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Abstract

In this thesis we present a detailed analysis of a fully explicit leap-frog type discontinuous Galerkin
(DG) method for the numerical discretization of the time-dependent Maxwell’s equations. The study
comprehends models capable to deal with anisotropic materials and different types of boundary
conditions. Despite the practical relevance of the anisotropic case, most of the numerical analysis
present in the literature is restricted to isotropic materials. Motivated by a real application, in the
present dissertation we consider a model which encompasses heterogeneous anisotropy, extending the
existing theoretical results.

The DG formulation for the spatial discretization is developed in a general framework which
unifies the study for different flux evaluation schemes. The leap-frog time integrator is applied to
the semi-discrete DG formulation yielding to a fully explicit scheme. The main contribution of this
thesis is to provide a rigorous proof of conditional stability and convergence of the scheme taking
into account typical boundary conditions, either perfect electric, perfect magnetic or first order Silver-
Miiller absorbing boundary conditions and for different choices of numerical fluxes. The bounds
of the stability region point out not only the influence of the mesh size but also the dependence on
the choice of the numerical flux and the degree of the polynomials used in the construction of the
finite element space, making possible to balance accuracy and computational efficiency. Under the
stability condition, we prove that the scheme is convergent being of arbitrary high-order in space and
second order in time. When Silver-Miiller boundary conditions are considered we observe only first
order convergence in time. To overcome this order reduction we propose a predictor-corrector time
integrator which is also analyzed in this dissertation.

We illustrate the stability and convergence properties of the various schemes with numerical tests.
The numerical results of our simulations support the theoretical analysis developed along the thesis.






Resumo

Nesta tese apresentamos uma andlise detalhada de um método numérico totalmente explicito para
as equacdes de Maxwell dependentes do tempo que combina um esquema de elementos finitos de
Galerkin descontinuos para a discretizacdo no espaco com um integrador do tipo leap-frog no tempo.
O estudo apresentado permite considerar materiais anisotropicos e diferentes tipos de condi¢des
de fronteira. Apesar da relevancia pratica do caso anisotropico, a maioria dos trabalhos presentes
na literatura restringe a andlise numérica ao caso isotrépico. Motivados por uma aplicacdo real,
nesta dissertacdo consideramos um modelo que compreende simultaneamente o caso anisotropico e
heterogéneo, generalizando os resultados tedricos existentes.

A formulacdo do método elementos finitos de Galerkin descontinuos para a discretizacdo espacial
¢ desenvolvida num contexto geral que unifica o estudo de esquemas com diferentes fluxos numéricos.
O integrador temporal do tipo leap-frog aplicado a formulagdo semi-discreta de elementos finitos
conduz a um esquema totalmente explicito. O principal contributo desta tese é a demonstragdo rigorosa
da estabilidade condicional e da convergéncia do método numérico, tendo em conta as condig¢des
de fronteira mais usuais, que incluem as condicdes impostas no caso dos condutores perfeitos e
as condicdes absorventes de Silver-Miiller de primeira ordem e diferentes escolhas para os fluxos
numéricos. Os limites da regido de estabilidade evidenciam nao sé a influéncia do didmetro da
malha espacial, mas também a dependéncia da escolha do fluxo numérico e o grau dos polinémios
usados na construg¢do do espaco de elementos finitos, tornando possivel estabelecer um compromisso
entre precisao e eficiéncia computacional. Provamos que, sob a condi¢a@o de estabilidade, o método
é convergente podendo ser de ordem arbitrariamente elevada no espaco e de segunda ordem no
tempo. No caso de serem consideradas as condi¢des de fronteira de Silver-Miiller, observamos apenas
convergéncia de primeira ordem no tempo. Esta redug@o de ordem € ultrapassada pela defini¢do de
um método preditor-corretor temporal, que também € analisado nesta dissertacao.

Ilustramos as propriedades de estabilidade e convergéncia dos varios esquemas considerados com
testes numérico. Os resultados numéricos das simulacdes efetuadas suportam a andlise desenvolvida

ao longo da tese.
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Introduction

Maxwell’s equations form the complete set of laws governing electromagnetism and, when combined
with constitutive relations, describe the effect of material media on the propagation of electromagnetic
waves. A given set of boundary conditions along with prescribed initial conditions complete the
model. Results about the existence and the uniqueness of solution can be found in e.g. [52].

In the last decades there has been a great interest in solving the Maxwell’s equations accurately
and efficiently in realistic applications because of their relevance in many different areas. The first
— and most well known — method for solving Maxwell’s equations is the so-called finite difference
time-domain (FDTD) scheme proposed by Yee in 1966 [89]. This method uses a staggered grid both
in space and time to obtain a second order convergent algorithm, fully explicit, very easy to implement,
that has became widely popular [82]. Despite its success, FDTD, like all finite difference methods, is
difficult to generalize to irregular domains and unstructured grids.

The most appealing methods which overcome the limitations of the Yee’s scheme and other time-
domain methods are the discontinuous Galerkin (DG) methods. These methods gather many desirable
features such as being able to achieve high-order accuracy and easily handle complex geometries.
Moreover, they are suitable for parallel implementation on modern multi-graphics processing units
[48]. Local refinement strategies [20, 30] can also be incorporated due to the possibility of considering
irregular meshes with hanging nodes and local solutions.

The main goal of this thesis is to study a fully discrete scheme for time-dependent Maxwell’s
equations that combines nodal DG methods for the spatial discretization [42] with an explicit leap-frog
time integrator. One important ingredient for the efficiency of DG methods is the definition of the
numerical fluxes, which generalizes ideas from finite volume methods [79]. Two main choices of
fluxes are central fluxes and upwind fluxes. In our investigation we consider a general unwinding flux
which contains both of these fluxes.

The idea of using a leap-frog time integrator coupled with a DG method was already presented
in the literature. In [32] a locally implicit scheme is defined with central fluxes and Silver-Miiller
absorbing boundary conditions (SM-ABC), and in [56] an implicit scheme is defined with upwind
fluxes. Our derivation extends the results in [32] and [56] to a fully explicit in time method for both
cases, central fluxes and upwind fluxes and the most typical boundary conditions: perfect electric
conductor (PEC), perfect magnetic conductor (PMC) and first order SM-ABC. Moreover, we consider
anisotropic material properties in all our analysis and simulations.

Motivated by our application of interest that will be described later, in this thesis we consider
a model with a heterogeneous anisotropic permittivity tensor. Most of ocular tissues exhibit form
birefringence that is due to their oriented cylindrical structures [91]. Anisotropy could play a role in

xix



XX Introduction

biological waveguides [58]. The anisotropy of biological waveguides and, in particular, of retinal
optical photoreceptors has been studied and measured by several authors during the last decades by
using various techniques in mammalians and also in the human eye [57, 80].

Even though the DG methods have capability to deal with different material properties, most of
the formulation and analysis of the DG method is limited to isotropic cases [39, 42] and in some cases
dispersive materials [60]. This excludes a wide class of anisotropic materials and related applications
[11, 53, 90]. The treatment of anisotropic materials within a DG framework was discussed, for
instance, in [16, 32] for central fluxes and in [2, 49] for upwind fluxes. In this thesis we consider
dielectric anisotropy in a general upwinding flux formulation in two dimensions (2D) as well as an
extension to a three dimensional problem with anisotropy in electric and magnetic material properties.

The outline of this thesis is as follows:

» Chapter 1 is devoted to introductory concepts related to electromagnetism. We will start with
the Maxwell’s equations as a fundamental set of equations to formulate the electromagnetic
wave propagation, their constitutive relations and the definition of the most common boundary
conditions. We describe the electromagnetic wave propagation in dielectric anisotropic materials
with a focus on form birefringence, which plays a role on biological anisotropy. In order to put
our work into proper perspective, we review the most popular numerical methods for solving
Maxwell’s equations highlighting the advantages of using the DG method in computational
electromagnetics in the last part of the chapter.

* In Chapter 2 the numerical tools for solving the Maxwell’s equations are introduced. We
will consider the three dimensional Maxwell’s equations with tensorial material properties
(anisotropy in permittivity and permeability). Then we introduce the transverse electric mode
which is a model in two dimensions. To complete the model we apply typical reflecting boundary
conditions such as perfect electric or perfect magnetic and as an absorbing boundary condition,
the first order Silver-Miiller is applied. We present the DG method for Maxwell’s equations
in the conservation form taking into account the tensor material properties in the definition of
the numerical flux. The semi-discrete DG scheme is coupled with a leap-frog time integrator
which employs a centered approximation for time derivatives and the central flux terms and a
backward approximation for the upwind flux terms yielding an explicit leap-frog DG scheme
that is capable to deal with different flux evolutions, material properties and different boundary
conditions.

» Chapter 3 is devoted to stability analysis of the leap-frog DG solution of Maxwell’s equations.
We present a rigorous proof of the stability of 2D scheme showing the influence of the mesh
size, the choice of the numerical flux and choice of the degree of the polynomials used in the
construction of the finite element space as well as the boundary conditions, which can be either
perfect electric, perfect magnetic or first order Silver-Miiller. This analysis is further extended
to three dimensions (3D) model.

* In Chapter 4, we assess the convergence properties of the leap-frog DG scheme in 2D and
derive the error estimates. The analysis proves that the leap-frog DG scheme is arbitrary
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high-order in space and second order in time in case of PEC and PMC boundary condition
and first order in case of SM-ABC. In order to overcome the order reduction that occurs when
Silver-Miiller boundary conditions are considered, a fully explicit predictor-corrector time
integrator is proposed and generalized to an iterative predictor-corrector. We will show that the
iterative predictor-corrector scheme converges to a second order convergent in time implicit
method. The stability analysis of the implicit method is presented.

* Chapter 5 is dedicated to a detailed numerical study of the proposed leap-frog DG method
on triangular meshes for solving two dimensional Maxwell’s equations. We examine the
stability condition and the error estimate of the method, through numerical experiments for
2D electromagnetic wave propagation in anisotropic media with PEC boundary condition and
SM-ABC while considering central and upwind fluxes. We present numerical results which
support the stability and convergence theoretical results. In our simulations, we include models
with non diagonal and spatially-varying permittivity tensors. The sharpness of the stability
region and the high-order convergence property of DG scheme are observed. Besides achieving
the temporal order for different types of boundary conditions, the efficiency of the proposed
predictor-corrector method to recover the temporal convergency in the case of SM-ABC is
visualized. In the last part of this chapter we simulate light scattering in a 2D domain which
aims to represent a simple example of light scattering in retina.

* In Appendix A we include some useful mathematical tools, namely inverse and trace inequali-
ties, polynomial approximation properties and the discrete Gronwall’s lemma that were used in
the analysis of the DG methods

Motivation behind this work

The human retina is a complex structure in the eye that is responsible for the sense of vision. Itis a
part of the central nervous system and it is composed by several layers, namely the outer nuclear layer
that comprises the cells bodies of light sensitive photoreceptors cells, rods and cones (see Figure 1).

For many diseases that affect the eye, the diagnosis is not straightforward. The sensitivity of this
structure makes medical analysis particularly complicated. Most of the diagnoses are made either
by direct observation, with the possible injection of dyes, to enhance certain parts of the organ, or
by numbing the eye and directly measuring its inner pressure or thickness. There are a number of
eye-related pathologies that can be identified by the detailed analysis of the retinal layers.

The Optical Coherence Tomography (OCT) technique became increasingly popular in the past
decades and has been successfully used as a diagnostic tool in ophthalmology [34]. This low coherence
interferometry noninvasive technique [78] allows the assessment of the human retina in vivo and
has been shown to provide functional information from the ocular fundus [81] due to its sensitivity
to small variations of the refractive index [1]. The OCT technology’s working principle, which is
schematically described by Figure 2, is analogous to ultrasound, but it uses light instead of sound to
locate subtle differences in the tissue being analyzed [33]. Discontinuities in the refractive index of
the tissue give rise to light scattering, with some light backscattered to the detector. Factors such as
the shape and size of the scatterer, wavelength of the incident light and refractive index differences
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have an impact on the amount of backscattered light. During a scan, the OCT machine directs a light
beam into the retina and extracts, through interferometry, the backscattered light intensity of retinal
structures and their depth location in an A-scan. By transversely moving the light beam, several
A-scans can be collected into a cross-sectional image — a B-scan. Usually, several cross-sectional
images are acquired by probing an azimuthal direction and combined into a volume, see Figure 3.

By analyzing data acquired through OCT, several retinal pathologies, such as diabetic retinopathy,
or macular edema, can be detected in their early stages, before noticeable morphologic alterations on
the retina [78]. This approach for early diagnosis of retinal conditions is based on functional changes
that modify the optical scattering properties of retina, prior to any structural alterations.

Diabetic macular edema (DME), is a major cause of visual loss in diabetic patients [18]. This
disease is defined as an increase in retinal thickness due to fluid accumulation that can be intra- or
extra-cellular [23]. In intra-cellular edema, cells have increased fluid intake, becoming enlarged.
Extra-cellular edema, in contrast, results from fluid accumulation outside the cell, generally as a
consequence of the breakdown of the blood-retinal barrier and subsequent leakage into the retinal
space. Distinguishing which case is present or more prevalent in a patient’s eye at an early stage is
usually not straightforward. A common method to assess the progression of DME in patients is to
monitor their retinal thickness, e.g. with OCT.

In [21] authors proposed methodology to identify and understand possible microscopic changes
that lead to the differences in the OCT data between healthy and diseased cases, which are not possible
to detect through direct observation. The proposed method combines a light scattering simulation
using a Monte Carlo routine with a model of the outer nuclear layer (ONL). This layer was chosen
as it consistently presents the characteristics of DME and because it can be adequately modeled by
spherical scatterers, which helps to simplify the simulation. By varying the model’s parameters, they
expected to reproduce the data gathered from healthy and DME eyes and potentially infer which
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changes at the cellular level are responsible for the differences in OCT data between the groups
studied. As ONL can be modeled as an homogenous medium filled with spherical scatterers, the
authors used the Mie theory to estimate the parameters describing the interaction of light with the

medium. The results achieved were very promising once they seem to corroborate the existence of the

two types of edema, cytotoxic (intra-cellular) and vasogenic (extra-cellular).
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To expand the process presented from simulating a single layer to simulating the whole retina will
allow the study of more complex retinal pathologies which have pronounced influences outside the
ONL. In this context, more sophisticated models to obtain the scattered parameters at cellular level.
Several different models have been developed to describe the interactions of the electromagnetic field
with biological structures. The first models were based on single-scattering theory, which is restricted
to superficial layers of highly scattering tissue in which only single scattering occurs. Accounting
for such complexity, in particular to account for how the shape and internal inhomogeneities of each
individual biological cell generates its own local optical electromagnetic field structure, requires a
more accurate approach that can be achieved by numerically solving Maxwell’s equations.

In [7, 73] discontinuous Galerkin numerical solution of Maxwell’s equations was considered as an
effective and accurate approach for simulation of the complexity of retina, especially the variation of
the size and the shape of each layer, distance between them, and respective indexes. In particular, in
[73] DG method is employed to solve the Maxwell’s equations in retina’s layer to obtain the scattered
field and calculate the scattered cross-sectioning and anisotropy. This approach was the motivation
of our work once it underlies the need of a rigorous analysis of the numerical methods used in the
simulations as a first step to validate the results.



Chapter 1

Modeling of Electromagnetic Wave
Propagation

Maxwell’s equations are a fundamental set of partial differential equations which describe electromag-
netic wave interactions with materials. This introductory chapter is started by recalling Maxwell’s
equations in time-domain and their constitutive relations. Then we discuss the transverse modes
of Maxwell’s equations in two-dimensions in the last part of Section 1.1. The behavior of the
electromagnetic fields at interfaces and boundary conditions is discussed in Section 1.2.

In this thesis we consider electromagnetic wave propagation in dielectric anisotropic media. We
shall see that in such media the electric vector of a propagating wave is not in general parallel to its
polarization direction, defined by the direction of its electric displacement vector. The preliminaries
of electromagnetic wave propagation in anisotropic media with a focus on biological anisotropy are
discussed in Section 1.3. We review the existing computational methods for time-domain solution of
Maxwell’s equations in Section 1.4. We attempt to emphasize on strengths and limitations of some
numerical methods when compared with discontinuous Galerkin methods.

1.1 Maxwell’s equations

The actual equations that describe electromagnetic phenomena were first completely formulated in
1873 by James Clerk Maxwell. The electromagnetic fields in space is classically described by two
field vectors, E and H, called respectively electric field and magnetic field. It is necessary to introduce
a second set of vectors, D and B, electric displacement and magnetic induction to include the effect
of electromagnetic fields on matter. Maxwell’s equations state that these electromagnetic fields are
related by two pairs of coupled partial differential equations:

0B

W——VXE, (1.1)
oD

W:VxH—J, (1.2)
V.-D=p, (1.3)
V.-B=0, (L.4)
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where p and J are the source functions known as scalar charge density and vector current density. The
notation Vx and V- is used for vector operator curl and divergence, respectively.

These four equations are the basics of electricity and magnetism in differential form. Equation (1.1)
is the differential form of Faraday’s law for induction and describes the creation of an induced electric
field due to a time-varying magnetic flux. The creation of an induced magnetic field due to charge
flow is described by Equation (1.2) known as Ampere’s law. The divergence equations (1.3) and
(1.4) are Gauss’s electric law and Gauss’s magnetic law, respectively. Equation (1.3) describes the
relation between the electric field distribution and the charge distribution. Equation (1.4) is a statement
of the absence of free magnetic monopoles. Faraday’s and Ampere’s law constitute a first-order
hyperbolic system of equations. The two Gauss’s laws can be derived from Faraday’s and Ampere’s
laws provided that the initial conditions fulfill the Gauss’s laws. Differentiating (1.3) with respect to
time and using (1.2) gives

dp

§+V-J:0, (1.5)

which expresses the conservation of the charge of the system. The Equation (1.5) is known as
continuity equation. Equations (1.1) and (1.2) are also called curl equations, and equations (1.3) and
(1.4) are divergence equations.

For time evolution only the curl equations are important and the divergence equations can be seen
as constraints that have to be fulfilled for all times #. It is not hard to see that if the continuity equation
(1.5) holds, then from the curl equations it follows that V- D and V - B are constant in time [11]. The
charge density p and the current density J in equations (1.1)—(1.4) are the source of electromagnetic
radiation. In many areas of optics, the propagation of electromagnetic radiation is analyzed in the
regions far from the sources where p and J can be considered to be zero. This case is assumed in the
all following derivation.

Although, the Maxwell’s equations (1.1)—(1.4) fully describe the propagation of electromagnetic
radiation in any medium, they are not sufficient to determine the electromagnetic field in matter and
additional relations known as constitutive equations are needed to model the electromagnetic field
interaction with matter.

1.1.1 Constitutive relations

The system of equations (1.1)—(1.4) constitutes the set of governing equations characterizing the
behaviour of time and space varying electric and magnetic fields and their interaction with material
structures. However, this system remains underdetermined, as long as the relations connecting D
to E and B to H are undefined. To allow a unique determination of the field vectors from a given
distribution of currents and charges, these equations must be supplemented by relations that describe
the effect of the electromagnetic field on material. The relationships connecting these field vectors are
called constitutive relations.

Although not being a part of the Maxwell’s system, constitutive relations are of great importance
to the uniqueness of the field quantities. For a general case, the constitutive relations can be written as,

D=D(E), B=B(H). (1.6)
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In free space, D differs from E and similarly B differs from H by two respective constants & and
Uo, which are called the permittivity and permeability of free space respectively. In this case, the
constitutive relations (1.6) are written as

D = gE, B= HoH .
The values of & and g depend on the system of units used. In the standard SI or MKS units we have

€ =885x10""2Fm™!, and py=4nx10""Hm '

1

Furthermore the speed of light in a vacuum, denoted by cg is given by co = NI

In the case of homogeneous isotropic medium where the physical properties of the medium in the
neighbourhood is the same in all directions, the above relationship is given by

D=¢E, B=uH,

where € = €&y and U = U, Up. € and W, correspond to relative permittivity and relative permeability,
respectively. The permittivity and permeability of the medium, € and u are positive, bounded and in
the case of inhomogeneous materials, scalar functions of the position.

The electric or magnetic properties of the constituent materials may depend on the direction of
the field. These phenomena known as anisotropy, are modeled using tensor permittivity € = [€;;|3x3
and tensor permeability p = [1;;]3x3 with directional dependence. In anisotropic media, the vector
pairs, namely (B,H) and (D, E), are not always parallel and the material tensors, € and p are positive-
definite matrices that may depend on the position. We will describe the basics of anisotropy later in
Section 1.3.

With the assumptions of zero charge density and zero current density, along with the constitutive
relations (Equation (1.6)), leads to the Maxwell’s system

,LLaaI;I:—VXE7 (1.7)
s(yf:VxH, (1.8)
V.H=0, (1.9)
V.E=0. (1.10)

If the continuity equation, Equation (1.5) holds, the two divergence equations (1.9) and (1.10) are
implicitly satisfied. The electromagnetic wave propagation in such a medium formulated as a set of
first order coupled differential equations has the form

oE
g5 =VxH, (1.11)

JoH
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where E = (E\,Ey,E;) , H= (H,Hy,H;), £(x) and u(x) are permittivity and permeability tensors.
The equations (1.11) and (1.12) are completed with boundary conditions.

1.2 Interfaces and boundary conditions

A complete description of an electromagnetic problem should include complete information about
both differential equations and boundary conditions. The typical boundary conditions imposed on
the computational domain in an electromagnetic wave propagation simulation are of three types:
reflecting, absorbing and periodic boundary conditions [82].

Perfect electric conductor (PEC) and perfect magnetic conductor (PMC) boundary conditions
are typical reflecting boundary conditions that reflect all incident radiation and use to model cavities
or to introduce symmetry planes into the system [12]. Many problems appearing in computational
electromagnetics are posed in unbounded domains. To compute a numerical solution for such
problems, it is necessary to truncate the space, by introducing artificial boundaries and regions that
define a finite domain. The absorbing boundary conditions mimic open space by absorbing incident
radiation in the truncated computational domain. An alternative to absorbing boundary conditions
consists in using a perfectly matched layer [9, 10] which is constructed to absorb the electromagnetic
waves entering the layer.

In the context of this thesis, we consider reflecting boundary conditions, PEC and PMC and first
order Silver-Miiller absorbing boundary condition (SM-ABC).

1.2.1 Tangential continuity condition

To solve the Maxwell’s equations in the vicinity of boundaries, we shall need conditions relating the
field components on either side of the boundary. It can be seen that [44], across the boundary of the
domain the tangential components of £ and H need to be continuous, that is

nX(Elez):O, (1.13)
nX(Hl—Hz):O, (114)

where 7 is the normal unit vector to the boundary and indexes 1 and 2 represent the field component
inside and outside of the domain, respectively.

The tangential continuity conditions (1.13) and (1.14) ensure that the tangential component of the
field vector is continuous on either side of the boundary regardless of the material. The tangential
continuity condition is used to derive flux and interface conditions.

The continuity in normal direction of the fields B and D is achieved from the divergence equations

n-(Dy—D,) =0, (1.15)
n-(By—By) =0, (1.16)
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which is equivalent to the continuity of the normal component of £ and H,

I’l‘(S]El—EzEg):O, (1.17)
n-(uH, — M) =0. (1.18)

The equations (1.13)—(1.16) are called the interface conditions.

1.2.2 Perfect electric conductor boundary condition

Perfect electric conductor boundary condition is a reflective boundary condition which is typically
used to model a metallic cavity. For a PEC surface the tangential component of the E field goes to
zero and there is no field propagation into the PEC medium.

If we consider the case where the material is surrounded by a perfect conductor the interface
conditions (1.13)—(1.16) yield the boundary conditions [11]

nxE=0, (1.19)
n-B=0. (1.20)

The conditions (1.19) and (1.20) imply that the tangential components of the electric field and the
normal component of the magnetic field vanish at the boundary.

1.2.3 Perfect magnetic conductor boundary condition

Perfect magnetic conductor boundary condition is also a reflective boundary condition. For a PMC
surface the tangential component of the H field goes to zero and there is no field propagation into the
PMC medium. The interface conditions (1.13)—(1.16) yield the PMC boundary conditions as

nxH=0, (1.21)
n-D=0. (1.22)

The conditions (1.21) and (1.22) imply that the tangential components of the magnetic field and the
normal component of the electric field vanish at the boundary.

