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Abstract
Cell migration is a fundamental mechanism which enables several biological phenomena, for
example, embryogenesis, vasculogenesis, angiogenesis and immune system response, to occur
and it is still not fully understood. Complications and diseases often arise from faults during
this process. Effectively, cell migration is a hallmark of malignant cancer cells. By studying
emergent patterns of cells, it is possible to shed light on this mechanism. Here, a hybrid
two-dimensional (2D) model of cell dynamics couples a finite element method (FEM), for ex-
tracellular matrix (ECM) deformations, with a cellular Potts model (CPM), for cell movement
and adhesion. A model for traction force generation and another for sensing mechanical en-
vironmental cues were used to couple the FEM to the CPM. This model was used to study
mechanically-driven emergent cell behavior. Image analysis methods were adapted in order
to classify and quantify the morphology of resulting patterns. In the context of vasculogen-
esis, results show that for certain values of cell-cell adhesion and cell traction force there is
a maximum on the average number of meshes and that, by lowering cell-cell adhesion cost,
the average mesh size increases, while the average number of meshes decreases. Furthermore,
mechanical cues coupled with cell-cell adhesion were found to be able to pull multiple cells
from a soft substrate into a stiffer substrate. Sprouting angiogenesis was also tested and, even
though proliferation is not contemplated in the model, mechanical cues are enough to polarize
cells on the surface of a spheroid and start forming sprouts. Cells with larger traction forces
lead to longer sprouts, more bifurcations and observation of anastomosis, suggesting that tip
cells have a stronger grip on the ECM. Finally, an avascular tumor was simulated. Mechanical
feedback accounts for an uneven surface of the tumor. Metastatic cell invasion capabilities
increase with traction force and mechanical cues resulting from those cells cause protrusions
of normal tumor cells at the surface.
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Resumo
A migração celular é um mecanismo fundamental que permite a ocorrência de vários fenó-
menos biológicos, como por exemplo, embriogénese, vasculogénese, angiogénese e resposta do
sistema imunitário, e ainda não é compreendido na sua totalidade. Problemas durante este
processo levam muitas vezes ao aparecimento de doenças e complicações. Efectivamente, a
migração celular é uma das características distintas de células tumorais malignas. Ao estudar
os padrões emergentes de células, é possível desvendar este processo. Um modelo bidimension-
al de dinâmica celular que une um método de elementos finitos (FEM), para deformações da
matriz extracelular (ECM), a um modelo de Potts celular (CPM), para movimento e adesão
celular. Um modelo para a produção de forças de tracção e outro para a detecção de sinais
mecânicos foram usados para acoplar o FEM ao CPM. Este modelo foi usado para estudar com-
portamento celular emergente mecânicamente induzido. Métodos de análise de imagem foram
adaptados a fim de classificar e quantificar a morfologia dos padrões resultantes. No contexto
da vasculogénese, os resultados demonstram que, para certos valores de adesão célula-célula e
de forças de tração, existe um valor máximo do número médio de malhas e que, ao diminuir
o custo de adesão célula-célula, o tamanho médio de malhas aumenta, enquanto o número
médio de malhas diminui. Além disso, sinais mecânicos, juntamente com adesão célula-célula,
permitem que células num substrato mais duro puxem várias células do substrato mais mole.
A angiogénese (sprouting) também foi testada e, apesar da proliferação celular não estar con-
templada neste modelo, sinais mecânicos são suficientes para polarizar células à superfície do
esferóide, formando sprouts. Células com maior força de tração conduzem a sprouts maiores, a
mais bifurcações e à observação de anastomoses, sugerindo que as tip cells se agarram com mais
força ao substrato. Finalmente, foi simulado um tumor avascular. O feedback mecânico prevê
rugosidades à superfície do tumor. A capacidade de invasão de células metásticas aumenta
com a força de tração e os sinais mecânicos causados por estas células induzem protrusões de
células tumorais normais na superfície do tumor.





xv

Contents

Acknowledgements vii

Abstract xi

Resumo xiii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Biological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Cell-Cell Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Cell-Matrix Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Cell Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Traction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Mechanosensing and Durotaxis . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Model 13
2.1 Mechanics of the ECM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Infinitesimal Strain Theory . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . . . . . 16

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
FEM for Structural Mechanics . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Cellular Potts Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Including Durotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Transition Between Configurations . . . . . . . . . . . . . . . . . . . . . 27

2.3 Traction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Implementation and Analysis 31
3.1 CPM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 FEM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Connected Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 During the CPM step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Classifying Cell Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Counting and Measuring Meshes . . . . . . . . . . . . . . . . . . . . . . 44



xvi

4 Cell Culture Morphology 45
4.1 Vasculogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Phase Diagram of Cell Structure Classification . . . . . . . . . . . . . . 48
4.1.2 Vascular Network Mesh Structure . . . . . . . . . . . . . . . . . . . . . 50

4.2 ECM With Space Dependent Rigidity . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Stiffness Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Stiffness Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Sprouting Angiogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Avascular Tumor Metastasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusions and Future Work 61
5.1 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Geometrical Interpretation of the Displacement Gradient 65

B Equilibrium Consequences for the Stress Tensor 69

C Constitutive Equation 73

D Shape Functions 77

E Variational Formulation 81

F Assembly of the Global Stiffness Matrix 83

G Preconditioned Conjugate Gradient 85

Glossary 93



xvii

List of Figures

1.1 Lipid bilayer schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Basic structure of a phospholipid . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Membrane proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Basic structure of the cytoskeleton . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Actin and microtubules distribution within the cell . . . . . . . . . . . . . . . . 4
1.6 ECM basic components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Cell-cell adhesion junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Cadherin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.9 Integrin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.10 Cell locomotion schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.11 Cell traction force due to contraction . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Displacement diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Stress vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Example of a mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Intended transformation between global and local variables . . . . . . . . . . . 20
2.5 Nonzero values of a global stiffness matrix . . . . . . . . . . . . . . . . . . . . . 23
2.6 CPM configuration of cell tags and types . . . . . . . . . . . . . . . . . . . . . 24
2.7 Von Neumann neighborhood vs. Moore neighborhood . . . . . . . . . . . . . . 25
2.8 CPM step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Traction force model schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Implementation overview flowchart . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 CPM step flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Example of broken connectivity during CPM step . . . . . . . . . . . . . . . . . 35
3.4 Grid setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Global stiffness matrix reduction example . . . . . . . . . . . . . . . . . . . . . 39
3.6 Connected component analysis two-pass algorithm visualization . . . . . . . . . 43

4.1 Simulated example of random initial conditions . . . . . . . . . . . . . . . . . . 45
4.2 Simulated forces applied to the ECM . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Simulated displacements of the ECM . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Simulated strains on the ECM . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Simulated stresses on the ECM . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Vasculogenesis example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Classification example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Mesh parsing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.9 Classification results versus cell-cell adhesion and traction force . . . . . . . . . 49



xviii

4.10 Classification fraction codification . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.11 Average mesh number versus cell-cell adhesion and traction force . . . . . . . . 50
4.12 Average mesh area versus cell-cell adhesion and traction force . . . . . . . . . . 51
4.13 Simulation results of cell migration on an ECM with a stiffness gradient . . . . 53
4.14 Simulation results of cell migration on an ECM with a stiffness interface . . . . 55
4.15 Spheroid sprouting simulation with default parameters at different stages . . . 57
4.16 Spheroid sprouting simulation with default parameters - final . . . . . . . . . . 57
4.17 Spheroid sprouting simulation with mixed cell types . . . . . . . . . . . . . . . 57
4.18 Benign tumor simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.19 Simulation result of metastatic tumor cells . . . . . . . . . . . . . . . . . . . . . 60
4.20 Simulation result of co-culture tumor cells . . . . . . . . . . . . . . . . . . . . . 60

A.1 Pure shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2 Principal strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

D.1 Local coordinate system for an element with three vertices . . . . . . . . . . . . 77
D.2 Local coordinate system for an element with four vertices . . . . . . . . . . . . 78
D.3 Shape functions for a triangular element . . . . . . . . . . . . . . . . . . . . . . 79
D.4 One of the shape functions for a quadrilateral element . . . . . . . . . . . . . . 79

F.1 Global vs. local indexation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



xix

List of Tables

2.1 Gaussian quadrature coordinates and corresponding weights . . . . . . . . . . . 22

4.1 Simulation default paramters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46





xxi

List of Abbreviations

ECM Extracellular Matrix
CAM Cell Adhesion Molecule
FA Focal Adhesion
FEM Finite Element Method
CPM Cellular Potts Model
PCG Preconditioned Conjugate Gradient
CG Conjugate Gradient
MCMC Markov Chain Monte Carlo
CCA Connected Component Algorithm
RNG Random Number Generator





1

Chapter 1

Introduction

1.1 Overview

Self-organization is the process by which components of an arbitrary system spontaneously
rearrange in a dynamical steady state by local interactions and random fluctuations. These
processes typically result from positive or negative feedback of such interactions and the steady
state exhibits self-repair to a certain extent [1]. Therefore, self-organization of cell systems
plays a fundamental role, not only in the development of a multicellular being, but also in its
maintenance. Examples include morphogenesis of the embryo [2], such as the creation of a
vascular network de novo (vasculogenesis) and from a pre-existing one (angiogenesis) [3] and
tissue regeneration [4].

In fact, emergent phenomena of self-organization is the outcome of how cells communicate
with each other [5] and with the surrounding environment [6], which is composed mainly of
fibrous proteins, also called extracellular matrix (ECM). Specifically, cell communication is
mediated through cell-cell adhesion and also by secreting signal molecules. On the other hand,
cell-ECM interaction is achieved by focal adhesions (cell-matrix adhesion) through which cells
can sense their environment, for example, the stiffness of the substrate and chemical compo-
sition.

In particular, because morphological changes require cell movement, cell-cell adhesion, in
this context, must not bind two cells irreversibly and, thus, cell contacts must be regularly
formed, broken and rearranged. Adhesion in general is performed by transmembrane molecules
called CAMs (cell adhesion molecules). Cadherins, a family of molecules of said type, play
a major role in mediating cell-cell interaction. In contrast, focal adhesions are comprised of
large protein complexes generated by the contact of integrins (another family of CAMs) with
the ECM. These complexes also attach to the cytoskeleton, therefore focal adhesions not only
provide support for the cell, but can also regulate its behavior. In fact, the ability cells have
for sensing tissue stiffness (mechanosensing) and regulating accordingly leads to the process
called durotaxis [7], in which the cell migrates towards higher ECM stiffness. Furthermore,
durotaxis and mechanosensing also play a role in cell polarization, which is the ability of a cell
to transition from an isotropic and symmetric configuration to an anisotropic and asymmetric
one.

Additionally, in order for the cell to remain attached to the ECM and maintain its shape
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it needs to continuously pull on the substrate. Regulated by focal adhesions, traction forces
refer to this phenomena and are also relevant in other processes such as cell movement.

All things considered, cell communication has a rather prevalent mechanical basis. Not
only cells adhere to each other, but they also attach to the ECM. The latter implies that the
cell applies traction forces on the substrate, deforming it. This leads to a feedback mechanism
in which cells change the strain and stiffness of the ECM due to traction forces and other
cells respond to those strains by migrating according to durotaxis. Afterwards, new cell
positions lead to new traction forces and strains, which translates to new preferred directions
of movement and so on.

1.2 Biological Background

Having described the mechanism that is going to be explored, it is now necessary to give
a more thorough explanation on the organelles and molecules that take part in this process.

First, there is the cell membrane, also called cytoplasmatic or plasma membrane, that sep-
arates the gel-like interior of the cell (cytoplasm), constituted by the cytosol (liquid domain)
and the cell’s organelles, from the fluid-like exterior. Its functions include protection from the
environment, selective permeability of material, structural support through adherence, cell
signaling and, by attaching to the cytoskeleton, it provides shape and mechanical resistance
to the cell. The cell membrane is organized in two layers (Fig. 1.1) and it is mainly composed
of a class of molecules called phospholipids (Fig. 1.2).

Figure 1.1: The self-assembled configuration of the plasma
membrane according to the fluid mosaic model [8]. Due to the
water affinity properties of the phospholipid, the membrane has
two layers in which the polar portion of the molecules is facing

outwards.

}

}
hydrophilic

hydrophobic

Figure 1.2: The structure of a phos-
pholipid. The head (circle) contains
a negatively charged phosphate group
and the tails (lines) are basically long
carbon-carbon chains. Therefore, regard-
ing water affinity, this molecule has a hy-
drophilic head (high water affinity) and

hydrophobic tails (low water affinity).
However, much of the membrane’s functionality is largely defined by complementary pro-

teins within and adjacent to it (Fig. 1.3). Proteins are large and complex molecules, made from
a sequence of monomers, called amino acids, and are critical to the functionality, regulation
and structure of the body’s tissues [9].

There are two main groups of membrane proteins. Integral membrane proteins, also called
transmembrane proteins, are spread across and pierce through the membrane. These proteins
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peripheral protein

integral protein

lipid anchored

protein

microfilaments

ECM fibers

cytosol

extracellular
domain

Figure 1.3: Diagram showing how proteins are embedded in the cell membrane and how
they are classified accordingly. Integral (transmembrane) proteins (in blue) pierce through
the membrane. Peripheral proteins (in green) connect directly or indirectly (by attaching
to integral proteins). Lipid anchored proteins (in orange), as the name suggests, require
a hydrophobic lipid inside the membrane in order to remain attached to the membrane.
These proteins provide functionality, which differs according to its type, to the cytoplasmatic

membrane.

play a crucial role in adhesion and transport. Peripheral membrane proteins are connected
directly to the membrane or indirectly by interacting with transmembrane proteins. They
can be present in both sides of the membrane. Additionally, cytoskeletal filaments (mostly
actin) connect to the bilayer by means of peripheral (adapter) proteins, providing the cell with
greater support and with means to communicate physically with the exterior [10]. Further-
more, proteins in the exoplasmatic domain are often attached to components of the ECM.

Next, there is the cytoskeleton composed of protein filaments that support the nucleus and
plasma membranes. Not only does it provide shape and mechanical resistance to the cell, but
also allows the cell to apply forces and move. Additionally, it plays a role in cell signaling
pathways (the intermediate reactions needed for a cell to respond to stimuli) and is fundamen-
tal in cell division.

The filaments that make up the cytoskeleton are classified in three different groups (Fig. 1.4)
[11]. Actin filaments, also called microfilaments, are formed near the cell membrane in non-
muscle cells and are responsible for connecting the rest of the cytoskeleton to the membrane.
Because microfilaments are strong and flexible, they are directly involved in altering the cell’s
shape. Moreover, by connecting to the membrane proteins, actin filaments play a major role
in initiating the reaction chains needed to respond to external stimuli and in both cell-cell and
cell-matrix adhesion. Microtubules are hollow tube-like, yet thicker, filaments and are mainly
concerned with intracellular transport, cell division and maintaining the structure of the cell.
Intermidiate filaments form an internal network, that extends from the nucleus, which provides
additional structural support.
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microtubules

intermediate filaments

actin filaments

Figure 1.4: A schematic representation of
how the basic constituents of the cytoskele-
ton are distributed within the cell. Namely,
microtubules (green), intermediate filaments
(blue) and actin filaments (red). Actin and
microtubules can observed using fluorescence

microscopy (Fig. 1.5).

Figure 1.5: Image obtained with a fluo-
rescence microscope representing bovine pul-
monary artery endothelial cells. The nucle-
us is marked blue, actin is stained with red
and tubulin, of which microtubules are com-
posed, marked green. Example image from
the ImageJ-Programmpaket (adapted), avail-

able at https://imagej.nih.gov/ij/images/.

Outside the cell there is the extracellular matrix, a collection of molecules in the exoplas-
matic domain that serve as a scaffold for the body providing support to the surrounding cells
and organizating them into tissues (Fig. 1.6).

collagen fiber

fibronectin

proteoglycan

elastin

Figure 1.6: ECM is composed of fibrous proteins, for example, collagen (in yellow), fi-
bronectin (in red) and elastin (in green), and proteoglycans (in blue). Collagen confers den-
sity and stiffness of the matrix. Elastin, as the name implies, is responsible for the elasticity
of the ECM. Fibronectin bind to collagen fibers, promoting structural integrity of the ECM,
and cell-ECM adhesion sites, hence it is directly implicated in cell adhesion. Proteoglycans

are able to bind water and cations.

The molecules that compose the ECM are typically secreted by cells [12]. Collagen fibers
provide mechanical strength and resilience to the substrate. Proteoglycans, carbohydrate poly-
mers attached to other ECM molecules, keep the tissue and the surrounding cells hydrated,
provide support to cells and can also help trap other molecules, such as growth factors. Solu-
ble multiadhesive matrix proteins, for example fibronectin and laminin, are able to cross-link
different components of the ECM and cell-matrix adhesion receptors. Elastin, proteins that
confer elasticity to the matrix, that is the ability to return to the original configuration after
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being deformed.

Actually, the fibers from the ECM, by attaching to integral membrane proteins, or their
adapter proteins, and consequently indirectly to the cytoskeleton, not only adhere to cells by
means of focal adhesions (FA), but also are able to coordinate several cell functions, by acti-
vating signaling pathways [13]. The resulting responses encompass cell growth, proliferation,
gene expression, cell differentiation and migration [14].

1.2.1 Adhesion

Cells, in order to form tissues, adhere to one another and to the substrate they are on and,
therefore, adhesion plays a crucial role in morphology. The molecules responsible for adhesion
are specialized membrane integral proteins called cell adhesion molecules (CAMs), typically
with adapter proteins connected to the actin cytoskeleton [15]. Effectively, there are two types
of adhesion according to what the cell is adhering to.

Cell-Cell Adhesion

Although integral proteins typically span the membrane, CAMs often cluster into special-
ized cell junctions, whose diversity allows for both long lasting and transient adhesion [9].
In addition, CAMs are able to recruit multifunctional adapter proteins to its cytosol-facing
surface. These peripheral proteins connect the CAM to microfilaments of the cytoskeleton
and gather other molecules that participate in cell signaling pathways, which control protein
production and gene expression of the cell. Because of this, the cell’s surroundings affect its
shape and function.

cell 1

cell 2

extracellular
space

(a) Tight Junction

cell 1

cell 2

extracellular
space

(b) Gap Junction

cell 1

cell 2

extracellular
space

(c) Anchoring Junction

Figure 1.7: Diagrams representing three fundamentally different types of cell-
cell adhesion junctions.

As mentioned above, CAMs can also bind to other CAMs laterally in the same surface
forming clusters. When these clusters attach to other cells they create junctions. There are
several types of junctions. Tight junctions (Fig. 1.7a), in which transmembrane proteins are
embedded in both cell membranes, form linked rows across the membrane resulting in an
impermeable barrier. Gap junctions (Fig. 1.7b) directly connect the cytoplasm of the two
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cells through a regulated gate. Anchoring junctions have an extracellular cluster interaction
(Fig. 1.7c). Adherens junctions are anchoring junctions in which the CAMs are connected to
the actin cytoskeleton and are mainly composed of cadherin molecules. In constrast, desmo-
somes are made of two specific cadherins and connect to keratin intermediate filaments instead
of microfilaments.

Cadherins are key CAMs in cell-cell adhesion (Fig. 1.8), cell signaling and differentiation.
The most common cadherins in the cadherin family are the E-, P- and N-cadherins and are
referred to as classical cadherins, in fact E-cadherins are greatly expressed during the early
stages of development [16].

