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ABSTRACT 

 

 

Human burnt remains are a tremendous challenge for bioanthropologists. In the 

case of skeletons, due to the extensive and chaotic transformations bones and teeth 

undergo throughout heat-transfer, methods for estimating the biological profile are 

biased if applicable. Many attempts have been successful in improving techniques, mainly 

in accessing sex, although there is still much room for improvement. Two particularly 

problematic heat-induced changes that undermine trust in traditional osteometric 

methods are skeletal shrinking and warping. 

In the present framework these two observable occurrences have been 

reinterpreted as size and shape changes, respectively. Despite seeming a quite simple 

intuition, it allows theoretical reformulation of the problem at hand. Bearing in mind that 

quantitative estimation, interpretation and comparison of size and shape in anatomical 

entities are issues that have already been solved by the Geometric Morphometrics 

Synthesis. 

Given the advantage of current statistical shape analysis approaches outlined in 

the previous paragraph, it is quite remarkable that no previous instances of researching 

burnt remains from such perspective were found in the literature. Therefore, this 

preliminary study is the first of its kind and it already showed some potential for the 

creation of predictive models relevant for the forensic sciences.  

It was demonstrated that combining Geometric Morphometrics and Machine 

Learning is a very promising route for shape analysis of heat-altered osteological 

material. By applying Logistic Model Trees on the Relative Warps of Procrustes Shape 

coordinates, the maximum temperature at which a bone was burnt was predicted with an 

overall accuracy of 82%.  Multivariate regression in the context of Procrustes ANOVA also 

shows promise to regress bone shape by using only a few variables. However, caution 

should be taken with the provided results: sample size is quite small, and a 

comprehensive validation is yet to be done. 

 
 
 
Keywords: burnt remains, retrodeformation, warping, shrinking, shape analysis  
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RESUMO 

 

  
Restos humanos queimados representam um desafio interpretativo para os 

bioantropólogos. No caso do esqueleto, devido às extensas e caóticas transformações que 

os ossos e os dentes sofrem por transferência de calor, os métodos para estimativa do 

perfil biológico, caso aplicáveis, tendem a ser enviesados. Têm havido esforços em prol 

dos avanços metodológicos, particularmente em estimativa do sexo, contudo muito 

permanece por fazer. O encolhimento e o arqueamento ósseos induzidos pelo calor são 

dos principais impedimentos ao uso dos métodos osteométricos  tradicionais. 

Estes dois fenómenos observáveis foram aqui reinterpretados como sendo 

modificações de tamanho e forma, respectivamente. Apesar desta intuição parecer 

simplista, permite uma reformulação teórica do problema presente. Visto que a análise 

quantitativa e comparativa do tamanho e da forma em entidades anatómicas são questões 

que foram resolvidas pela Síntese Morfométrica. 

Considerando as vantagens da abordagem acima referida, é notável não terem sido 

encontradas referências na literatura de restos esqueléticos queimados utilizando por 

base os métodos da morfometria geométrica. Portanto, este estudo preliminar é o 

primeiro do seu género e já apresenta ter algum potencial para a criação de modelos 

preditivos com relevância para as ciências forense. 

Demonstrou-se que o combinar da morfometria geométrica com métodos 

computacionais de aprendizagem automatizada traduz-se numa abordagem muito 

promissora  para a análise da forma em material osteológico termicamente alterado. Ao 

aplicar um Logistic Model Trees em componentes principais das coordenadas de 

Procrustes, obteve-se um modelo capaz de prever a temperatura máxima da queima do 

osso com uma exatidão de 82%. Utilizou-se técnicas de regressão multivariada dentro do 

contexto comparativo de uma ANOVA de Procrustes, o que pode vir a ter algum potencial 

para regredir a forma a partir de um pequeno conjunto de variáveis. Contudo,  cautela é 

indispensável com os resultados obtidos: o tamanho da amostra ainda é reduzido e é 

necessário realizar validação dos resultados com outra amostra similar. 

 

Palavras-chaves: ossos queimados, retrodeformação, arqueamento, encolhimento, 
análise da forma  
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1 INTRODUCTION 

 

1.1 MOTIVATION AND AIMS 

 

“Insofar as here the element required to heat the machine seems to be the same 

element as is to be investigated by means of the machine” 

— (Nietzsche, [1878–1880] 1996: 321) 

 

Forensic anthropologists attempt to narrow down the missing person list by 

tracing biological profiles of skeletons from a plethora of complex contexts (Dirkmaat et 

al., 2008). In order to accomplish such endeavor, the current paradigm focus on 

estimation of age-at-death (Cunha et al., 2009), sex (Bruzek & Murail, 2006), ancestry 

(Navega et al., 2014) and stature (Willey, 2014). All these share the fact that they can be 

assessed, within some expected error, through osteometric or morphoscopic aspects. 

However, when bones or teeth have been in contact with heat at high temperatures during 

some period of time, morphology might become severely deformed (Randolph-Quinney, 

2014a,b). Therefore, morphometric-based methods created through reference collections 

of unburnt bones are compromised for heat-altered skeletal material (Fairgrieve, 2007; 

Gonçalves et al., 2013). 

Currently, partial skeletons are being subjected to high temperatures and then 

curated within the 21st Century Identified Skeletal Collection housed at the University of 

Coimbra (Ferreira et al., 2014). Benefiting from such experimental setting, a theoretical 

leverage for developing new robust methodologies in heat-altered osteology is within 

grasp. In order to accomplish that, privileged access to data on pre-burning and post-

burning circumstances has to be transformed into useful models with the ability to 

estimate conditions that the anthropologist cannot accurately guess in the field, such as 

maximum temperature or even original shape of the heat-altered bone. By training 

Machine Learning (ML) models with morphological and contextual data attained before, 

during and after the heating experiment, the aim is to directly address the current bias in 

osteometric estimations provoked by the quite complex and seemingly chaotic heat-

induced changes in shape and size.  
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For doing so, a logic and cohesive scheme of specific objectives have been 

integrated, and can be summarized as follows: 

 

1. To digitally curate 3D meshes of the sampled osteological material 

a. Before these are thermally modified (since these will be altered forever); 

b. After these are thermally modified (because of its fragile and brittle state); 

c. Create an accessible virtual database of comparable material. 

2. Understand the potential of 3D Geometric Morphometrics to 

a. Compare visually and statistically, how heat changes bones; 

b. Recreate the bone original form (i.e. virtual retrodeformation); 

c. Measure objectively the warping phenomenon; 

d. Quantify differences in size, and so, measure shrinkage objectively. 

3. Perform data analysis to access 

a. If the experimental design strategy is undergoing a proper direction; 

b. The ability to create new predictive models to estimate 

i. Non-shape variables from shape-variables; 

ii. Shape variables from non-shape variables. 

 

It is expected that if accomplished together, our goals might promote new 

solutions to target the problem of not being able to know or correctly estimate the form a 

bone had previously to being burned. That is indeed the hidden element one wishes to 

investigate and that can only be retrieved through duteous data collection in controlled 

experimentation. Auspiciously, not only was that condition fully met, but also ended up 

droving all the analytical components of the current dissertation. 

Heretofore, was Nietzsche ([1878–1880] 1996) envisioning something akin to ML 

when reflecting on the Duty for Truth problematic? Maybe, or the similarity is purely 

coincidental, as he was abstracting a conceptual mind and its respective obligation to 

search for reason. That is pretty much what scientists working in Artificial Intelligence 

are aspiring to accomplish. Nonetheless, his aphorism strikingly applies: Insofar as here 

the unaltered and heat-altered shapes are required to be fed into a pattern recognition 

algorithm as to understand morphological heat-alterations by means of the trained 

algorithm. Major difference being that heat is now being used literally instead of 

figuratively, as understanding its effects on skeletons are what drive this dissertation. 
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1.2 HEAT-INDUCED SKELETAL CHANGES: STATE-OF-THE-ART 

 

“Of course first-hand experimentation, when feasible, is the perfect answer to the 

question, How did this happen?”  

— (DeHaan, 2015: 14) 

 

Across the various phases of the heating process, bones get severely altered in 

many morphological and structural aspects. These include fragmentation, chromatic 

modification, weight loss, fracturing, and size and shape deformations (Ubelaker, 2009; 

Randolph-Quinney, 2014b). Taken together, these might be helpful for forensic 

reconstruction of the circumstances related to the fire event, cremation or heating 

experiment (McKinley, 2000). For example, macroscopic appearance of the various colors 

that can show up in osteological material have been regarded as clues of a bone’s 

biochemical conditions and the environmental context associated with a specific burning 

process (Shipman et al., 1984; Mayne-Correia, 1997). 

Likewise, heat-induced fractures have been studied extensively, particularly 

thumbnail fractures. The last have been associated with gradual exposition of wet bone 

surface during heating as the protective tissue contracts (Symes et al., 2013, 2015). 

However, this fails to explain why thumbnail fractures appear in dry bones (Gonçalves et 

al., 2014). As an alternative explanation Gonçalves et al. (2011) suggested thumbnail 

fractures can be associated with collagen preservation. Other fractures have also been 

linked to pre-burning osteological conditions, and a concise but thorough review is 

available by Gonçalves (2012). 

Unfortunately, the just described aspects of heat-induced changes, such as color 

changes and fractures, cannot be, at least in any clear way, analytically studied with the 

chosen theoretical approach. In this research, a macromorphologic approach based on a 

systematic analysis of tridimensional geometrical properties was employed. Thus, only 

heat-induced size and shape alterations are focused of this thesis. 

Van Vark (1974, 1975) who was an early pioneer on applying multivariate 

statistics to cremated bones for sex estimation, identifies the changes that bone suffers in 

size and shape as one of the main difficulties in applying inferential statistics to burnt 

remains. A solution based on Geometric Morphometrics methods (GMM) will be 
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presented in order to address this problem. However, before attempting such endeavor, 

one must ‘clean the room’ and address issues related to terminology. 

Despite many words being thrown in literature to describe shape and size changes 

promoted by heat-transfer (i.e. twisting, bending, torsion, deformation, volume reduction, 

dimensional changes, etc.), we will avoid the confusion here by splitting any intrinsic 

geometric phenomena into two distinct types: warping and shrinking. Even though these 

probably have related causes, we take a step further and define both as fully independent 

geometric properties of heat-induced changes in order to study them quantitatively. Thus, 

for our purposes we can define these as: 

 

Warping: all heat-induced shape change in anatomical structures. 

 

Shrinking: all heat-induced size reduction in anatomical structures. 

 

A validated theory that explains the fundamentals of heat-induced bone warping 

(Figure 1-1) is yet to be found (Gonçalves et al., 2014). Four different hypothesis that 

attempt to address the fundamental cause of warping have been proposed: (1) due to 

contraction of muscle fibers (Binford, 1963); (2) triggered by heat trapped in the shaft 

hollow (Spennemann & Colley, 1989); (3) anisotropic distribution of bone collagen results 

into differential periosteum contraction, thus warping the bone (Thompson, 2005); (4) 

completes the former by adding that the degree of warping might be dependent on 

collagen-apatite bonds preservation (Gonçalves et al., 2011). Notice that the earliest do 

not address the problematic of observing warping in bone without protective tissues. The 

first ever way to objectively quantify the degree of warping via simple mathematical 

procedures will be demonstrated later on. It should be emphasized that having such 

variable might show innovative promise for testing hypothesis as those just mentioned. 

As for shrinking (Figure 1-2), research in the 90s have pushed forward robust 

methodologies to study it quantitatively (Grupe & Hummel, 1991; Nelson, 1992; Holden 

et al., 1995a,b; Huxley & Kósa, 1999). However these were all focused on microscopic 

features, rather than gross structure. While microscopy might be the most fruitful way to 

understand the fundamental basis of bone shrinking (Thompson, 2009), such studies 

disregarded reaching direct quantification of the full or macromorphological shrinking.  
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Figure 1-1 - Heat-induced warping illustrated with CEI/XXI 65. This phenomena can be described as a bowing or an 
arching of the bone in the sense that it deforms the relative position of the epiphysis in respect to the centroid. Left we 
have a virtual layered comparison of pre-burnt (40% opacity) versus post-burnt (80% opacity). In center we have the 
right humerus that was burnt at 900°C for 116 minutes. For comparison, in the right we have the left humerus that was 
not burnt of the same individual. This bone also shows evident fractures and shrinking. 