1.2.4 Silver-Miiller absorbing boundary condition

In unbounded electromagnetic simulations, the computational domain has to be truncated by an
absorbing boundary condition to model the infinite space. In this case, when the electromagnetic
wave hits the boundary it should not be reflected but absorbed. The effective modeling of waves
on unbounded domains by numerical methods is dependent on the particular absorbing boundary
condition used to truncate the computational domain [77].

One of the widely used absorbing boundary condition is the first-order accurate Silver-Miiller
absorbing boundary condition. Applying the Silver-Miiller conditions at a finite distance from the
scatterer results in an approximate absorbing boundary condition which is exact for outgoing spherical
waves [45, 64].
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In the case of isotropic material properties, the SM-ABC for Maxwell’s equations can be imposed
in two different ways as

nxE=cunx (H xn), (1.23)
nxH=—cenx (E Xn), (1.24)

where 7 is the unit outward normal vector to the boundary and ¢ = ﬁ is the speed with which a
wave travels along the direction of unit normal.

The SM-ABC depends on the material properties, € and u. In order to apply the SM-ABC in the
case of anisotropic material properties, we consider, as in [49], the notion of effective permittivity

det(g)
£ pr — ) 1.25
off = Ten (1.25)
In a similar way, we may define effective permeability as
det(u)
: 1.26
;U‘Eff nT‘un ( )
In this case the SM-ABC (1.23) and (1.24) are changed to
nxE =clUepnx (Hxn), (1.27)
nxH=—c&ysmx (E xn), (1.28)
where c is defined with the efficient permittivity and permeability as
1
c=—— (1.29)

NG

The conditions (1.23)—(1.24) and (1.27)—(1.28) are based on considering that outside the computa-
tion domain, the fields propagate as plane waves normally to the interface. In these equations, the term
n x (H x n) is the tangential magnetic field and the term n x (E x n) is the tangential electric field.

1.3 Wave propagation in anisotropic media

There are many materials whose optical properties depend on the direction of propagation. The
history of research on wave propagation in anisotropic material is linked with the development of the
history of the theory of elasticity in the early nineteenth century [59]. Wave propagation in anisotropic
material is significantly more complex than in isotropic materials. Important anisotropic optical
media are crystalline and their optical properties are closely related to various symmetry properties
possessed by crystals [88]. Besides crystals and liquid crystals, two other important classes of optically
anisotropic dielectric materials exist, optical anisotropy due to form birefringence [11], and optical
anisotropy due to the photo-elastic effect or stress birefringence [72]. Optical anisotropy could play a
role in biological waveguides, polarimetric fiber-optic sensors, and in mechanical stress sensors. Thus
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it is important to have a complete understanding of light propagation in anisotropic media if these
phenomena are to be used for practical applications.

In this section, basics of optical anisotropy is reviewed. Among the cases in which optical
anisotropy happens, the form birefringence that plays a role in biological anisotropy is described in
Subsection 1.3.2 in more detail.

1.3.1 Dielectric tensor of an anisotropic medium

At the macroscopic scale, a dielectric material is optically isotropic if, at any given spatial location in
it, its optical properties are the same for any direction [11]. Then at a given spatial location in that
medium, there is only one dielectric permittivity (for a given frequency of light) and, hence, only one
refractive index of light. Gases, liquids, but not liquid crystals and amorphous solids are the examples
of optically isotropic dielectric materials. Various general and specific aspects of the propagation
and scattering of the electromagnetic field in optically isotropic materials are well studied and well
documented [50, 84].

An optically anisotropic dielectric material is, by definition, one in which, for a given macroscopi-
cally small volume element, the optical properties depend on the chosen direction (also, for a given
frequency of light), [11]. Then, the dielectric permittivity becomes a 3 x 3 symmetric tensor and there
are more than one refractive indices of light. When the medium is anisotropic, the relation between
the electric displacement and the electric field becomes tensorial. Therefore the vectors D and E are
no longer parallel. We assumed that the medium is non-dispersive in the frequency range of interest.
In this case, a tensorial relation also holds between D and E. On an orthonormal basis (e;, ez, e3), this
tensorial relation links the components of the vectors D and E and can be expressed in matrix form
according to

D, Ex &y Ex E,
D, = Ex &y &y E, |. (1.30)
D Z 82)6 gzy SZZ EZ

These nine quantities &y, €y, -+ are characteristics of the medium and constitute the dielectric tensor.

In the case of non absorbing media that are magnetically isotropic (i.e. for which B = uH where
U is a scalar quantity), the elements of the dielectric tensor are real quantities. Such materials will be
considered in this thesis. So the permittivity tensor elements, €;; are real, dimensionless and functions
of position.

An important property of the dielectric tensor that has implications on the propagation of elec-
tromagnetic waves in anisotropic media is its symmetry. This means that the permittivity tensor has
in general six independent elements, since &;; = €;; where i, j = x,y,z. The demonstration of the
symmetry of the dielectric tensors raises some issues in many texts, e.g. [83].

There exists an orthonormal basis where the dielectric tensor is represented by a diagonal matrix

e 0 0
0 g 0 |. (1.31)
0 0 g

™
Il
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where &,, & and €, are the eigenvalues of €. Therefor the dielectric tensor € becomes diagonal in the
eigenvector coordinate system. The directions determined by x, y and z are known as the principal
axes of the medium. The refractive indices can be defined along the three principal axes according to

where i = x,y,z.

If ry = ry = r; the medium is isotropic. If two out of the three refractive indices are equal, for
instance r, = ry, # r; the anisotropic medium is said to be uniaxial. The r, = r, is known as the
ordinary index r, and r; is the extraordinary index r,. If r, > r, the medium is said to be negative,
while it is described as positive when r, > r,. In more general case where all three eigenvalues are
different r, # ry # r_, the anisotropic medium is said to be biaxial. Quartz and calcite are the examples
of positive and negative uniaxial crystals. An example of biaxial crystal is topaz.

The phenomenon known as form birefringence which refer the existence of two characteristic
waves, behaves as a uniaxial optically anisotropic system. The form birefringence arise from the
electrical properties of atoms and molecules which are typically isotropic. Among the cases in which
optical anisotropy occurs, (crystals and liquid crystals and photo-elastic effects), form birefringence is
described in the following.

1.3.2 Form birefringence

In all analysis and simulations through this thesis we consider the dielectric anisotropy, which
motivates from the anisotropy in retinal tissue. The source of anisotropy in retina is its structure that
cause a kind of anisotropy known as form birefringence. Form birefringence is directly related to an
ordered arrangement of similar particles of optically isotropic material, whose size is large compared
with the dimensions of molecules but small in comparison with the wavelength of light.

In 1912, Wiener [86] first showed that a stack of thin, non-absorbing, isotropic dielectric plates
would exhibit effective anisotropic dielectric constants when the thickness of the plates and the
dimensions of the overall structure were smaller and larger, respectively, than the wavelengths of light.
Such birefringence is due to the boundary condition imposed by Maxwell’s equations on the electric
and displacement field vectors [11].

The form birefringence could arise from ordered structure of parallel fibrils and parallel discs.
There is at least one direction along which an incident light has equal propagation velocities in a
birefringent material. Such a direction is called an optic axis. An assembly of thin parallel discs
behaves as a negative uniaxial crystal with its optic axis perpendicular to the plane of the discs. An
assembly of parallel and similar thin cylindrical fibril behaves as a positive uniaxial crystal, with its
optic axis parallel to the axes of the fibrils.

Observations on form birefringence are useful in biological waveguides. The sign of the difference
between the refractive indexes indicates whether the shape of the particles is nearer to that of a discs
or a fibril [11], and if the refractive indexes are known, it may be possible to estimate the fraction of
the volume occupied by the particles.

The tissue birefringence includes two types of birefringence: form birefringence, due to ordered
arrangement of cellular organelles and intrinsic birefringence, due to anisotropic molecular structure. A
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quantitative estimation of the amount of birefringence can achieve with the so-called net birefringence,
An which is a sum of differences of refractive indices. A non-vanishing value for the net birefringence
(An # 0) implies the overall optical anisotropy. The net birefringence is the sum of the intrinsic, form
and chromic birefringence:

An = Anj+ Ang + Anc.

The value of form birefringence, Anr changes while the refractive index of the medium is varied, but
the value of intrinsic birefringence, Any is a fixed. The chromatic birefringence, Anc is associated with
dichroism [37]. Dichroism is anisotropy in absorption and could be understood by recalling that the
components &;; of the dielectric permittivity tensor could to be complex. The chromatic birefringence,
An¢ could be neglected.

The form birefringence happens in most of the ocular tissues including the cornea, the lens,
Helen’s fiber at the macula and retinal nerve fiber layer (RNFL) around the optic head. The retinal
photoreceptors were modeled as arrays of approximately parallel cylindrical dielectric waveguides
in [28]. Similar models will be assumed for the elements of which the retinal nerve fiber layer is
composed [91]. The cylindrical shape of photoreceptor cells, their dimensions and the fact that their
refractive index is higher than the surrounding medium are the reasons behind their waveguiding
properties [28]. A theoretical model developed in [38] shows that an array of thick cylinders with low
relative refractive index can produce form birefringence that varies with wavelength. This model is
quite suitable for discussing form birefringence of RNFL.

To end up this discussion, measurement of net birefringence can be used as an early diagnosis
tool. The net birefringence of RNFL is measured with different technics and groups, e.g. [14, 43].
The variation in net birefringence could imply structural changes in tissue. For instance, the RNFL
birefringence measurements may provide an early indicator of structural changes caused by glaucoma
[43].

1.4 Time-domain methods for solving Maxwell’s equations

Several real world electromagnetic problems are not analytically calculable as they often involve large
regions with complex geometry of inhomogeneous, anisotropic, lossy and even nonlinear materials.
Computational numerical techniques can overcome the inability to derive closed form solutions of
Maxwell’s equations under various constitutive relations on media and different types of boundary
conditions. In order to solve an electromagnetic field problem, one should take into account Maxwell’s
equations, boundary conditions, all interface and material conditions and all excitation conditions.

The propagation of electromagnetic waves and their interaction with matter is often investigated
in a time domain setting. This is the case of the present thesis. In this section we make a brief
comparative discussion about the most used numerical methods for time dependent wave problems,
highlighting the advantages of the prominent discontinuous Galerkin (DG) as an interesting choice,
which is the numerical method employed for space discretization in our derivations.

In the last decades there has been an increasing interest in solving Maxwell’s equations because of
their great importance and diversity of applications. The finite difference time domain (FDTD), which
is also known as Yee’s scheme, was introduced in 1966 in [89], and since then it has been applied to
a wide range of electromagnetic problems, as for instance, in radar cross section computations and
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electromagnetic compatibility investigations. The Yee’s scheme continues to be the most widespread
computational electromagnetic method in the time-domain [82], mostly because of its simplicity.

The Yee’s scheme is an explicit finite difference scheme using central differences on a staggered
Cartesian grid. It is second-order accurate in both time and space. The expression staggered grid here
indicates that the different electromagnetic components are not computed at the same discretization
points in the domain. Furthermore, the field components are not considered on the same time levels.
The FDTD method is very efficient for simple geometries, as it gives naturally spurious free solution, is
energy conservative and is second-order convergent. The main drawback of the scheme is the inability
to represent curved boundaries and small geometrical details. Curved objects must be modeled by
staircasing which reduces the accuracy of the scheme to first order [13, 82]. There are several FDTD
methods (e.g [46, 65]) which effort to model curved objects and remain second order but most of them
destroy the simplicity of Yee’s scheme.

The finite volume time domain (FVTD) technique emerged as an alternative to FDTD aiming to
overcome its geometrical discretization constraints, avoiding the staggered spatial discretization of
the fields. The concept of the finite volume method originates in the context of computational fluid
dynamics [79]. The most common formulation of FVTD is carried on tetrahedral elements for the
Maxwell’s curl equations [35, 61]. The scheme is formulated by defining a system of equations in
which the time derivative of the electric field vector components integrated in volume equals to the sum
of all surface integrals of the spatial derivative of the magnetic field vector components and vice-versa.
Since the flux entering a given volume is identical to that leaving the adjacent volume, these methods
are local conservative. The time discretization can be performed, in a similarly fashion to the FDTD
method, using a second order leap-frog algorithm. Thus the FVTD method it is easily formulated to
allow unstructured spatial grids. The main drawback of the FVTD is its order of convergence which is
quite low. Moreover, the time step is limited by a condition that depends on the shape of the elements
and that is usually more restrictive than for the FDTD method [68].

With the growing need to solve geometrically complex large scale problems, there has been an
interest in the flexibility offered by the finite element schemes. Most applications of finite element
methods to electromagnetic models were carried out in the frequency domain [45]. Finite element time
domain solution of Maxwell’s equations received more attention while focusing essentially on low
order formulations [51]. These methods offer important advantages over the standard finite difference
methods. The use of unstructured grids offers high facility in the modeling of complex geometries.
Field and flux continuity conditions at material interfaces can be handled by the variational approach
in a natural way [51]. Finite element based methods can handle irregular domains, achieve high order
and allow adaptivity and error control. They also use a variational approach which inherits many
properties of the continuous problems. In spite of their advantages, finite element methods suffer also
from a number of drawbacks. The spatial discretization must be conforming and the mass matrix is
global at every time step, which becomes an issue of significant importance in certain problems. While
the mass matrix is sparse and typically well conditioned, if we seek for instance a steady solution,
the global mass matrix must be inverted. The work associated with this inversion which increases for
higher order and large scale problems, is a bottleneck for parallel computations.

The attention to the development of high-order accurate methods for solving time-domain
Maxwell’s equations in complex geometries brings to the use of a variation of finite element method
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called discontinuous Galerkin (DG) finite element methods. Discontinuous Galerkin schemes retain
most of the benefits of the finite element methods, as well as local refinement mesh strategies, due
to the ability of the method to deal with non-conforming meshes with hanging nodes, and spatial
high-order convergence, allowing to deal with problems where the required precision varies over the
entire domain, or when the solution lacks smoothness. These advantages come together with other
benefits as local conservation and flexibility on the choice of the numerical flux. Moreover, the mass
matrix is local rather than global and the method is highly parallelizable. DG methods can be seen
as a generalization of finite volume method. Thus the obvious advantage of DG methods over finite
volume methods is that higher-order approximation in space can be achieved.

The one-step explicit time integration methods like Runge-Kutta (RK) and leap-frog schemes are
computationally efficient per update cycle and easy to implement. The RK approach combined with
a DG method was originally published by Cockburn and Shu [19]. Since then, several extensions,
such as explicit low-storage Runge-Kutta and the fourth-order explicit, singly diagonally implicit
Runge-Kutta [47], have been considered.

Resulting from the coupling of the DG method, for the integration in space, with a time integrator,
the DG time domain approach gathers most of the advantages of FDTD, FVTD and finite element
time domain methods.

Regarding the interaction of electromagnetic field with biological fields, several approaches have
been proposed over the past decades, mostly based on single-scattering theory. The numerical methods
for solving Maxwell’s equations are providing methods to strengthen the knowledge of cellular-level
as well as to accelerate the development of corresponding novel clinical technologies. FDTD is one of
the most commonly used numerical methods for solving Maxwell’s equations that has been applied
to light scattering from cells [26]. The first application of the FDTD to cellular-level biophotonics
was reported in [67], wherein visible light interactions with a retinal photoreceptors were modeled for
the two-dimensional transverse magnetic (TM) and transverse electric (TE) polarization cases. The
DG method, in particular the nodal formulation described in [39], has gained notorious popularity in
recent years and it has been extensively used in electromagnetic problems since the first application of
the method to Maxwell’s equations in 2002 (see [41]). This is the method that we have chosen to use
in the present work, motivated by our application of interest. Along the thesis we consider a nodal DG
method for the space discretization combined with a leap-frog method for the time integration.






Chapter 2

Leap-frog DG Method

The DG finite element method appears to have been introduced in the framework of neutron transport
in 1973 [69], and its first analysis was presented in 1974 in [54]. Important progresses took place in
the next two decades, like their extension to conservation laws and development adaptive solution
techniques. Since the years 2000 DG methods have become very widely used for solving a large
range of problems. Being local methods capable of producing highly accurate numerical solutions,
DG methods gather many desirable features over more standard continuous methods. The advantages
include their flexibility on the choice of meshes and thus their capacity handle complicated geometries,
their potential for error control and mesh adaptation, their possible definition on unstructured meshes,
the fact that they are suitable parallelization attenuating their major drawbacks which are high memory
requirements and computational cost. A main ingredient in the definition of any DG scheme is the
so-called numerical flux, which serves as a connection between the single elements in order to make
possible to construct the global numerical solution from all local approximations. The notion of the
numerical flux has been taken from finite volume methods, where the numerical flux meets the same
purpose, i.e. to transport the information from one local cell to another.

This chapter is dedicated to the leap-frog DG scheme for solving Maxwell’s equations in
anisotropic materials. We start by a 3D system of Maxwell’s equations. After rewriting the system
of equations in the conservation form we introduce transverse modes of Maxwell’s system in Sec-
tion 2.1. In Section 2.2 the nodal DG approach for solving Maxwell’s equations is presented leading
to a semi-discrete model where the spatial derivatives are discretized while the temporal derivates
remain untouched. Then the temporal derivatives of the semi-discrete scheme are discretized, in a
procedure that is known as the method of lines, using a leap-frog scheme which employs a centered
approximation for time derivatives and the central flux terms and a backward approximation for the
upwind flux terms. We arrive at the fully explicit leap-frog DG scheme in Section 2.4. The scheme is
presented for a 2D model and further extended to 3D in the last part of this chapter.

2.1 Maxwell’s equations in anisotropic materials

In this section we consider the homogeneous system of Maxwell’s equations (1.11) and (1.12)
which is completed by considering perfect electric conductor or perfect magnetic conductor boundary
conditions or Silver-Miiller boundary conditions. The system of equations is formulated as a hyperbolic

13
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system of conservation laws which is later used to develop the discretization approach. The reduction
to 2D is discussed in Subsection 2.1.2 and transverse electric mode is chosen as our 2D model.

2.1.1 Three dimensional model

Let us recall the Maxwell’s equations (1.11) and (1.12) in three-dimensions

ea;:VxH in Q x (0,Ty], 2.1)
/.Logj:—VxE in Q % (0,T], (2.2)

where E = (E,, Ey,E;) , H = (Hy,H,,H,) and Q C R? is a bounded polyhedral domain. The permit-
tivity and permeability tensors € and u are space-dependent.

We assume that the electric permittivity and the magnetic permeability tensors € and u are
symmetric and uniformly positive definite for almost every (x,y,z) € Q, and are uniformly bounded
with a strictly positive lower bound, i.e., there are constants € > 0, € > 0 and ¢ > 0, @@ > 0 such that,
for almost every (x,y,z) € Q, B

elfP <&Te(ry2)€ <€,  plEP <& n(xyf<mEP, VEeR’

The model equations (2.1)—(2.2) must be complemented by proper boundary conditions. Here
we consider the most common, either the perfect electric conductor boundary condition , the perfect
magnetic conductor boundary condition or the first order Silver-Miiller absorbing boundary condition
as:

nxE=0 on dQ x (0,7y] for PEC,
nxH=0 on dQ x (0,7;]  for PMC, (2.3)
nxE=clUepnx (Hxn) ondQx(0,Tf] for SM-ABC,

where ¢ and U, rr were defined by (1.29) and (1.26) respectively.
The initial conditions

E(x,y,z,0) = Eo(x,y,z) and H(x,y,z,0) = Hy(x,y,z) inQ, (2.4)

must also be provided.
Maxwell’s curl-equations can be reformulated in conservation form. The Maxwell’s equations
(2.1)—(2.2) in dimensionless units read

Qg‘t] +V-F(g)=0 inQx(0,Tf], (2.5)

where the material matrix Q and the state vector g are defined by

e 0 E
3) = ()
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and the flux F(q) = [F:(q),F,(q), Fz(q)]" is given by

—e; X H
Fi(q) = ( eixE>,
where e; signifies Cartesian unit vectors in i-direction where i = x,y,z. The 6 x 6 material matrix Q
depends on € and u the material properties of the medium. The state vector g is the super-vector
of the electric field E = (E,, Ey, E;), and magnetic field H = (H,, Hy, H;) and these are functions of
(x,v,2,1).
In mathematical terms, the system (2.5) is said to be hyperbolic [55]. The physical meaning of

this mathematical definition is that, the system has wavelike solution. This means that the material
matrix Q is diagonalizable with real eigenvalues.

2.1.2 Reduction to two dimensions

If we suppose that the system of Maxwell’s equations has some symmetries, it is possible to reduce
the dimensions of the system. The system is often homogeneous in one direction. The structure being
modeled extends to infinity in the z-direction with no change in the shape or position of its transverse
cross section. If the incident wave is also uniform in the z-direction, then all z-derivatives will vanish
[82]. Under these conditions the full set of Maxwell’s curl equations given by (2.1) and (2.2) reduce
to two decoupled sets of three equations.

The set of first three equations contains E,, E, and H,, and it is called transverse electric mode.
TE mode describes the propagation where the electric field lies in the plane of propagation. The set
of the other three equations contains H,, H, and E, components and it is called transverse magnetic
(TM) mode. TM mode describes the propagation where the electric field is perpendicular to the plane
of propagation. The TE and TM modes are decoupled since they do not contain any common field
vector components. These two modes are completely independent for structures that composed of
isotropic or anisotropic materials [82]. The TM and TE modes constitute the two possible ways that
two-dimensional electromagnetic wave interaction problems can be set up for case of zero partial
derivatives in the z-direction.

If the curl equations (2.1) and (2.2) are written component wise the reduction to TE mode is

JE.  J0E, OH,

gxxw + Exyw =9 (2.6)

JE,  JE,  OH,
B TE Y T T o @7
OH, JE, JE, 08)

Hor =y ox

Since we are dealing with anisotropic permittivity tensor, TE mode (2.6)—(2.8) is considered for our
2D model. This assumption is appropriate when studying e.g. truly 2D photonic crystals [24] or the
electrodynamic properties of 2D materials like graphene [62].

In the major part of this thesis we shall analyze 2D time-domain Maxwell’s equations in TE mode.
For this case, and assuming no conductivity effects, the equations (2.6)—(2.8) in the non-dimensional
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form are
JE
£§:V><H in Q x (0, Ty, (2.9)
H
/.La& =—curl E in Q x (0, 7], (2.10)

where E = (E,E,) and H = (H;). These equations are set and solved on the bounded polygonal
domain Q C R?. Note that we use the following notation for the vector and scalar curl operators

T
V><H:(‘9HZ —aHZ> : curlE:aEy L,

dy ' ox ox  dy’

The electric permittivity of the medium, € and the magnetic permeability of the medium u are varying

e= & B @2.11)
Eyx &y

while we consider isotropic permeability .

in space, being € an anisotropic tensor

We assume that the electric permittivity tensor € is symmetric and uniformly positive definite for
almost every (x,y) € Q, and it is uniformly bounded with a strictly positive lower bound, i.e., there
are constants € > 0 and € > 0 such that, for almost every (x,y) € Q,

g <&le(ry)E <ElE)’, VEER”
We also assume that there are constants ¢ > 0 and ft > 0 such that, for almost every (x,y) € Q,
u<pxy) <@

The model equations (2.9) and (2.10) is completed by boundary conditions, PEC, PMC or SM-
ABC as:

nxE=0 on dQ x (0, 7] for PEC,
nxH=0 ondQx (0,7y]  for PMC, (2.12)
nxE=cunx(Hxn) ondQx(0,Ty] for SM-ABC,

B nTen
T\ wdet(e)

is the speed with which a wave travels along the direction of the unit normal n. The role of effective

where

permittivity (1.25) is observed in defining c.

The initial conditions

E(X,y,O) = EO(xay) and H(X,y,O) = H()(X,y) in Qa (213)
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must also be provided.

2.2 Space discretization with discontinuous Galerkin method

In this section, the spatial discretization of Maxwell’s equations in conservation form with nodal
DG method is presented. The idea of DG method, like finite element methods, is to construct finite
dimensional function spaces in which we search for an approximate solution. The first step in
constructing a discrete function space is to discretize the domain. The concepts of the mesh and the
broken polynomial space, which are known as discontinuous Galerkin function space are explained in
Subsection 2.2.1.

