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Resumo

Aprendizagem computacional refere-se à tarefa de induzir um padrão general a partir de
um conjunto de exemplos. Espera-se que um método de aprendizagem consiga generalizar para
exemplos não vistos do mesmo padrão. Um problema comum em aprendizagem computacional
é a possibilidade de os modelos resultantes aprenderem simplesmente o conjunto de exemplos
dado, em vez de aprender o padrão subjacente. Quando um modelo tem este comportamento,
diz-se que ele está em sobreajustamento. Esta dissertação explora a tarefa de aprendizagem
computacional e os conceitos relacionados de generalização e sobreajustamento, no contexto
da Programação Genética (PG). PG é um método computacional inspirado pela evolução natural
que considera um conjunto de funções primitivas e de terminais, que podem ser combinados sem
nenhuma restrição considerável em relação à estrutura dos modelos que estão a ser evoluídos.
Esta exibilidade pode ajudar a aprendizagem de padrões complexos mas também aumenta o
risco do sobreajustamento.

As contribuições desta dissertação cobrem a forma mais comum de PG (Standard PG), as-
sim como a recentemente proposta Programação Genética Geométrica Semântica (PGGS). O
conjunto de abordagens iniciais é baseado numa seleção dinâmica de diferentes subconjuntos
dos dados de treino durante o processo evolucionário. Estas abordagens conseguem evitar o
sobreajustamento e melhorar a generalização resultante sem restringir a exibilidade da PG. É
realizada uma análise da capacidade de generalização da PGGS, que demonstra que a generaliza-
ção resultante é consideravelmente dependente das características do operador de mutação. É
demonstrado que, tal como Standard PG, a formulação original de PGGS tem tendência a sobrea-
justar. São apresentadas as condições necessárias para evitar o sobreajustamento. Quando essas
condições se vericam, PGGS consegue alcançar uma generalização particularmente competitiva.
É proposta uma nova mutação geométrica semântica que melhora de forma substancial a ecá-
cia e a eciência da PGGS. Além de melhorar consideravelmente o ritmo de aprendizagem dos
dados de treino, também consegue alcançar uma generalização competitiva com apenas algumas
aplicações do operador de mutação.

O conjunto nal de contribuições cobre o domínio das Redes Neuronais (RNs). Estas con-
tribuições resultaram de uma extensão da investigação realizada em PGGS. Este conjunto de
contribuições inclui a denição de um algoritmo de construção de RNs baseado numa extensão
do operador de mutação da PGGS. De forma semelhante à PGGS, o algoritmo proposto pes-
quisa sobre um espaço sem óptimos locais. Isto permite realizar uma pesquisa estocástica ecaz
e eciente no espaço das RNs, sem existir a necessidade de usar retropropagação para ajustar
os pesos da rede. Finalmente, são propostos dois critérios de paragem de pesquisa que conse-
guem detectar quando o risco de sobreajustamento sobe consideravelmente. É mostrado que
os pontos de paragem detectados resultam numa generalização competitiva.
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Abstract

Computational learning refers to the task of inducing a general pattern from a provided set of
examples. A learning method is expected to generalize to unseen examples of the same pattern.
A common issue in computational learning is the possibility that the resulting models could be
simply learning the provided set of examples, instead of learning the underlying pattern. A model
that is incurring in such a behavior is commonly said to be overtting. This dissertation explores
the task of computational learning and the related concepts of generalization and overtting, in
the context of Genetic Programming (GP). GP is a computational method inspired by natural
evolution that considers a set of primitive functions and terminals that can be combined without
any considerable constraints on the structure of the models being evolved. This exibility can
help in learning complex patterns but it also increases the risk of overtting.

The contributions of this dissertation cover the most common form of GP (Standard GP), as
well as the recently proposed Geometric Semantic GP (GSGP). The initial set of approaches relies
on dynamically selecting different training data subsets during the evolutionary process. These
approaches can avoid overtting and improve the resulting generalization without restricting the
exibility of GP. Besides improving the generalization, these approaches also produce consider-
ably smaller individuals. An analysis of the generalization ability of GSGP is performed, which
shows that the generalization outcome is greatly dependent on particular characteristics of the
mutation operator. It is shown that, as Standard GP, the original formulation of GSGP is prone to
overtting. The necessary conditions to avoid overtting are presented. When such conditions
are in place, GSGP can achieve a particularly competitive generalization. A novel geometric se-
mantic mutation that substantially improves the effectiveness and efficiency of GSGP is proposed.
Besides considerably improving the training data learning rate, it also achieves a competitive gen-
eralization with only a few applications of the mutation operator.

The nal set of contributions covers the domain of Neural Networks (NNs). These con-
tributions originated as an extension of the research conducted within GSGP. This set of con-
tributions includes the denition of a NN construction algorithm based on an extension of the
mutation operator dened in GSGP. Similarly to GSGP, the proposed algorithm searches over
a space without local optima. This allows for an effective and efficient stochastic search in the
space of NNs, without the need to use backpropagation to adjust the weights of the network.
Finally, two search stopping criteria are proposed, which can be directly used in the proposed
NN construction algorithm and in GSGP. These stopping criteria are able to detect when the
risk of overtting increases signicantly. It is shown that the stopping points detected result in a
competitive generalization.

Keywords

Evolutionary Computation, Genetic Programming, Geometric Semantic Genetic Programming,
Supervised Learning, Generalization, Overtting, Neural Networks
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1
Introduction

1.1 Motivation

Within Computer Science, Articial Intelligence (AI) is commonly seen as one of the

most fascinating elds. A particularly important AI goal is the development of systems (or

agents) that exhibit general intelligence. Usually, general intelligence is dened in terms of

tasks that humans can perform that require a signicant degree of intelligence. A system

that is able to perform these tasks can be described as human-competitive. An important

and related AI goal is the development of systems that can continuously improve without

external guidance. The ability to learn and perform induction is crucial to achieve these

important goals. In this context, learning refers to the task of inducing a general pattern

from a provided set of examples. In other words, a learning method is expected to

generalize to unseen examples of the same pattern. A common issue in computational

learning is the possibility that the resulting models could be simply learning the provided

set of examples, instead of learning the underlying pattern. A model that is incurring

in such a behavior is commonly said to be overtting. A learning method must avoid

overtting in order to be successful.

One of the areas that has been intensively studying learning is Genetic Programming

(GP). GP is part of a class of computational methods inspired by natural evolution. One

of the ultimate goals of GP is to evolve complex computer programs with as little human

interaction as possible. Perhaps the most dening characteristic of GP is the exibility

of the models that can be evolved. Most learning methods set a priori constraints on

1



2 CHAPTER 1. INTRODUCTION

the models or functions being considered. These constraints are usually expressed by

considering only some particular class of functions, or by dening the structure of the

function and only allowing some parameters to be searched on. The rationale behind

these approaches is based on limiting the complexity of the resulting models or functions.

Limiting this complexity might reduce the risk of overtting, but it might also constraint

the learning method to the point that the pattern can not be effectively learned. On the

other hand, GP considers a set of primitive functions and terminals that can be combined

without any considerable constraints on the structure of the models being evolved. In

other words, GP allows the evolutionary search to implicitly dene how complex the

resulting individuals should be based on the chosen performance measure. The downside

of this exible approach is that the risk of overtting might increase. For this reason it is

particularly important to devise approaches that allow GP to learn without incurring in

overtting. Although the GP area has been studying learning tasks for a while now, a

considerable amount of research has only considered the performance on the provided

set of examples, instead of the generalization performance. Furthermore, although the

interest in studying generalization and overtting has been recently increasing in GP, it is

still understudied in comparison with more well-established learning methods.

The focus of this dissertation is to study, within the context of GP, the task of learn-

ing and the related concepts of generalization and overtting. The main objective is to

develop approaches that can avoid overtting and increase the resulting generalization,

while maintaining the exibility of GP. The proposed approaches should not constraint

the complexity of the resulting models. Evolution should dene how complex the models

need to be given the particular task at hand. This dissertation studies the learning tasks

where the expected outputs are real-valued (regression).

1.2 Contributions

The contributions of this dissertation cover three main domains: Standard GP, Geometric

Semantic GP (GSGP), and Neural Networks (NN). The contributions on the last domain

originated from an extension of the research being conducted in GSGP. The main contri-

butions are the following:

• A set of approaches based on different usages of the available training data that
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can avoid overtting in Standard GP. These approaches rely on dynamically se-

lecting different training data subsets. Besides increasing generalization, the pro-

posed approaches also result in considerably smaller individuals. This set of ap-

proaches achieves these outcomes without restricting the exibility of GP, or im-

posing any particular limitation on the complexity of the evolved individuals. These

outcomes are possible even in the extreme case of using a single training instance at

each generation (Gonçalves et al., 2012). Within this set of approaches, some are

aimed at balancing the overtting avoidance component with an increased training

data learning rate (Gonçalves and Silva, 2013). Besides the datasets considered in

this dissertation, this set of approaches has also been applied in other real-world

datasets (Silva et al., 2013).

• An analysis of the generalization ability of GSGP, showing that the generalization

outcome is greatly dependent on particular characteristics of the mutation oper-

ator. It is shown that, as Standard GP, the original formulation of GSGP is prone

to overtting. The necessary conditions to avoid overtting are presented. When

such conditions are in place, GSGP can achieve a particularly competitive general-

ization. A connection with the Ensemble Learning area is also provided (Gonçalves

et al., 2015a).

• A novel geometric semantic mutation that substantially improves the effectiveness

and efficiency of GSGP. Besides considerably improving the training data learning

rate, it also achieves a competitive generalization with only a few applications of

the mutation operator (Gonçalves et al., 2015a).

• A different way of conducting the search that can learn the underlying patterns by

effectively nding aligned individuals with arbitrary precision. A comparison with

the traditional search approach is performed (Gonçalves et al., 2016).

• The denition of a NN construction algorithm based on an extension of the muta-

tion operator dened in GSGP. Similarly to GSGP, the proposed algorithm searches

over a space without local optima. This allows for an effective and efficient stochas-

tic search in the space of NNs. The proposed construction algorithm excludes the

need to use backpropagation to adjust the weights of the network. The mutation

operator used within the proposed algorithm allows for a simple way of controlling
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the sparseness at each mutation operation. This results in a structural simplication

of the resulting NN (Gonçalves et al., 2015b).

• The specication of two search stopping criteria that can be directly used in the

proposed NN construction algorithm and in GSGP. These stopping criteria are

able to detect when the risk of overtting increases signicantly. It is shown that the

stopping points detected result in a competitive generalization, as well as smaller

NNs or individuals.

1.3 Structure

The remainder of this document is organized as follows. Chapter 2 provides contextu-

alization for this dissertation. Chapter 3 describes the experimental methodology used.

Chapter 4 studies the effects of incorporating different training data sampling strategies

within Standard GP. Chapter 5 explores the generalization ability of GSGP, and how dif-

ferent mutation implementations can considerably inuence the generalization outcome.

An alternative way of conducting search is also explored. Chapter 6 introduces a NN

construction algorithm by extending the geometric semantic mutation to NNs. The pro-

posed mutation operator is also used to select appropriate stopping points within the

search process. Chapter 7 concludes and presents some future directions.



2
Background

This chapter provides the necessary contextualization for this dissertation. Section 2.1

introduces the task of supervised learning. Section 2.2 overviews Genetic Programming

(GP). Section 2.3 reviews previous GP studies dealing with generalization and overtting.

Section 2.4 provides a discussion centered on the generalization issue in GP.

2.1 Supervised Learning

2.1.1 Overview

In supervised learning, the goal is to build a model that describes the underlying pattern

of a set of input-output examples. In this context, a model might also be referred to as

a function or as a hypothesis. Depending on the type of outputs of the examples, the

learning task could be dened as a regression (real-valued outputs) or as a classication

(discrete class labels). Binary classication is a special case of classication where there

are only two possible class labels. The outputs of the examples are also known as targets.

A crucial aspect of supervised learning is that the input-output examples provided to the

learning algorithm (referred to as training data), only represent a part of the complete set

of input-output examples of a given learning task. In real-world scenarios, the available

data is commonly only a very small fraction of the complete set of input-output examples.

However, the goal is not to build a model that explains the training data, but to build a

model that explains the general pattern of the underlying learning task. In other words,

5
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the goal is to generalize from the training data. Because of this, supervised learning might

also be referred to as inductive learning. A learning algorithm must then dene a strategy

to generate models with the best possible generalization ability. The generalization ability

(or simply generalization) of a model is dened by its performance in data other than

the training data. In practice, this generalization ability is estimated by leaving out of the

training data a part of the total available data. The data left out of the training data is usually

referred to as unseen data, testing data, or test data. A model that is performing well in

unseen data is said to be generalizing. However, performance in training and unseen data

does not always agree. Particularly, it is experimentally observable that some models

perform well in training data, but poorly in unseen data. Such models are said to be

overtting the training data. This means that these models represent patterns that only

occur in the training data. Another way of describing this scenario is to say that these

particular models are memorizing the training data. Notice that it is trivial to create a

model that completely memorizes the training data. This however is futile since the goal,

as previously mentioned, is to nd models that generalize from the training data. A model

that is unable to properly t the training data is said to be undertting.

Figure 2.1 presents typical evolutions of the training and generalization performance

(as measured by an error function) of an iterative supervised learning method (e.g., GP

or an Articial Neural Network). The line labeled as generalization optimum loosely rep-

resents the theoretically best possible outcome in terms of generalization. This does not

mean that it is not possible to create a model from a given search space that perfectly

models the data (in stochastic methods as GP this might be possible even by chance).

It means that, with the amount of training data available, the probability of creating and

choosing a perfect model is considerably low. In other words, a search method is not

capable of consistently selecting models that perform better than this loosely dened

generalization optimum. The exact value of such a generalization optimum is signicantly

inuenced by the amount of training data available, as in general an induction becomes

more likely to succeed as the available training data increases. Two possible scenarios

are presented for the generalization error evolution. Initially and for both scenarios, the

training and generalization errors present similar values and decrease in similar amounts.

As the training error gets closer to the value of the generalization optimum, the risk

of overtting starts to increase. In the rst generalization scenario, overtting starts to

greatly increase as the generalization optimum is passed. In the second scenario, the gen-
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eralization starts to stabilize. However, even in this second scenario, the generalization

error starts to slowly increase if the training error continues to converge to zero. These

different outcomes result from different ways of formulating an inductive search.

From the extensive experimental results accumulated throughout the application of

several inductive learning algorithms, it stands clear that overtting is a phenomenon that

must be taken into consideration when designing a supervised learning method. Particu-

larly, it is clear that a method that sets the reduction of the training error to zero as the

only criterion, is likely to overt. One of the only scenarios where this strategy would

be promising is that where the amount of training data available is rather plentiful, which

could allow the construction of models with perfect generalization. However, in real-

world scenarios this seldom occurs. The probability of overtting also increases if no

care is taken regarding the structure of the models that are being considered. Successful

learning methods must allow for exibility and complexity in the creation of the models

in order to learn the underlying pattern, while at the same time dening strategies to

avoid overtting the training data. Besides the complexity of the models, other factors

might inuence the learning process such as the presence of noise and the representa-

tivity of the provided data. Some learning methods can be considerably sensitive to the

presence of noise. In some domains, particular noise characteristics might be known a

priori. When this is the case, the learning method might be changed to incorporate this

information into the learning process. As in the classical GP approach, this dissertation

does not explicitly address the issues of noise and data representativity.

2.1.2 Theoretical Considerations

The design of learning algorithms is usually inuenced by theoretical considerations. Per-

haps the most inuential principle in the design of learning algorithms is Occam's razor.

It is also considered one of the most important principles in modern science, being a

commonly accepted general guiding rule in both theory and practice. Occam's razor

states (Tornay, 1938):

Entities should not be multiplied beyond necessity.

Another common formulation is:

No more things should be presumed to exist than are absolutely necessary.
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Iterations
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Generalization error: scenario 1
Generalization error: scenario 2
Generalization optimum

Figure 2.1: Typical evolutions of the training and generalization errors of an iterative su-
pervised learning method across its iterations
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One of the most famous formulations based on Occam's razor was stated by Isaac New-

ton:

We are to admit no more causes of natural things than such as are both true

and sufficient to explain their appearances.

Occam's razor entails a preference or bias toward simplicity, while allowing for added

complexity when such is capable of explaining some phenomenon that could not be ex-

plained with lower complexity. Although this principle is not directly related to inductive

learning, it is still a source of inspiration in the design of learning algorithms. Occam's

razor is often interpreted in supervised learning as: simpler models generalize better.

Alternatively, it is also interpreted as: given models with similar training performance,

the simplest model should be preferred. However, these interpretations are not univer-

sally accepted (e.g., Domingos (1999)). Regardless, a considerable number of supervised

learning methods are based on these interpretations. These particular methods incor-

porate a bias toward simplicity into their functioning. Another inuential principle in the

design of learning algorithms is the Minimum Description Length (MDL) (Rissanen, 1978).

The MDL states:

The best model is the one that minimizes the amount of information needed

to encode it.

The supervised learning methods inspired by the MDL interpret it as: smaller models

generalize better. Notice that this interpretation can be seen as a special case of the

Occam's razor interpretation, as the size of a model can be considered a measure of

its complexity. The learning methods inspired by the MDL principle incorporate a bias

toward smaller models into their functioning.

Statistical Learning Theory (SLT) (Vapnik, 1995) is by now a mature eld that pro-

vides theoretical considerations to guide the design of learning algorithms. STL includes

two main induction principles: the Empirical Risk Minimization (ERM) and the Structural

Risk Minimization (SRM). The ERM principle is intended for scenarios where the training

data sample size is large. In these scenarios the training error (referred to as empirical

risk) is close to the expected generalization error (referred to as expected risk), even if

the training error is small. This means that overtting is not a concern. However, these

are mostly theoretical scenarios as in real-world scenarios the available training data is
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commonly only a small portion of the complete set of data. In these common real-world

scenarios the ERM principle is unable to guarantee a small expected generalization error

even if the training error is small. The SRM principle is formulated to address this issue.

Central to the SRM principle is the notion of complexity or capacity of a set of functions/-

models. This complexity may be expressed by the Vapnik-Chervonenkis (VC) dimension.

The SRM principle implies that, besides reducing the training error, a successful learning

algorithm must also constraint the VC dimension of the set of functions/models that are

being considered by the algorithm. This principle suggests that to ensure the generaliza-

tion of the resulting models, a tradeoff is needed between the reduction of the training

error and the complexity of the functions/models. If the set of functions/models se-

lected has a complexity (VC dimension) lower than what is need to learn the pattern,

then undertting will occur. On the other hand, if the selected complexity is too high,

overtting might occur. Consequently, the selection of a set of functions/models with an

appropriate complexity for a given supervised learning task is a crucial component of the

SRM principle. This focus on controlling the underlying complexity has a connection with

the previously mentioned interpretations of the Occam's razor. Both Occam's razor and

the SRM principle share the bias for less complexity.

Another inuential set of ideas comes from Ensemble Learning (e.g., Hansen and Sala-

mon (1990)). Ensemble Learning algorithms create several models for the same learning

task, and combine them to produce a nal model. This nal model is known as an ensem-

ble. The reasoning is that combining several models can reduce the overall risk of the nal

model being overtted. This originates from the fact that the selection of a model always

entails a risk of choosing an overtted model, given that a priori there is no way of knowing

which model will generalize or overt. By forming an ensemble, even if some overtted

models are present, their negative contribution to the nal model will be reduced since

the nal model will also include contributions from models which generalize well. This

way of constructing the nal model allows for a more robust generalization. This can be

formally analyzed through the bias-variance decomposition. The bias-variance decom-

position (e.g., Friedman (1997)) is a statistical concept that analyzes learning algorithms

through the components of bias and variance. In the bias-variance decomposition, the

analysis is conducted by considering several training data resamplings in a given learning

task. This procedure results in a characterization of the behavior of a given learning algo-

rithm in a given learning task as the training data varies. The bias component characterizes
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the average performance of the algorithm. The variance component characterizes how

the performance uctuates as the training data varies. In other words, the bias represents

the quality of the approximation, and the variance represents the consistency or sensi-

tivity of the approximation. Consequently, a learning algorithm that generalizes well in a

given learning task, should present both low bias and low variance. An ensemble based

approach can reduce the variance of the underlying learning algorithm (Breiman, 1996b).

This contributes to a more robust generalization. The generalization achieved also tends

to stabilize as more models are added to the ensemble. In comparison with the Occam's

razor and the SRM principle, Ensemble Learning presents a considerably different per-

spective on how a learning algorithm should be designed. Ensemble Learning shows that

large and potentially very complex models can indeed generalize well depending on how

they are constructed.

The No Free Lunch (NFL) results (Wolpert, 1996, 2002) address the possibility of

designing a superior general learning algorithm. A similar and related result is the law of

conservation of generalization performance (Schaffer, 1994). The NFL results show that

there are no a priori distinctions between learning algorithms. In other words, all learning

algorithms perform the same, in terms of generalization, over all possible learning tasks.

This is valid even when comparing against a random guessing algorithm. These results also

imply that any learning algorithm that takes into account the complexity of the resulting

models, performs the same as any learning algorithm that does not take complexity into

account. Therefore, under the NFL results, the Occam's razor and the SRM principle

are futile as mechanisms to guide the design of a superior general learning algorithm.

This results from the fact that if they achieve a superior generalization in a given learning

task, then they also assuringly result in an inferior generalization in another learning task.

However, the NFL results do not address specic learning tasks. This implies that it is

still relevant to study which learning algorithms perform better in each specic learning

task. Also an important result is the fact that under some specic error functions, there

are in fact a priori distinctions between learning algorithms, i.e., there are free lunches.

Particularly, this scenario occurs if the error function induces a geometrical structure over

the targets. This interestingly relates with Geometric Semantic GP (Moraglio et al., 2012),

a recently proposed variant of GP which is formulated under a metric structure in the

error function. This free lunch was already explored in GP (Poli et al., 2009) before

the proposal of Geometric Semantic GP. Other free lunches were also explored within
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GP (Poli and Graff, 2009).

2.1.3 Inductive Bias in Practice

From the above-mentioned theoretical considerations, different learning algorithms with

different overtting avoidance strategies emerge. The inductive bias of a learning algo-

rithm can be dened as the a priori preference for models with particular characteristics.

For instance, a learning algorithm that prefers small models, biases the search toward this

objective. This can be done by restricting the search space to include only relatively small

models, or it can be done by explicitly stating that preference in the error function that is

applied to each model. This subsection overviews some of the most common inductive

bias used in some of the most successful non-evolutionary supervised learning methods.

This overview is by no means meant to be exhaustive. The different inductive bias applied

in GP are explored in section 2.3.

One of the most common inductive bias found in practice is the simplicity bias, i.e., the

preference for less complex models. This type of bias is related to the above-mentioned

interpretations of the Occam's razor. In Decision Tree approaches such as Classication

And Regression Trees (CART) (Breiman et al., 1984) and C4.5 (Quinlan, 1993), it is com-

mon to apply pruning (Quinlan, 1987). Pruning, as the name entails, is based on removing

branches of a tree that have no signicant contribution. Since this inductive bias leads to

smaller and potentially less complex trees, the expected effect is the increased generaliza-

tion of the resulting trees. Another common approach is the application of regularizations

(e.g., Schölkopf and Smola (2002)). Loosely, a regularization is an approach that adds a

component to the error function, in a way that is meant to penalize some unwanted char-

acteristics of a model. This component is called a regularization term. Regularization is

commonly used to penalize more complex models. For instance, a regularization term

could be the size of a model, e.g., the size of a tree. An approach that wants to search

for trees with good performance while at the same time biasing toward smaller trees,

can do so by adding a regularization term that penalizes bigger trees. A commonly used

regularization in Articial Neural Networks is weight decay (e.g., Moody et al. (1995)).

Weight decay works by limiting the growth of the weights of the network. It achieves

this by adding a regularization term that penalizes bigger weights. This biases the search

to accept bigger weights only when these can achieve considerably better performance
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than smaller weights. Weight decay is intended to decrease the overall complexity of the

network. By doing so, it is expected that overtting becomes less likely. It is common for

already existing learning algorithms to be later updated to include regularization terms.

This was not the case of Support Vector Machines (SVMs) (Boser et al., 1992). In SVMs

the notion of controlling the underlying complexity was taken into account from the start

of the development of the algorithm. This originates from the fact that SVMs are based

on the SRM principle. As previously seen, this principle is based on indirectly controlling

the complexity of the resulting functions/models by controlling the complexity of the set

of functions/models. SVMs were formulated for binary classication but similar methods

have been later proposed to regression. SVMs work by maximizing the margin between

the decision boundary and a set of signicant training instances. These signicant train-

ing instances are now known as support vectors (originally called support patterns). In

SVMs and their related approaches, the underlying complexity can be directly controlled

by a specic parameter. Early stopping (e.g. Prechelt (1998)) is a common approach that

is also connected with the simplicity bias. This approach can be applied to any iterative

learning algorithm. The most common early stopping approach works by leaving out part

of the training data to be used to estimate the generalization during the training phase.

The part of the data used for this purpose is called the validation set. During the training

the performance in the validation set is periodically computed. Typically, the error in the

training and the validation set decreases up to a point where the error on the validation

set starts to increase. This usually signies that overtting is starting to occur. Therefore,

the training phase can be stopped. This potentially avoids incurring in higher overtting.

Early stopping can be seen as a type of indirect regularization. Since the training phase is

stopped sooner, this usually results in smaller/less complex nal models. According to

the reasoning underlying the simplicity bias, this might translate into models with better

generalization. Notice that under the conditions where the above-mentioned NFL results

are applicable, all of these simplicity preferences and regularizations have no valid claim

as being a better inductive bias than any other possible inductive bias, when it comes to

all possible learning tasks.

