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”And once the storm is over you won’t remember how you made it through, how you

managed to survive. You won’t even be sure, in fact, whether the storm is really over.

But one thing is certain. When you come out of the storm you won’t be the same person

who walked in. That’s what this storm’s all about.”

Haruki Murakami, Kafka on the Shore

Aos meus pais
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Abstract

Chronic obstructive pulmonary disease (COPD) is widespread worldwide and has a

large impact in the patients’ quality of life and in global healthcare costs. While an

early diagnosis is fundamental to its treatment, it still relies heavily in the patients’

medical history and symptomatic spirometry. Parameters based on minimally invasive

medical devices able to identify and monitor COPD would be a valuable diagnostic tool

to reduce the impact of the disease.

Electrical Impedance Tomography (EIT) is a minimally invasive medical imaging tech-

nique that is growing in terms of research, clinical use and global exposure. One of its

most promising applications is in monitoring of lung ventilation. This thesis contribution

consists on the formulation or adaptation, implementation and testing of three different

parameters that measure lung ventilation heterogeneity: the Global Inhomogeneity (GI)

index, the Local Inhomogeneity (LI) index and the Percentage of Pixels (PoP) index.

The long term objective is the use of one or several of these parameters, depending on

the results of this study, in identification and monitoring of COPD patients.

Datasets of two groups were acquired during tidal breathing: a group of patients with

COPD and a control group. A selection of these datasets was made after an evaluation

of the amplitude of each breathing cycle and the overall noise of the acquisition. Images

were reconstructed using the Graz consensus Reconstruction algorithm for Electrical

Impedance Tomography (GREIT) and an adult thorax shaped model of the EIDORS

library. For each breathing cycle a tidal image was computed. The three parameters

were tested on these images.

Performance of the parameters were analysed using the Kruskall-Wallis test and the

Receiver Operating Characteristic (ROC) curve. The PoP index exhibited the most

promising results from the parameters studied. The Kruskal-Wallis test and cross vali-

dation returned significant differences between the control and the COPD group. The

ROC curve analysis also demonstrated a strong performance in terms of classification.

Keywords: Chronic obstructive pulmonary disease, medical imaging, electrical impedance

tomography, lung ventilation inhomogeneity
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Resumo

A doença pulmonar obstrutiva crónica (COPD) é uma doença global com um alto im-

pacto na qualidade de vida dos pacientes e em custos de saúde. Uma identificação rápida

da doença é crucial para o seu tratamento. Contudo, essa identificação ainda depende

principalmente da história médica do paciente e um exame de espirometria. Algoritmos

de identificação e monitorização a longo prazo de pacientes com COPD seriam portanto

uma ferramenta de diagnóstico valiosa para minimizar o impacto da doença.

Tomografia por impedância eléctrica (EIT) é uma técnica de imagem médica não-invasiva

em franco crescimento em termos de pesquisa cient́ıfica, utilização cĺınica e exposição

global. Uma das suas aplicações mais promissoras encontra-se na monitoração da ven-

tilação pulmonar. Este projecto pretende formular ou adaptar, implementar e testar três

parâmetros que calculam a heterogeneidade da ventilação a partir das imagens obtidas

por esta técnica: os ind́ıces Global Inhomogeneity (GI), Local Inhomogeneity (LI) e Per-

centage of Pixels (PoP). O objectivo a longo prazo é a utilização de um ou vários destes

parâmetros, dependendo dos resultados obtidos durante este projecto, na identificação

e monitorização de pacientes com COPD.

Foram adquiridos dados de dois grupos durante respiração tidal: um grupo de pa-

cientes com a doença mencionada e um grupo de controlo. Imagens foram reconstrúıdas

com o Graz consensus Reconstruction algorithm for Electrical Impedance Tomography

(GREIT) e utilizando um modelo de um tórax de um adulto disponibilizado pela bib-

lioteca EIDORS. Para cada ciclo de respiração uma imagem tidal foi calculada, a partir

da qual os três parâmetros foram calculados.

Um analise estat́ıstica foi realizada usando um teste de Kruskall-Wallis e a performance

da cada parâmetro foi avaliada calculadno a curva da Caracteŕıstica de Operação do

Receptor (ROC). Dos parâmetros estudados o ı́ndice PoP obteve os resultados mais

promissores. Foram obtidas diferenças significativas no teste de Kruskall-Wallis e na

validação cruzada que se realizaram. A análise à curva ROC demonstra que o parâmetro

tem um bom desempenho em termos de classificação.

Palavras-Chave: Doença pulmonar obstrutiva crónica, imagem médica, tomografia por

impedância eléctrica, ventilação pulmonar heterogénea
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Chapter 1

Introduction

1.1 Problem Contextualization and Motivation

Chronic obstructive pulmonary disease (COPD) is an umbrella term used to describe

chronic lung diseases that cause air flow limitations. The two main types are chronic

bronchitis and emphysema. COPD is a major cause of death worldwide, and the burden

of this disorder is expected to increase over the next decades (Figure 1.1) [1, 2].
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Figure 1.1: COPD was the third leading cause of death in 2012 according to the WHO:
3.1 million died due to this disease [3].
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2 Chapter 1. Introduction

In addition to generating high healthcare costs [4, 5], COPD also causes disability to

the patients, having a high impact on their quality of life [6]. The disease is usually

progressive [7], meaning the condition of the patient gets gradually worse: its progression

rate can be reduced with treatment, but none of the existing medications for COPD has

been shown to modify the long-term decline in lung function.

An early diagnosis is therefore essential; tackling the problem early rises life expectancy

of the patient and improves his quality of life. However, clinical diagnosis still rely

heavily on an appropriate history confirmed by symptomatic spirometry [8]. This has

stimulated new research to find novel methods of diagnosis and treatment.

The present study took place within the framework of the WELCOME project (FP7

Grant No. 611223). This project from the European Union aims to develop an integrated

care approach for continuous monitoring, early diagnosis and detection of worsening

events and treatment of patients suffering from COPD. The intended solution will be

based on an adjustable, wearable and washable vest providing continuous monitoring of

a large number of sensors, each one measuring various physiological signals allowing a

remote, continuous monitoring and analysis of patient multi-parametric data including

Electric Impedance Tomography (EIT) [9].

EIT is an imaging technique that seeks to estimate the electrical resistivity distribution

inside a body using electrical stimulations and measurements on its surface. Reconstruc-

tion algorithms calculate an image from these measurements that reflects the variation

in conductivity or impedance within the body. EIT can be applied in several medical

areas including pulmonary monitoring [10, 11].

Various developments were accomplished in the last decades in EIT lung monitoring,

both in terms of the EIT device design and the image reconstruction algorithm used.

There was however, until recently, a lack of research in application specific parameters

that extract relevant information to a certain disease or condition from the reconstructed

image.
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1.2 Objectives

The main focus of this study is the extraction of parameters from the reconstructed

EIT images and then the assessment whether these parameters are clinically relevant

for COPD diagnosis and monitoring.

1.3 Document Overview

This thesis is structured in five chapters and two appendixes.

Chapter 2 (Background concepts on COPD and EIT lung monitoring): con-

tains information about the impact, risk factors and symptoms of COPD, explains the

concept behind EIT and reviews the state of the art around lung EIT monitoring, both

in terms of system architecture of the device and image reconstruction algorithms.

Chapter 3 (Materials and Methods): gives a detailed description on how the data

was acquired and how images were reconstructed, as well on how the quality of the

acquisition of the datasets was evaluated. It also describes the proposed parameters to

test and how they were computed.

Chapter 4 (Results and Discussion): presents the statistical analysis of the obtained

values for each parameter and presents a discussion of the results obtained.

Chapter 5 (Conclusion and Future Work): evaluates the results of the work,

confronts them with the initial objectives and provides suggestions for future work.

Appendix A (GREIT figures of merit): defines the figures of merit used by this

reconstruction algorithm, how they are calculated and their desired behaviour.

Appendix B (Tidal Images): contains some of the tidal images computed. One tidal

image was computed from each breathing cycle. Each pixel from the tidal image was

calculated as the difference between the corresponding pixel in the reconstructed image

at end-inspiration and end-expiration.

Appendix C (Proceeding Paper Published): contains the scientific article that

resulted from part of the work of this thesis.
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1.4 Scientific Contributions

The results obtained during this study resulted in a scientific article presented at the

38th Annual International Conference of the IEEE Engineering in Medicine and Biology

Society. The article is available in Appendix B.



Chapter 2

Background concepts on COPD

and EIT lung monitoring

2.1 COPD: an overview

It is relatively easy to explain what happens physiologically to COPD patients. The

air we breath goes down our windpipe into tubes in our lungs called bronchial tubes.

