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ABSTRACT 

The controversy raised around biofuels sustainability increased the pressure on 

biodiesel producers to be as cost efficient as possible and, simultaneously, ensure the 

sustainability of the biodiesel. As about 85% of biodiesel production costs are attributed 

to feedstock cost and each feedstock has a different environmental profile, operational 

level decision making about feedstock selection is crucial to reduce production costs and 

manage biodiesel environmental performance.  

This thesis explores opportunities to improve biodiesel cost effectiveness at the 

operational level, particularly in the feedstock selection process, by assessing the use of 

waste-based feedstocks (Waste Cooking Oil, WCO) in blends with conventional 

feedstocks (palm, rapeseed and soya) and hedging feedstock purchase, whilst managing 

environmental impacts. For this purpose, an uncertainty-aware decision aiding tool to 

assess economic and environmental tradeoffs of decisions at the operational level, 

addressing feedstock compositional and price uncertainty, was developed. The model 

combines environmental life-cycle assessment (LCA) with blending models using multi-

objective optimization to assess water scarcity (WSI), water degradability –   

acidification (AA), eutrophication (EU), ecotoxicity (FT) and human toxicity (HT) – and 

Greenhouse Gas (GHG) emissions (CC). Data from different crop cultivation locations 

were considered: Colombia and Malaysia for palm; Argentina, Brazil and the United 

States (US) for soybean; and, Germany, France, Spain, Canada and the US for rapeseed.  

An approach was developed to facilitate the decision process that enables the decision-

maker to select the best compromise feedstock blend based on an explicit overall 

environmental performance.  

Results show that incorporating feedstocks’ compositional uncertainty allows the use of 

WCO in blends with conventional feedstocks without compromising biodiesel technical 

performance. A reduction of total feedstock cost was obtained for blends with WCO 

relatively to equivalent (similar technical performance) blends composed only of virgin 

oils. The percentage of cost reduction depends on the relation among the prices of the 

feedstocks. Moreover, the use of WCO in the blends allows a reduction in cost variation 
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reduction relatively to virgin oils blends because the price of that feedstock presents 

lower volatility comparatively to the conventional feedstocks. 

The differences observed in the environmental assessment of the various virgin oils 

systems are mainly related to water scarcity of the location, and the fertilization and 

pesticides schemes used in each crop/location. Results show that higher water scarcity 

footprint are due to both high water consumption and high water scarcity of the 

cultivation site. For the toxicity categories (HT and FT), the highest values are ascribed 

to the high quantity of pesticide used in the cultivation, while for CC, AA and EU the main 

contributor is the quantity of fertilizers. WCO presents the lowest values WSI, CC, EU 

and AA. 

The multi-objective analysis showed that lower CC and WSI solutions (blends) can be 

obtained at a lower cost if WCO is included in the biodiesel blend. The same conclusion 

is obtained when more environmental objectives (AA, EU, FT and HT) are considered in 

the analysis. The decision-aiding approach developed allows for the visualization of the 

tradeoff between cost and environmental impacts, facilitating the decision process when 

more than three objectives are at stake. 

This research shows that the inclusion of WCO in a diversified portfolio of feedstocks 

used in blending optimization models is an attractive approach to improve biodiesel 

cost effectiveness and environmental performance. The model developed can be further 

used to optimize the blending of alternative feedstocks and to assess the technical 

viability of other waste-based feedstock (e.g. animal fat) or emerging feedstocks such as 

algae. Although the tool was designed specifically for biodiesel production system, it can 

be adapted to other industries, particularly in the recycling sector, to support 

production planning at the operational level to enhance technical, economic and 

environmental performance of these industries. 

Keywords: biodiesel, multi-objective optimization, blending models, waste cooking oils, 

production costs, water footprint, GHG emissions, price volatility, compositional 

uncertainty 
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RESUMO 

A controvérsia gerada em torno da sustentabilidade dos biocombustíveis aumentou a 

pressão nos produtores de biodiesel para serem o mais eficientes possível em termos de 

custos e, simultaneamente, garantirem a sustentabilidade do biodiesel. Como cerca de 

85% do custo total de produção é atribuído ao custo da matéria-prima, e cada uma 

apresenta um perfil ambiental diferente, decisões ao nível operacional acerca de 

selecção de matéria-prima são cruciais para melhorar a performance económica e 

ambiental do biodiesel.  

Esta tese explora estratégias para reduzir custos de produção de biodiesel, 

particularmente no processo de selecção de matérias-primas, ao avaliar o uso de 

resíduos (Óleo Alimentar Usado, OAU) em misturas com óleos convencionais (soja, 

palma, colza) e planear a compra de matéria-prima, e, simultaneamente, gerir os 

impactes ambientais. Para tal, foi desenvolvida uma ferramenta de apoio à decisão para 

avaliar compromissos económicos e ambientais de decisões efectuadas ao nível 

operacional. Esta ferramenta tem em conta a incerteza associada à composição e ao 

preço da matéria-prima. O modelo desenvolvido combina Avaliação de Ciclo de Vida 

(ACV) ambiental com algoritmos de mistura através de optimização multiobjectivo para 

avaliar a escassez de água (WSI), degradabilidade da água – acidificação (AA), 

eutrofização (EU), ecotoxicidade (FT) e toxicidade humana (HT) – e, emissões de gases 

com efeito de estufa (CC). Diferentes locais de cultivo foram considerados: palma 

cultivada na Colômbia e Malásia; soja na Argentina, Brasil e Estados Unidos; e colza na 

Alemanha, França, Espanha, Canadá e Estados Unidos. Foi desenvolvida uma abordagem 

para facilitar o processo de decisão que permite ao decisor escolher a mistura com base 

na performance ambiental global.  

Os resultados mostram que é possível utilizar OAU em misturas com óleos virgens sem 

comprometer a qualidade do biodiesel se a incerteza composicional dos óleos for tida 

em conta. Estas misturas apresentam menores custos relativamente a misturas de óleos 

virgens. A percentagem de redução depende da relação entre os preços dos diferentes 

óleos. Adicionalmente, o uso de OAU nas misturas permite obter também uma redução 
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na variação dos custos de produção porque o preço desta matéria-prima apresenta 

menor volatilidade relativamente à observada nos óleos convencionais.  

As diferenças observadas na avaliação ambiental dos diferentes óleos virgens estão 

relacionadas com a escassez de água da região e o esquema de fertilização/pesticidas 

usados em cada cultura/local. Os resultados mostram que pegadas hídricas mais 

elevadas devem-se simultaneamente a maiores consumos de água e elevada escassez 

dos locais de cultivo. Para as categorias de toxicidade (HT e FT), os valores mais 

elevados são devido à elevada quantidade de pesticidas utilizados no cultivo, enquanto 

que para CC, AA e EU a maior contribuição provém da quantidade de fertilizantes. WCO 

apresenta os menores valores para WSI, CC, EU e AA. 

Na análise multiobjectivo realizada, observou-se que soluções (misturas) com valores de 

CC e WSI mais baixos podem ser obtidos com menor custo se OAU for incluído nas 

misturas. A mesma conclusão é obtida quando mais objectivos ambientais (AA, EU, FT e 

HT) são considerados na análise. A ferramenta de apoio à decisão desenvolvida facilita o 

processo de decisão ao permitir a visualização do compromisso entre o objectivo 

económico e os ambientais quando mais do que três objectivos são considerados.   

Nesta investigação é evidenciado que a inclusão de OAU num portfólio diversificado de 

matérias-primas usado em modelos de optimização de misturas é uma abordagem 

atractiva para melhorar a performance económica e ambiental do biodiesel. O modelo 

desenvolvido pode ser utilizado para optimizar a mistura de matérias-primas 

alternativas e avaliar a viabilidade técnica de utilizar outros resíduos (por ex. gorduras 

animais) nas misturas. Embora a ferramenta tenha sido desenvolvida especificamente 

para produção de biodiesel, pode ser aplicada a outras indústrias, nomeadamente de 

reciclagem, para apoio à decisão no planeamento de produção com vista a melhorar a 

performance técnica, económica e ambiental dessas indústrias.  

 

Palavras-chave: biodiesel, optimização multiobjectivo, modelos de misturas, óleos 

alimentares usados, custos de produção, pegada hídrica, emissões GEE, volatilidade de 

preços, incerteza composicional 
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1 INTRODUCTION 
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1.1 CONTEXT AND MOTIVATION 

In the late 1990´s, biofuels emerged as a strategy to increase revenue of farmers, 

reduce GHG emissions, and improve energy independence. However, what seemed 

to be the solution for such critical problems has become a controversial subject. The 

demand for biofuels feedstock such as maize, soybeans, rapeseed and palm oil has 

increased food prices and also the environmental performance of these biofuels 

compared with fossil fuels has been ambiguous (Huo et al. 2008; Demirbas 2009; 

Chen et al. 2010; Malça and Freire 2010; Plevin et al. 2011; Castanheira and Freire 

2013). A number of authors have argued that, to date, existing policies have been 

insufficient to ensure cost effectiveness and environmental sustainability of biofuels 

(Charles et al. 2013).  

The controversy around biofuels has put pressure on governments to reform biofuel 

policies so as to reduce economic costs, to avoid increased food insecurity, and to 

ensure net decreases in GHG emissions. In 2015, the European Commission 

published Directive 2015/1513 recommending to cap the use of food crop-based 

biofuels and support the development of cost-effective alternate biofuels that do not 

compete with food production and are beneficial in terms of life-cycle GHG 

emissions (Elliott 2015; European Comission 2015). In the United States (US), 

although the Environmental Protection Agency had proposed in 2013 to cap the use 

of crop-based biofuels by 1.28 billion gallons per year, the final rule released in 2015 

for volume standards for the Renewable Fuel Standard (RFS) program is above this 

value (1.9 billion gallons for 2016) (ICCT 2015).  

Limiting the use of food crop-based biofuels puts pressure on biodiesel producers to 

be as cost-efficient as possible as the quantity of biodiesel covered by tax credit 

decreases (Kotrba 2014). This is particularly important as cost of biodiesel 

production is mainly attributed to feedstock costs (about 85%) (Haas et al. 2006). 

Another issue that compromises biodiesel cost effectiveness, by threatening the 

long-term financial stability of the producers, is the high volatility associated with 

the price of feedstocks conventionally used in biodiesel production. As such, 

operational level decision making about feedstock selection is crucial to achieve 

lower production costs and cost variation reduction. Nevertheless, this selection 

process cannot ignore the environmental impacts of these feedstocks. Although the 
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main concerns of governmental bodies worldwide has been on limiting GHG 

emissions, other impact categories should not be neglected when assessing biodiesel 

sustainability, since biodiesel production entails other externalities. This thesis 

explores opportunities to improve biodiesel cost effectiveness at the operational 

level, particularly at the feedstock selection process, by assessing the use of waste-

based feedstocks in biodiesel blends and hedging feedstock purchase, whilst 

managing environmental impacts. 

1.2 PREVIOUS RESEARCH AND OPEN CHALLENGES 

This work combines different issues to which several bodies of literature 

contributed. The following paragraphs present a brief state of the art for each of the 

issues addressed and the research gaps identified. More information related to these 

issues is provided at the beginning of corresponding chapters in the remainder of 

the thesis. 

Biodiesel feedstocks and compositional uncertainty 

Several authors have suggested that feedstocks from residues such as waste cooking 

oil (WCO) may represent an opportunity for biodiesel producers to reduce 

production costs (Talebian-Kiakalaieh et al. 2013). Although waste-based feedstocks 

have been widely discussed due to their potential economic and environmental 

advantages (Dufour and Iribarren 2012; Caldeira et al., 2015), the use of these 

feedstocks has been limited due to two main factors. One is related to the low 

available quantity. For example in Europe, in 2014 only 32% of the available WCO 

resource was collected and used for biodiesel production (Grennea 2014). The other 

factor is related to the low quality of these feedstocks (i.e., highly variable 

composition) that may lead to operational difficulties. The latter was addressed in 

this thesis using stochastic blending models to optimize the blend of WCO 

(secondary material) and virgin oils like palm, rapeseed and soya (primary material) 

to manage the quality variation, addressing feedstock compositional uncertainty. 

Some authors have presented strategies to address feedstock uncertainty either 

within a linear performance constraint (Tintner 1960; Hartley et al. 1980; Bliss 

1997; Dupacova and Popela 2005), or using a penalty function in the objective 
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(Evers 1967; Mihailidis and Chelst 1998; Karmarkar and Rajaram 2001), or using a 

chance-constrained programming (CCP) formulation of the performance constraints 

(Charnes and Cooper 1959). The advantages of the CCP approach in the 

development of blending models in relation to deterministic ones are presented by 

Olivetti et al. (2011). According to these authors, the CCP model formulation always 

performs better or equal to Linear Risk formulation (LR) and there are conditions 

where it can lead to increase the use of heterogeneous materials and lower 

production costs. The CCP formulation allows increase the variation while still 

meeting technical specifications because it identifies portfolios of raw materials 

whose uncertainty characteristics are superior to that of any individual raw 

material. The creation of these portfolios of raw materials allows to manage risk and 

cost simultaneously (Olivetti et al. 2011).  

CCP has been applied in different problems showing the benefits of this technique in 

different case studies such as feed mixing (Panne and Popp 1963), materials 

production (Kumral 2003; Gaustad et al. 2007; Rong et al. 2008), coal blending, 

(Shih and Frey 1995) or brass (Sakallı et al. 2011; Sakallı and Baykoç 2013). Gülşen 

et al. (2014) applied CCP to develop a blend optimization model for biodiesel 

production considering the uncertainty of feedstocks chemical composition and 

pricing trends. The blending algorithm determines the recipe that minimizes cost 

having as constraints physical properties of the fuel. The results showed the 

potential for significant cost reduction through feedstock diversification, minimizing 

risks to producers from price fluctuations while still meeting technical fuel 

standards. The same CCP blend optimization method was used to analyze the impact 

of feedstock blending on the GHG emissions of biodiesel (Olivetti et al. 2014). 

Results showed that besides potential costs reduction, blending can be used to 

manage biodiesel GHG emissions uncertainty. 

Gülşen et al. (2014) and Olivetti et al. (2014) focused on crop-based oils and 

although subject to compositional variability, this is not as high as the variability 

found in the in the WCO due to high diversity of sources and previous use (Knothe 

and Steidley 2009; Hoekman et al. 2012). To the author´s knowledge, no study in the 

literature explores the use of CCP formulation to assess the use of WCO in biodiesel 

blends.  
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Biodiesel feedstocks price volatility  

Blending WCO with conventional feedstocks may also be advantageous to manage 

biodiesel cost variation because, according to WCO price information provided by an 

European broker, this feedstock presents lower price volatility (Grennea 2014) 

comparatively to conventional feedstocks like palm, rapeseed and soya oils 

(IndexMundi 2014). The WCO price data obtained refers to high quality WCO and for 

this reason it presents lower volatility  than one would expect. Typically, as WCO 

have varying quality characteristics influencing its suitability for biodiesel 

production and depending on the oil quality the purchase price can vary 

significantly (Smith et al. 2013). 

Conventional feedstocks prices present higher fluctuation over time because they 

are used in other industries, particularly in the food industry, and so they are 

influenced by several market conditions. Moreover, Hasanov et al. (2016) also 

showed strong evidence of causality from crude oil price volatility to conventional 

oils used in biodiesel production (rapeseed, soybean and sunflower) prices. The high 

uncertainty associated with the feedstock prices may compromise the biodiesel cost 

effectiveness, by threatening the long-term financial stability of the producers. For 

this reason, robust production planning that accounts for feedstock price 

uncertainty is of utmost relevance for biodiesel producers.  

Methods have been developed to explicitly consider feedstock price uncertainty 

within an optimization framework. In the literature, the most used approach to deal 

with price volatility is the two stage stochastic programming with recourse model 

(Al-Othman et al. 2008; Khor et al. 2008; Lin and Wu 2014; Calfa and Grossmann 

2015). Other approaches include the use of the Markowitz’s Mean-Variance model 

(Khor et al. 2008), the geometric Brownian motion (GMB) to model price behavior 

over time (Chen et al. 2015) or the fuzzy sets theory (Moradi and Eskandari 2014).  

Another body of literature can be found that investigates price commodities 

fluctuation using time series analysis (TSA) in different case studies (Caporale et al. 

2014; Apergis et al. 2016; Gil-Alana et al. 2016; Hasanov et al. 2016; Lee et al. 2016; 

Nicola et al. 2016). Within an optimization context,  Calfa and Grossmann (2015) 

developed a scenario-based two-stage stochastic programming framework to 

explicitly account for uncertainty in spot market prices of raw materials and the 
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predictability of demand response models (DRM) where TSA was used to predict 

spot market prices scenarios.  The objetive was to define optimal contract selection 

under uncertainty with suppliers and product selling price optimization. No study 

was found in the literature that addresses biodiesel feedstock price uncertainty 

within a blend optimization framework through planned feedstock prices hedging 

informed by predicted feedstock prices.  

Biodiesel environmental life-cycle assessment  

Although most of the studies reporting the environmental assessment of biodiesel 

are focused on the life-cycle assessment (LCA) of the biodiesel GHG emissions (e.g. 

Camobreco et al. 2000; Bozbas 2008; Fargione et al. 2008; Atabani et al. 2012), there 

are other relevant aspects to consider when evaluating the environmental impacts 

of biodiesel such as the freshwater use impacts. The majority of biodiesel is 

produced from vegetable oils feedstocks (Eisentraut 2010; OECD-FAO 2013; 

Issariyakul and Dalai 2014) such as soya, palm, rapeseed or sunflower that can 

require large quantities of freshwater depending on the location where the crops are 

cultivated (Pfister and Bayer 2014). If those areas present high water scarcity, the 

freshwater consumption impacts can be significant. Moreover, the use of fertilizers 

and pesticides in the crops cultivation can also impact freshwater quality 

(Emmenegger et al. 2011).  

Over the last 5 years, water footprint (WF) based on LCA methodology has 

progressed rapidly, resulting in a complex set of methods for addressing different 

freshwater types and sources, pathways and characterization models, and with 

different spatial and temporal scales (Kounina et al. 2013; Tendall et al. 2014). The 

need to ensure consistency in addressing the impacts from freshwater consumption 

and degradation led to the development of the international standard ISO 14046 

(ISO 2014), that provides guidelines on how to perform an assessment of freshwater 

related environmental impacts. According to this standard, the water footprint 

profile considers a range of potential environmental impacts associated with water, 

encompassing the consumption of freshwater (water scarcity assessment) and 

impact categories related to water pollution (e.g. freshwater and marine 

eutrophication, aquatic acidification, and human toxicity) (ISO 2014). 
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Some studies on WF of bioenergy systems based on LCA methodology can be found 

in the literature quantifying impacts due to freshwater consumption and 

degradation (impact assessment level) using different approaches (e.g. Emmenegger 

et al. 2011; Yeh et al. 2011; Chiu et al. 2011; Hagman et al. 2013). Nevertheless, none 

of those studies performs a comprehensive environmental assessment of crop and 

waste-based feedstocks used for biodiesel production, addressing impacts due to 

GHG emissions and water use (water consumption and degradability) according to 

the ISO 14046 guidelines.  

Another body of literature can be found that assesses water use in bioenergy 

systems according to the water footprint assessment (WFA) manual  (Hoekstra et al. 

2009; Hoekstra et al. 2011) (e.g. Gerbens-Leenes et al. 2009; Elena and Esther 2010; 

Chiu and Wu 2012; Gerbens-Leenes et al. 2012; Chiu et al. 2015). Yet, this 

methodology is focused on accounting water at the inventory level and not the 

impacts.  

Biodiesel life-cycle multi-objective assessment   

In 1999, Azapagic and Clift (Azapagic and Clift 1999a; Azapagic and Clift 1999b) 

provided an approach that allowed the simultaneous assessment of economic and 

environmental performance of a system.  The authors presented a method – 

“Optimum LCA Performance” that allows the simultaneous optimization of economic 

and environmental objective functions, generating optimum solutions that do not 

require a preference, allowing the analysis of the non-inferior solutions sets. 

Depending on the characteristics of the system, the problem can be formulated as 

Linear Programming (LP), Mixed Integer Linear Programming (MILP) or Mixed-

Integer Nonlinear Programming (MINLP). The system is then optimized 

simultaneously on a number of environmental and economic objective functions to 

locate the multidimensional non-inferior or Pareto surface (Azapagic and Clift 

1999a; Azapagic and Clift 1999b).  

Since then, Life-Cycle Multi-Objective (LCMO) framework has been widely used to 

analyze tradeoffs between environmental and economic aspects (Pieragostini et al. 

2012; Jacquemin et al. 2012) in different areas such as: processing (Capón-Garcia et 

al. 2011); recycling (Ponce-Ortega et al. 2011); energy systems (Gerber and Gassner 
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2011; López-Maldonado et al. 2011; Bamufleh et al. 2012; Cristóbal et al. 2012; 

Gutiérrez-Arriaga et al. 2012); or buildings (Carreras et al. 2015; Safaei et al. 2015). 

In what concerns LCMO models for biofuels systems, the majority of the studies 

presented in the literature consider the supply chain (SC) in a well-to-tank (WTT) 

approach. Global Warming Potential (GWP) is the common denominator to all 

studies although some go further, including other environmental impact categories 

using mainly the Eco-indicator 99 method. A couple of studies include water 

assessment but only considering water consumption and not the impacts due to this 

consumption (Tan et al. 2009; Bernardi et al. 2012). The mathematical models are 

formulated in order to minimize costs or maximize profit and minimize 

environmental impacts and some consider spatial and multi-period issues. In most 

cases, the problem is solved using the CPLEX in GAMS software. Table 1.1 

summarizes the main characteristics of the consulted literature on LCMO applied to 

biofuels systems. 
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Table 1.1 LCMO studies on biofuels systems 
Reference System System  

boundaries 

Impact Assessment 

Method 

Objective functions Mathematical model /Solver Application 

Zamboni et al. 2009a; 

Zamboni et al. 2009b 

Biofuel supply chain (SC) 

 

Well to tank 

(WTT) 

Intergovernmental 

Panel on Climate 

Change (IPCC)  

Min Total daily cost (€/day)  

Min Total daily impact (kg CO2 eq/day) 

Spatially explicit MILP / CPLEX solver in 

GAMS 

Corn-based ethanol in Italy 

Tan et al. 2009 Biofuel production  WTT Input–output-based 

life-cycle model  

Max Satisfaction level - 

Max Biofuel production; Min Land use, 

water use and carbon emissions 

Fuzzy linear programming Integrated production of biodiesel, 

ethanol and electricity in  Philippines 

Zhang et al. 2010 Biofuel crop production Biofuels Crops 

Cultivation 

Environmental Policy 

Integrated Climate 

Max Energy production  

Min GHG emissions, Soil erosion; and,  

N and P loss 

Spatially explicit integrative modeling 

framework (SEIMF)/Genetically adaptive 

multi-objective method (AMALGAM) 

Biofuel production in nine county in 

Michigan 

Giarola et al. 2012 Bioethanol  hybrid 

first/second generation SC 

WTT IPCC  Max Financial profitability (NPV) 

Min GHG emissions 

Spatially explicit multi-period and multi-

echelon bi-objective MILP/ CPLEX solver 

in GAMS 

Bioethanol production in Northern Italy 

You et al. 2012 Cellulosic ethanol SC Field to wheel IPCC Min Total cost 

Min GHG emissions 

Max Number of accrued local jobs 

Multi-period MILP /  CPLEX solver in 

GAMS   

Ɛ-constraint method   (Ɛ-c M) 

Two county-level state case studies for 

the state of Illinois 

Santibañez-Aguilar et al. 

2011 

Biorefinary Cradle-to-

Grave 

Eco-indicator 99 Max Profit 

Min  EI99 ecopoint 

MOLP/ CPLEX solver in GAMS  

 Ɛ-c M 

Planning production of a biorefinary in 

Mexico 

Mele et al. 2011 Ethanol and sugar SC Cradle-to-gate CML /  

Eco-indicator 99 

Max NPV 

Min GWP and EI99 ecopoint 

MILP /  CPLEX solver in GAMS  

Ɛ-c M 

Sugar industry in Argentina 

Akgul et al. 2012 Bioethanol  hybrid 

first/second generation SC 

WTT IPCC Min Total daily cost 

Min GHG emissions 

Multi-period MILP/  CPLEX solver in GAMS  

Ɛ-c M 

Bioethanol production in the UK 

Bernardi et al. 2012 Hybrid 

Bioethanol SC 

 

WTT 

IPCC /Water footprint 

(WF) network 

(inventory level) 

Max NPV 

Min GHG emissions and Water 

Footprint 

MILP /CPLEX solver in GAMS Bioethanol production in Northern Italy 

Wang et al. 2013 Biorefinary Cradle-to gate IPCC/ 

Eco-indicator 99 

Max NPV 

Min GHG emissions 

MINLP/ BARON 2.0 en GAMS Ɛ-c M Hydrocarbon biorefinery 

Murillo-Alvarado et al. 

2015 

Bioethanol SC WTT Eco-indicator 99 Max NPV 

Min EI99 

MILP Lignocellulosic residues from  

tequila processing industries in Mexico 

Bairamzadeh et al. 2016 lignocellulosic bioethanol 

SC 

WTT Eco-indicator 99 Max Total Profit 

Min EI99 

Max Number of jobs generated 

Multi-objective Robust Possibilistic 

Programming/CPLEX solver in GAMS 

Lignocellulosic supply chain 

established in Iran. 
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Life-cycle multi-objective under uncertainty  

A few studies can be found in the literature that address uncertainty in LCMO 

models. Some of these studies are focused on the uncertainty of the LCA impact 

either by using CCP (Guille and Grossmann 2009; Guillén-Gosálbez and 

Grossmann 2010) or by describing the LCA uncertain parameters through 

scenarios with given probability of occurrence  (Sabio et al. 2014).  Others 

address uncertainty related to prices and demand uncertainty, using scenarios 

with given probability of occurrence in the design of sustainable chemical supply 

chains (Ruiz-Femenia et al. 2013) and chemical processes network (Alothman 

and Grossmann 2014);  or, address uncertainty in several parameters expressed 

as fuzzy possibility distributions and probability distributions to help design 

better waste management strategies (Zhang and Huang 2013).  

Among the LCMO models applied to biofuels systems presented in table 1.1 only 

the ones developed by Tan et al. (2009)  and Bairamzadeh et al. (2016) consider 

uncertainty. In the former case, fuzzy linear programming is used to determine 

the bioenergy system configuration given target values for both production and 

footprints (land use, water and carbon) levels. In the latter, uncertainties in the 

input data involving bioethanol demand and sale price, main crop selling price, 

and environmental impacts, as well as harvesting losses and deterioration of 

biomass during storage, are treated as fuzzy values and dealt with using a robust 

possibilistic programming approach.  

Among the LCMO studies found in the literature, none of them developed a 

framework to optimize blends for biodiesel production using waste-based 

feedstocks (WCO) minimizing costs and environmental impacts addressing 

feedstocks compositional and price uncertainty. 
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1.3 RESEARCH QUESTIONS AND OBJECTIVES  

The seminal research question that originated the work presented in this thesis 

is the following:  Can operational level decisions simultaneously reduce 

biodiesel cost and manage environmental impacts? 

In face of this question, the main goal of this thesis is to develop an uncertainty-

aware decision aiding tool to assess economic and environmental tradeoffs of 

decisions at the operational level in biodiesel production, taking into account 

feedstock price and composition uncertainty. This tool allows exploring 

opportunities to improve biodiesel economic performance by assessing the use 

of WCO in biodiesel blends and hedging feedstock purchase, whilst managing 

environmental impacts. 

Based on the gaps highlighted in section 1.1, the seminal research question is 

broken-down into four research questions. Specific objectives were established 

to help design the research strategy to answer to these questions. The research 

questions, the specific objectives and the corresponding chapter are presented in 

table 1.2. 
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Table 1.2 Research questions, objectives and corresponding chapter 

Research Question Objective Chapter  

1. Can biodiesel 

production cost be 

reduced by the 

incorporation of WCO in 

blends for biodiesel 

production without 

compromising the 

biodiesel technical 

performance? 

1.1 Characterize the uncertainty in feedstocks (palm, 

rapeseed, soya and WCO)  

2 

 

1.2 Evaluate existing prediction models that stablish a 

relation between the feedstocks chemical composition and 

biodiesel final quality 

1.3 Develop an optimization blending model that addresses 

feedstocks compositional uncertainty 

1.4 Evaluate the blends performance comparatively to 

virgin oils feedstocks blends 

2. Can production cost 

variation be reduced by 

planned prices hedging 

informed by forecasted 

feedstock prices? 