The electromagnetic fields are expanded in terms of a set of basis functions which are defined
locally. Let us mention that we follow the general DG method structure as in [39]. We consider
the common choice of the basis functions in DG method which are Lagrange polynomials. In
Subsection 2.2.3 we start by looking at the problem locally and working on one element. In order to
arrive at global numerical approach, the elements are connected via numerical flux. The concepts of
the numerical flux are explained in the of Subsection 2.2.3. In the last part of this section, we back to
boundary conditions and the discretization of boundary conditions within DG approach is explained.

2.2.1 Definition of the mesh

Let Q be a bounded polygonal region of R? for which the boundary is dQ, where the numerical
solutions of equations (2.9) and (2.10) are intended to be computed. Assume that the computational
domain Q is partitioned into K triangular elements 7; such that

Q=UTx,

where T is a straight-sided triangle. For simplicity, we consider that the resulting mesh .7, is
conforming, that is the intersection of two elements is either empty, an edge or vertices.

Let i be the diameter of the triangle T € 9}, and h be the maximum element diameter,

hk = Sup HP] —PQH, h = max {hk}
P ,PeTk Tk€<7h

We assume that the mesh is regular in the sense that there is a constant T > 0 such that

h
VT, € G, —<r, (2.14)

Tk
where T; denotes the maximum diameter of a ball inscribed in 7.

Let v be the set of indices of the neighboring elements of 7;. For each i € v;, we consider the
internal edge fi; = T; N T;, and we denote by n;; the unit normal oriented from 7; towards 7;. The
boundary edge is f; = Tx N dQ. The unitary outer normal vector to fj is denoted by ny. The set of
internal edges denote by F™ and F is the set of edges that belong to the boundary 0Q.

By now we have constructed a mesh on the domain Q and so we can turn to the second step,
namely to the construction of the discrete finite element space. The discontinuous Galerkin finite
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element space is chosen as a space consisting of piecewise polynomial functions. The finite element
space is then taken to be

Vv ={ve L*(Q) :v|, € Pv(Th)*}, (2.15)

where Py(T}) denotes the space of polynomials of degree less than or equal to N on the element 7.

Let us define the local inner product and norm at each element 7} as
()= [ utey)viey)dsdy and (g = ulf,
k
and also the local inner product over the boundary dTj

(u:v)og, = [ uls)v(s)ds:
ITi
These local inner product and norm form the global broken measure as

(wv)e =Y (uv)g, |lulla =Y llul7, and (u,v)oq =Y (uv)ar-

k k k
2.2.2 Local approximate solution
On each element 7y, the solution fields are approximated by polynomials of degree less than or equal

to N. The global solution g(x,y,?) is then assumed to be approximated by the piecewise N order
polynomials g(x,y,?) defined as the direct sum of the K local polynomial solutions

>

q(x,y,t) = Q(XLVJ) = @Qk('xv)@t%

k=1

where Gy(x,t) = (Ey,, E,,,H,). We use the following notation

@w
@a
@w

xy? 'xy’ ) xy7 xy? ) xy?

(x3,1)

The fields are expanded on each element 7} in terms of interpolating Lagrange polynomials L;(x,y)
as [41],

N,
'xya qu -xl7yl7 y) ZQki(t)Li(x7y)' (216)
i=1
Here N, denotes the number of coefficients that are utilized and g, (t) = gx(xi,yi,t) serves as a
short-hand notation for expansion coefficients. Since the expansion coefficients correspond to the
field values at the nodes the representation of the fields as Equation (2.16) gives the so-called nodal
representation.
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The number of coefficients N,, is related with the polynomial order N via

N, = (N+1)2(N+2).

Note that N, also represents the number of interpolation node points per element and the number of
basis functions.

The polynomial interpolation nodes in a triangle are discussed in [15, 40]. The equidistant points
are the first choice, but they have large Lebesque constants and in the context of DG methods they lead
to very ill conditioned linear systems [39]. The recent warp-blend method [85] performs sufficiently
well for generating two dimensional point sets in triangles. The warp-blend points can be viewed as a
two dimensional generalization of Legendre-Gauss-Lobatto points. These points coincide with the
Legendre-Gauss-Lobatto points at the edges of the triangle. In one dimensional DG formulation, the
Legendre-Gauss-Lobatto quadrature points are chosen as the set of optimal nodal points in [39]. For
higher dimensions the warp-blend points are chosen as the set of optimal nodal points in nodal DG
structure.

2.2.3 The DG semi-discrete form

Let’s start by writing the 2D model (2.9) and (2.10) in a conservation form (2.5)

Q(Z]—FV-F(q):O in Q x (0, Ty, (2.17)

where the material matrix Q and the state vector g are defined by

e 0 B
0= <0 ) y 4= Ey )
u 1

respectively and the flux is given by

T
0 H, E
F(q) = c
-H, 0 -E,
In order to arrive at the semi-discrete scheme, let’s start by noticing that the local residual, i.e. the

error when ¢y, is substituted in Equation (2.17), is required to vanish in the following way

/ <Q6’qk +V. F(c]k)) vdxdy =0, (2.18)
T ot

for all test function v € V. This can be recognized as a Galerkin approach, but on the local element
only. Integration by parts once yields

/( aq[C-v—F(cjk)-Vv) dxdy:—/ n-F(gx)-vds,
7\ ot T,

where n is the outward pointing unit normal vector of the contour.



20 Leap-frog DG Method

The solution at the interfaces between elements is multiply defined and we will need to choose
which solution, or combination of solutions, is correct. There are several possible choices for this
issue. Delaying the detail of this choice, we substitute in the resulting contour integral the flux F by a
numerical flux F* that enforces a physically correct solution. With the numerical flux introduced on
the right hand side to connect the elements, doing integration by parts once more yields the final form

2
/Tk (Qaf + V-F(c]k)> vdxdy = /aTk n-(F(G) — F*(Gy)) - vds. (2.19)

Equation (2.19) is the strong variational formulation of Maxwell’s curl equations. The left-hand side
of Equation (2.19) remains a local expression, while in the right-hand side the numerical flux connects
the neighbouring elements through their common edge.

In order to connect the solution between elements sharing a common edge, the continuous
numerical flux of the tangential field components are defined at each interface. The concept of
numerical flux in computational electromagnetic was inspired by finite volume time domain methods
[63, 79]. Upwind flux evaluation is the usual way to exchange information between elements in finite
volume methods. A discontinuous Galerkin method with polynomial order zero is nothing else than a
finite volume method.

The proper choice of the numerical flux is essential for the accuracy of the DG scheme. The
derivation of the numerical flux involves the solution of a Riemann problem and is discussed in detail
for isotropic materials in [39]. This flux is given by the expression

L—nx (Z*[H] - an x [E])

n-(F(3) = F (@) = ( (V4[] + an x [m)> . (220

Here we need to introduce the notation for the jumps of the field values across the interfaces of the
elements,

[E|=E —E*, and [H]=H —H", 2.21)

where the superscript “+ " denotes the neighboring element and the superscript “— " refers to the
local cell. Furthermore the cell-impedances and cell-conductances respectively are

+
A e O

The parameter a € [0, 1] in Equation (2.20) is called upwind parameter and can be used to control the
dissipation. Taking o¢ = 0 yields a non dissipative central flux while o¢ = 1 corresponds to the classic
upwind flux.

The treatment of anisotropic materials within a DG framework was discussed in [16, 32] where just
the central flux is considered to interconnect the neighbouring elements. In [49] the flux formulation
for isotropic materials is extended for two dimensional formulation of anisotropic materials. The
numerical flux (2.20) involves material properties € and y via impedance Z and conductance Y.
The numerical flux in isotropic materials is extended to an anisotropic materials with redefining the
material properties, Z and Y with effective permittivity (1.25). The DG flux for the 2D model in
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anisotropic material is

z:f%* (Z+ [A] — o (i [Ey] — ny ~x]))
n-(F(q)—F"(q) = | 725 (Z[H] — o (n[Ey] —ny[ES])) | (2.22)

= (VT (B —ny[EL)) — a[HL])

where Z+ = u*c* and Y+ = (%), while

2.2.4 Boundary conditions

Since the information between elements is exchanged by the numerical flux in DG methods, the
boundary conditions are enforced by the numerical flux. The field differences (2.21) mediate in
between neighbouring elements in numerical flux. Boundary elements are missing a neighbour
to evaluate the field differences. To overcome this problem and according to different boundary
conditions we consider that the jumps in Equation (2.22) are modified as following for different
boundary conditions.

The PEC boundary condition can be implemented by applying the mirror principle as n x E+ =
—nx E~ and n x H = n x H~. Thus the jumps at the outer boundary in this case are set as

[E\] =2E;, [E)=2E, [H]=0. (2.23)

The jumps at the outer boundary for PMC are set as
[E] =0, [E]=0, [H]=2H. (2.24)

In DGTD methods Silver-Miiller absorbing boundary conditions can be applied by setting the
incoming flux to zero [3]. For the upwind flux, this is directly implemented since it is equivalent to
assuming that there is no contribution to the flux from outside the region of solution, so we have

Z H' = an; —nyEr, orequivalently A = Y*(anNy+ —nyE]). (2.25)

For the central flux SM-ABC can also be employed [32]. Using the same kind of approach as in [4],
for central flux we have

—mE7), and Y (nE] —nEl)=H_. (2.26)

X Z

Z H = (nkE

z y

In order to incorporate the conditions (2.25) and (2.26) into the numerical flux (2.22), for both central
and upwind fluxes we consider @ = 1 for numerical flux at the outer boundary and

E,)=E;, [H]=H. (2.27)

We also consider (2.27) for the case a € (0,1).
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To complete the evaluation of fluxes at boundary edges, we mention that the material properties at
the boundary set as
Z"=Z and Y'=Y".

2.3 Time discretization

The discretization by the DG method results in the semi-discrete form of Maxwell’s equations which
discretize the electromagnetic fields in space. The missing part towards a time-domain solver is the
integration in time. The Equation (2.19) is a set of coupled first order ordinary differential equations
in time, which is in more general form described by

gy

=% (5 2.28
7 1(Gr.n)s (2.28)

where gy , denotes the vector of the coefficients of gx and .7, : Vy — R3Np,

In order to achieve the fully discrete scheme, it is enough to employ a time integration method.
The temporal integration methods can be divided to two major families: implicit and explicit schemes.
Implicit schemes require the solution of large matrix system resulting in a high computational effort
per time step and rely on the efficiency of the used linear system solver. The advantage of implicit
schemes are their flexibility regarding the choice of time step since usually, these time integrations are
unconditionally stable. Explicit schemes in contrast are easy to implement, produce greater accuracy
with less computational effort than implicit methods, but are restricted by a stability criterion enforcing
a relation between the time step and the spatial discretization parameter. This restriction may result in
a large number of iterations per simulation, each iteration with low computational effort.

Explicit time integrators can exploit the block diagonal structure of the mass matrix of semi-
discrete DG schemes and thus leads to fully explicit scheme. In this study, we employ the 2nd-order
leap-frog scheme for the time integration which is described in the FDTD literature in [89]. The
staggered leapfrog time-stepping algorithm is a popular choice for time domain Maxwell’s equations
(e.g. [4, 32, 82]) due to its simplicity, as it does not require to save in memory previous states,
accuracy and robustness. It samples the unknown fields in a staggered way: the electric field at
1" = mAt, and the magnetic field at /"+1/2 = (m+ %)At The staggered sampling yields an explicit
marching-on-in-time algorithm.

2.3.1 Leap-frog time integrator

In this work, we use a second order leap-frog scheme, which employs a centered approximation for
the time derivatives. Consider the semi-discrete form Equation (2.19). To define a fully discrete
scheme, we divide the time interval [0, 7] into M subintervals by points

0=""<tl<...<M=T,

where " = mAt while At is the time step size and 7 + Ar/2 < Ty.
The unknowns related to the electric field are approximated at integer time-stations #” and are
denoted by E" = Ey(.,t™). The unknowns related to the magnetic field are approximated at half-
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integer time-stations #"*1/2 = (m+ 1)At and are denoted by Hm+1/ % = H(.,*1/2). This implies
that we do not have a fully defined state vector in the sense of Equation (2.28) for a given time ¢. The
time derivatives in Equation (2.19) are replaced by 2nd-order accurate central differences

aEm—l—l/Z Emtl _ fm

_ 2
5= = +O0(Ar") and

Qfmtl  fgmt3/2 _ fgm+1/2
or At

+ O(Ar?). (2.29)

To obtain the future values from a present state the following algorithm is applied

Epit = B+ ATy, (B2, A, (2.30)
alye =l o s, (B A, 2.31)

where E‘Z’, denotes the vector of the coefficients of £ which is an approximation for Ei(t") and
H,T; 12 is defined analogously. The function .7, = (%, , %,)" is a function representing the result

of applying the spatial semi-discretization.

Usually evaluating the upwind flux terms imply the need of averaging between the next and
previous time steps and thus resulting on a globally implicit scheme due to the coupling terms from
the adjacent elements [56]. To avoid this, we used in (2.30)—(2.31) the backward approximation
[25] for the two extra dissipative terms arising from the upwind flux formulation. As discussed in
[2, 66] this backward approximation for the flux terms is enough to attenuate spurious modes in
space more strongly than physical modes, which is the only aim of these terms. Using this backward
approximation introduces a slight penalization in stability condition for upwind flux. This will be
observed later in stability analysis and in our numerical experiments.

2.4 Full-discrete scheme

The leap-frog time integrator is applied on semi discrete DG formulation where the first order time
derivates are replaced by central differences and backward approximations for the dissipative terms of
flux. We arrive at a fully explicit leapfrog DG scheme in 2D. In Subsection 2.4.2, we consider the
system of 3D Maxwell’s equations and extend the leap-frog DG formulation to 3D.

24.1 Leap-frog DG scheme in 2D

In order to get the fully explicit leap-frog DG scheme, the leap-frog time integrator (2.29) is applied
on Equation (2.19). We can now formulate the leap frog DG method: given an initial approxima-
tion (EY E? Hl/z) € Vy, for eachm = 0,1,...,M — 1, find (E;*! Ert! HZTH/Z) € Vy such that

Xk Vi 7 Yk
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V(ute, vie, wi) € Vv,

E"'erl _Em Eerl _E"'m i1/
<8xx a At e +8xy = Al e , Uk = (a)’HZr: 7uk) T,
T
—n ~ 1/2 ~ ~
+ <Z++yZ (Z 1) = o (mal B =y [E2) ) ,uk>a ! (2.32)
Tx
E'm-i-l Em Em+1 _Em i1/
(&x Xk m Xk +8y} Yk m M,Vk = — (axHZn: ’vk)Tk
T
n ~ 2 ~ o
+ <Z+ = <Z+[H51H/ | —a (nlE)] *ny[ET])) ,Vk)a : (2.33)
T;
I:Im+3/2 _I:Im—i-l/Z 3 3
(u o) = @B A ),
T,
1 ~ = ~mt1/2
+ <W (Y Ol B = my [B) = a7 ,wk)a : (2:34)
Ti

where (-,-)7, and (-, )7, denote the classical L?(T;) and L?(9Ty) inner-products we defined before on
each element. The boundary conditions are considered as what described in Subsection 2.2.4.

We want to emphasize that the scheme (2.32)—(2.34) is fully explicit in time, in opposition to [56],
where the scheme is defined with the upwind fluxes involving the unknowns E ,'C"H and H,T *3/2 and to
[32], where the scheme that is defined with the central fluxes leads to a locally implicit time method

in the case of Silver-Miiller absorbing boundary conditions.

2.4.2 Leap-frog DG scheme in 3D

Recall the 3D Maxwell’s equations (2.1)—(2.2). We assume that polyhedral domain € is partitioned
into K disjoint tetrahedral elements 7. We consider that the resulting mesh .7, is conforming and
regular in the same sense as (2.14), where h; and 7; denotes the diameter of the element 7} and
maximum diameter of a sphere inscribed in 7} respectively.

Keeping the same notation from 2D, v; denotes the set of indices of the neighbouring elements of
Tx. For each i € v;, we consider the internal face fj; = T; N T, and we denote by n;; the unit normal
oriented from 7; towards T;. The boundary face is f; = T, N dQ. The unitary outer normal vector to
fi is denoted by n;. The set of internal faces denote by F™ and F¢ is the set of faces that belong to
the boundary dQ.

Writing the equations as a conservation form (2.5) the semi-discrete DG formulation is an
extension of the same approach as for 2D. The tensorial permittivity and permeability can be reduced
to effective scalar values (1.25) and (1.26) respectively. The numerical flux is introduced as

N == e A IR
(F(@)-F*(q)= (;ﬁnX(Y+[E]+OC”
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where Z* = /.Lej;fci and Y+ = (z+)™" while

det(u)
nT u*n

Ttet
+ n' u=e+n

+
Hers o and ¢ det(n) det(e)

With this flux formulation, the leap-frog DG scheme (2.32)—(2.34) is extended to 3D. Given an

initial approximation (E,?,I:I,l/z) € Vy, foreachm=0,1,...,M— 1, find (E,TH,I?,Z"H/Z) € Vi such
that V(ug, vi) € W,

Eerl _ Em 5
g%ﬂlk = (V XH]TJFI/Z,M]C)
Tk T

1 Fem+1/2 ~

——nx (zt[A) - E" 2.
+<Z++an( A —an x | k]),uk>aTk, (2.35)
[:Im+3/2 _I:Im+1/2 ~

(ﬂ b 5 L ,Vk Z—(VXE,L"+1,vk)Tk
T;

+ <1n>< <Y+[E’"“]+an>< A 1/2]) vk> (2.36)

Yt4+Y- k k o

where Vy is the space of finite element space defined by (2.15) on tetrahedral elements. The scheme
(2.35)—(2.36) is a fully explicit leap-frog DG scheme for 3D Maxwell’s equations with anisotropic
permittivity and the permeability tensors. The stability of this scheme will be analyzed in next chapter.






Chapter 3
Stability Analysis

The explicit leap-frog time integration scheme (2.30)—(2.31), which employed a centered approx-
imation for time derivatives and used a backward approximation in upwind flux terms yielded a
fully explicit leap-frog DG scheme which is conditionally stable. The conditional stability imposes a
condition on the time step Az, in the same fashion as the Courant-Friedrichs-Lewy (CFL) criterion
[22], defined with respect to the time integration scheme in use.

In this chapter we first present a rigorous proof of the conditional stability of leap-frog DG scheme
in 2D. The analysis shows the influence of the mesh size, the choice of the numerical flux and the
choice of the degree of the polynomials used in the construction of the finite element space and the
boundary conditions, which can be either perfect electric, perfect magnetic or first order Silver-Miiller.
The stability analysis is extended to the 3D model in Section 3.2 and the correspondent stability region
is presented.

3.1 Stability analysis of the 2D model

The aim of this section is to provide a sufficient condition for the L?-stability of the leap-frog DG
method (2.32)—(2.34). We start by choosing a proper test function and try to find the estimations for
the terms related to inner boundary edges and outer boundary terms in Lemma 3.1.1 and Lemma 3.1.2
respectively. The main result of this section is stated in Theorem 3.1.3 where the stability condition is
derived for different boundary conditions and different fluxes.

Recall Equations (2.32)—(2.34), choosing
we=MEMTYA v = BTV v = AcEY
where

/2 4 fgm3)2
2 )

[ fm+-1
plmtij2) _ETHETT e

27
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we have
(eBy ! Bpt), — (eBpn BY),, =280 (V< A2 B2
k
+2At((z+[H’”“/2] o (my[E2) — ny[E) ),EWH/Z])
7t +7- ( X1y y ) Xk on
Ny Framtl)2 & - i lm+1/2]
+2At <Z++Z <Z ("] — a (na] )] —”y[E;n])) s Ey, )aTk7 (3.1)
(H g3 H?ZH/Z) (uHm+1/2 H?k1+1/2> — oA (curl EITH’H;TH])
Ti Tx Tx
Fmt1 Fmt1 AmA1/27)  pylmrl
+2A1 <Y++Y— (Y+ (na[ £y = ny[EY]) — o[ HE / D AL ]>8Tk' (3.2)
Using the identity,

(curlE,Z”“,I:IZ[Z"H]) — (VXF[Z[Z"H]’EZM)T +<anymk+l nyEmH, H[m+1]>
k

Ti on’

summing (3.1) and (3.2) from m = 0 to m = M — 1, and integrating by parts, we get

(eE/cw,E/iw) (“ M2 Hé‘fﬂ/z)n _ (sE,?,E,?) (.U A g 1/2)Tk

M—1
+Az(V><H;/2,Ek> Az(VxHM+‘/2 Ek) +oar Y AT, (3.3)
T m=0

where

m __ —+ ~m+1/2 o mjy rm ’"’[m+1/2]
A= (et (2 e i) £E7)

Ny Frgml/2y amyrpmp ) glm1/2)
(g (e -tz - i) )

1 + pm+17 pm+17\ o rmt1/2 rylm+1]
+ <Y++Y (Y (nx[Ey ] ”y[Ex ]) a[HZ ]) aHZk aTk

7~ 1 7~ 1 glm+1
- (an;;+ —n, B Al ])aT.
k

Summing over all elements T} € .7}, we obtain

Y Ay =By+BY, (3.4)
TkE«%
where BY" contains the terms on internal edges and B3’ contains the boundary terms. We can write B}’

as
B +B +Bl'§7
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where
mo m+1/2 m Fm 7 [m+1/2]
By, = fi gw/ (Z +Zk Zj[H |-« ((”x)ki[Eyk] o my)k"ka])) Ex,

_(n )lk ~m+1/2 ~m =m ~[m+l/2]

+7 +ka (Zk A7) = o (n)ulEgi] — (ny) [Exi])) Eyi
M[Eerl]H[eru _ M[Em+l]1:][m+l}
Y i Yk Zk Yz + Yk Xi zi

B B 1 (ny), E’"“H”"*”) ds, (3.5)

1 nX i n i 1 = |m
Ry (Z?j;k (2] — e (n)wl ) — (ng )l ) B4
R EFint i 1

B (1) o (m )~ (malE2) ) £

Zi+7Z; Y >
_‘_YYI(:l_X);t [Em+1]H[m+l] + Y;( x)tk [Em+1]H[m+l]
3 + Yk
— (o) Er E - (nx)ikE;;“Flg"*”) ds, (3.6)
m ~m+1/2 [m+1] m+1/27 5 [m+1]
= — H + H H ds. 3.7
13 f;mt/flk <Y+Yk Tk ] Y,+Yk[ zi ] zi ) ( )

The terms related with the outer boundary are

mo —(ny)k ~mt1/2 ~ my\ gl 1/2]
w = L, (22 (™) = (Wl = Ol ED) )

PR () o (Wl — (W) ) B

ZZk Yk
1 m [m ~m+1/2 ~[m+1
ton (Yk ()[BT = (ny) ) — AL / ]) Al

Now we find estimates for the terms of internal edges in Lemma 3.1.1 by finding an estimation for B
and then an estimate for the terms on edges that belong to the boundary in Lemma 3.1.2 by finding an
estimate for B7'.
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Lemma 3.1.1. Let B}, B}, and B'; be defined by (3.5), (3.6) and (3.7), respectively and B =
B + B, +B'5. Then

m=0 ik GF”"

Y By < 42+Z)< o (ny)ualBS) ~ (m)wlEY))

+2 ((n)i (ZiES + ZiES) — (n)i (ZEQ + ZE) ) [
o (O )wl ] = (ol E3)* = (12 = (P12 )

2 ()i (ZEM + ZEM) — (no)u (ziE§g+zkE~§f))[ﬁ§‘f“/2}> ds.