 

Thus, it becomes a hard task to establish correlations, or to create predictive 

models of the shrinking phenomenon. Some authors (Thompson, 2005; Gonçalves et al., 

2013) have been successful in estimating gross anatomical shrinkage, unfortunately 

through reduced Euclidean measurements. Reduced, in the sense that bidimensional 

distances do not match the geometrical definition of size, even if there is a correlation 

among size and arbitrary lengths and widths. Overall, traditional morphometry has major 

statistical issues and theoretical problems that have been covered by Zelditch et al. 

(2012). Just to give an example, all measures in a structure tend to be highly correlated 

among them, meaning there are very few independent variables despite many 

measurements. 
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Although it has been observed that size alterations can behave very differently 

(even presenting expansion sometimes) along the same anatomical entity, through 

measuring different metrics across the same bone (Thompson, 2005), that might be 

possibly due to using traditional measuring such as lengths and widths to evaluate size, 

instead of landmark-defined configurations. Since in this thesis, bone shrinking was 

defined as being exclusively related to size (i.e. shape-independent), any particular 

difference in sub-anatomic areas are forcefully shape-related and therefore are 

considered to be warping instead of shrinking. Mixing the two hinders any objective 

measurement of either, at least through any available mathematics as of today. 

Accordingly, non-tridimensional measurements (i.e. lengths, widths, ratios, angles, 

surface areas, etc.) are biased to address the problem at hand, and a full geometric 

approach is preferred to quantify size changes. Afterwards, such approach shall be 

demonstrated as well through an elegant mathematical formulation. 

 

 
Figure 1-2 - Heat-induced shrinking illustrated with CEI/XXI 35. This individual was chosen because it had the 2nd 
highest shrinking value, despite having relatively low warping (6th lowest in the sample). Left we have a virtual layered 
comparison of pre-burnt (40% opacity) and post-burnt (80% opacity). In center we have the right humerus that was 
burnt at 900°C for 150 minutes. In the right we have the left humerus that was not burnt (for comparison). 
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1.3 TERMINOLOGY OF A GEOMETRIC APPROACH: A REVIEW 

 

“What’s in a name? that which we call a rose 

By any other name would smell as sweet” 

— (Shakespear, [1597] 1993: II.ii:47) 

 

Now that it was clarified which heat-induced skeletal changes are of interest, it is 

important to define terms concerning statistical analysis of morphological entities. Since 

these have concrete mathematical definitions and should not be confused with the 

vernacular way in which most are thrown around in day-to-day speech. 

 

1.3.1 WHAT FORMS SHAPE AND SHAPES FORM? A MATTER OF SIZE 

 

During the last 30 years, morphometricians synthetized powerful analytical tools 

from non-Euclidean Geometry, Matrix Algebra and Multivariate Statistics into a single 

framework and that would not be possible with ill-defined terminology. Most of the 

following definitions are crucial for understanding GMM and were adapted from the 

masterworks of Dryden & Mardia (1998) and Zelditch et al. (2012). 

 

Geometric Morphometrics: an algebraic approach that transforms problems from 

morphology into problems of geometry, allowing for a toolbox of analytical tools 

to be applicable onto anatomical landmarks. 

 

Landmark: a point of correspondence on each entity that matches between and 

within populations (e.g. the Nasion in crania). 

 

Shape: all the geometric information remaining in a set of landmarks after 

differences in location, scale and rotational effects are removed. 

 

Size: Any positive real valued function g(X), such that g(AX) = Ag(X), where X is a 

matrix of points and A is any positive, real scalar value. The size measure or the A 

favored in GMM is Centroid Size (see definition below). 
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Form: all the geometric information remaining in a set of landmarks after 

differences in location and rotational effects are removed. Thus, form is similar to 

shape, except that it preserves scale. Form is also been referred to as size-and-

shape, since it is a combination of both concepts. 

 

Centroid Size: A measure of geometric scale, calculated as the square root of the 

summed squared distances of each landmark from the centroid of the landmark 

configuration. It is favored as a size measure, because it is uncorrelated with shape 

in the absence of allometry, and also because Centroid Size (CS) is congruent with 

the definition of Procrustes distance (see below). For a given matrix X, the Centroid 

Size is acquired by 

 

 

𝐶𝑆(𝐗) = √∑∑(X𝑖𝑗 − C𝑗)
2

𝑘

𝑗=1

𝑝

𝑖=1

 

 

(1) 

 

where the sum is over the rows i and columns j of the matrix X. Thus, Xij specifies 

the component located on the ith row and jth column of the matrix X and Cj stands 

for the location of the jth value of the centroid. This formula is generalized for p 

landmarks on k dimensions. 

 

Procrustes distance (ρ): is the sum of squared distances between corresponding 

points of two superimposed shapes. When the shape being superimposed is 

reduced in Centroid Size to minimize further the difference between it and the 

target, the distance may be called a Full Procrustes distance (dF). When both sizes 

are held at centroid size = 1, the distance may be called a Partial Procrustes distance 

(dp).  Depending on the anteceding algebraic transformations, any of the presented 

Procrustes distances types between two individuals A and B can be mathematically 

defined as 
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𝜌(𝐀,𝐁) = √∑∑(A𝑖𝑗 − B𝑖𝑗)
2

𝑘

𝑗=1

𝑝

𝑖=1

 

 

(2) 

where the sum is over the squared result of subtracting rows i and columns j of the 

matrix A to the analogous i and j of matrix B. Hence, Xij and Wij specify the 

component located on the ith row and jth column of the X and W matrices. These 

sums are generalized for p landmarks on k dimensions. 

 

1.3.2 LANDMARKS: MAPPING ANATOMY THROUGH GEOMETRY 

 

Knowing which landmarks should be documented in any anatomical structure 

depends on the hypothesis being tested or the general objectives of a study. Selecting a 

coherent configuration of anatomical points is perhaps the single most important step in 

any shape analysis. Thus is useful to understand the difference between types (Figure 1-3) 

as well as their statistical proprieties and assumptions (Dryden & Mardia, 1998). Within 

GMM there are 3 classic types of landmarks, here we adapt definitions provided in the 

Glossary of Zelditch et al. (2012) and originally settled by Bookstein (1997a,b). 

 

Type 1 landmarks: Defined in terms of local information, such as the junction of 

three bones or two bones and a muscle. With Type 1 there is no need to refer to 

any distant structures or relative positions. 

 

Type 2 landmarks: Defined by a relatively local property, such as the maximum or 

minimum of curvature of a small bulge or at the endpoint of a structure. It is 

considered less useful than Type 1 landmarks because the evidence for their 

homology is possibly geometric rather than biological. 

 

Type 3 landmarks: Regarded as deficient because they have one less degree of 

freedom than they have coordinates, which is lost when specifying how to locate 



Introduction 
 

  
10 

the landmark. These can be used in a statistical shape analysis, but the loss of a 

degree of freedom must be taken into account when performing inferential tests. 

 

Figure 1-3 - Main types of landmarks illustrated with the distal part of CEI/XXI 26 right humerus (before heating 
experiment). Examples are: the proximal anterior point of the medial trochlea (Type 1); the most projecting point of 
the medial epicondyle (Type 2); Middle curvature point of the medial trochlea (Type 3). There are also 10 
semilandmarks defining the curvature of the lateral trochlea (yellow arrow represents their order within the shape 
matrix). A descriptive list of selected landmarks for my data analysis can be found at Appendix 6.1. 

 

It is also important to describe here two additional types of landmarks. It might 

seem at first that these are avoiding the logic of well-defined biological homology. 

However their intent is roughly the same and their usefulness comes from the innovative 

possibilities they offer. First, semilandmarks are defined, which are known for having 

many diverse and interesting applications and achieved popularity and drastic theoretical 

improvements during the last years (Gunz & Mitteroecker, 2013). Next, a description of 

pseudolandmarks is provided, following Boyer et al. (2015). With pseudolandmarks the 

‘homology’ is definitely geometric in its essence, but they are particularly important for 

employing automated landmark acquisition techniques through computational means 

(Coelho et al., 2015): 

 

Semilandmarks: Used to integrate information about curvature, these are points in 

curves, edges or surfaces, defined in terms of relative position within aforesaid 

features (e.g. at 90% of the length of the sagittal crest). Because semilandmarks are 
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not discrete anatomical loci and require to be defined through other features, they 

contain fewer degrees of freedom than landmarks, hence the “semi-”. 

 

Pseudolandmarks: Computer-placed landmarks. All the individuals have to be 

defined by the same number of points, as in observer-placed landmarks. Aiming to 

provide each coordinate with a fairly consistent biological identity across the 

sample, without human intervention. Their definition does not fit the criteria of 

either of the 3 types of landmarks (Zelditch et al., 2012), neither semilandmarks 

(Mitteroecker & Gunz, 2009; Gunz & Mitteroecker, 2013). 

 

 

1.4 GEOMETRIC MORPHOMETRICS MEETS BURNT REMAINS THEORY 

 

“Yet, that is precisely what the theory of shape demands of us; if we do not think 

of the problem in terms of whole landmark configurations, we will be led to theoretically 

invalid solutions.” 

— (Zelditch et al., 2012: 404) 

 

As far as it has been inferred from the research into literature, GMM were never 

been applied to study the shape of thermally modified skeletal material. Consequently, 

this is unmapped territory and must be approached prudently. Bearing in mind that the 

initial steps are only now being taken, the first thing to point out is this study can only 

ever attempt at being exploratory. However there are already some general negative and 

positive points from using this approach with burnt skeletal remains that can be 

described. 

A cautionary note is that GMM can never become an optimal solution for solving 

all morphological problems with burnt remains. A major problem of this approach is that 

when heat-induced bone fragmentation is severe, it might be impossible to define a 

sufficient number of landmarks. Unfortunately, this could represent the majority of the 

scenarios an osteologist has to deal. Furthermore, if one includes burnt material from 

archaeological contexts into this consideration (Whyte, 2001). While current 

methodologies for estimating missing landmarks are quite robust, these clearly add some 
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bias to the sample. The problem here is that there are already too many factors increasing 

statistical noise, and there is no need to take the risk of bringing an extra one if it happens 

to affect the majority of the sample. 

Within the most important insights obtained from introducing GMM into the field 

of burnt human osteology, are the new ways of measuring important aspects of heat-

induced changes that have been exposed. First, that shape distances such as the Full 

Procrustes distance can give an easily reproducible quantitative estimate of heat-induced 

skeletal warping. This is useful since warping tends to be recorded by a scoring binary 

system (i.e. present versus absent, e.g. Gonçalves et al., 2014) or through artificially 

created categorical ranks. Next, that by subtracting a reference Centroid Size from a bone 

after it was subjected to heat, to the CS value of the same bone before the heating 

experiment, it is also possible to estimate the amount of size change a bone has 

undergone, thus effectively estimating heat-induced skeletal shrinking. Even if the term 

shrinkage was preferred here to describe the process, if the value obtained is negative it 

would rather be indicative of expansion, which according to Thompson (2005) might 

happen as well. Under the Laws of Thermodynamics it is expectable that objects dilate 

when exposed to heat and thus it is not that impressive to obtain such results with heat-

altered bones. 

It is hoped that these intuitions will be incorporated into the field of burnt remains 

osteology and ultimately contribute to pursuing new avenues for testing hypothesis that 

have remained untestable for too long, or were tested until now mostly through very 

indirect or subjective metrics. 
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2 MATERIALS AND METHODS 

 

 

2.1 MATERIALS 

 

“To find out what happens to a system when you interfere with it you have to 

interfere with it (not just passively observe it).” 

— (Box, 1966: 629) 

 

The sample was comprised of 20 individuals from the 21st Century Identified 

Skeletal Collection (herein CEI/XXI, after its original name in Portuguese: Colecção de 

Esqueletos Identificados do Século XXI), which is housed at the Laboratory of Forensic 

Anthropology, in the Life Sciences Department of the University of Coimbra (Ferreira et 

al., 2014). More precisely, this sample belonged to a subgroup of skeletons from within 

the aforesaid collection that were partially burned under experimental conditions using 

an electric muffle-furnace with thermostat (Gonçalves et al., 2015). 

