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Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os

direitos de autor são pertença do autor da tese e que nenhuma citação ou informação

obtida a partir dela pode ser publicada sem a referência apropriada.

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognize that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without proper acknowledgement.

v





Resumo

O cancro é uma doença que afeta milhões por todo o mundo e uma identificação

correta de gânglios linfáticos próximos do tumor primário, que contenham regiões

metastáticas é de extrema importância para um correto gerenciamento dos pacientes.

A avaliação histopatológica é o único método aceite para fazer essa identificação.

Novas técnicas emergentes como os ultrassons quantitativos podem ajudar nessa

identificação, detetando regiões metastáticas no gânglio linfático antes mesmo de o

cortar. Propomos e avaliamos dois métodos para analisar e identificar automati-

camente regiões suspeitas que contenham metástases em lâminas histopatológicas

digitalizadas em alta resolução, guiando o patologista em direção às regiões sus-

peitas e classificando os gânglios como metastáticos ou não-metastáticos. O primeiro

método, é um método convencional de análise de texturas e o segundo é baseado

na aprendizagem profunda. Utilizando o método mais convencional participámos

numa competição europeia chamada CAMELYON16. Esta competição tinha duas

avaliações. Os métodos de textura utilizados foram as matrizes de coocorrência de

ńıveis de cinzento e medidas de energia de texturas de Laws. Os parâmetros de

textura serão utilizados para tentar encontrar relações entre os ultrassons quantita-

tivos e a histopatologia. Para a aprendizagem profunda utilizamos uma rede bem

documentada chamada VGG16. Imagens digitalizadas de lâminas histológicas de 44

gânglios foram utilizadas. Para avaliar os métodos foram desenhadas curvas ROC e

F-Scores são calculados. Como resultados, obtivemos uma área sob a curva de 0.986

e um F-Score de 91.67 para o método mais convencional. Para a aprendizagem

profunda obtivemos uma área sob a curva e um F-score igual a 1.0. Na competição

ficámos em último numa avaliação e em penúltimo na outra. Para finalizar, não foi

posśıvel encontrar nenhuma correlação entre os ultrassons e a histologia.
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Abstract

Cancer is a disease that affects millions worldwide and accurate determination of

whether lymph nodes (LNs) near the primary tumor contain metastatic foci is of

critical importance for proper patient management. Histopathological evaluation is

the only accepted method to make that determination. New emerging techniques like

quantitative ultrasound (QUS) may help in the determination by detect metastatic

regions in the LN before cutting it. We propose and evaluate two methods to

automatically analyze and identify suspicious regions for metastatic foci in high-

resolution digitized histopathological slides (whole-slide images (WSI)) to helping

the guidance of the pathologist towards cancer-suspicious regions and to classify LNs

as metastatic or non-metastatic. The first method is a conventional texture-based

method and the second one is based in deep convolutional neural networks (DC-

NNs). We have participated in the CAMELYON16 challenge with the conventional

method. The texture methods used are based on gray-level co-occurrence matrices

(GLCM) and Laws’ energy texture measures, which parameters will be used for

find correlations with the QUS. As DCNN we used a known network called VGG16.

Whole slide images (WSIs) of 44 lymph nodes (LNs) were used. For evaluate both

methods Receiver Operating Characteristic (ROC) curves were drawn. For the most

conventional method we obtained an Area Under the Curve (AUC) of 0.986 and a

F-Score of 91.67. For the CNN based method we obtained an AUC and a F-Score

of 1.0. The challenge had 2 evaluations, and we came last in one and second-to-last

in the second. We could not find any correlation between the ultrasounds and the

histology
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1

Introduction

Each year, millions are affected worldwide by cancer and it is of critical importance

to detect it at early stages in order to provide high chances of survival. One of the

main concerns is when the disease spreads, through blood or lymphatic systems, from

the place where it started to another place in the body (forming metastases) in a

process called metastasis [3]. In many types of cancers, an accurate determination of

whether Lymph Nodes (LNs) contain metastatic foci (micrometastases and isolated

tumor cells) is vital to determine disease stage and proper patient management.

1.1 Lymphatic System and Cancer

In the presence of harmful agents (external and/or internal) our body defends itself

via an immune response. Not being exclusively responsible, the lymphatic system is

important in this type of response due to its different constituents and its functions

[1]. This system is mainly composed by bone marrow, thymus, spleen, lymph nodes

and different types of lymph vessels (Figure 1.1). Lymph vessels forms a network

that transports lymph around the body. Lymph is composed by the part of the

fluid and the substances (viruses, bacteria, antigens, lymphocytes) present in the

extracellular space of the connective tissue [1, 4] that gain entry in the lymphatic

capillaries. While blood vessels carry oxygen, nutrients, wasting products and car-

bon dioxide, LNs work as filters for the harmful agents/substances. Sometimes, LNs

swell, which is a condition that may be caused by an infection, injury or cancer [4].

When cancer spreads from the original tumor to distant sites, especially in breast,

colorectal or gastric cancer freed cancer cells pass mainly through lymphatic vessels

at tumor site and spread through lymphatic system. This is a highly inefficient

process. Only 0.01% of tumor cells that enter in bloodstream/lymph develop into

metastases, because they die or they are killed [5]. The LN where the tumor cells

1



1. Introduction

Figure 1.1: Lymphatic system and its components [www.medicinenet.com]

settle is referred as sentinel LN and normally is a LN near the original tumor [6].

Normally, the LNs near a primary cancer are removed when the surgeon removes

the cancer to look for cancer signs in them [4]. The way a LNs is examined to look

for cancer regions is explained later.

Figure 1.2: General structure of a lymph node [1]
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1. Introduction

1.2 Lymph Node Anatomy

A LN is a small bean-shaped organ, whose dimension varies from 1mm to 2cm. They

are distributed all over the body, but in certain regions such as the axilla, groin, and

mesenteries, their density is higher (Figure 1.1). In Figure 1.2, the general structure

of a LN is presented.

Lymph fluid enters and exits the LN via the afferent (in) and efferent (out) lymphatic

vessels. The anatomy of the LN can be divided into different structures and adjacent

regions: the cortex as a more external region and the medulla, the inner region of

the LN; the capsule, which covers the organ; the trabeculae which is composed

by connective tissue that is localized between the capsule and the lymphatic sinus

(trabecular and subcapsular) of the organ; finally, the reticular tissue, which is

composed by reticular cells and fibers forming a supporting meshwork. In addition

to the reticular cells, this meshwork is composed by dendritic, macrophages and

follicular dendritic cells [1].

1.3 Methods for Metastases Detection

After the surgical removal of the LN due to suspicious of metastasis, it is of utmost

importance to confirm the diagnosis. The gold standard of this diagnosis is the

analysis of the dissected LN by a pathologist. However, there is an alternative and

interesting technique, Ultrasound (US).

1.3.1 Histology

The gold standard to determine the presence of cancerous tissue is the microscopic

histologic evaluation of dissected LNs by a pathologist. For a typical histological

evaluation of colorectal cancer, only a section from each LN is cut, which is a small

portion of the LN to be evaluated [7]. Evaluating more slices (2 or 3) is not the

current histological practice as it would be an exhausting and time-consuming task

for the pathologist. However, it would reduce the number of false negative LN [8].

3



1. Introduction

1.3.2 3D Quantitative Ultrasound: An Emerging

Technique for Metastasis Detection

The ultrasound can solve the problem of analysis time because it can evaluate the

entire LN. Saegusa-Beercroft et al. [9] tried to develop a method using High Fre-

quency (HF) Quantitative Ultrasound (QUS) for an entire-volume LN examination.

Three-dimensional (3D) ultrasound scans have the ability of acquire data from the

whole LN. If this data is combined with the QUS parameters, it is possible to QUS

methods to evaluate an entire LN, detecting both micro and macrometastases. With

this information it is possible to guide the pathologist to cut the LN in a specific

zone, to guarantee that it does not miss any metastatic tissue.

