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“People think dreams aren’t real just because they aren’t made of matter, of particles.
Dreams are real. But they are made of viewpoints, of images, of memories and puns and
lost hopes.”

- Neil Gaiman, The Sandman
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Abstract
In this work, we make a two-model approach to the description of the equation of state
of compact stars with two independent models: one which describes the hadronic phase
while another describes the quark phase. In the quark phase we have considered the usual
Nambu−Jona-Lasinio (NJL) model alongside vector-isoscalar and vector-isovector terms.

The importance of reproducing the same baryonic mass of the nucleon in the vacuum
for both phases is discussed. A phenomenological Bag constant is introduced to make
the transition between the hadronic and quark models coincide with the chiral symmetry
restoration of the quark model. The hadronic phase is described by a relativistic mean
field model (NL3ωρ) while the quark phase is described by the NJL in its two and three
flavour versions, allowing to take into account the role of strangeness in compact stars.

Subsequently, a modified Polyakov−Nambu−Jona-Lasinio (mPNJL), in SUf (3), is used
to describe the quark phase, allowing the study of colour deconfinement in compact stars
and relating the phenomenological bag constant to gluonic degrees of freedom through the
Polyakov loop field.

It is shown that fixing the vacuum quark constituent mass with a value that is one third
of the vacuum nucleon mass allows the appearance of a pure quark core in the center
of a neutron star while a strong enough vector coupling will result in stars with masses
above 2M� and low strangeness content. However, using the mPNJL model, the onset
of strangeness occurs at lower densities, which gives rise to stars with larger fractions of
strange quarks.
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Resumo
Neste trabalho, equações de estado que descrevem estrelas compactas são construídas usando
dois modelos independentes: um modelo que descreve a fase hadrónica e outro que descreve
a fase de quarks. Na fase de quarks consideramos o modelo Nambu−Jona-Lasinio (NJL)
usual possibilitando a existência de termos vectoriais-isoescalares e vectoriais-isovectoriais.

A importância de reproduzir a mesma massa bariónica do nucleão no vácuo, em ambas as
fases, é discutida. Uma constante fenomenológica do Bag é introduzida de modo a fazer a
transição entre o modelo hadrónico e modelo de quarks coincidir com a restauração da
simetria quiral do modelo de quarks. A fase hadrónica é descrita por um modelo relativista
de campo médio (NL3ωρ) enquanto a fase de quarks é descrita pelo modelo NJL nas suas
versões de dois e três sabores, permitindo o estudo da estranheza em estrelas compactas.

Posteriormente, uma versão modificada do modelo de Polyakov−Nambu−Jona-Lasinio
(mPNJL), em SUf (3), é usada para descrever a fase de quarks, permitindo a possibilidade
de estudar o desconfinamento na cor em estrelas compactas e relacionar a constante
fenomenológica do Bag com graus de liberdade gluónicos através do campo de Polyakov.

É mostrado que fixar a massa constituinte do quark a um valor que corresponde a um terço
da massa do nucleão no vácuo, permite a existência de estrelas de neutrões estáveis com um
centro composto apenas por matéria de quarks. Uma constante de acoplamento vectorial
suficientemente forte irá resultar em estrelas com massas acima de 2M� e baixa fracção de
estranheza. Contudo, usando o modelo mPNJL, a estranheza aparece a densidades mais
baixas, o que dá origem a estrelas com uma maior fracção de quarks estranhos.
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Units and Conventions

Throughout this work we will use Planck units:

c = ~ = kB = 1,

where c is the speed of light, ~ is the reduced Planck constant and kB is the Boltzmann
constant. In this system:

[lenght] = [time] = [energy]−1 = [mass]−1 = [temperature]−1.

We can use the following conversion factor:

~c = 197.326 MeV fm.

The signature of the metric tensor gµν is defined as (+,−,−,−). In Minkowski space the
metric tensor is:

(ηµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

The components of the four-vectors kµ = (k0,−k) and kµ =
(
k0,k

)
are such that:

kk = kµk
µ = k0k

0 − k · k.

The derivatives in respect to covariant coordinates (xµ) and contravariant coordinates (xµ)
are:

∂µ ≡ ∂

∂xµ
= (∂t,−∇) ,

∂µ ≡
∂

∂xµ
= (∂t,∇) .

The N ×N unit matrix will be represented by 1N×N .
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Chapter 1

Introduction

1.1 Motivations

There are four known fundamental forces of nature: the gravitational force, the electro-
magnetic force and the weak and strong nuclear forces.

Gravity, was the first fundamental force to receive a mathematical model by Isaac Newton
which was later improved by Albert Einstein, with the theory of general relativity. With
the advent of quantum field theory, classical electromagnetism gave origin to quantum
electrodynamics (QED) that was later unified with the weak force to form the electroweak
theory.

The strong force, due to its unprecedented properties like scaling, asymptotic freedom and
confinement, was the last fundamental force to be mathematically formulated in the theory
of quantum chromodynamics (QCD). In this theory, all hadrons are composed of quarks,
more fundamental particles which carry colour charge, a new quantum number. However,
all observed hadrons are colorless, which means some colour confinement mechanism must
exist in QCD, although no analytic proof exists in that direction. This makes the strong
force one of the few physical theories where we know the fundamental degrees of freedom,
but are unable to calculate its low energy behaviour due to the strong coupling1.

The QCD phase diagram is currently a widely studied topic in both experimental and
theoretical physics. In Figure 1.1, some of the possible phases of hadronic matter are shown.
As density (temperature) increases, the baryons start to overlap, the distance between
quarks becomes very short, and distinct baryons gradually cease to exist. This means that
hadronic matter goes through a transition to a new state of matter, the quark-gluon plasma.
Chiral symmetry, an important symmetry of QCD, which is spontaneously broken in the
vacuum, is expected to be restored at high densities and temperatures, meaning another
transition. Is there some connection between the two phenomena? Are deconfinement and

1At low momentum transfers QCD is non-perturbative.
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chiral symmetry restoration in some way connected? Does one transition induce the other?
These are open questions, some of which are addressed in this work.

Neutron StarsVacuum Nuclei

 Critical 
End Point
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Figure 1.1: QCD phase diagram.

An interesting regime to study hadronic matter is the one present inside very compact
stars. After all, compact stars are natural laboratories to investigate the properties of
strongly interacting matter at high densities and small temperatures. Due to their very
large central densities, several times larger than normal saturation density, it is possible
that the deconfinement phase transition and the restoration of chiral symmetry can occur.

To study the behaviour of matter under extreme conditions such as in the interior of
neutron stars, it is necessary to take into account that, at low densities the relevant degrees
of freedom are hadrons while at high densities quark degrees of freedom are required.
Thus, in the present work, a two phase model is used: the hadronic sector is described
within the relativistic mean field model (RMF) and the quark sector is described by the
Nambu−Jona-Lasinio (NJL) model in its SUf (2) and SUf (3) versions. Later, a modified
version of the Polyakov−Nambu−Jona-Lasinio model2, which describes the confinement-
deconfinement transition will be used to describe the quark sector of the equation of state
(EoS), giving us the ability to infer about the colour deconfinement inside compact stars.

Thus, in the first part of the present work (when the NJL is used to describe the quark
sector) deconfinement means the change of degrees of freedom and the corresponding

2In these models the Polyakov loop effective field is not a dynamical degree of freedom due to the lack
of dynamical term in the Lagrangian and the gluon dynamics is reduced to a chiral-point coupling between
quarks, together with a simple static background field representing the Polyakov loop [1].
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Lagrangian. In the second part, after the introduction of the PNJL model, deconfinement
means the transition described by an order parameter like the Polyakov loop3.

In fact, in the usual PNJL-type models at T = 0, the quark sector decouples from the
gauge one, and the PNJL model is reduced to the NJL model [3]. However, to study
colour deconfinement in compact stars, we will use improved models where explicit chemical
potential dependencies in the Polyakov loop potential were added [4, 5]. The mean-field
contribution of the Polyakov loop potential at T = 0 could be viewed as a µ-dependent
modification of the Bag function which considers possible changes in the pressure of the
gluon sector that are related to a partial melting of the gluon condensate at finite chemical
potential [4].

Any EoS that tries to describe compact stars is subject to observational constraints. The
two solar mass pulsars PSR J0348+0432 (M = 2.01±0.04 M�) [6] and PSR J1614-2230
(with the recently updated mass 1.928±0.017 M� [7, 8]) set a strong constraint on the high
density EoS of hadronic matter, in particular, on the possible existence of exotic matter
inside neutron stars, including hyperons, a kaon condensate or quark matter.

In [9] it was shown that within the SUf (3) NJL model a pure quark phase would not
occur inside a neutron star, although quarks could exist as part of a non-homogenous
quark-hadronic phase in the center of the star. Hadronic matter was described within a
relativistic mean field model. Similar results are obtained when a Brueckner Hartree-Fock
approach is applied to describe the hadronic phase, and even if a superconducting quark
phase is considered for the quark phase [10]. At finite temperature it was possible to
obtain pure quark matter in the star center for a particular hadronic RMF interaction, a
non-linear Walecka model for the hadron matter and the MIT Bag model and NJL model
for the quark matter [11]. A stable cold quark phase has been obtained within SUf (3)
NJL model if it is assumed that the deconfinement occurs at the same chemical potential
as the chiral phase transition4 [12] . However, as in previous cases, no two solar mass
hybrid stars are predicted. In [13] the fixing condition of the Bag constant was relaxed
and the density of deconfinement, which is chosen beforehand, determines the constant.
Stars with over two solar masses and a quark core in a color super-conducting phase are
obtained if a vector interaction is added to the NJL Lagrangian density. However, in [14]
the consequences of quark nucleation were studied and it is shown that not all two solar
mass hybrid star configurations are populated after nucleation. In all the studies indicated,
the NJL couplings are fitted to the meson vacuum properties, and in most cases the same
interaction is used [15, 16]. In the present study, we will fix the model parameters imposing
that the vacuum quark mass is ∼ 313 MeV, corresponding to a 939 MeV nucleon mass.
The vacuum values for the meson masses became slightly modified when compared with
the usual parametrizations but, as we will show, this is an important condition when an

3The Polyakov loop is the order parameter for the deconfinement phase transition only in the limit
where quark masses are infinitely heavy. However, in the presence of light quarks the rapid change of the
Polyakov Loop is still an indication for the deconfinement [2].

4Which was achieved by the introduction of an effective Bag constant which guarantees that the chiral
symmetry restoration coincides with the transition from the hadronic to the quark matter.
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hybrid star is built from two independent EoS, one for the hadronic phase and another for
the quark phase: both models should reproduce the same baryonic mass in the vacuum.

The role of the vector interaction (which excites vector and pseudovector mesons) in the
properties of compact stars has been extensively studied by using the SUf (3) NJL model
(see for example [4, 12–14, 17–23]). However, in spite of its importance, the value of the
vector coupling, GV , has not yet been definitively settled: its value in the vacuum can be
determined by fitting the vector meson spectrum [24] but it is not evident that the value
of GV in the medium has to be the same as in the vacuum [25]. In fact, there is still no
constraint for the choice of GV in dense quark matter and its effects might be related to
in-medium modifications [25].

Nevertheless, it is already well know that when GV is positive the vector interaction can
provide a repulsive interaction between quarks. This aspect is very important because it
stiffens the NJL equation of state which is essential to describe high-mass hybrid stars
(models with a larger GV give larger maximum star masses [18]).

Concerning the effect of the vector interaction on QCD phase diagram, in the NJL
model, namely on the chiral first-order transition, it has been shown that when GV is
positive (negative) it contributes to weaken (strengthen) the first-order transition due to
repulsive (attractive) nature of the interaction [25]. Indeed, a repulsive interaction shrinks
the first-order transition region, which forces the critical end point to occur at smaller
temperatures, and as GV increases the first-order transition occurs at higher baryonic
chemical potentials. We will follow most of the literature and take GV as a free parameter.

1.2 Quantum chromodynamics

The early attempts to construct field theories of the strong nuclear force were made in the
1950s [26]. Following Yukawa, the first attempts used nucleon fields (proton and neutron)
which interact through a pion exchange. With the rapid discovery of different particles it
became clear that the nucleons and pion were not special. All hadrons, strange baryons
and mesons seemed to be equally fundamental.

In 1963 the quark model was introduced by Murray Gell-Mann and George Zweig to explain
this increasingly complex list of stable hadrons and hadronic resonances. It was known
that isospin was a very good symmetry of the strong interactions and that a U(1) quantum
number, a charge called strangeness, was conserved by them. These two symmetries were
then combined into a larger symmetry group, flavour-SU(3) (SUf (3)), which was found to
be conserved in a good approximation, but not exactly, by the strong interactions. The
quark model describes mesons as bound states of a quark and an antiquark. Baryons are
described as composed of three quarks, and antibaryons of three antiquarks. Since mesons
have integer spin, while baryons have half-integer spin, it was further supposed that quarks
have spin 1/2. Three flavours of quarks (up, down, and strange) were necessary to explain
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the spectrum of hadrons then known (today we know there are three more quarks, charm,
bottom, and top).

In 1968, James Bjorken discovered what is known as scaling, a phenomenon in the deep
inelastic scattering of light on hadrons: experimentally observed hadrons, when probed at
high energies, behave as collections of point-like constituents.

Richard Feynman employed the concept of scaling in the parton model, to explain the
quark composition of hadrons at high energies.

The predictions of the Bjorken scaling and the parton model were confirmed in experiments
at SLAC (Stanford Linear Accelerator), in which quarks were “seen” for the first time.

However, no quantum field theory at the time explained scaling. To explain the experiments
performed at SLAC, David Gross and Frank Wilczek conceived a plan to prove that local
field theory could not explain scaling. First, they proved that the vanishing of the effective
coupling at short distances (asymptotic freedom), was necessary to explain scaling. In
QED the effective charge grows larger at short distances; for the strong interaction, the
effective coupling is contrary to QED, decreases at short distances. Second, they would
prove that no local field theory was asymptotically free. However, they discovered that the
theory of Chen-Ning Yang and Robert Mills was asymptotically free. QCD, Yang-Mills
with quarks, is consistent with all the properties of the strong interactions.

It is based on the gauge group SUc(3), the special unitary group in three (complex)
dimensions, whose elements are the set of unitary 3 × 3 matrices with determinant one
[27]. Since there are nine linearly independent unitary complex matrices, one of which
has determinant −1, there are a total of eight independent directions in this matrix
space, corresponding to eight different generators, indicating that they are in the adjoint
representation5 of SUc(3). The QCD Lagrangian is:

L = ψ
i [(iγµ)(Dµ)ij −mij ]ψj −

1
4F

a
µνFaµν , (1.1)

where ψi is a quark field with colour index i = 1, .., Nc, indicating that they are in the
fundamental representation6 of SUc(3). Faµν is the gluon field strength tensor for a gluon
with colour index a:

Faµν = ∂µAaν − ∂νAaµ + gsfabcAbµAcν , (1.2)

with Aaµ the gluon field with colour index a, gs the strong coupling constant7 and fabc are
the totally antisymmetric structure constants of SUc(3), defined by:[

λa, λb
]

= 2ifabcλc, (1.3)

5The dimension of the adjoint representation is equal to the number of generators.
6The dimension of the fundamental representation is the degree of the group, N = 3 for SUc(3).
7Related to αs through g2

s = 4παs.
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here λa are the hermitian and traceless Gell-Mann matrices of SUc(3). Finally, Dµ is the
covariant derivative in QCD:

(Dµ)ij = δij∂µ − igs
λaij
2 A

a
µ, (1.4)

mij is a colour-independent phenomenological mass matrix in flavour space, that can be
brought to diagonal form through flavour-mixing transformations, so that:

ψ
i
mijψ

j = m̂fψ
i
ψi. (1.5)

The m̂f can be estimated through current algebra relations, after all, they are not observ-
ables of QCD because of the confinement properties of the theory. These are called the
quark current masses (see Table 1.1), generated by the Higgs mechanism.

Quark name Symbol Mass [28]

up u 2.3+0.7
−0.5MeV

down d 4.8+0.5
−0.3MeV

strange s 95± 5MeV
charm c 1.275± 0.025GeV
bottom b 4.18± 0.03GeV
top t 173.21± 0.51GeV

Table 1.1: The u,d and s quark masses are estimates from a mass-independent subtraction scheme such as
MS at a scale µ ≈ 2GeV. The c and b quark masses are the “running” masses in the MS scheme. The t
mass is taken from direct measurements.

QCD is also invariant under CPT (charge conjugation, parity transformation and time
reversal) transformations however, from the point of view of gauge invariance, the QCD
Lagrangian could also involve a term of the type:

Lθ = g2
sNf

64π2 ε
µνλσFaµνFaλσ, (1.6)

with Nf being the number of flavours and εµνλσ denotes the totally antisymmetric Levi-
Civita tensor. This term is called θ-term and implies an explicit P and CP violation of the
strong interactions. However, the present empirical information indicates that this term is
small [29].

To understand the effect of the running coupling constant we introduce the β function from
the renormalization group, β(α), which encodes the dependence of a coupling parameter α,
on the energy scale µ, of a given physical process described by a quantum field theory. It
is defined as:

β (α) = dα
(
Q2)

d lnα (Q2) = −
(
β0α

2 + β1α
3 + β2α

4 + ...
)
. (1.7)

To calculate the propagator loop correction in QCD, we do not only have to consider quark
loops, but also gluon loops (see Figure 1.2). The quark loop will give rise to a positive
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Figure 1.2: Feynman diagram for the quark loop on the left and for the gluon loop on the right.

contribution to the beta function (screening) while the gluon loop contribution will be
negative (antiscreening). The formula for the one-loop running coupling constant in QCD
is:

αs
(
Q2
)

= αs
(
µ2)

1 + β0αs (µ2) ln (Q2/µ2) with β0 = 11Nc − 2Nf

12π . (1.8)

For the standard model the β function (to one loop) is:

β = −7/4π < 0. (1.9)

This means that the coupling constant decreases with increasing Q2 after all, once β0 > 0,
when Q2 −→∞, αs −→ 0. This causes the quarks inside hadrons to behave more or less
as free particles, when probed at large energies. On the other hand, at increasing distance
the coupling becomes so strong that it is impossible to isolate a quark from a hadron (it
becomes energetically more favourable to create a quark-antiquark pair). This mechanism
is called confinement. Confinement is verified in lattice QCD calculations [30] but has not
yet been mathematically proven from first principles [31]. All continuous symmetries of
QCD are summarized in Table 1.2.

Symmetry Transformation Current Realization

SUV (Nf ) ψ → e−iΓ
iΘi/2ψ jiµ = ψγµΓiψ approximate

isospin, Eightfold Way

SUA(Nf ) ψ → e−iΓ
iΘiγ5/2ψ jiµ = ψγµγ5Γiψ spontaneously broken

Nambu-Goldstone mode

UV (1) ψ → e−iαψ jµ = ψγµψ
conserved

baryon number conservation

UA(1) ψ → e−iαγ5ψ jµ = ψγµγ5ψ
UA(1) puzzle

instanton induced effects

SUc(3) ψ → e−iλ
iΘi/2ψ jiµ = ψγµλ

iψ
conserved

hidden through confinement

Table 1.2: QCD continuous symmetries and respective conserved currents and realization. Here, Γi are
N2
f operators that form the SU (Nf ) algebra and λi are the Gell-Man matrices of SUc(3).