 

2.1.1 CEI/XXI 

 

As a new collection it is remarkable that CEI/XXI, as of now, already has over 200 

complete skeletons of recently deceased individuals. Quite sui generis in its composition, 

it is of striking importance for the current scene in European forensic anthropology 

(Ferreira et al., 2014) and shows noteworthy potential for providing insights into the 

bioanthropology of contemporary populations (Curate, 2011). All the skeletons are from 

individuals inhumed at the Capuchos graveyard located in Santarém, Portugal. These were 

unclaimed by relatives and thus donated to the University of Coimbra. 

To understand the relevance of CEI/XXI it is better lo look at some descriptive 

statistics and population parameters. Currently the collection is composed by 113 females 

and 89 males, so a total n = 204 skeletonized individuals. The range of age-at-death for 

females is 38 to 100 years, with mean = 81.35, sd = 12.447 and median = 84. Male 

individuals have died younger, as can be perceived by the min-max = [27-95[, mean = 
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72.33 and median = 77. Which is an expected well-known worldwide trend known as the 

mortality gender-gap (Rogers et al., 2010). Also, the male sample is more spread out with 

a standard deviation of 17.057. It is thus a collection with a strong geriatric component 

with potential to bring insight into some extremely complicated issues, such as age-at-

death estimation in adults. Currently there is not a precise enough method for estimation 

of age-at-death in advanced phases of life (Cunha et al., 2009). 

 

2.1.2 HOT PROJECT 

 

Within the CEI/XXI collection some selected skeletons are being partially burned 

under laboratorial conditions. Consequently, a sub-collection that currently counts with 

20 partially burnt individuals is undergoing development. For summary description, the 

age-at-death in the current sample ranges from 70 to 90 years old (mean = 80.26, sd = 

6.31), and sex representation is quite balanced (11 females and 9 males). It is also worth 

remarking that only bones with bilateral antimeres are being burnt. Henceforth the other 

side is kept for comparison and future research (Makhoul et al., 2015). The general steps 

of the protocol used during the controlled heating experiment are briefly illustrated in 

Figure 2-1. 

 

 
 

Figure 2-1 - Brief summary of the HOT Project Protocol. The aim is to minimize error, since many researchers are 
involved and to maximize preservation, because the burnt bones might be useful for future research (adapted from 



  UNWARPING HEATED BONES 
 

 
 

15 

Makhoul et al., 2015). For more information the reader should visit the site of the project at 
http://hotresearch.wix.com/main 

It is expected that this collection will improve the current state of knowledge on 

heat-induced changes in human bones and teeth and also to upgrade current, or create 

new analytical methods that could be useful for researchers of burnt skeletal remains. 

This could promote methodological improvement in forensic anthropology of arson 

crimes (Thompson, 2005), fire-related disasters (Gonçalves et al., 2015) and 

bioarchaeology of cremated remains and funerary rituals (Gonçalves et al., 2011). 

There were some drawbacks on using data from the HOT Project for extrapolations 

that could be truly useful in real-word forensic scenarios. For example, the 20 individuals 

from this dataset were all buried for a minimum of 70 months and therefore did not tend 

to have any soft tissue attached. Differing from dealing with burnt bodies in a forensic 

setting, where not having soft tissues prior to burning is rarely the case. For reviews of 

the effects of heat in soft tissues check Payne-James et al. (2003) and Saukko & Knight 

(2004). Another possible problem that was not being accounted for was the position or 

the way a bone lies in the muffle during burning. Because gravitational effects and the 

changes in the relative position of the center of mass during the heating experiment might 

affect the way a bone deforms. The team is currently testing how influent this problem is 

and hopefully insights will arise about its impact in the near future and how it should be 

experimentally controlled. 

Despite limitations, being able to work with heat-altered human skeletons under 

laboratorial conditions already represents considerable progress when compared to 

research that used instead faunal remains in their experimental designs (e.g. Spennemann 

& Colley, 1989; Whyte, 2001; Thompson, 2005; Munro et al., 2007). At least when 

considering direct applicability of the acquired knowledge into real cases in forensic 

anthropology or bioanthropology. 

 

 

2.2 MESH ACQUISITION AND GEOMETRIC SAMPLE SIZE 

 

In order to apply GMM to any dataset of tridimensional anatomical structures 

there are usually three options: (1) to directly obtain Cartesian coordinates through a 

high-precision 3D digitizer such as MicroScribe; (2) to use medical imaging techniques 

http://hotresearch.wix.com/main
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(e.g. CT, MRI, etc.) to acquire full volumetric information; or (3) to get polygonal meshes 

of the anatomy through surface laser scanning. For this dissertation, the last approach 

was preferred and applied to all the humeri of the individuals in our sample. The humerus 

was selected because of its relevance in biological profiling, and also since it displays quite 

representatively the range of possible heat-induced alterations in long bones without 

becoming excessively fragile. 

In a first phase, the humeri of our 20 individuals were virtually reconstructed 

through NextEngine™ 3D Scanner HD and its associated software ScanStudio™ HD 

(NextEngineTM, 2015). Following, an open-source 3D mesh processing system, MeshLab, 

was used to create a watertight 3D model (Cignoni et al., 2008). This procedure to obtain 

virtual 3D representations of the humeri was repeated after the heating experiment. In a 

geometrical sense and in terms of statistical modeling this duplicated the total sample size 

(n = 40). However, one humerus was not possible to scan before heating (individual 

CEI/XXI 77), and even though data about it was collected, this individual was not used in 

the shape statistical analysis, reducing our effective n to 19 (geometric n = 38, since its 

post-burning mesh was also discarded). This was not seen as a major problem, since the 

individual 77 was an outlier to begin with. As it was burnt at only 500 degrees Celsius (i.e. 

the lowest temperature in the sample) and despite the striking dark coloration and a 31% 

mass reduction (also the lowest, sample mean = 39.32%), there were no noticeable form 

deformations in the humerus and no evidences of calcination, in other words it has only 

undergone carbonization. 

 

2.2.1 3D LASER SCANNING STRATEGY 

 

The pipeline for tridimensional laser scanning of long bones was designed, based 

on suggestions and protocols first proposed by Filiault (2012). After many trials, a 

procedure that takes between 30 and 45 minutes to virtually render a complete humerus 

with high quality was chosen. It should be noted that the long bones from the human body 

take considerable more time and dedication when considering the limitations of a 

NextEngineTM (2015). Because of its shape and size, multiple laser scanning in different 

positions is necessary in order to obtain great detail and successfully align the joint final 
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mesh. When the bones are calcined, extra care is required, because of the inherent fragility 

of the osteological material after experimental heat alterations. 

Before GMM was thought to be included into the experimental protocol of the HOT 

Project, already 9 skeletons were subjected to partial burning. Accordingly, we would 

have a very small sample size, of only 11 individuals. So, the antimeres of the previously 

burnt humeri were also 3D scanned for 8 of those 9 skeletons. Then, these were virtually 

mirrored, meaning some left humeri were transformed into right humeri or vice-versa, in 

order to maximize our n. 

To perform 3D shape mirroring via computational means, it is necessary to flip one 

of the axes, while freezing the shape matrix. This was carried out for individuals 24, 29, 

32, 49, 50, 57, 64, 65 and 77 of the CEI/XXI collection. However, as already mentioned, it 

was decided to not use in our analysis the last one that besides being an outlier, its 

antimere has severe trauma with associated bone growth, plus taphonomic erosion and 

thus was very asymmetric (Figure 2-2), which would inject unnecessary bias into our 

sample that would be hard to handle statistically. 

 

 
 

Figure 2-2 - Humeri of individual CEI/XXI 
77. The right humerus (on top) was burnt at 
500ºC for 75 minutes. Having considered the 
trauma in the left humerus’ diaphysis, and the 
taphonomic process in the lateral side of the 
proximal epiphysis, it was decided to not 
mirror the left humerus or to even use data 
from this individual in the final analysis. 

 

 

2.2.2 MESHLAB: GETTING ANATOMICAL 3D MODELS READY FOR 

ANALYSIS 

 

Afterwards, post-processing of the 3D meshes is achieved with the help of 

MeshLab (Cignoni et al., 2008). Since the meshes generated through laser scanning 

usually possess excess detail and noise, holes, and non-manifold vertices and edges, we 

need to apply computational techniques such as Poisson Surface Reconstruction 

(Kazhdan et al., 2006; Kazhdan & Hoppe, 2013). This algorithm uses the distribution of 
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Poisson as a means of removing many unexpected artifacts that might arise during 3D 

laser scanning, while being quite effective at closing holes resulting from parts impossible 

to detect by the laser scanning technology. Thus, an essential step to create watertight 

tridimensional models (Bolitho et al., 2009; Estellers et al., 2015), which are useful for 

conceiving automated methods of landmark digitization. 

Contemplating the lack of literature in how to generate a 3D virtual anatomical 

part ready for landmark digitization, attempts were made through trial and error until a 

protocol that generated reproducible results with consistent quality was developed. It 

entails the following steps: 

  

1. Load a .ply file (obtained from ScanStudio™ HD) into MeshLab; 

2. Remove all non-manifold edges and vertices; 

3. Apply Quadric Edge Collapse Decimation: 

a. Reduce to 64000 faces; 

b. Check ‘preserve normal’; 

c. Check ‘preserve topology’. 

4. Apply Poisson Surface Reconstruction with the following parameters: 

a. Octree depth: 12; 

b. Solver divide: 6; 

c. Samples per node: 1; 

d. Surface offsetting: 1; 

5. Apply Quadric Edge Collapse Decimation to the just created Poisson mesh: 

a. Reduce to 32000 faces; 

b. Check ‘preserve normal’; 

c. Check ‘preserve topology’. 

6. Export the final mesh into .off and ASCII .ply formats. 

 

After this procedure, the 3D virtual humeri are almost ready for statistical analysis 

through a group of techniques developed within the Procrustes paradigm for quantitative 

analysis of shape and form. However, such framework requires the analyst to possess a 

data matrix with Cartesian coordinates of anatomical landmarks (Bookstein, 1997a,b; 

Zelditch et al., 2012). 
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2.3 R: STATISTICAL LANGUAGE 

 

“Non-reproducible single occurrences are of no significance to science.” 

— (Popper, 1959: 66) 

  

All the statistical and morphological analysis was done with R, a free and open 

source scientific programming language (Claude, 2008; R Core Team, 2015). Choosing this 

tool was proven to be crucial for the elaboration of this thesis. The main factors 

influencing the decision of using it were: 

 

 It is multiplatform and works in every OS (Windows, Linux, Apple OS, etc.); 

 Dramatically reduces the use of multiple software for morphometric analysis, 

which increases coherence and reduces compatibility issues (Claude, 2008); 

 Statistics done through written code have far bigger reproducibility than when 

done in point-and-click software (Gandrud, 2013; Stodden, 2015);  

 GMM and programming have been going hand-in-hand nearly since the theoretical 

foundation of the discipline. Popular R packages include geomorph (Adams & 

Otárola-Castillo, 2013; Adams et al., 2015), shapes (Dryden, 2014), Morpho 

(Schlager, 2015), Momocs (Bonhomme et al., 2014), among others. These have 

been created to facilitate the analysis even for non-expert users; 

 R has extremely flexible and powerful graphical tools for data visualization 

(Claude, 2008; Chang, 2012); 

 The sheer amount of manuals, scientific and pop-science articles, MOOCs, 

conferences, workshops, tutorials, online forums, and an ever-growing community 

of people ready to help make it far more preferable when compared to other 

extremely specific software with just a handful of users (Horton & Kleinman, 

2015). 
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2.4 LANDMARKS: THE RAW MATERIAL FOR MODERN SHAPE ANALYSIS 

 

2.4.1 AUTO3DGM: AUTOMATIC LANDMARKS IN R 

 

“This is very beautiful. It is neat, it is modern technology, and it is fast. 

I am just wondering very seriously about the biological validity of what we are 

doing with this machine.”  

