems developed with complex programing languages. Languages such as Lisp and 

Smalltalk support this approach and provide the intended flexibility, but reduce the 

performance of the system. Furthermore, application behavior and dynamism are mixed 

and as result concerns regarding dynamic adaptation are crossed with system design, 

making the adaptation management extremely difficult.   

Reynolds, J,H. [27] uses ACHOO (Automated Code Handler for Output Operations) 

for the runtime creation of code for printing simulation output. ACHOO supports a 

methodology whereby output requirements for a computer program, and the source code 

for the statements to support them, are determined at execution time based on user-

supplied input. Thus, the user can tailor output requirements to a specific need or 

scenario. This activity, consisting of inserting calls to subroutines that ACHOO creates, 

eliminates the need for manual creation of output statements and accompanying format 

specifications during computer program development and subsequent maintenance. 

Several other approaches were applied in real-world systems: 

 fault-tolerant hardware [28] to cope with hardware failures; 

 “hot pluggable” devices [29], to add capacity or replace faulty units without 

power cycling a machine; 

 programming languages [30] and their runtimes to dynamically load, verify, 

and invoke code updates. 

 system virtualization [31][32] to attain hardware fault isolation and improve 

resource utilization; 
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 tuning of operating system parameters to achieve optimal memory, CPU, 

and device utilization among application components [33]; 

 

2.1.3. Self-adaptive systems 
 

A more recent approach has emerged with the goal to develop a new type of 

software systems. This kind of systems, which typically operate using an explicit 

representation of their structure and goals, has been studied within different research 

areas of software engineering (e.g., component-based development, requirements 

engineering, software architectures, etc.) and not only can recover from internal causes 

(e.g. failure) but are also able to deal with system and environment changes (e.g. 

increasing requests from users). Such systems are referred to as autonomic systems, 

self-adaptive systems, self-* computing, and self-healing systems [3][34][35] although 

for this work we use only one of the most general and popular among these names, 

namely self-adaptive systems.  

One of the earliest approaches related to self-adaptive systems is autonomic systems 

and in fact, the terms are commonly used interchangeably within the self-adaptive 

systems community. The “self” prefix indicates that the systems decide autonomously 

(i.e., without or with minimal interference from human operators) about how to adapt or 

organize to accommodate changes in their contexts and environments. This reflects the 

vision of autonomic computing in which systems respond to change by evolving in a 

self-managed manner while running and providing service [3][36][37].  

The key idea in the self-adaptation is the creation of a closed-loop system with a 

feedback loop aiming to adjust itself to changes during its operation. IBM’s Autonomic 

Computing [2] initiative proved to be a major breakthrough being the first approach 

presented to address this concern, with the introduction of a self-adaptive layer 

responsible for managing the target system. This approach relies on a closed-loop 

control known as the MAPE-K loop [3]. The four stages of the MAPE loop are enabled 

by knowledge combining assumptions and specification of the system. This knowledge, 

updated continually through environment and system monitoring, helps analyze whether 

the requirements specified by the user continue to be satisfied. When they are no longer 

satisfied, appropriate system changes are planned and executed automatically. Later 

studies proved the advantages in the use of this approach [38]. 

 

2.1.4. Architectural models 

 

Although the work discussed over the years has provided much of what is useful in 

contributing towards self-management, it has not yet resolved some of the general and 

fundamental issues in order to provide a comprehensive and integrated approach.  

One of the critical design issues when using a self-adaptive approach is how to 

model the system in order to provide the correct information for the control layer to 

determine when problems exist and choose an effective repair strategy. Several models 

for dynamic adaptation were presented along the time, mainly being classified into two 

different categories: Architecture style-based models such as CHAM [39] and graph 

grammars [40],  and architecture description language (ADL) based models, such as 

ACML [41] and Dynamic Wright [42].  

Several models approaches were presented, but there is one who stood out from the 

rest. Researchers and practitioners have discovered that architectural models are 
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particularly well-suited for complex systems adaptation [13][35][43] as it brings several 

potential benefits: 

 Software engineers can use the system’s architecture as a tool to describe, 

understand, and reason about overall system behavior [44]. Leveraging the 

engineer’s knowledge at this level of the system design holds can be an 

improvement in helping manage runtime adaptation. 

 It gives the possibility, in principle, to select the system components 

responsible for problem detection and resolution of concerns and modify and 

extend adaptation mechanisms to be reused across different systems. 

 The control over adaptation’s application policy and scope can be made 

based on an understanding of the application requirements and semantics. 

Previous approaches to runtime adaptation either impose a single policy to 

be adopted by all systems or failed to separate application-specific 

functionality from runtime change considerations. As a result, concerns over 

runtime adaptation permeate system design. 

  

Several studies prove the advantage of use of architecture-based self-adaptation 

[5][13][45][46], and in the work proposed below, we use one of these approaches as our 

starting point: Rainbow [5]. 

 

2.1.5. Adaptation strategies classification 

 

One major issue in self-adaptation is related to the process of selection and creation 

of repair strategies. How to make the control layer able to create the connection cause-

action in a given context? When presented with several strategies to apply, how to 

choose the best option among all available? Will the chosen strategy deteriorate instead 

of improve the system behavior? What action to take when the situation changes while 

applying a specific strategy? Should the available number of strategies be fixed from the 

beginning or can new strategies be created and added during runtime? These are 

difficult questions, and to date there has been relatively little work to answer them 

systematically.  

 

When deciding how to apply the strategies, two main factors have to be considered: 

the approach and the type of the adaptation. 

 

The approach to follow can be identified into two subsets: 

 

 Static/Dynamic:  The approaches based on static definition of strategies 

provide a set of predefined strategies with a fixed control structure and 

simple applicability conditions used to choose the best suited strategy. 

Dynamic software has the ability to adapt continuously in response to 

changes in the application objectives and the environment in which the 

software operates and to modify their architecture and enact the 

modifications during the system’s execution. 

 

Static strategies are known at design time and the conditions under which a strategy 

can be executed are well-specified. Thus, strategies can be revised and analyzed to 

determine their intended effects, and corrected. However, this approach has the major 
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drawback that such repair strategies tend to be inflexible. When confronted with 

unexpected conditions for repair, it is possible that none of the known strategies will be 

able to adapt the system accordingly.  

Dynamic change, which occurs while the system is operational, is far more 

demanding and requires that the system evolves dynamically, and that the adaptation 

occurs at runtime. These approaches have the reverse benefits and drawbacks; they 

manage to be extremely flexible, but do not allow knowing beforehand what strategies 

will actually be executed. 

 Internal/External: Internal approaches are based on programming language 

features, such as conditional expressions, and exceptions. A good example is 

the second technique described in section 2.1.1. Error-handling code (e.g. 

exception handling, timeouts). In External approaches it is an external 

adaptation manager that contains the adaptation strategies. The manager 

implements the adaptation logic, mostly with the aid of a policy engine, or 

other application-independent mechanisms. ´ 

 

As described before, internal approaches result in very complex interactions and are 

tightly coupled to the source code (e.g., exceptions, fault tolerant protocols). They 

showed to be useful for handling local adaptations; however, in general, it is necessary a 

global vision and information about the system and several actions/events to interact 

simultaneously in order to perform system adaptation. However, the external approach 

has the advantage of allowing the customization of adaptations in order to be used 

across different systems.   

 

 

Another important facet is the type of adaptation. 
 

 Close/Open 

A close-adaptive system has only a fixed number of adaptive actions, and no new 

behaviors and alternatives can be introduced during runtime. On the other hand, in 

open adaptation, self-adaptive software can be extended, and consequently, new 

alternatives can be added, and even new adaptable entities can be introduced to the 

adaptation mechanism  
 

 Model-Based/Free  

In model-free adaptation, the mechanism is not aware of the model for the 

environment and the system itself. The adaptation mechanism adjusts the system 

using the knowledge on the requirements, goals, and alternatives; On the other hand, 

in model-based adaptation the mechanism uses a model of the system and its 

context. 

 

 Specific/Generic  

Some of the existing solutions address only specific domains/applications, such as a 

database. However, generic solutions are also available, which can be configured by 

setting policies, alternatives, and adaptation processes for different domains. 

This type addresses where and what concerns in addition to how, because the 

specific type only focuses on an adaptation of attributes of a particular part of the 

software system. 
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2.1.6. Architecture-based self-adaptation challenges 

 

The pursued objective of self-adaptive systems is to create software capable of both 

self-adaptation to changes in its operating environment and continual verification of its 

requirements compliance. 

 It is important to note that with any type of architectural modification, concerns 

regarding the adaptation mechanisms must be separated from the effects of the 

adaptation on the particular application. An imprudent application of architectural 

modifications can compromise the integrity of the system. As result, such adaptations 

must be verified before being applied to a running system.  It is imperative to maintain 

the correspondence between the architectural model and implementation of the system 

in order to ensure that architecture-based adaptations properly effect the system. 

Another important requirement is the provision of the necessary implementation 

infrastructure for runtime evolution facilities. 

It is also necessary to develop a repertoire of techniques that provides timely 

reaction to detected system or environment changes by having both flexibility and 

predictability. These strategies will also have to be flexible enough so that they can be 

reused and applied in different systems. The use of architectural modeling and analysis 

tools is crucial in this regard, but dynamic generation of adaptations can be a significant 

performance concern, especially when dealing with a system’s time-critical needs; this 

is further magnified if changes to the system’s state cannot be treated in isolation and 

instead adaptations must be re-generated every time. 