Within the lungs, the bronchial tubes divide into many smaller and thinner tubes called

bronchioles. These tubes end in groups of minuscule air sacs called alveoli. Due to the

elasticity of the air sacs, when you breath in each air sac fills up with air.

Figure 2.1: Structure of the lung and alveoli. Extracted from [12].

In the lungs of COPD patients there is less air flow in the airways. Depending of the

disease this can occur because the walls of the airways become inflamed, the air sacs

5



6 Chapter 2. Background concepts

lose their elastic quality or there is more production of mucus than usual, which can

obstruct these airways [13].

2.1.1 Impact

COPD is a global disease affecting patients worldwide. However, it is especially prevalent

in middle-income countries. For each 1000 deaths in the world in 2012, 120 occurred due

to COPD: 8 of those in low income countries, 35 in lower-middle, 55 in upper-middle

and 22 in high income countries (Figure 2.2).
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Figure 2.2: Comparison of the top 10 causes of deaths across income groups. COPD is
especially prevalent in lower- and upper-middle-income countries [3].

Its impact to the patients’ quality of life is made clear by studies like The Global Burden

of Disease [14]. This study was an effort to quantify non-fatal health outcomes across

an exhaustive set of disorders at the global and regional level, using as a unit years lived

with disability (YLDs). According to this report, chronic respiratory diseases accounted

for 6.3% of global YLDs, with the largest contributor being COPD, with a total of 29.4

million YLDs [14]. The same report also concludes that the YLDs rates for COPD have

risen since 1990.
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2.1.2 Risk factors and symptoms

The main risk factor for COPD in high- and middle-income countries is tobacco smoke.

In low-income countries exposure to indoor air pollution, such as the use of biomass fuels

for cooking and heating, is the main cause [15]. Other risk factors for COPD include

the inhalation of occupational dusts and chemicals. Most common COPD symptoms

include breathlessness, excessive sputum production and chronic cough [15].

Many patients diagnosed with COPD may also suffer from closely-related chronic dis-

eases including heart failure, diabetes and depression. These co-morbidities add further

complexity and cost to public health services, and significantly lower the quality of life

for patients suffering from this disease [9]. Thus, COPD patients have complex medical

care needs, often involving several treatments as well as self-management responsibilities.

This means real-time monitoring of pulmonary ventilation could turn into an important

tool for the treatment of patients with COPD.

2.2 EIT and real time monitoring of pulmonary ventilation

Besides having applications in geophysics and industrial process monitoring, over the

past decades EIT has been the subject of significant intensive research and has proven

to be a reliable tool for monitoring physiological processes in the human body such as

cardiac [11] and brain activity [16, 17], gastric emptying [18] or respiration [10, 11].

2.2.1 The general concept behind medical EIT

EIT is an interesting imaging technique for the biomedical field since biological tissues

conduct electricity because they contain ions which act as charge carriers [18]. Some

tissues conduct electricity better than others because they contain more ions, leading

to high resistivity differences between tissue types in the body. The idea behind EIT

is to turn the impedance within a body into images, using electrical stimulations and

measurements on its surface.

Usually the EIT devices are constituted by a single plane of a number of equidistant

electrodes. The measurements are performed by applying an alternating current through
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a pair of electrodes while all other remaining electrodes pairs measure potential. The

current stimulation is then switched to another pair of electrodes in a sequential process.

A complete set of independent measurements is called a frame, from which an EIT image

is calculated via a reconstruction algorithm, and regions of interest (ROIs) identified.

From these regions, functional EIT images are generated and application specific EIT

parameters calculated (Figure 2.3).

Figure 2.3: Typical steps for EIT data analysis. Extracted from [19].

From the applications in health care one of the first and the current most promising

is in real-time monitoring of pulmonary ventilation [10, 11, 20]. This is because lungs

are large organs close to the body surface and the lung tissue resistivity is five times

higher when compared to most other soft tissues within the thorax (Table 2.1). More

importantly, lung resistivity increases and decreases greatly between inspiration and

expiration. This results in a high absolute contrast of the lungs in general.

Table 2.1: Typical values of tissue resistivity at a frequency of about 10 kHz [18].

Tissue Resistivity (Ω m)

Muscle 2-4

Fat 20

Lungs 10 (this changes with respiration)

Bone 1.6

Blood over 40

2.2.2 Applications, opportunities and challenges

There are several reasons that justify the investment in research that has been made

around EIT lung monitoring in the last decades. First of all, EIT provides images based

on different physical characteristics than other imaging techniques, i.e., it is based on

electrical tissue properties. More importantly, EIT, in contrast to all other tomographic

imaging techniques, does not apply any kind of ionizing radiation and there are no known
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hazards for the patient [21]. Currents typically applied in EIT are relatively small and

their frequencies high, not being therefore responsible for any danger to the patient [20].

EIT is also relatively inexpensive compared to other tomographic techniques.

EIT can therefore provide a non-invasive, radiation-free and continuous image of pul-

monary impedance which indicates the distribution of ventilation. This makes EIT an

ideal candidate for (Figure 2.4):

• bedside monitoring of lung development of pre-term neonates.

Pre-term neonates often have lung immaturity which can lead to long term health

problems. It is therefore important to be able to monitor their lung development

in a safe and non-invasive way [22].

• patients in intensive care.

EIT has been used in critical care medicine as a monitoring tool for a variety

of functions such as, but not limited to, monitoring of ventilation distribution

[23, 24], detection of pneumothorax [25] and assessment of lung collapse [26, 27]

and overdistension [28].

Mechanical ventilation is often necessary in intensive care medicine. Manag-

ing respiration with mechanical ventilation can improve the prognosis of acute

phase patients. However, it can produce ventilator induced lung injuries (VILI)

or ventilator-associated lung injuries (VALI) [29] and acute respiratory distress

syndrome (ARDS) is associated with non-homogeneous lesions in the lungs [30].

VILI and VALI lead to research into potential solutions, including lung protective

ventilation (LPV) strategies. Implementing these strategies requires a tool capable

of providing information on the regional behaviour of lungs.

Generally, chest x-rays and CT have been used for diagnosis of ARDS. However,

reaching a diagnosis is hard because the information obtained from a chest x-ray

is limited. The patient is therefore often required to undergo a CT examination,

which is inconvenient and burdensome for a patient connected to a mechanical

ventilator.

• portable continuous monitoring of patients during a long range of time.

As mentioned before, all of the established medical imaging techniques of lungs

apply some kind of ionizing radiation. Long term exposure to radiation would
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bring serious hazards to the health of patients, but there are no known hazards for

long term lung monitoring using EIT. Furthermore, EIT is cheap and portable [31],

making it an attractive option for continuous monitoring of non-clinical patients.

Figure 2.4: Some of the areas of application of EIT.

2.2.2.1 Temporal and spatial resolution

Another factor in favour of EIT is that it is a relatively cheap technique and his tempo-

ral resolution (10-50 images per second [10]) can be higher than in other tomographic

imaging techniques (around 10 images per second [32]) like x-ray CT or MRI.

Despite all these motivating advantages there are factors that have prevented EIT to

become established as a routine tool in healthcare so far. One of the major limitations

of EIT is the poor spatial resolution, because of the limited number of independent

measurements. Due to the system architecture used in most EIT systems, if N electrodes

are used then only N(N−3)
2 independent measurements can be made [18].

Most of the architecture systems used in research, including the one used to measure

EIT data for this project, have 16 electrodes, limiting the number of independent mea-

surements per frame to 104. This limits greatly the spatial resolution of EIT images.

While CT scanners usually provide images consisting of 512 × 512 pixels, EIT images
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from systems using 16 electrodes typically only consist of 32 × 32 pixels [33], thus it

is not expected that the spatial resolution of EIT images can be improved in the near

future to a point comparable with that of CT.

2.2.2.2 EIT sensitivity and difference imaging

A different limitation of EIT is that it typically shows to be more sensitive to many

effects other than the one of interest [19]. The low conductivity lungs act like a shield

that prevents current from penetrating to the centre. This effect can be increased by

the fat underneath the skin of the patients. On the other hand, EIT is very sensitive to

any imperfections in the electronics hardware and the electrode contact.

Another factor to keep in mind is body shape. Image reconstruction from absolute

impedance measurements requires knowledge of the exact dimensions and shape of a

body as well as the precise electrode location since simplified assumptions would lead to

major reconstruction artefacts [34]. The sensitivity of the measurements to body shape

is at least as great as the sensitivity to internal resistivity distribution.

EIT researchers avoid this problem by confining their attention only to changes in tissue

resistivity and not to absolute values. This was termed difference imaging or functional

EIT. A difference image shows the change in tissue resistivity between reference and

data points [18]. In this project our reference was the average of the first thirty seconds

of the data set.