—  Melvin Moss on using computers for biometrics (in Walker et al., 1971: 326) 

 

From an historic point of view, geometric morphometrics tried to answer 

questions with an inherent biological or evolutionary explanation (Benítez & Püschel, 

2014). It had been used consistently as a toolkit to solve problems of phylogeny and 

taxonomy, modularity and morphological integration, development, allometry, 

asymmetry, among others (Adams et al., 2013). With that in mind, it is not hard to 

understand the importance given in the literature to obtain landmarks that are biological 

homologous between organisms (Zelditch et al., 2012; Claes et al., 2015). 

However, here we are not trying to grasp transformations provoked by genetic or 

developmental constraints, but instead by heat. Also, considering the high number of 

landmarks that are required to map the complex and chaotic characteristics of bone 

deformation provoked by heat, automatize landmark acquisition seemed to be a 

worthwhile option. A package for R that fits this purpose has just recently come out, 

known as auto3Dgm (Boyer et al., 2015). Straightaway a preliminary study was done in 

collaboration with colleagues, using 3D scanned tali bones for sex diagnosis. It started as 

a small project with the aim of learning and testing auto3Dgm as a tool for performing 

geometric morphometric analysis. Eventually, it led to very satisfactory results when 

using Logistic Model Trees over Procrustes shape matrices and achieved 88% accuracy 

on sex classification after 10-fold Cross-Validation (Coelho et al., 2015).  

Moreover, the automated methods proposed by Boyer et al. (2015), already show 

results as good or superior as when experts in anatomy manually select the landmarks. 

Taking everything that has been said to this point, it would seem that using the algorithms 

provided by Boyer et al. (2015) for automatically acquiring landmarks in a heat 

deformation problem was theoretically justified. 
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However, for that to happen substantial numbers of pseudolandmarks need to be 

acquired. Consequently the digitization process can become too expensive in terms of 

computational processing power and memory and might be impossible to run it in more 

modest or older workstations. Unfortunately, the use of auto3Dgm for heat-altered bones 

failed, which might have been caused by lack of computational power available. Or might 

be simply due to the chaos inherent to heat-deformed bones being just too complex to be 

understood and perfectly mapped by this particular algorithm. 

 

2.4.2 MANUAL VERSUS AUTOMATIC: A MIDDLE-WAY WINS 

 

Since the fully automatic method of mass-generating pseudolandmarks did not 

work out, an alternative had to be found. Nevertheless, manually defining landmarks has 

huge problems: (1) it is too prone to errors; (2) it can become very time-consuming; (3) 

when a mistake is done, it might become extremely challenging to correct it or even 

identify it; (4) you have to define all landmarks early on, which needs to be done in a 

theoretically rigorous way. However there is a semi-automatic approach provided by the 

software Landmark Editor, where only the 4th problem applies. With this approach it is 

mandatory to focus on defining all the landmarks prior to the analysis. However, after 

manually adding them to a first individual that works as a template (a.k.a. ‘atlas’ in the 

software’s terminology), all other individuals get these landmarks in a more-or-less 

correct place that the user needs to manually verify and made corrections as it seems 

anatomically fit, which solves quite easily problems 1, 2 and 3. 

In order to select landmarks that would make theoretical sense for my sample, a 

literature research for well-defined anatomical landmarks of the humerus was done. 

Chinnery (2004) illustrates complete landmark constellations of post-cranial skeletal 

elements, including the humerus. Unfortunately the study is about Ceratopsids dinosaurs, 

and while the landmarks are biological homologous among species it is not that easy to 

translate the figures into human osteology. On the other hand, Holliday & Friedl (2013) 

defined landmarks for hominid humeri, but unfortunately, with only 19 and a great 

proportion being either Type II or III landmarks it was considered a suboptimal landmark 

cluster for us. There are two works by Kranioti et al. (2009) and Tallman (2013) that 

provide a very good list of landmarks with illustrative definitions, but they only mapped 
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the epiphyses of the humerus, and understanding the changes in the diaphysis is 

considered crucial for accomplishing this thesis’ objectives. Finally, there is a recent paper 

by Rosas et al. (2015) that provides incredibly throughout definitions for 43 landmarks 

of the humerus. Most importantly, since Rosas et al. (2015) had chosen landmarks robust 

enough to deal with extremely fragmented material (i.e. paleoanthropological humeri 

from Atapuerca), we can safely assume that their approach is also appropriate for shape 

analysis of heat-deformed bones. 

For addressing problems of dimensionality and other non-desirable mathematical 

proprieties, Type III landmarks from Rosas et al. (2015) were removed. Also if a Type II 

landmark seemed too hard to obtain or visualize in a virtual 3D environment, it was 

discarded as well in order to reduce observer error by enhancing reproducibility. 

Ultimately a protocol with 35 landmarks based on Rosas et al. (2015) protocol was 

selected to map all the humeri’s shapes from our sample (Appendix 6.1). 

One last feature of Landmark Editor also worth mentioning is its ability to 

morphing an anatomical object into another, by controlling the morphing degree through 

a sidebar. This literally means we can either virtually “burn” or “unburn” a bone 

controlling how strong the effect of this transformation is (Figure 2-3). This has potential 

to reconstruct other bones warped by heat even if these do not belong to our original 

sample, as long as one correctly assigns the same landmarks onto them.  

 

Figure 2-3 - Retrodeformation as a new tool to visually understand warping. Here, the right humerus of the 
CEI/XXI 5 individual is being morphed from its unburnt to its fully burnt state (900°C for 150 minutes). Orange 
represents the original unburnt mesh and pale-blue represents where the burnt mesh is dominant. Notice how the pale-
blue mesh spreads as the humerus warps. The morphing was broken down into 4 steps, but it could theoretically be 
broken into infinite steps. Since the models have been scaled to a consensus size, only the effects of warping are being 
shown, disregarding shrinkage. Otherwise the difference among the 5 stages would be far more evident. 
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2.5 GEOMORPH: INTEGRATING GEOMETRIC MORPHOMETRICS IN R 

 

After obtaining the landmark configurations for our dataset with the help of 

Landmark Editor, these are ready for being statistically analyzed. In R, the geomorph 

package allows the execution of the full workflow of GMM, even though we jumped the 

first step by doing it in Landmark Editor (an external software, easier to use for this 

particular part). The full workflow of GMM can be summarized as: 

 

1. Data collection (i.e. landmark digitizing); 

2. Data input (i.e. bringing landmark data into R); 

3. Data manipulation (i.e. estimating missing values); 

4. Generalized Procrustes Analysis (Gower, 1975; Rohlf & Slice, 1990); 

5. Data exploration and visualization (Klingenberg, 2013); 

6. Data analysis (Mitteroecker & Gunz, 2009). 

 

The two last steps include all the standard techniques of the Geometric 

Morphometrics toolkit, including Principal Component Analysis (Mitteroecker & 

Bookstein, 2011), Canonical Variates Analysis (Campbell & Atchley, 1981), Partial Least-

Squares (Rohlf & Corti, 2000; Bookstein et al., 2003), Multivariate Regression and 

Procrustes ANOVA (Zelditch et al., 2012; Adams et al., 2013), Thin-Plate Spline 

Interpolation (Bookstein, 1989; Green, 1996), among others. For more details on the 

abilities of the geomorph, check Adams & Otárola-Castillo (2013) and Adams et al. (2015) 

The above-mentioned methods allow us to perform statistical analysis of shape 

variation and its covariation with other variables (Bookstein, 1997a). Moreover, Thin-

Plate Spline (TPS) is particularly important, since it can be used to deform a 

tridimensional shape into another (Gunz & Mitteroecker, 2013). Therefore it has 

implications for Objective no. 2.b: to reconstruct the original bone shape, before the heat-

induced changes have occurred. However it should be noted that the way in which 

Landmark Editor does this is even easier, and allows partially morphed shapes to be 

created and saved (thus 3D printable), as well as it has been show previously in Figure 

2-3. 
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2.6 PROCRUSTES SUPERIMPOSITION 

 

“Shape is all the geometrical information that remains when location, scale and 

rotational effects are filtered out from an object.” 

— (Dryden & Mardia, 1998: 1) 

 

Applying Procrustes’ algorithms is the contemporary way to obtain insights into 

morphology and extracting shape information (Rohlf & Slice, 1990; Goodall, 1991; Dryden 

& Mardia, 1998; Zelditch et al., 2012). This approach is of such ubiquity in Geometric 

Morphometrics that in a recent review of the state-of-the-art, Adams et al. (2013) dubbed 

contemporary approaches to statistical analysis of shape as the “Procrustes Paradigm”. 

Generalized Procrustes Analysis (GPA) was first introduced by Gower (1975) as a 

functional algorithm for removing the effect of position, rotation and size in a set of 

multiple individuals represented by Cartesian coordinates (Figure 2-4). By discarding this 

information we obtain a set of consensus shapes in which each is at the orientation, 

location and scale that minimizes its distance from the reference while maintaining its 

key geometric proprieties in what is called the Kendall’s shape space (Kendall, 1977; 

Small, 1996; Kendall et al., 2009). This is the essential algorithmic step preceding data 

analysis within the realm of GMM. After this algebraic procedure, most tools from 

multivariate statistics become applicable to any dataset of landmark multidimensional 

arrays (Zelditch et al., 2012; Benítez & Püschel, 2014). 

 

 

Figure 2-4 - Illustration of Procrustes Superimposition with the CEI/XXI 26 individual. Dark colored humerus 
represents the unburnt mesh and the lighter is the same bone after the heating experiment (900°C for 195 minutes). 
The GPA can be broken into 3 steps: A) translation, B) rotation and C) scaling. After A, B, C are performed, Procrustes 
Superimposition is achieved among the anatomical structures, meaning consensual shapes in Kendall’s space were 
obtained and thus, these bones are ready for shape analysis. 
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There are two very important scalar vectors obtained from bringing our 

morphologies into the Kendall’s shape space that seem to have practical correspondence 

to two critical concepts from burnt remains theory. The already mentioned Full 

Procrustes Distances (DF) and differences in Centroid Size (CS) as independent 

quantitative measurements of heat-induced skeletal warping and shrinking, respectively. 

It should be noted that there are no references in the literature, previous to the 

publication of this manuscript, of a geometrically definable quantitative analysis of these 

two phenomena. Which together with fractures and color alterations represent the main 

spectrum of heat-induced skeletal changes (Gonçalves et al., 2014). 

A simpler and older version of GPA is Ordinary Procrustes Analysis (OPA). Instead 

of performing a Procrustes superimposition for a whole sample, it is only applicable to 2 

individuals. The mathematical steps for performing an OPA were actually laid down by 

renowned anthropologist Franz Boas (1905), for addressing shortcomings of using 

standard anatomical positioning (e.g. Frankfurt orientation). Later, it was reformulated 

for allowing matrix algebra calculations, to answer questions in psychometry (Mosier, 

1939). Only with Gower (1975) does OPA gets generalized enough to allow infinite 

sample size, thus becoming known as GPA. Afterwards, much of the theoretical work that 

consolidated Procrustes superimposition as an elegant and mathematically coherent 

method of statistical shape theory is due to David Kendall (1984, 1985, 1989), who was 

initially motivated to apply superimposition algorithms in order to study shape and form 

characteristics of different megalithic sites (Broadbent, 1980; Kendall & Kendall, 1980). 

For our purposes of addressing specific problems in burnt osteology, which 

includes estimating quantitatively warping and shrinking, we could either do OPA for 

every pair of unburt-and-burnt individual bone, or do a GPA for the whole sample. The 

second approach was preferred because it is far faster and easier to implement nowadays, 

and also because it gives us far more data. Since GPA is performed to the whole sample, it 

is possible to calculate all possible Full Procrustes distances among our 38 geometric 

individuals in the sample (i.e. a total of 384 Procrustes distances), even though only 19 of 

these are relevant to directly estimate warping. However, OPA is still a crucial concept for 

this thesis, in the sense that it is the only methodological way for others to test (with their 

own data) the predictive abilities of the statistical models that have been designed. Which 

are shown later in Chapter 3.7. 
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2.7 THIN-PLATE SPLINE INTERPOLATION 

 

Grid plotting via interpolate functions had its roots in a simple, yet powerful idea 

of using deformation grids as a way for illustrating and formalize shape differences among 

geometrical entities. This intuition dates back to the 1528 manuscript by Albrecht Dürer 

on the variation of human proportions (Figure 2-5). 