 

The work presented in this document addresses a concrete case study that combines 

the best of both approaches, providing both flexibility and predictability. While this 

work builds on past experience in self-adaptive systems – most notably the use of 

architectural models – it provides a key missing ingredient that is necessary for the 

success of the overall approach. The provision of assurances that the system is resilient 

against changes that may occur either in the system or its environment at runtime. 
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2.2. Resilience evaluation 
 

One of the major engineering challenges in this research area is how to build self-

adaptive systems in a cost-effectively and predictable manner. The goal is to provide 

self-adaptive systems with the ability to recover in useful time when subjected to 

changes. Laprie [15] defined resilience as the persistence of service delivery that can 

justifiably be trusted, when facing changes.  

Before analyzing the existing approaches for resilience evaluation in computer 

systems it is necessary to clarify the possible meanings for resilience and what attributes 

and measures can be used to properly assess it.  

 

2.2.1. Definition of resilience 

 

The use of the term “resilience” has become more frequent in recent years in the 

information technology area, often being connected to other terms like “dependability”, 

“security” and the RAMS (reliability, availability, maintainability and safety) concept. 

Different areas can have different approaches for resilience, depending on the intended 

evaluation, the metrics used and the measurement process.  

Going back to the Latin origin, resilience means to rebound, recoil or return to the 

original form. Different areas and works provide several variations around the resilience 

theme. For instance in Physics, it is related to objects that are invulnerable to the impact 

of external forces. In Chemistry it is the capacity of a metal to return to its original 

form. In Engineering, resilience is a measure of a material’s capacity to withstand 

impact, as well as to absorb and release energy through elasticity [47]. In Psychology it 

refers to a capacity to function in immensely demanding settings, as well as the ability 

to cope with stress [48]. Meanwhile, in Ecology, resilience has been used to measure the 

ability of an ecosystem to absorb change, continue to function and evolve [49].  

 

It is obvious that there is plenty of scope for different approaches to what we mean 

by resilience, but today, resilience tends to be used to either mean a capacity to ‘bounce 

back’ or, more conservatively, a tendency to resist change.  Narrowing the area of 

interest to the area of information and communication technologies, the term resilience 

is commonly used to describe a more flexible and dynamic approach to achieve 

dependability. Resilience is defined as “the ability to deliver, maintain, and improve 

service when facing threats and evolutionary changes” [50]. 

To evaluate the resilience of a system we need to ensure that the system is capable 

of being dependable through time. Dependability can be defined as “the ability to 

deliver service that can be justifiably trusted” [15], or the ability of a system to avoid 

service failures that are considered to be more severe and frequent from what is 

expected or considered as acceptable.  Then we can affirm that dependability is a key 

requirement to achieve resilience. 

Randell et al. [51] and J-C Laprie [15] consider that to evaluate the dependability of 

software systems, it is required to measure how reliably the system can be, the level of 

availability and the capacity to support modifications and repairs. 

In section 2.1 we identified three main types of systems, regarding the system’s 

ability for adaptation.  

The first type of systems is non-adaptive systems. Initially, the existing approaches 

to assess the system’s dependability dealt well with this type of systems that are 

relatively closed and unchanging. Basically repairing or evolving the software system 
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usually required for the system to be shut down and then restarted. However, each time 

a new version of the system was created it was necessary to perform dependability 

evaluation all over again, turning the process of updating the software a very long one. 

For these systems the majority of the conducted studies in dependability performed 

this evaluation during the development and validation phases of the software system.  

Guangsing Xu et al. [52] present manual software watermarking as method to fight 

software piracy. A manual watermark is inserted by the programmer of the application, 

rather than a using a third-party automatic tool. 

Then, with the rapid evolution in software systems complexity, came the necessity 

of endowing these systems with the capability to adapt during runtime.  

A good example of this evolution can also be related software watermarking. This 

task evolved from a manual operation to an semi-automatic operation where a 

programmer inserts markers into a program during development and the finished 

software is then augmented by a software watermarking tool(e.g. Sandmark [53]). A 

dynamic watermarking approach was introduced by C.Colberg et al. [54]. 

Although performed in different ways, the resilience of a watermark was tested 

against the same metrics: watermark should be robust - that is, resilient to semantics 

preserving transformations (such as optimizations).    

 

2.2.2. Fault Injection 

   

According to the dependability definition [15] changes here may refer to unexpected 

threats to the dependability of the system: failures, errors, faults. 

A failure can be described as an event that occurs when de delivered service diverts 

from correct service, either because it does not comply with the functional specification, 

or because this specification did not adequately describe the system function. 

Since a service is a sequence of the system’s external sates, a service failure means 

that at least one (or more) external state of the system’s deviates from the correct 

service state. The deviation is called an error. The possible cause of an error is called a 

fault. In most cases, a fault first causes an error in the service state of a component that 

is a part of the internal state of the system and the external state is not immediately 

affected. For this reason, the definition of an error is the part of the total state of the 

system that may lead to its subsequent service failure. If the fault leads to an error that it 

is considered as active otherwise is dormant. 

Then one of the possible way to test the system resilience is by fault injection to 

detect if may lead to failures. The use of this fault injection [55] approach is quite 

common on self-adaptive systems for resilience evaluation and other metrics like 

security and system performance [56][57][58][59]. 

 

The purpose of injecting faults is to create emerging scenarios in which systems 

must run continuously and be capable of adapting autonomously the moment the 

conditions for adaptation are reached. Three major conditions for adaptation are 

recognized:  system errors, changes in the environment, and changes in user 

preferences. Understanding these different conditions for self-adaptation directly affects 

the development of capabilities for measuring, modeling, and controlling the target 

system to support self-adaptation. These conditions share the common property of being 

a change that may not have been anticipated thus providing opportunities for runtime 

improvements to bring the system back within the boundaries of its requirements under 

the newly encountered conditions.  
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2.2.3. Assessment Approaches 

 

Nowadays, software systems are commonly used in safety-critical areas and 

applications (safety-critical software systems), turning to be very complex and highly 

independent systems that provide essential services in our daily routine. This type of 

systems present as one of the major requirements, to be constantly available during 

time, thus implied that the system cannot be shutdown.  

 

To better understand the conditions for self-adaptation it is necessary to focus on 

system properties that can be expressed quantitatively and require quantitative 

verification (such as reliability, performance, and energy consumption). 

The analysis of the system properties can be performed by two different ways: either 

modeling the system, or performing direct measurements when the system is already 

implemented.  

 

In the architecture-based approaches for self-adaptation we already have a clear 

representation of the system in the architecture model. However in some cases, 

performing an accurate analysis implies relying in massive state-space models with high 

complexity and detail.  Many existing analysis techniques rely on generating stochastic 

models of the system such as continuous-time Markov chains (CTMCs). They are able 

to capture various functional and stochastic dependencies among components and allow 

evaluation of various measures related to dependability and performance. These kinds 

of models can result in huge state spaces and computation time in not treated properly. 

Some analysis techniques were created in order to respond to the problem created by the 

increasing complexity of the models, by making use of efficient representation 

mechanisms. One of these techniques is known as symbolic model-checking [60] and 

supports various forms of (qualitative and quantitative) analysis. 

One possible approach to verify system properties is quantitative analysis. 

Quantitative evaluation techniques have been mainly used to evaluate the impact of 

accidental faults on system dependability. In quantitative analysis, users define a finite 

mathematical model of a system and analyze the model's compliance with system 

requirements that are expressed formally in temporal logics [61][62] extended with 

probabilities and costs/rewards. Example requirements established through this analysis 

include the probability that a fault occurs within a specified time period and the 

expected response time of a software system under a given workload. The quantitative 

analysis of performance requirements can be performed using discrete-time Markov 

chains (DTMCs) to model behavioral aspects of the system, and probabilistic 

computation tree logic, or PCTL [63], to formalize requirements. Several tools using 

this “symbolic” approach, such as PRISM [64], SMART [65] and CASPA [66]  are 

already successfully implemented. 

 

Direct measurement, is used generally in systems that are already in use and refer to 

observations of systems in the operational phase. The main advantage in the results 

obtained is that they are collected under realistic operation conditions and environment, 

using a concrete workload, instead of a mere approximation. This represents a very 

important source of information when studying resilience properties, such as robustness, 

availability or dependability. 

Some examples of direct measurement studies were performed based on software 

fault injection [67][68]. 
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In our work, we also analyze system response due to fault injection. An approximate 

model is derived which enables one to account for the failures due to the design faults in 

a simple way when evaluating the system's dependability. 

The approach used during our work focuses on quantitative analysis using direct 

measurements, since we already have the system implemented, and focuses on 

providing levels of confidence with respect to the self-adaptive capabilities of the 

system. 
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Chapter 3 

DCAS-Rainbow integration 

Before describing the process of integration between the architecture-based platform 

for self-adaptation (Rainbow), and the case study (DCAS), it is important to explain the 

project which is the starting point for the work presented in this document.  

In section 3.1 is presented a more detailed explanation about the purpose of the 

project ADAAS2 (Assuring Dependability in Architecture-based Adaptive Systems) and 

how it led to the selection of the two main components of this work. In section 3.2 and 

3.3 is presented a more detailed analysis, respectively, on the Rainbow platform, used to 

apply architecture-based self-adaptation, and DCAS, the software system used as a case 

study. 

The final section of this chapter contains a detailed description on the integration 

process and the steps carried out for the abstraction of the original adaptations and 

implementation of the Rainbow-based adaptations. 