1.4 Objective

As histopathology is the gold standard for metastasis detection a first approach

consists in setting up a texture-based Computer-aided detecion (CAD)1 system to

identify metastatic and non-metastatic colorectal LNs in high-resolution digitized

histological slides (WSI). Then those histologic features that were valuable for this

CAD system were correlated with some QUS parameters that were also shown to

be of high interest for metastatic detection with QUS [10]. By correlating them, we

wished to know whether one could identify a linear relation between at least some

of the histologic and US parameters.

In order to test the approach on another histologic database, a slightly modified

CAD system was enrolled to CAMELYON16 challenge organized during the IEEE

ISBI conference to detect metastasis in lymph nodes of breast cancer patients.

Finally, a second CAD system based on Deep Convolutional Neural Network (DCNN)

was developed and evaluated to detect suspicious regions in LNs.

1The majority of authors refer to computer-aided diagnosis rather than computer-aided detec-
tion. Due to the nature of the problem we choose the latter one.
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Data

2.1 Ultrasounds Data on Colorectal Lymph

Nodes

A total of 112 lymph nodes from 77 patients with a proven colorectal or gastric

cancer were dissected and scanned at Kuakini Medical Center in Honolulu, HI, USA.

Ninety-two of them were free of metastases, while the remaining 20 were almost filled

with metastases. Prior to histopathological evaluation, the LN were scanned in

3D with US. Radio-frequency signals were acquired using a focused, single-element

transducer (PI30-2-R0.50IN, Olympus NDT, Waltham, MA, USA) with a center

frequency of 25.6 MHz. The envelope statistics of the backscattered signal was

modelled and eight 3D QUS parameters were obtained [10]. From the eight only

two of them were used. The Effective Scatterer Size (MeanR) and the Acoustic

concentration (MeanC). For each LN, the mean value of these two parameters were

specially computed for this work.

2.2 Whole-Slide Images of Colorectal Lymph

Nodes

All the 112 lymph nodes used to obtain the QUS parameters were then prepared

for histology as described in Mamou et al. [11] and Hematoxylin and Eosin (H&E)

stained slides were obtained every 50 µm (or 100 µm for large LNs). Those slides

were as much as possible perpendicular to the axis of the transducer. Among the

112 LNs, 44 were scanned using a Hamamatsu NanoZoomer Whole Slide Scanner

at 20x magnification (i.e., approximately 0.45 µm per pixel). A total of 270 slides

were acquired. The remaining LNs are scanned each time one can get an access to

5



2. Data

such a device. The size of the WSIs varies from 10496 to 51712 pixels in height and

11520 to 99840 pixels in width.

This group of 44 LNs was divided into two groups: a 1st group of 20 LNs (15 can-

cerous and 5 non-cancerous totaling 160 slides) to train and validate both methods,

and another for testing with 24 LNs (13 cancerous and 11 non-cancerous totaling

110 slides). On 19 slides of the first group, a pathologist drew green (respectively

blue) rectangles on cancerous (respectively cancer free) regions (Figure 2.1), using

a software called NDP.view 2. Each annotation is represented by the coordinates of

each one of the 4 corners of the rectangle, and are stored in a ndpa file. These regions

were divided into non-overlapping sub-images that will be referred to as HPFs.

Figure 2.1: Cancerous annotations drawn by the pathologist

In Figure 2.2, a black and white low resolution photograph of a physical glass slide

is shown. One can read the slide label on the left side of the slide and one can see

two consecutive thin slices of LN tissue on the right. On the low resolution image

acquired with the NanoZoomer slide scanner, some color marks are represented.

In red, we have the border of the physical slide and its center, Cr. The yellow

rectangular region represents the rectangular region that was truly scanned at a

high resolution. The yellow point represents the center Cy of this high resolution

region.

6



2. Data

Figure 2.2: Black and white photography of a slide ready to be analyzed in the
microscope or to be scanned. This type of image is designed as “macro”

2.3 Whole-Slide Images of Breast Lymph Nodes

(CAMELYON16)

The database was provided by the organizer of the CAMELYON16 challenge orga-

nized during the IEEE ISBI conference. It contains 400 WSIs of sentinel LNs from

patients with breast cancer. This database is composed by two independent datasets

collected in Radboud University Medical Center and the University Medical Center

Utrecht. Its WSIs size vary from 28672 to 221696 pixels in height and 61440 to

221184 pixels in width.

The database was divided in two training datasets and one test dataset. The first

training dataset consists in 170 WSIs (100 negatives and 70 positives) and the second

dataset with 100 WSIs (60 negative and 40 positive). The test dataset contains 130

WSIs. The resolution of each WSI is 0.225 µm per pixel.

Instead of having rectangular annotations like the colorectal database, this database

has another type of annotations. Each positive WSI has a binary image identifying

the metastatic regions, that are also divided in non-overlapping HPFs.

2.4 Whole-Slide Image Files and Their

Pyramidal Structure

Each WSI is organized in a pyramid structure, where each level of the pyramid

represents a different magnification level. The lower the level the pyramid the higher

the magnification and consequently more details presented in the image. With

7



2. Data

(a) (b) (c)

Figure 2.3: Example of CAMELYON16 WSI (a), respective annotation (b) and
the superposition of both (c)

the increasing of the pyramid levels the details in the images decrease due to the

decreasing of magnification levels. Table 2.1, shows the different dimensions and

magnification levels of the same image at different levels of the pyramid. Matlab

(The MathWorks, Inc., Natick, Massachusetts, United States) and OpenSlide [12]

were used to play around with the WSIs.

Table 2.1: Example of dimensions and magnifications at different levels in pyramid
structure of a WSI. The base-level of the pyramid is the level-0 while the top-level
is the level-8.

Level Dimension (H ×W ) MAgnification Level

0 37632× 74880 20
1 18816× 37440 10
2 9408× 18720 5
3 4704× 9360 2.5
4 2352× 4680 1.25
5 1176× 2340 0.625
6 588× 1170 0.313
7 294× 585 0.156
8 147× 292 0.078
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3

State of the Art and Methods

In this chapter all the methods that were used in this work will be explained. We

will start to explain how HPFs are extracted from the WSIs. We present you some of

the works found in the literature, the texture methods as well the machine learning

algorithm we used. To finish we describe you step-by-step our approaches and the

evaluation used in this work.

3.1 HPF Extraction

We built a modifiable general application to select and extract valid HPFs from both

databases. First, a description of how the HPFs are extracted from the annotated

and non-annotated WSIs of our database is presented and then which modifica-

tions were introduced in order to be able to use the application with the challenge

database.

3.1.1 The Colorectal Database

The coordinates stored in the ndpa file do not represent specific locations (in pixels)

in WSI, but the distance, in nanometers (nm), from the corners to the center of the

slide, being necessary to convert these distances in pixel locations in the WSI.

3.1.1.1 From nanometers to pixels

As we said before, the coordinates of the annotations are in nm and represent the

distance from any point inside the yellow rectangle to the red point (Figure 2.2).

Using the Openslide library we can obtain the distance from Cr to Cy, we call this

9



3. State of the Art and Methods

the offset from the center. In order to obtain the coordinates relatively to Cy, we

subtract the offset to the original coordinates.

In Matlab, the origin of an image is the left-upper corner. We need to do some

calculations to obtain the coordinates in pixels and relatively to the origin, viewed

by Matlab. Again, using Openslide, we obtain the resolution, in micrometers per

pixel (µm/pixel), of the WSI and the its size (in pixels). Finally, using the equation

3.1, for both directions x and y, we obtain the coordinates in pixels

Cp =
(10−3 × Cnm)µm

Rµm/p

+
SWSIp

2
, (3.1)

where Cp is the coordinates in pixels, Cnm the coordinates in nm, Rµm/p is the

resolution of the WSI in µm/pixel and finally SWSIp is the size (width or height) of

the WSI in pixels.

3.1.1.2 HPF of annotated WSI

Once we have the coordinates in pixels, we can start the process of getting the HPFs.

As stated above, images at high magnification are larger, so in this step we performed

the necessary pre-processing and calculations in images at low magnification (0.625)

so at a level 5 in the pyramid (see Table 2.1).