 

 

Figure 2-5 - A few examples of the first known use of deformation grids in anatomy. Vectorial graphics presented 
here were redrawn after Dürer’s ([1528] 1969) original drawings. 

 

Later in 1917, D’Arcy Thompson revisited the idea with what he called ‘Cartesian 

transformations’. His insight was to not only use this tool for describing biological 

variability but also to apply it for interspecific form comparison (Figure 2-6). Yet 

Thompson ([1917] 1992) had also hand-drawn his grids, so these are actually also pre-

Cartesian and error-prone. The one to solve this problem was Bookstein (1989), by 

implementing an interpolant function commonly used to address problems in material 

physics. With a TPS algorithm it is possible to computationally define a deformation grid 

from two sets of Cartesian coordinates. Thus effectively mapping the differences in form 

between two anatomical entities. 

 

 

Figure 2-6 - Cartesian transformations from Homo sapiens into Pan troglodytes and a Papio sp. vectorial graphics 
adapted from Thompson’s ([1917] 1992) classic On Growth and Form. 
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As a methodology TPS Interpolation serves 3 main goals in statistical shape 

analysis: (1) as it primary purpose it uses deformation grids as visualization tools of shape 

modification (Mitteroecker & Bookstein, 2011; Klingenberg, 2013); (2) it is used as well 

in dimensionality reduction, in the case of 3D data specifically from 3k degrees of freedom 

into 3k-7 with no loss of information. Obtaining the correct degrees of freedom allows the 

use of conventional statistical tests without having worries concerning complicated 

mathematical details (Zelditch et al., 2012); (3) additionally, it enables superimposition 

(sliding) of semilandmarks (Gunz & Mitteroecker, 2013). 

For this thesis’ objectives, the first point is perhaps the most crucial. But even if 

one was not concerned with graphical displays, TPS is useful since it performs an 

eigenanalysis of the bending energy matrix thus obtaining a parsimonious matrix that 

describes shape differences between a reference and another shape through partial 

warps scores, which can be directly used (unlike coordinates from GPA) for conventional 

statistical analysis, such as regression. 

 
 

2.8 LOGISTIC MODEL TREES: A CLASSIFICATION ALGORITHM 

 

The chosen Machine Learning algorithm to create our predictive models was 

Logistic Model Trees (LMT). It combines the heuristics of Logistic Regression and 

Decision Trees during its supervised training process. This is quite useful, since the 

former tends to show low variance, but high bias. While the later usually has low bias, but 

is less stable and prone to overfitting (Landwehr et al., 2005). In a recent preliminary 

study dealing also with a classification problem, LMT beat in overall accuracy many other 

state-of-the-art Machine Learning algorithms when trying to estimate sex from 

Procrustes-aligned shape matrices (Coelho et al., 2015). 

For our dataset LMT is optimal, since the data we collected already has a bias and 

variance problem. Thus a classification algorithm that is robust to both problems is the 

most scientifically honest and sound approach. As a structured predictive model, it 

consists of a standard decision tree construction with logistic regression functions at its 

leaves (Figure 2-7). This makes it harder to interpret than simpler classification 
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algorithms, since it cannot be graphically represented as a tree of decisions neither as an 

elegant regression-style formula. 

However, readers can still easily use any models created with LMT through loading 

their own landmark configurations into R and force an OPA between their obtained 

landmarks and our reference average shape, and then analyze their data by running the 

code provided in the following chapters. 

 

LMT(examples){ 
   root <- new Node() 
   alpha <- getCARTAlpha(examples) 
   root.buildTree(examples, null) 
   root.CARTprune(alpha) 
} 
 
buildTree(examples, inititalLinearModels){ 
   numIterations = 
      CV_Iterations(examples, inititalLinearModels) 
   initLogitBoost(initialLinearModels) 
   linearModels <- copyOf(inititalLinearModels) 
   for i = 1...numIterations{ 
      logitBoostIteration(linearModels, examples) 
   } 
   split <- findSplit(examples) 
   localExamples <- split.splitExamples(examples) 
   sons <- new Nodes[split.numSubsets()] 
   for s = 1...sons.length{ 
      sons.buildTrees(localExamples[s], nodeModels) 
   } 
} 
 
 
CV_Iterations(examples, initialModels) { 
   for fold = 1...5 { 
      initLogitBoost(inititalLinearModels) 
      # split into training/test sets 
      train <- trainCV(fold) 
      test <- testCV(fold) 
      linearModels <- copyOf(inititalLinearModels) 
      for i = 1...200{ 
         logitBoostIteration(linearModels, train) 
         logErros[i] += error(test)          
      } 
   } 
   numIterations = findBestIteration(logErrrors) 
   return numIterations 
} 

Figure 2-7 - Pseudocode for implementing Logistic Model Trees, (adapted from Landwehr et al., 2005) 
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3 RESULTS AND DISCUSSION 

 

 

3.1 GETTING STARTED 

 

All the results presented within this manuscript have been automatically 

generated as a .docx file through the knitr package for R. Even this paragraph itself was 

not written in Word, but instead in R. Contrary to the standard, this has the advantage of 

creating a text accompanied by the exact code that generated the graphics, tables and 

other results. Hence, increasing the reproducibility criteria, allowing other researchers to 

easily run the data analysis into their personal computers as long as they have data for it. 

This adheres to the tenants of the Open Data movement and Science 2.0 philosophy by 

promoting data analysis transparency among scientists. 

If you desire to execute in your computer the whole data analysis present in this 

thesis you should first make sure to: 

 

 Have installed R and the latest version of RStudio 

 Install the latest version of the knitr package, by writing 

install.packages("knitr") in your RStudio console. 

 

To run the code that produced my thesis output: 

 

 Open RStudio, and go to File > New > R Markdown 

 Paste in the contents of the results.Rmd available in this thesis’ online repository 

http://git.io/vYjNa,  or by contacting me: joao@osteomics.com 

 Click Knit Word 

 

You should not forget to use setwd("YOUR/FOLDER/LOCATION") to where the 

landmark files and 3D meshes are located. Or even easier, just open the HOTProject-

GM.Rproj file, since it automatically loads everything. 

 

http://www.r-project.org/
http://rstudio.org/download/
mailto:joao@osteomics.com
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It should run fine as long as you follow what is said above. Just to clarify, from here 

on, every time you see chunks of code, you can easily identify them through the box with 

light background and different font type that gets colored by association of the type of 

programming object. There you also see some commands that usually have a # symbol 

followed by some sentence, which are explanatory commentaries upon what the code is 

doing to help non-experts understanding what is being programmed. If it is a double ## 

it is an output generated by the code. 

 

3.2 DATA INPUT 

 

Our landmarks were obtained from the free software Landmark Editor. Likewise, 

it was attempted to use auto3Dgm for the same aim, and also in order to compare the two 

approaches (i.e. manual versus automatic). Nonetheless, as it can be seen in Figure 3-1 

that was generated from the output of the auto3Dgm algorithm, a total of 5 burnt bones 

were inadequately aligned. Regrettably, this would effectively reduce the geometric n by 

10, since their counterparts (i.e. the unburnt) would not be used for any particular 

purpose without their pair. Considering that no way was found within R to solve this 

problem, this approach was discontinued mid-way during the project because it would 

considerably reduce our n. 

 

 

Figure 3-1 - Shapes automatically scaled and aligned by auto3Dgm using 256 pseudolandmarks. The incorrectly 
aligned bones are presented in red, which are all burnt humeri (of CEI/XXI 5, 32, 35, 51 and 65). Notice that some have 
been mirrored (turned into left antimeres), others were rotated 180 degrees in an axis and one was rotated in another 
axis and mirrored, overall very chaotic algebraic transformations. Despite hundreds of attempts, no elegant solution for 
this problem was found, and the use of auto3Dgm for this project was abandoned. 
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SW <- read.csv(file = './data/SingularWarps.csv', header = TRUE) # loads  
all the variables that aren't shape-data. 
 
rawdata <- pts2array(pts.dir = './data/pts-files') # loads raw landmark   
data into R, similary to readland.nts(), check ?readland.nts 
 
dimnames(rawdata)[[3]] # reads each geometric configuration’s name. Useful
 to confirm if the order and naming are correct and consistent with       
 singular warps order. Codenames have ID, sex and burning temperature. 

##  [1] "CEIXXI05F"     "CEIXXI05F900"  "CEIXXI08F"     "CEIXXI08F700"  
##  [5] "CEIXXI17M"     "CEIXXI17M900"  "CEIXXI24F"     "CEIXXI24F800"  
##  [9] "CEIXXI26F"     "CEIXXI26F900"  "CEIXXI29M"     "CEIXXI29M800"  
## [13] "CEIXXI32F"     "CEIXXI32F800"  "CEIXXI35M"     "CEIXXI35M900"  
## [17] "CEIXXI43M"     "CEIXXI43M800"  "CEIXXI49F"     "CEIXXI49F850"  
## [21] "CEIXXI50F"     "CEIXXI50F900"  "CEIXXI51M"     "CEIXXI51M900"  
## [25] "CEIXXI53F"     "CEIXXI53F800"  "CEIXXI57M"     "CEIXXI57M900"  
## [29] "CEIXXI64M"     "CEIXXI64M800"  "CEIXXI65F"     "CEIXXI65F900"  
## [33] "CEIXXI79M"     "CEIXXI79M900"  "CEIXXI86M"     "CEIXXI86M1000" 
## [37] "CEIXXI97F"     "CEIXXI97F1050" 

 

3.3 DATA PRE-PROCESSING AND GPA 

 

As result of poor preservation some humeri from our sample do not have 

anatomical parts where specific landmarks should be located. This was either due to 

taphonomic processes or because of the heating experiment itself. However, robust 

methods have been devised within statistical shape analysis in order to handle missing 

data. For solving this, the very convenient estimate.missing() function from the 

geomorph package is used to generate estimates of the missing landmarks. 

 

EM <- estimate.missing(rawdata, method = 'TPS') # This command estimates  
missing landmarks using either Thin Plate Spline or Regression. Here TPS  
was chosen. 

 

Preforming GPA over your data is the quintessential step to start a statistical shape 

analysis. In geomorph this is achieved with the gpagen() command. Our aligned 

Procrustes coordinates, and specimens' centroid sizes are recorded as the variables 

procrustes$coords and procrustes$Csize, respectively. 
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procrustes <- gpagen(EM, ShowPlot = FALSE) # Procrustes superimposition,  
creates a viable dataset for applying geometric morphometrics methods. 

 

Right now we have everything we need to start a multivariate statistical analysis 

of shape and its covariation with other variables (Bookstein, 1997a). However it is better 

to do some graphical exploration, in order to understand our data and correctly obtain 

fruitful inferences from it. 

 

3.4 EXPLORATORY DATA ANALYSIS 

 

An essential step of every data analysis that rarely takes the spotlight is the visual 

data exploration that antecedes inference or modeling. It is extremely important in the 

sense that allows us to allocate our precious time in more fruitful avenues, rather than 

trying everything for all the variables without a rigorous aim in mind. 

The exploratory data analysis was broken into two main steps. First we intended 

to summarize, describe and visualize general aspects of our data. This was achieved in 

Table 1 and Figure 3-2, but also complemented with the Table 4 in Appendix 6.4. Second, 

we used a method based on the Geometric Morphometrics toolkit to look for possible 

errors in the landmark placing protocol. 

 

3.4.1 DESCRIPTIVE STATISTICS 

 

Now, we perform quick and very simple data manipulation to allow the 

construction of graphical plots and tables. We provide counts of values, and many classic 

measures developed by the theory of probability distributions.  

 

logSize <- log(as.numeric(procrustes$Csize)) # The log of Centroid Size is
 useful and recommended in the literature for creating models. 

