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Abstract

This dissertation is a result of the work developed throughout the year by the author in
association with his supervisors. There were two main objectives: one was to study the
gluon and ghost propagators and the strong coupling constant on the lattice, namely their
dependences on the finite lattice spacing and on the physical volume; the other was to
compute the three-gluon vertex and provide further evidence of the zero crossing of the
gluon factor form associated with the three gluon one particle irreducible function, which is
expected so that one has a properly defined set of Dyson-Schwinger equations. These were
done in the pure Yang-Mills theory.

Our results showed no noticeable (or, at most, mild) dependence of the gluon and ghost
propagators on the physical volume, at least for the lattices used (above (6.5fm)4 and below
(13fm)4); they showed on both propagators a dependence on the lattice spacing in the
infrared region, where the dependence is more noticeable in the case of the gluon propagator;
they exhibit a supression on the value at the maximum of the running coupling for smaller
lattice spacings. In what concerns the three gluon vertex, our results are in favour of a
zero crossing of the gluon form factor for momenta in the range p ∈ [220−260]MeV. On
the other hand, the data seems to corroborate the predictions of the renormalization group
improved perturbation theory in the region of high momentum.

The results obtained originated

• Two papers in international refereed journals,

1. "Lattice Gluon and Ghost Propagators, and the Strong Coupling in Pure SU(3) Yang-
Mills Theory: Finite Lattice Spacing and Volume Effects", Anthony G. Duarte and
Orlando Oliveira and Paulo J. Silva, Phys. Rev. D94, 014502 (2016)[1];

2. "Further Evidence For Zero Crossing On The Three Gluon Vertex", Anthony G. Duarte
and Orlando Oliveira and Paulo J. Silva, Phys. Rev. D (accepted) [2].

• An oral presentation in an international conference



viii

1. "Landau gauge gluon vertices from Lattice QCD", A. Duarte, O. Oliveira, P.J. Silva,
presented in "34th International Symposium on Lattice Field Theory", Southampton,
UK, 24-30 July 2016.

which is going to be published in the proceedings,

1. "Landau gauge gluon vertices from Lattice QCD", A. Duarte, O. Oliveira, P.J. Silva,
PoS (LATTICE2016) 351 (in preparation).

Keywords
Quantum Field Theory, Quantum Chromodynamics, Lattice Quantum Chromodynamics,

Gluon, Ghost, Running Coupling, Propagator, Three Gluon Vertex.



Resumo

Esta dissertação é fruto do trabalho desenvolvido ao longo deste ano pelo autor, juntamente
com os seus orientadores. A dissertação consistiu essencialmente em dois objectivos: o estudo
do propagador gluónico e dos campos fantasma, bem como da constante de acoplamento
associada, na rede, nomeadamente, das suas dependências no espaçamento finito da rede e
no volume físico; o estudo do vértice de três gluões, nomeadamente, o seu cálculo na rede, e
o estudo do factor de forma gluónico da função 1PI, de modo a fornecer novas evidências
sobre a mudança de sinal deste factor de forma, prevista a fim de termos um conjunto de
equações de Dyson-Schwinger bem definidas. Estes objectivos foram estudados numa teoria
de Yang-Mills pura.

Os resultados obtidos não mostram nenhuma dependência evidente dos propagadores
gluónico e dos campos fantasma no volume físico, pelo menos, para as redes utilizadas
(acima de (6.5fm)4 e abaixo de (13fm)4); mostram em ambos os propagadores (gluónico
e de campos fantasma) uma dependência no espaçamento da rede, na região do infraver-
melho, notando-se uma dependência mais evidente no caso do propagador gluónico; exibem
uma supressão no valor da constante de acoplamento correspondente ao seu máximo para
espaçamentos da rede menores. No que diz respeito ao vértice de três gluões, os nossos
resultados são compatíveis com uma mudança de sinal do factor de forma gluónico na região
de momentos p ∈ [220− 260]MeV. Por outro lado, os nossos dados parecem corroborar
as previsões da teoria perturbativa de grupo de renormalização melhorado, na região de
momentos altos.

Os resultados obtidos deram origem a

• Dois artigos em revistas científicas de circulação internacional,

1. "Lattice Gluon and Ghost Propagators, and the Strong Coupling in Pure SU(3) Yang-
Mills Theory: Finite Lattice Spacing and Volume Effects", Anthony G. Duarte and
Orlando Oliveira and Paulo J. Silva, Phys. Rev. D94, 014502 (2016)[1];

2. "Further Evidence For Zero Crossing On The Three Gluon Vertex", Anthony G. Duarte
and Orlando Oliveira and Paulo J. Silva (aceite)[2].

• Uma apresentação oral numa conferência internacional



x

1. "Landau gauge gluon vertices from Lattice QCD", A. Duarte, O. Oliveira, P.J. Silva,
presented in "34th International Symposium on Lattice Field Theory", Southampton,
UK, 24-30 July 2016.

que irá ser publicado nas actas da conferência,

1. "Landau gauge gluon vertices from Lattice QCD", A. Duarte, O. Oliveira, P.J. Silva,
PoS (LATTICE2016) 351 (em preparação).

Palavras-chave
Teoria Quântica de Campos, Cromodinâmica Quântica, Cromodinâmica Quântica na

Rede, Gluão, Campos Fantasma, Constante de Acoplamento, Propagador, Vértice de Três
Gluões.



Table of contents

List of figures xv

List of tables xvii

Notations and Conventions xix

Introduction 1

1 Quantum Field Theory: A Brief Overview 5
1.1 Classical Field Theory: Lagrangian and Hamiltonian Formulation . . . . . 5

1.1.1 Lagrangian Field Theory . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Hamiltonian Field Theory . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Functional Integral Formulation . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Derivation using Functional Integrals . . . . . . . . . . . . . . . . 10
1.3.2 Generating Functional . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Quantum Chromodynamics 15
2.1 Gauge Invariance: The Yang-Mills Lagrangian . . . . . . . . . . . . . . . 15
2.2 Quantization of Non-Abelian Gauge Theories . . . . . . . . . . . . . . . . 18

2.2.1 Faddeev-Popov Method . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 The Gluon and Ghost Propagators . . . . . . . . . . . . . . . . . . 22
2.3.2 Three-Gluon Vertex . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Full Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Regularization and Renormalization . . . . . . . . . . . . . . . . . . . . . 26
2.6 General Form of the Three-gluon vertex . . . . . . . . . . . . . . . . . . . 27
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



xii Table of contents

3 Lattice QCD 31
3.1 Euclidean Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Discretization of Space-Time: Gauge Links . . . . . . . . . . . . . . . . . 32
3.3 The Wilson Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Gauge-Fixing: Minimal Landau Gauge . . . . . . . . . . . . . . . . . . . . 34
3.5 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Gluon propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Ghost propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.3 Running Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Computational Methods 41
4.1 Monte Carlo Methods: Heat-Bath and Overrelaxation . . . . . . . . . . . . 41

4.1.1 Markov Chains and their convergence . . . . . . . . . . . . . . . . 42
4.1.2 Detailed Balance and the Metropolis Algorithm . . . . . . . . . . . 44
4.1.3 Metropolis Algorithm applied on the Lattice . . . . . . . . . . . . . 45
4.1.4 Problems with Simple Metropolis Algorithm . . . . . . . . . . . . 46
4.1.5 Overrelaxation Method in SU(2) . . . . . . . . . . . . . . . . . . . 46
4.1.6 Heatbath in SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.7 Generalization to SU(3) . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Gauge Fixing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Error Analysis: Bootstrap Method . . . . . . . . . . . . . . . . . . . . . . 51

5 Results 53
5.1 Lattice setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Gluon and Ghost Propagators and the Strong Coupling . . . . . . . . . . . 54

5.2.1 Gluon Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Ghost Dressing Function . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3 Running Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 Comparison with previous works . . . . . . . . . . . . . . . . . . 61

5.3 The Three Gluon Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 66

Conclusion 75

References 79

Appendix A The Group SU(N) 85



Table of contents xiii

Appendix B Some proofs and calculations 89
B.1 Weyl Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.2 Generalization of Gaussian integrals . . . . . . . . . . . . . . . . . . . . . 91

Appendix C Grassman variables 95

Appendix D Results: More Figures 99
D.1 Ghost Propagator and the Perturbative One-loop expression . . . . . . . . . 99

D.1.1 Case in which Λ is taken as a fitting parameter . . . . . . . . . . . 99
D.1.2 Case in which Λ ∼ ΛQCD ∼ 200MeV . . . . . . . . . . . . . . . . 102





List of figures

2.1 The full gluon two-point correlation function written as a series of Feynamn
diagrams. The curvy lines represent the tree-level gluon propagator, and the
circle, in which "1PI" is written, represents the sum of all 1PI diagrams, i.e.,
the gluon self-energry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Gluon propagator renormalized at µ = 4GeV for the same physical volume
of (8 f m)4 and different lattice spacings. . . . . . . . . . . . . . . . . . . . 57

5.2 Gluon propagator renormalized at µ = 4GeV for the same lattice spacing
(a = 0.1016(25)fm) and different volumes. . . . . . . . . . . . . . . . . . 58

5.3 Ghost dressing function renormalized at µ = 4GeV for the same physical
volume of (8 f m)4 and different lattice spacings. . . . . . . . . . . . . . . . 59

5.4 Ghost dressing function renormalized at µ = 4GeV for for the same lattice
spacing (a = 0.1016(25)fm) and different volumes. . . . . . . . . . . . . . 60

5.5 Ghost dressing function renormalized at µ = 4GeV for the simulations
reported in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Running coupling for the same physical volume of (8 f m)4 and different
lattice spacings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Running coupling for the same lattice spacing of (a = 0.1016(25)fm) and
different volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.8 Renormalized gluon propagator for the Berlin-Moscow-Adelaide lattice data.
The plot also includes the results of our simulation with the same β value
(β = 5.7). This figure was taken from our article [1]. . . . . . . . . . . . . 63

5.9 Renormalized gluon propagator for all our data and the data corresponding
largest volume of the Berlin-Moscow-Adelaide group. This figure was taken
from our article [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.10 Bare ghost dressing function corresponding to β = 5.7 simulations. Our
lattice was rescaled in order to reproduce the 644 Berlin-Moscow-Adelaide
numbers at its largest momentum. This figure was taken from our article [1]. 65



xvi List of figures

5.11 Comparison of the results for the strong coupling computed from the simula-
tions reported in Tab. 5.1 and Tab 5.5. This figure was taken from our article
[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.12 Bare gluon propagator in Landau gauge. . . . . . . . . . . . . . . . . . . . 67
5.13 Dressing function d(p2) = p2D(p2) in Landau gauge. . . . . . . . . . . . . 67
5.14 Bare gluon propagator in the Infrared for different types of momenta, per-

formed in the 644 lattice, in Landau gauge. . . . . . . . . . . . . . . . . . . 68
5.15 Infrared Γ(p2)p2 computed using the 644 data sets for different types of

momenta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.16 Infrared Γ(p2)p2 computed using the 804 data sets for different types of

momenta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.17 Low momenta Γ(p2) from the 644 and 804 simulations. . . . . . . . . . . . 72
5.18 Γ(p2) from the 644 simulation. . . . . . . . . . . . . . . . . . . . . . . . . 73
5.19 ΓUV (p2) from the 644 simulations. The curves represent predictions from

perturbation theory. "RG imporved" stands for the one-loop renormalization
group improved result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

D.1 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 5.7
and L = 44, in which Λ is a fitting parameter. . . . . . . . . . . . . . . . . 100

D.2 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 6.0
and L = 64, in which Λ is a fitting parameter. . . . . . . . . . . . . . . . . 100

D.3 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 6.0
and L = 80, in which Λ is a fitting parameter. . . . . . . . . . . . . . . . . 101

D.4 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 6.0
and L = 128, in which Λ is a fitting parameter. . . . . . . . . . . . . . . . . 101

D.5 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 6.3
and L = 128, in which Λ is a fitting parameter. . . . . . . . . . . . . . . . . 102

D.6 Bare ghost Propagator and functional form (5.4) for the lattice with β = 5.7
and L = 44, in which Λ is ∼ ΛQCD ∼ 200MeV . . . . . . . . . . . . . . . . 103

D.7 Bare ghost Propagator and functional form (5.4) for the lattice with β = 6.0
and L = 64, in which Λ is ∼ ΛQCD ∼ 200MeV . . . . . . . . . . . . . . . . 103

D.8 Bare ghost Propagator and functional form (5.4) for the lattice with β = 6.0
and L = 80, in which Λ is ∼ ΛQCD ∼ 200MeV . . . . . . . . . . . . . . . . 104

D.9 Bare ghost Propagator and functional form (5.4) for the lattice with β = 6.0
and L = 128, in which Λ is ∼ ΛQCD ∼ 200MeV . . . . . . . . . . . . . . . . 104

D.10 Bare ghost Propagator and functional form (5.4) for the lattice with β = 6.3
and L = 128, in which Λ is ∼ ΛQCD ∼ 200MeV . . . . . . . . . . . . . . . . 105



List of tables

5.1 Lattice setup. The last column refers so the number of point sources, per con-
figurations, used to invert the Faddeev-Popov matrix, necessary to compute
the ghost propagator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Parameters from the fit in the range q ∈ [0,6]GeV of the bare gluon propaga-
tor data set using the functional form (5.3). . . . . . . . . . . . . . . . . . . 56

5.3 Parameters from the fit in the range q ∈ [2,6]GeV of the bare ghost propaga-
tor data set using the functional form (5.4), except for the lattices correspond-
ing to β = 6.0, L = 80 and L = 128, in which the range was q ∈ [2,8]GeV . 56

5.4 Values of the bare lattice propagators at µ = 4GeV and renormalization
constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Lattice setup considered by the Berlin-Moscow-Adelaide group [3]. Notice
that the values presented in this table are those already rescaled. . . . . . . 62

5.6 Lattice setup used to study the three-gluon vertex. . . . . . . . . . . . . . . 66

D.1 Parameters from the fit of the bare ghost propagator data set using the
functional form (5.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D.2 Parameters from the fit of the bare ghost propagator data set using the
functional form (5.4) for Λ ∼ ΛQCD ∼ 200MeV . . . . . . . . . . . . . . . . 102





Notation and Conventions

Units

One set h̄ = c = 1. In this system one has
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1, if x0 − y0 > 0

0, otherwise

Some Notations

The slashed notation is defined as
/A := γ

µAµ

where γµ are the gamma matrices and Aµ is a four-vector (for instance, /∂ = γµ∂µ ).
One also uses the notations

Aµ := Aa
µta

Fµν := Fa
µνta

(1)

for, respectively, the gauge field and the field strength tensor. Notice that Fa
µν = ∂µAa

ν −
∂νAa

µ +g f abcAb
µAc

ν , where f abc are the structure constants of the group (see Appendix A).
On the other hand, ta are the generators of SU(N).
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Introduction

Quantum Chromodynamics is tightly established as the theory of quarks and gluons. It may be
viewed as a generalization of Quantum Electrodynamics, for it may be constructed from gauge
symmetry as one may see in chapter 2. It is a non-abelian gauge theory with symmetry group
SU(3). In this dissertation, in order to study the non-perturbative regime, one adopts the well-
established Lattice Quantum Chromodynamics approach, which consists of calculations in a
discretized Euclidean space-time, which is particularly suited for computational calculations.

There are two main objectives for this dissertation: one is to study the gluon and ghost
propagators and the strong coupling constant on the lattice, namely their dependences on
the finite lattice spacing and on the physical volume; the other is to compute the three-
gluon vertex and to provide further evidence of the zero crossing of the gluon factor form
associated with the three gluon one particle irreducible function, which is expected due
to Dyson-Schwinger equations. In this work, we will not consider dynamical fermions,
i.e., the aforementioned is studied in a pure Yang-Mills theory in Landau gauge. This is
called the quenched approximation, which, in terms of Feynman diagrams, means one is not
considering the fermion loop contributions.

In what concerns the gluon and ghost propagators, there have been investigations using
lattice simulations in the past years for the SU(2) and SU(3) groups, resulting in the con-
sensus that: the gluon propagator is supressed in the infrared and that at zero momentum
it has a finite non-vanishing value [3–11]; the ghost propagator appears to be represented
substantially by its tree level expression [3–5, 7, 12–16]. It has been shown in [10] after
comparing various ensembles with different lattice spacings and physical volumes that the
dominant effect in the infrared region was the use of a finite lattice spacing. Furthermore, the
same paper reports that in the infrared region the use of large lattice spacing underestimates
the value of the propagator. Therefore, this dissertation is an extension of the work developed
in [10]. For that purpose, we used large physical volumes ≳ 6.5 f m.

On the other hand, notice that the study of the three gluon vertex is important as it is
related to several properties of the strong interaction. For instance, one can define from
the three point Green’s function a static potential between colour charges or even compute



2 Introduction

the strong coupling constant [17–25]. It is expected that in the case of pure Yang-Mills
theory, in order to make the gluon Dyson Schwinger equations finite, that some form factors
related to the three gluon one particle irreducible change sign for some momentum in the
infrared region, if one assumes a ghost propagator essentially described by its tree level
form, and also that the four-gluon vertex is subleading in the infrared[26, 27]. The change
of sign of the three gluon 1PI implies that one has a momentum in which a zero crossing
happens. This zero crossing have been observed in the case of SU(2) gauge group for three
dimensions in [28, 29]; for SU(3) in four dimensions in pure Yang Mills theory, reported in
[25]; in solutions of the three-gluon vertex Dyson-Schwinger equations [30, 31]; in Coulomb
gauge using the variational solution of QCD [32]; using the Curci-Ferrari model [33]. The
zero crossing where estimated in the range: 150− 250MeV in the case of SU(2) lattice
simulation in three dimensions [29]; 130− 200MeV in the study of the gluon using the
Dyson Schwinger equations [27]; above 100MeV in the case of lattice simulations for SU(3)
gauge group [25]. Furthermore, if the dynamical effects are included in the three gluon
vertex, the zero crossing seems to happen within the same scales of momentum as in the
quenched theory [34]. The work developed in the current dissertation intended to provide
further evidence of this change of sign for certain kinematic configurations.

This dissertation is divided into six chapters. The first four chapters are a synopsis of the
theoretical basis needed to understand the results we obtained. They are not to be understood
as a complete description of the topics they cover, but rather as a (hopefully) understandable
set of topics that only covers what is needed.

In chapter one, the basic concepts of Quantum Field theory are introduced, as those of
correlation functions. One commences with the classical field theory and then introduces the
functional integral method approach to quantum field theory. Afterwards, one introduces the
essencial concept of correlation functions and finally uses the generating functional to define
it.

In chapter two, Quantum Chromodynamics is discussed by taking the gauge symmetry
as the starting point. One constructs the Yang-Mills lagrangian from it and then quantize
the theory using the Faddeev-Popov method, which is needed due to the redundancy in
the functional integration caused by physically equivalent field configurations. Next, one
defines the tree-level gluon and ghost propagators and the three gluon vertex factor. Then,
the concepts of regularization and renormalization are briefly explained. Finally, the full
gluon and ghost propagators and the general form of the three-gluon vertex are defined. The
later was done in [35].

In chapter three, Quantum Chromodynamics is reformulated on a space-time lattice. One
discusses the need for Euclidean space-time, and then defines the gauge-links which will
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be used instead of the gauge fields. Next, the simplest discretized version of the continuum
action is defined - the Wilson action. Then one discusses methods used to rotate the lattice
configurations to the Landau gauge. Next, one defines the gluon and ghost propagators on
the lattice and the running coupling constant, which is a renormalization group invariant.