Proof. Since

Z; n Y, 7 n Yy
Zi+Z Yi+Ye Zi+Z Yi+Y

=1 (3.9)
and

Z,' o Yk Zk o Yl
Zi+7Zy  Yi+Y  ZivZe Y+

(3.10)

for B} we have

no= 5 Zm,/ (z&k (ZlA ) — e (n)wlE) — (n)ulE2) ) £

- (”y)ki

A (—a ((n)ulEsy] — (ny)ulEG) ) E37

I () o ()l B

otz (o (alB] = ()l ED) £

Y (ny)ii

[Em+l]Hm+3/2 . Yk(nY)ik [En?+l]ljlm+3/2
Y+Yk

Tk Yl + Yk Xi zi

+(7’ly)klEm+le+3/2 + ( ) Em+le+3/2> ds.
Summing from m = 0 to m = M — 1 we conclude that

- Ny ki ~ 50 (g1/2 ~
L fZ f,kz<zy+z,<><‘(ZiE&+ZkE,?,->[ [+ & ()l B9 = ()il E]) [ES)]
M—1
o X (Onul B = ()l T ()l B3] = Ol ) 1B

+ (ZEY + 2B YY) = o (n)wl BN = (ny)lE)) {EM1>d
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In the same way, for B, we have

e . (mx)ki /2 2
ZB N fz f,.,{z<z,-+kzk><(ZE°+ZE°)[H1 | = ((n)lEY) — (ny)wlE2)) [E9)
M—1
—a ZO ((n)ulEp ™) = (n)WlEZ ) + ()l En] — (ny)wlEx)) [Ept)

—(ZEY + ZeEM) (A1) + o (n)wEM] — (n))wlEM)) U@f]) ds,

and for B,

M—1 M—1
oL B S e (-

Observing that, for general sequences {a”} and {»"} hold

M-1 1 M—1 5
a +d")a =—|—(a )" +(a + a’ +a 5
Z ( m+1 m) m+1 5 ( 0)2 ( M)Z Z ( m m+l)

m=0

M—1 M—1
Z m+1 am bm+1 l —a0b0+aMbM+ Z (ambm+zambm+l+am+lbm+l)
m=0 2 m=0

we get

M—1 1 B 5
"L Bh) < —a(ny)g (—[E2)? + [EX]?
LEB) < ¥ | agzy | -k CIETHED)

m=0

ot ()i (my )i (— [ERES] + [ MYIEN) —2(ny )i (ZiES, + ZES) [
20y ()il EY E%)) [EQ] +2(n )i (ZEY + Z,EM) (A7)
—206 ny ki ((I’lx)k, ) E)?k/l Oc(nx (—[EO] —l—[EM] )
+OC nx kz y)kl( EO EO A]/(I) (I’lx)k (ZEO +ZkEO) [Hl/z]
—2a(ny )i ((n)uil £S5 — <ny>kl[E 1) (E] — 2 (ZEM + ZEM) (L)
+20(ne)i ((n)[EN] = (ny)u[EX]) [@ﬂ) ds.
We also have

M—1 o o ny _ / M-l / 43202

Los=- ¥ ﬁkw<m PP Y (I ) )ds
a ~1/2 FM+1/2

<= ¥ | ame (12— 1) s

which concludes the proof. O
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Let us now analyze the term B}’ for different kinds of boundary conditions. The parameter f3;,
and B3 which have appeared in the following estimation depend on the type of fluxes and boundary
conditions that we consider.

Lemma 3.1.2. Let B} be defined by 3.8. Then

M—1
LB < Y /fklek(‘(<ny>ké$k—<nx>u?$k)2+((ny>kEi‘Z —<”x>k’§%)2)

fkepext §
Ba( 172 - =0 B o1
+7 sz/ (nx)kE)())k - (ny)kE)(C)k - 2Yk Zk/
M+1/2 ~ ~ 3 ~AM+1/2
_ Zk+ / ((”x)kE% — (ny)kEfC‘;’f ZBYk Zk+ / ) ) ds,

where B) = a, B, = 0 for PEC, B; = 0,8, = 1, B3 = o for PMC, and By = 3, = %, Bs =1 for

Silver-Miiller boundary conditions.

Proof. First we consider PEC boundary conditions. We have

m o [m [rm\ g lmn 2 [m rm\ g lm 2
P = ¥ (o (s — o) B — (i (m)eEt — (B2 B ) s
frEFex Jr £k

Summing from m = 0 to m = M — 1 we obtain
- o ~0 =0\ 2 =M =M 2
Z BZ = Z / 4Z - ((nx)kEyk - (n}’)kExk) + ((nx)kEyk - (ny)kExk)
m=0 frEFes Ji Tk

M—1 i i 2
—4 Z ((”X)kE)[’k A (”y)kE)[fk —0—1/2]) ) ds,

m=0

and then

M—1

m o ~ ~0\ 2 ~ ~ 2
Y By < Y} / A — ((n)iEy), — (my)Ep )"+ (na)kEY — (ny)kEX)” | ds. (3.11)
m=0 freFex Jx k

For PMC boundary conditions we have

By = Z / <Hg+l/2 ((”X)kEy[TH/Z] - (”y)kEJ[CTH/Z])
frEeFe f

A ~mt1/2 ~ ~ FylmA1
_ (YkHZ’T P4 (n B! — (ny)kE;g:“) Al ]> ds.

Summing from m = 0 to m = M — 1 results

M1 71/2 M-1
H, ~ ~ a [ ~1/2)\2 o [ imt1])2
By = / S ()0 — (ny)EY ——(H ) _ —(H )
mZ:'O fkeZF'm fk( 2 ( e ’ xk) 4y N =0 'k *
_I:Ié\;l-i-l/Z

- - o [~ 2
— (Bl — ()Y — = (A7) > ds,
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so we have
M—1
1 ~1/2< 70 g0 & 12
Bl < - / A2 (B — (B0 — %
m;() ? 2fk€ZF€’Xf ﬂ( * T VR oy
AMA1/2 ~ ~ Q& ~M+1/2
A ((nokE;Z — (WY — oY ))ds. (3.12)
k
For Silver-Miiller absorbing boundary conditions we have
1 ~m+1/2 My )k ~ ~ = m+1/2
B = 3 % / <—(ny)kHZ"Z+/ L) ((nx)kE;;—(ny)kE;;)>E,£’;” /2
frEFet T Zy

ami1/2 (M) sm Fmy ) pmr1/2
(i O (g — o) ) £
I ~mt1/2 ~ ~ ~m+1
- <YkHZr:+ 4 (o )Ep ! — (”y)kE,?ZJrl) HZ[I:H_ ]> ds.
Summing from m = 0 to m = M — 1 and taking into account the previous cases, we deduce that

M—1
Yo o< ¥ [ 1(<<ny>késk<nx>kﬁﬁk>2+<<ny>kﬁi‘f <"x>k’§55’)2>

m=0 frEFext Ji 8Zk
L ~1/2 ~0 0 L =1
+Z sz (nx)kEyk - (ny)kExk — TYk 2
. - . 1 -
_ 111;1+1/2 ((nx)kE% — (ny)kEfC‘k’If ZT/,( ?}:IH/Z) ) ds. (3.13)

Considering the estimates we found for PEC, PMC and SM-ABC in (3.11)—(3.13) and employing the
parameters 31, B, and B3 concludes the proof. O

By theses two lemmas, we found an upper bound for (3.4). Now we recall (3.3) and derive the
stability condition of the scheme for different fluxes and different types of boundary conditions in the
following theorem.

Theorem 3.1.3. Let us consider the leap-frog DG method (2.32)—(2.34) complemented with the
discrete boundary conditions defined in Subsection 2.2.4. If the time step At is such that

A min{g,u} . 314
A _— .
< max{Cg,Cy} min{f}, (3.14)
where . 5 [3
o+ Py
Cg = —Ciy N> +C2(N+1)(N+2) [ 2 Bt
£ =GN+ sV DIV+ )( +Bz+2min{Zk})’
1 a+ B3
Cy=~CiyN>* +C:(N+1)(N+2) (2 2P
1= 3Cn + N+ 1)(+2) (24 o+ 20D )

with C; defined by (A.4) of Lemma A.1.1 and Cj,, defined by (A.6) of Lemma A.1.2, and B; = o, B, =0
for PEC, B1 =0,B, = 1, B3 = o for PMC, and Pi = B> = 3, B3 = 1 for Silver-Miiller boundary

conditions, then the method is stable.
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Proof. From (3.3) and the previous lemmata (Lemma 3.1.1 and Lemma 3.1.2), considering the
Cauchy-Schwarz’s inequality and taking into account that Z; /(Z; + Z;) < 1, we obtain

y <(eE£4,E£”) o+ (uay H?fﬂ/z)n) <y <eEk,Ek + (wi? l/z)n)

T.eT, T, 9,
1 2 M+1 2 7
a0 Y (1Y 5 B 2 B oy + IV % A P 2 B oy )
€T,
~M+l 2 7 1/2
200 Y (IE oo N 22y + NED g N )
fl.keFint
oAt <1110 oAt M+1/2
—_— E —_— H.
Vaminzy b, 000 * Gminry &, I M)
BiAt M |2 B2t AR
—_— E
2m1n{Zk} kaZFeXt H k HLz(fk) + mln{Yk} f GZF‘M H ||L2(fk)
1/2 M+1 2 ~
12880 Y (B B oy + N P i NER oy ) -
fkeFexl

Using the inequality (A.4) of Lemma A.1.1 and the inequality (A.6) of Lemma A.1.2 (both in
Appendix), we get

. ~ M+1/2 = m = 1/2
mln{g,,u} (HEM”LZ + HH 1/ HLZ(Q)> < max{gau} (HEOHLZ + HH / ”L%Q))
At

+— 5 C,,,Vszax {n; 1} (HH

2 —1 o+ P M |12
+CT(N+ 1)(N—|—2)Atrnax{hk } <2+B2+ 21‘1111’1{Zk}> ||E ||L2(Q)

a+2pBps (a2
2min{Y¥;} Lz
FCAUN + )N+ 2)Armax {1 } 2+ B2) (1B + 1B gy )

1/2 ~ M+1/2 ~
2 oy B iy + I g+ 1B )

+CH(N+ 1)(N +2)Armax {h, '} <2+[32 +

and so, taking Cy = 3C;nuN> +C2(N+1)(N+2) (2+ ),
(min{_&‘,y}—Atmax{hk_l}maX{CE,CH}) (HEMHLz +HHMH/2||L2(Q)) <
_ _ ~ 1/2
(max{&, i} + Atmax {h; '} Cy) (HEOHL + || A; / HLz(Q)>,

which concludes the proof. 0

The stability condition (3.14) shows that the method is conditionally stable, which is natural since
we considered an explicit time discretization. Further, it discloses the influence of the values of «,
hmin and N on the bounds of the stable region. This is of utmost importance to balance accuracy versus
stability.

3.2 Stability analysis of the 3D model

In this section we extend the analysis in Section 3.1 of the TE form of Maxwell’s equations in
two-dimensions to the full three-dimensional time-dependent Maxwell’s equations (2.1) and (2.2),

with the equations set on a bounded polyhedral domain Q C R>.
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We start by noticing that the following vector equalities hold
UXV-W=—UXW:-V, (3.15)
and

ux (vxw)=v(u-w)—wu-v). (3.16)

Recall the leap-frog DG scheme (2.35)~(2.36). Let u, = E/""/* and v = A" in (2.35) and
(2.36) respectively, we have

(8E/T+1’E£1+1)Tk—(f3§i"ff’) _2At(V><H’”+‘/2 ]£m+1/2])

Ti
1 7 g\ plmt1/2
A ———nx (Z+ A2 — an x [E™ ) B ) 3.17
(g (- aniem) £0007) G
and
(uHm+3/2 HZz+3/2> . (uHm+l/2 HITH/Z)Tk — _JAs (V % EgH’I:IIEmH})Tk
1 ~ 5 1]
A <_n x (Y+ [E™H) + on % [Hm+1/2]> A . (3.18)
Yt+Y k oL,
Using the identity
(T B AP = (V) (wxEPLEY)
T; Ti T,

and summing (2.35) and (2.36) from m = 0 to m = M — 1, and integrating by parts, we get

(B EY) g (w2 BIR) | = (B ED) + (nA AL,
k k
1/2 M+1/2 £
A (Vo) o (Ve BIREY) pan Y Ar (Ga9)
T m=0

where
1 . . .
AZ1 — _ <Z+ _|_Z—n % <Z+[Hm+l/2] —on X [Em]> ’E]£m+l/2])
ITi

1 = T |11 = 7|11
+ <Wn>< (Y+[E’"+1]+an>< [H'"+‘/2]) Al “]) - <n><E,§"+‘,H,£ +”)

It I

Let us consider the following decomposition

). Af' =Bl +B,
Tke,%
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where Bj corresponds to the terms on the internal edges

B- ¥ | ( < () g (E7)) - B
f EFmI ik l

1

+
Zi+Z

Mg X (Zk A"+ oy x [E;"D plm1/2

+

x (VIE™ N+ ons m+1/2) H[;n+1
Yi+Yknkl (1[ k ]+ ny; X

_7”ki><(Yk[E~;"+l] ong; X | mH/Z) H[’"+1
Y+ Y

— g x B A g B H[mﬂ}) ds,

and B; corresponds to the terms on the boundary dQ

o ! gmt1/2 sy | lmt1/2

kaFext

1 7 s ~ ~
+ 21, <Yk[Em+1] + any x [H,'C"H/z]) .HIEmH] — g x B ,ngmﬂ]) ds.

Lemma 3.2.1. Let B be defined by (3.20). Then

T 5 ; o AMA+1/21 pMA+1/)2
B M (EM LY g o

" 2(ZIZJ];Z;<) (”"" x [ [EY) — g x [ [Eﬁ”])

1 & = ~ ~
+ 5 (nki X [Héuﬂ/z] EM i x [Hkl/z] E,?) ) ds.

(3.20)

(3.21)
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Proof. Summing from m = 0 to m = M — 1, using the relations (3.9), (3.10) and employing the vector
equalities (3.15) and (3.16), we obtain

M1 o ) i i i
Y Br=Y /.k <4(Z,+Zk) <— [EQ" (1 —nend) [EJ]+ [EY]T (1= nanfy) [EY']

m=0 ﬁkepint

+ a) (- [Flklﬁ]T (I—ma'nﬂ) [Iflkl/?] 4 [I:IIZC"IH/Z]T (I_nkinla) [I:I]?l+l/2]

4Y; +Y;
_Mi"; ([[:1]:”+1/2] + [F]Zf+3/2])7 (I —ngnj) ([HITH/Z] n [HITHO]))
+ 2(Z,Z—ik-Zk) (I’lk,' X [[:]kl/z] . [E]?} — g X [I:Illgw+l/2] ) [E,iw])

1 ~ ~ . .
2 (o IV B = )1 ) ) “

where / is an identity matrix. Since [ — nk,'nii is a positive semidefinite matrix,

Y B'< ) /f <4(Z.a+zk) <[E%]T(1—”ki"5<) [Ezy]>
Juw€Fimt *Jik !

o AMA1/29T (7T (pMA1/2
+4(Yi+Yk) <[Hk I (1 = mimgy ) [y ])

i z(zz+z> (e > [ 1B) = e < [ 1Y)

1 . - . -
+3 (”ki X [Hliwl/z] BN — g x [Hkl/2] E;?) ) ds.

The proof follows from the fact that, since the matrix / — nk,'ngC is an orthogonal projector,

xT (I —nnk)x <x"x for all vector x.

Lemma 3.2.2. Let B} be defined by (3.21).Then

IN

M—1
Y B ) /f (lek<_(”k><519)'(”kXE?)+(”k><Ez?4)'(”k><Ezi‘4)>
kaFext k
B <_ (mox BL2) (o BYZ) - (B2 - (Y1) )

+@2 (e EQ- B =< EY - B2 ) ds,
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where By = a, > =0 for PEC, B1 = 0,0, =1, B3 = a for PMC, and B, = B, = 3 = %for Silver-
Miiller boundary conditions.

Proof. First we consider PEC boundary conditions. We have

—nk X Omk XEm) E,Emﬂ/z] ds,
kEFe\'t fk
and then
& o o =0 =0 =M =M
ZoszngF /f42k (i % ED) - (m x B + (mi x EMY - (e x EM) | ds.
m= ke ext

If we consider PMC boundary conditions we have

nm m a m 34U
Y / g x A +1/2 E/E +1/2}+?nk (n < A +1/2)'H/£ +1]
feEFext Sr k

— N X E~1T+] I:‘Ilgm—‘rl]) dS,

and then
M—1
ZB’Z"S Z / @ —(nkxﬁ,l/z)-(nkxfl/g/z) (n ><HM+/) (n ><HM+1/2>
m=0 fuerenfi \ e

1 U oy -
+ o< B H‘/z—znkxE,@-H,i”+‘/2> ds.

For Silver-Miiler boundary conditions, we have

I =
By =Y /f (- 7 (ze 2 i x E) B
feeFe

1 7 ~ ~
4 Tyknk « (YkEerl Ty % Hm+1/2> .H]£m+l] — g X El:n+l 'H]£m+1]> d
= Z / = ink X (Z;(I:Imﬂ/2 —ny X E,T) Eim1/
freFet? fi 27 k k

1 1 it A
gy X (n X H’"“/z) A" S B -H,E'"H]) ds,
k
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and then

M—1

1 . - ~ ~
ym<y | 8Z(—<nk><E£>-<nkxE£>+<nkxE£4>'<nkxE£4>
m=0 frEFet S k
1 ~ ~ ~ .
+ 87 <— (l’lk X Hkl/2> . (nk XHkl/z) + (nk XH]](M+1/2) . (nk X H£4+1/2> )
k
1 £9. /2 1 MM g
+an>< Kk k —anX k k S,

which concludes the proof. O

Employing the estimates we already achieved in lemmas 3.2.1 and 3.2.2 and using Lemma A.1.1
and Lemma A.1.2 (both in Appendix) we will show in the following theorem that the 3D model is
conditionally stable.

Theorem 3.2.3. Let us consider the leap-frog DG method (2.35)—(2.36) complemented with the
discrete boundary conditions. If the time step At is such that

min{g,u} . 39
<mmln{ k}, ( . )
where | ﬁ [3
o+ Py
Cp = ~CopN?> +CE(N+1)(N+3) 3+ 224 2P
E=5 +C N+ +)<+2+2min{Zk}>’
1 2 2 B2 o+ s
Cht = SV’ + CH(N + 1) (N + )( 5 Tt

with C; defined by (A.5) of Lemma A.1.1 and Cyy, defined by (A.6) of Lemma A.1.2, and B; = o, B, =0
for PEC, B; =0,B, =1, B3 = a for PMC, and B, = B, = %, B3 = 1 for Silver-Miiller boundary

conditions, then the method is stable.

Proof. As for the 2D case, from (3.19) and the previous lemmata, considering the Cauchy-Schwarz’s
and triangular inequality inequality, taking into account that Z; /(Z; + Z;) < 1, and using the inequality
(A.5) of Lemma A.1.1 and the inequality (A.6) of Lemma A.1.2 (both in Appendix), we get
. ~ FM+1/2 - - 172
min{e, 1} (1B ) + 12212 ) ) < max{e, &) (IE°1 ) + 1A )
At _ ~1/2 ~ FM+1/2 =
+ 5 CinN? max {17} (I 20+ 1B g + 1 e+ 1B 2 )

2 -1 B> a+p 7012 FM |2
+CHN W+ 3)armax ('} (34 24 520D ) (1800 + 18 o)

5 . B o+ps ~1/2,2 ~M+1/2,2
+C7(N+1)(N +3)Ar max { iy }(3+2+2mm{yk}) (H 2 ) + 1 HLZ(Q)>.
and so

. _ ~ MA1/2
(minfe, u} — Armax (i} max{Ce,Cu} ) (I1EY |20 + 1221 g )

< (max{&, i} + Atmax {h; ' } max{Cg,Cy}) (||EO||iz(Q) + ~;/2’|i2(9)>7
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which proves the result. O



Chapter 4

Convergence Analysis

A rigorous proof of convergence is necessary for every numerical method. Error bounds for DG
methods applied to Maxwell’s equations were determined for upwind flux in [41], where the error
of the semi-discrete approximation is estimated and for central flux in [32], where the error of the
full-discrete approximation of Maxwell’s equation is estimated. In this chapter we present the error
estimate of fully discrete leap-frog DG scheme in 2D and analyze the convergence properties.

The core of this chapter is Theorem 4.1.5 where the spatial and temporal error of the scheme
(2.32)—(2.34) is estimated. The convergence analysis of the scheme shows that in the case of Silver-
Miiller absorbing boundary conditions, the temporal order is reduced from two to one. In order
to recover the temporal order, a predictor-corrector time integrator is proposed in that last part of
Section 4.1. This idea is extended to an iterative predictor-corrector time integrator in Section 4.2.
such that the scheme remains explicit. We will show that the iterative predictor-corrector scheme
converges to a second order convergent in time implicit method. The stability analysis of the implicit
method is also presented.

4.1 Error estimate

The main result of this section is Theorem 4.1.5 which presents the error of the fully discrete
approximation of 2D Maxwell’s equations. The key idea for the proof is to find a variational
system for the difference between the the numerical solution and a projection of the exact solution,
(Ey,Ey, H;) onto the finite element space V. We estimate the error between the numerical solution
and a polynomial approximation, where the polynomial approximation (ZyE,, #nEy, #yH;) is an
interpolant of (Ey, Ey, H;) having the optimal approximation errors (A.7)—(A.8). Lemma A.2.1 in the
Appendix furnishes an optimal error estimation which plays a central role in our derivation.

The spatial and temporal oder of convergence will be achieved simultaneously, while the temporal
order in the case of Silver-Miiller drops to first order. In order to recover, a modified method is

proposed in Remark 4.1.6. This idea will be generalized and analyzed later in the next section.

To provide a proper functional setting, we need to define spaces involving time-dependent functions
[29]. Let X denote a Banach space with norm ||.||x. The spaces L*>(0,T;X) and L(0,T;X) consist,

41
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respectively, of all measurable functions v : [0, 7] — X with

T 1/2
Wiara = ([ OB ) <o liera = ess sup 1)l <o
0 0<t<T

In what follows, X is shorthand for any of the usual Sobolev spaces H”(2) or the Banach space
L=(Q).
The idea of finding an upper bound for ||¢" — §"||;2(q) is to split the error in two: the error of

polynomial approximation and the error between of numerical and polynomial approximation where,
with triangle inequality we have

m__

14" = 3" l2) < 9" — Png" |l 2@) + 1 PNG" — G" || 12 0)-

In our DG method, we search the approximate solution in the piecewise polynomial space Vy.
Let (ZNEy, ?NE,, #yH;) € Vy be an interpolant of (E,, Ey, H;) having the optimal approximation
errors (A.7)—(A.8). On the external boundary we define the jumps for polynomial approximation
(PNEy, PNE,, PNH;) for different boundary conditions analogous to what we have for numerical
approximation in the following way.

e For PEC:
[PNE,] = 2PNE;, [QZNEy] =2PNE,, [ZPNvH;| = 0. “4.1)
¢ For PMC:
[PNE;] =0, [WNEy] =0, [PyH|=2P\H.. 4.2)
e For SM-ABC:
[PNEx]| = PNEy, [PNE)) = PNE,, [PNH]= PNH,. 4.3)

thrl and

In order to find an estimate for || Zng™ — G"||12(q). We start by integrating (2.9) from " to
(2.10) from /2 to t+3/2_ Then, multiplying the resultant by (uy, vk, wi) € Viy with respect to the

L?-inner product over Ty, we obtain

Em—H _Em Em+l _EmM 1 1 OH
<£xx g / “dtug | (4.4)
k ! Ty

At At T:Kt n dy

m+1 _ m m+1 _ pm m+1
vaExk Exk +e YEYk Eyk Vi = _l /t 3sz dt,vi | 4.5)
> At A . At \ Jm  Ox .
k

k
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m+3/2 +1/2 m+3/2 m+3/2
“sz’ —Hy, ) = 1 /t+ aExkdt,wk 1 /z OE,,
At At \ Jm12 dy At \ Jemr12 Ox
Ty Ty

Recalling (2.32)—(2.34) and subtract them from (4.4)—(4.6) and using the notation

m QNEm Em p)IC’IZ — e@NEm Em

Xi? X ?

m __ m m __ m
Ve ‘@N Eyk’ Py, = ‘@N —Ey,.

and
m+1/2 m+1/2  mm+1/2 m+1/2 m+1/2 m+1/2
Nz QNsz _sz ) 'k = r@NI_Izk _sz

we obtain

m+l _ gm m+1 _ ym m+1l _ gm m+1l _ ~m
€ Xk Xk Ui B P Xk P Xk m +le Vk Vk Ui B P Yk P Yk
XX At 3 . XX At ) . Xy At ; . Xy At
k k k

1 gt JoH,, 0 — anzrzﬂn
= </ o ”k>T,f (G5 (7t ") ) (o .