Intermediate-energy hadronic physics which runs over the MeV−GeV energy range, should
be well described by the dynamics of the lowest mass quarks u, d and s. Considering these
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three flavours of quarks, the quark field can be written as:

ψT = (ψu ψd ψs) , (1.10)

and a diagonal mass matrix m̂ = diag (mu,md,ms). For massless quarks, the Lagrangian
density (1.1) is invariant under the transformation

ψ → ψ′ = Uψ, (1.11)

where U is a global transformation that belongs to the group:

UV (3)⊗ UA(3) = SUV (3)⊗ SUA(3)⊗ UV (1)⊗ UA(1). (1.12)

The transformations under UV (1) and SUV (3) (which include the γµ matrix but not the γ5

matrix) are related to baryon number conservation and isospin conservation, respectively.
While the first is always conserved in nature, the second is only approximately conserved
due to different quark masses (Eightfold Way). This symmetry is almost respected in the
two flavour case (mu ≈ md) but it is more severely broken in the three flavour case. One
can see this explicitly, by projecting the mass matrix on the eight λa matrices of SUf (3)
plus the identity matrx λ0, to obtain:

m̂f = mu +md +ms√
6

λ0 + mu −md

2 λ3 + (mu +md) /2−ms√
3

λ8. (1.13)

Transformations under SUA(3) and UA(1) (which include the γ5 matrix) are the so-called
chiral or axial symmetries. Axial transformations change the parity of a given state. Thus,
a Wigner-Weyl8 realization of SUA(3) symmetry would require that each isospin multiplet
be accompanied by degenerate multiplet with opposite parity. However, such multiplet
is not observed in nature, which means that SUA(3) should not be directly realized by
QCD. This symmetry is realized in the Nambu-Goldstone9 mode via chiral symmetry
breaking, giving origin to the pion octet. Likewise, a Wigner-Weyl realization of UA(1)
would imply a parity partner to all hadrons which again, is not verified in nature. Thus,
another Goldstone boson, a pseudoscalar meson with zero isospin is expected, with roughly
the same mass as the pions. Nevertheless, no boson is observed, giving origin to the UA(1)
puzzle: what happened to the Goldstone boson? The problem was solved by Gerard ’t
Hooft [32, 33], who showed that due to instanton induced effects, the UA(1) symmetry
should not result in physical manifestations.

One can introduce the right and left projection operators PR and PL:

PR,L = 1± γ5
2 , (1.14)

8Wigner-Weyl realization of a symmetry: invariance of the Lagrangian density under a symmetry group
should lead to a degeneracy of the energy eigenstates corresponding to irreducible representations of the
group.

9Nambu-Goldstone realization of a symmetry: non invariance of the vacuum under the symmetry
operation. In this case the Goldstone theorem implies the existence of massless spinless particles.
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having the following properties:

PR + PL = 1, (1.15)

(PR,L)N = PR,L with N ≥ 1, (1.16)

PR,LPL,R = 0. (1.17)

Projecting the quark fields ψ and ψ, one obtains the so-called right- and left-handed fields,

ψR = PRψ = 1 + γ5
2 ψ, (1.18)

ψL = PLψ = 1− γ5
2 ψ, (1.19)

for massless quarks the Lagrangian density becomes invariant under a global transformation
U , that belongs to the group:

UR(3)⊗ UL(3) = SUR(3)⊗ SUL(3)⊗ UR(1)⊗ UL(1), (1.20)

which is just another decomposition of the group in (1.12). However, the quark mass term
(1.5), mixes right- and left-handed fields:

m̂fψψ = m̂f

(
ψRψL + ψLψR

)
, (1.21)

breaking explicitly the chiral symmetry of the theory. The existence of different quark
masses will give rise to the physical pseudoscalar meson spectra i.e., will give mass to the
Goldstone bosons (pion octet).

1.3 Effective models

Due to asymptotic freedom, at high momentum transfers QCD is a perturbative theory.
However, at low momentum transfers, perturbation theory is not plausible. In this regime,
the options are limited: one can use lattice QCD and endure the high computing power
demand10; non-perturbative solutions of the Dyson-Schwinger equations; or use an effective
field theory of QCD. In the present work, the latter strategy is used.

Effective theories try to isolate the relevant physics of some processes within a physical
phenomenon, by creating mathematically tractable models that serve to accentuate its
features. In the case of field theories, a very powerful tool in the construction of these
effective models are the symmetries (and their possible breaking) of the original theory.
However, symmetry is not sufficient to determine the form of the effective interactions.
They are further dictated by phenomenology and simplicity.

Throughout history, several “fundamental” theories were later discovered to be effective
theories. QED and even the standard model of particle physics, are effective field theories

10For finite chemical potential lattice QCD is not even defined, due to the famous sign problem [34].
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because they break down at the mass of the W boson and the gravity energy scale,
respectively. Thus, the use of effective theories, i.e., theories that work within a certain
energy scale, is completely justified.

An effective chiral theory of QCD should highlight all of its chiral properties: (approximate)
chiral symmetry at the Lagrangian level and some mechanism for its spontaneous break11;
invariance under SUR(Nf )⊗SUL(Nf ) and an asymmetrical vacuum, reducing the symmetry
to SU(Nf ) and the existence of N2

f − 1 Goldstone bosons.

1.4 Discussion layout

The structure of this Thesis is as follows:

In Chapter 2, the objective is to introduce mathematical and physical techniques used
throughout the work, setting-up the foundation.

In Chapter 3, a small review of the Nambu–Jona-Lasinio model is made and a quark (EoS)
is derived for two and three flavours of quarks and several vector interactions.

In Chapter 4, the formation and composition of neutron stars are mentioned. It is given a
very brief review of quantum hadrodynamics (QHD) and the calculation of the hadronic
EoS within (σ − ω) model with self-interactions and isospin force. The Gibbs construction
and phenomenological Bag constant are introduced within the hybrid approach to neutron
stars. A brief introduction to general relativity and the Tolman-Oppenheimer-Volkoff
equations (TOV) is given.

In Chapter 5, results are presented and discussed.

In Chapter 6, the Z(3) symmetry of discrete QCD and its relation to colour deconfinement
is laid out. The Polyakov−Nambu–Jona-Lasinio model is introduced, as well as a modified
PNJL version with an explicit dependence on the chemical potential. Calculation of the
EoS for this modified model is made and results are presented.

Finally, in Chapter 7, conclusions are drawn and further work is proposed.

11Dynamical spontaneous symmetry breaking in the case of the NJL model.
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Chapter 2

Thermal Field Theory

2.1 Quantum field theory

Quantum field theory (QFT) occupies a central role in the description of the laws of
nature [35]. It has the ability of describing the creation and annihilation of particles and an
incredible predictive power when compared to empirical results, making QFT an essential
tool in modern physics [36].

Within this formalism, the classical action can be quantized through the canonical quanti-
zation process, in which the degrees of freedom of the system, fields φa(x) and respective
conjugate momenta Πa(x) are promoted to operators that act on Hilbert spaces and must
obey (anti)commutation relations. Since the degrees of freedom are functions of space-time,
we are dealing with infinite degrees of freedom [36]. Fields whose quanta are integer spin
particles must obey the following (equal time) commutation relations

[φa(t,x), φb(t,y)] =
[
Πa(t,x),Πb(t,y)

]
= 0, (2.1)[

φa(t,x),Πb(t,y)
]

= iδ(3)(x− y)δba. (2.2)

Fields whose quanta are half-integer spin particles, must obey anticommutation relations:

{φa(t,x), φb(t,y)} =
{

Πa(t,x),Πb(t,y)
}

= 0, (2.3){
φa(t,x),Πb(t,y)

}
= δ(3)(x− y)δba. (2.4)

A more elegant approach to field quantization, is the path integral formalism, which was
first introduced by Richard Feynman for quantum mechanics [37]. In this formalism, the
amplitude between an initial and a final state in the Heisenberg picture is given by the
weighted sum of all possible paths connecting the two points,

〈xf | e−i(tf−ti)Ĥ |xi〉 = N
∫
Dx eiS[x], (2.5)
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where the functional integration is made over all degrees of freedom. Ĥ is the Hamiltonian
of the system, N is an irrelevant normalization constant and S is the classical action,
defined as:

S[x] =
∫ tf

ti

dt L (x(t), ẋ(t)). (2.6)

Here, L (x(t), ẋ(t)) is the Lagrangian density of the system.

When generalizing the formalism to fields the transition amplitude is given by:

〈φ| e−itf Ĥ |φ〉 = N
∫ φ(tf ,x)

φ(0,x)
Dφ eiS[φ], (2.7)

where the action is:

S[φ] =
∫ tf

0
dt

∫
d3x L (φ, ∂µφ) . (2.8)

We are interested in the vacuum to vacuum transition amplitude in the presence of an
external source, J(x), known as the generating functional Z[J ], which generates time
ordered correlation functions, or Green’s functions of the theory [38]:

Z[J ] = N
∫
Dφ eiS[φ]+i

∫
d4x J(x)φ(x). (2.9)

The irrelevant constant N is infinite due to the infinite degrees of freedom of the system
and is chosen to be such that, Z[0] = 1.

The generating functional, being a functional of the source J(x), should be invariant under
an infinitesimal change of the field φ (supposing that the integration measure is invariant
likewise1)

δZ[J ]
δφ(x) = 0, (2.10)

which implies that,

δS[φ]
δφ(x) = −J(x). (2.11)

Consider the functional defined by the phase of the generating functional Z[J ]:

W[J ] = −i lnZ[J ], (2.12)

which is known as the generating functional of the fully connected Green’s functions
(connected Feynman’s graphs). The n-point connected correlation functions of the theory
can be obtained by calculating functional derivatives of the above functional (T is the time

1The non-invariance of the integration measure plays a large role in the study of anomalies.
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ordering operator):

δnW[J ]
δJ(x1)...δJ(xn)

∣∣∣∣
J=0

= (−i)n

Z[J ]
δnZ[J ]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

= 〈0| T [φ(x1)...φ(xn)] |0〉 . (2.13)

Setting n = 1 in (2.13), gives the definition of the 1-point correlation function.When J(x)
is non zero, the expectation value of the field operator in the vacuum can be interpreted as
a functional of the source:

δW[J ]
δJ(x) = −i

Z[J ]
δZ[J ]
δJ(x) = 〈0|φ(x) |0〉J = φc(x). (2.14)

The expectation value of the field in the vacuum is called the classical field, φc(x). When
the source vanishes, due to Poincaré invariance and uniqueness of the vacuum state in the
Hilbert space, the classical field must be a constant [38] (zero if there are no spontaneous
symmetry breaking and non-zero if any symmetry was spontaneously broken).

J(x)→ 0⇒ φc(x)→ φc. (2.15)

The “conjugate” relation between the source and the classical field in Equation (2.14),
suggests the definition of another functional, independent from the source, through a
Legendre transformation. This functional is called the effective action:

Γ[φc] =W[J ]−
∫
d4x J(x)φc(x). (2.16)

This functional generates the one particle irreducible (1PI) Green’s functions, i.e., the ones
that correspond to Feynman diagrams which cannot be disconnected when an internal line
is removed. In QFT, being able to calculate all the 1PI’s means solving the theory.

2.1.1 The background field method and mean field approximation

The background field method [39] is a useful method to calculate the effective action by
Taylor expanding the field around its classical value. One starts by splitting the field into
a classical background field φc(x) and a field η(x) containing quantum fluctuations:

φ(x) = φc(x) + η(x). (2.17)

The phase of the generating functional, can be written as:

W[J ] =
∫
d4x [L [φc] + J(x)φc(x)]

+
∫
d4xη(x)

[
δL [φ]
δφ(x)

∣∣∣∣
φ=φc

+ J(x)
]

+
∫
d4xd4y η(x)η(y)1

2
δL [φ]

δφ(x)δφ(y)

∣∣∣∣
φ=φc

+O
(
η3
)
. (2.18)
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The first term is independent from the quantum fluctuations η(x) and the second term in
the expansion is zero due to Equation (2.11). Substituting this expansion in (2.12), yields
the following generating functional (to second order in η(x)):

Z[J ] ' N eiS[φc]+i
∫
d4xJ(x)φc(x)

∫
Dη e

i
2

∫
d4xd4y η(x)η(y) δL [φ]

δφ(x)δφ(y)

∣∣
φ=φc . (2.19)

The path integral over the η field has a gaussian form and can be computed explicitly:

∫
Dη e

i
2

∫
d4xd4y η(x)η(y) δL [φ]

δφ(x)δφ(y)

∣∣
φ=φc ' det∓

1
2

[
δS[φ]
δφ2

∣∣∣∣
φ=φc

]
. (2.20)

The negative or positive power of the determinant, depends on whether the fields are
bosonic or fermionic. Substituting this expression in Equation (2.19) yields:

Z[J ] ' N eiS[φc]+i
∫
d4xJ(x)φc(x) det∓

1
2

[
δS[φ]
δφ2

∣∣∣∣
φ=φc

]
. (2.21)

Plugging this expression in Equation (2.12), gives the effective action to second order in η:

Γ[φc] ' S[φc]±
i

2 ln det
[
δS[φ]
δφ2

∣∣∣∣
φ=φc

]
. (2.22)

Where the positive sign is for bosonic fields and the negative sign is for fermionic fields.
This equation represents the one-loop approximation of the effective action [40]. The first
term is simply the classical action and the second term incorporates the first quantum
corrections of the theory (loop effects). The Hartree (HA) or mean field approximation
(MFA), consists on neglecting the second term and setting the effective action to be:

Γ[φc]MFA = S[φc]. (2.23)

2.2 Finite temperature and density

Conventional QFT is formulated at zero temperature and density, and even though its
theoretical predictions are in agreement with empirical results in reality, natural phenomena
do not occur at these regimes. Temperature and density can be included within the QFT
formalism to explain condensed matter and nuclear matter in laboratory conditions and it
allows the study of several phenomena, like the early Universe, inflation, neutron stars, the
electroweak transition, QCD phase diagram, etc.

The grand canonical ensemble describes a system in contact with a heat reservoir, allowing
the exchange of energy and particles with it. The temperature, volume and chemical
potentials are fixed. In the grand canonical ensemble the partition function is given by:

Z(β) = tr
[
e−β(Ĥ−µiN̂i)

]
, (2.24)
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where H is the system Hamiltonian and N̂i is a set of conserved number operators (baryonic
number, electric charge...). The average value of an observable Ô is:

〈Ô〉 =
tr
[
e−β(Ĥ−µiN̂i)Ô

]
tr
[
e−β(Ĥ−µiN̂i)

] = Z(β)−1 tr
[
e−β(Ĥ−µiN̂i)Ô

]
. (2.25)

The grand canonical potential (up to an irrelevant constant) is defined as

Ω = − 1
βV

ln [Z(β)] = −T
V

ln [Z(β)] . (2.26)

All thermodynamic quantities of interest like the pressure (P ), particle density (ρi), entropy
density (S), and energy density (ε), can be calculated from the grand canonical potential,
using the following relations [41–43]:

P = ∂

∂V
(T lnZ) = − ∂

∂V
(V Ω) , (2.27)

ρi = 1
V

∂

∂µi
(T lnZ) = − ∂Ω

∂µi
, (2.28)

S = 1
V

∂

∂T
(T lnZ) = −∂Ω

∂T
, (2.29)

ε = −P + TS + µiρi. (2.30)

2.2.1 The Matsubara formalism

We are now able to find the path integral representation of the partition function. Using
a complete basis of the coordinate operator, for zero chemical potential2, the partition
function can be written as:

Z(β) = tr
[
e−βĤ

]
=
∫
dx 〈x| e−βĤ |x〉 . (2.31)

Comparing Equations (2.5) and (2.31), one recognizes that there is a great similarity
between the two [44]. The time interval [ti, tf ] in the transition amplitude seems to take
the role of β in the partition function. The Matsubara formalism, consists of making a
transformation of the type t→ −iτ and identifying the interval [ti, tf ] with the interval
[0, β]. This transformation (see Figure 2.1), which rotates the integration in the complex
plane by 90o, is called a Wick rotation [44].

2Whenever there is a conserved charge N , one must modify the system Hamiltonian by adding a chemical
potential µ: Ĥ → Ĥ − µN̂ . The chemical acts like a Lagrange multiplier.
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it

t

Figure 2.1: Wick rotation.

Using the Matsubara formalism, one can write the partition function of a field φ(−iτ,x)
as:

Z(β) = N
∫ φ(β,x)

φ(0,x)
Dφ eSE [φ], (2.32)

SE [φ] =
∫ β

0
dτ

∫
V
d3x L (φ, i∂τφ,∇φ). (2.33)

After the Wick rotation, the norm between four-vectors is given by the Euclidean norm.
Therefore, we denote the classical action by SE . In some sense, this procedure consists of a
backwards analytically continuation of the action in Minkowski to an action in Euclidean
space. In this process one needs to be careful to not cross any poles.

In QFT, the 2-point correlation function yields the propagator or Green function of the
theory. At finite temperature one can define the 2-point thermal Green function as (using
Equation (2.25)):

〈φ(τ1,x) φ(τ2,y)〉 = Gβ(τ1,x, τ2,y) = Z−1 tr
[
e−βĤT [φ(τ1,x)φ(τ2,y)]

]
, (2.34)

where T is the time ordering operator, that acts as:

T [φ(τ1,x)φ(τ2,y)] =

φ(τ1,x)φ(τ2,y), if τ1 > τ2

±φ(τ1,x)φ(τ2,y), if τ1 < τ2
, (2.35)

where the negative sign arises from the anticommutation relations for fermionic fields in
Equation (2.3).

We are interested in knowing what happens to the 2-point thermal Green function after a
period β in imaginary time. Thus for two different instants and positions, with 0 < τ < β,
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the thermal propagator is [45]:

Gβ(τ,x, 0,y) = Z−1 tr
[
e−βĤT [φ(τ,x)φ(0,y)]

]
=

= Z−1 tr
[
e−βĤφ(τ,x)φ(0,y)

]
=

= Z−1 tr

e−βĤeβĤ︸ ︷︷ ︸
=1

φ(0,y)e−βĤφ(τ,x)

 . (2.36)

Where we have used the cyclic properties of the trace operation and added a unit matrix
written as 1 = e−βĤeβĤ. We can use [38]:

ÔH(t) = eitĤÔ(t = 0)e−itĤ, (2.37)

which relates an operator in the Heisenberg picture ÔH(t), with an operator in the
Schrödinger picture Ô(t = 0), and write:

Gβ(τ,x, 0,y) = Z−1 tr

e−βĤ eβĤφ(0,y)e−βĤ︸ ︷︷ ︸
=φ(β,y)

φ(τ,x)


= Z−1 tr

[
e−βĤφ(β,y)φ(τ,x)

]
. (2.38)

Writing back the time ordering operator, the thermal propagator yields:

Gβ(τ,x, 0,y) = Z−1 tr
[
e−βĤφ(β,y)φ(τ,x)

]
=

= ±Z−1 tr
[
e−βĤT [φ(τ,x)φ(β,y)]

]
=

= ±Gβ(τ,x, β,y). (2.39)

Where, once again, the negative sign represents a fermionic field and the positive sign a
bosonic field. From this we can conclude that the 2-point thermal Green function is a
periodic function for bosons and an antiperiodic function for fermions.

Due to the (anti)periodicity of the thermal propagators, the fields are only allowed to take
discrete frequencies. In order to find these frequencies, we Fourier transform the thermal
propagator:

Gβ(τ) = 1
β

∑
n

e−iωnτGβ(ωn), (2.40)

Gβ(ωn) = 1
2

∫ β

−β
dτeiωnτGβ(τ). (2.41)

From the latter, the following result can be extracted:

Gβ(ωn) = 1
2 [1± (−1)n]

∫ β

0
dτeiωnτGβ(τ). (2.42)
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Again, the negative sign is for fermions and the positive sign is for bosons. The thermal
propagator Gβ(ωn), is non-zero for the following discrete frequencies:

ωn =

2nπT, for bosons

(2n+ 1)πT, for fermions
n = 0, 1, 2, ... (2.43)

These frequencies are known as Matsubara frequencies and are the allowed frequencies
for bosonic and fermionic fields at finite temperature and density. At finite temperature
and density, all definitions of the Feynman diagrams, 1PI, connected... are the same as
in conventional QFT; the only differences are the (anti)periodic relations that the fields
must obey. This leads to energy being discrete and the problem becomes analogous to
quantum mechanical states inside a box of length β in the τ direction, where the topology
of space-time is a tube, R3 ⊗ S1 [44].