In chaper four, the computational methods needed to perform lattice computations are
introduced. To this end, one discuss Monte Carlo methods (which are needed for one
is dealing with high dimensional integrals), and then the methods used in this work in
the generation of the lattice configurations, namely, the overrelaxation algorithm and the
heatbath method. In order to fix the gauge of the configurations to the Landau gauge, the
Fourier Accelerated Steepest Descent method was used, which is also discussed. Finally, one
introduces the method used for computing statistical errors - the bootstrap method.

In chapter five, the results obtained in the work described in this dissertation are presented.
It is divided in three sections, the first to discuss the lattice setup, and the other two for each
main objective of the dissertation already discussed above.

Finally, in chapter six, the main conclusions from the results presented in the previous
chapter are summarized.

In order to provide some further topics, calculations or proofs not presented in the first
four chapters but slightly mentioned, one refers the reader to some references and some of
these are discussed in the appendices.





Chapter 1

Quantum Field Theory: A Brief
Overview

Quantum field theory may be understood as the basic theory used to describe the physics
of elementary particles. Like its name suggests, it is an application of quantum mechanics
to the theory of classical fields. One may wonder why the use of fields is necessary. One
could simply quantize particles instead of fields. However, this imposes several issues, for
instance, the negative-energy states arising from the Dirac equation. On the other hand, there
is the necessity of a multiparticle theory, due to particle-antiparticle pairs [36]. Fortunately,
the use of fields solves these issues. For further informations concerning this chapter, one
recomends [36] and [37]. The concept of functional derivative was based on the definition
presented in [38].

1.1 Classical Field Theory: Lagrangian and Hamiltonian
Formulation

1.1.1 Lagrangian Field Theory

The goal of this section is to derive the equation of motion for fields. The action, S, is a
fundamental quantity in classical mechanics from which one may derive them. It is related to
the Lagrangian, as it is a time integral over it. In a local field theory, however, one usually
uses the Lagragian density, denoted by L , instead of the usual Lagrangian. The action is
given by,

S =
∫

Ldt =
∫

L (φ ,∂µφ)d4x . (1.1)
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The principle of least action states that1 the path taken by the system between times t1
and t2 is the one for which the action is stationary (no change) to first order. Mathematically,
this means that

0 = δS =
∫

d4x
{

∂L

∂φ
δφ +

∂L

∂ (∂µφ)
δ (∂µφ)

}
, (1.2)

which may be rewritten using the rule of the derivative of a product as

0 =
∫

d4x
{

∂L

∂φ
δφ −∂µ

(
∂L

∂ (∂µφ)

)
δφ +∂µ

(
∂L

∂ (∂µφ)
δφ

)}
. (1.3)

Using Gauss’ divergence theorem, the last term may be turned into a surface integral.
Assuming that the field is not varied on the boundary of the four-dimensional space-time
region of integration, this integral vanishes. Since δφ is arbitrary (except for the surface),
one must have:

∂µ

(
∂L

∂ (∂µφ)

)
− ∂L

∂φ
= 0 . (1.4)

These are the Euler-Lagrange equation of motion for a field2.

1.1.2 Hamiltonian Field Theory

For a discrete system one can associate with each dynamical variable q a conjugate momen-
tum p := ∂L/∂ q̇. The Hamiltonian is defined as H := ∑ pq̇−L. To generalize to continuous
systems, one begins by pretending that the spacial points are discretly spaced,

p(x) =
∂L

∂ φ̇(x)
=

∂

∂ φ̇(x)

∫
L
(
φ(y, φ̇(y)

)
d3y

∼ ∂

∂ φ̇(x)∑
y

L
(
φ(y, φ̇(y)

)
d3y

= π(x)d3x ,

where
π(x) :=

∂L

∂ φ̇(x)
(1.5)

1R. Penrose (2007). "The Road to Reality". Vintage books. p. 474.
2If the Lagrangian involves more than one field, there is one such equation for each field.
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is the momentum density conjugate to φ(x). Hence, the hamiltonian can be written as

H = ∑
x

p(x)φ̇(x)−L . (1.6)

In the continuum limit, for a field theory, one has

H =
∫

d3x
[
π(x)φ̇(x)−L

]
:=
∫

d3xH . (1.7)

1.2 Functional Integral Formulation

In this section, the method of functional integrals applied to quantum systems are introduced.
Let us start from a general quantum system described by a set of coordinates {qk}M

k=1, its
conjugate momenta {pk}M

k=1 and their respective Hamiltonian3 H(q, p). One is interested in
the computation of the transition amplitude, which in Quantum Mechanics may be written
as:

U(qa,qb;T ) = ⟨qb|e−iHT |qa⟩ . (1.8)

Notice that one uses q or p without superscript to denote the whole set of coordinates
or momenta, respectively. Thus, within this simplification,

∫
dq :=

∫
dq1

∫
dq2 ...

∫
dqM =

M

∏
k=1

(∫
dqk
)

;

ξαξβ :=
M

∑
k=1

ξ
k
αξ

k
β
, where ξ is either q or p ;

δ (qi −q j) =
M

∏
k=1

δ (qk
i −qk

j) .

(1.9)

Our goal is to rewrite (1.8) as a functional integral. To do so, the time interval is divided into
N slices of duration ε . Thus, one may write:

3One simplifies the notation: H(q, p) = H(q1, ...,qM, p1, ..., pM).
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e−iHT =
N

∏
i=1

e−iHε .

Next, one just has to insert the following complete set of intermediate states qi between each
factor,

1 =
∫

dqi |qi⟩⟨qi| ,

which results in:

U(qa,qb;T ) =
∫

dq1 dq2...dqN−1 ⟨qN |e−iHε |qN−1⟩⟨qN−1|e−iHε |qN−2⟩ ...⟨q1|e−iHε |q0⟩ .

Notice that the endpoints have been set as q0 = qa and qN = qb. As one wishes to take the
limit ε → 0, the term e−iεH may be considered as 1− iεH. Now, let us consider the different
possibilities of dependencies of the Hamiltonian:

The hamiltonian is solely a function of the coordinates

In that case, one gets
⟨qi+1|H(q) |qi⟩= H(qi)δ (qi −qi+1) ,

which may be written as4

⟨qi+1|H(q) |qi⟩= H
(

qi+1 +qi

2

)∫ d pi

2π
eipi(qi+1−qi) ,

using the integral definition of the multi-dimensional Dirac’s Delta:

δ (qi −qi+1) =
∫ d pi

2π
eipi(qi+1−qi) .

The hamiltonian is purely a function of the momenta

In that case, one has to introduce a complete set of momentum eigenstates to get:

4The mid-point has been used for reasons to be apparent when Weyl ordering will be discussed. Notice that
⟨q j+1

∣∣q j⟩= δ (q j+1 −q j) =
∫ d p j

2π
eip j(q j+1−q j).
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⟨qi+1|H(p) |qi⟩=
∫ d pi

2π
H(pi)eipi(qi+1−qi) ,

where one used, in order to obtain it,

⟨qα

∣∣pβ ⟩= eipβ qα .

The Hamiltonian is of the form H(q, p) = f (q)+g(p)

Its matrix element follows directly from the previous considerations,

⟨qi+1|H(q, p) |qi⟩=
∫ d pi

2π
H
(

qi+1 +qi

2
, pi

)
eipi(qi+1−qi) . (1.10)

The Hamiltonian is Weyl ordered

The formula (1.10) must not hold in general, since the order of the products of coordinates
and momenta matters on the left-hand side (H is an operator), but not on the right-hand side
(H is just a function of numbers). However, for one specific ordering of the operators, the
formula holds – Weyl ordering.

A Hamiltonian is said to be Weyl ordered if it contains all possible combinations of the
products of coordinates and momenta (divided by the number of such possibilities).5

It can be shown (see Appendix B) that if the Hamiltonian is Weyl ordered then

⟨qi+1|e−iεH |qi⟩=
∫ d pi

2π
e−iεH

(
qi+1+qi

2 ,pi

)
eipi(qi+1−qi) . (1.11)

Let us, from now on, consider Weyl ordered Hamiltonians. One has the essencial tools to
write the transition amplitude as a functional integral. One just has to multiply N factors of
the form (1.11), one for each index i, and integrate over the intermediate coordinates qi,

U(q0,qN ;T ) =
∫

dq1...dqN−1

∫
d p0...d pN−1

1
(2π)N

× exp

[
i∑

i

(
pi(qi+1 −qi)− εH

(
qi+1 +qi

2
, pi

))]
.

(1.12)

5For instance, the following hamiltonian is Weyl ordered H = 1/6{q2 p2 + pqpq+qpqp+qp2q+ pq2 p+
p2q2}.



10 Quantum Field Theory: A Brief Overview

If the limit N → ∞ is taken, the aforementioned approximates an integral over q(t) and p(t),∫
dq1...dqN−1 →

∫
Dq(t) ;∫

d p0...d pN−1
1

(2π)N →
∫

D p(t) ;

qi+1 −qi

ε
→ q̇(i) ;

∑
i

ε →
∫ T

0
dt .

(1.13)

Then one defines

U(qa,qb;T ) =

(
∏

k

∫
Dq(t)D p(t)

)
exp

[
i
∫ T

0
dt

(
∑
k

pkq̇k −H(qk, pk)

)]
(1.14)

as the continuum version of (1.12), where q(t = 0) = qa and q(t = T ) = qb. This is the most
general formula for the formulation via functional integrals of the transition amplitude.

Let us apply the formula (1.14) to a field theory. Using (1.7), the transition amplitude
may be written in terms of the Lagrangian density,

⟨φb(x)|e−iHT |φa(x)⟩=
∫

Dφ exp
[

i
∫ T

0
d4xL

]
. (1.15)

1.3 Correlation Functions

The n-correlation function is defined as the average of n time ordered field operators at
some given positions. Physically, it may be interpreted as the amplitude for propagation of a
particle or excitation between spatial points. For the sake of simplicity, one starts with the
2-correlation function.

1.3.1 Derivation using Functional Integrals

One would like to compute ⟨Ω|T [φH(x1)φH(x2)] |Ω⟩, where we introduce the notation |Ω⟩
to represent the ground state; the subscript H in φH denotes the Heisenberg picture operator;
T is the time-ordering symbol, which is related to the Heaviside step function via (for scalar
fields)6

T (φ(x)φ(y)) = θ(x0 − y0)φ(x)φ(y)+θ(y0 − x0)φ(y)φ(x) . (1.16)

6Notice that for fermions one has T (ψ(x)ψ̄(y)) = θ(x0 − y0)ψ(x)ψ̄(y)− θ(y0 − x0)ψ̄(y)ψ(x). See the
definition of the Heaviside step function in Notations and Conventions.
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Let us begin by considering the following boundary conditions φ(T,x)= φb(x) and φ(−T,x)=
φa(x), for some φa and φb. Now, one decomposes |φa⟩ into eigenstates |n⟩ of H. Thus, one
obtains

e−iHT |φa⟩= ∑
n

e−iEnT |n⟩⟨n
∣∣φa⟩= e−iE0T |Ω⟩⟨Ω

∣∣φa⟩+ ∑
n=1

e−iEnT |n⟩⟨n
∣∣φa⟩ ,

where E0 := ⟨Ω|H |Ω⟩. Notice that one has E0 < En ∀n ̸= 0, so that if the limit7 T →
∞(1− iε) is taken, one may write

lim
T→∞(1−iε)

e−iHT |φa⟩= lim
T→∞(1−iε)

⟨Ω
∣∣φa⟩e−iE0T |Ω⟩ ,

which can be rewritten as

|Ω⟩= lim
T→∞(1−iε)

(
⟨Ω
∣∣φa⟩e−iE0T)−1

e−iHT |φa⟩ .

Likewise, one has

⟨Ω|= lim
T→∞(1−iε)

(
⟨φb
∣∣Ω⟩e−iE0T)−1 ⟨φb|e−iHT .

This decomposition into eigenstates of H allows us to write the 2-correlation function
as:

⟨Ω|T [φH(x1)φH(x2)] |Ω⟩= lim
T→∞(1−iε)

(
⟨φb
∣∣Ω⟩⟨Ω

∣∣φa⟩e−2iE0T)−1

×⟨φb|e−iHT T (φH(x1)φH(x2)e−iHT ) |φa⟩ .

Now one switches from Heisenberg operators to Schrödinger ones using

φH(x) = eiHx0
φS(x)e−iHx0

. (1.17)

7Notice that one has to introduce the slightly imaginary part −iε so that the exponencial has a real and
negative exponent part. It is multiplied by an exponencial with an imaginary exponent, which, according to the
Euler formula eiθ = cos(θ)+ isin(θ) is a sum of bounded functions.
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Let us consider, without loss of generality, that x0
1 < x0

2. One may write

⟨Ω|T [φH(x1)φH(x2)] |Ω⟩= lim
T→∞(1−iε)

β (T )⟨φb|e−iH(T−x0
2)φS(x2)

× e−iH(x0
2−x0

1)φS(x1)e−iH(x0
1+T )) |φa⟩ ,

where β (T ) =
(
⟨φb
∣∣Ω⟩⟨Ω

∣∣φa⟩e−2iE0T)−1. Now, one wishes to turn the Schrödinger opera-
tors into fields, so that one can use the completeness relations8. To do so, one just has to
apply those operators onto the states,

φS(xi) |φi⟩= φi(xi) |φi⟩ ; i = 1,2 . (1.18)

Applying (1.18) and the completeness relation to our 2-correlation functions of the fields,

⟨Ω|T [φH(x1)φH(x2)] |Ω⟩= lim
T→∞(1−iε)

β (T )
∫

Dφ1(x)
∫

Dφ2(x)φ1(x1)φ2(x2)

×⟨φb|e−iH(T−x0
2) |φ2⟩⟨φ2|e−iH(x0

2−x0
1) |φ1⟩⟨φ1|e−iH(x0

1+T )) |φa⟩ .

Now, notice that one may relate

∫
φ(x0

1,x)=φ1(x)
φ(x0

2,x)=φ2(x)

Dφ(x)exp
[∫ T

−T
d4xL (φ)

]
= ⟨φb|e−iH(T−x0

2) |φ2⟩

×⟨φ2|e−iH(x0
2−x0

1) |φ1⟩⟨φ1|e−iH(x0
1+T )) |φa⟩ ,

for one has three transition amplitudes: one for t ∈ [−T,x0
1], one for t ∈ [x0

1,x
0
2] and one for

t ∈ [x0
2,T ]. Using the previous relation, the correlation function may be written as

⟨Ω|T [φH(x1)φH(x2)] |Ω⟩= lim
T→∞(1−iε)

β (T )
∫

Dφ1(x)
∫

Dφ2(x)φ1(x1)φ2(x2)

×
∫

φ(x0
1,x)=φ1(x)

φ(x0
2,x)=φ2(x)

Dφ(x)exp
[∫ T

−T
d4xL (φ)

]
.

Now, one just has to notice that the fields φ1(x1) and φ2(x2) can be taken inside the main
integral and be written as φ1(x) and φ2(x), respectively. Then, the three integrals may be

8∫ Dφi |φi⟩⟨φi|= 1; i = 1,2.
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written as one, and finally, one may write,

⟨Ω|T [φH(x1)φH(x2)] |Ω⟩= lim
T→∞(1−iε)

β (T )
∫

Dφ(x)φ(x1)φ(x2)

× exp
[

i
∫ T

−T
d4xL (φ)

]
.

One would like to get rid of β (T ). To do so, one just has to apply the following, remembering
that it can be obtained retracing the same steps, excluding the fields from the integrand,

⟨Ω
∣∣Ω⟩= 1 = lim

T→∞(1−iε)
β (T )

∫
Dφ(x)exp

[
i
∫ T

−T
d4xL (φ)

]
. (1.19)

Finally, dividing by the aforementioned expression, one finds that the correlation functions is

⟨Ω|T [φH(x1)φH(x2)] |Ω⟩= lim
T→∞(1−iε)

∫
Dφ(x)φ(x1)φ(x2)exp

[
i
∫ T
−T d4xL (φ)

]
∫

Dφ(x)exp
[
i
∫ T
−T d4xL (φ)

] .

This is the 2-correlation function. This formula may be generalized quite naturally using the
same reasoning as for the 2-correlation function,

⟨Ω|TO(φ) |Ω⟩= lim
T→∞(1−iε)

∫
Dφ(x)O(φ)exp

[
i
∫ T
−T d4xL (φ)

]
∫

Dφ(x)exp
[
i
∫ T
−T d4xL (φ)

] . (1.20)

where O is a general operator containing some field operators φ .

1.3.2 Generating Functional

To conclude this topic about correlation functions, one may introduce a different method for
computing correlation functions based on functional derivatives. Let us define the functional
derivative of a functional F [ f ]. Notice that a functional F [ f ] may be considered just as a
function defined on a variable f which is an ordinary function, so that one may define a
gradient derivative (δF/δ f (x0))[ f ] in the direction of a Dirac delta density,

δF [ f ]
δ f (x0)

= lim
ε→0

F [ f (x)+ εδ (x− x0)]−F [ f (x)]
ε

. (1.21)

This is a generalization of the definition of derivatives from usual calculus with functions.
Next, let us introduce the generating functional of correlation functions, Z[J] which is, in a
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scalar field theory, defined as9

Z[J] :=
∫

Dφ exp
[

i
∫

d4x[L + J(x)φ(x)]
]
. (1.22)

where J(x)φ(x) is a source term. The correlation function may then be written as a product
of derivatives (one for each scalar field) of the generating functional, using the definition of
the derivative of a functional,

⟨Ω|T [φ(x1)...φ(xN)] |Ω⟩= Z[J]−1
(
−i

δ

δJ(x1)

)
...

(
−i

δ

δJ(xN)

)
Z[J]

∣∣∣∣
J=0

. (1.23)

1.4 Summary

In short, so far one has used a functional integral approach to derive the expression of
transition amplitudes,

⟨φb(x)|e−iHT |φa(x)⟩=
∫

Dφ exp
[

i
∫ T

0
d4xL

]
,

and derived a general formula to compute correlation functions,

⟨Ω|TO(φ) |Ω⟩= lim
T→∞(1−iε)

∫
Dφ(x)O(φ)exp

[
i
∫ T
−T d4xL (φ)

]
∫

Dφ(x)exp
[
i
∫ T
−T d4xL (φ)

] , (1.24)

and finally, expressed the aforementioned in terms of a generating functional,

⟨Ω|T [φ(x1)...φ(xN)] |Ω⟩= Z[J]−1
(
−i

δ

δJ(x1)

)
...

(
−i

δ

δJ(xN)

)
Z[J]

∣∣∣∣
J=0

in which the generating functional is defined as

Z[J] :=
∫

Dφ exp
[

i
∫

d4x[L + J(x)φ(x)]
]
. (1.25)

9Recall that the time variable of integration runs from −T to T, with T → ∞(1− iε).



Chapter 2

Quantum Chromodynamics

Quantum Chromodynamics is the theory of quarks and gluons. It is a non-Abelian gauge
theory with gauge group SU(3). Two important properties of the strong interactions are the
asymptotic freedom and confinement. It was shown that the only asymptotically free field
theories in four dimensions are the non-Abelian gauge theories [39]. These may be viewed
as a generalization of Quantum Electrodynamics.