We need to calculate the coordinates of the annotations at level 5, using the coor-

dinates at level 0, as well as the resolution at level 0. The first thing to do is to

calculate the resolution of the image at level 5, using equation 3.2

RL# = 2# ×RL0, (3.2)

where # is the level desired (# can be any value from 1 to the maximum number

of levels of that specific slide), RL# is the resolution at level # and RL0 is the

resolution at level 0. After that, a binary mask is created (Figure 3.1b).

In the Figure 3.1b, it is possible to see some small gaps between annotations that are

very closed and of the same type. In order to eliminate them the annotations were

merged using mathematical morphology obtaining that way the final mask (Figure

3.2c).

After merging the annotaions it is time to proceed to the division of the mask in

HPFs. We get the x and y-coordinates of the left-most and upper-most points of

the mask and the point composed by the minimum x and y values between these

10
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(a) (b)

Figure 3.1: Annotations (a) and respective binary mask (b)

(a) (b) (c)

Figure 3.2: Original image with the annotations (a) and the respective masks
before (b) and after (c) the mathematical morphology operation

two coordinates is used as starting point. In Figure 3.2, the starting point coincides

with left-upper corner of the mask, but this optimal case not always happens. With

the starting point determined, the number of HPFs to be extracted is calculated

by dividing the width and the height of the annotation by the width and height of

the HPFs, rounding the result to the nearest integer towards infinity. Now, from

the starting point a grid is created and the HPF extracted. In Figure 3.3, we can

visualize the Figure 3.2a divided in HPFs of size 1000× 1000 pixels. It is important

to mention that not all HPFs are valid. Only those that does not have background

(black regions) in it are considered valid. In Figure 3.3, we can see that only two

out of nine are saved.

11
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3.1.1.3 HPF extraction from slides without annotations

When evaluating the methods, WSIs do not have any annotations, HPFs have to

been automatically created to identify LN sections, and mask fatty tissue, back-

ground and tears. It starts by applying Otsu’s [13, 14] method to the intensity of

the high resolution WSI to find the global image threshold allowing the conversion

of the WSIs in a binary image (Figure 3.4).

Figure 3.3: Annotation divided in HPFs

(a) (b) (c)

Figure 3.4: (a) and (b) represent the WSI (RGB and intesity images) before the
application of Otsu’s method, (c) is the result of the application of the method.

The binary image has some unwanted regions in the background that need to be

remove and some wanted regions in the LN section that need to be added. The

removal and addition processes are achieved by using mathematical morphology,

allowing the obtention of the final mask (Figure 3.5b).

12
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(a) (b)

Figure 3.5: Before (a) and after (b) the removal and addition steps.

(a) (b)

(c) (d)

Figure 3.6: Two examples of valid and invalid HPFs when annotations are not
present. At (a) and (b) is the example of an invalid HPF and its respective mask.
The area of background (black) in this specific HPF is around 46% of the total area
of the HPF. At (c) and (d) is the example of a valid HPF and its respective mask.
In this case, the area occupied by the background is around 5% of the total area of
the HPF

13
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Now, the process follows a similar path as the one described in Section 3.1.1.2. The

Region of Interests (ROIs) shown in Figure 3.5b are now divided in non-overlapping

consecutive HPFs. In this particular case there are 3 different regions, so for each

region the x and y-coordinates of the left-most and upper-most points of the mask

are found. The point formed by the minimum x and y values between the previously

found coordinates is used as starting point. Once the starting point is found, the

process of extracting the HPFs is similar of that with annotations with one exception,

the definition of a valid HPF. An HPF is valid if the area of the background pixels

is lower than 10% of the size of the HPF (Figure 3.6). In Figure 3.7 is possible to

the result of dividing a LN in HPFs.

Figure 3.7: WSI divided in HPFs

3.1.2 CAMELYON16 database

The general process of extracting HPFs is the same as described in Section 3.1.1.3,

with one difference. Instead of using Otsu’s method to convert the grayscale image

to binary image, a K-means method is used [14].

With the LN divided in HPFs as in Figure 3.7. If the WSI belongs to a non-

metastatic LN (or does not have a binary mask), all the HPFs are treated as non-

metastatic. If the LN is metastatic, we use the binary mask that identifies the

metastatic regions and the HPF that at least 90% of its area lays in those metastatic

regions are treated as metastatic HPFs, while the remaining as non-metastatic.
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3.2 Texture analysis in histology

3.2.1 State of the art

3.2.1.1 Conventional Method

Kather et al. [15] used textural descriptors to perform a multiclass texture sepa-

ration in 5000 WSI patches of size 150 × 150 pixels of Colorectal Cancer (CRC)

histological images containing 8 different types of tissue. They used six different

textural descriptors: Low-order and higher-order histogram features, Local Binary

Patterns (LBP), GLCM, Gabor Filters, Perception-like features and a combination

of all texture descriptors. As results, they obtained 98,6% accuracy for tumor-stroma

separation while for multiclass tissue separation 87.4% (a new standard). Doyle et

al. [16] presented a Boosted Bayesian Multiresolution (BBMR) system to identify

prostate cancer regions in WSI of biopsies of prostate tissue. From the original im-

ages they obtained different images at different resolution levels (low, medium and

high). The cancerous regions detected at low resolution were examined at higher

resolution, increasing that way the analysis efficiency of large images. For each reso-

lution level a total of 900 first-order statistical (average, median, etc.), second-order

co-occurrence (GLCM) and steerable filter (Gabor filters) features were obtained and

reduced to 10 by applying an AdaBoost [17] method. Using a Bayesian classifier,

area under the receiver operating characteristic curve (AUC) values of 0.84, 0.83 and

0.76 were obtained for the lowest, intermediate and highest resolution levels. Bouat-

mane et al. [18] proposed an automatic classification system to diagnose prostate

cancer in images obtained from multispectral data of prostate needle biopsies using

textural (GLCM) and some structural features. For the diagnosis of prostate can-

cer, it is necessary to accurately identify four types of structures: stroma, benign

prostatic hyperplasia, prostatic intraepithelial neoplasia and prostatic carcinoma.

In order to use a binary classifier to handle multi-class problems a Round-Robin

(RR) Sequential Forward Selection (SFS) (RR-SFS) algorithm was used, where RR

is a classification technique that divide the multiclass problem into simpler binary

classification problems where each classifier is a sequential forward selection/nearest

neighbor (SFS/1NN) classifier. Using this technique, the authors state an accuracy

of 0.999. Nguyen et al. [19] proposed an automatic cancer detection system where

the images were divided into a grid of patches and from each patch cytological

and textural features were extracted. The textural features extracted include first-

order statistics like mean, standard deviation, etc., second-order statistical features
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obtained from GLCM and Gabor filter-based texture features. Using a Support

Vector Machine (SVM) classifier with Radial Basis Function (RBF) kernel they ob-

tained a true positive rate of 0.78 and a false positive rate of 0.06. Elnemer [20]

developed an automatic CAD system for early detection of lung cancer and lung

water on Computed Tomography (CT) images using Laws’ energy measures. First,

some preprocessing techniques are performed in the images. In the preprocessed im-

ages lung regions are segmented and Laws’ texture features extracted. Finally, using

a t-test, the features that best discriminated cancer, water lung and normal cases

were selected. Rachidi [21] apply Laws’ masks on high-resolution digital radiographs

in an attempt to describe structural variations of trabecular bone. He showed that

Laws’ masks could become a promising technique to determine osteoporosis fracture

risk.

3.2.1.2 Deep Convolutional Neural Networks

With a first success in the 90s [22], the DCNNs have become nowadays state of

the art methods in image classification [23], segmentation [24] and in dimensionality

reduction [25]. Their introduction in digital histopathology was made possible in

part through challenges: Gland Challenge Contest Segmentation MICCAI in 2015

[26], ICPR 2012 competition mitosis detection, etc. These challenges were made

public databases annotated by experts. This allowed a good comparison of different

approaches on histopathology images as mentioned in [27].