β-catenin

α-catenin

actin filament

Ca2+ ion

extracellular
cadherin domain

Figure 1.8: Diagram of the structure of a cadherin molecule. The extracellular
region is above the membrane and the cytosol below it. The extracellular domain
contains repeated sequences of proteins with sites for calcium ions Ca2+, hence
the name (calcium, Ca, adhesion protein). These ions are essential for cadherins
to adhere to other cadherins. On the intracellular end of the cadherin, there are
adapter proteins responsible for connecting the cadherin to the cytoskeleton.

The extracellular component of cadherins, made of Ca2+ domains (hence the name cad-
herin) linked together, attach to calcium domain of other cadherins. Inside the membrane,
the common proteins that bind the cadherin to the actin cytoskeleton are α- and/or β-catenin
and are essential for strong adhesion.

Cell-Matrix Adhesion

Integrins are transmembrane CAMs associated with cell-matrix adhesion, usually surround-
ed by peripheral macromolecule structures (Fig. 1.9). By clustering, integrins and the corre-
sponding adapter proteins can assemble into focal adhesions (FAs). These integrin-containing
proteic structures connect bundles of actin filaments to ligands of the ECM, both physically
and functionally [17]. Additionally, integrin molecules can be in an active or inactive configura-
tion. Therefore, by regulating integrin expression or its binding activity (or both), the cell can
adjust cell-matrix adhesion strength, ranging from weak and fleeting to strong and long lasting.
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β subunit

α subunit

ECM fiber

actin filament

adapter protein

complex

Figure 1.9: The structure of an activated integrin. The extracellular α and β
subunits grip ECM fibers, namely fibronectin. The intracellular portion of the
integrin is connected to several adapter proteins (examples include talin, FAK,
vinculin, etc.), which mediate its activation and signal transmittance, which in

turn are bound to the cytoskeleton.

Hence, FAs (and, consequently, integrin molecules) are essencial for adhesion to the ECM
and for adhesion dependent signaling (mechanosensing), which both cell growth and motil-
ity depend on, present in processes such as migration in the embryo (morphogenesis) and
inflammatory response [18].

1.2.2 Cell Migration

In order for self-organization to occur, cells must be able to move according to environmen-
tal cues. In fact, the cytoskeleton is crucial for this process. Namely, the actin cytoskeleton,
by organizing in a wide variety of structures, such as bundles and networks, and possess-
ing filaments of dramatically different lengths, enables the cell to assume, and easily change,
shape. Effectively, by regulating actin polymerization and degradation the cell can exert forces,
through adhesion, necessary for cell motility.

Polarization of the cell is inevitably necessary for directed movement [19]. Without it, the
cell would not be able to discern a direction to move towards. External cues and/or stochastic
fluctuations lead to an asymmetry and polarity. Environmental stimuli include the gradient of
a chemical concentration (chemotaxis), a stiffness gradient and stretch direction (durotaxis)
and the gradient of attractant chemicals bound to the ECM (haptotaxis), for example. On the
other hand, fluctuations may lead to the spontaneous emergence of polarity due to positive
feedback.

Cell locomotion on a two dimensional surface typically exhibits a sequence of changes in
morphology (Fig. 1.10). First, there is an extension of the cell membrane protrusion (lead-
ing edge) pushed forward by actin networks due to actin polymerization. Afterwards, at the
leading edge actin bundles form focal adhesions and attach the cell to the ECM. Next, the
bulk of the cell is propelled forward. Finally, the cell rear adhesions are released, effectively
moving the cell forward. Therefore, in order to move, the cell needs to strike a balance between
cytoskeleton contraction and traction forces.
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direction of motion

focal adhesion

1. Initial configuration

filopodium

lamellipodium

2. Sensing

polymerized

actin

3. Extension

leading edge

4. Attachment

actin
cytoskeleton

5. Contraction

trailing edge

6. Rear release

7. Recycling

Figure 1.10: Diagram representing how
a cell is able to move on a substrate. The
cell is placed above the ECM and ad-
heres to it by means of FAs. After ini-
tially sensing its surroundings and break-
ing symmetry, the cell rearranges itself
forming what is called a lamellipodium,
a protrusion on the direction of move-
ment containing actin in a mesh-like con-
figuration. The cell scans its surround-
ings by creating thin and long protrusions
called filopodia. After deciding the direc-
tion of the next step, the lamellipodium is
extended forward by polymerizing actin.
Then, the leading edge attaches to the
ECM, by creating a new FA. The actin
cytoskeleton contracts (some actin bun-
dles, due to positioning, have a crucial
role in this body movement and are al-
so called stress fibers), propelling the cell
body forward and the FAs at the trailing
edge are released. After going through
this process the cell is displaced from its
initial configuration and it is able to re-
cycle the, now unused, FA. By repeating
this process the cell can keep on moving
according to what its surroundings dic-

tate. Figure adapted from [20].
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contraction actin motor
protein

Figure 1.11: Diagram explaining how a contraction of actin bundles,by means
of actin motor proteins, for example, the myosin family, connected to the cell
membrane leads to a force applied to the ECM, when the cell is adhered to it.

This force, in turn, causes a deformation in the substrate.

Traction Forces

Typically, cells attach to the ECM in order to survive. Once attached they exert tensile
forces on the substrate, called traction forces (Fig. 1.11). These forces are not only needed for
cell migration, but also for ECM organization and mechanical signal generation [21].

Actin filament bundles are joined together by specific proteins, which, by consuming energy,
are capable of moving along the microfilaments and, because of that fact, are called motor
proteins. These proteins are responsible for contracting and extending the actin cytoskeleton.
Through FAs, contractile forces are transmitted to the ECM as tensile stress and, as a result,
the surrounding matrix is deformed due simply to adhesion. Therefore there is a correlation
of cell force traction with focal adhesion size, number and distance from the cell’s center.

Mechanosensing and Durotaxis

In stark contrast with traction forces, the process by which a cell senses the mechanical
properties of its surroundings, mechanosensing, is still poorly understood. However, both
are mediated through focal adhesions and the actin cytoskeleton. This sensing mechanism
plays a remarkably important role in cell polarization and migration. Effectively, cells in rigid
substrates can become polarized, whereas, in soft substrates, cells tend to become uniformly
oriented. Also, direction of strain and stretch help breaking symmetry.

ECM stiffness also influences cytoskeleton mechanical properties and interaction with fo-
cal adhesion complexes. Additionally, stiffness alters fibronectin assembly rate inside the cell,
therefore, after its secretion, regulating ECM composition.

Cells also exhibit a preferred direction of motion towards higher stiffness, called durotaxis
[22]. This process requires the cell to be able to actively sense its surroundings, interpret the
mechanical stimuli and react accordingly.

1.3 Motivation

Some of the underlying processes, more specifically sensing of mechanical cues and physical
responses responsible for the emergence of patterns, are still not entirely understood and even
more so when integrating biochemical signaling pathways. Namely, durotaxis, mechanosensing
and traction force generation are phenomena relevant in a wide variety of cell systems, due to
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them being intimately related to cell migration. Aside from developmental biology processes,
such as vasculogenesis, embryogenesis and morphogenesis, mechanical cues and cell migration
are also relevant in other systems, such as, for example, angiogenesis, metastasis development,
which is one of the hallmarks of cancer [23], and inflammatory response. Therefore, patterns
resulting from cell self-organization shed light onto these mechanisms.

Effectively, defective cell migration leads to errors during morphogenesis, vasculogenesis
and other processes dependent on it. By understanding the mechanisms underlying cell mi-
gration it is possible to apply that knowledge to the treatment of complications that may arise
from the aforementioned phenomena.

In order to understand the role of the cell’s mechanical processes, because of the sheer
complexity of their biochemical basis, computer models are needed to test theoretical hypoth-
esis [24]. By proposing mechanisms and modeling them afterwards, the simulation results of
the model can be compared to experimental results and help disprove the assumptions made.
Additionally, simulations can suggest new experiments that may help provide evidence for a
particular mechanism. Hence, computer modeling is a theoretical tool that allows to study
coupled processes and the feedback loops that might arise from their interaction.

Therefore, simulating models which include the mechanical basis of cell migration, the
classical example being pattern formation, provides insight on how the cell interacts physi-
cally with its neighborhood and, understanding that interaction, enlightens the biochemical
processes needed for coupled mechanisms to occur.

1.4 State of the Art

During the last few decades, many computational models were used in order to simulate
cell dynamics. Many different approaches have been taken, from continuum partial differential
equations to discrete agent-based models. For instance, single cell migration has been recently
described by a mechanical model of a viscoelastic material with active strains on the ECM
being applied by the cytoskeleton in soft and stiff substrates [25]. Another approach, using a
cellular Potts model (CPM), was proposed for durotaxis induced single cell migration [26]. For
multicellular systems, however, including too many details about how a single cell functions
proves too computationally intensive, and therefore there is a need for simpler models for cell
mechanisms. Discrete models, such as cellular automata models [27], CPM and agent-based
multiscale models [28] have been extensively used for describing systems such as sprouting
angiogenesis, tumor growth and metastasis, and other systems where cell movement is rele-
vant. Continuum models have also been used for cells, including partial differential equations
of cell density [29] and phase-field models [30]. Furthermore, many different mechanical mod-
els for the behavior of ECM can be applied, from isotropic linear elastic material models to
much more complex biphasic hyperelastic models [31]. Additional details of the ECM can be
described, for example taking into account fibril orientation when describing its response to
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mechanical stimuli [32].

Pattern formation has been studied with help from such models. For example, a contact
inhibited chemotaxis vasculogenesis and angiogenesis model [33], and a multi-scale vasculogen-
esis CPM including chemotaxis and cytoskeleton remodeling [34]. However, because there are
cell systems where patterns form without exhibiting chemotaxis [35], these descriptions may
not suffice and other models including, for example, mechanical cues, need to be used. Re-
cently, a two-dimensional model [36] for vasculogenesis was developed and it integrates a finite
element model (FEM) for an isotropic elastic material with a CPM, coupling them through a
traction force generation model from [37] and a durotaxis model, in order to study mechani-
cally relevant multicellular systems. Its simple approach to cell processes and to mechanical
responses allows the simulation of systems with hundreds of cells with relative ease and, for
that reason, it is going to be used here in order to study mechanically-driven pattern formation.

Furthermore, efforts have been made in finding empirical evidence to support theoretical
models of the signaling mechanisms. In fact, cell migration is still being thoroughly investigated
in various contexts through different guidance principles. Studies include the collective tumor
cell spreading rigidity dependence [38] and the filopodia mechanical probing mechanism [39],
to name a few. Moreover, ECM dependence and processes underlying cell-matrix interactions
are also being investigated. Recently, efforts have been made in studying the effect of ECM
topology on cell migration using microfabricated substrata [40] and tumor invasion dependence
on ECM composition [41], for example. Traction force microscopy is currently being used in
order to quantify forces and displacements on the ECM [42], in order to understand the
nonlinearity of the ECM’s response to mechanical forces. In general, because cell migration as
a whole is vastly complex process and underlies cancer metastasis formation, a global research
effort is being done in order to progress the understanding of every aspect of this mechanism.
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Chapter 2

The Model

The feedback mechanism consists in cells applying traction forces, leading to the deforma-
tion the matrix, producing environmental cues, which cells move accordingly to and so on.
Therefore the model must capture several distinct behaviors. First, it must account for how
the forces acting on the matrix generate displacements, secondly, it must describe how cells
migrate not only under the mechanical properties addressed earlier, but also by adhering to
one another and to the matrix. In order to complete the cycle, there needs to be a model that,
taking into consideration the configuration of the cells, provides insight into the forces being
applied to the matrix.

In this chapter, it is going to be described the model proposed by Oers and Rens [36],
which encompasses and all of the mentioned components. Starting with an introduction to
deformation mechanics, followed by the theoretical framework in which it will be solved. Af-
terwards, it is going to be presented the model used for cell interactions, mobility and the
relation between matrix strain and cell movement. Finally, the model for predicting forces
applied to the ECM will be described.

2.1 Mechanics of the ECM

Each element of the ECM will have a displacement due to the force cells exert on the
substrate. Therefore, a relationship between these two quantities (displacement and traction
forces) is required.

In this work, the deformation of the ECM will be described using continuum mechanics.
More specifically, under the assumption of small displacements. For that effect, it will be used
the infinitesimal strain theory approach.

Afterwards, the theoretical framework of finite element method (FEM) will be described.
It allows for the derivation of a smaller local problem from a possibly large and difficult one,
regarding only one element, and to assemble all bits and pieces, in order to recreate a simpler
global problem. It is followed by its application to structural mechanics.

2.1.1 Infinitesimal Strain Theory

The aim of this analysis is to relate forces to displacements. A displacement, in this
framework, is simply the difference in position between the undeformed and the deformed
configurations. First it is going to describe the displacements using the concept of strain,
which is a component-wise relative difference in displacement. In the second part, it is going
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to be looked into what generates strain, namely stress, tightly related to forces, and how it is
written in terms of strain, depending on the material.

Displacements can be decomposed in a rigid-body motion (parallel transport and rotation)
and in a deformation. Although one can derive the description of small deformations from
a more general framework (finite strain theory), a geometrical and transparent approach is
as follows. Suppose there is a vector field u (x) defined inside a body, which describes the
difference in position of an infinitesimal element after some amount of time, that is, x→ x′ =

x + u (x) (Fig. 2.1).
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Figure 2.1: Diagram of both deformed and undeformed configurations. Under
the assumption of infinitesimal displacements, the remaining corners of the initial
element can be mapped by expanding the field in a Taylor series until the first

order term.

In tensor notation and in the first order assumption, displacements at position x+ δx can
be written as

ui (x + δx) ≈ ui (x) + ∂jui (x) δxj , (2.1)

where, the first term represents parallel transport, the second term contains both rotation and
deformation.

Effectively, the displacement gradient can be decomposed in a symmetric and an antisym-
metric tensors:

∂jui =
1

2
(∂jui + ∂iuj) +

1

2
(∂jui − ∂iuj) = εij + ωij , (2.2)

where ui simply refers to ui (x), and ∂jui represents ∂ui
∂xj

.
Setting aside parallel transport and rotation, the attention will be focused only in the

strain tensor,
εij =

1

2
(∂jui + ∂iuj) . (2.3)

Notes on why ωij represents pure rotation and in what sense εij translates to deformation can
be found in appendix A.
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Moreover, symmetry of the deformation tensor means that it has 6 independent components
(in 3D). Note that the inverse relation of (A.4) is a system of 6 differential equations in order to
determine the 3 components of the displacement vector. This over-determined system implies
that, in order for the equations to be integrable, the choice of a strain tensor is not arbitrary.
Indeed, εij needs to satisfy the compatibility equations,

∂k∂lεij + ∂i∂jεkl − ∂j∂lεik − ∂i∂kεjl = 0, (2.4)

which ensures that ui is single-valued and continuous.

However, there is still the need to relate strain to its source, that is, the applied forces. This
relation will include the properties of the object being deformed, because different materials
respond differently to the same conditions.

However, it is not useful to think in terms of
force. Applying a force to an object needs to take
into account the distribution of force over some sur-
face. Therefore, the concept of stress needs to be
introduced. Stress is defined as the force per unit
area applied on a surface (Fig. 2.2).

dF n

T(n)

dS

Figure 2.2: Illustrated concept of
stress.

In order to define the state of stress, under the small deformations approximation, the
Cauchy stress tensor is introduced. Consider a surface perpendicular to the vector n = ni

being applied a stress of T (n)
j . The Cauchy stress tensor is defined such that:

T
(n)
j = σijni, (2.5)

and, according to the definition, the force applied on the surface (dS) would be:

dFi = T
(n)
i dS = σjinj dS. (2.6)

From the concept of stress, assuming the body being deformed is at rest, it is possible to
obtain the balance equations, the symmetry of the stress tensor and the energy conservation
equation (appendix B). Namely, the energy conservation, for a body occupying volume V and
with surface S, reads ∮

S
uiT

(n)
i dS +

∫
V
uibi dV =

∫
V
εijσij dV, (2.7)

where T (n)
i is the stress applied on the surface S and bi is the sum of all body forces acting on

the object.
The principle of virtual displacements states that the virtual external work of real external

forces, Ti and bi, moving through virtual displacements δui is equal to the internal virtual
work of real internal stresses σij over the virtual strains δεij , as long as σij is in equilibrium
with Ti and bi and δεij is compatible with δui. In short,

δWE = δWI , (2.8)
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implies that ∮
S
δuiT

(n)
i dS +

∫
V
δuibi dV =

∫
V
δεijσij dV. (2.9)

An in depth analysis of variational methods for structural mechanics can be found in [43].
Moreover, stress and strain are intimately related by a constitutive equation. For a linear

elastic material, that equation is the generalized Hooke’s law,

σij = Cijklεkl, (2.10)

where Cijkl is called the stiffness tensor. For a linear isotropic elastic material, by exploiting
its symmetries, this tensor takes a particular form (appendix C),

σij =
E

(1 + ν) (1− 2ν)
(νδijεkk + (1− 2ν) εij) , (2.11)

where E and ν are mechanical properties, namely, the Young’s modulus and the Poisson ratio.
Under the assumption that the forces a cell applies to the ECM are parallel to its surface (for
example, if perpendicular to ni = δ3i, σ13 = σ23 = σ33 = 0), the expression for the stiffness
tensor can be further simplified (appendix C) to, in vector notation for strain and stress,σ11σ22

σ12

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 1
2 (1− ν)


 ε11

ε22

2ε12

 . (2.12)

This assumption is often called the plane stress assumption.

2.1.2 Finite Element Method (FEM)

Overview

This method is a numerical technique that involves subdividing a domain into simpler
parts, called finite elements. In this way, it reduces a difficult problem into a large number
of simpler ones solved locally, eliminating all spatial derivatives in the process. For a steady
state solution, this method results in a set of algebraic equations, that relate adjacent elements,
solvable by error minimization. Detailed information about the method and its application to
structural mechanics can be found in [44].

Because the subdivision of the integration domain, also called mesh generation, does not
necessarily impose the same geometry on every element, it allows for a finer and more pre-
cise discretization (that is, mesh refinement adaptation) on regions where the solution might
vary considerably, on domain changes and other boundary regions and wherever else precision
might be important.
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After discretization, the domain becomes
composed of nodes, whose connectivity define
the aforementioned elements (Fig. 2.3). A
quantity q (x) originally defined inside the do-
main, is now written in terms of q(n) = q

(
x(n)

)
,

where x(n) refers to the position of node n. In-
side each element, that quantity needs to be
interpolated, in order to approximately obtain
q (x). The finer the grid, the more precise this
interpolation becomes.

Ω

Figure 2.3: A domain Ω after mesh gen-
eration. It is composed of smaller ele-

ments defined by node connections.

The next step is to decouple an element from the global frame of reference and consider
a simpler frame on which to map the element onto. Consider an element defined by N nodes
on a local frame of reference with local coordinates (ξ, η, ζ). The element’s nodes, previously
with positions (x(n), y(n), z(n)), in the local frame of reference are in positions (ξ(n), η(n), ζ(n)).

It is possible to obtain the interpolation of a quantity, q, by expanding it in a power series
inside the element, that is,

q (ξ, η, ζ) = c1 + c2ξ + c3η + c4ζ + c5ξ
2 + c6η

2 + c7ζ
2 + c8ξη + c9ξζ + c10ηζ + . . . , (2.13)

where c1, c2, c3, . . . are constants yet to be defined. However, having only N nodes, that is,
N degrees of freedom, implies that the best approximation that can be achieved this way is
by computing the first N terms. This way, it is possible to, by assigning local coordinates to
the element’s nodes, use the N equations q

(
ξ(a), η(a), ζ(a)

)
= q(a), one for each node a, to find

out the constants c1, c2, . . . , cN (done in appendix D for elements with three and four nodes).

q (ξ, η, ζ) =

N∑
i=1

φ(i) (ξ, η, ζ) q(i), (2.14)

where φ(i) are functions of the coordinates, called shape functions, yet to be defined and
depend solely on geometrical factors, as the name implies. Note that the shape function
of every node a, φ(a), evaluated at every other node b must always yield zero, in order for
q
(
ξ(a), η(a), ζ(a)

)
= q(a) to hold.