The approaches based on Ensemble Learning do not have such an explicit inductive

bias as the previous ones. They are mainly concerned with how the nal model (ensem-

ble) is constructed, and less with which inductive bias each individual model originates

from. Notice that an ensemble can combine models from different learning algorithms
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and with different representations. Bagging (Breiman, 1996a) and Boosting (Freund and

Schapire, 1995; Schapire, 1990) are two of the most inuential Ensemble Learning meth-

ods. Bagging works by producing several different training sets. These different training

sets are constructed by selecting training instances uniformly and with replacement from

the original training set. A baseline learning algorithm is used to train with the different

training sets. The nal model is a combination of all the models produced with all the

generated training sets. Boosting works in a similar fashion but maintains a set of weights

over the original training set. It iteratively adjusts these weights by reducing the weights

of the training instances which are correctly classied, and by increasing the weights of

the training instances which are incorrectly classied. Given the exibility of these ap-

proaches, the underlying inductive bias is perhaps better characterized by the nature of

the baseline learning algorithm, i.e., the algorithm used to learn each different training set.

Notice also that it is even possible to use different baseline learning algorithm for all the

different training sets constructed.

2.2 Genetic Programming

Genetic Programming (GP) (Koza, 1992) encompasses a set of approaches aimed at

evolving computer programs. By dening a set of program elements and a tness function,

GP is able to search the underlying space of computer programs. GP is the most recent

major branch of the broader area of Evolutionary Computation (EC). The other three ma-

jor branches are: Genetic Algorithms (Holland, 1975), Evolutionary Programming (Fogel

et al., 1966), and Evolution Strategies (Beyer and Schwefel, 2002). GP was popularized by

Koza (Koza, 1992), but earlier approaches aimed at evolving computer programs had al-

ready been explored (Cramer, 1985; Forsyth, 1981; Koza, 1989). The most common GP

version uses a tree-based representation to store the evolved computer programs. This

is known as Standard GP, and it is the version used in this dissertation. Other represen-

tation possibilities include, among others, storing the computer programs as sequential

instructions of code (Brameier and Banzhaf, 2007) or as graphs (Miller and Thomson,

2000). The GP algorithm can be described by the following high-level steps:

1. Create a random initial population
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2. Repeat the following operations until a given stopping criterion is met (usually a

number of generations):

2.1. Apply parent selection to select the individuals that are going to be used as

parents

2.2. Apply the variation operators to the parents to create a population of off-

spring

2.3. Select the new population by applying survival selection to the previous pop-

ulation and the offspring

3. Return the best individual from the population according to tness

An overview of the main GP components is conducted in the next subsections. Given

that this dissertation is concerned with supervised learning, the following descriptions

assume a supervised learning task.

2.2.1 Representation and Fitness Evaluation

GP uses a tree-based representation where the internal nodes are functions and the

leaves are terminals. In this context, a function can refer to any particular computation

with any number of arguments. A terminal can be an input variable of the learning task or

a constant. In the uncommon case that, in supervised learning, the need would arise to

include functions that do not take any argument, these functions would be represented

as leaves in the tree. The functions are dened in a function set, and the terminals are

dened in a terminal set. The combination of both of these sets is the primitive set. The

primitive set contains all the elements that could be part of a GP individual. Figures 2.2

and 2.3 present examples of GP individuals. An important GP characteristic is that the

available elements can be combined as freely as possible. In order for this to be possible,

it must be guaranteed that all combinations of functions and arguments are valid. This is

known as the closure property (Koza, 1992). To assure this property, type and evaluation

safety must be achieved. Type safety can be achieved by having all functions and terminals

dened as the same type, e.g., all real-valued. This is the approach taken in Standard GP.

In alternative, different types can be used if type casting can always be performed safely.

There are other forms of GP that address the issue of type safety in a different manner.
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Strongly Typed GP (STGP) (Montana, 1995) addresses this issue directly by enforcing that

each function and each terminal must declare a type. STGP introduces initialization meth-

ods and variation operators that take type safety into account. This guarantees that all

individuals generated are type safe. Another way of dealing with the issue of type safety

is to represent the possible type combinations in a grammar (e.g., Ryan et al. (1998);

Whigham et al. (1995). Besides type safety, evaluation safety must also be assured. Even

if types are coherent, some functions might not be applicable for arguments with partic-

ular values. To ensure evaluation safety, protected versions of these functions must be

provided. The most common case is the need to protect the division operator against

division by zero. If the denominator expression evaluates sufficiently close to zero, a

protected value is returned instead. This protected value is commonly 1.

The evaluation of a GP individual is similar to the evaluation of other supervised learn-

ing models. The individual is provided a set of data instances, and computes the output

for each instance. In order to obtain the tness of the individual, these outputs are then

compared with the targets of the learning task.

* 

/ + 

X1 X3 X2 0.42 

Figure 2.2: A GP individual that represents the function X3/X1 ∗ (X2+ 0.42)
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/ 

* X2 

X3 X3 

Figure 2.3: A GP individual that represents the function X32/X2
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2.2.2 Initialization

There are three main initialization methods in GP: full, grow, and ramped half-and-half.

These methods have associated a maximum tree depth parameter. As the name entails,

this parameter limits the depth of each resulting individual. The full method works by

adding functions until the maximum tree depth is reached. Each function is selected from

the function set with uniform probability. When the maximum tree depth is reached,

a terminal must be added to the tree in order not to violate the limit imposed. The

terminals are selected from the terminal set with uniform probability. In the full method

all terminals will be at the same depth, the maximum depth. This method implies that

the trees are full up to a given maximum tree depth, and hence the name of the method.

The individual in gure 2.2 could have resulted from the full method with a maximum tree

depth of 2. By convention, the depth of the root node of the tree is considered to be 0.

The individual in gure 2.3 could not have been initialized with the full method, as there are

terminal nodes at different depths. The grow method works by, at each depth, randomly

selecting if the node to be added is a function or a terminal. As in the full method, when

the maximum tree depth is reached, a terminal must be added to the tree in order not to

violate the limit imposed. The trees resulting from the grow method have a higher shape

diversity than the ones created with the full method. Both individuals at gure 2.2 and 2.3

could have resulted from the grow method with a maximum tree depth of at least 2. The

ramped half-and-half method is a combination of the full and grow methods. The goal

is to obtain a more structurally diverse initial population. Ramped half-and-half initializes

half of the population with the full method, and the other half with the grow method.

The maximum tree depth is varied in order to further structurally diversify the resulting

trees.

2.2.3 Selection Operators

Selection operators consist of parent and survivor selection. Parent selection is used to

select the individuals in which the variation operators are going to be applied. The se-

lected individuals are known as parents. The most common parent selection method is

the tournament selection. Tournament selection works by selectingN random individuals

with uniform probability and with replacement. From these initially selected individuals,

the best is chosen according to tness. This best individual is the winner of the tour-
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nament. Survivor selection is used to select the new population to be used in the next

generation. The most common survivor selection method is the elitist survival. An elitist

survivor selection keeps a set of individuals according to tness, and if more individuals

are needed to ll the new population, it selects from the offspring. Perhaps the simplest

case of an elitist survivor selection is to the keep the best individual overall, and select off-

spring to ll the new population. This guarantees that the best individual always survives.

An important concept related to selection operators is selective pressure. In this context,

selective pressure can be loosely dened as the probability that the best individuals will

keep reproducing and/or surviving through the generations. Higher selective pressure

results in a higher exploitation of the search space as the search focuses on the current

best individuals. This implies a bigger risk of converging to local optima. Lower selective

pressure results in a higher exploration of the search space as the search typically focuses

on the newly generated individuals. The risk here is that the search might be ineffective,

by not being inuenced enough by tness considerations. Finding an appropriate balance

in terms of exploration and exploitation is a crucial aspect of EC methods such as GP.

2.2.4 Variation Operators

As other EC techniques, GP uses two variation operators to advance the search: crossover

and mutation. The most common GP variation operators are known as standard crossover

and standard mutation. Standard crossover can create two offspring from two parents.

It rstly randomly selects a point in each parent. These are known as crossover points.

These points are root nodes of their own trees, or subtrees. The rst offspring is cre-

ated by copying the rst parent but substituting the tree starting at the crossover point,

by the tree at the crossover point of the other parent. In other words, the two trees

that start at each crossover point are swapped. A second offspring can be created by a

similar procedure. This offspring is created by copying the second parent but substituting

the tree starting at the crossover point, by the tree at the crossover point of the other

parent. Figure 2.4 presents an example of crossover being applied. Standard mutation

requires one parent and produces one offspring. Firstly, a random tree is created using

the grow or the full methods. Then, a mutation point is selected randomly in the parent.

Similarly to the crossover, the offspring is created by copying the parent but substituting

the tree starting at the mutation point, by the random tree created. Figure 2.5 presents
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an example of mutation being applied. Each operator is applied with a given probability.

The crossover operator is commonly applied with a much higher probability. Given that

these operators may create offspring larger than the parents, a overall growth limit must

be imposed. This growth limit is usually applied at the depth of the trees. The most

commonly used overall maximum tree depth is 17.

* 

/ + 

X1 X3 X2 0.42 

/ 

* X2 

X3 X3 

Parent 1 Parent 2 

Crossover points 

* 

/ + 

X1 X3 X2 0.42 

/ 

* X2 

X3 X3 

Offspring 1 Offspring 2 

Figure 2.4: An example of a crossover operation

2.3 Generalization in Genetic Programming

The approaches considered in this section are aimed at improving generalization and are

focused on Standard GP, with a particular emphasis on regression in real-world datasets.
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Figure 2.5: An example of a mutation operation
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These approaches are grouped in different subsections according to their core notions.

The approaches in subsection 2.3.1 share the fact that they bias the search process toward

structurally simpler individuals. In these approaches, complexity is usually dened as the

size of the trees. Subsection 2.3.2 presents approaches based on functional complexity

measures. These complexity measures involve analyzing the behavior of the individuals

over a set of data instances, as opposed to focusing on the structure of the individuals.

Subsection 2.3.3 describes approaches based on similarities between solutions. Statistical

approaches are presented in subsection 2.3.4. Subsection 2.3.5 encompasses a more

diverse set of approaches that are not clearly related among themselves or with the other

approaches in the remaining subsections.

2.3.1 Structural Complexity

Zhang and Mühlenbein (1995) addressed the relationship between structural complexity

and generalization. They did so in the context of using GP to evolve neural networks.

Their approach allowed the evolution of the architecture (number of units and layers)

and the weights of the neural networks. The tness function used is a weighted sum

of two components: tting error and complexity. The complexity measure is based on

the number of weights, units, and layers of a given neural network. An adaptive balanc-

ing of accuracy and parsimony is proposed so that a exible control of the complexity

can be achieved. This allows the search of parsimonious solutions while satisfying the

desirable training accuracy. This is accomplished by adaptively changing the complexity

weight with respect to the error. The proposed balance encourages fast error reduction

at the early stages of evolution while also encouraging stronger complexity reduction at

the nal stages to obtain parsimonious solutions. Two datasets were used in the experi-

ments: one is articially generated with noise from the parity function, and the other is a

real-world dataset consisting of clinical measurements of 345 different persons. The goal

on the latter problem is to classify if a liver is in disorder or not based on some blood

pressure measurements. This dataset has 6 input variables. Results show that with the

complexity penalty the accuracy is improved both in training and unseen data. Also with

the complexity penalty, convergence to the best solution found is three times faster than

without the complexity penalty. As expected, solutions found without the complexity

penalty are much bigger than those found with the complexity penalty.
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Another complexity penalty experiment was conducted by Cavaretta and Chellapilla

(1999). This was performed in the context of evolutionary programming using the Aus-

tralian credit application database. Two algorithms were tested: a no-complexity-bias

algorithm (NBC), and a low-complexity-bias algorithm (LCB). The LCB differs from the

NBC as it uses a modication in the tness function meant to penalize larger individuals.

As expected, NCB generated considerably larger models than the LCB. However, the

generalization error was similar on both approaches. The authors concluded that there

is little or no relationship between small model size and lower generalization error.

Becker and Seshadri (2003) proposed adding a complexity penalty factor to the tness

function. The experiments were performed in the context of evolving technical trading

rules using GP. They used nancial S&P 500 data from January 1954 through December

2002. Data from 1960-1990 were used for training, and data from 1991-2002 were used

as unseen data. Results showed that without the complexity penalty factor the results

were worse on unseen data than with the factor. The authors concluded that, at least for

this domain, reducing complexity does improve the results on unseen data.

Mahler et al. (2005) explored to what extent Tarpeian Control (TC) (Poli, 2003) af-

fects GP generalization. Since TC is able to reduce bloat and hence maintain smaller

programs, they argued (in light of the Occam's razor interpretations) that this could help

improve generalization. TC is based on the schema theory and aims to slow down the

growth of the GP solutions. It achieves this by probabilistically zeroing the tness of so-

lutions with above average size. This implies that if a solution is above average in size, its

tness can be zeroed if some randomly generated number is smaller than the so called

target ratio. This target ratio is a parameter that gives the percentage of over average

sized programs that are targeted at every generation. As no general good value is known

for the target ratio, it has to be tuned accordingly. Experiments are performed with

Standard GP as baseline, and using TC with target ratio values ranging from 10% to 50%

with 10% steps. Three regression experiments are conducted. Results show that TC

is indeed effective in ghting bloat since it consistently achieves lower average program

size without worsening tness. When it comes to generalization, the results are not con-

sistent. In the rst experiment, Standard GP is statistically superior to TC with target

ratios of 40% and 50%. However, in the second experiment the reverse happens. In

every other case (different target ratios and/or experiment 3) there are no statistically

signicant differences.



24 CHAPTER 2. BACKGROUND

Gagné et al. (2006) tested two approaches to improve GP generalization. These are:

the usage of a validation set (three datasets methodology), and the application of par-

simony pressure in order to reduce solution complexity (size). Parsimony pressure is

achieved by using the lexicographic parsimony pressure method (Luke and Panait, 2002).

Experimental testing is conducted in 6 binary classication datasets taken from the Ma-

chine Learning Repository at UCI (Lichman, 2013). 10-fold cross-validation is used and

care is taken to balance the number of instances of each class between the folds. Four

approaches were tested: baseline, with validation (V), with parsimony pressure (P), and

with validation and parsimony pressure (B). Results show that there is no real improve-

ment in the generalization over the baseline approach. Results are very similar for all

approaches. The real difference happens in the mean size of the solutions. B, V, and

P achieve always smaller size solutions than the baseline approach. Furthermore, the B

approach achieves over 50% reduction in size when compared to the baseline approach

in all but one dataset. V achieves this in 3 out of 6 datasets, and P in one dataset. They

found that considerably smaller solutions do not achieve better generalization than the

other much bigger solutions. The generalization between the two types of solutions was

similar.

2.3.2 Functional Complexity

Vladislavleva et al. (2009) addressed the issue of measuring and controlling the complexity

of the models as a way to achieve higher generalization. The proposed complexity mea-

sure is called order of non-linearity and adopts the notion of the minimal degree of the

best-t polynomial, approximating an analytical function with a certain precision. A new

scheme based on the alternation of several optimization objectives is also proposed. A

two objective optimization is performed using the model error and the expressional com-

plexity alternated at each generation with the model error and the order of non-linearity.

The authors dene two different directions in determining the qualitative complexity of

a GP model: complexity of the model expression (compactness of the genotype), and

behavior of the associated response surface (smoothness of the phenotype). The expres-

sional complexity is related with the tree size, and it is dened as the sum of the number

of nodes in all subtrees of a given tree. This favors trees with fewer layers and, hence,

with fewer nested functions as opposed to deep unbalanced trees. The main objective
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behind the proposed complexity measure is to favor smooth and extrapolative behavior

of the response surface, and to discourage highly non-linear behavior, which is unsta-

ble toward minor changes in inputs and is dangerous for extrapolation. This complexity

measure is based on the degree of the approximating polynomial, and is used as an order

of non-linearity of the response surface of the original function (solution). This order

can be seen as a numeric value of the deviation of the response surface from a linear

hyperplane. A Chebyshev polynomial approximation is used as it has a good treatment

of steep response surfaces, and it provides a stable and reliable framework. Experimen-

tal testing was conducted in articial regression datasets as a way to generate noise-free

testing data for interpolation and extrapolation. Eight functions were chosen. A ninth

problem was introduced based on a real-world dataset (modeling gas chromatography

measurements). Pareto GP was the chosen framework. A total of 3 Pareto GP versions

were tested. All of them with two optimization criteria, with the last version alternating

the second criterion at each generation. The versions tested are the following:

Version 1: Pareto optimization of the sum of squared errors and the expres-

sional complexity.

Version 2: Pareto optimization of the sum of squared errors and the order

of non-linearity.

Version 3: Pareto optimization of the sum of squared errors and the ex-

pressional complexity, alternated with the Pareto optimization of the sum of

squared errors and the order of non-linearity at each generation.

The authors choose version 3 as opposed to using a three objective optimization on the

grounds that such a conguration would be very sensitive to the particular linear coef-

cients and that it would scale badly. They argued that their approach overcomes the

curse of dimensionality of the objective space by alternating the two objective optimiza-

tions. No comparison against Standard GP was performed. The following results are

based on all nal solutions over all the 2500 runs. Version 2 outperforms version 1 in

terms of testing error on all problems, with statistical signicance. These results come at

the expense of higher expressional complexity. Solutions generated by version 2 mostly

consist of simple operators but are bulky and difficult to interpret. This expressional com-

plexity is largely reduced in version 3. Version 2 signicantly outperformed version 3 in
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terms of testing error in 8 out of 9 problems. The testing error of version 3 is signicantly

smaller in comparison with version 1 on all problems. The authors note that version 2

and 3 achieve signicantly smoother solutions than version 1. They conclude that the

proposed complexity measure is effective in signicantly increasing generalization.

Vanneschi et al. (2010) proposed a functional complexity measure based on the con-

cept of curvature. The curvature of a function can informally be dened as the amount

by which its geometric representation deviates from being straight. The exact calculus of

the curvature may be impossible, and an approximation would require the approximating

polynomial of that function (as seen in the previous approach). To avoid this, the authors

have expressed the complexity of a function by counting the number of different slopes.

Higher weights are assigned to inversions in the slope sign. In this work the proposed

complexity measure was not used to somehow bias the search. It was only used to dis-

cover the relationship between bloat and overtting by reporting the complexity for each

best individual along the evolution. After conducting the experiments, the authors found

an unclear relation between the complexity measure, the training tness, and overtting.

2.3.3 Similarity Based Approaches

Murphy and Ryan (2008b) explored the generalization ability of Hereditary Repulsion

(HR) (Murphy and Ryan, 2008a), and the effect of a particular constraint used within

HR. HR works by using a tournament to select the individual with the smallest hereditary

overlap in relation to a randomly selected individual. Crossover is then applied to these

two selected individuals. This mechanism is intended to avoid premature population

convergence. A constraint used within HR enforces that only offspring that are better

than both parents can enter the population. This constraint was also tested in a Standard

GP approach that does not use HR. The generalization ability of HR and its associated

constraint was assessed in 5 different learning tasks: 3 real-world binary classications

from the Machine Learning Repository at UCI (Lichman, 2013), and 2 articial regressions.

A general improvement in terms of generalization was achieved in both approaches.

Vanneschi and Gustafson (2009) proposed a crossover based similarity measure aimed

at improving GP generalization by avoiding solutions similar to already known overtted

solutions. The proposed method (repGP) keeps a list of overtted individuals (called re-

pulsors) and prevents any new individual to enter the next generation if they are similar to
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any of the known repulsors. This similarity can be determined by the usage of one of the

two following operator-based distances: structural (or edit) distance (ED-repGP), and

subtree crossover similarity distance (SCD-repGP). Edit distance (ED) works on struc-

tural or syntactical similarities, while subtree crossover similarity distance (SCD) works

on the probability that some solution can generate a repulsor by means of one crossover

operation with another solution from the population. RepGP identies a solution as a re-

pulsor if that solution is the best on the training set but its performance on the validation

set is inferior to the average performance of the best E (problem parameter) solutions

on the same validation set. Given the previous denition, at the most only one repulsor

can be added per generation (since the rule can only be applied to the best solution on

the training set). When the repulsors list is empty, repGP is equivalent to Standard GP.

Otherwise, tournament selection is applied using the average dissimilarity to the existent

repulsors as a criterion to be maximized, i.e., solutions with less similarities to the repul-

sors are more likely to be selected for reproduction. Experiments are conducted in a

real-world dataset (human oral bioavailability) using 2 benchmarks. These benchmarks

differ only in the partitioning of the training and testing sets. This partitioning is done

randomly in both cases. Standard GP is the chosen baseline technique. Results show that

repGP improves upon the Standard GP generalization on the two benchmarks. Also,

SCD-repGP achieves better results than ED-repGP. RepGP also achieves smaller solu-

tions than Standard GP. It is interesting to note that the average size of the repulsors is

much larger not only than repGP but also than Standard GP. The authors argue that this

hints that repGP is really using as repulsors solutions that overt, arguing that this relates

to the MDL principle.

The Semantic Similarity based Crossover (SSC) was proposed by Uy et al. (2010).

SSC is based on the Sampling Semantics Distance (SSD) between two trees (or subtrees),

which is calculated by choosing N random points (data instances), and calculating the

mean absolute difference between each corresponding points on the two trees. The

authors argue that the exchange of subtrees is most likely to be benecial if the two

subtrees are not too similar or too dissimilar. To ensure this, a lower and an upper

bound dene the range where the semantic similarity between two trees is valid. These

bounds are predened constants and their best values might be problem dependent. The

crossover operator works by choosing two random crossover points, and by checking the

semantic similarity between the two. If the semantic similarity is valid, the crossover is
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applied normally. Otherwise, two new crossover points are selected and the process

is repeated. There is a threshold for the total number of tries to apply the operator. If

this threshold is reached, two random crossover points are selected and the crossover

is applied disregarding the semantic similarity. Four congurations were tested: standard

crossover (SC), semantic similarity based crossover (SSC), and SC and SSC with validation

(SCV and SSCV respectively). The approaches that use validation perform a division of

the whole training set in two: training and validation (67%-33% division). They execute

a two objective trial (tness and size of the individual) in order to extract a set of non-

dominated individuals (the Pareto front). These individuals are then evaluated on the

validation set, with the best of run individual selected as the one with the smallest error

rate on the validation set. Results show that SSC achieves better performance on tests

sets than SC. The SCV and SSCV results are slightly worse than SC and SSC respectively.

This highlights the fact that the generalization of both methods is not enhanced when a

validation set is used. SSC also achieves smaller solutions than SC, which could mean

that the control on the semantic level can have positive consequences for the syntactic

aspects of the evolved programs. Validation is also shown to help reduce the size of the

best individuals.

2.3.4 Statistical Approaches

Nikolaev et al. (2002) proposed several techniques aimed at increasing GP generalization.

These techniques are applicable for polynomial representations. The goal of these tech-

niques is to balance the statistical bias and variance. The proposed techniques are: block

reformulation, complexity tuning, and a new tness function. STROGANOFF (Iba et al.,

1994) is the baseline GP system in which the new techniques are built on. This system im-

poses a strong representation bias on the overall polynomials produced at the root. This

leads to the overall polynomial order rapidly increasing even if a small number of terms

enter the model. To overcome this, a polynomial block reformulation is performed to

enable the accommodation of more terms in the overall model without increasing its or-

der. Complexity tuning is achieved by using one of the two proposed techniques: local

ridge regression (LRR), and regularized weight subset selection (RWSS). Although com-

putationally stable, LRR is not able to turn weights to zero. RWSS does allow a complete

elimination of weights. LRR works on adjusting the polynomial smoothness by manipulat-
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ing the terms separately since they contribute different curvatures to the model. RWSS

computes the signicance of each term to the data tting. All weights that are found

to cause improvement of t above a given threshold remain, while the others are set

to zero. The authors dene well performing polynomials as those that are: accurate

(on training data), predictive, and parsimonious (small). The proposed statistical tness

function has three main components: an accuracy measure that favors highly t models,

a regularization factor that tolerates smoother mappings with higher generalization po-

tential, and a complexity penalty that favors short size models. Experimental testing is

conducted on 3 real-world time series. Comparisons are made against Standard GP, the

STROGANOFF baseline technique, and a linear model. In all experiments the proposed

approach achieved the best generalization results. The improvement in the second time

series is particularly dramatic.

Chan et al. (2011) proposed a statistical method called Backward Elimination (BE). BE

works by eliminating insignicant terms in polynomials models such as those produced by

GP. Each polynomial term is tested for its statistical signicance. The insignicant terms

are removed until there are none in the corresponding model. It is hypothesized that

the elimination of these insignicant terms can lead to solutions with better generaliza-

tion. The proposed method is called BE-GP, and it is compared with 3 other meth-

ods: MAE-GP, ASR-GP, and RAE-GP. These other methods are Standard GP variants

with different tness functions. MAE-GP uses the mean absolute error (MAE) as the

tness function. ASR-GP uses a MDL-based tness function which is divided into two

main components: an accuracy component (proportional to the empirical error over the

datasets), and a structural complexity component (proportional to the number of poly-

nomial terms). This tness function is claimed to be suitable for polynomial modeling as

it prevents rapid tree growth, which causes premature convergence to inferior solutions.

RAE-GP uses the tness function from Nikolaev and Iba (2001). This tness function is

similar to the previous tness function, but it uses the regularized average error (RAE)

instead of the average squared residual (ASR). The RAE encourages polynomial models

with low-magnitude high-order terms, and with smoother polynomials. These 4 methods

are evaluated in 3 real-world manufacturing processes. BE-GP was able to obtain better

generalization results than the other methods in almost all tests. The exceptions were:

on the rst manufacturing process RAE-GP was better in 2 out of 12 tests on the second

quality requirement; on the second manufacturing process RAE-GP was better on 4 out
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of 12 tests; on the third manufacturing process MAE-GP was better in 1 test.

Pennachin et al. (2011) proposed a method based on a technique called affine arith-

metic. This technique is a more rened interval method that produces tighter bounds

for expressions. Interval methods are techniques for numerical computation in which ap-

proximate results are produced with guaranteed ranges or error bounds. They can ana-

lyze expressions and produce output bounds as well as detect asymptotes. The proposed

method uses the bounds produced by affine arithmetic to detect and discard solutions

whose outputs lie outside a desirable range. Also, if some solution contains a possible

asymptote then the bounds calculated are innite, and the solution is eliminated from the

population. Experiments are conducted on 15 articial regression problems, and on 2

real-world time series. Results show that the proposed approach outperforms Standard

GP in terms of generalization. A further real-world time series was experimented but in

this case the comparison also included Neural Networks and Support Vector Machines.