2.3 Grand canonical potential for fermions in a mean field
potential

With the tools developed in previous sections, we are now ready to calculate the partition
function for a fermionic field in a mean field potential. Throughout the present work, the
mean field approximation will be employed to the systems. Within this approximation, we
can always write the Lagrangian density of a fermionic system in the following form [46],

LMFA = ψ
[
iγµ

(
∂µ + iV0δ

0
µ

)
− (m̂+ S)

]
ψ + U (V0, S) =

= ψ
(
i /D − M̂

)
ψ + U, (2.44)

where Dµ = ∂µ + iV0δ
0
µ, can be interpreted as a covariant derivative and M̂ = m̂+ S as an

effective mass. The constants V0 and S, are the vacuum expectation values (VEV) of some
set of auxiliary fields Vµ(x) and S(x), i.e., 〈0|V0(x) |0〉 = V0 and 〈0|S(x) |0〉 = S. In the
MFA, the system is in equilibrium thus, dynamic currents disappear i.e. 〈0|Vi(x) |0〉 = 0.
The mean field potential U (V0, S) is independent from the fermion field and from space-
time but may depend on the expectation value of the auxiliary fields. The fermion field
ψ(x), as well as the auxiliary fields and effective mass, may have several indices like flavour
(f) or colour (c). This possible set of indices is omitted to leave the notation tidier and
will be denoted by I = {f, c, ...}.

Following Noether’s theorem (Appendix A.1), an invariance of the Lagrangian under a
global symmetry leads to a conserved current. In this case the conserved current is,

jµ = ψγµψ, (2.45)
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the zero component of this current is the conserved charge,

j0 = ψγ0ψ. (2.46)

The existence of a conserved charge allows the addition of a chemical potential µ̂, to the
Hamiltonian of the system. This chemical potential is a diagonal matrix in the space of
the I indices. The partition function in the imaginary time formalism is given by

Z(β) = N
∫
Dψ (τ,x)Dψ (τ,x) eSE [ψ,ψ] =

= N
∫
DψDψ exp

[∫ β

0
dτ

∫
V
d3x

(
L + µ̂ψγ0ψ

)]
, (2.47)

here the functional integration is made over ψ and ψ, which are considered as independent
fields. Substituting L yields:

Z(β) = N
∫
DψDψ exp

[∫ β

0
dτ

∫
V
d3x

(
ψ
(
i /D − M̂

)
ψ + U + µ̂ψγ0ψ

)]
=

= N
∫
DψDψ exp

[∫ β

0
dτ

∫
V
d3x

(
ψDψ + U

)]
, (2.48)

where the operator D is:

D = i /D − M̂ + µ̂γ0 = iγµ
(
∂µ + iV0δ

0
µ

)
− M̂ + µ̂γ0 =

= iγµ∂µ − M̂ + (µ̂− V0)︸ ︷︷ ︸
=µ̃

γ0 = iγµ∂µ − M̂ + µ̃γ0. (2.49)

The effective chemical potential µ̃ is defined as:

µ̃ = µ̂− V0. (2.50)

As seen in Equations (2.39) and (2.43), fermion fields must obey antiperiodic boundary
conditions. This condition must be respected when the fermionic field is expressed in
momentum space:

ψ(τ,x) = 〈τ,x|ψ〉 =
+∞∑

n,p=−∞
〈τ,x|ωn,p〉 〈ωn,p|ψ〉 =

= 1√
βV

+∞∑
n,p=−∞

ei(p·x+ωnτ)ψ̂n(p), (2.51)

where ωn = (2n+ 1)π/β are the only allowed frequencies for fermionic fields. The action
in the (τ,x)-space is:

SE [ψ,ψ] =
∫ β

0
dτ

∫
V
d3x

[
ψ(τ,x)Dψ(τ,x) + U

]
. (2.52)
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Fourier transforming the fermionic fields using (2.51), gives a discrete version of the action
in the (ωn,p)-space (the sum’s bounds are omitted for simplicity):

SE [ψ,ψ] =
∫ β

0
dτ

∫
V
d3x

[
U + 1

βV

∑
m,q

e−i(q·x+ωmτ)ψ̂m(q)D
∑
n,p

ei(p·x+ωnτ)ψ̂n(p)
]
. (2.53)

The action of the operator D in the discrete fermion field ψ̂n(p) is:

D
∑
n,p

ei(p·x+ωnτ)ψ̂n(p) =

=
∑
n,p

ei(p·x+ωnτ)
[
−γµ∂µ (p · x+ ωnτ)− M̂ + µ̃γ0

]
ψ̂n(p) =

=
∑
n,p

ei(p·x+ωnτ)
[
−
(
γ0i

∂

∂τ
ωnτ + γipj

∂

∂xi
xj

)
− M̂ + µ̃γ0

]
ψ̂n(p) =

=
∑
n,p

ei(p·x+ωnτ)
[
−
(
iγ0ωn + γipi

)
− M̂ + µ̃γ0

]
ψ̂n(p) =

=
∑
n,p

ei(p·x+ωnτ)D̂ψ̂n(p). (2.54)

The operator D̂ is defined as:

D̂ = −iωnγ0 − γjpj − M̂ + µ̃γ0. (2.55)

Inserting this results in the discrete action (Equation (2.53)), and making the integral over
the mean field potential (independent from space-time) yields:

SE [ψ,ψ] = βV U + 1
βV

∑
q,p

∑
m,n

ψ̂m(q)D̂ψ̂n(p)
∫ β

0
dτ

∫
V
d3xeix·(p−q)eiτ(ωn−ωm). (2.56)

Using the relations:
∫ β

0
dτeiτ(ωn−ωm) = βδ (ωn − ωm) , (2.57)∫
V
d3xeix·(p−q) = V δ(3) (p− q) , (2.58)

we can write the discrete action as:

SE [ψ,ψ] = βV U +
∑
n,p

ψ̂n(p)D̂ψ̂n(p). (2.59)

The functional integral measure DψDψ, can be altered by the Fourier transformation of
the fermion fields. We assume that this possible change does not affect the dynamics of
the system and can be absorbed within a new normalization constant, N ′. With this
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consideration, the partition function is given by:

Z(β) = N ′eβV U
∫
Dψ̂ (ωn,p)Dψ̂ (ωn,p) exp

[∑
n,p

ψ̂n(p)D̂ψ̂n(p)
]

=

= N ′eβV U
∏
n,p

∫
dψ̂ndψ̂n e

ψ̂n(p)D̂ψ̂n(p). (2.60)

Recalling the integral formula for N Grassman variables ξ1, ξ2...ξN :∫
dξ†1dξ1...dξ

†
NdξN eξ

†Dξ = detD, (2.61)

we are able to do the integral in Equation (2.60):

Z(β) = N ′eβV U det
n,p,d,I

D̂. (2.62)

The determinant present in this equation must be evaluated over all indices (Dirac,
momentum, frequency and, if it exists, the set of indices I). This determinant is commonly
called the fermionic determinant.

Inserting the calculated partition function in Equation (2.26), gives the grand canonical
potential in the MFA:

ΩMFA = 1
βV

ln
[
N ′eβV U det

n,p,d,I
D̂

]
=

= −U − T

V
ln det
n,p,d,I

D̂, (2.63)

where the constant − lnN ′ was ignored. After all, we are interested in the derivatives of
the grand canonical potential.

We use the identity ln detA = tr lnA, in all indices except in the Dirac index:

ΩMFA = −U − T

V
tr
n,p,I

(
ln det

d
D̂

)
, (2.64)

To calculate explicitly the determinant over the Dirac index, we use the representation for
the gamma matrices presented in Appendix B.1 to write the operator D̂:

D̂ = −iωnγ0 − γjpj − M̂ + µ̃γ0 =
(
−iωn − M̂ + µ̃ −σ · p

σ · p iωn − M̂ − µ̃

)
. (2.65)

Calculating the determinant of the above matrix and substituting it in Equation (2.64)
yields:

ΩMFA = −U − T

V
tr
n,p,I

[
ln
(
E2 + (ωn + iµ̃)2

)2
]
. (2.66)
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Where E =
√
p2 + M̂2. Since the sum is made over positive and negative values of the

frequencies, the substitution ωn → −ωn does not change the sum over frequencies:

ΩMFA = −U − 2T
V

tr
n,p,I

[
ln
(
E2 + (ωn + iµ̃)2

)]
=

= −U − T

V
tr
n,p,I

[
ln
(
E2 + (ωn + iµ̃)2

)
+ ln

(
E2 + (−ωn + iµ̃)2

)]
. (2.67)

After some algebra, we can isolate the dependence on the frequencies, in order to make the
summation simpler:

ΩMFA = −U − T

V
tr
I

+∞∑
p=−∞

+∞∑
n=−∞

[
ln
(
ω2
n + (E + µ̃)2

)
+ ln

(
ω2
n + (E − µ̃)2

)]
. (2.68)

Remembering that ωn = (2n+ 1)πT , the Matsubara summation can be calculated using
several methods to yield the following result (ignoring a possible constant [42, 47]):

+∞∑
n=−∞

ln
(
ω2
n + (E ± µ̃)2

)
= β(E ± µ̃) + 2 ln

(
1 + e−β(E±µ̃)

)
. (2.69)

Taking the continuum limit, we can write the sum over momentum as an integral:

1
V

+∞∑
p=−∞

→
∫

d3p

(2π)3 . (2.70)

Substituting Equations (2.69) and (2.70), the grand canonical potential (2.68) yields:

ΩMFA − Ω0 = −U (V0, S)− 2T tr
I

∫
d3p

(2π)3

[
βE + ln

(
1 + e−β(E+µ̃)

)
+ ln

(
1 + e−β(E−µ̃)

)]
.

(2.71)

Here Ω0 is a constant, usually chosen in such a way that the pressure and energy density
vanish in the vacuum. The trace operation over the indices I must be done if the field
as any additional index otherwise, it simply yields 1. The factor of 2 represents the
spin degeneracy of the 1/2 spin particles (fermions). There is a contribution from the
vacuum energy βE, and a term for particles (positive chemical potential) and another for
antiparticles (negative chemical potential). These characteristics appeared naturally using
this formalism while, for conventional statistical physics, they must be added.

We can relate the grand canonical potential of a field theory (2.26), with the theory’s
effective action (2.16) in the imaginary time formalism. Their definitions suggests that one
can write the grand canonical potential of a theory with a set of fields φ as

Ω[φ] ∝ Γ[φ]. (2.72)



2.4. Fermion gas 23

In the mean field approximation, Equation (2.23) allows the substitution:

Ω[φ]|φ=φc ∝ S[φ]|φ=φc ,

Ω[φ]MFA ∝ S[φc]. (2.73)

Remembering that when the sources vanishes, the action must be stationary in relation to
the fields (2.11) and the VEV of the classical field φc(x) is a constant φc (2.15):

δS[φ]
δφ(x)

∣∣∣∣
φ=φc

= 0⇒ ∂S(φc)
∂φc

= 0, (2.74)

using Equation (2.73), the stationarity of the classical action implies:

∂Ω(φc)MFA
∂φc

= 0. (2.75)

This relation states that, in the MFA, the grand canonical potential must be stationary
in relation to any VEV of any field φc, present in the theory. This is usually called
thermodynamic consistency relation. From this relation one can obtain the VEV of the
fields present in the theory (usually through self-consistent equations) and obtain the grand
canonical potential as a function of the temperature and chemical potential. If one plugs
Ω (T, µ) in the relations (2.27), (2.28), (2.29) and (2.30), all thermodynamics of the system
is obtained.

2.4 Fermion gas

Let us apply the techniques developed in the previous section, to calculate the grand
canonical potential of a fermion gas, i.e., free fermions of mass m (mean field potential is
null). Considering V0 = S = 0 and U (V0, S) = 0 in expression (2.44), the Lagrangian for
free fermion field ψj is (the index j just identifies the field):

Lj = ψj
(
i/∂ − m̂j

)
ψj . (2.76)

The respective grand canonical potential is simply given by Equation (2.71):

Ωj = Ω0j − 2T tr
I

∫
d3p

(2π)3

[
βEj + ln

(
1 + e−β(Ej+µj)

)
+ ln

(
1 + e−β(Ej−µj)

)]
, (2.77)

here Ω0j is zero-point energy contribution and Ej =
√
p2 +m2

j . The trace over the possible
additional indices I is simply given by a degeneracy factor NI , because both the energy and
chemical potential, are diagonal matrices in the I space. Using Equations (2.27), (2.28),
(2.29) and (2.30) one may calculate the pressure,

Pj = 2TNI

∫
d3p

(2π)3

[
βEj + ln

(
1 + e−(Ej+µj)/T

)
+ ln

(
1 + e−(Ej−µj)/T

)]
− Ω0j , (2.78)
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density,

ρj = 2NI

∫
d3p

(2π)3 (nj − nj) , (2.79)

entropy,

Sj = 2NI

∫
d3p

(2π)3

[
ln
(
1 + e−(Ej+µj)/T

)
+ Ej + µj

T
nj

+ ln
(
1 + e−(Ej−µj)/T

)
+ Ej − µj

T
nj

]
. (2.80)

and energy density,

εj = Ω0j − 2NI

∫
d3p

(2π)3Ej (1− nj − nj) , (2.81)

Above, nj and nj are the particle and anti-particle occupation numbers:

nj = 1
e(Ej−µj)/T + 1

, (2.82)

nj = 1
e(Ej+µj)/T + 1

. (2.83)

2.4.1 T = 0 Limit

In the limit T = 0 a Fermi gas is said to be completely degenerate. In this regime, one
defines the Fermi energy as the value of the chemical potential at T = 0 (see Appendix
D.1.1) and the Fermi momentum λFj as:

λFj =
√
µ2
j −m2

j . (2.84)

Using the relations in Appendix D.1.1, we may write in this limit, the pressure, density
and energy density as:

Pj = NI

π2

[∫ +∞

λFj

dp p2Ej + µj
λ3
Fj

3

]
− Ω0j , (2.85)

ρj = NI

π2

λ3
Fj

3 , (2.86)

εj = Ω0j −
NI

π2

∫ +∞

λFj

dpp2Ej . (2.87)

The entropy is automatically zero due to the the third law of thermodynamics.
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2.4.2 Pressure for massless fermions

One can define the value of the grand canonical potential in the vacuum as a constant,
given by:

Ω0j = 2NI

∫
d3p

(2π)3Ej , (2.88)

and subtract it from the pressure because the grand canonical potential is unique up to a
constant. Omitting this contribution, for massless particles, the energy is simply E = |p|
and the pressure is given by:

Pj = 2TNI

∫
d3p

(2π)3

[
ln
(
1 + e−(p+µj)/T

)
+ ln

(
1 + e−(p−µj)/T

)]
. (2.89)

Making the integration over the solid angle
(
d3p = 4πp2dp

)
and making an integration by

parts, yields the result:

Pj = T 4NI

3π2

[∫ +∞

0
dx x3 eµj/T

ex + eµj/T
+
∫ +∞

0
dx x3 e−µj/T

ex + e−µj/T

]
. (2.90)

One can write the above integrals as polylogarithms3 (see Appendix B.3):

∫ +∞

0
dx x3 eµj/T

ex + eµj/T
= −Γ(4) Li4

(
−eµj/T

)
, (2.91)∫ +∞

0
dx x3 e−µj/T

ex + e−µj/T
= −Γ(4) Li4

(
−e−µj/T

)
. (2.92)

Where Γ(z) is the gamma function. Substituting in (2.90) gives:

Pj = 2T 4NI

π2

[
−Li4

(
−eµj/T

)
− Li4

(
−e−µj/T

)]
. (2.93)

One can Taylor expand the polylogarithm around µj and obtain the pressure for gas of
massless fermions:

Pj '
T 4NI

π2

[
7π4

180 +
π2µ2

j

6T 2 +
µ4
j

12T 4

]
. (2.94)

2.5 Boson gas

Consider the most simple bosonic field, a free, real, scalar field ϕ with mass m. The field
may have other internal degrees of freedom, like colour for example. The Lagrangian

3The polylogarithm arises in the closed form of the integrals of the Fermi-Dirac and Bose-Einstein
distributions.
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density for such a field can be written as:

L = 1
2∂µϕ∂

µϕ− 1
2m

2ϕ2. (2.95)

The partition function, in the imaginary time formalism, is given by:

Z(β) = N
∫
Dϕ (τ,x) eSE [ϕ] =

= N
∫
Dϕ (τ,x) exp

[∫ β

0
dτ

∫
V
d3x L

]
, (2.96)

here the functional integration is made over ϕ. Substituting L yields:

Z(β) = N
∫
Dϕ (τ,x) exp

[
1
2

∫ β

0
dτ

∫
V
d3x

(
∂µϕ∂

µϕ−m2ϕ2
)]
. (2.97)

The dynamical term ∂µϕ∂
µϕ, can be written as:

∂µϕ∂
µϕ = ∂µ (ϕ∂µϕ)− ϕ∂µ∂µϕ. (2.98)

Substituting (2.98) in the partition function, the first term, being a total derivative, vanishes
due to the boundary conditions of the functional integration. We are left with:

Z(β) = N
∫
Dϕ (τ,x) exp

[
−1

2

∫ β

0
dτ

∫
V
d3x ϕ

(
∂µ∂

µ +m2
)
ϕ

]
=

= N
∫
Dϕ (τ,x) exp

[
−1

2

∫ β

0
dτ

∫
V
d3x ϕDϕ

]
, (2.99)

where the operator D is:

D = ∂µ∂
µ +m2. (2.100)

As seen in Equations (2.39) and (2.43), boson fields must obey periodic boundary conditions.
This condition must be respected when the bosonic field is expressed in momentum space:

ϕ(τ,x) = 〈τ,x|ϕ〉 =
+∞∑

n,p=−∞
〈τ,x|ωn,p〉 〈ωn,p|ϕ〉 =

= 1√
βV

+∞∑
n,p=−∞

ei(p·x+ωnτ)ϕ̂n(p), (2.101)

where ωn = 2nπ/β are the only allowed frequencies for bosonic fields (Matsubara frequen-
cies). The action in the (τ,x)-space is:

SE [ϕ] = −1
2

∫ β

0
dτ

∫
V
d3x ϕ(τ,x)Dϕ(τ,x). (2.102)
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Fourier transforming the bosonic fields using (2.101), gives a discrete version of the action
in the (ωn,p)-space (the sum’s bounds are omitted for simplicity):

SE [ϕ] = −1
2

1
βV

∫ β

0
dτ

∫
V
d3x

∑
m,q

ei(q·x+ωmτ)ϕ̂m(q)D
∑
n,p

ei(p·x+ωnτ)ϕ̂n(p). (2.103)

The action of the operator D in the discrete boson field is:

D
∑
n,p

ei(p·x+ωnτ)ϕ̂n(p) =

=
∑
n,p

(
∂µ∂

µei(p·x+ωnτ) +m2ei(p·x+ωnτ)
)
ϕ̂n(p) =

=
∑
n,p

[(
− ∂2

∂τ2 −∇
2
)
ei(p·x+ωnτ) +m2ei(p·x+ωnτ)

]
ϕ̂n(p) =

=
∑
n,p

ei(p·x+ωnτ)
(
ω2
n + p2 +m2

)
ϕ̂n(p) =

=
∑
n,p

ei(p·x+ωnτ)D̂ϕ̂n(p). (2.104)

The operator D̂ is defined as:

D̂ = ω2
n + p2 +m2 =

= ω2
n + E2. (2.105)

Inserting this results in the discrete action, yields:

SE [ϕ] = −1
2

1
βV

∑
q,p

∑
m,n

ϕ̂m(q)D̂ϕ̂n(p)
∫ β

0
dτ

∫
V
d3xeix·(p+q)eiτ(ωn+ωm). (2.106)

Using the relations:
∫ β

0
dτeiτ(ωn+ωm) = βδ (ωn + ωm) , (2.107)∫
V
d3xeix·(p+q) = V δ(3) (p+ q) , (2.108)

we can write the discrete action as:

SE [ϕ] = −1
2
∑
n,p

ϕ̂−n(−p)D̂ϕ̂n(p). (2.109)

We assume that any possible change in the integration measure Dϕ can be absorbed in a
new constant N ′. We can write the discrete boson field ϕ̂−n(−p) as ϕ̂∗n(p). The partition
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function is given by:

Z(β) = N ′
∫
Dϕ̂ (ωn,p) exp

[
−1

2
∑
n,p

ϕ̂∗n(p)D̂ϕ̂n(p)
]

=

= N ′
∏
n,p

∫
dϕ̂n e

− 1
2 ϕ̂
∗
n(p)D̂ϕ̂n(p). (2.110)

Recalling that field is real, we can use the result for Riemann integrals with a constant
matrix D: ∫

dx1...dxn e
−xiDijxj ∝ det−

1
2D. (2.111)

The integration can be performed to give:

Z(β) = N ′ det
n,p,I

− 1
2 D̂. (2.112)

The determinant present in this equation must be evaluated over momentum, frequency
and some other set of indices I, that the field might have.