Then, after computing the shape functions for equation (2.14), all the spatial derivatives
of q will be applied on those functions instead. That also means that, for each element, the
transformation from global to local coordinates must be known.

Making use of index notation, let

qi =
(
q(1), . . . , q(Ne)

)
, (2.15)

φi = φi (ξ, η, ζ) =
(
φ(1) (ξ, η, ζ) , . . . , φ(Ne) (ξ, η, ζ)

)
, (2.16)
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of a certain element e be vectors of dimension Ne, where Ne is the number of nodes in that
element. Using the Einstein summation convention, (2.14) becomes

q (ξ, η, ζ) = φiqi. (2.17)

Next, if the problem isn’t already in a variational formulation, it needs to be rewritten as
such. That is, a problem of the form: find the function u = u(xi) that, under some boundary
conditions, satisfies

Âu = f, (2.18)

where Â is a linear operator (for example, for the Poisson equation Â = ∇2) and f = f(xi)

is a known function of the coordinates, that, by multiplying by a test function v = v(xi) and
integrating inside a volume V , becomes the variational (weak) formulation: find u = u(xi)

that, for all v, ∫
V
vÂu dV =

∫
V
vf dV. (2.19)

An example of this procedure for the Poisson equation has been done on appendix E.

After stating the problem in its weak form, using the Ritz-Galerkin method (which belongs
to a group of methods called mean weighted residuals), we expand u and v (and even f if need
be) using an infinite set of basis functions ψi, such that,

u = ciψi, (2.20)

v = c′iψi, (2.21)

where ci and c′i are constants. Equation (2.19) can be rewritten as

c′i

∫
V
ψiÂψj dV cj = c′i

∫
V
ψif dV, (2.22)

for all v, that, is c′i, where ci is the unknown. Therefore, the last equation becomes

Aijcj = bi, (2.23)

where,
Aij =

∫
V
ψiÂψj dV, (2.24)

and,
bi =

∫
V
ψif dV. (2.25)

Using a finite number of basis functions, u ≈ ciψi, which means (2.23) is an approximation.
The symmetric matrix Aij is called the stiffness matrix (not to be conflated with stiffness
tensor). Additionally, f can also be expanded on the same basis, f = fkψk, and therefore
bi =Mikfk, where

Mik =

∫
V
ψiψk dV fk (2.26)
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is called the mass matrix, and the equation (2.23) becomes

Aijcj =Mikfk. (2.27)

Similarly, the problem for each element e with volume Ωe, using the shape functions as a
basis (such that u = uiφi), has the form∫

Ωe

φiÂφj dV uj =

∫
Ωe

φif dV, (2.28)

or,
A

(e)
ij uj = b

(e)
i , (2.29)

where,
A

(e)
ij =

∫
Ωe

φiÂφj dV, (2.30)

and,

b
(e)
i =

∫
Ωe

φif dV

[
=

∫
Ωe

φiφk dV fk

]
. (2.31)

However this equation is in regards to only one element e occupying Ωe with Ne nodes. A
global equation of the form,

AαβUβ = Bα, (2.32)

where instead of the local indices i, j = 1, . . . , Ne, we have global indices α, β = 0, . . . , N

regarding all nodes of the mesh. The vector Uβ contains all values of u for each node. One
method to obtain this equation is called the direct stiffness method, in where

Aαβ =
∑
e

A
(e)
ij , (2.33)

is typically sparse and always symmetric and positive definite. Similarly,

Bα =
∑
e

b
(e)
i , (2.34)

noting that every node has local indices i, depending on how many elements that node be-
longs to, and a single global index α. A practical example of an assembly is done in appendix F.

After being assembled, the equation can be solved for Uα using techniques such as conjugate
gradient method or, for smaller problems, either LU or Cholesky decompositions.

FEM for Structural Mechanics

The ECM will be modeled as a 2D surface to which cells adhere to, this way, because the
forces cells apply to the ECM will be roughly within the ECM plane itself, it is reasonable to
apply the plane stress conditions. Additionally, in order to simplify the coupling between the
FEM and the cell model (discussed in section 2.2), it is going to be used square elements, of
side L, in a grid-like mesh. Each node, n, will have a displacement vector q(n) and a force
vector f(n).
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Figure 2.4: A grid-like mesh of square elements, of side L, viewed from the global coordinate
system (left) and the intended transformation of an element with center (xe, ye) to a local

frame of eference (right).

For a single element, the equation (2.9) needs to be solved. It is noteworthy to point out
that cells apply forces to the ECM through FAs and, consequently, the work done will largely
depend on how the distribution of FAs will be modeled. If the FAs are taken to be coincidental
with nodes of the FEM mesh, then the work done by a virtual displacement, δu(n)T, is

δW
(n)
E = δu(n)Tf(n). (2.35)

The internal work, however, is a slightly more contrived. In the local frame of reference of
an element e (Fig. 2.4), the displacement field can be interpolated inside the element as

u (ξ, η) =

4∑
i=1

φ(i)q(i), (2.36)

where, the shape functions for a square element are,

φ(1) = φ(1) (ξ, η) =
1

4
(1− ξ) (1− η) , (2.37)

φ(2) = φ(2) (ξ, η) =
1

4
(1 + ξ) (1− η) , (2.38)

φ(3) = φ(3) (ξ, η) =
1

4
(1 + ξ) (1 + η) , (2.39)

φ(4) = φ(4) (ξ, η) =
1

4
(1− ξ) (1 + η) . (2.40)

Let χ(e) represent the local node’s displacement components, and ϕ(e) the respective force
components,

χ(e) =



q
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x

q
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y

q
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,
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Then, the interpolation can be rewritten as

u (ξ, η) =

(
φ(1) 0 φ(2) 0 φ(3) 0 φ(4) 0

0 φ(1) 0 φ(2) 0 φ(3) 0 φ(4)

)
χ(e) = N (ξ, η)χ(e) (2.41)

Furthermore, strain can be written as

ε =

 ε11

ε22

2ε12

 =

∂x 0

0 ∂y

∂y ∂x

u (ξ, η) = Du (ξ, η) = DN (ξ, η)χ(e) = B (ξ, η)χ(e), (2.42)

carefully considering that the differential operators are written in terms of global coordinates
and the shape functions in local ones (∂x = 2

L∂ξ and ∂y = 2
L∂η).

Moreover, the constitutive equation for plane stress conditions is

σ =

σ11σ22

σ12

 =
E(e)

1− ν(e)2

 1 ν(e) 0

ν(e) 1 0

0 0 1
2

(
1− ν(e)

)
 ε = C(e)ε, (2.43)

where E(e) is the Young’s modulus, and ν(e) the Poisson ratio, of that particular element.

The expression for the internal work of an element e is,

δW
(e)
I =

∫ 1

−1

∫ 1

−1

L2

4
δεTσdξdη, (2.44)

For this element, the external work is simply the inner product δW
(e)
E = δχ(e)T

ϕ(e).
Finally, by substituting the expressions (2.42) and (2.43) in (2.44) and equating internal virtual
work to external virtual work, the equation system to be solved is,

K(e)χ(e) = ϕ(e), (2.45)

where
K(e) =

∫ 1

−1

∫ 1

−1

L2

4
BT (ξ, η)C(e)B (ξ, η) dξdη, (2.46)

is the local stiffness matrix.
The local stiffness matrix is going to be estimated using a gaussian quadrature,∫ 1

−1
f(x) dx ≈

n∑
i=1

wif(xi), (2.47)

where n is the number of times the integrand will be evaluated, wi is the weight of the
corresponding f(xi) value. The values wi and xi depend on the number n and are given in
the table 2.1.
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Table 2.1: The coordinates xi and corresponding weights wi used for the
gaussain quadrature as in (2.47), for up to n = 4.

n xi wi

2 ±
√
3
3 1

0 8
93

±
√
15
5

5
9

± 1
35

√
525− 70

√
30 18+

√
30

364
± 1

35

√
525 + 70

√
30 18−

√
30

36

Using the estimate with n = 2 for both integrals, the matrix becomes

K(e) =

4∑
i=1

L2

4
BT (ξi, ηi)C

(e)B (ξi, ηi) , (2.48)

where ξi and ηi are the vectors,

ξi =

(
−
√
3

3
,

√
3

3
,

√
3

3
,−
√
3

3

)
, (2.49)

ηi =

(
−
√
3

3
,−
√
3

3
,

√
3

3
,

√
3

3

)
. (2.50)

If all elements have the same Poisson ratio, then its possible to calculate this matrix only once
for some fixed value of the Young’s modulus E0 and then simply multiplying by a factor of
E(e)/E0 for the element e.

The next step, is to assemble the global stiffness matrix, using the direct stiffness method

K =
∑
e

K(e), (2.51)

which is done in appendix F for a small mesh, and the full equation system becomes,

Kq = f, (2.52)

where q and f are the vectors containing every displacement and force components of every
node (alternating between x and y components).

Regrading the boundary, it’ll be used the Dirichlet boundary conditions with the peripheral
nodes having zero displacement, which translates to, in practice, removing rows and columns
of all fixed displacements.

For a 2D problem, the maximum number of nonzero elements of the global matrix, per
row, is 18, which are the relations between a component and itself, the other component of
the same node and both components of the eight nearest neighboring nodes (Fig. 2.5).
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Figure 2.5: Distribution of nonzero values of the assembled stiffness matrix, for a 5 × 5
mesh of square elements. It is a 72×72 matrix. Boundary conditions have yet to be imposed.

Even for just 25 elements, this matrix is sparse.

In order to solve the system of equations resulting from equation (2.52), after imposing
boundary conditions, it is going to be used a method called Preconditioned Conjugate Gradient
(PCG). Due to the algorithmic nature of the method, it is going to be described briefly, when
discussing the implementation of the model. However, a more detailed approach can be found
in appendix G.

2.2 Cellular Potts Model

In order to simulate cell motility it is used a Cellular Potts Model (CPM) on a square
lattice, which coincides with the FEM’s elements. This model might be considered a rather
complex stochastic cellular automaton (actually bordering on an agent based model).

Overview

The CPM consists of each element i of a lattice having a value σ(i) called a tag, or label,
mapping the element to a cell, that is, element i belongs to cell σ(i). Furthermore, cells σ(i)
might have different types τ (σ(i)) (Fig. 2.6). It is possible, for instance, to assign an adhesion
energy to a configuration by looking at each element and its neighborhood.

Effectively, for a system with N cells of M different types, let

Hadhesion =
∑
〈ij〉

Jτ(σ(i))τ(σ(j))
(
1− δσ(i)σ(j)

)
(2.53)

be the energy due to adhesion of the current configuration of the lattice, where Jττ ′ is the
adhesion energy cost between cells of type τ and τ ′, which is symmetric, and a sum over 〈ij〉
means a sum over every element i and over every neighbor, j, of i. The factor (1− δσσ′)

means that the energy cost regards only the interfaces of differing cells. Assuming that the
entire system is not completely filled with cells, there is the need for a special tag and type,
namely, σ = 0 and τ (0) = 0, in order to represent the absence of cells, that is, the background
corresponding to the substrate (adding the type τ = 0 means Jττ ′ is a (M+1)×(M+1) matrix).
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Figure 2.6: Schema relating the tag function σ(i) on a lattice to the corresponding cell
type τ(σ(i)) and what that configuration, of σ and τ , is meant to represent in the CPM. In
this case, a cell is the set of elements within the bold lines and corresponds to elements with

the same value σ and the color of the cell represents its type τ .

However, in order for a tag σ to represent a cell, the region corresponding to the inverse
mapping from cell σ to its elements should be simply connected. Not taking connectivity
into account, can lead to configurations without biological relevance. Moreover, regarding cell
shape, the volume of a cell on a lattice is simply

V (σ(i)) =
∑
j

δσ(i)σ(j). (2.54)

Cells typically have a preferred volume, called the cell target volume, which might depend
on cell type, V T

τ . Therefore, it must correspond to an energy minimum. A simple form for
the energy, in this case, is a parabola with minimum at V = V T

τ . This way, the term in the
Hamiltonian for the whole system corresponding to this effect might be written as,

Hvolume =
N∑

σ=1

λτ(σ)

(
V (σ)− V T

τ(σ)

V T
τ(σ)

)2

, (2.55)

where λτ is a parameter which describes the level of energy cost of deviations from the target
volume for a cell of type τ .

Other terms of the Hamiltonian might include surface restrictions, chemotaxis terms or,
in this case, mechanical response terms regarding durotaxis, which depend on how movement
will be modeled.

However, before addressing movement, the neighborhood of i, 〈ij〉, must be defined. In
fact, there are multiple definitions that can be used, such as the Von Neumann and the Moore
neighborhoods (Fig. 2.7). For this model, specifically, it is going to be used the Moore’s neigh-
borhood.
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Von Neumann Moore

Figure 2.7: Two different ways of defining the neighborhood of an element. The blue
element represents the pixel in question and the red regions represent its neighbors.

In order to, at least, attempt to describe movement, there needs to be a sequence of con-
figurations, each of which closely depending on the one before it that resembles the expansions
and retractions cells exhibit during migration.

The process often used is to copy the value σ(j), from element j, called the source, into
the element i, the target (σ(i) ← σ(j)), reaching a new configuration with a different energy
(Fig. 2.8).

σ(t)

σ(s)

σ(s)

σ(s)

v(s)

v(t)

Figure 2.8: A CPM step. It consists of a source element s with tag σ(s), being copied into
a target element t. Therefore, if σ(s) 6= 0, the source’s cell expands towards the target cell
according to the vector v(s) and, if σ(t) 6= 0, the target’s cell retracts in the direction of v(t).

Let t designate the target element, and s the source. It is possible to simplify the variation
of energy due to adhesion,

∆Hadhesion =
∑
〈ti〉

[
Jτ(σ(s))τ(σ(i))

(
1− δσ(s)σ(i)

)
− Jτ(σ(t))τ(σ(i))

(
1− δσ(t)σ(i)

)]
, (2.56)

and regarding volume,

∆Hvolume = (1− δ0σ(t))
λτ(σ(t))

V T 2

τ(σ(t))

[(
V (σ (t))− 1− V T

τ(σ(t))

)2
−
(
V (σ (t))− V T

τ(σ(t))

)2]
+ (1− δ0σ(s))

λτ(σ(s))

V T 2

τ(σ(s))

×
[(
V (σ (s)) + 1− V T

τ(σ(s))

)2
−
(
V (σ (s))− V T

τ(σ(s))

)2]
, (2.57)

which can be simplified to,

∆Hvolume = (1− δ0σ(t))
λτ(σ(t))

V T 2

τ(σ(t))

[
1− 2

(
V (σ (t))− V T

τ(σ(t))

)]
+ (1− δ0σ(s))

λτ(σ(s))

V T 2

τ(σ(s))

[
1 + 2

(
V (σ (s))− V T

τ(σ(s))

)]
, (2.58)
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where it is implied that there is no energy variation associated with background expansion
and contraction.

Including Durotaxis

With the coordinates of elements t and s it is easy to define the direction of movement
(Fig. 2.8). Let v(s) be a unit vector that represents the direction of source’s cell expansion
and v(t) the unit vector depicts the direction of the target’s cell retraction. It is easy to see
that for any such iteration, v(s) = v(t) = v. Having calculated the displacements in each
node, it is easy to recover the strain at the center of each element through equation (2.42)
at (ξ = 0, η = 0). Let λ(e)1 and λ

(e)
2 be the eigenvalues and v(e)

1 and v(e)
2 the eigenvectors

of the strain tensor calculated at the center of element e, by solving the equation (A.7). In
order to describe durotaxis, there must be a lower energy for cell expansions in each of those
directions and an energy gain when a cell retracts from them. Therefore, the variation of the
Hamiltonian should be of the form

∆Hdurotaxis = ∆Hretraction
durotaxis −∆Hexpansion

durotaxis . (2.59)

Under the assumption that each element senses the mechanical properties of its adjacent
elements, the target’s cell senses strain in the source element and the source’s cell senses strain
in the target element. Each of the terms in equation (2.59) could be described by

∆Hexpansion
durotaxis = (1− δ0σ(s))

[
f(λ

(t)
1 )(v · v(t)

1 )2 + f(λ
(t)
2 )(v · v(t)

2 )2
]
, (2.60)

and
∆Hretraction

durotaxis = (1− δ0σ(s))
[
f(λ

(s)
1 )(v · v(s)

1 )2 + f(λ
(s)
2 )(v · v(s)

2 )2
]
, (2.61)

where f(λ) is positive and returns the energy associated with the ECM stiffness, that is, the
Young’s modulus E the cell perceives.

Empirically, most biological tissues exhibit a phenomenon called strain stiffening, in which
the Young’s modulus increases with the extension of the substrate. However the ECM was
described as a linear elastic isotropic material which does not exhibit this effect. In this model,
strain stiffening will be implemented only at the CPM level, when evaluating stiffness, that
is, in the f(λ) function. Given an element with stiffness E0, the strain stiffening, for small
strains, is

E (λ) = max
{
E0

(
1 +

λ

ε0

)
, E0

}
(2.62)

where ε0 is a stiffening parameter. For low E, focal adhesions can’t mature, leading to null
durotaxis contribution, however, after a certain value of rigidity FAs start to develop until
they reach maximum maturity. Therefore, because durotaxis depends on the number and size
of the FAs, f(E(λ)) should have a similar behavior. For that effect, the expression for f that’s
going to be used is a sigmoid function,

f(E) =
α

1 + e−β
(
E−E1/2

) , (2.63)
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although it might be described by other expressions for f .

The total variation of energy, in a given CPM step, is simply,

∆H = ∆Hadhesion +∆Hvolume +∆Hdurotaxis, (2.64)

given by equations (2.56), (2.58) and (2.59).

Transition Between Configurations

Assuming that the system is in thermal equilibrium with its surroundings, that is, there is
a heat reservoir, it may exchange energy with it. That way, the total energy within the system
may vary. Furthermore, the probability distribution over all configurations is such that it
maximizes entropy. Let the average energy of the system of N different configurations be

〈E〉 =
N∑

n=1

pnEn, (2.65)

where En is the energy of state n and pn is the probability of the system being in that state,
and abides by

N∑
n=1

pn = 1. (2.66)

The entropy of a system (in statistical mechanics) is given by

S = −
N∑

n=1

pn ln (pn) . (2.67)

Introducing the average energy expression and the normalization of pn as restrictions, the
entropy becomes,

S∗ = −
N∑

n=1

pn ln (pn)− α

(
N∑

n=1

pn − 1

)
− β

(
N∑

n=1

pnEn − 〈E〉

)
, (2.68)

where α and β are Lagrange multipliers. Maximizing entropy requires differentiating the last
expression with respect to pn and equating it to zero, that is,

N∑
n=1

[− ln (pn)− 1− α− βEn] = 0, (2.69)

Therefore, for each configuration, its probability is

pn = e−1−α−βEn ∝ e−βEn , (2.70)

where β defines the magnitude of energy fluctuations. In fact, if β → 0, any configuration
becomes equally probable and exhibits high fluctuations; if β → +∞, every probability goes
to (at first glance) zero. However, because probability must be normalized, the state with less
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energy is infinitely more probable than any other and, thus, is the only accessible configuration
of the system, and, therefore, it has no energy fluctuations. The same argument could be made
if it was chosen a plus sign, only then the system would prefer higher energies instead of lower
ones, which does not actually happen. This probability distribution is called the Boltzmann
distribution and has a central role in statistical mechanics.