2.3 EIT System Architecture

EIT systems designed for medical use typically apply high-frequency and low-amplitude

current and measure voltage [20]. The single source architecture is the most popular type

of EIT devices. These systems normally use only two electrodes at a time for current

stimulation, while measurements are made by all electrodes not used for stimulation.

But there are also other more complex designs, multifrequency devices, which stimulate

current on all electrodes simultaneously and measure voltage at the driven electrodes.

The first EIT system developed for clinical use was the Sheffield Applied Potential

Tomograph Mark I, a single source system developed by Barber and Brown in the early
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1980s. In this device sixteen electrodes are placed equidistantly around the thorax

and one reference electrode is placed on the abdomen. Current is injected at 50 kHz

sequentially in adjacent electrode pairs and the potential difference is measured in the

remaining electrode pairs [32]. Dynamic images are produced showing the distribution

of relative impedance changes. This is done by feeding voltage changes relative to a

reference data set into the Sheffield back-projection algorithm [20].

Chest EIT has, due to the high influence of the work by Barber and Brown, most

commonly used single source systems. Despite some studies claim that this design has a

worse distinguishability performance than other more complex designs, in 2012 around

three quarters of the recent EIT designs used the Sheffield protocol [35].

The so called Sheffield protocol follows the design used in the Sheffield Mark I, i.e., the

application of a current between two adjacent electrodes and the measurements of the

resulting voltage profile between all other adjacent electrodes around the body (Figure

2.5). This process is repeated for current applied between all the adjacent electrode

pairs around the body. So, for a system with 16 electrodes, one data frame has current

applied from 16 positions, and each position has 13 voltage measurements. The resulting

16 × 13 = 208 values, also called a frame, are used to reconstruct one cross-sectional

EIT image. There is also one extra electrode, the reference electrode, that is attached to

a central point on the chest under investigation. The reference electrode ensures that all

measurements at different electrode pair are referenced to the same electric potential.

Figure 2.5: Data acquisition of a single source EIT system with 16 electrodes that uses
adjacent current stimulation. This system involves application of a current stimulated
by the two adjacent electrodes and the measurements of the resulting voltage from all
other electrodes around the body. This process is repeated for current applied by each

electrode in a clockwise motion. Image extracted from [36].
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The EIT system used to acquire data for this project was the Göttingen GOE MF II,

developed in the mid-1990s by the EIT Group in Göttingen [37]. This system follows

the Sheffield protocol and was a further development step beyond the Sheffield Mark I

system. It was the world’s first EIT system suited for experimental validation studies

in animals and physiological studies in volunteers and clinical research. It is still vastly

used in research today.

EIT devices for lung function monitoring designed for everyday clinical use are also

already available: Dräger Medical’s Pulmovista 500 [38], since 2010, and Swisstom AG’s

Swisstom BB2, since 2014 are the most famous examples.

2.4 EIT reconstruction algorithms

The function of a reconstruction algorithm in chest EIT is to transform the voltages

measured at the surface of the thorax into a cross-sectional image of impedances.

The problem of recovering conductivity from surface measurements of current and po-

tential is an inverse problem. An inverse problem is the process of calculating from a set

of observations the causal factors that produced them. In EIT we want to compute the

impedance inside the body that caused the measured potential by the electrodes on the

surface. In other words, the objective of an inverse problem is to find the best model y

such that:

x̂ = R(y) (2.1)

where R is an operator, often called observation operator, describing the relationship

between the observed data, x̂, and the model parameters.

For several reasons this is specially challenging in EIT, as described below.

• Nonlinearity. In general, the relationship between the distribution of resistivity

in the chest and the voltage profile at the boundary is nonlinear. In nonlinear

problems, the observation operator cannot be separated to represent a linear map-

ping of the model parameters that form y into the data, complicating the problem.
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Attempts to reconstruct the distribution of resistivity from these profiles without a

linearised approximation usually involve a time consuming and iterative solution.

• Nonlocality. In conventional medical imaging modalities, such as x-ray CT, a

collimated beam of radiation passes through the thorax in a straight line, and the

attenuation of this beam is affected only by the matter which lies along its path.

In this sense x-ray CT is local, which means that the pixels or voxels of our im-

age affect only a small proportion of the measurements. On the other side, when

an electrical current passes through the thorax, the current spreads out in three

dimensions, in a direction that is decided by the distribution of impedance inside

the thorax. Therefore, any local change in impedance will affect all voltage mea-

surements at the surface of the thorax. This means that, to find the conductivity

image, there is the need to solve a system of equations that relates every pixel to

every measurement.

• Ill-posedness. A mathematical model of a physical problem is well posed if: 1)

for all admissible data, a solution exists; 2) for all admissible data, the solution

is unique; and 3) the solution depends continuously on the data. The problem

in EIT of recovering an unknown conductivity from boundary data is severely ill-

posed because of the third criteria: small errors in voltage measurement may lead

to drastically different solutions. This is specially significant because of the small

number of measurements made due to the limiting number of electrodes from the

EIT device.

This is a serious problem for EIT. An ill-posed problem needs to be re-formulated

for numerical treatment. Typically this involves regularization, i.e., including

additional assumptions, such as smoothness of the impedance distribution [18].

These assumptions allow decisions between different possible solutions, computing

an image that is a reasonably close to the actual impedance distribution within

the patients’ chest. This reduces however the spatial resolution [39].

2.4.1 Linear reconstruction algorithms

Despite image reconstructions being a nonlinear problem, linearised approximations have

been preferred over iterative algorithms in medical EIT.
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Some research is currently being conducted in non-linear reconstruction algorithms [40],

but these iterative algorithms have not been able to achieve stable results due to the

existence of measurement noise and geometric uncertainty [33]. Furthermore, iterative

algorithms are too slow for now due to the computational costs. Speed is especially

important in EIT because it is one of its main advantages over other available imaging

modalities like CT. So, there is still a long road to go until iterative algorithms have a

widespread use in EIT.

For these reasons, almost all investigation around EIT lung monitoring, as well as med-

ical EIT in general, is done using linear reconstruction algorithms. Equation 2.1 can,

for linear algorithms, be simplified to:

x̂ = Ry (2.2)

2.4.2 Graz consensus Reconstruction algorithm for EIT (GREIT)

During a long time the different versions of the back-projection algorithm implemented

in the Sheffield system [41] in the 1980s or the Göttingen system in early 2000s were the

most used reconstruction algorithms in medical EIT. These algorithms, despite having

been very important for the future of this technique, do not incorporate the advances

that have been made over the last years.

For some time a great number of other approaches to linear EIT reconstruction have

been proposed [42, 43]. However they have not been widely used because there was a lack

of an agreement in the EIT community on which approaches were best, and how they

could be combined [33], leading to different algorithms being used by different research

groups and different EIT devices.

During the 2007 ICEBI conference in Graz, Austria, initial discussions between the EIT

community took place that lead to the development of the GREIT (Graz consensus Re-

construction algorithm for EIT). The objective was to create a reconstruction algorithm

that would be accepted by the majority of the experts in EIT algorithm and clinical

applications.

GREIT was developed for the following specifications [33, 44]:
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• single ring electrode configurations with Sheffield-type EIT systems, using adjacent

current injection and measurement (16, 12 or 8 electrodes).

• linear reconstruction of a 2D conductivity change image, based on a 3D forward

model.

• reconstruction onto a 32 × 32 pixel array for the following shapes: neonatal chest,

male and female adult chest and cylindrical tanks.

The major difference between GREIT and the other reconstruction algorithms is that

GREIT is based on a set of performance requirements, in contrast of just being based

on a mathematical model which does not factor in those performance requirements [33].

GREIT has therefore performance requirements encoded into the algorithm, established

after discussion with different experts in the medical EIT area. These figures of merit

are described in Appendix A.

To reconstruct the images from EIT data correctly, GREIT needs a forward model, a

noise model and the desired performance metrics. What information each model provides

to the reconstruction model is explained below. An extensive and detailed mathematical

description on how the algorithm implements these informations and the performance

metrics can be read in Adler et al 2009 [33].

The body under investigation is modelled using a forward model. The models represent

the details of the body geometry, the electrode size, placement and contact impedance. A

forward model allows calculation of EIT measurement data from a conductivity change

distribution. With a correct forward model, and knowing X, one can calculate Y in

Equation 2.2.

The noise model allows an estimation of representative noise samples from EIT mea-

surements. It considers two sources of noise. Electronic measurement noise is considered

and modelled to be uniform and Gaussian in EIT. Electrode movement artefacts occur

with movement of the electrodes, that can occur with chest movements of the patients

due to breathing or a posture change.
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Materials and Methods

3.1 Data Acquisition

Datasets from adult subjects were acquired on three different occasions by a team com-

posed of researchers, nurses and medical doctors. Two of those occasions were at

the General Hospital of Thessaloniki, Greece, and one at University Medical Centre

Schleswig-Holstein, Campus Kiel, Kiel, Germany. A total of 26 subjects were examined:

12 healthy subjects (38.3 ± 7.3 years old, mean age ± SD; female/male: 7/5) and 14

patients with diagnosis of COPD (72.8 ± 8.3 years old; female/male: 2/12). All data

relevant for this study was acquired during tidal breathing.