2.1 Develop a time series analysis forecast model to predict 

feedstock prices 

3 
2.2 Develop an optimization model to address price 

uncertainty using forecasted price information 

2.3 Evaluate the influence on cost variation performance 

using the model developed 

3. What are the life-cycle 

GHG emissions and 

water use impacts 

associated with different 

feedstocks? 

3.1 Build a LC model and inventory for virgin oils and WCO 

4 3.2 Calculate the GHG emissions and water use impacts of 

the feedstocks 

4. What are the 

environmental benefits 

of using WCO in 

biodiesel blends and the 

tradeoffs between costs 

and environmental 

impacts? 

4.1  Integrate the environmental assessment results in a 

blending algorithm using multi-objective optimization  

5 

 

4.2 Develop a tool to facilitate the assessment of the 
tradeoff between production costs and environmental 

impacts 

4.3 Analyze the tradeoff between production costs and 

environmental impacts of blends composed with WCO and 

compare them with blends composed only by conventional 

feedstocks  
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1.4 CONTRIBUTION 

This thesis contributes to improve biodiesel cost effectiveness either by reducing 

production costs by using secondary material such as WCO in blends for 

biodiesel production without compromising technical performance or by 

addressing feedstock price uncertainty to reduce biodiesel production cost 

variation. Moreover, the integration of the feedstocks environmental assessment 

in a cost driven optimization tool facilitates the analysis between economic and 

environmental tradeoffs. The work developed enhances the technical, economic 

and environmental performance of biodiesel production, in particular by:  

1. Demonstrating that by addressing feedstocks compositional uncertainty, 

secondary material such as WCO can be used in blends for biodiesel 

production without compromising technical performance and, 

consequently reduce production costs;  

2. Showing that managing feedstock price uncertainty using forecasted 

feedstock price information can reduce biodiesel production cost 

variation; 

3. Providing a life-cycle environmental assessment including GHG emissions 

and water use impacts of feedstocks used in biodiesel production; 

4. Combining environmental assessment with blending models using multi-

objective optimization towards novel engineering systems methodologies; 

5. Supporting biodiesel producers in decision processes concerning 

economic and environmental tradeoffs.  

The outcome of this research allows biodiesel industry to obtain blends that are 

efficient in terms of cost and environmental impact for biodiesel production in 

compliance with technical standards. The efficient solutions obtained allow the 

production planner to analyze the tradeoffs between the different objectives. 

Although applied specifically to biodiesel production, the uncertainty-aware 

decision tool developed in this work can be adapted and applied to other 

industries, namely recycling, to enhance their technical, economic and 

environmental performance. 

The research in this PhD originated articles published or under review in ISI-JCR 

indexed journals. Table 1.4 presents the articles and the corresponding chapter. 
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Table 1.3 Articles published or under review in ISI-indexed journals and corresponding chapter 

Article 
Corresponding 

Chapter 

Caldeira, C., Freire, F., Olivetti, E., Kirchain, R. “Fatty Acid based 

prediction models for biodiesel properties addressing compositional 

uncertainty” Fuel 196C pp. 13-20   

Chapter 2 

(section 2.1) 

Caldeira, C., Swei, O., Dias, L., Freire, F., Olivetti, E., Kirchain, R. 

“Planning strategies to manage production cost and cost variation of 

biodiesel production addressing operational and price uncertainty” 

(in final preparation) 

Chapter 2 

(section 2.2) 

and Chapter 3 

Caldeira, C., Queirós, J., Freire, F. (2015). “Biodiesel from Waste 

Cooking Oils in Portugal: alternative collection systems”. Waste and 

Biomass Valorization, vol. 6 (5), pp. 771-779.  

Chapter 4 

Caldeira, C., Queirós, J., Noshadravan, A., Freire, F. “Incorporating 

uncertainty in the Life-cycle Assessment of biodiesel from Waste 

Cooking Oil addressing different collection systems”. Resources, 

Conservation and Recycling, vol. 112, pp. 83-92  

Chapter 4 

Caldeira, C., Quinteiro, P., Castanheira, E.G., Boulay, AM., Dias, A.C, 

Arroja, L., Freire, F. “Water footprint profile of crop-based vegetable 

oils and waste cooking oil” (submitted) 

Chapter 4 

Caldeira, C., Olivetti, E., Kirchain, R., Freire, F., Dias, L., “A life-cycle 

multi-objective decision aiding tool to assess the use of secondary 

material in biodiesel production” (in final preparation) 

Chapter 5 

 

Other related articles 

Caldeira, C., Gülsen, E., Olivetti, E. A., Kirchain, R., Dias, L., Freire, F. (2014). “A 

Multiobjective model for biodiesel blends minimizing cost and Greenhouse Gas 

emissions”. Computational Science and Its Applications. Lecture Notes in 

Computer Science. Vol. 8581, pp 653-666.  

Caldeira, C., Dias, L., Freire, F., Kremmydas D., Rozakis, S. “Blends for biodiesel 

production: influence of technical constraints in GHG reduction and Cost 

effectiveness” (submitted)   
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Abstracts and keywords of the articles are presented in Appendix I. In addition, 

articles related to this PhD research published in conference proceedings with 

scientific refereeing are presented in the full list of publications in Appendix II. 

1.5 THESIS OUTLINE 

This thesis consists of six chapters including this introductory chapter, and it is 

structured as follows: 

Chapter 2 presents firstly, a review and assessment of prediction models that 

relate the chemical composition of feedstocks to the final quality of biodiesel. 

Secondly, selected models were integrated in a chance-constrained optimization 

model to optimize blends for biodiesel production using WCO, addressing 

compositional uncertainty.  

In Chapter 3, an approach to address feedstock price uncertainty is presented. 

Time series analysis models are used to forecast the feedstock prices and this 

information is integrated in a cost optimization model developed to minimize 

biodiesel production cost variation.  

Chapter 4 presents the environmental life-cycle assessment of the virgin and 

WCO that include GHG emissions and water use (consumptive and degradative) 

impacts 

Chapter 5 presents a multi-objective optimization model that works as a 

decision aiding tool to assess the incorporation of WCO in blends for biodiesel 

production and analyze the economic and environmental tradeoffs of operational 

decisions. 

Finally, Chapter 6 draws the conclusions, discusses the main limitations, and 

presents suggestions for future research. 
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2 CHANCE-CONSTRAINED OPTIMIZATION TO 

ADDRESS COMPOSITIONAL UNCERTAINTY IN 

BIODIESEL BLENDING  

 

 

 

 

 

 

 

 

 

The content of this chapter is presented in the following articles:  

Caldeira, C., Freire, F., Olivetti, E., Kirchain, R. (2017) Fatty Acid based prediction 

models for biodiesel properties incorporating compositional uncertainty Fuel 

196C pp. 13-20   

Caldeira, C., Swei, O., Dias, L., Freire, F., Olivetti, E., Kirchain, R. Planning strategies 

to manage production cost and cost variation of biodiesel production 

addressing operational and price uncertainty (in final preparation) 
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2.1 INTRODUCTION 

Biodiesel properties are intimately related to the vegetable oil chemical composition 

that originated it. As each vegetable oil presents a typical fatty acid (FA) profile , the 

modification of the final FA composition by blending different vegetable oils can lead 

to a specific value for a property, guaranteeing its compliance with quality standards 

(Moser 2008; Park et al. 2008; Knothe 2009). However, although blending can 

contribute to obtain required technical performance of biodiesel, if the 

compositional uncertainty of the oils is not considered, the risk of noncompliance 

with technical requirements exists. This risk is higher if the biodiesel producer 

intends to include in the blends secondary material such as WCO. To minimize this 

risk, stochastic optimization techniques such as chance-constrained programming 

(CCP) can be applied.  

This chapter presents a model to optimize the blending of crop-based oils and WCO 

addressing oil compositional uncertainty (FA composition) using chance-

constrained programing. The crop-based oils selected for this work are palm, 

rapeseed and soya as they are widely used in biodiesel production (OECD-FAO 

2011). A review and assessment of biodiesel properties prediction models based on 

the FA composition is presented in section 2.2. Selected prediction models are then 

integrated in an optimization model described in section 2.3. The model was used to 

assess the use of WCO in blends with virgin oils. The blends are assessed in terms of 

costs and technical performance. Reference blends obtained having only virgin oils 

available in the model are also evaluated and used as a benchmark.   

2.2 FATTY ACID BASED PREDICTION MODELS FOR BIODIESEL 

PROPERTIES ADDRESSING COMPOSITIONAL UNCERTAINTY 

Biodiesel is globally produced from vegetable oils via a transesterification reaction 

using methanol (Balat and Balat 2010). Vegetable oils are mainly composed by 

triglycerides, an ester derived from glycerol and three fatty acids (FA). A FA is a 

carboxylic acid with a long aliphatic tail (chain), which is either saturated or 

unsaturated. Most naturally occurring FA have a chain of an even number of carbon 
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atoms, from 4 to 28. A nomenclature “CX:Y” is associated with each FA, where X is 

the number of carbon atoms and Y the number of carbon–carbon double bonds in 

the FA chain. As schematically represented in figure 2.1, transesterification is the 

reaction of an alcohol with the FA (represented by R) in the presence of a catalyst to 

form the esters of fatty acids (biodiesel) and crude glycerol. The most commonly 

used alcohol is methanol and in this case, the biodiesel is a Fatty Acid Methyl Ester 

(FAME) (Knothe et al. 2010). 

 

Figure 2.1 Scheme of the transesterification reaction 

Transesterification can be used to produce biodiesel from triglyceride feedstock 

including oil-bearing crops, waste oils (waste cooking oil and animal fats) and algae 

lipids (Hoekman et al. 2012). It is generally assumed that FA compositional profiles 

remain unchanged during conversion of the feedstocks to fuels via 

transesterification For this reason, the biodiesel properties are directly related to 

the FA profile (Sajjadi et al. 2016). Structural features such as chain length, degree of 

unsaturation and branching of the FA chain determine the fuel properties (Hoekman 

et al. 2012). 

Technically, the production of biodiesel from WCO is similar to conventional 

transesterification processes of crop-based oils (Knothe et al. 1997). Nevertheless, 

depending on the quality of the WCO, different catalyst (alkaline, acid or enzymatic) 

may present advantages.  The quality of the WCO is associated with contaminants 

such as water and free fatty acids (FFA) and, depending on the quality of the oil, a 

pretreatment phase might be necessary so that the oil complies with standards 

required for the transesterification reaction (Diya’uddeen et al. 2012; Araújo et al. 

2013). Another issue that may impact the quality of the WCO is the hydrogenation 

used to increase the oil useful cooking lifetime that may lead to the introduction of 

trans constituents (Moser 2009). 
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FFA are a problem in the transesterification process because they originate 

saponification reactions, while the high water content leads to the formation of bulk 

solids. If the FFA content is lower than 0.5%, the transesterification reaction can be 

performed directly. However, since the percentage of FFA in the WCO is usually 

more than 2% an acid esterification of the WCO previously to the transesterification 

reaction is necessary to reduce the % of FFA (Issariyakul et al. 2007; Diya’uddeen et 

al. 2012). 

Although there are several parameters influencing the production of biodiesel from 

WCO, this work is focused only on the influence of the FA profile of the oils in the 

final quality of the biodiesel as they are the major indicators of the properties of the 

biodiesel  (Chhetri et al. 2008). For this reason, it is assumed that the quality of the 

WCO is the required one for the transesterification reaction. 

To ensure that the biodiesel has quality to be used as automotive diesel fuel, the 

standard organizations American Society for Testing and Materials (ASTM) in the US 

and European Committee for Standardization (CEN) in the EU have established 

standard specifications for biodiesel: ASTM D6751 (ASTM 2008) and EN 14214 

(CEN 2008), respectively. Properties that are directly related to the FA profile are: 

viscosity, density, cetane number (CN), iodine value (IV), cloud point (CP), pour 

point (PP), cold filter plugging point (CFPP), and heating value (Martínez et al. 

2014). Oxidative stability (OS) is related to the FA composition but it is also 

influenced significantly by the conditions that biodiesel is exposed to during storage, 

transport and handling (e.g. light, temperature). Moreover, anti-oxidant additives 

that some biodiesel samples contain modify the stability of the biodiesel (Knothe et 

al., 2010; Hoekman et al. 2012; Giakoumis 2013). 

Models have been developed that express the relation between the FA composition 

and individual properties showing agreement with experimental data (Knothe and 

Steidley 2007; Bamgboye and Hansen 2008; Park et al. 2008; Demirbas 2008; Ramos 

et al. 2009; Pratas et al. 2010; Tong et al. 2010; Freitas et al. 2011; Knothe and 

Steidley 2011). These models provide deterministic results but do not explore the 

underlying variability associated with the FA composition. However, as FA sources 

are variable and because the attributes of a FA source are not always fully 

characterized, this variability translates into uncertainty for the production planner 
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in determining quantity and types of oils to blend. The FA composition may vary due 

to different growing conditions and locations. This variability is even higher in cases 

of secondary feedstocks such as waste cooking oils (WCO) due to diverse origin 

sources (Knothe and Steidley 2009; Hoekman et al. 2012).   

In this section, the results of existing prediction models for biodiesel properties that 

are directly based on the FA composition, integrating the FA compositional 

uncertainty are presented and discussed. Firstly, a review of existing prediction 

models that are directly related to the FA composition is presented (section 2.2.1); 

secondly, the procedure to integrate the FA compositional uncertainty in the models 

is described (section 2.2.2); and finally, the models results are compared with values 

found in the literature (section 2.2.3). 

2.1.1 PREDICTION MODELS FOR BIODIESEL PROPERTIES 

A review of existing biodiesel prediction models that are directly related to the FA 

composition is presented in this section. The following properties are addressed: 

density, cetane number (CN), iodine value (IV), cold filter plugging point (CFPP) and 

Oxidative stability (OS). These properties are also indicated by the industry as the 

most challenging to meet (Gülşen et al. 2014). Although viscosity and heating value 

also depend on the FA composition, these properties were not included in this study 

because no model that explicitly relates the property with the FA composition was 

found in the literature. 

2.2.1.1 Density 

The density of a fuel is critical to determine the quantity of mass injected and 

consequently, the air–fuel ratio and energy content within the combustion chamber. 

Density is limited to 860-900 kg m-3 at 15 oC in EN 14214 but there is no 

specification for density in ASTM D6751. Biodiesel density is affected by chain 

length (with higher chain length leading to lower fuel density) and degree of 

unsaturation (with higher unsaturation leading to increased density) (Knothe et al 

2010). 

Pratas et al. (2011) investigated three versions of Kay’s mixing rules and two 

versions of the group contribution GCVOL model to predict biodiesel density, 
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showing that Kay’s mixing rules and the revised form of the GCVOL model suggested 

by the authors was able to predict biodiesel densities with average deviations of 

only 0.3%. Ramírez-Verduzco et al. (2012) also provided a model to predict density 

based on the correlation of experimental data and the molecular weight and the 

number of double bonds in a given FAME. The density of the biodiesel is then given 

by the weighed sum of the density of each FAME. 

Giakoumis (2013) found a significant correlation (R2 = 0.86) between density and 

the degree of unsaturation given by equation 2.1, where nFA is the number of 

unsaturated bonds and xFA   the composition (percentage) of the FA in the oil. 

Density = 9.17 ∑nFA xFA   +  869.25

FA

 Eq. 2.1 

A linear correlation between the unsaturation degree and the density was also 

obtained by Martínez et al. (2014), but the equation is not provided. In this thesis 

the model given by Giakoumis (2013) was analyzed because it explicitly relates the 

property with the FA composition. 

2.2.1.2 Cetane Number 

The cetane number (CN) is a dimensionless number that reflects the auto ignition 

quality of the fuel. High CN means that there is a lower delay time between fuel 

ignition and ignition and this guarantees good start behavior and a smooth run of 

the engine. Studies have reported that fuels with higher CN have lower NOx and CO 

emissions (Knothe 2014; Sajjadi et al. 2016). This property is limited to a minimum 

of 51 in EN 14214 and a minimum of 47 in ASTM D6751.  

The CN of biodiesel is affected by the degree of unsaturation (feedstocks with high 

concentration of unsaturated FA lead to lower CN) and chain length (higher chain 

length leads to higher CN values) (Refaat 2009; Giakoumis 2013). 

Bamgboye and Hansen (2008) proposed equation 2.2 to predict the CN of biodiesel 

based on the composition (percentage) of specific FAMEs (x). 

CN = 61.1 + 0.088xC14:0 + 0.133xC16:0 + 0.152xC18:0 − 0.101xC16:1 − 0.039xC18:1 − 0.243xC18:2

− 0.395xC18:3 
Eq. 2.2 

 



2 | Chance-constrained optimization to address compositional uncertainty in biodiesel blending  

 

   23 

According Gopinath et al. (2009a) and Piloto-Rodríguez et al. (2013), CN can be 

predicted using equations 2.3 and 2.4, respectively. 

CN = 62.2 + 0.017xC12:0 + 0.074xC14:0 + 0.115xC16:0 +  0.177xC18:0 − 0103xC18:1

− 0.279xC18:2 − 0.366xC18:3 

 

    Eq. 2.3 

 

CN = 56.16 + 0.007xC12:0 + 0.1xC14:0 + 0.15xC16:0 − 0.05xC16:1 + 0.23xC18:0 − 0.030xC18:1

− 0.19xC18:2 − 0.31xC18:3 + 0.08xC20:1 + 0.18xC22:1 − 0.1xsum of residual FAME 
 

Eq. 2.4 

 

Lapuerta et al. (2009) proposed the predictive equation 2.5 based on statistical 

analysis for FAME CN that is largely driven by the number of double bonds (db) and 

the carbon number (n) in the FAME. 

CN =  −21.157 + (7.965 − 1.785db + 0.235db2 ) − 0.099n2 Eq. 2.5  

 

Tong et al. (2010) and Knothe (2014) predicted the CN of biodiesel based on the CN 

of each FAME. The biodiesel CN is given by the sum of the relative percentage of the 

FAME multiplied by the CN FAME value. 

The Bamgboye and Hansen (2008), Lapuerta et al. (2009), Gopinath et al. (2009a) 

and Piloto-Rodríguez et al. (2013) models were compared in the analysis.  

2.2.1.3 Iodine value 

Iodine value (IV) is a parameter used to determine the degree of unsaturation 

(number of double bonds) in a molecule of oil. It is determined by measuring the 

amount of iodine (I2) in grams that reacts by addition to carbon–carbon double 

bonds, since one molecule of iodine is consumed by every double bond. EN 14214 

restricts the value of IV to a maximum of 120 g I2/100 g of biodiesel, while ASTM 

D6751 does not present any specification for this parameter. The European 

standard provides a procedure to calculate IV according to which, the sample’s IV is 

the sum of the contributions of each methyl ester, obtained by multiplying the 

methyl ester percentage (xFA) by its respective factor  according equation 2.6 (CEN 

2008).  
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IV = 0.95xC16:1 + 0.860xC18:1 + 1.732xC18:2 +  2.616xC18:3 + 0.785xC20:1 + 0.723xC22:1 Eq. 2.6 

 

2.2.1.4 Cold Flow Properties 

The performance of biodiesel in cold weather is a critical issue. At low temperatures, 

the saturated esters begin to nucleate and form solid crystals that can restrict flow 

in fuel lines and filters, which can lead to fuel starvation and engine failure (Knothe 

et al. 2010). Cooling temperatures cause formation of wax crystal nuclei invisible to 

the human eye. These crystals grow with decreasing temperature until they become 

visible. The temperature at which this happens is defined as the cloud point (CP). 

Bellow the CP, larger crystals fuse together and form agglomerates that can restrict 

or cut-off flow through fuel lines and filters causing operability problems. This 

happens when the pour point (PP) is reached. Since non of these parameters are 

suitable for predicting cold flow operability of diesel fuels under field conditions, an 

alternative bench-scale tests parameter, the cold filter plugging point (CFPP), was 

developed to predict overnight temperatures at which start-up or operability 

problems may occur (Moser 2008; Knothe et al. 2010). 

The three metrics (CP, PP, and CFPP) are highly correlated amongst themselves and 

although the European and US standards do not include explicit specifications for 

cold flow properties. The CP is required by report only in ASTM D6751. In EN 14214, 

climate-dependent requirements options are given to allow for seasonal grades to 

be defined for each country. There are six CFPP grades for temperate climates and 

five different classes for arctic climates.  

The cold flow properties are influenced by all the factors that influence close packing 

of highly ordered molecules. This factors are: i) chain length, the longer the carbon 

chain, the higher the melting point, and poorer the low temperature performance; ii) 

unsaturation degree, double bond disrupts the close packing of molecules and 

consequently lower the crystallization temperatures. Furthermore, differences in 

double bond orientation have been noted, with the “cis” configuration providing 

better low temperature test performance than “trans”; and, iii) branching of the FA 

chain or of the alcohol portion of FAME, replacing methanol with ethanol to produce 

FAEE results in slightly improved low temperature performance, as ethyl esters 
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typically have melting points 5 –10 ◦C lower than the comparable methyl esters 

(Knothe et al. 2010). 

Park et al. (2008) studied the effects of the total content (percentage) of unsaturated 

FA (xunsat FA) in CFPP and obtained a good correlation expressed by equation 2.7 if 

the total content of unsaturated FA is lower than or equal to 88% and by equation 

2.8 if the total content of unsaturated FA is higher than 88%. 

CFPP =  −0.488 ∑ xunsat FA + 36.0548  ,

unsat FA

 if xunsat FA  ≤ 88% Eq. 2.7 

CFPP =  −2.7043 ∑ xunsat FA + 232.0036 , if xunsat FA  > 88% 

unsat FA

 Eq. 2.8 

Moser (2008) reported a prediction model based on the quantity of saturated FA 

(xsat FA) expressed by equation 2.9 to be applied if the content of saturated FA is 

lower than or equal to 48%.  

CFPP =  0.438 ∑ xsat FA − 8.93 

sat FA

 
Eq. 2.9 

Ramos et al. (2009) analyzed the correlation between CFPP and the Long Chain 

Saturated Factor (LCSF) parameter. LCSF is an empiric parameter determined taking 

into account the composition of saturated FA and giving more weight to the 

composition of FA with long chain. The results show a strong correlation (R² = 

0.966) that is described by equation 2.10. 

 

2.2.1.5 Oxidative Stability (OS) 

Oxidative stability is one of the most important fuel properties with respect to in-use 

performance of biodiesel. Unstable fuel can lead to increased viscosity, as well as 

formation of gums, sediment, and other deposits. Although OS is influenced by the 

FA composition, several other factors such as natural antioxidant content, the level 

of contaminants and the conditions of fuel storage (temperature, exposure to light 

and air and tank material) can also affect this property (Refaat 2009). OS is limited 

to 8 hours in EN 14214 and 3 hours ASTM D6751. 

CFPP =  3.1417(0.1xc16:0 + 0.5xC18:0 + xC20:0 + 1.5xC22:0 + 2xC24:0) − 16.477 Eq. 2.10 
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The removal of a hydrogen atom from an allylic position (removed from a carbon 

adjacent to a double bond) initiates the oxidative degradation processes. After this, 

rapid reaction with molecular oxygen leads to formation of allylic hydroperoxides. 

Subsequent reactions involving isomerization and radical chain propagation 

produce numerous secondary oxidation products such as aldehydes, alcohols, and 

carboxylic acids (Knothe et al. 2010; Hoekman et al. 2012). Considering the chemical 

composition, OS is influenced by: i) degree of unsaturation, higher unsaturation 

leads to poorer stability; ii) number and position of the double bonds, esters 

composed of linoleic and linolenic acids that contain a carbon atom that is adjacent 

to two double bonds (a bis-allylic group) are particularly susceptible to oxidative 

instability; and iii) double bond orientation, trans- configuration generally presents 

more stability than cis, what may favor the WCO biodiesel (Moser 2009). 

Oxidation is a complex process to understand because FAs usually occur in complex 

mixtures, with minor components in these mixtures catalyzing or inhibiting 

oxidation (Refaat 2009). The presence of water and other compounds derived from 

external contamination or thermal degradation (the case of WCO) may also promote 

oxidation. Also the reduction in the natural anti-oxidants when the oil is subjected to 

a frying process contributes to the lower oxidation stability of waste cooking oils 

esters (Giakoumis 2013).  

Park et al. (2008) studied the relationship between the content (percentage) of 

unsaturated FAMEs: Linoleic (C18:2) and linolenic (C18:3) and the stability of the 

biodiesel and developed the predictive equation 2.11 for biofuel stability based on 

the content of these two FAMEs.  

OS =  
117.9295

xC18:2 + xC18:3
+ 2.5905 

Eq. 2.11 

In the analysis performed by Gülşen et al. (2014), besides the two FAMEs considered 

in Park´s model, the presence of natural antioxidants (tocopherol- 𝛾𝑇 and 

tocotrienol-TT) in the oil was also taken into account by representing them as 

dummy variables. A multiple regression analysis on these factors was performed 

and the regression equation is given by equation 2.12. 

OS = 7.41 − 0.092(xC18:2 + xC18:3) + 2.76γT + 4.12TT Eq. 2.12 
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2.2.2 INTEGRATION OF COMPOSITIONAL UNCERTAINTY IN THE PREDICTION 

MODELS  

To integrate the FA compositional uncertainty in the prediction models the 

following steps were performed: i) data collection about the FA composition of 

vegetable oils; ii) selection of the adequate uncertainty representation of the 

parameters (FA composition); iii) integration of the FA compositional uncertainty in 

the models and estimate the range of results given by the models; and, iv) 

comparison of the results with reference values obtained from the literature.  

The FA compositional data of vegetable oils were obtained from 27 studies that 

reported compositional information for palm, 20 for rapeseed, 39 for soya and 19 

for WCO (Hoekman et al. 2012). The main FA for these feedstocks are palmitic 

(C16:0); stearic (C18:0), oleic (C18:1) and linoleic (C18:2) as presented in table 2.1. 

For the FA with higher percentage in each oil (e.g. C16:0 and C18:1 for palm) the 

coefficient of variation (CV) ranges from 7% to 13% for the virgin oils and 21% to 

41% in the WCO. WCO presents the highest variation due to high diversity of sources 

associated with this type of feedstock. 

  

Table 2.1 Main Fatty Acids average composition (μ), standard deviation (σ) and coefficient of 

variation (CV) in percentage in palm, rapeseed, soya, and WCO (adapted from Hoekman et al. 2012)  

Fatty Acid Palm 
 

Rapeseed 
 

Soya 
 

WCO 

Common 
Name 

Nom μ σ CV  μ σ CV  μ σ CV  μ σ CV  

Palmitic C16:0 42.5 3.2 8 4.2 1.1 26 11.6 2 17 16.5 5.6 34 

Stearic C18:0 4.2 1.1 26 1.6 0.7 44 3.9 0.8 21 7.1 3.9 55 

Oleic C18:1 41.3 2.9 7 59.5 7.8 13 23.7 2.4 10 44.6 9.3 21 

Linoleic C18:2 9.5 1.8 19 21.5 2.8 13 53.8 3.5 7 25.1 10.3 41 

Composition share 
(%) 

98 87 93 93 

 

The average values and standard deviation of the FA compositional data are 

presented in Appendix III and the histograms of the data collected in Appendix IV.  

To determine an appropriate representation of the uncertainty (distribution) 

associated with the FA composition, we used the Anderson-Darling (AD) goodness-

of-fit statistic. The AD test provides a statistic that represents the probability that 
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random data generated from the fitted distribution would have originated a value as 

low as that calculated for the observed data (Anderson and Darling 1952; Vose 

2010). The lower the value of these statistics, the more likely is that the data  has 

origin in  the hypothesized distribution. The distributions attributed to each FA are 

presented in Appendix IV. Some FAs are reported only in some studies and the 

number of observations was not enough to apply the test. In these cases, a normal 

distribution was assumed.  

A Monte Carlo simulation with 10 000 runs was performed to determine the 

potential range given by the models of each property for each feedstock. The range 

given by the model is compared graphically with the range of reference values 

obtained from the literature (Hoekman et al. 2012; Giakoumis 2013). The average 

values and standard deviation of the literature reported data are presented in 

Appendix V. Additionally, the deviation of the model median value relatively to the 

median reference value normalized by the reference value standard deviation was 

calculated according equation 2.13. This metric allows us to know how many 

standard deviations the median value is off relatively to the reference median value. 

 

ModDev =
Model median − Reference median

Reference σ
 

Eq. 2.13 

 

Another source of uncertainty that should be considered when performing this 

analysis is the uncertainty that stems from standard errors in the prediction models 

coefficients. However, since none of the studies presenting prediction models 

reported information concerning the uncertainty of the coefficients, this was not 

considered in this thesis.  