 
Shapes <- procrustes$coords # Gives a new name easier to remember. 
 
kable(stat.desc(cbind(logSize, SW[,-c(1:4)]), norm = TRUE), digits = 2) # 
 Creates a table. Categorical variables were removed because most of these
 stats only make sense for numeric variables. 
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Table 1 - Descriptive statistics for the vectors of numeric variables in our dataset. 

 logSize months.buried age temperature duration mass 

n of values 38.00 32.00 38.00 38.00 38.00 38.00 

n of nulls 0.00 0.00 0.00 19.00 19.00 0.00 

n of NA 0.00 6.00 0.00 0.00 0.00 0.00 

min 6.35 71.00 70.00 0.00 0.00 23.20 

max 6.69 84.00 90.00 1050.00 195.00 124.49 

range 0.34 13.00 20.00 1050.00 195.00 101.29 

sum 249.39 2358.00 3050.00 16500.00 2569.00 2588.03 

median 6.59 73.00 81.00 350.00 37.50 62.16 

mean 6.56 73.69 80.26 434.21 67.61 68.11 

SE 0.01 0.52 1.02 71.96 11.64 4.44 

CI95 0.03 1.06 2.08 145.80 23.59 9.00 

variance 0.01 8.61 39.87 196770.98 5151.98 750.38 

SD 0.09 2.93 6.31 443.59 71.78 27.39 

var.coef 0.01 0.04 0.08 1.02 1.06 0.40 

g1 -0.54 2.64 -0.11 0.05 0.26 0.33 

SC-g1 -0.70 3.19 -0.14 0.06 0.34 0.43 

g2 -0.65 6.63 -1.31 -1.99 -1.66 -1.01 

SC-g2 -0.43 4.10 -0.88 -1.33 -1.11 -0.67 

W 0.95 0.60 0.94 0.71 0.78 0.94 

W’s p-
value 

0.08 0.00 0.04 0.00 0.00 0.06 

       
Legend: SE = Standard Error of the Mean; CI95 = Confidence Intervals of the Mean at 95%; SD = Standard Deviation; 
var.coef = variation coefficient; g1 = the skewness coefficient; SC-g1 = significant criterium of g1, if > 1 then skewness 
is significantly different than zero; g2 = kurtosis coefficient; SC-g2 = same definition as g1SC but for kurtosis; W = the 
statistic of a Shapiro-Wilk test of normality; W’s p-value is the associated probability of the W statistic. 

 

Next, we check potential correlations and possibility for regression models in our 

non-shape related data (i.e. Singular Warps) and the logarithm of Centroid Size. This last 

measure is also included because it is a vector of size and can be easily represented. 

Procrustes landmarks are a p * k * x data matrix, in our case, a shape configuration of 35 

landmarks, 3 dimensions and 38 individuals. Therefore, it would be too complicated to 

visualize through the graphical device of Figure 3-2 or Table 1 and so shape data was not 

included here. 
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scatterplotMatrix(cbind(logSize, SW[ ,-c(1,2)]), col = c('#f1c40f', '#e74c
3c', 'black'), lwd = 2) 

 

Figure 3-2 - Scatterplot matrix of our variables to visually complement the descriptive statistics of Table 1. Yellow 
lines are simple linear models (lm) while red lines are generalized additive models (GAM) with respective 95% 
confidence intervals in dashed red lines. 

 

3.4.2 EXPLORATION OF UNCERTAINTY 

 

Since we have seen how all the other variables are interacting, now we focus solely 

on our shape data. First, we try to see if there are any outliers in terms of landmark 

configurations within our dataset. This can be done with the plotOutliers() function, 

which is very useful because it allows researchers to verify if any specimen was 

incorrectly digitized (e.g. landmarks out of order or anatomically misplaced). 

 

outliers <- plotOutliers(Shapes) # Plots potential outliers through       
calculation of Procrustes Distance. 
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Figure 3-3 - Plot for potential shape outliers. After GPA, all 38 shapes in the sample were plotted, through Procrustes 
distances from Mean Shape. The burnt state of 4 different humeri deviate considerably from the average shape and so 
we could be looking at potentially outliers in our sample. 

 

Interestingly, after a visual check in Landmark Editor, none of the “outliers” 

marked in red (Figure 3-3) had actually misplaced or disordered anatomical landmarks. 

These 4 appear as outliers because of how much heat-induced warping and fracturing 

affected their shape. Together, CEI/XXI 65, 32, 5, and 50 represent the most extremely 

modified-by-heat humeri within our sample. This can be confirmed visually with the 3D 

meshes files, but is also sustained by performing a PCA on our data. 

 

3.5 PRINCIPAL COMPONENTS ANALYSIS 

 

The following function plots a set of Procrustes-aligned specimens in tangent 

space along their principal axes (Figure 3-4). In our case the plot illustrated that all the 

bones before heating, and also the bones that were not much affected by the heating 

experiment tend to cluster around the Origin of the Cartesian plot of the two Principal 

Components. The more extremely modified by heat are dispersed in the periphery in what 

seems to be pseudorandom directions. A bigger dataset is needed to understand the 

patterns governing these directions, which are possibly describing different ways in 

which the bone is being deformed by heat. 

# Define graphical proprieties of the PC plot: 
 
gp <- as.factor(SW$temperature) 
col.gp <- c('#bdc3c7', '#f1c40f', '#f39c12', '#e67e22', '#d35400', '#e74c3
c', '#c0392b') # Picking html colors for the plot 
pch.gp <- c(12:18) 
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names(col.gp) <- levels(gp) 
names(pch.gp) <- levels(gp) 
col <- col.gp[match(gp, names(col.gp))] 
pch <- pch.gp[match(gp, names(pch.gp))] 
 
# Calculate a PCA: 
 
y <- two.d.array(Shapes) 
pc.res <- prcomp(y) 
pcdata <- pc.res$x 
 
# Code our plot: 
 
plot(pcdata[, 1], pcdata[, 2], pch = pch, asp = 1, col = col, cex = 1.5, x
lab = paste('PC ', 1), ylab = paste('PC ', 2)) 
segments(min(pcdata[, 1]), 0, max(pcdata[, 1]), 0, lty = 2, lwd = 1) 
segments(0, min(pcdata[, 2]), 0, max(pcdata[, 2]), lty = 2, lwd = 1) 
text(pcdata[, 1], pcdata[, 2], dimnames(rawdata)[[3]], adj = c(-0.05, -0.7
), cex = 0.7) 
 
# Add a legend: 
 
legend(0.12, 0.04, legend = levels(gp), pch = pch.gp, col = col.gp) 

 

Figure 3-4 - Dataset projected onto PC1-2 Subspace. Together PC1+PC2 have a Cumulative Proportion of Variance 
= 0.4490, meaning they explain nearly half of the variance in our sample. The 0 value in temperature is actually a NULL 
value corresponding to the geometries of the unburnt counterparts. 

 

One should never forget that ultimately, PCA is nothing more than a rotation of the 

original data. Its usefulness lies in the fact that our features will exhibit covariances 
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because they are influenced by and interact with common processes. The magnitudes of 

variances described by all components can be seen in Figure 3-5. 

 

# To plot a graph of the proportion of variance explained by each PC: 
 
pvar <- (pc.res$sdev^2)/(sum(pc.res$sdev^2)) 

 
names(pvar) <- seq(1:length(pvar)) 

 
barplot(pvar, main = 'Eigenvalues', xlab= 'Principal Components', ylab = '
% Variance', col = 'black', las = 2, cex.names = 1) 

 

Figure 3-5 - Scree plot of the proportion of variance in descending order. The cumulative proportion of the first 
13 PCs explain more than 90% of the variance in the shapes sample. 

 

3.6 THIN-PLATE SPLINE PLOTS 

 

Also important is to visualize the changes within a particular bone, between its 

pre-heating shape and deformed-by-heat shape through TPS (Figure 3-6). For achieving 

this, we generated thin-plate spline deformation grids. To visualize 3D data deformations 

into the paper format that bounds this thesis, thin-plate spline grids are show in the x-y 

and x-z axis (Figure 3-7). The y-z axis is not presented, because it is very difficult to 

understand anything from that perspective. Also, because the other two views in 2D are 

sufficient to show all the 3 axes from 3D already. Thus, a third view is redundant. 

 

GP <- gridPar(pt.bg = 'black', pt.size = 0.5, n.col.cell = 25) # Defines  
general graphical proprieties of the following plots. 
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plotRefToTarget(Shapes[,,1], Shapes[,,2], gridPars = GP, method = 'TPS') #
 TPS plot of CEIXXI05F 

 

Figure 3-6 - TPS plot of individual CEI/XXI 5, with reference shape being the pre-heating state and deforming shape 
the post-heating shape. As it can be seen, even though there are only 4 landmarks in the diaphysis, these were enough 
to visually demonstrate the bending curvature resulting from the heat-induced skeletal warping which is most notable 
in the X-Y axes. 

plotRefToTarget(Shapes[,,13], Shapes[,,14], gridPars = GP, method = 'TPS')
 # TPS plot of CEIXXI32F 

 

Figure 3-7 - TPS plot of individual CEI/XXI 32, with reference shape being the pre-heating state and deforming shape 
the post-heating shape. As it can be seen this bone has suffered considerable from the effects of heat-induced skeletal 
shrinking. Another interesting feature of individual 32 was that it fractured nearly the middle, what caused warping to 
create a rotational or torsion effect in the distal part of the humerus, this can be understood easily by looking at the left 
side of the Y-Z perspective. 

 

Only individual CEI/XXI 5 and 32 are shown here in the results for illustrative 

purposes because having the whole dataset would take too much space. For more 

comprehensive results check the Appendix 6.6. There, a total of 19 TPS deformation plots 

can be found, fully describing the whole dataset. 

 

3.7 PREDICTIVE MODELLING 

 

“Essentially, all models are wrong, but some are useful.”  

— (George Box in Box & Draper, 1987: 424) 

 

 Creating models with such reduced sample sizes is usually not a good decision. 

Here, we create them, to show how easy it is to implement and test predictive models with 

our kind of data. While all models presented are already fully operational, it is hard to 

truly estimate their actual degree of accuracy. This is due to deficient implementation of 

cross-validation algorithms when dealing with badly represented factors and small n. 
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3.7.1 PROCRUSTES ANALYSES OF VARIANCE 

 

A Procrustes ANOVA is used to quantify the relative amount of shape variation 

attributable to one or more variables in a linear model and assesses this variation through 

permutation. In geomorph the function procD.lm() allow us to input data by a y~X 

formula, where 'y' specifies the response variable (shape data), and 'X' contains one or 

more independent variables (Adams et al., 2015). 

 

procD.lm()  follows the philosophy that: 

 

 Randomization procedures are used to generate empirical sampling distributions 

to assess significance of effects. 

 Effect sizes are estimated as standard deviates from such sampling distributions. 

 

The function performs statistical assessment of the terms in the model using 

Procrustes distances among specimens, instead of explained covariance matrices among 

variables. With this approach, the sum-of-squared Procrustes distances are used as a 

measure of SS and permutation is used to evaluate observed SS (Adams & Otárola-Castillo, 

2013). 

 

# The residual SS (RSS) of a linear model (also called the sum of squared 
error, SSE) is found as follows: 
 
RSS <- function(fit) sum(diag(resid(fit)%*%t(resid(fit))))  
 
Sex <- SW$sex 
 
fit1 <- lm(y ~ 1) # model contaning just an intercept 
fit2 <- lm(y ~ logSize) # allometric scaling of shape 
fit3 <- lm(y ~ logSize + Sex) # previous model + sexual dimorphism 
fit4 <- lm(y ~ logSize * Sex) # previous model + interaction between sex  
and log(CS) 
 
# For any model 'fit', we can summarize the error of prediction by calcula
ting RSS. 

 
RSS(fit1) 

## [1] 0.06791796 
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RSS(fit2) 

## [1] 0.06537494 

RSS(fit3) 

## [1] 0.06288619 

RSS(fit4) 

## [1] 0.05736431 

kable(procD.lm(Shapes ~ logSize*Sex, RRPP = TRUE), digits = 4) 

 

Table 2 - Procrustes ANOVA for shape data is being used as a tool for model comparison.  A model where size 
takes sexual dismorphism into account is superior to the other, simpler models. 

 df SS MS Rsq F Z P.value 

logSize 1 0.0025 0.0025 0.0374 1.5073 1.3018 0.149 

Sex 1 0.0025 0.0025 0.0366 1.4751 1.2981 0.144 

logSize:Sex 1 0.0055 0.0055 0.0813 3.2728 2.9602 0.002 

Residuals 34 0.0574 0.0017     

Total 37 0.0679      

 

In procD.lm() two resampling procedures are possible: (1) if RRPP=FALSE, the 

rows of the matrix of shape variables are resampled in relation to the design matrix; (2) 

if RRPP=TRUE, a residual randomization permutation procedure is utilized (Collyer et al., 

2014). While similar for single-factor designs, when evaluating factorial models it has 

been shown that RRPP attains higher statistical power and thus is better at pattern-

recognition (Anderson & Braak, 2003). 