During these acquisitions sixteen self-adhesive electrodes (Blue Sensor L-00-S, Ambu,

Ballerup, Denmark) were attached on the chest circumference in the 5-6th intercostal

space and one reference electrode on the abdomen in each studied subject.

Measurements involved application of a current (50 kHz, 5 mArms) between two adjacent

electrodes, while the voltage is measured by the rest of the electrodes. This process is

repeated for current applied between all the adjacent electrode pairs around the body

in a sequential process. The EIT data were acquired using the Goe-MF II EIT device

(CareFusion, Höchberg, Germany) at around 33 images/s.

This study was approved by the institutional ethics committee and informed written

consent was obtained from each study participant.

17
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3.2 Reconstruction

Images were reconstructed from the obtained data using the GREIT algorithm [33].

Reconstruction was done with the help of EIDORS [45]. EIDORS is an open-source

software tool box written mainly in MATLAB designed for image reconstruction from

EIT data. It has been used both in lung imaging as well as other medical imaging

applications like measuring cardiac activity and imaging electrical activity in the brain.

The software also has a list of forward models, needed for the reconstruction, created

using the finite element method. An adult thorax shaped model with a single plane of

16 electrodes and adjacent stimulation pattern was selected from the model library.

Figure 3.1: Adult thorax shaped model selected from the model library [45].

The obtained EIT images consist of 32 × 32 pixels, but only 912 of those are pixels of

interest, representing the inside of the thorax. The value on each pixel represent the

normalised difference between the instantaneous and the reference impedance for that

location. Our reference value was calculated as the average of the first thirty seconds of

that data set.

For each data set the GIC (global impedance curve) over time was obtained, by calcu-

lating for each frame or image the sum of all of his pixels (Figure 3.2).
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Figure 3.2: GIC obtained of one dataset. The end-inspiration (green dots) and end-
expiration (red dots) moments are found from this curve.

From this information, end-inspiration and end-expiration moments were identified. At

end-inspiration the lungs are filled with air and the total impedance value reaches a

maximum. At end-expiration the opposite occurs.

From this, a tidal EIT image was computed for each breathing cycle. Each pixel from

the tidal EIT image was calculated as the difference between the corresponding pixel in

end-inspiration and in end-expiration.

Figure 3.3: Obtained image at: i) end-inspiration; ii) the following end-expiration and
iii) the resulting tidal image.

Each pixel in the tidal EIT image represents the value of impedance difference between

the two moments. In the lung area this approximately represents the difference in volume

of air between inspiration and expiration.
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3.3 Quality evaluation of the acquired data

Not all acquired data is suitable for analysis. For various reasons, as for example bad elec-

trode placing and coughing, speaking or movement during acquisition, between others,

some datasets may have more noise or measure smaller impedance differences between

end inspiration and end expiration than expected. This will affect the result of the

evaluation of the studied parameter and these datasets should therefore not be used.

It is therefore important to find means to evaluate the quality of the acquisition before

using the dataset to test parameters and make conclusions about their usefulness for

COPD testing and monitoring.

A first idea on the quality of the acquisition can be obtained by looking at the GIC

of the data set. Figure 3.2 shows what the GIC of a near ideal acquisition looks like,

while Figure 3.4 shows the GIC of an acquisition with an unacceptable amount of noise

and Figure 3.5 shows the GIC of an acquisition which measured smaller impedance

differences than normal.

Figure 3.4: Global impedance curve obtained for one dataset with an unacceptable
amount of noise.

To evaluate the datasets two parameters were computed: the average pixel difference

(APD) from all tidal images of each dataset and the noise.

To obtain the APD of each dataset we first computed the average pixel value of each

tidal image. Then we calculated the average of these values:
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Figure 3.5: Global impedance curve obtained for one dataset with small impedance
differences during acquisitions. Differences between end inspiration and end expiration
are only around 3 − 5 × 103 for this data set, much lower than for other acquisitions

(around 3× 104, as can be seen in Figure 3.2 and Figure 3.4).

APD =

∑
breathingcycle

∑
DIx,y

#pixels

Nbc
(3.1)

where DIx,y is the value of the pixel x, y from the tidal image, #pixels is the number of

pixels that every tidal image has (32 × 32 = 1024) and Nbc is the number of breathing

cycles (or tidal images) available from that dataset.

For the noise calculation, first a Fast Fourier Transform (FFT) was computed for the

global impedance curve. Then the values between 3 Hz (value chosen after careful

observation of the amplitude spectrum of the FFT, Figure 3.6) and half of the frame

rate of the acquisition were added.

The obtained results are shown in Tables 3.1 and 3.2. Datasets with an APD under 10

or Noise over 105 (bold values on the table) were considered not suitable. This threshold

excluded healthy subjects #1 to #4, #11 and #12, one dataset from healthy subject

#6 and patient #14 and two datasets from patient #3.
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Figure 3.6: FFT spectrum for the global impedance curve of a dataset with normal
noise (in blue) and excessive noise (in red).

3.4 EIT image parameters

While the generation of EIT images can in itself give important medical information,

application possibilities are not limited to it. Quantitative parameters that characterizes

the state of the lungs can also be computed from EIT data. The aim of this study was

to implement three EIT parameters and test their usefulness in COPD diagnosis and

monitoring.

To calculate these parameters the lung area was first of all identified for each tidal

image. The lung areas were estimated using functional EIT with a predefined threshold

of 35%, i.e., pixels with values larger than 35% of the maximum value in that image

were identified as lung area. Since the lungs are expected to be relatively symmetric, the

lung area identified was mirrored from left to right and from right to left and combined

by a logical OR operation. The final resulting area was considered to represent the lung

area for each parameter.
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Table 3.1: Evaluation of the data acquisition quality of healthy subjects.

Subject Dataset Noise (×104) Average Pixel Difference

1 1 15.1 10

2 1 18.4 5

3 1 3.6 10

4 1 15.1 18

5 1 2.9 15

6
1 1.9 45
2 1.0 41
3 10.0 45

7
1 0.9 36
2 2.7 68
3 9.6 79

8
1 1.7 46
2 1.2 36
3 1.4 38

9
1 8.7 42
2 8.2 35
3 3.0 63

10
1 1.0 12
2 1.2 20

11
1 12.9 19
2 11.7 17

12
1 11.4 4
2 12.2 4

3.4.1 Global Inhomogeneity index

The global inhomogeneity (GI) index is an EIT parameter that quantifies the tidal

volume distribution within the lung [46].

The GI index has been used mainly with patients under mechanical ventilation in mind,

in particular ARDS patients [47–49], and has shown to be reliable and interpatient

comparable [47]. This parameter is calculated from tidal EIT images. To the best of

our knowledge this is the first time someone evaluates the viability of this parameter for

COPD patients during tidal breathing.

The median value of the pixels in the identified lung area is computed. The sum of

the absolute difference between the median value and every pixel value is considered to

represent the variation in tidal volume distribution in the whole lung region [46]. To

make the GI index universal and interpatient comparable, it is normalized to the sum

of the impedance values within the lung area:
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Table 3.2: Evaluation of the data acquisition quality of the COPD patients.

Patient Dataset Noise (×104) Average Pixel Difference

1 1 7.1 25
2 2.8 35
3 7.8 39

2 1 3.1 46
2 8.6 40
3 1.8 28

3 1 11.1 74
2 11.1 77
3 4.5 50

4 1 6.7 33
2 1.6 35

5 1 1.7 34
2 8.5 24

6 1 1.6 17
2 2.4 39
3 9.5 37

7 1 7.9 25
2 1.1 39

8 1 8.9 34
2 2.5 37
3 8.5 35

9 1 7.7 34
2 3.5 68

10 1 9.0 24
2 8.0 25
3 8.6 34

11 1 8.2 31
2 2.4 28
3 9.6 32

12 1 2.8 30
2 2.1 25
3 2.8 56

13 1 3.7 20
2 9.6 28
3 6.5 31

14 1 10.6 36
2 7.7 41
3 9.2 43

GI =

∑
x,y∈lung |DIx,y −Median(DIlung)|∑

x,y∈lungDIxy
(3.2)

where DIx,y is the value of the differential impedance for the pixel at x, y in the tidal

image and DIlung represents all the pixels considered to be part of the lung area.
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3.4.2 Local Inhomogeneity index

The LI index was proposed by the same group that first implemented the GI index

[46]. Both intend to quantify lung inhomogeneity by evaluating the lung area of tidal

images and were created with patients under mechanical ventilation in mind. The main

difference between the two indices is that, while the GI index aims to characterize lung

ventilation homogeneity in a global level, the LI index focuses on local inhomogeneity,

calculating differences between neighbouring pixels. This index is normalized using the

same approach as for GI, by dividing by the sum of the impedance values within the

lung area.