 

3.1. Project ADAAS (Assuring Dependability in Architecture-based 

Adaptive Systems)  
 

The aim of the ADAAS project is to improve dependability and optimize 

performance in large-scale software systems, while reducing development and 

operational costs. To reach these goals, it resorts to the use of runtime analysis of 

architectural models, combined with analysis techniques which allow dealing with 

anticipated changes, concluding if the system goals are being achieved, and also 

endowing the system with the generation of adaptation strategies at runtime to respond 

to unanticipated changes. 

The chosen approach was divided in 4 main boosts: 

 Strategy language and platform: the definition of a language suitable for 

expressing adaptation strategies and able to address key quality attributes, 

like dependability.  

 Support for analysis: techniques and tools for quantitative and qualitative 

analysis of adaptation strategies with respect to system goals  

 Dynamic generation of adaptation strategies: support for generating 

strategies at runtime, according to goals and depending on resources. 

 Case study and evaluation: Assessment of the effectiveness of the approach 

using a real world scenario. 

 

It is precisely on this last point that the work presented in this document is included. 

It was necessary to evaluate the presented approach on an already implemented self-

adaptive system. To perform the resilience assessment, Rainbow was chosen as the 

architecture-based platform and DCAS as the case study to be used.  

The choice of this platform is justified since it provides generic self-adaptation 

through gauges (monitoring), a model manager, a constraint evaluator, an adaptation 

                                                           
2
  http://adaas.dei.uc.pt/adaas 
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engine (reasoning), an adaptation executor and effectors (adapting). It relies on 

sophisticated knowledge and manipulations of the system properties, constraint rules, 

adaptation strategies, and adaptation operators. Salehie et al. [20] Rainbow provided the 

ability of modeling the system’s architecture (using AcmeStudio [69]) and a language 

for development of adaptation strategies (Stitch [70]). Combining these two features 

with fault injection for direct measurement of the systems metrics and  with the use of 

PRISM [64] to perform the quantitative analysis of performance requirements, it was 

possible to assess the approach in real case study: DCAS. 

Beside other possibilities, analyzed along with DCAS, this product provided by 

Critical Software fulfilled the requirements required for the assessment. It was an 

industrial software system already deployed in real environments, it was a product 

developed in Portugal (mandatory) and, of most importance, was already a self-adaptive 

system with built-in adaptation mechanisms. In the next sections is provided more 

information about Rainbow and DCAS. 

 

   

 

3.2. Data Acquisition and Control Service (DCAS) 
 
 

Data Acquisition and Control Service (DCAS) is a middleware created by Critical 

Software that provides a reusable infrastructure for management of monitoring and 

(non-automatic) control of highly populated networks of devices. In particular, the 

system is designed to be seamlessly integrated with Criticalʼs Energy Management 

System platform (csEMS3). csEMS is a platform that provides asset management 

support for power producing companies based on renewable energy sources. The overall 

csEMS architecture aims at high scalability, flexibility, and customization to enable the 

operation of control centers with managing capabilities, independently of the underlying 

technology (wind, solar, etc.). 

 

3.2.1. Objectives 
 

The main objective of DCAS is to request data from the connected devices and save 

it into the database server at a rate as close as possible to the one configured in their 

device profiles, supporting as many connected devices as possible, using the system 

resources in the node where it is running whenever necessary (scale up), and, able to 

deploy additional instances of the service within the same system if necessary (scale 

out). 

3.2.2. Architecture 

 
To provide a clearer and easy understanding of the adaptation mechanisms is made a 

resume of the DCAS system and presented an overview of the system architecture. In 

Fig. 1 is presented a resume of the DCAS system and main components of the system. 

                                                           
3
  http://solutions.criticalsoftware.com/products_services/csEMS/ 
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In this figure are presented the most important classes and modules. The DCAS system 

consists in 5 core modules: 

 Configuration Provider: Data wrapper used to read service parameterization 

values. This module provides configuration values in a standard discrete way in 

order to encapsulate concrete data structures or business rules that may be 

subject to change in the future. This class implements a cache of configuration 

values in order to improve performance. It also implements and publishes a 

mechanism for it to be notified of configuration changes in order to invalidate 

and refresh those caches. In this class no adaptation mechanisms are applied. It’s 

also responsible of loading the list of requests from the database. 
  

 Polling Scheduler: Scheduling mechanism to trigger scheduled data retrievals 

for devices. This class maintains a configured list of scheduled data items and 

enqueues them for processing at the specified sample rate. The initial array of 

“Data Streams” loaded from database is converted into an array of “IDataItems” 

arrays splitted and sorted by Sample Rate. Several pollers shall be instantiated, 

at least one for each sample rate, and a sub-set of “IDataItems" shall be 

provided. Each of the sub-sets is the responsibility of one specific poller. 

 

 Data Requester: Main processing module responsible of requesting data from 

the devices. This main processor instantiates several secondary processors per 

device type and distributes requests to specific queues based on device type. The 

secondary processors have their own pollers on those queues. 

 

 Alarmer: Module responsible for parsing and triggering functionality. This 

class checks each data item against configured thresholds and triggers alarms on 

violation. 
 

 DataPersister: This module performs two distinct tasks. As a processing 

module it shall be placed at one of the ends of a processing sequence and shall 

enqueue and then persist the processed data items. As a "normal" class it is a 

wrapper for data access and so provides methods to return database data. 
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Fig. 1 - DCAS architecture overview 

Besides the Core Modules it is useful to refer other important classes/components of 

the system: 

 Service Engine: This class is the main control of DCAS system. This class shall 

be used as a singleton, for that all access shall be made through the Instance 

property. It’s responsible of starting/stopping all the system components (core 

modules, extension modules, system monitor, etc.)   

 

 Device Monitor: Class responsible for retrieving information about the devices 

status (not related to data gathered with requests). 
 

 System Monitor: Class used to periodically collect system information that may 

be used by service optimization mechanisms (average cpu in usage and free 

memory). 

 

3.2.3. Adaptation mechanisms 
 
In this section we provide a basic idea of the built-in adaptation mechanisms in 

DCAS.. In a first step in the process of creating the new prototype of DCAS using 
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Rainbow, these three mechanisms were replicated in order to access if the monitoring 

and adaptation mechanisms could efficiently control the system. Three main 

mechanisms are addressed in this document: Scale Up, Rescheduling and Scale Out 

 

Scale Up is a mechanism to add or remove threads that process requests in the 

queues. For each processing module there is a queue of incoming requests. A threshold 

value is defined to check the max numbers of requests per queue (queue size). 

According to the queue size the system can apply different actions:  

 If the numbers of requests in the queue is below the defined threshold and near 

to 0 it means the system is running normally so no modifications are needed. 

 If the queue size reaches the threshold, then new thread(s) will be added to the 

processing module. 

 If the queue is empty during a specific time or number of checks it means that 

one or more threads are not required, so they will be removed to free system 

resources. 

This was a very simple mechanism to implement using architecture based self-

adaptation, since it only needed to check the queue size in each of the processing 

modules (ex: Data Requester). Using the Rainbow framework it was only required to 

probe each of the desired processing modules for its queue size, check with the defined 

limits and add or remove threads. 

 A different and more complex implementation was required since it was necessary 

to check if the system could provide the required resources (CPU, memory) to add more 

threads. The DCAS system has a component responsible for checking the systems 

resources (System Monitor), and in Rainbow was only necessary to probe the system 

for these values before taking any action, to check if was possible to create more 

threads, otherwise a different approach was necessary.  

 

Rescheduling is a mechanism applied when the system detects a possible problem 

with one or more devices, and provides a way to handle device failures. The purpose is 

to ensure that if a device fails, data gathering from the other devices will continue to be 

executed. A device will be considered as in a failure state if it fails to respond to several 

consequent requests, or if the elapsed time to get data from a device is greater than the 

expected response time.  After marking a device as in failure state, the system raises a 

failure event and reduces the scheduled requests (add a delay to the sample rate 

interval). Note that requests shall continue to be executed in order to allow failure 

recovery detection (reduce or remove delay). After a device is marked as in failure state, 

the system shall be able to detect when the device is back online and execute future 

scheduled requests as initially configured. 

If the system is failing to reach or maintain the expected data rates and is already 

using all the system resources, it’s necessary to create/ launch a new instance of the 

processing module in order to process requests. 

Scale Out can be applied when it’s not possible to add more threads in Scale Up. 

(Not enough cpu capacity or free memory).    
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According to DCAS documentation, each service instance should not be aware of 

the existence of others, so it’s necessary that each instance gets only the data streams it 

should process (Data Streams will not be shared between different instances). The 

analysis on the scale out implementation using rainbow will be discussed at the end of 

this chapter, since it was one additional objective of this work.  

 

3.3. The Rainbow framework 
 

As we mentioned previously we use Rainbow to develop and apply alternative 

adaptation mechanisms is DCAS system. In a very brief description Rainbow is an 

architecture-based platform which focuses on two means of achieving cost-effective 

self-adaptation: 

  An approach and mechanism to reduce engineering effort. 

  An explicit representation of adaptation knowledge. 

Since the work developed in the integration of Rainbow and DCAS was almost 

exclusively done on the evolution of DCAS we do not focus on providing a very 

analysis on Rainbow architecture. 

Rainbow provides a framework to monitor a target system and its executing 

environment and reflect observations into an architecture model, detect opportunities for 

improvements, decide on a course of adaptation, and effect changes. By exploiting 

commonality between systems, Rainbow provides general, reusable infrastructures with 

explicit customization points to apply it to a wide range of systems. It also provides 

useful abstractions to focus engineers on adaptation concerns, facilitating its systematic 

customization to particular systems. To automate system adaptation, it provides a 

language, Stitch, to represent routine human adaptation knowledge using high-level 

adaptation concepts of strategies, tactics, and operators. 