In the last five years, have emerged three major DCNNs use cases/domains in digital

histopathology. One of the first was mitoses detection on histological images of

breasts, by Ciresan et al. [28]. The authors classify each pixel of the image using

a patch centered in the latter. Using a data augmentation, they managed to train

the network from scratch. Su et al. [29] combined a sparse reconstruction and has

stacked denoising auto-encoders to perform cell detection and segmentation in lung

cancer and brain tumors. Lately, Sirinukunwattana et al. [30] propose a spatially

constrained convolutional neural network (CNN-SC) to perform nucleus detection.

In segmentation, Ronneberger et al. [31] proposed a Fully Convolutional Neural

Network (FCNN) called U-Net. It is composed of a convolutional block followed by

a deconvolutional one. A set of rotations and elastic deformations has been used

to increase the training set. Chen et al. [32] also used FCNN and won the glands

segmentation challenge [26]. As against to avoid a step of increasing the learning

base, they made recourse to transfer learning. The network was trained from weight
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learned on Pascal VOC 2012.

In classification, Spanhol et al. [33] used a DCNN to classify breast cancer histopatho-

logical images. A set of patches is extracted from the basic images to train the

network. Litjens et al. [34] went further by proposing a classification method of

WSIs.

The more example we use in the training the better accuracy we get. That explain

the necessity of data augmentation. But, some approaches [24, 31, 32] show that the

use of a pretrained network can overcome this obstacle. That explain our proposed

approach.

3.2.2 Methods Selected for Features Extraction

3.2.2.1 Gray-Level Co-occurrence Matricess and their Associated

Features

This method, as the title suggests, uses co-occurrence matrices built from the pixel

gray values of the image. These matrices are squared and the number of rows and

columns is equal to the gray levels of the image. A grayscale image, contains 256

gray levels, so it is usual to requantize them to a smaller value, in our case 8. Each

element in the matrix is represented as P (i, j|d, θ), where i and j are the position

in the matrix, d the interpixel distance and θ the direction of the analysis [35]. The

value P is the number of transitions between the positions i and j, separated by d

pixels in the direction defined by θ. A co-occurrence matrix can be symmetric or

non-symmetric. In our case we used non-symmetric matrices.

An illustrative GLCM example is shown in Figure 3.8. Four different angles were

used (0◦, 45◦, 90◦, 135◦) and a interpixel distance of one was chosen. For example, to

get the value of P (0, 0|1, 0) one counts in the image how many time 0-value pixels

have another 0-value pixel as its right neighbor (East Direction). For P (3, 2|1, 135),

one count how many 3-value pixels have a 2-value pixel as its North West neighbor.

In this work, interpixel distances between 1 and 10 combined with four angles

(i.e.,0◦, 45◦, 90◦, 135◦) were used yielding a total of 40 different co-occurrence matri-

ces.

Directly from the co-occurrence matrices features can be extracted. Thirteen fea-

tures from the 14 proposed by Haralick et al. [36] were used. (For readability
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Figure 3.8: A GLCM example. The interpixel distance d, is equal 1 and the angles
θ are 0, 45, 90 and 135 degrees.

distance and angle were omitted from the equations, but these thirteen features

were computed for all 40 co-occurrence matrices.)

Angular Second Moment f1 =
∑

i

∑
j{p(i, j)}2

Contrast f2 =
∑Ng−1

n=0 n2{
∑Ng

i=1

∑Ng

j=1 p(i, j)}, |i− j| = n

Correlation f3 =
∑

i

∑
j(ij)p(i,j)−µxµy
σxσy

Sum of Squares: Variance f4 =
∑

i

∑
j(i− µ)2p(i, j)

Inverse Difference Moment f5 =
∑

i

∑
j

1
1+(i−j)2p(i, j)

Sum Average f6 =
∑2Ng

i=2 ipx+y(i)

Sum Variance f7 =
∑2Ng

i=2 (i− f9)2px+y(i)

Sum Entropy f8 = −
∑2Ng

i=2 px+y(i) log{px+y(i)}

Entropy f9 = −
∑

i

∑
j p(i, j) log(p(i, j))

Difference Variance f10 = varianceofpx−y

Difference Entropy f11 = −
∑Ng−1

i=0 px−y(i) log{px−y(i)}

Information Measures of Correlation
f12 = HXY−HXY 1

max{HX,HY }

f13 =
√

(1− e−2[HXY 2−HXY ])
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where R is the total number of pairs in the matrix, Ng is the number of gray levels

in the image, µx, µy, σx, σy are the mean and the standard deviation of px and py,

and

p(i, j) =
P (i, j|d, θ)

R
(3.3)

px(i) =

Ng∑
j=1

p(i, j) py(j) =

Ng∑
i=1

p(i, j) (3.4)

px+y(k) =

Ng∑
i=1

Ng∑
j=1

p(i, j), i+ j = k, k = 2, 3, ..., 2Ng (3.5)

px−y(k) =

Ng∑
i=1

Ng∑
j=1

p(i, j), |i− j| = k, k = 2, 3, ..., Ng − 1 (3.6)

HXY = −
∑
i

∑
j

p(i, j) log(p(i, j)) (3.7)

HXY 1 = −
∑
i

∑
j

p(i, j) log{px(i)py(j)} (3.8)

HXY 2 = −
∑
i

∑
j

px(i)py(j) log{px(i)py(j)} (3.9)

3.2.2.2 Laws’ Filters and their Associated Features

Laws texture energy measures consist on sets of One-Dimensional (1D) filters (14

in total) at different scales: 3, 5, 7. These 1D masks were created by Kenneth Laws

[37] and those of size 3 and 5 are presented below:

L3 = 1 2 1

E3 = −1 0 1

S3 = −1 2 1

L5 = 1 4 6 4 1

E5 = −1 −2 0 2 1

S5 = −1 0 2 0 −1

W5 = −1 2 0 −2 1

R5 = 1 −4 6 −4 1

The masks of size 3 represent the basis for the other larger masks. Masks of size 5 can
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be obtained by convolving two 3-sized masks. To obtain 7-sized masks a convolution

between a 3-sized and a 5-sized mask is required. The first letter in the mask names

stands for either Level, Edge, Spot, Wave, Ripple or Oscillation. These horizontal

1D masks are convolved with the same vertical masks to obtain Two-Dimensional

(2D) masks that are convolved with the images to extract individual structural

elements. For example, combining a E3 horizontal mask with a S3 vertical mask,

results in a 2D mask E3S3, that convolved with an image gives the edges in the

horizontal direction and the spots in the vertical direction.

In this work, the procedure described in [21] was applied: images were convolved

with the 2D masks. For example, convolving image I(i, j), with the mask E3S3,

results in image IE3S3(i, j).

IE3S3(i, j) = I(i, j)⊗ E3S3 (3.10)

In order to normalize the contrast of the resulting images, all the resulting images

are divided by IL3L3(i, j), resulting in a normalized image NIE3S3(i, j)

NIE3S3(i, j) =
IE3S3(i, j)

(IL3L3(i, j)
(3.11)

Finally, the normalized images are passed to a 15×15 Texture Energy Measurements

(TEM) filters to create texture energy maps representing the application of the 2D

masks to the input image.

TEME3S3(i, j) =
7∑

u=−7

7∑
v=−7

[NIE3S3(i+ u, j + v)] (3.12)

When the same 1D masks are convolved, changing their orientations, such as for

example the masks E3S3 and S3E3, a rotationally invariant (only for θ = 90◦)

texture energy measurement denoted by RT needs to be created. For the proposed

example

RTE3S3 =
TEME3S3 + TEMS3E3

2
. (3.13)

Convolving the 1D masks between them, it is possible to obtain 5, 14 and 20 RTs

for the three different sizes (3, 5 and 7 respectively), totaling 39 images from where

features can be calculated.