Because of this, not all CPM steps are equally probable. Promoting the configuration to a
random variable, it is possible to describe the stochastic nature of biology by using a Markov
chain. This chain is characterized by the states of the system and the transition probabilities
between them. Let p(x|x′) be the probability of transition from the configuration x′ to x.
Starting a Markov chain with a certain initial probability distribution p(0)(x), the posterior
probability distributions are

p(n+1)(x) =
∑
x′

p(n)(x′)p(x|x′). (2.71)

By the ergodicity argument, after a large number of steps, if a stationary distribution exists,
the system will converge to π(x), such that,

π(x) =
∑
x′

π(x′)p(x|x′). (2.72)

Additionally, another condition sufficient to ensure invariance is the reversibility condition,
also called detailed balance,

π(x)p(x′|x) = π(x′)p(x|x′). (2.73)

Fortunately, the process by which a new configuration, for a Markov chain, is randomly
selected can be separated into the random choice of a candidate, according to some probability
distribution q(x′, x), and to randomly accept it, according to some other distribution, α(x′, x),
such that it preserves the reversibility condition. That is, the conditional probability becomes

p(x′|x)MH = q(x′, x)α(x′, x), (2.74)

this strategy for picking a new configuration is called the Metropolis-Hastings algorithm, and
the reversibility condition is, accordingly,

π(x)q(x′, x)α(x′, x) = π(x′)q(x, x′)α(x, x′). (2.75)

Therefore, in order to maintain the reversibility, the probability of acceptance is given by

α(x′, x) =

{
1 if π(x)q(x′, x) ≥ π(x′)q(x, x′)

π(x′)q(x,x′)
π(x)q(x′,x) if π(x)q(x′, x) < π(x′)q(x, x′)

, (2.76)

or simply,

α(x′, x) = min
{
1,
π(x′)q(x, x′)

π(x)q(x′, x)

}
. (2.77)
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Notably, if the candidate choice probability distribution is such that q(x′, x) = q(x, x′),
then the acceptance probability is,

α(x′, x) = min
{
1,
π(x′)

π(x)

}
. (2.78)

Thus, the strategy used for taking a CPM step is to choose randomly, with equal proba-
bility, a target element and a random source in its neighborhood, also with equal probability,
as a candidate transition. By having the new configuration chosen this way, the condition
q(x′, x) = q(x, x′) is met. Afterwards, the step is taken, or not, according to (2.78), where
π(x) and π(x′) are the probability of those configurations in conditions of equilibrium, that is,
using the Boltzmann distribution. Therefore the acceptance rate is simply,

α(x′, x) = min
{
1,
π(x′)

π(x)

}
= min

{
1,
e−βEx′

e−βEx

}
= min

{
1, e−β∆H

}
, (2.79)

where ∆H is calculated through equation (2.64).
Additionally, by using energy constants in units of β the acceptance rate can be rewritten

as
α(x′, x) = min

{
1, e−∆H} . (2.80)

The Metropolis-Hastings algorithm is one of many Markov chain Monte Carlo (MCMC)
methods for sampling from probability distribution functions.

However, in order to relate a CPM step to a time step, in MCMC methods it is typically
performed a certain number of steps at a time, called a Monte Carlo step. Because, biologically,
every region in space can take a step simultaneously, a Monte Carlo step is usually taken to be
either a sweep across all the lattice and to do a CPM step (copy attempt) for every possible
element, or, for every element in the lattice, a random CPM step. For the reason that biological
systems’ stochasticity plays a fundamental role, the latter option is used in this model.

2.3 Traction Forces

The only missing piece in the model is how cells apply forces to the matrix, specifically
to the nodes of the FEM’s elements under conditions of plane stress, that is, parallel to the
ECM. Under the assumption that the traction force exerted by a cell can be predicted by its
shape, a rather simple model can be used. In this specific case, following the predictive model
proposed by Lemmon and Romer [37], each node belonging to a cell pulls every other node of
the same cell with a force proportional to the distance between nodes.

The force applied to node n by cell σ is,

f(σ)n = µτ(σ)
∑
m∈σ

dnm, (2.81)

where µτ is the force per unit length a node, of cell of type τ , pulls on another node of the
same cell, and dnm is the vector difference in positions of nodes n and m, that is, xm − xn

(Fig. 2.9). Effectively, the cell force constant should be in units of stress, however, in order
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to simplify, the constant used here already takes into consideration the thickness of the ECM,
which was chosen to be t = 10 µm, and it is scaled in order for µ = 1 to correspond to a force
of 10−5 µNµm−1.

n

m

dnm

Figure 2.9: Schematic representing how the force acting on node n is calculated. The
expression from equation (2.81) means that node n is pulled towards every other node m,
belonging to the same cell, with force µτ(σ)dnm. On the right, its represented the resulting

distribution of forces acting upon the ECM due to that cell.

The total force applied to a node n, if it belongs to different cells, is simply,

fn =
∑
σ

f(σ)n . (2.82)

This way, it becomes a simple procedure and ties the hybrid model together. All that is
left is to place the forces, conveniently indexed, inside a vector, f, for the FEM, and to solve
for displacements.
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Chapter 3

Implementation and Analysis

In this chapter it will be discussed the implementation of the studied model, which is a hy-
brid model consisting of a discrete CPM coupled with a continuous FEM model for elasticity,
summarized in Fig. 3.1. This is followed by the description of the analysis tools used, not only
in the conceptualization of the CPM, but also in the post-process parsing of data, namely, the
Connected Component Analysis (CCA).

Firstly, it must be stated the initial state of tags. A straightforward way to add cells is
to simply flip the tag of a single element from zero to whatever tag that has not been used
yet. However such states result in a large number of thermalisation CPM steps, because cells
also need to reach volumes around the average value, before resembling a viable configuration.
Alternatives include flipping a patch, with a volume around the target one, instead of a single
element, but problems also arise from overlapping with other patches, being out of bounds
and there is also the ambiguity related to the initial shape of a particular patch (rasterized
circles, squares, rectangles, random shapes, …). To add initial cells, the prior approach is used
here, because of its simplicity. Also, during this initialization, cell types must be assigned and
parameters must also be defined.

After the CPM is initialized, the FEM must also be set up, that is, the global stiffness
matrix must be assembled. First, however, each element must have a defined value of the
Young’s modulus and Poisson ratio, and undergo the calculation of its individual stiffness ma-
trix, which, in order to save memory, is immediately added on to the global stiffness matrix. In
order to reduce the memory used by the matrix, the sparse notation is used when referring to
the global matrix and its symmetry allows for further compaction. Furthermore, because fixed
displacement boundary conditions are going to be used, the global matrix will be reduced,
that is, simplified accordingly, which is explained in detail in the FEM section of this chapter.

The main loop is chosen to be one CPM Monte Carlo step followed by force calculation
and FEM calculation. However, for the CPM to precede the FEM, displacements must be
estimated. Therefore, before the main loop, there should be a calculation of the forces that
the initial configuration of cells apply to the ECM, followed by a single FEM calculation.
However, we have chosen to skip that step and to replace it with initial null displacements.
It is convenient because it saves up code repetition before the main loop, and also because
it reduces the number of FEM calculation steps, the bottleneck of the model. Furthermore,
it makes the implementation more simple and less cluttered. In exchange, however, the first
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initialize
model

assemble
global

stiffness
matrix

local
stiffness
matrices

reduce
stiffness
matrix

n ← 0 m ← 0

random
CPM step

m← m+ 1

m < M

calculate
forces

solve FEM
initial
guess

update dis-
placements

n ← n + 1

n < N

post-
processing

finalize
simulation

no
yes

no

yes

use as

Figure 3.1: Flowchart representing the main components of the model’s imple-
mentation. Initialization includes setting the initial cell tags and corresponding
types, elements’ mechanical properties and the parameters of each cell type.
Then the global stiffness matrix is assembled from each element’s local stiffness
matrix, calculated according to its mechanical properties using equation (2.48).
The resulting matrix can be simplified (reduced) under certain boundary con-
ditions. Each iteration n consists of M CPM copy attempts (which is a Monte
Carlo step/sweep, when M is equal to the number of elements in the domain),
calculation of the force applied to the ECM and solving the FEM equations
using the previous displacements as an initial guess (or a null vector if n = 0).
After N iterations, information is extracted from the resulting configuration and

the simulation ends.
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Monte Carlo step is, at first glance, compromised. That is not the case, because, by choosing
single element cells as an initial condition, the forces these cells apply are small, leading to a
negligible durotaxis energy term, completely outweighed by the volume term of any acceptable
CPM step at this stage, rendering the durotaxis term, in the first iteration, utterly irrelevant.

3.1 CPM model

In each iteration of the main loop, a Monte Carlo step, a fixed number of CPM copy at-
tempts, as described in section 2.2, is taken. A Monte Carlo step usually has a number of
CPM attempts equal to the number of elements, allowing for each element undergo change
independently. Due to the stochastic nature of the processes being studied, it has been chosen
to take CPM steps with random targets and sources. Each CPM copy attempt (Fig. 3.2) has
three distinct stages.

First, the random target and random source, from the target’s neighborhood, are selected
(excluding target elements on the boundary). Then, this particular step undergoes a selection
process by which it is discarded if it is deemed unacceptable. It is disregarded if:

• Target and source belong to the same cell, corresponding to a redundant step;

• Target is a cell and:

– Target cell will break;

– Target cell would vanish, that is, target element is the cell’s only element (target
volume is 1).

Finally, if deemed acceptable, the step is taken according to the acceptance probability
discussed in section 2.2, that is, the energy variation, ∆H, is calculated and, if it is negative,
the step is accepted, or else, if it is positive, the copy is accepted with probability e−∆H.

The target cell’s connectivity is checked using CCA, which will be discussed in the last
section of this chapter. Here, breaking connectivity refers to a step that, given a target cell
element, results in two or more separate domains with the same tag (Fig. 3.3).

However, it is not always necessary to resort to CCA. A simple preliminary check is to
inspect if the target’s neighborhood is connected even with the target not belonging to the cell.
If they are connected with each other regardless of the target, the step does not compromise
connectivity, however, if the neighborhood is not connected if not for the target, connectivity
is not ensured and the CCA needs to be applied.

3.2 FEM model

Stepping back a bit, regarding the grid upon which this model is built, a single index is used
for elements and another for nodes. In a N ×M element grid, the index of an element starts
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start CPM step

choose
random
target, t

t in
border

choose
random
source, s

t’s neighborhood

σ(t) 6= σ(s) σ(t) 6= 0

σ(t) will
break

V (σ(t)) > 1

do
nothing,
end step

calculate
∆H

∆H ≤ 0

p ← e−∆H

generate
random
number,
r ∈ ] 0, 1 [

r < p
σ(t)← σ(s),

end step

no

yes

from

yes

yes

no

no

yes

no

no

yes

yes

no

yes

no

Figure 3.2: Flowchart representing the process of a randomly taken CPM step.
Boundary is immediately excluded, in order for the target’s (t) neighborhood to
be defined. The source (s) is randomly taken from the neighborhood of t. If the
tag is the same (σ(t) = σ(s)), the initial and final states would be the same and,
as such, it is redundant. If t is a cell (σ(t) 6= 0), then additional checks have
to be made, namely, respecting connectivity and making sure the cell doesn’t
vanish. After initial checks have been made and the move is not discarded a
priori, energy difference (∆H) is calculated. If favorable (∆H ≤ 0), the move
is automatically accepted, if not, the probability (p = e−∆H) of the step being

taken is calculated, and is accepted accordingly.
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Figure 3.3: Example of a CPM step (the arrowhead is in the target element
and the arrow’s origin element is the source) that would break connectivity. If
the two regions on the right were connected by any other means aside from the
target, then the move would have been permitted. However, that is not the
case and, therefore, this move is prohibited. In order to check if a move breaks
connectivity, a Connected Component Analysis (CCA) algorithm, discussed in

section 3.3, is used.

at 0 and the last index is N ×M − 1. Single index to matrix indices relations are obtained by
using the integer division operation (int (a/b)) and the modulus operation (a%b). Let i and j

denote the matrix indices (position) of an element (i = 0, 1, . . . , N−1 and j = 0, 1, . . . ,M−1),
the single index can be built as k = iM + j and, because it is unique for each i and j, it can
be extracted from k, i = int (k/M) and j = k%M . For nodes, although the grid is of size
(N + 1)×(M + 1), the relation is analogous, with M+1 instead of M . The force and displace-
ment vectors have two components, therefore, in order for the assembled stiffness matrix to be
two-dimensional, each degree of freedom must have one unique index. Let k denote the index
of a node, the index corresponding to that node’s displacement projection along the x-axis is
2k and along the y-axis is 2k+1. An example of the resulting labeling is presented on Fig. 3.4.

A relation of indices from local to global is needed for the assembly of the global stiff-
ness matrix. Using this labeling, it is easy to see that for an element index e, with position
i = int (e/M) and j = e%M , its global nodes have positions (i, j), (i+1, j), (i+1, j+1), (i, j+1)

(in the order of local nodes). By reverting back to a single index, one can define a vector (using
the element index as a parameter) relating an index, representing a local degree of freedom,
to the respective component, representing the global index.
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Figure 3.4: Domain configuration of N×M elements, (N+1)×(M+1) nodes,
with N = M = 4. The indexation chosen, for elements (blue), nodes (red) and
degrees of freedom (black), is a single index, implying a contiguous memory stor-
age. For comparison, the local frame of reference used in the derivation of the
FEM equations is also represented. For global stiffness matrix assembly a corre-
spondence between local and global indices is needed (for a certain element). For
the calculation of the force vector, there needs to be a correspondence between
a global node and the global element it belongs to, in order to discern what cells

that node belongs to.
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Let that vector, that takes as a parameter the element index e, be

TI (e) =



2 0 0 0

2 0 0 0

0 2 0 0

0 2 0 0

0 0 2 0

0 0 2 0

0 0 0 2

0 0 0 2





1 0

0 1

0 1

1 0


 (e+ int (e/M))︸ ︷︷ ︸

lower left corner node

(
1

1

)
+

(
0

M + 1

)
︸ ︷︷ ︸

and the node on its right

+


0

0

1

1




︸ ︷︷ ︸
and the nodes above them (in the local node order)

+



0

1

0

1

0

1

0

1


︸ ︷︷ ︸

even/odd↔x/y degrees of freedom indices

,

i.e.:

TI (e) =



2 [e+ int (e/M)]

2 [e+ int (e/M)] + 1

2 [e+ int (e/M) +M + 1]

2 [e+ int (e/M) +M + 1] + 1

2 [e+ int (e/M) +M + 2]

2 [e+ int (e/M) +M + 2] + 1

2 [e+ int (e/M) + 1]

2 [e+ int (e/M) + 1] + 1


. (3.1)

This way, following an example from Fig. 3.4, for element e = 10 = 2× 4 + 2

TI(10) =



24

25

34

35

36

37

26

27


.

Therefore, for the element e let u = TI(e), the local matrix elements K(e)
ij correspond directly

to element Kuiuj of the global matrix, K.

Because theelements have all the same shape, the only difference between the local stiffness
matrices comes from the values of ν and E. If ν is kept constant, the stiffness matrix can be
calculated only once for some E0 and, because it is proportional to the Young’s modulus, sim-
ply multiplied by some factor to give the stiffness matrix of an element of Young’s modulus, E.

Therefore, for constant ν, the local stiffness matrix is calculated for some E0 (for an
hypothetical element e0). Then, for each element, the contribution of K(e) = E(e)

E0
K(e0) is

added to element Kuiuj , where u = TI(e). If ν is not constant, for each element, a stiffness
matrix must be calculated (for ν(e) and E(e)).
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algorithm 1: Algorithm for the assembly of the stiffness matrix. In a N ×M
element grid there are (N+1)×(M+1) nodes, henceN = 2(N+1)(M+1) degrees
of freedom. For each element, the local stiffness matrix (K(e)) is calculated.
Let TI(e) be the vector that relates local matrix indices (0 through 7) to the
corresponding global ones (0 through N −1) of a given element e. The elements
of K(e) are added into the global matrix K with the correct indices. If one
chooses to take advantage of the sparse nature of K, then appropriate changes

to the algorithm are needed.

Data: the size of the element grid, N ×M ; the Young’s modulus for each element, E(e); the
Poisson’s ratio for each element ν(e); the length of the square element’s side, L;

Result: the assembled total stiffness matrix K;
N ← 2 (N + 1) (M + 1);
allocate matrix K of size N ×N ;
fill K with zeros;
for e← 0, 1, . . . , N ×M − 1 do

calculate the (8× 8) matrix K(e), (2.48), with E = E(e), ν = ν(e) and L;
let u be a vector of size 8;
u← TI (e);
for i← 0, 1, . . . , 8 do

for j ← 0, 1, . . . , 8 do
Kuiuj ← Kuiuj +K

(e)
ij , according to (2.51) and (appendix F);

end
end

end

After assembling the global stiffness matrix (Algorithm 1), sizeN×N , whereN is the num-
ber of degrees of freedom, it can be simplified under fixed displacement boundary conditions.
If index n is a fixed value, the equation becomes

K0 0 . . . K0 n−1 K0 n K0 n+1 . . . K0N−1

... . . . ...
...

... . . . ...
Kn−1 0 . . . Kn−1 n−1 Kn−1 n Kn−1 n+1 . . . Kn−1N−1

Kn 0 . . . Kn n−1 Kn n Kn n+1 . . . KnN−1

Kn+1 0 . . . Kn+1 n−1 Kn+1 n Kn+1 n+1 . . . Kn+1N−1

... . . . ...
...

... . . . ...
KN−1 0 . . . KN−1 n−1 KN−1 n KN−1 n+1 . . . KN−1N−1





q0
...

qn−1

qn

qn+1

...
qN−1


=



f0
...

fn−1

fn

fn+1

...
fN−1


if fn is known,−−−−−−−−−→

becomes



K0 0 . . . K0 n−1 K0 n+1 . . . K0N−1

... . . . ...
... . . . ...

Kn−1 0 . . . Kn−1 n−1 Kn−1 n+1 . . . Kn−1N−1

Kn+1 0 . . . Kn+1 n−1 Kn+1 n+1 . . . Kn+1N−1

... . . . ...
... . . . ...

KN−1 0 . . . KN−1 n−1 KN−1 n+1 . . . KN−1N−1





q0
...

qn−1

qn+1

...
qN−1


=



f0 −K0 nqn
...

fn−1 −Kn−1 nqn

fn+1 −Kn+1 nqn
...

fN−1 −KN−1 nqn


.
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Effectively it reduces the number of rows and columns of the stiffness matrix (Fig. 3.5),
hence this process is called reduction. In the course of this study, the boundary conditions
will simply be that of null displacements, therefore, no alteration to the right-hand side of the
equation is needed.

Figure 3.5: Using the example from Fig. 2.5, which is a 5 × 5 element grid
(6 × 6 nodes), corresponding to a stiffness matrix of size 72 × 72. The nonzero
elements of the global stiffness matrix are represented as black squares. If the
displacements at the border are known, 2 × 6 × 6 − 2 × 4 × 4 = 40 degrees of
freedom are already fixed and don’t need to be solved. After reduction, the
stiffness matrix is the size of the remaining degrees of freedom, which, in this
example, is 32. The colored rows/columns represent the removed degrees of

freedom.