More detail information is provided in related papers [5][71] and in Shang-Wen 

Cheng PhD Thesis [72, p -], the creator of Rainbow. 

 

Fig. 2 - Rainbow framework 
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The focus of our work was in the translation Infrastructure. The monitoring 

mechanisms in the Translation Infrastructure – probes and gauges – observe the running 

target system and update properties of an architecture model managed by the Model 

Manager. The Strategy Executor applies the strategies previously chosen in the 

Adaptation Manager at the system level by executing effectors. Our work consisted in 

creating the translation infrastructure and creation of probes and effectors for the DCAS 

system.  

 

3.4. Rainbow-DCAS Integration 
 

In this section is described the process of removing the original adaptation 

mechanism from DCAS in order to use the new adaptation mechanisms created using 

Rainbow. We will refer to this process as “evolution of DCAS system”. However, it is 

important to describe how the translation infrastructure to establish the connection 

between DCAS and Rainbow was created, since it is tightly coupled to the adaptation 

mechanisms. 

3.4.1. Translation Infrastructure 
 

Implementing the translation infrastructure between DCAS and Rainbow required 

exposing part of the internal functionality in DCAS through a public interface, enabling 

communication with Rainbow for extracting system information through probes and 

effecting changes through system-level effectors. To achieve this, we implemented a 

lightweight server component embedded in DCAS that enables the exchange of 

information between a running instance of the DCAS service and Rainbow using TCP 

sockets. A new class named “TcpServer” was created inside the project to manage the 

exchange of information between a running instance of the DCAS service and Rainbow. 

The purpose for the creation of this class was to provide a communication channel 

for information exchange between the running instance of DCAS and the Rainbow 

Framework responsible for monitoring DCAS. This way Rainbow can “probe” for the 

necessary information through the TcpServer, which will retrieve it from the system and 

send the answer with the latest information back to Rainbow.  

Every time Rainbow needs to “effect” the system, adapting to any triggered 

condition it will send the required actions and new system values using the same 

communication channel, being the TcpServer responsible for treating the incoming 

messages and applying the necessary actions. 
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Fig. 3 - DCAS-Rainbow translation infrastructure 

Figure 3 illustrates the translation infrastructure used between Rainbow and DCAS. 

Probes and effectors in Rainbow act as clients of the TCP server, which acts as a 

mediator between them and the actual probes and effectors embedded in DCAS: 

 Probes embedded in DCAS keep the values of probed variables updated in a 

data store local to the TCP server, pushing updates whenever variables change 

(P1a and P2a). Then, when a probe client in Rainbow requests the value of a 

particular variable (P1b), it is directly served from the local data store to the 

probe client (P2b). This approach was chosen due to the difficulty of invoking 

the necessary operations to retrieve data in DCAS from the TCP server. 

Concretely, information such as queue sizes or number of active pollers in the 

data requester, as well as information relative to device data streams could not 

be obtained from the TCP Server, so different parts of DCAS code were 

instrumented to extract this information and update it in the TCP server data 

store. 

 Effectors clients in Rainbow send requests for command execution to the TCP 

Server (E1), which forwards them to the effector embedded in DCAS (E2). 

Next, the effector executes the command (E3) and returns a response to the TCP 

server that states whether execution was successful (E4). Finally, the TCP server 

forwards the response to the effector client in Rainbow (E5). 

 

In Figure 5 we see that the translation infrastructure is consisted by three main 

components: TcpServer, probes and effectors. Next we provide a little description on 

each of the components. 

The TcpServer consists in a basic server using TCP Sockets, with a specific IP 

address and port that is continuously waiting and listening for possible client 

connections. The client will use server IP address to establish the connection (in this 

case the clients will always be Rainbow Probes or Effectors). 
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Every time a connection is accepted the incoming message is saved into a buffer. 

When the message is complete it is transformed into a string. As convention all the 

information between DCAS and Rainbow is send as String, being the information then 

treated when necessary. Since this document only focus on DCAS, the client approach 

will not be discussed. 

Rainbow probes request the TcpServer for system values or important information 

of specific Processing Modules (ex: Data Requester processing module) necessary for 

triggering the adaptations mechanisms. 

Some of these values, like the available memory or CPU usage, can be easily 

acceded, since the original implantation of DCAS has specific classes (in the case of 

memory and CPU is the System Monitor class) responsible of retrieving these values. 

Regarding the information of the main components of the system (Core modules), 

the chosen approach was to create data structures inside TcpServer to save all the 

necessary information directly inside the class, providing a more direct access to the 

data. The same approach is used to store information regarding DataStreams and 

Devices. 

All the processing modules featuring adaptation mechanisms, (ex: Device Data 

Requester) share the same base class (“Base Processing Module.cs”), and since a list 

with all the existing core modules is already created inside the server class, each time 

one of these modules is called during runtime, the TcpServer receives and saves the 

updated information about each of the modules (ex: queue sizes, number of pollers, 

etc.). This information is especially important in the “scale up” mechanism”. 

New methods were also created, related to the “rescheduling” mechanism in order to 

provide information related to the time required (elapsed time) to perform requests to 

the devices.  
 

 

3.4.2. Evolution of DCAS system 
 

 

Rainbow effectors are basically commands received from Rainbow regarding the 

possible adaptation mechanisms with the intended actions to take and new values to 

change. 

In the initial implementation of DCAS the entire process of checking system values 

and possible violations (probing the system) and take actions when necessary (effecting 

the system) was referred as “throttling mechanism”. This mechanism was associated 

with a timer function in which was possible to change the “gap” value between each 

checking period. With the integration of DCAS with Rainbow this process is now 

controlled from outside the system, and so the native methods of the “throttling 

mechanism” are no longer used. It was necessary to create new methods that would 

correspond to Rainbow decisions (Effectors). 

 Regarding the “Scale up” mechanism, new methods to add and remove pollers were 

created, using the information sent to the TcpServer from Rainbow.  
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public virtual void IncreasePollers() 

        { 

 

            Console.WriteLine("ADDING POLLERS FROM SERVER REQUEST"); 

             

          //  Console.WriteLine(this.ModuleName + " increasing pollers"); 

 

            int newPollerPriority = this.GetMaxPriorityQueueCount(); 

            this.IncreasePollers(newPollerPriority, 1); 

            throttlingCheckNext = throttlingCheckCount + throttlingCheckGap; 

 

            #region Log Info 

            Log.Write(LogLevel.Information, LogCategory.NemoDebug, 

                () => string.Format(CultureInfo.InvariantCulture,  

                    "{0} [{1}] - {2}.{3} : Grow pollers from {4} to {5} queue size: {6}, queueStatus: {7}", 

                    DateTime.Now, Thread.CurrentThread.ManagedThreadId, this.GetType().Name,  

                    MethodBase.GetCurrentMethod().Name, cyclingPollerThreads.Count - 1, 

                    cyclingPollerThreads.Count, this.concurrentQueue.Sum(q => q.Value.Count),  

                    GetInputQueueStatus())); 

            #endregion Log Info 

            //} 

        } 

 

Regarding “Rescheduling” all the new methods created, necessary to change the 

delay in Data Streams, priorities of Data Items in the Polling Scheduler, and threshold 

value were created using the information provided from the data structures created in 

the TcpServer. 

 

case "updateDelay": 

 

                    if (!addRateDelayEffectorState) 

                    { 

                        StreamId = parts[1]; 

                        int delay = Convert.ToInt32(parts[2]); 

                        //call method to change RateDelay ,get data stream and update SampleRateDelay 

                        long lValue = long.Parse(StreamId); 

                        dataStreams = DataStreamManager.GetDataStreams(new string[] { "S" }); 

                        foreach (DataStream ds in dataStreams) 

                        { 

                            if (ds.Id == lValue) 

                            { 

                                ds.SampleRateDelay = delay; 

                                Console.WriteLine("updating delay in dataStream: " + ds.Id + " to: " + ds.SampleRateDelay); 

                            } 

                        } 

                    } 

                    else 

                        Console.WriteLine("effector failign!!!!"); 

                    answer = "SUCCESS"; 

                    break; 
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3.4.3. Scale Out implementation 

 

As mentioned in section 3.2.3 if the system is failing to reach or maintain the 

expected data rates and is already using all the system resources, it’s necessary to 

create/ launch a new instance of the processing module in order to process requests. 

This mechanism is called Scale Out and should be applied when it’s not possible to add 

more threads in Scale Up. In the original implementation of DCAS this adaptation was 

performed by and human and the objective was to implement a version of this 

mechanism that would be triggered without human interaction. 

Ideally this adaptation could be considered as an adaptation that would be triggered 

only in the case of failure in applying Scale Up (the system do not have additional free 

resource to add more pollers). In this situation a new instance of the service would be 

created, splitting the initial workload with the first instance. When referring to 

workload, we mean the number of DataStreams currently being processed. According to 

DCAS documentation, each service instance should not be aware of the existence of 

others, so it’s necessary that each instance gets only the data streams it should process 

(Data Streams will not be shared between different instances). 

Applying this approach required that every time DataStreams were moved from one 

instance to another, all the instances should be notified to reload all the configurations 

and retrieve the new set of DataStreams specifically associated with that instance.   

The effector to assign DataStreams to different system instances and the effector to 

signal the running instances to “restart” were created with success. The first one 

required the creation of a new class (dataBaseAcess.cs) to connect separately to the 

system’s database in order to run the respective SQL query to modify the DataStreams 

information. 