In this last experiment the proposed approach also achieved higher generalization than

the other methods. Additionally, Standard GP achieved similar results to Support Vector

Machines. Neural Networks presented the worst results. The authors conclude that the

proposed approach greatly improves generalization.

2.3.5 Other Diverse Approaches

Robilliard and Fonlupt (2001) applied a method call Backwarding to reduce overtting

when dealing with a real-world dataset: the Photosynthesis Available Radiation (PAR)

problem. The method consists in using a validation set and derives its name from the fact

that the solutions accepted are not normally those from the nal generations of the GP

run, since this method goes back as much as needed in the evolution process until the

point where overtting is not yet very relevant. This is achieved by saving two copies of

the solutions: one copy for the best solution on the training set, and another copy for

the best solution on the validation set. Any new best solution on the validation set is

also necessarily the best solution so far on the training set (granted by the algorithm).

The opposite does not hold. At the end of the GP process the best saved solution for

the validation set is returned. A preliminary evaluation of the Backwarding method is

performed, using inverse regression problems with 3 different functions. The results

are compared against Standard GP. Backwarding achieves better results on testing and
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validation sets on all three functions, while generating smaller solutions. This last fact

could be interpreted favorably in light of the MDL principle. PAR refers to the number of

photons available for photosynthesis in the visible wavelength interval. The interest here

is estimating the energy available for photosynthesis from the water-leaving radiance.

The inputs for this problem are the selected wavelengths and the expected output is the

attenuation coefficient. A new criterion derived from real data is also proposed. Several

images were selected and from these 20000 pixels were randomly chosen. These will be

the validation set. The desired output for each pixel is not known but it can be bounded

(domain knowledge). With this approach the error on the training set is bigger but the

models can now generalize better than before.

Paris et al. (2003) compared the generalization performance of 3 GP variants: Stan-

dard GP, GP using size fair crossover (Langdon, 2000), and GP with boosting. The ex-

periments are conducted on 2 benchmarks: a regression and a classication dataset. The

authors hypothesize that the occurrence of overtting mainly occurs when too much

computing effort is spent, and thus they vary this effort by increasing either the size of

the population or the maximum depth allowed. The base overtting indicator used is the

difference between the last generation generalization error (ER(n)), and the smallest gen-

eralization error (ER(min)) found during the run (min is the generation where the lowest

generalization error occurs). Besides ER(n) and ER(min), two other indicators are used.

Indicator 1 is the chance that stopping GP at any time after generation min results in an

overtting amount less than 10% (the great the better). Indicator 2 is the number of runs

where the overtting amount at the last generation exceeds a threshold of 10% (the lesser

the better). Size fair crossover is intended to slow down the growth of trees during the

GP run. The results for this approach are similar to those of Standard GP where in the

regression problem there is a small advantage for the smaller depths, and in the classi-

cation problem bigger depths are better. The last tested approach is boosting. Boosting

is a scheme that can be wrapped around any supervised learning method. It works in a

way that the algorithm provides more attention to hard to learn cases. In the regression

problem boosting achieves a smaller generalization error than the other approaches. The

results on the classication problem are not so good and exhibit a raising generalization

error, although the overall precision is more than twice as good as Standard GP.

In the context of nancial applications, Chen and Kuo (2003) proposed a measure of

degree of overtting based on the extracted signal ratio. With this measure it is possible
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not only to conclude if overtting has occurred, but it is also possible to detect undertting

(lack of performance on the training set). In the case of overtting, this results in the

information (signal) extracted being greater than the maximum information available from

the times series. As for undertting, this results in information being unexploited. In their

experiments they noticed a rise in overtting when the search intensity was raised. In

their case, raising the search intensity means increasing the number of individuals in the

population. They further conrmed that the search intensity has a positive effect on the

degree of tting, and will consequently contribute to a risk of overtting. Also, a validation

scheme was tried to help to reduce the problem but it did not prove effective.

Liu and Khoshgoftaar (2004) used a method called Random Sampling Technique (RST)

to try to reduce overtting in the context of software quality classication (SQC). RST

works by choosing a different subset of the training set (instead of the whole set) at each

generation of the GP run. This implies that only solutions that perform well on various

different subsets will remain in the population. This method was used before (Gathercole

and Ross, 1994) as a way to improve the speed of a GP run, but here the goal is to try

to reduce overtting. The SQC model is used to identify fault-prone (FP) and not fault-

prone (NFP) modules based on software metrics and quality data from similar projects or

previous system releases. The data used in the experimental setting was collected from

a large legacy telecommunications system. Four software releases were considered. A

module was considered FP if it had one or more faults, and NFP otherwise. The presented

approach used 2 tness functions: one for the classication error, and another for the

solution size. The second tness function is based on size and biases toward shorter

solutions. Two experiments are performed: one with RST, and the other without it (using

the entire training set). Overtting is considered to occur when the predicted error rate

for the testing set is greater than 5% of the corresponding error rate for the training set.

Results show that there are no overtted models in release 3 for both experiments. With

RST, release 2 presents no overtted models, and without RST it presents 12 overtted

models out of 15. In release 4, with RST 4 out of 15 models are overtted, while without

RST 13 out of 15 are overtted. This leads to the conclusion that when RST is in place,

the GP models are less prone to overtting and generalize better. Further similar tests

reinforce this conclusion.

The idea behind Canary Functions, proposed by Foreman and Evett (2005), is to

measure overtting during the run by using a validation set. When overtting starts to
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occur the search process is stopped. The hope is that by stopping the search as soon

as overtting starts to occur, an increase of the generalization error can be avoided, and

thus solutions with lower generalization errors might be achieved. This idea is based on

the argument that the effects of overtting can be reduced by limiting the amount of time

spent on training. The denition of a Canary Function is that this function should be, when

compared to the tness function: distinct but related toward meeting the same goal, and

its value should differ from the tness function as overtting starts to occur. Canary Func-

tions are used as an abstraction for implementing a cross-validation scheme. This scheme

has been successful in overcoming overtting in neural networks and decision trees. Ca-

nary Functions call for a need of online indicators that signal when the performance of

the solutions on the validation set starts to diverge. Three online indicators were used.

The rst two were proposed by Prechelt (1998) and are: the generalization loss, and the

productivity quotient. The last indicator is the correlation coefficient, which is used to

obtain the correlation between the best training set individual and the best validation set

individual. Regression was the problem domain used for the experiments. During the ex-

periments, 4 types of overtting were identied: dramatic divergence, slight divergence,

negative performance, and negative performance with crossover. The authors conclude

that Canary Functions can be used to determine effectively when overtting has started

to occur.

Da Costa and Landry (2006) proposed an idea to relax the training set by allowing

a wider denition of the desired solution. This translates into considering not only the

desired output (y) correct, but allowing a more broader range to be considered, i.e., it

also considers any output in the range [ymin, ymax] as correct. It is hypothesized that

this relaxation can help reduce the generalization error. The experimental testing is per-

formed on a regression dataset. Nine different values were tested for the relaxation,

ranging from 0.125% to 20% of the width of the interval occupied by the polynomial. The

tness of an individual is its distance to the middle point of each of the relaxed intervals,

except if a particular output belongs to the relaxed interval, in which case its distance is

0. The results show that the generalization error reaches its lowest value at 1% relax-

ation. The average generalization errors are better than those without relaxation until

the 10% mark. The authors conclude that there is an advantage in using a little relaxation.

It should be noted that the solutions produced with up to 1% relaxation are the biggest in

size, which in some way contradicts the MDL principle, since the solutions with the low-
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est generalization errors are the biggest. For relaxations greater than 1% the solutions

found were smaller than without relaxation.

Vanneschi et al. (2007) argued that using GP with a multi-optimization approach can

enhance the generalization of the resulting solutions. Their approach uses two other

criteria besides the traditional sum of errors (SE). These are: the correlation between

outputs and targets (to maximize), and the diversity of pair wise distances between out-

puts and targets (to minimize). These criteria resulted from the fact that Standard GP

was unable to generalize in the real-world regression applications considered. This lack

of generalization came from the fact that the solutions considered, although very simi-

lar to the target in the training set range, were increasingly divergent on the testing set

range. Given this fact and by looking at the solutions retrieved, the authors proposed

to extend the GP framework with a multi-optimization approach with the three criteria

previously described. The SPEA2 (Zitzler et al., 2001) technique was used for nding and

approximating the Pareto-optimal set. The experiments were conducted by comparing

Standard GP with the proposed approach (MOGP) in 3 different functions. In all these

functions MOGP achieved lower generalization error, and less and with lower magnitude

generalization error oscillations during the run. The solutions found by MOGP are also

smaller than those from Standard GP.

Vanneschi et al. (2009) studied the inuence of adding Gaussian noise to the data, and

using a dynamic training set handling. The proposed Gaussian noise works by perturbing

the original value of a terminal each time it is evaluated. This implies that the same variable

can have slightly different values in different tness evaluations. The dynamic training set

handling consists in dividing the training set in 5 subsets and using only 4 of those to

calculate the tness. At each 5 generations the subset that was left unused is replaced

by one of the 4 that is being used. This translates into having a dynamic training set

which is modied in a cyclic way. The two new proposed techniques are tested both

separately and together, which means that a total of 3 new GP variants are tested. These

variants are experimented in 2 real-world oncologic classication datasets. Comparisons

are made against Standard GP, Support Vector Machines, MultiBoosting, and Random

Forests. Results show that all the GP methods (the 3 variants and Standard GP) are able

to achieve better generalization than the best non-evolutionary method in both datasets.

The authors state that these results show that GP can be a valuable technique in this

context. Results also show that the proposed GP variants present no clear difference
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when compared to Standard GP. The authors state that, at least for this particular context,

these variants are not helpful in improving GP generalization.

Castelli et al. (2010) performed a comparison of the generalization of several different

GP frameworks. These are: Standard GP, Standard GP with dynamic operator equaliza-

tion (DynOpEq) (Silva and Dignum, 2009), and a set of multi-optimization GP variants.

NSGA-II (Deb et al., 2002) is the chosen multi-objective evolutionary method. The cho-

sen tness functions are: the root mean square error (RMSE) between the target and

the obtained values, solution size (number of nodes), and the variance of the error be-

tween the target and the obtained values. From these, three variants are used: RMSE +

size (MOsize), RMSE + variance (MOvar), and RMSE + size + variance (MOsize+var).

These three variants are compared with Standard GP and DynOpEq. Experimental test-

ing is conducted on a real-world problem (prediction of pharmaceutical drug toxicity)

with high dimensionality. On testing data MOsize achieves the best results. MOvar and

MOsize+var results are quite similar to MOsize. The authors argue that the similar results

obtained on both the training and the testing sets of the MO approaches, is evidence of

the generalization ability provided by multi-optimization. The MOsize+var approach does

not perform better than any MO approach with only one auxiliary function. The authors

nd this counterintuitive but argue that this could result from a low number of generations

since they believe that the increase of auxiliary function can slow down convergence. The

authors also point out that DynOpEq is the approach that produces smallest individuals,

although this fact does not guarantee the absence of overtting. They state that this hints

that bloat and overtting are two separate phenomena. Statistical validation conrms that

multi-optimization improves GP generalization.

Finally, in the context of the Compiling Genetic Programming System (Nordin, 1994),

Banzhaf et al. (1996) showed the positive inuence of the mutation operator in the gen-

eralization achieved. No similar studies are known in Standard GP.

2.4 Discussion

The issues of generalization and overtting did not receive much attention in the early

years of GP. This has recently been changing as these issues become more widely studied.

Generalization in GP has been recently considered an important open issue (O'Neill et al.,

2010).
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2.4.1 Considerations on Theory and Experimental Methodology

Poli et al. (2010) emphasized that the study of the theoretical aspects of generalization

in GP has not developed nearly enough in the last decade. Teller and Andre (1997)

and Giacobini et al. (2002) have studied the number of data instances needed for GP

to learn. However, these approaches do not address directly the issue of generalizing

to unseen cases. Outside of GP theory, in Computational Learning Theory, Ehrenfeucht

et al. (1989) proved a general lower bound on the number of data instances needed

for learning, under the Probably Approximately Correct (PAC) Learning model (Valiant,

1984). Although interesting from a theoretical perspective, the bound on the needed

training data is not commonly relevant in real-world scenarios. More commonly, the

issue is that the available data is scarce, and no more data is easily obtained. Recently,

Mambrini and Oliveto (2016) proved negative results on the generalization of simple GP

algorithms in the context of learning particular boolean functions. No similar theoretical

results are known for the Standard GP version.

In the early years of GP, approaches aimed at improving generalization were very un-

common. Kushchu (2002) mentioned that at that point, the issue of generalization in GP

had not received the attention it deserved. In fact, it was even uncommon to measure

the performance in a set of unseen data. Notably, in Koza (1992) most of the problems

presented did not use separate training and unseen data, so performance was never eval-

uated on unseen cases (Kushchu, 2002). This also occurred in the early days of classical

Machine Learning (Domingos, 2012). However, in the case of Machine Learning, the

models used at the time were relatively simple. The underlying reasoning was that, since

those models were simple, they were unlikely to overt. In this case the bigger risk would

be undertting. In the case of GP, the exibility and complexity of the individuals was em-

braced from the start. This is still seen as one of the most distinct characteristics of GP.

It is clear from the empirical evidence that constructing highly exible individuals/models

can be risky in terms of overtting. In this scenario, a correct methodological approach

becomes even more critical. Eiben and Jelasity (2002) also mentioned that at that point,

it was uncommon to report unseen data results in the larger EC area. They also referred

as problematic the unsubstantiated choice of problem instances, and the missing experi-

mental details needed to reproduce the experiments. More recently, Costelloe and Ryan

(2009) highlighted the need for more accurate generalization performance reports. By
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now it is standard practice in GP to properly report the generalization ability of the indi-

viduals as measured by the performance in separate set of unseen data.

A still common issue in GP is the usage of trivial articial datasets. White et al.

(2013) addressed this issue by proposing a blacklist of benchmark problems that should

be avoided given their simplicity. They mention that an experimental evaluation that only

includes these blacklisted benchmark problems is considered inadequate. This considera-

tion is supported by a survey conducted in the GP research community. This community

survey originated as a follow-up to an initial study (McDermott et al., 2012) of the prob-

lems commonly used in GP. White et al. (2013) also proposed substitute benchmark

problems for the problems in the blacklist. However, some issues arise regarding the

regression datasets proposed. One of the issues is that the majority (5 out of 7) of these

datasets are articial and dened within the GP community. This reduces the scope of

comparison with non-GP methods, as these articial datasets are not commonly used

outside of the GP area. Furthermore, as it commonly happens with articial regression

datasets in GP, they are low dimensionality problems. These articial regression datasets

proposed have at most 5 input variables. Using these datasets may result in the GP com-

munity focusing too much on potentially easy problems. Although it is not guaranteed

that, as the dimensionality increases, so does the difficulty of the dataset. However, con-

sidering the increasing availability of real-world datasets, and their use outside of GP,

it would be a missed opportunity not to focus on these real-world datasets (the most

notable case is the widely used Machine Learning Repository at UCI (Lichman, 2013)).

The adoption of widely used dataset repositories increases the comparability of GP with

other supervised learning algorithms. The increased comparability would allow the GP

community to better understand which datasets are particularly challenging overall, and

which datasets are particularly challenging for GP. This increased comparability could also

contribute to a greater acceptance of GP in the larger supervised learning area. Another

issue with the some of the regression datasets proposed by White et al. (2013), is the lack

of denition of how the unseen data is constructed. White et al. (2013) mentioned that

for those datasets, a method for estimating the generalization can still be implemented

by using a hold-out set or cross-validation. The issue is that this lack of specication will

probably result in different ways of measuring the generalization. If this is the case, then

the comparability between methods using the same dataset will be diminished. An agreed

upon specication for every dataset proposed would reduce the comparability issues.
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During the review presented in the previous section, it was noticed that in some

works the training and testing sets contained overlapping data instances. In other words,

some sets of data used to estimate the generalization ability contained data instances that

were also present in the training data. This usually occurred when using articial regres-

sion datasets. In these works, the training and testing sets were created by randomly

sampling from a given range of data instances. This would be methodologically correct if

care was taken to avoid repeated instances. In some of the works, this is not the case.

This overlapping between the training and testing sets, creates an articial increase in the

generalization estimation.

As a nal methodological consideration, there is still some lack of reporting regarding

the statistical signicance of the results. However, this reporting is becoming much more

common. Overall, the GP community has been gradually overcoming the methodological

aws that were prevalent in the early years.

2.4.2 Trends in Genetic Programming Approaches

From the approaches reviewed in the previous section, a clear trend emerges. Over-

whelmingly, the initial approaches were focused on the structural complexity of the in-

dividuals. However, a change of direction has clearly occurred, as the consideration for

structural complexity was replaced by different approaches.

Firstly, it is relevant to understand the reasoning behind the focus on the structural

complexity. As seen with other supervised learning methods, the Occam's razor has also

been an important source of inspiration in GP. Based on the Occam's razor interpre-

tations mentioned in section 2.1, the general inductive bias in GP was clearly based on

minimizing the complexity of the individuals. The reasoning was that if simpler individu-

als were found, then a better generalization would be achieved. Given that the size of

an individual is one of the simplest denitions of complexity, the majority of the initial

approaches focused on achieving smaller individuals. However, as seen in the previous

section, the results of this type of approaches are inconsistent. In some cases, smaller in-

dividuals did indeed generalize better, but the reverse was true in other cases. In essence,

the empirical evidence did not support a general claim that smaller individuals generalize

better. It might even be possible that other explanation could account for the cases where

smaller individuals generalized better. Particularly, it could be the case that the region of
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the search space containing the smaller individuals was simply being better explored, and

not necessarily because it was more likely to nd individuals that generalized better in

that search space region. As the bias toward shorter individuals did not presented robust

results, the focus had to be reconsidered.

The initial focus on the size of the individuals was also related to another issue oc-

curring in GP: bloat. Bloat is said to occur when the individuals continue to grow but

no corresponding improvement in tness is achieved (Silva and Costa, 2009). There was

also a considerable focus on the issue of bloat, not only because its occurrence hindered

the search progress but also because it was hypothesized that the smaller resulting indi-

viduals would lead to a better generalization. Consequently, it was thought that these

two issues were related, and that counteracting bloat would lead to positive effects in

terms of generalization. This, however, has been recently challenged. Contributions

show that bloat free GP systems can still overt, while highly bloated solutions may gen-

eralize well (Vanneschi and Silva, 2009). As it stands, it seems that bloat and overtting

are two independent issues. These results further reduce the focus on achieving smaller

individuals as a way to improve generalization.

Since the focus on the structural complexity did not provide satisfactory results, a

different set of approaches have been explored. A recent type of approach is based on

the denition of different measures of complexity that might be better correlated with

the generalization of an individual. These complexity measures are based on the be-

havior of a given individual on a set of data instances. These are known as functional

or behavior complexities. Functional complexity measures arise because the apparent

structural simplicity or complexity of an individual might be misleading. For instance, an

individual that represents the cosine function is structurally very simple but produces a

considerably complex behavior. On the other hand, an individual that represents a sum

of several simple terms is structurally more complex, but its behavior is typically less com-

plex. The approaches based on functional complexity in GP, are recent but appear to be

promising. The similarity based approaches are also a recent and potentially interesting

research area. As seen in the previous section, the most recent approaches are very di-

verse. This diversity also arises because of the several interacting components involving

GP. This leads to a potential large number of different ways of approaching the general-

ization issue. Because of this, the rather diverse set of recent approaches should not be

surprising.
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Finally, it should be noted the increasing interest on the connection between GP and

the rest of the supervised learning area. Previously there were very few GP works that

incorporated non-GP concepts. A few of those exceptions were related with the con-

nection with Ensemble Learning and the bias-variance decomposition (Iba, 1999; Keijzer

and Babovic, 2000; Paris et al., 2003). Recently, more GP studies have appeared that

incorporate non-GP concepts. Connections with Statistical Learning Theory (Amil et al.,

2009; Chen et al., 2016; Montana et al., 2009), and PAC learning (Kötzing et al., 2011)

have been recently studied. The usage of GP within other areas has also been increas-

ing (Koza, 2010).



3
Experimental Methodology

This chapter describes the experimental methodology. Section 3.1 presents the datasets.

Section 3.2 species the parameters used. Section 3.3 describes the statistical tests and

presents some general considerations.

3.1 Datasets

Three high-dimensional regression real-world datasets are used in the experiments. They

are referred to as: Bio, PPB, and LD50.

In the Bio dataset the goal is to predict the human oral bioavailability of a given phar-

maceutical drug. The human oral bioavailability is a pharmacokinetics parameter that

measures the percentage of the initial orally submitted drug dose that effectively reaches

the systemic blood circulation after passing through the liver. Being able to reliably predict

the bioavailability value for a potential new drug is outstandingly important, given that the

majority of failures in compounds development from the early nineties to nowadays are

due to a wrong prediction of this pharmacokinetics parameter during the drug discovery

process (Kennedy, 1997; Kola and Landis, 2004). This dataset consists of 359 data in-

stances, where each instance has 241 attributes that describe the molecular structure of

a candidate drug.

In the PPB dataset the goal is to predict the value of the plasma protein binding level of

a given pharmaceutical drug. The plasma protein binding level quanties the percentage

of the initial drug dose that reaches the blood circulation and binds to the proteins of

41
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plasma. This measure is fundamental for good pharmacokinetics, both because blood

circulation is the major vehicle of drug distribution into human body and since only free

(unbound) drugs can permeate the membranes reaching their targets (Archetti et al.,

2007). This dataset consists of 131 data instances, where each instance has 627 attributes

that describe the molecular structure of a candidate drug.

In the LD50 dataset the goal is to predict the median lethal dose of a given pharma-

ceutical drug. The median lethal dose refers to the amount of compound required to kill

50% of the considered test organisms (cavies). Reliably predicting this and other phar-

macokinetics parameters would permit to reduce the risk of late stage research failures

in drug discovery, and enable to decrease the number of experiments and cavies used

in pharmacological research (Archetti et al., 2007). This dataset consists of 234 data in-

stances, where each instance has 626 attributes that describe the molecular structure of

a candidate drug.

3.2 Baseline Parameters

The following parameters are the baseline parameters used in the experiments. Unless

stated otherwise, all experiments use these same parameters. The parameters are pro-

vided in table 3.1. Furthermore, tness is computed as the Root Mean Squared Error

(RMSE) between the outputs of an individual and the targets of the dataset. For each run,

a different randomly selected data division is performed. Each method uses the same

data division for equivalent runs.

3.3 Statistical Tests and Other Considerations

Claims of statistical signicance are based on Mann-Whitney U tests, with Bonferroni cor-

rection, and considering a signicance level of α = 0.05. A non-parametric test is used

because the data are not guaranteed to follow a normal distribution. An important tool

in the analysis of GP are evolution plots. Evolutions plots allow an analysis of the evolu-

tion of a given measure throughout the generations. All evolution plots presented in the

next chapters are based on the median values over 30 runs of some particular measure.

The median is preferred over the average as it is more robust to outliers. Training error
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Table 3.1: Baseline parameters

Parameter Value

Runs 30
Population 500
Generations 200
Data partition Training 50% - Unseen 50%
Crossover operator Standard subtree crossover, probability 0.9
Mutation operator Standard subtree mutation, probability 0.1,

new branch maximum depth 6
Tree initialization Ramped Half-and-Half,

maximum depth 6
Function set +, -, *, and / (protected)
Terminal set Input variables,

constants -1.0, -0.5, 0.0, 0.5 and 1.0
Parent selection Tournament selection of size 10
Survivor selection Best individual always survives
Maximum tree depth 17

evolution plots are based on the training error of the best individual at each generation.

The error on unseen data is referred to as generalization error. Generalization error

evolution plots are based on the generalization error of the best individual selected ac-

cording to the training error. Tree size and tree depth evolution plots present the tree

size or depth of the best individual selected according to the training error. Tree size is

computed as the number of nodes of an individual.





4
Training Data Sampling Strategies

This chapter explores how different training data sampling strategies can be used to po-

tentially improve the resulting generalization. Section 4.1 studies how the use of dynamic

subsets of training data inuences the generalization outcome. Of particular interest is

the usage of small subsets of training data. Sections 4.2 and 4.3 explore different ways of

balancing the usage of different amounts of training data.

4.1 The Generalization Effect of Using Small Dynamic

Subsets of Training Data

4.1.1 Dynamic Subsets of Training Data

In this section, the dynamic use of training data is performed by applying the Random

Sampling Technique (RST). This approach is also known as random subset selection. In

the RST, a new subset of training data is randomly selected at the beginning of each

generation. The size of the subsets is a RST parameter. The tness of each individual

is recomputed for each new training data subset. Parent and survivor selection are per-

formed by taking into account the tness computed in the training data subset. The whole

training data is never used directly. This implies that only individuals that perform well

on various different training data subsets will be able to reproduce and/or remain in the

population. It is expected that the best surviving individuals have captured the underlying

relationships of the data instead of overtting it.
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The RST was previously shown to have positive effects. Gathercole and Ross (1994)

showed that this type of approach could improve the speed of a GP run, while still achiev-

ing similar results as using all of the training data at each generation. Gathercole and Ross

used between 10% and 15% of the total training data depending on the experiment. Liu

and Khoshgoftaar (2004) were able to reduce overtting in a software quality classication

task by applying RST with 50% of the total training data.

4.1.2 Results

In this section, RST is used in the high-dimensional real-world datasets previously pre-

sented. Different sizes of training data subsets are tested. These sizes are obtained from

a given percentage of the total training data. The percentages tested are: 5%, 25%, 50%,

75%, and 95%. Given the particular interest in studying the use of small subsets, the ex-

treme case of using only a single training instance at each generation is also tested. This

conguration is simply labeled RST. Notice that, as usual, the Standard GP baseline uses

all the training data at each generation. Figure 4.1 presents the training and generalization

errors evolution plots for Standard GP and RST. For an easier interpretation of the gap

between the training and generalization errors, a simple measure of overtting is used.

This measure is computed as the absolute difference between the training and gener-

alization errors. Figure 4.2 presents the overtting evolution plots with the described

measure.