Inside the main loop, after the Monte Carlo step, the forces are calculated according to the
model of section 2.3. For each cell, each node is checked whether it belongs to that cell and, if
it does, it is added to a list that, after checking the whole grid, for each node on the list it is
summed up all the contributions to the force applied on that particular node by every other
node on that same list. This process is more thoroughly described in algorithm 2.

In order to ascertain if a certain node n belongs to a cell σ, the node’s surrounding ele-
ments, to which n belongs to, need to be checked for that particular tag. If at least one of
those elements has the tested tag, σ, then n belongs to σ.

Therefore, a correspondence between node n and its four adjacent elements is needed and
takes the form of, for example,

TII (n) =


1 0

0 1

1 0

0 1


(1

1

)
(n− int (n/ (M + 1)))︸ ︷︷ ︸

top right element

−

(
0

M

)
︸ ︷︷ ︸

and the element on its left

−


0

0

1

1


︸ ︷︷ ︸

and the elements below them

,
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TII (n) =


n− int (n/ (M + 1))

n− int (n/ (M + 1))−M
n− int (n/ (M + 1))− 1

n− int (n/ (M + 1))−M − 1

 , (3.2)

noting that its validity rests on the fact that the node n is not a boundary node. Taking an
example from Fig. 3.4, node n = 16 = 3(4 + 1) + 1 belongs simultaneously to elements

TII(16) =


13

9

12

8

 .

algorithm 2: Implementation of the traction force model, in order to obtain
the force vector. The force vector, initially null, is built from the contributions
of each cell, one at a time. Firstly, the node grid is scouted for nodes belonging
to the current cell and are added to a list. Afterwards, the contribution of each
node pulling on each other node, in the same cell, is added to the force vector,
one pair at a time. TII(n) is simply a vector containing the indices of the

elements that contain the node n.

Data: the size of the element grid, N × M ; the CPM tags, σ(e); the cell types τ(σ); the
traction force constants µτ ;

Result: the force vector f;
fill vector f, of size 2×N ×M , with zeros;
for each cell, σ do

let l be an empty list;
for each node, n, not at a boundary do

v← TII (n);
for i← 0, 1, 2, 3 do

e← vi;
if σ(e) = σ then

add n to list l;
go to next node;

end
end
for each node, n1, of l do

for every other node, n2, of l do
∆x← L

(
int
(

n2
M+1

)
− int

(
n1

M+1

))
;

∆y ← L(n2% (M + 1)− n1% (M + 1));
f2n1 ← f2n1 + µτ(σ)∆x;
f2n1+1 ← f2n1+1 + µτ(σ)∆y;

end
end

end
end
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After calculating the forces applied on the ECM, the equation Kq = f is solved for q, using
a PCG solver. This solver is described in the algorithm 3 using the present displacements as
an initial guess. The preconditioning matrix used is simply the diagonal of K. Moreover, by
taking advantage of the symmetry and sparseness of the matrix K, the steps which involve the
product of a matrix by a vector can be optimized.

algorithm 3: Given the stiffness matrix, K and the force vector, f, the PCG
proceeds according to this algorithm, using the diagonal of K as the precondi-
tioner. As a result it calculates the displacements on each node. As an initial
guess, it uses the previously calculated displacements. Because the stiffness
matrix is typically sparse and symmetric, the algorithm might change slightly

according to how memory is stored.

Data: the force vector, f; the stiffness matrix, K; the initial guess vector, x0 = q, that is, the
previous displacements; the maximum number of iterations, n; the desired precision,
δ;

Result: the displacement vector q, equal to the resulting vector x;
using the preconditioning matrix: M← diag (K);
r0 ← f−Kx0;
p0 ←M−1r0;
ε0 ← rT

0M
−1r0;

ε← fTM−1f;
i← 0;
while δ < εi

ε and i < n do
qi ← Kpi;
αi ← εi

pT
i qi

;
xi+1 ← xi + αipi;
ri+1 ← ri − αipi;
zi ←M−1ri+1;
εi+1 ← rT

i+1zi;
βi ← εi+1

εi
;

pi+1 ← zi + βipi;
i← i+ 1;

end
the next guess: x0 ← xi;
return: q← xi;

3.3 Connected Component Analysis

As already mentioned, cell connectivity needs to be preserved in each CPM step. Not only
that, but assessing the morphology of the cell structures that arise (in the post-processing
block of the implementation), can also (and will be) be measured through connectivity. For
that reason, the tool used for mapping of connections is explained here.
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Essentially, CCA, also called connected component labeling, identifies and uniquely labels
connected sets of pixels according to heuristic rules, specific to the issue at hand. Furthermore,
being CCA an applied concept of graph theory, a less ambiguous definition of connected pixel
sets is available, that is, a group of pixels in which any two elements connected through at
least one path, not including any pixel outside this set. In this case, a path is simply a set of
connections, and a connection between pixels is being neighbors of one another.

However, a distinction has to be made between foreground and background pixels. These
connected components refer to foreground pixels only, whereas the background is established
by what is not being parsed. The first step of a CCA is to process the image into a binary
background/foreground mask. The criteria by which a pixel is deemed to be part of back-
ground is entirely dependent on the problem the CCA is helping to solve. It offers a great deal
of versatility on the range of its applicability and even more so when skewing the concept of
neighborhood.

The algorithm used for the CCA, in this implementation, is a simple two-pass algorithm
(Fig. 3.6). As the name indicates, it consists of sweeping the grid twice. The first sweep assigns
new labels to foreground pixels, or the same label as already labeled neighbors. The second
pass builds the connection map of pixel sets.

By keeping track of the resulting connections, it is possible to extract useful information,
such as the number and size of the pixel sets.

If there are foreground pixels at the edges of the grid, any number of extra background
pixel layers can be added to the edges of the grid, such that no neighbor is left undefined.

3.3.1 During the CPM step

Suppose a CPM step with target, t, might leave a cell σ(t) disconnected. The procedure
that is going to be used is to simply choose the elements with tag σ(t), save for the target, t,
as the foreground pixels. If, after the CCA, using the Moore’s neighborhood (first neighbors),
there is only one pixel set, the cell is connected.

3.3.2 Classifying Cell Structures

In order to classify the cell structures, by choosing the foreground as a pixel belonging
to any cell, that is, an element with any tag different from zero, and skipping the first step,
using the tags as labels, it is possible to map how the cells are connected. The choice of
neighborhood could be loose, in the sense that it is possible to extend the range at which cells
are considered connected. However it is going to be used the Moore’s neighborhood, in order
to take into account the fact that there is a considerable energy cost when adhering, and, by
choosing otherwise, it risks obscuring transitions between bound and unbound configurations.
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Figure 3.6: Given an initial state as a boolean value mask, according to what’s
taken to be the background, CCA allows to check how many sets of connected
pixels there are in an image and the size of each set. It is used during the
simulation and to interpret data. The CCA algorithm presented here, called
the two-pass algorithm, is by no means the only one and it serves simply as a
working example. Overlaying a label grid over the initial state and reserving
the label 0 for the background, the first pass consists of giving labels to each
foreground pixel. The label will represent the set to which that pixel belongs
to. If the current pixel has a neighbor with a (nonzero) label, then it gets that
label, if, however, there are no labeled neighbors, it gets a new label. If it has
more than one labeled neighbor, it gets either label. The purpose of the second
grid sweep is to merge adjacent sets. Finally, information about the size and
number of sets is extracted. Relabeling is optional and done for convenience.
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The first category in which structures fall into is dispersed cells. By establishing a predeter-
mined amount of cells to be the maximum value for which they are still considered dispersed,
a cell structure is classified accordingly. Which, in this case, that number was chosen to be
n < 5. If it is not dispersed it might be a cluster or a network. The process used to separate
both categories is to gauge the density, ρ, of the structure inside its circumscribed circumfer-
ence. For example, taking a value proportional to the optimal circle packing density for n = 5,
ρ0 ≈ 0.685 [45], and adjusting the proportionality constant γ. If ρ > γρ0 then the structure
is a cluster, if not, it is a mesh-like structure. The value γ = 0.35 was chosen to be as low as
possible, while still being able to retain shapes resembling vessels.

3.3.3 Counting and Measuring Meshes

With the purpose to analyze the meshes (number and size) of a cell network, simply con-
sidering the pixels with tag zero as the foreground and the rest as background does not work,
because all measures will be affected by the empty space outside possible cell structures, while
only the domains inside are relevant. In order to push the outer pixels to the background, the
whole grid must undergo an intermediate step. Making use of the aforementioned foreground
selection and labeling the outer edges of the grid with the label 2, we propagate the new label
to every neighboring label on the foreground, until all labels converge to a single value. Then,
we flip all labels from two to zero, pushing them to the background. Finally, the CCA is
applied to that result (using the first neighbors of the Moore’s neighborhood).

Due to the stochastic nature of the model, cells may not form perfect enclosures and a pixel
may make a large difference in this analysis. Before checking the outer pixels, some diffusion
steps of the labels zero ensures that the smaller gaps are closed. Although a different number
of steps might be run for this process, two were taken.

After extracting the results, each mesh smaller than the average volume (area, in this case)
of a cell is ignored.



45
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Cell Culture Morphology

In the course of this chapter, for every result presented, if a parameter is not explicitly
stated when referring to that result, the default parameter is used instead, presented in table
4.1.

Using the default parameters, it is possible to observe vessel-like structures. Namely, by
using randomly placed cells as an initial condition, it is possible to simulate vasculogenesis
(Fig. 4.1), which will be studied in more detail in section 4.1 using the previously mentioned
quantitative methods.

Figure 4.1: A simulation for five hundred cells on a 300× 300 element grid, ran with the default
parameters (Table 4.1). The cells are represented by enclosed colored regions, corresponding to
the same σ. The color of a region corresponds to a cell type (white is reserved for the background),
which means there is cells of only one type. Image obtained after five thousand Monte Carlo steps
with cells initially placed randomly and with volume of one element. The smaller square is going
to be zoomed in order to observe the quantities: forces (Fig. 4.2), displacements (Fig. 4.3), strains
(Fig. 4.4) and tensions (Fig. 4.5). It can be observed that, under these parameters, a network of

cells is an emergent pattern of the model.
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Table 4.1: Table containing the default value of the model parameters. The
indices i and j refer to cell types i, j = 1, 2, . . . . Cell force constant, with units
Nm−1 (µNµm−1), is a scaled parameter such that µ = 1 Nm−1 corresponds to

a stress of 1× 10−3 nNµm−2 applied to a substrate of thickness 10 µm.

Parameter Symbol Default Value Units

Element side length L 2.5 µ m
Target Volume V T

i π(4L)2 µ m2

Volume Constraint λi 500 —
Cell-ECM energy cost Ji0 1.25 per side
Cell-cell energy cost Jij 2.5 per side
Strain stiffening steepness ε0 0.1 —
Durotaxis maximum value α 10 per side
Threshold stiffness value E1/2 1.5× 104 Pa
Steepness of guidance energy β 5× 10−4 Pa−1

Cell force constant µi 1 µNµm−1

Young’s modulus E 1× 104 Pa
Poisson ratio ν 0.45 —
Accuracy of the PCG δ 1× 10−5 —

First, however, it is studied how the physical quantities relate to each other. Using the pre-
vious example, zooming in on the marked area of Fig. 4.1, it is possible to represent the forces
cells apply to the ECM (Fig. 4.2), the displacements of each of the grid’s nodes (Fig. 4.3), the
strain each element is under (Fig. 4.4) and the corresponding stress (Fig. 4.5).

Furthermore, parameters, such as cell-cell adhesion cost, cell force and cell-ECM adhe-
sion cost, can be interpreted biologically, for example, because cell-cell adhesion is mediated
through cadherin family proteins, a drop in cell adhesion (that is, a rise in cell-cell adhesion
cost) can be interpreted as a drop in cadherin expression or the presence of some chemical
acting towards deactivating CAM structures.

Likewise, cell-ECM adhesion can be linked to integrin expression and inhibition, or the
number of binding sites on the surrounding medium, cell force to the number of FAs and their
maturation, also closely related to integrin expression and signaling, or even actin, and myosin
(motor proteins), expression/organization. Additionally, durotaxis parameters are also linked
to the mechanosensing process, which is mediated through integrin expression, activation and
signaling, and by actin expression.

4.1 Vasculogenesis

Changing the cell’s properties will lead to different outcomes. Namely, in the case of ran-
dom initial configuration, it might lead, or not, to the formation of vessel-like structures. In
order to explore the stability of the cell culture morphology, the parameters are changed and,
subsequently, checked whether or not a vascular network emerges.



4.1. Vasculogenesis 47

Figure 4.2: Zoom of the previous figure,
where the forces cells apply to the ECM
are represented as green vectors. For scal-
ing purposes, each side of an element corre-

sponds to a force magnitude of 10−3N .

Figure 4.3: This figure represents each
node in the undeformed configuration as a
blue circle and its displacement as a blue line.

Figure 4.4: Representation of the strain
tensor on the center of each element, by
eigenvalue decomposition as in Fig. A.3. The
circumference represents the null deforma-
tion tensor. Eigenvalues were amplified ten-

fold.

Figure 4.5: Representation of the stress
tensor at the center of each element. The
square inside each element represents an in-
finitely small portion at the center of the
corresponding element. The green vectors
represent the stress components on the sides
normal to the x-axis, that is, it is the vector
(σ11, σ12) for the right side of the square (and
its symmetric on the opposing surface). Sim-
ilarly, the blue vectors represent (σ21, σ22) on
the surface above the square (and the sym-
metric on the bottom). For comparison pur-
poses, the size of a side of an element corre-

sponds to a magnitude of 103N/m2.
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For that effect, it is going to be used the CCA, previously described, namely the classifica-
tion of cell structures (Fig. 4.6 and Fig. 4.7) and the quantification of network meshes (Fig. 4.6
and Fig. 4.8). The former is discussed in subsection 4.1.1 and the latter in subsection 4.1.2.

Figure 4.6: Result of a sim-
ulation under the same con-
ditions of Fig. 4.1. This re-
sult illustrates an example of
the classification and quantifi-
cation methodology discussed

in the previous chapter.

Figure 4.7: Classification
process result for simulation
result in Fig. 4.6. The colour
represents the category of the
cell structure a cell belongs
to. Red cells are dispersed,
green cells are clustered and
blue cells are distributed in a
meshlike fashion. In this case,
two cells are considered con-
nected if they have elements in
immediate proximity, that is,

no range tolerance applied.

Figure 4.8: CCA result for
figure (4.6), where each set
is represented in a different
colour. After that, the num-
ber of sets is counted and their
size measured. If the size of a
set is smaller than the target
volume, then that set is elimi-

nated in the measurements.

4.1.1 Phase Diagram of Cell Structure Classification

The parameters chosen to vary were cell-cell adhesion, due to its structural role, and the
traction force parameter, in order to investigate how the structure’s integrity varies according
to different mechanical cues.

All results, in this section, were obtained on a 300×300 element grid with five hundred cells
of a single type (τ = 1) and using the default parameters aside from the two that are being
varied, that is, µ1 and J11. For each set of randomly generated values of cell-cell adhesion and
traction force, ten simulations were run, the results from each CCA application were obtained
and their average was computed. For each aforementioned application, a total of five hundred
data points were obtained.

The randomly generated values for those two parameters are on the intervals µ1 ∈ ]0, 5[

and J11 ∈ ]1.25, 3.75[.

The classification results of cell structures are present in Fig. 4.9, where each colour cor-
responds to different fraction ratios between the various categories of cells (Fig. 4.10). In this
case, the categories chosen were the fractions of dispersed, clustered and meshlike cells as the
fraction of red, green and blue, respectively, of each colour (using the RGB format).
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Figure 4.9: Classification fractions as a function of
cell-cell adhesion and traction force. Each data point
corresponds to an average over ten simulations, of
five thousand Monte Carlo steps each, with the same
parameters of µ1 and J11, but with different random
number generator (RNG) seeds. There are a total
of five hundred points in this graph. The colour
of each point corresponds to the obtained average
fractions of cell structures (dispersed cells, clusters
or network-like organization), according to Fig. 4.10.
From the result one can observe that in order for vas-
culogenesis to occur, according to the model, trac-
tion force cannot be too weak nor too strong. Fur-
thermore, if cell-cell adhesion is too low (higher J)

vessel structures form less frequently.
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Figure 4.10: If cells are exclusive-
ly classified in a number (n) of cat-
egories, the point (f1, f2, . . . , fi, . . . fn)
must be restricted to the condition of
1 −

∑n
i=1 fi = 0. In the case of the

three categories proposed, it corresponds
to the points restricted on a plane defined
by 1−fDisplaced−fClustered−fMeshlike = 0.
Furthermore, using the RGB colour code
and associating each of the three colours
(red, green and blue) to the three cate-
gories (displaced, clustered and meshlike,
respectively), each point on the plane of
possible results has a unique colour asso-

ciated to it.

It can be drawn from the data the fact that the formation of vessel-like structures requires
a mechanical interaction and cannot be accomplished by adhesion alone. In that particular
case, cell structures are either clustered or dispersed.

With increasing traction force, a relatively sharp transition occurs for µ1 slightly lower
than 1 Nm−1. That value appears to correspond to the force needed for durotaxis to take
effect. The transition leads to the emergence of vessel-like structures. If the adhesion cost is
low enough, almost all cells are classified as a network. However, at high values of adhesion
there is a mixed region, where dispersed cells coexist with vessel-like structures.

Increasing traction force past µ1 ≈ 3 Nm−1 leads to a smooth decrease in the fraction
of meshlike cell structures and the reappearance of clusters. Meshlike structures start to de-
crease, because cells start to lose polarization. Polarization, according to the model, happens
due to mechanical feedback which relies on the anisotropy shape of the cell in order to activate
the sensing mechanism in only one direction. By increasing traction force, this disparity is
overridden, depolarizing cells and the durotaxis term behaves similar to a central attractive
bias towards the cell. Therefore, the fraction of clusters starts increasing with the traction
force.

In order for vasculogenesis to occur consistently, according to the simulation, the parame-
ters should be within the intervals µ1 ∈ [1, 2.5] and J11 ∈ ]1.25, 2.5].
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4.1.2 Vascular Network Mesh Structure

Next, morphology was analyzed using the CCA method on the meshes of cells structures
(Fig. 4.8). From each simulation, the average number of meshes, 〈Nmesh〉, (Fig. 4.11) and the
average size of meshes, 〈A〉, (Fig. 4.12) were obtained for the same region of parameters.
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Figure 4.11: Average number of mesh as a function of cell-cell adhesion and
traction force. Each data point corresponds to an average over ten simulations,
of five thousand Monte Carlo steps each, with the same parameters of µ1 and
J11, but with different RNG seeds. There are a total of five hundred points in

this graph.

The average number of meshes as a function of cell-cell adhesion and traction force has a
well-defined maximum at µ1 = 1.50± 0.20 and J11 = 2.50± 0.20. Moderate values of average
mesh number can also be found for different values of J11, making the regulation of traction
force critical for the formation of vessel-like structures, as it was already implied in the classi-
fication result.

At large values of traction force, for higher values of adhesion cost, the problem of cell
depolarization, and subsequent destruction of vascular-like structures, diminishes, leading to
a higher tolerance of mesh formation, although very low in number, also hinted by the low
fraction of meshlike structures in Fig. 4.9. The average mesh number reaches a plateau for
high values of adhesion cost, because durotaxis is present and the gaps are closed by the CCA
regardless, making adhesion value relevant only for impeding clustering, at high µ1 values.