However, a major problem for the successful implementation of this mechanism 

came from Rainbow. It was not possible to dynamically re-allocate components while 

the system was running. Each instance would have a maximum number of DataStreams 

associated.  Basically, it was not possible to move DataStreams between different 

instances. This way it was not possible to test the mechanism with the pretended 

function. 

 

3.4.4.   Integration conclusions 
 

In this section was addressed the first main objective on this work:  the abstraction 

of existing adaptations from the system. We can conclude that the process of creation of 

the translation infrastructure between DCAS and Rainbow was successfully achieved, 

removing the original adaptation mechanism and successfully endowing Rainbow with 

full control over DCAS. All the probes to retrieve information from the system and all 

the effectors, connected to new created adaptation strategies were applied with success. 

This part of the work was crucial. Without integrating Rainbow and DCAS it was not 

possible to perform the architecture-based resilience evaluation.  
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Scale Out implementation was considered a secondary objective, but, although the 

objective was not completely achieved, that was due to external factors to what was 

committed to achieve. The required implementation on the DCAS prototype side was 

completed with success. 
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Chapter 4 

Resilience Evaluation 

In this section, we start by describing the approach followed for resilience 

evaluation, and then formally describe how the experiment evaluation was performed 

and the results obtained.  

 

4.1. Evaluation approach 
 

The followed approach focus in the evaluation by comparison of the adaptation 

mechanisms of a self-adaptive software system, relying on the identification of 

representative environmental and system changeloads (i.e., sequence of changes) used 

in the runtime stimulation of the system. This type of evaluation requires the use of 

relative resilience metrics in order to compare how different adaptive solutions respond 

to a particular set of (system or environmental) conditions; 

This evaluation was performed in two steps: 

a) Changeload Identification: Exploring the architectural model of DCAS 

prototype to identify and select the most relevant (sequences of) changes (i.e., 

the changeload) that have the best potential to unveil system or environmental 

faults during run-time stimulation. The first step for changeload generation is to 

identify environmental and system anomalies or sources of potential changes. To 

stimulate the system we need to represent the variables identified before into a 

set of system and environment changeloads. Environmental changeloads are 

used to lead the environment to reach the required conditions for adaptations to 

be used. System changeloads are used to assess the resilience of the adaptations 

mechanisms. This step was not required for the Original DCAS strategies since 

we already have the knowledge about the system metrics to evaluate and the 

adaptation mechanisms to test. 
 

 

b) Runtime Stimulation: Stimulate the system and its environment during 

execution using the changeloads identified in the previous step, and collect 

information about the system’s response in order to aggregate it into a 

probabilistic model of the system’s behavior that is used to evaluate by 

comparison the alternative adaptation mechanisms and conclude which have the 

best results. We stimulate the system and its environment during execution using 

the changeloads identified in the previous step, and collect information about the 

system’s response. For this we define the resilience metrics, evaluated during the 

stimulation, according to the system goals that are used to classify each of the 

adaptation mechanisms. The classification of each of the adaptations is then 

transformed into a probabilistic response model of the system which is used as 
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input to a probabilistic model checker in addition to the resilience properties 

obtained from system goals. This probabilistic response model is used to 

evaluate by comparison the adaptation mechanisms and conclude which have the 

best results.  

 

 Although probabilistic behavioral models are obtained during runtime stimulation, 

they are built over the set of properties contained in the architectural model, and 

describe the evolution of the values of such properties obtained from monitored 

variables in the system at runtime. The use of probabilistic behavioral models enables 

the quantification of the probability of satisfaction of system properties (expressed in 

Probabilistic Computation-Tree Logic (PCTL) [63] when the system is subject to a 

particular stimulus. 

 

4.1.1. Operational Profiles and Scenarios 

 

To perform the two steps described previously it was necessary to define the 

conditions in which the system operates for changeload identification and then the 

conditions and additional configurations to perform runtime stimulation. 

Two different operational profiles can be identified in self-adaptive systems [73]. 

In situations where the system is running without any anomalies, we are in the 

presence of conventional operation profiles. Non-conventional operational profiles are 

associated with changes in the system or its environment that induce anomalies in the 

system (typically triggering adaptations).  

 

The systematic identification and classification of change types is fundamental to 

support the definition of change scenarios. One of the main base concepts is that of a 

scenario. A scenario is a required sequence of events that captures the state of the 

system and its environment, system goals, and changes affecting all the aforementioned 

elements. It is defined in terms of state (system and environment), changes applied to 

that state, and system goals. Scenarios can be classified into two groups: base scenarios 

and change scenarios [73]. 

A base scenario is defined in terms of typical conditions during the execution of the 

system, which includes: a typical (stable) state of the system and its environment, and a 

set of fixed goals. 

The workload of a base scenario should be representative of the typical amount and 

type of work assigned to (or expected from) the system in a specified time period. 

Typical operation conditions comprise the typical setup of systems in the domain, as 

well as representative characterization of the system’s environment, and the hardware 

and software resources typically used. Hence, a base scenario reflects the operational 

characteristics of systems in the domain while running a typical workload and operating 

in the absence of changes, setting the baseline for comparison with situations when the 

system is faced with changes that may drive it into an adaptation process. 

It should be noted that “typical” does only imply a stable state of the system with no 

abnormal conditions, not that the workload or operation conditions cannot be dynamic. 

Change scenarios originates from base scenarios, but include a representative 

sequence of changes that may affect the system and its ability to achieve and maintain 

the fixed goals specified in the base scenario. 

A change scenario is then defined by a typical condition of the system followed by a 

non-empty set of changes. 
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Since the purpose of this approach is the evaluation by comparison of adaptation 

mechanisms, the use of base scenarios was discarded, since it didn’t fostered the 

conditions to apply the adaptation mechanisms. 

 

4.1.2. Criteria Definition 

 

Before starting the process for system stimulation it is necessary to define the 

resilience metrics to be evaluated, according to the system goals that are used to classify 

each of the adaptation mechanisms. These metrics will be used to classify and compare 

each of the adaptation mechanisms, as the objective is to understand how effective each 

adaptation alternative is in terms of assuring that the system satisfies the predefined 

goals after adaptation. Referring again to Laprie, a resilient system is defined as one 

whose service can justifiably be trusted when facing changes [21], that is, a system that 

fulfills its goals in a dependable and persisting manner in spite of changes in its 

environment or the system itself. Therefore, the definition of resilience incorporates the 

fulfillment of system goals. In other words, the metrics are strongly related to the goals 

targeted by the system and have to characterize it in a useful and meaningful way. 

. 

4.1.3. Experimention and evaluation 

 

Fig. 4 - Non-conventional operational profile 
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FIg. 5 - Conventional operation profile 

 

The experimental profiles used for the evaluation can be divided in two cases (see 

Figure 4 and Figure 5). Each experiment, regardless of the targeted operational case 

(NCOP or COP), includes a set of runs.  

Run 0 consists of performing environmental stimulation to trigger adaptation, 

without performing system stimulation. The goal is to collect baseline information 

about the behavior of the adaptation alternative in the absence of system changes. This 

baseline will be used later as reference to understand the impact of system changes in 

the execution of the adaptation strategies.  

Figure 4 represents the case where the goal is to assess the target system when 

adaptations is required (i.e., the system is running in a nonconventional operational 

profile). 

Figure 5 reflects the case were no adaptation is required in the target system (i.e., the 

system is running in a conventional operational profile). During Runs 1. . .N the system 

is run in such a way that environmental stimulation will lead to triggering adaptation, 

and then changes are injected on top of the environmental stimulation during adaptation 

to measure their impact in the different adaptation alternatives. In order to assure that 

each run portraits a realistic scenario as much as possible, and at the same time assures 

that important properties such result repeatability and representativeness of results are 

met, the definition of the profile of the run has to follow several rules. The following 

points summarize those rules (see Figure 4): 

1. The system state must be explicitly restored in the beginning of each run and the 

effects of the system changes do not accumulate across different runs. 

2. The tests are conducted with the system in a steady state condition, which is 

achieved after a given time executing transactions (steady state time). 

3. Environmental stimulation is conducted after the system achieves the steady state 

to reach an adaptation trigger condition in the first place, and then keeps on going 

throughout the execution of adaptation, keeping the conditions of the environment to 
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make adaptation valid. The existence of a time to react is considered as there may be a 

lag between the trigger condition and the activation of the adaptation strategy. 

4. Adaptation is exercised by injecting system changes during its execution. 

5. When the adaptation completes, the system must continue to run during a keep 

time in order to characterize the system speedup after adaptation. Since we are 

interested in characterizing only the behavior of the system during adaptation, the 

measurement interval starts in each run only when adaptation starts, and ends when the 

stop condition is met. 

 

As a final step, the measurements are used to compare and evaluate the adaptation 

alternatives, taking into account the criteria previously defined. In practice, each set of 

traces regarding a particular adaptation alternative is transformed into a probabilistic 

response model of the system, which is used as input to a probabilistic model-checker in 

addition to the resilience properties obtained from the system goals. As an outcome, 

adaptation alternatives can be evaluated by comparing them against their quantification 

of the resilience properties. 
 

4.2. Experimental evaluation 
 

The objective of this work is the evaluation by comparison of the adaptation 

mechanisms of a self-adaptive software system, relying on the identification of 

representative environmental and system changeloads. In particular, we compare the 

performance and efficiency of architecture-based self-adaptation mechanisms with those 

achieved by DCAS built-in adaptation mechanisms. 