The LI index is described by the following equation:

LI =
∑

x,y∈lung


 1

m− 1
×

∑

i,j∈[−1,1]
⋂
x+i,y+j∈lung

|DIxy −DIx+i,y+j |


÷

∑

x,y∈lung
DIxy

(3.3)

where DIxy is the value of the pixel x, y in the identified lung area; DIx+i,y+j are the

neighbour pixels of DIx,y and finally m is the length of i, j ∈ [−1, 1]
⋂
x+ i, y + j ∈ lung

or simply the amount of neighbour pixels that are part of the lung area.

3.4.3 Percentage of pixels inside of DIlung ± σ

We consider that testing the viability of the GI and LI indexes in COPD testing and

monitoring makes sense because they measure lung ventilation inhomogeneity, which is

a direct consequence of the air flow limitations caused by this disease.

Following this logic, we intended to implement and test another parameter that also

presents information about the patients’ breathing but in a different way.

This parameter can be described as the percentage of pixels inside DIlung ± σ, where

DIlung is the average of all pixels that are part of the lung area of the tidal image and

σ is the standard deviation of those values (Equations 3.4 and 3.5). This parameter will

be referred by the acronym PoP from now on.
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PoP =

∑N
i DIi
N

(3.4)

where DIi is equal to:

DIi





1 if DIi ∈
[
DIlung − σ,DIlung + σ

]

0 else

(3.5)

where DIi is the value of the ith pixel part of the lung area, DIlung is the average value

of all pixels inside the lung area, σ is the standard deviation of those values and N is

the number of pixels considered to be part of the lung area.

3.5 Data Analysis

For each breathing cycle acquired a tidal image was computed and the three different

parameters described in the previous chapter were calculated for both patients and

healthy subjects. Because there is one measurement variable (value obtained for the

parameter) and one nominal variable (control or COPD), no certainty that the data

follows a normal distribution and a small sample size in terms of data, the obtained

results were compared using the Kruskal-Wallis test. A p value <0.05 was considered

to reject the null hypothesis: ”values from the control and from the COPD group are

drawn from the same distribution”.

The receiver operating characteristic (ROC) curve was computed for each parameters

to evaluate their classification performance. The curve is created by plotting the true

positive rate against the false positive rate at different thresholds. The area under curve

(AUC) is equal to the probability that a random value of the COPD group is higher

than a random value of the control group, so a parameter with an AUC of 0.5 would

classify a value correctly as control or COPD only 50% if the time. In other words, the

higher the AUC is, the better is the classification performance of the parameter.

Data analysis was performed using MATLAB 8.3 (The Mathworks, Natick, MA, USA).
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Results and Discussion

The content in this chapter presents the data analysis described in section 3.5, as well

as a discussion of the obtained results.

4.1 Global Inhomogeneity index

Table 4.1 presents the average GI, as well as the number of breathing cycles analysed for

each dataset of the control group. Table 4.2 displays the same information, but for the

COPD group. Data are presented as mean and standard deviation (SD). The overall

average GI obtained was 0.78±0.15 for the control group and 0.85±0.20 for the COPD

group.

The GI values obtained for the COPD patients were compared to the control group using

the Kruskal-Wallis test (Figure 4.1). The p value returned from the test (p = 7.98×10−7)

is lower than the significance level, thus rejecting the null hypothesis described in section

3.5.

There are, however, significantly more subjects for our COPD group than for the control

group. The control group has 6 subjects with a total of 99 breathing cycles, while the

COPD group has 14 subjects with a total of 318 breathing cycles. Due to the existence

of unbalanced groups, a Monte Carlo cross validation was done. This was achieved by

selecting 100 times 99 random GI values from the COPD group and comparing them with

the 99 GI values from the control group using the Kruskal-Wallis test. The 100 p values

27
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Table 4.1: Average GI obtained for each dataset of the control group.

Subject Dataset GI SD # Breathing Cycles

5 1 0.98 0.05 6

6
1 1.03 0.03 12
2 0.97 0.03 12

7
1 0.70 0.05 12
2 0.65 0.01 7
3 0.67 0.01 7

8
1 0.65 0.01 5
2 0.73 0.03 6
3 0.67 0.02 6

9
1 0.65 0.03 5
2 0.66 0.03 6
3 0.66 0.04 8

10
1 0.75 0.00 3
2 0.70 0.05 4

Figure 4.1: Comparison of the obtained GI values for the COPD patients and the
control group. The boxes mark the quartiles while the whiskers extend from the box
out to the most extreme data value within 1.5x the interquartile range of the sample.

The red crosses represent outliers.
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Table 4.2: Average GI obtained for each dataset of the COPD group.

Patient # Dataset GI SD # Breathing Cycles

1
1 0.96 0.07 11
2 0.95 0.06 10
3 1.01 0.05 9

2
1 0.89 0.05 6
2 0.80 0.05 8
3 0.82 0.10 6

3 3 0.77 0.14 9

4
1 0.93 0.06 7
2 0.93 0.05 7

5
1 0.72 0.03 8
2 0.88 0.09 8

6
1 0.81 0.08 6
2 0.71 0.03 6
3 0.75 0.03 9

7
1 0.75 0.05 9
2 0.73 0.03 10

8
1 0.64 0.07 6
2 0.56 0.03 7
3 0.57 0.04 8

9
1 0.94 0.08 9
2 0.80 0.05 9

10
1 1.21 0.15 10
2 1.19 0.07 10
3 1.15 0.09 10

11
1 0.82 0.08 9
2 0.92 0.08 12
3 0.78 0.07 15

12
1 0.54 0.06 10
2 0.64 0.04 12
3 0.55 0.04 8

13
1 1.14 0.07 12
2 1.06 0.12 10
3 1.01 0.07 12

14
2 0.66 0.03 8
3 0.69 0.03 12
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obtained are represented in Figure 4.2, with all of them being lower than the significance

level. These results support the conclusion that there is a consistent difference between

the GI values obtained from the COPD group and the control group.

Figure 4.2: Representation of the obtained p values during cross validation. Highest p
value obtained: pmax = 3.8× 10−3.

An analysis between the groups for each gender was done as well. The result of the cross

validation between the control group and the COPD group for the female population

and male population are presented in Figure 4.3 and Figure 4.4, respectively.
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Figure 4.3: Representation of the obtained p values during cross validation between the
GI values of the female control group and the female COPD group. Highest p value

obtained: pmax = 1.4× 10−3.

Figure 4.4: Representation of the obtained p values during cross validation between GI
values of the male control group and the male COPD group. Highest p value obtained:

pmax = 5.2× 10−2.
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4.2 Local Inhomogeneity index

The average LI for each dataset of the control group and the COPD group are presented

in Table 4.3 and Table 4.4, respectively. The overall average LI obtained was 0.20±0.04

for the control group and 0.21± 0.05 for the COPD group.

Table 4.3: Average LI obtained for each dataset of the control group.

Subject Dataset LI SD # Breathing Cycles

5 1 0.22 0.01 6

6
1 0.27 0.01 12
2 0.24 0.01 12

7
1 0.19 0.01 12
2 0.16 0.00 7
3 0.16 0.01 7

8
1 0.17 0.00 5
2 0.19 0.01 6
3 0.18 0.01 6

9
1 0.18 0.01 5
2 0.17 0.02 6
3 0.18 0.01 8

10
1 0.17 0.00 3
2 0.16 0.01 4

The result of the Kruskal-Wallis test can be seen in Figure 4.5. The returned p value

(1.16× 10−2) is lower than the significance level.

A Monte Carlo cross validation was performed for this parameter, for the same reason

and following the same method that was described in the GI section (Figure 4.6). From

the 100 simulations, a total of 43 p values were obtained over the threshold value, with

the highest being pmax = 4.98×10−1. We therefore can not claim with a high confidence

that the values from the two groups come from different distributions.

These results leave little hope for the use of the LI index as a viable parameter for

identification and monitoring of COPD condition.
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Table 4.4: Average LI obtained for each dataset of the COPD group.