Regarding mesh size (Fig. 4.12), the optimal traction force occupies, roughly, the inter-
val µ1 ∈ ]1, 2[ and the mesh area decreases with increasing adhesion cost. Once again, the
traction force needs to be tightly regulated in order to form vessel-like structures. The area
decreasing with adhesion cost implies that adhesion plays a fundamental role in large scale
pattern emergence, although its effect is purely local. Otherwise, if only traction force would
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Figure 4.12: Average mesh area as a function of cell-cell adhesion and traction
force. Each data point corresponds to an average over ten simulations, of five
thousand Monte Carlo steps each, with the same parameters of µ1 and J11, but
with different RNG seeds. There are a total of five hundred points in this graph.

need to be regulated, then, at high adhesion cost, the cells could maintain the vessel struc-
tures unconnected and the CCA procedure would close all remaining gaps, which would imply
a smooth transition from low to high adhesion cost. As such, because there is a relatively
sharp transition at J11 ≈ 2.75 and it coincides with the transition from cluster to dispersed in
Fig. 4.9 at µ1 = 0 (from preferably connected to preferably disconnected), adhesion is critical
to large scale pattern formation.

Additionally, the cell structures at high J11 and regulated µ1 (a mixed state of dispersed
cells and vessel-like cell structures) are morphological significant. However, because they don’t
create overarching vessel networks when filling in the gaps, that is, large scale patterns are
rather small in size and create very small meshes, if at all. In fact, the traction force would
be the only force drawing them together. As such, there are two stable states: one where the
adhesion cost inhibits the formation of larger groups of cells, with low cell concentration; and
another, where cells, due to fluctuations, are able to connect along the strain on the ECM to
other cells. This lowers the energy barrier, until the structure size, which has a vessel-like shape
rendering the concentration of cells limited and the traction force effects unable to overlap,
reaches an equilibrium point, where the rates of cell detachment and attachment are equal.
The rate of attachment, aside from adhesion, traction force, strain and durotaxis, is related
to the cell concentration surrounding the structure. Likewise, the detachment rate is related
to the surface area of the structure. Therefore, for the same values of J11 and µ1, by chang-
ing cell concentration, the model predicts that it should be possible to alter the ratio of the mix.

Furthermore, according to the result of Fig. 4.11 and Fig. 4.12, using this set up, by
changing the adhesion constant, there is a trade-off between mesh size and number, allowing
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for some degree of versatility on the types of systems that can be simulated using this model.

4.2 ECM With Space Dependent Rigidity

One advantage of using the FEM for dealing with structural mechanics is that it is possible
to change the material properties of each individual element with relative ease. Doing this,
however, would imply behaviors that do not coincide with a linear isotropic elastic material
and, therefore, it is an approximation. As such, it allows for the study of two dimensional cell
mobility over the ECM with position dependent rigidities. In turn, this allows to study how
migration depends on stiffness variations and, for example, how cells move over two mechani-
cally distinct materials.

Two different ECM space-dependent stiffnesses were tested. Firstly, the ECM with a
constant gradient of stiffness. Secondly, the interface between two materials was tested. Every
simulation in this section is done with default values, except for the Young’s modulus. The
size of the element grid is 300 × 300, the initial conditions are random (as in the previous
section) and the simulation ends after five thousand Monte Carlo steps. The Young’s modulus
will be written in terms of the reference value E0 = 1× 104 Pa.

4.2.1 Stiffness Gradient

The model was simulated for a substrate with constant stiffness rate of change along the
horizontal axis. By changing the maximum and minimum values, Emax and Emin, at the re-
spective edges of the grid, the rigidity of the ECM is uniquely defined for each element. The
values for both extremes were chosen such that the center of the grid would have rigidity
E = E0, which means that Emax = 2E0 − Emin. Effectively, the range of values chosen for
Emin were from E0 to 0.75E0 in intervals of 0.05E0 (Fig. 4.13). From the way the durotaxis
term is calculated, it is expected that there is a bias in cell movement towards higher stiffness.
In fact, by looking at the results, the increasing accumulation of cells on the side with the
highest rigidity, and lack thereof on the opposite edge, agrees with the expected behavior.

Furthermore, when increasing the stiffness gradient, larger cell structures, aside from the
accumulated cells, are smaller and less prevalent, most likely because the cell adhesion keep-
ing those structures together is counteracted, at least in part, by the cell movement bias.
Furthermore, those structures have an increasingly horizontal alignment.

4.2.2 Stiffness Interface

Now, the ECM is divided into two domains with different Young’s modulus. One half of
the domain will have the default stiffness, E1 = E0, and the other will have a different value,
E2 (Fig. 4.14). As expected, cells near the surface of separation move from the region with
lower Young’s modulus to the other, whereas cells far from it evolve into patterns normally.
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(a) Emin = 1.00E0; Emax = 1.00E0. (b) Emin = 0.95E0; Emax = 1.05E0.

(c) Emin = 0.90E0; Emax = 1.10E0. (d) Emin = 0.85E0; Emax = 1.15E0.

(e) Emin = 0.80E0; Emax = 1.20E0. (f) Emin = 0.75E0; Emax = 1.25E0.

Figure 4.13: Simulation results, for a 300 × 300 elements grid, after five thou-
sand Monte Carlo steps, with default parameters, except for the matrix rigidity in
simulations (b)-(f), and random initial conditions. Aside from (a), the ECM has
a constant stiffness gradient along the horizontal axis, fixed by the values at the
vertical edges. Namely, the left side corresponds to the minimum stiffness, Emin

(white), and the opposite side to the maximum value, Emax (gray).



54 Chapter 4. Cell Culture Morphology

(a) E2 = 0.75E0. (b) E2 = 0.80E0.

(c) E2 = 0.85E0. (d) E2 = 0.90E0.

(e) E2 = 0.95E0. (f) E2 = 1.05E0.
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(g) E2 = 1.10E0. (h) E2 = 1.15E0.

(i) E2 = 1.20E0. (j) E2 = 1.25E0.

Figure 4.14: Simulation results, for a 300×300 elements grid, after five thousand
Monte Carlo steps, with default parameters, except for the matrix rigidity, and
random initial conditions. The left half of the ECM has the default stiffness E1 =
E0 and the stiffness of the right half varies from E2 = 0.75E0, (a), to E2 =
1.25E0, (j). In order to distinguish the domains, the ECM with larger stiffness is

represented in gray.

Cells that start on or randomly come across the interface move to the region with larger
rigidity. However, on both sides, cells can be guided towards the surface by strains on the
ECM caused by cells on the opposite regions. Curiously, a feedback mechanism comes into
play, due to the preference for higher stiffness, as cells on both regions move towards each oth-
er, they chose only one of the domains and accumulate near the surface. This accumulation
enhances the strains on the ECM caused by cells on one region and increases the effect range
of durotaxis on the opposite region. This leads to more cells on the lower stiffness side to
wander near the surface and get captured to the other side. Therefore, there is a thin layer on
each side of the surface, namely, on the stiffer side, with higher cell density and on the softer
side, with lower cell population density.

Moreover, cells only continue to be near the interface with lower cell density due to adhesion
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with cells on the same region, further away from the interface layer. As such, cells either
dissociate and move to the other region, and deplete the layer, or remain attached and pull
the neighboring cells towards the interface, when moving to the stiffer domain. This effect,
provided large enough cell adhesion and stiffness difference between regions, has the potential
to enable cells on the stiffer side to pull whole cell structures from the opposite region. Although
this event happens more often than not in the simulated systems, its effect is quite limited for
the chosen parameters, by either being too slow, or the cells breaking apart regularly, resulting
in only a few cells being pulled.

4.3 Sprouting Angiogenesis

Until now, the initial cell distribution was random, however, by changing it, it is possible
to study different cell systems and phenomena. For example, in order to study sprouting
angiogenesis, which is the growth of new vessels from pre-existing ones, using this model two
different configurations can be modeled in 2D. Either considering the plane along the vessel
or the plane of its cross section.

Sprouting angiogenesis is a process that specifically requires proliferation, which is not
contemplated in this model. Although it is simple to implement, it is also worth to investigate
the role that mechanical cues alone play in this process.

The most straightforward initial condition for this study is a cluster of cells. This set
up is similar to experimental methods used in the study of sprouting angiogenesis, namely it
closely relates to a spheroid sprouting assay and, to a lesser extent, an aortic ring assay. In
order to achieve this configuration, the initial conditions are four hundred cells of volume one
organized in a centered square of size 20 × 20. Furthermore, twenty thousand Monte Carlo
steps are taken in total and the default parameters will be used (Fig. 4.15a-4.15c and Fig. 4.16).

Using this set up, it is possible to ascertain that mechanical forces can drive the reorgani-
zation of the surface cells into protrusions and, by reinforcing strains on the ECM, strengthen
the cell polarization causing the small protrusions to evolve into sprouts.

Effectively, in the absence of other environmental cues, this model predicts that stochas-
ticity creates the conditions needed for initiating the feedback mechanism. Cells pulled along
those preferred directions start creating narrow chains, maintained by adhesion and cell po-
larity. Because there is no proliferation, the sprouts will continue to grow quickly until the
mechanically biased spreading of cells is counteracted by the hindrance of their migration ca-
pability caused by cell-cell adhesion. Moreover, this mechanism allows for the spontaneous
bifurcation of sprouts.

Furthermore, it is also predicted that there is a minimum distance between sprouts, such
that cells on the spheroid surface between them prefer to merge with the closest sprout instead.
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(c) 1100 Monte Carlo steps. (b) 4000 Monte Carlo steps. (c) 16400 Monte Carlo steps.

Figure 4.15: Simulation results, after different amounts of Monte Carlo steps, for a 400 × 400
element grid, containing four hundred cells initially placed at the center of the grid.

Figure 4.16: Simulation result for a 400×400
element grid, containing four hundred cells ini-
tially placed at the center of the grid, after
2×104 Monte Carlo steps. The feedback mech-
anism studied accounts for the polarization of
cells on the surface, that leads to the formation
of sprouts. Furthermore, the traction force ex-
erted in the ECM by the cells of the sprout re-
inforce strains along each path, becoming well
defined sprouts. On the top right corner, an
experimental control result, adapted from [46],

is presented for comparison purposes.

Figure 4.17: Simulation result for a 400×400
element grid, containing four hundred cells, of
two different types, initially placed at the cen-
ter of the grid after 2× 104 Monte Carlo steps.
On initialization, each cell was assigned a ran-
domly generated type from an uniform distri-
bution. The red cells have the default param-
eters and the green cells have a traction force

constant of µ2 = 2 Nm−1.

In this simulation, sprouts are shorter than in the experimental spheroid. This effect is,
at least in part, related to the aforementioned lack of proliferation. Other possible explana-
tion for this difference is that the default parameters may not accurately describe the same
endothelial cells. Nevertheless, including proliferation should help establish the reason(s) this
result does not entirely agree with the experiment.

Next, another type of cell was used with contact energies J22 = J12 = J11 = 1.25 side−1

and different traction force constant µ2 = 2 Nm−1 = 2µ1. Under the same conditions of the
previous simulation, except for the new type (τ = 2), each cell will be one of the two types
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with equal probability (Fig. 4.17).

By adding the new type of cells, the resulting spheroid undergoes morphological changes
relative to the previous one. Namely, sprouts grow slightly thicker and substantially longer.
Moreover, the number of bifurcations increases, eventually merging a sprout tip to another,
creating a closed path; this phenomenon is called anastomosis.

However, cells of the new type dissociate from the spheroid more often than the default
type. This fact, in addition to the existence of larger sprouts, implies that the traction force
improves the migration capabilities of the cell. This implication is valid for values of matrix
stiffness that do not saturate the sigmoid portion of the durotaxis term of the CPM, that is,
values of matrix stiffness that allow strain stiffening to change pseudopodium grip appreciably.

Furthermore, under these conditions, when at the tip of a sprout, cells with larger traction
force play a role akin to that of tip cells. In sprouting angiogenesis, tip cells are specialized
endothelial cells in front of the sprout, as the name implies, responsible for sensing environ-
mental cues and guiding sprout growth accordingly. Effectively, the activation of endothelial
cells into the tip cell phenotype has a pivotal role in the formation of large sprouts. This
suggests that tip cells exert stronger forces on the ECM than other endothelial cells and, as a
result, contribute to the communication of their polarization with the cells preceding it.

4.4 Avascular Tumor Metastasis

Another system in which mechanical cues and, consequently, cell migration, take cen-
ter stage is the invasion of tissues by metastatic tumor cells, that is, cells with a malignant
phenotype. In contrast with normal tumor cells, metastatic cells have increased migration
capabilities, allowing them to escape the tumor and form metastases (new masses of cancerous
cells), possibly far away from the initial tumor if they manage to invade blood vessels and
enter the blood flow.

Normal tumor cells are typically aggregated into clusters, possessing relatively high cell-
cell adhesion, in comparison to endothelial cells (corresponding, to some extent, to the default
value). On the other hand, metastatic cells have higher traction force [47], lower cell-cell adhe-
sion, due to the loss of cadherin expression/activity [48] and higher integrin expression, which
leads to higher cell-matrix adhesion [49].

Therefore, in order to simulate this system, the parameters chosen must reflect the prop-
erties of the designated cell types. Let τ = 1 represent normal tumor cells and τ = 2

metastatic cells. The values used for traction force were µ1 = 0.5 Nm−1 and µ2 = 3µ1 = 1.5

Nm−1. For cell-cell adhesion, the values used were J11 = 2.25 side−1, J12 = 2.75 side−1

and J22 = 3.25 side−1. For cell-matrix adhesion of metastatic cells, the value used was
J02 = 1.00 side−1. For the remaining parameters the default values were used.
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Each simulation was done on a 400× 400 elements grid, with four hundred cells, using the
initial conditions from the spheroid simulations, and stopped after 2× 104 Monte Carlo steps.
Effectively, three set ups were simulated. Firstly, using only normal tumor cells (Fig. 4.18),
secondly, using only metastatic cells (Fig. 4.19) and, finally, a co-culture of both cells types
(Fig. 4.20) (each cell was randomly assigned a type with equal probabilities).

The tumor made up entirely from cells of type τ = 1 (Fig. 4.18) is non-invasive, also re-
ferred to as benign. Although the traction force is weaker, the surface still shows remnants of
mechanically-induced protrusions. As such, the surface is slightly uneven. This roughness on
the surface is often indicative of how invasive the tumor cells’ phenotype is.

When all cells are metastatic (Fig. 4.19), the tumor is unable to hold together, due to a
lack of adhesion. Additionally, because cells have high traction force, they are able to migrate
relatively far away from the center of the grid, spreading over the whole domain.

Lastly, a culture of mixed type tumor cells was simulated (Fig. 4.20). In this case, metastat-
ic cells, after initializing the system, get constrained by the normal tumor cells and, afterwards,
try to escape to the surface. This organization is unexpected, since cell-matrix adhesion is
stronger for metastatic cells and adhesion between metastatic cells is very weak. It is, perhaps,
consequence of the mechanical cues and it remains confined, for an extended period of time,
due to the strong cell-cell adhesion of normal tumor cells. Unfortunately, it does not appear
to correspond to what is to be expected. Tweaking the initial conditions, for instance, not
clustering cells too much, may be able to change this tendency. Nevertheless, metastatic cells
that manage to get to the surface are able to escape the tumor, migrating outwards, and the
traction forces those cells exert on the ECM cause the normal tumor cells near the surface
to sense the strain stiffening of the substrate and attempt to migrate collectively. However,
because they are bound to the other normal tumor cells, they are unable to dissociate from the
tumor, forming protrusions on the surface. Due to the two dimensional constraint, the tumor
appears to break, when metastatic cells are able to leave the tumor. In a three dimensional set
up, metastatic cells would be able to get to the surface without the need to dissociate normal
tumor cells.

Therefore, even if the system is not completely realistic, consequences of the mechanical
feedback effect, predicted by the model, can still be observed. Namely, the development of
protrusions of normal tumor cells, induced by metastatic tumor cells in a three dimensional
set up can be verified experimentally [50]. In order to try to simulate 3D migration, however,
models for cell locomotion and traction force need to be redesigned, and new ECM phenomena,
such as degradation and remodeling of the ECM, come into play and need to be modeled.
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Figure 4.18: Simulation result after 2 ×
104 Monte Carlo steps of four hundred non-
malignant tumor cells (τ = 1), on a 400×400 el-
ement grid, with traction force µ1 = 0.5 Nm−1

and cell-cell adhesion J11 = 2.25 side−1. The
cells organize into a cluster with very small pro-
trusions, caused by the mechanical retroactive

mechanism.

Figure 4.19: Simulation result after 2 × 104

Monte Carlo steps of four hundred malignant
tumor cells (τ = 2), on a 400 × 400 element
grid, with traction force µ2 = 1.5 Nm−1, cell-
cell adhesion J22 = 3.25 side−1 and cell-matrix
adhesion cost J02 = 1.00 side−1. Because these
cells prefer to be in contact with the substrate,
they migrate outwards from the starting posi-

tion, spreading over the ECM.

Figure 4.20: Simulation result after 2× 104 Monte Carlo steps of four hundred tumor cells
either non-malignant (τ = 1), or malignant (τ = 2), with equal probability, on a 400 × 400
element grid. The cell adhesion parameters used were J11 = 2.25 side−1, J12 = 2.75 side−1,
J22 = 3.25 side−1 and J02 = 1.00 side−1. The traction force values used were µ1 = 0.5 Nm−1

and µ2 = 1.5 Nm−1. Normal tumor cells and restrained malignant cells form the bulk of
the tumor, while malignant cells that manage to reach the surface escape it, because of their
low cell-cell adhesion, and, because they have larger traction force, leading to greater strains,

enable protrusions to develop and extend farther.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions and Outlook

In recent years, the study of the physical mechanisms in cell motion has become increasingly
prevalent in the fields of cell biology and biochemistry. Traction force generation, durotaxis and
mechanosensing are examples of mechanically intensive phenomena regulated by biochemical
cell signaling pathways, and vice-versa. These processes have remarkably surprising conse-
quences. However, the complexity and magnitude of these effects presents a great challenge in
their understanding.

Cell pattern formation is a consequence of local interactions of individual cells. In fact, cell
movement emerges from the communication between cells, which can be of various natures,
for instance, contact (adhesion), chemical and mechanical. Therefore, the study of emerging
patterns may provide insight into the mechanisms that regulate cell migration, namely into
the mechanical processes underlying cell movement.

In fact, a model of how a process works is validated by the empirical evidence for its pre-
dictions. However, because biological systems have highly interacting components, predicting
can become rather difficult. Hence, the use of computer models allows forming predictions
and helps designing experimental set ups needed to disprove the assumptions made when con-
ceptualizing the model.

The model for cell migration, proposed by Oers and Rens, is an hybrid model that consists
of a FEM for calculating the deformation of the ECM coupled with a CPM for representing
cells and adhesion mechanics. The interface between both is made by a predictive model
of cell traction force, proposed by Lemmon and Romer, and a phenomenological model of
mechanosensing. In the present work, an image analysis method, CCA, was adapted in order
to extract quantitative information from the results of the computational model.

First, the model was applied to vasculogenesis, that is, vascular-like pattern formation. The
quantitative methods were used in order to explore the effect that traction force and cell-cell
adhesion have in the formation of the patterns. Effectively, tested cell cultures were labeled
according to the fractions of cells classified into one of three categories, namely, dispersed cells,
clusters and meshlike structures, according to the average number and size of the vessel-like
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structure’s meshes. In order for meshlike structures to emerge, according to the model, adhe-
sion alone is not enough and mechanical cues between the cells are required. Traction force
needs to be tightly regulated and cell-cell adhesion cost must be below a certain threshold,
in order for large scale pattern formation to emerge. Furthermore, this model predicts that
increasing the cost of cell-cell adhesion leads to an increase in number of meshes, although, in
turn, it also relates to a decrease in their size. Moreover, increasing the traction force results in
the formation of clusters. Cell density also plays a role in the final morphology of cell structures.