Inserting the calculated partition function in Equation (2.26), gives the grand canonical
potential:

Ω = 1
βV

ln
[
N ′ det

n,p,I

− 1
2 D̂

]
=

= T

V
ln det

n,p,I

− 1
2 D̂. (2.113)

Just like for fermionic fields, the constant − lnN ′ was ignored. Using the identity ln detA =
tr lnA:

Ω = −1
2
T

V
tr
n,p,I

ln D̂ = −1
2
T

V
tr
I

+∞∑
p=−∞

+∞∑
n=−∞

ln
(
ω2
n + E2

)
, (2.114)

The trace over other indices I, is simply given by a degeneracy factor NI , which represent
other possible degrees of freedom.

Remembering that ωn = 2nπT for bosons, the Matsubara summation can be calculated
using several methods to yield the following result (ignoring a possible constant [42, 47]):

+∞∑
n=−∞

ln
(
ω2
n + E2

)
= βE + 2 ln

(
1− e−βE

)
. (2.115)

Taking the continuum limit given in (2.70), and inserting the Matsubara summation in
Equation (2.114), yields the grand canonical potential:

Ω− Ω0 = −T NI

∫
d3p

(2π)3

[
βE

2 + ln
(
1− e−βE

)]
. (2.116)
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The pressure is (using Equation (2.27)):

P = T NI

∫
d3p

(2π)3

[
βE

2 + ln
(
1− e−βE

)]
− Ω0. (2.117)

2.5.1 Pressure for massless bosons

The grand canonical potential in the vacuum can be defined as:

Ω0 = NI

∫
d3p

(2π)3
E

2 , (2.118)

With this contribution, considering massless particles, the energy is simply E = |p| and
the pressure becomes:

P = T NI

∫
d3p

(2π)3 ln
(
1− e−βp

)
. (2.119)

Making the integration over the solid angle and making an integration by parts, yields the
result:

P = T 4NI

6π2

∫ +∞

0
dx

x3

ex − 1 . (2.120)

Just like for fermions, one can write the above integral as a polylogarithm (see Appendix
B.3):

∫ +∞

0
dx

x3

ex − 1 = Γ(4) Li4 (1) = π4

90 . (2.121)

Substituting (2.121) in (2.120), yields the pressure for massless free bosons:

P = NI
π2T 4

90 . (2.122)
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Chapter 3

Nambu–Jona-Lasinio Model

3.1 General aspects

The Nambu–Jona-Lasinio model (NJL) was originally introduced in 1961 by Yoichiro
Nambu and Giovanni Jona-Lasinio [48], before the assertion of QCD as the theory of
strong interactions. In its debut, the NJL model was presented as theory of nucleons that
interact through a local effective two-body interaction in analogy with the Bardeen-Cooper-
Schrieffer theory (BCS). The central idea was that the mass gap in the Dirac spectrum of
the nucleon can be generated analogously to the energy gap of a superconductor in BCS
theory. The original NJL model can be written as:

L = ψ
(
i/∂ −m

)
ψ +G

3∑
a=1

[(
ψψ
)2

+
(
ψiγ5τ

aψ
)2
]
, (3.1)

where ψ is the isospin doublet representing the nucleon field, m is the nucleon bare mass,
τa are the three Pauli matrices acting in isospin space, and G a coupling constant, strong
enough to spontaneously break chiral symmetry.

After the development of QCD, the NJL model was abandoned due to its non-renormali-
zability and non-fundamental nature. It was later re-interpreted as a theory whose degrees
of freedom are quarks, i.e., an effective theory of QCD, after all its symmetries are the
same as the symmetries of QCD. Within this approach, mesons can be interpreted as
quark-antiquark excitations of the vacuum and baryons are bound states of quarks (solitons
or quark-diquarks structures). This model does not contain colour confinement or gluons,
which implies that the theory cannot be applied to high energies. We emphasize the review
works on this model [15, 49–51].

3.1.1 General NJL model

The general Lagrangian density of the NJL model for Nf flavours of quarks interacting
through a local scalar and pseudoscalar, four point interaction, that respects the symmetries



32 Chapter 3. Nambu–Jona-Lasinio Model

of QCD is given by:

L NJL = ψ
(
i/∂ − m̂

)
ψ +GS

N2
f−1∑
a=0

[(
ψΓaψ

)2
+
(
ψiγ5Γaψ

)2
]
. (3.2)

Here ψ is a Nf -component vector in flavour space, where each component is a Dirac
spinor, m̂ = diag

(
m1, ...,mNf

)
is the quark current mass matrix, diagonal in flavour

space. The operators Γa, are N2
f matrix operators that act on flavour space with index

a = 0, 1, ..., N2
f − 1, forming a U (Nf ) algebra. The matrix Γ0, is defined to be proportional

to the unit matrix: Γ0 =
√

2/Nf1Nf×Nf . For two flavours of quarks (Nf = 2), these Γa

matrices are the three Pauli matrices τa of the SU(2) group, plus the identity matrix
τ0 = 12×2. For Nf = 3, they are the eight Gell-Mann matrices λa of the SU(3) group,
plus the identity λ0 =

√
2/313×3 (see Appendix B.2).

The coupling constant GS has dimensions of E−2 and contains gluonic degrees of freedom
that substitutes complicated processes involving the exchange of gluons between quarks (see
Figure 3.1). The sign of GS is chosen to give an attraction in the σ, π, ρ, ...quark-antiquark

+ ...

Figure 3.1: Four point local interaction that substitutes complicated quark interactions mediated by gluons.

channels. This interaction is strong enough to spontaneously break chiral symmetry in the
vacuum by generating a quark-antiquark condensation in the vacuum (and, consequently,
a constituent quark mass).

3.1.2 Regularization scheme and parametrization

The local nature of the interaction in the NJL model leads to a non-renormalizable theory,
which has ultraviolet divergences. Thus, a regularization scheme has to be introduced
to deal with the non-convergent integrals in the theory. This has to do with the lack of
knowledge of how the low energy effective model (NJL) was derived from QCD. Various
origins can be attributed to this feature: finite instanton size, non-locality of the theory, or
asymptotic freedom [40, 51].

There are several possible regularization schemes: non-local regularization; regularization of
the real part of the fermion determinant, like Pauli-Villars regularization; and 3-momentum
cut-off (to more details on regularization schemes see [40]).
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In the present work the later regularization, 3-momentum cut-off is chosen. In this process,
the quark field is expanded in a limited momentum basis,

ψ (τ,x) = 1√
V

∑
|q|<Λ

〈x|q〉ψ (τ, q) , (3.3)

where the states are limited to |q| < Λ (where Λ is the model’s cut-off). This corresponds
to a Hilbert space truncation. This regularization breaks the Lorentz covariance of the
model and makes impossible to bind quarks into solitons.

This type of regularization, may be seen as a crude implementation of asymptotic freedom
after all, the suppressing of the interactions at large momentum, simulates the running
coupling constant of QCD.

The parameters of the NJL model need to be fixed to the current quarks masses and
meson properties in the vacuum, like their masses and decay constants, as we will see with
more detail in Section 5.

3.1.3 Further quark interactions

The NJL model given by the Lagrangian (3.2), has a UA(1) symmetry which is broken
in QCD. The lack of the respective Goldstone boson in the meson spectra (due to its
breaking) is known as the UA(1) puzzle (as stated in Section 1.2). Within its resolution
[32, 33] ’t Hooft suggested that a term of the type

L det = GD

(
det
f

[
ψ (1 + γ5)ψ

]
+ det

f

[
ψ (1− γ5)ψ

])
, (3.4)

can be added to a phenomenological Lagrangian density in order to explicitly break the
UA(1) symmetry, while maintaining the other symmetries:

SUV (Nf )⊗ SUA(Nf )⊗ UV (1). (3.5)

The determinant in Equation (3.4), is taken over flavour space and corresponds to a
maximally flavour mixing 2Nf point interaction, involving an incoming and an outgoing
quark of each flavour. It is defined as [49]:

det
f
ψOψ ≡

∑
i1,...,iNf

εi1...iNf

Nf∏
A=1

ψAOψiA . (3.6)

This term is not only important to correctly reproduce the symmetries of QCD, but is
important to get the correct mass splitting of the η and η′ mesons in SUf (3) [51, 52].

It is possible to include other type of quark interactions in the NJL model as long as they
do not violate the symmetries of QCD like chiral symmetry, SUc(3) and CPT symmetry
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(see Table 1.2). Consider the following vector interaction:

L vec = Gvec

N2
f−1∑
a=0

[
(ψγµΓaψ)2 + (ψγµγ5Γaψ)2

]
. (3.7)

This interaction can be decomposed in two parts: a pure vector and pseudovector interaction
(or simply vector-isoscalar), with a coupling constant Gω and a vector-isovector and
pseudovector-isovector interaction (or simply vector-isovector), with a coupling constant
Gρ:

L vec = Gω
[
(ψγµΓ0ψ)2 − (ψγµγ5Γ0ψ)2

]
+Gρ

N2
f−1∑
a=1

[
(ψγµΓaψ)2 + (ψγµγ5Γaψ)2

]
. (3.8)

Due to the quantum numbers of the quark bilinear operators [40] , the first interactions is
related to the ω meson, while the second is related to the ρ meson. The NJL model has
no constrains on the type of vector interaction. Thus, in the present work we will consider
3 types of vector interactions:

NJL(V+P+VI+PI) : L vec
I =Gω

[
(ψγµΓ0ψ)2 + (ψγµγ5Γ0ψ)2

]
+Gρ

N2
f−1∑
a=1

[
(ψγµΓaψ)2 + (ψγµγ5Γaψ)2

]
, (3.9)

NJL(V+P) : L vec
II =Gω

[
(ψγµΓ0ψ)2 + (ψγµγ5Γ0ψ)2

]
, (3.10)

NJL(VI+PI) : L vec
III =Gρ

N2
f−1∑
a=1

[
(ψγµΓaψ)2 + (ψγµγ5Γaψ)2

]
. (3.11)

These vector interactions form an invariant chiral set, i.e, they preserve the chiral symmetry
of the NJL model [40].

We will do all the derivations with the vector interaction given by L vec
I considering

Gρ 6= Gω. In the end, we will present the result for each model above, by considering:

• Gω = Gρ = GV for NJL(V+P+VI+PI);

• Gω = GV and Gρ = 0 for NJL(V+P);

• Gρ = GV and Gω = 0 for NJL(VI+PI);

Where Gω = Gρ ≡ GV . We assume that the ω and ρ mesons are degenerate in the vacuum.
The value of vector coupling GV can be fixed by fitting the meson properties in the vacuum
[53]. However, we will take the ratio GV /GS as a free parameter once, as pointed out in
[25], there is still no constraint for the choice of Gvec at finite density even if there are
attempts in that direction [54]. Having no definitive knowledge on even its sign, Gvec
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can be seen as induced in dense quark matter and might be related to an in-medium
modification [25]. When Gvec is positive (negative) the nature of the vector interaction is
repulsive (attractive).

3.1.4 The chemical potential

The NJL Lagrangian presented in Equation (3.2), has a conserved charge, given by
Equation (2.46). Once we are interested in the investigations of the thermodynamic of
these models, due to the presence of the conserved charge, a chemical potential (with
colour and flavour indices) can be added to the model (exactly the same case as the
Lagrangian presented in Section 2.3). The full NJL model studied within this work, with
the contribution from the chemical potential, is given by the following expression:

L NJL = ψ
(
i/∂ − m̂+ µ̂γ0

)
ψ +GS

N2
f−1∑
a=0

[(
ψΓaψ

)2
+
(
ψiγ5Γaψ

)2
]

+ L det −L vec.

(3.12)

In the following sections we consider the two and three flavour versions of this Lagrangian
density.

The chemical potential of a given particle can always be expressed in terms of the chemical
potentials associated with conserved quantities, i.e., we can always relate the chemical
potential of the quark of flavour i with the baryonic chemical potential (µB), electric charge
chemical potential (µQ), strangeness chemical potential (µS)... In general the chemical
potential of a particle i with baryon charge bi, electric charge qi and strangeness si, can be
written as:

µi = biµB + qiµQ + siµS . (3.13)

For the three lightest quarks we have:

bi qi si

u 1/3 2/3 0
d 1/3 -1/3 0
s 1/3 -1/3 -1

Table 3.1: Baryonic, electric and strangeness charges of the lightest quarks.

3.1.5 Chiral transition

One of the most important characteristics of the NJL model is the spontaneous breaking of
the chiral symmetry of the Lagrangian. However, at finite temperature and density, chiral
symmetry can be restored [55]. Thus, when analysing the NJL model at these conditions,
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two phases can be detected, one where the chiral symmetry is broken and another where
chiral symmetry is restored (as the temperature and density increase).

However, NJL does not uniquely specify an order of the phase transition, it is strongly
dependent on the choice of parameters as well as the approximations that are made [51].

Usually, an order parameter is used to distinguish between two distinct phases, in the case
of the chiral symmetry of the NJL model, this order parameter is the quark condensate:
when the quark condensate approaches zero, the chiral symmetry is restored. A phase
transition can be classified as follows:

• A first-order phase transition, which is characterized by a discontinuity on the first
derivative of the free energy in respect to some thermodynamic variable;

• A second-order phase transitions, which is characterized by a discontinuity on the
second derivative of the free energy in respect to some thermodynamic variable, while
the first derivative remain continuous;

• A crossover between two phases, in which the system changes from one type of
behaviour to another continuously. Its change is not associated with any discontinuity
in the free energy, or it’s derivatives. It is typically smooth taking place in a region,
not being possible to identify precisely the phase transition point. In these cases, is
necessary to point out the definition of crossover used.

In the present work, at T = 0, the chiral symmetry restoration point (µcritB ) is defined in
the following way: if the phase transition is of first-order, we search for the µB at which
there is a discontinuity in the quark condensate (the order parameter). If the transition is
a crossover, we search for the zeros of the second derivative of the light quark condensates,

∂2 〈ψiψi〉
∂µB2 = 0. (3.14)

In the cases where there are different chemical potentials for each quark flavour (different
phase transitions for each flavour), the chemical potential of the phase transition is defined
as the average of the chemical potential of the transition for the light quarks:

µcritB =
µcritB(u) + µcritB(d)

2 . (3.15)

At the densities that the chiral symmetry defined above happens, there is not enough
energy in the system for strangeness to appear [49]. Having said that, it is possible to
define a chiral symmetry restoration point for the strange quark however, this happens at
densities much higher than those found inside neutron stars whereby, we have chosen in the
present work, to define the chiral symmetry restoration point using only the light quarks.
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3.2 The two flavour case

The study of the thermodynamics of a system where the degrees of freedom of interest
are the lighter quarks, up and down, can be done in the NJL model trough a two flavour
analysis of the Lagrangian density presented in Equation (3.12). For equal masses and
chemical potentials, the isospin symmetry is completely conserved. However, introducing
different chemical potentials, one can study the effect of isospin asymmetry in quark matter
(the isospin symmetry will be broken anyway when one imposes β−equilibrium). The
Lagrangian density for two flavours can be written as:

L NJL = ψ
(
i/∂ − m̂+ µ̂γ0

)
ψ +GS

3∑
a=0

[(
ψτaψ

)2
+
(
ψiγ5τ

aψ
)2
]

+ L det −L vec. (3.16)

ψ is a two component vector in flavour space (where each component is a Dirac spinor),
m̂ = diag (mu,md) is the quark current mass matrix, µ̂ = diag (µu, µd) is the quark
chemical potential matrix (both matrices are in flavour space), τ0 = 12×2 is the identity
matrix and τ i are the three Pauli matrices of SUf (2).

In this case, the ’t Hooft determinant (3.4) is a 4 point interaction just like the scalars and
vector interactions. Using the definition (3.6), the t’Hooft determinant for two flavours can
be calculated using (where O = 1± γ5):

det
f
ψOψ ≡

∑
i,j

εij
(
ψuOψi

) (
ψdOψj

)
. (3.17)

In fact, for two flavours of quarks, one can use the ’t Hooft determinant to write the
Lagrangian in (3.16) as the original Lagrangian proposed by Nambu and Jona-Lasinio
(3.1). Separating the zero component of the τa matrices, τ0 = 12×2 and using the result
presented in Appendix C.2, one may write,

L NJL = ψ
(
i/∂ − m̂+ µ̂γ0

)
ψ −L vec

+GS

{(
ψτ0ψ

)2
+
(
ψiγ5τ

0ψ
)2

+
3∑

a=1

[(
ψτaψ

)2
+
(
ψiγ5τ

aψ
)2
]}

+ GD
2

{(
ψτ0ψ

)2
−
(
ψiγ5τ

0ψ
)2
−

3∑
a=1

[(
ψτaψ

)2
−
(
ψiγ5τ

aψ
)2
]}

. (3.18)

Reorganizing, we have

L NJL = ψ
(
i/∂ − m̂+ µ̂γ0

)
ψ +

(
GS + GD

2

)[(
ψτ0ψ

)2
+

3∑
a=1

(
ψiγ5τ

aψ
)2
]

+
(
GS −

GD
2

)[ 3∑
a=1

(
ψτaψ

)2
+
(
ψiγ5τ

0ψ
)2
]
−L vec.

(3.19)



38 Chapter 3. Nambu–Jona-Lasinio Model

The GD coupling constant, for Nf = 2, is not fixed to any meson property therefore,
we may parametrize GS and GD in terms of a new coupling constant, G and a mixing
parameter α [49]. We write:

GS = (1− α)G, (3.20)

GD = 2αG. (3.21)

When α = 1/2 (
GS + GD

2

)
= G ∧

(
GS −

GD
2

)
= 0, (3.22)

the third term in the right hand side cancels and we recover the original Lagrangian (3.1),
which is invariant under UA(1) transformations. The parameter α may vary allowing the
study of the original NJL model or cases where there is flavour mixing (and explicit UA(1)
symmetry break) [49].

As stated previously, one can study several types of vector interactions. We will study the
following vector interactions:

NJL(V+P+VI+PI) : L vec
I =Gω

[
(ψγµτ0ψ)2 + (ψγµγ5τ

0ψ)2
]

+Gρ

3∑
a=1

[
(ψγµτaψ)2 + (ψγµγ5τ

aψ)2
]
, (3.23)

NJL(V+P) : L vec
II =Gω

[
(ψγµτ0ψ)2 + (ψγµγ5τ

0ψ)2
]
, (3.24)

NJL(VI+PI) : L vec
III =Gρ

3∑
a=1

[
(ψγµτaψ)2 + (ψγµγ5τ

aψ)2
]
. (3.25)

The EoS can be obtained through the Matsubara formalism presented in Section 2.2.1. In
order to do so, we are going to use the MFA to write the NJL Lagrangian in the form
presented in Equation (2.44) and calculate the respective grand canonical potential.