For further informations on the derivation of the Yang-Mills Lagrangian, one would
recommend [36]. In order to acquire a better understanding on the subject of the quantization
of non-abelian gauge theories via the method of Faddeev-Popov, one would recommend
[36], [37] and, of course, [40]. The derivation of the tree-level expressions for the gluon and
ghost propagators and three-vertex gluon was based on [41], [42] and [43]. The derivation
of the full gluon and ghost propagators was based on [43] and [44]. The discussion about
regularization and renormalization was based on [43–45]. The derivation of the general form
of the three-gluon vertex was introduced in [35].

2.1 Gauge Invariance: The Yang-Mills Lagrangian

Let us start by considering the Lagrangian describing Quantum Electrodynamics, which is a
sum of three parts1,

LQED =LDirac +LMaxwell +Lint

= ψ̄(i/∂ −m)ψ − 1
4
(Fµν)

2 +Qψ̄γ
µ

ψAµ ,

1Do not worry if you are not familiar with this Lagrangian, for one can reformulate the whole theory
using the gauge invariance as a fundamental principle. One just has to retrace the steps used for the case of
non-abelian gauge theories, to the case of the gauge group U(1).
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where ψ is the Dirac field, Aµ is the electromagnetic vector potential, Q is the fermion
charge, and Fµν is the electromagnetic field tensor, which is given by Fµν = ∂µAν −∂νAµ ,
and /∂ = γµ∂µ . One property of the QED Lagrangian is that it is invariant under the so-called
gauge transformations

ψ(x)→ eiα(x)
ψ(x), Aµ → Aµ +

1
Q

∂µα(x) , (2.1)

which corresponds to a local phase rotation on the Dirac field. In order to derive the Yang-
Mills Lagrangian, one will generalize this invariance under local phase rotations to invariance
under any continuous symmetry group2.

Let us begin with any continuous group of transformations, depicted by a set of n×n
unitary matrices V (one is interested in non-abelian theories corresponding to SU(N), for
Quantum Chromodynamics is defined on the gauge group SU(3)). Thus the fields ψ(x) form
an n-plet, transforming according to

ψ(x)→V (x)ψ(x) , (2.2)

noticing that the dependence of V on x makes the transformation local. In infinitesimal form,
V (x) may be expanded in terms of the generators of the symmetry group, which can be
depicted as hermitian matrices ta,

V (x) = 1+ iαa(x)ta +O(α2) . (2.3)

In order to include terms that contains derivatives to the Lagrangian, a covariant derivative
must be defined, since the fields that are subtracted on a usual derivative,

nµ
∂µψ = lim

ε→0

1
ε
[ψ(x+ εn)−ψ(x)] (2.4)

have completely different transformations under the symmetry (2.2). One ought to find a way
to introduce a factor that compensates for the difference in gauge transformations of those
two fields. One may define a quantity U(y,x) (a comparator) that depends on the two points
and transforms according to

U(y,x)→V (y)U(y,x)V †(x) . (2.5)

2Notice that the designation of non-abelian gauge theories comes from the fact that this generalization
brings non-abelian objects, namely, a continuous symmetry group.
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Of course, this scalar quantity must do nothing if the points are the same, so let us set
U(y,y) = 1. Hence one can define a sensible derivative, designated as covariant derivative,
as follows,

nµDµψ = lim
ε→0

1
ε
[ψ(x+ εn)−U(x+ εn,x)ψ(x)] . (2.6)

At points in which x ̸= y, U(y,x) may be restricted to a unitary matrix. Thus any matrix near
U = 1 may be expanded in terms of the Hermitian generators of SU(N). One is interested in
such a case, for one is dealing with a subtraction of fields with infinitesimal separation, and
therefore, U may be written as (assuming that the comparator is a continuous function of x
and y),

U(x+ εn,x) = 1+ εnµ
∂

i
µU(x+ εn,x)

∣∣
ε=0t i +O(ε2) . (2.7)

Next, ∂ i
µU(x+ εn,x)

∣∣
ε=0t i is rewritten as igAi

µt i, where Ai
µ are gauge fields, one for each

generator, and g is a constant (analogous to the electric charge for the case of QED). Inserting
this expression into (2.6), the following expression for the covariant derivative is obtained,

Dµ = ∂µ − igAa
µta . (2.8)

It can be shows that the transformation law for Aa
µ is [36],

Aa
µ(x)t

a → AV
µ(x) =V (x)

(
Aa

µ(x)t
a +

i
g

∂µ

)
V †(x) . (2.9)

On the other hand, it can be shown as well that the infinitesimal transformation laws for ψ

and Aa
µ are [36]

ψ → (1+ iαata)ψ ;
Aa

µ → Aa
µ + 1

g∂µαa + f abcAb
µαc ,

(2.10)

where f abc is a set of numbers called structure constants and comes from [ta, tb] = i f abctc.
Using these transformations laws, one may verify that the covariant derivative of ψ has the
same transformation law of ψ itself.

To complete the construction of a Lagrangian which is locally invariant under any con-
tinuous symmetry group, one must find a kinetic energy term for the gauge fields Aµ , i.e., a
term depending only on Aµ and its derivatives. As it has been discussed before, the covariant
derivative has the same transformation law of that of the field itself. The same conclusion
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holds for the second covariant derivative and, more generally, for the commutator of covariant
derivatives,

[Dµ ,Dν ]ψ(x)→ eiα(x)[Dµ ,Dν ]ψ(x) .

However, notice that the commutator is not itself a derivative,

[Dµ ,Dν ] =−igFa
µνta , (2.11)

with,
Fa

µν = ∂µAa
ν −∂νAa

µ +g f abcAb
µAc

ν . (2.12)

On the other hand, the field strength is not itself gauge-invariant. However, it may be turned
into one, in the following way,

L =−1
2

tr
[
(Fa

µνta)2
]
=−1

4
(Fa

µν)
2 . (2.13)

One has the essencial ingredients to construct the most general locally invariant Lagrangian
for the fermion field ψ and the gauge field Aµ . This general Lagrangian ought to be a function
of ψ and its covariant derivatives, include the kinetic energy term for the gauge fields Aµ , so
one gets a generalization of the QED Lagrangian density function,

LYM = ψ̄(i /D−m)ψ − 1
4
(Fa

µν)
2 . (2.14)

This is the Yang-Mills Lagrangian.

2.2 Quantization of Non-Abelian Gauge Theories

2.2.1 Faddeev-Popov Method

Let us consider the gauge fields Aµ , and their Lagrangian L = (−1
4Fa

µν)
2. Recall that in

order to compute correlation functions (Cf. equation (1.24)), one has to perform on the
denominator an integral of the form: ∫

DAeiS[A] . (2.15)

Given any gauge field Aµ , a gauge orbit may be defined as the set of all gauge fields related
to the first by a gauge transformation (Cf. eq. (2.9)). Due to gauge-invariance, the functional
integral is badly defined, for one is redundantly integrating over physically equivalent field
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configurations – the integrand is constant on the gauge orbits and, therefore, the integral is
proportional to the infinite volume of these gauge orbits. To fix this problem, one would
like to isolate the part of the integral consisting of non-physically equivalent fields. To this
end, the Faddeev-Popov Method may be used. In order to integrate over each orbit once, a
hypersurfaces which intersects each orbit just once is defined. Let G(A) = 0 be the equation
that defines such hypersurface. The condition G(A) = 0 is known as gauge condition and this
procedure as gauge-fixing. This means that even if some gauge field Aµ does not intersect
the hypersurface, there is one (unique3) gauge transformed field that does.

In order to consider only the gauge fields that satisfy the gauge condition one inserts a
functional delta function4 δ (G(A)). One is allowed to do so if 1 is inserted under the integral,
using the following identity,

1 =
∫

Dα(x)δ (G(Aα))det
(

δG(Aα)

δα

)
, (2.16)

where Aα is the gauge-transformed field, which may be written in the infinitesimal form as
(Cf. (2.10)),

(Aα)a
µ = Aa

µ +
1
g

Dµα
a . (2.17)

Notice that (2.16) is the continuum generalization of the identity5,

1 =

(
∏

i

∫
dai

)
δ
(n) (g(a))det

(
∂gi

∂a j

)
(2.18)

for discrete n-dimensional vectors. One considers linear gauge-fixing functions G(A), so that
its functional derivative δG(Aα/δα) is independent of α . Then A is replaced by A′ = Aα

in the exponential of (2.15) (Notice that by gauge invariance S[A] = S[Aα ]). Notice that this
transformation is just a linear shift of the Aa

µ proceeded by a unitary rotation of the different
components of Aa

µ(x) at each point x, which both preserves the measure

DA = ∏
x

∏
a,µ

dAa
µ . (2.19)

3This is true in perturbation theory. Notice that in the case of a non-perturbative approach, Gribov copies
have to be considered. See section 3.4 for further informations on Gribov copies.

4One could see it as an infinite product of delta functions, one for each point x.
5Which is itself a generalization of

∫
δ ( f (x))

∣∣∣ d f
dx

∣∣∣
x0

dx = 1.
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Therefore, DA = DA′. At the moment, renaming A′ back to A and factoring out the integral
over α into an overall normalization, one has∫

DAeiS[A] =
∫

(Dα)
∫

DAeiS[A]
δ (G(A))det

(
δG(Aα)

δα

)
. (2.20)

To go any further one must indicate a gauge-fixing function G(A), which one chooses to be
the general class of functions

G(A) = ∂
µAµ(x)− ι(x) . (2.21)

The equality (2.20) holds for any ι(x), so it must hold, most generally, if the right-hand
side is replaced by a properly normalized linear combination using different functions ι(x).
Thus one can integrate over all ι(x), with a Gaussian function centered on ι = 0. Using the
generalized Dirac delta δ (∂ µAµ − ι(x)) this integral may be performed, leaving us with6,

∫
DAeiS[A] = N(ξ )

∫
Dα

∫
DAeiS[A]exp

[
−i
∫

d4x
1

2ξ
(∂ µAµ)

2
]

det
(

δG(Aα)

δα

)
,

where N(ξ ) is a normalization constant which is irrelevant. Notice that the same manipula-
tions can be performed on the numerator of the correlation function formula (eq. 1.24), as
long as the operator O(A) is gauge invariant7.

The functional derivative δG(Aα)/δα may be evaluated by means of (2.17),

δG(Aα)

δα
=

1
g

∂
µDµ . (2.22)

This operator depends on A, therefore the functional determinant of the aforementioned
expression will add some new terms to the Lagrangian. This determinant may be represented
as a functional integral taken over a set of Grassmann fields 8 using the following identity,

det
(

1
g

∂
µDµ

)
=
∫

DcD c̄exp
[

i
∫

d4xc̄(−∂
µDµ)c

]
, (2.23)

where the factor 1/g was absorbed into the normalization of the integral. Notice, however,
that these fields do not represent any physical particles for they have the wrong relation
between statistics and spin - they are merely a mathematical artifact. These ficticious particles

6One has inserted the gaussian weighting function
∫

Dι exp
[
−i
∫

d4x ω2

2ξ

]
.

7If this is not true, one may not change A to Aα .
8One introduces in Appendix C the Grassmann variables.
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are known as the Faddeev-Popov ghosts. Thus, one finishes with

⟨Ω|TO(φ) |Ω⟩=

lim
T→∞(1−iε)

∫
DcD c̄

∫
DAO(A)exp

[
i
∫ T
−T d4x

[
L − 1

2ξ
(∂ µAµ)

2 + c̄(−∂ µDµ)c
]]

∫
DcD c̄

∫
DAexp

[
i
∫ T
−T d4x

[
L − 1

2ξ
(∂ µAµ)2 + c̄(−∂ µDµ)c

]] .

From this, a new Lagrangian, which counts these new terms due to the quantization of
non-abelian gauge theories, may be written, called the Faddeev-Popov Lagrangian,

L = ψ̄(i /D−m)ψ − 1
4
(F i

µν)
2 − 1

2ξ
(∂ µAa

µ)
2 + c̄a(−∂

µDac
µ )cc . (2.24)

2.3 Perturbation Theory

The exact computation of correlation functions is often not possible. However, if the coupling
constant is sufficiently small, perturbation theory may be used. Let us consider the Lagrangian
without fermions,

L =−1
4
(F i

µν)
2 − 1

2ξ
(∂ µAa

µ)
2 + ca(−∂

µDac
µ )cc = Lgluon +Lghost , (2.25)

where Lgluon =−1
4(F

i
µν)

2 − 1
2ξ
(∂ µAa

µ)
2 is the part of the Lagrangian which depends on the

gauge field, and Lghost = ca(−∂ µDac
µ )cc is the part of the Lagrangian which depends on the

ghost fields. The gluon part of the Lagrangian may be rewritten more explicitly as

Lgluon =
1
2

Aa
µ

(
∂

2gµν −
(

1− 1
ξ

)
∂

µ
∂

ν

)
Aa

ν −
1
2

∂µ [Aaν (∂
µAaν −∂

νAaµ)]

− 1
2ξ

∂
µ(Aa

µ∂
νAa

ν)−g f abc(∂ µ
x Aν

a )AbµAcν −
1
4

g2 f eab f ecdAa
µAb

νAcµAdν .

The terms −1
2∂µ [Aaν (∂

µAaν −∂ νAaµ)] and − 1
2ξ

∂ µ(Aµ∂ νAν), may be turned into a surface
term which one ignores (notice that the correlation function depends on the action, in which
these mentioned terms may be ignored).

On the other hand, the ghost part may be rewritten as

Lghost = ca(−∂
2
δ

ac −g∂
µ f abcAb

µ)c
c . (2.26)
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Then the lagrangian L is decomposed into two parts: one containing the quadractic terms
on the fields, denoted by L0, and another containing the remaining ones, denoted by LI , i.e.,

L0 =
∫

d4xAa
µ

(
∂

2gµν −
(

1− 1
ξ

)
∂

µ
∂

ν

)
Aa

ν +
∫

d4xca(−∂
2
δ

ac)cc (2.27)

and,

L1 =
∫

d4x(−g f abc(∂ µAν
a )AbµAcν −

1
4

g2 f eab f ecdAa
µAb

νAcµAdν)+∫
d4x(ca(−g∂

µ f abcAb
µ)c

c) .
(2.28)

On the correlation function (see (1.20)) one has factors of the form

ei
∫

d4xL = ei
∫

d4xL0+
∫

d4xLI = ei
∫

d4xLI ei
∫

d4xL0 (2.29)

and then assuming g is small the exponencial ei
∫

d4xLI is expanded as

ei
∫

d4xL =

(
1+ i

∫
d4xLI + ...

)
ei
∫

d4xL0 . (2.30)

2.3.1 The Gluon and Ghost Propagators

In this thesis, one is interested on the gluon and ghost propagators. Only the derivation of the
gluon propagator will be presented. The one for the ghost propagator follows from similar
considerations. The gluon propagator is defined as the 2-correlation function of the gauge
field,

Dab
µν(x− y) = ⟨Aa

µ(x)A
b
ν(y)⟩= lim

T→∞(1−iε)

∫
DA Aa

µ(x)A
b
ν(y)exp

[
i
∫ T
−T d4xL

]
∫

DA exp
[
i
∫ T
−T d4xL

] . (2.31)

In the lowest order perturbation theory9, one has

Dab
µν(x− y) =

∫
DA Aa

µ(x)A
b
ν(y) exp

[
1
2 i
∫ T
−T d4xAc

µ(x)
(

∂ 2gµν −
(

1− 1
ξ

)
∂ µ∂ ν

)
Ac

ν(x)
]

∫
DA exp

[
1
2 i
∫ T
−T d4xAc

µ(x)
(

∂ 2gµν −
(

1− 1
ξ

)
∂ µ∂ ν

)
Ac

ν(x)
] .

(2.32)
9In this case, the lowest order perturbation theory gives the first term of the expansion of the exponencial

(2.30).
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Before going any further, one may introduce the expression for the ratio between functional
gaussian integrals for the same matrix B (which is deduced in the Appendix B)

(∏k
∫

dξk)exp
[
−1

2 ∑i j ξiBi jξ j
]

ξmξn

(∏k
∫

dξk)exp
[
−1

2 ∑i j ξiBi jξ j
] = (B)−1

mn . (2.33)

The 2-correlation function has precisely this form. From this, one may find the propagator
solving the following equation,(

∂
2gµν −

(
1− 1

ξ

)
∂µ∂ν

)
Dνρ

ab (x− y) = iδ ρ

µ δ
ab

δ
(4)(x− y) . (2.34)

Then one performs a Fourier transform on the gluon propagator as

Dab
µν(x,y) =

∫ d4k
(2π)4 e−ik(x−y)D̃ab

µν(k) , (2.35)

which results in (
−k2gµν +

(
1− 1

ξ

)
kµkν

)
D̃νρ

ab (k) = iδ ρ

µ δ
ab . (2.36)

This has as its solution,

D̃µν

ab (k) =
−i

k2 + iε

(
gµν − (1−ξ )

kµkν

k2

)
δ

ab . (2.37)

The ghost propagator is defined as the 2-correlation function of the ghost fields. The same
manipulations may be performed for its computation, which leads us to the following
expression for the case of the lowest order perturbation theory,

G̃µν

ab (k) =
i

k2 δ
ab . (2.38)

2.3.2 Three-Gluon Vertex

In the previous subsection, the perturbative results for the gluon and ghost propagators
were derived. One is also interested in the three-gluon vertex, which is described in the
3-correlation function of the gauge fields,

⟨Aa
α(x1)Ab

β
(x2)Ac

γ(x3)⟩=
∫

DA Aa
α(x1)Ab

β
(x2)Ac

γ(x3)ei
∫

d4xL∫
DA ei

∫
d4xL

. (2.39)



24 Quantum Chromodynamics

Notice that the first term of the expansion (2.30) makes the numerator of (2.39) vanish, for
it gets an odd integrand, therefore, for the numerator, ei

∫
d4 xLI ≈ i

∫
d4xLI is used. For the

denominator, one may continue to use ei
∫

d4 xLI ≈ 1. Therefore, one has

⟨Aa
α(x1)Ab

β
(x2)Ac

γ(x3)⟩=

− ig f lmn

∫
DA

∫
d4x(∂ µAlν(x))Am

µ (x)A
n
ν(x)A

a
α(x1)Ab

β
(x2)Ac

γ(x3)ei
∫

d4xL gl
0∫

DA ei
∫

d4xL gl
0

,
(2.40)

which may be rewritten as,

⟨Aa
α(x1)Ab

β
(x2)Ac

γ(x3)⟩=

− ig f lmngµσ gντ

∫
DA

∫
d4x(∂σ Al

τ(x))A
m
µ (x)A

n
ν(x)A

a
α(x1)Ab

β
(x2)Ac

γ(x3)ei
∫

d4xL gl
0∫

DA ei
∫

d4xL gl
0

.

(2.41)

In order to solve this expression, the following generalization of 10 (2.33) may be used,

(∏k
∫

dξk)exp
[
−1

2ξiBi jξ j
]

ξ1...ξN

(∏k
∫

dξk)exp
[
−1

2ξiBi jξ j
] = ∑

pairings
∏
pairs

(B)−1
indexpair (2.42)

if N is even. Otherwise, one has an odd integrand on the numerator, then the integral vanishes.
Applying this formula, one sees that there are six non-vanishing terms, which correspond
to the 3! ways of pairing the three fields due to interaction with the other three. However,
notice that these terms differ from one another by interchanging

(l,α,x1) (m,β ,x2) (n,γ,x3) . (2.43)

Thus, one may compute only one of the terms and then use symmetry to retrieve the others.
Let us consider the following pairing of terms,

Am
µ (x)A

a
α(x1)An

ν(x)A
b
β
(x2)∂σ Al

τ(x)A
c
γ(x3) .