2.2.3 SELECTION OF MODELS FOR BLEND OPTIMIZATION  

Figures 2.2 to 2.6 depict the results obtained by the prediction models and 

reference values for density, cetane number, iodine value, cold filter plugging point 

and oxidative stability, respectively. Each data point in a plot depicts the 5th, 25th, 

50th (median), 75th, and 95th percentiles. The relative deviation (%) of the model 
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median to the reference median was calculated according equation 2.13 and it is 

presented in the figures. 

 

Figure 2.2 Density (kg m-3) of biodiesel from palm (P), Rapeseed (R), Soya (S) and WCO obtained from 

the correlation established in (Giakoumis 2013) (_Mod) and reference values (_Ref). The figure above 

the model result is the ModDev metric

.  

Figure 2.3 Cetane number of biodiesel from palm (P), Rapeseed (R), Soya (S) and WCO obtained from 

the Bamgboye and Hansen (2008)(_Mod_Ba), Lapuerta et al. (2009)(_Mod_La), Gopinath et al. 

(2009a) (_Mod_Go) and Piloto-Rodríguez et al. (2013)(_Mod_PI) models and reference values (_Ref). 

The figure above the model result is the ModDev metric. 
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Figure 2.4. Iodine value (g iodine/100 g of biodiesel) from palm (P), Rapeseed (R), Soya (S) and WCO 

obtained from the procedure presented in EN 14214 model (_Cal_EN) and the reference values (_Ref). 

The figure above the model result is the ModDev metric. 

 

Figure 2.5 Cold filter plugging point (oC) of biodiesel from palm (P), Rapeseed (R), Soya (S) and WCO 

obtained from the models Moser (2008) (_Mod_Mo), Ramos et al. (2009) (_Mod_Ra), Park et al. 

(2008) (_Mod_Pa) and reference values (_Ref). The figure above the model result is the ModDev 

metric. 
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Figure 2.6 Oxidative Stability (hours) of biodiesel from palm (P), Rapeseed (R), Soya (S) and WCO 

obtained from the models Gülşen et al. (2014) (_Mod_Gu), Park et al. (2008) (_Mod_Pa) and reference 

values (_Ref). The figure above the model result is the ModDev metric. 

 

The variation of the results provided by the model incorporating FA uncertainty is 

lower than the variation observed in the reference values. According to  Hoekman et 

al. (2012),  the variation observed in the reference values may be due to several 

factors such as water contamination, the chemical process and conditions used to 

produce FAME, the clean-up process used to purify raw FAME, the storage time (and 

conditions) prior to analysis and even different equipment and skills of the analysts 

performing the analyses. For the WCO the variation is higher comparatively to virgin 

oils (palm, rapeseed and soya). This is a consequence of the high compositional 

variability due the diversity of oil and origin associated with this feedstock.  

For density, the deviation ranges from -0.3 to 0.1. For both properties, the results 

provided by the model are within the range of the reference values. The model 

provided by Lapuerta et al. (2009) to predict CN appears to have a systematic 

deviation since it provides results above the median of the reference values or even 

out of the range of reference values, as is the case for palm. The deviation of the 

median value obtained by this model ranges from 0.6 to 1.7 standard deviations. 

Also the results obtained using the models provided by Piloto-Rodríguez et al. 

(2013) and Gopinath et al. (2009a) present a deviation as they provide results 
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always below the median value of the reference values. The deviation varies from -

1.6 to -0.5  for Piloto-Rodríguez et al. (2013)  model and from -2.0 to -0.5 for 

Gopinath et al. (2009a) model. For Bamgboye and Hansen (2008) model this value 

ranges from -0.9 to 0.4. 

For IV, the procedure presented by EN 14214 provide results are in the range of the 

reference values with a deviation of the median value ranging from -0.7 to 0.3. For 

CFPP, similarly to what was observed for the Lapuerta et al. (2009) model for CN, 

also the model presented by Moser (2008a) provides results above the median of 

the reference values. The deviation of the median value of the results obtained with 

this model ranges from 0.1 to 1.3 standard deviations. For Ramos et al. (2009) model 

the deviation varies from -0.6 to 0.7 and for Park et al. (2008) from -0.8 to 0.6.  

For OS, the deviation of the median value of the models presented by Gülşen et al. 

(2014) and Park et al. (2008) ranges from -0.9 to -0.1 and from -1.0 to 0.6, 

respectively. Although the values provided by the models are within the range of the 

reference values, OS can be difficult to predict using composition-based prediction 

models because it is significantly influenced by the conditions that biodiesel is 

exposed to during storage, transport and handling.  

The selection of which models to use in the blending model was made based on the 

comparison of the range of values given by the prediction models results 

incorporating FA uncertainty with the range of references values. For CN, CFPP and 

OS, since more than one model was assessed, the one selected was that with results 

presenting lower deviation to the references values (median value) and a higher 

overlapping of the range of results given by the model and the reference values 

spread. For CN the model selected was the one presented by Bamgboye and Hansen 

(2008), for CFPP it was the one presented by Ramos et al. (2009) and for OS by Park 

et al. (2008). 

2.3 CHANCE-CONSTRAINED OPTIMIZATION 

Chance-constrained programming (CCP) is a technique used to tackle uncertainty in 

optimization models. It considers the system feasibility under uncertain 

environments focusing on the reliability of the system, which is expressed as a 



2 | Chance-constrained optimization to address compositional uncertainty in biodiesel blending  

 

   33 

minimum requirement on the probability of satisfying constraints (Sahinidis 2004). 

This formulation allows the user to decide about the confidence level at which the 

constraint must be complied adding flexibility to the model reflecting the reality 

under consideration (Kampempe 2012). The method was firstly presented by 

Charnes & Cooper (1959) and several applications of this technique have been made 

to consider more explicitly the feedstock variation in blending model (Kumral 2003; 

Li et al. 2006; Gaustad et al. 2007; Rong et al. 2008; Sakallı et al. 2011; Gülşen et al. 

2014). 

The CCP formulation ensures that the constraint is realized with a minimum 

probability of 1 − α having the form described by equation 2.14. ai is the stochastic 

parameter, xi  the decision variable and b the constraint level: 

P {∑ai xi ≤ b

N

i=1

} ≥ 1 − α,        xi ≥ 0 and 0 < α < 1 Eq. 2.14 

If 𝑎𝑖  is a normally distributed parameter, 𝑎𝑖  ~ 𝑁(𝜇𝑖 , 𝜎𝑖
2) and all 𝑎𝑖  are independent, 

the constraint is converted as follows: 

P

{
 

 ∑ ai xi − ∑ μi xi
N
i=1

N
i=1

√∑ σi
2xi

2N
i=1

  ≤  
b − ∑ μi xi

N
i=1

√∑ σi
2xi

2N
i=1 }

 

 

≥ 1 − α, Eq. 2.15 

Where 
∑ ai xi− ∑ μi xi

N
i=1

N
i=1

√∑ σi
2xi
2N

i=1

   represents a standard normal variate with a mean of zero 

and a variance of one. Then, the stochastic chance-constraint is transformed into the 

following inequality: 

𝜑 (
𝑏 − ∑ 𝜇𝑖 𝑥𝑖

𝑁
𝑖=1

√∑ 𝜎𝑖
2𝑥𝑖

2𝑁
𝑖=1

)   ≥ 𝜑 (𝐾1−𝛼) Eq. 2.16 

Where 𝐾1−𝛼 = 1 − 𝛼 and 𝜑 (∙) represents the standard normal cumulative 

distribution function (Sakallı et al. 2011). This yields the nonlinear deterministic 

constraint described by equation 2.17. 

∑μi xi + K1−α √∑σi
2xi

2

N

i=1

  ≤ b

N

i=1

 Eq. 2.17 
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Assuming Gaussian distributions for the stochastic parameter, 𝐾1−𝛼 is the test 

coefficient usually denoted as z-value corresponding to the chosen confidence value 

level.  

2.3.1 BIODIESEL BLENDING OPTIMIZATION MODEL 

In the biodiesel blending model, the goal is to determine the optimal blend that 

minimizes production costs that are calculated according equation 2.18 by 

multiplying the quantity of each feedstock used in the blend (QUi ) by its market price 

(Pi). The decision variables of the model are the proportion of each feedstock used in 

the blend. The model is subject to technical specification constraints that the final 

properties of the biodiesel blend shall conform to. These technical constraints are 

the prediction models selected in section 2.2.3 for the following biodiesel 

proprieties: density (Den), cetane number (CN), cold filter plugging point (CFPP), 

iodine value (IV) and oxidative stability (OS). In the deterministic version, these 

technical constraints are given by equations 2.19 and 2.20. To analyze the 

proportions of each feedstock in the blend, an additional constrained is added: the 

sum of the various oil feedstocks shall be equal to the demand (D) (equation 2.24). 

since the goal is to analyze the proportions of each feedstock in the blend, the 

demand (D) was set equal to 1 and considered no supply limitations. We implicitly 

considered that biodiesel production is fully consumed by the oil refinery industry 

and that the supply of feedstocks is unlimited. This model can be found in Caldeira et 

al. (2014). The mathematical formulation of the deterministic biodiesel blending 

problem is presented below and the nomenclature is described in table 2.2. The 

model was implemented in GAMS 24.4.2 (GAMS 2011) and the problems solved 

using the non-linear solver CONOPT (Arne 2014). 
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Table 2.2 Biodiesel blending optimization problem nomenclature 

Indices and 
sets 

i ϵ I I = {soya, rapeseed, palm, WCO}, feedstock oils 

j ϵ J J = {1, 2,…, 18}, Fatty Acids (FA) index 

l ϵ L L = {DenLB, CN, OS}, set of properties with lower bound 

m ϵ M M = {DenUB, IV, CFPP}, set of properties with upper bound 

Parameters Pi Price of feedstock i 

D Demand 

Si   Supply of feedstock i  

qi,j̅̅ ̅̅  Average quantity (%) of FA-j in feedstock i 

𝜎i,j Standard deviation of the quantity (%) of FA-j in feedstock i 

PropCoefl,j   Coefficient of FA-j in the prediction model for property l  

PropCoefm,j   Coefficient of FA-j in the prediction model for property m 

PropConstl Constant in the prediction model for property l  

PropConstm Constant in the prediction model for property m 

PropGTl Threshold for property l 

PropLTm Threshold for property m 

β Test coefficient for normal distribution, one tailed 

Decision 
Variables 

QUi Quantity of feedstock i to use in the blend  

 

 

Minimize:   Z =   ∑Pi QUi
i∈I

 Eq. 2.18 

Subject to:  

∑(PropCoefl,j∑QUi qi,j̅̅ ̅̅   

i∈I

) + PropConstl ≥ PropGTl ,      ∀l∈L
j∈J

 Eq. 2.19 

∑(PropCoefm,j∑QUi qi,j̅̅ ̅̅  

i∈I

) + PropConstm ≤ PropLTm ,     ∀m∈M
j∈J

 Eq. 2.20 

∑QUi
i∈I

= D Eq. 2.21 

      QUi ≥ 0      ∀i∈I  Eq. 2.22 

QUi ≤ Si     ∀i∈I  Eq. 2.23 

 

Using CCP formulation to address the compositional uncertainty associated with 

parameter qi,j  (quantity of FA j in feedstock i), equations 2.19 and 2.20 are replaced 

by equations 2.24 and 2.25, respectively. β represents the risk tradeoff parameter  
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that determines the maximum accepted non-compliance rate level chosen by the 

user. Assuming a normal distribution of the uncertain parameter (qi,j), β is the 

normal distribution test coefficient (z-value), one-tailed. 

 

∑(PropCoefl,j∑QUiqi,j̅̅ ̅̅  
i∈I

)

j∈J

+ PropConstl − β (√∑Prop Coefl,j
2

j∈J

∑QUi
2σi,j

2

i∈I

)

≥ PropGTl       ∀l∈L 

Eq. 2.24 

∑(PropCoefm,j∑QUi qi,j̅̅ ̅̅  
i∈I

) + PropConstm + β(√∑Prop Coefm,j
2

j∈J

∑QUi
2 σi,j

2

i∈I

)

j∈J

≤ PropLT
m
     ∀m∈M 

Eq. 2.25 

The technical constraints target was stablished according to EN 14214. For CFPP, EN 

14214 climate-dependent requirements options are given to allow for seasonal 

grades to be defined for each country. There are six CFPP grades for temperate 

climates and five different classes for arctic climates. Level B, with a maximum of 0oC 

was selected for this work. All the parameters used in the model are presented in 

Appendix VI. 

To assess the use of WCO in the blends, reference blends obtained having only virgin 

oils available in the model were established as a benchmark. The blends were 

evaluated in terms of cost and technical performance and cost. The latter was 

assessed through the blends error rate (ER). This parameter was calculated using 

Monte Carlo simulations. The Monte Carlo method statistically simulates random 

variables, in this case oil compositions, using pseudo-random numbers (Gaustad et 

al. 2007). We calculated the ER for each property and also a global ER that accounts 

for failure in all properties. The former was assessed calculating the WCO-blends 

cost reduction relatively to equivalent (same ER) blends composed only with virgin 

oils (VO-blend) according equation 2.26.  

 

WCO blend CR (%) =
VO blend cost −  WCO blend cost

VO blend cost
 ∗ 100 

Eq. 2.26 

 

 

Price information for palm, rapeseed and soya oils was taken from (IndexMundi 

2014) and for WCO from a European broker (Grennea 2014). Figure 2.7 depicts the 



2 | Chance-constrained optimization to address compositional uncertainty in biodiesel blending  

 

   37 

monthly prices for the four feedstocks (palm, rapeseed, soya and WCO) from January 

2011 to May 2014 that were used in this study.  

 

 

Figure 2.7 Monthly prices (€/ton) for palm, rapeseed, soya and WCO 

 

The behavior of the model was first analyzed for a single period. For July 2013, the 

prices were 559 €, 767 €, 765 € and 400 € per ton of palm, rapeseed, soya and WCO, 

respectively. A reference blend (Blend A in figure 2.8) was obtained by setting the 

WCO availability in the model to zero and a confidence level set to 80%. This blend is 

composed of about 50% of palm and rapeseed and has a cost of 666 €/ton. The error 

rate (ER) for each property is shown in figure 2.9; blend A presents an error rate of 

about 1% for the property CFPP.  

If one considers WCO as available feedstock in the model without considering the 

compositional uncertainty (β set to 0% confidence level), the optimal blend obtained 

(Blend B in figure 2.8) is mainly composed of WCO (about 65%) and a cost 

reduction of 23% relatively to Blend A is obtained. However, the blend behaves 

poorly in terms of technical performance. As shown in figure 2.9, this blend has 

about 20% probability of being out of specification for CN, about 6% for IV and OS, 

and about 50% for CFPP.  
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Increasing the confidence level to the value established for blend A (80%), the WCO 

share in the optimal blend reduces to about 40% (Blend C in figure 2.8); the 

increase in the confidence level reduces the quantity of secondary material. 

However, although it was obtained with the same confidence level as Blend A, Blend 

C has worst technical performance than blend A: 10% ER for CN, 4% for IV, 9% for 

OS and 4% for CFPP. To achieve the same technical behavior as virgin material 

blends, the confidence level has to be increased. The optimal blend obtained with a 

confidence level of 90% (Blend D in figure 2.8) has an ER similar to Blend A: 1% for 

CFPP. The quantity of WCO in the blend is about 20% and the blend cost is 654 

€/ton representing a cost reduction of about 2% when compared to the reference 

blend. 

  

Figure 2.8 Blends composition and cost (€/ton) obtained with different feedstocks available and 

different confidence level 
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Figure 2.9 Error rate (%) of each blend for CN, IV, CFPP and OS 

 

Depending on the confidence level, the quantity of WCO used in the blend is 

different; the increase in the confidence level reduces the quantity of secondary 

material and, consequently, the cost reduction obtained relatively to a blend 

composed only with virgin oils is lower. Another factor that influences the costs of 

the blends is the relation among the feedstock prices. To illustrate this, optimal 

blends were obtained for each month (from January 2011 to May 2014) and 

compared with optimal blends obtained without WCO available. To ensure the 

comparability of the blends in terms of technical performance, the confidence level 

was adjusted so that the ER of the blends with and without WCO is similar. If WCO is 

not available, the confidence level was set to 80% and, when WCO is available, set to 

90%. Since the WCO present higher compositional uncertainty, the confidence level 

has to be increased in order to obtain the same technical performance as blends of 

virgin oils. Figure 2.10 depicts the blends composition obtained when WCO is 

available (on the left side) and when it is not (right side). The dashed line is the ER of 

each of the blends. The solid line represented in the left graph is the cost reduction 

obtained relatively to the equivalent blend (obtained in the same month and with 

similar ER) with no WCO available.  
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Figure 2.10 Blend composition for each month from January 2011 to May 2014 with WCO available 

(left-hand side) and without WCO available (right-hand side) 

 

Using WCO in blends for biodiesel production allows a cost reduction relatively to 

blends without WCO that ranges from 1 to 10 %. This reduction is related to the 

WCO quantity in the blend and the relation among the feedstock prices. From 

January 11 to August 12, the virgin oils price is closer to each other relatively to the 

WCO price (figure 2.7) and in this period, the optimal blends are mainly composed 

of rapeseed and WCO. From September 12 to September 13, there is a reduction in 

the palm oil price relatively to soya and rapeseed oils price and the optimal blends of 

these months contain a higher quantity of palm and a lower quantity of WCO. 

Consequently, the cost reduction relatively to virgin oils blends in this period is 

lower. Then, from October 2013 to May 2014 the virgin oils prices are closer to each 

other again and the quantity of WCO in the blends increases and also, the cost 

reduction obtained. 

2.3.2 SENSITIVITY ANALYSES ON THE DISTRIBUTION ASSUMPTION 

The CCP formulation described previously is based on the assumption of a normal 

distribution of the uncertain parameter (qi,j). However, this assumption may be 

questionable; the histograms of the compositional data and the results of the 

distribution fit test (performed using the statistic test goodness-of-fit Anderson-

Darling, see section 2.2.2) presented in Appendix IV may raise doubts about the 
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normality of the uncertain parameter. Nevertheless, the number of observations of 

the data collected is also a critical aspect that influences the results of the statistical 

analysis performed. Ideally, a data sample with a higher number of observations 

would be desirable. In any case, alternative CC formulations available in the 

literature that do not assume any type of distribution of the parameter were used to 

perform a sensitivity analysis.  

2.3.2.1 Convex approximation 

Nemirovski and Shapiro (2006) presented a formulation for CCP problems based on 

a convex approximation of the probabilistic constraints. This approximation is based 

on Bernstein inequality and it converts the probabilistic constraints to the convex 

deterministic ones making use of the theoretical bounds on the probability of 

violating the constraints. The authors extended the approach for the case of 

“ambiguous chance-constrained problems” where the uncertain parameters are not 

represented according to an existing probability distribution function. Using this 

approach, the equivalent deterministic constraints 2.19 and 2.20 can be expressed 

as equation 2.27 and 2.28, respectively. αk
max and αk

min control the confidence level 

for the Max. and Min. constraints and can be adjusted in order to obtain the required 

error rate. This formulation requires the knowledge of appropriate upper bound and 

lower bounds corresponding to the compositional specifications. In this work, the 

upper and lower bounds were set to be the upper  (qupij)  and the lower (qlwij) 

value found in the compositional data.  

 

∑(PropCoefl,j  ∑QUi qi,j̅̅ ̅̅

i∈I

) + PropConstl  

j∈J

− √2 log(1/αk
min )   (√∑PropCoefl,j 

2

j∈J

∑QUi
2  (

qlwij − qupij

2
)

2

i∈I

)

≥ PropGTl,      ∀l∈L 

 Eq. 2.27 
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∑(PropCoefm,j  ∑QUi qi,j̅̅ ̅̅

i∈I

) + PropConstm
j∈J

+ √2 log(1/αk
max )   (√∑PropCoefm,j

2

j∈J

∑QUi
2  (

qlwij − qupij

2
)

2

i∈I

)

≤ PropLTm ,     ∀m∈M 

 

Eq. 2.28 

 

2.3.2.2 Linear approximation using fuzzy chance-constrained 

Rong and Lahdelma (2008) suggested a CCP formulation where the uncertainty of 

the parameters is represented using fuzzy set theory and the constraints are based 

on a possibility measure. This approach represents the combination of adding safety 

margins and allowing some violations of the constraints. The conversion of the 

constraints with the fuzzy sets into their crisp equivalent is discussed by Liu and 

Iwamura (1998). Although the fuzzy constraints can be interpreted as soft 

constraints Prade and Dubois (1980), in this study the technique used by Rong and 

Lahdelma (2008) was applied. In their problem of scrap charge optimization in steel 

production, the ordinary fuzzy constraints are interpreted based on a likelihood 

measure using relaxed tolerance constraints. Tolerance constraints imply that the 

right hand side of the constraint is interpreted as a maximum tolerance for the left 

hand side. This approach extends significantly the feasible region and eliminates any 

conflict that may come from dropping or relaxing some of the constraints (Rong et 

al. 2008). In an application problem were constraints are addressing the 

compositional specification of the product, the crisp equivalent is expected to be less 

relaxed than the ones based on the concept of soft constraints  (Rong et al. 2008).  

Assuming parameter qi,j as a fuzzy number  q̃i,j , triangular fuzzy numbers was used 

to represent the statistical uncertainty as illustrated in figure 2.11. The 

representation for  q̃i,j is the 3-tuple of parameters   q̃i,j  = (qlwi,j , qi,j̅̅ ̅̅  , qupi,j), where 

 qi,j̅̅ ̅̅   is the mean and qlwi,j,  and qupi,j are the left and right spreads of the fuzzy 

number. Rong & Lahdelma (2008) used the shape for the probability density 

function of the parameter and fit it to the statistical data based on mean and 

standard deviation, assuming a normal distribution. The probability distribution 
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was then transformed into a fuzzy set. In this work the left and right side spread of 

the fuzzy number are the minimum and maximum value in our data, respectively.  

 

Figure 2.11. Representation of triangular fuzzy number and triangular possibilistic distribution 

 

According to the implementation done by Rong & Lahdelma (2008), the crisp 

equivalent of the chance-constrained replaces the deterministic constraints 2.19 and 

2.20 by equations 2.29 and 2.30, respectively. λmax and λmin control the confidence 

level for the maximum and minimum constraints and can be adjusted in order to 

obtain the required error rate. 

 

∑(PropCoefl,j  ∑QUi (qi,j̅̅ ̅̅ − (2 λ
min − 1)(qi,j̅̅ ̅̅ − qlwi,j)

i∈I

)) + PropConstl  ≥ PropGTl,   ∀l∈L  

j∈J

 Eq. 2.29 

∑(PropCoefm,j  ∑QUi (qi,j̅̅ ̅̅ + (2 λ
max − 1)(qupi,j −

i∈I

qi,j̅̅ ̅̅ ))) + PropConstm  ≤ PropLTm,  ∀m∈M  

j∈J

 Eq. 2.30 

 

2.3.2.3 Hybrid approximation combining probabilistic and possibilistic 

chance-constrained programming 

Sakallı & Baykoç (2013) suggested a hybrid technique, using probability and 

possibilistic distributions, applied to a scrap optimization problem in the brass 

casting process. The authors distinguish types of materials according to uncertainty 

associated with them, aleatory or epistemic, and use respectively, probabilistic and 

possibilistic distributions to model it. According to Sakallı & Baykoç (2013), when 

very few information is available about a parameter, a possibilistic approach should 

be followed. In their model, three types of materials with different uncertainty 

representation  were considered: i) pure raw materials and some scrap of raw 
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materials for which the composition is known and deterministic; ii) scrap products, 

for which the uncertainty of the composition is represented using probability 

distributions; and, iii) scrap raw materials which uncertainty is modelled using 

possibility distributions. In the biodiesel blending model, probabilistic distributions 

are used to represent the uncertainty associated with the virgin oils composition 

and possibilistic distributions to represent the WCO composition uncertainty.  

As both types of possibilistic uncertainties are not equivalent, they cannot be added 

up and the transformation of one type of uncertainty in the other is necessary.  

However, this transformation presents some drawbacks independently of the 

direction taken. According to  Sakallı & Baykoç (2013), “the probability/possibility 

transformation is a mapping from complete knowledge to incomplete knowledge. 

Therefore, it is unavoidable to lose knowledge during the transformation process. In 

contrast, possibility/probability transformation needs non-existent extra knowledge 

that transforms the incomplete information into complete information”. To 

overcome this issue, Sakallı & Baykoç (2013) suggested a methodology that 

transforms each of the uncertainties into their deterministic counterparts avoiding 

to use probability/possibility or possibility/probability transformations. To each 

term is associated a confidence level: β, that represents the confidence level for the 

probabilistic term and γ, which represents the confidence level for the possibilistic 

term. Since a possibility measure is not likely to be as meaningful to the decision 

maker as a probability one, the authors developed a heuristic approach based on the 

consistency principle that computes a possibility level by using a probability 

measure. The heuristic approach consists in determining only a minimum 

probability level at the beginning of the solution process and then transforms it into 

a possibility degree according to γ = 1 - α. γ will determine the γ-cut in the 

possibilistic distribution and determine the values of the parameter to use in the 

model. If for example, in the case of the biodiesel blending model, the decision maker 

wants to have α=0.75 confidence level of compliance of the constraints, this will 

correspond to γ=0.25. Having a representation of the uncertain possibilistic 

parameter as a triangular distribution as presented in figure 2.11, the values of the 

possibilistic parameter that correspond to a possibilistic level of 0.25 are obtained 

performing a γ-cut in the distribution as exemplified in figure 2.12. 
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Figure 2.12 Representation of a γ-cut for γ=0.25 (75% confidence level, β=0.75) 

 

According to this approach, the deterministic constraints 2.19 and 2.20 are replaced 

by equations 2.31 and 2.32, respectively. 

∑(PropCoefl,j  ∑ QUi qi,j̅̅ ̅̅

i∈I \{WCO}   

)+ PropConstl  −  β (√∑PropCoefl,j
2

j∈J

∑ QUi
2σi,j

2

i∈I {WCO}

)

j∈J

+  ∑PropCoefl,j
j∈J

QUWCO qlwWCO,j ≥ PropGTl,      ∀l∈L  

 

Eq. 2.31 

∑(PropCoefm,j  ∑ QUiqi,j̅̅ ̅̅

i∈I \{WCO}

)+ PropConstm +  β (√∑PropCoefm,j
2

j∈J

∑ QUi
2σi,j

2

i∈I \{WCO}

)

j∈J

+  ∑PropCoefm,j
j∈J

  QUWCO qupWCO,j ≤ PropLTm,     ∀m∈M  

Eq. 2.32 

 

The different formulations were applied using the feedstock prices for July 2013 and 

the results are presented in table 2.3. The same reference blend (considering no 

WCO available, Blend A) is used as benchmark. The confidence level in each 

formulation was adjusted in order to obtain the same error rate. 

Table 2.3 Optimal blends composition and cost obtained with different CCP formulations. 

CCP 
formulation 

Blend 
Blend Composition (%) Cost 

(€/ton) Palm Rapeseed Soya WCO 

Normal A 50.5 49.5 _ n.a. 666 

Normal D 21.1 60.4 _ 18.5 654 

Convex E 13.1 67.1 _ 19.8 667 

Fuzzy F 8.6 73.4 _ 18.0 683 

Hybrid G 50.5 49.5 _ _ 666 
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Comparing the results obtained with the different approaches (blends D to G) the 

normal provides the lowest cost blend. The optimal blend obtained with the convex 

approach (Blend E) has a higher WCO content but to comply with the technical 

constraints it needs to add more rapeseed that is more expensive, thus, the optimal 

blend cost is higher than the normal approach optimal solution. The optimal blend 

obtained using the fuzzy approach (Blend F) is the most expensive among all 

because it has a higher percentage of rapeseed.  The hybrid approach  provides the 

same optimal solution (Blend G) as the normal when WCO is not available (Blend A), 

meaning that considering the WCO a possibilistic parameter is too conservative and 

so, the use of this feedstock in the blend leads to problem unfeasibility. Based on 

these results, one can conclude that the use of the normal CCP formulation seems 

adequate to the biodiesel blending problem.   