Once the RTs are created, 5 statistical features can be extracted from them. These
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features are described in [21] and they are

Mean =

∑M
i=0

∑N
j=0(RTij)

M ×N
, (3.14)

SD =

√∑M
i=0

∑N
j=0(RTij −Mean)2

M ×N
, (3.15)

Skewness =

∑M
i=0

∑N
j=0(RTij −Mean)3

M ×N × SD3
, (3.16)

Kurtosis =

∑M
i=0

∑N
j=0(RTij −Mean)4

M ×N × SD4
− 3, (3.17)

Entropy =

∑M
i=0

∑N
j=0(RTij)

2

M ×N
. (3.18)

These 5 features are computed for each one of the 39 RTs obtained.

3.2.3 The VGG16 Deep Convolutional Neural Network

In this approach, the pre-trained deep CNN described in [38] was used. The chosen

configuration was the D (Figure 3.9), with 16 layers - 13 convolution layers and 3

fully-connected layers - and the concept of Transfer Learning was applied.

The convolution layers are stacks of filters with small receptive field: 3×3 (smallest

size to capture notions of left/right, up/down and center). The size of the receptive

field of these filters differs from the ones of the top-performing entries of the ILSVRC-

2012 and ILSVRC-2013 competitions where they used larger receptive fields, 11×11

and 7× 7 respectively. The advantages of having stacked convolution layers is that

makes the decision function more discriminative and by having a small receptive

filter the number of parameters is small.

Between the 3 fully-connected layers, the first two layers have 4096 channels while

the last one has 1000 channels, because it was the number of classes to be classified

in ILSVRC challenge.

Transfer learning consists in transferring knowledge previously acquired in different

domains than the one we are working on [39]. In the problematic of the work this

means, that the CNN was trained in the database of ILSVRC-2014 challenge [38]
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Figure 3.9: Architecture of VGG16 [http://www.cs.toronto.edu]

and was used as starting point for histopathological images. Instead of starting

with random layer weights, the network training starts with the weights obtained

from training on the ILSVRC-2014 challenge database. However, two modifications

were made in the first and in the third layers of the FC layers. In the first layer,

the training was started with random weights and in the third layer the number of

channels was change to 2, the number of classes to be classified.

3.3 Stain Normalization and Color

Deconvolution

In histopathology the diagnosis of a disease is based on visual examination of the

tissues using a microscope. The increasing number of WSI scanners, requires the

development of CAD systems to automatically analyze the WSIs, however these

systems may face some complications due to the color variations in tissues. The

color variations are the result of some factors like the brand of the scanners, chem-

ical variations from different manufactures stains, staining procedure and section

thickness [40].

In the set of extracted HPFs, color variations are visible and could interfere with

classification. To mitigate color variations, it is possible to find in the literature
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some stain normalization methods. Stain normalization principle is matching colors

between two images, the source (Figure 3.10.a) and the reference (Figure 3.10.b). In

this work, three color normalization methods were used. One of this methods is the

Histogram Specification (or Matching) method [41], where from the source image

Isource, and its corresponding histogram px(x), a transformation f(x) that gives

a final image Ifinal, whose histogram is similar to the histogram of the reference

image pz(z), is seek. Another method is the Reinhard’s method [42], which consists

at a first moment in a two-step conversion of the RGB signals to Ruderman’s [43]

perception-based color space lαβ, which minimizes correlation between channels for

many natural scenes. First the RGB image is converted to LMS cone spaceLM
S

 =

0.3811 0.5783 0.0402

0.1967 0.7244 0.0782

0.0241 0.1288 0.8444


RG
B

 , (3.19)

and then from LMS cone space to lαβ color space, lα
β

 =


1√
3

0 0

0 1√
6

0

0 0 1√
2


1 1 1

1 1 −2

1 −1 0


LM
S

 . (3.20)

Once the lαβ space is obtained for both source and reference image, the mean and

standard deviation of the three lαβ channels are calculated. The mean values are

subtracted from the data points,

l∗ = l − 〈l〉

α∗ = α− 〈α〉

β∗ = β − 〈β〉

(3.21)

Now data points are scaled using standard deviation values

l′ =
σlr
σls
l∗

α′ =
σαr
σαs
α∗

β′ =
σβr

σβs
β∗

(3.22)
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Finally, using the following equationsLM
S

 =

1 1 1

1 1 −1

1 −2 0



√
3
3

0 0

0
√
6
6

0

0 0
√
2
2


 lα
β

 (3.23)

RG
B

 =

 4.4679 −3.5873 0.1193

−1.2186 2.3809 −0.1624

0.0497 −0.2439 1.2045


LM
S

 , (3.24)

the lαβ space is reconverted to RGB color space and the final normalized image

is obtained. Macenko et al. [44] also developed a stain normalization method that

consists, for each stain, in calculating the intensity histogram for all pixels that have

a majority of that stain and the 99th percentile of these intensity values are used as

approximation of the maximum. Finally all the histograms are scaled to have the

same pseudo-maximum and that way could be compared.

Following stain normalization, color deconvolution was also performed on all HPFs.

Color deconvolution is vastly used in digital histopathology and consists in sepa-

rating different stain components. In our case, a function provided by Khan et al.

[40] was used to obtain two stain grey level images (i.e., hematoxylin only (Figure

3.10.j) and the eosin only (Figure 3.10.k) from the stain normalized hematoxylin-

eosin (H&E) stained image.

Figure 3.10: All the possible images obtained from the source image (a); b) refer-
ence image; c) intensity image; d-f) RGB channels respectively; g-i) Stain normal-
ization methods (Histogram Specification, Reinhard’s and Macenko’s methods); j-k)
Hematoxylin and Eosin stains
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3.4 Support Vector Machine

Support Vector Machine (SVM) is a learning classification algorithm that learns

from a training data set and attempt to generalize and make accurate predictions

on new data sets. It is used for classification problems like binary classification [45].

In this work, SVM will be used to predict if a HPF is cancerous or non-cancerous.

The training data is composed by a set of input vectors, xi, where each element

of the vector corresponds to a feature or attribute. Each vector is paired with a

corresponding label, yi, forming M pairs (i = 1, ...,M) [45].

In the training step, usually the method aims to maximize the classification perfor-

mance for the training data set. However if the classifier is too fit for the training

data, the classification ability for novel data is negatively affected (overfitting) [2].

For simplicity, lets start by considering that data is linearly separable. That is, it

is possible to split the training data in two classes by a hyperplane. In this way,

the purpose of the SVM algorithm is to find the discrimination hyperplane. For M

m-dimensional training inputs xi(i = 1, ...,M) where yi = 1 for Class 1 and −1 for

Class 2, the discriminant function is

D(x) = wTx+ b (3.25)

where w is an m-dimensional vector and b is a bias term [2].

To control separability the following inequalities must be satisfied:wTxi + b ≥ 1 for I such that yi = 1,

wTxi + b ≤ −1 for I such that yi = −1.
(3.26)

which are equivalent to

yi(w
Txi + b) ≥ 1 for i = 1, ...,M. (3.27)

The hyperplane

D(x) = wTx+ b = c for − 1 < c < 1 (3.28)

forms a set of separating hyperplanes for each c that separates xi (i = 1, ...,M) by

classes. The distance between the separating hyperplane and the training data that

is closest to the hyperplane is designed by margin. The generalization region for the

decision future is defined by {x|−1 ≥ D(x) ≥ 1}. The location of the separating hy-
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perplane defines the generalization ability, being the optimal separating hyperplane

the one with the maximum margin (Figure 3.11) [2].

Figure 3.11: Optimal Separating Hyperplane [2].

3.5 K-Fold Cross-Validation

In order to estimate prediction error, cross-validation is the simplest and most widely

used method. When the data available is not enough to divide it in two groups –

training and validation – k-fold cross-validation is a good alternative [46].

It consists in divide the data in k equal groups, perform the train in (k-1) groups, the

validation in the group that was left out and changing this group at each iteration.

In the end the average value, of all k tests, is calculated [46].

3.6 Feature Selection

With the growth of the dimensionality and size of datasets machine learning meth-

ods face more problems when dealing with larger number of input features, being

essential a pre-processing of the data, in order to find a projection of the data onto a

smaller number of features, preserving the information as much as possible [47, 48].