Starting with the training error, the behavior across all variants is as expected. The

variants that use more training data (Standard GP and RST with higher percentages) are

able to achieve lower training errors. This is an intuitive result as presenting more data to

a search method allows it to learn faster. Notice that as the percentage of training data

increases in RST, the closer the training error behavior is to Standard GP. In the RST setting

that uses the most training data (RST 95%), the behavior is almost the same as Standard

GP. However, the variants that t the training data faster are incurring in overtting. The

generalization behavior evolutions show that, after a certain point, the best training data

performing variants are simply starting to overt. As is clear in Standard GP and in the

RST variants with higher percentages of training data usage (50% or above), the bigger

training error reduction comes at the expense of the resulting generalization. By the end

of the runs, all of these variants present signicant overtting. On the other hand, the
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Figure 4.1: Training and generalization errors evolution plots for Standard GP and RST
with different parameters
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Figure 4.2: Overtting evolution plots for Standard GP and RST with different parameters
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RST variants that use very small percentages of the training data (RST and RST 5%) are

able to avoid overtting. These variants achieve the best median generalization errors

across all datasets. RST is the best performing variant in the LD50 dataset, while RST

5% achieves the best median generalization error in the Bio dataset. In the PPB dataset,

RST and RST 5% achieve similar generalizations. In RST and RST 5%, the reduction of the

training error usually signies a similar reduction in the generalization error. This behavior

is clear in the mentioned overtting plots (gure 4.2). The overtting values of RST and

RST 5% are relatively stable from the beginning of the runs. In Standard GP and in the

RST variants with higher percentages of training data usage, the overtting values reect

the constantly widening gap between training and generalization errors. Similarly to the

training and generalization errors evolution, as the percentage of training data increases

in RST, the closer the overtting evolution is to Standard GP.

Figure 4.3 shows the boxplots with the generalization errors achieved in the last gen-

eration of each variant. Besides achieving better median generalization errors, RST and

RST 5% also present more robust generalizations across different runs. Standard GP and

the RST variants with higher percentages of training data usage present considerable vari-

ations on the generalization achieved depending on the specic run. Focusing the analysis

on RST and RST 5%, both variants generalize better than Standard GP, with statistical

signicance, in the PPB (p-values: RST 1.335 × 10−6, and RST 5% 1.150 × 10−6) and

the LD50 dataset (p-values: RST 1.111 × 10−7, and RST 5% 1.067 × 10−6). In the Bio

dataset, only RST 5% is superior with statistical signicance (p-value 7.899× 10−5).

Another advantage of using small dynamic subsets of training data is the smaller result-

ing individuals. Figure 4.4 presents the tree size evolution plots, and gure 4.5 presents

the tree depth evolution plots. The best individuals found in RST and RST 5% are con-

siderably smaller than the ones produced by Standard GP. The tree size evolution plots

show that the tendency is to reach bigger individuals as the amount of training data pro-

vided increases. In terms of tree depth, RST achieves particularly shallow trees. Almost

all of the other variants reach the imposed tree depth limit.

Across the tested datasets, the general trend shows that the use of small dynamic

subsets of training data prevents the appearance of overtting, and contributes to a robust

generalization outcome. These outcomes are even possible when using a single training

instance at each generation. Besides improving generalization, the resulting individuals are

also smaller. A further advantage is that this type of approach does not directly constraint
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Figure 4.3: Generalization error boxplots for Standard GP and RST with different param-
eters
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the exibility of the resulting GP individuals.
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Figure 4.4: Tree size evolution plots for Standard GP and RST with different parameters

4.2 Deterministic Interleaved Sampling

Given the particularly interesting results of using a dynamically changing single training in-

stance, this section and the next explore how the usage of a single training instance can

be balanced with periodically using all of the available training data. The rationale behind

this approach is based on trying to keep overtting low (represented by using a single

training instance), and still presenting enough information so that a general pattern can

be found (represented by using all training data). The usage of all training data might also

increase the learning rate of the search method. This type of approach is named inter-

leaved sampling as it interleaves the usage of the training data between a single training

instance and all the training instances. In other words, in some generations the quality of
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Figure 4.5: Tree depth evolution plots for Standard GP and RST with different parameters
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the individuals is computed based on a single randomly selected training instance, while

on the remaining generations the quality of the individuals is computed based on all of the

available training instances. This section studies two deterministic interleaved sampling

approaches. In this context, deterministic means that the specic generations in which a

single training instance is used are known a priori. The next section studies a probabilistic

approach of choosing in which generations a single training instance is used.

4.2.1 Interleaved All

The rst deterministic interleaved sampling approach is named Interleaved All (IA). IA

entails a preference to using all the training data available. In other words, in the majority

of the generations the quality of the individuals is computed based on all of the available

training data. A parameter is added in order to dene how many generations using all

training instances are performed for each generation where a single training instance is

used. This parameter is dened by a given percentage of the total number of genera-

tions. For instance, if this parameter is set to 5% of the total number of generations, this

means that (with the total number of generations being considered experimentally) the

rst generation uses a single training instance, while the following 10 generations (5% of

200) use all the training instances. The next generation reverts back to using a single train-

ing instance, and the following 10 generations use all the training instances. This process

is repeated until the total number of generations is reached. The values tested for this

parameter are: 5%, 10%, 15%, 20%, and 25%. Notice that 25% is already a considerably

high value as this implies that in total only 4 generations will use a single training instance.

Figure 4.6 presents the training and generalization errors evolution plots for Standard

GP, RST, and IA with the different parameters tested. Across all datasets, the behavior

of the IA variants is very similar to the behavior of Standard GP, both on training and

generalization. As Standard GP, the IA variants are effective in reducing the training error,

but do so by incurring in overtting. All IA variants result in considerably higher median

generalization errors in comparison with RST. In terms of tree size (gure 4.7) and tree

depth (gure 4.8), the IA variants also behave similarly to Standard GP. The resulting

individuals are considerably bigger and deeper than the ones produced by RST.

These results show that an approach based on using a majority of the generations

with the quality of the individuals been computed based on all of the available training
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Figure 4.6: Training and generalization errors evolution plots for Standard GP, RST, and
IA with different parameters
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Figure 4.7: Tree size evolution plots for Standard GP, RST, and IA with different param-
eters
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Figure 4.8: Tree depth evolution plots for Standard GP, RST, and IA with different pa-
rameters
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data is not effective in reducing overtting, even with a periodical usage of a single training

instance. It seems that a more predominant usage of generations with a single training

instance must be consider in order to avoid overtting.

4.2.2 Interleaved Single

The second deterministic interleaved sampling approach is named Interleaved Single (IS).

IS entails a preference to using a single training instance. In other words, in the majority

of the generations the quality of the individuals is computed based on a single training

instance. A parameter similar to the one used in the IA approach is added. In the case

of IS, the parameter denes how many generations using a single training instance are

performed for each generation where all the training instances are used. For instance,

if this parameter is set to 5% of the total number of generations, this means that (with

the total number of generations being considered experimentally) the rst generation

uses all the training data, while the following 10 generations (5% of 200) use a single

training instance. The next generation reverts back to using all the training data, and the

following 10 generations use a single training instance. This process is repeated until the

total number of generations is reached. The values tested for this parameter are the same

as in the IA approach.

Figure 4.9 presents the training and generalization errors evolution plots for Standard

GP, RST, and IS with the different parameters tested. The behavior of the IS variants

is very similar to the behavior of RST, both on training and generalization. Because of

this similarity, the IS variants present the same generalization advantage over Standard

GP as RST does. The same similarity with RST occurs in terms of tree size (gure 4.10)

and tree depth (gure 4.11). As RST, the IS variants achieve much smaller and shallower

individuals in comparison with Standard GP. Despite these advantages over Standard GP,

the IS variants are not able to surpass the RST outcomes.

These results show that an approach based on using a single training instance to com-

pute the quality of the individuals in a predominant number of the generations is effective

in avoiding overtting. However, the effect of presenting all training data to the search

method with the periodicity tested is negligible.
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Figure 4.9: Training and generalization errors evolution plots for Standard GP, RST, and
IS with different parameters
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Figure 4.10: Tree size evolution plots for Standard GP, RST, and IS with different param-
eters
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Figure 4.11: Tree depth evolution plots for Standard GP, RST, and IS with different pa-
rameters
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4.3 Random Interleaved Sampling

4.3.1 Method Description and Results

The Random Interleaved (RI) approach is based on a probabilistic choice of the genera-

tions where a single training instance is used. At each generation the number of training

instances to use is decided by considering a probability (given as a parameter) of using a

single training instance. In the generations where a single training instance is not used, all

of the training data is used instead. The parameter of RI is represented as a percentage.

The values tested for this parameter are: 99%, 95%, 75%, 50%, 25%, and 5%. Notice

that using 100% as a parameter is equivalent to the RST approach of always using a single

training instance. Notice as well that using 0% as a parameter is equivalent to the Standard

GP approach of always using all the training data.

Figure 4.12 presents the training and generalization errors evolution plots for Stan-

dard GP, RST, and RI with the different parameters tested. The corresponding overtting

plots are presented in gure 4.13. The RI variants exhibit the expected behavior with re-

spect to their parametrization. The closer the parameter is to 100%, the closer the vari-

ant behaves to RST. Conversely, the closer the parameter is to 0%, the closer the variant

behaves to Standard GP. In terms of generalization, the RI congurations with the param-

eter set to 50% or above usually achieve competitive generalizations. Figure 4.14 shows

the boxplots with the generalization errors achieved in the last generation of each variant.

Particularly interesting are the results of RI 50% and 75% in the Bio dataset. These variants

are able to achieve a better generalization than Standard GP with statistically signicant

differences (p-values: RI 50% 6.161 × 10−5, and RI 75% 1.905 × 10−3). As previously

seen, RST was not able to do so. Besides this advantage, RI 50% and 75% also increase

the training data learning rate in comparison with RST. In the PPB dataset, RI congura-

tions with the parameter set to 50% or above signicantly improve the generalization in

comparison with Standard GP: 50% (p-value 2.320×10−4), 75% (p-value 1.024×10−7),

95% (p-value 1.774× 10−9), and 99% (p-value 1.800× 10−7). In the LD50 dataset, gen-

eralization improvements over Standard GP occur with statistical signicance for the RI

congurations with the parameter set to 75% or above: 75% (p-value 5.434 × 10−5),

95% (p-value 2.290 × 10−8), and 99% (p-value 1.024 × 10−7). These results reinforce

the notion that, in order to avoid overtting, a preference has to be given toward using
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only a single training instance at each generation.

In terms of tree size (gure 4.15), the RI congurations with the parameter set to 50%

or above always produce smaller individuals than Standard GP. The advantages in terms

of tree depth (gure 4.16) are particularly clear for RI 75% and above.

4.3.2 Normalized Comparison

Despite the advantages presented by the approaches studied in this chapter, a possible

source of confusion still needs to be addressed. As it stands, it is not clear if the pro-

posed approaches simply worked by delaying overtting. An argument could be made

that, by providing fewer training instances in total number during the run, the search algo-

rithm would simply stop (given the same number of total generations) before overtting

starts. To address this issue, an experiment is performed in order to extend the runs

of the proposed approaches so that, at the end of the runs, these approaches would be

presented in total with at least the same number of training instances as Standard GP. In

other words, a normalized comparison is performed in terms of total number of training

instances seen. Given their positive results, RI 50% and RI 75% are used in this exper-

iment. Extending the number of generations to 400 in RI 50%, means that on average

the search method would use all of the training data in 200 generations. This is exactly

the number of generations used in Standard GP. This entails that running RI 50% for 400

generations guarantees on average the usage of at least the same number of total training

instances. Although not crucial for the comparison being made, the number is actually a

little bit higher as the remaining 200 generations use a single training instance. Following

the same reasoning, extending the number of generations to 800 in RI 75%, means that

on average the search method would use all of the training data in the same 200 genera-

tions. With these experimental settings, RI 50% and 75% will use on average at least the

total number of training instances used in Standard GP. The RI variants with an extended

number of generations are named Normalized RI (NRI). Figure 4.17 shows the boxplots

with the generalization errors achieved in the last generation of each variant.

In the total of 6 comparisons between the NRI and the RI variants, only once does

the normalizing procedure result in a considerably weaker generalization (NRI 50% in the

PPB dataset). On the other hand, in another case (in the LD50 dataset) the NRI variant

is able to surpass the Standard GP outcome where the corresponding RI variant could



4.3. RANDOM INTERLEAVED SAMPLING 63

Bio dataset

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Generations

T
ra

in
in

g 
er

ro
r

 

 

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

Standard
RST
RI 99%
RI 95%
RI 75%
RI 50%
RI 25%
RI 5%

PPB dataset

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Generations

T
ra

in
in

g 
er

ro
r

 

 

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

Standard
RST
RI 99%
RI 95%
RI 75%
RI 50%
RI 25%
RI 5%

LD50 dataset

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

Generations

T
ra

in
in

g 
er

ro
r

 

 

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

Generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

Standard
RST
RI 99%
RI 95%
RI 75%
RI 50%
RI 25%
RI 5%

Figure 4.12: Training and generalization errors evolution plots for Standard GP, RST, and
RI with different parameters



64 CHAPTER 4. TRAINING DATA SAMPLING STRATEGIES

Bio dataset PPB dataset

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Generations

O
ve

rf
itt

in
g

 

 

Standard
RST
RI 99%
RI 95%
RI 75%
RI 50%
RI 25%
RI 5%

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Generations

O
ve

rf
itt

in
g

 

 

Standard
RST
RI 99%
RI 95%
RI 75%
RI 50%
RI 25%
RI 5%

LD50 dataset

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Generations

O
ve

rf
itt

in
g

 

 

Standard
RST
RI 99%
RI 95%
RI 75%
RI 50%
RI 25%
RI 5%

Figure 4.13: Overtting evolution plots for Standard GP, RST, and RI with different pa-
rameters
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Figure 4.14: Generalization error boxplots for Standard GP, RST, and RI with different
parameters
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Figure 4.15: Tree size evolution plots for Standard GP, RST, and RI with different param-
eters
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Figure 4.16: Tree depth evolution plots for Standard GP, RST, and RI with different pa-
rameters
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not (p-value NRI 50% 4.128× 10−3). In the remaining 4 comparisons, the generalization

superiority over Standard GP remains in the normalized variants: NRI 75% (p-values: Bio

1.067 × 10−6, PPB 1.067 × 10−6, and LD50 8.401 × 10−5), and NRI 50% (p-value Bio

3.666× 10−4).

With these results, the possibility that the RI approach is simply delaying overtting

can be excluded. This approach is in fact avoiding overtting by interleaving the usage of

all the training data with the usage of a single training instance.





5
On the Generalization Ability of Geometric

Semantic Genetic Programming

This chapter explores the generalization ability of Geometric Semantic Genetic Program-

ming (GSGP), a recently proposed form of GP. Section 5.1 introduces GSGP. Section 5.2

provides an analysis of the geometric semantic operators. Section 5.3 explores the con-

sequences of computing optimal weights. Section 5.4 shows how alignments in the error

space can be achieved.

5.1 Geometric Semantic Genetic Programming

Geometric Semantic Genetic Programming (GSGP) is a novel form of GP recently pro-

posed by Moraglio et al. (2012). Particularly, GSGP encompasses a set of new variation

operators that share some specic characteristics. All GSGP formulations are valid under

two assumptions. The rst assumption is that the task at hand is a supervised learning

task, i.e., given a set of data with known targets, the goal is to build an individual (or

model) that learns the underlying patterns in the data. The second assumption is that the

error of an individual is computed as a distance to the known targets. This distance must

be formally interpreted as a metric. GSGP derives its name from the fact that its oper-

ators follow some particular geometric properties (Moraglio, 2007) over the semantic

space. In this context, the semantics of an individual are dened as the outputs of that

individual over a set of data instances. In GSGP, each individual is seen as a point in the se-

71
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mantic space. Consequently, a geometric semantic crossover is an operator that always

creates an offspring with semantics between the semantics of both parents. In other

words, given any data instance, the output of the generated offspring must be between

the outputs of the parents for that same data instance. A geometric semantic mutation

is an operator that always creates an offspring with semantics that are within a given dis-

tance of the semantics of its parent. Depending on the version of the geometric semantic

mutation, this distance may be possible to specify by a mutation step. The most inter-

esting property of these geometric semantic operators is that they induce an unimodal

tness landscape with a constant slope for any supervised learning problem. Formally,

this tness landscape is a metric cone. This implies that there are no local optima, i.e.,

with the exception of the global optimum, every point in the search space has at least

one neighbor with better tness, and that neighbor is reachable through the application

of the variation operators. As this type of landscape eliminates the issue of the local op-

tima, it is potentially much more favorable in terms of search efficiency. Moraglio et al.

(2012) specied geometric semantic operators for three domains: boolean, arithmetic,

and program (conditional rules). Since this work is based on real-valued semantics, the

geometric semantic operators presented here are the ones from the arithmetic domain.

Denition 1 Geometric Semantic Crossover: Given two parent functions T1, T2 : Rn →
R, the geometric semantic crossover returns the real function TXO = (T1 · TR) + ((1 −
TR) · T2), where TR is a random real function whose output values range in the interval

[0, 1].

Another version of this crossover can be dened by replacing the random real function

(TR) by a random real constant, as long as its value is also in the interval [0, 1] (Moraglio

et al., 2012).

Denition 2 Geometric Semantic Mutation: Given a parent function T : Rn → R,

the geometric semantic mutation with mutation step ms returns the real function TM =

T+ ms · (TR1 − TR2), where TR1 and TR2 are random real functions.

The main drawback of the geometric semantic operators is that they always produce

offspring bigger that their parents. Particularly for the crossover, every offspring is bigger

than its parents combined. This leads to an exponential individual growth. For the muta-

tion operator, the individual growth is linear. This continuous individual growth produced
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by the geometric semantic operators renders GSGP hard to use in practice, particularly in

real-world multidimensional datasets. To counteract this growth, Moraglio et al. (2012)

proposed a simplication step after each operator application. This simplication ap-

proach was effective for the articial problems tested, but it remains to be shown if it is

effective in real-world multidimensional datasets. Another open question raised from the

original GSGP work, is the issue of generalization. Moraglio et al. (2012) did not measure

the performance of the individuals in unseen data. Therefore, the generalization ability of

the individuals produced by GSGP was unknown.

Vanneschi et al. (2013) tackled the individual growth issue by reimplementing the op-

erators to compute the semantics of the offspring without explicitly building their syntax.

This implementation does not reduce the growth of the individuals, but it allows for an

estimation of the GSGP performance without dealing with the issues that arise with the

actual creation of the individuals. This allowed Vanneschi et al. (2013) to use GSGP for

the rst time in real-world multidimensional datasets. Results showed competitive per-

formance both in training and unseen data. The arguments presented for the competitive

unseen data performance are described and discussed in the next section. However, the

implementation of the mutation operator of Vanneschi et al. (2013) had a small deviation

from the original denition (Moraglio et al., 2012). Their implementation imposed that

the random subtrees generated (TR1 and TR2), always had a logistic function (5.1) as their

root node.

f(x) =
1

1+ e−x (5.1)

This implies that the output of each random subtree ranges in the interval [0, 1] and

that, consequently, the output resulting from subtracting these random subtrees ranges

in the interval [−1, 1]. As the mutation operator applies a mutation step (ms), the nal

output added to the parent always ranges in the interval [−ms,ms]. Looking back at the

original denition of the geometric semantic mutation (Moraglio et al., 2012), there is

no dened range for the outputs of the random subtrees. It should be noted that this

small implementation deviation is still valid under the geometric semantic framework.

This deviation was not explicit in their work but it can be conrmed in the mutation

implementation provided by the same authors in their GSGP library (Castelli et al., 2014).

For clarication purposes, the original mutation denition is referred to as Unbounded
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Mutation (UM), and the alternative mutation implementation is referred to as Bounded

Mutation (BM). In the end, BM applies a structural bound on the perturbation applied to

the parent. This bound holds independently of the data (training or unseen). In the next

section, it is shown that these different mutations lead to considerably different outcomes

in terms of generalization. The reasons behind these behaviors are also explored.

5.2 An Analysis of the Geometric Semantic Operators

To provide a fair comparison between unbounded and bounded mutation, the experi-

mental setup is similar to the one of Vanneschi et al. (2013), where the bounded mutation

was rst tested. The experimental parameters that are different from the baseline param-

eters are provided in table 5.1. Experiments are run for 500 generations because that is

where the statistical comparisons were made in the mentioned work. Vanneschi et al.

(2013) used the Bio and PPB datasets in their experiments. Here, besides these two, the

LD50 dataset is also used as in the previous chapter.

Table 5.1: GSGP and Standard GP parameters used in the experiments

Parameter Value

Population size 100
Generations 500
Data partition Training 70% - Unseen 30%
GSGP crossover Probability 0.5
GSGP mutation Probability 0.5
Terminal set Input variables, no constants
Parent selection Tournament selection of size 4
Maximum tree depth None

5.2.1 Initial Exploration

As previously mentioned, the bounded mutation imposes that the semantic variation

added to the parent always ranges in the interval [−ms,ms]. On the other hand, while

the unbounded mutation is still inuenced by the mutation step, it is not possible to dene

a priori a bound for the semantic variation that is going to be imposed to the parent.
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This means that even for the same mutation step, both mutation operators may have

considerable differences in the amount of semantic variation that is imposed to the parent.

The following set of experiments are conducted in order to exclude the possibility that the

differences in terms of generalization may result from the different amount of semantic

variation that each operator imposes.

Figures 5.1 to 5.3 show the evolution plots for GSGP with bounded (BM) and un-

bounded (UM) mutation, with several mutation steps (MS in the gures), respectively for

the Bio, PPB, and LD50 datasets. The main result across the three datasets is that GSGP

UM generally overts the training data, while GSGP BM presents a smoothing effect on

the generalization error that eventually leads to a good generalization. These behaviors

are consistent regardless of the mutation step selected. The same conclusions hold even

if a small mutation step is selected for GSGP UM (e.g., 0.1), and a high mutation step

is selected for GSGP BM (e.g., 100). These results show that the different amount of

semantic variation that each operator imposes does not explain the different behaviors

in terms of generalization. This is particularly clear when GSGP UM overts even when

small mutation steps are used. It seems that structurally bounding the semantic variation

that can be applied to the parent is indeed, and by itself, the reason for the smooth ef-

fect on the generalization ability. These results show that the generalization ability can

not be simply justied by the properties of the geometric semantic operators. If this was

the case, then any valid formulation of the geometric semantic mutation would achieve

similar generalization outcomes. On the contrary, these results show that different for-

mulations of the geometric semantic mutation, do indeed lead to considerably different

results. In terms of training data performance, it is clear that the mutation step is very

inuential. Since higher mutation steps allow for bigger semantics adjustments, the higher

the mutation step the bigger the potential training error decrease. This can be clearly

seen at least in the beginning of the runs. This is also why GSGP UM ts the training data

faster, since the semantic variation can be much higher than GSGP BM with the same

mutation step. On the other hand, given a xed mutation step, there is always a point

in the evolution where the mutation step becomes too high to be effective. As an indi-

vidual gets closer to the target, the level of semantic adjustments needed to keep tting

the data become smaller. Consequently, and in order to be effective, the mutation step

should also decrease as the distance to the target decreases. A dynamic mutation step

adaptation performed throughout the run can guarantee that the mutation step is never
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too high in any given situation. This approach is explored in the next section. For the

remaining experiments presented in this chapter, the mutation step for the Bio and PPB

datasets is set to 1, and the mutation step for the LD50 dataset is set to 10. These values

were selected because they result in a good performance in terms of learning the training

data, for both mutation formulations.
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Figure 5.1: Training and generalization errors evolution plots for GSGP UM (top) and BM
(bottom), with several mutation steps in the Bio dataset

Another effect that needs to be excluded is the possibility that the bounding function

selected (i.e., the logistic function) for the random subtrees (TR1 and TR2) is particularly

helpful in these datasets, and consequently, this is what explains the different results. To

assess this possibility, two different bounding functions are tested. The rst function is a
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Figure 5.2: Training and generalization errors evolution plots for GSGP UM (top) and BM
(bottom), with several mutation steps in the PPB dataset
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Figure 5.3: Training and generalization errors evolution plots for GSGP UM (top) and BM
(bottom), with several mutation steps in the LD50 dataset
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linear bound dened as:

f(x) =


0 , x < 0

1 , x > 1

x , otherwise

(5.2)

The second function is a non-linear bound that uses the sine function. It is dened as:

f(x) =
sin(x)

2
+ 0.5 (5.3)

To ensure a fair comparison all three functions bound the outputs in the same inter-

val: [0, 1]. Figure 5.4 shows the evolution plots for GSGP BM with the different bounding

functions presented, for all datasets tested. Results show that all bounding functions per-

form similarly in terms of training and generalization errors. The only exception occurs

in the PPB dataset, where the Sine bound helps to t the training data faster than when

using the other bounding functions. This, however, does not translate into a better gen-

eralization. With these results, it can be excluded the possibility of the logistic function

being particularly helpful in these datasets. As it stands, the good generalization ability of

GSGP BM is explained by the structural bound of the semantic variation applied to the

parent at each mutation operation. This seems to hold independently of the particular

bounding function selected. Since the selection of the bounding function did not con-

siderably inuence the results, for the remaining experiments in this chapter the logistic

function will be kept as the bounding function as in the work of Vanneschi et al. (2013).

5.2.2 Extended Comparison

The next set of experiments are aimed at assessing the performance of different GSGP

congurations. Standard GP is used as a baseline for comparison. Since GSGP does

not impose a limit on the depth of each individual, the Standard GP version used here

also does not apply a depth limit. This allows a fair comparison to be made between

both GP systems. A variant of Standard GP with the common depth limit of 17 is also

tested. This variant is named Standard DL 17. The Semantic Stochastic Hill Climber

(SSHC) (Moraglio et al., 2012) is also used as a baseline for comparison. SSHC uses only

the geometric semantic mutation to explore the search space. At each generation, 100
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Figure 5.4: Training and generalization errors evolution plots for GSGP BM with different
bounding functions
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neighbors (offspring) are created. The best individual selected from the previous best

and the neighbors survives to the next generation. Notice that the number of neighbors

generated in SSHC is the same as the population size of GSGP and Standard GP. This

guarantees that at the end of each run, all methods evaluated the same total number of

individuals. GSGP without crossover (GSGP NC) is also tested. As this section studies

the effects of unbounded and bounded mutations (UM and BM respectively), all methods

that use the geometric semantic mutation are tested with both mutations. Therefore, the

geometric semantic variants tested are: GSGP UM and BM; GSGP UM NC and BM NC;

and SSHC UM and BM.