Afterwards, still on the context of vasculogenesis, the model was tested on substrates with
different stiffness distributions. The first set of distributions had a constant stiffness gradient
and it was observed the expected durotaxis bias. In the second group, the region near the
interface displayed a region depleted of cells on the side with the lower Young’s modulus and
an accumulation of cells on the opposite side. This accumulation reinforces traction force near
the interface and increases the effect range of durotaxis. Additionally, if adhesion is strong
enough, several cells may be pulled towards the side with higher Young’s Modulus by other
cells.

Next, a system similar to a sprouting spheroid assay was tested. The cells on the surface
of the spheroid spontaneously polarize and start creating sprouts which, after some time, sta-
bilize in length. The result did not fully agree with the experimental sprout length, possibly
because proliferation was not contemplated in the model. After that, half of the cells with
the default traction force were replaced by cells with twice the value of traction force, which
resulted in longer sprouts, suggesting that tip cells have increased traction force magnitude.
Moreover, the number of bifurcations increased and anastomosis was observed.

Finally, a system of an avascular tumor was tested using this model. Two types of cells
were simulated. Normal tumor cells and metastatic tumor cells. After adjusting the mod-
el’s parameters accordingly, three simulations were executed: only normal tumor cells, only
metastatic tumor cells and an even mix of both. When all cells are normal tumor cells, me-
chanical cues are sufficient to cause the surface of the tumor to be uneven. The metastatic
type has increased migration capabilities and the tumor is not able to hold together. In the
mixed tumor, when metastatic cells escape, mechanical signals are enough to promote the cells
on the surface to start forming larger protrusions.

5.2 Future Work

Applying this model to more systems will help to learn about the role of cell-cell adhesion,
traction force and mechanical properties of the ECM on different biological systems. For exam-
ple, simulating systems embedded in a cell tissue, by including regular tissue cells. However,
the model used can be improved in a number of ways. As already mentioned, proliferation
could be implemented, which could be a function of the concentration of diffusible nutrients in
the ECM. Diffusion of chemical signals and integrating chemotaxis could be another route and
even more so when coupling it with diffusion of nutrients and proliferation, in order to study
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tumor induced sprouting angiogenesis. Diffusion of chemical signals could also be improved
by considering bound and unbound molecules.

Another possible improvement is to model ECM remodeling, the process by which cells af-
fect the composition of the substrate, promoting homeostasis, and the consequences of it being
defective. ECM degradation (for example by matrix metalloproteinase) could also be studied
in a two-dimensional fashion, by assuming a layer of ECM surrounding the cells. Moreover, by
combining remodeling and degradation, this model could help designing a three-dimensional
cell migration model.

More models for durotaxis, mechanosensing and traction force generation could be im-
plemented and tested. Additionally, the CPM could be turned into an agent-based model
and other intracellular mechanisms could be implemented; for example, a region could be the
lamellipodium, defined by cell polarity, and mechanosensing could be restricted to that area,
or some regions could have the CAMs deactivated because of an inhibitor, or cells changing
phenotypes according to internal mechanisms.

Aside from more biological approaches to the extension of the model, a more detailed de-
scription of deformations, that take into account strain stiffening, could be implemented, in
order to validate the approximation being done.

Regarding experimentation, vasculogenesis in vitro, under different conditions, could vali-
date this model’s predictions for morphology. However, this could prove difficult to analyze,
considering that cell-matrix adhesion, integrin expression, focal adhesion maturation and trac-
tion force are intimately related. Altering ECM stiffness and cell-cell adhesion could prove to
be a less contrived procedure. The trade-off between size and number of meshes of a vascular
network could, in principle, be validated and experiments with different types of substrate
could provide insight into mechanical cues.

Nevertheless, this model can be used to interpret data obtained from cell migration exper-
iments, and help improve its understanding.

In conclusion, the analysis of this model’s implications serves as a stepping stone for under-
standing its usefulness and limitations. By doing such, it is possible to check how the models
of mechanical cues are lacking and how to improve them. Regardless of what small details the
model fails to describe, this analysis shows how cell-cell adhesion, substrate stiffness and cell
force traction affects vasculogenesis. The model brings to light the consequences of adhesion
and traction not being properly tuned and helps to traceback the cause for erroneous pattern
formation. It will also permit to model other biological systems where mechanical signals play
an important role in defining their dynamics.
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Appendix A

Geometrical Interpretation of the
Displacement Gradient

As already mentioned, the displacement gradient can be decomposed into its symmetric
and antisymmetric parts. Using tensor notation, the displacement gradient becomes

∂jui =
1

2
(∂jui + ∂iuj) +

1

2
(∂jui − ∂iuj) = εij + ωij , (A.1)

where ui refers to ui (x), and ∂jui represents ∂ui
∂xj

.

First, let’s consider the antisymmetric tensor ωij :

ωij =
1

2
(∂jui − ∂iuj) . (A.2)

In the 2D case and in order for each element of εij to be zero, ∂1u1 = ∂2u2 = 0 and
∂2u1 = −∂1u2 = θ. In that particular case and in the absence of parallel translation, a point
δxi away from xi will be transported to

δxi → δxi + ∂juiδxi = δxi + ωijδxj = (δij + ωij) δxj = δx′i,

where δij is the Kronecker delta is

δij =

{
0 if i 6= j,

1 if i = j.
(A.3)

Therefore, this can be written as a linear transformation such that, in matrix form:

Aδx = δx′, where A =

(
1 −θ
θ 1

)
.

Furthermore, given that a rotation of a rigid body by a small angle θ is given by

R =

(
cos θ − sin θ
sin θ cos θ

)
≈

(
1 −θ
θ 1

)
.

It becomes clear that the antisymmetric tensor ωij is the portion of displacement due to
rotation only.
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On the other hand, the tensor εij , also called the infinitesimal strain tensor, is

εij =
1

2
(∂jui + ∂iuj) . (A.4)

The diagonal elements of εij are called the normal strains. In the case of a diagonal strain
tensor, the point δxi away from xi, without translation and rotation, is mapped to

δxi → δxi + εijδxj = (δij + εij) δxj = δx′i.

Similarly, the transformation matrix associated to this mapping (in 2D) is

A =

(
1 + ε11 0

0 1 + ε22

)
.

For example, a bar in 1D with length L0, after this transformation, it would have length

L = (1 + ε11)L0 ⇔ ε11 =
L− L0

L0
=
δL

L0
.

Therefore, normal strains defined in this manner refer to the relative expansion and con-
traction of the element in the direction of the base vectors. In fact, the trace of εij is directly
related to change in volume,

tr (εij) =
δV

V0
= ε11 + ε22 + ε33. (A.5)

Similarly, the off-diagonal elements of εij map δxi to δx′i through

A =

(
1 ε12

ε12 1

)
.

Applying this transformation to a square of side
L0 (Fig. A.1), we can relate the angle θ to the strain
ε12. For small angles,

θ ≈ tan θ = ε12L0

L0
= ε12.

As a result, ε12 represents the angle between a ma-
terial line originally along the direction of a basis
vector and the same line after the deformation due
to shear. Therefore, ε12 is called shear strain1.

O x1

x2

θ

θ

L0

L0

ε12L0

ε12L0

Figure A.1: Diagram represent-
ing a pure shear deformation.

Lastly, for representation purposes, it is useful to consider the eigenvalue decomposition of
the strain tensor. In index notation, the eigenvalue problem is

εijnj = λnj , (A.6)
1Not to be conflated with engineering shear strain, which is defined as the change in angle between two

previously orthogonal lines: γ12 = 2ε12.
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x1

x2

n(1)

n(2)

n(1)

n(2)

l1

l10

l2
l20

λ(k) =
lk−lk0
lk0

Figure A.2: Diagram representing a square after some deformation and the
corresponding eigenvectors n(1) and n(2). These vectors represent the principal
axis of strain on the right. It can also be observed the effect of the principal

strains λ(1) and λ(2).

which the solution is obtained by writing

(εij − λδij)nj = 0. (A.7)

For a non trivial solution to exist, the determinant must vanish, therefore

|εij − λδij | = 0. (A.8)

This gives a set of eigenvalues λ(k), one for each dimension. Substituting each eigenvalue in
equation (A.7) yields the corresponding normalized eigenvectors n(k)j .

After finding the eigenvalues and eigenvectors, we can decompose the strain tensor with
the symmetric eigenvalue decomposition

εij = UiαΛαβUjβ , (A.9)

where
Λαβ = λ(α)δαβ (A.10)

is a diagonal matrix (no implicit sum in (A.10)), and

Uiα = n
(k)
j δijδαk (A.11)

is orthogonal because εij is symmetric.

This decomposition implies that any deformation can be decomposed in a rotation and/or
reflection (unitary transformation), followed by normal strains corresponding to the eigenval-
ues (principal strains) and ending with the inverse unitary transformation (Fig. A.2).

This way, it is possible to uniquely represent the strain tensor on a 2D surface by plotting an
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Figure A.3: Representation of the strain tensor through eigenvalue decompo-
sition. This is the visualization method that is going to be used when mapping

strains on a grid.

ellipse whose axis are in the direction of n(k) and radii are 1+λ(k), in each of those directions,
respectively (Fig. A.3).
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Appendix B

Equilibrium Consequences for the
Stress Tensor

Under the assumption that the body in question is at rest, the sum of all forces acting on
the body must vanish. Consider a body occupying a volume V and with a surface S under both
volume and surface forces bi and Ti, per unit volume and area, respectively. The equilibrium
equation would be ∮

S
T
(n)
i dS +

∫
V
bi dV = 0, (B.1)

and, using the definition of the stress tensor (2.5), becomes∮
S
σjinj dS +

∫
V
bi dV = 0, (B.2)

which, using the Gauss’s divergence theorem, gives∫
V
(∂jσji + bi) dV = 0, (B.3)

for any arbitrary V . Therefore the integrand must be null, giving the equilibrium equation

∂jσji + bi = 0, (B.4)

in regards to linear momentum.

However, for a body to be in a state of equilibrium, aside from force balance, the sum of
the moments of force (M = x×F) must also be null. Using the tensor notation, the moment
of force can be written as

M = x× F = εijkxiFj , (B.5)

where εijk is known as the Levi-Civita symbol in three dimensions, given by

εijk =


+1 if (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2),

0 if i = j, j = k or k = i,

−1 if (i, j, k) = (1, 3, 2), (1, 2, 3) or (2, 1, 3).

(B.6)

That is, for the same body,∮
S
εijkxiT

(n)
j dS +

∫
V
εijkxibj dV = 0. (B.7)
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Using the stress tensor definition (2.5), the equation becomes∮
S
εijkxiσαjnα dS +

∫
V
εijkxibj dV = 0, (B.8)

that, by applying the Gauss’s theorem, gives∫
V
[∂α (εijkxiσαj) + εijkxibj ] dV = 0, (B.9)

in which, by the same argument as before, the integrand must vanish, giving

εijk [δiασαj + xi (∂ασαj + bj)] = 0. (B.10)

The second term contains the balance equation (B.4), therefore

εijkσij = 0, (B.11)

Which, expanding, gives the three equations:

σ12 − σ21 = 0; (B.12)

σ23 − σ32 = 0; (B.13)

σ31 − σ13 = 0. (B.14)

Or, in general,
σij = σji, (B.15)

which means that, in order for the body to be in equilibrium, the stress tensor must be sym-
metric. Therefore, there are only 6 independent components (in 3D).

An object under stress responds by exhibiting displacements. The total work done by the
surface and volume forces, Ti and bi, with a displacement field ui, on a body of volume V with
surface S, is given by ∮

S
uiT

(n)
i dS +

∫
V
uibi dV.

Using the definition of the stress tensor (2.5) and Gauss’s theorem, yields∮
S
uiσjinj dS +

∫
V
uibi dV =

∫
V
[∂j (uiσji) + uibi] dV,

using the equilibrium equation (B.4), gives∫
V
[σji∂jui + ui∂jσji − ui∂jσji] dV =

∫
V
σji∂jui dV,

which, by equation (2.2), becomes ∫
V
[σjiεij + σjiωij ] dV.
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Noting that the Frobenius product (aijbij) of a symmetric by an antisymmetric tensor is null,
we arrive at the following equation∮

S
uiT

(n)
i dS +

∫
V
uibi dV =

∫
V
εijσij dV, (B.16)

that relates external forces with internal strains and stresses.
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Appendix C

Constitutive Equation

As implied in equation (2.9), a real variation in strain δεij leads to a variation of energy
per unit volume

δu = δεij σij , (C.1)

yielding
σij =

∂u

∂εij
. (C.2)

By developing a model for the energy density u, one could derive the constitutive equations,
that is, the relation between stress and strain. Considering the most general linear connection
between the components of both tensors yields

σij = Cijklεkl, (C.3)

where Cijkl is the stiffness tensor. This equation is the generalized Hooke’s law. Therefore,
the expression in (C.3) is the constitutive equation for a linear elastic material and can, in
fact, be obtained using the energy density of an harmonic oscillator

u =
1

2
Cijklεijεkl. (C.4)

Regrading the stiffness tensor, because the stress tensor is symmetric,

Cijkl = Cjikl, (C.5)

reducing the number of independent constants from 34 = 81 to 3 × 3 × 6 = 54 (3 × 3 for kl
and 6 for ij). Moreover, since the strain tensor is also symmetric,

Cijkl = Cijlk, (C.6)

then for each of the 6 independent configurations of ij there are other 6 independent configu-
rations of kl, giving a total of 36 independent constants. Furthermore, given (C.2),

∂σij
∂εkl

=
∂2u

∂εklεij
=
∂σkl
∂εij

(C.7)

therefore, using equation (C.3),
Cijkl = Cklij (C.8)
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further reduces the number of independent constants to 21.

For an isotropic material and assuming total symmetry, the elements of Cijkl must be
scalars. In order for the energy to also be scalar, in the expression (C.4), the product εijεkl
must be a scalar. The only two ways a product between two tensors can produce a scalar
is either εiiεkk, or εikεik. This implies that it must be possible to write Cijkl in terms of
Kronecker delta products. The most general form Cijkl can take is

Cijkl = λδijδkl + µδikδjl + ζδilδjk. (C.9)

The symmetry Cijkl = Cklij is already satisfied. The other two symmetries (Cijkl = Cjikl =

Cijlk) force the condition µ = ζ.
Therefore, for an isotropic material, the most general stiffness matrix is of the form

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (C.10)

where λ and µ are called the Lamé constants. Equation (C.3), becomes

σij = λδijεkk + 2µεij . (C.11)

It is convenient to rewrite the constitutive equation in terms of other two parameters: the
Young’s modulus (E) and the Poisson ratio (ν).

Given a stress along the x-axis, for example, the Young’s modulus is defined as

σ11 = Eε11, (C.12)

and the Poisson ratio is
ε22 = ε33 = −νε11. (C.13)

For this system, the constitutive equations (C.11) are:

σ11 = λεii + 2µε11; (C.14)

0 = λεii + 2µε22; (C.15)

0 = λεii + 2µε33. (C.16)

Summing all three equations gives

σ11 = (3λ+ 2µ) εii, (C.17)

that, by substituting on (C.14), arrives at

ε11 =
λ+ µ

µ
εii. (C.18)

Using the equation (C.12), the expression for the Young modulus becomes

E =
µ (3λ+ 2µ)

λ+ µ
. (C.19)
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Also, for the Poisson ratio (C.13), using equation (C.15), we have

ε22 = −
1

2

λ

µ
εii, (C.20)

that, by combining with equation (C.18), leads to

ν =
1

2

λ

λ+ µ
. (C.21)

It is possible to invert both expressions and to write the constitutive equation in terms of
E and ν.

From (C.21), we can isolate λ:

2ν (λ+ µ) = λ⇔ 2νµ = λ (1− 2ν) .

Rearranging, gives
λ =

2νµ

1− 2ν
. (C.22)

Substituting the previous expression on (C.19), yields

E =
µ
(

6νµ
1−2ν + 2µ

)
2νµ
1−2ν + µ

=

µ
1−2ν (6νµ+ 2µ− 4νµ)

µ
1−2ν (2ν + 1− 2ν)

= 2µ (1 + ν) ,

therefore
µ =

1

2

E

1 + ν
(C.23)

and, from (C.22), we get
λ =

νE

(1 + ν) (1− 2ν)
. (C.24)

Finally, equation (C.11) becomes

σij =
E

(1 + ν) (1− 2ν)
(νδijεkk + (1− 2ν) εij) . (C.25)

Finally, by inverting the aforementioned relations, in a matrix representation, for 3D,
equation (C.11) can be rewritten as

σ11

σ22

σ33

σ23

σ31

σ12

 =
E

(1 + ν) (1− 2ν)


1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2
(1− 2ν) 0 0

0 0 0 0 1
2
(1− 2ν) 0

0 0 0 0 0 1
2
(1− 2ν)




ε11

ε22

ε33

2ε23

2ε31

2ε12

, (C.26)

where the shear components of the strain vector have an explicit factor of two, in order to
write the Frobenius product εijσij as a simple inner product.

A special case of (C.26) is when the stress vector applied on a particular surface is zero.
Under these conditions, a material is said to be under plane stress conditions. For example,
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if the components σ33 = σ13 = σ23 = σ31 = σ32 = 0, then we have ε23 = ε31 = 0 trivially and
the equation for σ33 reads:

0 = νε11 + νε22 + (1− ν) ε33. (C.27)

Which becomes
ε33 = −

ν

1− ν
(ε11 + ε22) , (C.28)

therefore, for equations of σ11 and σ22, we have

σ11 =
E

(1 + ν) (1− 2ν)

[
(1− ν) ε11 + νε22 −

ν2

1− ν
(ε11 + ε22)

]
, (C.29)

σ22 =
E

(1 + ν) (1− 2ν)

[
νε11 + (1− ν) ε22 −

ν2

1− ν
(ε11 + ε22)

]
, (C.30)

which, rearranged and in matrix form, becomesσ11σ22

σ12

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 1
2 (1− ν)


 ε11

ε22

2ε12

 . (C.31)
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Appendix D

Shape Functions

It is going to be exemplified the process by which it is derived the shape functions for an
element composed of, first, three nodes and, after that, four nodes. To reiterate, a FEM element
is composed of N nodes. There is a quantity q (x), which we are interested in interpolating
inside the element, whose value is known at the nodes, that is q(n) = q (xn), where xn is the
position of the n-th node.

First, we need appropriate local coordinates (ξ, η, ζ). For example, for a 2D triangular
element, the mapping, according to Fig. D.1, is

(x(1), y(1))→ (0, 0),

(x(2), y(2))→ (1, 0),

(x(3), y(3))→ (0, 1).

(0, 0)

(1, 0)

(0, 1)

ξ

η

Figure D.1: Representation of the element using
the new coordinates, that is, under the transforma-

tion on the left.