2.4 CONCLUDING REMARKS 

A biodiesel blending model to optimize the blending of virgin oils and WCO 

addressing the oils compositional uncertainty (FA composition) using chance-

constrained programing was developed and presented in this chapter. A review and 

assessment of biodiesel properties prediction models based on the FA composition 

was presented and selected models were integrated in the optimization model using 

CCP formulation. Results show that addressing the compositional uncertainty using 

the CCP formulation allows the use of feedstocks with high compositional 

uncertainty like WCO in biodiesel blends without compromising the biodiesel 

technical performance. Cost reduction is obtained for blends with WCO relatively to 

blends composed only of virgin oils. This cost reduction depends on the relation 

among the prices of the feedstocks. The use of low-cost feedstocks in a diversified 

portfolio of raw materials used in blending optimization models represents a cost 

reduction opportunity for the biodiesel producer without compromising the 

biodiesel quality. 
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3 BIODIESEL BLEND OPTIMIZATION ADDRESSING 

FEEDSTOCK PRICE UNCERTAINTY 

 

 

 

 

 

 

 

 

 

 

 

 

The content of this chapter is presented in the following article: 

Caldeira, C., Swei, O., Dias, L., Freire, F., Olivetti, E., Kirchain, R. Planning 

strategies to manage production cost and cost variation of biodiesel 

production addressing operational and price uncertainty (in final 

preparation) 
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3.1 INTRODUCTION 

Biodiesel cost effectiveness is highly influenced by feedstock costs and feedstock 

price fluctuation.  As outlined in Chapter 2, low cost waste-based feedstocks 

(such as WCO) can be used in biodiesel blends to reduce production costs 

without compromising biodiesel quality, as long as compositional uncertainty is 

managed. Additionally, blending WCO with conventional feedstocks may also be 

advantageous to manage biodiesel cost variation because this feedstock presents 

lower price volatility comparatively to conventional feedstocks. The complexity 

of the conventional oils market (because they are used in other food industries 

and their price is influenced by the crude oil price (Hasanov et al. 2016)) is the 

reason for the high volatility.  The high uncertainty associated with feedstocks 

prices may compromise the biodiesel cost effectiveness, by threatening the long-

term financial stability of producers. For this reason, robust production planning 

that accounts for feedstock price uncertainty is of utmost relevance for biodiesel 

producers.  

This chapter presents an approach to address biodiesel feedstock price 

uncertainty.  A stochastic dynamic programming model was developed to 

support production planning decisions to reduce cost and cost variation in 

biodiesel production. The model simultaneously addresses operational 

uncertainty (using the chance-constrained formulation described in chapter 2) 

and price uncertainty (using time series analysis to forecast feedstock price). 

Cost and cost variation performance metrics were used to investigate and 

interpret the behavior of the proposed approach.  

3.2 ADDRESSING PRICE UNCERTAINTY USING TIME SERIES 

FORECAST MODELS 

Several authors have addressed uncertainty in prices within an optimization 

framework. The most used approach to deal with price volatility is the two stage 

stochastic programming with recourse model. For example, Al-Othman et al. 

(2008) used two-stage stochastic linear program with fixed recourse to 

determine the optimum production plans for a petroleum supply chain that 
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minimize the risks due to fluctuations in market conditions. Besides showing 

profitability levels comparable to those of the base case, the stochastic model 

provided information about the consequences of implementing the developed 

optimal production plan. Calfa & Grossmann (2015) proposed a multi-period 

two-stage stochastic programming model to explicitly account for uncertainty in 

spot market prices of raw materials and the predictability of demand response 

models (DRM) applied to a chemical production network. Lin & Wu (2014) 

formulated a two-stage stochastic programming model to determine product 

prices and design an integrated supply chain operations plan under demand 

uncertainty. Results showed that when there is an increase in the variance of the 

demand, the manufacturer should increase its inventory to prevent the potential 

loss of sales and will simultaneously raise product prices to obtain higher profit.  

Other authors presented different approaches. Khor et al. (2008) applied 

Markowitz’s Mean-Variance model to deal with price uncertainty, using a set of 

scenarios that best represents the trend of raw material prices and the sales 

values (based on available historical data), the model maximizes the expected 

profit while the magnitude of operational risk due to price volatility (measured 

by variance) is minimized. Chen et al (2015) used geometric Brownian motion 

(GMB) to model oil price behavior and built a multiperiod stochastic 

programming model to optimize refinery operation. Moradi & Eskandari (2014) 

addressed the uncertainty associated with electrical power price in energy 

management in microgrids using fuzzy set theory.  

Another body of literature can be found that investigates price commodities 

fluctuation using time series analysis (TSA) in different case studies (Caporale et 

al. 2014; Apergis et al. 2016; Gil-Alana et al. 2016; Hasanov et al. 2016; Lee et al. 

2016; Nicola et al. 2016). Within an optimization context, the model developed 

by Calfa and Grossmann (2015) accounts for uncertainty in spot market prices of 

raw materials where TSA was used to predict spot market prices scenarios.  The 

objetive of the authors was to define optimal optimal procurement contract 

selection with selling price optimization under supply and demand uncertainty.  

In this thesis, a stochastic dynamic model that addresses feedstocks price 

uncertainty using forecasted prices was developed. This model was built based 



      

50 

on the model presented in chapter 2 but it was extended to accommodate a more 

realistic situation where the biodiesel producer has storage capacity. The model 

developed here determines the optimal planning that minimizes costs by 

identifying both 1) the quantities of each available feedstock to buy, store and 

use and 2) the specific combination of feedstocks to blend in a biodiesel 

production plant, in face of two types of uncertainty: (a) the feedstocks 

compositional uncertainty and (b) the feedstocks price uncertainty. The former 

type of uncertainty influences the constraints of the model and is addressed 

using chance-constrained programming. The later influences the coefficients of 

the objective function and is addressed by adding a term to the objective 

function that reflects the uncertainty of the forecasted future prices.  

The model uses the feedstock prices forecast and information on current 

inventory to decide the quantities to blend, buy and store in each period (in our 

model one period represents one month).The decision in each period is made 

based on actual prices for that period and forecasted prices for the next 2 

periods. For example, to decide what to buy (Quantity to buy - QB), store 

(Quantity to store - QS), and use (Quantity to use - QU), in period 1, the actual 

prices in 1 and forecasted prices for periods 2 and 3 are used. Then, to decide 

what to buy, store and use in period 2, the prices for period 2 are replaced by the 

actual prices and predicted prices for periods 3 and 4 are used. The optimization 

is repeated for W cycles (number of periods). The modelling approach is 

illustrated in figure 3.1. 

 

Figure 3.1 Schematic representation of the modelling approach 
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Feedstock prices are forecasted using the highly general Autoregressive 

Integrated Moving Average (ARIMA) framework. The ARIMA model is usually 

referred to as an ARIMA (p,d,q) since it is composed of p autoregressive terms, d 

non-seasonal differences (in order to transform a non-stationary stochastic 

process into a stationary one), and q lagged forecast errors in the prediction 

equation.  

Prices for WCO were obtained from a European broker (Grennea 2014) and price 

information for palm, rapeseed and soya oils was taken from (IndexMundi 

2014). The monthly prices for the four feedstocks (palm, rapeseed, soya and 

WCO) from January 2011 to May 2014 are depicted in Figure 2.7 (chapter 2).  

Some fundamental issues for time-series forecasting include (a) determining 

whether the dataset at hand is trend stationary (e.g., the statistical properties of 

a process once detrended are constant over time) or difference stationary and 

(b) incorporating the appropriate number of lags (Chatfield 2003). A typical 

approach to address the former is to use traditional unit-root tests, which 

evaluate the null hypothesis of a stochastic process having a unit-root and 

therefore being difference-stationary. The accuracy of these models, however, 

largely depends on having a significant sample size over a multi-decade period of 

time, both of which do not apply to this study.  With that said, it is likely that 

sudden price shocks for this given system will have long-term effects on future 

prices, suggesting the presence of a unit-root and, therefore, that prices should 

be treated as difference stationary (e.g., d = 1) over time.  Results from the 

Augmented Dickey Fuller (ADF) test, one typical unit-root test, further 

corroborated this assumption, though the robustness of these results is weak 

due to the sample size issues noted. 

Three separate metrics were used to determine and appropriate lag order for the 

models. First, the overall fit of different lag orders was evaluated using two 

common goodness-of-fit metrics, the Bayesian Information Criterion (BIC) and 

the Akaike Information Criterion (AIC) (Liew 2004).  Additionally, the partial 

autocorrelation function (PACF) of each dataset to confirm lag orders selected 

per the BIC and AIC was estimated.  For each dataset, all three metrics suggested 

that only one lag order should be incorporated. Further inspection of the 
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residuals suggested that the one lag model adequately removed serial 

correlation from the estimation, an initial concern given the possible presence of 

seasonality. The structural form of the model selected, ARIMA (1, 1, 0), for each 

dataset is described by equation 3.1:  

 

Pt+1 = (Pt − Pt−1) ∗ ρ + Pt + C +  ε Eq. 3.1 

 

where, Pt+1 is price the forecasted price, Pt and Pt−1 are the prices in month t and 

t-1, ρ is the autoregressive parameter, C is a constant and ε is white noise that 

follows a normal distribution with mean 0 and standard deviation of σ. 

The model adopted was validated using backcasting (McDowall 2004). In this 

technique, a known outcome is compared to the prediction, and the accuracy of 

the forecast is measured by the Mean Absolute Percent Error (MAPE) according 

to equation 3.2 where n is the number of forecasts (Armstrong 2001). 

 

Forecasts made from July 2013 to May 2014 were compared to the real prices 

and a MAPE ranging from 3.4 to 4.6% was obtained for the first month predicted 

and 4.6 to 6.1% for the second month predicted. 

3.2.1 MODEL FORMULATION 

The objective is to minimize the cost objective function Z (equation 3.3) that is 

composed by three terms: the first term is the cost of the feedstock, given by the 

quantity of each feedstock to buy (QBi,p) multiplied by the feedstock price (Pi,p, 

actual price for p=1 and forecasted prices for p=2 and 3); the second term is the 

storage cost, given by the quantity stored (QSi,p) multiplied by the storage cost 

(StCost); and the third term reflects the uncertainty associated with the price. 

Parameter α  is the risk tradeoff parameter associated with price uncertainty. 

Specifically, α creates a penalty within the objective function for price risk 

(uncertainty); a higher α penalizes risk more. Theoretically, α can vary over the 

MAPE =
100%

n
∑|

Actual − Predicted

Actual
|

n

i=1

 
Eq. 3.2 
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entire range of positive real numbers (0,∞) to generate a set of feasible decisions 

that have minimum cost for a given level of risk but in practice it was verified 

that after a certain value (α=10) no changes in the total cost and cost variation 

were observed.  

The model is subject to demand and supply constraints (equations 3.4 and 3.5); 

since the goal is to analyze the proportions of each feedstock in the blend, the 

demand (D) was set equal to 1 and considered no supply limitations. The storage 

constraints are given by equations 3.6 to 3.9. A storage capacity of 20% of the 

production was considered. For each property (Den, CN, CFPP, IV and OS) the 

final blend must comply with the technical specifications (equations 3.10 and 

3.11) as explained in chapter 2, section 2.3. The constraints confidence level was 

set to 95%. The mathematical formulation of the problem is presented below 

(nomenclature is described in table 3.1). The model was implemented in GAMS 

24.4.2 (GAMS 2011) and the problems solved using the non-linear solver 

CONOPT (Arne 2014). 
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Table 3.1 Biodiesel blending optimization problem (considering feedstock price variation) 

nomenclature 

Indices and sets i ϵ I I = {soya, rapeseed, palm, WCO}, feedstock oils 

 p ϵ P P = {1, 2, 3}, periods 

 j ϵ J J = {1, 2,…, 18}, Fatty Acids (FA) index 

 l ϵ L L = {DenLB, CN, OS}, set of properties with lower bound 

 m ϵ M M = {DenUB, IV, CFPP}, set of properties with upper bound 

Parameters Pi,p Price of feedstock i in period p 

 StCost Storage cost 

 σfci,p Standard deviation of the price of feedstock i in period p 

 D Demand 

 Si,p   Supply of feedstock i in period p 

 StCap 𝑖  Storage Capacity of feedstock i 

 qi,j̅̅ ̅̅  Average quantity (%) of FA-j in feedstock i 

 𝜎i,j Standard deviation of the quantity (%) of FA-j in feedstock i 

 PropCoefl,j   Coefficient of FA-j in the prediction model for property l  

 PropCoefm,j   Coefficient of FA-j in the prediction model for property m 

 PropConstl Constant in the prediction model for property l 

 PropConstm Constant in the prediction model for property m 

 PropGT𝑙  Threshold for property l 

 PropLT𝑚  Threshold for property m 

 α Risk tradeoff parameter 

 β Test coefficient for normal distribution, one tailed 

Variables QBi,p Quantity of feedstock i to buy in period p 

 QUi,p Quantity of feedstock i to use in the blend in period p 

 QSi,p Quantity of feedstock i to store in period p 
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Objective function  

Minimize:   Z =   ∑∑Pi,p QBi,p
i∈Ip∈P

+  ∑∑StCost QSi ,p 
i∈Ip∈P

+  α√∑∑σfci,p
2 QBi ,p 

2

i∈Ip∈P

 
Eq. 3.3 

Demand and Supply constraints  

∑QUi,p
i∈I

= D   ∀p∈P Eq. 3.4 

  QBi,p ≤ Si,p   ∀p∈P,  ∀i∈I Eq. 3.5 

Storage constraints  

QBi,1 = (QSi,1 −  QSi,0) +  QUi,1     ∀i∈I Eq. 3.6 

QBi,2 = (QSi,2 − QSi,1) +  QUi,2   ∀i∈I Eq. 3.7 

QBi,3 = (QSi,3 − QSi,2) +  QUi,3   ∀i∈I Eq. 3.8 

QSi,p ≤ StCapi  ∀p∈P,  ∀i∈I Eq. 3.9 

Technical Constraints  

∑(PropCoefl,j∑QUi,pqi,j̅̅ ̅̅  

i∈I

)

j∈J

+ PropConstl

− 𝛽√∑PropCoefl,j
2

j∈J

∑QUi,p
2σi,j

2

i∈I

 ≥ PropGTl    ∀p∈P,  ∀l∈L 

Eq. 3.10 

∑(PropCoefm,j∑QUi,pqi,j̅̅ ̅̅  

i∈I

) + PropConstm
j∈J

+ 𝛽√∑PropCoefm,j
2

j∈J

∑QUi,p
2σi,j

2

i∈I

 ≤ PropLTm  ∀p∈P,  ∀m∈M  

Eq. 3.11 

QBi ,p ≥ 0;  QSi ,p ≥ 0 ;   QUi,p ≥ 0        ∀p∈P,  ∀i∈I  Eq. 3.12 

 

3.2.2 PERFORMANCE ASSESSMENT 

To investigate and interpret the behavior of the proposed approach to address 

feedstock price uncertainty, different variants of the model were defined: i) a no 

storage model (No St) obtained by setting the parameter StCap to zero where the 

producer can purchase all needed materials each period; ii) a storage model with 

no weight on the risk tradeoff parameter obtained setting the parameter α to 

zero (St_α =0); and, iii) a storage model with different weights for the risk 

tradeoff parameter setting the parameter α to 1, 3, 5 and 10 (St_α=1; St_α=3, 
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St_α=5 and St_α=10, respectively). These models assessed the influence of 

including storage capacity (comparing (i) and (ii)) and the influence of the 

weight given to the uncertainty term (comparing (ii) with (iii)).  

Notably, the results obtained for the No storage model (No St) reflect a 

hypothetical situation where there is no uncertainty in the prices; the producers 

buy in each period knowing the exact feedstock price and the quantity necessary 

to use in that period. Although this situation does not reflect reality, it serves as a 

useful benchmark against which other model variants can be compared. This 

formulation also most closely resembles previous work that has examined the 

application of stochastic optimization to blending-related questions. 

To test the robustness of the optimization results, we developed two sets of price 

series – uptrend and downtrend. Each set contains 40 price series each 

comprising four annual prices. To develop these sets, we first randomly 

generated 40 simulated historical price datasets for each commodity using the 

parameter estimates for the ARI (1, 1, 0) model from section 2.2.  In other words, 

the parameter estimates for 𝜌 and C for each ARI (1, 1, 0) model were preserved, 

but random price shocks were generated to allow the time-series to have 

behaved in a different stochastic manner over time.  This collection of price 

series represents the downtrend set. Additionally, since all of the raw data from 

which the ARI(1,1,0) models were developed exhibited a downward stochastic 

trend over time (see Figure 2.7) we generated another 40 simulated historical 

price data series for each commodity, but now changing the sign of the drift term, 

C, such that it was positive. These price series are referred to as the uptrend set. 

To analyze the cost performance of the models, average total cost of each model 

for the uptrend and downtrend sets and the relative difference (RD) of the total 

cost obtained by two different models were calculated. For example, the 

comparison between the results obtained for the storage model with no weight 

on the risk tradeoff parameter (St_α =0) relatively to the no storage (No St) 

model was calculated using equation 3.13.   

RDStα=0  No St (%) =
Total costStα= 0 −  Total costNo St

Total costNo St
 ∗ 100 

Eq. 3.13 

 

The cost variation performance of the models was assessed through the Mean 

Absolute Deviation (MAD). This parameter was calculated as the average of the 
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absolute differences obtained between period p and period p-1 as given in 

equation 3.14.  

MAD =
1

n
∑|Pt −  Pt−1|

n

i=1

 
Eq. 3.14 

3.3 INFLUENCE OF THE PROPOSED APPROACH ON BIODIESEL COST 

AND COST VARIATION 

The different models defined in section 3.2.2 were tested on each set of data (40 

with a negative drift term and another 40 with a positive drift) and the average 

total cost was calculated. The results are presented in figure 3.2.  

The results obtained with the different models present distinct profiles 

depending on the price trend. It is observed that when prices are generally 

increasing (uptrend – left-hand plot) average costs are lower when some amount 

of storage is available (St_α=0…St_α=10) compared to when no storage is 

available (No St). Furthermore, when more weight is given to price risk 

(increasing α) average inventory grows and average cost drops; in the uptrend, 

clever inventory purchases can lead to savings, avoiding a purchase later at 

higher cost.  

 

  

Figure 3.2 Total average cost obtained for the different models, for the uptrend (left-hand side) 

and downtrend (right-hand side) data sets. No St: No Storage; St_α: Storage available and risk 

tradeoff α=0, 1, 3, 5 and 10 

 

Interestingly, in the downtrend case (right-hand plot) we also observe a small 

drop in average cost when comparing the model that has no storage capacity (No 
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St) to the model with storage capacity without considering the uncertainty 

(St_α=0). This savings declines as the alpha parameter rises. Increasing alpha 

places more emphasis on reducing cost risk. This, in turn, drives up average 

inventory. For the downtrend cases, purchases for inventory are on average 

more expensive than deferred purchases.  

As noted, average cost reductions are observed when comparing the model that 

has no storage capacity (No St) to the model with storage capacity without 

considering the uncertainty (St_α=0) for both price trends: about 1.25% for the 

uptrend and 0.16 % for the downtrend. Despite the fact that these results were 

obtained for a storage cost of zero, the sensitivity analyses performed on the 

storage cost parameter considering it up to 3% of the feedstock portfolio price 

(15 €/ton), show the same type of behavior of the models. Nevertheless, the cost 

reductions obtained are lower: about 0.8% for the uptrend and about 0.07% for 

the downtrend.  

To analyze the results in more detail (the results shown in figure 3.2 are average 

results) the relative difference (RD) of the total cost obtained for each data set, 

by two different models, was calculated. Selected results are presented in figure 

3.3 for: Storage with α=0 relative to No storage (blue dots); Storage with α=5 

relative to No storage (yellow dots); Storage with α=5 relative to Storage with 

α=0 (red dots); and, Storage with α=10 relative to Storage with α=0 (green dots). 

The cumulative distribution functions of the RD are presented in figure 3.3. The 

statistical significance of the relative differences was verified using a paired 

sample t-test (α=0.05). 
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Figure 3.3 Cumulative Distribution Functions of the relative difference (RD) of the total cost 

obtained for each data set with uptrend (left-hand side) and with downtrend (right-hand side) 

As shown in figure 3.3, for the uptrend (left-hand plot), in 100% of the cases 

storage capacity represents cost reduction and the reduction ranges from 0.5 to 

2% (blue line); if uncertainty is considered (α=5) the probability of having cost 

reduction higher than 1% increases (yellow line). A cost reduction is also 

achieved for α=5 and or for α=10 (red and green curves) in the majority of cases 

when compared to the α=0 solutions. For the downtrend, in 95% of the cases, 

cost reduction is obtained if storage capacity exists (relatively no storage 

capacity, blue line) but there is an increase in the cost as we increase weight of 

the risk tradeoff parameter α.  This is observed if we are comparing the results 

with a no-storage capacity model (yellow line) or with storage capacity and α=0 

(red and green lines). 

 To assess the influence on the cost variation of the proposed approach, the Mean 

Absolute Deviation (MAD) between consecutive periods was calculated. Figure 

3.4 depicts the MAD distribution obtained for the different models. 
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Figure 3.4 Box-and-Wiskers plots of the MAD between consecutive periods obtained for the 

different models for the uptrend (right-hand side) and downtrend (left-hand side). No St: No 

Storage; St_α: Storage available and risk tradeoff parameter α=0, 1, 3, 5 and 10 

The results obtained for the No storage model (No St) reflect the situation where 

there is no uncertainty in the prices; the producers buy in each period knowing 

the exact feedstock price the quantity necessary to use in that period. Although 

this situation does not reflect the reality, it can be considered as an ideal 

situation towards which the model developed intends to approach. When 

storage capacity is added to the model (a more realistic situation) and if no 

weight is given to the risk tradeoff parameter (St_α=0) the cost variation results 

increase significantly for both trends. A reduction on the cost variation is 

observed with increasing weight given to the uncertainty term (increasing α) 

and for α=10, the cost variation is the closest one could obtain to the ideal 

situation of the No storage scenario. The results obtained for α higher than 10 

show no reduction in the MAD average value or spread. The MAD average value 

and spread obtained for the models with storage available and risk tradeoff 

parameter α=0, 1 and 3 in the uptrend are lower than the values obtained in the 

downtrend.  

Since the WCO price shows lower volatility than the conventional feedstocks, the 

influence on the cost variation of using WCO in the blends was analyzed. The 

MAD for the different models and data sets setting the WCO quantity in the 

blends to zero was calculated. The median value obtained for the MAD is about 

1% higher for St_α=1, 4% for St_α=3, 26% for St_α=5 and 50% for St_α=10 in the 

uptrend and 1% higher for St_α=1, 5% for St_α=3, 33% for St_α=5 and 57% for 

St_α=10 in the downtrend. 
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3.4 CONCLUDING REMARKS 

In this chapter, a cost optimization model was developed to support production 

planning decisions to reduce cost and cost variation in biodiesel production. The 

model simultaneously addresses operational (using the chance-constrained 

(CCP) formulation) and feedstock price uncertainty (using time series analysis 

(TSA) to forecast the feedstock price). Cost and cost variation performance 

metrics were used to investigate and interpret the behavior of the proposed 

approach. The model proved to be useful in determining optimum planning for 

feedstocks acquisition, blending and storage that minimize the risks associated 

with feedstock price fluctuations. If feedstock prices present an uptrend 

behavior, the suggested optimization approach also allows the biodiesel 

producer to obtain a cost reduction. Moreover, the use of WCO in blends showed 

to be advantageous to reduce biodiesel cost variation. 
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4 ENVIRONMENTAL LIFE-CYCLE ASSESSMENT OF 

OILS USED IN BIODIESEL PRODUCTION 

 

 

 

 

 

 

 

 

The content of this chapter is presented in the following articles:  

Caldeira, C., Queirós, J., Freire, F. (2015) Biodiesel from Waste Cooking Oils in 

Portugal: alternative collection systems. Waste and Biomass Valorization, vol. 

6 (5), pp. 771-779 

Caldeira, C., Queirós, J., Noshadravan A., Freire, F. (2016) Biodiesel from Waste 

Cooking Oils: Life-Cycle Assessment incorporating uncertainty. Resources, 

Conservation and Recycling, vol. 112, pp. 83-92 

Caldeira, C., Quinteiro, P., Castanheira, E., Boulay, AM.,  Dias, A.C., Arroja, L., 

Freire, F. Water footprint profile of crop-based oils and waste cooking oil 

(submitted)   
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4.1 INTRODUCTION 

The focus of research and policies on environmental impacts of biodiesel has 

been on the reduction of GHG emissions (e.g. Camobreco et al. 2000; Bozbas 

2008; Fargione et al. 2008; Atabani et al. 2012) but other impacts, particularly 

related to freshwater use,  need to be considered.  Freshwater is related to fresh 

surface and groundwater; i.e. the freshwater in lakes, rivers and aquifers. In the 

particular case of agricultural production, it refers to irrigation freshwater 

(Pfister et al. 2009). As the majority of biodiesel is produced from crop-based 

vegetable oils feedstocks (Eisentraut 2010; OECD-FAO 2013; Issariyakul and 

Dalai 2014) that can require large quantities of freshwater depending on the 

location where the crops are cultivated (Pfister and Bayer 2014),  if those areas 

present high water scarcity, the freshwater consumption impacts can be 

significant. Additionally, freshwater quality can be worsened due to the use of 

fertilizers and pesticides in the crops cultivation (Emmenegger et al. 2011).  

In this chapter, a life-cycle environmental assessment of palm, soya, rapeseed 

and waste cooking oils is presented. A freshwater footprint profile, including 

water scarcity footprint and freshwater degradation impacts, was calculated 

together with GHG emissions. A comparison of two water scarcity footprint 

methods, the water stress index (WSI) (Pfister et al. 2009; Ridoutt and Pfister 

2013) and the available water remaining (AWARE) (Boulay et al. 2016; WULCA 

2015) was performed. As the AWARE method is new and learnings are still 

expected from this initial phase of application, we performed a sensitivity 

analysis on the AWARE characterization factors (CFs) based on different 

modelling choices. Freshwater degradation was assessed for freshwater and 

marine eutrophication using the ReCiPe, aquatic acidification using the IMPACT, 

and, human toxicity and freshwater ecotoxicity using the USETox model.   
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4.2 IMPACT ASSESSMENT: WATER FOOTPRINT PROFILE AND 

CLIMATE CHANGE 

In the past years, WF based on LCA methodology has progressed rapidly, and 

several models for addressing freshwater impacts have been developed. An 

extensive and comprehensive review of existing models can be found in Kounina 

et al. (2013) and Boulay et al. (2014). Studies have been carried out on water 

scarcity at midpoint level (e.g. Milà i Canals et al. 2009; Pfister et al. 2009; 

Ridoutt et al. 2010; Boulay et al. 2011; Núñez et al. 2012; Quinteiro et al. 2014; 

Quinteiro et al. 2015; Boulay et al. 2016) freshwater stress at endpoint level (e.g. 

Pfister et al. 2009; Hanafiah et al. 2011; Van Zelm et al. 2011; Verones et al. 2013; 

Tendall et al. 2014) and on freshwater degradation related to the discharge of 

eutrophying, acidifying and ecotoxic compounds into freshwater systems (e.g. 

(Knuuttila 2004; Struijs et al. 2011; Helmes et al. 2012; Azevedo et al. 2013; 

Goedkoop et al. 2013)  

The need to ensure consistency in addressing freshwater use impacts led to the 

formation in 2007 of the Water Use in LCA (WULCA) working group. The group 

was formed under the auspices of the Life-cycle Initiative of the United Nations 

Environment Programme (UNEP)/Society of Environmental Toxicology and 

Chemistry (SETAC) (WULCA 2014) and is focused on assessment of use and 

depletion of water resources within LCA framework. In 2014, the international 

standard ISO 14046 (ISO 2014) was published providing guidelines on how to 

perform an assessment of freshwater related environmental impacts. According 

to ISO 14046 (ISO 2014), the water footprint profile should consider a range of 

potential environmental impacts associated with water, encompassing the 

consumption of freshwater (water scarcity assessment) and impact categories 

related to water pollution. 

Regarding the water scarcity assessment, in the last years, the development of 

LCA-oriented impact assessment methods for addressing the potential 

environmental impacts related to the freshwater consumption has been 

significant and different methods are available. Kounina et al. (2013) and Boulay 

et al. (2014) contributed to understanding  the different scopes, strengths and 

weaknesses of the existing scarcity LCA-oriented impact assessment methods, 
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showing that at the midpoint level, most of the freshwater scarcity methods use 

different hydrological data sources and a scarcity model algorithm, mainly 

developing the characterization factors (CFs) based on a withdrawal-to-

availability (WTA) ratio. 

In this thesis, two LCA-oriented impact assessment methods were compared: the 

WSI method (Pfister et al. 2009; Ridoutt and Pfister 2013) and the AWARE 

method (Boulay et al. 2016) In the former, midpoint CFs are water stress indexes 

(WSIs) estimated at country level  and in the later, the CFs are based on the 

demand-to-availability ratio (DTA) at the country level. The WSIs represent the 

portion of the freshwater consumption that deprives other users of freshwater. 

The AWARE method builds on the assumption that the potential to deprive 

another user of water (resulting from the multiplication of the inventory with 

the CF) is directly proportional to the amount of freshwater consumed 

(inventory) and inversely proportional to the available water remaining per unit 

of surface and time in a region (watershed). The AWARE CFs represent the 

relative available water remaining per area in a watershed, after the demand of 

humans and aquatic ecosystems has been met, answering, therefore, to the 

following question: “what is the potential to deprive another freshwater user 

(human or ecosystem) by consuming freshwater in this region?” (Boulay et al. 