Patient Dataset LI SD # Breathing Cycles

1
1 0.22 0.01 11
2 0.21 0.01 10
3 0.23 0.01 9

2
1 0.21 0.01 6
2 0.19 0.02 8
3 0.18 0.02 6

3 3 0.16 0.03 9

4
1 0.21 0.01 7
2 0.19 0.01 7

5
1 0.20 0.01 8
2 0.22 0.02 8

6
1 0.22 0.05 6
2 0.19 0.01 6
3 0.19 0.01 9

7
1 0.22 0.02 9
2 0.19 0.01 10

8
1 0.19 0.02 6
2 0.18 0.02 7
3 0.16 0.02 8

9
1 0.23 0.01 9
2 0.19 0.01 9

10
1 0.29 0.04 10
2 0.28 0.02 10
3 0.27 0.03 10

11
1 0.19 0.01 9
2 0.21 0.02 12
3 0.18 0.02 15

12
1 0.14 0.01 10
2 0.15 0.01 12
3 0.15 0.01 8

13
1 0.34 0.03 12
2 0.30 0.04 10
3 0.26 0.03 12

14
2 0.16 0.01 8
3 0.17 0.01 12



34 Chapter 4. Results and Discussion

Figure 4.5: Comparison of the LI values for the COPD patients and the control group.

Figure 4.6: Representation of the obtained p values during cross validation. Highest p
value obtained: pmax = 4.98× 10−1.
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Table 4.5: Average PoP obtained for each dataset of the control group.

Subject Dataset PoP SD # Breathing Cycles

5 1 0.61 0.01 6

6
1 0.65 0.03 12
2 0.62 0.01 12

7
1 0.71 0.05 12
2 0.62 0.02 7
3 0.61 0.03 7

8
1 0.66 0.02 5
2 0.66 0.02 6
3 0.68 0.01 6

9
1 0.61 0.02 5
2 0.63 0.04 6
3 0.63 0.02 8

10
1 0.64 0.01 3
2 0.59 0.02 4

4.3 Percentage of pixels inside of DIlung ± σ

The average PoP for each dataset of the control group and the COPD group are presented

in Table 4.5 and Table 4.6, respectively. The overall average PoP obtained was 0.64±0.04

for the control group and 0.69± 0.06 for the COPD group.

The Kruskal-Wallis test returned a p value far below the considered threshold (Figure

4.7, p = 2.78× 10−15).

A Monte Carlo cross validation was performed for this parameter, for the same reason

and following the same method that was described in the GI section. All the p values

returned from the cross validation are lower than the significance level (Figure 4.8).

An analysis between the groups for each gender was done as well. The result of the cross

validation between the control group and the COPD group for the female population

and male population are presented in Figure 4.9 and Figure 4.10, respectively. For both

gender the returned p values are lower than the significance level.
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Table 4.6: Average PoP obtained for each dataset of the COPD group.

Patient Dataset PoP SD # Breathing Cycles

1
1 0.68 0.08 11
2 0.64 0.03 10
3 0.67 0.03 9

2
1 0.66 0.03 6
2 0.64 0.04 8
3 0.58 0.03 6

3 3 0.61 0.02 9

4
1 0.70 0.03 7
2 0.70 0.05 7

5
1 0.68 0.03 8
2 0.76 0.02 8

6
1 0.68 0.02 6
2 0.75 0.02 6
3 0.75 0.03 9

7
1 0.68 0.03 9
2 0.66 0.02 10

8
1 0.72 0.04 6
2 0.73 0.06 7
3 0.66 0.02 8

9
1 0.71 0.02 9
2 0.66 0.02 9

10
1 0.75 0.02 10
2 0.73 0.03 10
3 0.73 0.02 10

11
1 0.72 0.04 9
2 0.70 0.05 12
3 0.67 0.02 15

12
1 0.64 0.04 10
2 0.61 0.03 12
3 0.65 0.03 8

13
1 0.70 0.04 12
2 0.72 0.04 10
3 0.70 0.02 12

14
2 0.71 0.04 8
3 0.76 0.04 12
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Figure 4.7: Comparison of the obtained PoP values for the COPD patients and the
control group.

Figure 4.8: Representation of the obtained p values during cross validation. Highest p
value obtained: pmax = 1.6× 10−6.
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Figure 4.9: Representation of the obtained p values during cross validation between
the PoP results obtained for the female control group and the female COPD group.

Highest p value obtained: pmax = 3, 8× 10−3.

Figure 4.10: Representation of the obtained p values during cross validation between
the PoP results obtained for the male control group and the male COPD group. Highest

p value obtained: pmax = 4, 4× 10−3.
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4.4 General Discussion

The obtained results reveal some potential for the GI and the PoP indexes as viable

parameters for COPD testing and monitoring.

Both of these parameters present little variance between breathing cycles in the same

data set (as demonstrated by the low SDs obtained for all data sets). A low variance

was also obtained between different datasets of the same subject. This stability is

an important quality: if the parameter had large variance within the same subject,

comparing its values between different subjects would be more difficult and would require

acquisitions over a large period of time.

It is important to note, however, that while significant differences were obtained between

the control and the COPD group, an overlap between the highest values from the control

group and the lowest values from the COPD group is present for both parameters. We

therefore recommend that these parameters should be used along with other parameters

and other ways of diagnosis and monitoring in order to reduce the false positive and

false negative rate.

To better understand the classification performance of the studied parameters a receiver

operating characteristic (ROC), described in Section 3.5, was computed.

The obtained ROC curves are displayed in Figure 4.11. While the GI and LI indexes had

bad performance scores, with an area under curve (AUC) of 0.66 and 0.67 respectively,

PoP obtained a strong result with an AUC of 0.82.

Finally, the sample size of the data available for testing is relatively small. To validate

the results of this study, and to better understand the strengths and weaknesses of these

parameters, further testing needs to be done.



Figure 4.11: ROC for classification by Logistic Regression. AUC values for each curve:
AUCGI = 0.66, AUCLI = 0.67, AUCPoP = 0.82.



Chapter 5

Conclusion and Future Work

This thesis contribution consists in the implementation and testing of three different

parameters that measure lung ventilation heterogeneity. These parameters could see

use in devices like the wearable vest that the WELCOME project aims to design and

implement whose function would be to provide continuous monitoring of COPD patients.

In order to evaluate the viability of these parameters, the steps followed were:

• Study of the problem and review of relevant literature about EIT monitoring of

lung function.

• Reconstruction of EIT images from the datasets, using the GREIT reconstruction

algorithm with the help of the EIDORS library for MATLAB. Computation of a

tidal image for each breathing cycle.

• Implementation of these parameters. Analysis of the obtained data using the

Kruskal-Wallis test and Monte Carlo cross validation and evaluation of the perfor-

mance of the parameters by computation of the ROC curve.

From the studied parameters PoP had the most promising results. The Kruskal-Wallis

test and cross validation returned significant differences between the control and the

COPD group. The parameter also exhibited a strong performance in terms of classifica-

tion. These parameters allow interpatient comparisons, so there is a clear potential for

its use in testing and/or monitoring of COPD. The GI index also returned significant dif-

ferences between the groups. Its classification performance was however far worse than

41
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the one from PoP. Finally, the LI index did not obtain significant differences between

the control and the COPD group.

Further testing needs to be done to see these parameters in clinical use. To start, once

more data is available, future studies should focus on whether some patients’ charac-

teristics like gender, age and body mass influence these parameters and, if the answer

is positive, understand exactly how. Furthermore, to make these parameters useful for

monitoring of COPD patients over a long period of time, it is necessary to understand

how these parameters behave with the progression of the disease.
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[47] Z. Zhao, K. Möller, D. Steinmann, I. Frerichs, and J. Guttmann, “Evaluation of an

electrical impedance tomography-based global inhomogeneity index for pulmonary



48 References

ventilation distribution,” Intensive care medicine, vol. 35, no. 11, pp. 1900–1906,

2009.
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inhomogeneity index is highly correlated with regional lung opening in patients with

acute respiratory distress syndrome,” BMC research notes, vol. 7, no. 1, p. 82, 2014.



Appendix A

GREIT figures of merit

This appendix is based on the work of Adler et al 2009 [33]. The GREIT figures of

merit consider an EIT system using the following notation described by the authors:

”Using nE electrodes, nE current stimulation patterns are sequentially applied and nV

differential voltage measurements are made in parallel for each stimulation. For an ad-

jacent drive EIT system, voltages are typically not measured at driven electrodes and

nV = nE − 3. Each data frame measures a vector, v ∈ RnM , of nM = nEnV data points

(some of which are redundant if the medium is not changing). Difference EIT calculates

difference data y, ([y]i = [v]i − [vr]i), where vr is a reference set of measurements corre-

sponding to the background conductivity distribution, σr. To improve its precision, vr

is typically averaged over many data frames, such ensemble averaging reduces random

noise, and we assume that vr is noise free.”