3.2.1 NJL in the MFA (two flavours)

The MFA of the model may be obtained by linearising the original Lagrangian density
(action). In order to do it, we need to transform any quark interaction involving more
than two quarks, into a two point interaction. One way to accomplish this is to bosonize
the action i.e., introduce auxiliary bosonic fields in the Lagrangian which interact with
the fermions, and then, treat those auxiliary fields in the MFA. This way, a four point-
interactions for example, is transformed into to two-point interaction. One of those
techniques is called Hubbard-Stratonovich transformation. Let φ be a auxiliary bosonic
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field, ψ a fermionic field and λ a coupling constant:

exp
[∫

d4x λ
(
ψψ
)2
]
∝
∫
Dφ exp

[∫
d4x

(
2λψφψ − λφ2

)]
. (3.26)

This transformation consists in substituting the four point interaction in the generating
functional (partition function) by the relation given in Equation (3.26). If one treats the
auxiliary field φ, in the MFA, the functional integration over this field vanish and we
obtain a fermion field interacting with the mean field 〈0|φ|0〉, linearising the Lagrangian
density.

An equivalent approach to Lagrangian linearisation is to write the product between two
operators as (derived in Appendix C.1):

Ô1Ô2 ≈ 〈Ô1〉 Ô2 + Ô1 〈Ô2〉 − 〈Ô1〉 〈Ô2〉 . (3.27)

Using this equation we may write:(
ψτaψ

)2
≈ 2

(
ψτaψ

)
〈ψτaψ〉 − 〈ψτaψ〉2 , (3.28)(

ψiγ5τ
aψ
)2
≈ 2

(
ψiγ5τ

aψ
)
〈ψiγ5τ

aψ〉 − 〈ψiγ5τ
aψ〉2 , (3.29)(

ψγµτaψ
)2
≈ 2

(
ψγµτaψ

)
〈ψγµτaψ〉 − 〈ψγµτaψ〉2 , (3.30)(

ψγµγ5τ
aψ
)2
≈ 2

(
ψγµγ5τ

aψ
)
〈ψγµγ5τ

aψ〉 − 〈ψγµγ5τ
aψ〉2 . (3.31)

The presence of any field costs energy to the system. Only fields whose VEV is non-zero
at a given density should exist.

A non-zero barionic density requires the presence of quark condensates that couple to the
various densities like scalar, vector, isovector... However, the fundamental state (vacuum)
has well-defined charge, spin and parity. Quark bilinear operators which are not diagonal
in flavour space produce condensates that change these properties. For example, the
condensates 〈ψτ1ψ〉 and 〈ψτ2ψ〉 can be written as a combination of ladder operators, which
couple to charged mesons. This means that their VEV must be zero. See [49, 56] for a
detailed discussion.

We could allow for a non-vanishing expectation value of condensates with pionic quantum
numbers to describe a possible pion condensation [49], however we assume the energies
are not high enough for this condensation to happen. Due to the fact that we are dealing
with quark matter in equilibrium, any currents disappear. Thereby, the only non-vanishing
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quark condensates are:

〈ψτ0ψ〉 = σ0, (3.32)

〈ψτ3ψ〉 = σ3, (3.33)

〈ψγ0τ0ψ〉 = ω0, (3.34)

〈ψγ0τ3ψ〉 = ρ3. (3.35)

Explicitly, one may write (using the Pauli matrices presented in Appendix B.2):

〈ψτ0ψ〉 = 〈ψuψu〉+ 〈ψdψd〉 = σu + σd, (3.36)

〈ψτ3ψ〉 = 〈ψuψu〉 − 〈ψdψd〉 = σu − σd, (3.37)

〈ψγ0τ0ψ〉 = 〈ψ†uψu〉+ 〈ψ†dψd〉 = ρu + ρd, (3.38)

〈ψγ0τ3ψ〉 = 〈ψ†uψu〉 − 〈ψ
†
dψd〉 = ρu − ρd. (3.39)

Taking into account only the non-vanishing condensates and using Equation (C.1), the ’t
Hooft determinant for two flavours (3.17) in this approximation is (Appendix C.3.1):

L det ≈ 2GD
[(
ψuψu

)
〈ψdψd〉+ 〈ψuψu〉

(
ψdψd

)
− 〈ψuψu〉 〈ψdψd〉

]
=

= 2GDψ∆ψ − 2GDσuσd, (3.40)

Here, ∆ is a matrix in flavour space:

∆ =
(
〈ψdψd〉 0

0 〈ψuψu〉

)
=
(
σd 0
0 σu

)
. (3.41)

Finally, the NJL Lagrangian in the MFA, for two flavours of quarks, with the ’t Hooft
determinant and a vector interaction (L vec

I ) is:

LMFA = ψ
(
i/∂ − m̂+ µ̂γ0

)
ψ

+ 2GS
(
ψτ0ψ

)
(σu + σd)−GS (σu + σd)2

+ 2GS
(
ψτ3ψ

)
(σu − σd)−GS (σu − σd)2

+ 2GDψ∆ψ − 2GDσuσd

− 2Gω
(
ψγ0τ0ψ

)
(ρu + ρd) +Gω (ρu + ρd)2

− 2Gρ
(
ψγ0τ3ψ

)
(ρu − ρd) +Gρ (ρu − ρd)2 . (3.42)

Writing this expression in the form given by expression (2.44) yields:

LMFA = ψ
[
iγµ

(
∂µ + iV0δ

0
µ

)
− (m̂+ S)

]
ψ + U, (3.43)
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where:

V0 = 2Gωτ0 (ρu + ρd) + 2Gρτ3 (ρu − ρd) , (3.44)

S = −2GSτ0 (σu + σd)− 2GSτ3 (σu − σd)− 2GD∆, (3.45)

U = −2GS
(
σ2
u + σ2

d

)
− 2GDσuσd +Gω (ρu + ρd)2 +Gρ (ρu − ρd)2 . (3.46)

The effective mass M̂ and chemical potential µ̂ for this model are:

M̂ = m̂− 2GSτ0 (σu + σd)− 2GSτ3 (σu − σd)− 2GD∆, (3.47)

µ̃ = µ̂− 2Gωτ0 (ρu + ρd)− 2Gρτ3 (ρu − ρd) . (3.48)

Following Section 2.3, it is possible to obtain the grand canonical potential for this
Lagrangian. One must just remember that in this case, the fermion field ψ is a quark
field, which means that the set of extra indices I, contains colour and flavour indices i.e,
I = {f, c}. The grand canonical potential is then given by Equation (2.71), with the proper
substitutions:

ΩMFA − Ω0 = 2GS
(
σ2
u + σ2

d

)
+ 2GDσuσd −Gω (ρu + ρd)2 −Gρ (ρu − ρd)2

− 2T tr
f,c

∫
d3p

(2π)3

[
βE + ln

(
1 + e−β(E+µ̃)

)
+ ln

(
1 + e−β(E−µ̃)

)]
. (3.49)

The irrelevant constant Ω0 is defined such that the pressure and energy density vanish
in the vacuum i.e., Ω0 = ΩMFA (T = 0, µ = 0). We are just left with the trace operation
under colour and flavour indices. The trace over colour is trivial and is simply given by Nc

(number of colours) after all, neither the effective mass or chemical potential have internal
structure in colour space. That is not the case for flavour indices. In flavour space, the
effective mass is:

M̂ = m̂− 2GSτ0 (σu + σd)− 2GSτ3 (σu − σd)− 2GD∆ =

=
(
mu 0
0 md

)
− 2GS (σu + σd)

(
1 0
0 1

)
− 2GS (σu − σd)

(
1 0
0 −1

)
− 2GD

(
σd 0
0 σu

)
=

=
(
Mu 0
0 Md

)
. (3.50)

Where we have defined the effective mass for each flavour of quark:

Mu = mu − 4GSσu − 2GDσd, (3.51)

Md = md − 4GSσu − 2GDσu. (3.52)
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The effective chemical potential µ̃ is:

µ̃ = µ̂− 2Gωτ0 (ρu + ρd)− 2Gρτ3 (ρu − ρd) =

=
(
µu 0
0 µd

)
− 2Gω (ρu + ρd)

(
1 0
0 1

)
− 2Gρ (ρu − ρd)

(
1 0
0 −1

)
=

=
(
µ̃u 0
0 µ̃d

)
, (3.53)

here we define the effective chemical potential for each flavour of quark:

µ̃u = µu − 2Gω (ρu + ρd)− 2Gρ (ρu − ρd) , (3.54)

µ̃d = µd − 2Gω (ρu + ρd) + 2Gρ (ρu − ρd) . (3.55)

The power of a diagonal matrix is equal to the power of its diagonal entries. Using this
fact, the trace of the energy term is:

tr
f
β E = β tr

f

√
p2 + M̂2 = β tr

f

 p2
12×2 +

(
Mu 0
0 Md

)2 1/2

=

= β tr
f

(
Eu 0
0 Ed

)
= β (Eu + Ed) . (3.56)

The trace of the other two terms, involving the logarithmic function can be calculated in a
similar way (using the identity ln detA = tr lnA):

tr
f

ln
(
1 + e−(E±µ̃)/T

)
= ln det

f

(
1 + e−(E±µ̃)/T

)
= ln det

f

(
1 +

∞∑
n=0

(−β)n(E ± µ̃)n

n!

)
=

= ln det

12×2 +
∞∑
n=0

(−β)n

n!

(
Eu ± µ̃u 0

0 Ed ± µ̃d

)n  , (3.57)

again, the matrix is diagonal:

tr
f

ln
(
1 + e−(E±µ̃)/T

)
= ln det

1 +
∞∑
n=0

(−β)n
n! (Eu ± µ̃u)n 0

0 1 +
∞∑
n=0

(−β)n
n! (Ed ± µ̃d)n

 =

= ln det
(

1 + e−(Eu±µ̃u)/T 0
0 1 + e−(Ed±µ̃d)/T

)
=

= ln
(
1 + e−(Eu±µ̃u)/T

)
+ ln

(
1 + e−(Ed±µ̃d)/T

)
. (3.58)
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= + +
Figure 3.2: Diagrammatic representation of the effective mass for flavour i. The dot vertex represents
the GS coupling while the square vertex the GD coupling. There is a contribution from the condensate of
flavour i (full line loop) and from the other condensate, of flavour j (dashed loop).

Finally, the grand canonical potential of the theory is (the sum is to be made over flavours
of quarks):

ΩMFA − Ω0 = 2GS
(
σ2
u + σ2

d

)
+ 2GDσuσd −Gω (ρu + ρd)2 −Gρ (ρu − ρd)2

− 2T Nc

∑
f=u,d

∫
d3p

(2π)3

[
βEf + ln

(
1 + e−β(Ef+µ̃f)

)
+ ln

(
1 + e−β(Ef−µ̃f)

)]
.

(3.59)

Following Section 2.3, the values of condensates σu and σd are determined by minimizing
the grand canonical potential:

∂ΩMFA
∂σu

= ∂ΩMFA
∂σd

= 0. (3.60)

Using these relations (Appendix C.4.1), yields the so-called gap equations of the theory
(see Figure 3.2):

Mi = mi − 4GSσi − 2GDσj , i 6= j ∈ {u, d}, (3.61)

here the quark condensate for each flavour is given by:

σi = 〈ψiψi〉 = −2Nc

∫
d3p

(2π)3
Mi

Ei
(1− ni − ni) . (3.62)

Where ni and ni are the quark and anti-quark occupation numbers given by Equations
(2.82) and (2.83). Once again, using the relations given in Equations (2.27), (2.28), (2.29)
and (2.30), we can calculate the i−quark density,

ρi = 2Nc

∫
d3p

(2π)3 (ni − ni) , (3.63)

the pressure,

PMFA = −Ω0 − 2GS
(
σ2
u + σ2

d

)
− 2GDσuσd +Gω (ρu + ρd)2 +Gρ (ρu − ρd)2

+ 2Nc

∑
f=u,d

∫
d3p

(2π)3

[
Ef + T ln

(
1 + e−(Ef+µ̃f )/T

)
+ T ln

(
1 + e−(Ef−µ̃f )/T

)]
,

(3.64)
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entropy,

SMFA = 2Nc

∑
f=u,d

∫
d3p

(2π)3

[
ln
(
1 + e−(Ef+µ̃f )/T

)
+ Ef + µ̃f

T
nf

+ ln
(
1 + e−(Ef−µ̃f )/T

)
+ Ef − µ̃f

T
nf

]
, (3.65)

and energy density,

εMFA = Ω0 + 2GS
(
σ2
u + σ2

d

)
+ 2GDσuσd −Gω (ρu + ρd)2 −Gρ (ρu − ρd)2

− 2Nc

∑
f=u,d

∫
d3p

(2π)3 [Ef (1− nf − nf ) + nf (µ̃f − µf ) + nf (µf − µ̃f )] . (3.66)

3.2.2 T=0 Limit (two flavours)

Following Section 2.4.1 and Appendix D.1.1, in the T = 0 limit, the Fermi momentum of
the quark of flavour f is:

λFf =
√
µ̃2
f −M2

f . (3.67)

Every thermodynamic quantity of interest follows (using Appendix D.1.1):

PMFA = −Ω0 − 2GS
(
σ2
u + σ2

d

)
− 2GDσuσd +Gω (ρu + ρd)2 +Gρ (ρu − ρd)2

+ Nc

π2

∑
f=u,d

∫ Λ

λFf

dpp2Ef + Nc

π2

∑
f=u,d

µ̃f
λ3
Ff

3 , (3.68)

quark density of flavour f ,

ρf = Nc

π2

λ3
Ff

3 . (3.69)

and energy density,

εMFA = Ω0 + 2GS
(
σ2
u + σ2

d

)
+ 2GDσuσd −Gω (ρu + ρd)2 −Gρ (ρu − ρd)2

− Nc

π2

∑
f=u,d

∫ Λ

λFf

dpp2Ef + Nc

π2

∑
f=u,d

(µf − µ̃f )
λ3
Ff

3 . (3.70)

The quark condensate in this limit is:

σi = −Nc

π2

∫ Λ

λFi

dpp2Mi

Ei
. (3.71)

The irrelevant constant Ω0 is defined as:

Ω0 = −2GS
(
σ2
u0 + σ2

d0

)
− 2GDσu0σd0 + Nc

π2

∑
f=u,d

∫ Λ

0
dpp2Ef0, (3.72)
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where σf0 and Ef0 are the quark condensate and energy in the vacuum,

σi0 = −Nc

π2

∫ Λ

0
dpp2Mi0

Ei0
, (3.73)

Ei0 =
√
p2 +Mi0. (3.74)

3.3 The three flavour case

Although in the current conditions of the Universe, matter does not have strange, charm,
beauty or truth content, at the right conditions (sufficient energies), the formation of hadrons
with these quantum numbers may become favourable. Thus, the addition of strangeness is
necessary to describe the structure of compact stars. In fact, it is expected that in the
interior of a neutron star strangeness will be present either in the form of hyperons, a kaon
condensate or a core of deconfined quark matter [56]. To examine this possibility we use
the three flavour version of the NJL model:

L NJL = ψ
(
i/∂ − m̂+ µ̂γ0

)
ψ +GS

8∑
a=0

[(
ψλaψ

)2
+
(
ψiγ5λ

aψ
)2
]
−L det −L vec. (3.75)

Here, ψ is three component vector in flavour space, m̂ = diag (mu,md,ms) is the quark
current mass matrix, µ̂ = diag (µu, µd, µs) is the quark chemical potential matrix and is
λa are matrices of the Uf (3) group, where λ0 =

√
2/313×3, and λi, are the eight Gell-Mann

matrices of SUf (3). In this version of the NJL model the sign of the ’t Hooft determinant
is negative to be consistent with the literature.

For Nf = 3, the ’t Hooft determinant (3.4) is a six quark interaction. Using the definition
(3.6), this term is given by:

det
f
ψOψ ≡

∑
i,j,k

εijk
(
ψuOψi

) (
ψdOψj

) (
ψsOψk

)
. (3.76)

The vector interactions for three flavours of quarks are explicitly given by:

NJL(V+P+VI+PI) : L vec
I =Gω

[
(ψγµλ0ψ)2 + (ψγµγ5λ

0ψ)2
]

+Gρ

8∑
a=1

[
(ψγµλaψ)2 + (ψγµγ5λ

aψ)2
]
, (3.77)

NJL(V+P) : L vec
II =Gω

[
(ψγµλ0ψ)2 + (ψγµγ5λ

0ψ)2
]
, (3.78)

NJL(VI+PI) : L vec
III =Gρ

8∑
a=1

[
(ψγµλaψ)2 + (ψγµγ5λ

aψ)2
]
. (3.79)



46 Chapter 3. Nambu–Jona-Lasinio Model

The EoS can be obtained through the Matsubara formalism presented in Section 2.2.1.