In the literature, the model we just created as been described as a Procrustes 

ANOVA (Goodall, 1991). However it is actually identical to the popular distance-based 

ANOVA designs (Anderson, 2001), except that it uses coordinates transformed through 

Procrustes superimposition. Our objective here is to show the ability of Procrustes 

ANOVA to compare models. As it is shown in Table 2 the model fit4 that corresponds to 

size and sexual dimorphism interacting, outperforms the other simpler models. This same 

procedure could be repeated for many other variables and model designs, however 

having in consideration our unbalanced factors in most of the other relevant variables 

available it would be quite absurd to expect reliable error estimates (RSS) of most 

possible models. Also the R-Squared values obtained are currently too low to consider 

this models as useful for reliable predictions. 
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3.7.2 GROWING TREES INTO ANSWERS 

 

The following model lmtFit1 uses Logistic Model Trees (Landwehr et al., 2005) to 

predict if a humerus was burnt or not with 92.1% accuracy, by being trained on the first 

8 Principal Components of our sample. So how should nonmorphometricians interested 

in burnt remains proceed to apply this model to a humerus from their own sample? By 

following the whole protocol: (1) 3D Scanning a humerus; (2) Processing it in MeshLab; 

(3) Obtain the defined 35 Landmarks for that bone; (4) Perform an OPA on the obtained 

configuration by using the mean shape of our sample as the reference shape; (5) perform 

a PCA on the configuration, (6) apply the model by using the R function predict() on his 

first 8 PCs. Alternatively, step 1, 2, and 3 could be substituted by obtaining landmarks 

directly from a MicroScribe or a similar device. 

data.models <- cbind(SW[,-c(1, 2)], logSize, pcdata[ ,1:8]) 
 
lmtFit1 <- LMT(burnt ~ PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8, data = data.models
) 
summary(lmtFit1) 

##  
## === Summary === 
##  
## Correctly Classified Instances          35               92.1053 % 
## Incorrectly Classified Instances         3                7.8947 % 
## Kappa statistic                          0.8421 
## Mean absolute error                      0.2245 
## Root mean squared error                  0.297  
## Relative absolute error                 44.8947 % 
## Root relative squared error             59.4075 % 
## Coverage of cases (0.95 level)         100      % 
## Mean rel. region size (0.95 level)      97.3684 % 
## Total Number of Instances               38      
##  
## === Confusion Matrix === 
##  
##   a  b   <-- classified as burnt 
##  18  1 |  a = no 
##   2 17 |  b = yes 

 

However, in most cases, for the trained osteologist it is easy to understand if a bone 

was burnt or not by just looking at it. Even if dealing with particularly complicated cases, 

there are already well established methods like Fourier Transform Infrared Spectroscopy 

(Munro et al., 2007; Thompson et al., 2009) or histological techniques that can erase most 



Results and Discussion 
 

  
44 

doubts if they arise (Bradtmiller & Buikstra, 1984; Nelson, 1992; Hiller et al., 2003). So 

why would a model like this be useful? It would not: it is too time consuming. A far more 

useful model would be a similar one that could not only determine if a bone was burnt but 

at which maximum temperature it was burnt. Next, we implement such model in a similar 

fashion. 

 

lmtFit2 <- LMT(as.factor(temperature) ~ PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8,  
data = data.models) 
summary(lmtFit2) 

##  
## === Summary === 
##  
## Correctly Classified Instances          32               84.2105 % 
## Incorrectly Classified Instances         6               15.7895 % 
## Kappa statistic                          0.7415 
## Mean absolute error                      0.1091 
## Root mean squared error                  0.2116 
## Relative absolute error                 54.8523 % 
## Root relative squared error             68.3659 % 
## Coverage of cases (0.95 level)         100      % 
## Mean rel. region size (0.95 level)      56.391  % 
## Total Number of Instances               38      
##  
## === Confusion Matrix === 
##  
##   a  b  c  d  e  f  g   <-- classified as 
##  19  0  0  0  0  0  0 |  a = 0 
##   0  1  0  0  0  0  0 |  b = 700 
##   4  0  2  0  0  0  0 |  c = 800 
##   0  0  0  1  0  0  0 |  d = 850 
##   1  0  0  0  8  0  0 |  e = 900 
##   1  0  0  0  0  0  0 |  f = 1000 
##   0  0  0  0  0  0  1 |  g = 1050 

 

Despite the lack of values for each factor, plus the short range of maximum 

temperatures experimented with, which of course causes overfitting. Combined with the 

low diversity of the factors themselves, which forces us to use a classification algorithm 

for temperatures instead of a regression, our model lmfit2 provided what seems to be 

very promising results (Overall Accuracy = 84.21%). Here is shown a stepping-stone from 

where one could eventually create a very powerful model by increase n in each of the 

factors of the dependent variable, in order to reduce overfitting while increasing or 

maintaining overall accuracy. 
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4 CONCLUSION 

 

 

“All anthropological analyses conducted on burned remains will be wholly and 

fundamentally inaccurate”  

— (Thompson, 2005: 6) 

 

As a project aimed at improving the current methods in burnt remains theory, it is 

still in a long way from bringing any effective impact to the field. Sample size was a major 

problem that led most of the data analysis towards a theoretical cul-de-sac. Low sample 

size undermines reliability, reduces statistical power and reproducibility of results, while 

overestimating effect size (Stodden, 2015). It is therefore a problem that can only be 

overcome by keeping on collecting data, with a focus on well-balanced experimental 

design. Meaning that the factors within variables must not be so disproportionately 

represented as they actually are. For example: up to now, 9 skeletons were burnt at 900°C, 

other 6 at 800°C, and for all the other temperatures experimented with (500, 700, 850, 

1000 and 1050°C) we have only one case representing each. Obviously this severely limits 

the predictive power of any model since you cannot train a machine-learning algorithm 

with only a few cases for each factor. Certainly there is no algorithm that will learn how 

to represent these in such conditions. In spite of that, many experimental studies in the 

burnt osteology literature have even smaller samples. There are the typical n = 1 studies 

(e.g. DeHaan & Nurbakhsh, 2001) that usually are about burning a carcass of an animal to 

record the effects. Others, such as Thurman and Willmore (1981) had burned 8 human 

humeri for their analysis; and Nugent (2010) attempted to estimate the biological profile 

of 19 cremated individuals, yet only 18 humeri were analyzed. Contrasting, our sample 

will keep on growing into the future, benefiting from being part of the HOT Project and 

the CEI/XXI. But again: the solution is to focus on good experimental design, just 

increasing n blindly will not be enough. 

Unfortunately, my data analysis is also included in a project suffering from the 

‘myth of flesh’, which shows an overall high prevalence in anthropological studies 

concerning taphonomy. It has been explained as a “(…) bias [that] manifests itself in 

experimental research and analyses that treat skeletal elements as though they had 

always existed without the encumbrances of skin, muscle, ligament and other soft tissues 
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(…)” (Haglund & Sorg, 1996: 3). Eventually, even if a reasonable sample size is reached in 

the future and powerful predictive models are created, one must first question: to what 

point would these be reliable when applied to burnt bones originating from forensic 

cases? Prudency is mandatory, since forceful generalization of specific models usually 

leads to worthless results. Current hypothesis state that soft tissues are not just 

restricting heat transfer differentially through their thickness and composition, but also 

cutting off the oxygen supply to the underlying bone (McKinley & Tech, 2015). This leads 

us to another problem: actual combustion versus just heat transfer. 

Even though terms such as ‘burning’, ‘burned’ or ‘burnt’ have been used 

recurrently throughout this thesis, it is explicit that the experiment only deals with 

thermally modified bones, which were not actually burned amid fire. Consequently, other 

variables that are not being accounted for, that can also bias any predictions to real-life 

situations, are the type and quantity of fuel, plus oxygen content or supply. Such variables 

are of the uttermost importance when dealing with combustion (i.e. fire), but do not really 

interfere with heat-transfer in the absence of combustion. Thus, it would be senseless for 

us to account for these, even though such variables are possibly very pertinent in arsons, 

mass disasters, various ethno-historic or archaeological types of cremation, and so on 

(DeHaan, 2015). 

Until now, the reader might believe that no remarkable positive conclusions can 

be achieved in this particular line of research. But by using a metaphor that would work 

much better if a particularly famous movie title was written backwards: we just passed 

through the Ugly and the Bad. So, now comes the Good. 

Is thermally modified dry bone that different from typical human burnt remains? 

Throughout the years evidences have come up, suggesting the gap between both might be 

far shorter than previously thought. Until demonstrated otherwise (Buikstra & Swegle, 

1989; Spennemann & Colley, 1989), most literature attributed warping as a phenomenon 

exclusive of hydrated bones. Many papers (Baby, 1954; Binford, 1963; Thurman & 

Willmore, 1981; Etxéberria, 1994) interpreted presence of warping as a discriminant 

factor between burnings with prior tissue removal as opposed to excarnation absence. 

Meaning that at least 35 years of burnt osteology up to that point, worked on unsupported 

and false assumptions on one of its most basic aspects. Heating experiments under 

controlled conditions are thus crucial for busting myths, creating insights, and stimulating 

progress within this scientific domain (Thompson, 2005, 2009). But as have been 
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continuously cautioned, there are many problems that should be rigorously addressed. If 

so, this kind of research might bring tremendously value for forensic anthropologist and 

others dealing with human burnt remains. 

It was demonstrated how to craft predictive models for estimating burning 

conditions such as maximum temperature and it was discussed how to improve the ones 

that have been created in the context of this thesis. If this research continues, these 

models will hopefully become powerful enough to be used by other researchers without 

any major obstacles. Even if such is not bound to happen with this particular research, it 

might inspire other colleagues to obtain their own data and create their own models 

based on the toolkit of GMM and ML algorithms. Since this was demonstrated here to be 

a possible route, which still needs to be much more explored for the thermally modified 

bones problematic. 

Finally, it cannot be stressed enough how digital 3D preservation of anatomical 

structures exposed to heat is essential and how staggering it is that it as been pretty much 

dismissed, with the only exception found in literature being Imaizumi et al. (2014). 

Subjecting osteological material to heat is a great source of data with potential to infer not 

just correlation, but also causation. Simultaneously, without the proper protocol a 

considerable amount of data gets destroyed as well during the process. Collecting 

measurements such as lengths, mass and so on can be useful, but it is far from enough. 

Perhaps most of the field is unaware of the analytical possibilities brought by having data 

preserved in virtual 3D files. Even Imaizumi et al. (2014) used their collected CT scans 

solely for the purpose of calculating volumetric differences. Which is possibly one of the 

best ways to directly measure shrinkage, but offers no possibilities for warping 

quantification. Awareness of GMM and the possibility of curating 3D databases must be 

brought into burnt osteology, or otherwise knowledge that is clearly within grasp will 

continue to escape us. 

Models should be created with other bones as well, besides the humerus. Actually, 

it was originally intended to use both femura and humeri, alas it was impossible. Because 

after the experiment, femurs almost always collapsed on their own weight, having 

fragmentation and far more extreme fractures, thus being overall more fragile (Figure 

4-1). Following, the final n of femurs that could be 3D scanned before and after heating 

was so small that would be insane to try to perform any analysis with the few obtained 

3D meshes. However tibiae and ulnae tend to preserve well and can be 3D scanned in an 
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identical protocol to the one provided earlier. Foot bones also tend to preserve 

considerably well, regrettably these do not tend to show alterations with such 

exuberance. For future attempts it is recommend that other researchers virtually 

preserve the tridimensional meshes of as many bones that will be subjected to 

experimental heating as possible, since these have high potential for improving current 

models and creating new ones. The methods devised here are yet to be explored and 

performed into any other burnt bones. 