Then the formula (2.42) gives,

− ig f abcgµσ gντ

∫
d4xDam

µα(x− x1)Dnb
νβ
(x− x2)∂σ Dl c

τγ(x− x3) . (2.44)

10The derivation of this expression is described in Appendix B.
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Applying the Fourier transform, in order to have the aforementioned result in the momentum
space11,

−g f abcgντ
δ (k1 + k2 + k3)(2π)4kµ

3 D̃am
µα(k1)D̃nb

νβ
(k2)D̃l c

τγ(k3) . (2.45)

By interchanging indices and taking into account the antisymmetry of f abc, the perturbative
3-point correlation function may be found,

⟨Aa
α(k1)Ab

β
(k2)Ac

γ(k3)⟩= (2π)4
δ (k1 + k2 + k3)D̃am

µα(k1)D̃nb
νβ
(k2)D̃l c

τγ(k3)Γ
abc
ντσ (2.46)

where,
Γ

abc
αβγ

= g f abc [gνµ(k3 − k2)
τ +gµτ(k2 − k1)

ν +gτν(k1 − k3)
µ ] . (2.47)

2.4 Full Propagators

In section 2.3.1 the Feynman rules for the gluon and ghost propagators were derived. However,
one dealt only with tree-level processes, i.e., without loops. To correct these expressions,
one has to consider loops. For the gluon propagator, this means considering the vacuum
polarization (also known as gluon self-energy). It can be regarded as a modification to the
gluon structure by considering virtual fermion-antifermion pairs. As one may see in [36],
the n-correlation function is the sum of all connected diagrams with n external points. One
defines the one-particle irreducible (1PI) diagram as any diagram that cannot be separated
in two by removing a single line. Let us denote their sum by Πab

µν (the gluon self-energy).
Therefore the most general case is that of a sum of diagrams as depicted in Fig. 2.1. Thus,
one may relate the tree-level gluon propagator to the full one using the following12,

D̃ab
µν(k) =D̃ab

(tr)µν(k)+ D̃ac
(tr)µλ (k)Π

cd,λρ(k)D̃db
(tr)ρν(k)+

D̃ac
(tr)µλ (k)Π

cd,λρ(k)D̃de
(tr)ρσ Π

e f ,σθ (k)D̃ f b
(tr)θν(k)+ ... .

(2.48)

The previous equation is equivalent to

D̃ab
µν(k) = D̃ab

(tr)µν(k)+ D̃ac
(tr)µλ (k)Π

cd,λρ(k)D̃db
ρν(k) . (2.49)

One uses the generalization of the Ward identities of QED (which tells us that the photon
self-energy is transverse, kµΠµν = 0). This is generalized by the Slavnov-Taylor identities,

11On has chosen the convention of all momenta pointing inward.
12This is the Dyson equation for the self-energy.
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Fig. 2.1 The full gluon two-point correlation function written as a series of Feynamn diagrams.
The curvy lines represent the tree-level gluon propagator, and the circle, in which "1PI" is
written, represents the sum of all 1PI diagrams, i.e., the gluon self-energry.

which read for the gluon propagator, in momentum space,

1
ξ

kµkνD̃ab
µν = δab . (2.50)

If one applies (2.50) in (2.49), one finds that

kµkν
Π

ab
µν(k) = 0 . (2.51)

From this, one may isolate the tensorial structure of the gluon self-energy as

Π
ab
µν = δab(kµkν − k2gµν)Π

(gl)(k2) . (2.52)

Using (2.52) and (2.51) in (2.49), one finds that:

D̃µν

ab (k) =
−i
k2

(
gµν − kµkν/k2

1+Πgl(k2)
+ξ

kµkν

k2

)
δ

ab . (2.53)

From similar considerations, one may obtain the full ghost propagator, considering the
inclusion of the ghost self-energy, i.e.,

G̃µν

ab (k) =
i

k2 δ
ab 1

1+Πgh(k2)
, (2.54)

where Πgh(k2) is the ghost self-energy.

2.5 Regularization and Renormalization

In the previous section, one defined the full propagators using the self-energy. However,
in general, loop contributions to the Green functions generate divergencies, which have to
be taken care of. The first step to take care of loop divergencies is to regularize the theory,
making the divergent integrals into finite ones by introducing a convergence procedure [44].
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One of the most used regularizations in QCD is that of the discretization of space-time
contemplated in Lattice QCD13.

One must renormalize the theory, afterwards, i.e., rescale physical quantities. However,
these rescaling is not unique and depends on what is called the renormalization scheme. For
the purpose of this thesis one used the MOM scheme, consisting in defining the renormaliza-
tion such that the Green functions corresponds to their tree level counterpart for a specific
momentum µ [46].

2.6 General Form of the Three-gluon vertex

The general form of the three-gluon vertex was introduced in [35]. The goal is to define a
general tensor structure which ought to be consistent with the generalized Ward identities
and regularized (due to the inclusion of one loop divergencies). Let us assume that the color
dependence of the vertex is, in analogy with its tree level form, due to the structure constant
f a1a2a3 of SU(3),

Γ
a1a2a3
µ1µ2µ3(p1, p2, p3) = f a1a2a3Γµ1µ2µ3(p1, p2, p3) . (2.55)

One requires Γµ1µ2µ3(p1, p2, p3) to satisfy Bose symmetry, i.e., symmetric under the inter-
change of any triplet (pi,ai,µi). Due to f a1a2a3 antisymmetry, Γ has to change sign under
the switch of any two Lorentz indices and the respective momenta, in order to satisfy Bose
symmetry. Thus one forms tensors which are odd under the interchanges of pairs (pi,µi). Let
us separate Γ into a transverse part (i.e., which is ortogonal to momenta) and a longitudinal
part. The most general transverse tensor is then

Γ
(t)
µ1µ2µ3 = F(p2

1, p2
2; p2

3)(gµ1µ2 p1 · p2 − p1µ2 p2µ1)B
3
µ3

+H[−gµ1µ2B3
µ3
+

1
3
(p1µ3 p2µ1 p3µ2 − p1µ2 p2µ3 p3µ1)]+ cyclic permutations ,

(2.56)

where
B3

µ3
= (p1µ3 p2 · p3 − p2µ3 p1 · p3) , (2.57)

and F(p2
1, p2

2; p2
3) is a scalar function symmetric under the interchange of its first two argu-

ments and H(p2
1, p2

2; p2
3) is totally symmetric in momenta. On the other hand, one has the

13Other methods of regularization may be seen in [44].
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longitudinal part of Γ which accounts the remaining 10 terms,

Γ
(l)
µ1µ2µ3 = A(p2

1, p2
2; p2

3)gµ1µ2(p1 − p2)µ3 +B(p2
1, p2

2; p2
3)gµ1µ2(p1 + p2)µ3

+C(p2
1, p2

2; p2
3)(p1µ2 p2µ1 −gµ1µ2 p1 · p2)(p1 − p2)µ3

+
1
3

S(p2
1, p2

2; p2
3)(p1µ3 p2µ1 p3µ2 + p1µ2 p2µ3 p3µ1)+ cyclic permutations ,

(2.58)

where A(p2
1, p2

2; p2
3) and C(p2

1, p2
2; p2

3) are symmetric in their first arguments, B(p2
1, p2

2; p2
3) is

antisymmetric and S(p2
1, p2

2; p2
3) under interchange of any pair of arguments.

Now, one may relate the three gluon vertex tensor to the three point complete Green’s
function in analogy with the perturbative approach,

⟨Aa1
µ1(p1)A

a2
µ2(p2)A

a3
µ3(p3)⟩=V δ (p1 + p2 + p3)G

a1a2a3
µ1µ2µ3 , (2.59)

in which,
Ga1a2a3

µ1µ2µ3 = Da1b1
µ1ν1(p1)D

a2b2
µ1ν2(p2)D

a3b3
µ3ν3(p3)Γ

b1b2b3
ν1ν2ν3(p1, p2, p3) , (2.60)

where Daibi
µiνi are the gluon propagators (see (2.53)). Taking the colour trace of the aforemen-

tioned expression one gets

Gµ1µ2µ3(p1, p2, p3) =tr⟨Aµ1(p1)Aµ2(p2)Aµ3(p3)⟩=V δ (p1 + p2 + p3)
Nc(N2

c −1)
4

×D(p2
1)D(p2

2)D(p2
3)Pµ1ν1(p1)Pµ2ν2(p2)Pµ3ν3(p3)Γν1ν2ν3(p1, p2, p3) ,

(2.61)

where Pµν(p) = δµν −
pµ pν

p2 is the transverse projector.

2.7 Summary

In short, one has written the expression of the Yang-Mills Lagrangian using as a starting
point the gauge the invariance under any continuous symmetry group,

LYM = ψ̄(i /D)ψ − 1
4
(Fa

µν)
2 −mψ̄ψ , (2.62)

where Dµ = ∂µ − igAa
µta is the covariant derivative, ψ is a spinor field, Fa

µν = ∂µAa
ν −∂νAa

µ +

g f abcAb
µAc

ν and Aµ is the gauge field. After that, one quantized it using Faddeev-Popov
method, to avoid the redundant integration over a continuous infinity of equivalent fields due
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to gauge invariance. One ended up with the quantized lagrangian,

L = ψ̄(i /D−m)ψ − 1
4
(F i

µν)
2 − 1

2ξ
(∂ µAa

µ)
2 + ca(−∂

µDac
µ )cc . (2.63)

Then one derived some Feynman rules, namely those of the gluon and ghost propagators
and of the three gluon vertex, which was obtained using perturbation theory, i.e., assuming
the coupling constant was small in order to expand ei

∫
d4xLI . To summarize, one derived, in

momentum space,

Gluon Propagator

D(tr)µν

ab (k) =
−i

k2 + iε

(
gµν − (1−ξ )

kµkν

k2

)
δ

ab ; (2.64)

Ghost Propagator
G(tr)µν

ab (k) =
i

k2 δ
ab ; (2.65)

Three Gluon Vertex

Γ
(tr)abc

αβγ = g f abc [gνµ(k3 − k2)
τ +gµτ(k2 − k1)

ν +gτν(k1 − k3)
µ ] . (2.66)

Finally, one presented the derivation of the full gluon and ghost propagator as well as the
general form of the three-gluon vertex,

Full gluon propagator

D̃µν

ab (k) =
−i
k2

(
gµν − kµkν/k2

1+Πgl(k2)
+ξ

kµkν

k2

)
δ

ab ; (2.67)

Full ghost propagator

G̃µν

ab (k) =
i

k2 δ
ab 1

1+Πgh(k2)
; (2.68)

General Form of the Three-gluon Vertex

Γ
a1a2a3
µ1µ2µ3(p1, p2, p3) = f a1a2a3

{
Γ
(t)
µ1µ2µ3(p1, p2, p3)+Γ

(l)
µ1µ2µ3(p1, p2, p3)

}
, (2.69)
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where the transverse part is given by

Γ
(t)
µ1µ2µ3 = F(p2

1, p2
2; p2

3)(gµ1µ2 p1 · p2 − p1µ2 p2µ1)B
3
µ3

+H[−gµ1µ2B3
µ3
+

1
3
(p1µ3 p2µ1 p3µ2 − p1µ2 p2µ3 p3µ1)]+ cyclic permutations ,

(2.70)

in which
B3

µ3
= (p1µ3 p2 · p3 − p2µ3 p1 · p3) , (2.71)

and F(p2
1, p2

2; p2
3) is a scalar function symmetric under the interchange of its first two argu-

ments and H(p2
1, p2

2; p2
3) is totally symmetric in momenta; and the longitudinal part given

by

Γ
(l)
µ1µ2µ3 = A(p2

1, p2
2; p2

3)gµ1µ2(p1 − p2)µ3 +B(p2
1, p2

2; p2
3)gµ1µ2(p1 + p2)µ3

+C(p2
1, p2

2; p2
3)(p1µ2 p2µ1 −gµ1µ2 p1 · p2)(p1 − p2)µ3

+
1
3

S(p2
1, p2

2; p2
3)(p1µ3 p2µ1 p3µ2 + p1µ2 p2µ3 p3µ1)+ cyclic permutations ,

(2.72)

where A(p2
1, p2

2; p2
3) and C(p2

1, p2
2; p2

3) are symmetric in their first arguments, B(p2
1, p2

2; p2
3) is

antisymmetric and S(p2
1, p2

2; p2
3) under interchange of any pair of arguments.



Chapter 3

Lattice QCD

In order to study the region of low momenta of QCD, one has to adopt a non-perturbative
approach. This can be achieved by a well-established non-perturbative approach – Lattice
QCD. In Lattice QCD, space-time is discretized so that it is defined in a four-dimensional
finite lattice. This discretization provides a way of regularizing QCD [44]. On one hand,
the functional integrals become finite-dimensional integrals, after this discretization. On the
other hand, LQCD is formulated in the Euclidean space-time. These combined allow us to
evaluate numerically the functional integrals using Monte Carlo simulations.

In this chapter one commences with a discussion on the Euclidean space-time formulation
of the theory [36, 47]. Then, the gauge links, which will replace the gauge fields, are defined
[47, 48]. From these, one constructs the Wilson action – a discretized form of the action
S = 1

4
∫

d4x(Fc
µν)

2 [47]. Afterwards, the gauge-fixing to minimal Landau gauge [49] and the
gluon and ghost propagators on the lattice [45, 50, 51] are discussed. Finally, from these
propagators one may define a running coupling, which is a renormalization group invariant
[52].

3.1 Euclidean Space-Time

One of the starting points in order to treat the theory by means of numerical computations is to
switch from Minkowski space-time to the Euclidean one. This is achieved by a Wick rotation,
i.e., a rotation by π/2 in the complex plane of time. This corresponds to the substitution of
the real time t by the imaginary time τ , using t =−iτ . Notice that this rotation makes the
generating functional of a quantum field theory formally identical to the partition function of
statistical mechanics in four dimensions,∫

DφeiS[φ ] →
∫

Dφe−SE [φ ] , (3.1)
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where SE is the action written in the Euclidean space-time. The metric tensor for the Euclidean
space is simply δµν = diag(1,1,1,1). Notice, however, that an analytic continuation on
the complex plane may be invalid if one encounters a pole. In the case of a Euclidean
correlation function which obeys a certain set of axioms, it is possible to perform this analytic
continuation by means of the Osterwalder-Schrader reconstruction (see [53, 54] for further
informations on this topic).

3.2 Discretization of Space-Time: Gauge Links

The usual and simplest lattice used in Lattice QCD is an hypercubic one, in which the lattice
spacing a is the same for every direction of space-time.

xµ → x(i, j,k, t) = (ie1 + je2 + ke3 + te4)a . (3.2)

Recall that the covariant derivative was defined by means of the comparator, which in the
infinitesimal form reads (Cf. eq. 2.7),

C(x+ εn,x) = 1+ igεnµAi
µt i +O(ε2) . (3.3)

This comparator was introduced to compensate the difference in gauge transformations of
the fields in different points of space-time (Cf. section 2.1). Now, let us consider two points
on the lattice, x and x+aêµ . One may consider the comparator between these two points as
an infinite product of comparators of infinitesimally closed points along the line between
x and x+ aêµ . Doing so, one ends up with an exponential of a path-ordered line integral
connecting the two space-times points, which one calls the link variable1,

Uµ(x) := Pexp
(

ig
∫ x+aêµ

x
dsµAµ

)
, (3.4)

where Aµ = Ai
µt i, and P is the path-ordering operator, which is defined as the operator that

orders the terms of the power-series expansion of the exponential in order of a parameter
labeling the path. On the lattice, the gluon fields are replaced by these link variables.
Notice that from its definition, it is straightforward that Uµ(x) transforms under a gauge
transformation according to,

Uµ(x)→V (x)Uµ(x)V †(x+aêµ) . (3.5)

1This is a Wilson line defined between the point x and x+aêµ .
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These variables are called link variables, for they are oriented and can be associated with the
links of the lattice. For instance, Uµ(x) refers to the link connecting the sites x and x+aêµ .
Due to the fact that links variables are oriented, one may also define link variables pointing
in negative µ direction. Let us define it as U−µ(x+aêµ) :=U†

µ(x).

3.3 The Wilson Action

In this section, the simplest discretized form of the gluon action will be derived. Recall
that one derived the kinetic energy term for the gauge field Aa

µ (see eq. 2.13), using the
commutator of covariant derivatives. However, one could derive the field strength by means
of the comparator, linking together comparators around a small square in spacetime. That
approach will be used this time. Thus let us start by considering a spacing a sufficiently small
so that (3.4) may be approximated as eiagAµ (x+aêµ/2), where one took the value of the gauge
field in the middle of the line. Within this approximation, one can show that the product of
the links around a small square yields,

Uµ(x)U†
ν (x)U

†
µ(x+ êν)Uν(x+ êµ)≈ exp

(
ia2g

[
∂µAν(x)−∂νAµ(x)

]
+a2g

[
Aµ(x),Aν(x)

])
.

One calls this product plaquette, where Pµν is used to denote it. It gives rise to the first
nontrivial gauge-invariant term2. Comparing the exponent of the expression of the plaquette
to the definition of the field strength (Cf. (2.12)), one may write, for small a,

Pµν(x) =
[
exp
(
ia2gFµν

)]
. (3.6)

From this, the lattice version of the continuum gluon action may be constructed,

SW = β ∑
x,µ>ν

(
1− 1

N
Re
(
tr[Pµν ]

))
, (3.7)

where β = 2N/g2 for SU(N). This is the Wilson action and reproduces the usual action when
the limit a → 0 is taken. In fact, for small a the exponencial in (3.6) may be expanded,

SW = β ∑
x,µ>ν

(
1− 1

N
Re
(

tr
[

1+ ia2gFµν −
1
2

a4g2F2
µν +O(a6)

]))
. (3.8)

2Notice that the trivial term would be tr
[
Uµ(xi)U−µ(xi +aêµ)

]
= tr

[
Uµ(xi)Uµ(xi)

†
]
= tr[1] = N, which is

just a constant.
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Notice that tr(1) = N and that Fµν = Fa
µνta,

SW = β ∑
x,µ>ν

(
− 1

N
Re
(

tr
[
ia2gFa

µνta
]
− tr

[
1
2

a4g2Fc
µνtcFd

µνtd
]
+O(a6)

))
. (3.9)

Notice that the first trace in the r.h.s. vanishes due to the fact that the generators are traceless,
i.e, tr[ta] = 0. On the other hand3 tr[tatb] = 1

2δ ab,

SW =
1

2N ∑
x

a4g2
β ∑

µ>ν

1
2

(
Fc

µνFc
µν

)
+O(a6) , (3.10)

which may be turned into an integral, in the continuum limit,

SW =
1
4

∫
d4x
(

Fc
µν

)2
+O(a2) . (3.11)

Therefore the Wilson action reproduces the continuum action plus vanishing terms of order
O(a2).