3.3.1 NJL in the MFA (three flavours)

Just like for two flavours, we now apply the MFA to the three flavour version of the NJL
model. Once again, to linearise the Lagrangian density we use the product between two
operators given in Equation (C.1). However, as stated previously, the ’t Hooft determinant
is a six quark interaction. To linearise that section of the Lagrangian we will use the
product between three operators in the MFA (derived in Appendix C.1):

Ô1Ô2Ô3 ≈ Ô1 〈Ô2〉 〈Ô3〉+ 〈Ô1〉 Ô2 〈Ô3〉+ 〈Ô1〉 〈Ô2〉 Ô3 − 2 〈Ô1〉 〈Ô2〉 〈Ô3〉 . (3.80)

The linearised bilinear operators are:(
ψλaψ

)2
≈ 2

(
ψλaψ

)
〈ψλaψ〉 − 〈ψλaψ〉2 , (3.81)(

ψiγ5λ
aψ
)2
≈ 2

(
ψiγ5λ

aψ
)
〈ψiγ5λ

aψ〉 − 〈ψiγ5λ
aψ〉2 , (3.82)(

ψγµλaψ
)2
≈ 2

(
ψγµλaψ

)
〈ψγµλaψ〉 − 〈ψγµλaψ〉2 , (3.83)(

ψγµγ5λ
aψ
)2
≈ 2

(
ψγµγ5λ

aψ
)
〈ψγµγ5λ

aψ〉 − 〈ψγµγ5λ
aψ〉2 . (3.84)

The only non-vanishing quark condensates are:

〈ψλ0ψ〉 = σ0, (3.85)

〈ψλ3ψ〉 = σ3, (3.86)

〈ψλ8ψ〉 = σ8, (3.87)

〈ψγ0λ0ψ〉 = ω0, (3.88)

〈ψγ0λ3ψ〉 = ρ3 (3.89)

〈ψγ0λ8ψ〉 = ρ8. (3.90)

Explicitly (using the Gell-Mann matrices presented in Appendix B.2):

〈ψλ0ψ〉 =
√

2
3
(
〈ψuψu〉+ 〈ψdψd〉+ 〈ψsψs〉

)
=
√

2
3 (σu + σd + σs) , (3.91)

〈ψλ3ψ〉 = 〈ψuψu〉 − 〈ψdψd〉 = σu − σd, (3.92)

〈ψλ8ψ〉 = 1√
3

(
〈ψuψu〉+ 〈ψdψd〉 − 2 〈ψsψs〉

)
= 1√

3
(σu + σd − 2σs) , (3.93)

〈ψγ0λ0ψ〉 =
√

2
3
(
〈ψ†uψu〉+ 〈ψ†dψd〉+ 〈ψ†sψs〉

)
=
√

2
3 (ρu + ρd + ρs) , (3.94)

〈ψγ0λ3ψ〉 = 〈ψ†uψu〉 − 〈ψ
†
dψd〉 = ρu − ρd, (3.95)

〈ψγ0λ8ψ〉 = 1√
3

(
〈ψ†uψu〉+ 〈ψ†dψd〉 − 2 〈ψ†dψd〉

)
= 1√

3
(ρu + ρd − 2ρs) . (3.96)
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The ’t Hooft determinant can be written as (see Appendix C.3.2):

L det ≈ −2GD
[(
ψuψu

)
〈ψdψd〉 〈ψsψs〉+ 〈ψuψu〉

(
ψdψd

)
〈ψsψs〉

− 〈ψuψu〉 〈ψdψd〉
(
ψsψs

)
− 2 〈ψuψu〉 〈ψdψd〉 〈ψsψs〉

]
=

= −2GDψ∆ψ + 4GDσuσdσs, (3.97)

Here, ∆ is a matrix in flavour space:

∆ =


〈ψdψd〉 〈ψsψs〉 0 0

0 〈ψuψu〉 〈ψsψs〉 0
0 0 〈ψuψu〉 〈ψdψd〉

 =


σdσs 0 0

0 σuσs 0
0 0 σuσd

 .
(3.98)

Finally, the NJL Lagrangian in the MFA, for three flavours of quarks, with the ’t Hooft
determinant and a vector interaction (L vec

I ) is:

LMFA = ψ
(
i/∂ − m̂+ µ̂γ0

)
ψ

+ 2GS
(
ψλ0ψ

)√2
3 (σu + σd + σs)−

2
3GS (σu + σd + σs)2

+ 2GS
(
ψλ3ψ

)
(σu − σd)−GS (σu − σd)2

+ 2GS
(
ψλ8ψ

) 1√
3

(σu + σd − 2σs)−
1
3GS (σu + σd − 2σs)2

− 2GDψ∆ψ + 4GDσuσdσs

− 2Gω
(
ψγ0λ0ψ

)√2
3 (ρu + ρd + ρs) + 2

3Gω (ρu + ρd + ρs)2

− 2Gρ
(
ψγ0λ3ψ

)
(ρu − ρd) +Gρ (ρu − ρd)2

− 2Gρ
(
ψγ0λ8ψ

) 1√
3

(ρu + ρd − 2ρs) + 1
3Gρ (ρu + ρd − 2ρs)2 . (3.99)

Once again, writing this expression in the form given by expression (2.44) yields:

LMFA = ψ
[
iγµ

(
∂µ + iV0δ

0
µ

)
− (m̂+ S)

]
ψ + U, (3.100)

where the auxiliary fields V0 and S are given by:

V0 =
√

8
3Gωλ

0 (ρu + ρd + ρs) + 2Gρλ3 (ρu − ρd) + 2√
3
Gρλ

8 (ρu + ρd − 2ρs) , (3.101)

S = −
√

8
3GSλ

0 (σu + σd + σs)− 2GSλ3 (σu − σd)−
2√
3
GSλ

8 (σu + σd − 2σs) + 2GD∆.

(3.102)
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The mean field potential U is:

U = −2GS
(
σ2
u + σ2

d + σ2
s

)
+ 4GDσuσdσs

+ 2
3Gω (ρu + ρd + ρs)2 +Gρ (ρu − ρd)2 + 1

3Gρ (ρu + ρd − 2ρs)2 . (3.103)

The effective mass M and chemical potential µ̂ for this model are:

M̂ = m̂−
√

8
3GSλ

0 (σu + σd + σs)− 2GSλ3 (σu − σd)

− 2√
3
GSλ

8 (σu + σd − 2σs) + 2GD∆, (3.104)

µ̃ = µ̂−
√

8
3Gωλ

0 (ρu + ρd + ρs)− 2Gρλ3 (ρu − ρd)

− 2√
3
Gρλ

8 (ρu + ρd − 2ρs) . (3.105)

The grand canonical potential can be obtained in exactly the same way as in the previous
section. The fermion field has colour and flavour indices i.e, I = {f, c}. We get:

ΩMFA − Ω0 = 2GS
(
σ2
u + σ2

d + σ2
s

)
− 4GDσuσdσs

− 2
3Gω (ρu + ρd + ρs)2 −Gρ (ρu − ρd)2 − 1

3Gρ (ρu + ρd − 2ρs)2

− 2T tr
f,c

∫
d3p

(2π)3

[
βE + ln

(
1 + e−β(E+µ̃)

)
+ ln

(
1 + e−β(E−µ̃)

)]
. (3.106)

The effective mass in flavour space is:

M̂ = m̂−
√

8
3GSλ

0 (σu + σd + σs)− 2GSλ3 (σu − σd)−
2√
3
GSλ

8 (σu + σd − 2σs) + 2GD∆ =

=


mu 0 0
0 md 0
0 0 ms

− 4
3GS (σu + σd + σs)


1 0 0
0 1 0
0 0 1

− 2GS (σu − σd)


1 0 0
0 −1 0
0 0 0



− 2
3GS (σu + σd − 2σs)


1 0 0
0 1 0
0 0 −2

+ 2GD


σdσs 0 0

0 σuσs 0
0 0 σuσd

 =

=


Mu 0 0
0 Md 0
0 0 Ms

 , (3.107)

where the effective mass for each flavour is:

Mu = mu − 4GSσu + 2GDσdσs, (3.108)

Md = md − 4GSσd + 2GDσuσs, (3.109)

Ms = ms − 4GSσs + 2GDσuσd. (3.110)
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The effective chemical potential µ̃:

µ̃ = µ̂−
√

8
3Gωλ

0 (ρu + ρd + ρs)− 2Gρλ3 (ρu − ρd)−
2√
3
Gρλ

8 (ρu + ρd − 2ρs) =

=


µu 0 0
0 µd 0
0 0 µs

− 4
3Gω (ρu + ρd + ρs)


1 0 0
0 1 0
0 0 1

− 2Gρ (ρu − ρd)


1 0 0
0 −1 0
0 0 0



− 2
3Gρ (ρu + ρd − 2ρs)


1 0 0
0 1 0
0 0 −2

 =

=


µ̃u 0 0
0 µ̃d 0
0 0 µ̃s

 , (3.111)

where:

µ̃u = µu −
4
3 (Gω + 2Gρ) ρu −

4
3 (Gω −Gρ) ρd −

4
3 (Gω −Gρ) ρs, (3.112)

µ̃d = µd −
4
3 (Gω + 2Gρ) ρd −

4
3 (Gω −Gρ) ρs −

4
3 (Gω −Gρ) ρu, (3.113)

µ̃s = µs −
4
3 (Gω + 2Gρ) ρs −

4
3 (Gω −Gρ) ρu −

4
3 (Gω −Gρ) ρd. (3.114)

As before, the trace over the colour indices simply yields a Nc factor. Due to the diagonal
nature of the effective mass and effective potential matrices in flavour space (as shown in
the previous section), the trace over flavour yields a sum over flavour:

ΩMFA − Ω0 = 2GS
(
σ2
u + σ2

d + σ2
s

)
− 4GDσuσdσs

− 2
3Gω (ρu + ρd + ρs)2 −Gρ (ρu − ρd)2 − 1

3Gρ (ρu + ρd − 2ρs)2

− 2T Nc

∑
f=u,d,s

∫
d3p

(2π)3

[
βEf + ln

(
1 + e−β(Ef+µ̃f)

)
+ ln

(
1 + e−β(Ef−µ̃f)

)]
.

(3.115)

The values of condensates σu, σd and σs are determined by minimizing the grand canonical
potential (see Appendix C.4.2):

∂ΩMFA
∂σu

= ∂ΩMFA
∂σd

= ∂ΩMFA
∂σs

= 0. (3.116)

The gap equations for three flavours are (see Figure 3.3):

Mi = mi − 4GSσi + 2GDσjσk i 6= j 6= k ∈ {u, d, s}. (3.117)

here, the quark condensate is given by Equation (3.62).
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= + +

Figure 3.3: Diagrammatic representation of the effective mass for flavour i. The dot vertex represents
the GS coupling while the square vertex the GD coupling. Each type of line (full, dashed, double dashed)
corresponds to a contribution of the condensate of each quark flavour.

The quark density is given by Equation (3.63) while, using the thermodynamic relations,
we can extract the pressure, energy density and entropy:

PMFA = −Ω0 − 2GS
(
σ2
u + σ2

d + σ2
s

)
+ 4GDσuσdσs

+ 2
3Gω (ρu + ρd + ρs)2 +Gρ (ρu − ρd)2 + 1

3Gρ (ρu + ρd − 2ρs)2

+ 2Nc

∑
f=u,d,s

∫
d3p

(2π)3

[
Ef + T ln

(
1 + e−(Ef+µ̃f )/T

)
+ T ln

(
1 + e−(Ef−µ̃f )/T

)]
,

(3.118)

εMFA = Ω0 + 2GS
(
σ2
u + σ2

d + σ2
s

)
− 4GDσuσdσs

− 2
3Gω (ρu + ρd + ρs)2 −Gρ (ρu − ρd)2 − 1

3Gρ (ρu + ρd − 2ρs)2

− 2Nc

∑
f=u,d,s

∫
d3p

(2π)3 [Ef (1− nf − nf ) + nf (µ̃f − µf ) + nf (µf − µ̃f )] . (3.119)

The entropy is the same as in the two flavour case (3.65), except the sum is extended to
the strange quark.

3.3.2 T = 0 Limit (three flavours)

Following Section 2.4.1 and Appendix D.1.1, in the T = 0 limit, the Fermi momentum of
the quark of flavour f is:

λFf =
√
µ̃2
f −M2

f . (3.120)

Every thermodynamic quantity of interest follows (using Appendix D.1.1):

PMFA = −Ω0 − 2GS
(
σ2
u + σ2

d + σ2
s

)
+ 4GDσuσdσs

+ 2
3Gω (ρu + ρd + ρs)2 +Gρ (ρu − ρd)2 + 1

3Gρ (ρu + ρd − 2ρs)2

+ Nc

π2

∑
f=u,d,s

∫ Λ

λFf

dpp2Ef + Nc

π2

∑
f=u,d,s

µ̃f
λ3
Ff

3 , (3.121)
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quark density of flavour f ,

ρf = Nc

π2

λ3
Ff

3 , (3.122)

and energy density,

εMFA = Ω0 + 2GS
(
σ2
u + σ2

d + σ2
s

)
− 4GDσuσdσs

− 2
3Gω (ρu + ρd + ρs)2 −Gρ (ρu − ρd)2 − 1

3Gρ (ρu + ρd − 2ρs)2

− Nc

π2

∑
f=u,d,s

∫ Λ

λFf

dpp2Ef + Nc

π2

∑
f=u,d,s

(µf − µ̃f )
λ3
Ff

3 . (3.123)

The quark condensate in this limit is:

σi = −Nc

π2

∫ Λ

λFi

dpp2Mi

Ei
. (3.124)

The irrelevant constant Ω0 is defined as:

Ω0 = −2GS
(
σ2
u0 + σ2

d0 + σ2
s0

)
+ 4GDσu0σd0σs0 + Nc

π2

∑
f=u,d,s

∫ Λ

0
dpp2Ef0, (3.125)

where σf0 and Ef0 are the quark condensate and energy in the vacuum,

σi0 = −Nc

π2

∫ Λ

0
dpp2Mi0

Ei0
, (3.126)

Ei0 =
√
p2 +Mi0. (3.127)
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Chapter 4

Neutron Stars

4.1 General aspects

Discovered in 1967, neutron stars are one of the most extreme and interesting objects
in the Universe. They are one of the three main endpoints of stellar evolution and are
currently being used as “laboratories” to study the origins of the Universe and the nature
of matter itself. Ultimately, there is a lot of knowledge to acquire about the laws of nature
in extreme conditions that do not exist anywhere else.

During the life of a star two forces are in balance, the star’s own gravity and the radiation
pressure from nuclear fusion. In the later process, lighter elements are fused into heavier
ones that accumulate in the core of the star. However, when the fusion process reaches
iron, no more elements can be produced within the star and nuclear fusion stops. The
core must be supported by electron degeneracy pressure alone (due to Pauli exclusion
principle). When the star has a mass superior to 1.4 solar masses (Chandrasekhar limit),
electron degeneracy pressure is overcome and electrons and protons fuse into neutrons via
electron capture, releasing neutrinos. At this point, neutron degeneracy pressure halts the
contraction of the star and the left remnant of the gravitational collapse is a neutron star.
If this remnant has more than 1.5− 3 solar masses (Tolman–Oppenheimer–Volkoff limit,
not exactly known), it collapses further to form a black hole.

Neutron stars have a thin atmosphere of hot plasma at the surface. In the interior they are
mostly composed of neutrons however, other particles may exist in its interior (see Figure
4.1). The crust is composed of iron atoms in a sea of electrons. Closer to the core, extreme
densities make possible the existence of exotic types of particles and matter like: hyperons,
Bose-Einstein condensates and even some kind of ultra-dense quark matter.

The core composition is not currently known and several efforts are being made to determine
possible observational signatures that would give some insight about it. The present work
tries to infer about the possibility of a quark matter core through a two model approach
to the EoS of neutron star matter.
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Figure 4.1: Different theoretical predictions for the composition of a neutron star. In the present work we
study the possiblitiy of a hybrid star with core composed of quarks (Image taken from [57]).

Due to its incredible compact nature and strong gravitational field, neutron stars must be
treated with Einstein’s general theory of relativity for a more legitimate description.

4.2 Quantum hadrodynamics

Theoretical nuclear physics deals with mathematical models that provide an accurate
description of the properties, structures and mechanisms of nuclear matter. An exact
theoretical description of the nuclear force (potential) that derives from QCD is unknown.
These theoretical models must rely on experimental evidences, that provide several empirical
properties of nuclear matter:

• The nuclear force between two protons is the same as the force between two neutrons
and their masses are almost the same;

• The nuclear force has a very short range;

• Nuclear matter is a saturated system (the addition of a nucleon to the bulk only
increases the volume, not the binding energy per nucleon), which implies intermediate
attraction;

• The nuclear medium is homogeneous, isotropic and the free path of nucleons is much
larger than the nucleon size (independent particles);

These properties led to the creation of the “liquid-drop model”, which treats the nucleus
as a drop of incompressible nuclear fluid. Within this model, the Bethe–Weizsäcker mass
formula (4.1) gives the binding energy EB, of a nucleus based only on it’s mass and atomic
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number, A and Z. It has several contributions like volume energy, surface tension, Coulomb
repulsion and proton-neutron asymmetry.

EB = EV olume + ESurface + ECoulomb + EAsymmetry =

= aVA− aSA2/3 − aC
Z2

A1/3 − aA
(A− 2Z)2

A
. (4.1)

The constants aV , aS , aC and aA can be calculated by fitting experimental data and be
related to the coupling constants of relativistic nuclear field models.

4.2.1 Relativistic nuclear field theory

Quantum hadrodynamics (QHD) is the name given to effective relativistic nuclear field
models, whose degrees of freedom are hadrons. To introduce the formalism, we consider
the simple (σ − ω) model, originally proposed by Johnson and Teller, Duer and Walecka
[58–60] . The (σ − ω) model reproduces some properties of nuclear matter near saturation
density and describes the relativistic effects at higher densities. It is based on the fields
of four particles: the nucleons, a scalar meson (σ) and a vector meson (ωµ). In the static
limit, one boson exchange of these mesons reproduces the intermediate-range attraction (σ
meson),

(
−∇2 +m2

σ

)
σ (x) = −gσδ(3) (x)⇒ σ(x) = − gσ4π

e−mσ|x|

|x|
, (4.2)

and the short-range repulsion (ω meson),

(
−∇2 +m2

ω

)
γµωµ (x) = gωδ

(3) (x)⇒ γµωµ(x) = gω
4π

e−mω|x|

|x|
, (4.3)

of the nucleon-nucleon Yukawa potential:

V σ,ω
NN (|x|) = gωγ

µωµ (x) + gσσ (x) =

=
(
g2
ω

4π
e−mω |x|

|x|

)
+
(
− g

2
σ

4π
e−mσ |x|

|x|

)
. (4.4)

The sign of the coupling constants gσ and gω are chosen to make the σ meson potential
attractive and the ω meson repulsive.

The Lagrangian density for the (σ − ω) model is given by the sum of the free Lagrangians
of each field (nucleons and meson fields),

L free
N = ψN

[
i/∂ −m

]
ψN (4.5)

L free
σ = 1

2 (∂µσ) (∂µσ)− 1
2m

2
σσ

2 (4.6)

L free
ω = −1

4ωµνω
µν + 1

2m
2
ωωµω

µ, (4.7)
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and an interaction Lagrangian where the scalar meson (σ) is coupled to the scalar density
ψNψN and the vector meson (ωµ) is coupled to the baryon four current ψNγµψN :

L int = gσσψψ − gωωµψγµψ. (4.8)

Putting all together yields:

L σ−ω = ψN [iγµ (∂µ + igωωµ)− (m− gσσ)]ψN

+ 1
2 (∂µσ) (∂µσ)− 1

2m
2
σσ

2 − 1
4ωµνω

µν + 1
2m

2
ωωµω

µ. (4.9)

Here, the nucleon field is represented by a Dirac-spinor ψ = (p, n)T as an isospin doublet
state of proton and neutron, which have the same mass m. The term ωµν = ∂µων − ∂νωµ,
is the strength tensor of the vector meson.

The theory parameters m∗ ≡ m− gσσ, mσ, mω, gσ and gω can be algebraically connected
to five important properties of nuclear matter [56]:

• The binding energy per nucleon and nucleon number density at saturation, normalize
the EoS at one point in the energy-density plane;

• The compression modulus (K) and effective nuclear mass (m∗) at saturation assures
that extrapolation to higher density is correct, in the vicinity of saturation (controlling
the “stiffness” or softness of the EoS);

• The isospin symmetry coefficient (aA) assures that small extrapolations, to isospin
asymmetric systems, are correct.

However, the simple (σ − ω) model fails at an accurate description of the compression
modulus at saturation (K ≈ 550MeV , a factor of two times larger than it should be), of
the effective nuclear mass (m∗ ≈ 0.5, in poor agreement with empirical range) and the
symmetry coefficient (aA ∼ 15 MeV, a factor of two times smaller than present experimental
data). Both of these properties affect the high-density behaviour of the EoS, generating
an extremely stiff EoS. Due to this flaws, the model is not expected to extrapolate very
well to high densities, in neither symmetric or asymmetric matter. As we are interested in
describing neutron star matter, extrapolation to high density is of ultimate importance.

4.2.2 The nonlinear Walecka model

Following Boguta and Bodmer [61], to solve the shortcomings of the simple (σ − ω) model,
we add self-interactions of the scalar field:

U (σ) = 1
3bm (gσσ)3 + 1

4c (gσσ)4 , (4.10)

where the additional coupling constants b and c are dimensionless due to the introduction of
the mass m. This term allows the model to better reproduce the values of the compression
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modulus K and effective mass m∗ at saturation, properties of great importance for the
high-density behaviour of the EoS.

A quartic term in ω,

L int
ωω = 1

4!ξg
4
ω (ωµωµ)2 , (4.11)

was proposed in [62] to be able to fit the ground-state properties of several nuclei and
Dirac-Bruecker-Hartree-Fock calculations at large densities.

As we are interested in describing neutron star matter (asymmetric systems) we can add to
the theory an isospin restoring interaction, mimicking the Bethe–Weizsäcker mass formula
and the valley of beta stability in nuclear physics. Such interaction is given by the ρµ
meson, an isospin triplet which couple to the isospin current of the nucleon in the following
way:

L int
ρN = −1

2ψNγ
µgρτ · ρµψN . (4.12)

This interactions leads to a quadratic contribution in the deviation from isospin symmetry
in the energy density of the theory. The free Lagrangian for this new field is:

L free
ρ = −1

4ρµν · ρ
µν + 1

2m
2
ρ ρµ · ρµ, (4.13)

here ρµν = ∂µρν − ∂νρµ is the field-strength tensor, an mρ is its mass.