Figure 5.5 shows the training and generalization errors evolution plots for the datasets

tested, and gure 5.6 shows the corresponding overtting evolution plots. The overall

trend across all datasets is that Standard GP and the UM variants (GSGP UM, GSGP UM

NC, and SSHC UM) overt the training data, while the BM variants (GSGP BM, GSGP BM

NC, and SSHC BM) generalize well. The discrepancy between the generalization ability

of the UM and BM variants is discussed in the next subsection. On the other hand, the

UM variants are generally the most efficient variants in tting the training data.

Statistically it is conrmed that GSGP BM generalizes better than GSGP UM in all

datasets (p-values: Bio 1.943 × 10−9; PPB 4.915 × 10−6; LD50 1.537 × 10−10). In

terms of training data performance, the superiority of GSGP UM is also conrmed in all

datasets (p-values: Bio 2.872× 10−11; PPB 2.872× 10−11; LD50 2.872× 10−11). In the

comparisons against Standard GP, it was conrmed that GSGP BM generalizes better in

all datasets (p-values: Bio 1.794× 10−6; PPB 5.121× 10−4; LD50 3.657× 10−9). Similar

conclusions were presented by Vanneschi et al. (2013) for the Bio and PPB datasets. In

terms of training data performance, Standard GP is superior to GSGP BM in the Bio

(p-value 5.434 × 10−5) and LD50 (p-value 8.563 × 10−11) datasets, and no statistically

signicant differences were found in the PPB dataset. However, and as seen previously,

the mutation step greatly affects the training data performance of GSGP (in both mutation

versions). If the objective was to t the training data faster, then a bigger mutation step

would translate into a superior GSGP performance, as seen in gures 5.1, 5.2, and 5.3.

Against GSGP UM, Standard GP is superior in terms of generalization error in the Bio

dataset (p-value 9.273 × 10−4), while no statistically signicant differences were found

in the PPB and LD50 datasets. The statistically signicant advantage in the Bio dataset is

however not particularly relevant as both methods clearly overt. In terms of learning



82 CHAPTER 5. ON THE GENERALIZATION ABILITY OF GSGP

the training data, GSGP UM is superior to Standard GP in all datasets (p-values: Bio

2.872× 10−11; PPB 2.872× 10−11; LD50 6.373× 10−11).

The evolution plots also show that the SSHC variants consistently learn faster than

the GSGP and GSGP NC variants with the same mutation operator. This should be

expected as the semantic space has no local optima and, consequently, the search can be

focused around the best individual in the population. This leads to a faster decrease in

the training error and, in the case of SSHC BM, to a faster generalization to unseen data.

Regarding the usage of a depth limit in Standard GP, both variants (Standard and Standard

DL 17) presented relatively similar behaviors. The only considerably different outcome

occurs in the PPB dataset, where Standard DL 17 overts more the training data. In

terms of learning the training data, the imposition of a depth limit did not affect the search

effectiveness. Figure 5.7 shows the boxplots with the generalization errors achieved in the

last generation of each method. In order to properly visualize the results, some outliers

are not shown for the Standard GP and the UM variants. The main conclusion from

these boxplots is the robustness of the BM variants. These variants achieve consistent

values in all datasets. On the other hand, the Standard GP and the UM variants present

considerable variation in the generalization values achieved, i.e., different runs of the same

method can behave very differently in terms of generalization. The UM variants achieved

particularly high generalization errors, and therefore, had to be presented in different

gures with higher generalization error limits.

Vanneschi et al. (2013) mentioned that GSGP requires a relatively high mutation prob-

ability in order to explore the search space more efficiently. Indeed, the results of this

section show only small differences between using the crossover operator (GSGP UM and

BM) or not using it at all (GSGP UM NC and BM NC). Statistically, there are no differ-

ences in terms of generalization, in any comparison with the same mutation operator. In

terms of training error the results are not consistent: GSGP BM NC is signicantly better

than GSGP BM in the Bio dataset (p-value 3.955×10−5); GSGP UM is signicantly better

than GSGP UM NC in the PPB (p-value 4.734×10−11) and LD50 (p-value 3.940×10−3)

datasets; and no other statistically signicant differences were found. Figure 5.8 shows

the evolution of the geometric semantic crossover effectiveness across the generations.

The effectiveness of the standard crossover used in Standard GP is also shown. In this

context, effectiveness is to be understood as the percentage of crossover applications

that are able to generate an individual which is superior to another reference individual.
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Particularly, the left column of gure 5.8 shows the percentage of crossover applications

that are able to generate an individual which is superior to the current best individual in

the population. To facilitate the description, this effectiveness will be referred to as the

improvement over the best (IOB). The right column of gure 5.8 shows the percentage of

crossover applications that are able to generate an individual which is superior to the best

parent among the two parents selected for that particular crossover application. This ef-

fectiveness will be referred to as the improvement over the (best) parent (IOP). The data

from gure 5.8 shows that the geometric semantic crossover is very ineffective in generat-

ing new overall best individuals. This is clear from the fact that the IOB is below 5% most

of the time. This consideration is also applicable for the standard crossover. In terms of

generating better individuals than the parents, the results are slightly better. The IOP can

be around 30% in the best case. Notice that the Standard GP version without depth limit

is slightly more effective in terms of IOP than the version with the depth limit. This might

be related to the fact that the version with the depth limit must exclude the individuals

generated with an invalid depth. This lowers the effectiveness of the operator. However,

a possible ineffectiveness of the geometric semantic crossover should be expected. This

operator can only produce an offspring which improves over both parents when the tar-

get semantics are between (even if partially) the semantics of the parents. Without an

explicit semantic diversity control of the population and a mate selection procedure that

takes the target semantics into account, the crossover operator may be ineffective. This

ineffectiveness may also increase with larger semantic spaces, i.e., as the number of data

instances increases. From these experiments, it can be concluded that the crossover op-

erator can be skipped altogether since it does not signicantly and consistently improve

the search outcome (in generalization or training error). It also presents the disadvantage

of exponentially increasing the size of the individuals, as opposed to the linear increase

with the mutation operator.

On the other hand, the geometric semantic mutation is rather effective in generating

better individuals. Figure 5.9 shows the evolution of the geometric semantic mutation

effectiveness across the generations. The effectiveness of the standard mutation used in

Standard GP is also shown. Similarly as with the crossover effectiveness measures, the

left column of gure 5.9 shows the percentage of mutation applications that are able to

generate an individual which is superior to the current best individual in the population.

The right column of gure 5.9 shows the percentage of mutation applications that are
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able to generate an individual which is superior to the parent used for that particular

mutation application. Starting with the mutation IOB, it is clear that when the geometric

semantic mutation is applied to the current best individual (e.g., SSHC BM), the operator

is very effective in generating new overall best individuals. If the mutation step is suitable

for the current distance to the target, then this operator achieves an IOB of around 50%

(as in the LD50 dataset). If throughout the run, the mutation step starts to become too

large in regards to the distance to the target, then the IOB naturally starts to drop (as

in the Bio and PPB datasets). This can be counteracted by adapting the mutation step

throughout the run. This approach is explored in the next section. The BM also plays

an effect here given that SSHC BM and SSHC UM achieve considerably different results.

The IOB of SSHC BM is considerably superior to that of SSHC UM. Even when taking into

account that SSHC UM ts the training data faster, it is still possible to notice a positive

effect introduced by the bounding function. This is possibly achieved by smoothing the

resulting semantics and by avoiding outliers for each mutation application. As with the

standard crossover, the IOB of the standard mutation is also very low. Notice that for

the SSHC variants, the IOB and the IOP are the same as the mutation is always applied to

the current best individual. In terms of IOP, the BM variants present a similar behavior to

the one described for SSHC BM in terms of IOB. Similarly, the UM variants also present

a similar IOP behavior to the one described for SSHC UM in terms of IOB. The standard

mutation presents a very inconsistent behavior in terms of IOP.

Finally, gures 5.10 and 5.11 show the tree size and depth evolution plots for the

datasets tested. Starting with the tree size evolution, notice the exponential growth for

the variants that use the geometric semantic crossover (GSGP UM and BM). The geo-

metric semantic variants that only use the mutation operator present the expected linear

growth. From these, the BM variants grow faster than the UM variants because the

bounding functions added are naturally also included in the total number of nodes. Stan-

dard GP without depth limit presents an approximately linear growth. For this version of

Standard GP, and in the Bio and PPB datasets, the median size of the individuals from the

last generation is even higher than the median size of the individuals produced by GSGP

UM NC and GSGP UM. In terms of tree depth, most methods present an approximately

linear growth. It is interesting to notice that the Standard GP version without depth limit

does not explore that much the possibility to reach very deep individuals. Instead, this

version is more aggressive in terms of growing the number of nodes. However, and as
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Figure 5.5: Training and generalization errors evolution plots for Standard GP, GSGP, and
SSHC
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Figure 5.6: Overtting evolution plots for Standard GP, GSGP, and SSHC
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Figure 5.7: Generalization error boxplots for Standard GP, GSGP, and SSHC
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Figure 5.8: Percentage of crossover improvements for Standard GP and GSGP
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Figure 5.9: Percentage of mutation improvements for Standard GP, GSGP, and SSHC
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mentioned previously, this freedom does not lead to better results when compared with

the commonly imposed depth limit of 17.
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Figure 5.10: Tree size evolution plots for Standard GP, GSGP, and SSHC

5.2.3 Discussion

From the results of the previous subsections, it is clear that what differentiates the sev-

eral geometric semantic variants in terms of generalization is the use of a bounded or

unbounded mutation (BM and UM respectively). BM variants generalize well, while UM

variants overt the training data.

The GSGP implementation of Vanneschi et al. (2013) used a BM and reached the same

conclusions regarding its competitive generalization. They justied this generalization abil-

ity by considering some properties of the geometric semantic operators. Particularly,

they remarked that the geometric properties of these operators hold independently of

the data in which the evaluation is taken place and, consequently, they also hold in unseen
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Figure 5.11: Tree depth evolution plots for Standard GP, GSGP, and SSHC
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data. For the crossover operator this implies that each offspring produced also stands be-

tween its parents in the unseen data semantic space. Therefore, in the worst case, each

offspring is not worse than the worst of its parents in unseen data. The implication for the

mutation operator is that the perturbation that each offspring produces is bounded, also

in the unseen data semantic space, by the mutation step (ms). Particularly, the semantic

variation in the unseen data also ranges in the interval [−ms,ms]. Therefore, Vanneschi

et al. (2013) concluded that the geometric semantic operators guarantee that a possible

worsening of the generalization error is bounded and, consequently, that these operators

help control overtting.

As previously seen, the usage of a bounded or unbounded mutation was crucial in

determining the generalization achieved. The BM operator was able to produce a com-

petitive generalization by guaranteeing bounded and small perturbations in the unseen

data. This was crucial to generalize well. However, it is clear that perturbations that

increase the generalization error are always possible. It is also clear that if these per-

turbations were a signicant majority of the applications of the operator then overtting

would be inevitable. Therefore, it can be concluded that after reaching what can be

thought of as a generalization plateau (the point where it seems that no further induction

can be performed with the available data), the BM operator generates about half of its

perturbations in the decreasing generalization error direction and the other half in the

increasing generalization error direction. These perturbations end up compensating each

other, and therefore creating the relatively smooth generalization plateau. On the other

hand, the UM operator performed badly in terms of generalization. Since in this operator

the perturbations produced in the unseen data can be arbitrarily large, a single application

of a mutation that results in overtting (decreases training error but increases generaliza-

tion error) can have an arbitrarily large increase in the generalization error. This results in

considerable uncertainty in the generalization error evolution. This effect may be more

noticeable in regression problems since any data instance can have an arbitrarily large

error contribution, as opposed to classication problems where the error is commonly

bounded for each data instance. For these reasons, the BM operator seems more robust

and should be preferred over the UM operator.

For the reasons previously mentioned, the crossover operator had little effect in the

results. However, in principle, the crossover operator should be riskier in terms of gener-

alization than the BM operator. This is because the variation in the unseen data semantic
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space, although bounded by the unseen data semantics of the parents, can still be arbi-

trarily large. This results from the fact that the parents can be, in terms of unseen data

semantics, very far apart. Since there is no way of knowing if the parents are close or far

apart in the unseen data semantic space, the bounds (dened by the semantics of both

parents) in unseen data are not useful in practice. This is another disadvantage of the

crossover operator, following the exponential growth of the offspring produced and the

low effectiveness in terms of search.

Although the generalization achieved by GSGP with bounded mutation is very com-

petitive, the issue of the size of the solutions generated by these geometric semantic oper-

ators remains. As mentioned in the previous section, using crossover in GSGP translates

into an exponential growth of the individuals. In the results of this section, individuals in

GSGP reach thousands of nodes with less than 30 generations conducted. This raises

the question: how can such large/complex individuals (models) achieve such compet-

itive generalization? Some interpretations of theories such as Occam's razor and the

Minimum Description Length principle state that smaller/less complex models general-

ize better. Consequently, and in light of these views, this result would be improbable,

if not impossible. How can this be? A possible answer may lie in Ensemble Learning.

Ensemble Learning is a Machine Learning paradigm in which several models are created

and combined to produce a nal model. Dietterich (2000) provided three reasons as to

why constructing an ensemble of models may be superior to constructing a single model.

The rst two reasons are computational and representational. The computational rea-

son is related to the difficulties in searching the search space, such as getting stuck in local

optima. The representational reason arises when the true target function cannot be rep-

resented by any of the hypotheses in the search space. These rst two reasons are not

discussed in detail as they are not relevant to GSGP, respectively because the semantic

space has no local optima and because in GSGP (and in traditional GP) any hypothesis

can be represented that could also be represented by an ensemble (given suitable func-

tion and terminal sets). The last reason is the one which is relevant to GSGP and to

generalization in general. It is a statistical reason and it is related to the fact that several

different models can have a similar or even the same training data performance. This

is essentially a model selection problem. Which model should be chosen? There is no

way of knowing which model will generalize better. Ensemble Learning tackles this issue

by combining several accurate models, which reduces the risk of the nal model being
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overtted. Even if some overtted models are present in the ensemble, their negative

contribution to the nal model will be reduced since the nal model will also include con-

tributions from models which generalize well. It is a common result in Ensemble Learning

to have large ensembles which achieve competitive generalization. Therefore, and in gen-

eral, large/complex models (individuals) can also generalize well depending on how they

are constructed.

GSGP can be seen as an Ensemble Learning method, since its operators always com-

bine existing individuals independently to produce new individuals. The crossover oper-

ator combines two parents with a randomly generated individual, and the mutation op-

erator combines one parent with another randomly generated individual (the individual

which results from subtracting the two random subtrees). These parents and randomly

generated individuals can be thought of as full models themselves. This interestingly re-

lates back to Ensemble Learning, where a necessary condition for its positive outcome

is that the ensemble must have a mix of accurate and diverse models (Hansen and Sala-

mon, 1990). In GSGP, the parents can be seen as the accurate models (as they have

survived during the evolution), and the randomly generated individuals as providing the

also needed diversity. GSGP may derive some of its competitive generalization from this.

For instance, let I2M be the individual that results from two consecutive applications of

the mutation operator to a given initial parent. It follows that:

I2M = P+ R1 · ms+ R2 ·ms, (5.4)

where P is the initial parent, R1 and R2 are the two randomly generated individuals, and

ms is the mutation step. Consequently, considering only the use of the mutation operator,

GSGP can be seen as a weighted sum combination of models (it can be considered that

the initial parent has a weight of 1).

In the end, GSGP successfully combines elements from Ensemble Learning (implicitly)

and from the geometric semantic framework. Combining several models to incrementally

produce new models has roots in Ensemble Learning. This allows to reduce the model

selection risk by offsetting possible bad models. On the other hand, the combination of

a structurally bounded mutation (BM) and a small mutation step can further reduce the

issue of adding bad models by guaranteeing that their contribution will be small.



5.3. OPTIMAL WEIGHTS AND THEIR EFFECT ON GENERALIZATION 95

5.3 Optimal Weights and Their Effect on Generalization

As discussed in the previous section, the mutation step can play a role in reducing the

risk of overtting. On the other hand, when it comes to learning more efficiently, the

geometric semantic mutation can be improved by adapting its step. It is possible to de-

terministically compute the optimal mutation step for each application of the operator.

The geometric semantic mutation can be seen as a linear combination of two elements:

the parent P, and the random individual RI which results from subtracting the two random

subtrees. Since RI is multiplied by the mutation step ms, a mutation step should be found

such that:

P+ RI · ms = t, (5.5)

where P and RI are semantic vectors and t is the target vector of the data. Since the parent

is xed and not inuenced by any weight, the equation can be rewritten as:

RI · ms = (t− P), (5.6)

where a general linear system is reached:

A · x = y, (5.7)

the solution of which can be computed deterministically and optimally by the application

of the Moore-Penrose pseudoinverse (hereafter simply inverse). This inverse computes

the mutation step which minimizes the error in the training data for each specic combi-

nation of RI, P and t. This modication of the mutation operator is referred to as Adaptive

Mutation (AM). As this work has studied the effects of bounded and unbounded muta-

tions, the AM can be divided as: Adaptive Unbounded Mutation (AUM) and Adaptive

Bounded Mutation (ABM). Moraglio and Mambrini (2013) had also remarked that the

inverse could be used for this same purpose. They tested their approach in articially

generated problems. Here, this type of operator is used in real-world multidimensional

datasets.

Following a similar reasoning, another mutation operator can be devised by adding a

weight to the parent and adjusting both weights with the inverse. Let pw be the parent

weight. Consequently:
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P · pw+ RI ·ms = t (5.8)

This new geometric semantic mutation operator will be called Doubly Adaptive Mu-

tation (DAM), and it can also be divided as: Doubly Adaptive Unbounded Mutation

(DAUM), and Doubly Adaptive Bounded Mutation (DABM). The inverse method could

also be used to perform a linear combination of more than two weighted individuals.

These newly devised operators are tested with the SSHC (more efficient than GSGP

as previously seen) and consequently its variants are named: SSHC AUM, SSHC DAUM,

SSHC ABM and SSHC DABM. Figure 5.12 shows the training and generalization errors

evolution plots for these adaptive variants. They reveal to be superior in terms of learn-

ing the training data when compared to the SSHC variants without adaptive mutation

step (SSHC UM and SSHC BM). This was expected, since the mutation step adapta-

tion is optimal for each application of the adaptive operators. In terms of generalization,

these variants quickly overt. In light of the analysis made previously, this quick overtting

should also be expected, since in these variants the weights can be arbitrarily large, and

consequently, the benets of using a structural bound (SSHC ABM and SSHC DABM)

are lost. In other words, the overtting risk reduction mechanism is lost without a small

mutation step.

However, an interesting property can be found when looking closely at the initial

generations. Figure 5.13 presents the generalization error evolution for the rst 10 gen-

erations. It shows that these variants achieve a competitive generalization in only a single

application of the mutation operators. This is particularly clear in the SSHC DAUM and

SSHC DABM variants. These two variants were expected to t the training data more

easily when compared to the other two variants (SSHC AUM and SSHC ABM), since

they have an extra degree of freedom (the parent weight). Further testing is needed to

determine if this property holds across other datasets. If it holds, then these mutation

variants become a competitive alternative when performing semantic search, particu-

larly since they produce small individuals and compute fast. They also raise no issues in

constructing/reconstructing large individuals, as opposed to what may happen with the

GSGP variants.

Similarly as in the previous section, gure 5.14 shows the effectiveness of the adap-

tive mutation operators across the generations. All variants are extremely effective in
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Figure 5.12: Training and generalization errors evolution plots for SSHC with and without
adaptive mutation step
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Figure 5.13: Training and generalization errors evolution plots for the rst 10 generations
for SSHC with and without adaptive mutation step
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improving over the current best individual. The percentage of successful mutations is at

least 93% for all datasets. In the LD50 dataset, it was even possible to always generate

a better individual. The behavior is almost the same in the PPB dataset, with just some

minor exceptions with 99% success as opposed to 100%. Since the Bio dataset is slightly

noisy, the values drop to 93% in the worst case, but the most common values are 95%

and 96%.
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Figure 5.14: Percentage of mutation improvements for SSHC with adaptive mutation step

5.4 Arbitrarily Close Alignments in the Error Space

In line with the work being conducted in semantics in GP, a recent work by Ruberto et al.

(2014) explored the possibility of reaching optimal individuals in terms of training data by

searching for aligned or coplanar individuals in the error space. As it will be made clear

ahead, this notion of error space is closely related to the notion of semantic space.
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5.4.1 Error Space Regularities

Following and adapting from Ruberto et al. (2014), let X = {−→x1 ,−→x2 , ...,−→xn } be the set

of input data of a supervised learning problem, and −→t = [t1, t2, ..., tn] the vector of the

respective target values, i.e., ti is the expected value for input instance −→xi . In the super-

vised learning context, a GP individual (or a model in general) is a function that computes

an output for each input instance −→xi . As mentioned before, these outputs dene the

semantics of an individual. Let I(−→xi ) be the output of an individual I to a given input in-

stance −→xi . Consequently, the semantics of an individual can be dened as the vector
−→sI = [I(−→x1 ), I(−→x2 ), ..., I(−→xn )]. This vector represents a point in the n-dimensional seman-

tic space. The size of the semantic space (n) is dened by the number of input instances,

i.e., the size of the set X. The error vector of an individual can be constructed from the

semantics vector by taking into account the target vector:

−→eI = −→sI −
−→t . (5.9)

This vector represents a point in the n-dimensional error space. From the denition

of the error vector, it follows that the semantic optimum translates into the origin of the

error space. Notice that the mapping between the elements of the semantic space and

the elements of the error space is bijective, i.e., for each possible point in the semantic

space there is exactly one corresponding point in the error space, and vice versa.

Particular regularities in the error space can be explored to analytically construct an

optimal individual in terms of training data. Ruberto et al. (2014) showed that this can

be achieved by nding two aligned individuals or three coplanar individuals. They named

their approaches to nding such regularities, respectively, as ESAGP-1 and ESAGP-2. In

these approaches the search is modied to nd these regularities as opposed to directly

minimizing the training error. Ruberto et al. (2014) tested their approaches in two real-

world multidimensional datasets. Although both versions of ESAGP t the training data

faster than Standard GP, they were still very far from reaching aligned or coplanar individ-

uals. Consequently, the question of how to effectively nd these regularities in the error

space remained unanswered. An important related question is that of generalization to

unseen data. It is still unclear how would the individuals created from the aligned or copla-

nar individuals behave in terms of generalization. Would these individuals generalize well

or would they overt?
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In this section a different approach to nding aligned individuals is proposed. Following

and adapting from Ruberto et al. (2014), the denition of optimally aligned individuals is

the following:

Denition 3 Optimally Aligned Individuals: Two GP individuals A and B are optimally

aligned if there is a scalar constant k such that: −→eA = k · −→eB ,

where k is an error vector proportionality constant. The alignment of two individuals (A
and B) can be computed by the absolute cosine similarity between their respective error

vectors:

Absolute cosine similarity = | cos θ| = |
−→eA ×−→eB

||−→eA || · ||−→eB ||
| (5.10)

where × represents the scalar product between two vectors, and ||.|| represents the

Euclidean norm of a vector. Two optimally aligned individuals will have an absolute cosine

similarity of exactly 1, and two orthogonal individuals (i.e., with an angle of 90◦) will have

an absolute cosine similarity of exactly 0. Figure 5.15 shows an example of 3 aligned

individuals in the error space. Notice that the individual represented by C is aligned with

A and B, even though it is in the other side of the error space, i.e., with an angle of

180◦. This translates into a negative k. Since in terms of alignment it is irrelevant if both

individuals are in the same side or not, the latter case should not be penalized. This is

why the absolute value is considered for the cosine similarity.

If two aligned individuals (A and B) are found, then an optimal individual in terms of

training data can be analytically constructed. By applying the error vector denition from

equation 5.9, the aligned individuals equation can be rewritten as:

−→sA −−→t = k · (−→sB −−→t ). (5.11)

It follows that:

−→t =
1

1− k
· −→sA − k

1− k
· −→sB , (5.12)

from which an optimal individual in terms of training data can be constructed by creating

the individual:
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B 
A 

C 

Figure 5.15: An example of 3 aligned individuals in the error space

Iopt =
1

1− k
· A− k

1− k
· B (5.13)

This analytic construction can be thought of as a type of semantic crossover. This

crossover is not geometric as, depending on the value of k, the resulting individual may not

be between the parents in the semantic space. Even if two individuals are not optimally

aligned, this semantic crossover can still be used by using an approximation of k. This can

be done by, for instance, using the median of the values −→eA 1/
−→eB 1,

−→eA 2/
−→eB 2, ...,

−→eA n/−→eB n.
This was the approach used by Ruberto et al. (2014) and it is also the approach used

here.

5.4.2 Arbitrarily Close Alignments

The approach proposed here is based on the fact that a target semantics that guarantees

an optimal alignment can be easily dened. Consequently, the search can be modied to

nd individuals that produce this new target semantics, as opposed to searching directly

for individuals that t the original targets. By choosing a given individual and a given error

vector proportionality constant (k), it is immediately dened what is the semantics of the

other individual needed to reach an optimal alignment. Concretely, given any individual A
and any error vector proportionality constant k, any individual B is optimally aligned with
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A if dened by the following error vector:

−→eB =
−→eA
k
, (5.14)

and, consequently, by the following semantic vector:

−→sB = −→eB +
−→t . (5.15)

Notice that A together with the origin of the error space dene the line, and k, denes

the exact target point in the same line. Referring back to gure 5.15, if A was chosen as

the initial point, then a particular positive k would lead to having B as the target, and a

particular negative k would lead to C as the target. Knowing now the denition of −→sB , the

search can be redened to nd an individual that produces this semantics. By achieving

this, an optimal alignment is found and, consequently, an optimal individual in terms of

training data can be constructed. It is important to emphasize that this redenition of

the target semantics does not change the nature of the semantic space. In particular, by

using the geometric semantic operators, the search process can still take advantage of the

unimodality of the semantic space. Since this space has no local optima, and given that the

geometric semantic mutation is an effective operator (as shown in the previous sections),

the search can be focused around the current best individual. In other words, a geometric

semantic hill climber is an effective and efficient strategy for conducting the search. For

these reasons, the approach proposed here uses a SSHC to explore the search space.