3.4 Gauge-Fixing: Minimal Landau Gauge

In order to investigate correlation functions, one has to specify a gauge. One chose the
Landau gauge in this work. The Landau gauge on the continuum is, by definition,

∂µAµ = 0 . (3.12)

This defines a hyperplane of transverse configurations

Γ := {A : ∂ ·A = 0} . (3.13)

This region comprises more that one configuration from each gauge orbit [55], known as
Gribov copies, so Gribov suggested to use some additional conditions: the restriction of the
physical configurational space to the following region

Ω := {A : ∂ ·A = 0,M[A]⩾ 0} ⊂ Γ , (3.14)

where M[A] :=−∂ µDµ [A] is the Faddeev-Popov operator (see (2.23)). However, this region
is not yet free of Gribov copies, so further restrictions are needed. To this end, one identifies

3These relations are summarized in Appendix A.
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the physical configurational space with the fundamental modular region Λ ⊂ Ω, which is
defined as the set of absolute minima of the following functional

FU [V ] =
∫

d4x∑
µ

tr
[
AV

µ(x)A
V
µ(x)

]
, (3.15)

where AV
µ(x) is defined in (2.9). This region is a convex manifold [56]. Each gauge orbit

intersects its interior only once [57, 58], which means that the absolute minima are non-
degenerate. However, this is not the case for the boundary ∂Λ, in which there are degenerate
absolute minima, i.e, distinct points in the boundary are Gribov copies of each other [58–60].
This choice of gauge is called minimal Landau gauge4.

The case of the lattice is similar to that of the continuum theory [61–63], i.e., the interior
of the fundamental modular region Λ is free of Gribov copies, however, they might occur at
the boundary ∂Λ. Nevertheless, the boundary of a finite lattice, in which degenerate absolute
minima might occur, has measure zero for the partition function and thus may be ignored
[62].

Landau gauge-fixing is performed on the lattice by maximizing the functional:

FU [V ] =CF ∑
x,µ

Re{tr[V (x)Uµ(x)V †(x+ êµ)]} , (3.16)

where CF = (NdimNCV )−1 is the normalization constant in which Ndim is the number of
dimensions of the space-time, NC is the number of colours and V is the number of points
on the lattice. To see that, let us consider Uµ as the maximizing configuration of FU [V ] on
some given orbit. Then, one considers a configuration near Uµ and performs the following
expansion5,

FU [1+ iω(x)]≈ FU [1]+
CF

2 ∑
x,µ

iωa(x)tr
[
ta (Uµ(x)−Uµ(x− êµ)

)
−

ta
(

U†
µ(x)−U†

µ(x− êµ)
)]

,

where ta are the generators of SU(N). Recall that one has defined Uµ as the maximizing
configuration of FU [V ], therefore, Uµ is a stationary point of F, that is,

∂F
∂ωa(x)

=
iCF

2 ∑
µ

tr
[
ta (Uµ(x)−Uµ(x− êµ)

)
− ta

(
U†

µ(x)− U†
µ(x− êµ)

)]
= 0 . (3.17)

4Notice that some authors refers to the Landau gauge defined in Ω as the minimal Landau gauge, where Ω

is defined in eq. 3.14.
5Notice that V (x) in the infinitesimal form is V (x) = 1+ iω(x)+O(ω2).
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Writting the aforementioned in terms of the gluon fields, expanding Uµ(x) = eiagAµ (x+aêµ ),
one has

∑
µ

tr
[
ta (Aµ(x+aêµ/2)−Aµ(x−aêµ/2)

)]
+O(a2) = 0 , (3.18)

which is equivalent to6

∑
µ

∂µAa
µ +O(a) = 0 , (3.19)

which allows us to conclude that (3.17) is the lattice equivalent of the continuum Landau
gauge condition.

One may define, in analogy with the continuum theory, the region of stationary points of
the functional (3.16),

Γ := {U : ∂ ·A(U) = 0} , (3.20)

and the region containing the maxima of the functional (3.16) – the Gribov region,

Ω := {U : ∂ ·A(U) = 0 and M(U)⩾ 0} , (3.21)

where M(U) is the lattice equivalent of the continuum Faddeev-Popov operator. Then one
defines the fundamental modular region Λ as the set of absolute maxima of the functional
(3.16). The interior of this region is free from Gribov copies as in the continuum theory [62].

The choice of different maxima of F [U ] may lead to small changes in the propagators in
the infrared region. For more informations on this subject see [64–66]. In the work developed
on this thesis, one did not consider the possible influence of the Gribov copies.

3.5 Propagators

3.5.1 Gluon propagator

The gluon propagator is defined as the 2-correlation function of gauge fields. To define it
on the lattice, one would like to relate the gluon field to the link variable. Considering a
sufficiently small lattice spacing a, (3.4) may be approximated as eiagAµ (x+aêµ/2), like one
did for the computation of the Wilson action. Expanding the exponencial to quadratic terms
of the lattice spacing one finds that,

aAµ(x+aêµ/2) =
1

2ig

{
Uµ(x)−U†

µ(x)
}
− 1

6ig
tr
{

Uµ(x)−U†
µ(x)

}
+O(a2) . (3.22)

6Notice that Aµ(x+δx)≈ Aµ(x)+δx∂µ Aµ(x) (where there is no sum over the index µ in the last term).
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The second term on the r.h.s. is due to the fact that Aµ is a traceless matrix, so that, to preserve

that tracelessness, one had to correct the expression by the factor − 1
2Nig tr

{
Uµ(x)−U†

µ(x)
}

.
Next, one uses a Fourier transform on the gluon field, representing the discrete momenta by
q̂,

Aµ(q̂) = ∑
x

e−iq̂(x+aêµ/2)Aµ(x+aêµ/2) . (3.23)

Notice that from periodic boundary conditions, q̂µ is

q̂µ =
2πnµ

aLµ

, nµ = 0,1, ...,Lµ/2 . (3.24)

In momentum space, the 2-point correlation function is given by

⟨Aa
µ(q̂)A

b
ν(q̂

′)⟩= Dab
µν(q̂)V δ (q̂+ q̂′) , (3.25)

where V is the number of points in the lattice. One now specifies the gauge parameter ξ of
(2.53) to 0 (which corresponds to the Landau gauge), and rewrites it as,

D̃ab
µν(q) = δ

ab
(

δµν −
qµqν

q2

)
D(q2) , (3.26)

where D(q2) = 1
q2(1+Π(q2))

is the scalar part of Dab
µν(q). One would like to relate this scalar

gluon propagator to the gluon fields7. Combining (3.26) with (3.25), noticing that one has
the special case of q ̸= 0, one gets

D(q2) =
2

(N2
c −1)(Nd −α)V ∑

µ

⟨tr[Aµ(q̂)Aµ(−q̂)]⟩ , (3.27)

where α = 0 if q = 0 and α = 1 otherwise. Finally, let us mention that the tree level
propagator of a massless scalar field does not correspond to its continuum counterpart, so
that a redefinition of the momentum is to be made in order to reproduce it. This redefinition
is

qµ =
2
a

sin
(

q̂µa
2

)
. (3.28)

It is usual to define what is called a dressing function, which is nothing but the quocient
between the full propagator with its tree level form, i.e.,

dgl(q2) = q2D(q2) , (3.29)

7Notice that eq. 3.26 is valid for all momenta except for q = 0.
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which provides a way of comparing the non-perturbative result to the perturbative one.

3.5.2 Ghost propagator

The ghost propagator is defined as the inverse of the Faddeev-Popov operator Mab,

Gab(x− y) := ⟨ca(x)c̄b(y)⟩= ⟨(M−1)ab
xy [U ]⟩ , (3.30)

where U represents a lattice configuration and c are ghost fields. This operator is given by
the second variation of the functional (3.16) with respect to the parameters of the gauge
transformation,

∂ 2FU [V ]

∂ωa(x)∂ωb(y)
= Mab

xy . (3.31)

It is a real symmetric matrix in the (minimal) Landau gauge [62]. Let us consider an arbitrary
vector V b and apply the matrix Mab to it. One may find that [62],

Mab
xy V b

y = ∑µ

{
Sab

µ (x)[V b
x −V b

x+µ̂
]− (x ↔ x− µ̂)

−1
2 f abc[Ab

µ(x)V
c
x+µ̂

]−Ab
µ(x− µ̂)V c

x−µ̂
]
}
,

(3.32)

where Sab = −1
2 tr({ta, tb}(Uµ(x)+U†

µ(x))). Now one would like to invert the matrix M.
However, due to its large size the inversion would be too computationally demanding. To
solve this issue, the following linear system may be solved instead,

Mab
xy V b

y = Ia
x , (3.33)

where Ia
x = δ aa0δxx0 . However, the constant vectors are zero modes of the Faddeev-Popov

matrix (i.e. eigenvectors with vanishing eigenvalues) [51]. Fortunately, this matrix is positive-
definite in the subspace orthogonal to constant vectors. Thus, one may use the conjugate-
gradient method8 [68] provided that one works on that orthogonal subspace. This is possible
if the aforementioned equation is multiplied by M, for Mv belongs to the orthogonal space
for a generic vector v. Therefore, one ends up with

MMV = MI , (3.34)

8Notice that the method is applicable for positive-definite, symmetric and real matrices. For further
informations on this method, see [67].
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which may solved by solving separately the following equations

MA = MI; MV = A . (3.35)

Afterwards, one gets the ghost propagator on the momentum space from (3.30),

Gab(k) =
〈

∑
x
(M−1)ab

xxo
eik(x−x0)

〉
. (3.36)

Assuming that the ghost propagator on the lattice has the same tensorial structure as its
continuum counterpart, one may write,

Gab(k) = δ
abG(k2) . (3.37)

And now, the scalar function may be obtained from (3.37),

G(k2) =
1

N2
c −1 ∑

a
Gaa(k) . (3.38)

From which one can define the ghost dressing function,

dgh(k2) = k2G(k2) . (3.39)

One would like to note that (3.36) corresponds to a point-to-all propagator, as opposed to the
all-to-all one,

Gab(k) =
1
V

〈
∑
x,y
(M−1)ab

xy eik(x−y)

〉
. (3.40)

In order to estimate this all-to-all propagator, one may average over several values point-to-all.
This is what we did in the work described in this dissertation9.

3.5.3 Running Coupling

From the dressing functions for the gluon and ghost propagators one can form a renormaliza-
tion group invariant (i.e. does not depend on the renormalization scheme one uses) which
defines a running coupling [52],

αS(q2) =
g2

4π
dgl(q2)d2

gh(q
2) . (3.41)

9There is a method described in [69] which allows us to determine the all-to-all for a specific momentum,
using a plane wave as a source.





Chapter 4

Computational Methods

In this chapter one discusses the computational methods used in order to perform lattice
computations. One commences with a discussion on Monte Carlo methods used to compute
the correlation functions. To this end, one introduces the Markov chains and discuss the
convergence of strongly ergodic Markov chains [70, 71]. Then, one discuss a simple
algorithm that provides a way to generate a Markov chain that satisfies detailed balance – the
Metropolis algorithm. Subsequently, two other algorithms are discussed, which were the ones
used in our simulations – the Overrelaxation and the Heat-Bath algorithms [48, 72]. There
is also a discussion on the Fourier Accelerated Steepest Descent algorithm, used in order
to perform a gauge-fixing to the Landau gauge [49]. Finally, the method used in the work
described in this dissertation for computing statistical errors is introduced - the bootstrap
method [45, 73–76].

4.1 Monte Carlo Methods: Heat-Bath and Overrelaxation

One of the most useful quantities one wishes to determine on the lattice is the expectation
value of some operator O(U) which depends on some gauge configuration U , i.e,

⟨O⟩= 1
Z

∫
DUe−S(U)O(U) , (4.1)

where, S corresponds to some action, the Wilson one in our case. Our goal is to compute this
integral numerically. However, notice that there is one integration per degree of freedom so
that usual deterministic methods aren’t suited for such computations, for these become too
expensive for integrals on higher dimensional spaces. This issue may be solved resorting to
Monte Carlo methods. The main idea is to identify probabilities with integration measures.
This is due to the fact that the Boltzmann factor e−S gives different importance to different
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gauge configurations. To this end, one generates an ensemble of gauge configurations {Ui}N
i=1

which are drawn from the probability distribution

P(Ui)DU =
1
Z

e−S(Ui)DU . (4.2)

This is achieved by means of Markov chains, which will be described in section 4.1.1. Then,
one computes the average of the values of the operator O on each configuration,

Ō :=
1
N

N

∑
t=1

O(Ui) . (4.3)

Using the law of large numbers, one knows that as the number of field configurations sampled
is increased, the value of the sample average becomes closer to that of the expectation value,
i.e.,

⟨O⟩= lim
N→∞

Ō . (4.4)

According to the central limit theorem, the sample average tends to a Gaussian distribution
with the expectation value as its mean and a standard deviation proportional to 1/

√
N.

4.1.1 Markov Chains and their convergence

Let us define a Markov chain as a sequence of random variables At drawn from a specified
state space Ω (in our case, the space of all gauge configurations) indexed by a totally ordered
discrete set T ("time") with the following property1:

Pr(At+1|A1, ...,At) = Pr(At+1|At) , (4.5)

that is, the conditional probability of moving to the next state depends only on the current
state and not on the preceding states.

A probability distribution is defined as a mapping Q : Ω → R which is positive, Q(U)>

0∀x ∈ Ω and normalized, ∑Ω Q(U) = 1. Let us call the space of such mappings by SΩ. Let
us write P(i → j), where i, j ∈ Ω as the probability of transition from the state i to j, i.e.
Pr( j|i). The operator P : SΩ → SΩ, such that

(PQ)(U) = ∑
U ′∈Ω

P(U ′ →U)Q(U) (4.6)

1one has chosen T as the set of natural numbers N
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defines a Markov process. By definition, a Markov process P is strongly ergodic if

P(U →U ′)> 0 ∀U,U ′ . (4.7)

One would like to prove that a Markov chain with a strongly ergodic P converges to a
stationary distribution.

Before that, let us introduce some basic concepts of Metric Spaces. They are needed for
one is interested in a generalization of the concept of distance.

Def. Let M be a set. A metric d is a function d : M×M → R which satisfies the following
conditions2:

• d(x,y) = 0 if and only if x = y;
• ∀x,y∈M d(x,y) = d(y,x);
• ∀x,y,z∈M d(x,z)⩽ d(x,z)+d(z,y).

(4.8)

The pair (M,d) is called the metric space. The metric can be viewed as a generalization of the
concept of distance. In our case, one will present a function which measures the "distance"
between probability distributions.

Def. Let (M,d) be a metric space and (un) a sequence of elements of M. One may re-
fer to (un) as a Cauchy sequence. if:

∀ε>0∃n0 ∀m,n : m,n ⩾ n0 =⇒ d(un,um)< ε . (4.9)

Def. One says that a metric space (M,d) is complete if every Cauchy sequence of ele-
ments of M has its limit in3 M.

Def. Let (M,d) and (M′,d′) be metric spaces. Let f : M → M′ be a function. One says that
f is a Lipschitz function if there is K ∈ R(non-negative) such that:

∀x,y∈M d′( f (x), f (y))⩽ K d(x,y) , (4.10)

where K is called the Lipschitz constant. If K < 1, one calls the function a contraction.

2It is easy to prove that from these conditions one gets d ⩾ 0.
3Let (M,d) be a metric space and (un) a sequence of elements of M and c ∈ M. One says that c is the limit

of the sequence if ∀ε>0∃n0∀n : n ⩾ n0 =⇒ d(un,c)< ε .
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Def. Let (M,d) be a metric space and f : M → M a function. One says that x∗ is a fixed point
if:

f (x∗) = x∗ . (4.11)

Now that some basic concepts from metric spaces have been introduced, one may present the
following theorem, which will enable us to prove the convergence of ergodic Markov chains,

Banach Fixed Point Theorem. Let (M,d) be a complete metric space and let f : M → M be
a contraction with Lipschitz constant K. It follows that:

• f admits a unique fixed point x∗ in M. Moreover, x∗ may be found by starting with
an arbitrary element x0 ∈ X and define the sequence of xn = f (xn−1). It follows that xn → x∗;

• d(xn,x∗)⩽ Kn

1−K d(x1,x0)∀n∈N.

Next, let us define a metric on the space introduced, SΩ, as follows,

d(Q1,Q2) := ∑
U∈Ω

|Q1(U)−Q2(U)| . (4.12)

In order to prove the convergence of the (strongly) ergodic Markov chains, one has to prove
that the function PM : SΩ → SΩ is a contraction. This is done in [70]. On the other hand, the
space of probability distributions SΩ is complete [70], so one concludes that the (strongly)
ergodic Markov chains converges to a unique distribution using Banach fixed point theorem.

4.1.2 Detailed Balance and the Metropolis Algorithm

Now, one wishes to construct a Markov chain with a precise fixed point, that is,

P∗(U) = ∑
U ′∈Ω

P(U ′ →U)P∗(U ′) ∀U∈Ω . (4.13)

A sufficient condition [70] is to make the chain satisfy detailed balance,

P(U →U ′)P∗(U) = P(U ′ →U)P∗(U ′) . (4.14)
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To generate the elements of a Markov chain which satisfies detailed balance one may use the
well-known Metropolis Algorithm. It is defined as follows,

Metropolis Algorithm

• Start with some arbritrary U ;
• Choose a test U ′ from some a priori selection probability P(U ′|U);
• Accept the test U ′ with probability4

PA(U →U ′) = min
(

1,
P∗(U)

P∗(U ′)

)
(4.15)

• Continue from second step; It is an easy exercise to see that this algorithm fullfils detailed
balance condition. Notice that in our case of interest, P∗(x) is defined in (4.2), so that one
may write,

P∗(U)

P∗(U ′)
= e−δS , (4.16)

where δS = S(U ′)−S(U).

4.1.3 Metropolis Algorithm applied on the Lattice

In this section, the Metropolis Algorithm applied to the Wilson gauge action is discussed.
To this end, let us start from a configuration U . In the simplest case, the test U ′ for the
Metropolis algorithm update differs from the first by the value of just a single link variable
Uµ(n)′. Therefore, only six plaquettes are affected when one updates Uµ(n)→Uµ(n)′ for
the link is shared solely by those six plaquettes (of course, considering a four dimensional
lattice). Then, it is easy to see that the change of action is (See (3.7)),

δS = S[Uµ(x)′]loc −S[Uµ(x)]loc =−β

N
Retr[Uµ(x)′−Uµ(x)]P6 , (4.17)

4Other choices are possible.
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where the subscript loc stands for local and means one is considering only the six plaquettes
shared by the link, and where

P6 =
6

∑
i=1

Pi = ∑
ν ̸=µ

{
Uν(x+ êµ)U−µ(x+ êµ + êν)U−ν(x+ êν)

+U−ν(x+ êµ)U−µ(x+ êµ − êν)Uν(x− êν)
}
.

These products are called staples.

4.1.4 Problems with Simple Metropolis Algorithm

In order to get high acceptance, one has to choose U ′ in the vicinity of U , as one may see
from (4.17). Unfortunately, this implies too small steps in the Markov chain. However, if
a candidate U ′ is chosen too far from the original U , one has low acceptance, which is not
desirable as well. Therefore, one would like to somehow improve the algorithm in order
to get larger step sizes. This can be achieved by the Overrelaxation algorithm, which is
explained in the next subsection for SU(2). However this algorithm is not ergodic, for the
configurations it generates belong to a subspace of constant energy. In order to get ergodicity,
one has to combine it, for instance, with the heat bath algorithm.