+ (ZJr’:l:Z (Z+[<@NH;Z+1/2] —« (HX[QNE’?Z] —ny[@NE)’ZZ])) ,Mk>

+<Z;’_’YZ( [n;’;ﬂ/z]_a(nx[g;:]—ny[g;;])),uk> ,

o,

T

m+l _ gm m+1 _ ~m m+1 __ gm m+1 __ ym
e Xk Xk —le P Xk p Xk v S Yk Yk v —le p Yk p Yk
yx Af » Vk yx A » Vi vy Az » Vi vy Af
T Tx Tx

o 1 lm+laHZk a m+1/2 anm+1/2
- A[ (lﬂ a dt Vk) <a (C@NHk )’Vk . ax — =, Vk )
k
m+1/2 m m
<Z+ +Z- ( L@ sz+ ] a (nx['@NEyk] _ny[@NExk])) 7Vk> Ty

2 ) - o (g - m ) o)

(Z++Z Ty

dt wk> . (4.6)
T;

)

’ uk)
Tx

(4.7)

) Vk)
Ti

(4.8)
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n;ﬂ-&-3/2_nzm+l/2 Zm-&-3/2_ ;n+1/2
u : At : y Wk —| U : At . y Wk
Tk Ti
B 1 /lm+3/2 8Exkd 1 /t771+3/2 (9Eyk
o At pmt1/2 8y At pm+1/2 dx ’ .
k

d m-+1 J ;ZJFI J m-+1 J )f'kl+l
- <ay (QNExk ) ,Wk> 7 + ay y Wk + <&x (yNEyk ) awk> . - ax » Wk
Ti k Ti

1 m
_ ( (Y ([ PyER] — [ PyER)) — e[ Py 21,wk>

Yt4Y T,
(o (Ol =y ) — el (4.9)
Yt+Y- Ly y Tz s W . .
k
Let uy = & + m“ vk =&+ y”,f“ and wy = T]ZZH/Z + an/z in (4.7)—(4.9). Summing from

m=0tom =M — 1 and using the symmetry property of the permittivity tensor &, we get

(e, &) + (il 2 ) = (eB.80) + (mna )
M-1

YA (V « nzl/z,éz?> A (V - é;ﬁ”) R Y R, (4.10)
m=0

with
Zt - ’1'17]( +Sr2nk +S’3n7k +Szi7k,

being ST, S’Z"k, S5, and Sy, defined below using the average notation éxm+1/ 2 = (G + mH) /2,
Vi k

m+1 _ ym m+1
m = (&Cxpx" P, é[m—&-l/Z) " <8n’pyk — Py, §m+1/2]>
T Ty
m+1 _ m+1 __
+ (%xpxk pxk gym+l/2]> + (8 py,\ pyk é}m+1/2>
At At
Ty Ti

m+3/2_ m+1/2
+ (H Zk Zk n[m-‘r]}) ’ (411)
Tx

At Pk
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) m1/2\ g m+1/2] 1 /’m+l oH, (m+1/2]
m - _ - H 3 o k
S2k e <«@N ) >a k Tj‘ A\ w3y dt, &,

Tk
J m+1/2\  g[m+1/2] 1 " 9OH., (m+1/2]
+ <ax <¢@NHZ/{ )? Vi Tk_E /[m a dt gy )
k
J m+1 [m+1] 1 32 8Exk [m+1]
— (ay (@NExk ) > Nk + E %nﬂ/z ay —=dt ’nzk )
k
J a1y L " 0By, e
+ <ax (PVE) )~y Los Sarnt R (4.12)
k
mo ny + m+1/2 m [m+1/2]
t= (g (2o ) el -mize)) 8007

{"’C— (Z (a2~ o (n PNE) — m | PNEL) ) JL"*”ZQ )
Ti

1 m m
{ — (Y[ PVERY —ny [ PNEDTY) — aloyHE ), niﬁ”) . (413)
Ty

and

m —-n m m m m
S4,k = < 2 (Z+ [nZk+1/2] - (l’lx[gyk} _ny[gxk])) ) )Ek —H/Z])a
T

Zt+7-
ny +r,.m+1/2 my_ m [m+1/2]
(gt (e ) g - mig)) 7))
1 m m m+1/27 __[m+1]
(e O g ) i) et )
m+1 [m+1] _ m+1 [m+1]
(mutlrt) (o) (4.14)

In what follows we will derive upper bounds for ST, §5';, 85, and §}'; in Lemma 4.1.1 — 4.1.4.
We employed Cauchy-Schwarz’s and Young’s inequalities frequently in our derivation.
+
H”( ) 6 AI/Z

2
dt
HP (Q)
(yg 1720 +2ZH§ 1220 +!§M!\iz(g)>

(r g +22||n’"“/2HL S+ M“/znp(g)) (4.15)

Lemma 4.1.1. Let S’l'fk be defined by (4.11). Then

Ch*° (€
Z Y STS W <5/0

m=0 T, €T,

0H,
ot

IE||?
ot

w72

where p >0, 6 =min(p,N + 1), C is a constant independent of (Ey,,Ey,,H, ), h and N, and & is an

arbitrary positive constant.
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Proof. We start by observing that

Im+l

p"kdt

o = P23 r H /.

L2(Ty)

Applying the Cauchy-Schwarz’s inequality and the approximation property of Lemma A.2.1, we get
m+|

2
9Py,
<
/tm P dt At/

Using Cauchy-Schwarz’s inequality, the estimate (4.16) and the Young’s inequality in the form

tm+1 tm+1

OE, ||*
ot

Bpxk

hZG
dt<AtCk/ dt. (4.16)

2
(1) N7p

HP(Ty)

o, 1
bh< — — b,
a a+26

where § is an arbitrary positive constant, we obtain

— m+1 2
" eC hic /t - (9Exk (m+1/2]
<<k di+ 3
UETSNT o | || ”5 lz2(
eC hi" o aEYk ? 4 [m+1/2])2
—_ dt + —||&y
+ 5 N2?p /tm ot HP(Ty) + 2 ”ék ”Lz(T")
L EC uc hZG /zm+3/2 8sz 2 it 7”” 1] ”
5 NZP m+1/2 at HP(T) %k Lz(n)
Summing from m =0 to M — 1, we arrive at (4.15). ]

Lemma 4.1.2. Let S5, be defined by (4.12). Then

CMh*°2 (1 1
T ¥ ste< S (§1E - qranan + 510 rme

m=0Te.9,
+CAP 1/”&/2 d+ /“92]{ dt
0 Jarj2 H(© ) 9 | (q)

1 . m
+6 <2”50Hi2(9)+ Z e ||%2(Q)+2’§MH22(Q)>

m=1

92E |2
012

<||n”2||L2 +2Z||n’"“/2||L +||nM“/2uL2(Q>>, .17)

where p >0, 6 =min(p,N + 1), C is a constant independent of (Ey,,Ey,,H, ), h and N, and & is an
arbitrary positive constant.
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Proof. 1t is easy to check that

) m+1/2\ g[m+1/2) 1 i dH,, (m+1/2]
() ) ([ e
k

a¢m+ /2 m1/2] B 8H21Z+1/2 /thasz ( )d é 12
gy O ; dy At Jm Oy "
k

From Lemma A.2.1 we obtain

a¢m+1/2
-~y

Ti

H" 1/2
=Cyr A (4.18)
Lz(j}«)

where 6 = min(p,N + 1). Applying Cauchy-Schwarz’s inequality and using (4.18), we arrive at

a¢$+1/2 [WH‘]/Q] Ch H m+1/2H2 7H€ m+1/2 H
ay < SN HP (Ti) i L(T)°
Tk

Employing Bramble-Hilbert Lemma [17] yields to

2
H aHm+1/2 /lm-H aHZk dt < CAZS /l‘m-H iz <aHZk> 2 dt
— 2 9
3y At ay LQ(Tk) tm af ay LZ(T}{)
and by Cauchy-Schwarz’s and Young’s inequalities follows
aHZ;lJrl/z B 1/tr71+1 a ZA " 5 m+1/2
dy At Jm dy "k ;
k
CAB (™92 [oH, \ || 12
< = k dr+ 2 m+1/2] '
=5 /zm ot2 < ay > (1) + ”gx ”LZ(Tk)
The other terms in S35/, can be bounded in a similar way. Therefore,
h26 2 hZG 2 20 h2
+1 +1)12 m+1/2)2
e S s BT Py + 5 Nz,, 518 ||Hp<m +5 Nz,, P
N CAS ("1 92 (JE, OE,, i
6 m+1/2 8l2 8y Lz Tk 8[2 Bx L2 (Ty)
T s (aHZk) 7 <aHZk> d
5 m 81‘2 8)} LZ Tk atz ax L2(7}()
+1/2 +1/2 m+1
SIS ey + B1ET P ary +280m" g
Summing from m = 0 to M — 1 we arrive at (4.17). ]

In order to find the estimate for the terms related the outer boundary dQ, it is necessary to apply
the boundary conditions as defined in (4.1)—(4.3). We will observe the influence of the type of
boundary conditions on ng - The terms that arise from applying SM-ABC will change the temporal
order in the final estimation in Theorem 4.1.5.
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Lemma 4.1.3. Let Sg’fk be defined by (4.13). Then

CMhZG 2

o
s, < w2 (14 2 ) 1l
mZ’O Tk;%. SN2p+1 mln{Zlf} L=(0,T:H7(Q))

CMh?°~2 a
+ G G (14 {Y}) [CATR—

+ BsCZ(N +1)(N +2)At /TAt/z IE| dt
166 min{Z}} 0 1 ||1=(a0)
N B4sC2(N+1)(N +2)Ar /T oH. || 0
328 min{Y?} a2 ||l 9t | =(a0)
0
+ S0+B) (1€ g +22H¢3 20 + 167 1220
6 m
+ B (I +2Zun g+ IR g ), @19)

where p > 0, 6 = min(p,N + 1), C and C; are constants independent of (E,Ey,,H,), h and N, and
0 is an arbitrary positive constant. Moreover, By = 0 for PEC and PMC boundary conditions and
Ba = 1 for Silver-Miiller absorbing boundary conditions.

Proof. In order to estimate )7, c ; S5, let us write I [QNExmk] | fr fir C Fint ag
IPNEN () = | PNEL —ER +EY — PNED 1205
< PNEL —Enllizs + IEw — PNER 1210)-

By Lemma A.2.1 we deduce that

201

N2p 1

| PVEL —EZI ) < VL -

where 6 = min(p,N +1) and p > 1. In the same way, we obtain

2 1
| P — BN <M g2
N L2(fx) N2 Hr(T)"

Similar estimates hold for ||[ZNE] ) and |[Z~H.

2
HLZ ]”Lz(f[k)'

Let us now consider the edges that belong to the external boundary dQ. In the case of PEC

boundary condition we have [ 2y H,, 1/ 2] = 0. Since myEy] —nyE}} =0, then

N[ PNED = ny [ PNELD) = 2ni( PYED — EI) —ny( PyEL —ED)).

For PMC boundary conditions we have [#yE}}] = 0 and [ZyE}] = 0. Since H, 172 Z 0, then

[:@NHWH_I/Z] (y HZZ—FI/Z HZ;H_I/Z).
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Applying Cauchy-Schwarz’s inequality, (A.4) of Lemma A.1.1 and Young’s inequality, for the cases
of PEC or PMC boundary conditions, we obtain

m C o T TR
Y sy <)Y gCT(N‘i‘l)(N‘i‘z) 1+Wykz} ZN2p+1”HZt‘ [ e(my

T.eT, T,eTy iev

C 2 o hi2672 mi|2
—i-gCT(N—l—l)(N—i-Z) 1+WZ]§} i;kWHEi e (1)

O . mi1/2 O\ gimt1/2 O, [mtl
1 A e [ P Hriz<Tk)). (4.20)

In the case of Silver-Miiller absorbing boundary condition, on the edges that belong to the external

boundary, we observe that

ZHH P - e Er P R TP =0, Y ED - EDY) — HIH =0,

Thus,
ZHPNHE ) — ([ PNED] — [ PNED]) = 27 PyHy P — (0, PNED — ny PNEL)
=2 (PyHL TP~ HETP) — (n(PNED — ET) —ny(PNE! — EI))

1/2 1/2
+ny(Ey TP BN —ny(ELT - ED),

and

1/2 1/2

Y ([ PNERT] — ny [ PNERT]) — [ PnHy = Yt (0 PNEN —ny PNEDY) — yHL T
1 1 1 1

=Y (n(PNE) T —E)T) —ny(PNELT —EQTY)

1/2 1/2 1/2

—(«@NHZ,1+ / _HZfZJr / )+sz+1 —Hz’Z+ 2

For f; € F*', we obtain

ny m+1/2 m+1/2 1 N QE
————(n(E —E")—ny(E —E! <— — dr.
HZ++Z (ns(Ey, w) = (B %)) () 2min{Zg} Jom o1 |l 1=
In the same way we get the estimate
m+1
Hl (HmH — gt PO S i 2 dt
— 4 k —= . .
Yt4+y-— - % ro(fy  2min{¥i} Sz || Ot || gy

Therefore, to estimate S5, we use (A.4) of Lemma A.1.1, and we observe that we need to add the

terms
e LR L e L
26 8min{Z}} o ot ) » o llsk [2(T)"
1 CHN+1)(N+2)Ar /t’”*‘ oH, ||I” " é”nz[m+l]||22
26 16min{Y?} 12 || 9t || - » M i),
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to the right hand side of (4.20).
Summing from m = 0 to M — 1, leads to the estimation (4.19). O]

The boundary terms in (4.10) given by Sy, are similar to }.7,c 7 A}' (Equation (3.4)) that was
estimated in Section 3.1 ( by Lemma 3.1.1 and Lemma 3.1.2).

Lemma 4.1.4. Let S}, be defined by (4.14). Then

Mil Y S < lC%UV—F 1)(N+2)max {n; '} <2+[32+O‘_+[31) HéMHiZ(Q)
m=0Ticq 2 2min{Z;}
+§CT(N+1)(N+2)max{hk } <2+B2+2min{Yk} ! HLZ(Q)

1
+ 5N+ DN+ 2)max ('} 2+ Bo) (1€ ) +Im Iy ) - 2D)

Proof. Following the arguments we used to estimate } 7 c 5 A}’ in Section 3.1, we can find an upper
bound for Y7, c 7 S}’ as

" o M+1/2
RIS & Ry LY n |
2027 e < Smm{z }fezmu 125 Smm{y}fgwn[ LG A
+ X (16 g I ez + 180 2 I ez
keFmI
ﬁl M2 ﬁZﬁB M+1/22
Amin{Z;} kaZFe"’ 18 HLZ(fk) + 2min{Ye} P ;m (7, ||L2(.fk)

M+1/2

1/2
B X (I 1602y + 1M 2 16 s )

fk c Frext

where B = a,, = 0 for PEC, B; = 0,5, = 1, B3 = a for PMC, and B; =, = 4, B3 =1 for
Silver-Miiller boundary conditions. As in the proof of Theorem 3.1.3, using the inequality (A.4) of
Lemma A.1.1 and the inequality (A.6) of Lemma A.1.2 (both in Appendix A) we obtain the estimate
4.21). O

The upper bounds we have already found in Lemma 4.1.1-4.1.4 give an estimate for R}’ in
(4.10). According to (4.10) it is enough to employ inverse and trace inequalities and polynomial
approximations which are all stated in Appendix A, to find error of polynomial and numerical
approximation.

Theorem 4.1.5. Let us consider the leap-frog DG method (2.32)—(2.34) complemented with the
discrete boundary conditions defined in Subsecection 2.2.4 and suppose that the solution of the
Maxwell’s equations (2.9)—(2.10) complemented by PEC, PMC or Silver-Miiller absorbing boundary
conditions has the following regularity:

Ey By H, € L*(0, T HT1(Q)), %, 95 9 ¢ 12(0, Ty S+ (Q) NL=(9Q)) and %k, 2B I ¢
L*(0,Tr; HY(Q)), s > 0. If the time step At satisfies

min{e, i}
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where Cg and Cy are the constants defined in Theorem 3.1.3, then, for the case of PEC and PMC
boundary conditions, holds

max (HEm _EmHL2 + HHm-i—l/Z Hzm+1/2HL2(Q)) < C(At2 +hmin{s,N})
1<m<M
7 1/2 1 2
—i—C(HEO—EOHLz + 15 B )
and, for the case of Silver-Miiller absorbing boundary conditions, holds
_B m1/2  Emtl/2 in{s N}
1glnagXM (HE’” EmHLz +||H; —H; HLZ(Q)> < C(Ar + pmin{sN

+C (1E® = Bl oy + 12 = P )

where C is a generic constant independent of At and the mesh size h.

Proof. From (4.10) and taking into account Lemma A.1.2 and the estimates from previous lemmata,

we obtain
. M M+1/2,2 = - 0 1/2,2
min{e. 1} (116" Faqy + 172"l ) < max{e, @} (160 gy + 172 )
At 1/2 1/2
5 oV max {15} (1 + 1E° By + 2 Py + 16 )
+AtS(7+ Ba) (Z 16" 122 ) + Z |n’"“/2||Lz<g>)
Atd
522748 (1600 + 1Y Py + 1 gy + I g
LW+ DN+ 2)Amax {1} (24 B+ =SB e,
T k 2min{Z;} (@)
_ a+2BB3\ | m+1/2
+C%(N+1)(N+2)Atmax{hkl} <2+ﬁ2+2min{Y}> H / HLz

+CHN+ DV -+ 2)Armax {1} 2+ B2) (1E°)2: g +Hn‘/2HL2(Q))

Ch* At T 9E | T+Ai/2
+—7, | € / dt+u / dt
5N P 0 H”(Q) At/2 H”(Q

ot
2CAt* [ T+A1/2 02, |
=5 |
0 At/)2 H'(Q or? H'(Q
2)

0H,
ot

82E
2CTh*° 2 [, a 2
+6]\721'7+1<N +<1+mm{Zk2}>C N+1 N+ ||E||LN0THP ))

2CTh** % [, a
TSN (N +<1+min{Yk2}>C (N +1)( N+2>HH IZ-(0.7:0(22)

BaC2(N +1)(N +2)Ar? /T—Af/2 JE|?
: dt
86 min{Z?} 0 o 12(99)
BsC3(N+1)(N+2)A> [T || 9H,
a0 Jun| 9 ar
166 min{Y;’} a2l 9 |90




52 Convergence Analysis

where p > 0, 6 = min(p,N + 1), C and C; are constants independent of (E,,,Ey,,H.,), hx and N,
0 is an arbitrary positive constant, 4 = 0 for PEC and PMC boundary conditions and f; = 1 for
Silver-Miiller absorbing boundary conditions.

If (4.22) holds, using the discrete Gronwall’s Lemma (Lemma A.3.1 in Appendix A) we obtain

220 < Cle M) (1€ +in

2 T+M1/2|| 9,

dt + Ath*° /
At/2 or

02H, |*
012

M+1/2,2 1/2,2

1E¥ 172y + IIm:

T
+Ath*® /
0
2

T 92E | T+A1/2
+At4/ = dt+At4/
0 | ot H'(Q) Ar/2

_ m — m+1/2
S [ [ e 1 [
T-M/2 || JE ||? H,
+BsAr? / o dt + BsAr® / 0 dt).
0

871‘ At/)2 dt
We complete the proof by using the triangle inequality and the hp approximation proper-
EM|| 20y and || 2yHY TP —

22

JE

d
ot !

HP(Q)

HP(Q)

dt
H'(Q)

T

[=(39) 12(3Q)

ties of Lemma A.2.1 to estimate || ZyE) — EY||;2 ()

M+1/2
HY P2

O]

Remark 4.1.6. We want to remark that in the case of Silver-Miiller absorbing boundary conditions
we only get first order convergence in time. A possible way to recover second order convergence is
to consider a locally implicit time scheme (see e.g. [32]). In order to keep efficiency, we propose an
alternative which is explicit and second order convergent in time: )
Fm—+3/2

For each time step solve (2.32)—(2.34) and save the solution in the variables (Eﬁ“,ﬁ;’;“,Ha ).
m+1 gm+1 m+3/2
Xk ’Eyk ’HZk
ical flux by the following expression

Then the numerical solution (£ ) is computed replacing in (2.32)—(2.34) the numer-

—ny ~mA1/2 [Em+[Em+1) B [Em!
Z*fZ* Z+[Hzm /}—Ot 1y y 2y _ny[ ] 2[ |
’ +1/2 (B +Ey ] EY)+[Er!
Z*Z—Z* Z*[Hm /} a(n0tr _ny[ | 2[ |
~ - m+1/2 Fm+3/2
+[H:
- <Y+( (BT oy [Er) g 1)

We will determine the order of temporal convergence with this modification in time integrator later in

next chapter.

4.2 TImplicit and explicit iterative time integrators

The temporal order of convergence of the scheme (2.32)—(2.34) is reduced from second order to first
order due to the terms that arise from Silver-Miiller absorbing boundary conditions. In Remark 4.1.6
we propose a predictor-corrector step as time integrator in order to recover second order convergence
in time. In this section we study an iterative scheme and its relation with a second order convergent
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implicit method. The scheme in Remark 4.1.6 can be viewed as a particular case of the iterative
technique, where only the first iteration is computed.

The iterative method is defined in Subsection 4.2.2 and we will show, in Theorem 4.2.4, that
its solution converges to the solution of the implicit scheme defined in Subsection 4.2.1. In this
way, we can compute the numerical solution with a fully explicit iterative scheme expecting similar
convergence properties to the implicit method.

4.2.1 Implicit method

Instead of backward approximations used in the explicit leap-frog DG scheme (2.32)—(2.34), in order
to define an implicit leap-frog DG method, we use average approximations E"+1/2 for E™+1/2 and
A1 for A™+! where

plnryy _ EMHEM

] gm+1/2 +I:Im+3/2
H = .
2 ’ 2

(4.23)

The scheme defined in the following way: given an initial approximation (EQk,E)(?k,FI;/ 2) € Vy, for
eachm=0,1,...,M — 1, we compute (EQZ+I,E;’Z+1,FI$+I/2) € Vy such that, V(uy, v, wi) € Vy,

E_'erl . E‘vm+l _ Em
X) X y y Fm+1/2
<sxx L : +8xy : : y Uk = <8yHZk / 7uk)T
k
Ty

At At
—-n m+1/2 = m+1/2] = m+1/2)
+<y_ ZY[H: | —a (nEy ] —ny[Ex ] ,uk> , (4.24)
Zt+Z7 ( ‘ ( ? Y )) T,
E_'erl _Fm E‘varl i
Xk Xk Vi Yk _ Fm+1/2
k
Ny — 1 =[m =[m
+ <z+ o (2 e (B B ) ) ,vk> . @425
Ty
Hm+3/2_Hm+l/2 - -
(u g At . Wk = (ayExk+ - axEykJr ’Wk)Tk
Tx
(g (OB B - oA ) 4.26)
Yt4+Y— y o

The boundary conditions are considered as for the explicit method but using (4.23). We note that
equations (4.24)—(4.26) are defined implicitly, since the upwind fluxes involve the unknowns E)’C’;“ ,
E;Z“ and Hj, 32 n the following, we will provide a sufficient condition for the L?-stability of the

implicit leap-frog DG method (4.24)—(4.26) for the case of SM-ABC.