This approach will be referred to as ACA-SSHC: Arbitrarily Close Alignments (ACA) -

Semantic Stochastic Hill Climber (SSHC). The general steps of the proposed approach

are the following:

1. Set the error vector proportionality constant k

2. Choose an individual (A) from the initial random population

3. With k and A compute the target semantics (−→sB ) using equations 5.14 and 5.15

4. From the initial random population choose the individual (T) which is closer to −→sB

5. Repeat the following operations until a given stopping criterion is met:
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5.1. Having −→sB as the target, apply the geometric semantic mutation to T N times

to generate N new individuals

5.2. Update T as being the closest individual to −→sB , selected from the current T
and the N newly generated individuals

6. Apply the semantic crossover from equation 5.13 to A and T to create the nal

individual (B′)

The choice of A is not particularly inuential as it simply helps to dene the align-

ment line. In ACA-SSHC, A is chosen as the best individual in terms of training error

from the initial population. It could also be chosen randomly or by using some other

criterion. Notice that A does not change during the search. The mentioned closeness

to the new target semantics (−→sB ) is computed by a given error measure as it would be

for the original targets. In ACA-SSHC the root mean squared error is used to measure

the closeness to the new target semantics. The stopping criterion used in ACA-SSHC is

based on the training error of the individual that can be constructed analytically from A
and T. When this training error falls below a given threshold the search is stopped. The

stopping criterion could also be based on the absolute cosine similarity between A and

T. Notice that the nal individual (B′) is an approximation of the target semantics (−→sB ).

In theory, this approximation can be as arbitrarily close as desired. In practice, given the

real-valued nature of the semantics considered here, an optimal alignment may in fact

require exhaustive computation, and may potentially lead to issues in the oating-point

arithmetic.

5.4.3 Results and Discussion

For the experimental testing, ACA-SSHC is compared against a SSHC that searches di-

rectly for the original targets. Both approaches use DABM as the mutation operator.

Also for both approaches, the stopping criterion is based on a training error threshold.

For the PPB and LD50 datasets, the threshold used is 1.0, and for the Bio dataset the

threshold used is 5.0. The experiments in the Bio dataset are computationally more ex-

pensive because this dataset is noisier than the other two. For this reason, the training

error threshold used is sightly higher. However, it was conrmed in preliminary tests that

using 1.0 or lower values is still feasible. Notice that since the stopping criterion is based
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on the training error, the number of generations is variable. The values of k tested are:

0.1, 0.25, 0.5, 0.75, 0.9, 1.1, 1.25, 1.5, 1.75, 2.0, and their corresponding negative values.

All the other parameters are the same as the ones used in the previous sections.

Starting with ACA-SSHC, the results that show that this approach is effective in nding

near-optimal alignments in the error space are rst presented. Tables 5.2 to 5.4 show the

median, average, and standard deviation (SD) of the absolute cosine similarity between

A and T for each k and for each dataset. As it can be seen, near-optimal alignments can

be achieved in all datasets and for all values of k. The variance between the results of

different values of k is negligible. It seems that the search performance is unaffected by

the parameter k. This behavior is consistent across the datasets tested.

Figure 5.16 shows the evolution of the alignment throughout the generations when

using k = 1.1. This value of k was chosen arbitrarily since all values of k have similar

behavior. The values presented in the evolution plots are medians over the 30 runs.

From these plots it is possible to see that the evolution of the alignment is rather smooth.

This shows that ACA-SSHC is effective and efficient in nding the desired alignments.

Even closer alignments could be considered by having a stricter stopping criterion. From

the results presented here and given the nature of the semantic space, it is safe to assume

that these even closer alignments would not present an issue in terms of search.

Tables 5.5 to 5.7 show the generalization error and the number of generations taken

to achieve the desired alignment in all datasets. These results show that the individu-

als constructed from near-optimal alignments are prone to overtting, as the values of

the generalization errors are rather high. In comparable experiments and as seen in the

previous sections, the best median generalization error achieved for these datasets was

around 30 RMSE for PPB and Bio, and around 2000 for LD50. As shown in the results

for the absolute cosine similarity, it seems that k has no particular inuence in the search

outcome. Although there is some variation for a few values, there is no general claim

that can be made on how the value of k inuences the results. This is also true when

comparing the positive and negative values of the same k. It seems that the results are

relatively independent of the choice of k, both for generalization error and number of

generations taken.

Table 5.8 shows the generalization error and the number of generations taken to

achieve the desired training error threshold for SSHC. SSHC presents similar results to

ACA-SSHC in the sense that it also overts the training data. This shows that the issue
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Table 5.2: Absolute cosine similarity achieved in the Bio dataset

k
Absolute cosine similarity
Median Average SD

0.10 0.99363 0.99435 0.00130
-0.10 0.99575 0.99622 0.00087
0.25 0.99178 0.99270 0.00168
-0.25 0.99706 0.99738 0.00060
0.50 0.98817 0.98949 0.00242
-0.50 0.99869 0.99884 0.00027
0.75 0.98398 0.98573 0.00328
-0.75 0.99968 0.99971 0.00007
0.90 0.98112 0.98322 0.00385
-0.90 0.99995 0.99995 0.00001
1.10 0.97693 0.97953 0.00470
-1.10 0.99995 0.99995 0.00001
1.25 0.97361 0.97654 0.00536
-1.25 0.99968 0.99972 0.00006
1.50 0.96763 0.97116 0.00655
-1.50 0.99873 0.99887 0.00025
1.75 0.96096 0.96529 0.00786
-1.75 0.99715 0.99747 0.00057
2.00 0.95375 0.95896 0.00923
-2.00 0.99496 0.99552 0.00099
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Table 5.3: Absolute cosine similarity achieved in the PPB dataset

k
Absolute cosine similarity

Median Average SD
0.10 0.99967 0.99964 0.00011
-0.10 0.99978 0.99976 0.00007
0.25 0.99957 0.99953 0.00014
-0.25 0.99984 0.99983 0.00005
0.50 0.99940 0.99933 0.00020
-0.50 0.99993 0.99993 0.00002
0.75 0.99916 0.99909 0.00028
-0.75 0.99998 0.99998 0.00001
0.90 0.99902 0.99893 0.00033
-0.90 9.999973e-01 9.999970e-01 9.058755e-07
1.10 0.99879 0.99868 0.00040
-1.10 9.999973e-01 9.999970e-01 8.983940e-07
1.25 0.99861 0.99848 0.00047
-1.25 0.99998 0.99998 0.00001
1.50 0.99831 0.99814 0.00056
-1.50 0.99993 0.99993 0.00002
1.75 0.99793 0.99774 0.00068
-1.75 0.99985 0.99983 0.00005
2.00 0.99758 0.99734 0.00080
-2.00 0.99973 0.99970 0.00009
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Table 5.4: Absolute cosine similarity achieved in the LD50 dataset

k
Absolute cosine similarity

Median Average SD
0.10 9.999999e-01 9.999999e-01 1.613930e-08
-0.10 9.999999e-01 9.999999e-01 1.020797e-08
0.25 9.999999e-01 9.999999e-01 1.916355e-08
-0.25 1.000000e+00 9.999999e-01 6.968919e-09
0.50 9.999998e-01 9.999998e-01 2.482887e-08
-0.50 1.000000e+00 1.000000e+00 3.515140e-09
0.75 9.999997e-01 9.999997e-01 4.540934e-08
-0.75 1.000000e+00 1.000000e+00 7.415154e-10
0.90 9.999997e-01 9.999997e-01 4.811919e-08
-0.90 1.000000e+00 1.000000e+00 1.261224e-10
1.10 9.999996e-01 9.999996e-01 5.527597e-08
-1.10 1.000000e+00 1.000000e+00 1.179168e-10
1.25 9.999996e-01 9.999995e-01 6.680947e-08
-1.25 1.000000e+00 1.000000e+00 8.811649e-10
1.50 9.999995e-01 9.999994e-01 7.520555e-08
-1.50 1.000000e+00 1.000000e+00 2.868483e-09
1.75 9.999993e-01 9.999993e-01 8.684608e-08
-1.75 1.000000e+00 9.999999e-01 7.895287e-09
2.00 9.999992e-01 9.999992e-01 1.080166e-07
-2.00 9.999999e-01 9.999999e-01 1.141425e-08
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Figure 5.16: Absolute cosine similarity evolution for ACA-SSHC with k = 1.1
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Table 5.5: Generalization error and number of generations taken to achieve the desired
alignment in the Bio dataset

k
Generalization error Generations

Median Average SD Median Average SD
0.10 254.9 4.8e+08 2.5e+09 1151.5 1206.0 356.9
-0.10 220.3 4.2e+06 1.8e+07 1200.5 1225.4 349.6
0.25 112.3 4.2e+11 2.3e+12 1238.5 1211.5 364.9
-0.25 312.4 1.8e+08 8.9e+08 1242.5 1270.2 388.2
0.50 216.6 2.8e+05 1.2e+06 1230.0 1184.6 364.9
-0.50 205.1 3.0e+11 1.6e+12 1257.0 1322.1 399.9
0.75 220.7 5.1e+06 2.4e+07 1190.0 1171.3 340.1
-0.75 354.7 4.6e+30 2.5e+31 1361.5 1314.8 369.3
0.90 118.4 9.6e+06 5.2e+07 1244.5 1185.7 352.4
-0.90 593.1 3.5e+07 1.2e+08 1491.0 1433.4 391.5
1.10 294.9 4.4e+05 2.4e+06 1092.0 1157.3 338.1
-1.10 185.6 4.0e+08 2.1e+09 1330.5 1318.7 313.1
1.25 93.9 5.5e+05 2.8e+06 1123.5 1158.2 338.1
-1.25 317.9 3.9e+11 2.1e+12 1183.5 1152.1 295.0
1.50 138.8 3.3e+08 1.6e+09 1200.5 1178.6 363.6
-1.50 112.1 2.2e+06 9.0e+06 1048.0 1084.6 305.1
1.75 160.6 2.8e+08 1.5e+09 1126.0 1150.3 326.5
-1.75 182.6 1.8e+07 9.7e+07 1066.0 1081.4 297.2
2.00 113.9 1.1e+11 6.0e+11 1231.5 1163.9 326.6
-2.00 211.8 3.7e+08 1.9e+09 1078.5 1053.8 280.8
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Table 5.6: Generalization error and number of generations taken to achieve the desired
alignment in the PPB dataset

k
Generalization error Generations

Median Average SD Median Average SD
0.10 45.2 4.8e+09 2.3e+10 287.0 291.7 34.4
-0.10 258.2 1.1e+08 5.6e+08 305.0 297.6 30.9
0.25 44.0 3.5e+09 1.9e+10 278.5 283.9 35.0
-0.25 49.9 2.1e+14 1.2e+15 289.0 295.0 25.3
0.50 41.8 4.4e+15 2.4e+16 276.5 274.6 22.2
-0.50 51.8 5.7e+11 3.1e+12 278.0 284.6 28.6
0.75 47.7 2.3e+44 1.3e+45 271.5 366.9 387.2
-0.75 72.6 1.8e+13 1.0e+14 273.5 273.5 35.0
0.90 55.2 6.6e+15 3.6e+16 266.0 342.9 315.5
-0.90 125.9 4.9e+11 2.7e+12 289.0 304.3 56.9
1.10 42.6 3.2e+07 1.5e+08 263.0 267.5 24.7
-1.10 100.3 6.8e+12 3.7e+13 286.5 301.1 57.3
1.25 40.7 3.6e+07 1.6e+08 258.5 262.2 28.9
-1.25 48.5 1.6e+13 9.0e+13 257.0 255.0 35.5
1.50 47.7 4.3e+33 2.3e+34 256.0 262.1 33.2
-1.50 47.1 1.8e+27 1.0e+28 240.0 241.5 26.0
1.75 64.7 8.0e+30 4.4e+31 262.0 263.6 24.4
-1.75 41.0 2.6e+27 1.4e+28 236.0 236.9 24.3
2.00 88.6 1.7e+09 9.1e+09 254.5 260.1 28.9
-2.00 44.6 2.4e+27 1.3e+28 235.5 241.6 23.3
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Table 5.7: Generalization error and number of generations taken to achieve the desired
alignment in the LD50 dataset

k
Generalization error Generations

Median Average SD Median Average SD
0.10 5156.9 1.7e+12 6.7e+12 2516.0 2623.3 533.0
-0.10 5969.6 4.2e+14 1.6e+15 2464.5 2593.8 581.6
0.25 9433.4 3.3e+56 1.8e+57 2529.5 2624.6 528.5
-0.25 7858.6 3.3e+56 1.8e+57 2565.0 2639.3 560.1
0.50 4418.0 6.1e+20 3.4e+21 2487.5 2576.8 573.2
-0.50 6036.8 3.1e+26 1.7e+27 2493.0 2670.3 712.3
0.75 9296.8 2.1e+11 7.2e+11 2553.5 2621.9 584.9
-0.75 18369.3 4.9e+26 2.7e+27 2418.5 2670.9 654.4
0.90 4591.4 3.0e+12 1.3e+13 2522.5 2548.5 533.4
-0.90 6374.3 4.5e+44 2.5e+45 2274.5 2531.0 683.8
1.10 5316.1 6.9e+49 3.8e+50 2408.5 2559.6 529.9
-1.10 6382.8 2.5e+27 1.4e+28 2192.0 2308.1 571.9
1.25 5157.5 1.8e+14 9.3e+14 2507.5 2601.5 527.9
-1.25 4342.3 9.2e+13 5.0e+14 2183.5 2211.0 440.6
1.50 8647.1 1.4e+15 7.8e+15 2392.0 2510.1 517.1
-1.50 5993.4 3.2e+30 1.8e+31 2335.5 2364.3 505.5
1.75 5022.2 7.8e+13 4.2e+14 2478.0 2569.7 522.5
-1.75 4226.0 3.9e+14 2.1e+15 2306.0 2347.9 506.8
2.00 4336.1 3.6e+62 2.0e+63 2426.0 2586.6 545.3
-2.00 5183.0 1.4e+14 7.6e+14 2272.0 2354.6 485.9



5.4. ARBITRARILY CLOSE ALIGNMENTS IN THE ERROR SPACE 113

of overtting is not particular to an approach with near-optimal alignments, and that is

more clearly related to the very low training error thresholds dened. For the purpose

of further comparison between SSHC and ACA-SSHC, and since there is no clear inu-

ence of k, the value 1.1 will be used for the remaining comparisons (as used before in

gure 5.16). In terms of the number of generations needed to reach the threshold, SSHC

is superior, with statistical signicance (p-value 6.171× 10−4), to ACA-SSHC in the PPB

dataset. There is no statistically signicant difference for the number of generations in the

other datasets.

Figure 5.17 shows the training and generalization errors evolution for ACA-SSHC

using k = 1.1 and SSHC. Generally, both methods present similar trends during the evo-

lution. From the evolution plots and with the exception of the Bio dataset, it is clear that

SSHC ts the training data faster in the beginning of the evolution. This is particularly

the case in the LD50 dataset, although ACA-SSHC does reach a similar training error

at around 400 generations. In the PPB dataset there is always a small gap between the

two methods. As mentioned before, this then translates into SSHC reaching the stopping

threshold faster than ACA-SSHC. These results suggest that directly minimizing the train-

ing error may be more efficient than searching for an alignment in the beginning of the

evolution. However, it seems that there is no consistent difference for the total number

of generations needed to reach similar training error thresholds. In terms of generaliza-

tion and in all datasets, the two approaches start overtting early on.

Table 5.8: Generalization error and number of generations taken to achieve the desired
training error threshold for SSHC

Dataset
Generalization error Generations

Median Average SD Median Average SD
Bio 104.4 1.1e+08 5.2e+08 1099.0 1103.2 321.9
PPB 49.7 3.9e+09 2.1e+10 244.0 246.8 21.6

LD50 4457.4 3.8e+26 2.0e+27 2353.0 2440.7 485.3

An interesting result to notice is that it is possible, in some runs, to reach near-optimal

alignments while still achieving a competitive generalization. Table 5.9 shows the gener-

alization error for the best runs of each alignment experiment. In this context, the best

runs are dened according to generalization error, i.e., the runs with lower generalization

error. For the PPB dataset, there are 7 runs that present a competitive generalization
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Figure 5.17: Training and generalization errors evolution plots for ACA-SSHC with k =
1.1 and SSHC
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(around or lower 30 RMSE). Particularly interesting are the results for k = −0.9 and

k = 0.1, respectively achieving 26.1 and 27.0 RMSE. However, in the Bio and LD50

datasets it was not possible to achieve a competitive generalization (around 30 and 2000

RMSE respectively) on any run. For the LD50 dataset, this could be because the align-

ments are even closer to optimality. This translates into relatively smaller training errors

and it is consequently more prone to overtting.

Although the overall results show that near-optimal alignments are risky in terms of

overtting, the best runs for the PPB dataset show that individuals constructed from near-

optimal alignments can still generalize well. This refers back to the model (or individual)

selection problem mentioned before. It is possible to construct individuals from near-

optimal alignments that generalize well, but their selection is not likely. A possible re-

search venue is to identify some additional criteria that could help identify whether a

given alignment/run is likely to be competitive in terms of generalization.

Table 5.9: Generalization error of the best runs for ACA-SSHC

k Bio PPB LD50
0.10 43.9 27.0 3074.8
-0.10 38.2 35.1 2837.1
0.25 39.3 32.4 2796.3
-0.25 36.4 32.0 2541.8
0.50 40.8 31.1 2903.5
-0.50 42.5 30.7 2965.6
0.75 47.7 30.5 2744.8
-0.75 44.4 31.8 2748.4
0.90 35.4 31.2 2879.8
-0.90 51.6 26.1 2969.7
1.10 41.2 27.7 2963.0
-1.10 38.4 29.2 3102.7
1.25 42.8 31.4 2926.0
-1.25 35.4 27.9 2890.0
1.50 39.6 28.9 2683.2
-1.50 40.7 30.8 2871.0
1.75 41.6 30.0 2604.0
-1.75 40.8 31.0 2893.0
2.00 44.0 30.8 2878.2
-2.00 37.1 29.8 2938.6





6
Semantic Learning Machine

This chapter proposes a feedforward Neural Network construction algorithm that shares

the same geometric semantic properties of Geometric Semantic Genetic Programming.

This construction algorithm is named Semantic Learning Machine (SLM). Section 6.1 de-

nes the SLM. Section 6.2 empirically assesses the learning and generalization capabili-

ties of the proposed algorithm. Section 6.3 studies the incorporation of semantic stop-

ping criteria in the SLM and GSGP. Finally, section 6.4 provides a comparison with non-

evolutionary supervised learning methods.

6.1 Denition

6.1.1 Overview of Articial Neural Networks

Articial Neural Networks (NNs) are computational models inspired by the functioning

of the human brain. The problem solving approach underlying NNs is based on a rel-

atively simple processing unit, which when replicated and combined with other similar

units, results in a potentially complex behavior. This processing unit is inspired by the

human neuron. It can generally be referred to as an articial neuron, or more loosely as

a perceptron. From now on, this processing unit is simply referred to as neuron. The

role of each neuron is to take a set of inputs with a corresponding set of weights, and

to perform a transformation of the data received. The result of this transformation is

then passed on to the next neurons. Formally, let −→x be the vector containing the inputs

117
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passed to a given neuron, and−→w the vector containing the corresponding weights of each

input. Both vectors have the same number of elements, so that wi is the weight applied

to input xi. The output (y) of a neuron is computed as follows:

y = f(−→x ×−→w + bias), (6.1)

where × represents the scalar product between two vectors, and f is commonly a non-

linear function, usually referred to as a transfer or activation function. A bias is added to

each neuron. Figure 6.1 exemplies a neuron.

x2 w2 Σ f

Activation

function

y

Output

x1 w1

Weights

x3 w3

Bias

b

Inputs

Figure 6.1: An articial neuron with three inputs

These neurons are combined in layers to form a network. This network is a type of

neural network commonly known as a Multilayer Perceptron (MLP). A layer is dened by

a set of elements that are not connected with each other, but are connected with all the

elements of the next layer. This is known as a fully connected MLP. A MLP consists of three

types of layers: input, hidden, and output. The ow of data processing is always carried

on from the input layer to the output layer. This is known as a feedforward NN. For the

remainder of this chapter, the term NN is used to describe a feedforward MLP. Figure 6.2

exemplies a NN. Since there are no backward connections, any feedforward NN can

be represented by a tree. This means that given suitable function and terminal sets, GP

can represent any feedforward NN. A NN with backward connections is a recurrent

NN. Given that this type of NNs creates cycles within its network, it can not be directly

represented by a tree. In this chapter only feedforward NNs are considered. In these
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NNs, there are always only one input and output layers, but there can be more than

one hidden layer. The hidden layers and the output layer are composed of the neurons

previously described. The input layer consists of simpler elements that just take the input

provided and pass it on to the elements of the next layer. The elements of the input layer

are equivalent to the terminal nodes in GP. The activation functions of the neurons of

the hidden layers are commonly sigmoidal functions, such as the logistic function used in

GSGP in the previous chapter. It is usual for all the neurons in a given hidden layer to use

the same activation function. In the simpler case the output layer can consist of a single

element. Without loss of generality, this is the case considered here. For the output layer

the activation function considered is the identity function:

f(x) = x (6.2)

This is a commonly used output layer activation function when dealing with regression

tasks.

Given that the geometric semantic operators are dened over the semantic space

(outputs), they can be extended for different computational models or representations.

In the next subsections a geometric semantic mutation for NNs is proposed, and a sub-

sequent construction algorithm is dened. This allows an effective stochastic search to

be performed in the space of NNs.

6.1.2 A Geometric Semantic Mutation Operator for Feedforward

Neural Networks

As shown in the previous chapter, the geometric semantic operators are relatively simple

combinations of trees. Particularly, the geometric semantic mutation (from denition 2)

is a linear combination of two trees: the tree of the parent and a randomly generated

tree (which results from subtracting the two random subtrees TR1 and TR2). There are no

restrictions on the two trees being combined. The crucial aspect is that these two trees

are combined independently, i.e., the semantics of one the trees does not affect the se-

mantics of the other tree, and vice versa. Generalizing, this particular geometric semantic

mutation is dened as a linear independent combination of two computational elements.

This knowledge can be used to create equivalent geometric semantic mutations for other



120 CHAPTER 6. SEMANTIC LEARNING MACHINE

Input

layer

Hidden

layer

Output

layer

Input 1

Input 2

Input 3

Input 4

Input 5

Output

Figure 6.2: A feedforward neural network with ve input neurons, a hidden layer of three
neurons, and one output neuron
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computational models or representations. To simplify, the proposed geometric seman-

tic mutation for NNs is referred to as GSM-NN, from Geometric Semantic Mutation -

Neural Networks. GSM-NN works by taking an already existing NN, and combining it

linearly with a randomly generated NN. Analogously to the GSGP mutation, the already

existing NN is equivalent to the parent tree, and the randomly generated NN is equiva-

lent to the randomly generated tree. The already existing NN is referred to as the parent

NN. As mentioned previously, the case being considered here is that of an output layer

with a single neuron. To provide a rigorous analogy to the GSGP mutation, the activa-

tion function of the output neuron is the identity function. For the same reason, the bias

is excluded from the output neuron. The following description of GSM-NN assumes a

single hidden layer. This is also the mutation version that is experimentally tested in this

chapter. A description of GSM-NN for multiple hidden layers will also be presented.

Each GSM-NN application consists of two main steps: creating a randomly generated

NN, and joining this NN with the parent NN. Note that the simplest case of a NN is a

NN with a single hidden layer neuron. This is the type of random NN that GSM-NN

creates. Since joining two NNs implies sharing the input and the output layers, the only

neuron that needs to be created in GSM-NN is the neuron to be added to the hidden

layer. The weight from the new neuron to the output neuron is the learning step (a SLM

parameter). This learning step is equivalent to the mutation step in the GSGP mutation.

It inuences the amount of semantic variation for each application of the operator. Simi-

larly to GSGP, this learning step can be xed throughout the run, or it can be computed

optimally for each application of the operator. The xed learning step version will be

referred to as FLS, and the optimal learning step version as OLS. The weights from the

input layer to the hidden layer are randomly generated. This is the equivalent of gen-

erating the random tree in the GSGP mutation. There are no restrictions on how the

weights are generated. In this work these weights are generated between -1.0 and 1.0

with uniform probability. The activation function of the new neuron can be freely chosen.

However, it should be a non-linear function in order to learn possible non-linearities in

the data. As seen in the previous chapter, a positive effect on the generalization ability

can be achieved by using a function with a relatively small codomain, and at the same

time using a small learning/mutation step. To ensure a fair comparison with the GSGP

mutation, the activation function used in GSM-NN is the hyperbolic tangent. This guar-

antees that, for each application of the operator, the semantic variation always ranges in
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the interval [−ls, ls], where ls represents the learning step. This results from the fact that

the outputs of the hyperbolic tangent range in the interval [−1, 1]. Similarly, in the GSGP

bounded mutation the semantic variation always ranges in the interval [−ms,ms], where

ms represents the mutation step. As previously mentioned, the learning step and the

mutation step are equivalent parameters. Figure 6.3 exemplies the GSM-NN operator

for the single hidden layer case.

Parent Neural Network Random Neural Network 

Resulting Neural Network 

Figure 6.3: An example of an application of the GSM-NN operator

Similarly to the GSGP mutation, GSM-NN induces an unimodal tness landscape with

a constant slope in the space of NNs. This is valid for all supervised learning problems.

Consequently, GSM-NN is potentially very effective in terms of search since the type of
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landscape being searched on has no local optima. This is experimentally assessed in the

next section. Notice that this type of landscape has clear consequences for the learnabil-

ity of NNs. This contrasts with the universal approximation results (Hornik et al., 1989)

that deal with the representational issue. These results establish that feedforward NNs

with even a single hidden layer can approximate any measurable function to any desired

degree of accuracy, given a sufficient but nite number of hidden layer neurons. How-

ever, the universal approximation results (Hornik et al., 1989) leave open the question

of learnability of the feedforward NNs.