Feature selection techniques are the answer because they detect the most relevant

features, while removing irrelevant, redundant or noisy data [47]. Dimensionality
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reduction is not the only objective of feature selection, they also try to avoid overfit-

ting and provide faster cost-effective models [49]. In next subsections, some feature

selection that exists in the literature will be presented and the one that was used in

this work will be explained.

3.6.1 State of the Art

The feature selection techniques can be divided in three groups in relation to the

way they work, each one with its advantages and disadvantages. These groups are

classified as filter, wrapper and embedded [49, 50].

Filter methods look only for intrinsic properties of the data. Usually this type of

methods ranks features by relevance score and remove those with a low score. The

high-ranked features are presented to the classification algorithm after. As advan-

tages they are easily scaled to high-dimensional datasets, they are computationally

simple and fast and they are independent of the classification algorithm. The main

disadvantages are the non interaction with the classifier (feature subset search sep-

arated form hypothesis search) and the majority of methods are univariate [49].

Methods like Chi-squared, Euclidean distance, information gain are included in uni-

variate filter type. Correlation-based Feature Selection (CFS) [51], Markov Blanket

Filter (MBF) [52] and Fast correlation-based feature Selection (FCFS) [53] are some

of multivariate filter type methods.

Wrapper methods, contrary to filter methods, include the hypothesis search in the

feature subset search and can be divided into two classes: deterministic and ran-

domized. The subset of features is evaluated by training and testing a classification

model. With the increasing of features’ number, the optimal subset is obtained using

heuristic search methods. The advantages of this type of method are the interac-

tion between the feature subset search and the classifier and it takes in account the

dependencies between features. They have two big drawbacks: higher probability of

overfitting and they have a high computationally cost [49]. SFS [18, 54] Sequential

Backward Elimination (SBE) [54], Beam search [55] and Genetic Algorithms [56]

are amongst the wrapper type methods. In this work, the feature selection method

used was SFS.

Finally, in the embedded methods type the optimal feature search is built in the

classifier working as a search in the combined space of features subsets and hypothe-

ses. They have as advantages being less expensive computationally speaking [49].

Weighted Näıve Bayes [57] is one of this type of methods.
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3.6.2 Sequential Forward Selection

This algorithm starts with an empty subset of features, which is progressively filled

with a feature not selected yet. The choice of this feature relies in a criterion value

previously determined. The criterion choose in this work is the SVM classification

accuracy obtained using a k-fold cross-validation (Section 3.5). In the end the

average value, of all k tests, is calculated, in our case the classification accuracy.

When this accuracy stops improving, the SFS algorithm completes and provides the

best set of features.

3.6.3 Modified SFS

The modified SFS was used in the Camelyon16 challenge. The process is similar to

that described in Section 3.6.2. The differences between the original and the modified

version of SFS are the criterion, F-Score instead of accuracy and after a feature been

added to the initial subset of best features, a correlation between the choose feature

and the remaining features is calculated. Those that have a correlation with the

selected features higher than 0.9 are eliminated from the process.

3.7 Evaluation Criteria

In a binary classification, some measures (Table 4.1) exist to understand how well

a classifier works. These measures are calculated from the different elements of a

confusion matrix – True Positive (TP), True Negative (TN), False Positive (FP) and

False Negative (FN).

A TP case is when our classifier classifies positively a positive case. Classifying

positively a negative case is a FP. A positive case classified as negative is a FN.

Finally, a TN is when the classifier classifies negatively a negative case.

3.8 Receiver Operating Characteristic (ROC)

Curve

For the evaluation a Receiver Operating Characteristic (ROC) curve was used. A

ROC curve is a two-dimensional graph in which is plotted the sensitivity (true
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Table 3.1: Evaluation metrics

Measure Formula Evaluation

Accuracy TP+TN
TP+TN+FP+FN

Overall effectiveness of the classifier

Precision TP
TP+FP

Retrieved instances that are relevant

Recall (Sensitivity) TP
TP+FN

Ability to identify positive instances

F-Score 2 · precision·recall
precision+recall

Relation between positive cases and those
given by the classifier

Specificity TN
FP+TN

Ability to identify negative instances

positive rate) against 1-specificity (false positive rate) at different thresholds [58].

In this work, the threshold is the number of positive HPFs.

The main goal is to classify a LN as cancerous or non-cancerous based on the number

of positive HPFs. Doing this way, it is possible to establish two different operation

points. The practical one, that considers a LN cancerous if it has at least one

positive HPF and the optimal one, that corresponds to the maximum number of

positive HPFs that a LN can have to be considered non-cancerous. In both cases

a F-score (performance measure for binary classification) is calculated relatively to

the condition of the LN and the Area Under the Curve (AUC).

3.9 CAMELYON16

The challenge had two strategies to evaluate the algorithms.

The first one was the slide-based evaluation. Each participant should give at each

slide the probability of containing metastasis. This was used to discriminate slides

containing metastasis from normal slides. ROC analysis was performed and AUC

was calculated to compare with other algorithms. The second one was the lesion-

based evaluation. In this evaluation each participant should give X and Y coor-

dinates of potential metastatic regions as well a confident score representing the

probability of the detected region to be a tumor. A Free-Response Receiver Oper-

ating Characteristic (FROC) curve was used.

The strategy used, for the first evaluation to find the probability of a LN to con-

tain metastases, was based in the threshold of the optimal operating point of our
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database. Each time the number of cancerous classified HPFs exceed that threshold

an average value of the probabilities of each cancerous glshpf was calculated.

For the second evaluation strategy, a special low-resolution binary image of the WSI

was created. Each pixel in this low resolution image corresponds to a super pixel

of size 800 × 800 (or HPF). At each pixel, a value of 1 (positive) or 0 (negative

or background) is assigned depending on the classification. With a morphological

operator any connected region larger or equal to 4 pixels were identified. Since each

pixel corresponds to a HPF, the HPF with the highest probability was selected and

the X and Y coordinates of its central point provided.

3.10 Main Pathways for Metastasis Detection in

Histological Images

3.10.1 Diagrams

In Figure 3.12, the diagram representing the pathway of the method used is shown.

The left side represents the DCNN while the right-side the traditional way. Briefly,

in the traditional way the HPFs are extracted from the WSI annotations. For each

HPF, nine images are derived and the GLCM and Laws features are extracted. The

feature selection algorithm glssfs is applied to the features to obtain the optimal

features, which in turn are used to validation of the method using k-fold cross-

validation and to train the SVM-model. For the DCNN, the HPFs are extracted

from the annotated WSIs and divided in two groups, one for train a DCNN and

another to validate it.

In Figure 3.13 is the diagram for the testing part. The backbone of both approaches

is the same, changing only the size of the HPFs (and consequently its number) and

also the classifier. After classifying all the extracted HPFs, the cancerous ones are

counted and the ROC curve obtained. From the ROC curve the operation points

are obtained and the F-Score calculated for these points.

In Figure 3.14 the diagram shows the training path used for Camelyon16 challenge.

It started with cancerous and non-cancerous WSIs. The HPF extraction follows the

steps described in 3.1.2. From the ensemble of HPF extracted (around 55k) 2130

were selected randomly to validate and train a SVM-model. From here, the steps

done are the same as for our database, with the exception of the feature selection
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algorithm. The modified version was used.

The testing part of the Camelyon16 challenge is shown in Figure 3.15. The HPFs

are extracted from the WSIs and the optimal features obtained in the training part

are extracted from the HPFs obtained. After, the HPFs are classified based on the

features extracted and the evaluations described in 3.9 performed.

Figure 3.12: Diagram representing the training pathways of both methods (Tra-
ditional and DCNN).
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Figure 3.13: Test pathway. Right and left sides perform at different times.
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Figure 3.14: Camelyon16 challenge training pathway.
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Figure 3.15: Evaluation path for Camelyon16 challenge.

3.10.2 Infrastructure

The configuration of the computer used for the DCNN calculations is a CPU Intel

Xeon with 16 physical cores (32 in hyperthreading). A GPU Nvidia GeForce GTX

TITAN X with 12Go of memory GDDR5 and 3072 cuda cores. Finally, it has 128Go

DDR4 of memory RAM.