2016).  

The WSIs range from 0.01 to 1.00 following a logistic function and it is a modified 

WTA ratio that accounts monthly and annual variability in precipitation 

influence. It can be interpreted as the water deprivation proportion caused by 

freshwater consumption, that is, how much of the freshwater consumed is 

considered to be taken away from downstream users (Pfister and Bayer 2014). 

The AWARE CF ranges from 0.1 and 100 and are based on the inverse of the 

difference between freshwater availability and demand, in which demand is 

related to the human freshwater consumption and environmental water 

requirements (EWR). The value is normalized using the world average, hence it 

represents whether a region has more or less remaining water in comparison to 

the world average. 
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The WSIs do not explicitly account for groundwater stocks and surface 

infrastructures within the sub-watershed, while the AWARE indicators take into 

account surface infrastructures such as dams. 

Because of the difference in the structure of the CFs for both methods, the scale 

and the interpretation are different and WF results are in different units (cubic 

meter equivalent referring to different equivalencies). To allow an adequate 

comparison between the water scarcity footprint results of the vegetable oils 

under analysis, the WSIs from the  Pfister et al. (2009) are normalized by the 

world average global average consumption weighted value (0.602) derived by 

Ridoutt and Pfister (2013). This value is compatible with the WSIs calculated by 

Pfister et al. (2009). Therefore, the normalized water scarcity footprint results 

from both impact assessment methods correspond to equivalent units of “world-

m3 equivalent” for both applied methods, even though the interpretation 

remains different. 

As the AWARE method is new and learnings are still expected from this initial 

phase of application, a sensitivity analysis on the AWARE CFs based on different 

modelling choices was performed. Three sets of CF (WULCA 2015) obtained 

according to different assumptions were tested: i) AWARE100 EWR 50% (that 

was defined to test the sensitivity of the results to the choice of EWR), was 

defined following the EWR method author's recommendation of applying an 

upper value of  EWR by taking 150 % of the value provided by the original 

method (VMF); ii) AWARE10; and, iii) AWARE1000, that have a max cut-off of 10 

and 1000, respectively, instead of 100. A cut-off  limits the span of the indicator 

to a maximal range (the minimum cut off is set to 0.1) that sets the difference 

between the lowest and the highest value, eliminating the tailing values where 

the meaning of the indicator would be lost (Boulay et al. 2016). Table 4.1 

presents the different CFs used. 
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Table 4.1 Characterization factors used in the sensitivity analysis of AWARE method for 

agricultural (Agri.) and non-agricultural (Non-Agri.) uses 

 

AWARE100 
AWARE100 ERW 

50 % AWARE10 AWARE1000 

 

Agri. Non- Agri. Agri. Non-Agri. Agri. Non-Agri. Agri. Non-Agri. 

Colombia 0.56 0.77 0.56 0.79 0.54 0.49 0.59 1.15 

Malaysia 2.23 0.58 4.76 0.62 1.33 0.55 2.20 0.58 

Argentina 54.38 6.81 60.88 7.61 7.29 2.42 334.77 31.19 

Brazil 2.42 1.86 9.75 4.57 2.04 1.60 2.54 2.07 

US 36.52 9.51 42.72 10.65 5.70 2.31 316.11 66.63 

Germany 1.63 1.24 1.73 1.16 1.61 1.11 1.61 1.25 

France 8.29 2.31 34.10 5.88 4.44 1.69 32.92 6.98 

Spain 77.51 30.93 89.15 37.88 9.41 5.14 711.71 263.44 

Canada 9.65 2.62 9.80 4.21 5.12 2.02 22.01 3.57 

Portugal 51.03 15.33 75.97 23.33 8.66 3.85 389.39 101.70 

ROW 45.88 22.19 58.18 31.89 6.43 6.27 361.22 299.92 

ROW: Rest of the world 
ERW: Environmental water requirements 
 

Regarding the midpoint impacts from water pollution, and in agreement with the 

approach followed by Boulay et al. (2015), impact categories from different LC 

impact assessment methods were chosen to assess the potential environmental 

impacts due to pollutant substances released into water. Following Boulay et al. 

(2015), freshwater and marine eutrophication were addressed using the ReCiPe 

model (Goedkoop et al. 2009), aquatic acidification using the Impact 2002+ 

model (Jolliet et al. 2003), and human toxicity (cancer and non-cancer) and 

ecotoxicity were addressed using the Usetox model (Rosenbaum et al. 2008). 

GHG emissions were also assessed using  the ReCiPe model (Goedkoop et al. 

2009). 

4.3 LIFE-CYCLE MODEL AND INVENTORY 

A life-cycle (LC) model was implemented to assess the WF profile (freshwater 

consumption and water degradation impacts) of different vegetable oils used for 

biodiesel production: virgin oil (palm, soya and rapeseed) and WCO. The 

functional unit is defined as one kilogram of vegetable oil. It is assumed that after 

the refining step, the virgin oils and the WCO have the required characteristics 

for the transesterification reaction (biodiesel production). Technically, the 
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production of biodiesel from WCO is similar to conventional transesterification 

processes of the virgin oils (Knothe et al. 1997). The variation on the energy 

content (low heating value) of biodiesel produced from palm, soya, rapeseed and 

WCO is below 1% (Hoekman et al. 2012). 

The system boundary is schematically presented in figure 4.1. The virgin oils 

systems (palm, soya and rapeseed) include cultivation, oil extraction, feedstocks 

transportation and oil refining. Different cultivation locations for the feedstocks 

were considered: Colombia (CO) and Malaysia (MY) for palm fruit; Argentina 

(AR), Brazil (BR) and United States (US) for soybean; and, Germany (DE), France 

(FR), Spain (ES), Canada (CA) and US for rapeseed. However, it should be noted 

that the results cannot be extrapolated to the country level since the data 

regarding crop cultivation is, in some cases, not representative of the country. 

The palm oil was extracted near the cultivation site while soya and rapeseed oils 

were extracted in Portugal (PT). The refining of all virgin oils is performed in 

Portugal. The transportation of palm oil, soybean and rapeseed to Portugal was 

considered within the system boundaries. For the WCO, the stages are the WCO 

collection and refining in Portugal. The system reflects the reality of biodiesel 

production in Portugal. A short description of each stage considered is presented 

in the following sections. 

 

 

Figure 4.1 System boundaries of the vegetable oils for biodiesel production  
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The background system includes production of fuels, electricity, chemicals and 

other ancillary materials, i.e. all other processes which interact directly with the 

foreground system, usually by supplying material or energy to the foreground or 

receiving material or energy from it. Data on freshwater for the background 

were obtained from the Ecoinvent 3.1 database. The infrastructures and the 

materials and chemicals transportation were not considered in this study. The 

inputs for each one of the systems including fertilizers, fuels, ancillary materials 

and transportation are presented in Appendix VII. 

The freshwater balance was calculated for each process. The difference between 

the water inputs and water outputs is calculated as the freshwater consumption 

(Pfister et al. 2015). The green water - rainfall water on land that does not run off 

or recharge the groundwater but is stored in the soil or temporarily stays on the 

top of the soil or vegetation (Hoekstra et al. 2011) - was not considered in the 

scope of this study as data for assessing the potential impacts of palm fruit, 

soybeans and rapeseed production resulting from changes in green water flows 

due to land use changes were not available. The inventory results of freshwater 

consumption (m3 per kg of palm oil, soybean oil, and rapeseed oil) for each one 

of the production systems included in the system boundaries are presented in 

table 4.2.  
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Table 4.2 Inventory results of consumptive freshwater for the cultivation (expressed in m3 per kg of palm fruit, soybeans and rapeseeds); transportation, 

extraction and refining (expressed in m3 per kg of palm oil, soybean oil, rapeseed oil and WCO) 

Feedstock 
Cultivation Transport 

/collection 

Extraction Refining 

Location Foreground Background Location Foreground Background Location Foreground Background 

Palm 
Colombia 0 0.00070 0.0010 Colombia 0.0055 0.00090 

Portugal 0.075 0.00057 
Malaysia 0.0064 0.00063 0.0013 Malaysia 0.0034 0.00025 

Soya 

Argentina 0.17 0.0023 0.0031 

Portugal 0.00070 0.00076 Portugal 0.075 0.00057 Brazil 0.14 0.0027 0.0078 

US 0.0076 0.0013 0.0048 

Rapeseed 

Germany 0.086 0.0060 0.0040 

Portugal 0.000020 0.00042 Portugal 0.075 0.00057 

France 0.21 0.0060 0.0023 

Spain 1.11 0.0077 0.0017 

Canada 0.013 0.010 0.0048 

US 0.060 0.014 0.0021 

WCO Portugal n.ap. 0.0014 n.ap. Portugal 
0.000035* 0.00053* 

n.ap. 0.000015** 

n.ap. – not applicable 
*data for refining of high quality WCO 
**data for refining of low quality WCO 
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4.3.1.1 Cultivation 

The data (freshwater consumption and emissions) for palm fruit cultivation in 

Colombia were adapted from Castanheira et al. (2014). These authors presented 

a detailed LC inventory for a specific plantation equipped with its own mill, in the 

Orinoquía Region. Although the authors assessed five fertilization schemes we 

selected the one using urea for this study. According to Castanheira and Freire 

(2016a) urea is among the preferred nitrogen sources and the main N-fertilizers 

used in Colombia. The data (consumption and degradation) for palm fruit 

cultivation in Malaysia was adapted from the Ecoinvent 3.1 database (Jungbluth 

et al. 2007).  

The irrigation water data for each of the spatially explicit feed of soya and 

rapeseed was obtained from Pfister and Bayer (2014). The freshwater 

degradation data for the soya and Rapeseed feedstocks were collected from 

different sources: for soybean cultivation in Argentina were obtained from 

Castanheira and Freire (2013) (considering the reduced tillage cultivation 

system); for soybeans cultivation in Brazil, data were collected from Castanheira 

et al. (2015) (although the authors assessed the cultivation of soybean in four 

Brazilian states, this study considers the inventory for the cultivation in Mato 

Grosso because it is the state with the highest production share); for cultivation 

of soybeans in the US data were taken from the Ecoinvent 3.1 database 

(Jungbluth et al. 2007); for Rapeseed cultivation in Spain, Germany, France, 

Canada  data were retrieved from Malça et al. (2014); and,  for Rapeseed 

cultivation in the US data was obtained from the Ecoinvent 3.1 database.  

Land Use Change (LUC) 

GHG emissions due to direct LUC were considered in this study. For each of the 

feedstock and cultivation location two scenarios, a pessimistic and an optimistic, 

were considered.  The carbon stock changes were calculated based on the 

difference between the carbon stock associated with reference (previous) and 

actual land use. Data was obtained from different studies available in the 

literature. The reference and actual land use of the pessimistic and optimistic 

scenarios considered as well as the respective GHG emissions for the different 
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feedstocks and locations are presented in table 4.3. A short description of the 

selected scenarios follows. 

For palm cultivation in Colombia, the reference land use for the pessimistic 

scenario was forest and for the optimistic scenario, shrubland. According to 

Castanheira et al., (2014) the palm fruit cultivation area in Colombia expanded 

by 84% from 1990 to 2010, mainly from shrubland (51%) and savanna (42%). A 

small share of arable land (7%) and forest (less than 1%) was used for palm 

cultivation. The authors analyzed 13 LUC scenarios having values ranging from -

3.4 to 4.3 g CO2 eq kg-1 oil palm oil.  Although forest has low use for palm 

cultivation (only 1%) this scenario was considered as it was the scenario with 

higher emissions value. Hassan et al., (2011) modelled five different types of land 

use: peat forest, primary forest, secondary forest, grassland and degraded land 

based on the current land use by Malaysian oil-palm plantation. The authors 

obtained values ranging from -1.19 to 11.2 g CO2 eq kg-1 oil. The secondary forest 

and the grassland were the pessimistic and optimist scenarios selected for this 

work. 

Castanheira and Freire (2013) considered alternative previous land uses for the 

cultivation of soya in Argentina and in Brazil: tropical forest land, forest 

plantations, perennial crop plantations, savannah and grasslands. The values 

obtained for soybean cultivation in Argentina range from -0.17 to 6.79 g CO2 eq 

kg-1 oil while for Brazil from 0 to 26.26 kg CO2 eq kg-1 oil. The reference land use 

scenarios selected for Argentina were the perennial crop and grassland severely 

degraded and for soybean in Brazil the savanna with improved management and 

grassland severely degraded for the pessimistic and optimistic scenarios, 

respectively.  

For Rapeseed in Spain, Germany, France and Canada, grassland severely 

degraded and grassland improved were the selected reference land use for the 

optimistic and pessimistic scenarios, respectively (Castanheira and Freire 

2016b). The reference land use for the optimistic scenario for soybean and 

rapeseed cultivated in the US was arable land and the pessimistic scenario value 

was obtained from an IPCC report (Edenhofer et al. 2012) but no detailed 

information about the reference land was available. 
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Table 4.3 Reference land use and GHG emissions of the optimistic and pessimistic scenario 

defined to address LUC 

Feedstock_Location Data source 

Optimistic Scenario Pessimistic Scenario 

Ref Land 
Use 

LUC min  

(g CO2 eq  

kg-1 oil) 

Ref Land 

 Use 

LUC max 

(g CO2 eq 

 kg-1 oil) 

Palm_CO 
Castanheira 
et al., (2014) 

Shrubland -0.11 Forest 3.75 

Palm_MY 
Hassan et 
al., (2011) 

Grassland 1.50 
Secondary 

forest 
4.52 

Soya_AR 
(Castanheira 
and Freire, 

2013) 

Grassland 
severely 

degraded  
-0.17 

Perennial 
crop 

6.79 

Soya_BR 
Grassland 
severely 

degraded 
0.48 

Savanna  
improved 

management 
10.98 

Soya_US 

 

Ecoinvent 

 

Arable 
land 

0 

Not 
specified 

(Edenhofer 
et al. 2012) 

2.17 

Rapeseed_DE 

(Castanheira 
and Freire, 

2016) 

Grassland, 
Severely 
degraded 

0.13 

Grassland, 
Improved 

2.95 

Rapeseed_FR 0.15 2.87 

Rapeseed_SP -0.10 1.57 

Rapeseed_CN 0.14 4.59 

Rapeseed_US 

 

Ecoinvent 

 

Arable 
Land 

0 

Not specified  

(Edenhofer 
et al. 2012) 

1.51 

 

4.3.1.2 Extraction and transportation  

Palm oil is extracted in the cultivation location. The palm fruits harvested are 

transferred to the mill located close to the cultivation site to be sterilized, 

stripped, digested into a homogeneous oily mash and pressed to extract most of 

the crude palm oil. In addition, there are other outputs of the extraction system, 

such as kernels, fibers, shells, empty fruit bunches and palm oil mill effluent. 

Kernels are cracked and milled to produce palm kernel oil and palm kernel meal. 

These latter are the co-products of the extraction system. Fibers and shells are 

used as a fuel in the boiler of the cogeneration plant to produce both electricity 

and steam. The empty fruit bunches and the treated palm oil mill effluent are 

used as a fertiliser in the palm fruit cultivation. Freshwater consumption and 
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degradation data for the palm oil extraction in Colombia and Malaysia was 

obtained from Castanheira et al. (2014) and Jungbluth et al. (2007), respectively. 

The soybean and rapeseed oils are extracted in Portugal. Due to the lack of 

complete primary data for the extraction stage, the foreground freshwater 

consumption of soybean and rapeseed oil extraction was obtained from the 

Ecoinvent 3.1 database. The soybeans are dehulled, cracked, heated, rolled into 

flakes and solvent-extracted with hexane. Soybean meal is obtained as co-

product. Freshwater emissions for soybean extraction was obtained from 

Castanheira et al. (2015). The rapeseeds are grinded and cooked to facilitate the 

oil extraction process. After that, the seeds are pressed mechanically to extract 

the oil. During this process a rapeseed meal is also produced. Since this cake has 

high oil content, a chemical extraction step using hexane is performed to extract 

the remaining oil. The rapeseed meal is obtained as a co-product of this process. 

Freshwater emissions for extraction of rapeseed oil were obtained from 

(Castanheira and Freire 2016b).  

The distances travelled and the type of transportation used to transport the palm 

oil, soybean and rapeseeds from the cultivation sites to the biodiesel plant in 

Portugal are presented in Appendix VII. 

4.3.1.3 WCO collection 

The inventory data for WCO collection were obtained from (Caldeira et al. 2015; 

Caldeira et al. 2016). A comprehensive inventory for three alternative WCO 

collection systems was implemented, which included two types for the domestic 

sector and one for the food service industry. A description follows. The domestic 

sector included:  

i) Street Drop-off containers: Plastic containers placed in specific points within 

the collection area where citizens can dispose the recipients with WCO.  The 

collection (frequency and routes) is planned by each collector according to the 

specificity of each location. Six collection locations (A to F) were considered. The 

location and population density are presented in table 4.4.  

ii) Door-to-door (DtD): The citizens store the WCO at home using 5 L plastic 

containers and, once a month, a special collection service collected the 
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containers. This system has been implemented in locations where the placement 

of street containers is not practical (e.g. historical neighborhoods, areas of 

difficult access). Table 4.4 shows data for one collection system implemented in 

the Azores - Angra do Heroismo. 

For the food service industry sector, WCO collection from restaurants in a 

Portuguese midsize municipality (Coimbra) was selected as case study (HRC) 

(table 4.4).  The oil is stored in 30 or 50 L plastic containers and once a month 

the container is collected and replaced by an empty one.  Figure 4.2 shows the 

location and areas covered by each system analyzed.  

 

Figure 4.2. Map of Portugal, showing the WCO collection areas covered by each collection system 

 

The distance travelled and quantity of WCO collected in each route were 

provided by the collection companies. The temporal horizon of the data is from 

2008 to 2013, as detailed in table 4.4. The quantity of WCO collected and the 

distance travelled in each route were different within each system (the collection 

routes do not cover always the same collection points).  

A performance indicator (PI) for WCO collection, defined as the average volume 

of WCO collected per kilometer travelled, was calculated (Table 4.4). The highest 

PI (18.4 L WCO km-1) was calculated for the system implemented in Coimbra to 

collect WCO from restaurants (HRC) and the lowest (1.5 L WCO km-1) for the 

system Door-to-Door implemented in Angra do Heroísmo. Within the same type 

of collection system (Drop-off containers, A to F), the PI ranged significantly: 

from 9.1 (A) to 2 (C) L WCO km-1. Low values were calculated for low population 

density areas (B to E). Despite covering the highest population area analyzed, 

system F did not have the highest PI (5.2 L WCO km-1).  
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The type of fuel and average fuel consumption for WCO collection were provided 

by the WCO collectors and are presented in table 4.4. Systems E and F used 

biodiesel from WCO as fuel in the collection fleet. All the other systems used 

diesel. The higher fuel consumption registered for systems B, C and D (0.14 L km-

1) is related to the size of the vehicle (3.5 to 7.7 tons capacity). In the other 

systems, although smaller vehicles were used (maximum capacity of 3.5 tons), 

some differences in the consumption were observed. The higher consumption 

observed for the system E (0.10 L km-1) and F (0.11 L km-1) is due the use of 

biodiesel in the vehicle (increases the consumption comparatively to diesel) 

(Dermibas 2003). Emission factors for diesel and biodiesel from Jungbluth et al. 

(2007) were considered. 

Table 4.4. Collection systems (areas and population density), performance indicator (PI), vehicle 

fuel consumption and temporal horizon of the data 

Sector  Collection system Location 

Population 
density 

(inhabitants 
km-2) 

Temporal 
horizon 

Vehicle Fuel 
Consumption 

(L km-1) 

PI 

(L WCO km-1) 

Households 

 

 

 

 

 

 

 

 

 

 

 

Drop-off 
Containers 

A Coimbra 450 2009-2012 0.09a 9.1 

B 
Grândola-Alcácer 

do Sal 
12 2011-2012 0.14 a 4 

C 
Ferreira do 

Alentejo-Aljustrel 
16 2011-2012 0.14 a 2 

D  
Odemira-Santiago 

do Cacém-Sines 
23 2011-2012 0.14 a 3.2 

E 
Sesimbra-

Setúbal-Palmela 
281 

Jul-Aug  

2013 
0.10b 3.5 

F 

Espinho, 
Gondomar 

Maia, Matosinhos 

Porto, Póvoa de 
Varzim, Valongo 

Vila do Conde 

959 
Jan-Mar 

2013  
0.11 b 5.2  

Door-to-door DtD 
Angra do  

Heroísmo 
148 2008-2013 0.09 a 1.5 

HRC Containers  HRC Coimbra  ─ 2011 0.09 a 18.4 

a diesel / b biodiesel 

For the household systems, a recovery ratio between the WCO actually collected 

and the WCO generated as waste was estimated between 4% and 6%. The WCO 

generated was calculated based on the virgin oil consumption in Portugal (22.1 

kg per inhabitant per year), number of inhabitants and considering that 45% of 
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the virgin oil becomes residue (IPA 2004). According to Math et al. (2010), if 

adequate collection incentives are applied, a recovery ratio of about 70% would 

be possible. However, the inexistence of standardized collection schemes can 

lead to very low recovery ratios (Peiró et al. 2008). 

To assess the CC impacts, the best and worst case in terms of PI observed in the 

collection systems analyzed was selected: WCO collected from restaurants with a 

PI of 18.4 L WCO km-1 and oils collected from a door-to-door system with a PI of 

1.5 L WCO km-1. For the remaining impact categories assessed, an average value 

was considered.  

4.3.1.4 Refining 

The main processes for crude virgin oil refining for biodiesel production are 

neutralisation (to neutralise the free fatty acids (FFA)) and degumming (to 

remove phosphatides). The refining process is the same for the three virgin oils 

and the freshwater emissions were obtained from Castanheira et al. (2015). The 

freshwater consumption data was adapted from the Ecoinvent 3.1 database. 

For the WCO, the quality of the oil has major influence on the refining process. 

The quality is mainly related to the quantity of FFA in the oil. FFA cause 

saponification problems during the biodiesel production process 

(transesterification) and depending on the WCO quality different refining (pre-

treatment) procedures can be used (Araújo et al. 2013). Two alternative WCO 

refining processes were considered in this study: if the WCO has high quantity of 

FFA (low quality WCO) the refining consists of an acid-catalysed process to 

perform the esterification FFA (Jungbluth et al, 2007);  if the WCO presents low 

quantity FFA (high quality WCO)  the refining consists in filtering to remove 

impurities and heating the WCO (above 100º during approximately two hours) 

to remove water (evaporated to the atmosphere) (Caldeira et al. 2015). 

Multifunctionality 

The palm, soybean and rapeseed oils production are multifunctional systems; the 

co-products of palm oil production are palm kernel oil and palm kernel mill; of 

soybean oil is soybean meal; and, of rapeseed oil is rapeseed meal. The allocation 

of water consumption and degradability impacts between the oils and the co-
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products was based on energy content (lower heating value) following the 

European Directive 2009/28/EC on the promotion of the use of energy from 

renewable sources (European Commission 2009). Table 4.5 presents the 

allocation factors used in the study for the different feedstock systems.  

Table 4.5 Allocation factors based on energy content  

Feedstock system Co-Product 
Energy 

Allocation Factor 
(%) 

Palm 

(Castanheira et al. 2014) 

Crude Palm oil 81 

Palm Kernel oil 10 

Palm kernel mill 9 

Soybean 

(Castanheira et al. 2015) 

Crude Soybean oil 36 

Soybean Meal 64 

Rapeseed 

(Castanheira and Freire 2016b) 

Crude Rapeseed oil 59 

Rape seed Meal 41 

 

4.4 ENVIRONMENTAL IMPACTS 

4.4.1 WATER SCARCITY FOOTPRINT 

Figure 4.3 compares the water scarcity footprint calculated for the WSI and 

AWARE methods. The results are normalized in order to bring all units to a 

common unit cubic meter world equivalent. The water scarcity profile calculated 

following the WSI method range from 0.002 to 2.11 world m3eq kg-1 oil, while the 

water scarcity profile vary from 0.008 to 133.57 world m3eq kg-1 oil following 

the AWARE method. Although the range of values are different in magnitude, 

both methods lead to same conclusions about which is the most freshwater 

consuming system and which is the stage contributing the most to the overall 

water scarcity impacts. 
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Figure 4.3 a) Water scarcity footprint calculated using WSI and AWARE CFs. b) Relative 

contribution of each stage to the water scarcity footprint 

 

Within the oils analyzed, rapeseed_SP presents the highest impact due to the 

cultivation stage. This is because the data adopted for rapeseed cultivation in 

Spain presents higher water consumption than the remaining systems. In 

addition, Spain is the country that presents the highest water scarcity among the 

ones analyzed. The water scarcity footprint of the oil Rapeseed_SP is about 

eightfold the impact of the oil Soya_AR (data adopted for rapeseed cultivation in 

Argentina), which is the second oil with higher impact. Also for this oil, the stage 

that contributes the most to the overall impacts is cultivation. Although the 

  

  

(a) (b) 
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cultivation of rapeseed in France (Rapeseed_FR) presents a higher water 

consumption than the cultivation of soya in Argentina (table 4.2), the latter 

presents higher water scarcity footprint impacts because Argentina has a higher 

water scarcity than France. 

Table 4.6 presents the water scarcity footprint (in descending order) obtained 

with the WSI and AWARE CFs. For the four oils with higher impacts - 

Rapeseed_SP, Soya_AR, Rapeseed_FR and Rapeseed_US - the stage that 

contributes the most is cultivation and the majority of the freshwater is 

consumed by the foreground system, more specifically the water used for 

irrigation. As was also pointed out by Emmenegger et al. (2011), agricultural 

water consumption for irrigation dominates the overall freshwater consumption 

of biofuels produced from irrigated crops.  

Table 4.6 Water scarcity footprint (from higher to lower value) obtained with the Pfister et al. 

(2009) – WSI – and Boulay et al. (2016)  – AWARE – methods and the life-cycle stage that 

contributes de most to overall impacts for the virgin and WCO  

Oil System 

WSI 

(world m3eq  

kg-1oil) 

Oil System 

AWARE 

(world m3eq  

kg-1oil) 

Higher 
contribution 

stage 

Rapeseed_SP 2.11 Rapeseed_SP 133.57 

Cultivation  

 (irrigation 
water) 

Soya_AR 0.26 Soya_AR 18.54 

Rapeseed_FR 0.18 Rapeseed_US 4.64 

Rapeseed_US 0.17 Rapeseed_FR 3.92 

Rapeseed_DE 0.11 Soya_BR 1.84 

Refining 

Soya_BR 0.11 Soya_US 1.69 

Rapeseed_CN 0.10 Rapeseed_CN 1.45 

Soya_US 0.088 Rapeseed_DE 1.44 

Palm_MY 0.078 Palm_MY 1.23 

Palm_CO 0.076 Palm_CO 1.18 

WCO_PT _Hi* 0.002 WCO_PT _Hi 0.011 
WCO collection 

WCO_PT_Lo** 0.001 WCO_PT Lo 0.008 

 

*High quality WCO; **Low quality WCO 
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For virgin oils produced from crops or locations that require less irrigation water 

(table 4.6) - with water scarcity footprints lower than 0.11 world m3eq kg-1 oil 

using WSI and 1.84 world m3eq kg-1 oil using the AWARE - the stage contributing 

the most is the refining stage. In this stage, the majority of the freshwater is 

consumed by the foreground system (around 99 %) and corresponds to tap 

water consumed in the process. Among the virgin oils, the lower impacts are 

obtained for palm oil production. This is because the data adopted for cultivation 

of palm fruits show that it requires little (Malaysia) or no irrigation (Colombia) 

at all. The lowest water scarcity footprint is obtained for the WCO systems. In 

this case, the main contribution (70% in the WCO_PT_Hi and 99% in the 

WCO_PT_Lo systems) arises from the collection (background system).  

The oils with data adopted for rapeseed cultivated in France (Rapeseed_FR), 

Germany (Rapeseed_DE) and in the US (Rapeseed_US) and for soya cultivated in 

Brazil (Soya_BR) and in the US (Soya_US) are ranked in different positions in 

each method. These differences are related to the CF of each method. For 

example, there is an inversion of the impacts order for oils Rapeseed_FR and 

Rapeseed_US when using WSI or the AWARE CFs. Looking at the foreground 

level, although the cultivation of rapeseed in France presents higher freshwater 

consumption (0.22 m3 kg-1 seed) than in the US (0.060m3 kg-1 seed) the 

multiplication of these values by the CFs of each method (WSI: 0.18 for France 

and 0.50 for the US; AWARE: 8.29 for France and 36.52 for the US) different 

orders are obtained. The results for the Pfister et al. (2009) method are 0.038 

world m3 eq kg-1 for rapeseed cultivation in France and 0.030 world m3 eq kg-1  in 

the US while for the Boulay et al. (2016) are 1.76 world m3 eq kg-1 for rapeseed in 

France and 2.18 world m3 eq kg-1 for rapeseed cultivated in the US. This 

highlights the high variation of water scarcity CFs. AWARE indicators range by a 

higher factor than WSI as explained in section 2.2. Therefore, although the 

cultivation of rapeseed in France presents higher freshwater consumption than 

in the US, it is expected that when applying a higher CF, this has influence on the 

water scarcity footprint relative to the inventory.  