The working of GSM-NN for multiple hidden layers is similar to the single hidden

layer case. A new neuron is added to the last hidden layer, and the weight that connects

this neuron with the output neuron is the learning step. There are different valid ways of

dening how the connections up to the new neuron are created. The simplest case just

involves generating random weights from the neurons of the penultimate hidden layer

to the new neuron. In this case all other weights remain unchanged. Other possibilities

involve relaxing the property of full connectivity of the resulting NN. One of the most

complex cases would involve adding one neuron to each hidden layer. Each new neuron

could be fully connected to the previous hidden layer, but in terms of forward connections

it could only connect to the new neuron of the next hidden layer. Constructing a fully

connected network in this case would result in a non-independent combination in the

output neuron, and would therefore not be a valid geometric semantic mutation. Given

the different possibilities when using the multiple hidden layer GSM-NN, this chapter

only explores experimentally the single hidden layer GSM-NN. A geometric semantic

crossover for NNs would also be possible to formulate. However, it would share similar

disadvantages to the GSGP crossover, particularly the issue of the exponential growth of

the solutions. Furthermore, no a priori advantages in terms of search are known for the

geometric semantic crossover that could outweigh its disadvantages. For these reasons,

the geometric semantic crossover for NNs is not explored.

6.1.3 Construction Algorithm

The SLM algorithm is essentially a geometric semantic hill climber for NNs. Since the se-

mantic space has no local optima, the search can be focused around the current best NN

without incurring in any particular disadvantage. As seen in the previous chapter, using
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this strategy is more efficient than using a population of solutions. The SLM algorithm

starts by generating a set of random NNs. The number of random NNs is dened by the

sample size SLM parameter (N). From these initial NNs, the best one is selected accord-

ing to the training error. After this initial step, the main part of the hill climbing begins.

A set of new NNs is produced by applying the GSM-NN operator to the current best

NN. The number of new NNs produced is also dened by the sample size parameter.

From these NNs, the overall best NN is updated. The process is repeated for a given

number of iterations (SLM parameter). The number of iterations (or epochs) parameter

is equivalent to the number of generations parameter in GSGP/SSHC. Alternatively, a

different stopping criterion can also be used to determine when to stop the search (this

is explored in section 6.3). The algorithm is summarized in the following steps:

1. Generate N initial random NNs

2. Choose the best NN (B) from the initial random NNs, according to the training

error

3. Repeat the following operations until a given stopping criterion is met:

3.1. Apply GSM-NN to the current best (B) N times to generate N new NNs

3.2. Update B as being the NN with the smallest training error, selected from the

current B and the N newly generated NNs

4. Return B as the best performing NN according to the training error

The initial random NNs are generated similarly to the random NNs used in the GSM-

NN operator. These random NNs are generated with a single hidden layer and a single

neuron in the hidden layer. The weights from the input layer to the hidden layer are

generated randomly between -1.0 and 1.0 with uniform probability. The weight from the

hidden layer neuron to the output neuron is set to 1. This weight can also be computed

optimally with the Moore-Penrose pseudoinverse, as seen in the previous chapter. Other

ways of generating these initial random NNs could be considered.

It is important to remark that the GSM-NN operator excludes the need to use back-

propagation to adjust the weights of the network. The use of backpropagation entails

two considerable disadvantages. The rst disadvantage is that, in general, the space of
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the weights of a NN is not unimodal in relation to the overall error. In other words, a

set of weights can be locally optimal, but not globally optimal. This means that the search

over the space of weights needs to take into consideration the issue of local optima. In

practice, a type of search that needs to circumvent this issue is commonly less effective

and efficient. As mentioned, the SLM search operates over a unimodal space, which can

theoretically simplify the search. This is assessed empirically in the next sections. The sec-

ond disadvantage of using backpropagation is the computational cost. As the networks

grow in size, backpropagation starts to become considerably slow. By excluding to adjust

the weights, the GSM-NN operator is able to keep the same computational cost as the

network grows. This is possible because GSM-NN can always perform an incremental

evaluation. In other words, regardless of the size of a NN, the evaluation only needs

to occur in the new part of the NN. Considering the single hidden layer case, GSM-NN

only needs to evaluate the contribution of the neuron that is being added to the NN. The

contribution of the rest of the NN is already computed, and therefore does not need to

be reevaluated. This makes the SLM algorithm very efficient in practice.

6.2 Experimental Study

This section provides an empirical assessment of the learning and generalization capabil-

ities of the SLM. The experimental setup is equivalent to the one used in the previous

chapter. This allows a direct comparability with the results presented in the previous

chapter.

6.2.1 Initial Exploration

This subsection studies the effects of the learning step and the sample size in the SLM

when using a xed learning step.

The values tested for the learning step (LS) are: 1, 10, and 100. Figure 6.4 presents

the evolution plots with the training and generalization errors for the different learning

steps tested. In the Bio and PPB datasets, a LS of 1 is found to be the best suited for

both training and generalization errors. LS 10 and 100, end up being less effective. This

implies that the semantic adjustments (inuenced by the LS) become too high at some

point during the search. In the LD50 dataset, all learning steps provide an effective training
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error reduction. This difference to the other two datasets is explained by the higher order

of magnitude of the errors in the LD50 dataset. Since these errors are bigger, it should

be expected that higher learning steps are needed (at least in the initial search phases).

LS 100 achieves the best training error but compromises the generalization ability. Given

this fact, LS 10 ends up being the best trade-off in terms of learning and generalization.

Overall, the results are consistent with the established notions of the effects that different

learning/mutation steps have in search. Given these results, for the remainder of this

chapter, a LS of 1 is used in the Bio and PPB datasets, and a LS of 10 is used in the LD50

dataset.

The values tested for the sample size (SS) are: 10, 50, 100, and 500. Figure 6.5

presents the evolution plots with the training and generalization errors for the different

sample sizes tested. As a general and expected trend, the bigger the SS, the easier it is

to decrease the training error. This is natural given that more resources are applied in

the search process. In terms of generalization, the values achieved are similar regardless

of the SS used. It seems that the tendency to overt is more clearly related to the num-

ber of iterations/generations conducted, than to the sample/population size. Across all

datasets, results show that even a small SS (10) is able to effectively search the semantic

space and achieve a competitive generalization. Regardless, to maintain a direct compa-

rability with the GSGP/SSHC results presented in the previous chapter, a SS of 100 is

used in all datasets for the remainder of this chapter.

6.2.2 Sparseness

The concept of sparseness has different interpretations depending on the context. Here,

sparseness is used to refer to the number of input variables effectively used in a given

model. As sparseness increases, the number of input variables effectively used decreases.

In the context of the NNs considered here, the sparseness percentage denes the per-

centage of weights from the input layer to the hidden layer that are exactly zero. For

instance, a sparseness of 95% implies that only 5% of the input variables are used in a

NN, i.e., only 5% of the mentioned weights are different than zero. A sparse model is

structurally simpler, and could potentially generalize better. In the SLM, sparseness is

easily controlled in the GSM-NN operator. Since GSM-NN creates a random NN in

each operator application, the sparseness can be directly controlled by dening the num-
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LD50 dataset
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Figure 6.4: Training and generalization errors evolution plots for SLM with different learn-
ing steps
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LD50 dataset
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Figure 6.5: Training and generalization errors evolution plots for SLM with different sam-
ple sizes



6.2. EXPERIMENTAL STUDY 129

ber of weights that are going to be set to zero. The weights that are going to be set to

zero are selected randomly. The other weights can be generated as usual. Therefore,

sparseness is controlled for each application of the operator, and not for the nal NN.

In other words, even if all applications of GSM-NN use the same given percentage of

sparseness, it is not guaranteed that the nal NN will only use the same corresponding

number of input variables. Since each GSM-NN application randomly selects the input

variables that are going to be used, different GSM-NN applications may select different

input variables, which leads to the nal NN using more than the input variables dened

for a single GSM-NN application. Table 6.1 presents the correspondence between the

sparseness percentage and the number of input variables used in each dataset considered.

Table 6.1: Correspondence between the sparseness percentage and the number of input
variables

Dataset Sparseness Corresponding number of input variables

Bio

0% 241
5% 229
25% 181
50% 120
75% 60
95% 12

PPB

0% 627
5% 596
25% 470
50% 313
75% 157
95% 31

LD50

0% 626
5% 595
25% 469
50% 313
75% 156
95% 31

The values tested for the sparseness percentage (SP) are: 0%, 5%, 25%, 50%, 75%,

and 95%. Figure 6.6 presents the evolution plots with the training and generalization

errors for the variants tested. As in the previous subsection, the SLM is tested using a

xed learning step. In addition to the evolution plots, the boxplots with the generaliza-
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tion errors achieved at the end of the runs are presented in gure 6.7. SLM presents

robustness to all levels of sparseness tested as all variants present similar generalization

behaviors. In general, increasing the sparseness level does not increase the generaliza-

tion achieved. The only exception occurs in the PPB dataset, where using a sparseness

level of 95% improves the generalization achieved (p-value 1.905 × 10−3). A bigger ef-

fect is detected in terms of training error. In the Bio dataset, using any sparseness level

improves signicantly the training performance: 5% (p-value 3.759×10−3), 25% (p-value

7.044 × 10−10), 50% (p-value 3.175 × 10−11), 75% (p-value 2.872 × 10−11), and 95%

(p-value 3.510× 10−11). In the PPB dataset, a sparseness level of 50% also improves the

training performance (p-value 3.878 × 10−4). No training performance advantages are

found in the LD50 dataset.

6.2.3 Fixed Learning Step Comparisons

This subsection presents a comparison between the SLM with a xed learning step (SLM-

FLS) and SSHC BM. SSHC BM is the tree-based method equivalent to SLM-FLS. They

both use xed learning/mutation steps, and produce semantic variations in the same

range ([−ls, ls], where ls is the learning/mutation step) at each mutation application. For

reference, the results for SLM-FLS with high sparseness levels are also presented: with

75% sparseness (SLM-FLS SP 75%), and with 95% sparseness (SLM-FLS SP 95%). Fig-

ure 6.8 presents the evolution plots with the training and generalization errors for the

methods tested. The rst point to notice are the considerably different values at itera-

tion/generation 0. SLM-FLS presents much higher errors than SSHC BM after the random

initialization. This is inuenced by the fact that the initial weights in SLM-FLS are gener-

ated with uniform probability between -1.0 and 1.0. This effectively bounds the amount

of tting that can be achieved in the initialization. On the other hand, SSHC BM has no

explicit bound on the initial random trees, and can therefore provide a superior initial

explanation of the data. It is interesting to note that, despite this initial disadvantage,

SLM-FLS compensates with a considerably higher learning rate. This translates into a sta-

tistically signicant superiority in terms of training error across all datasets (p-values: Bio

2.872 × 10−11, PPB 2.872 × 10−11, and LD50 3.261 × 10−5). This learning superiority

is particularly interesting when considering that SLM-FLS and SSHC BM use equivalent

geometric semantic mutation operators. The differences arise from the different initial-



6.2. EXPERIMENTAL STUDY 131

Bio dataset

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

T
ra

in
in

g 
er

ro
r

 

 

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

SP 0%
SP 5%
SP 25%
SP 50%
SP 75%
SP 95%

PPB dataset

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

T
ra

in
in

g 
er

ro
r

 

 

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

SP 0%
SP 5%
SP 25%
SP 50%
SP 75%
SP 95%

LD50 dataset

0 50 100 150 200 250 300 350 400 450 500
1500

2000

2500

3000

Iterations / generations

T
ra

in
in

g 
er

ro
r

 

 

0 50 100 150 200 250 300 350 400 450 500
1500

2000

2500

3000

Iterations / generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

SP 0%
SP 5%
SP 25%
SP 50%
SP 75%
SP 95%

Figure 6.6: Training and generalization errors evolution plots for SLM with and without
sparseness
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Figure 6.7: Generalization error boxplots for SLM with and without sparseness
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izations used in both representations (NNs and trees). Different representations have

different natural ways of being randomly initialized. These different initializations result in

different semantic distributions, which in turn lead to different offspring distributions. At

least in these datasets, the semantic distribution resulting from the random initialization

of a list of weights (used in SLM-FLS) is more favorable than the semantic distribution

resulting from the random tree initialization (used in SSHC BM). This rst distribution

can be loosely described as more well-behaved. In the original GSGP proposal, Moraglio

et al. (2012) provided a discussion on whether syntax (representation) matters in terms

of search. They argued that, in abstract, the offspring distributions may be affected by the

different syntax initializations. From the SLM-FLS and SSHC BM results, it can be empiri-

cally seen how initializations over different representations can lead to different offspring

distributions and to different learning outcomes. A possible research venue in GSGP lies

in analyzing the semantic distributions produced by different tree initializations, and to

propose new tree initializations that are more well-behaved.

In terms of generalization, results show that all methods achieve similar results as

no statistically signicant differences are found. However, SLM-FLS has the advantage of

converging faster to the generalization plateau. The mentioned faster learning rate also

applies to the generalization. This faster convergence can be exploited by using some cri-

terion to stop the search as the generalization plateau is reached. Some possible stopping

criteria are explored in the next section. Figure 6.9 presents the boxplots with the gener-

alization errors achieved at the end of the runs. These boxplots conrm the consistency

of the generalization achieved by SLM-FLS. SSHC BM achieves a similar generalization but

some negative outliers exist.

6.2.4 Optimal Learning Step Comparisons

This subsection presents a comparison between the SLM with an optimal learning step

(SLM-OLS) and SSHC ABM. SSHC ABM is the tree-based method equivalent to SLM-

OLS. They both compute optimal learning/mutation steps at each mutation application.

Results for SLM-OLS with different sparseness levels are also presented. Figure 6.10

presents the evolution plots with the training and generalization errors for the methods

tested. Both SLM-OLS and SSHC ABM t the training data effectively. The computation

of the optimal learning step allows SLM-OLS to quickly compensate the higher initial er-
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Bio dataset

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

T
ra

in
in

g 
er

ro
r

 

 

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

SLM−FLS
SLM−FLS SP 75%
SLM−FLS SP 95%
SSHC BM

PPB dataset

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

T
ra

in
in

g 
er

ro
r

 

 

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

SLM−FLS
SLM−FLS SP 75%
SLM−FLS SP 95%
SSHC BM

LD50 dataset

0 50 100 150 200 250 300 350 400 450 500
1500

2000

2500

3000

Iterations / generations

T
ra

in
in

g 
er

ro
r

 

 

0 50 100 150 200 250 300 350 400 450 500
1500

2000

2500

3000

Iterations / generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

SLM−FLS
SLM−FLS SP 75%
SLM−FLS SP 95%
SSHC BM

Figure 6.8: Training and generalization errors evolution plots for SLM-FLS, SLM-FLS SP
75%, SLM-FLS SP 95%, and SSHC BM
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Figure 6.9: Generalization error boxplots for SLM-FLS, SLM-FLS SP 75%, SLM-FLS SP
95%, and SSHC BM
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rors mentioned in the previous subsection. Therefore, SLM-OLS and SSHC ABM achieve

similar training errors in the initial iterations/generations. After a few iterations/gener-

ations SSHC ABM starts to t the training data faster, but this comes at the expense of

overtting. It is interesting to note that SSHC ABM only starts to t the training data faster

when no further generalization can be achieved. By the end of the runs, SSHC ABM is su-

perior, with statistical signicance, in terms of training error across all datasets (p-values:

Bio 2.872 × 10−11, PPB 2.872 × 10−11, and LD50 4.734 × 10−11). On the other hand,

SLM-OLS achieves a statistically signicant superiority in terms of generalization across all

datasets (p-values: Bio 4.734 × 10−11, PPB 3.057 × 10−5, and LD50 1.800 × 10−7). In

terms of tting the training data, it is also interesting to note that the computation of the

optimal mutation step allows SSHC ABM to counteract the less well-behaved semantic

distribution mentioned in the previous subsection.

In the Bio and PPB datasets, SLM-OLS is able to stabilize the generalization error even

as the training error continues to be reduced. In the LD50 dataset, the generalization

error increases slowly as the training error converges to zero. However, this increase is

smaller than the one that occurs in SSHC ABM. Figure 6.11 presents the boxplots with the

generalization errors achieved at the end of the runs. SSHC ABM is not shown as several

values are of considerable order of magnitude, which makes these results very difficult

to read and compare. SLM-OLS shows robustness to increasing levels of sparseness as

all variants tested present similar generalization behaviors. In terms of generalization,

no statistically signicant differences are found at any of the sparseness levels considered.

However, adding sparseness can be benecial in terms of training error. In the Bio dataset,

all variants with sparseness achieve signicantly superior training performance than the

variant without sparseness: 5% (p-value 8.401×10−5), 25% (p-value 2.872×10−11), 50%

(p-value 2.872×10−11), 75% (p-value 2.872×10−11), and 95% (p-value 2.872×10−11). In

the PPB dataset, similar superiorities are achieved for sparseness levels of 25% or above:

25% (p-value 5.411 × 10−4), 50% (p-value 2.063 × 10−5), 75% (p-value 2.320 × 10−4),

and 95% (p-value 1.931× 10−8). No advantages are found in the LD50 dataset.

6.2.5 Normal Weight Distribution

Given the previously noted effect of different semantic distributions, this subsection ex-

plores how the use of a different weight distribution in SLM can inuence its performance.
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Figure 6.10: Training and generalization errors evolution plots for SLM-OLS with and
without sparseness, and SSHC ABM
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Figure 6.11: Generalization error boxplots for SLM-OLS with and without sparseness
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Note that a different weight distribution inuences the semantic distribution, which in

turn inuences the offspring distribution. The intent of this subsection is to provide an

exploratory investigation by studying a different weight distribution. An exhaustive study

of different weight distributions is outside the scope of this subsection. The alternative

weight distribution explored is the normal (or Gaussian) distribution. The particular nor-

mal distribution used here is dened by a mean of 0 and a standard deviation of 1. To

ensure a fair comparison with the uniform distribution previously used, the range of the

weights allowed must be the same. To achieve this in the considered normal distribution,

values higher than 1 and lower than -1 must be respectively bounded to 1 and -1. The

resulting alternative weight distribution is applied to SLM-FLS and SLM-OLS, with and

without sparseness.

Figure 6.12 presents the evolution plots with the training and generalization errors

for SLM-FLS with a normal weight distribution, and with and without sparseness. To help

the description the SLM versions that use the normal weight distribution are labeled as

NWD (from normal weight distribution). The behavior of these variants is similar to

the comparable variants that use an uniform weight distribution (shown in gure 6.6).

No statistically signicant differences are found when comparing the usage of these dif-

ferent weight distributions. Among the variants that use a normal weight distribution,

the usage of sparseness has similar effects to the ones previously described. In terms

of generalization, the only statistically signicant difference is found in the PPB dataset,

where using a high level of sparseness contributes to superior generalizations: 75% (p-
value 4.846×10−4), and 95% (p-value 6.161×10−5). No signicant inuences are found

in the Bio and LD50 datasets. Similarly to previous results, adding sparseness is found

to be more inuential in terms of training error. In the Bio dataset, sparseness levels

of 25% or above achieve a training performance signicantly superior than the variant

without sparseness: 25% (p-value 2.552× 10−9), 50% (p-value 2.872× 10−11), 75% (p-
value 2.872 × 10−11), and 95% (p-value 2.872 × 10−11). A similar result occurs in the

PPB dataset when using sparseness levels of 50% (p-value 3.701 × 10−6) and 75% (p-
value 9.273× 10−4). No similar statistically signicant differences are found in the LD50

dataset.

Similar conclusions are found when applying the normal weight distribution to SLM-

OLS. Figure 6.13 presents the evolution plots with the training and generalization errors

for SLM-OLS with a normal weight distribution, and with and without sparseness. As
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in the SLM-FLS results, the behavior of SLM-OLS variants is similar to the comparable

variants that use an uniform weight distribution (shown in gure 6.10). No statistically

signicant differences are found when comparing the usage of these different weight dis-

tributions. The effect of using sparseness is consistent with what was previously seen

in the SLM-OLS variants with uniform weight distributions. No statistically signicant

differences are found in terms of generalization. However, using any level of sparse-

ness contributes to a better training data performance in the Bio dataset: 5% (p-value

2.065× 10−4), 25% (p-value 3.879× 10−11), 50% (p-value 2.872× 10−11), 75% (p-value

2.872 × 10−11), and 95% (p-value 2.872 × 10−11). In the PPB dataset, a similar effect

is found when using sparseness levels of 50% or above: 50% (p-value 8.583 × 10−6),

75% (p-value 1.732× 10−4), and 95% (p-value 3.131× 10−7). No statistically signicant

differences are found in the LD50 dataset.

6.3 Semantic Stopping Criteria

In iterative supervised learning algorithms it is common to reach a point in the search

where no further induction seems to be possible with the available data. If the search

is continued beyond this point, the risk of overtting increases signicantly. Even if the

generalization simply stabilizes, no benet exists in continuing the search. This section

explores the usage of information extracted from the semantic neighborhood to deter-

mine when to stop the search. Each sample of the semantic neighborhood is gathered by

repeatedly applying the semantic mutation operator. The size of the semantic neighbor-

hood sample is the same as the SLM sample size parameter. Since SLM already creates a

set of neighbors to be considered at each iteration, no further sampling is required. The

equivalent case is also true for SSHC.

6.3.1 Stopping Criteria Denition

The rst criterion is based on the variation of the error deviation of the models that are

superior to the current best model. In this context, the term error deviation is used to

refer to the standard deviation of the absolute errors of a given model over the training

instances. Note that this criterion is only concerned with the models that improve over

the current best model in a given iteration/generation. From these models, the crite-
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Figure 6.12: Training and generalization errors evolution plots for SLM-FLS NWD with
and without sparseness



142 CHAPTER 6. SEMANTIC LEARNING MACHINE

Bio dataset

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

T
ra

in
in

g 
er

ro
r

 

 

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

SLM−OLS NWD SP 0%
SLM−OLS NWD SP 5%
SLM−OLS NWD SP 25%
SLM−OLS NWD SP 50%
SLM−OLS NWD SP 75%
SLM−OLS NWD SP 95%

PPB dataset

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

T
ra

in
in

g 
er

ro
r

 

 

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Iterations / generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

SLM−OLS NWD SP 0%
SLM−OLS NWD SP 5%
SLM−OLS NWD SP 25%
SLM−OLS NWD SP 50%
SLM−OLS NWD SP 75%
SLM−OLS NWD SP 95%

LD50 dataset

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

Iterations / generations

T
ra

in
in

g 
er

ro
r

 

 

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

Iterations / generations

G
en

er
al

iz
at

io
n 

er
ro

r

 

 

SLM−OLS NWD SP 0%
SLM−OLS NWD SP 5%
SLM−OLS NWD SP 25%
SLM−OLS NWD SP 50%
SLM−OLS NWD SP 75%
SLM−OLS NWD SP 95%

Figure 6.13: Training and generalization errors evolution plots for SLM-OLS NWD with
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rion measures the percentage of models that reduce the error deviation in comparison

with the error deviation of the current best model. This information allows to determine

when the training error reduction starts to be conducted less uniformly across training

instances. This may indicate that overtting is starting to occur. The search is stopped

when the criterion measure drops below a given threshold (parameter). This criterion is

named Error Deviation Variation (EDV). Since this criterion is based on the error devia-

tion, it does not prevent the algorithm from nding models with a large semantic (output)

deviation, as this may actually be desired given the target semantics. The criterion also

does not prevent the next best model to have a larger error deviation than the previ-

ous best, as this exibility could be important in the learning process. The search is only

stopped if a considerable majority of the models are improving the training error at the

expense of larger error deviations.

The second criterion is based on measuring the effectiveness of the semantic vari-

ation operator used to perform the sampling. In this context, the effectiveness of the

operator is dened as the percentage of times that the operator is able to produce a

model that is superior to the current best model. During each iteration/generation, the

effectiveness is measured with regard to the sample considered. The search is stopped

when the effectiveness of the operator drops below a given threshold (parameter). This

criterion is named Training Improvement Effectiveness (TIE). The reasoning underlying

this criterion is that, if training error improvements are harder to nd, then possibly these

improvements are being forced at the expense of the resulting generalization.

6.3.2 Fixed Learning Step

This subsection studies the application of the proposed stopping criteria to SLM-FLS.

Figure 6.14 presents the evolution of the measures used in the stopping criteria, and their

complementary measures. These plots show the medians of each value throughout the

runs if no stopping is applied. The left column presents the measures related with the EDV

criterion, and the right column presents the measures related with the TIE criterion. The

blue solid lines represent the measures that are directly used in the criteria to determine

the stopping point. The red dashed lines are the respective complementary measures.

Starting with the EDV criterion (left column) in the Bio and PPB datasets, in the be-

ginning of the runs the algorithm is very effective in generating models that are superior
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Figure 6.14: Evolution of the measures related to the EDV (left column) and the TIE (right
column) criteria for SLM-FLS
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to the current best and, at the same time, reduce the error deviation (ED). This is shown

by the line labeled as ED decrease. Until around iteration 50, the values of this measure

are usually over 90% in both datasets. Between iterations 50 and 100, a quick decrease

of this measure occurs, as well as the consequent increase of the complementary mea-

sure (labeled as ED increase). The ED decrease measure drops below 20%, while the

ED increase measure increases to over 80%. This indicates that the algorithm is mostly

nding models that are superior to the current best at the expense of increasing the error

deviation. After this quick disruption, both measures seem to enter a phase where the

values do not present a clear trend. Interestingly, this quick disruption coincides with the

generalization plateau, where the generalization error stabilizes while the training error

keeps decreasing (as shown in gure 6.8). This might be an interesting stopping point as

no further induction seems to be possible. Continuing the search beyond this point might

only increase the model size and the computational time. In the LD50 dataset, the ED de-

crease measure also starts at very high values. However, a similar quick disruption is not

apparent from the median values presented. It will be clear ahead that a quick disruption

also occurs in the LD50 dataset. The fact that this disruption happens at considerably

different iterations in different runs, makes the median values misleading.

In the TIE criterion (right column), a clear pattern also occurs in the Bio and PPB

datasets. Initially, the effectiveness of the variation operator (labeled as error decrease)

is around 50%. In other words, generating a model which is superior to the current best

is approximately as likely as generating a model which is inferior to the current best.