3.11 Correlation Between Histology and

Ultrasounds

Our approach for the correlation had as starting point the results obtained with the

more conventional texture analysis method. The final SVM-model used for test this

method was based only in two features (Table 4) and were these two features that

were used to correlate with the two QUS parameters presented earlier in Section

2.1. The two features will be known as L7L7 mean and L5L5 skew.

Like the QUS parameters it was necessary to obtain a value that described the

whole LN. For each LN (annotated and non-annotated) we extracted the HPFs
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as described in Section 3.1.1.3 and from each HPF we extracted the two chosen

histologic parameters (both based on Laws energy texture measures). Once the

features extracted the median value of all the HPFs was calculated for each LN. With

4 parameters for each LN (2 QUS and 2 Histological) we created a scatterplot matrix

from where we proceeded with the analysis of a possible correlation between the two

domains. The approach followed was to find a possible linear relation between the

QUS and histology parameters. We started by normalizing the variables using the

following formula

Xnorm =
X − X̄
σX

(3.29)

where X is the set of values to be normalized, X is the mean value of all X and σX is

the standard deviation of all X values. With the variables normalized, a scatter plot

between the 2 QUS parameters and another between the 2 histological parameters

were drawn. LDA boundaries were calculated and drawn in each scatter plot. To

understand if the points that are close to the US boundary are also close to the

Histology boundary another analysis was performed. A new scatter plot was created

in which the axes are the QUS signed distance between the point and the QUS LDA

boundary and the Histology signed distance between the point and the histological

LDA boundary. Finally, 2 different situations were analyzed by performing the

hypothesis test for regression slope by stating the following hypothesisH0 : B1 = 0

Ha : B1 6= 0
(3.30)

where B1 is the slope of the regression line and the significance level value is 0.05.

In the first situation we use both types of LNs together and in the second we do it

separately.
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Results

4.1 Detection of Metastatic Colorectal LN in

Histological Images

4.1.1 Conventional Methods

Later, was said that the number of features (6435) that were extracted from all of

the HPFs was quite large and to solve that issue, the feature selection algorithm SFS

was used. Five features have come out from the algorithm, shown in the table. Using

this five features and the training database (924 HPFs), all the possible combinations

were tried between them to find which provided the best results using k-fold cross-

validation (k = 10). The best result (F-score of 0.996 ± 0.005) was obtained using

only two of the 6435 features. Both features were extracted from the Hematoxylin

Stain (derived image), using Laws’ RTL#E#
(# equal to 5 and 7), from which the

mean (size 7) and the skewness (size 5) were calculated.

Table 4.1: Optimal features obtained by using SFS

Derived Image Mask applied to image Statistical Descriptor F-Score

Hematoxylin Stain Laws’ L7E7 Mean
0.996± 0.005

Hematoxylin Stain Laws’ L5E5 Skewness

Intensity Laws’ S3S3 Kurtosis
Intensity Laws’ L3E3 Entropy
Intensity Laws’ L5E5 Standard Deviation

Using the SVM model, trained using these two features, in the test dataset as

explained above a ROC curve with an AUC of 0.98 was obtained (Figure 4.1).

37



4. Results

Figure 4.1: ROC curve for the traditional method.

4.1.2 Deep Convolutional Neural Networks

In contrast to the traditional approach, the validation of the classifier did not include

a k-fold cross-validation. The DCNN was trained on a set of 10000 HPFs and

validated on a set of 8610 HPFs (4955 positive and 3655 negative) with a F-score

of 0.993.

Using the non-annotated database, the ROC curve of Figure 4.2 was obtained with

an AUC of 1.0.

Figure 4.2: ROC curve of DCNN approach.
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4.2 Correlation between Histology and

Ultrasounds

The result of the scatterplot matrix is shown in Figure 4.3.

Figure 4.3: Scatterplot matrix

Using the scatter plots of positions (L2,C1) and (L4,C3) of Figure 4.3, a LDA was

performed and the boundaries drawn (Figure 4.4).

(a) (b)

Figure 4.4: Scatter plots with LDA boundaries. At left between the histologic
parameters and at right between the QUS parameters.

The graph in Figure 4.5 shows in x-direction the signed distances between the LNs
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and the US LDA boundary and in the y-direction the signed distances between the

LNs and the Histology LDA boundary.

Figure 4.5: Scatter plot between the histologic signed distances and QUS signed
distances

In Figure 4.6 is presented the linear regression for the first situation described in

3.11. The hypothesis test for the regression slope gave us a p-value of 0.00000476

with a R-squared of 0.496.

Figure 4.6: Linear Regression of both metastatic and non-metastatic LN

For the second situation we obtained a p-value of 0.0293 and a R-square of 0.338

for the metastatic LNs (Figure ??) and for the non-metastatic LNs (Figure 4.7b) a

p-value of 0.227 and a R-squared of 0.085.
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(a) (b)

Figure 4.7: Linear Regression of metastatic LNs and non-metastatic LNs.

4.3 Detection of Metastatic Breast Lymph Node

on Histological Images (CAMELYON16)

The results of the training and validation using 2130 HPFs. The modified SFS

algorithm that we use in the challenge gave us an output of 8 features, presented in

Table 4.2.

Table 4.2: Modified SFS algorithm output (CAMELYON16). In last column, O
stands for orientation angle, D for interpixel distance and K for kernel used.

Derived Image Feature Base Feature Parameters

Hematoxylin Stain GLCM Inverse Difference
Moment

O : 135◦ D : 9

Hematoxylin Stain GLCM Inverse Difference
Moment

O : 135◦ D : 9

Reinhard Color
Normalization

GLCM Entropy O : 90◦ D : 10

Blue Channel GLCM Difference Variance O : 135◦ D : 2
Eosin Stain GLCM Correlation O : 90◦ D : 7
Reinhard Color
Normalization

GLCM Sum Entropy O : 90◦ D : 8

Red Channel Laws Entropy K : O7O7
RGBHist Color
Normalization

GLCM Sum Entropy O : 90◦ D : 9

Intensity GLCM Inverse Difference
Moment

O : 90◦ D : 10
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Like we did for the colorectal database, we tested all the feature combinations be-

tween the 8, using a k-fold cross-validation. Using the 8, it was the combination

that produced the best result, with an F-Score of 0.838 ± 0.024. We do not have

access to the ground truth of the test database, however the organization made the

results public in their website. A total of 24 research groups have participated in

the challenge. For the slide-base evaluation we came last with a AUC of 0.5636. For

the lesion-based evaluation, we came second-to-last with an AUC of 0.1152. The big

winner of the challenge was the Harvard Medical School and Massachusetts Institute

of Technology, USA, they obtained the first place in both evaluations with AUC of

0.9250 and 0.7051.
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Discussion and Conclusions

In this work we developed two different approaches to detect metastatic regions in

histology and we correlate some parameters of one of the approaches with a couple

of QUS parameters. The two approaches used in the analysis and classification of

the histological images were a CAD system based on conventional texture methods

while the other one uses deep convolutional neural networks.

In terms of performance of the histological approaches, the principal criterion to

choose the operation points of this systems were guaranteeing the existence of zero

false negative cases. The practical one is the less flexible because in the presence

of one positive HPF it considers the LN as cancerous. The optimal one, gives to

the classifier some flexibility because it is based on a larger threshold of positive

classified HPFs.

At the practical operation point, the best system, based on F-Score, is the texture-

based one (0.759 vs 0.629). Using it, one may exempt 6 of the 24 LNs from pathol-

ogist examination because they do not have any positive HPFs. The DCNN-based

system has a poor performance at this point, due to the fact that all LNs have

positive classified HPFs. A possible explanation to this fact could be the size of the

HPFs and consequently the number, one can extract from each LN, be higher in the

DCNN-based system. Since the classifier is not perfect, the probability to make a

mistake on at least one HPF increases with the number of HPFs.