We also allow for an interaction between the mesons, ω and ρ, through a non-linear
interaction term of the type:

L int
ωρ = Λω

(
g2
ωωµω

µ
) (
g2
ρ ρµ · ρµ

)
. (4.14)

This term is needed to get a good slope of the symmetry energy L at saturation density,
as suggested in [63].

The NL3ωρ model is given by the Lagrangian density with all of these contributions. It
can be written as:

L NL3ωρ = ψN

[
γµ
(
i∂µ − gωωµ −

1
2gρτ · ρµ

)
− (m− gσσ)

]
ψN

+ 1
2∂

µσ∂µσ −
1
2m

2
σσ

2 − 1
3bm(gσσ)3 − 1

4c(gσσ)4

+ 1
2m

2
ωω

µωµ −
1
4ωµνω

µν + 1
4!ξg

4
ω (ωµωµ)2

− 1
4ρ

µν · ρµν + 1
2 m

2
ρ ρ

µ · ρµ

+ Λω
(
g2
ωωµω

µ
) (
g2
ρ ρµ · ρµ

)
. (4.15)

Hyperons are expected to appear inside a neutron star, when densities reach two to three
times the saturation density. However, we will not consider hyperons in the present work.
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Instead, we investigate the onset of strangeness in the quark phase inside the star. The
onset of this degree of freedom softens the EoS leading to smaller neutron star masses [14].

4.2.3 The nonlinear Walecka in the MFA

As implemented in the previous section for the NJL model, we are going to work in the
MFA approximation. As stated previously (Section 3.2.1), only fields whose VEV is
non-zero should contribute. The ground state is assumed to be a degenerate fermion state
with eigenvalues modified by the presence of the (mean) meson fields, implying that the
ground state as a definite charge, spin and parity. This means that any meson state which
may change these properties must have a vanishing VEV (case of the first and second
components of the ρ meson). As we are in equilibrium, any Lorentz vector current must
vanish as well. Resuming, we will consider (we replace the fields by their respective VEV):

〈σ〉 = σ, (4.16)

〈ω0〉 = ω0, (4.17)

〈ρ3
0〉 = ρ3

0, (4.18)

〈ωi〉 = 〈ρi〉 = 〈ρ1
0〉 = 〈ρ2

0〉 = 0. (4.19)

Adding a chemical potential due to the conserved charge (2.46), the Lagrangian density in
the MFA takes the form:

LMFA = ψN

[
iγµ

(
∂µ + igωω0δ

0
µ + i

2gρτ
3ρ3

0δ
0
µ

)
− (m− gσσ) + µ̂γ0

]
ψN

− 1
2m

2
σσ

2 − 1
3bm(gσσ)3 − 1

4c(gσσ)4 + 1
2m

2
ω (ω0)2 + 1

4!ξg
4
ω (ω0)4

+ 1
2 m

2
ρ

(
ρ3

0

)2
+ Λωg2

ωg
2
ρ (ω0)2

(
ρ3

0

)2
. (4.20)

The chemical potential is a diagonal matrix in isospin space, where the entries corresponds
to the chemical potential of the proton and neutron, respectively, i.e. µ̂ = diag (µp, µn).
Writing this Lagrangian density in the form given in Equation (2.44) yields:

LMFA = ψN

[
iγµ

(
∂µ + iV0δ

0
µ

)
− (m+ S)

]
ψN + U (V0, S) , (4.21)

where:

V0 = gωω0 + 1
2gρτ

3ρ3
0, (4.22)

S = −gσσ, (4.23)

U = −1
2m

2
σσ

2 − 1
3bm(gσσ)3 − 1

4c(gσσ)4 + 1
2m

2
ω (ω0)2 + 1

4!ξg
4
ω (ω0)4

+ 1
2 m

2
ρ

(
ρ3

0

)2
+ Λωg2

ωg
2
ρ (ω0)2

(
ρ3

0

)2
. (4.24)
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The effective mass M and chemical potential µ̂ are:

M = m− gσσ, (4.25)

µ̃ = µ̂− gωω0 −
1
2gρτ

3ρ3
0. (4.26)

Following Section 2.3, the grand canonical potential for this Lagrangian is calculated. The
fermion field ψ is an isospin doublet state of proton and neutron. This means that the set
of extra indices I contains only isospin indices, I = {i}. The grand canonical (2.71) is:

ΩMFA − Ω0 = −1
2m

2
σσ

2 − 1
3bm(gσσ)3 − 1

4c(gσσ)4 + 1
2m

2
ω (ω0)2 + 1

4!ξg
4
ω (ω0)4

+ 1
2 m

2
ρ

(
ρ3

0

)2
+ Λωg2

ωg
2
ρ (ω0)2

(
ρ3

0

)2

− 2T tr
i

∫
d3p

(2π)3

[
βE + ln

(
1 + e−β(E+µ̃)

)
+ ln

(
1 + e−β(E−µ̃)

)]
. (4.27)

Writing the effective chemical potential in the isospin space yields:

µ̃ = µ̂− gωω0 −
1
2gρτ

3ρ3
0 =

=
(
µp 0
0 µn

)
− gωω0

(
1 0
0 1

)
− 1

2gρρ
3
0

(
1 0
0 −1

)
=

=
(
µ̃p 0
0 µ̃n

)
. (4.28)

The effective chemical potential for the proton (µp) and the neutron (µn) have been defined
as:

µ̃p = µp − gωω0 −
1
2gρρ

3
0, (4.29)

µ̃n = µn − gωω0 + 1
2gρρ

3
0. (4.30)

Following previous sections, the trace operation is simply given by a sum over different
isospin states i.e., over the proton and neutron:

ΩMFA − Ω0 = −1
2m

2
σσ

2 − 1
3bm(gσσ)3 − 1

4c(gσσ)4 + 1
2m

2
ω (ω0)2 + 1

4!ξg
4
ω (ω0)4

+ 1
2 m

2
ρ

(
ρ3

0

)2
+ Λωg2

ωg
2
ρ (ω0)2

(
ρ3

0

)2

− 2T
∑
i=p,n

∫
d3p

(2π)3

[
βE + ln

(
1 + e−β(E+µ̃i)

)
+ ln

(
1 + e−β(E−µ̃i)

)]
.

(4.31)

Once more, Ω0 is chosen in such a way that the pressure and energy density vanish in the
vacuum.

We can now apply the no sea approximation i.e., we do not take the term βE in Equation
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(4.31) in consideration. With this approximation, we suppose that the parameters of the
theory take into account several effects, including this approximation. One can always use
the term βE however, the coupling parameters will be different.

Following Section 2.3, the VEV of the fields σ, ω0 and ρ3
0, are determined by minimizing

the grand canonical potential in relation to them:

∂ΩMFA
∂σ

= ∂ΩMFA
∂ω0

= ∂ΩMFA
∂ρ3

0
= 0. (4.32)

This yields:

m2
σσ + bmg3

σσ
2 + cg4

σσ
3 = −2gσ

∑
i=p,n

∫
d3p

(2π)3
M

E
[ni + ni] , (4.33)

m2
ωω0 + 1

3!ξg
4
ω (ω0)3 + 2Λωg2

ωg
2
ρω0

(
ρ3

0

)2
= −2gω

∑
i=p,n

∫
d3p

(2π)3 [ni − ni] , (4.34)

m2
ρρ

3
0 + 2Λωg2

ωg
2
ρ (ω0)2 ρ3

0 = −2gρ
∫

d3p

(2π)3 [np − np] + 2gρ
∫

d3p

(2π)3 [nn − nn] . (4.35)

Where, ni and ni are the particle and anti-particle occupation number defined in Equations
(2.82) and (2.83). Following previous sections one derives from Equation (4.31) the pressure,
energy density, particle density and entropy. The T = 0 limit can be obtained by following
Section 2.4.1 and Appendix D.1.1.

4.3 The Bag constant and Gibbs construction

As pointed out in [12] the pressure within the NJL-type models is defined up to a constant
B, similarly to the MIT Bag constant. This constant is usually fixed by requiring that the
corrected pressure P −B goes to zero at vanishing baryonic chemical potential. However,
the procedure used to fix the effective Bag constant within NJL models is crucial for
the stability of the star when the phase transition to quark matter is considered. In the
same work [12], to fix the Bag constant B∗ it is proposed that the deconfinement occurs
at the same baryonic chemical potential, µcritB , as the chiral phase transition (when chiral
symmetry is partially restored).

Here, deconfinement means the change of degrees of freedom, not a phase transition
described by an order parameter like the Polyakov loop. In Chapter 6, the Polyakov loop
will be included in the study of hybrid stars, through the Polyakov−Nambu–Jona-Lasinio
model (PNJL).

Indeed, by introducing a low density EoS having hadronic degrees of freedom, like the EoS
of the nonlinear Walecka calculated in Section 4.2.2, and then computing the transition to
quark matter (using for example the Gibbs construction), the deconfinement transition can
coincide with the chiral transition by adding to the quark EoS in SUf (2) and in SUf (3)
the suitable value of the Bag constant, B∗.
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Throughout this work the value of B∗ is fixed in such a way that the deconfinement phase
transition and the transition to the phase where chiral symmetry is partially restored
coincide (same µcritB ). We investigate the B∗ = 0 case as well for comparison purposes. The
EoS for the quark models is changed by the Bag constant in the following way:

Peff = P quarks +B∗, (4.36)

εeff = ε quarks −B∗. (4.37)

To build the hybrid EoS we used the Gibbs condition. The Gibbs condition implies that
both phases, must be in chemical, thermal and mechanical equilibrium, i.e.:

µHB = µQB, (4.38)

pHB = pQB, (4.39)

THB = TQB , (4.40)

where the H and Q indices represent, respectively, the confined (hadronic) and deconfined
(quark) phase.

4.4 Neutron star matter

The temperature in neutron stars older than several minutes is below 1 MeV, negligible
when compared to chemical potentials and masses. Thus, the T = 0 limit of the EoS can
be considered, meaning that matter is extremely degenerate.

We will further consider matter in β−equilibrium, with zero electrical net charge, i.e.,

ρQ = 0. (4.41)

If we consider strange matter, this relation imposes (see Table 3.1):

2
3ρu −

1
3 (ρd + ρs + 3ρe) = 0. (4.42)

In β−equilibrium, the neutron decay and electron capture happens at the same rate, i.e.:

n� p+ e− + νe ⇔ d� u+ e− + νe. (4.43)

If strangeness is considered, we have another equilibrium condition:

d� s. (4.44)

These relations act as constrains on the chemical potentials:

µd = µu + µe− + µνe = µs. (4.45)
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Considering that the neutrinos escape because they interact very poorly with the rest of
matter, their chemical potential can be ignored, yielding:

µd = µu + µe− = µs. (4.46)

4.4.1 Leptonic contribution

To analyse matter in β−equilibrium, we must consider a leptonic contribution to the EoS
of the system. This contribution is taken into account by considering the pressure and
energy density of a free gas of electrons. Following Section 2.4, the pressure, density,
entropy and energy density for a gas of free electrons are given by Equations (2.78), (2.79),
(2.80), (2.81), with NI = 1. The T = 0 limit of these expressions are calculated in the
same section, are explicitly given by:

Pe = 1
π2

[∫ +∞

λFe

dp p2Ee + µe
λ3
Fe

3

]
− Ω0e, (4.47)

ρe =
λ3
Fe

3π2 , (4.48)

and,

εe = Ω0e −
1
π2

∫ +∞

λFe

dpp2Ee. (4.49)

4.5 General relativity

Proposed by Albert Einstein in 1915, general relativity is the geometric description of
gravity. The main goal of this theory is to find the metric elements gµν which can be used
to define the line element ds2:

ds2 = gµνdx
µdxν . (4.50)

Once one knows completely the metric function, everything there is to know about a given
space-time can be extracted from it. General relativity is usually mentioned as the most
beautiful of all physical theories [64] after all, not only does it give an elegant interpretation
of gravitational phenomena, but it is also encoded in a single, simple, covariant field
equation:

Gµν = 8πGTµν , (4.51)
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where G is Newton’s gravitational constant, Tµν is the totally symmetric energy-momentum
tensor:

Tµν = −Pgµν + (P + ε)uµuν with uµ = dxµ

dτ
, (4.52)

P is the pressure and ε is the energy density. Gµν is the divergenceless Einstein tensor:

Gµν = Rµν −
1
2Rgµν , (4.53)

Rµν is the Ricci tensor and R = Rµνg
µν is the Ricci scalar. The Ricci tensor is obtained

by contracting the Riemann(-Christoffel) tensor, defined as:

Rλµγν = ∂γΓλµν − ∂νΓλµλ + ΓαµνΓλαγ − ΓαµγΓλαν . (4.54)

This tensor is defined in terms of the Christoffel symbols and its first derivatives. The
Christoffel symbols are not tensors, but can be defined in the covariant derivative to make
the differentiation of a tensor, always a tensor. The covariant derivative of a first order
tensor is

∇µVν = ∂µVν − ΓλµνVλ. (4.55)

Writing the covariant derivative of the metric tensor and re-arranging terms, it is possible
to calculate the Christoffel symbols directly from the metric tensor and its first derivatives:

Γλµν = 1
2g

λρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (4.56)

Plugging (4.56) into the definition of Riemann tensor (4.54), one can extract the following
properties:

Rλµγν = −Rµλγν = −Rλµνγ = Rγνλµ, (4.57)

Rλµγν +Rµνλγ +Rλνµγ = 0, (4.58)

∇αRλµγν +∇νRµλαγ +∇γRλµνα = 0. (4.59)

The set of Equations (4.59) are called the Bianchi identities. If a space-time is flat, all
elements of the Riemann tensor must vanish in every point.

Einstein’s field equation relates the local geometry of a space-time with its local distribution
of energy. Contrary to Newton’s point of view, space-time is not just the stage for physical
phenomena but plays a role in it: the distribution of matter and energy tells space-time
how to curve, and the curvature of space-time tells matter and energy how to move, giving
the theory non-linear effects.
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4.5.1 Partial decoupling of matter from gravity

Noether’s theorem (Appendix A.1) states that, from the invariance of a field theory under
space-time translations, a conserved quantity can be defined, the energy-momentum tensor.
Under those conditions, the energy-momentum tensor of a field theory, in Minkowski space,
is given by:

Tµν = ∂L

∂ (∂αφ)ηαµ∂νφ− ηµνL , (4.60)

where φ is the field (or fields) present in the Lagrangian density. The energy-momentum-
tensor defined this way is not guaranteed to be totally symmetric. However, one can always
add some irrelevant term (whose divergence is zero) to make the energy-momentum tensor
totally symmetric (like the one on the right side of Equation (4.51))[36]. From the principle
of general covariance1 one could write the energy-momentum tensor for a field theory in
general relativity just by replacing the Minkowski metric ηµν with a general metric gµν
and promoting normal derivatives to covariant ones. This, however, would completely
couple the field theory to Einstein’s field equations. On the other hand, we are interested
in solving Einstein’s field equations for a neutron star. In the limit of stellar collapse, the
change in the radial component of the metric element (g11 = grr in spherical coordinates)
over the spacing of a nucleus of radius r0 = 1.2 fm is of the order of 10−19 [56], i.e., the
metric change along the radius of a nucleus is negligible. This, together with the fact that,
in 1965 Wheeler and collaborators proved the validity of an EoS in the description of the
interior of a star [65], allows one to describe each small volume in the star by the laws of
special relativity. We then solve the field equations for matter in Minkowski space-time
and solve Einstein’s field equations with a energy-momentum tensor that is diagonal in a
comoving Lorentz frame i.e. the energy-momentum tensor of a perfect fluid:

Tµν =


ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (4.61)

For a fluid described by this energy-momentum tensor, an observer with velocity v will
observe a fluid point with the same velocity (comoving), with energy density ε and pressure
P .

4.5.2 Tolman–Oppenheimer–Volkoff equations

Due to its compact nature, the description of the structure of a neutron star must come
as a solution from general relativity. This means one finds the metric elements around
a neutron star, by solving Einstein field Equation (4.51). A good approximation follows

1The principle of general covariance states that a law of physics holds in a general gravitational field if
it holds in the absence of gravity and it is covariant.
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from considering neutron stars as being static and spherically symmetric (also known
as a Schwarzschild star). The ansatz used for the line element of a static, isotropic and
spherically symmetric metric is [56]:

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2dθ2 − r2 sin2 θ dφ2. (4.62)

The exponential functions are imposed to guarantee that the metric signature does not
change.

For the region outside the star (r > R), the energy-momentum tensor is zero. Under these
conditions, the Einstein Equation (4.51) becomes2: Rµν = 0. In a “tour de force”, it is
possible to calculate the Christoffel symbols for the ansatz (4.62) and, from these, calculate
the Ricci tensor. For the region outside the star, one finds the famous Schwarzschild
solution:

ds2 =
(

1− 2GM
r

)
dt2 −

(
1− 2GM

r

)−1
dr2 − r2dθ2 − r2 sin2 θ dφ2. (4.63)

Here, M is the gravitational mass of the star.

For the region inside the star (r ≤ R) one has to solve the full Einstein Equation (4.51).
Following Section 4.5.1, we can use the energy-momentum tensor for a perfect fluid defined
in Equation (4.5.1). Again, calculating every Christoffel symbol, Ricci tensor, Ricci scalar
and Einstein tensor, one arrives at the Tolman–Oppenheimer–Volkoff equations (TOV)
which describe static and spherically symmetric stars [56]:

dP (r)
dr

= −G
r2

[
ρ(r) + P (r)

c2

] [
M(r) + 4πr3P (r)

c2

] [
1− 2GM(r)

c2r

]−1
, (4.64)

M(r) = 4π
∫ r

0
dr r2ε (r) . (4.65)

The TOV equations are integrated from the origin, with M(0) = 0 and some central
energy density ε (0), to a radius R when the pressure is zero, defining the radius of the star
R and its gravitational mass M (R). The difference between gravitational mass and baryon
mass (which corresponds to the mass of all nucleons in the star if they were dispersed to
infinity), is the gravitational binding of the star.

2In the vacuum, Tµν = 0, which means that the Einstein tensor is zero as well, and one can write:
Rµν = 1

2Rgµν , multiplying both sides by the metric tensor yields: Rµνgµν = 1
2Rgµνg

µν ⇔ R = 2R⇔ R =
0⇒ Rµν = 0.





67

Chapter 5

Results

5.1 The hybrid approach

To describe the hadronic (confined) phase of the system in β−equilibrium we use the
relativistic mean-field model NL3ωρ [66, 67], derived in Section 4.2.2. The NL3ωρ model has
the following properties (see [66, 67]): saturation density ρ0 = 0.148 fm−3, binding energy
E/A = −16.30 MeV, incompressibility K = 271.76 MeV, symmetry energy J = 31.7 MeV,
symmetry energy slope L = 55.5 MeV and effective massM∗/M = 0.60. In [67] it was shown
that this model satisfies a reasonable amount of constraints: experimental, astrophysical and
from microscopic neutron matter calculations. In particular, the maximum possible neutron
star mass is 2.75 M�, well above the 2M� constraint imposed by the pulsars J0348+043
and J1614-2230 (M = 2.01±0.04 M� [6] and 1.928±0.017 M� [7, 8], respectively).

We have considered the Baym-Pethick-Sutherland EoS [68] for the outer crust and for
the inner crust the NL3ωρ EoS that describes the pasta phases within a Thomas-Fermi
approach [69] and links smoothly to the core NL3ωρ EoS.