Both the CF and the inventory play a role in the resulting water scarcity 

footprint, meaning that for an effective reduction of freshwater consumption 

impacts, beside the reduction of the amount of water consumed also the choice 
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of location is very important. The latter will be even more important for 

technologies where the range of inventory variation for water consumption is 

small (e.g. less than one order of magnitude). Notwithstanding, the differences 

between both CFs considered should be taken into account. WSIs are calculated 

based on WTA ratios, rather than on DTA ratios of freshwater at the sub-

watershed level. This overestimates water scarcity footprint results (Berger and 

Finkbeiner 2012). In addition, the AWARE CFs also comprises the ecosystem and 

human water demands, representing the potential environmental impacts due to 

freshwater consumption more comprehensively than WSIs.  

4.4.1.1 AWARE CFs sensitivity analysis 

Table 4.7 presents the water scarcity footprint (from lower to higher value) 

obtained with different AWARE CFs. We considered the AWARE results as a 

baseline and the shaded area in the table shows those feedstocks that are not in 

the same rank order as the AWARE results. The results obtained with the 

AWARE100 EWR 50% present an inverted order for the oils 

Soya_US/Rapeseed_CN and Rapeseed_US/Rapeseed_FR. The latter situation is 

also verified in the results of the AWARE10. The AWARE10 also shows an 

inversion of the order for Soya_US/Rapeseed_US. The AWARE1000 results are 

the ones showing less agreement with the order obtained with the AWARE CFs. 
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Water scarcity footprint world m3 eq kg-1 oil 

Oil system 

AWARE 

Oil system 

AWARE 

100 EWR 
50% Oil system 

AWARE 

10 
Oil system 

AWARE 

1000 

WCO_PT_Lo 0.03 WCO_PT_Lo 0.03 WCO_PT_Lo 0.03 WCO_PT_Lo 0.04 

WCO_PT _Hi 0.04 WCO_PT _Hi 0.05 WCO_PT _Hi 0.04 WCO_PT _Hi 0.19 

Palm_CO 1.26 Palm_CO 1.91 Palm_CO 0.32 Palm_MY 8.98 

Palm_MY 1.30 Palm_MY 2.00 Palm_MY 0.35 Palm_CO 9.10 

Rapeseed_DE 1.64 Rapeseed_DE 2.37 Soya_US 0.40 Soya_BR 10.89 

Rapeseed_CA 1.77 Soya_US 2.51 Rapeseed_CA 0.51 Rapeseed_DE 11.54 

Soya_US 1.77 Rapeseed_CA 2.56 Rapeseed_DE 0.58 Soya_US 13.55 

Soya_BR 1.99 Soya_BR 4.63 Soya_BR 0.89 Rapeseed_CA 13.93 

Rapeseed_FR 4.10 Rapeseed_US 6.43 Rapeseed_US 0.96 Rapeseed_FR 21.76 

Rapeseed_US 5.03 Rapeseed_FR 13.23 Rapeseed_FR 1.81 Rapeseed_US 43.84 

Soya_AR 18.64 Soya_AR 21.37 Soya_AR 2.65 Soya_AR 116.30 

Rapeseed_SP 133.79 Rapeseed_SP 154.39 Rapeseed_SP 16.45 Rapeseed_SP 1226.90 
 

 

The differences observed in the order are mainly related to the magnitude of the 

CFs and the relation among the CFs of the different cultivation locations. For 

example, if one compares the water consumption of rapeseed cultivation in the 

US and in France, the value is respectively, 0.060 m3 per kg oil and 0.21 m3 per kg 

oil (table 4.2). Although the cultivation of rapeseed in France presents higher 

consumption, since the AWARE CF is lower for France (8.29) than for the US 

(36.52) (table 4.3), the results for AWARE show that the water scarcity footprint 

for feedstock Rapeseed_US is higher. This does not happen with the AWARE100 

EWR 50% or AWARE10, because the CF values are closer (e.g. for the AWARE10 

the CF for France is 4.44 and for the US 5.70) and so, the impacts order is the 

same as the water consumption, meaning that the feedstock Rapeseed_FR has 

higher impacts than Rapeseed_US.   

Besides obtaining different results, the use of alternative CFs also influences the 

contribution of each stage and consequently the identification of “hotspots” as 

shown in figure 4.4 that displays the contribution of each stage in each 

Table 4.7 Water scarcity footprint (from higher to lower value) obtained with the AWARE  method 

using different characterization factors for the virgin oils and WCO 
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feedstock system for each group of CFs. An example to illustrate this influence of 

the different CFs is the oil produced from soya cultivated in Brazil (Soya_BR). 

According to the results obtained with the AWARE and AWARE1000, the stage 

contributing the most is refining (about 60% for the AWARE and about 70% for 

the AWARE1000) but according to AWARE100 EWR 50% and AWARE10, the 

contribution of this stage diminishes to about 40%.  

In the cultivation and refining stages, the foreground has the largest water 

consumption share and the relation between the CF for Brazil (cultivation 

location) and Portugal (refining location) dictate the contribution of each stage. 

According to table 4.7, the relation Brazil CF/Portugal CF varies for the different 

CF group: for AWARE Portugal´s CF is 6 times higher than Brazil´s CF; for 

AWARE100 EWR 50% and AWARE10, about 2 times higher; and, for 

AWARE1000, about 39 times higher. For this reason, the refining stage has more 

weight in the results obtained with the AWARE1000 CFs, followed by the results 

obtained with the AWARE and less contribution in the results obtained with 

AWARE100 EWR 50% and AWARE10 CFs. The large difference seen when using 

AWARE1000 illustrates the fact that too much weight is given to the 

geographical location (scarcity) which masks the effect of differences in 

inventory.  
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Figure 4.4 Contribution of each stage to the overall water scarcity impacts calculated with 

different AWARE CFs. 

4.4.2 WATER DEGRADATION IMPACTS 

Figure 4.5 depicts the contributions to the freshwater degradation impacts, 

including freshwater eutrophication (FE), marine eutrophication (ME) and 

aquatic acidification (AA). Virgin oils production has higher impacts than WCO, 

due to the cultivation stage.  
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                                                  (a)                                                                                     (b) 

 

Figure 4.5 Freshwater eutrophication, marine eutrophication, and aquatic acidification of 1 kg of oil (a) 

and the relative contribution of each stage to the overall impacts (b) 
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Rapeseed_US oil has the highest impacts for FE, ME and AA. The phosphate and 

phosphorus emissions due to P-fertilizers are the explain the higher FE impacts 

observed for Rapeseed_US, Soya_Ar and Soya_Br oils. ME and AA are mainly due 

to ammonia, nitrates and nitrogen oxides released due to the use of N-fertilizers. 

Since the fertilization scheme of Rapeseed cultivation uses higher quantities of 

N-fertilizers (comparatively to soya and palm cultivation, see table 1 in Appendix 

VII), the rapeseed oils present higher impacts in these categories. The 

fertilization scheme strongly influences the impacts in acidification and 

eutrophication. The higher contribution of the transportation to AA observed for 

the oils Palm_MY, Palm_CO, Soya_Ar, Soya_Br, Soya_US, and Rapeseed_US are due 

to the heavy fuel oil used in the transoceanic ship. Oil produced from Rapeseed 

cultivated in Europe and WCO domestically collected (in Portugal) present lower 

AA impacts associated with the transportation stage. 

Figure 4.6 shows the environmental impacts for human toxicity-cancer (HTc), 

human toxicity-non cancer (HTnc), and freshwater ecotoxicity (FT) and the 

contribution of each stage to the overall water pollution impacts. In general, the 

Rapeseed systems present higher impacts for HTc, HTnc and FT due to the use of 

higher quantities of pesticides. The exception is the oil Rapeseed_DE because the 

quantity of pesticide used in the cultivation is lower. HTc and HTnc impacts are 

mainly caused by the emissions of trifluralin. For FT, the impacts are due the 

emissions of carbendazim and iprodione (for Rapeseed_SP and Rapeseed_FR) 

and due to ethalfluralin and parethion (for Rapeseed_CA). The differences 

observed in the toxicity results are mainly related to the different types and 

quantity of pesticides used in the crops cultivation. 
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                                                             (a)                                                                                  (b) 

 

Figure 4.6 Human toxicity-cancer, human toxicity-non cancer, and freshwater ecotoxicity of 1 kg of oil (a) 

and the relative contribution of each stage to the overall impacts (b) 
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Formaldehyde emissions due to diesel combustion in the 

transportation/collection stage contributed the most for HTc of oil produced 

from WCO (almost 100%), Soya_BR (65%) and Soya_US (55%,). The higher 

contribution of the refining stage (about 60%) in the oils Palm_CO and Palm_MY 

is due to the dioxins and formaldehyde released in the cogeneration plant on the 

extraction mill. 

4.4.3 CLIMATE CHANGE 

The CC results of the various oil systems are presented in figure 4.7 for each life-

cycle stage and for the optimistic and pessimistic scenarios considered for LUC 

and the collection scenarios. Figure 4.7 also shows the contribution of each 

stage (excluding Land Use Change) to the overall impacts.  

 

  

                                        (a)                                                                                          (b) 

 

Figure 4.7 Impacts for Climate Change of the production of 1 kg of oil for biodiesel production (a) 

and the contribution of each stage to the overall impacts (b) 

The soil carbon change associated with different LUC scenarios can have a 

significant influence in the results obtained for CC. Oils that present lower 

impacts when the LUC are disregarded such as Palm_MY or Soya_Br or Soya _US, 

can have high impacts if the cultivation site was previously forest or savanna.  

Higher variations between the pessimistic and optimistic scenarios are obtained 

for rapeseed cultivation in the US and soybean in Brazil, the US and Argentina. 
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Carbon exchange credits are obtained for the optimistic scenario for palm 

cultivation in Colombia, soya in Argentina and rapeseed in Spain. In these cases, 

the reference land are shrubland and grassland severly degraded. When soil 

carbon change is excluded, the cultivation stage is the one contributing the most 

to the overall impacts. These impacts are mainly related to N2O emissions from 

soils due to the application of nitrogen fertilizers. The extraction and refining 

steps have low contribution to the overall GHG emissions. 

The lower impacts are obtained for the WCO systems. The impacts are mainly 

attributed to the collection stage and are related to the diesel use in the 

collection vehicles. 

4.5 CONCLUDING REMARKS 

This chapter presents the environmental assessment of vegetable oils made from 

palm, soya, rapeseed and waste cooking oil used for biodiesel production. A 

water footprint profile, including the water scarcity footprint and impacts due to 

the freshwater degradation, and impacts due to GHG emissions were calculated. 

Two methods were used to assess water scarcity: the WSI and AWARE.  

The water scarcity impacts obtained using the WSI and AWARE methods lead to 

similar conclusions in what concerns the highest and lowest water scarcity 

impacts but, for the oils systems with close results, the rank order given by each 

method is different. Nevertheless, the AWARE method seems more adequate to 

support decision making since the AWARE CFs were developed taking into 

account the water demand for both ecosystems and  humans, thus addressing 

more comprehensively the impacts due to freshwater consumption.   

The differences observed in the assessment of the various virgin oils are mainly 

related to water scarcity of the cultivation location and the fertilization and 

pesticides schemes used. The choice of the locations with lower water scarcity to 

produce oil crops can be determinant for obtaining lower impacts. Additionally, 

optimizing fertilization schemes or choosing climatic conditions that require less 

fertilizers and pesticides will contribute to reduce the water footprint profile of 

vegetable oils. 
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5 A LIFE-CYCLE MULTI-OBJECTIVE DECISION 

AIDING TOOL TO ASSESS THE USE WASTE 

COOKING OIL IN BIODIESEL PRODUCTION  

 

 

 

 

 

 

 

 

 

The content of this chapter is presented in the following article: 

Caldeira, C., Olivetti, E., Kirchain, R. Freire, F., Dias, L. A life-cycle multi-

objective decision aiding tool to assess the use of waste cooking oil in 

biodiesel production (in final preparation) 
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5.1 INTRODUCTION 

The controversy around biodiesel sustainability has pushed policy makers and 

biodiesel producers to assess biodiesel systems in a more comprehensive 

manner, including economic and environmental performance. The life-cycle 

multi-objective (LCMO) framework has been widely used to analyze tradeoffs 

between environmental and economic aspects (Pieragostini et al. 2012; 

Jacquemin et al. 2012). Among the LCMO studies of biofuel systems found in the 

literature (presented in chapter 1), environmental performance is mainly 

addressed through impacts caused by GHG emissions. However, as already 

highlighted in this thesis, other environmental impact categories should also be 

considered when assessing biodiesel systems.  

The main problem in including more impact categories as objective functions in a 

LCMO model is related to the complexity of tradeoffs analysis due to antagonistic 

behavior of the objectives. For this reason, the development of tools that 

facilitate the tradeoff analysis and the decision process is very important within 

the LCMO framework. 

In this chapter, a LCMO decision aiding tool to assess the use WCO in blends for 

biodiesel production is presented. The tool has the particularity of facilitating the 

decision process by allowing the decision-maker to decide based on an explicit 

overall environmental performance. The environmental objectives include GHG 

emissions and water use impacts. The latter, measured in terms of scarcity and 

degradability (acidification, eutrophication, human toxicity and freshwater 

toxicity).   

5.2 LIFE-CYCLE MULTI-OBJECTIVE CHANCE-CONSTRAINED MODEL 

The LCMO model developed integrates the LCA results presented in chapter 4 

within the stochastic blending model developed in chapter 2 (pp 35-36). For 

sake of simplicity, it is assumed that there is no uncertainty associated with the 

feedstock price. The model determines the Pareto optimal blends that minimizes 

costs and environmental impacts by deciding the quantity of each feedstock to 

use in the blend. The mathematical formulation is similar to the one presented in 
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Chapter 2 except the objective function that is replaced by equation 5.1, where 

Ck,i is the coefficient of objective function k for feedstock i.  The chance-

constrained technical constraints confidence level was set to 95%. The model is 

illustrated for a single price period (month). The month July 2013 was selected 

because it is the month when the price of WCO is closer to the virgin oils price 

that represents a more conservative situation to evaluate the benefits of WCO. 

The prices were 559 €, 767 €, 765 € and 400 € per ton of palm, rapeseed, soya 

and WCO, respectively. The price information for palm, rapeseed and soya oils 

was taken from IndexMundi (2014) and prices for WCO were obtained from a 

European broker (Grennea 2014). The environmental impacts include: Climate 

Change (CC), Water Stress Index (WSI), Freshwater Eutrophication (EU), Aquatic 

Acidification (AC), Human toxicity (HT) and Freshwater toxicity (FT). The impact 

inputs used in the model were calculated in the previous chapter and are 

presented in table 5.1.  

 

min zk =∑(Ck,i  QUi)

i∈I

 ,   k ϵ K = {Cost, CC,WSI, FE, AA, HT, FT}  
Eq. 5.1 

Table 5.1 Climate Change (CC), Water footprint (WSI), Eutrophication (EU), Acidification (AC), 

Human Toxicity (HT) and Freshwater toxicity (ET) for the different feedstocks 

 Climate 
Change 

(CC) 
WSI 

Eutrophication 
(FE) 

Acidification 

(AA) 

Human 
Toxicity (HT) 

Ecotoxicity 
(FT) 

Feedstock_origin 
kg CO2 eq  

kg-1 oil 
m3 eq    

Kg-1 oil 
kg P eq kg-1 oil 

(*10-4) 

kg SO2 eq     
kg -1oil (*10-

2) 

CTUh kg oil -1 

(*10-11) 

CTUhe   
kg-1 oil 

Palm_CO 0.90 0.076 3.98 1.24 0.44 0.004 

Palm_MY 0.72 0.078 1.83 1.09 0.69 2.47 

Soya_AR 0.90 0.264 7.15 0.80 0.74 5.54 

Soya_BR 1.29 0.109 7.81 1.08 1.08 8.32 

Soya_US 1.23 0.088 1.97 1.02 40.1 0.39 

Rapeseed_DE 1.69 0.111 2.62 2.23 1.1 0.45 

Rapeseed_FR 1.68 0.182 2.6 2.56 60.2 6.57 

Rapeseed_SP 1.85 2.113 2.87 2.88 213.0 23.38 

Rapeseed_CN 1.75 0.095 4.42 2.84 79.2 18.06 

Rapeseed_US 3.32 0.172 18.8 3.30 52.2 3.09 

WCO_PT _Hi* 0.41 0.0020 0.71 0.15 1.37 0.03 

WCO_PT_Lo** 0.29 0.0015 0.56 0.10 1.33 0.03 

*High quality WCO; **Low quality WCO 
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In multi-objective models, since more than one objective function exists to 

optimize, there is no single optimal solution. Instead, the decision-makers are 

looking for a “best compromise” solution. Therefore, the concept of optimality is 

replaced with that of Pareto optimality or efficiency (Mavrotas 2009). The Pareto 

optimal (or efficient, non-dominated, non-inferior) solutions are the solutions 

that cannot be improved in one objective function without worsening one of the 

others (Mavrotas 2009; Antunes et al. 2016). 

To determine the Pareto optimal solutions the ε-constraint method was used. 

According with this method, one of the objective functions is optimized while 

using the other objective functions as constraints. The constraint level ranges 

from the ideal to the anti-ideal values of each objective. The ideal and anti-ideal 

values are calculated from the payoff table, which is the table with the results 

from the individual optimization of the k objective functions. The anti-ideal value 

is the maximum of the corresponding column. 

The ε-constraint method was applied to optimize costs, CC and WSI but when 

more objectives were included, a different approach was followed. The approach 

was developed to facilitate the decision process by enabling the decision-maker 

to decide based on an explicit overall environmental performance. Moreover, it 

allows visualizing in a simpler manner the tradeoff between cost and 

environmental impacts. According to it, only the cost objective is minimized and 

the other objectives are considered to be constraints as described by equation 

5.2:  

∑(Ck,iQUi)

i∈I

 ≤ Idealk +  θ (Anti idealk − Idealk),   ∀k ∈K\{cost} , θ ϵ [0,1] 
Eq. 5.2 

 

Θ is a parameter that reflects the constraint level of the environmental impacts 

and ranges from 0 to 1. When Θ=1, the environmental impacts are allowed to be 

as high as the anti-ideal value and the solution with the minimum cost can be 

obtained. As Θ decreases, the upper limit for all environmental impacts also 

contracts, departing from the anti-ideal values and getting closer to the ideal 

values (e.g., Θ=0.5 means that the upper limit on each environmental indicator 

will be halfway between the ideal and anti-ideal values). Thus, the feasible region 
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decreases leading to more expensive solutions, up to a minimum value (ΘLim) 

such that for Θ < ΘLim the problem becomes unfeasible. 

The model was implemented in GAMS 24.4.2 (GAMS 2011) and the problem 

solved using the non-linear solver CONOPT (Arne 2014).  

To assess the use of WCO in the blends, results were obtained for two scenarios: 

(a) WCO is available to blend with the virgin oils; and,  (b) only virgin oils are 

available. The solutions obtained in (b) are used as reference to assess the 

advantages of using WCO in the blends. 

5.3 TRADEOFFS ANALYSIS 

5.3.1 COST, CLIMATE CHANGE AND WATER SCARCITY  

Table 5.2 presents the pay-off tables obtained for both scenarios considering 

three objectives: Cost, Climate Change (CC) and Water Stress index (WSI). The 

diagonal of each table (green shaded cells) presents the ideal value of each 

objective (column), i.e., the value obtained when minimizing each objective on its 

own. The red shaded area indicates the anti-ideal value of each objective: the 

worst value found when minimizing the other objectives. The ideal and anti-ideal 

values provide an indication of the range of impacts obtained by Pareto optimal 

solutions.  

When WCO are available to blend with the virgin oils, the blends incorporate 

34% of WCO when the cost objective is minimized, 10% when CC is minimized 

and 32% when WSI is minimized. The incorporation of WCO allows a reduction 

of the minimum value obtained for each objective (ideal values) comparatively to 

the ideal values obtained with blends composed only of virgin oils (table 5.2). 

The ideal value for cost, CC and WSI obtained with WCO available are 

(respectively) 3%, 2% and 32% lower than the ideal values obtained when only 

virgin feedstocks are available. Also the anti-ideal value for cost is lower (2%) 

when WCO are included in the blend. Nevertheless, for the anti-ideal values for 

CC and WSI there is an increase of 3% and 14%, respectively.  
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Table 5.2 Pay-off tables obtained by minimizing cost, CC and WSI in two scenarios:  a) WCO is 

available to blend with the virgin oils and, b) only virgin feedstocks are available.  

 a) With WCO b) Without WCO 

Objective 
minimized 

Cost 
(€/ton) 

CC (kg CO2 
eq kg-1 oil) 

WSI 
(m3 eq 

kg-1 oil) 

Cost 
(€/ton) 

CC (kg 
CO2 eq kg-

1 oil) 

WSI 
(m3 eq kg-

1 oil) 
Cost 
 

642.7 1.48 0.354 662.4 1.43 0.304 

Climate Change 
 

677.9 1.07 0.149 692.1 1.09 0.159 

WSI 
 

650.1 1.31 0.065 689.6 1.26 0.086 

The diagonal contains ideal values of the objective (column)  
The red shaded values are anti-ideal values of the objective (column)  
 

The Pareto optimal solutions were obtained using the Ɛ-constraint method 

miminizing costs and using CC and WSI as constraints, incorporating them in the 

constraint part of the model. The contraint level ranges, interactively, from the 

anti-ideal to the ideal values presented in Table 5.2. The iteration step for each 

objective is one tenth of the difference between the anti-ideal and ideal value. 

Figure 5.1 shows the Pareto surface obtained minimizing cost, CC and WSI for 

the two scenarios considered: (a) having WCO available in the model (left-hand 

side) and, (b) without WCO available (right-hand side). The Pareto surface is 

displaced to lower costs when WCO is included in the blends. The quantity of 

WCO incorporated in the blends ranges from 10 to 34%. Lower CC and WSI 

solutions can be obtained at a lower cost if WCO is included in the blends. 
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Figure 5.1 Pareto surface obtained minimizing cost, climate change (CC) and water stress index 

(WSI) having WCO available in the model (left-hand side) and without WCO available (right-hand 

side). 

5.3.2 GLOBAL ASSESSMENT 

In this section, the analysis was extended to include the other environmental 

impacts: eutrophication (EU), acidification (AA), human toxicity (HT) and 

ecotoxicity (FT). The payoff tables obtained for the two scenarios, with and 

without WCO available, are presented in table 5.3 and table 5.4, respectively. 

Similarly to what was observed for the ideal values obtained for cost, CC and 

WSI, the use of WCO also reduces the ideal values in 9% for EU, 3% for AA and 

4% for FT relatively to the situation when only virgin oils are available to blend. 

For HT, the ideal value is the same in both situations. The quantity of WCO 

incorporated in the blend when minimizing EU is 33% and 11% when 

minimizing AA or FT. The blend obtained when minimizing HT has no WCO in its 

composition.  
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Table 5.3 Pay-off table for Cost, Climate Change (CC), Water footprint (WSI), Eutrophication (EU), 

Acidification (AA), Human Toxicity (HT) and Freshwater Toxicity (FT) when WCO is available 
O

b
je

ct
iv

e
 

m
in

im
iz

e
d

 

Cost 
€/ton 

CC 
kg CO2 eq 

kg-1 oil 

WSI 
m3 eq kg-1 

oil 

EU 
kg P eq kg-1 

oil 
(*10-4) 

AA 
kg SO2 eq kg-1 

oil (*10-2) 

HT 
CTUh  kg-1 oil 

(*10-11) 

FT 

CTUhe  
 kg-1 oil 

Cost 642.7 1.48 0.354 4.36 1.87 54.03 6.82 

CC 677.9 1.07 0.149 3.62 1.39 13.10 4.09 

WSI 650.1 1.31 0.065 3.22 1.98 54.32 12.30 

EU 647 1.24 0.101 1.95 1.64 23.62 2.55 

AA 676.9 1.11 0.127 3.60 1.34 2.79 2.36 

HT 693.7 1.17 0.146 4.49 1.44 0.74 1.86 

FT 668 1.32 0.091 3.07 1.74 0.83 0.25 

The diagonal contains ideal values of the objective (column)  
The red shaded values are anti-ideal values of the objective (column)  

 

Table 5.4 Pay-off table for Cost, Climate Change (CC), Water footprint (WSI), Eutrophication (EU), 

Acidification (AA), Human Toxicity (HT) and Freshwater Toxicity (FT) when WCO is not available 

O
b

je
ct

iv
e

 
m

in
im

iz
e

d
 

Cost 
€/ton 

CC 
kg CO2 eq 

kg-1 oil 

WSI 
m3 eq kg-1 

oil 

EU 
kg P eq kg-1 

oil 
(*10-4) 

AA 
kg SO2 eq kg-1 

oil (*10-2) 

HT 
CTUh kg-1 oil 

(*10-11) 

FT 

CTUhe 
  Kg-1 oil 

Cost 662.4 1.43 0.304 4.57 1.96 40.60 5.74 

CC 692.1 1.09 0.159 3.87 1.43 12.37 4.24 

WSI 689.6 1.26 0.086 3.27 1.70 38.73 6.54 

EU 693.4 1.20 0.105 2.13 1.50 24.36 2.28 

AA 689.7 1.13 0.132 3.85 1.38 3.35 2.57 

HT 693.7 1.17 0.146 4.49 1.44 0.74 1.86 

FT 676.9 1.35 0.096 3.21 1.80 0.79 0.26 

The diagonal contains ideal values of the objective (column)  
The red shaded values are anti-ideal values of the objective (column)  

 

As typically occurs in multi-objective problems, the antagonistic behavior of the 

objectives makes it difficult for decision-makers to decide about the “best” 

solution. For example, minimizing cost leads to solutions (blends) that 

correspond to the anti-ideal solution for CC and WSI. On the other hand, 

minimizing WSI leads to the anti-ideal solution for AA, FT and AA (Table 5.3). 

As the number of objectives increased to seven, it would be impossible to 

visualize the Pareto solutions as it was shown for Cost, CC and WSI. In this case, 

the approach described in section 5.2 (equation 5.2) was applied. Results 

obtained for different ϴ for the two scenarios, with and without WCO available, 

are depicted in figure 5.2. 
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Figure 5.2 Blends cost obtained for different Θ. For Θ lower than 0.15 and 0.27 the problem is 

unfeasible (shaded area) for the situation with and without WCO, respectively. 

Lower cost blends are obtained if WCO is available (yellow dots). Blend 1 was 

obtained setting Θ=1 and corresponds to the lowest cost solution (642.7 € /ton). 

Decreasing the value of Θ increases the cost and for Θ values lower than 0.15 the 

problem becomes unfeasible. For ΘLim= 0.15 the solution corresponds to blend 7 

which has a cost of 665.1 €/ton. In the scenario were WCO is not available (green 

dots), the cost of blend obtained with Θ=1 (Blend 1’) is 670 €/ton, 4% higher 

than blend 1. The ΘLim for this scenario is 0.27 and corresponds to blend 6’ that 

has a cost of 686.6 €/ton, 2.3% higher than Blend 7’. The cost and environmental 

impacts obtained with Θ=1 (Blends 1, 1’) and Θ= ΘLim (7, 6’) in both scenarios 

(with and without WCO) are presented in table 5.5.  
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Table 5.5 Results for Cost, Climate Change (CC), Water footprint (WSI), Eutrophication (EU), 

Acidification (AA), Human Toxicity (HT) and Ecotoxicity (FT) obtained for Θ=1 and Θ= Θ lim when 

WCO is available (a) and when it is not (b) 

Objective 

Θ=1 

(a)  

(Blend 1) 

Θ=1  

(b) 

(Blend 1´) 

Θ=0.15 

(a) 

(Blend 7) 

Θ=0.27 

(b) 

(Blend 6´) 

Cost (€//ton) 642.7 670.0 665.1 686.6 

CC (kg CO2 eq kg-1 oil) 1.48 1.22 1.17 1.18 

WF (m3 eq kg-1 oil) 0.354 0.304 0.120 0.145 

EU (kg P eq kg-1 oil *10-4) 4.35 3.13 2.41 2.79 

AA (kg SO2 eq kg-1 oil *10-2) 1.87 1.7 1.44 1.47 

HT (CTUh kg-1 oil *10-11) 54.08 27.83 8.07 11.5 

FT (CTUhe kg-1 oil) 6.82 4.25 1.52 1.94 

Quantity of WCO (%) 34 — 18 — 

 

The environmental impacts of Blend 1 are higher than Blend 1’ because for Blend 

1 to comply with the technical constraints, the use of WCO in the blend is 

compensated with the use of rapeseed feedstocks while in Blend 1’ there is a 

high quantity of palm feedstocks (20% Palm_CO + 26% Palm_MY). Since the 

rapeseed feedstocks have higher impacts than the palm ones (see Table 5.1), the 

environmental impacts of Blend 1 are higher than Blend 1’. Nevertheless, with 

decreasing Θ, the environmental impacts decrease and for Θ=0.15 (Blend 7) the 

environmental impacts are lower than the ones of Blend 6’ (blend with the 

lowest environmental impacts in the no WCO available scenario). This means 

that lower environmental impacts at a lower cost are obtained when WCO is 

available.  