Choosing ux = AE T v = AE™ Y and wy = ArA™™ we have
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(SE_'IT-H?EIT-H)T,( . (EElTvEIT)T}( — JAs (V « H;:+]/27E1£m+1/2]>Tk

—hy +rgmt1/2) olm+1/2]7 = [m+1/2] = m+1/2]
+2At(z++z (24P = o (B =y [ ) ) B >8Tk

Ty +rgmt1/2y slm+1/2ly  ramt1/2) i m-+1/2]
+241 (Z++Z_ (Z 1) = o (m B2 = g [EEV) ) )ar/
427)

A4 Zk

(uFIQ,’Z“/Z,H;Z“/Z)T B (uggﬂ/z H;n+1/2)T — oA (curl EZHIJ‘_LK"H])T
k k k

+ﬂ“Q4+WKYWME“WﬂM@“D—Mﬂ”ﬁ)@?ﬁhf
k

(4.28)

Using the identity,

(curl Byt A ) = (VA B (mBp By AT
T T Ty

summing (4.27) and (4.28) from m = 0 to m = M — 1, and integrating by parts, we get

- = ~M+1/2 mM+1/2 50 © 71/2 71/2
(SEJQ/I,E}(M)T]C-F (.uHZk / aHZk / )Tk - (8El(<)aEl(c))n + <l'LHZk/ 7HZk/ )Tk
M—1

Iy (v X ﬁ;k/z,gg)T v (v x FIZIH/Z’E%)T oM Y Ap, (4.29)
k k m=0

where

m —ny ~m+1/2 =[m+1/2 =[m+1/2 =[m+1/2
R ————
k

Ty +rgmt1/2y Slm+1/2ly  ramt1)2) = m-+1/2]
# (7 (2 (gl ) ) ) £

1 Fm+1 Fm+1 7 lm+1 iylm—+1
(e (0 Bz )i e ) )
bl pmtl gl
_ (an;’;+ —n B AL ])aTk.

Summing over all elements T; € .7}, we obtain

), Al =B'+B3,
Tkee%

where B contains the terms related to internal edges and could be written as

m __ m m m
| = By +Bj,+ B,
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where
nkl m+1/2 =|m 2 =[m+1/2 =[m+1/2
h= X | ( 7 (GHA ) = a ()l B = ()l ) B
fkeFmt ik 1
(nf)ik ~m+1/2 m+1/2 =[m+1/2 m+1/2
gy (B o (B = ()l ) ) £
Yi(ny)wi =m m Yi(ny); = ~[m
gl SO
i k 1+Yk
+(n)Er A 4 (ny)ikE;’;*‘HZ[T*”) ds, (4.30)
nxkl —m12 =(m-+1/2 =m+1/2 =m+1/2
b= ¥ [ (Z o (AP — e ()l = B ) £
f EF"” ik
Ny)j =m+1/2 =[m+1/2 =[m+1/2 =m+1/2
+3 QZ’; (2l = o ()l B2 = ()l B 20) ) £
Yl(”X)kt m+1 7y [m+-1] Yk( )ik m+1 [m+l]
- (nx)kiE;';+1H£T+l] - (nx)ikEy";“HZ[T*”) ds, 4.31)
and
a [mA-1]7 7 [m+1] Q] Flmtl]
— a4 artthgmt g, 432
b fgvmz/fm <Y+Yk a ] YH—Yk[ @ > ' 32

and B} are the terms of the outer boundary

m_ —(ny )i —m1/2 ~m+1/2] 172\ mlm1/2)
B- ¥ (2Z (2™ = (52 = ()W EE 2T ) £

(nx)k ~m+1/2 =[m+1/2 =m+1/2 =Im+1/2
5 (AT = o (nWlB) = (B2 ) ) B

! pm m Flm+117) glm+1
gy (e (B3] = ol ) — ol ) A

— (kB = () By B ”) ds. (4.33)

We find an upper bound for BY' in Lemma 4.2.1 and for B%' in Lemma 4.2.2.
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Lemma 4.2.1. Let B, BY, and By be defined by (4.30), (4.31) and (4.32), respectively and B}' =
BY'| + B, + B'5. Then

ZBm< )y £ 2(Z+Zk)<_(ny)ki (ZES, + ZED) [
m= f GF’”’ k

+ (no) (ZES + ZED) (2]
+ ()i (ZEY + ZEM) Y]

— (n)u (ZEM + z,EM) [HM+1/2]> ds.

Proof. Considering the equalities (3.9) and (3.10) for B} we have

BYy =5 /
zﬁk;int Si Z +Zk

Al

(o (ol B = (B ) B
(
(-

ZIA ) — o (BN = ()l BV ) B

Z+Zk

Ny)i a" =[m m m
zizkk 2 = a (B3 = ()i [EL2) ) B
ny ik m+1/2] Crplmt1/2] |
g (o (Ol — () BN ) B

(”y)kl [Em+1]H;Z+3/2 Yy (”y)tk [Em+l]Hn.1+3/2
Yi+ Y bl

=1 Fm+3/2 =1 m+3/2
4‘(”y)lciEkar]HZ:+ / + (”y)ikExiJr]HZPr / > ds.

Summing from m = 0 to m = M — 1 we conclude that

M—1 . (I’l ) ) B .
B" — _ \"Wki _ ZiEO +Zk H1/2 4 ZEM+Zk HM+1/2
o 11 f[_k;,'m fik 2(Zl +Zk) ( ) [ ] ( ) [ k ]

+20 Z (O )w B2 = ()42 [Ei?*l/z]]) ds.

In the same way, for B}, we have

M—1 (l’l ) .
B = I (Z,E) + ZES) [ — (ZEM + ZEM) [ )
mZ:’() 12 ﬁ_k;:im fik Z(Zi +Zk) ( ( ) ( )

M—1
—2a Y ((n)ul B = o)l ELY2) [E£Z’“”H) ds.

m=0
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Then

) 2 70 (AL =0\ 1771/2
Y. (BN = X i+ Z0) +Zk) — ()i (ZiED + Z4ES) (A% + (no )i (ZiES + ZiES) [/
m=0 kaF”" k

2
—2a ( E[m+1/2] —( y)ki[EJ[CT+1/2]]>
ny ki ( tEM +Z EM) [HM—H/Z]

Ok (ZEM + ZEY) [HM“/2]> ds.

For B'; we have

which concludes the proof. O

Let us now analyze the term on the boundary.

Lemma 4.2.2. Let B} be defined by (4.33). Then

M-t | ) . 1/2 . -
ym< ¥y /f4<HZ/ (WS, — (B FEE 2 (e — (n L) ) ds.
feeFext J Ji

Proof. We have

1 m = |m L o |m
Bi=5 ) / (( (ny )z 2 4 (z)k ((nx)kE)[’k—H/Z]_(ny)kE)[fk+1/2]))E)[Ck—H/Z]
freFen i
+

k

<(nx)kFIZZH/2 B (’;)k ((nx)kb:y['f“/z] B (ny)kl:?i',f'ﬂ/ﬁ)) g2
k
1 m =m =m m
_ <YkH[ +1]+( i Eyk+1 —(ny)kEka)H[ +1]> ds.

Summing from m = 0 to m = M — 1, we deduce that

M-1

L =12 = - ~M+1/2 = -
y <y / 4<sz/ (B, — (my)ES) =AY (ny)e —(ny)kEQf)>ds.
m=0 freFe ¥ i

O

Theorem 4.2.3. Let us consider the leap-frog DG method (4.24)—(4.26) with SM-ABC. If the time

step At is such that
min{g, u}
At < Ci_mln{hk}, (434)
N
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where

1
Cy = 5C,~,WN2 +2CE(N+1)(N+2),

with C; defined by (A.4) of Lemma A.1.1 and Cyy,, defined by (A.6) of Lemma A.1.2, then the method is
stable.

Proof. From (4.29) and the previous lemmata, considering the Cauchy-Schwarz’s inequality and
taking into account that Z;/(Z; + Z;) < 1, we obtain

e e M 1/2 M+1/2 1/2 1/2
Y (BN B+ (it Py ) < Y (6B ED) + (uy %))
1€ T 1€,
l 2 M+1 2 =
80 Y (19 Bl B oy + IV < B gy 1B oy
e,
M+1 2 e = ~1/2
80 Y (B Nz + NEM o) A 1||Lz<ﬁk)+<||E,?HLz<ﬁk)+r\E£||Lz<ﬁk)>||[HZk/]|rLz<ﬁk))
fikEF[nI
M-H 2 o
8 Y (oo 1R 2y + WA P2y VB sy ) -
JeeFe!

Using the inequality (A.4) of Lemma A.1.1 and the inequality (A.6) of Lemma A.1.2 (both in
Appendix), we get

M+1/2)2

min{e, 1} (1B |20+ 112 ) ) < max{&, i} (1B o) + 1 )

1/2,2 M+1/22

A GNP max {1 (17

= 22y + IE 2 + 122

oy +IEY 20
_ =, - 2
+2C§(N+1)(N+2)Azmax{hk1}<||EMHL2 Ay ||L2(Q))

+2CH N + 1) (N +2)Armax (i} (1B s )+ 12 2 g ) -
and so, taking Cy = 1CjnuN? +2C2(N +1)(N +2),

(minfe,u} —Armax ("} o) (1BY B0+ 18221 ) ) <

. _ 1/2
(max{&,a}+Armax {h; '} Cy) (HEOHL )+ 1 / HLz(Q)>,
which concludes the proof. O

Although the implicit method (4.24)—(4.26) is conditionable stable, the stability condition (4.34) is
less restrictive when compared with the stability condition (3.14) for the explicit method (2.32)—(2.34).
Moreover, following the proof of Theorem 4.1.5, we can easily derive that the implicit method is
second order convergent in time even for the case of SM-ABC. Note that the drawback of this method
is its computational efficiency.

4.2.2 Iterative explicit method

The equations (4.24)—(4.26) are implicit and thus the computational effort to compute the numerical
solution is higher when compared with explicit schemes. To avoid this, we will consider an iterative
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process being each iteration explicit. This process starts, as before, with an approximation to the

initial data which we denote now by (Efk,E}Ok,H 1/ 2) € V. Foreachm =0,1,.. — 1, we initialize

the iterative process by
Em+1o Em. o Emtlo _ pm I:IZ':’+1/20 A

X Yk Vi’

m+1/2

A 1/2,n+1
s ﬁnd( m+1 n+1’E;Z+1,n+1 Hm+ /2,n+ )E

The n+ 1" inner iteration of the iterative scheme, forn =0,1,2, .. o

Vv such that, V(ug, vi, wy) € Vy we have

Am-+1,n+1 Am pm+1,n+1 m
Exk _Exk Eyk _Eyk o 8I:Im+1/2
Exx At +£xy At y Uk - Iz y Uk T
k

Tk

. (—n (Z+ [Hm+1/2] (nx[E)L;n+1/2,n]} _ny[E)[Cmﬂ/z.,n]])) ,uk> )

Zt+27Z- T,
(4.35)
Am+1,n+1 1,n+1
c gt Em+€ gttt _E;’Zv :—(8F1m+1/2v)
yx At yy At s Vk . x Iz » Vk T
k
My Hrymt1/2 Alm-+1/2.n] Alm+1/2.n]
+ (M <Z A"~ a (”x[Ey ] —ny[EX ])) 7Vk> o
(4.36)
[:Im+3/2,n+1 _H@+1/2 . .
(u 2k X 2k Wk _ (ayEgz+1 _8xE§Z+17Wk)Tk
T
1 + Am+1 Am—+1 rylm+1,n]
+(y+_|_y— (Y (nx[Ey | =ny[EY"T]) — o[ H, ])7Wk aTk7
(4.37)
where . _— A
plot/za) _ BN Ny A2 AR
2 ’ 2

When following convergence criterion is satisfied
A AmA3/2041  ym+3/2
HEm+l,n+l £l nHLZ < tol, HHZm+ /2.n+ _I_IZ’”+ / JlHLZ(Q) < tol,

for some pre-defined small constant tol, then the current time step m + 1 is terminated and the
correspondent numerical solution is denoted by (E;ZH ,E;;“,I-AI;ZH/ 2). If we only perform the

iteration n = 0 we obtain the same method as in Remark 4.1.6.

We will show that the solution of the iterative predictor-corrector scheme (4.35)—(4.37) converges
to the solution of the method (4.24)—(4.26) under certain stability conditions. Let define the difference



60 Convergence Analysis

between two successive numeric values of electromagnetic fields by

)

S E"vm+1 _ E"vm+1,n+l _E"erl,n
n=x - c Xk

pm+1 __ fm+1n+1 m+1.n

S.Em ! = £ — Emtin,

3/2 3/2,n+1 ym—+3/2
5Hm+/ H;:t+ /2.n+ —HZ(H /2n

Y

forn=0,1,2,---. We will find an upper bound for J, E’"Jrl R E’”“ and &, Her3/2

theorem.

in the following

Theorem 4.2.4. The the solution of the iterative predictor-corrector scheme (4.35)—(4.37) converges
to the solution of the method (4.24)—(4.26) provided that (3.14) is satisfied.

Proof. The condition (3.14) ensures that || 8£™ ||z (q) and || SoH;" 32 12(q) are bounded. Taking
the difference of (4.35)—(4.37) between two successive iterations, n+ 1 and n, and replacing uy, vi

and wy by, respectively, 8,£7, 6,,@;’;“ and 6,H;, 77+3/2 e obtain

Ti
€Ty 2 SiweF it Jik

¥ o af), =% ¥ [ (Wk" ()1 [E1] = (g a1 [E11]) S,E7

(nx)ik Am1 Sm+1 pm+1
o ()b [ = ()b [E5) S5 | ds

t z‘, ' 1y )ik 6, EAZ —(n ) E"m+ A
/ <( y)k (( x)k n 1[ Yk 1] ( y)k n—l[ Xk 1]) 6”Exk 1
frEFe Jr

My fm ;m Fm
U ()8, 1) = ()81 [E271) @Eﬁ) ds,

Z <N5 Hm+3/2 5Hm+3/2) _

T,eT, T

N 1 £/ s 3/ 1 £ 32 s g3
2fezm/ (Y+Yk5”l[ L +Y,~+Yk6”’l{ 13 @

At 1
2 X /f<2 il ;Z“/Z]M"””) ds
freeFext Y Jk
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Then

~Am Am At Ny ) ki Am A
L (eair i), =5 L [ <<>>’< (n2)uabo 1 [ET] (ny)k,ﬁnI[Exk“])Sn[Exk“]) ds
fkepim ik

Tie T,

At Ny )ki m [m rm
= <(, L ((nx>ki6n_1[Eyk“]—<ny>k,-6n_1[Ex:1])6n[Ey:w> ds
fkeFi"’ i

Al (ny )i 1 . .
+ = / Ny 5}1 m+ e 5n7 E)’:H_ 6,,E;n+
2 kaZFm fr < 27 (( )k 1[ ] ( y)k 1[ " ]) !

Ty fm fm fm
_ ( )k ((nx)k(sn—l[Eyk+l] - (ny)kgn—l[Exk-'_l]) 7511Eyk+1> a’s,

27
and
~Am+3/2 ~m+3/2 At 1 Am+3/2 Aym+3/2
Y (naAiRemr) —-2 y / (m‘snl[Hz'f+ P18, a Y ]) ds
7}(6:% k f’kepint fi L k
At / 1 m+3/27 & fym+3/2
- — 1[A, 16,Hz, ds.
2 kaZFext fk <2Yk " *
So
N N At N N
&, OB ) < iy b, Ve B e 1B g
=K ikEFm’
At . .
+mfz ||6n71[EZHFI]||L2(fk)||6H[EIT+1]HL2(fk)’
keFext
3/2 3/2 At 3/2 3/2
L R BETE), < ity B I8
ke A ike int
At

m 3/2 m 3/2
Y 18 Y g 8B 2

o
4min{Y;} oo

Consequently, we obtain

A At
m+1 2 1 fom-+1
8L | 12(q) < mC TN+ 1)(N+2)max {i '} 8,1 E" 7 120
Am+3)2 At | Am+3)2
w8 Ay 20 < mln{Y}C TN+ 1)(N+2)max {h '} |61 A 120

Taking condition (3.14) into account, we conclude the proof. O






Chapter 5

Numerical Results

This chapter is dedicated to a detailed numerical evaluation of the proposed leap-frog DG methods
on triangular meshes for solving two dimensional TE Maxwell’s equations. We assess the stability
condition and the error estimate of the method through numerical experiments for 2D wave propagation
in anisotropic media with PEC and Silver-Miiller boundary conditions (SM-ABC). Results for PMC
boundary conditions were also obtained but not presented since they are similar to the equivalent ones
for the PEC case.

In our simulations we consider a non diagonal and possibly spatially-varying symmetric and
positive definite permittivity tensor. While it is sometimes possible to find a rotated coordinate system
in which this permittivity tensor is diagonal [5, 49], it is not clear how to apply such a rotated reference
frame in general. In particular, when the simulation domain contains two or more anisotropic regions
with different orientations, it would be impossible to diagonalize for all materials under the same
rotation. Furthermore, if the permittivity tensor contains imaginary off-diagonal elements, as in a
magneto-optic material [31], the permittivity tensor cannot be diagonalized by a simple rotation. Here,
we avoid any rotation.

In order to have a suitable analytic solution for computing the error, corresponding to each of
boundary conditions and each type of anisotropic permittivity tensor (constant or space-dependent),
source terms are added to the system of Maxwell’s equations. The Matlab codes in [39] are the
inception codes we use for set up and are updated to deal with our particular numerical scheme and
model specifications.

This chapter starts with the definition of the simulation setting. The structure of domain discretiza-
tion and the characteristics of meshes we use in our tests are stated in Section 5.1. The sharpness of the
stability conditions obtained in Theorem 3.1.3 is checked in Section 5.2 for both central and upwind
fluxes while considering PEC and SM-ABC. The convergence result achieved in Theorem 4.1.5 is
illustrated in Section 5.3 for the same set of experiments considered for the stability analysis. The
efficiency of the proposed predictor-corrector method to recover the temporal convergence order is
checked in the last part of the same section. All the stability and convergence results are obtain for
two permittivity tensors: constant and space-dependent tensor. We back to the motivation behind this
work in Section 5.4 and discuss the scattering through eye’s structure.

63
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K 32 50 200 800 3200
Nv 25 36 121 441 1681
hmin - 07071 0.5657 0.2828 0.1414 0.0707

Table 5.1 The number of triangle elements and vertices in computational meshes used in the computa-
tions. A,,;,, denotes the shortest distance between two vertices in the mesh.

5.1 Simulation setting

In the following we consider that two-dimension TE mode of Maxwell’s equations (5.11)—(5.13) are
space discretized using discontinuous Galerkin method on triangular mesh. The computation domain
is considered as the square Q = (—1,1)?, which is triangulated with K non-overlapping straight-sided
triangles. The characteristics of the meshes used in the computations are summarised in Table 5.1.
Two examples of meshes on the computational domain are presented in Figure 5.1. On each triangle

0.5 08

4 05 0 05 1 TwE 5w
(@) K=50 (b) K = 800
Fig. 5.1 Examples of computational mesh on a square domain used in 2D computations.

we define
(N+1)(N+2)

2

nodal points, where N is the order of polynomial approximation. In the simulations we consider the

N, =

warp-blend points [85]. Figure 5.2 shows the distribution of these points on a sample triangle element
forN=4and N =8.

In our experiments we consider a non diagonal symmetric positive definite permittivity tenor first

51
s—(l 3), (5.1)

B A +y24+1 /x24y2
g(x,y) = EiE 241 )

as a constant tensor

and then as a space-dependent tensor

(5.2)
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()N =4 (b)N=8

Fig. 5.2 Distribution of warp-blend nodal points in a triangular element.

In all the simulations we consider isotropic permeability which is set as u = 1.

Let us consider the Maxwell’s equations defined on the square Q = (—1,1)2, complemented with
initial and boundary conditions. For the case of PEC boundary condition we consider the initial

conditions
Ey(x,y,0) =0, (5.3)
Ey(X,)’aO) = 07 (54)
H_(x,y,At/2) = cos(mx) cos(my) cos(wAt/2), (5.5)
where

o=m |+ L, (5.6)
Ex &y

and for SM-ABC we consider the initial conditions

E(x,y,0) =0, (5.7)
Ey(x,,0) =0, (5.8)
H_(x,y,At/2) = sin(mAt /2) sin(7xy). (5.9

The sharpness of stability result as well as the spatial order of convergence for different boundary
conditions, for different degree of polynomial approximation and for both central and upwind fluxes
will be illustrated while refining the mesh according to Table 5.1. The temporal order of convergence
will be analyzed in a space grid with K = 800 and N = 8. In all of the experiments the simulation
time is fixed at T = 1.
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5.2 Stability condition

We will check numerically that (3.14) defines a sharp stability condition, in terms of the influence of
N, the order of the polynomial approximation, and #,,;,, the minimum triangle diameter in the mesh.
In our experiments, we computed C that satisfies

Cc

Atypox = o Pimi

(5.10)

where At,,,, 1s the maximum observed value of Ar such that the method is stable.

In Table 5.2 and Table 5.3 the results are computed for different mesh sizes, considering respec-
tively central and upwind fluxes in the DG method, for the case of PEC boundary conditions, while in
Table 5.4 and Table 5.5, the results are computed for the case of SM-ABC.

N=1 N=2 N=3 N=4 N=5
Atyax C Al C Alax C Al C Atax C

0.5657 0.17 1.80 0.1 212 0.065 230 0.044 233 0.032 2.37
0.2828 0.088 1.87 0.05 2.12 0.031 220 0.021 223 0.016 2.37
0.1414 0.044 1.87 0.024 2.04 0.015 212 0.01 212 0.0078 2.32
0.0707 0.021 1.78 0.012 2.04 0.0078 2.20 0.0054 230 0.0038 2.26
0.0354  0.01 1.70 0.006 2.04 0.0039 220 0.0027 2.30 0.0019 2.26
0.0177 0.0054 1.83 0.003 2.04 0.0019 2.15 0.0013 2.21 0.00095 2.26

Table 5.2 At,,4 such that the method is stable and C computed by (5.10) for PEC boundary conditions,
central flux and constant permittivity tensor (5.1).

hmin

N=1 N=2 N=3 N=4 N=5

R
" Atway C My C AMyye  C Myyy  C Ayye C

0.5657 0.10 1.06 0.056 1.19 0.034 120 0.023 122 0016 1.19
0.2828 0.047 1.00 0.026 1.10 0.016 1.13 0.011 1.17 0.0081 1.20
0.1414 0.023 098 0.012 1.02 0.008 1.13 0.0054 1.15 0.0039 1.16
0.0707 0.011 093 0.0062 1.05 0.0039 1.10 0.0026 1.10 0.0019 1.13
0.0354 0.0055 0.93 0.003 1.02 0.0019 1.07 0.0013 1.10 0.0009 1.07
0.0177 0.0027 0.92 0.0015 1.02 0.0009 1.02 0.0006 1.02 0.0004 0.95

Table 5.3 At,,4x such that the method is stable and C computed by (5.10) for PEC boundary conditions,
upwind flux and constant permittivity tensor (5.1).




5.2 Stability condition

67

. N=1 N=2 N=3 N=4 N=5

i Atpae C My C Atyer  C Aty C Alax C
0.5657 018 191 01 212 0064 226 0044 233 0.031 230
0.2828 0.092 1.95 0.05 2.12 0031 219 0021 202 0015 223
0.1414 0.044 1.87 0.024 204 0015 212 001 212 00079 235
0.0707 0.021 1.78 0.012 2.04 0.0077 2.18 0.0053 225 0.0038 2.6
0.0354 001 1.70 0.006 2.04 0.0038 2.15 0.0026 221 0.0019 2.26
0.0177 0.0053 1.80 0.003 2.04 0.0018 2.04 0.0012 2.04 0.00095 2.26

Table 5.4 At,,,, such that the method is stable and C computed by (5.10) for SM-ABC, central flux

and constant permittivity tensor (5.1).

. N=1 N=2 N=3 N=4 N=5

e Atpax C  Atyee C Alyax C Alax C Alax C
0.5657 0.11 1.17 0.057 121 0035 124 0.023 122 0016 1.19
0.2828 0.051 1.08 0.026 1.10 0016 1.13 0.011 1.17 0.008 1.19
0.1414 0.023 098 0.012 1.02 0008 1.13 0.0054 1.15 0.0039 1.16
0.0707 0.011 0.93 0.0061 1.04 0.0039 1.10 0.0026 1.10 0.0019 1.13
0.0354 0.0055 0.93 0.003 1.02 0.0018 1.07 0.0013 1.10 0.00097 1.15
0.0177 0.0027 0.92 0.0015 1.02 0.00097 1.10 0.00065 1.10 0.00045 1.07

Table 5.5 At,,,, such that the method is stable and C computed by (5.10) for SM-ABC, upwind flux

and constant permittivity tensor (5.1).