As explained in Section 2.4 and using the notation described below, given a vector of

EIT difference data y, of length nEnV , it is possible to calculate a reconstructed EIT

image x̂ = Ry based on an EIT linear reconstruction algorithm represented as a matrix

R. x̂ is a column vector representing the 32 x 32 pixel grid of the images.

The figures of merit of GREIT are calculated based on small ”point” conductivity

changes, with a diameter of less than 5% of the medium diameter, so much smaller

than the spatial resolution of an EIT device with 16 electrodes.
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To evaluate the image, a 1
4 amplitude set is first calculated, which is represented by

this notation as x̂q. This contains all image pixels [x̂]i greater than 1
4 of the maximum

amplitude:

[x̂q]i =





1 if [x]i ≥ 1
4max(x̂)

0 otherwise

The following figures of merit were defined (figure A.1):

Figure A.1: Performance figures of merit selected for evaluation of GREIT images.
Based on a reconstructed image (x̂), another image (x̂q) is constructed of all image
pixels which exceed 1

4 the maximum amplitude. From these images figures of merit are
calculated. Image extracted from [33].

The figures of merit, in order of importance, are:

• Uniform amplitude response (AR). AR measures the ratio of image pixel

amplitudes in the target to that in the reconstructed image. It is defined as: ”for

a spherical target of volume Vt in the electrode plane with conductivity σt in a

body of homogeneous reference conductivity σr

AR =

∑
k[x̂]k

Vt
∆σ
σr

where ∆σ = σt − σr”.

AR should be constant for any target position because without constant amplitude

response the same volume of air in different parts of the lung will contribute differ-

ently to the image, therefore introducing severe difficulties in image interpretation.
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• Small and uniform Position Error (PE). PE measures how close the recon-

structed images represent the position of the image target. Based on the target

position, rt, and the CoG of x̂q, rq, PE is defined by the authors as:

PE = rt − rq

So, PE basically measures how far the center of gravity of the reconstructed resis-

tivity distribution is relatively to the ground truth.

If PE is not uniform, interpretation of a distribution of air in the lungs is unreliable.

For example the Sheffield backprojection, one of the first and most widely used

reconstruction algorithms, has an higher PE near the electrodes. This lead to cases

where changes at the electrodes are misinterpreted as being inside the body.

• Uniform Resolution (RES). RES intends to measure the size of the recon-

structed target as a fraction of the medium. This is equivalent to a measure of

point spread function (PSF) size. RES is defined as:

RES =

√
Aq
A0

where Aq is the number of pixels in x̂q and A0 is the number of pixels in the entire

reconstructed medium.

An uniform and small RES allows an accurate representation of the target con-

ductivity distribution. While a non-uniform RES can lead to an incorrect recon-

structed position of a larger target, low RES is important for distinguishability in

nearby targets.

An uniform RES is considered to be a more important characteristic than a low

one. EIT having a low spatial resolution is a known and accepted drawback com-

pared to other medical imaging techniques, due to the limitation on the number

of independent measurements by the number of electrodes in the EIT system, so

the ability to distinguish nearby targets is considered less important.

• Limited Shape Deformation (SHD). Reconstruction algorithms create circular

images for targets in the centre, but often display strangely shaped artefacts for

targets near the medium boundary. Adler et. al [33] describe SHD as the measure
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of ”the fraction of the reconstructed 1
4 amplitude set which does not fit within a

circle of equal area.

SHD =

∑
k/∈C

[x̂q]k

∑
k

[x̂q]k

where C is a circle at the CoG of [x̂q] with an equivalent area to Aq.”

A large SHD may result in incorrect interpretation of images.

• Low and uniform Ringing (RNG). RNG determines whether reconstructed

images show areas of opposite sign surrounding the main reconstructed target

area. The function of RNG is to measure ”the ratio of image amplitude of the

opposite sign outside circle C to image amplitude within C” [33].

RNG =

∑
k/∈C&[x̂q ]<0

[x̂]k

∑
k∈C

[x̂]k

Explained in another way, RNG determines how much negative resistivity, that

makes no physical sense, is reconstructed.

• Low Noise Amplification (NF) measures by how much a random measurement

noise is amplified in the reconstructed images. NF is the ratio of the output to

input signal to noise ratio (SNR) for a filter (figure A.2). SNR is defined as

SNR = mean|signal|
stdnoise . So NF is equal to:

NF =
E[mean|x̂t|]/E[stdx̂n]

E[mean|yt|]/E[stdyn]

For GREIT, the value of NF is set by the weighting associated with the training

noise. NF should be low but there is an inherent trade-off between good noise

performance and fidelity to the other figures of merit. So the ideal value of NF

should be around the noise level present in the EIT hardware used. Several studies

have been done to select an appropriate value of noise performance without large

consensus, but the noise performance of the Sheffield Backprojection algorithm, of

NF = 0.5 in the medium center, has generally been considered satisfactory, being

therefore a recommended value for the GREIT algorithm [33].



Figure A.2: Schematic representation of the Noise Figure parameter. This parameter
represents the amplification of noise through the reconstruction process as the ratio of

SNRx to SNRy. Image extracted from [33].
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Figure B.1: Tidal image obtained from healthy subject #5.

Figure B.2: Tidal image obtained from healthy subject #6.

55



56 Appendix B. Tidal Images

Figure B.3: Tidal image obtained from healthy subject #7.

Figure B.4: Tidal image obtained from healthy subject #8.

Figure B.5: Tidal image obtained from healthy subject #9.



Appendix B. Tidal Images 57

Figure B.6: Tidal image obtained from healthy subject #10.

Figure B.7: Tidal image obtained from patient #1.

Figure B.8: Tidal image obtained from patient #2.
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Figure B.9: Tidal image obtained from patient #3.

Figure B.10: Tidal image obtained from patient #4.

Figure B.11: Tidal image obtained from patient #5.
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Figure B.12: Tidal image obtained from patient #6.

Figure B.13: Tidal image obtained from patient #7.

Figure B.14: Tidal image obtained from patient #8.
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Figure B.15: Tidal image obtained from patient #9.

Figure B.16: Tidal image obtained from patient #10.

Figure B.17: Tidal image obtained from patient #11.



Appendix B. Tidal Images 61

Figure B.18: Tidal image obtained from patient #12.

Figure B.19: Tidal image obtained from patient #13.

Figure B.20: Tidal image obtained from patient #14.
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Evaluation of lung ventilation distribution in chronic obstructive
pulmonary disease patients using the global inhomogeneity index

F. Trenk1, L. Mendes1, P. Carvalho1, J. Henriques1

N. Maglaveras2, I. Chouvarda2, V. Tsara3 and C. A. Teixeira1

Abstract— The global inhomogeneity (GI) index is a electrical
impedance tomography (EIT) parameter that quantifies the
tidal volume distribution within the lung. In this work the global
inhomogeneity index was computed for twenty subjects in order
to evaluate his potential use in the detection and follow up of
chronic obstructive pulmonary disease (COPD) patients.

EIT data of 17 subjects were acquired: 14 patients with the
main diagnoses of COPD and 3 healthy subjects which served
as a control group. Two or three datasets of around 30 seconds
were acquired at 33 scans/s and analysed for each subject.
After reconstruction, a tidal EIT image was computed for each
breathing cycle and a GI index calculated from it.

Results have shown significant differences in GI values
between the two groups (0.745 ± 0.007 for COPD and 0.668
± 0.006 for lung-healthy subject, p < 0.005). The GI values
obtained for each subject have shown small variance between
them, which is a good indication of stability. The results
suggested that the GI may be useful for the identification and
follow up of ventilation problems in patients with COPD.

I. INTRODUCTION

Pulmonary air flow is less than normal in certain lung areas
of chronic obstructive pulmonary disease (COPD) patients.
This leads to a higher ventilation inhomogeneity than in
healthy subjects. Therefore, parameters that quantify the
degree of this inhomogeneity provide useful information
about the lung condition.

Several methods are able to detect this inhomogeneity in
ventilation in the lung such as computed tomography [1]
and the multibreath washout technique [2]. However, these
methods are not suitable for continuous monitoring.

Electrical Impedance Tomography (EIT), while having
a lower spatial resolution than CT, can provide a non-
invasive, radiation-free and continuous image of pulmonary
impedance [3]. This is because lung resistivity is around five
times higher when compared to most other soft tissues within
the thorax, and its value increases and decreases significantly
between inspiration and expiration [4]. Furthermore, due to
having high temporal resolution, EIT quickly detects changes
in lung ventilation. The reliability of EIT for lung ventilation
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monitoring has already been confirmed by various studies
[5]. However, EIT images obtained from different subjects
are hard to compare directly without prior calibration, since
the resulting image does not display absolute impedance
values.

In this paper we aim to evaluate the lung condition of
COPD patients by calculating the global inhomogeneity (GI)
index, a parameter that quantifies ventilation inhomogeneity
with a single number [6]. This parameter is calculated from
tidal EIT images that represent differences in impedance
between end inspiration and end expiration. The GI index has
been used mainly with patients under mechanical ventilation
in mind, in particular acute respiratory distress syndrome
(ARDS) patients [7][8][9], and has shown to be reliable and
interpatient comparable [7]. To the best of our knowledge this
is the first work that evaluates the viability of this parameter
for COPD patients during tidal breathing.