This approach allows the decision-maker to decide based on an overall 

performance without needing to attribute weights to each of the environmental 

impacts. For example, if the decision-maker wants to be sure that the blend is in 

the 50% best solutions of the efficient solutions in terms of environmental 

performance, one can set Θ=0.5 and the optimal solution is Blend 4. The choice of 

Blend 4 represents an increase in the cost of 0.3% relatively to blend 1 (lower 

cost blend) but a reduction of 11% in AA, 13% in CC, 40% in WSI, 45% in EU, 
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50% in HT and 72% in FT. Figure 5.3 shows the relative position of this solution 

to the ideal and anti-ideal values. 

  

Figure 5.3 Relative position to the ideal and anti-ideal values of blend 4 (obtained with Θ = 

0.5) 

The composition of Blends 1, 4 and 7 are presented in Figure 5.4. Blend 1, the 

lowest cost blend (obtained with Θ=1), is composed of WCO and rapeseed. Since 

the goal is to minimize cost and this blend is obtained for the less stringent 

constraint level for the environmental impacts, the model distributes the 

quantity of WCO and rapeseed equitably for the different “types” of those 

feedstocks that only differ in the environmental impacts value. Blend 1 is the 

blend that incorporates the highest quantity of WCO, 34% (adding the low and 

high quality WCO). 
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Figure 5.4 Blends composition obtained for Θ=1, Θ=0.5 and Θ=0.15 (ΘLim) 

When the feasible region contracts by decreasing Θ, the quantity of WCO 

diminishes and palm is added to the blend. The quantity of WCO incorporated in 

Blend 4 is 32%. For ΘLim =0.15, Blend 7 is the optimal blend obtained and the four 

types of feedstock compose it: palm, soya, rapeseed and WCO. The quantity of 

WCO in this blend is 18%. The quantity of WCO in the blend diminishes with 

decreasing Θ because WCO have higher impacts for HT (Table 5.6) and to reduce 

this category, this feedstock is replaced by others that have lower impacts such 

as Palm_MY, Soya_US or Rapeseed_DE. This latter presents higher percentage in 

the blends when the environmental impacts are reduced because among the 

available rapeseed feedstocks is the one with lower impacts for all the categories 

with exception of EU and WSI.   

It should be noted that the results obtained correspond to a single period price – 

July 2013. As mentioned in the beginning of this chapter, this period was selected 

to illustrate the model because it is the month when the price of WCO is closer to 

the virgin oils price, representing a more conservative situation to evaluate the 

cost benefits of WCO. Nevertheless, although in the other periods the use of WCO 

is expected to be beneficial, the type and quantity of each feedstock used in the 

blend may change and consequently, the environmental impacts of the blends 

may also be different. 
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5.3.3 ADDRESSING UNCERTAINTY ASSOCIATED WITH LUC AND WCO 

COLLECTION  

Up to this point, Climate Chance (CC) values used in the model for crop-based 

feedstocks did not include LUC and for WCO an average value for the collection 

was used. Nevertheless, as presented in section 4.4.3, CC for crop-based 

feedstocks and for WCO can vary depending on the LUC scenario associated with 

the crop cultivation and the type of WCO collection system implemented. In this 

section, we explore an approach to deal with the variation observed in LUC and 

the WCO collection.  

The suggested approach to deal with the uncertainty associated with the lack of 

information about the LUC and the WCO collection system is to reformulate the 

CC objective as a chance-constrained constraint according to equation 5.3  

∑(CCi ̅̅ ̅̅ ̅QUi)

i∈I

+ β √∑QUi
2σCCi

2

i∈I

    ≤ CC Limit value     
Eq. 5.3 

 

where CCi ̅̅ ̅̅ ̅ is the average value of the CC impact and, σCCi is the standard deviation 

of the CC impact . CCi ̅̅ ̅̅ ̅  is the average value of LUC between the pessimistic and 

optimistic scenario for each “feedstock_location” that was presented in Chapter 4  

(table 4.3) and the best and worst case in terms of PI observed in the WCO 

collection systems. σCCi was calculated assuming a normal distribution and that 

the range of values between the optimistic/best and pessimistic/worst scenarios 

Table 5.6 Ranking from lower to higher impact value of each feedstock for CC, WSI, EU, AA, HT and FT 

 



      

106 

are located at 2*σCCi of the average value. The average and standard deviation 

values are presented in Table 5.7, as well as the savings relatively to the fossil 

fuel of each of the feedstocks. Analyzing each feedstock individually, considering 

the average value for CC, only the WCO systems comply with reduction targets 

(relatively to fossil fuel) defined in regulatory documents. In the EU, the RED 

establishes this reduction target to 50% for biofuels produced after 2016 

(European Comission 2009) and in the US, the GHG threshold varies from 20% to 

50% depending on the type of feedstock (Olivetti et al. 2014).  

Table 5.7 Average value for CC and standard deviation of each oil system 

Feedstock_origin  CCi ̅̅ ̅̅ ̅ 

kg CO2 eq /kg 

oil 

σCCi 

 

Savings relatively to 

fossil fuel  

(83.8 g CO2 eq/MJ) 

Palm_CO 2.72 0.96 13% 

Palm_MY 3.56 0.76 -14% 

Soya_AR 4.20 1.74 -35% 

Soya_BR 7.02 2.63 -125% 

Soya_US 2.32 0.55 25% 

Rapeseed_DE 3.23 0.71 -4% 

Rapeseed_FR 3.19 0.68 -2% 

Rapeseed_SP 2.59 0.42 17% 

Rapeseed_CN 4.12 1.11 -32% 

Rapeseed_US 4.08 0.38 -31% 

WCO_PT _Hi* 0.56 0.07 82% 

WCO_PT_Lo** 0.16 0.07 95% 

*High Quality Waste cooking oil  

**Low Quality Waste cooking oil 

 

To analyze which would be the blend that would comply with the regulatory 

targets, the constraint level of equation 5.3 can be defined according to those 

targets. A 50% reduction target relatively to fossil fuel means that the oil blend 

must have at the most 1.395 g CO2 eq kg-1 oil blend. This value was calculated 

based on the following data: fossil fuel comparator emissions 83.8 g CO2 eq MJ-1 

(European Comission 2009); biodiesel production (transesterification): 4.4 g CO2 

eq MJ-1 (Castanheira et al. 2015); biodiesel lower heating value: 37.2 MJ kg-1.  

Using 1.395 g CO2 eq kg-1 oil blend as a threshold and setting the constraint 

confidence level to 95%, the problem is unfeasible. The maximum GHG reduction 
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level possible (obtaining a feasible solution) is 33%. The blend obtained at this 

constraint level (Blend 8) is mainly composed of WCO (32%) and oil produced 

from rapeseed cultivated in Spain (49%) (Blend 8 in figure 5.5).  

If only virgin oils are available, the maximum GHG reduction drops to 13%. As 

shown in table 5.7, the average value of the crop-based oils CC is higher than the 

required value to achieve a 50% reduction. Only WCO presents CC values that 

correspond to savings above the required. Although using WCO in the blends 

would allow higher GHG savings relatively to crop-based oils blends, the LUC 

associated with the virgin oils does not allow a blend that complies with the 50% 

GHG reduction thresholds. 

 

 

Figure 5.5 Blend 8 and blend 9 obtained using the CC objective as a chance-constrained using a 

confidence level of 95% and ignoring uncertainty. 

Considering uncertainty associated with the LUC value comes at the cost of 

increasing all the other objectives. This can be observed by comparing blend 8, 

that was obtained with a confidence level set to 95%, with a blend obtained with 

without considering uncertainty (Blend 9). The composition of Blends 8 and 9 

are presented in figure 5.5 and their impact values in table 5.8. This table also 

shows the variation in the values of Blend 8 relatively to Blend 9. For all the 

impact categories, there is an increase in its value when LUC uncertainty is 

considered. This means that, considering uncertainty associated LUC using CPP, 

has resulted in a burdens shift. Blend 8 includes a higher quantity of feedstock 

with lower CCi ̅̅ ̅̅ ̅ and standard deviation σCC i: oil produced from rapeseed in Spain 



      

108 

(Rapeseed_Sp). Since this feedstock has higher impacts for the other 

environmental impact categories, blend 8 has an increase of about 49% in the 

WSI, 3% for EU, 6% for AA and about 42% for HT and ET comparatively to the 

blend determined without taking into account the LUC uncertainty. 

Table 5.8 Impact values for Blend 8 and Blend 9 and the relative variation for cost, CC, WSI, EU, 

AC, HT and ET 

Objective 

Blend 8  

(CC min 
95% conf 

level) 

Blend 9 

No 
uncertainty  

Relative 
variation 

(%) 

Cost (€/ton) 646.2 644.1 0.3 

CC (kg CO2 eq kg-1 oil) 2.1 2.1 0 

WSI (m3 eq kg-1 oil) 1.07 0.72 48.6 

EU (kg P eq kg-1 oil *10-4) 2.09 2.03 2.8 

AA (kg SO2 eq kg-1 oil*10-2) 1.89 1.79 5.5 

HT (CTUh kg-1 oil*10-11) 111.57 78.36 42.4 

FT (CTUhe kg-1 oil) 12.23 8.61 42 

Quantity of WCO (%) 33 34  

 

Addressing LUC becomes even more complex if the indirect LUC are to be 

considered due to the lack of agreement on a methodology to use to quantify this 

value. Recently, the European Commission published Directive 2015/1513 

recommending the use of values for indirect LUC for oil crops feedstocks 

(European Comission 2015): 55 g CO2 eq MJ-1 representing 1.882 g CO2 eq kg-1 oil 

blend. This value is above the 50% reduction threshold (1.395 g CO2 eq kg-1 oil 

blend) limiting the use of this type of feedstocks individually or even in blends 

with WCO, that present very low CC impacts. Figure 5.6 depicts the CC values for 

the crop-based feedstocks considering the average value for direct LUC and the 

indirect LUC value suggested by the RED. As one can see, the overall CC value is 

significantly above the 50% reduction threshold required. 
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Figure 5.6 CC values without LUC, direct and indirect LUC for the different crop-based feedstocks  

5.4 CONCLUDING REMARKS 

In this chapter, a life-cycle multi-objective (LCMO) decision-aiding tool to assess 

the use of WCO in blends for biodiesel production and the tradeoffs between 

economic and environmental objectives was presented. The tool has the 

particularity to facilitate the decision process by allowing the decision-maker to 

decide based on an explicit overall environmental performance. Moreover, an 

approach to deal with uncertainty in the CC due to the lack of information about 

LUC was presented. 

The decision-aiding tool developed showed to be useful to support decision-

making by allowing visualization in a simpler manner of the tradeoff between 

cost and environmental impacts. Results show that the use of WCO in the blends 

can reduce both costs and environmental impacts relatively to blends composed 

only of crop-based oils. If uncertainty in CC due to the lack of information about 

LUC is considered may lead to decisions that result in a burdens shift, increasing 

other environmental impacts. 
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6 CONCLUSIONS 
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6.1 MAJOR CONTRIBUTIONS AND KEY RESEARCH FINDINGS 

This thesis explores opportunities to improve biodiesel cost effectiveness by 

assessing the use of waste-based feedstocks in biodiesel blends and hedging 

feedstock purchase, whilst managing environmental impacts. A Life-Cycle Multi-

Objective (LCMO) model was developed to assess economic and environmental 

tradeoffs of feedstock blending decisions, addressing feedstock composition and 

price uncertainty. This model was built based on the following steps: 

- Review and assessment of biodiesel properties prediction models based 

on the oils composition addressing compositional uncertainty; 

- Integration of prediction models into an optimization blending model of 

conventional oils (palm, rapeseed and soya) and WCO, addressing the oils 

compositional uncertainty using chance-constrained programing;  

- Development of a cost optimization model to minimize production cost 

variation by planned prices hedging informed by forecasted feedstock 

prices;  

- Life-Cycle Assessment (LCA) of palm, soya, rapeseed and waste cooking 

oils addressing water use and GHG emissions impacts; 

- Integration of the LCA results in the blending optimization model through 

the development of a stochastic LCMO model. 

 

A major contribution of this thesis is the development of an uncertainty-aware 

decision aiding tool to assess economic and environmental tradeoffs of decisions 

at the operational level in biodiesel production, addressing feedstock 

compositional and price uncertainty. The tool was developed combining 

environmental LCA with blending models using multi-objective optimization 

towards novel engineering systems methodologies that allow the decision maker 

to decide based on an overall environmental performance. Although the tool was 

designed specifically for biodiesel systems, it can be adapted to other industries, 

particularly recycling industries and be used to support production planning at 

the operational level to enhance the technical, economic and environmental 

performance of these industries. 
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This tool was built using different models that can be used to improve biodiesel 

cost effectiveness. The chance-constrained blending model presented in chapter 

2 showed that addressing feedstocks compositional uncertainty, secondary 

material such as WCO can be used in blends for biodiesel production without 

compromising technical performance and, consequently reduce production 

costs. This model can be further used to optimize the blending of alternative 

fatty-acid based feedstocks and to assess the viability of other waste-based 

feedstock (e.g. animal fat) or emerging feedstocks such as algae.  

The cost optimization model presented in chapter 3 showed  that managing 

feedstock price uncertainty using forecasted feedstock price information can 

reduce biodiesel production cost variation. The model can be used to manage 

cost variation in biodiesel production by supporting production planning 

decisions relatively to feedstock purchase, storage and use.  

Both models (presented in chapter 2 and 3) were built upon a composition-

based prediction model for biodiesel properties that was developed based on a 

review and assessment of existing models, incorporating compositional 

uncertainty. This review provided a quantified range of the variation of the 

results of existing models when considering the feedstocks compositional 

uncertainty and showed how the different models available in the literature 

reflect compositional uncertainty and, raised awareness on the importance of 

reporting the uncertainty associated with the prediction models. 

This research also provides in chapter 4 an environmental life-cycle assessment 

of conventional and waste-based feedstocks used in biodiesel production, 

including GHG emissions and freshwater use impacts. Freshwater use impacts 

were assessed according to the ISO 14046 standard encompassing the 

consumption of freshwater (water scarcity footprint) and impact categories 

related to water pollution. The water scarcity footprint was calculated using the 

impact assessment method AWARE, recently developed by the WULCA working 

group. This group was formed under the auspices of the Life-cycle Initiative of 

the UNEP/SETAC and the AWARE method intends to be a consensus on water 

scarcity assessment. This study provided to the method developers feedback on 
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their model, specifically on modelling options that define the characterization 

factors. 

The key findings from this thesis are presented in the following paragraphs with 

respect to the research questions formulated in Chapter 1 (Table 1.1). 

1. Can biodiesel production cost be reduced by the incorporation of WCO in 

blends for biodiesel production without compromising the biodiesel 

technical performance? 

To assess the use of WCO in blends for biodiesel production a cost optimization 

blending model was developed based on a composition-based model to predict 

specific biodiesel properties. The following properties were considered: density, 

cetane number (CN), iodine value (IV), cold filter plugging point (CFPP) and 

Oxidative stability (OS). Existing prediction models exploring the underlying 

variability associated with the oils composition were assessed. The potential 

range given by the models was compared with values for the properties reported 

in the literature for the feedstocks considered: palm, rapeseed, soya and WCO.  

The range of results obtained by the models was generally lower than the 

reference values  because the results provided by the models do not reflect other 

sources of variability (impurities, the chemical process used, the clean-up 

process, the storage time and conditions prior to analysis) that may originate 

higher variation in the results obtained in real production. Another source of 

uncertainty that is not reflected in the models results is the model uncertainty. 

The studies reporting the models are lacking information about the uncertainty 

related to the model coefficients that would be useful for a more comprehensive 

analysis.  Among the feedstocks analyzed, the highest variation was observed for 

the WCO results. This difference can be attributed to the high FA compositional 

variability of the WCO due to the diversity of oil type and origin. Nevertheless, 

the comparison of the results of the prediction models incorporating 

composition uncertainty with reference values allowed the selection of 

prediction models to be used in the blending optimization model. 

The blending optimization model was developed to optimize (minimizing cost) 

blends of virgin and waste oils, addressing feedstocks compositional uncertainty 

using chance-constrained optimization. It was found that addressing 
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compositional uncertainty allows the use of WCO in blends with conventional 

feedstocks without compromising the biodiesel technical performance. Total 

feedstock cost reduction was obtained for blends with WCO relatively to 

equivalent (with the same technical performance) blends composed only of 

virgin oils. This cost reduction depends on the relation among the prices of the 

feedstocks. In this study the cost reduction ranged from 1 to 10%. The use of 

low-cost feedstocks in a diversified portfolio of raw materials used in blending 

optimization models represents a cost reduction opportunity for the biodiesel 

producer without compromising the biodiesel quality. 

2. Can production cost variation be reduced by planned prices hedging 

informed by forecasted feedstock prices? 

To address feedstock price uncertainty a cost optimization model using 

forecasted prices information was developed. This model also considers the 

feedstock composition uncertainty. The model determines the optimal planning 

that minimizes total feedstock costs and cost variation, deciding the quantity to 

buy, store and use in a biodiesel production plant. Total cost and cost variation 

performance metrics were used to investigate and interpret the behavior of the 

model using different price trends (up and down). A reference model 

corresponding to a “no uncertainty” scenario is used as benchmark. 

The proposed formulation proved to be useful in determining optimum planning 

for feedstocks acquisition, blending and storage that minimize the risks 

associated with feedstock price fluctuations. Results show that increasing the 

risk tradeoff parameter (α) leads to a reduction in the cost variation for both 

trends. For α=10, the cost variation is the closest one could obtain to the no 

uncertainty scenario used as benchmark. It was also found that the use of WCO in 

the blends allows a reduction of cost variation reduction relatively to virgin oils 

blends. This was because, according to WCO price information provided by an 

European broker, this feedstock presents lower price volatility comparatively to 

conventional feedstocks like palm, rapeseed and soya oils.   

Average cost reductions are observed when comparing the model that has no 

storage capacity with the model with storage capacity (without considering price 

uncertainty) for both price trends: about 1.25% for the uptrend and 0.16 % for 
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the downtrend. When more weight is given to price risk (increasing α) different 

results are obtained for each price trend. In the uptrend, average inventory 

grows and average cost drops; clever inventory purchases can lead to savings, 

avoiding a purchase later at higher cost. Interestingly, in the downtrend case the 

savings decline as the α parameter rises. Increasing α places more emphasis on 

reducing cost risk. This, in turn, drives up average inventory. For the downtrend 

cases, purchases for inventory are on average more expensive than deferred 

purchases. 

3. What are the life-cycle GHG emissions and water use impacts associated 

with different feedstocks?  

A LCA of palm, soya, rapeseed and waste cooking oils including water use (water 

scarcity and degradability) and GHG emissions impacts was performed. Virgin 

oils systems include the cultivation, oil extraction, feedstock transportation and 

oil refining whereas for WCO, collection and refining. Data from crop cultivation 

in different locations were considered: Colombia and Malaysia for palm; 

Argentina, Brazil and United States for soybean; and, Germany, France, Spain, 

Canada and US for rapeseed. Water scarcity was assessed using two methods, 

considering midpoint characterization factors (CFs): one based on water stress 

indexes (WSIs) and the other on the AWARE indicator. Freshwater degradation 

was assessed for eutrophication (ReCiPe), aquatic acidification (IMPACT), and 

human toxicity and freshwater ecotoxicity (USETox). 

The results obtained with the two methods used to assess the water scarcity 

footprint (WSI and AWARE) lead to similar conclusions in what concerns the 

highest and lowest water scarcity impacts; Rapeseed_SP presents the highest 

water scarcity footprint due to high water consumption and water scarcity of the 

country and WCO have the lower water scarcity impacts. Nevertheless, for oils 

systems with close results, the rank order given by each method is different.  

These differences are due to the characterization factor of each method as they 

were developed following different assumptions. WSI indicator is based on 

withdraw-to-availability ratio while the AWARE indicator is based on demand-

to-availability ratio comprising ecosystems and human water demands. The 

AWARE method seems more adequate to support decision making since the 
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AWARE CFs were developed taking into account the water demand for both 

ecosystems and humans, thus addressing more comprehensively freshwater 

consumption impacts.   

In terms of water degradability, Rapeseed_SP also presents the highest impacts 

for human and ecosystems toxicity due to a higher quantity of pesticide used in 

the cultivation. The highest acidification and eutrophication impacts were 

calculated for Rapeseed_US. This is due to the high use of fertilizers 

comparatively to other cultivation systems. WCO systems present the lowest 

impacts for freshwater degradation impacts with the exception of human 

toxicity-cancer. 

CC results are highly influenced by the soil carbon change associated with 

different LUC scenarios. Higher variations between the pessimistic and 

optimistic LUC scenarios are obtained for rapeseed cultivation in the US and 

soybean in Brazil, US and Argentina. When soil carbon change is excluded, 

Rapeseed_US presents the highest impacts. For the virgin oils, cultivation is the 

stage contributing the most to the overall impacts due mainly to N2O emissions 

from the application of nitrogen fertilizers. Extraction and refining steps have 

low contribution to the overall GHG emissions. The lower CC are obtained for the 

WCO systems.  

The differences observed in the environmental assessment of the various virgin 

oils systems are mainly related to water scarcity of the location and the 

fertilization and pesticides schemes used in each crop/location. The choice of the 

locations with lower water scarcity to produce oil crops can be determinant for 

obtaining lower impacts. Additionally, optimizing fertilization schemes or 

choosing climatic conditions that require less fertilizers and pesticides will 

contribute to reduce the impacts profile of vegetable oils.  

4. What are the environmental benefits of using WCO in biodiesel blends 

and the tradeoffs between costs and environmental impacts? 

To assess the economic and environmental benefits of using of WCO in blends for 

biodiesel a Life-Cycle Multi-Objective (LCMO) was developed. Pareto optimal 

solutions (blends) that minimize total feedstock cost, Climate Change (CC) and 

Water Stress Index (WSI) were determined. An approach to visualize in a simpler 
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manner the tradeoff between cost and environmental impacts when more 

environmental impacts are considered was developed.  Uncertainty in the CC 

parameters due to LUC was also addressed. 

The use of WCO in the blends reduces the ideal value of all the objectives except 

for human toxicity (HT) comparatively to the scenario were only virgin oils are 

available. The ideal values are 3% lower for cost and acidification (AA), 2% for 

climate change (CC), 32% for water stress index (WSI), 9% for eutrophication 

(EU) and 4% for ecotoxicity (FT). The quantity of WCO incorporated in the 

blends ranges from 10% to 34% depending on the objective being minimized. 

For human toxicity, since WCO is not the feedstock with lowest impact, the 

optimal blend obtained minimizing it does not include WCO in its composition.  

The Pareto surface obtained minimizing costs, CC and WSI is displaced to lower 

costs when WCO is included in the blends meaning that lower CC and WSI 

solutions (located in the lower edge of the Pareto surface) can be obtained at a 

lower cost if WCO is included in the blends. When AA, EU, HT and FT are 

included the suggested approach was used and results show that lower 

environmental impacts at a lower cost are obtained when WCO is available. 

The suggested approach facilitates the visualization of the tradeoffs between the 

economic and environmental performance and allows the decision-maker to 

decide based on an overall environmental performance when more than three 

objectives are considered. For example, if the decision-maker wants to have a 

performance that is half way between the anti-ideal and ideal value, the optimal 

blend obtained would have a cost increase of 0.3% relatively to the lower cost 

blend (higher environmental impacts) but a reduction of 15% in AC, 13% on CC, 

40% on WSI, 45% on EU, 50% on HT and 72% on FT relatively to the anti-ideal 

value. The best environmental performance blend would correspond to a cost 

increase of 3.5% relatively to the lowest cost blend. 

It should be noted that the results obtained correspond to a single period price – 

July 2013. This period was selected to illustrate the model because it is the 

month when the price of WCO is closer to the virgin oils price, representing a 

more conservative situation to evaluate the cost benefits of WCO. Nevertheless, 

although in the other periods the use of WCO is excepted to be beneficial, the 
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type and quantity of each feedstock used in the blend may change and 

consequently, the environmental impacts of the blends may also be different. 

Another aspect addressed in this work was the uncertainty associated with the 

CC due to LUC scenarios and the WCO collection. The suggested approach 

reformulates the CC objective as a chance-constrained constraint.  It was found 

that the maximum GHG reduction relatively to fossil fuel would be 33% using a 

blend mainly composed of WCO (32%) and Rapeseed_SP (49%). This value 

would drop to 13% if only virgin oils are available. Nevertheless, although using 

WCO in the blends would allow higher GHG savings relatively to crop-based oils 

blends, the LUC associated with the virgin oils does not allow a blend that 

complies with GHG thresholds required by the EU or the US (50%).   

Advantages of collection and use of WCO for biodiesel production such as the fact 

that it avoids its disposal through sewage systems, reducing economic and 

environmental burdens by hindering sewage treatment at wastewater treatment 

plants had already been identified by some authors (Ortner et al. 2016).  In this 

research it is shown that blending WCO with crop-based oils is an attractive 

approach to improve biodiesel cost effectiveness and simultaneously manage 

environmental performance. The different models developed tackled several 

issues that can be restraining of improving the biodiesel cost effectiveness and, 

as illustrated along the thesis, they can be used to support production planning 

decisions towards a more sustainable production.  
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6.2 LIMITATIONS AND FUTURE RESEARCH 

The work developed in this thesis presents some limitations from which a 

number of topics can be developed in future research: 

The technical constraints considered were defined based on composition-based 

models but some properties, specifically OS and CFPP, can be highly influenced 

by minor components. Consequently, their prediction just based on the 

composition may not be accurate. The calibration of the models with real 

production data would be useful to increase the accuracy and precision of the 

models. This would also allow the identification of differences in the composition 

of the same crop species but originated in different regions and build a regional 

composition profile.  

A regional composition profile could then be mapped to regional/country 

requirements. The results were obtained using technical constraints thresholds 

based on European regulation but they can be adapted to other worldwide 

standards. For example in the US regulation there is no threshold for IV and for 

OS the limit is lower. Also, the CFPP limit value can be defined according to the 

type of climate. Moreover, OS and CFPP (that are biding properties in the model) 

can be enhanced using additives and so, explore the model developed in this 

work together with these techniques would provide a more complete framework 

to optimize the blends or assess the viability of other waste-based feedstock (e.g. 

animal fat) or emerging feedstocks such as algae.   

The regional compositional profile could also be mapped to regionalized impacts. 

This is particularly relevant for water scarcity assessment. In this thesis, the 

characterization factors used were at the country level but CFs more spatially 

and temporally differentiated should be used for a more accurate assessment. 

This would also imply to gather regionalized data for the cultivation of the 

different feedstocks and regions. It was also assumed that the feedstocks would 

be used for biodiesel production in Portugal but other production sites can be 

assessed. 

Since different cultivation locations were analyzed, but without this being 

reflected in the feedstock price, a point to explore in future research is to expand 

the model to a supply chain perspective. Additionally, a study that models future 
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feedstock prices based on their environmental performance could provide useful 

information to design policies to financially support biodiesel production in a 

more cost-effective way.  

The multi-objective analysis was performed for only one price period. The month 

selected represents a more conservative situation to analyze the benefits of WCO   

because it was when lower differences between the WCO and virgin oils prices 

was observed. Nevertheless, a more comprehensive analysis can be made 

considering all the months available and alternative price trajectories (e.g. if the 

WCO price is not always lower than all the virgin oils).  

To increase robustness of results it could be considered the incorporation of 

parameter uncertainty in the LCA. This could be done by attributing adequate 

probability distributions to the input parameters either by data collection or 

expert judgment and conduct uncertainty propagation using for example, Monte 

Carlo simulation. Probabilistic triage can then use simulation results to assess 

the contribution of each input to the variance of the calculated impact. Stochastic 

optimization techniques should then be explored to incorporate this uncertainty 

in the optimization model. These techniques could be approaches used in this 

thesis (e.g. chance-constrained) or others like the two-stage resource 

programming.  