As expected from the condition (3.14), the numerical examples in Table 5.2 and Table 5.3 show
that the stability regions corresponding to central fluxes are slightly bigger when compared to the
regions obtained using upwind fluxes. From all the examples presented, we may deduce that the right
hand side of (3.14) is a sharp bound for Az,,,,. Moreover, we can also conclude that At is directly
proportional to A,,;, and inversely proportional to (N + 1)(N +2).
In the same framework, we consider the space-dependent tensor (5.2). The experiments are repeated.
The collected data is summarized in Table 5.6-5.9 for PEC and SM-ABC boundary conditions for

both central and upwind flux.
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N=1 N=2 N=3 N=4 N=5
Atyax C Atyax C Atyax C Aty C JAY C

0.5657 0.11 1.27 0.065 138 0.04 141 0.027 1.43 0.02 1.48
0.2828 0.056 1.19 0.031 132 0.019 134 0.013 138 0.0099 147
0.1414 0.027 1.15 0.015 1.27 0.0095 1.34 0.0066 1.40 0.0048 142
0.0707 0.013 1.10 0.0074 1.26 0.0047 1.33 0.0033 1.40 0.0024 1.43
0.0354 0.0067 1.14 0.0037 125 0.0023 1.30 0.0016 1.36 0.0012 1.43
0.0177 0.0033 1.12 0.0018 1.22 0.0011 1.24 0.00079 1.34 0.00059 1.40

Table 5.6 At,,,, such that the method is stable and C computed by (5.10) for PEC boundary conditions,
central flux and space-dependent permittivity tensor (5.2).

hmin

N=1 N=2 N=3 N=4 N=5
At max C Atmax C At max C Atmax C Atmax C

0.5657 0.064 0.68 0.033 0.70 0.021 074 0.014 0.74 0.01 0.74
0.2828 0.029 0.62 0.016 0.68 0.01 0.70 0.0069 0.73 0.0049 0.73
0.1414 0.014 0.59 0.0076 0.65 0.0048 0.68 0.0033 0.70 0.0024 0.71
0.0707 0.0068 0.58 0.0037 0.63 0.0023 0.65 0.0016 0.68 0.0011 0.65
0.0354 0.0033 0.56 0.0018 0.61 0.0011 0.62 0.00081 0.69 0.0057 0.68
0.0177 0.0017 0.58 0.0088 0.60 0.00054 0.61 0.0004 0.68 0.00028 0.67

Table 5.7 At,,4x such that the method is stable and C computed by (5.10) for PEC boundary conditions,
upwind flux and space-dependent permittivity tensor (5.2).

hmin

N=1 N=2 N=3 N=4 N=5
Aty C Atyax C Atpax C Aty C Aty C

0.5657 0.12 1.27 0.065 138 0.04 141 0.027 1.43 0.02 1.48
0.2828 0.057 120 003 127 0019 134 0013 138 0.0098 1.46
0.1414 0.027 1.15 0.014 1.19 0.0095 1.34 0.0065 1.38 0.0048 142
0.0707 0.013 1.10 0.0073 1.24 0.0047 1.33 0.0032 1.35 0.0024 143
0.0354 0.0067 1.14 0.0036 1.22 0.0023 1.30 0.0016 1.36 0.0012 143
0.0177 0.0033 1.12 0.0018 1.22 0.0011 1.24 0.00079 1.34 0.00059 1.40

Table 5.8 Af,,4, such that the method is stable and C computed by (5.10) for SM-ABC, central flux
and space-dependent permittivity tensor (5.2).

hmin
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N=1 N=2 N=3 N=4 N=5
Atyax C Atyax C JAV C Aty C Atyax C

hmin

0.5657 0.068 0.72 0.035 0.74 0.021 074 0.014 0.74 0.01 0.74
0.2828 0.03 0.64 0.016 0.68 0.01 0.70 0.0069 0.73 0.005 0.74
0.1414 0.014 0.59 0.0076 0.65 0.0048 0.68 0.0033 0.70 0.0024 0.71
0.0707 0.0068 0.58 0.0037 0.63 0.0024 0.68 0.0016 0.68 0.0012 0.72
0.0354 0.0033 0.56 0.0018 0.61 0.0011 0.62 0.00081 0.69 0.0058 0.69
0.0177 0.0017 0.58 0.0088 0.60 0.00054 0.61 0.0004 0.68 0.00028 0.67

Table 5.9 At such that the method is stable and C computed by (5.10) for SM-ABC, upwind flux
and space-dependent permittivity tensor (5.2).

5.3 Order of convergence

In this section, we will illustrate the theoretical results of convergence. We consider the model problem

ot ot dy
JE.  JE,  OH,

eny“‘gyyW - ax —i—Q(x,y,t), (512)
OH. __OE,  OF,

Hor = ox T oy

+P(x,y,1), (5.11)

+R(x,y,1), (5.13)

defined in the square Q = (—1,1)?. The source terms P(x,y,t), Q(x,y,) and R(x,y,t) are introduced
in order to make it easier to find examples with known exact solution and consequently with the
possibility to compute the error of the numerical solution. The problem is complemented with initial
and boundary conditions in the same way as in the previous section.

We will analyze the behaviour of the proposed scheme by computing the following L?-errors in
each numerical example:

Error E, = |[EY — EY | 12(), (5.14)
Error Ey = ||EY — E)|| 12(q), (5.15)
Error A, = |H? — A ). (5.16)

For the computation of convergence rates in space, we herein use

log(Error Uy, o, /Error Ups ar)
log(h/h*) ’

where Uj, o, and U+ o, denote, respectively, the exact solution and the numerical solutions computed for

Order = (5.17)

time step Ar and two consecutive meshes of diameters / and 4*. For the computation of convergence

rates in time we proceed in a correspondent way computing the errors of the numerical solutions for
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two different values of At a fixed value for the meshe of diameter 4, i.e.,

log(Error Uy a /Exror Uy ar+)
log(Ar/Ar*)

Order = (5.18)

5.3.1 PEC boundary condition

Let us consider the equations (5.11)—(5.13) complemented with PEC boundary condition and initial
conditions (5.3)—(5.5). The source terms P, Q and R are obtained such that the problem has the exact
solution

T
E(x,y,t) = cos(7x) sin(7y) sin(ot),

XX

T
Ey(x,y,t) = sin(7x) cos(my) sin(@z),
vy

H_(x,y,t) = cos(mx) cos(my) cos(wt),

where o is given by (5.6). For this type of boundary conditions, the theoretical convergence analysis
presented in the previous chapter for the proposed DG leap-frog integrator (2.32)—(2.34) showed that
the order of convergence in space and time is & (h") + O(Ar?).

To illustrate the order of convergence in space, the mesh is refined while the time step is fixed at
At = 107, For the first test, we consider the constant permittivity tensor (5.1). The source terms P, Q
and R that complete (5.11)—(5.13) depend on the permittivity tensor and, for this case, they are given
by

P(x,y,t) = ?nsin(m) cos(my) cos(t), (5.19)
vy

O(x,y,t) = —%ﬂfcos(nx) sin(my) cos(t), (5.20)

R(x,y,1) =0. (5.21)

In Table 5.10 we present the L?-errors (5.14)—(5.16) as well as the spatial order of convergence
computed according to (5.17). The results were obtained while refining the mesh according to
Table 5.1, the degree of the polynomial approximation varies from N = 1 to N = 4 and considering
both central and upwind fluxes. In Figure 5.3 we plot the discrete L>-error of the E, component of
electric field (5.14) for the same set of parameters given in Table 5.10. We plot of the error depending
on the maximum element diameter for each mesh, where both the vertical and horizontal axis are
scaled logarithmically. The numerical order of convergence is approximated by the slope of the linear
regression line.

As we may see, for central flux the numerical convergence rate is close to the value estimated in
Theorem 4.1.5, &' (h"), while for upwind flux we observe higher order of convergence, up to &'(h¥*1)

in some cases.
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Fig. 5.3 L?-error for E, (5.14) versus h, for constant permittivity tensor (5.1) and PEC boundary
conditions.

We now consider the case were the permittivity tensor is space-dependent and given by (5.2). The
source terms P, Q and R in (5.11)—(5.13) are given by

P(x,y,t) = ?ﬂ:sin(nx) cos(my)cos(wt) + %C;tcos(nx) cos(my) sin(@t), (5.22)
VY
€y . 0 .
O(x,y,t) = —?ncos(nx) sin(my) cos(@t) — a—tcos(nx) cos(my) sin(t), (5.23)
XX X
_omt do . T Jdw &y . . .
R(x,y,t) = @X sin(7x) cos(my) cos(wr) — a)TeyZ)( I £y + wW) sin(7x) cos(my) sin(®r)
it dw _ T dmw €y ) .
06 Jy cos(7x) sin(7my) cos(wt) — wTS%C(SXXTy + (L)Ty) cos(7x) sin(7y) sin( ).

(5.24)

The source terms are changed when compared to the previous case due the space dependency of tensor
elements and @ given by (5.6). Note that the source terms (5.19)—(5.21) for constant permittivity
tensor are special cases of (5.22)—(5.24).

The same set of parameters used for the constant tensor case are consider and the experiments
repeated. The collected data with this permittivity tensor is summarised in Table 5.11. The results
for the spatial convergence are plotted in Figure 5.4. As for the previous test, for the central flux, the
order of convergence is near ¢’(h"), and for upwind flux we observe higher order.

To visualize the convergence in time, the polynomials degree and the number of elements have
been set to N = 8 and K = 800, respectively. The L?-errors of the electromagnetic fields (5.14)—
(5.16) are computed while decreasing the time step. The collected data is summarised in Table 5.12
and Table 5.13 for the constant and space-dependent tensors respectively. The results plotted in
Figure 5.5 illustrate the second order of convergency in time for PEC boundary condition established
by Theorem 4.1.5. These results correspond to upwind flux and similar results are observed for central
flux.



72 Numerical Results

‘ N‘ K h Error £, Order Error Ey Order Error H, Order

32 7.07E-01 | 1.23E-01 2.29E-01 3.57E-01
50 5.66E-01 | 1.24E-01 -0.02 1.65E-01 146 2.13E-01 2.32
1| 200 2.83E-01 | 7.63E-02 0.70 8.58E-02 094 529E-02 2.01
800 1.41E-01 | 424E-02 0.85 4.90E-02 0.81 2.03E-02 1.38
3200 7.07E-02 | 2.19E-02 0.95 2.54E-02 095 4.04E-03 233
32 7.07E-01 | 7.53E-02 8.62E-02 9.63E-02
50 5.66E-01 | 448E-02 233 6.15E-02 152 4.60E-02 3.31
2| 200 2.83E-01 | 998E-03 2.17 1.17E-02 2.39 8.19E-03 2.49

* 800 141E-01 | 2.27E-03 2.14 245E-03 2.26 1.07E-03 294
g’ 3200 7.07E-02 | 5.00E-04 2.18 S5.43E-04 2.17 1.23E-04 3.12
- 32 7.07E-01 | 1.65E-02 1.95E-02 2.11E-02
= 50 5.66E-01 | 1.02E-02 2.16 1.06E-02 2.71 8.99E-03 3.81
3| 200 2.83E-01 | 1.23E-03 3.05 1.45E-03 2.87 5.24E-04 4.10
800 1.41E-01 | 1.65E-04 290 194E-04 291 2.11E-05 4.64
3200 7.07E-02 | 2.14E-05 294 2.53E-05 294 1.96E-06 3.43
32 7.07E-01 | 4.01E-03 4.72E-03 2.43E-03
50 5.66E-01 | 1.52E-03 436 192E-03 4.02 9.88E-04 4.03
4| 200 2.83E-01 | 891E-05 4.09 1.06E-04 4.19 341E-05 4.86
800 1.41E-01 | 5.37E-06 4.05 6.09E-06 4.12 1.05E-06 5.02
3200 7.07E-02 | 3.01E-07 4.16 3.44E-07 4.15 3.66E-08 4.84
32 7.07E-01 | 6.27E-02 1.24E-01 3.18E-01
50 5.66E-01 | 5.34E-02 0.72 8.69E-02 1.58 2.04E-01 1.98
1| 200 2.83E-01 | 1.42E-02 191 232E-02 190 4.85E-02 2.07
800 1.41E-01 | 3.87E-03 1.88 5.68E-03 2.03 1.10E-02 2.14
3200 7.07E-02 | 1.03E-03 191 1.53E-03 1.89 2.60E-03 2.08
32 7.07E-01 | 1.89E-02 3.71E-02 6.61E-02
50 5.66E-O1 | 1.30E-02 1.68 2.25E-02 225 343E-02 294
2| 200 2.83E-01 | 1.99E-03 2.71 3.06E-03 2.88 4.66E-03 2.88
E 800 1.41E-01 | 2.48E-04 3.00 3.83E-04 3.00 6.05E-04 2.95
§~ 3200 7.07E-02 | 3.16E-05 298 4.85E-05 298 7.74E-05 297
; 32 7.07E-01 | 4.35E-03 7.59E-03 1.09E-02
& 50 5.66E-01 | 2.05E-03 3.37 3.60E-03 335 5.13E-03 3.37

3| 200 2.83E-01 | 1.49E-04 3.79 2.14E-04 4.07 3.33E-04 3.95
800 1.41E-01 | 9.23E-06 4.01 1.39E-05 395 2.14E-05 3.96
3200 7.07E-02 | 591E-07 397 9.11E-07 393 1.35E-06 3.98
32 7.07E-01 | 7.28E-04 1.16E-03 1.71E-03

50 5.66E-O1 | 2.62E-04 4.58 4.43E-04 432 644E-04 4.36
4 | 200 2.83E-01 | 8.96E-06 4.87 1.45E-05 493 2.07E-05 4.96
800 1.41E-01 | 2.83E-07 498 4.58E-07 498 6.56E-07 4.98
3200 7.07E-02 | 9.09E-09 496 144E-08 4.99 2.11E-08 4.96

Table 5.10 The L?-errors (5.14)—(5.16) and the spatial order for PEC boundary condition and constant
permittivity tensor (5.1).
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‘ N‘ K h Error £, Order Error Ey Order Error H, Order

32 7.07E-01 | 2.12E-01 2.05E-01 4.60E-01
50 5.66E-01 | 1.56E-01 137 1.82E-01 0.55 2.79E-01 2.23
1| 200 2.83E-01 | 9.15E-02 0.77 9.55E-02 093 8.94E-02 1.64
800 141E-01 | 5.48E-02 0.74 5.56E-02 0.78 2.29E-02 1.97
3200 7.07E-02 | 2.95E-02 0.89 291E-02 093 549E-03 2.06
32 7.07E-01 | 1.16E-01 1.36E-01 1.44E-01
50 5.66E-01 | 8.35E-02 147 8.07E-02 233 8.56E-02 2.33
2| 200 2.83E-01 | 2.02E-02 2.05 2.00E-02 2.01 1.07E-02 3.00

g 800 1.41E-01 | 4.09E-03 230 4.03E-03 231 1.40E-03 2.93
g 3200 7.07E-02 | 8.80E-04 2.22 8.58E-04 2.23 1.79E-04 2.97
- 32 7.07E-01 | 3.73E-02 3.77E-02 2.45E-02
= 50 5.66E-01 | 1.80E-02 3.27 1.94E-02 297 1.07E-02 3.69
3| 200 2.83E-01 | 342E-03 239 341E-03 251 7.46E-04 3.85
800 1.41E-01 | 5.09E-04 275 4.73E-04 2.85 4.89E-05 3.93
3200 7.07E-02 | 6.79E-05 291 6.05E-05 2.97 3.06E-06 4.00
32 7.07E-01 | 1.52E-02 1.38E-02 4.92E-03
50 5.66E-01 | 6.02E-03 4.17 5.29E-03 430 2.10E-03 3.81
4| 200 2.83E-01 | 3.98E-04 392 3.68E-04 3.85 9.10E-05 4.53
800 1.41E-01 | 2.30E-05 4.11 2.12E-05 4.12 2.76E-06 5.04
3200 7.07E-02 | 1.25E-06 420 1.17E-06 4.18 8.89E-08 4.96
32 7.07E-01 | 1.60E-01 1.13E-01 3.73E-01
50 5.66E-01 | 1.06E-01 1.81 1.11E-01 0.05 246E-01 1.87
1| 200 2.83E-01 | 3.35E-02 1.67 3.57E-02 1.64 5.86E-02 2.07
800 1.41E-01 | 796E-03 2.08 8.79E-03 2.02 1.25E-02 2.23
3200 7.07E-02 | 2.13E-03 190 227E-03 195 3.05E-03 2.04
32 7.07E-01 | 4.99E-02 5.26E-02 8.08E-02
50 5.66E-01 | 3.18E-02 2.02 3.34E-02 2.03 4.78E-02 2.35
2| 200 2.83E-01 | 5.18E-03 2.62 5.35E-03 2.64 7.30E-03 2.71
E 800 1.41E-01 | 6.46E-04 3.00 6.92E-04 2.95 9.66E-04 292
§~ 3200 7.07E-02 | 8.38E-05 295 8.87E-05 296 1.22E-04 298
; 32 7.07E-01 | 1.57E-02 1.88E-02 2.28E-02
& 50 5.66E-01 | 7.76E-03 3.17 7.46E-03 4.15 8.99E-03 4.18

3] 200 2.83E-01 | 5.75E-04 3.75 5.82E-04 3.68 6.93E-04 3.70
800 1.41E-01 | 3.60E-05 4.00 3.68E-05 398 4.43E-05 3.97
3200 7.07E-02 | 2.38E-06 392 239E-06 395 2.82E-06 3.97
32 7.07E-01 | 4.58E-03 3.61E-03 4.60E-03

50 5.66E-01 | 1.50E-03 499 1.53E-03 3.83 1.73E-03 4.39
4| 200 2.83E-01 | 6.39E-05 4.56 6.11E-05 4.65 7.16E-05 4.59
800 1.41E-01 | 2.05E-06 496 195E-06 497 2.30E-06 4.96
3200 7.07E-02 | 6.59E-08 496 6.27E-08 4.96 7.43E-08 4.96

Table 5.11 The L?-errors (5.14)—(5.16) and the spatial order for PEC boundary condition and space-
dependent permittivity tensor (5.2).
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Fig. 5.4 L?-error for E, (5.14) versus h, for PEC boundary conditions and space-dependent permittivity

tensor (5.2).

At Error £, Order  Error Ey Order Error H, Order
1.00E-03 1.59E-07 9.73E-08 3.72E-07
5.00E-04 3.98E-08 2.00 243E-08 2.00 9.29E-08 2.00
2.50E-04 9.94E-09 2.00 6.08E-09 2.00 2.32E-08 2.00
1.25E-04 2.48E-09 2.00 1.52E-09 2.00 5.81E-09 2.00
6.25E-05 6.21E-10 2.00 3.80E-10 2.00 1.45E-09 2.00

Table 5.12 The L*-errors (5.14)—(5.16) and the temporal order for PEC boundary condition and
constant permittivity tensor (5.1).
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(a) Constant permittivity tensor.
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(b) Space-dependente permittivity tensor.

Fig. 5.5 L*-errors (5.14)—(5.16) versus At for PEC boundary conditions and upwind flux.
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At Error E,  Order Error Ey Order Error H, Order
1.00E-03 7.56E-07 4.56E-07 5.40E-07
5.00E-04 1.89E-07 2.00 1.14E-07 2.00 1.35E-07 2.00
2.50E-04 4.73E-08 2.00 2.85E-08 2.00 3.37E-08 2.00
1.25E-04 1.18E-08 2.00 7.12E-09 2.00 8.42E-09 2.00
6.25E-05 2.95E-09 2.00 1.78E-09 2.00 2.10E-09 2.00

Table 5.13 The L?-error (5.14)—(5.16) and the temporal order for PEC boundary condition and
space-dependent permittivity tensor (5.2).

5.3.2 Silver-Miiller absorbing boundary condition

We now consider the test problem (5.11)—(5.13) with SM-ABC and initial conditions (5.3)—(5.5). The
source terms P, Q and R are obtained such that the problem has the exact solution

(%, 1)

y (%, 1)

det(e)

H_(x,y,t) = sin(mt) sin(7xy).

Eyy
det(e

sin(7t) sin(7y),

s1n 7th sm 7'L'x

For this type of boundary conditions, the theoretical convergence analysis established by Theorem 4.1.5
showed that the convergence order of the leap-frog DG scheme (2.32)—(2.34) in space and time is

o)+ O (Ar).

The set of experiments is the same as in the case of PEC boundary conditions. The mesh is refined

according to Table 5.1 for different degrees for the polynomial approximation from N =1to N =4

and both central and upwind flux. To illustrate the order of convergence in space, the mesh is refined

while the time step is fixed at At = 107, except while the degree for the polynomial approximation is

N = 4, where we consider Az = 10~°,

We first consider the constant permittivity tensor (5.1). For this case, the source terms in (5.11)-

(5.13) are given by

P(xvyat) = —TExy

8 )
Q(xayat) = —TEyx ﬁ()g)

£y

det(¢)

R(x,y,t) = mp cos(mt) sin(mxy).

cos(7t) sin(7mx) + meyy

cos(7t) sin(7mx) + ey,

SXX
det(¢)

gxx
det(¢)

cos(mt) sin(my) —

mtxsin(7r) cos(mxy),

(5.25)

cos(mt) sin(my) 4+ mysin(7t) cos(mxy),

(5.26)
(5.27)

In Table 5.14 we present the L?-errors (5.14)—(5.16) as well as the spatial order of convergence
computed according to (5.17). In Figure 5.6 we plot the discrete L’-error of the E, component of

electric field (5.14) for the same set of parameters given in Table 5.14. We plot of the error depending

on the maximum element diameter for each mesh, where both the vertical and horizontal axis are
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Fig. 5.6 L?-error for E, (5.14) versus h, for SM-ABC and constant permittivity tensor (5.1).

scaled logarithmically. The numerical order of convergence is approximated by the slope of the linear
regression line.

As we may see, for central flux the numerical convergence rate is close to the value estimated in
Theorem 4.1.5, ¢ (hY), while for upwind flux we observe higher order of convergence, up to &' (A¥ 1)
in some cases.

We now consider the case where permittivity tensor is space-dependent and given by (5.2). The
source terms P, Q and R in (5.11)—(5.13) are changed due to space dependency of the tensor elements
and are given by

P(x,y,t) = — & d:;)&yg) cos(7t) sin(7x) + Teyy /(éxé) cos(7t) sin(7y)

— mxsin(7t) cos(mxy), (5.28)
O(x,y,1) = —Tey de?&yg) cos(7t) sin(7x) + TEyy 4 /(R?Cé)cos(m) sin(7y)

+ mysin(mr) cos(mxy), (5.29)
R(x,y,t) = mp cos(mt) sin(7mxy) + aai; det2(z)e:(—8‘;z§;(£) fu de;x(xg) sin(7t) sin(7y)

_ % detz(fi:(‘;j;;( . Sy dzfxg) sin(7t) sin(7x). (5.30)

The L?-error sand the order of convergence in space are computed as in the previous case. All
these data is collected and summarised in Table 5.15 and illustrated in Figure 5.7. As for the constant
tensor case, we conclude that, for central flux the numerical convergence rate is close to the value
estimated in Theorem 4.1.5, & (h"), while for upwind flux we observe higher order of convergence,
up to O(AN*1) in some cases.