 

 
Fig. 6 - Experimental setup: Rainbow-DCAS (left) and DCAS (right) 

 

For our experimental setup, we deployed both versions of DCAS across three 

different machines (Figure 6): dcasdb acts as the backend database running on Oracle 

10.2.0, dcas-main acts as a processor node, running DCAS, and (dcas-devs) is used to 

simulate the response of network devices from which DCAS retrieves information. In 

the case of Rainbow-DCAS (Figure 8, left), Rainbow’s master is deployed in a separate 

machine (dcas-master). All machines run on Windows XP Pro SP3 (DCAS is deployed 

as a Windows service), and an Intel core i3 processor, with 1GB of memory. 
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Our experiments include 100 data streams with a sample rate of 1 second. The 

duration of each test is 40 minutes (2400s), and the pattern followed is:  

 

Non-conventional operational profile:  

1) Environment changeload:  
i. 600s of normal activity to let the system achieve a steady state; 
ii. 600s of disturbance, during which we induce low responsiveness in data 

streams (by artificially adding a 2-second delay in the response time of 25% 
of the data streams); 

iii. 1200s of normal activity to let the system stabilize. 

 

2) System changeload:  
i. 600s of normal activity to let the system achieve a steady state; 
ii. 600s of disturbance, during which we induce low responsiveness in data 

streams (by artificially adding a 2-second delay in the response time of 25% 
of the data streams) but with the injection of system change after starting 
the disturbance period (normally 1s after injecting the disturbance); 

iii. 1200s of normal activity to let the system stabilize. 

 

Conventional operational profile:  

1) System changeload:  
i. 600s of normal activity to let the system achieve a steady state; 
ii. t= 601s ; injection of system change 
iii. remaining period of normal activity 

4.2.1. Changeload Identification 

 

The first task performed consisted in identifying changeloads that would lead the 

system towards adaptation (environment changeload). Different quality attributes, such 

as performance, cost or information quality, can serve as the base context for applying 

adaptation.  

  

Environment changeload 

 

Analyzing the original DCAS implementation, the non-functional requirements are 

mainly concerned about two quality objectives: Performance and cost (scalability).In 

DCAS performance is measured by the number of requests processed by time unit, 

more specifically, the requests per second (rps) stored in the database center. Cost 

analysis is related to the number of active pollers used in data requesters. 

 The number of requests processed by the system is highly affected by the time each 

device takes to respond. If a device responds with delay or even fails to respond it will 

lead to a performance drop, and this way the triggering conditions for application of the 

adaptation mechanisms will be reached. Thus we concluded that adding/removing delay 

into devices should be used as the environment changeload to lead the system towards 

adaptation. In the previous work performed over DCAS [74] it was determined that the 

workload required for this purpose should induce a 2-seconds delay to 25% of devices 

responses 

An additional scenario was also tested using a similar workload but inducing a 30-

seconds delay instead of 2-seconds. This scenario was used in order to assess the impact 

of device failures in the system performance.  
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System Changeload 

 

Normally, the identification of the system changeload is performed based on a risk-

based approach [75] that considers the probability and impact of system changes, and is 

divided of three steps: 

Static Analysis. Using the architecture model of the target system, we first identify 

a set of system variables, obtained from properties in the model, and operations (from 

operators in the architectural style) that are used in the adaptation. Using this 

information, we select the potential sources of change (associated with system 

properties of an architectural type) and, consequently, the relevant change types. 

Taking the change types, we then identify specific system changes that may impact 

the system goals. This was essentially a manual process that data collected from direct 

measurements and expert knowledge, and basically consists of finding, for each change 

type, tangible changes that may affect the system during adaptation. 

Furthermore, instantiating a change required the specification of concrete attribute 

values (depending on each change) and of the trigger instant, as well as the duration 

(when applicable) of each change. 

Dynamic Analysis. The goal of this step is to understand the impact of each system 

change in the target system. The environmental changeload identified previously is used 

to stimulate the system towards conditions that trigger adaptation, in conjunction with 

system changes identified before, which are injected in the system while undergoing 

adaptation. Thus, each of the identified system changes is run individually on the 

system under typical workload and operational conditions, gathering data about the 

variables included identified for environment stimulation, during a particular time frame 

[0; t]. As in for the Environment Stimulation, each change is executed a number of 

times under similar conditions to obtain a set of traces statistically representative of the 

behavior of the system variables while undergoing the change. This information is then 

used to build an impact model for each system change. 

Filtering/Cutoff. The goal of this step is deciding which system changes should be 

included in the changeload. This is needed as the number of potential system changes 

usually is very large (especially for complex systems) and, thus may become 

impracticable. 

Moreover, it is expected that many of the changes identified present a low 

probability of occurrence and/or may have a low impact in the system. This way, 

following a risk-based approach [25], is proposed the use of an exposure matrix that 

allows understanding how relevant each change is. The goal is prioritizing the changes, 

selecting a Top-N (i.e., the most representative ones), based on a cut-off level. 

As mentioned before, field data can be used to support the process of classifying the 

impact and probability of changes. However, in most cases that data is not available, 

demanding for expert judgment. 

 

Since we already had the knowledge about the system metrics to evaluate and the 

adaptation mechanisms to test for original DCAS, we focused in identifying the system 

variables and operators used in adaptation mechanism for the Rainbow-DCAS 

prototype. ).In DCAS performance is measured by the number of requests processed by 

time unit, more specifically, the requests per second (rps) stored in the database center. 

Cost analysis is related to the number of active pollers used in data requesters.  
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Table 1 System changes 

 

In Table 1 are presented the created system changes. The selection of these changes 

was based in the existing adaptation mechanisms and the components of the system 

considered relevant for its behavior. As described in section 3.4. the monitoring 

mechanisms in the Translation Infrastructure – probes and gauges – observe the running 

target system and update properties of an architecture model managed by the Model 

Manager. The Strategy Executor applies the strategies previously chosen in the 

Adaptation Manager at the system level by executing effectors. If the properties used to 

trigger the adaptations are not properly updated, the adaptation manager will not detect 

that a possible triggering condition has been achieved. The variation of the input queue 

size in the DataRequesterProcessor module (queueStatus) and the current number of 

requests per second being processed (rps) are conditional variables used for triggering 

and selection of adaptation mechanisms. This way, injecting failures in the process of 

updating properties of the architecture model (probing) and the application of the 

adaptation strategies (effecting) may impact the system behavior. 

The application of the adaptation mechanism is mainly related to the change of the 

number of active pollers (add/remove pollers) and the scheduling delay associated to a 

device when presenting (or not) problems in the response time (change rate delay). 

Being the number of pollers and rate delay the direct targets of the adaptation strategies, 

injecting failures in these effectors may result in a critical impact in the system 

behavior. The remaining changes presented are related to the injection of failures in the 

main components of the system architecture. We pretend to assess the impact of each 

case in the system behavior when under adaptation process (non-conventional profile) 

and when running under normal conditions (conventional profile). It is important to 

conclude if the system is able to recover in the presence of these changes or if it leads to 

a catastrophically crash of the system.  

In our approach no fileting/cutoff was made since we concluded that the results on 

analyzed changes could be useful for future studies.  

 

4.2.2. Runtime stimulation 
 

The impact of the selected environment stimulation scenario (device delay) on the 

system’s performance and cost are described in Fig.7 and Fig.8. Results show that 

Rainbow-DCAS is able to recover faster than DCAS. Concretely, immediately after 

starting disturbance period (2-second delay add to 25% of the total devices), the 

performance of both DCAS and Rainbow-DCAS drops, going from average values 

AddPoller Effector  

RemovePoller Effector  

ChangeRateDelay  Effector 

QueueStatus Probe  

Rps Probe 

DataPersisterModule  

DataRequesterModule  

Polling Schedduler Module 

Service Engine Module 

Database-DCAS Connection  

Processor Node  

Database  
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(near 130 rps) to values in the range 0-50. However, by t=700s, performance in 

Rainbow-DCAS has been restored to normal levels. In contrast, DCAS takes more time 

to recover, only going back to normal almost when the disturbance is removed by time 

t=1200s. Regarding efficiency, Rainbow-DCAS is faster in reacting to the disturbance, 

since the adaptation strategies were modified to activate pollers more aggressively when 

low responsiveness appears in data streams. This comes at the cost of more active 

pollers, but it was considered an acceptable solution given that the main priority of the 

system is performance. It is important to remind that these tests were performed using a 

non-conventional operation profile (NCOP). 

 
 

 
Fig. 7 - Performance 

 

Fig. 8 – Cost 

In Fig.9 is presented an example of a system changeload scenario, more concretely 

in the case of AddPoller efector. In this scenario the failure injected consisted in 

blocking the adaption mechanism application by not allowing the addition of pollers. In 



49 
 

both versions, during the entire test, only one poller was active, proving the successful 

injection of the change. It is easily concluded that the performance of the system is 

drastically affected during the disturbance period, with rps values remaining close to 0 

most of the interval. After removing the disturbance the system is capable of recovering 

the normal performance. 