Using a Taylor series, equation (2.13), one can approximate the quantity q (ξ, η) to the
polynomial

q (ξ, η) ≈ c1 + c2ξ + c3η. (D.1)

For each node there is an equation. In this case,

q(0, 0) = q(1) = c1, (D.2)

q(1, 0) = q(2) = c1 + c2, (D.3)

q(0, 1) = q(3) = c1 + c3. (D.4)

Inverting the relation yields

c1 = q(1), (D.5)

c2 = q(2) − q(1), (D.6)

c3 = q(3) − q(1), (D.7)

and, by inserting them back on (D.1), we have

q (ξ, η) ≈ (1− ξ − η) q(1) + ξq(2) + ηq(3) (D.8)



78 Appendix D. Shape Functions

which, comparing with (2.14), means that

φ(1) (ξ, η) = 1− ξ − η, (D.9)

φ(2) (ξ, η) = ξ, (D.10)

φ(3) (ξ, η) = η, (D.11)

represented in Fig. D.3.

Similarly, for an element with four
nodes (Fig. D.2), where

(x(1), y(1))→ (−1,−1),

(x(2), y(3))→ (+1,−1),

(x(3), y(3))→ (+1,+1),

(x(4), y(4))→ (−1,+1),

ξ

η

(−1,−1) (+1,−1)

(+1,+1)(−1,+1)

Figure D.2: Representation of the element using
the new coordinates, that is, under the transforma-

tion on the left.

it is possible to derive the shape functions. Though the nodes could be mapped to (0, 0),
(1, 0), (1, 1) and (0, 1), the choice of ±1 is a little bit more convenient.

The Taylor expansion becomes

q (ξ, η) ≈ c1 + c2ξ + c3η + c4ξη, (D.12)

and the equation system is now

q(1) = c1 − c2 − c3 + c4, (D.13)

q(2) = c1 + c2 − c3 − c4, (D.14)

q(3) = c1 + c2 + c3 + c4, (D.15)

q(4) = c1 − c2 + c3 − c4. (D.16)

Summing all equations we get

c1 =
1

4

(
q(1) + q(2) + q(3) + q(4)

)
, (D.17)

summing the first and fourth equations, we have

c2 =
1

4

(
−q(1) + q(2) + q(3) − q(4)

)
, (D.18)

summing the first and second equations, yields

c3 =
1

4

(
−q(1) − q(2) + q(3) + q(4)

)
, (D.19)

lastly, for the first and third equations,

c4 =
1

4

(
q(1) − q(2) + q(3) − q(4)

)
. (D.20)
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ξ

η

φ (ξ, η)

φ(1)

φ(2)

φ(3)1

1

1

Figure D.3: Representation of the shape functions (D.9) in light red, (D.10) in light blue
and (D.11) in light green. The plane ξOη contains the element.

Finally, we get

q (ξ, η) ≈ 1

4
(1− ξ)(1− η)q(1) + 1

4
(1 + ξ)(1− η)q(2)

+
1

4
(1 + ξ)(1 + η)q(3) +

1

4
(1− ξ)(1 + η)q(4) (D.21)

Similarly, the shape functions for an element with four nodes are

φ(1) (ξ, η) =
1

4
(1− ξ) (1− η) , (D.22)

φ(2) (ξ, η) =
1

4
(1 + ξ) (1− η) , (D.23)

φ(3) (ξ, η) =
1

4
(1 + ξ) (1 + η) , (D.24)

φ(4) (ξ, η) =
1

4
(1− ξ) (1 + η) , (D.25)

represented in Fig. D.4.

ξ

η

(−1,−1) (+1,−1)

(+1,+1)(−1,+1)

Figure D.4: Value of the shape function φ(1) regarding the local coordinates, where red corresponds
to the value 1 and black to the value 0. The rest of the shape functions are very similar and can be

obtained through rotation of φ(1).
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Appendix E

Variational Formulation

It is easier to illustrate this procedure using an example. For the Poisson equation,

∇2u = f, (E.1)

where u = u(x, y) is the unknown function and f = f(x, y) is a known function of the
coordinates. Multiplying by a test function v = v(x, y) and integrating over a volume V , the
Poisson equation becomes ∫

V
v∇2u dV =

∫
V
vf dV. (E.2)

Using the identity,
∇ · (v∇u) = (∇v) · (∇u) + v∇2u, (E.3)

the previous expression becomes,∫
V
∇ · (v∇u) dV −

∫
V
(∇v) · (∇u) dV =

∫
V
vf dV, (E.4)

which, using Gauss’s theorem, yields∮
S
v∇u dS −

∫
V
(∇v) · (∇u) dV =

∫
V
vf dV. (E.5)

Regarding v, it is an arbitrary function taken from a specific set of square integrable functions
with value v = 0 at the boundary of V . Therefore, the first term vanishes, leading to∫

V
(∇v) · (∇u) dV = −

∫
V
vf dV. (E.6)

This method is equivalent to virtual work formulation with the test function being a virtual
change in u. For an electric field (E), which must obey ∇2V = − ρ

ε0
, the energy inside a volume

Ω is given by
U =

ε0
2

∫
Ω

E ·E dΩ, (E.7)

where ε0 is the vacuum permittivity. Under a change δE, the variation of energy is

δU = ε0

∫
Ω

E · δE dΩ, (E.8)
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due to the fact that E = −∇V , this expression leads to,

δU = ε0

∫
Ω
(∇V ) · (∇δV ) dΩ, (E.9)

where δV is a virtual electric potential.
Note that the change in energy due to a charge distribution is

δW =

∫
Ω
ρδV dΩ. (E.10)

Under the principle of virtual work, the internal energy variation and the change of external
work must be equal, therefore,∫

Ω
(∇V ) · (∇δV ) dΩ =

∫
Ω

ρ

ε0
δV dΩ. (E.11)

By comparing with (E.6), the weak form of the Poisson equation is recovered when u =

V ,v = δV and f = − ρ
ε0

. Furthermore, by comparing with (E.1), recovers the strong form
∇2V = − ρ

ε0
.
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Assembly of the Global Stiffness
Matrix

Here it will be illustrated the direct stiffness method for joining individual element’s stiff-
ness matrices. Given the example in Fig. F.1, suppose we have the stiffness matrices for each
element K(I)

ij , K(II)
ij , K(III)

ij , K(IV )
ij .

1

2

3

4

5

1

2

3

1 2

3

1

2

3

1

2

3

I

II

III

IV

I

II

III

IV

Figure F.1: A very small mesh with only four elements (I, II, III and IV) and
five nodes. On the left the nodes have globally numbered indices. On the right,

however, each element has nodes with local indices one through three.

By the direct stiffness method we have,

Kαβ =
∑
e

K
(e)
ij = K

(I)
ij +K

(II)
ij +K

(III)
ij +K

(IV )
ij . (F.1)

where α, β = 1, 2, 3, 4, 5 are global indices and i, j = 1, 2, 3 are local indices. For an element e,
the stiffness matrix, using the local indices, is

K
(e)
ij =

K
(e)
11 K

(e)
12 K

(e)
13

K
(e)
21 K

(e)
22 K

(e)
23

K
(e)
31 K

(e)
32 K

(e)
33

 . (F.2)
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Using the global indices, however, for element I,

K
(I)
αβ =


K

(I)
11 K

(I)
12 K

(I)
13 0 0

K
(I)
21 K

(I)
22 K

(I)
23 0 0

K
(I)
31 K

(I)
32 K

(I)
33 0 0

0 0 0 0 0

0 0 0 0 0

 . (F.3)

Summing the second matrix, paying close attention to the indices,

K
(I)
αβ +K

(II)
αβ =


K

(I)
11 K

(I)
12 K

(I)
13 0 0

K
(I)
21 K

(I)
22 +K

(II)
11 K

(I)
23 +K

(II)
13 K

(II)
12 0

K
(I)
31 K

(I)
32 +K

(II)
31 K

(I)
33 +K

(II)
33 K

(II)
32 0

0 K
(II)
21 K

(II)
23 K

(II)
22 0

0 0 0 0 0

 . (F.4)

Summing the third matrix,

K
(I)
αβ +K

(II)
αβ +K

(III)
αβ =
K

(I)
11 +K

(III)
11 K

(I)
12 K

(I)
13 +K

(III)
12 0 K

(III)
13

K
(I)
21 K

(I)
22 +K

(II)
11 K

(I)
23 +K

(II)
13 K

(II)
12 0

K
(I)
31 +K

(III)
21 K

(I)
32 +K

(II)
31 K

(I)
33 +K

(II)
33 +K

(III)
22 K

(II)
32 K

(III)
23

0 K
(II)
21 K

(II)
23 K

(II)
22 0

K
(III)
31 0 K

(III)
32 0 K

(III)
33

 . (F.5)

Finally,

Kαβ = K
(I)
αβ +K

(II)
αβ +K

(III)
αβ +K

(IV )
αβ =

K
(I)
11 +K

(III)
11 K

(I)
12 K

(I)
13 +K

(III)
12 0 K

(III)
13

K
(I)
21 K

(I)
22 +K

(II)
11 K

(I)
23 +K

(II)
13 K

(II)
12 0

K
(I)
31 +K

(III)
21 K

(I)
32 +K

(II)
31 K

(I)
33 +K

(II)
33 +K

(III)
22 +K

(IV )
33 K

(II)
32 +K

(IV )
31 K

(III)
23 +K

(IV )
32

0 K
(II)
21 K

(II)
23 +K

(IV )
13 K

(II)
22 +K

(IV )
11 K

(IV )
12

K
(III)
31 0 K

(III)
32 +K

(IV )
23 K

(IV )
21 K

(III)
33 +K

(IV )
22

 . (F.6)

This matrix is rather dense, however, in this case, most elements share sides with each
other. In the cases where the number of elements is large, most of them will not even share a
node, therefore the matrix becomes increasingly sparse.
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Appendix G

Preconditioned Conjugate Gradient

The equation to be solved is (2.52), which is of the form Ax = b, after imposing boundary
conditions. For that effect, it is going to be used a method called preconditioned conjugate
gradient (PCG), which is an iterative method that, taking an initial guess at x0, it produces
another vector closer to the solution, converging towards it, that is, until the difference between
the successive vectors is smaller than some precision parameter. Firstly, however, it is going
to be discussed its predecessor, the Conjugate Gradient (CG).

Following the derivation done in [51], let

f(x) = −1

2
xTAx + xTb (G.1)

be a function we want to minimize. Its gradient is,

∇f(x) = b−Ax, (G.2)

and we are looking for x∗, such that,

∇f(x∗) = b−Ax∗ = 0, (G.3)

which is the equation we want to solve.
Supposing we are at position xi and we want to advance towards x∗, step by step. Let pi

be the direction in which we are advancing, such that,

xi+1 = xi + αipi, (G.4)

where αi is the step size. By minimizing f(xi+1) with respect to αi, along the direction pi,
the value of αi can be found,

∂f(xi+1)

∂αi
=
∂xi+1

T

∂αi
∇f(xi+1) = pi

T (b−Axi+1) = pi
T (b−A (xi + αipi))

= pi
T∇f (xi)− αipi

TApi = 0, (G.5)

rewriting in terms of αi, renaming the gradient as the residual, ri = ∇f(xi),

αi =
pi

Tri
piTApi

. (G.6)



86 Appendix G. Preconditioned Conjugate Gradient

Note that, in equation (G.5), it is required that,

pi
Tri+1 = 0. (G.7)

Additionally, the calculation of the next residual is,

ri+1 = b−Axi+1 = b−Axi − αiApi = ri − αiApi (G.8)

The steepest descent method is obtained when the directions pi are equal to the gradient
in the position ri. However, in the conjugate gradient (CG) method, we minimize along
A-orthogonal (conjugate) directions, that is,

pi
TApj = 0, i 6= j. (G.9)

With a set of n mutually conjugate directions, pi, by spanning a basis according to this
set, the solution x∗ can be written as,

x∗ =

n∑
i=1

αipi, (G.10)

where n is the dimension of the matrix. Therefore,

Ax∗ = b, (G.11)

becomes,

A

n∑
i=1

αipi =
n∑

i=1

αiApi = b, (G.12)

which, multiplying by pj
T, on the left, yields,

n∑
i=1

αipj
TApi = αjpj

TApj = pj
Tb, (G.13)

Therefore,

αi =
pi

Tb
piTApi

, (G.14)

which, in terms of ri, becomes,

αi =
pi

T (Axi + ri)

piTApi
=

pi
T
(
A
∑i−1

j=1 αjpj + ri

)
piTApi

=
pi

Tri
piTApi

, (G.15)

recovering equation (G.6).

Moreover, because of conjugation conditions and (G.7), for i > j,

pj
Tri = pj

T (rj+1 − αj+1Apj+1 − · · · − αi−1Api−1) = pj
Trj+1 = 0. (G.16)
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Suppose we try to choose a new direction, such that it is conjugate to all previous directions,

pi = ui +
i−1∑
j=1

βijpj, (G.17)

where u1,u2, . . . ,un are a set of linearly independent vectors. By imposing the conjugation
condition,

pk
TApi = pk

TAui +
i−1∑
j=1

βijpk
TApj = 0, k < i, (G.18)

implies,
pk

TAui + βikpk
TApk = 0, k < i, (G.19)

which leads to,

βij = −
pj

TAui
pjTApj

. (G.20)

According to this construction, we can write,

pj
Tri = uj

Tri +

j−1∑
k=1

βjkpk
Tri, j < i, (G.21)

which by equation (G.16), becomes

uj
Tri = 0, j < i. (G.22)

And, for the same reason,

pi
Tri = ui

Tri +
i−1∑
j=1

βijpj
Tri = ui

Tri. (G.23)

Choosing the basis as the successive residuals, we get,

rj
Tri = 0, i 6= j, (G.24)

αi =
ri

Tri
piTApi

. (G.25)

Furthermore,

ri
Trj+1 = ri

Trj − αjri
TApj ⇔ ri

TApj =
1

αj

(
ri

Trj − ri
Trj+1

)
, (G.26)

and, according to (G.20) and (G.24), becomes

βij =


− 1

αi

ri
Tri

piTApi
j = i,

1
αi−1

ri
Tri

pi−1TApi−1
j = i− 1,

0 j < i

. (G.27)
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Therefore, the next direction can be written as, according to (G.17),

pi = ri + βii−1pi−1 = ri + βipi−1, (G.28)

where βi = βii−1 is the only nonzero term in the summation. and βi can be simplified further,

βi =
pi−1

TApi−1
ri−1Tri−1

ri
Tri

pi−1TApi−1
=

ri
Tri

ri−1Tri−1
(G.29)

This way, we find a new direction along which we minimize the function f . The final
algorithm is simply:

1. start at a position x1;

2. calculate first direction equal to residual at x1: p1 = r1 = b−Ax1;

3. let i = 1;

4. αi =
ri

Tri
piTApi

;

5. xi+1 = xi + αipi;

6. ri+1 = ri − αiApi;

7. βi+1 =
ri+1

Tri+1
riTri

;

8. pi+1 = ri+1 + βi+1pi;

9. i = i+ 1;

10. go to step 4. until i = n, or there is enough precision for the result, xi.

The precision can be measured by various different methods, for example,

ri
Tri < δ r0

Tr0,

ri
Tri < δ bTb,

where δ is some sort of threshold value, are both valid choices.

The PCG consists of finding x indirectly by solving

M−1Ax =M−1b, (G.30)

where M is the preconditioning matrix. When M−1 = I, that is, when M−1 is the identity
matrix, the equation system Ax = b is recovered, however, when M−1 = A−1, the problem,
the value of x is automatically solved. The idea behind the PCG method is to use M−1 as an
easily computable matrix somewhere between I and A−1, in order to improve convergence.

Let the matrix,
M = EET, (G.31)

be the preconditioning matrix, built from the unknown matrix E.
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Transforming the system into,

E−1AE−Tx̂ = E−1b, (G.32)

x̂ = ETx, (G.33)

the CG algorithm for the first equation is,

1. start at a position x̂1 = ETx1;

2. calculate first direction equal to residual at x̂1: p̂1 = r̂1 = E−1b− E−1AE−Tx̂1;

3. let i = 1;

4. αi =
r̂T

i r̂i
p̂T

i E
−1AE−Tp̂i

;

5. x̂i+1 = x̂i + αip̂i;

6. r̂i+1 = r̂i − αiE
−1AE−Tp̂i;

7. βi+1 =
r̂T

i+1r̂i+1

r̂T
i r̂i

;

8. p̂i+1 = r̂i+1 + βi+1p̂i;

9. i = i+ 1;

10. go to step 4. until i = n, or there is enough precision for the result, x̂i;

11. solve x̂i = E
Txi for xi.

However, having no expression for E, this seems very unpractical. Luckily, there is a
carefully thought out transformation which allows the elimination of E in the equations. Ef-
fectively, substituting,

r̂i = E
−1ri, (G.34)

p̂i = E
Tpi, (G.35)

and remembering that,

x̂i = E
Txi, (G.36)

M−1 = E−TE−1, (G.37)

the PCG algorithm becomes, finally,

1. start at a position x1;

2. calculate first residual at x1: r1 = b−Ax1;

3. calculate the first direction: p1 =M−1r1;

4. let i = 1;

5. αi =
ri

TM−1ri
piTApi

;
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6. xi+1 = xi + αipi;

7. ri+1 = ri − αiApi;

8. βi+1 =
ri+1

TM−1ri+1
riTM−1ri

;

9. pi+1 =M−1ri+1 + βi+1pi;

10. i = i+ 1;

11. go to step 5. until i = n, or there is enough precision for the result, xi.

One value typically used forM−1 is the inverse of the diagonal ofA, i.e.,M−1 = [diag (A)]−1.
Another example often used, is the incomplete Cholesky preconditioning, derived from Cholesky
factorization, or other more sophisticated and quickly computable approximations to A−1.
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Glossary

Actin Filament One of the major type of components of the cytoskeleton, often called mi-
crofilament. It is a thin linear polymer made from the actin protein and participates in
cell signaling, cell migration, transport of material and in the contraction of the cell.

Anastomosis In the context of sprouting angiogenesis, this term refers to connection between
two sprouts.

Angiogenesis The formation of new blood vessels from pre-existing ones. Sprouting angio-
genesis is a specific type of angiogenesis in which cells of the initial vessel rearrange into
small sprouts. The sprout’s leading cell is of a specific phenotype called tip cell and is
responsible for orienting the sprout. Following the tip cell, the stalk cells correspond to
a more proliferative phenotype.

Cadherin A class of transmembrane proteins that intermediate cell-cell adhesion.

Chemotaxis Directed cell migration according to the gradient of concentration of a certain
chemical signal.

Durotaxis Directed cell migration towards greater rigidity of the surrounding extracellular
matrix.

Extracellular Matrix A collection of fibrous proteins secreted by cells which fills up the
space between cells. This structure provides mechanical and biochemical stability to the
cells it surrounds.

Focal Adhesion A macromolecular structure composed of a large collection of integrin molecules
and their respective intracellular auxiliary proteins. By being connected to the actin cy-
toskeleton, this structure allows for strong cell-matrix adhesion, signaling and traction
force generation.

Homeostasis The active regulation towards a somewhat stable, hence favorable, state of
equilibrium of a system.

Integrin Transmembrane protein complex composed of two subunits responsible for cell-
matrix adhesion. By recruiting adapter proteins and connecting to the cytoskeleton, it
is also able to transmit signals from the ECM.

Mechanosensing The biochemical and mechanical processes of converting physical cues into
biochemical signals.



94 Glossary

Metastasis Cancer cells break away from the initial tumor and for new masses of cancer cells
in other regions of the body. This process is associated with a more invasive phenotype,
typically referred to as metastatic.

Morphogenesis The process by which cells rearrange into tissues in the development of the
embryo, sometimes referred to as embryogenesis.

Strain Stiffening The phenomenon when certain materials, when stretched, respond by in-
creasing their rigidity.

Vasculogenesis The formation of a network of blood vessels de novo, that is, without pre-
existing blood vessels.
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