Finally, although this thesis provides contribution towards improving insights 

into economic and environmental realms of biodiesel production, social aspects 

should also be investigated. The increasing consumption of biodiesel creates 

extra demand for new farmland, which leads to deforestation and land seizing, 

causing vulnerable communities to be displaced from their homes, and, an 

increase in the price of food crops, exacerbating food price volatility and hunger.  
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Abstract 

The goal of this paper is to present a multiobjective model to optimize the blend of 

virgin oils for biodiesel production, minimizing costs and life-cycle Greenhouse Gas 

(GHG) emissions. Prediction models for biodiesel properties based on the chemical 

composition of the oils were used to establish technical constraints of the model. 

Biodiesel produced in Portugal from palm, Rapeseed and/or soya was used as a case 

study. The model was solved using the Ɛ-constraint method and the resulting Pareto 

curve reveals the tradeoff between costs and GHG emissions, from which it was possible 

to calculate GHG abatement costs. Illustrative results are presented: GHG emissions (not 

accounting for direct and indirect Land Use Change -LUC) and biodiesel production costs 

(focused on oil feedstock). Analyzing the blends along the Pareto curve, a reduction in 

GHG emissions is obtained by progressively replacing Rapeseed by soya and reducing 

the palm share in the blend used for biodiesel production. 

 

Keywords: Biodiesel, blend, Life-Cycle, Greenhouse Gas (GHG), Multiobjective model. 
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Abstract  

Waste Cooking Oils (WCO) have been gaining prominence as an alternative feedstock for 

biodiesel production due to is potential to reduce  the economic and environmental 

costs of biodiesel produced with biomass. However, there are various types of WCO 

collection with different collection efficiency and environmental impacts. The aim of this 

paper is to present an environmental assessment of biodiesel from WCO addressing 

different collection schemes in Portugal. The implications of alternative allocation 

approaches (no allocation, mass allocation, energy allocation and economic allocation) 

in the final results are also assessed. Life-cycle Impact Assessment was calculated 

(ReCiPe method) for: Climate Change (CC); Terrestrial Acidification (TA); Marine 

Eutrophication (ME) and Freshwater Eutrophication (FE). WCO collection contribution 

for the overall impacts ranged significantly for the various collection system and impact 

categories. The application of different allocation approaches led to differences in the 

results up to 11%. A comparison between the GHG emissions calculated for biodiesel 

from WCO and the typical and default values presented in the Renewable Energy 

Directive (RED) was performed. The GHG emission saving for biodiesel from WCO 

collected in Portugal ranged from 81 to 89%. 

 

Keywords: waste collection; Life-cycle Assessment (LCA); Waste Cooking Oil (WCO); 

allocation 
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Abstract 

Waste Cooking Oil (WCO) is increasing prominence as a feedstock for biodiesel 

production due to its potential in reducing costs and environmental impacts of biodiesel 

when compared with virgin oils. However, several life-cycle studies have reported a 

wide range of WCO biodiesel impacts, mainly due to the WCO collection stage, which has 

not been discussed in the literature. The lack of a comprehensive assessment of the 

collection stage influence on biodiesel overall impacts motivates this article, in which a 

detailed Life-Cycle Assessment (LCA) of biodiesel produced from WCO addressing 

different collection systems is presented. An inventory for WCO collection was 

implemented for different systems in the domestic and the food service industry sectors 

in Portugal as well as for biodiesel companies. The characterization and incorporation of 

the variation associated with WCO collection systems, parameter uncertainty and 

variability, as well as modelling options was performed. A wide range of impacts was 

calculated. Two factors contribute the most to the variation observed: the WCO 

collection efficiency and the characteristics of the collection system (e.g. sector, type of 

collection and population density). Results show that WCO collection cannot be 

neglected or simplified when assessing the overall environmental performance of 

biodiesel produced from WCO.  

 

Keywords: Waste collection; Biodiesel production, Waste Cooking Oil, Multifuncionality, 

Domestic sector; Food service 
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Blends for biodiesel production: influence of technical constraints in GHG 

reduction and Cost effectiveness 
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Abstract 

Many vegetal oil feedstocks can be used for biodiesel production. The choice of the 

actual blend (mix of oils) has an important impact on the cost and environmental 

performance of the biodiesel produced. This paper aims at determining the optimal 

blend by means of mathematical programming that allows assessing the influence of 

technical constraints allocated to decision objectives: GHG emissions and production 

costs.  The technical constraints control biodiesel properties based on the feedstocks 

chemical composition, taking into account inherent compositional uncertainty (using 

chance-constrained programming). For this purpose, an algorithm for the allocation of 

shadow prices to the constituent parts of the composite objective function is 

implemented. The information obtained from the shadow prices allowed the 

identification of the limiting technical properties for GHG reduction and cost 

effectiveness. Moreover, it can be used as a guideline for evaluating the efficiency of 

technical progress or policy mandatory measures relatively to the cost and GHG 

emissions of the biodiesel production process.  

 

 

Keywords: Biodiesel blends, Uncertainty, Chance-constrained programming, Shadow 

prices, Multiobjective programming  
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Abstract 

Biodiesel is globally produced by transesterification of vegetable oils. Each vegetable oil 

possesses a typical fatty acid (FA) profile that will influence the final properties of the 

biodiesel. Models have been developed to express the relation between the FA 

composition and the fuel properties. However, as the FA sources are variable and 

because the attributes of a FA source are not always fully characterized, this variability 

translates into uncertainty for the production planner. This paper explores the 

underlying variability associated with the FA composition and assesses the results of 

these models incorporating FA compositional uncertainty. Models for viscosity, density, 

cetane number, iodine value, cold filter plugging point and oxidative stability were 

considered. The potential range of properties given by the models was compared with 

values reported in the literature. The main goal is to assess the influence of 

compositional uncertainty and the potential existence of systematic deviations in the 

results provided by these models. This assessment can be used to improve production 

plans with tools that account for compositional uncertainty and variability, allowing the 

biodiesel producer planner to determine blends that minimize the risk of 

noncompliance with the technical requirements.  

Keywords: Biodiesel properties, compositional uncertainty, prediction models 
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Abstract 

The use of low-cost feedstocks such as waste cooking oil (WCO) has been gaining 

prominence in biodiesel production due to their potential to improve the economic and 

environmental performance of biodiesel compared with conventional feedstocks. 

However, the low available quantity and the high compositional variability of WCO (due 

to high diversity of sources) hinders guaranteeing biodiesel quality and may result in 

significant market limitations. A potential strategy to address these limitations and that 

is presented and discussed in this paper is to use stochastic blending models to optimize 

the blend of secondary (WCO) and primary material (virgin oils like palm, rapeseed and 

soya), managing the compositional variation. Another source of uncertainty considered 

in this research was the uncertainty associated with the feedstocks price, which may 

compromise the biodiesel cost effectiveness, by threatening the long term financial 

stability of the producers. A cost optimization model that incorporates chance-

constrained (CC) formulation to account for compositional variability and uses 

forecasted prices information to address feedstock price uncertainty was implemented. 

The model was developed to support production planning decisions to minimize cost 

and cost variation in biodiesel production. The proposed approach proved to be useful 

in determining optimum planning for feedstocks acquisition, blending and storage that 

minimize the risks associated with feedstock price fluctuations. Results show that 

addressing the compositional uncertainty using the CC formulation allows the use of 

WCO in biodiesel blends without compromising the technical performance.  

Keywords: waste cooking oil, feedstock blending, forecast models, time series analysis, 

compositional uncertainty, optimization  
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Abstract 

Purpose  

The main goal of this paper is to perform a comparative water footprint (WF) profile of 

vegetable oils used for biodiesel production. The profile includes the water scarcity 

footprint related to freshwater consumption and the environmental impacts due to 

freshwater degradation. Two methods to assess the water scarcity footprint are adopted 

to determine whether the methods lead to the same conclusions. 

Methods 

The WF profile of four feedstocks used for biodiesel production (palm, soya, rapeseed 

and waste cooking oil (WCO)) was performed following ISO 14046 guidelines. Virgin oils 

systems include the cultivation, oil extraction, feedstock transportation and oil refining 

whereas for WCO, collection and refining. Data from crop cultivation in different 

locations were considered: Colombia and Malaysia for palm; Argentina, Brazil and 

United States for soybean; and, Germany, France, Spain, Canada and US for rapeseed. 

The water scarcity footprint was assessed using two methods, considering midpoint 

characterisation factors (CFs): one based on water stress indexes (WSIs) and the other 

on the AWARE indicator. A sensitivity analysis on the influence of using different 

AWARE CFs was performed. Freshwater degradation was assessed for eutrophication 

(ReCiPe), aquatic acidification (IMPACT), and human toxicity and freshwater ecotoxicity 

(USETox). 

Results and discussion  

Both WSI and AWARE methods used to assess the water scarcity footprint lead to 

similar conclusions regarding the system with higher freshwater consumption impact 

and the stage contributing the most to this impact: cultivation. However, for the oils 

systems whit closer results, the rank order given by each method is different due to the 
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CFs of each method; WSIs are calculated based on withdrawal-to-availability ratios, 

rather than on demand-to-availability ratios (using human consumption instead of 

withdrawals) of freshwater. In addition, the AWARE CFs also comprise ecosystem and 

human water demands, representing the environmental impacts due to freshwater 

consumption more comprehensively than WSIs. The freshwater degradation impacts of 

virgin oils are mainly caused by fertilizers and pesticides used in cultivation. WCO 

systems present the lower impacts for all categories with exception of  human toxicity-

cancer. 

Conclusions  

The water footprint profile of the various oils systems shows that freshwater scarcity 

and degradation impacts are strongly related to the crop cultivation location and the 

fertilisation and pesticides schemes used. The water footprint scarcity rank order 

obtained with the WSI and AWARE methods present some differences. Nevertheless, the 

AWARE method seems more adequate to support decision making since the AWARE CFs 

were developed taking into account water demand. 

 

Keywords: biodiesel, life-cycle assessment, water footprint, water scarcity, vegetable 

oils 
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Abstract 

The controversy raised around biofuels sustainability increased the pressure on 

biodiesel producers to be as cost-efficient as possible and, simultaneously, ensure the 

sustainability of the biodiesel. As about 85% of biodiesel production costs are attributed 

to feedstock cost and each feedstock has a different environmental profile, operational 

level decision making about feedstock selection is crucial to reduce production costs and 

manage biodiesel environmental performance. This paper explores opportunities to 

reduce production costs at the operational level, particularly at the feedstock selection 

process, by assessing the use of waste cooking oil in blends with conventional 

feedstocks, whilst managing environmental impacts. A life-cycle multi-objective model 

was developed combining environmental life-cycle assessment with blending models 

using multi-objective optimization. Moreover, an approach to facilitate the decision 

process by enabling the decision-maker to decide based on an explicit overall 

environmental performance is presented. Results show that the use of WCO in the 

blends can benefit both costs and environmental impacts relatively to blends composed 

by conventional oils. The decision-aiding tool developed showed to be useful to support 

decision-making by allowing visualization in a simpler manner of the tradeoff between 

cost and environmental impacts. 

Keywords: biodiesel, environmental impacts, feedstock selection, optimization 
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APPENDIX III: FATTY ACID COMPOSITION 

PROFILE 

Table A.III.1 Fatty Acid (FA) composition profile (average-μ and standard deviation-σ) of 

biodiesel (FAME) produced from Palm, Rapeseed, Soya, and WCO (adapted from Hoekman et al. 

2012).  

Fatty Acid Palm Rapeseed Soya WCO 

Common 
Name 

Nomenclature 

(CX:Y)* 

j-index 
μ σ μ σ μ σ μ σ 

Caprylic C8:0 1 0.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Capric C10:0 2 0.1 n.a. 0.6 n.a. n.a. n.a. n.a. n.a. 

Lauric C12:0 3 0.3 0.1 0.1 0.1 0.1 0.2 0.2 0.6 

Myristic C14:0 4 1.1 0.5 n.a. n.a. 0.1 0.2 0.8 0.6 

Palmitic C16:0 5 42.5 3.2 4.2 1.1 11.6 2.0 16.5 5.6 

Palmitoleic C16:1 6 0.2 0.1 0.1 0.1 0.2 0.3 0.9 1.1 

Heptadecenoic C17:0 7 0.1 n.a. 0.1 n.a. 0.1 0.1 0.1 0.1 

Stearic C18:0 8 4.2 1.1 1.6 0.7 3.9 0.8 7.1 3.9 

Oleic C18:1 9 41.3 2.9 59.5 7.8 23.7 2.4 44.6 9.3 

Linoleic C18:2 10 9.5 1.8 21.5 2.8 53.8 3.5 25.1 10.3 

Linolenic C18:3 11 0.3 0.1 8.4 1.3 5.9 2.6 1.1 1.1 

Arachidic C20:0 12 0.3 0.1 0.4 0.5 0.3 0.3 0.3 0.1 

Gondoic C20:1 13 0.1 0.1 2.1 3.0 0.3 0.1 0.5 0.1 

Eicosatrienoic C20:2 14 n.a. n.a. 0.1 n.a. n.a. n.a. n.a. n.a. 

Behenic C22:0 15 0.1 n.a. 0.3 0.3 0.3 0.2 0.4 0.2 

Erucic C22:1 16 n.a. n.a. 0.5 0.5 0.1 0.1 0.1 0.1 

Lignocric C24:0 17 0.1 n.a. 0.1 n.a. 0.1 0.1 0.2 0.2 

Nervonic C24:1 18 n.a. n.a. 0.1 0.1 0.3 0.6 4.4 n.a. 

No of References 27 20 39 19 

* CX:Y is associated with each FA, where X is the number of carbon atoms and Y the number of 
carbon–carbon double bonds in the FA chain 
n.a.- not applicable
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APPENDIX IV: DISTRIBUTIONS AND HISTOGRAMS 

Table A.IV.1 FAs distribution, number of observations used establish the distribution, value of the 

statistic test of goodness-of-fit Anderson-Darling and parameters of the distribution. 

Fatty Acid Feedstock 
No 

observations 
Distribution 

Goodness of fit 
statics Anderson-

Darling 

Distribution 
parameters 

Lauric 12:0 Palm 18 Lognormal 0.5452 
Mean=0.34516, Std. 

Dev.=0.29315, Location=-
0.1001 

Myristic 14:0 

Palm 21 Logistic 1.3540 Mean=1.05151, Scale=0.22284 

Soya 21 Max Extreme 1.5384 
Likeliest=0.05887, 

Scale=0.09737 

WCO 18 Lognormal 0.4058 
Mean=0.87396, Std. 

Dev.=1.05963, Location=0 

Palmitic 16:0 

Palm 26 Logistic 0.3400 Mean=42.46969, Scale=1.70526 

Rapeseed 20 Weibull 0.2661 
Location=0.95421, 

Scale=3.65102, Shape=3.40059 

Soya 37 Max Extreme 1.1615 
Likeliest=10.69528, 

Scale=1.76399 

WCO 21 Lognormal 0.2911 
Mean=16.5691, Std. 

Dev.=6.15231, 
Location=4.35352 

Palmitoleic 16:1 

Soya 18 Max Extreme 1.0584 
Likeliest=0.11543, 

Scale=0.15096 

WCO 17 Max Extreme 0.6318 
Likeliest=0.51259, 

Scale=0.60306 

Stearic 18:0 

Palm 27 Logistic 0.6347 Mean=4.18125, Scale=0.58985 

Rapeseed 20 Logistic 0.4878 Mean=1.57923, Scale=0.39065 

Soya 38 Logistic 0.3405 Mean=3.95807, Scale=0.44824 

WCO 20 Lognormal 0.3136 
Mean=7.36076, Std. 

Dev.=5.35326, 
Location=2.53383 

Oleic 18:1 

Palm 27 Logistic 0.3161 Mean=41.38462, Scale=1.537 

Rapeseed 19 Min Extreme 0.7722 
Likeliest=62.31661, 

Scale=3.99486 

Soya 38 Logistic 0.5419 Mean=23.57532, Scale=1.11588 

WCO 21 Weibull 0.3418 
Location=10.2472, 

Scale=37.85542, 
Shape=4.17407 
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Table A.IV.1 (cont) -FAs distribution, number of observations used establish the distribution, 

value of the statistic test of goodness-of-fit Anderson-Darling and parameters of the distribution. 

Fatty Acid Feedstock 
No 

observations 
Distribution 

Goodness of fit 
statics Anderson-

Darling 

Distribution 
parameters 

Linoleic 18:2 

Palm 27 Logistic 0.3653 Mean=9.581, Scale=0.97866 

Rapeseed 20 Logistic 0.3620 Mean=21.52184, Scale=1.47283 

Soya 37 Logistic 0.8908 Mean=53.78714, Scale=1.70086 

WCO 21 Logistic 0.3099 Mean=26.37044, Scale=6.54395 

Linolenic 18:3 

Palm 21 Lognormal 0.7921 
Mean=0.27909, Std. 

Dev.=0.14936, Location=0 

Rapeseed 17 Logistic 0.5667 Mean=8.36295, Scale=0.72507 

Soya 36 Min Extreme 1.3257 
Likeliest=6.95598, 

Scale=1.65131 

WCO 19 Weibull 0.8485 
Location=-0.00523, 

Scale=1.19962, Shape=1.06667 

Arachidic 20:0 Soya 17 Logistic 0.8406 Mean=0.3234, Scale=0.13539 

 

 

Figure A.IV.1 Histograms of the compositional data for palm 
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Figure A.IV.2 Histograms of the compositional data for Rapeseed 
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Figure A.IV.3 Histograms of the compositional data for soya 
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Figure A.IV.4 Histograms of the compositional data for WCO 
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APPENDIX V: BIODIESEL PROPERTIES VALUES  

Table A.V.1 Density, cetane number, iodine value and cold filter plugging point values (average- μ. 

and standard deviation-σ) of biodiesel (FAME) produced from Pal,. Rapeseed, Soya and WCO 

adapted from (Hoekman et al. 2012) and oxidative stability adapted from (Giakoumis 2013). 

Property Palm Rapeseed Soya WCO 

μ σ μ σ μ σ μ σ 

Density (kg m-3 ) 873 8 879 10 882 7 879 10 

CN 61.9 3.6 53.7 2.9 51.3 4.6 56.9 4.2 

IV(g I2/100 g) 54 6.1 116.1 6.7 125.5 5.4 88.9 16.2 

CFPP (ºC) 9 5 -12 6 -4 2 1 5 

OS (hours) 11.4 2.38 7.4 1.81 5 2.59 5.0 3.28 

No of References 27 20 39 19 
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APPENDIX VI: BIODIESEL BLENDING OPTIMIZATION MODEL PARAMETERS 

Table A.VI.1 Parameters used in the model for each technical constraint. For FA j=1,2,3 and 7 there is no coefficient for the properties and for the sake of simplicity are 

excluded from the table 

𝐏𝐫𝐨𝐩𝐞𝐫𝐭𝐲 

 𝐥 ∈ 𝐋 

(with 
lower 
bound) 

𝐏𝐫𝐨𝐩𝐞𝐫𝐭𝐲 

 𝐦 ∈ 𝐌 

(with 
upper 
bound) 

𝐏𝐫𝐨𝐩 𝐂𝐨𝐞𝐟 for each j 

Property 

Constant 

Property 

Threshold
a) 

4 

C14:0 

5 

C16:0 

6 

C16:1 

8 

C18:0 

9 

C18:1 

10 

C18:2 

11 

C18:3 

12 

C20:0 

13 

C20:1 

14 

C20:2 

15 

C22:0 

16 

C22:1 

17 

C24:0 

18 

C24:1 

Dens Dens n.a. n.a. 0.917 n.a. 0.917 0.183 0.275 n.a. 0.917 0.183 n.a. 0.917 n.a. 0.917 869.3 860/900 

CN n.a. 0.088 0.133 -0.101 0.152 -0.039 -0.243 -0.395 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 61.1 51 

n.a. OS b) n.a. n.a. n.a. n.a. n.a. 1 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0 34.59 

n.a. IV n.a. n.a. 0.95 n.a. 0.860 1.732 2.616 n.a. 0.785 n.a. n.a. 0.723 n.a. n.a. 0 120 

n.a. CFPP n.a. 0.314 n.a. 1.57 n.a. n.a. n.a. 3.14 n.a. n.a. 4.71 n.a. 6.28 n.a. -16.5 0c) 

a) Threshold stablished according the EN 14214 (CEN 2008) 

b) based on the rearrangement of equation 2.11  

c) Grade B for temperate climates  

n.a. - not applicable 
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APPENDIX VII: MAIN INPUT INVENTORY DATA 

Table A.VII.1 Main inventory data for the cultivation of 1 kg of palm fruit, soybean and Rapeseed in different locations. 

  

Palm Fruit 
Colombia 

(Castanheira 
et al. 2014) 

Palm Fruit 
Malaysia 

(Jungbluth 
et al. 2007)  

Soybean 
Argentina 

(Castanheira 
and Freire 
2013) 

Soybean 
Brazil 

(Castanheira 
et al. 2015) 

Soybean 
US 

(Jungbluth 
et al. 
2007) 

Rapeseed 
Germany 

(Malça et al. 
2014) 

Rapeseed 
France 

(Malça et al. 
2014) 

Rapeseed 
Spain 

(Malça et al. 
2014) 

Rapeseed 
Canada 

(Malça et al. 
2014) 

Rapeseed 
US 

(Jungbluth 
et al. 2007 

N-fertiliser - ureia (g N) 7.18 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 29.6 18.32 

N-fertiliser - Ammonium nitrate (g N) n.ap. n.ap. n.ap. 2.73 n.ap. 41.0 50.0 57.2 15.2 25.3 

N-fertiliser- Urea ammonium nitrate (g N) n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 5.8 n.ap. 

N-fertiliser- ammonium sulfate (g N) n.ap. 6.3 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 3.9 n.ap. 

Nitrogen Fertilizer (g N) n.ap. n.ap. n.ap. n.ap. 1.6 n.ap. n.ap. n.ap. n.ap. 7.44 

P-fertilizer (g P2O5, single super phosphate) 3.08 n.ap. n.ap. 27.30 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

P-fertilizer (g P2O5, triple super phosphate) n.ap. n.ap. 1.87 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

P-fertilizer (g P2O5, monoammonium 
phosphate) 

n.ap. n.ap. 1.94 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

P-fertilizer (g P2O5, Ammonium nitrate 
phospate) 

n.ap. n.ap. n.ap. n.ap. n.ap. 7.4 13.4 9.8 18.3 n.ap. 

Phosphate fertilizer (g P2O5) n.ap. 1.28 n.ap. n.ap. 5 n.ap. n.ap. n.ap. n.ap. 19.02 

K-fertilizer, Potassium chloride (g K2O) 12.82 n.ap. n.ap. 27.30 9.3 23.9 10.0 87.1 n.ap. 28.4 

K-fertilizer, Potassium sulphate (g K2O) n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 9.8 3.5 n.ap. 

Limestone (g )/Lime n.ap. 1.72 n.ap. 38.23 94.3 n.ap. n.ap. n.ap. n.ap. n.ap. 

Pyretroid-compounds (g ) n.ap. 2.8 E-3 4.1E-2 1E-3 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

Benzimidazole-compounds(g ) n.ap. 3.7 E-5 n.ap. 1.7E-2 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

[Thio]carbamate-compounds (g ) n.ap. 2.04E-2 n.ap. 1.0e-2 n.ap. n.ap. n.ap. n.ap. n.ap. 1.15E-2 

Glyphosate(g ) n.ap. n.ap. 0.97 0.34 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 
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Table A.VII.1 (cont) Main inventory data for the cultivation of 1 kg of palm fruit, soybean and Rapeseed in different locations. 

 

 

 

  

Palm 
Fruit 

Colombia 

Palm 
Fruit 

Malaysia  
Soybean 

Argentina 
Soybean 

Brazil 
Soybean 

US 
Rapeseed 
Germany 

Rapeseed 
France 

Rapeseed 
Spain 

Rapeseed 
Canada 

Rapeseed 
US 

Fipronil (g ) n.ap. n.ap. n.ap. 0.11 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

2,4 D (g ) n.ap. n.ap. 0.11 0.40 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

Organophosphorus-compounds (g ) n.ap. 4.2E-2 0.16 0.14 n.ap. n.ap. n.ap. n.ap. n.ap. 5.04E-3 

Cyclic N-compounds (g ) n.ap. n.ap. 4.0E-3 3.4E-2 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

Pesticide unspecified (g ) n.ap. 1.1 E-4 4.9E-2 n.ap. 0.52 0.24 0.6 2.2 3.34 0.10 

Sulfony (urea compounds) (g ) n.ap. n.ap. 1E-3 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

Triazine-compounds (g ) n.ap. n.ap. 4E-3 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

Di nitroanilina compound n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 0.42 

Phenoxy compound (g) n.ap. 5.8E-3 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

Dolomite (g) n.ap. 3.2 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

Ammonia (g) n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 53 

Diesel (g) 2.81 1.38 11.15 13.86 3.50 23.40 19.80 22.10 11.60 35.18 

Gasoline (g) 8.0E-2 n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. n.ap. 

Electricity (MJ) n.ap. n.ap. n.ap. n.ap. 0.09 4.0E-2 0.148 0.023 0.023 n.ap. 

Heat (fuel)( MJ) n.ap. n.ap. n.ap. n.ap. n.ap. 0.38 n.ap. n.ap. n.ap. n.ap. 

Heat (natural gas) (MJ) n.ap. n.ap. n.ap. n.ap. 0.08 n.ap. n.ap. 0.372 0.372 n.ap. 
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Table A.VII.2 Main inventory data for the extraction of 1 kg of palm fruit, soybean and Rapeseed. 

 

Palm 

(Castanheira et 

al. 2014) 

Soybean 

(Castanheira et al. 

2015) 

Rapeseed 

(Castanheira and 

Freire 2016b) 

Palm fruit (kg) 4.70 n.ap. n.ap. 

Soybean (kg) n.ap. 5.13 n.ap. 

Rape seed (kg) n.ap. n.ap. 2.60 

Electricity (MJ) 0.31 0.58 0.35 

Heat (natural gas) (MJ) n.ap. 2.61 1.68 

Heat (fuel oil) (MJ) n.ap. 0.48 0.11 

Hexane (g) n.ap. 7.88 2.24 

n.ap. - not applicable 
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Table A.VII.3 Distance and type of transportation used to transport of palm oil, soybean and Rapeseed from the different locations to the biodiesel plant 

in Portugal. 

 
Palm Oil 

Colombia 

Palm Oil 

Malaysia 

Soybean 
Argentina 

Soybean 
Brazil -

MT 

Soybean 
US 

Rapeseed 
Canada 

Rapeseed 
US 

Rapeseed 
Germany 

Rapeseed 
France 

Rapeseed 
Spain 

FROM PLANTATION PLANTATION PLANTATION PLANTATION PLANTATION PLANTATION PLANTATION PLANTATION PLANTATION PLANTATION 

Transportation 
mode 

lorry 16-32t EURO3 Train 
lorry 16-

32t 
EURO3 

lorry 16-32t EURO4 

Distance (km) 1300 1300 403 2228 1300 4500 1000 2860 1620 1190 

TO 
Country Port BIODIESEL PLANT 

FROM 

Transportation 
mode 

Transoceanic freighter   
 

Distance (km) 7077 14744 10244 8371 6019 5320 6019    

TO 
Lisbon Port  

FROM 

Transportation 
mode 

lorry 16-32t EURO4   
 

Distance (km) 100    

TO BIODIESEL PLANT    
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Table A.VII.4 Main Inventory data for the refining of 1 kg of virgin and waste cooking oils. 

 

Vegetable 
virgin oil 

(Castanheira 
et al. 2015 

WCO 

 high FFA 

(Jungbluth et al, 
2007) 

WCO 

 low FFA 

(Caldeira et 
al. 2015) 

Crude vegetable oil (kg) 1.03 1.13 1.13 

Electricity (kWh) 0.01 0.05 0.005 

Heat (natural gas) (MJ) 0.27 0.77 n.ap. 

Phosphoric acid, 85% in water (g) 1.60 n.ap. n.ap. 

Sodium hydroxide, 50% in water (g) 4.55 n.ap. n.ap. 

Citric acid (g) 0.40 n.ap. n.ap. 

Bleaching earth a (also called fuller’s earth) (g) 1.20 n.ap. n.ap. 

Methanol (g) n.ap. 27 n.ap. 

Glycerin (g) n.ap. 110 n.ap. 

Sulfuric acid n.ap. 2.10 n.ap. 

n.ap. - not applicable 

 