 

 
Fig. 9 -  Performance 

4.2.3.  System Resilience Evaluation 

 

The main objective of the system is to achieve an acceptable level of performance 

(rps) while keeping down the cost of running the system (number of active pollers). To 

assess this objective we study the resilience of the system in the presence of the 

different failures comparing the application of the different adaptation mechanisms. To 

achieve our goal, we built a set of probabilistic models from all scenarios that 

uncovered adaptation failures using a time frame [0; 600]. Each model is synthesized 

from data obtained from 30 different runs of each scenario (COP and NCOP) resulting 

in a total of (4)*30=120 runs. Using these models, we quantify the levels of system 

resilience while the system is in: 

 Conventional Operational Profile: The system is operating steadily with good 

levels of performance and within cost, so adaptation is not required (Table 2 and 

Table 3). In this case, we analyze resilience in terms of whether injecting 

failures make the target system deviate from its COP (e.g., caused by the 

triggering of unnecessary adaptations). Deviation from the system’s COP can be 

either in terms of performance or cost. Concretely, we quantify: (Ƥ1) the 

probability of performance level falling below the MIN RPS threshold in 

specific time interval (P=? [F (rps<120)&(time<X)) ], (Ƥ2) the probability of the 

number of active pollers raising above a specific value (P=? [F pollers>Y], and 

(Ƥ3) the probability of the performance level being above the MIN RPS 

threshold using a limited number of active pollers (P=? [ F 

(rps>120)&(pollers<Z) ])Probability values displayed in the table for Ƥ1 and Ƥ2 

are the complementary, so that lower values indicate better resilience. An 

additional reward attribute is evaluated (uptime) in which we access the number 

of seconds during the disturbance period were the performance is considered 

acceptable (above MIN RPS threshold). In Ƥ1 the total time interval (0-600s) is 

divided in sub-intervals, with 50 seconds each in order to identify in every 

interval the property value. In Ƥ2 are defined 5 different (10, 20, 30, 40 and 50) 
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values in order to assess the probability of the number of active pollers being 

above than the tested value.  Ƥ3 uses the values defined in Ƥ2 to assess the 

number of active pollers being used when the system recovers to normal 

performance. 

 

 Non-Conventional Operational Profile (associated with anomaly 

rpsViolation). The system is underperforming, so adaptation has been triggered 

and the controller is in its planning or execution stage (Table 4 and 5). We 

analyze resilience in terms of whether the system can recover, returning to its 

COP by a given time interval.  Properties Ƥ2 and Ƥ3 are checked again in this 

profile under the same conditions, such as the reward property “uptime”. A 

small modification is made in property Ƥ1.  Now we acess the probability of 

performance level going above the MIN RPS threshold in specific time interval 

(P=? [F (rps<120)&(time<X)) ]. 

This way it is possible to know the specific amount of time until the system’s 

performance is above the MIN_RPS threshold. 

 

  



 Table 2: Conventional Operation Profile - Rainbow Dcas  

 Ƥ1=? [ F (rps<120)&(time<X) ] Ƥ2=? [ F pollers>Y ] Ƥ3=? [ F 
(rps>120)&(pollers<Z) ] 

R{"uptime"}=? 
[F (time=600)] 

 

 X=5
0 

X=1
00 

X=1
50 

X=2
00 

X=2
50 

X=3
00 

X=3
50 

X=4
00 

X=4
50 

X=5
00 

X=5
50 

X=6
00 

Y=1
0 

Y=2
0 

Y=3
0 

Y=4
0 

Y=5
0 

Z=1
0 

Z=2
0 

Z=3
0 

Z=4
0 
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0 

 

Property: 
Test Case: 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22  

AddPollerEffector 
Failure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 600.0 

RemovePollerEffect
or Failure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 600.0 

ChangeRateDelay  
EffectorFailure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 600.0 

DataPersisterModul
e Crash  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 599.9 

DataRequesterMod
ule Crash Failure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 600.0 

Polling Schedduler 
Module Crash 

100 100 100 100 100 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 - 

Service 
EngineModule Crash 

100 100 100 100 100 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 - 

Db-dcas Connetion 
Shutdown 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 600.0 

RpsProbe Failure 
(dcas rpsProbe) 

100 100 100 100 100 100 100 100 100 100 100 100 0 0 0 0 0 36 36 36 36 36 - 

DcasTotal Failure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Database Crash 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

QueueStatusProbe 
Failure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 599.99 

Table 2 Conventional Operation Profile - Rainbow DCAS 
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 Table 3 - Conventional Operation Profile - Original Dcas  

 Ƥ1: P=? [ F (rps<120)&(time<X) ] Ƥ2:P=? [ F pollers>Y ] Ƥ3:P=? [ F 
(rps>120)&(pollers<Z) ] 

R{"uptime"}=? 
[F (time=600)] 

 

 X=5
0 

X=1
00 

X=1
50 

X=2
00 

X=2
50 

X=3
00 

X=3
50 

X=4
00 

X=4
50 

X=5
00 

X=5
50 

X=6
00 

Y=1
0 

Y=2
0 

Y=3
0 

Y=4
0 

Y=5
0 

Z=1
0 

Z=2
0 

Z=3
0 

Z=4
0 

Z=5
0 

 

Property: 
Test Case: 

P1 P2 P3 P4  P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22  

AddPollerEffector 
Failure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 599.93 

RemovePollerEffect
or Failure 

0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 100 100 100 100 100 599.56 

ChangeRateDelay  
EffectorFailure 

0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 100 100 100 100 100 598.76 

DataPersisterModul
e Crash  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 599.33 

DataRequesterMod
ule Crash Failure 

3 7 13 16 16 16 16 16 16 16 16 16 23 0 0 0 0 100 100 100 100 100 596.1 

Polling Schedduler 
Module Crash 

100 100 100 100 100 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 - 

Service 
EngineModule Crash 

100 100 100 100 100 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 - 

Db-dcas Connetion 
Shutdown 

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 90 100 100 100 100 599.99 

DcasTotal Failure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Database Crash 0 0 0 0 0 0 0 0 0 0 0 0 100 79 68 47 21 100 100 100 100 100 - 

QueueStatusProbe 
Failure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 598.76 

Table 3 Conventional Operation Profile - Original DCAS 
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Table 4 Non-Conventional Operation Profile - Original Dcas 

 Ƥ1=? [ F (rps>120)&(time<X) ] Ƥ2=? [ F pollers>Y ] Ƥ3=? [ F 
(rps>120)&(pollers<Z) ] 

R{"uptime"}=? 
[F (time=600)] 
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0 

 

Property: 
Test Case: 

P1 P2 P3 P4  P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 

Device Delay 0 7 20 37 58 70 85 93 97 97 97 100 100 100 64 0 0 0 93 100 100 100 119.4 
Device Failure 0 0 0 0 0 0 0 0 0 0 0 0 100 100 97 60 47 53 93 100 100 100 0.97 
                        
AddPollerEffector 

Failure 
0 0 0 0 0 0 0 0 0 0 0 55 0 0 0 0 0 100 100 100 100 100 3.45 

RemovePollerEffecto
r Failure 

0 0 3 7 26 30 37 50 53 53 56 93 77 67 57 0 0 20 33 71 100 100 90.83 

ChangeRateDelay  
EffectorFailure 

0 0 0 0 13 26 45 47 53 76 78 98 93 90 60 0 0 27 100 100 100 100 103.33 

DataPersisterModule 
Crash  

0 0 0 0 17 28 40 50 60 64 78 100 93 90 62 0 0 28 100 100 100 100 85.99 

DataRequesterModul
e Crash Failure 

0 7 13 26 40 53 59 68 74 85 90 99 100 94 41 0 0 16 95 100 100 100 76.77 

Polling Schedduler 
Module Crash 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Service 
EngineModule Crash 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Db-dcas Connetion 
Shutdown 

0 0 0 3 7 17 23 25 33 49 60 95 100 100 100 100 0 100 100 100 100 100 58.89 

DcasTotal Failure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 
Database Crash 0 0 0 0 0 0 0 0 0 0 0 0 89 64 57 39 18 0 0 0 0 0 0.0 
QueueStatusProbe 0 0 7 17 35 40 50 59 88 94 96 100 100 100 62 0 0 20 97 100 100 100 100.13 
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Table 5 Non-Conventional Operation Profile - Rainbow Dcas 

 Ƥ1=? [ F (rps>120)&(time<X) ] Ƥ2=? [ F pollers>Y ] Ƥ3=? [ F 
(rps>120)&(pollers<Z) ] 

R{"uptime"}=? 
[F (time=600)] 

 

 X=5
0 

X=1
00 

X=1
50 

X=2
00 

X=2
50 

X=3
00 

X=3
50 

X=4
00 

X=4
50 

X=5
00 

X=5
50 

X=6
00 

Y=1
0 

Y=2
0 

Y=3
0 

Y=4
0 

Y=5
0 

Z=1
0 

Z=2
0 

Z=3
0 

Z=4
0 

Z=5
0 

 

Property: 
Test Case: 

P1 P2 P3 P4  P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22  

Device Delay 0 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 287.34 

Device Failure 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 0 100 100 100 100 100 0.20 

                        

AddPollerEffector 
Failure 

0 0 0 0 0 0 0 0 0 0 0 59 0 0 0 0 0 100 100 100 100 100 4.10 

RemovePollerEffec
tor  Failure 

0 92 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 0 0 10 100 100 269.36 

ChangeRateDelay 
Effector Failure 

0 96 97 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 283.00 

DataPersisterModu
le Crash 

0 93 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 283.5 

DataRequesterMod
ule Crash 

0 77 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 256.89 

PollingSchedduler 
Module Crash 

0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 0 0 0 0 0 0 1.59 

Service Engine 
Module Crash 

0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 0 0 0 0 0 0 1.19 

RpsProbe Failure 
(dcas rpsProbe) 

0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 0 0 0 0 0 0 0.0 

Db-dcas Connetion  0 91 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 282.79 
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DcasTotal Failure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Database Crash 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 0 100 100 100 100 100 - 

QueueStatusProbe  13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 299.79 



The probabilities displayed in the table have been quantified using probabilistic 

models synthesized from sets of 30 different execution for each scenario included. Our 

analysis will focus on the NCOP results since is in under this profile that the different 

adaptation mechanisms were tested. Finally we will analyze the results obtained using 

COP to assess the impact of the system changes when no adaptations are being used. 