To visualize the convergence in time, the approximation polynomial degree and the number of
elements have been set to N = 8 and K = 800, respectively. For SM-ABC the data plotted in Figure
5.8 illustrates the first order of convergency established by Theorem 4.1.5.
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‘ N ‘ K h Error £, Order Error £, Order Error H, Order
32 7.07E-01 | 1.80E-01 2.20E-01 2.51E-01
50 5.66E-01 | 1.37E-01 1.23 1.59E-01 147 1.64E-01 1091
1| 200 2.83E-01 | 8.95E-02 0.61 1.02E-01 0.63 240E-02 2.77
8000 1.41E-01 | 4.78E-02 091 5.49E-02 090 3.80E-03 2.66
3200 7.07E-02 | 2.51E-02 093 291E-02 092 7.67E-04 2.31
32 7.07E-01 | 5.15E-02 5.80E-02 5.12E-02
50 5.66E-01 | 3.50E-02 1.74 3.92E-02 1.75 2.24E-02 3.70
2| 200 2.83E-01 | 9.71E-03 1.85 1.05E-02 190 145E-03 3.95
Q 800 1.41E-01 | 2.24E-03 2.12 2.40E-03 2.13 1.37E-04 3.41
% 3200 7.07E-02 | 5.54E-04 2.01 5.89E-04 2.03 647E-06 4.40
- 32 7.07E-01 | 1.05E-02 1.20E-02 3.77E-03
& 50 5.66E-01 | 5.42E-03 295 6.24E-03 293 1.83E-03 3.24
3| 200 2.83E-01 | 1.OSE-03 2.37 1.20E-03 2.37 7.85E-05 4.55
800 1.41E-01 | 1.43E-04 288 1.67E-04 2.85 4.46E-06 4.14
3200 7.07E-02 | 2.03E-05 2.81 242E-05 2.79 7.24E-07 2.63
32 7.07E-01 | 2.37E-03 2.85E-03 8.78E-04
50 5.66E-01 | 1.10E-03 342 1.31E-03 3.50 2.11E-04 6.40
4] 200 2.83E-01 | 9.88E-05 3.48 1.11E-04 3.55 6.25E-06 5.07
800 1.41E-01 | 7.07E-06 3.80 7.83E-06 3.83 9.42E-07 2.73
3200 7.07E-02 | 7.43E-07 3.25 8.57E-07 3.19 7.97E-07 0.24
32 7.07E-01 | 6.38E-02 7.57E-02 1.60E-01
50  5.66E-01 | 3.99E-02 2.11 495E-02 190 8.80E-02 2.68
1| 200 2.83E-01 | 9.66E-03 2.05 1.23E-02 201 1.70E-02 2.37
800 1.41E-O1 | 1.89E-03 2.35 2.52E-03 2.28 2.52E-03 2.75
3200 7.07E-02 | 5.04E-04 191 6.15E-04 2.04 5.16E-04 2.29
32 7.07E-01 | 1.45E-02 1.85E-02 2. TTE-02
50 5.66E-01 | 7.68E-03 2.86 9.21E-03 3.13 7.58E-03 5.81
2| 200 2.83E-01 | 1.08E-03 2.83 145E-03 2.67 494E-04 3.94
S 800 1.41E-01 | 1.23E-04 3.13 1.79E-04 3.01 2.56E-05 4.27
§' 3200 7.07E-02 | 1.65E-05 290 241E-05 290 2.50E-06 3.35
; 32 7.07E-01 | 3.19E-03 4.17E-03 3.52E-03
g 50 5.66E-01 | 1.30E-03 4.01 1.69E-03 4.05 9.96E-04 5.66
3| 200 2.83E-01 | 9.39E-05 3.79 1.26E-04 3.75 4.21E-05 4.56
800 1.41E-01 | 5.75E-06 4.03 7.74E-06 4.03 3.24E-06 3.70
3200 7.07E-02 | 1.71E-06  1.75 2.07E-06 1.90 2.05E-06 0.66
32 7.07E-01 | 3.97E-04 5.10E-04 4.90E-04
50 5.66E-01 | 1.33E-04 490 1.74E-04 483 1.09E-04 6.72
4| 200 283E-01 | 5.09E-06 4.71 699E-06 4.64 191E-06 5.84
800 1.41E-01 | 2.77E-07 4.20 3.59E-07 4.28 2.85E-07 2.75

Table 5.14 The L2-errors (5.14)—(5.16) and the spatial order for SM-ABC and constant permittivity
tensor (5.1).
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‘ N ‘ K h Error £,  Order Error Ey Order Error H, Order
32 7.07E-01 | 2.55E-01 2.61E-01 2.54E-01
50 5.66E-01 | 2.06E-01 096 2.18E-01 0.82 1.51E-01 2.33
1] 200 2.83E-01 | 1.42E-01 0.54 146E-01 0.58 2.38E-02 2.66
800 1.41E-01 | 7.75E-02 0.87 8.00E-02 0.86 5.00E-03 2.25
3200 7.07E-02 | 3.93E-02 098 4.17E-02 0.94 1.15E-03 2.12
32 7.07E-01 | 8.28E-02 8.16E-02 4.53E-02
50 5.66E-01 | 5.81E-02 1.58 5.58E-02 1.70 1.68E-02 4.44
2| 200 2.83E-01 | 1.50E-02 1.96 1.50E-02 190 1.04E-03 4.01
& 800 1.41E-01 | 3.48E-03 2.10 3.50E-03 2.10 1.08E-04 3.26
g' 3200 7.07E-02 | 8.52E-04 2.03 8.49E-04 2.04 4.83E-06 4.49
- 32 7.07E-01 | 1.86E-02 1.87E-02 2.94E-03
= 50 5.66E-01 | 9.28E-03 3.11 9.16E-03 3.20 1.20E-03 4.03
3| 200 2.83E-01 | 1.60E-03 2.54 1.65E-03 247 6.07E-05 4.30
800 1.41E-01 | 2.16E-04 2.89 2.26E-04 2.87 3.64E-06 4.06
3200 7.07E-02 | 3.00E-05 2.85 3.20E-05 2.82 6.55E-07 2.48
32 7.07E-01 | 2.37E-03 2.85E-03 8.78E-04
4 50 5.66E-01 | 1.11E-03 3.40 1.28E-03 3.59 2.23E-04 6.14
200 2.83E-01 | 1.04E-04 341 1.19E-04 3.42 381E-06 5.87
800 1.41E-01 | 6.06E-06 4.11 6.84E-06 4.13 2.55E-07 3.90
32 7.07E-01 | 9.29E-02 9.86E-02 1.48E-01
50 5.66E-01 | 6.20E-02 1.81 6.60E-02 1.80 7.97E-02 2.78
1| 200 2.83E-01 | 1.53E-02 2.02 1.62E-02 2.02 1.52E-02 2.39
800 1.41E-01 | 2.83E-03 244 340E-03 226 243E-03 2.65
3200 7.07E-02 | 8.21E-04 1.78 8.88E-04 1.94 4.71E-04 2.36
32 7.07E-01 | 2.54E-02 2.34E-02 1.52E-02
50 5.66E-01 | 1.26E-02 3.15 1.16E-02 3.14 6.01E-03 4.16
2| 200 2.83E-01 | 1.70E-03 2.89 1.82E-03 2.67 4.47E-04 3.75
5 800 1.41E-01 | 1.92E-04 3.15 2.16E-04 3.08 2.35E-05 4.25
§~ 3200 7.07E-02 | 2.51E-05 293 288E-05 290 2.48E-06 3.24
; 32 7.07E-01 | 4.87E-03 5.33E-03 2.64E-03
5 50 5.66E-01 | 2.00E-03 3.99 2.11E-03 4.14 9.01E-04 4.82
3| 200 2.83E-01 | 1.37E-04 3.87 1.57E-04 3.75 3.97E-05 4.0
800 1.41E-01 | 8.49E-06 4.01 941E-06 4.06 3.18E-06 3.64
3200 7.07E-02 | 2.28E-06 190 2.25E-06 2.07 2.07E-06 0.62
32 7.07E-01 | 6.75E-04 6.60E-04 4.07E-04
4 50 5.66E-01 | 2.35E-04 473 235E-04 4.62 1.06E-04 6.03
200 2.83E-01 | 7.82E-06 491 8.86E-06 4.73 1.81E-06 5.87
800 1.41E-01 | 3.87E-07 4.34 4.08E-07 4.44 283E-07 2.67

Table 5.15 The L?-errors (5.14)—(5.16) and the spatial order for SM-ABC and space-dependent
permittivity tensor (5.2).
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(a) Central flux. (b) Upwind flux.

Fig. 5.7 L*-error for E, (5.14) versus h, for SM-ABC and space dependent permittivity tensor (5.2).

At Error £, Order  Error Ey Order Error H, Order

Leap-frog time integrator

1.00E-03 2.76E-04 2.28E-04 2.82E-04

5.00E-04 1.38E-04 1.00 1.14E-04 1.00 1.41E-04 1.00
2.50E-04 6.90E-05 1.00 5.69E-05 1.00 7.06E-05 1.00
1.25E-04 3.45E-05 1.00 2.84E-05 1.00 3.53E-05 1.00
6.25E-05 1.73E-05 1.00 1.42E-05 1.00 1.77E-05 1.00

Predictor-corrector time integrator

1.00E-03 4.18E-05 2.73E-05 4.76E-05

5.00E-04 9.71E-06 2.11 6.46E-06 2.08 1.06E-05 2.16
2.50E-04 2.35E-06 2.05 1.57E-06 2.04 254E-06 2.07
1.25E-04 S5.77E-07 2.02 3.88E-07 2.02 6.21E-07 2.03
6.25E-05 1.43E-07 2.01 9.64E-08 2.01 1.54E-07 2.02

Table 5.16 The L?-errors (5.14)—(5.16) and the temporal order for SM-ABC and constant permittivity
tensor (5.1) when the predictor-corrector method is considered.

L2-error
=
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10° 5 - -3 10° 5 ” -3
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At At
(a) Constant permittivity tensor. (b) Space-dependent permittivity tensor.

Fig. 5.8 L*-errors (5.14)—(5.16) versus At, for SM-ABC and upwind flux.
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At Error E,  Order Error E’y Order Error H, Order

Leap-frog time integrator

1.00E-03 3.04E-04 2.94E-04 2.81E-04

5.00E-04 1.52E-04 1.00 147E-04 1.00 1.40E-04 1.00
2.50E-04 7.60E-05 1.00 7.35E-05 1.00 7.01E-05 1.00
1.25E-04 3.80E-05 1.00 3.67E-05 1.00 3.51E-05 1.00
6.25E-05 1.90E-05 1.00 1.84E-05 1.00 1.75E-05 1.00

Predictor-corrector time integrator

1.00E-03  5.28E-05 4.62E-05 5.74E-05

5.00E-04 1.21E-05 2.13 1.07E-05 2.11 1.23E-05 2.23
2.50E-04 291E-06 2.06 2.59E-06 2.05 2.90E-06 2.08
1.25E-04 7.13E-07 2.03 6.36E-07 2.02 7.05E-07 2.04
6.25E-05 1.76E-07 2.01 1.58E-07 2.01 1.74E-07 2.02

Table 5.17 The L?-errors (5.14)—(5.16) and the temporal order for SM-ABC and space-dependent
permittivity tensor (5.2) when the predictor-corrector method is considered.

As we seen theoretically and numerically, when we consider the SM-ABC for our fully explicit
DG scheme (2.32)—(2.34), the temporal order of convergence is not what we expected from leap-frog
time integrator. The temporal order reduces from two to one. In order to recover the order in time and
stay explicit in defining the flux, we proposed an iterative predictor-corrector time integration scheme
(4.35)—(4.37). As we may see in Table 5.16 and Figure 5.9 the second temporal order is perceived in
our results.

10 10
23
10% /
10 3
S s /
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105t {7/
107 ! y:
—6-Ex, Slope=2.1 7 —6-Ex, Slope=2.1
—¥Ey, Slope=2.0 7 —¥Ey, Slope=2.1
Hz, Slope=2.0 S Hz, Slope=2.0
10° 5 - 3 107 5 ” -3
10 10 10 10 10 10
At At
(a) Constant permittivity tensor. (b) Space-dependent permittivity tensor.

Fig. 5.9 L*-errors (5.14)—(5.16) versus At, for SM-ABC and upwind flux when the predictor-corrector
method is considered.

5.4 Modeling scattered electromagnetic wave’s propagation through
eye’s structures

As mentioned in the Introduction, the research that lead to this dissertation was developed in the

framework of a more general project that aims to achieve a computational model to simulate the
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electromagnetic wave’s propagation through the eye’s structures in order to create a virtual optical
coherence tomography (OCT) scan [73].

As OCT standard techniques only provide structural information [74], it is necessary to expand
OCT data analysis to account for both structural and functional information. A mathematical modeling
of OCT data could expand the information provides by OCT from structural to functional information.
The functional information may provide a means for optical biopsy. For instance, the variation of
retinal nerve fiber layer (RNFL) birefringence may provide early detection of subcellular changes in
glaucoma and other diseases affecting the optic nerve [75].

Simulating the full complexity of the retina, in particular the variation of the size and shape
of each structure, distance between them and the respective refractive indexes, requires a rigorous
approach that can be achieved by solving Maxwell’s equations. As the interest is to acquire the
backscattered light intensity, we start this section by the scattered field formulation. Then we build up
a two dimensional model which tries to represent a single nucleus of the outer nuclear layer (ONL)
of the retina. The efficiency of our method is examined by simulating the light scattering in this 2D
domain. The evolution of scattering field intensity in time is obtained using the predictor-corrector
DG method.

5.4.1 The scattered field formulation

We exploit the linearity of the Maxwell’s equations (5.11)-(5.13) in order to separating the electro-
magnetic fields (E, H) into incident fields (E’, H') and scattered components (E*, H®), i.e.,

E=E*+E" and H=H'+H' (5.31)

Assuming that the incident field is also a solution of the Maxwell’s equations we obtain in the same
way as in [82], the scattered field formulation,

oE; JEy  OH}

Z
EugtH ey = N +P (5.32)
OE! JE} oH?
Ex o Tey 5 = 5 +0 (5.33)
OH;  OEj OE}

u 5% = ox + 2y +R in Qx(0,7], (5.34)

with the source terms

i JE} OE]
P(x,y,t) = (¢' — %)W — &y (5.35)
JEL OE]
Qe ) = —&u—g =+ (&'~ eyy)a—ty, (5.36)
, OH!
Rx,y,1) = (W' = 1) = tﬁ (5.37)

where £ and p' represent, respectively, the relative permittivity and permeability of the medium
in which the incident field propagates in the absence of scatterers (in the background medium).
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Additionally, using this formulation it is very easy to specify an incident wave using an analytic
formula.

5.4.2 Light scattering in outer nuclear layer

In order to apply our method on a real model problem the outer nuclear layer is chosen among the
retina’s layers. This layer was chosen as it consistently presents the characteristics of diabetic macular
edema [21] and because spherical scatterers can adequately model it, which helps to simplify the
simulation.

The outer nuclear layer is mostly populated by the cells bodies of light sensitive photoreceptor
cells (rods and cons). The nucleus is the biggest organelle in the photoreceptor cell’s soma and
presents a high refractive index difference to the surrounding medium. Thus the main contribution to
light scattering in this layer comes from the nucleus [76]. The outer nuclear layer could be modeled
as a population of spherical nuclei in an homogenous medium.

As a proof of concept we present a simple simulation in a two dimensional square domain which
contains a circle that aims to represent the single nucleus in the ONL. This domain is presented in
Figure 5.10 while the difference between the permittivity in the circle and the background domain is
shown with €.

Fig. 5.10 Square computational domain which contains a circle that aims to represent the single
nucleus in ONL.

Let us consider equations (5.32)—(5.33), in Q = (-1, 1)2, complemented with Silver-Miiller
absorbing boundary condition and null initial condition. The absorbing boundary condition is chosen
for the model as the non absorbing boundary conditions provide undesirable reflections that invade
the computational domain.

In the experiments the magnetic permeability and relative permittivity are considered as constants,
€' =1and u = 1. The permittivity € is considered as a diagonal matrix with &, (x,y) = &y(x,y) = 1.2
for (x,y) such that /x> +y? < 0.5 and € (x,y) = &,(x,y) = 1 otherwise. For the incident wave we
consider the planar wave E; (x,1) =cos(10(x —1)).
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Fig. 5.11 Computational domain and triangular mesh.

Intensity Intensity

(a) T =0.25 )T =05

Inte nsity Intensity

()T =0.75 @7=1

Fig. 5.12 Evolution of the scattered field intensity I° = , / (Ef)? + (E3)* with time.

The simulation is done with predictor-detector DG method which is more efficient in the case of
SM-ABC [6]. The scattered field intensity

r=\JEr+E?
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were obtained with the predictor-corrector DG method defined on the mesh plotted in Figure 5.11. In
simulations we consider o¢ = O (central flux) and the approximation polynomial degree as N = 4. The
time step is chosen as At = 0.002 and the final simulation time is 7 = 1. The evolution of scattered
field intensity with time is plotted in Figure 5.12.



Chapter 6

Conclusion

The target of this dissertation was to formulate a fully explicit DGTD solution of Maxwell’s equations.
The nodal discontinuous Galerkin method was employed for space discretization and coupled with
a leap-frog time integrator yielding a fully explicit scheme which is capable to deal with different
formulations for the numerical flux, anisotropic materials and different types of boundary conditions.
The proposed leap-frog discontinuous Galerkin scheme was analyzed rigorously and the numerical
results supporting the achieved theoretical results were provided.

In this chapter, we first summarize the accomplishment of each part in Section 6.1 and then end

with some final comments and perspectives for future work in Section 6.2.

6.1 Summary

The first part of this dissertation was devoted to the background on computational electromagnetic
with Maxwell’s equations. We first presented Maxwell’s equations and some of their basic properties,
like the constitutive relations between the electromagnetic fields, their behavior at interfaces and
boundary conditions. We then introduced the leap-frog discontinuous Galerkin method which was our
choice model in the numerical integration of Maxwell’s equations in anisotropic materials.

In order to reduce the number of equations of the 3D model, the transverse electric mode of
Maxwell’s equations was considered as our 2D model. Our model included the most common
boundary conditions PEC and PMC as well as the so-called first order Silver-Miiller absorbing
boundary condition in order to truncate the unbounded domain to a bounded domain.

The main ingredient of the DG methods is the numerical flux. Our formulation of the numerical
flux had been developed in a general framework which unified different flux-evaluation schemes
and included the treatment of anisotropic materials. The leap-frog time integration method had been
applied to the DG semi-discrete scheme to obtain the leap-frog DG scheme. We used backward
approximation in upwind flux terms which yielded a fully explicit scheme.

The second part of this work dealt with the analysis of leap-frog DG scheme. The sufficient
condition of stability was firstly analyzed for the two dimensional problem and the bound of the
stability region was deduced in detail which revealed the influence of the mesh size, the choice of
numerical flux and the degree of the polynomials used in the construction of the finite element space
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making possible to balance accuracy and computational efficiency. Moreover, the stability analysis
was further extended to the three dimensional problem and the stability region was also presented.

We rigorously analyzed the convergence property of the leap-frog DG scheme in 2D. We proved
that under the stability condition the scheme is arbitrary high-order in space. The error estimate
analysis of the scheme demonstrated the second order of temporal convergence for PEC and PMC
boundary conditions but only the first order in the case of Silver-Miiller absorbing boundary condition.
We proposed a predictor-corrector time integrating scheme which recovered the time order to two in
the case of SM-ABC. This idea was developed further and we defined an iterative predictor-corrector
time integrator. The iterative predictor-corrector DG method was defined such that the scheme
remained fully explicit and converged to a second order implicit method. The stability analysis of the
implicit method was also presented.

Finally, in a set of numerical experiments we provided the numerical results supporting the
achieved theoretical results. The sharpness of the stability region was checked and the temporal
and spatial order of convergence were confirmed for both central and upwind fluxes and different
boundary conditions. Moreover, the efficiency of the predictor-corrector time integrator to recover the
time order was checked. In the last part, we present the results of simulation with our method in the
framework of our application of interest. The light scattering was simulated in a 2D domain which
aims to represent a single nucleus in the outer nuclear layer of retina.

6.2 Outlook

Numerical analysis is a crossroad of several disciplines and it is crucial on developing efficient
and accurate solutions to real-world problems, while maintaining a solid theoretical base. Realistic
models are usually very intricate. Frequently they involve coupled systems of time dependent partial
differential equations, whose mathematical analysis, that is often quite complex, requires sophisticated
mathematical tools. To establish mathematical models to simulate the behavior and dynamics of
those systems and to provide the mathematical foundations of the numerical methods, to analyze their
theoretical properties, namely stability and accuracy, is then a challenging problem of paramount
importance.

The perspectives of the research following the work of the present thesis, comprises contributions
in the field of numerical analysis and also in the field of biomathematics.

The leap-frog discontinuous Galerkin method that was implemented and analyzed in this disserta-
tion is an efficient method. However, the method used for the time integration has a great impact on
the accuracy of the numerical solution. The leap-frog DG scheme is of arbitrary high-order convergent
in space while the temporal order is restricted to two. The first straightforward future work could be
on improving the accuracy of the time integration method. A possible choice would be explore the
time integration by high order methods like, for instance, an high order explicit Runge-Kutta method,
and study their quantitative and qualitative properties.

Other alternative could be use other less exploited potentials of the discontinuous Galerkin methods.
In particular, DG methods can be used in a space-time approach, giving an effective framework for
high-order accurate methods. In this technique, time is considered as an extra dimension and it
is treated in the same way as the spatial coordinates. Space-time DG methods while allowing for
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discontinuities in the temporal discretization, combine the well known advantages of the DG methods,
such as of flexibility for local mesh refinement, adjustment of the polynomial order in each element
and excellent performance on parallel computers. The main drawback of the space-time DG methods
is their implicit nature.

Another direction of future research, following some preliminary results of simulation presented
on this thesis, is to model the light scattering in the retina aiming to mimicking the OCT imaging
system. The idea is to integrate the time-dependent Maxwell’s equations to numerically solve local
scattering effects within the retina, considering OCT wavelengths and different realistic settings for
each layer.
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Appendix A

Technical lemmata

The lemmata included this chapter are technical tools needed to derive the stability condition and
the convergence estimates. In the first section the trace and inverse inequalities that we mostly used
is stated. This inequalities turn out to be very useful for analyzing DG methods. The polynomial
approximations is stated in Section A.2 and at the end the discrete Gronwall’s lemma that we used in
our analysis is stated.

A.1 Inverse and trace inequalities

Inverse and trace inequalities are very important tools in the analysis of DG methods. We consider the
following trace inequalities (see e.g. [70]).

Lemma A.1.1. Let T be an element of 7, with diameter hy and let f; be an edge or a face of Tj.
There exists a positive constant C independent of hy such that, for any u € H'(T}.),

| fi]

i1 Uz + Vel ) (A

H”||L2(fk) <C
Moreover, if u is a polynomials of degree less than or equal to N, there exists a positive constant Cyaee

independent of h; and u but dependent on the polynomials degree N, such that

| fl
HuHL?(fk) < Girace WHI"HL?(T@-
An exact expression for the constant Cyqc. can be given as a function of the polynomials degree, and
the following inequality holds for any u € Py(T})

. (N+1)(N+2) | fi]

2D: < TS UK A2
n ||”HL2(fk) > \/ 3 A HMHLZ(Tk)a (A.2)
, N+1)(N+3) |f;
in3D:  ullzg < \/()3():;;"\|MHLZ(T,(). (A3)
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Consequently, there exists a positive constant C; independent of hy and N but depent on the shape-
regularity hy /T, where Ty is the diameter of the largest inscribed ball contained in Ty (see (2.14)),
such that, for any u € Py(Ty),

. —-1/2
in2D:  ullpon) < Co/INF DN+ 2)h 2l 201, (A4)

. —1/2
in3D:  |ullpon) <Co/ N+ DN T3)h |l 2r,)- (A.5)

The next result is an inverse-type estimate ([17, 36]), where we present explicitly the dependence
of the constant on the polynomials degree.

Lemma A.1.2. Let us consider Ty, € J, with diameter h,. There exists a positive constant Cy,
independent of hy and N such that, for any u € Py(Ty),

]l 70(7) < CimeN> Iy ?[ual| 273 (A.6)

where g > 0.

Note that C;,, depends on the shape-regularity /y /7, where 7; is the diameter of the largest

inscribed ball contained in 7. A sharper estimate reads

Vu € Py(Ty),  ullga(r) < éinszqT/;qHuHLz(Tk)'

A.2 Polynomial approximation

The following lemma gives polynomial approximation with Inequality (A.7) and polynomial approx-
imation on mesh faces with Inequality (A.8). The reader can refer to [8] or [71] for the following

approximation properties.

Lemma A.2.1. Let Ty € 9}, and u € H? (Ty). Then there exits a constant C depending on p and on the
shape-regularity of Ty but independent of u, hy and N and a sequence Pnu € Py(Ty), N=1,2,...,
such that, forany 0 < g <p

he 4
lu = Pyullon) < = llullamm), P =0, (A7)
c—1/2 1
k
lu— Pyull sy < Cw”“”m(m, P> (A.8)

where 6 = min(p,N + 1) and f;. is an edge of Tx.

A.3 Discrete Gronwall’s lemma

We use the following version of discrete Gronwall’s lemma in our analysis. For the proof see e.g.
[27, 87].
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Lemma A.3.1. Let a,, by, ¢, A, # 0 with {c,} being monodically increasing. Then

n—1
a,+b, < leaj+cn, n=273---
j=2
implies forn=2,3,---
n—1 n—1
an+by <ca [J(1+4;) < cnexp( ) A)).

=2 =2
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