This should be expected in the xed learning step version of the GSM-NN operator,

as in mutation operators with this characteristic approximately 50% of the models are

generated in the direction of the target semantics, and the other 50% are generated in

the opposite direction. Similarly to what occurs in the EDV criterion, a disruption of

this scenario happens between iterations 50 and 100. The main difference is that the

disruption in the TIE criterion occurs a few iterations later than in the EDV criterion.

As in the EDV criterion, this disruption coincides with the generalization plateau. After

this disruption the effectiveness of the variation operator drops below 20% in the Bio

dataset, and below 30% in the PPB dataset. In the LD50 the effectiveness of the variation

operator also starts around 50%. This measure drops slightly during the run, but no quick

disruption of the median values occurs as in the other datasets. Similarly to what happens

in the EDV criterion, the apparent lack of disruption is related to the considerable different
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behaviors in different runs. It will be clear ahead that quick disruptions also occur in the

LD50 dataset.

Figure 6.15 presents the boxplots with the generalization errors achieved by apply-

ing the EDV criterion with different stopping thresholds. The same gure presents the

number of iterations conducted until the stopping occurred. The values tested for the

stopping thresholds are: 5%, 15%, 25%, 35%, 45%, and 50%. The exploration of different

values for the stopping threshold is aimed at assessing the robustness of each criterion

in regard to this parameter. Across all datasets, stopping always occurs with competi-

tive generalization values for reasonable stopping thresholds. It should be expected that

extreme stopping thresholds (5%, 45%, and 50%) could lead to less robust outcomes.

Because of this, middle values (such as 25%) are preferred. For the remainder of this

chapter, a stopping threshold of 25% is used by default. Also across all datasets, the

25% stopping threshold and the stopping thresholds around it (15% and 35%) achieve

similar outcomes. This is a desirable outcome as no tuning of the stopping threshold

seems to be required. In the Bio dataset, stopping occurs between iterations 57 and

66 for every stopping threshold. All stopping thresholds achieve median generalizations

of around 31 RMSE. In the PPB dataset, stopping occurs around iteration 60 for every

stopping threshold except for 5% which presents a larger stopping variation. All stop-

ping thresholds achieve median generalizations of around 32 RMSE. Since stopping takes

longer in the LD50 dataset, the runs were extended to 1000 iterations. As previously

mentioned, there is more variation among different runs in the LD50 dataset. Stopping

occurs between iterations 200 and 1000. With a 5% stopping threshold, some runs do

not terminate because of the stopping criterion, but rather because of the iterations limit

imposed. All stopping thresholds achieve median generalizations of around 2000 RMSE.

Figure 6.16 presents the boxplots with the results achieved by applying the TIE crite-

rion with different stopping thresholds. As in the EDV criterion, stopping always occurs

with competitive generalization values for reasonable stopping thresholds. This is valid

across all datasets. As a general trend, using the TIE criterion results in later stopping

points than in the EDV criterion. Considering the default stopping threshold of 25%, in

the Bio dataset stopping occurs around iteration 72. The median generalization achieved

is around 30 RMSE. In the PPB dataset, stopping occurs around iteration 85. The me-

dian generalization achieved is around 29 RMSE. As in the EDV criterion, the stopping

points in the LD50 dataset present a bigger variation among different runs. Stopping oc-
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Figure 6.15: Boxplots with the generalization errors (left column) and the number of
iterations (right column) resulting from the application of the EDV criterion with different
stopping thresholds to SLM-FLS



148 CHAPTER 6. SEMANTIC LEARNING MACHINE

curs around iteration 600 for the default stopping threshold. The median generalization

achieved is around 2000 RMSE. It is clear in the application of the TIE criterion that using

extreme stopping thresholds (5%, 45%, and 50%) leads to less robust outcomes across

all datasets.

Figure 6.17 presents a comparison of the results achieved by applying both stopping

criteria with the default stopping threshold. The TIE criterion achieves statistically sig-

nicant superiority in terms of generalization in the Bio and PPB datasets (p-values: Bio

3.878× 10−4, and PPB 9.899× 10−7). This is achieved by allowing the search to run for

more iterations. The differences in the number of iterations conducted are also statisti-

cally signicant (p-values: Bio 2.219×10−11, and PPB 2.384×10−11). In the LD50 dataset,

there are no statistically signicant differences in terms of generalization and number of

iterations. Since both criteria stop at similar iterations, it should be expected that they

achieve similar generalizations.

Overall, both stopping criteria are effective at detecting stopping points that result in

a competitive generalization. Both stopping criteria perform well when applied to SLM-

FLS. In a comparison between both criteria, the TIE criterion generalizes better in 2 out

of the 3 datasets.

6.3.3 Optimal Learning Step

This subsection studies the application of the proposed stopping criteria to SLM-OLS.

Figure 6.18 presents the evolution of the measures used in the stopping criteria, and their

complementary measures.

In the EDV criterion (left column), the percentage of models that reduce the error

deviation starts at high values. This is similar to what happens in the same criterion for

SLM-FLS. In SLM-OLS, a quick disruption of the error deviation decrease measure also

occurs. This is particular clear in the Bio and LD50 datasets. In the Bio dataset, this

disruption occurs with less than 10 iterations conducted. In the LD50 dataset, the dis-

ruption occurs after less than 20 iterations. In the PPB dataset, the disruption does not

appear to be as clear and it only seems to occur around iteration 80. However, it will be

clear ahead that quick disruptions occur across all datasets, and that the error deviation

decrease measure is effective at detecting stopping points that result in a competitive gen-

eralization. To improve the readability of the measures associated with the EDV criterion,
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Figure 6.16: Boxplots with the generalization errors (left column) and the number of
iterations (right column) resulting from the application of the TIE criterion with different
stopping thresholds to SLM-FLS
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Figure 6.17: Boxplots with the generalization errors (left column) and the number of
iterations (right column) resulting from the application of both stopping criteria with a
25% stopping threshold to SLM-FLS
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Figure 6.18: Evolution of the measures related to the EDV (left column) and the TIE (right
column) criteria for SLM-OLS
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the plots in the left column only show the rst 200 iterations. This allows for a better

understanding of where the initial disruptions occur. The behavior of the measures after

iteration 200 is similar to the behavior between iterations 100 and 200.

The effectiveness of the variation operator used in the TIE criterion (right column), is

almost always 100%. Similar effectiveness were presented in the previous chapter for the

equivalent optimal mutation step operators. Because of this very high effectiveness, the

TIE criterion is not able to provide interesting stopping points under reasonable stopping

thresholds. Therefore, the TIE criterion is not appropriate to use in methods that apply

similar optimal computation of learning/mutation steps.

Figure 6.19 presents the boxplots with the results achieved by applying the EDV crite-

rion with different stopping thresholds. Across all datasets, stopping always occurs with

competitive generalization values for reasonable stopping thresholds. As presented in

the SLM-FLS case, the stopping thresholds around the default threshold (15% and 35%)

achieve similar outcomes to the default threshold. The extreme stopping threshold of

5%, presents a considerable bigger variation in the stopping points. In the PPB and LD50

datasets, using the 5% stopping threshold results in some runs not stopping before the

iterations limit imposed. Considering the default stopping threshold, in the Bio dataset

stopping occurs around iteration 3. The median generalization achieved is around 30

RMSE. In the PPB dataset, stopping occurs around iteration 5. The median generalization

achieved is around 32 RMSE. In the LD50 dataset, stopping occurs around iteration 3.

The median generalization achieved is around 2000 RMSE. As in the SLM-FLS case, the

EDV criterion is also effective when applied to SLM-OLS. It is able to detect stopping

points that result in a competitive generalization.

Figure 6.20 presents a comparison of the results achieved by applying both stopping

criteria to SLM-FLS and SLM-OLS. The results presented are based on the usage of the

default stopping threshold. To help the description the following simplications are used:

SLM-FLS EDV is used to describe SLM-FLS using the EDV criterion; SLM-FLS TIE is used

to describe SLM-FLS using the TIE criterion; SLM-OLS EDV is used to describe SLM-OLS

using the EDV criterion. In the Bio dataset, no statistically signicant differences are found

in terms of generalization in the comparison between SLM-OLS EDV and both criteria

applied to SLM-FLS. In the PPB dataset, SLM-FLS TIE achieves a superior generalization

in comparison with SLM-OLS EDV (p-value 3.274 × 10−4). No statistically signicant

differences exist in the comparison between SLM-FLS EDV and SLM-OLS EDV. In the
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Figure 6.19: Boxplots with the generalization errors (left column) and the number of
iterations (right column) resulting from the application of the EDV criterion with different
stopping thresholds to SLM-OLS
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LD50 dataset, no statistically signicant differences are found in terms of generalization

in the comparison between SLM-OLS EDV and both criteria applied to SLM-FLS. Across

all datasets, SLM-OLS EDV stops signicantly faster than SLM-FLS EDV (p-values: Bio

1.269×10−11, PPB 2.367×10−11, and LD50 2.557×10−11) and SLM-FLS TIE (p-values:

Bio 1.389× 10−11, PPB 2.611× 10−11, and LD50 2.557× 10−11).

Overall, the application of the EDV criterion to SLM-OLS is effective at detecting

stopping points that result in a competitive generalization. This criterion application re-

sults in signicantly faster stopping points than in the SLM-FLS variants. In 2 out of the

3 datasets, these faster stopping points do not compromise the generalization achieved.

The application of the TIE criterion to SLM-FLS in the PPB dataset, is the only case where

a different variant can achieve a signicantly superior generalization.

6.3.4 Stopping in Geometric Semantic Genetic Programming

This subsection explores the application of the proposed stopping criteria to the versions

of GSGP equivalent to SLM-FLS (SSHC BM) and SLM-OLS (SSHC ABM). The evolution

of the measures used in the stopping criteria are presented in gure 6.21 for SSHC BM,

and in gure 6.22 for SSHC ABM.

Starting with SSHC BM, the evolution of the measures associated with both criteria

presents similarities with what happens in SLM-FLS. In the EDV criterion (left column),

the percentage of models that reduce the error deviation starts at high values across all

datasets. A quick decrease of this measure occurs in the beginning of the runs. This de-

crease is particularly quick in the Bio and PPB datasets. As in SLM-FLS, the decrease in

the LD50 dataset is less sharp. The behavior of the measures associated with the TIE

criterion (right column) is also similar to what happens in SLM-FLS. The effectiveness of

the variation operator (labeled as error decrease) starts around 50%. This effectiveness

then drops consistently throughout the runs. The decrease of the effectiveness of the

variation operator is particularly clear in the Bio and PPB datasets. In the LD50 dataset,

this same decrease is slower but consistent. In SSHC ABM, the evolution of the mea-

sures associated with both criteria is very similar to what occurs in SLM-OLS. In the EDV

criterion, similar disruptions occur across all datasets. Regarding the TIE criterion, the

effectiveness of ABM is always very close to 100%, as seen in the previous chapter. As in

SLM-OLS, the TIE criterion is not appropriate to use in SSHC ABM given the very high
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Figure 6.20: Boxplots with the generalization errors (left column) and the number of
iterations (right column) resulting from the application of both stopping criteria with a
25% stopping threshold to SLM-FLS and SLM-OLS
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Figure 6.21: Evolution of the measures related to the EDV (left column) and the TIE (right
column) criteria for SSHC BM
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LD50 dataset
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Figure 6.22: Evolution of the measures related to the EDV (left column) and the TIE (right
column) criteria for SSHC ABM
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effectiveness of the associated variation operator.

Figure 6.23 presents a comparison of the results achieved by applying both stopping

criteria to SSHC BM and SSHC ABM. The results presented are based on the usage of the

default stopping threshold. To help the description the following simplications are used:

SSHC BM EDV is used to describe SSHC BM using the EDV criterion; SSHC BM TIE is

used to describe SSHC BM using the TIE criterion; SSHC ABM EDV is used to describe

SSHC ABM using the EDV criterion. In the Bio and PPB datasets, SSHC BM TIE achieves

signicantly superior generalizations than SSHC BM EDV (p-values: Bio 5.445 × 10−3,

and PPB 3.585 × 10−3) and SSHC ABM EDV (p-values: Bio 7.476 × 10−6, and PPB

6.728 × 10−4). In the same datasets, no statistically signicant differences are found in

the comparison between SSHC BM EDV and SSHC ABM EDV. In the LD50 dataset, SSHC

BM EDV generalizes better than SSHC BM TIE (p-value 4.969 × 10−3). No statistically

signicant differences are found in the comparisons between SSHC BM EDV and SSHC

ABM EDV, and between SSHC ABM EDV and SSHC BM TIE. Across all datasets, SSHC

ABM EDV stops signicantly faster than SSHC BM EDV (p-values: Bio 4.272×10−8, PPB

3.442×10−10, and LD50 6.544×10−10) and SSHC BM TIE (p-values: Bio 2.836×10−11,

PPB 2.638× 10−11, and LD50 2.243× 10−11). In the PPB and LD50 datasets, SSHC BM

EDV stops signicantly faster than SSHC BM TIE (p-values: PPB 2.325× 10−9, and LD50

3.879× 10−11). No statistically signicant differences are found in the same comparison

in the Bio dataset. Overall, the stopping criteria are also effective in detecting interesting

stopping points in GSGP as the search is always stopped before overtting occurs. Across

all datasets, the best SSHC variant always achieves a competitive generalization.

A nal note on the direct comparisons between equivalent SLM and SSHC variants

when using the same stopping criterion. SLM-FLS EDV generalizes better than SSHC

BM EDV in the Bio (p-value 2.211 × 10−3) and PPB (p-value 5.715 × 10−4) datasets.

SLM-FLS EDV stops faster in the LD50 dataset (p-value 9.845 × 10−6). No statistically

signicant differences are found in the remaining comparisons between these methods.

SLM-FLS TIE generalizes better than SSHC BM TIE in the PPB (p-value 2.759×10−4) and

LD50 (p-value 3.710 × 10−5) datasets. SLM-FLS TIE stops faster across all datasets (p-
values: Bio 2.628×10−11, PPB 5.006×10−11, and LD50 2.872×10−11). No statistically

signicant differences are found in the remaining comparisons between these methods.

SLM-OLS EDV generalizes better than SSHC ABM EDV in the Bio (p-value 1.256×10−8)

and PPB (p-value 1.723 × 10−3) datasets. SLM-OLS EDV stops faster in the Bio dataset



6.4. EXTENDED COMPARISON 159

(p-value 1.292 × 10−5), while SSHC ABM EDV stops faster in the PPB dataset (p-value

1.376 × 10−4). No statistically signicant differences are found in the remaining com-

parisons between these methods. Overall, the SLM variants are more robust than the

equivalent GSGP variants.

6.4 Extended Comparison

This section presents a comparison between the SLM variants and some non-evolutionary

supervised learning methods. The non-evolutionary methods tested are: Support Vec-

tor Regression (SVR); Multilayer Perceptron (MLP) using backpropagation; Random Tree

(RT); and Linear Regression (LR). These methods are tested using their respective WEKA

(Hall et al., 2009) implementations. The default parameters are used. The SVR version

tested uses the polynomial kernel with the exponent parameter set to 1. The complexity

parameter (C) is also set to 1. The MLP version tested uses the following parameters:

learning rate of 0.3; momentum rate of 0.2; 500 epochs (iterations); and the number of

neurons in the hidden layer is approximately set to half of the number of attributes in

each dataset. The RT method implemented in WEKA constructs random trees by ran-

domly choosing attributes at each tree node. The SLM variants tested use the stopping

criteria with the default stopping threshold. To help the description the following sim-

plications are used: FLS EDV is used to describe SLM-FLS using the EDV criterion; FLS

TIE is used to describe SLM-FLS using the TIE criterion; OLS EDV is used to describe

SLM-OLS using the EDV criterion. The generalization is assessed by performing a 30-fold

cross-validation. Although using 10 folds is more common, performing at least 30 runs

is important to assess the behavior of stochastic methods such as the SLM. Because of

this, all methods run 30 times, one for each fold. Note that the SLM generalization errors

presented might be slightly better than in the previous sections because the amount of

training data provided is now higher (70% before against over 96% now).

Table 6.2 presents the median and average generalization errors achieved by all meth-

ods across the 30 folds. Across all datasets, the SLM variants achieve the lowest aver-

age generalization errors. In terms of median generalization error, a similar outcome is

achieved. The only case where a SLM variant is not superior to all other methods occurs

in the LD50 dataset, where FLS TIE has a slightly higher median than MLP (1824.0 against

1803.5). Across all datasets, the best SLM variant always achieves the best average and



160 CHAPTER 6. SEMANTIC LEARNING MACHINE

Bio dataset

25

30

35

40

45

SSHC BM EDV SSHC BM TIE SSHC ABM EDV

G
en

er
al

iz
at

io
n 

er
ro

r

0

100

200

300

400

500

600

700

800

900

SSHC BM EDV SSHC BM TIE SSHC ABM EDV

N
um

be
r 

of
 it

er
at

io
ns

 / 
ge

ne
ra

tio
ns

PPB dataset

25

30

35

40

45

SSHC BM EDV SSHC BM TIE SSHC ABM EDV

G
en

er
al

iz
at

io
n 

er
ro

r

0

50

100

150

200

250

300

350

SSHC BM EDV SSHC BM TIE SSHC ABM EDV

N
um

be
r 

of
 it

er
at

io
ns

 / 
ge

ne
ra

tio
ns

LD50 dataset

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

SSHC BM EDV SSHC BM TIE SSHC ABM EDV

G
en

er
al

iz
at

io
n 

er
ro

r

0

1000

2000

3000

4000

5000

SSHC BM EDV SSHC BM TIE SSHC ABM EDV

N
um

be
r 

of
 it

er
at

io
ns

 / 
ge

ne
ra

tio
ns

Figure 6.23: Boxplots with the generalization errors (left column) and the number of
generations (right column) resulting from the application of both stopping criteria with a
25% stopping threshold to SSHC BM and SSHC ABM
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median generalization errors of all the methods.

Table 6.2: Median and average generalization errors across the 30 folds

Dataset Measure FLS EDV FLS TIE OLS EDV SVR MLP RT LR

Bio
Median 30.6 28.9 28.9 34.8 37.2 35.7 34.0
Average 30.6 29.2 30.5 39.0 1375.2 36.8 42.9

PPB
Median 30.3 26.0 29.8 33.1 36.4 39.6 39.0
Average 30.8 27.0 30.5 1029.5 35.8 37.7 3615.3

LD50
Median 1796.7 1824.0 1782.6 2384.6 1803.5 2806.1 2214.8
Average 2004.9 2006.0 1998.3 22208.4 35956.3 2838.7 2204.6

Figure 6.24 presents the boxplots with the generalization errors achieved by all the

methods in the 30 folds. In general the SLM variants present smaller performance varia-

tions across the different folds. Table 6.3 presents the results from the statistical compar-

isons between the SLM variants and the remaining methods. p-values are only presented

for the comparisons with statistically signicant differences. The comparisons where no

statistically signicant differences are found are left blank. The statistical superiority al-

ways refers to the SLM variant being superior to the other method in comparison. The

reverse never occurs. In other words, none of the non-evolutionary supervised learning

methods tested is superior to any SLM variant. In the 36 comparisons performed, the

SLM variants achieve signicantly superior outcomes in 25 comparisons. In the remaining

11 comparisons no signicant differences are found.

Table 6.3: p-values of each comparison with statistically signicant differences

Dataset SLM variant
Other method

SVR MLP RT LR

Bio
FLS EDV 1.8e-02 1.9e-05 4.1e-03 1.5e-02
FLS TIE 2.3e-03 6.5e-06 1.5e-03 1.3e-03

OLS EDV 1.2e-02 5.8e-05 7.1e-03 6.8e-03

PPB
FLS EDV 1.1e-02 6.8e-03
FLS TIE 2.2e-02 2.3e-03 3.7e-04

OLS EDV 2.8e-02 5.0e-03

LD50
FLS EDV 2.7e-02 6.7e-04
FLS TIE 2.8e-02 7.5e-04

OLS EDV 2.7e-02 4.6e-04

Overall, the SLM variants achieved competitive outcomes. However, the experiments
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Figure 6.24: Boxplots with the generalization errors across the 30 folds
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conducted in this section were exploratory in nature. Further empirical testing is needed

to fully assess the general competitiveness of the SLM. Experiments need to be extended

to other datasets, which should also include assessments in classication tasks. Further

comparisons should also involve the optimization of the parameters of each method in

each dataset (e.g., by using nested cross-validation). This is also valid for the SLM variants.

The SLM was also tested in its simplest form, i.e., in the single hidden layer case. As the

geometric semantic mutation was also dened for any number of hidden layers, the future

SLM assessments should include the exploration of the effect of using several hidden

layers.

A nal note on the computational time of the SLM variants. Figure 6.25 presents the

computational time in seconds of the SLM variants tested in this section. OLS EDV re-

quires around 1 second in computational time in all datasets. The FLS variants take a

little longer to stop, but are also very fast. In the Bio and PPB datasets, the FLS variants

require around 4 or 5 seconds to compute. The computational times of the same vari-

ants in the LD50 dataset are a bit misleading. A bigger xed learning step would reduce

the computational time to values similar to the Bio and PPB datasets. As it was seen in

gure 6.4, the usage of bigger learning step (100) in the LD50 dataset would be suitable

if a stopping criterion was used. Overall, the SLM variants are demonstrably efficient in

terms of computational time.
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Figure 6.25: Computational time of each SLM variant



7
Conclusions

7.1 Summary

The results in this dissertation show that Standard GP is prone to overtting. To address

this issue, a set of approaches was studied in chapter 4. This set of approaches relies on

a different and dynamic use of the available training data. The goal of the rst approach

was to study the generalization effect of using very small dynamic subsets of training data.

The extreme case of using only a single training instance was also considered. This rst

approach works by, at each generation, dening the tness of each individual as the per-

formance on a randomly selected subset of the training data. This implies that only indi-

viduals that perform well on various different training data subsets are able to reproduce

and/or remain in the population. The results showed that using very small dynamic sub-

sets of training data is indeed effective at avoiding overtting. Besides generalizing better

than Standard GP, the resulting individuals were also considerably smaller. The best re-

sults were obtained either when using a single training instance or when using 5% of the

total training data available. These results showed that the best surviving individuals have

indeed captured the underlying relationships of the data instead of overtting it. Given

the particularly interesting effect of using a single dynamically changing training instance,

other similar approaches were proposed. These rely on interleaving a single training in-

stance with periodically using all of the training data. The rationale is based on trying to

increase the training data learning rate, while still avoiding overtting. The results show

that it is possible to achieve these outcomes if a clear preference is given to using more

165
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generations with a single training instance. A normalized comparison was also provided

that showed that the best approaches are not simply delaying overtting by presenting

less data to the search method. These best approaches are indeed avoiding overtting.

The approaches tested in chapter 4 showed that it is possible to avoid overtting without

imposing any constraint on the complexity of the individuals. As a positive side-effect,

these approaches also contribute to faster GP runs as the tness evaluation is performed

using less training instances.

Chapter 5 provided an analysis of the generalization ability of GSGP. This analysis

showed that the generalization outcome is considerably dependent on the implemen-

tation of the mutation operator. The original mutation operator is shown to be prone

to overtting, while a slightly modied mutation operator can effectively protect against

overtting. GSGP with the modied mutation operator can achieve a competitive gen-

eralization. A justication for these outcomes was provided by remarking some similari-

ties with the area of Ensemble Learning. A novel geometric semantic mutation was also

proposed and experimentally tested. This novel mutation can considerably improve the

training data learning rate. It is also shown in the following chapter that, with an appropri-

ate stopping criterion, the proposed mutation operator is able to achieve a competitive

generalization while producing very small individuals. When using the mentioned stop-

ping criterion, the evolutionary process only needs to run a few generations. Chapter 5

also showed how GSGP can be used to effectively nd aligned individuals with arbitrary

precision. This can be seen as an alternative way of conducting the evolutionary search,

as the original supervised learning targets can be directly disregarded during the search

process.

Chapter 6 showed how the GSGP mutation can be extended to NN. The most im-

portant consequence is that search can now be performed in the space of NN with the

same unimodal error landscape as in GSGP. The proposed mutation operator excludes

the need to use backpropagation to adjust the weights of the network. With the pro-

posed mutation operator, a NN construction algorithm was proposed, named Semantic

Learning Machine (SLM). It was empirically shown that with the SLM it is possible to per-

form an effective and efficient stochastic search in the space of NN. It is also interesting

to point out that the SLM entails a free lunch, given that the error function induces a ge-

ometrical structure over the targets. This also applies to GSGP as previously stated. It

was also shown that the mutation operator used within SLM allows for a simple way of
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controlling the sparseness at each mutation operation. This results in a structural simpli-

cation of the resulting NN. Two search stopping criteria were also proposed. Results

showed that these stopping criteria were able to detect stopping points that result in a

competitive generalization. The search was always stopped before overtting started to

occur. These stopping criteria were shown to be successful in SLM and GSGP. Given

that the corresponding searches stopped early, the resulting NNs or individuals were

also considerably smaller.

7.2 The Road Ahead

Experimentally assessing the SLM for the case of several hidden layers is one of the rst

future steps. It remains to be seen if the added hidden layers can provide a superior

generalization or faster convergence, even though in terms of representation, the single

hidden layer case is sufficient under the universal approximation results. It is also impor-

tant to study if the effectiveness of the semantic stopping criteria remains unaltered in the

case of several hidden layers. The geometric semantic mutation dened for feedforward

NNs can also be extended for the case of recurrent NNs. This extension is possible

under mild restrictions. The corresponding experimental assessment of the geometric

semantic mutation for recurrent NNs is also an important future step.

As is commonly the case, an even more extended experimental assessment would be

valuable. This extended experimental assessment should include: extending the regres-

sion analysis to other datasets; providing extended comparisons with other supervised

learning methods; and providing results for classication tasks. Of particular interest is

the application of the best performing methods to other challenging tasks.

As a eld, GP has been gradually overcoming the methodological aws that were

prevalent in the early years, and the topics of generalization and overtting have been

receiving considerably more focus. Addressing these topics is fundamental in order for

GP to be more widely recognized as a valuable technique within the larger supervised

learning area. The recent developments in terms of more efficient search operators, and

the recent novel approaches focusing on generalization and overtting, bring GP closer

to a wider recognition.
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