 

First we perform the evaluation by comparing the two different systems (Rainbow-

DCAS and Original DCAS) in each case and conclude with an overall analysis of the 

results. 

 

 Device Delay. 25% of the devices fail to respond in a timely manner (2-second 

delay induced in their respective DataStreams). While in original DCAS the 

system recovers performance progressively in property P1 (only reaching a 

100% probability of recovering above minimum performance threshold after the 

delay from the devices is removed at time t=600), in Rainbow-DCAS we can 

observe that that same 100% is achieved by t=150.  Regarding property P2, we 

can observe that original DCAS is less aggressive in adding pollers than 

Rainbow DCAS, since the probability of adding more than 40 pollers in original 

DCAS is 0%, compared to the 100% in Rainbow-DCAS. However, property P3 

indicates that Original DCAS is not efficient at removing unnecessary pollers 

after they have been used during the low responsiveness period of the devices, 

since the probability of going below 10 active pollers after this period is 0%, 

whereas in the case of DCAS, it is 100%. 

 Device Failure. In this test the performance of the system is severally affected 

in both cases, with the system not recovering performance before the delay from 

the devices is removed. However in property P3 the same analyses from the 

previous test can be applied. Rainbow-DCAS is more efficient at removing 

unnecessary pollers. 

 AddPoller Failure. In this test, without the possibility of adding pollers to 

recover performance, Original DCAS does not recover during the full period. 

Rainbow-DCAS only recovers in 59% of the cases before t=600. It becomes 

clear that the affection of this specific adaptation mechanism has a great impact 

on the performance of the system. 

 RemovePoller Failure. Values of properties P1 and P2 seem to be not affected 

by this failure. This is expected, since they are concerned only with performance 

and the addition of pollers. However, it is interesting that in P3, the values are of 

course affected in a negative way. In fact, in this particular case, the probability 

of reducing the number of pollers below a particular threshold after they are not 

needed anymore is higher in original DCAS. This is explained because the 

number of pollers that it adds in the first place is smaller, compared to Rainbow-

DCAS which adds pollers more aggressively. Also, Original DCAS can remove 

several pollers at the same time and Rainbow DCAS only remove one each 

time) 

 Change RateDelay. The values of Property P1 for original DCAS degrade 

noticeably in this case, since the rescheduling mechanism is effectively disabled. 
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However, this degradation in performance is negligible in the case of Rainbow-

DCAS, which compensates the unavailability of the rescheduling mechanism by 

making a more intensive use of scale-up. This happens because Rainbow can 

dynamically balance the use of its alternative adaptation mechanisms to achieve 

the same goal, whereas the hardwired version of the mechanisms in DCAS lacks 

this capability. The values of properties P2 and P3 are not affected by this 

failure. 

 DataPersister Failure. The probability of recovering performance in Original 

DCAS is degraded initially, since the failure of the DataPersister impedes the 

writing of device data in the database. However, although one might expect a 

permanent value of 0% for P1 throughout the experiment, DCAS includes a 

redundancy mechanism that automatically detects the absence of a DataPersister 

working properly, and automatically instances a new one, facilitating the 

progressive recovery of performance. The same happens in the case of Rainbow-

DCAS, since it uses the same recovery procedure as original dcas ,although in 

this case the recovery is much faster, thus the overall behavior will not be 

affected seriously). Values of P2 and P3 are basically unaffected. 

 DataRequester Failure. The values of all properties are unaffected both in 

Original DCAS and Rainbow DCAS. In this case, DCAS implements a similar 

redundancy mechanism to the one used for the DataPersister. In this case, the 

effects on performance are less noticeable, since the downtime of the 

DataPersister until replaced with a new instance does not prevent the writing of 

values to the database which was already sent to the DataPersister queue before 

the failure. 

 PollingScheduler. In this case, performance drops completely in both cases, 

since the polling scheduler is in charge of triggering requests for data on the data 

requesters, and without this, the system cannot provide its intended service. In 

contrast with the data requester and the DataPersister, there is not a redundancy 

mechanism put in place for the polling scheduler. One interesting difference that 

can be observed in this case between original DCAS and Rainbow-DCAS is in 

the values of property P2. Since Rainbow-DCAS has a permanent value of 

100% (pollers are added to the maximum supported by the processor node), 

original DCAS does not add any pollers (0%). This is explained by the fact that 

the triggering conditions for scale-up are different in DCAS and Rainbow-

DCAS. While Rainbow-DCAS looks at the low RPS values and the fact that 

queues in Data Requesters are not shrinking (trying to solve it by adding more 

pollers), DCAS looks exclusively at the size of queues in the data requester 

(which is of course 0). Since the size of the queues is not growing, DCAS 

considers that adding new pollers is not necessary. 

 ServiceEngine Failure. Same behavior as in PollingScheduler. Since all data 

requests travel from the polling scheduler to the data requester through the 

service engine, obtaining the same results is expected.  
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 Database-DCAS connection Failure. In this case values of all properties are 

unaffected both in Original DCAS and Rainbow DCAS. Although we should 

expect permanent value of 0% for P1 throughout the experiment, DCAS 

includes a protection mechanism that automatically detects if the connection was 

closed and creates a new connection.   

 DcasTotal Failure. In this case, performance drops completely in both cases, 

since all the core modules are shutdown, resulting of an permanent failure on the 

service. 

 Database Crash. Since the values used for performance analysis depends on the 

rps values, crashing the database results in no data being written to the database. 

This results in a complete drop of the performance. However it is interesting to 

highlight the P2 properties. Both Rainbow-DCAS and Original DCAS use a 

great number of pollers by caused by different reasons. Original DCAS add 

pollers due to the growth in the size of the input Queue. That fact that the 

requests are not saved into the database results slows the process rate of the 

requests, affecting the performance. Rainbow-DCAS adds the maximum number 

of pollers trying to recover the performance to normal values, caused by the rps 

is 0 to the rest of the test.  

 QueueStatus Probe Failure Values of properties P1 and P3seem to not be 

affected by this failure in both cases. However in Rainbow-DCAS, we have a 

big number active of pollers, even under normal performance. This is caused 

because Rainbow uses the queueStatus values as a condition to remove pollers. 

After injecting the failure, the queueStatus value remains high, thus not allowing 

the system to remove unnecessary pollers. 

 RpsProbe Failure.  This test is used for Rainbow-DCAS since it is required to 

trigger the adaptation mechanisms. Original DCAS focuses in the inputQueue 

size as the major variable for triggering conditions. Rainbow DCAS focus in the 

rps value, using the MIN RPS threshold as a condition to add pollers. Thus, the 

performance of the system is severally affected in a similar way of the Database 

Crash. Since the rps value remains under the threshold, Rainbow will 

continuously try to add pollers. 

 

Uptime property 

 

We define uptime as the total number of seconds where the performance of the 

system remained above the MIN RPS threshold, thus under normal performance. The 

time interval for the creation of the probabilistic models was of 600s, so a value of 

uptime near 600s means the system remained under normal performance most of test. A 

value near 0s means the system performance depredated and the adaptations didn’t 

manage to recover the performance.  

In COP, environment simulation is not applied, thus the system operates under 

normal conditions, until a system change is injected. Both Original-DCAS and 

Rainbow-DCAS have uptime values near 600s when confronted with system changes 
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with small impact on the system. However Rainbow-DCAS shows betters results, 

almost with no modification in the system’s performance. Changes with catastrophic 

impact on the system (e.g. database Crash) results in a complete failure in both cases, 

thus with the system not capable of providing its service (uptime value was 0 or even 

not possible to measure). 

In NCOP, when applying environment and system stimulation Rainbow DCAS 

presented better results than original DCAS, meaning higher values of Uptime. Thus, 

we can conclude that, under the same conditions and stimulations, the adaptation 

mechanisms developed in Rainbow-DCAS are more effective than original adaptations, 

enabling the system to quickly recover performance and at the same time without a 

large cost associated. 
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Chapter 5 

Conclusions 

In this work we evaluated experimentally the effectiveness of an architecture-

based approach that evaluates by comparison if the application of architecture-based 

self-adaptation can improve the resilience of an already adaptive system 

. To achieve our goals we used a prototype developed using Rainbow, an 

architecture-based platform for self-adaptation, and DCAS, an industrial software-

intensive system used to monitor and manage highly populated networks of devices in 

renewable energy production plants, using a quantitative approach based on 

probabilistic model checking to perform resilience evaluation. 

 

In the first place we developed a prototype of DCAS (Rainbow-DCAS) with 

different adaptation mechanisms, based on architecture based self-adaptation, removing 

the existing adaptations from the system. 

 

In second place we compared the adaptations created using Rainbow with the 

existing adaptations embedded within DCAS to assess whether the use of architecture-

based self-adaptation really improved the results of the original adaptation mechanisms 

in DCAS.  

 

The experimental evaluation showed the effectiveness of evaluating, by 

comparison, the resilience of adaptation mechanisms when using probabilistic 

behavioral models for quantifying the probability of system properties being satisfied 

when under stimulation. 

Results showed that applying architecture-based self-adaptation proved to be 

more effective than original adaptations, improving the resilience of the system. The 

overall runtime quality of the self-adaptive system can be greatly improved with 

acceptable costs.  
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