 

 
Figure 4-1 - Left femur of individual CEI/XXI 32 after being burnt at 800°C for 120 minutes, from two different 
perspectives. Even though the bone was flawlessly 3D scanned and digitally curated for posterity, it was broken in half 
during the process, which demonstrates its inherent fragility. Yet, the fact that a complete 3D model could be attained 
from a fragmented bone shows some promise for digital forensic reconstruction of fragmented burnt bones. This is yet 
another point in favor of using 3D laser scanning technologies that should be further explored in the future. 

 

Ultimately, Thompson’s quote in the beginning of the Conclusion is still as 

pertinent as it was 10 years ago. Nevertheless, with rigorous implementation of different 

methodologies, perhaps anthropological analyses conducted on burned remains do not 

need to keep on being “wholly and fundamentally inaccurate” and rather being only 

partially inaccurate, under some controlled error. Which is a far less lurid perspective; as 

I just passed by to bring you hope.   
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6 APPENDIX 

 

6.1 LIST OF ANATOMICAL LANDMARKS OF THE HUMERUS 

 

library(knitr) 
 
codebook <- read.csv(file = "./data/codebook.csv", header = TRUE) 
 
kable(codebook) 

 

Table 3 - Humeri’s landmarks and descriptions adapted from Rosas et al. (2015). Type 3 and other landmarks hard 
to digitize in a fully computational workstation were not included in our protocol. The last column “Abbreviation” shows 
the codification of landmarks chosen in the context of this thesis. From the 43 original landmarks, 35 were used in our 
protocol. 

Landmark Type Description Label 

1 2 Most projecting point of the lateral epicondyle S000 

2 1 Proximal junction point between lateral epicondyle and 
capitulum 

S001 

3 1 Distal junction point between lateral epicondyle and 
capitulum 

S002 

7 2 Proximal junction point between medial trochlea and 
medial epicondyle 

S003 

8 2 Most projecting point of the medial epicondyle S004 

9 1 Proximal anterior point of the lateral trochlea S005 

10 1 Proximal anterior point of the medial trochlea S006 

11 1 Proximal posterior point of the lateral trochlea S007 

12 1 Proximal posterior point of the medial trochlea S008 

13 2 Proximal point of the olecranon fossa S009 

14 2 Distal point of the olecranon fossa S010 

15 2 Lateral point of the olecranon fossa S011 

16 2 Medial point of the olecranon fossa S012 

17 2 Maximum curvature between medial epicondyle and shaft S013 

18 2 Most prominent point of the lateral supracondylar ridge S014 

19 1 Proximal point of the lateral supracondylar ridge S015 

20 2 Middle point of the coracobrachial insertion S016 

25 1 Distal point of the greater tubercle crest S017 

26 1 Distal point of the lesser tubercle crest S018 

27 2 Posterior point of the greater tubercle surface S019 

28 2 Lateral point of the greater tubercle surface S020 
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Landmark Type Description Label 

29 2 Proximal point of the greater tubercle surface S021 

30 2 Medial point of the greater tubercle surface S022 

31 2 Most projected point of the anterior surface of the greater 
tubercle 

S023 

32 2 Proximal anterior point where intertubercular groove is 
between both tubercles 

S024 

33 2 Most projecting point of the lateral surface of the lesser 
tubercle 

S025 

34 2 Proximal point of the lesser tubercle surface S026 

35 2 Anterior point of the lesser tubercle surface S027 

36 2 Distal point of the lesser tubercle surface S028 

37 2 Posterior point of the lesser tubercle surface S029 

38 1 Junction point between the humeral head perimeter and 
long head of the biceps brachii 

S030 

39 2 Proximal point of the humeral head perimeter S031 

40 2 Posterior point of the humeral head perimeter S032 

41 2 Distal point of the humeral head perimeter S033 

42 2 Anterior point of the humeral head perimeter S034 

 

 

In the next page it can be seen where these landmarks are exactly located through 

a 3D illustration that have been made with the assistance of Landmark Editor. 
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6.2 VISUAL GUIDE TO THE ANATOMICAL LANDMARKS OF THE HUMERUS 

 

 

Figure 6-1 - All landmarks from Appendix 6.1 represented on CEI/XXI 51 (unburnt humerus 3D mesh). 
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6.3 CALCULATION OF FULL PROCRUSTES DISTANCE 

 

library(Morpho) # We call this package since it has an useful function    
that calculates the complete matrix of Full Procrustes distances 

dValue <- regdist(EM, plot = T, rho = "riemdist", dist.mat.out = T) # EM h
as been defined earlier in the Results and Discussion. It’s our raw values
 after estimation.missing(), but before gpagen() is applied. 

## performing Procrustes Fit in...  0.02876806 secs  
## Operation completed in 0.0470929145812988 secs 

 

Figure 6-2 - Comparison of Riemannian distance to Euclidean distance in the Tangent Space 

 

ProcrustesDistancesMatrix <- as.matrix(dValues$proc.dist) 

 
odd <- seq(1, 37, 2) 
even <- seq(2, 38, 2) 

 
index <- matrix(c(odd, even), ncol = 2) 

 
FPD.change <- ProcrustesDistancesMatrix[index] # Our matrix of Procrustes 
distances has all the possible values. We have indexed and take the only  
19 that really interest us (changes between unburnt and burnt pairs). 

 
dF <- as.vector(matrix(c(rep(0,19), FPD.change), ncol = 19, byrow = T)) 

# Last lines of code keep it as an attachable variable to our tables. E.g.
 if I desired to attach it to SW, I just need to do: 

SW$Df <- Df 
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6.4 QUANTITATIVE VALUES FOR WARPING AND SHRINKING 

 

library(knitr) 
dt <- read.csv(file = './data/FromGM.csv', header = TRUE) 
kable(dt) 

 

Table 4 - Tabulated values of Warping and Shrinking. Full Procrustes distances of unburnt-to-burnt were labeled 
as Warping, and the logarithm of the Centroid Size of the unburnt, minus that of the burnt was labeled as Shrinking. 
Provided here in case other researchers pretend to use these. In yellow we have a possible case of expansion (i.e. 
negative shrinking), however CEI/XXI 29 is one of the individuals with virtually mirrored pre-burnt bones, meaning 
this difference in size can be just due to developmental factors such as fluctuating asymmetry. 

ID Age Sex Temperature Warping logCS.Before logCS.After Shrinking 

5 73 F 900 0.0643099 6.658998 6.545755 0.113243 

8 83 F 700 0.0477035 6.507733 6.493301 0.014432 

17 85 M 900 0.0378350 6.625435 6.503362 0.122073 

24 80 F 800 0.0333180 6.690679 6.679033 0.011646 

26 90 F 900 0.0392534 6.573471 6.530758 0.042713 

29 74 M 800 0.0264085 6.634388 6.647413 -
0.013025 

32 81 F 800 0.0754552 6.608055 6.434462 0.173593 

35 75 M 900 0.0375362 6.602612 6.432676 0.169936 

43 70 M 800 0.0202990 6.600072 6.598050 0.002022 

49 85 F 850 0.0591030 6.632090 6.504667 0.127423 

50 89 F 900 0.0728359 6.542426 6.389417 0.153009 

51 70 M 900 0.0709073 6.680793 6.532535 0.148258 

53 77 F 800 0.0433352 6.501725 6.354815 0.146910 

57 85 M 900 0.0571740 6.588992 6.458196 0.130796 

64 87 M 800 0.0324908 6.640177 6.613855 0.026322 

65 81 F 900 0.1038588 6.544227 6.385370 0.158857 

79 74 M 900 0.0494068 6.675157 6.610388 0.064769 

86 78 M 1000 0.0326523 6.684702 6.586534 0.098168 

97 88 F 1050 0.0432747 6.611635 6.482052 0.129583 

 

Notice that in the case of CEI/XXI 29, 32, 49, 50, 57, 64 and 65 we couldn’t use the 

pre-burnt 3D mesh, as it has been explained before, and instead mirrored versions of the 

antimeres were used. Therefore the values for these individuals are possibly the most 

biased in the sample and should be used with caution. 
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6.5 R PACKAGES THAT THE CODE DEPENDS ON 

 

Before running any code provided in this thesis, you might need to install packages 

in R Studio if these were not previously in your computer, to do so, copy paste the 

following code into your console and run it. 

 

# First we make sure to load the required R packages and its dependencies: 
 
if (!require('knitr')){ 
    install.packages('knitr', dependencies = TRUE) 
    library(knitr) 
} 

if (!require('rmarkdown')){ 
    install.packages('knitr', dependencies = TRUE) 
    library(knitr) 
} 

options(knitr.table.format = 'markdown') 
 
if (!require('geomorph')){ 
    install.packages('geomorph', dependencies = TRUE) 
    library(geomorph) 
} 

if (!require('pastecs')){ 
    install.packages('pastecs', dependencies = TRUE) 
    library(pastecs) 
} 

if (!require('car')){ 
    install.packages('car', dependencies = TRUE) 
    library(pastecs) 
} 

if (!require('RWeka')){ 
    install.packages('RWeka', dependencies = TRUE) 
    library(RWeka) 
} 

source('./R/pts2array.R') # gets a function written in collaboration with 
David Navega. It reads all .pts files inside a directory into R and saves 
them as an array. Used to obtain data from landmark Editor. 
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6.6 THIN-PLATE SPLINE DEFORMATIONS 

 

GP <- gridPar(pt.bg = 'black', pt.size = 0.5, n.col.cell = 25) # defines g
eneral graphical proprieties of the following plots. 
 

 
plotRefToTarget(Shapes[,,1], Shapes[,,2], gridPars = GP, method = 'TPS') #
CEIXXI05F 

 

 

plotRefToTarget(Shapes[,,3], Shapes[,,4], gridPars = GP, method = 'TPS') #
CEIXXI08F 

 

 

plotRefToTarget(Shapes[,,5], Shapes[,,6], gridPars = GP, method = 'TPS') #
CEIXXI17M 

 

 

plotRefToTarget(Shapes[,,7], Shapes[,,8], gridPars = GP, method = 'TPS') #
CEIXXI24F 
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plotRefToTarget(Shapes[,,9], Shapes[,,10], gridPars = GP, method = 'TPS') 
#CEIXXI26F 

 

 

plotRefToTarget(Shapes[,,11], Shapes[,,12], gridPars = GP, method = 'TPS')
 #CEIXXI29M 

 

 

plotRefToTarget(Shapes[,,13], Shapes[,,14], gridPars = GP, method = 'TPS')
 #CEIXXI32F 

 

 

plotRefToTarget(Shapes[,,15], Shapes[,,16], gridPars = GP, method = 'TPS')
 #CEIXXI35M 

 

 

plotRefToTarget(Shapes[,,17], Shapes[,,18], gridPars = GP, method = 'TPS')
 #CEIXXI43M 
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plotRefToTarget(Shapes[,,19], Shapes[,,20], gridPars = GP, method = 'TPS')
 #CEIXXI49F 

 

 

plotRefToTarget(Shapes[,,21], Shapes[,,22], gridPars = GP, method = 'TPS')
 #CEIXXI50F 

 

 

plotRefToTarget(Shapes[,,23], Shapes[,,24], gridPars = GP, method = 'TPS')
 #CEIXXI51M 

 

 

plotRefToTarget(Shapes[,,25], Shapes[,,26], gridPars = GP, method = 'TPS')
 #CEIXXI53F 

 

 

plotRefToTarget(Shapes[,,27], Shapes[,,28], gridPars = GP, method = 'TPS')
 #CEIXXI57M 
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plotRefToTarget(Shapes[,,29], Shapes[,,30], gridPars = GP, method = 'TPS')
 #CEIXXI64M 

 

 

plotRefToTarget(Shapes[,,31], Shapes[,,32], gridPars = GP, method = 'TPS')
 #CEIXXI65F 

 

 

plotRefToTarget(Shapes[,,33], Shapes[,,34], gridPars = GP, method = 'TPS')
 #CEIXXI79M 

 

 

plotRefToTarget(Shapes[,,35], Shapes[,,36], gridPars = GP, method = 'TPS')
 #CEIXXI86M 

 

 

plotRefToTarget(Shapes[,,37], Shapes[,,38], gridPars = GP, method = 'TPS')
 #CEIXXI97F 
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