II. METHODS AND DATA

A. Database

Datasets from 17 adult subjects were examined, each
around 30 seconds long. Three healthy subjects (37.7 ± 4.6
years old, mean age ± SD; female/male: 1/2) and 14 patients
(72.8 ± 8.3 years old; female/male: 2/12) with diagnosis
of COPD were examined using EIT. All data was acquired
during tidal breathing.

Sixteen self-adhesive electrodes (Blue Sensor L-00-S,
Ambu, Ballerup, Denmark) were attached on the chest cir-
cumference in the 5-6th intercostal space and one reference
electrode on the abdomen in each studied subject.

Measurements involved application of a current (50 kHz, 5
mArms) between two adjacent electrodes, while the voltage
is measured by the rest of the electrodes. This process
is repeated for current applied between all the adjacent
electrode pairs around the body in a sequential process. The
EIT data were acquired using the Goe-MF II EIT device
(CareFusion, Höchberg, Germany) at around 33 images/s.

This study was approved by the institutional ethics com-
mittee and informed written consent was obtained from each
study participant.

B. EIT Reconstruction

Raw EIT images were reconstructed from the EIT data
using the GREIT algorithm [10]. Reconstruction was done
using the EIDORS software: an adult thorax shaped model
with a single plane of 16 electrodes and adjacent stimulation
pattern was selected from the model library [11]. Each



obtained EIT image consists of 32×32 pixels, but only 912
of those are pixels of interest, representing the inside of
the thorax. The values on these pixels are equal to the
normalised difference between the instantaneous and the
average pixel impedance for that data set. End-inspiration
and end-expiration moments were identified by analysing the
global impedance value evolution over time. This value was
obtained by calculating the sum of all pixels for each image.
At end-inspiration the lungs are filled with air, increasing the
measured resistivity on that region, and the total sum of all
pixels reaches a maximum. At end-expiration the opposite
occurs (step 3 of Figure 2).

A tidal EIT image, showing the impedance difference
between end-inspiration and end-expiration, was calculated
for each breathing cycle (Figure 1). The higher the volume
of air reaching the area represented by each pixel during
inspiration, the higher will the value of impedance difference
on that pixel be.

C. GI calculation

For each tidal image, the lung area was identified. The lung
areas were estimated using functional EIT with a predefined
threshold of 35%, i.e., pixels with values larger than 35%
of the maximum value in that image were identified as lung
area. Since the lungs are expected to be relatively symmetric,
the lung area identified was mirrored from left to right and
from right to left and combined by a logical OR operation.
The final resulting lung area was used to calculate the GI
index.

The median value of the pixels in the identified lung area
is calculated. The sum of the absolute difference between the
median value and every pixel value is considered to represent
the variation in tidal volume distribution in the whole lung
region [6]. To make the GI index universal and interpatient
comparable, it is normalized to the sum of the impedance
values within the lung area:

GI =

∑
x,y∈lung |DIx,y −Median(DIlung)|∑

x,y∈lung DIxy
(1)

where DIx,y is the value of the differential impedance for
the pixel at x, y in the tidal image and DIlung represents all
the pixels considered to be part of the lung area.

D. Statistical analysis

Data analysis was performed using MATLAB 8.3 (The
Mathworks, Natick, MA, USA). The obtained results were
compared using the Kruskal-Wallis test. A p value <0.05
was considered to reject the null hypothesis ”GIs from the
control and from the COPD group are drawn from the
same distribution”. Data are presented as mean and standard
deviation (SD). An overview of the methodology can be
found on Figure 2.

III. RESULTS
Table I shows: the mean GI and number of breathing

cycles analysed for each subject and the total weighted mean
for each group.

TABLE I
MEAN OF THE GI VALUES OBTAINED FOR EACH OF THE THREE

SUBJECTS OF THE CONTROL GROUP AND THE 14 PATIENTS.

Group GI values (mean ± SD) # of breathing cycles analyzed

Control Group 0.664 ± 0.009 21
0.677 ± 0.010 17
0.661 ± 0.016 19

Weighted average 0.668 ± 0.006

COPD Group 0.977 ± 0.035 30
0.843 ± 0.033 20
0.660 ± 0.034 19
0.907 ± 0.041 14
0.748 ± 0.027 16
0.732 ± 0.018 22
0.740 ± 0.022 17
0.558 ± 0.027 20
0.795 ± 0.025 27
1.176 ± 0.049 29
0.818 ± 0.040 36
0.581 ± 0.024 31
1.048 ± 0.037 35
0.677 ± 0.017 27

Weighted average 0.745 ± 0.007

A consistently lower GI value was obtained for the control
group (0.668 ± 0.006) compared to the COPD group (0.745
± 0.007). The standard deviation for the GI index for each
subject is relatively small (SD average of 0.012 for control
group and 0.030 for COPD patients), which indicates there
is little variance between different data sets of each patient.

The GI values obtained for the COPD patients were
compared to the control group using the Krustal-Wallis test.
The returned p value (p = 2.10 × 10−11) is lower than the
significance level, thus rejecting the null hypothesis. Figure
3 compares the obtained GI values for those two groups.

There are significantly more subjects for our COPD group
than for the control group. Due to the existence of un-
balanced groups, a cross validation was done, by selecting
100 times 57 random GI values from the COPD group and
comparing them with the 57 GI values from the control group
using the Kruskal-Wallis test. The 100 p values obtained are
represented in Figure 4, with all of them being lower than
the significance level. These results support the conclusion
that there is a consistent difference between the GI values
obtained from the COPD group and the control group.

A comparison between the COPD group and the control
group for each gender was done as well. There is an high
difference between the number of breathing cycles acquired,
so a cross validation was done also for gender. The highest p
value obtained for both cross validations was lower than the
significance level (female pmax = 2.79×10−4; male pmax =
0.013). The obtained results are represented at Figure 5 and
6.

IV. DISCUSSION

The method used to define the lung area, while being
simple and achieving reasonable results, may contain some
pixels related to cardiac activity which may affect the value
obtained for the GI parameter [7]. Some methods, like



Fig. 1. Image obtained for: i) reconstruction at end-inspiration; ii) reconstruction at end-expiration; iii) the resulting tidal image, equal to the relative
impedance difference between the two prior reconstructed images.

Fig. 2. Diagram of the methodological steps followed for GI calculation.

the Lung Area Estimation (LAE) [12] subtract the cardiac
related area from the lung area by analysing the energy
distribution of every pixel of the tidal EIT image in frequency
domain. Cardiac related pixels should have peaks at an higher
frequency than lung related pixels.

An important aspect to keep in mind is that the value
obtained for the GI index depends on the threshold value
used. Higher threshold values in the fEIT method lead to
smaller lung area sizes, which lead to different GI values [7].
To keep the GI values interpatient comparable, the chosen

Fig. 3. Comparison of the GI values for the COPD patients and the control
group. The boxes represent the quartiles while the whiskers extend from the
box out to the most extreme data value within 1.5x the interquartile range
of the sample. The red crosses represent outliers.

Fig. 4. Representation of the obtained p values during cross validation.
Highest p value obtained: 0.0011.

threshold value on this study is the same for all subjects of
both the COPD patients group and the control group. Another
limitation of the GI index is that it only gives a global view



Fig. 5. Representation of the obtained p values during cross validation
between female patients and our female control group. Highest p value
obtained: 2.79× 10−4.

Fig. 6. Representation of the obtained p values during cross validation
between male patients and our male control group. Highest p value obtained:
0.013.

of lung ventilation distribution, not considering the local
inhomogeneity. We therefore recommend that it should be
tested and used with other parameters that emphasize in
inhomogeneity on a local level, like the local inhomogeneity
(LI) index [6], which quantifies differences among neighbour
pixels.

Due to the small sample size available the authors em-
phasize that the results of this study must be validated with
more data.

V. CONCLUSIONS

The GI index is a reliable measure of ventilation het-
erogeneity. Results have shown significant differences in
GI values between COPD patients and the control group.
Since the GI index enables interpatient comparison it has
great potential. The results suggest that the GI may have
potential to be part of a group of parameters that identify and
follow the condition of COPD patients under spontaneous
respiration.

The control group and the COPD group in this study have
high age differences. Future work should test if age by itself
is a factor that influences the GI index.
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[7] Z. Zhao, K. Möller, D. Steinmann, I. Frerichs, and J. Guttmann,
“Evaluation of an electrical impedance tomography-based global in-
homogeneity index for pulmonary ventilation distribution,” Intensive
care medicine, vol. 35, no. 11, pp. 1900–1906, 2009.
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