Talking in terms of the optimal operation point, the best system is the DCNN-

based system (F-Score of 1 against 0.917 of texture-based one). The threshold of

this point is very different in both cases. Eleven with the texture-based and 3063

with the DCNN-based classifier. Like in the case of the other operation point the

number of extracted HPFs has influence in the threshold, but it could not be the

only reason. Not all the LNs have the same number of WSIs and consequently the

same number of sections were the HPFs can be extracted, which ranges from 3 to

20. Adding the missing sections to the LNs, balancing the number between them
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as well as adding more LNs to the database would improve the robustness of the

threshold. For the DCNN-based system the size of the HPFs was smaller because

this type of networks needs a large number of images. The disadvantage of this

size of HPF is that the field of view is more limited. A possible way of solving it

is increasing the number of HPFs and enlarging them then creating new HPFs by

rotating and slightly deforming existing WSIs.

In Section 3.10 are described all the steps for both of the approaches. Even if the

time spent was not recorded, the DCNN-based training approach was largely faster

than the traditional approach – around one day against 7 days (between 5/6 days

to feature selection).

In terms of correlation between the QUS parameters and the histological parame-

ters our goal was to find a linear correlation between them to allow the progression

towards the objective of guide the pathologist to a specific region of the LN before

cutting it. So we studied the linear regressions between the signed distances (dis-

tances from the points in the graphs of Figure 4.4 to the respective LDA boundary)

of QUS parameters against histological parameters. We did two different analy-

ses. One for both types of LNs (Figure 4.6) and one for metastatic LNs (Figure

4.7a) and non-metastatic LNs (Figure 4.7b). By analyzing both LN types together

and basing our judgment only on the p-value, we can reject the null hypothesis

(0.00000476 > 0.05). However, when we analyzed the cases (metastatic and non-

metastatic) separately, a completely different story happened. Because we did two

tests, we divided the significance level by two. Both p-values of metastatic and

non-metastatic LNs were 0.0295 and 0.227 which are bigger than 0.025 (significance

level). We could not reject the null hypothesis so we conclude that there is not a

linear relation between QUS and histological signed distances.

We thought in another way of getting a relation/correlation between the two data

sources. It consisted on using the graphs of the positions (L4,C1) and (L3,C4) of

Figure 4.3, find a polynomial regression between MeanR and L5L5 skew variables,

a polynomial regression between the two histological parameters and use the LDA

discriminant function of Figure 4.4a. Using the value of MeanR, directly extracted

from the US we could predict a value for L5L5 skew, which in turn it would be used

to predict a value for L7L7 mean. Finally, using the LDA discriminant function it

would be possible to predict the state of the LN.

The two attempts of finding a correlation between the QUS and Histologic param-

eters failed. In future attempts, another type of approaches could be tried. For

example, we used the same four parameters all time and we focused our efforts in
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the classification only, being necessary to change the approach, the parameters and

even using other types of texture analysis methods. It would be also important to

increase the database.

The results obtained in the CAMELYON16 challenge were not the expected, since

we obtained very good results in our database. As possible causes we have the type

of cancer and the resolution of the images. In the challenge they have used sentinel

lymph nodes of patients with breast cancer to obtain the images. These images were

digitized at 40× (20× in colorectal database) and the HPFs were extracted from

the 40× images.

In conclusion, it is possible to use texture to locate micrometastases in LNs and

that way guide the pathologist to a specific region in the WSI (Figure 5.1). The

results obtained in both the approaches are highly satisfactory. It is impressive that

old texture methods give very good results, even better than those obtained using

DCNNs – considered the future of machine learning for classification problems. We

could not find a correlation between the QUS and histologic parameters. Or that

correlation does not exist or the approaches were not the best. The CAMELYON16

challenge would take place again the next year so it could be nice gather a team,

solve the problems of this edition and try again.

Figure 5.1: Result of HPF classification. A metastatic region (red) is clearly visible
and well separated from the non-metastatic regions (green)
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neberger, B. B. Cheikh, D. Racoceanu, P. Kainz, M. Pfeiffer, M. Urschler,

D. R. J. Snead, and N. M. Rajpoot, “Gland Segmentation in Colon Histology

Images: The GlaS Challenge Contest,” CoRR, vol. abs/1603.0, pp. 1–24, 2016.

[27] H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for Nuclei De-

tection, Segmentation and Classification in Digital Histopathology: A Review.

Current Status and Future Potential,” IEEE Reviews in Biomedical Engineer-

ing, vol. 7, pp. 97–114, 2014.

[28] D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Mitosis

detection in breast cancer histology images with deep neural networks,” Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 8150 LNCS, no. PART

2, pp. 411–418, 2013.

49



References

[29] H. Su, F. Xing, X. Kong, Y. Xie, S. Zhang, and L. Yang, “Robust Cell De-

tection and Segmentation in Histopathological Images Uusing Sparse Recon-

struction and Stacked Denoising Autoencoders,” Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015, pp. 383–390, 2015.

[30] K. Sirinukunwattana, S. Raza, Y.-w. Tsang, D. Snead, I. Cree, and N. Rajpoot,

“Locality Sensitive Deep Learning for Detection and Classification of Nuclei

in Routine Colon Cancer Histology Images,” IEEE Transactions on Medical

Imaging, vol. 35, pp. 1196–1206, 2016.

[31] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation,” Medical Image Computing and Computer-

Assisted Intervention – MICCAI 2015, pp. 234–241, 2015.

[32] H. Chen, X. Qi, L. Yu, and P.-A. Heng, “DCAN: Deep Contour-Aware Networks

for Accurate Gland Segmentation,” 2016.

[33] F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “Breast Cancer

Histopathological Image Classification using Convolutional Neural Networks,”

International Joint Conference on Neural Networks (IJCNN 2016), 2016.

[34] G. Litjens, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, P. Bult, B. V.

Ginneken, and J. V. D. Laak, “Deep learning as a tool for increased accuracy

and efficiency of histopathological diagnosis,” Nature Publishing Group, 2016.

[35] B. Nielsen, F. Albregtsen, and H. E. Danielsen, “Statistical nuclear texture

analysis in cancer research: a review of methods and applications,” Crit Rev

Oncog, vol. 14, no. 2-3, pp. 89–164, 2008.

[36] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image

Classification,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 3,

no. 6, pp. 610–621, 1973.

[37] K. I. Laws, Textured Image Segmentation. PhD thesis, University of Southern

California, 1980.

[38] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” ImageNet Challenge, pp. 1–10, 2014.

[39] M. Oquab, M. Oquab, I. Laptev, J. S. Learning, T. Mid-level, M. Oquab, and

L. Bottou, “Learning and Transferring Mid-Level Image Representations using

Convolutional Neural Networks,” Proceedings of the 2014 IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1717–1724, 2014.

50



References

[40] A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, “A nonlinear mapping

approach to stain normalization in digital histopathology images using image-

specific color deconvolution,” IEEE Transactions on Biomedical Engineering,

vol. 61, no. 6, pp. 1729–1738, 2014.

[41] C. Solomon and T. Breckon, Fundamentals of Digital Image Processing. 2010.

[42] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color transfer between

images,” IEEE Computer Graphics and Applications, vol. 21, no. 5, pp. 34–41,

2001.

[43] D. L. Ruderman, T. W. Cronin, and C.-C. Chiao, “Statistics of cone responses

to natural images: implications for visual coding,” Journal of the Optical Soci-

ety of America A, vol. 15, no. 8, p. 2036, 1998.

[44] M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley,

X. Guan, C. Schmitt, and N. E. Thomas, “A method for normalizing histology

slides for quantitative analysis,” Proceedings - 2009 IEEE International Sympo-

sium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 1107–1110,

2009.

[45] C. Campbell and Y. Ying, Learning with Support Vector Machines, vol. 5. 2011.

[46] T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learn-

ing,” Elements, vol. 1, pp. 337–387, 2009.

[47] V. Kumar and S. Minz, “Feature Selection: A literature Review,” Smart Com-

puting Review, vol. 4, no. 3, pp. 211–229, 2014.

[48] Z. M. Hira and D. F. Gillies, “A review of feature selection and feature ex-

traction methods applied on microarray data,” Advances in Bioinformatics,

vol. 2015, no. 1, 2015.
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