4.1.5 Overrelaxation Method in SU(2)

Notice that in the Metropolis algorithm the candidates are always accepted if the action is
not changed. Therefore, if one chooses U ′ in such a manner that it has the same probability
weight as U , it will be automatically accepted. The starting point is the following local
probability distribution,

dP(U) = exp
(

β

N
Re tr[UP6]

)
dU , (4.18)

where, again, P6 is defined in (4.17). Let us define the change of U according to the following
ansatz

U →U ′ =V †U†V † , (4.19)

with V being a gauge group element such that the action remains invariant. Let us consider
the case of SU(2), before considering the case of SU(3). This group is special, for the sum
of two SU(2) is proportional to some other SU(2) matrix. Therefore, one may write P6 as

P6 = αV ; α =
√

det[P6] . (4.20)
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It can be proved that det[P6]⩾ 0. From this one defines the matrix5 V = P6/a. Within this
definition, one find that,

tr[U ′P6] = tr[V †U†V †P6] = αtr[V †U†] = tr[UP6] . (4.21)

Notice that in the last step one considered the fact that SU(2) matrices have real trace. Thus,
one proved that this choice of U ′ keeps the action the same.

4.1.6 Heatbath in SU(2)

This algorithm updates to the new value U ′
µ(n) according to the same local probability

distribution as the overrelaxation algorithm, defined in (4.18). It is possible to prove that dU
(called Haar measure) is invariant under left and right multiplications with another element
V of SU(2), therefore, one may write dU = d(UV ). Let us define X :=UV , one may write,

dP(X) = exp
[

1
2

αβRe tr[X ]

]
dX . (4.22)

Then, one may write Uµ(n)′ in terms of the generated X , according to

Uµ(n)′ =U = XV † = XP†
6

1
α

. (4.23)

One transformed the problem of generating U to that of generating X , distributed according
to the distribution (4.22). Let us consider a general SU(2) matrix. One knows that it can be
written as,

U =

(
a b

−b∗ a∗

)
with |a|2 + |b|2 = 1 . (4.24)

If one writes a = x0 + ix3 and b = x2 + ix1, this turns out to be equivalent to writting the four
vector (x0,x) in the representation,6

U = x0I+ ix ·σ . (4.25)
5Notice that in the particular case of det[P6] = 0, one may choose a random SU(2) matrix for U ′.
6σ denotes the vector of Pauli matrices.
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Notice that det[U ] = |x|2 = x2
0 + |x|2 = 1. In this representation, the Haar measure may be

written as7

dX =
1

π2 δ (x2
0 + |x|2 −1)d4x

=
1

π2
1

2
√

1− x2
0

{
δ

(
|x|−

√
1− x2

0

)
+δ

(
|x|+

√
1− x2

0

)}
d4x .

Now the hyper-volume element may be written as:

d4x = d|x||x|2dΩdx0 , (4.26)

where dΩ stands for the spherical angle due to x. If one integrates over |x|, one sees
that this is the same as to specify the value of |x| =

√
1− x0. On the other hand, writting

dΩ = d cosθdφ 8 and noting that tr[X ] = 2x0, one may write the distribution as,

P(X)dX =
1

2π2 d cosθ dφ dx0

√
1− x2

0eαβx0 . (4.27)

Now one asks the question of how to generate randomly such values of x0, |x|, |cosθ | and

|φ |. To generate x0 according to the distribution
√

1− x2
0eαβx0 one would like to write the

previous as a gaussian distribution. This can be achieved by performing the following change
of variables,

x0 = 1−2ξ
2 . (4.28)

This implies that

dx0

√
1− x2

0eαβx0 ∝ dξ ξ
2
√

1−ξ 2e−2αβξ 2
with ξ ∈ [0,1] . (4.29)

Next, one has to generate ξ with the density (called modified Gaussian distribution density),

p1(ξ ) = ξ
2 e−2αβξ 2

, (4.30)

and accept it with probability

p2(ξ ) =
√

1−ξ 2 . (4.31)

Algorithms to compute random numbers with Gaussian distributions are well-known. After
generating ξ , one recovers x0 from x0 = 1−2ξ 2.

7One used the property of Dirac-delta δ , that δ (g(x)) = ∑i
δ (x−xi)
|g′(xi)| , where xi are the roots of g.

8One has cosθ ∈ [−1,1] and φ ∈ [0,2π).
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On the other hand, generating |x| is easy, for one just has to recall that |x| =
√

1− x2
0.

The angular variables cosθ and φ are generated from a uniform distribution. From all these,
it is possible to reconstruct X . Now the heatbath algorithm is summarized,

Heatbath Algorithm

1. Determine P6 and α =
√

det[P6], and then initialize V = P6/α;

2. Find X according to the aforemention distribution (4.22);

3. Set the new variable as U = XV †.

4.1.7 Generalization to SU(3)

Unfortunately, there is not a heatbath algorithm that directly makes SU(3) link variables. In
order to solve this, one may apply this algorithm for the SU(2) subgroups of SU(3). This
method [72] consists in selecting a set S of k SU(2) subgroups of SU(3), such that there
is no invariant subset of SU(3) under left multiplication by S , with the exception of the
whole group. Then, one performs an update on a given link by multiplying it by k matrices
belonging to each subgroup (SU(2))i, i = 1, ...,k, i.e., (see (4.23))

U = XV †, where X = X1X2...Xk , (4.32)

for Xi ∈ SU(2)i, i = 1, ...,k.
The same reasoning may be applied to the overrelaxation algorithm for the matrix V in

(4.19).9

4.2 Gauge Fixing Algorithm

Fourier Accelerated Steepest Descent Method

In order to search for a maximum of the functional (3.16), one used the Fourier Accelerated
Steepest Descent method, in the work described in this dissertation. Unfortunately, the naive
steepest descent method, when applied to large lattices, encounters an issue of critical slowing
down (i.e. the number of iterations necessary to converge to some fixed accuracy grows
drastically with the volume). One may ameliorate this by performing a Fourier acceleration.

9Notice that there is also a method of overrelaxation for SU(3) [77].



50 Computational Methods

In this method, one chooses the matrices V , which appeared on (3.5), to be

V (x) = exp
[

F̂−1 α

2
p2

maxa2

p2a2 F̂ (∆(x))
]
, (4.33)

where a is the lattice spacing, p2 are the eigenvalues of −∂ 2, F̂ represents the fast Fourier
transform (FFT), α is a parameter which we have set to the recommended value of 0.08 [78]
in the work presented in this dissertation, and where10

∆(x) = ∑
ν

[Uν(x−aêν)−Uν(x)−h.c.− trace] , (4.34)

is the lattice version of the continuum Landau gauge condition ∂µAµ = 0. In order to compute
V it is sufficient to expand the exponential to first order in α . To keep it an element of SU(3)
one has to reunitarize it afterwards. The monitorization of the convergence of the gauge
fixing process is done with

θ =
1

V NC
∑
x

tr
[
∆(x)∆†(x)

]
, (4.35)

which corresponds to the mean value of (∂µAµ)
2 performed over all lattice points per color

degree of freedom. In our work, the algorithm stops when θ ⩽ 10−15. The algorithm is
defined below:

Fourier Accelerated Steepest Descent Algorithm

1. determine ∆(x),F [U ] and θ .

2. while θ > 10−15

3. loop for all elements of ∆(x)

4. FFT forward

5. apply p2
max/p2

6. FFT backward

7. normalize

8. end loop

10Notice that here h.c. means "hermitian conjugate" of the previous terms.
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9. loop for all x

10. determine V (x) and reunitarize

11. end loop

12. loop for all x

13. loop for all µ

14. Uµ(x)→V (x)Uµ(x)V †(x+ êµ)

15. end internal loop

16. end external loop

17. Determine ∆(x),F [U ] and θ

18. end while loop

4.3 Error Analysis: Bootstrap Method

In the work described in this dissertation, we used the bootstrap method in order to compute
the statistical errors. The bootstrap method may be applied to cases in which no mathematical
model is used for the probability distribution function (non-parametric). For instance, it is
suited when one does not know the probability density function or when the estimation of
standard errors require complicated formulas. One of the advantages of this method is its
simplicity. It is explained briefly in what follows. For a complete description of this subject,
one recomends [73–76].

Let us consider a given sample of n independent quantities which are identically dis-
tributed X1,X2, ...,XN and a real-valued estimator θ̂ = θ̂(X1, ...,XN). In the case one is
interested in, the estimator is the mean value. One is interested in the standard deviation of
the estimator. The idea is to replace the (possibly) unknown population distribution with the
empirical distribution. The empirical distribution Fn is a probability distribution in which
each sample value has the probability 1/n assigned to it. Then one performs independent
samplings with replacement from the empirical distribution Fn: it consists in generating Nboot

samples of N elements which were drawn from the empirical distribution, Fn (it doesn’t
matter if the elements are drawn more than once or never at all). For each bootstrap sample
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one determines the average, which will be denoted by Aboot
i , where i denotes the bootstrap

sample (which runs from 1 to Nboot). One computes the asymmetric errors from

σ
up
B = ⟨A⟩−a∗ , σ

down
B = b∗−⟨B⟩ , (4.36)

where a∗ and b∗ are such that

#{A ∈ Aboot
i |Aboot

i < a∗}
Nboot

=
1−C

2
,

#{A ∈ Aboot
i |Aboot

i < b∗}
Nboot

=
1+C

2
, (4.37)

where C is the confidence coefficient (C ∈ [0,1]) and #{•} denotes the cardinality of the set.
One set C = 0.675. In the work developed, one used for the statistical error the greater of
both asymetric values σ

up
B , σdown

B , i.e.,

σB = max{|σup
B |, |σdown

B |} . (4.38)



Chapter 5

Results

This chapter is a result of the work developed throughout the year by the author of this
dissertation in association with his supervisors and it is divided into three sections. In section
5.1, we describe the lattice setup.

In section 5.2, we studied the dependence on the lattice spacing and physical volume
of the Landau gauge two-point correlation functions of the gluon and ghost fields for pure
SU(3) Yang-Mills theory in four dimensions using lattice simulations. We used several
lattice volumes, from 644 to 1284, and different lattice spacings. On the other hand, one may
define, as already discussed in section 3.5.3 a renormalization group invariant from the gluon
and ghost propagators, the running coupling constant. We also studied the dependence of
this coupling running constant on the lattice spacing and physical volume.

In section 5.3, we studied the three gluon one particle irreducible function (defined in
section 2.6) in Landau gauge for pure SU(3) Yang-Mills theory in four dimensions as well. It
is expected from DSE (Dyson-Schwinger Equations) that there is a change of sign of certain
form factors associated with this function in the IR region [26, 27]. Therefore, we investigated
this zero crossing demanded in order to define properly the set of Dyson-Schwinger equations
for the gluon.

5.1 Lattice setup

In order to perform computational simulations of the pure gauge SU(3) Yang-Mills theory
we adopted the Wilson action (See (3.7)) at several values of β and physical volumes, which
we report in Table 5.1, concerning section 5.2 and Table 5.6, concerning section 5.3. On the
other hand, we converted into physical units using the string tension as measured in [79].
However, the lattice spacing for β = 6.3 was not measured in [79], thus, in that case, we
used the procedure described in [80].
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We generated the gauge configurations using a combined Monte Carlo sweep of seven
overrelaxations with four heatbath updates (See sections 4.1.5, 4.1.6 and 4.1.7) using the
Chroma library [81]. Each generated configuration Uµ(x) was gauge fixed to the Landau
gauge as described in section 4.2, using a computer code based in the Chroma and PFFT
libraries [82]. As mentioned before in section 4.2, the algorithm was stopped for values of
θ ⩽ 10−15.

On the other hand, we performed the cylindrical and conic cuts [83] for momenta above
1 GeV in order to reduce lattice artefacts. For momenta below 1 GeV we simply included all
lattice data points. To define the cylindrical cut, one starts by choosing momenta that lies
within a cylinder directed along (x,y,z, t) = (1,1,1,1), which is a diagonal of the lattice. The
distance between a momentum vector q̂ and the diagonal is denoted by δq and is given by,

δq = |q̂|sin(θq) , (5.1)

where θq is given by

θq = arccos
q̂ · n̂
|q̂|

, (5.2)

and n̂ = 1
2(1,1,1,1) is the unit vector along the diagonal. On the computations performed,

we chose momenta which satifies δq < 1. On the other hand, we imposed further restrictions
on the angle, namely, θq < 20◦ – conic cut.

It is also important to notice that we performed an averaging over all permutations of the
components of nµ = (nx,ny,nz,nt) (see (3.24)) when we computed the quantities of interest
(the propagators and the 1PI function). This is done in order to minimize the possible break
of rotational invariance on the lattice.

5.2 Gluon and Ghost Propagators and the Strong Coupling:
Finite Lattice Spacing and Volume Effects

In order to compare the data of different simulations, one has to choose a renormalization
scheme. The renormalization of the propagators was performed in the MOM scheme, with the
following definition of renormalized propagators (see section 2.5 for further informations),

D(q2)
∣∣
q2=µ2 = ZADlat(µ

2) =
1

µ2 ;

G(q2)
∣∣
q2=µ2 = ZηGlat(µ

2) =
1

µ2 ,
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β a(fm) 1/a(GeV) L La(fm) # Conf Sources

5.7 0.1838(11) 1.0734(63) 44 8.087 100 3
6.0 0.1016(25) 1.943(47) 64 6.502 100 2

80 8.128 70 2
128 13.005 35 1

6.3 0.0627(24) 3.149(46) 128 8.026 54 3

Table 5.1 Lattice setup. The last column refers so the number of point sources, per configura-
tions, used to invert the Faddeev-Popov matrix, necessary to compute the ghost propagator.

where Dlat and Glat indicates the bare lattice propagators. In the work described in this
dissertation, we used µ = 4GeV. In order to obtain the renormalization constants we fit the
bare lattice propagators to the functional form

D(q2) = z
q2 +m2

1
q4 +m2

2q2 +m4
3

(5.3)

for the gluon propagator (where we fit the data in the range of momentum q ∈ [0,6]GeV ),
and

G(q2) = z

[
log q2

Λ2

]γgh

q2 (5.4)

for the ghost propagator (where one fit the data in the range of momentum q ∈ [2,6]GeV ).
The parameters obtained from the fit of the bare propagator data set to these funtional forms
are presented in Table 5.2 (gluon) and Table 5.3 (ghost). The renormalization constants
are presented in Table 5.4. Notice that the fittings of the functional forms (5.3) and (5.4)
were performed in Gnuplot, from which one retrieved the fitting parameters as well as their
associated errors. On the other hand, the errors of the value of the bare lattice propagators
at µ = 4GeV , extracted from the fit, and of the renormalization constants were determined
using the Gaussian error propagation formula1.

5.2.1 Gluon Propagator

The data concerning the renormalized gluon propagator may be seen in Fig.5.1 and Fig. 5.2.
In order to see the effects of volume and lattice spacing, we performed two different plots. In
the first plot (Fig. 5.1) we chose data with approximately the same volume (V ∼ (8 f m)4)

1Let f be a function of uncorrelated variables x1, ...,xN . Then, the standard error of f can be approximated

by δ f (x1, ...,xN) =

√(
∂ f
∂x1

δx1

)2
+ ...+

(
∂ f

∂xN
δxN

)2
.
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β L z m1 m2 m3 χ/d.o. f .

5.7 44 1.470(8) 1.991(22) 0.747(13) -0.7725(27) 2.528
6.0 64 4.931 (18) 2.054(18) 0.779(12) -0.7625(23) 1.213

80 4.904 (18) 2.054(18) 0.774(11) -0.7617(21) 1.373
128 4.907(18) 2.056(14) 0.772(8) -0.7637(15) 1.264

6.3 128 13.166(54) 2.091(19) 0.799(12) -0.7801(24) 1.141

Table 5.2 Parameters from the fit in the range q ∈ [0,6]GeV of the bare gluon propagator
data set using the functional form (5.3).

β L z Λ γgh χ/d.o. f .

5.7 44 2.00(14) 0.71(14) -0.264(35) 0.101
6.0 64 9.27 (72) 0.28(5) -0.395(29) 0.043

80 8.56 (7) 0.33(7) -0.367(29) 0.192
128 5.36 (5) 1.40(5) -0.151(5) 0.147

6.3 128 16.4(10) 0.77(17) -0.206(29) 0.248

Table 5.3 Parameters from the fit in the range q ∈ [2,6]GeV of the bare ghost propagator data
set using the functional form (5.4), except for the lattices corresponding to β = 6.0, L = 80
and L = 128, in which the range was q ∈ [2,8]GeV .

β L D(µ = 4)(GeV ) ZA G(µ = 4)(GeV ) Zη

5.7 44 0.1106(5) 0.5650(25) 0.090(8) 0.693(61)
6.0 64 0.3747(11) 0.1668(5) 0.299(29) 0.209(20)

80 0.3730 (11) 0.1676(5) 0.298(17) 0.210(12)
128 0.3736(11) 0.1674(5) 0.299(3) 0.209(2)

6.3 128 1.0062(34) 0.0621(2) 0.800(61) 0.078(6)

Table 5.4 Values of the bare lattice propagators at µ = 4GeV and renormalization constants.
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and compared its values for different lattice spacings (a ∼ 0.18 f m; 0.10 f m; 0.06 f m). On
the other hand, in the second plot (Fig. 5.2), we chose data with the same lattice spacing
(a ∼ 0.10 f m) and different volumes

(
V ∼ (6.5 f m)4; (8.1 f m)4; (13.0 f m)4).

From Fig. 5.1 (constant physical volume), one may see a dependence on the lattice
spacing, although it may seem rather non trivial (look, for instance, at the propagator for
momenta below 0.5 GeV - there is no direct correspondence between it and the lattice
spacing). On the other hand, one may see that the largest lattice spacing underestimates the
lattice data in the IR region.

From Fig. 5.2 (constant lattice spacing), one may see that there is substancially no
physical volume dependence, at least, for the volumes considered here in this work (above
(6.5 f m)4 and below (13 f m)4).

These results obtained here about the relative importance of the effects due to the use of
a finite lattice spacing and finite volume are in accordance with those of [10].

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  0.5  1  1.5  2  2.5

D
(p

2
) 

[G
e
V

-2
]

p [GeV]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  0.5  1  1.5  2  2.5

D
(p

2
) 

[G
e
V

-2
]

p [GeV]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  0.5  1  1.5  2  2.5

D
(p

2
) 

[G
e
V

-2
]

p [GeV]

128
4
  β=6.3

80
4
  β=6.0

44
4
  β=5.7

 0

 0.1

 0.2

 0.3

 0.4

 2  2.5  3  3.5  4  4.5  5  5.5  6
 0

 0.1

 0.2

 0.3

 0.4

 2  2.5  3  3.5  4  4.5  5  5.5  6
 0

 0.1

 0.2

 0.3

 0.4

 2  2.5  3  3.5  4  4.5  5  5.5  6

Fig. 5.1 Gluon propagator renormalized at µ = 4GeV for the same physical volume of
(8 f m)4 and different lattice spacings.

5.2.2 Ghost Dressing Function

The analysis of the ghost two point correlation function was performed using its dressing
function (see 3.39). Once again one has two plots, one (Fig. 5.3) for essentially the same
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Fig. 5.2 Gluon propagator renormalized at µ = 4GeV for the same lattice spacing (a =
0.1016(25)fm) and different volumes.

volume of V ∼ (8 f m)4 and different lattice spacings, as for the gluon propagator; and another
(Fig. 5.4) for the same lattice spacing of a ∼ 0.10 f m and different volumes.

From Fig. 5.3 (constant physical volume), one may see that a smaller lattice spacing
seems to suppress the ghost propagator on the infrared region. On another note, the lattice
with larger spacing (β = 5.7) differs from the others up to 2 GeV in the sense that its data
is above the ones from other simulations, so one may say that it provides an upper bound
to the continuum correlation function. Notice that this is opposed to the case of the gluon
propagator in which the lattice with β = 5.7 provided a lower bound to the corresponding
continuum correlation function. Note that the results corresponding to the two lattices with
smaller spacing are compatible within one standard deviation as from momenta above ∼ 1
GeV. However, for two standard deviations all dressing functions are compatible for almost
the entire range of momenta.

From Fig. 5.4, one may conclude essentially the same as for the gluon propagator. There
is no evident dependence on the physical volume. In fact, within one standard deviation
the simulations are compatible for the full range of momenta. On a different note, the data
corresponding to the largest physical volume seems not as smooth as the others. However,
this may be due to its larger errors which is possibly caused by the limited statistical ensemble
considered for this largest volume.
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For completeness, we also report the dressing functions for all simulations in Fig. 5.5.
They seem to be compatible within two standard deviations, except for the lattice correspond-
ing to β = 5.7.

We would also like to mention the fact that the functional form depicted in (5.4), which
concerns the perturbative one-loop result at high momenta, allows us to reproduce the lattice
data over a vast range of momenta. In fact, if Λ is taken as a fitting parameter, the functional
form may fit the lattice data that runs from approximately 1GeV up to the largest momenta
one had available. On the other hand, if one sets Λ ∼ ΛQCD ∼ 200MeV , the functional form
fits the lattice data from momenta about ∼ 2GeV up to the largest momenta one simulated.
This may be seen as an indication of a behaviour of the ghost propagator which is essencially
described by its pertubative form for momenta as small as ∼ 1GeV . The plots and respective
fittings are presented in Appendix D.
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Fig. 5.3 Ghost dressing function renormalized at µ = 4GeV for the same physical volume of
(8 f m)4 and different lattice spacings.

5.2.3 Running Coupling

Finally, we studied the dependence on the lattice spacing and volume of the running coupling,
defined in section 3.5.3. As done in previous cases, one has two graphs with the same
characteristics (Fig. 5.6 and Fig. 5.7). Notice that the axis of p2 is in logarithmic scale.
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Fig. 5.4 Ghost dressing function renormalized at µ = 4GeV for for the same lattice spacing
(a = 0.1016(25)fm) and different volumes.
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Fig. 5.5 Ghost dressing function renormalized at µ = 4GeV for the simulations reported in
Table 5.1.
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From Fig. 5.6, one may see that the running coupling is slightly suppressed for smaller
lattice spacings in a range of momenta essentially below 1 GeV.

From Fig. 5.7, one concludes the same as for the gluon propagator and the ghost dressing
function: no noticeable dependence on the physical volume.

We also studied the dependence on the lattice spacing and physical volume of the position
of the maximum of αS(p2). There seems to be no significant variation on the position of
the maximum. The maximum occurs approximately at p2 ∼ 250MeV2. Nevertheless, its
own value seems to be supressed for smaller lattice spacings (i.e. when one gets closer to
the continuum limit). In fact, the value of the maximum of the running coupling for β = 6.3
seems to be about 15% smaller in comparison to the values of the other simulations.
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Fig. 5.6 Running coupling for the same physical volume of (8 f m)4 and different lattice
spacings.

5.2.4 Comparison with previous works

In this section, we compare our lattice results with those of [3], which were performed using
the largest physical volumes for an SU(3) simulation to date. Before we proceeds with the
comparison of the results we obtained with those of the Berlin-Moscow-Adelaide group, it
is important to mention that we had to rescale the propagators, due to the use of different
definitions of the lattice spacing (which affects the conversion into physical units); we used a
different algorithm to compute the maxima of the functional F [U ] defined in eq. 3.16, which,
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Fig. 5.7 Running coupling for the same lattice spacing of (a = 0.1016(25)fm) and different
volumes.

as already discussed (see section 3.4), may cause differences on the values of propagators in
the infrared region.

The lattice setup of Berlin-Moscow-Adelaide simulations may be seen in Table 5.5. The
values presented are already those resulting of the previously mentioned rescaling.

Gluon Propagator

In order to compare our results with those of Berlin-Moscow-Adelaide, we used the lattice
with β = 5.7 so we could have a plot with the same β value. This plot is presented in

β a(fm) 1/a(GeV) L La(fm) #Conf
Gluon Ghost

5.7 0.1838(11) 1.0734(63) 64 11.763 14 14
72 13.234 20 —
80 14.704 25 11
88 16.174 68 —
96 17.645 67 —

Table 5.5 Lattice setup considered by the Berlin-Moscow-Adelaide group [3]. Notice that
the values presented in this table are those already rescaled.



5.2 Gluon and Ghost Propagators and the Strong Coupling 63

Fig. 5.8. In this case, there is a more noticeable dependence on the volume, where one
may see a decrease of the propagator in the infrared region when moving through volumes
from (8.1 f m)4 to (17.6 f m)4. This dependence becomes more distinct for momenta below
∼ 0.4GeV .

We also presents in Fig. 5.9 a plot of all our data sets considering, in addition, the
lattice data with the largest volume of the Berlin-Moscow-Adelaide group (the lattice data
with β = 5.7). One may see that all data appears to define a unique curve when looking at
momenta above ∼ 0.7GeV . In contrast, when looking at smaller momenta, one may see
that data from the two lattices with β = 5.7 (i.e., with the largest lattice spacing) are always
below the remaining ones. In order to obtain the infinite volume limit, we compares the
values obtained with the smallest β values and, from that, estimate a value of ∼ 8/9 as the
factor one may multiply by when dealing with propagator with higher values of β (in the
infrared region).
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Fig. 5.8 Renormalized gluon propagator for the Berlin-Moscow-Adelaide lattice data. The
plot also includes the results of our simulation with the same β value (β = 5.7). This figure
was taken from our article [1].

Ghost Propagator

Unfortunately, in the case of the ghost propagator, it is not possible to rescale the Berlin-
Moscow-Adelaide data to compare with our own, for their ghost data goes up to momenta
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Fig. 5.9 Renormalized gluon propagator for all our data and the data corresponding largest
volume of the Berlin-Moscow-Adelaide group. This figure was taken from our article [1].

∼ 3GeV for β = 5.7, 644 or ∼ 1.5GeV for β = 5.7, 804, which is not sufficient due to the
fact that we are considering as the renormalization scale µ = 4GeV .

Therefore, we used our data for the bare ghost dressing function and rescale it to reproduce
their 644 value at the highest accessible momentum. These are presented in Fig. 5.10. For
higher momenta (above ∼ 0.7GeV ), the results seems to define a unique curve.

On the other hand, for smaller momenta, it seems that the increase of the physical volume
of the lattice decreases the ghost dressing function. Notice that this volume dependence was
not observed in our simulations.

Running Coupling

We gather our results with those obtained by the Berlin-Moscow-Adelaide group for the
running coupling in Fig. 5.11. One may see the difference between our results and those
obtained by Berlin-Moscow-Adelaide for momenta below p ∼ 1GeV , in which the estima-
tions of the running coupling are smaller than ours. Moreover, there is some noticeable
dependence on the lattice volume in the low momenta region if one compares the different
lattices with β = 5.7. For momenta above p ∼ 1GeV the results from the various lattices
become compatible.
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Fig. 5.10 Bare ghost dressing function corresponding to β = 5.7 simulations. Our lattice
was rescaled in order to reproduce the 644 Berlin-Moscow-Adelaide numbers at its largest
momentum. This figure was taken from our article [1].
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Fig. 5.11 Comparison of the results for the strong coupling computed from the simulations
reported in Tab. 5.1 and Tab 5.5. This figure was taken from our article [1].
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5.3 The Three Gluon Vertex

In order to study the three gluon vertex, we focused on the three point Green’s func-
tion G(3)a1a2a3

µ1µ2µ3
(p1, p2, p3) and its corresponding 1PI (one particle irreducible) function,

Γ(3)a1a2a3
µ1µ2µ3

(p1, p2, p3) (see section 2.6 for more informations). If one is considering a pure
Yang-Mills theory, in order to make the gluon Dyson-Schwinger equations finite, it is ex-
pected that some form factors related to the three-gluon 1PI change their sign for momentum
in the infrared region (and, consequently become zero at a certain point), on the condition
that the ghost propagator is essentially described by its tree level form and that the four-gluon
vertex is subleading in the IR (see [26, 27]).

We would like to note that in previous works regarding the three gluon 1PI some authors
considered a different function (see [28, 29, 25] for more informations).

5.3.1 Results and discussion

In order to study the three gluon vertex, we performed a simulation on a 644 and a 804

lattices, both for β = 6.0 (thus, one has a lattice spacing of a = 0.1016 f m). The details of
the lattice setup is presented in Table 5.6.

β a(fm) 1/a(GeV) L La(fm) pmin(MeV) #Conf

6.0 0.1016(25) 1.943(47) 64 6.502 191 2000
80 8.128 153 279

Table 5.6 Lattice setup used to study the three-gluon vertex.

Gluon propagator and dressing function

The bare gluon propagator and dressing function (in Landau gauge) as a function of momenta
are reported in Fig. 5.12 and Fig. 5.13. Once again, one performed the conic cuts for
momenta above 1GeV , and included all data below this limit. As one may see, there are no
noticeable finite lattice spacing and volume effects. In fact, if one plots D(p2), distinguishing
the different types of momenta, i.e., (nx 0 0 0), (nx ny 0 0) and (nx ny nz 0) from each other,
the bare lattice data suggestes a unique curve – see Fig. 5.14.

Three-gluon vertex

In order to study the three point correlation function one considered the case of one vanishing
momentum, i.e. p2 = 0. The first lattice study of the three gluon vertex was performed within
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Fig. 5.12 Bare gluon propagator in Landau gauge.
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Fig. 5.13 Dressing function d(p2) = p2D(p2) in Landau gauge.
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Fig. 5.14 Bare gluon propagator in the Infrared for different types of momenta, performed in
the 644 lattice, in Landau gauge.

this specific kinematical configuration, where it was used to determine the strong coupling
constant [18]. The continuum complete three point Green’s function (see section 2.6) in this
case depends solely one the knowledge of the following two longitudinal form factors2,

Γ(p2) = 2
[
A(p2, p2;0)+ p2C(p2, p2;0)

]
, (5.5)

and, therefore, one may write eq. 2.61 as

Gµ1µ2µ3(p,0,−p) =V
Nc(N2

c −1)
4

[
D(p2)

]2
D(0)

Γ(p2)

3
pµ2Pµ1µ3(p) . (5.6)

In order to determine the form factor Γ(p2), one considered the contraction of the indexes as
follows,

Gµαµ(p,0,−p)pα =V
Nc(N2

c −1)
4

[
D(p2)

]2
D(0)Γ(p2)p2 , (5.7)

where one uses the momentum definition reported in eq. 3.28.
The authors [28, 29] considered in SU(2), instead of Γ(p2), the following function, which

results from the contraction of the complete correlation function with the lattice tree level

2Notice that one has an overall minus sign when compared with the results reported in (2.58) due to Wick’s
rotation to Euclidean space.
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tensor structure of the three gluon vertex Γ(tr) (defined in (2.66)), as follows,

R(p2) =
Γ(tr)a1a2a3

µ1µ2µ3
(p,0,−p)Ga1a2a3

µ1µ2µ3(p,0,−p)

Γ(tr)a1a2a3
µ1µ2µ3

(p,0,−p)Da1b1
µ1ν1Da2b2

µ2ν2Da3b3
µ3ν3Γ(tr)b1b2b3

ν1ν2ν3
(p,0,−p)

. (5.8)

Assuming the continuum expression for the different quantities, and assuming the same
decomposition of the 1PI three gluon vertex, one may show that R(p2) = Γ(p2)/2.

In order to compute the form factor Γ(p2), one has to compute the ratio

Γ(p2) =
Gµαµ(p,0,−p)pα

V Nc(N2
c −1)
4 [D(p2)]

2 D(0) p2
. (5.9)

Unfortunately, the computation of this ratio leads to large statistical fluctuations which
inhibits us from a good estimation of Γ(p2) at high momenta. As a matter of fact, if one
assumes a gaussian error propagation for estimating the statistical error on Γ(p2), denoted by
δΓ(p2), it follows that3

δΓ(p2) =
1

[D(p2)]
2 p2

√√√√[δGµαµ pα

D(0)

]2

+

[
2δD(p2)

Gµαµ pα

D(p2)D(0)

]2

+

[
δD(0)

Gµαµ pα

[D(0)]2

]2

,

(5.10)
and, therefore, for large momenta4, δΓ(p2)∼ p2. One could argue that a very large number
of configurations would do the trick for it would lead us to smaller statistical errors for
the gluon propagator, however, the statistical errors arising from the three point correlation
function dominate and thus δΓ(p2) ∼ p2. Consequently, in order to solve this issue, for
large momentum one may consider instead of Γ(p2) the quantity

[
D(p2)

]2 D(0)Γ(p2). This
limitation to the computation of the 1PI of the three gluon in the lattice is a common feature
of 1PI functions with larger number of external legs. This pose a problem only for the
UV region, for in IR D(p2) is approximately constant and thus the statistical error may be
ameliorated by using larger ensembles of configurations.

Finite size effects on Γ(p2)

We would like to study finite size effects that may eventually occur on the computation of
Γ(p2) on the lattice. To this end, we plotted Γ(p2)p2 as a function of the momenta in Fig.
5.15 (for the 644 data set) and Fig. 5.16 (for the 804 data set), for different types of momenta.

3Notice that the factor V Nc(N2
c −1)
4 has been omitted.

4Recall that for large momenta one has D(p2)∼ 1/p2.
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Fig. 5.15 Infrared Γ(p2)p2 computed using the 644 data sets for different types of momenta.
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Fig. 5.16 Infrared Γ(p2)p2 computed using the 804 data sets for different types of momenta.
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In the 644 data set one may observe that the Γ(p2)p2 data for momenta of the type
(n 0 0 0) is above the data for other types of momenta for the smallest momenta. This may
be viewed as an indication of rotational symmetry breaking effects.

Unfortunately, in the 804 data set, there is no conclusive observation one may derive due
to the fact that the statistical errors are too large and, therefore, becomes compatible with a
constant value. Thus, one cannot conclude much about finite size effects in that case.

On both lattices, apart from the momenta of type (n 0 0 0), the results coming from the
different type of momenta seems to be essentially the same.

Notice that the difference between the statistial errors corresponding to the two different
lattices is due to the difference in the number of configurations available in each ensemble.
Moreover, from now on one will ignore the results coming from momenta of type (n 0 0 0),
because of the expected larger finite size effect for momenta of this type.

Low momenta region

In order to study Γ(p2) in the low momenta region, one plotted it as a function of momenta
in Fig. 5.17 for momenta below 2GeV . One excluded the data corresponding to higher
momenta in this analysis, due to their associated large statistical errors, which was already
discussed. As one may see, the statistical errors associated with the 804 lattice are larger, as
expected, and both data sets are substantially compatible within one standard deviation.

On the other hand, for momenta p = 216MeV (of the 804 data set) the value of the
form factor Γ(p2) becomes negative, Γ(p2) =−0.80(37), being compatible with zero only
within 2.2 standard deviations. The closest momenta for the lattices 644 and 804 gives
Γ(p = 270MeV ) = 0.171(73) and Γ(p = 264MeV ) = 0.58(43), respectively, which allows
us to expect the zero crossing for momenta below ∼ 250MeV . This is in concordance with
the lattice simulation for SU(3) which is described in [25], and the simulations performed in
SU(2) described in [28, 29].

However, no zero crossing is observed for the 644 data set, which may be due to the fact
that no data was in the region of interest. For completeness, we present in Fig. 5.18 the data
from the simulation performed on the 644 lattice for an extended momentum range.

UV region

As mentioned before, in order to study the three gluon vertex in the UV, one may consider

ΓUV (p2) =
[
D(p2)

]2
D(0)Γ(p2)p2 . (5.11)
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Fig. 5.17 Low momenta Γ(p2) from the 644 and 804 simulations.

We would like to compare the results obtained from the lattice with the expected from
perturbation theory. At high momentum, the one-loop renormalization group improved result
reads for the gluon

D(p2) =
Z
p2

[
ln

p2

µ2

]−γ

, (5.12)

where µ is a renormalization scale, Z is a constant and γ = 13/22 is the gluon anomalous
dimension; and for Γ(p2),

Γ(p2) = Z′
[

ln
p2

µ2

]γ3g

, (5.13)

where Z′ is a constant and γ3g is the anomalous dimension which is γ3g = 17/44. Using the
aforementioned results for ΓUV (p2) it follows straighforwardly that for high momentum one
has

ΓUV (p2) =
Z′′

p2

[
ln

p2

µ2

]γ ′

, (5.14)

where Z′′ is a constant and γ ′ = γ3g −2γ =−35/44.
Thus, in order to compare our results with the prediction of the renormalisation group

improved perturbation theory and also of the tree level estimation of ΓUV = Z/p2, we present
these in Fig. 5.19. Notice that we set the normalization constants to reproduce the lattice
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result one obtained for momenta p ∼ 5GeV and used the value µ = 0.22GeV in order to
generate the renormalization group improved result.

From the plot one may see that the data follows the prediction of perturbation theory for
p above ∼ 2.5GeV . This may be seen as a corroboration of the perturbative approach to
QCD in the region of high momenta.
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Fig. 5.18 Γ(p2) from the 644 simulation.



74 Results

 0

 5000

 10000

 15000

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7  7.5  8

Γ
U

V
 (

p
2
) 

[G
e

V
2
]

p[GeV]

Tree Level
RG improved

Fig. 5.19 ΓUV (p2) from the 644 simulations. The curves represent predictions from per-
turbation theory. "RG imporved" stands for the one-loop renormalization group improved
result.



Conclusion

In this work, we used lattice QCD techniques to study two and three-point correlation
functions in Landau gauge.

In the first part of the work developed for this dissertation, we studied the dependence of
the gluon propagator, ghost propagator and the running coupling on the lattice spacing and
on the physical volume in a pure SU(3) Yang-Mills theory in the Landau gauge. To this end,
we ignored the contribution due to the presence of Gribov copies, which may be important
when computing the propagators (and possibly the running coupling) [64–66, 84]. However,
we ignored it, for the computational time required to analyse the effects of Gribov copies is
extensive for the large lattices used, so that we cannot discern its contribution in the results
we obtained.

The study of the gluon propagator reports essentially the behaviour observed in [10]. The
data used shows no noticeable dependence on the physical volume, at least for the volumes
we used which were above (6.5 f m)4, and for the range of momenta which were available.
However, we could discern a non-trivial dependence on the lattice spacing in the infrared
region and we observed that the lattice with the largest lattice spacing underestimates the
value of the propagator.

In what concerns the ghost propagator, we may say that its data showed no evident
dependence on the lattice volume, as well. However, we may see that the ghost propagator
is supressed when the lattice spacing decreases, as opposed to what happened to the gluon
propagator. On the other hand, the ghost propagator seems to be described by its perturbative
expression (5.4) for momenta as small as ∼ 1 GeV.

The results we obtained for the running coupling show no noticeable dependence on the
lattice spacing and the physical volume for the position of its maximum. However, despite
being seemingly independent of both variables, the value itself of the running coupling seems
to be supressed as one gets closer to the continuum limit.

We may estimate how much the propagators are altered by changing the lattice spacing
from Fig. 5.1 and Fig. 5.3: a change of ∼ 10% from the decrease of the lattice spacing
from 0.18 f m to 0.06 f m for the gluon propagator for zero momentum; a change of 7% for
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the ghost propagator at the lower momenta accessible in the simulations we perfomed. In
what concerns the running coupling, the value of the maximum of the running coupling for
β = 6.3 seems to be about 15% smaller in comparison to the values of the other simulations.

Finally, we compared the results we obtained with those of the Berlin-Moscow-Adelaide
group, which used the largest physical volume to date to simulate pure Yang-Mills theory
in SU(3) [3]. We obtained different results from theirs at low momenta. However, the
qualitative behaviour of the quantities considered are similar. We can see that both results for
the gluon and ghost propagators shows no depencence (or, at most, mild) on the physical
volume. The differences between the values may be explained by the usage of distinct
algorithms to perform gauge-fixing, which is related to the Gribov noise. If we compare
directly the results we obtained with those of the Berlin-Moscow-Adelaide group, for β ∼ 5.7,
we may see that, at low momenta, the gluon propagator in the infinite volume limit should be
supressed; the ghost propagator in the infinite volume limit should be enhanced.

In what concerns the study of the three gluon vertex, we used two different lattices, one
with volume (6.5 f m)4 and the other with (8.2 f m)4. However, both had the same lattice
spacing (a = 0.102 f m), so that the study of possible effects arising from the use of a finite
lattice spacing was infeasible. On the other hand, the study of the gluon propagators in these
lattices (with a larger number of configurations than the ones used in the first part of the
work – see Table 5.1 and Table 5.6) show no noticeable finite physical effects, and both
results become compatible within one standard deviation. This is in good agreement with the
previous results obtained.

We computed the three gluon one particle irreducible function and the results showed
that it depended on the type of momenta considered in the infrared region. This was justified
by rotational symmetry breaking effects. Notice that we had an overestimation of the 1PI
function for the data related to momenta of the type (n 0 0 0) when compared to the other
types, in the infrared region.

On the other hand, we observed a negative 1PI function for the 804 lattice and estimated
the zero crossing at p ∼ 250MeV . As mentioned before, there has been some studies that
reported this change of sign, namely: lattice simulations of the pure Yang-Mills theory in
four dimension for SU(3) gauge group in [25]; lattice simulations of the pure Yang-Mills
theory in three dimensions for SU(2) gauge group in [28, 29]. These all seems to agree on
the momentum scale for the zero crossing. These change of sign, again, is expected in order
to get a properly defined Dyson-Schwinger equation for the gluon propagator [26, 27].

Finally, we studied the lattice data in the high momentum region in order to see its
compatibility with the prediction of the renormalization group improved perturbation theory.
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The data seems to corroborate the perturbative approach to quantum chromodynamics in the
UV region.

Recall that we argued that the evaluation of the one particle irreducible function leads to
a limitation of its calculation in the UV region. In fact, we discussed that within this region,
the one particle irreducible function is associated with large statistical errors which could not
be ameliorated with a larger set of configurations. To solve this issue, one may consider, for
higher momenta, combinations of the 1PI function and correlation functions associated with
a smaller number of external legs. This combination may still provide useful information
about the behaviour of the 1PI in the UV region. In fact, the data is well-described by the
predictions of perturbation theory for momenta starting essentially at 2.5GeV , which may be
seen as a corroboration of the perturbative approach to QCD in the region of high momenta.

As an extension of the work discussed in this dissertation, one could seek a way of
improving the large statistical errors associated with the one particle irreducible function in
the UV region, which, as discussed, goes beyond an increase on the number of configurations
used (see [85]). One could also compute the three-gluon vertex for other kinemetical
configurations. It would also be interesting to use some improved action instead of the
Wilson one and study the differences. Another evident further work would be to study the
four-vertex gluon.
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Appendix A

The Group SU(N)

The group SU(N) stands for the group of N ×N unitary matrices with determinant det = 1
in which the group operation is the matrix multiplication. Every matrix U of the group may
be represented with the help of the generators ta, a = 1...,N2 −1,

U(α) = exp(iαata) , (A.1)

where α are group parameters. Within this representation (A.1), the generators must be
hermitian for the matrix is unitary. On the other had, the fact that det(U) = 1 implies that the
generators ta must be traceless. The generators obey the following algebra

[ta, tb] = i f abctc , (A.2)

and have the following normalization

tr[tatb] =
1
2

δ
ab . (A.3)

Notice that f abc are the structure constant of the group (antisymmetric). One may write the
completeness relation as well1

ta
i jt

a
kl =

1
2

δilδ jk −
1

2N
δi jδkl . (A.4)

On the other hand, one may define the anticommutator as{
ta, tb

}
=

1
N

δ
ab +dabctc . (A.5)

1Notice one uses upper indices to indicate the generator and lower indices to indicate the element of the
matrix.
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From the aforementioned relations one may derive the following identities

ta
i jt

a
jk =

N2 −1
2N

δik ; (A.6)

tr[tata] =
N2 −1

2
; (A.7)

f acd f bcd = Nδ
ab ; (A.8)

f abc f abc = N(N2 −1) . (A.9)

For SU(3), the fundamental representation may be written as the following standard basis

t1 =
1
2

 0 1 0
1 0 0
0 0 0

 t2 =
1
2

 0 −i 0
i 0 0
0 0 0

 t3 =
1
2

 1 0 0
0 −1 0
0 0 0



t4 =
1
2

 0 0 1
0 0 0
1 0 0

 t5 =
1
2

 0 0 −i
0 0 0
i 0 0



t6 =
1
2

 0 0 0
0 0 1
0 1 0

 t7 =
1
2

 0 0 0
0 0 −i
0 i 0

 t8 =
1

2
√

3

 1 0 0
0 1 0
0 0 −2


And the antisymmetric structure constants are given by:

f 123 = 1;

f 147 = f 165 = f 246 = f 257 = f 345 = f 376 =
1
2

;

f 458 = f 678 =

√
3

2
.
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and the remaining are zero unless related by antisymmetric permutation of indices. The
symmetric structure constants are given by:

d118 = d228 = d388 =−d888 =
1√
3

;

d448 = d558 = d668 = d778 =− 1
2
√

3
;

d146 = d157 =−d247 = d256 = d344 = d355 =−d366 =−d377 =
1
2
.

and are zero otherwise.





Appendix B

Some proofs and calculations

This appendix includes some proofs and calculations one did not present in the theoretical
chapters.

B.1 Weyl Ordering

A Hamiltonian is said to be Weyl ordered (which one represents by H(p,q)W ) if it contains
all possible combinations of the products of coordinates and momenta (divided by the number
of such possibilities). One wants to prove that (see 1.2)

⟨q|H(p,q)W |q′⟩=
∫ d p

2π
eip(q−q′)H

(
p,

q+q′

2

)
. (B.1)

Notice that one may relate Weyl-ordering with the binomial formula for non-commutative p
and q

(αq+β p)N = ∑
i+ j=N

N!
i! j!

α
i
β

j(xi p j)W . (B.2)

Thus it is sufficient to prove

⟨q|(αq+β p)N |q′⟩=
∫ d p

2π
eip(q−q′)

(
β p+α

q+q′

2

)N

. (B.3)



90 Some proofs and calculations

This is achieved by induction. Let us consider the case of N = 1. One has, using a set of
momentum eigenstates,

⟨q|(αq+β p) |q′⟩=
∫ d p

2π

1
2
(
⟨q|p⟩⟨p|αq+β p|q′⟩+ ⟨q|αq+β |p⟩⟨p|q′⟩

)
=
∫ d p

2π
⟨q|p⟩⟨p|q′⟩1

2
{
(αq′+β p)+(αq+β p)

}
=
∫ d p

2π
eip(q′−q)

(
α

q+q′

2
+β p

)
.

One used eipq = ⟨p|q⟩ to obtain the last line.
Now, let us assume that the formula is valid for N. Let us show that this implies the

validity for N +1:

⟨q|(αq+β p)N+1 |q′⟩=
∫ d p

2π
eip(q−q′)

(
β p+α

q+q′

2

)N

= (αq− iβ∂q)
∫ d p

2π
eip(q−q′)

(
β p+α

q+q′

2

)N

=
∫ d p

2π
eip(q−q′)

(
β p+α

q+q′

2
− iβ∂q +α

q−q′

2

)
×(

β p+α
q+q′

2

)N

=
∫ d p

2π
eip(q−q′)

(
β p+α

q+q′

2

)N+1

+

∫ d p
2π

eip(q−q′)
(
−iβ∂q +α

q−q′

2

)(
β p+α

q+q′

2

)N

.

Finally, if one performs an integration by parts on the second integral of the last line, one
may write

∫ d p
2π

eip(q−q′)
(

β p+α
q+q′

2

)N+1

+
∫ d p

2π
eip(q−q′)

(
−iβ∂q −

α

2
∂p

)(
β p+α

q+q′

2

)N

=
∫ d p

2π
eip(q−q′)

(
β p+α

q+q′

2

)N+1

■



B.2 Generalization of Gaussian integrals 91

B.2 Generalization of Gaussian integrals

In this section, one would like to prove the following∫
dNξ exp

(
−1

2ξiBi jξ j
)

ξmξn∫
dNξ exp

(
−1

2Bi jξiξ j
) = (B−1)mn , (B.4)

where B is a symmetric positive-definite matrix. In order to avoid some confusions in some
of the following reasonings, one writes explicitly the summations for repeated indices. One
starts by noticing that one may write

∫
dN

ξ exp

(
−1

2 ∑
i j

ξiBi jξ j

)
ξmξn =−2

∂

∂Bmn

∫
dN

ξ exp
(
−1

2
ξiBi jξ j

)
. (B.5)

Therefore, one may write (B.4) as

∫
dNξ exp

(
−1

2 ∑i j ξiBi jξ j
)

ξmξn∫
dNξ exp

(
−∑i j

1
2ξiBi jξ j

) =−2
∂

∂Bmn
ln

[∫
dN

ξ exp

(
−1

2 ∑
i j

ξiBi jξ j

)]
. (B.6)

Now, one wants to evaluate the following integral,

∫
dN

ξ exp

(
−1

2 ∑
i j

ξiBi jξ j

)
. (B.7)

From the fact that B is symmetric, one may diagonalize it,

∑
i j

ξiBi jξ j = ∑
k

θkCkθk , (B.8)

where θk are independent linear combinations of ξk. Therefore, due to this linearity in the
transformation of variables, the jacobian associated with it is constant. Let’s call it J. Thus
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one may write

∫
dN

ξ exp

(
−1

2 ∑
i j

ξiBi jξ j

)
= J

∫
dN

θe−
1
2 ∑k Ckθ 2

k

= J
N

∏
k

∫
dθke−

1
2Ckθ 2

k

= J ∏
k

√
2π

Ck

= J
(2π)N/2
√

detC
.

One solved the last integral via the usual Gaussian integral and wrote ∏k Bk = detB for the
matrix B is diagonal. Now, one recovers the matrix B from

C =

(
∂ξ

∂θ

)T

B
(

∂ξ

∂θ

)
. (B.9)

Thus, one gets for the determinant

detC = J2 detB . (B.10)

Finally, this means that

∫
dN

ξ exp

(
−1

2 ∑
i j

ξiBi jξ j

)
=

(2π)N/2
√

detB
. (B.11)

Returning to B.6, one may write∫
dNξ exp

(
−1

2 ∑i j ξiBi jξ j
)

ξmξn∫
dNξ exp

(
−∑i j

1
2ξiBi jξ j

) =−2
∂

∂Bmn
ln
(2π)N/2
√

detB
. (B.12)

Notice that

−2
∂

∂Bmn
ln
(2π)N/2
√

detB
= (det(B))−1 ∂ detB

∂Bmn
. (B.13)

It is possible to prove that [86]

∂ det(B)
∂Bmn

= det(B)
(
(BT )

−1
)

mn
. (B.14)
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Recall that the matrix B is symmetric, i.e., B = BT . Therefore,

∂ det(B)
∂Bmn

= adj(BT )mn = adj(B)mn = det(B)(B−1)mn . (B.15)

Thus, using the aforementioned in B.13, one gets∫
dNξ exp

(
−1

2 ∑i j ξiBi jξ j
)

ξmξn∫
dNξ exp

(
−∑i j

1
2ξiBi jξ j

) = (B−1)mn ■ (B.16)

The case of Grassman variables follows closely the aforementioned. It may be seen in
[36, 37]. The general case

(∏k
∫

dξk)exp
[
−ξiBi jξ j

]
ξ1...ξN

(∏k
∫

dξk)exp
[
−ξiBi jξ j

] = ∑
pairings

∏
pairs

(B)−1
indexpair (B.17)

is just a generalization of the aforementioned. One just as to consider an expression similar
to that of B.6, where, instead of one derivative, one has to perform a derivative for each
pairing and consider each possible pairing, i.e., one substitutes∫

dNξ exp
(
−1

2 ∑i j ξiBi jξ j
)

ξa1ξa2...ξaN∫
dNξ exp

(
−∑i j

1
2ξiBi jξ j

) =−2#{pairs}
∑

pairings
∏
pairs

∂

∂Bindex pair

× ln

[∫
dN

ξ exp

(
−1

2 ∑
i j

ξiBi jξ j

)]
.

The rest of the proof is completely analogous.





Appendix C

Grassman variables

One introduces the Grassman variables in this appendix. These are used in order to quantize
spinor fields by representing these fields by Grassman variables, for instance. On the other
hand, one used Grassman variables to define the ghost fields (see 2.23). The basic property
of the Grassman variables is that they anticommute with each other, i.e., let ξ and φ be two
Grassman variables. One has

ξ φ =−φξ . (C.1)

This implies that Grassman variables are nilpotent, i.e,

ξ
2 = 0 . (C.2)

This has the straightforward consequence that a Taylor expansion of a function f (ξ ) of
Grassman variables is simply given by

f (ξ ) = a+bξ . (C.3)

One would like to define the derivative and integration of such variables. For starters, let us
notice that the fact that Grassman variables are anticommuting implies that one has to define
this operations carefully, in order to decide in which variable it operates first. For instance,
let us define the derivative of Grassman variables as

∂

∂ξa
ξbξc =

(
∂ξb

∂ξa

)
ξc −ξb

(
∂ξc

∂ξa

)
= δabξc −δacξb . (C.4)

Notice that like the Grassman variables, the derivative of Grassman variables anticommute,
i.e.,

∂

∂ξa

∂

∂ξb
=− ∂

∂ξb

∂

∂ξa
. (C.5)
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In particular, one has (
∂

∂ξa

)2

= 0 . (C.6)

Now one turns to integration. Let us consider a function f (ξ ) which one wants to integrate.
From its Taylor expansion one knows that∫

dξ f (ξ ) =
∫

dξ (a+bξ ) . (C.7)

One defines the integrals in order to satisfy the following relations:

ID = 0

DI = 0

where D stands for the differantiation operator and I the integration operator. These mean that
the integral of a total derivative vanishes if the surface terms are ignored; the differentiation
of an integral (which is independent of the variable) must be 0. Therefore, one may identify
the integration with the differentiation due to the later being nilpotent, i.e,

∫
dξ f (ξ ) =

∂ f (ξ )
∂ξ

. (C.8)

From this one obtains the following integrals∫
dξ = 0∫
dξ ξ = 1 .

One uses the convention that ∫
dφ

∫
dξ ξ φ =+1 . (C.9)

From these, one may prove that(
∏

i

∫
dξ

∗
i dξi

)
eξ ∗

i Bi jξ j = detB , (C.10)

and (
∏

i

∫
dξ

∗
i dξi

)
ξkξ

∗
l eξ ∗

i Bi jξ j = detB(B−1)kl , (C.11)
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for a hermitian matrix B. Notice that one defines a complex Grassman variable just as for
normal variables (with a real and imaginary part). Notice that the ratio of gaussian integrals
determined in the previous appendix for normal variables gives the same result as the one for
Grassman variables. See [36] and/or [37] for further informations.





Appendix D

Results: More Figures

In this appendix, one presents some extra figures and tables of the results we obtained.

D.1 Ghost Propagator and the Perturbative One-loop ex-
pression

In this section, we present the fits of the lattice data concerning the bare lattice ghost
propagator to the functional form depicted in (5.4). We divide this section into two, in
subsection D.1.1 we take all parameters of (5.4) as fitting parameters, as well as Λ; in
subsection D.1.2, all parameters of the functional form are taken as fitting parameters, except
for Λ, which we set Λ ∼ ΛQCD ∼ 200MeV . The discussion is presented in section 5.2.2.

D.1.1 Case in which Λ is taken as a fitting parameter

β L z Λ γgh χ/d.o. f .

5.7 44 2.20 (6) 0.59(4) -0.315(15) 0.284
6.0 64 6.84 (4) 0.61(1) -0.270(3) 0.062

80 7.44 (14) 0.49(2) -0.312(7) 0.213
128 6.88 (13) 0.63(3) -0.272(8) 0.297

6.3 128 18.08(31) 0.60(3) -0.259(8) 0.499

Table D.1 Parameters from the fit of the bare ghost propagator data set using the functional
form (5.4).
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Fig. D.1 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 5.7 and
L = 44, in which Λ is a fitting parameter.
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Fig. D.2 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 6.0 and
L = 64, in which Λ is a fitting parameter.
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Fig. D.3 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 6.0 and
L = 80, in which Λ is a fitting parameter.
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Fig. D.4 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 6.0 and
L = 128, in which Λ is a fitting parameter.
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Fig. D.5 Bare Ghost Propagator and functional form (5.4) for the lattice with β = 6.3 and
L = 128, in which Λ is a fitting parameter.

D.1.2 Case in which Λ ∼ ΛQCD ∼ 200MeV

β L z γgh χ/d.o. f .

5.7 44 3.97 (5) -0.566(7) 0.677
6.0 64 10.69 (8) -0.447(4) 0.827

80 10.79 (7) -0.456(3) 0.428
128 11.11 (12) -0.463(5) 0.520

6.3 128 27.81(30) -0.430(5) 1.206

Table D.2 Parameters from the fit of the bare ghost propagator data set using the functional
form (5.4) for Λ ∼ ΛQCD ∼ 200MeV .
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Fig. D.6 Bare ghost Propagator and functional form (5.4) for the lattice with β = 5.7 and
L = 44, in which Λ is ∼ ΛQCD ∼ 200MeV .
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Fig. D.7 Bare ghost Propagator and functional form (5.4) for the lattice with β = 6.0 and
L = 64, in which Λ is ∼ ΛQCD ∼ 200MeV .
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Fig. D.8 Bare ghost Propagator and functional form (5.4) for the lattice with β = 6.0 and
L = 80, in which Λ is ∼ ΛQCD ∼ 200MeV .
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Fig. D.9 Bare ghost Propagator and functional form (5.4) for the lattice with β = 6.0 and
L = 128, in which Λ is ∼ ΛQCD ∼ 200MeV .
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Fig. D.10 Bare ghost Propagator and functional form (5.4) for the lattice with β = 6.3 and
L = 128, in which Λ is ∼ ΛQCD ∼ 200MeV .
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