To describe the quark (deconfined) phase we will use the NJL model in its two and three
flavour versions with different vector interactions, derived in Sections 3.2 and 3.3.

The hybrid equations of state will be obtained using the Gibbs construction (see Section
4.3) for zero and nonzero values of the phenomenological Bag constant B∗ (which will be
such that the chiral symmetry restoration and deconfinement coincide [12]). The Tolmann-
Oppenheimer-Volkov Equations (4.64) and (4.65), will be integrated, giving mass-radius
and mass-central density diagrams.

5.1.1 Applicability of the quark models

In the T = 0 limit, we define the applicability of the quark models through the ratio between
the Fermi’s moment for each flavour of quark (λFf ), and the cut-off of the model (Λ): the
model is valid for densities and/or baryonic chemical potentials that verify λFf /Λ ≤ 1. In
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SUf (2), the studied models could be applied to ρB ≈ 1.8 fm−3 ≈ 11ρ0 (where ρ0 is the
saturation density), a far larger density then the one found inside neutron stars. In SUf (3),
the models are valid until at least 2.4 fm−3 ≈ 15ρ0, densities far above those found inside
neutron stars.

5.2 Results in SUf(2)

In the SUf (2) NJL model, there are three free parameters: the current mass mu = md,
the model cut-off Λ and the coupling constant GS . These parameters are usually fixed by
reproducing the experimental values of the mass and decay constant for the pion and the
value of the quark condensate in the vacuum (mπ = 135.0 MeV and fπ = 92.4 MeV [49]).

We are going to study two different parametrizations of the two flavour NJL model
(presented in Table 5.1). One of them, SUf (2)−I, is usually used in the literature [70].
The other parameter set, SUf (2)−II, is proposed in this work because we want a model
which reproduces (in the vacuum), besides mπ and fπ, the same mass for the nucleon
as the hadronic model, that is, a parametrization that gives Mu = Md ≈ 313 MeV
(3× 313 ≈ mnucleon).

We fix the mixing parameter α defined in Equations (3.20) and (3.21) to α = 1/2. The
addition of a UA(1) breaking parameter in SUf (2) can be absorbed by the usual four-
quark interaction in the bosonization process, and the actual difference between results is
negligible. Therefore, it was not considered in the study with the SUf (2) NJL model1.

Parameter set Λ [MeV] mu,d [MeV] GSΛ2 −〈uu〉1/3 [MeV] Mu,d [MeV]
SUf (2)−I [70] 590.0 6.0 2.435 241.5 400
SUf (2)−II 648.0 5.1 2.110 248.2 313

Table 5.1: Sets of parameters used throughout the work and reproduced observables in the vacuum, for
each parametrization. Λ is the model cut-off, mu,d is the quark current masses, and GS is the coupling
constant. The results for the u-quark condensate, 〈uu〉, and for the constituent masses, Mu,d, are also
presented.

In the present section we discuss the possible existence of hybrid stars within the SUf (2)
NJL model, taking as a free parameter the coupling of the vector-isoscalar and/or vector-
isovector terms in the Lagrangian density, GV . These vector interactions, at the Lagrangian
level, are given by (see Equations (3.23), (3.24) and (3.25)):

NJL(V+P+VI+PI) : GV
[
(ψγµτ0ψ)2 + (ψγµγ5τ

0ψ)2
]

+GV

3∑
a=1

[
(ψγµτaψ)2 + (ψγµγ5τ

aψ)2
]
,

NJL(V+P) : GV
[
(ψγµτ0ψ)2 + (ψγµγ5τ

0ψ)2
]
,

NJL(VI+PI) : GV
3∑

a=1

[
(ψγµτaψ)2 + (ψγµγ5τ

aψ)2
]
.

1When non-vanishing isospin chemical potential is taken into account this term becomes relevant [70].
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The NJL(V+P) model have only the vector-isoscalar contribution and the NJL(VI+PI)
model, only the vector-isovector contribution. The NJL(V+P+VI+PI) model have both
contributions.

Table 5.2 shows the order of the chiral restoration symmetry for different values of the cou-
pling GV . For each case we consider GV /GS = 0, 0.25, 0.5, 0.75. While for the SUf (2)−I
parametrization only a sufficiently large value of GV with the vector-isoscalar interac-
tion term originates a crossover instead of a first-order phase transition, the SUf (2)−II
parametrization only predicts a first order phase transition if the vector terms are not
considered in the Lagrangian density. We may also conclude that for the SUf (2)−II
parametrization the phase transition occurs for smaller chemical potentials, generally more
than 150 MeV smaller for GV 6= 0.

Model GV /GS
SUf (2)−I SUf (2)−II

Type µcritB Type µcritB

[MeV] [MeV]
NJL 0.00 1st 1171 1st 1119

NJL(V+P+VI+PI)
0.25 1st 1229 co 1055
0.50 co 1283 co 1099
0.75 co 1358 co 1149

NJL(V+P)
0.25 1st 1224 co 1051
0.50 1st 1272 co 1089
0.75 co 1334 co 1134

NJL(VI+PI)
0.25 1st 1177 co 1022
0.50 1st 1183 co 1025
0.75 1st 1189 co 1029

Table 5.2: Type of the chiral symmetry phase transition (1st: first-order, co: crossover) and respective
baryonic chemical potential (µcrit

B ), for each value of GV , model and parameter set.

The several EoS with nonzero Bag constant B∗ of β−equilibrium matter taking into
account the hadron-quark phase transition are shown in Figure 5.1, left panels, for the
parametrization SUf (2)−I and different vector contributions. We only present the EoS
for nonzero B∗ because when one considers B∗ = 0, no star with a pure quark core is
predicted, yielding a complete hadronic EoS (ρc < ρQ, as one can see in Table 5.3).

For the SUf (2)−II parameter set and different vector contributions, the EoS of β−equili-
brium matter taking into account the hadron-quark phase transition are shown in Figure
5.2, left panels. We have calculated the mass and radius of hybrid stars integrating the
Tolmann-Oppenheimer-Volkov equations [56]. In Figure 5.1 (parametrization SUf (2)−I
with B∗ 6= 0) and in Figure 5.2 (parametrization SUf (2)−II), the mass versus radius and
mass versus central density curves of the families of stars described by the EoS discussed
above are plotted, in the right panels.

In these plots the large coloured circles indicate the central density of the maximum mass
configuration. We do not show the EoS above these densities. The light-grey bar represents
the mass constraint of the J0348+043 pulsar (M = 2.01±0.04 M�) while the dark-grey
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Figure 5.1: Left panels: equations of state with B∗ 6= 0, for several values of GV [GS ], for the SUf (2)−I
parameter set of NJL(V+P+VI+PI) (panel a)), NJL(V+P) (panel b)) and NJL(VI+PI) (panel c)) models.
The star maximum mass, central density and confinement-deconfinement phase transitions are highlighted.
Right panels: mass-radius and mass-central density diagrams with B∗ 6= 0 for several values of GV [GS ]
for the SUf (2)−I parameter set of NJL(V+P+VI+PI) (panel d)), NJL(V+P) (panel e)) and NJL(VI+PI)
(panel f)) models. The star maximum mass, central density and confinement-deconfinement phase transitions
are highlighted. The light-grey bar represents the mass constraint of the J0348+043 pulsar (M = 2.01±0.04
M�) while the dark-grey bar the J1614-2230 pulsar (M = 1.928± 0.017 M�).

bar the mass constraint of the J1614-2230 pulsar (M = 1.928± 0.017 M�). Small black
diamonds indicate the hadron-quark phase transition. For the SUf (2)−I parameter set
only results for B∗ 6= 0 are presented (Figure 5.1) while for the SUf (2)−II parameter set,
full (dashed) lines have been used for the B∗ 6= 0 (B∗ = 0) results (Figure 5.2). From
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Model GV /GS
B∗ µtB ρH ρQ ρc Mm Mbm Rm

[MeV fm−3] [MeV] [fm−3] [fm−3] [fm−3] [M�] [M�] [km]
NJL 0.00 0 1388 0.434 0.808 0.808 2.43 2.89 13.99
NJL 0.25 1662 0.556 0.878 0.557 2.70 3.30 13.55
(V+P 0.50 0 2050 0.728 1.027 0.689 2.76 3.39 13.00
VI+PI) 0.75 2634 0.984 1.283 0.689 2.76 3.39 13.00

NJL 0.25 1632 0.544 0.869 0.868 2.69 3.28 13.60

(V+P) 0.50 0 1965 0.690 0.992 0.879 2.76 3.39 12.99
0.75 2450 0.904 1.197 0.689 2.76 3.39 12.99

NJL 0.25 1411 0.440 0.811 0.690 2.47 2.94 13.96

(VI+PI) 0.50 0 1433 0.454 0.818 0.698 2.50 2.99 13.94
0.75 1454 0.464 0.824 0.703 2.53 3.04 13.90

NJL 0.00 54.32 1171 0.328 0.475 0.910 1.84 2.09 12.15
NJL 0.25 74.31 1229 0.358 0.392 0.745 2.28 2.68 12.95
(V+P 0.50 91.44 1490 0.480 0.528 0.656 2.62 3.17 13.47
VI+PI) 0.75 111.32 2049 0.726 0.822 0.689 2.76 3.39 12.99

NJL 0.25 72.53 1224 0.356 0.402 0.757 2.24 2.63 12.89

(V+P) 0.50 88.27 1409 0.444 0.482 0.665 2.56 3.09 13.42
0.75 104.82 1870 0.648 0.730 0.690 2.75 3.38 13.14

NJL 0.25 56.43 1177 0.332 0.467 0.881 1.89 2.16 12.28

(VI+PI) 0.50 58.39 1183 0.334 0.459 0.869 1.93 2.21 12.33
0.75 60.27 1189 0.338 0.453 0.843 1.98 2.27 12.46

Table 5.3: Baryonic chemical potential (µtB), confinement baryonic density (ρH), deconfinement baryonic
density (ρQ) and respective value of the parameter B∗. Values of central baryonic density (ρc), maximum
gravitational mass (Mm), maximum baryonic mass (Mbm) and radius (Rm) of the respective neutron star,
for each model and GV [GS ] value, for the SUf (2)−I parameter set.

the analysis of these figures some conclusions may be drawn: a) the inclusion of B∗ 6= 0
shifts the deconfinement phase transition to smaller densities, allows the appearance of
a quark phase even for a large value of GV and gives rise to larger central densities; b)
increasing the coupling GV in models with vector-isoscalar terms makes the EoS harder
and central densities of maximum mass configurations are smaller; c) the vector-isovector
term (NJL(VI+PI)) have a much smaller effect than the vector-isoscalar term (NJL(V+P)),
although qualitatively similar; d) the model labelled NJL(V+P+VI+PI) incorporates
the effects of models NJL(V+P) and NJL(VI+PI) and, therefore, may give rise to larger
central pressures; e) the SUf (2)−I parameter set only allows the existence of a quark core
if a nonzero value for B∗ is used for any tested value of GV /GS in the NJL(VI+PI) and
for GV /GS below 0.75 in the NJL(V+P+VI+PI) and NJL(V+P) models.

Other properties of the hybrid stars, in particular of the maximum mass configurations,
calculated using the SUf (2)−I and SUf (2)−II parametrizations for the quark phase are
also summarized in Tables 5.3 and 5.4. These properties include: the renormalization
Bag parameter B∗, the baryonic chemical potential at the transition µtB, the central
baryonic density ρc, the gravitational Mm and baryonic mass Mbm of the maximum mass
configuration, and respective radius Rm.

Taking B∗ = 0 gives rise to unstable stars (ρc < ρQ) as soon as the quark matter sets in
when the SUf (2)−I parametrization is considered. The central star density lies always at
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Figure 5.2: Left panels: equations of state with B∗ 6= 0 and B∗ = 0, for several values of GV [GS ], for the
SUf (2)−II parametrization of NJL(V+P+VI+PI) (panel a)), NJL(V+P) (panel b)) and NJL(VI+PI) (panel
c)) models. The star maximum mass, central density and confinement-deconfinement phase transitions are
highlighted. Right panels: mass-radius and mass-central density diagrams with B∗ 6= 0 and B∗ = 0 for several
values of GV [GS ] for the SUf (2)−II parametrization of NJL(V+P+VI+PI) (panel d)), NJL(V+P) (panel e))
and NJL(VI+PI) (panel f)) models. The star maximum mass, central density and confinement-deconfinement
phase transitions are highlighted. The light-grey bar represents the mass constraint of the J0348+043 pulsar
(M = 2.01±0.04 M�) while the dark-grey bar the J1614-2230 pulsar (M = 1.928± 0.017 M�).

the pure quark phase onset or below. We have considered local electric charge neutrality.
If we would have imposed Gibbs conditions with global electric charge neutrality [56], it
would probably be possible to find a mixed hadron-quark phase at the star core but not a
pure quark phase.
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Model GV /GS
B∗ µtB ρH ρQ ρc Mm Mbm Rm

[MeV fm−3] [MeV] [fm−3] [fm−3] [fm−3] [M�] [M�] [km]
NJL 0.00 0 1134 0.306 0.434 1.015 1.82 2.07 11.62
NJL 0.25 1308 0.396 0.528 0.603 2.27 2.67 13.81
(V+P 0.50 0 1548 0.506 0.658 0.580 2.63 3.19 13.72
VI+PI) 0.75 1869 0.648 0.824 0.756 2.75 3.38 13.16

NJL 0.25 1289 0.388 0.518 0.616 2.23 2.61 13.72

(V+P) 0.50 0 1497 0.484 0.630 0.501 2.58 3.12 13.80
0.75 1769 0.604 0.771 0.700 2.74 3.36 13.34

NJL 0.25 1148 0.316 0.442 0.967 1.86 2.12 11.85

(VI+PI) 0.50 0 1163 0.324 0.450 0.928 1.90 2.17 12.04
0.75 1177 0.332 0.458 0.884 1.94 2.22 12.26

NJL 0.00 9.84 1020 0.222 0.232 1.068 1.84 2.11 11.14
NJL 0.25 15.16 1116 0.296 0.328 0.851 2.14 2.50 12.30
(V+P 0.50 22.09 1313 0.398 0.445 0.695 2.44 2.91 13.25
VI+PI) 0.75 30.84 1616 0.536 0.611 0.660 2.69 3.27 13.50

NJL 0.25 14.50 1105 0.290 0.323 0.866 2.12 2.46 12.22

(V+P) 0.50 20.54 1268 0.378 0.419 0.718 2.39 2.83 13.11
0.75 28.10 1519 0.494 0.558 0.647 2.63 3.19 13.55

NJL 0.25 10.29 1027 0.230 0.250 1.045 1.87 2.15 11.26

(VI+PI) 0.50 10.75 1034 0.236 0.261 1.020 1.90 2.19 11.38
0.75 11.22 1041 0.242 0.270 0.999 1.92 2.22 11.49

Table 5.4: Baryonic chemical potential (µtB), hadron (ρH) and quark (ρQ) baryonic density at deconfinement
and respective value of the parameter B∗. Values of central baryonic density (ρc), maximum gravitational
mass (Mm), maximum baryonic mass (Mbm) and radius (Rm) of the respective neutron star, for each model
and GV [GS ] value, for the SUf (2)−II parameter set.

A different result is obtained with the SUf (2)−II parametrization: even taking B∗ = 0, we
have found stable hybrid stars with a pure quark core at the center if GV is not too large
for the vector-isoscalar interaction (see Table 5.4).

As a consequence of the EoS properties discussed above, we verify that the vector-isoscalar
has a much stronger effect on the star structure originating more massive stars for a large
GV , while the effect of the vector-isovector term on the maximum mass is very small, and
it is hard to get masses above ∼ 1.92M�, which is within the mass for the PSR J1614-2230
but a bit below the mass of the PSR J0348+0432. Stars with a mass above 2 solar masses
are only possible within the vector-isoscalar interaction, taking GV /GS ≥ 0.25 and a non
zero B∗.

An important difference between the SUf (2)−I and SUf (2)−II parametrizations is the
overall quark content, a larger content occurring inside the stars described with SUf (2)−II
mainly because the deconfinement sets in at smaller baryonic densities and larger central
densities are attained. One direct consequence of the larger quark content is the smaller
maximum masses which are obtained with the SUf (2)−II parametrizations.

Let us still comment on the star radii and the densities attained inside the stars. In
general the SUf (2)−II parametrizations predicts smaller radii for hybrid stars, and larger
baryonic densities, with the larger densities/smaller radii obtained with the vector-isovector
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interaction.

In the right panels of Figure 5.2, we also verify that several models predict 1.4M� stars, or
even smaller masses, with a quark core, and radii ∼ 12.5 km. However, these models are
not able to describe stars with masses above ∼ 2.0M� (see Figure 5.2 and Table 5.4).

5.3 Results in SUf(3)

In the previous section, the strange degree of freedom was not considered, however it is
expected that at large densities strangeness will set in. In this section we extend the
results discussed with the SUf (2) NJL model to the SUf (3) NJL and, as we will see,
some of the features discussed in the previous section remain. As before, we will consider a
parametrization that predicts a vacuum constituent u and d-quark mass equal to ≈ 313
MeV (see Table 5.5).

There are five free parameters in the three flavour version of the NJL model (see Table
5.5), the light quarks current mass mu = md, the strange mass ms, the model cut-off
Λ, the coupling constant GS and the coupling constant GD (which is important to give
the right degeneracy between the η and η′ mesons). In the present work we will use the
SUf (3)−I parameter set, a modified version of the HK parameter set2 proposed in [15].
This modification is made in such a way that the quark constituent mass in the vacuum, is
approximately one third of the baryonic mass of the nucleon (see Table 5.5). In Table 5.6
the pion, kaon and eta masses predicted by the SUf (3)−I parameter set are presented, as
well as their respective experimental values. Besides reproducing the vacuum nucleon mass,
this parametrization also describes reasonably well the vacuum properties of these mesons.

Parameter set Λ [MeV] mu,d [MeV] ms [MeV] GSΛ2 GDΛ5 Mu,d [MeV] Ms [MeV]
SUf (3)−I 630.0 5.5 135.7 1.781 9.29 312 508

Table 5.5: Λ is the model cut-off, mu,d and ms are the quark current masses, GS and GD are coupling
constants. Mu,d and Ms are the resulting constituent quark masses.

Observables SUf (3)−I Experimental [28]

mπ [MeV] 138.5 139.6
fπ [MeV] 90.7 92.2
mK [MeV] 493.5 493.7
fK [MeV] 96.3 110.4
mη [MeV] 478.2 547.9
mη′ [MeV] 953.7 957.8

Table 5.6: Masses and decay constants of several mesons within the theory, for the SUf (3)−I parameter
set and their respective experimental values.

2The HK parameter set is given by: Λ = 631.4 MeV, mu,d = 5.5 MeV, ms = 135.7 MeV, GSΛ2 = 4.603
and GDΛ5 = 9.26.
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The vector interactions, in three flavour case, are given by (see Equations (3.77), (3.78)
and (3.79)):

NJL(V+P+VI+PI) : GV
[
(ψγµλ0ψ)2 + (ψγµγ5λ

0ψ)2
]

+GV

8∑
a=1

[
(ψγµλaψ)2 + (ψγµγ5λ

aψ)2
]
,

NJL(V+P) : GV
[
(ψγµλ0ψ)2 + (ψγµγ5λ

0ψ)2
]
,

NJL(VI+PI) : GV
8∑

a=1

[
(ψγµλaψ)2 + (ψγµγ5λ

aψ)2
]
.

Again, the NJL(V+P) model have only the vector-isoscalar contribution and the NJL(VI+PI)
model, only the vector-isovector contribution. The NJL(V+P+VI+PI) model have both
contributions.

In Table 5.7 the type of transition that each model undergoes, at β−equilibrium, when
the vector coupling constant increases is shown: only if GV is zero or takes a negative
value, corresponding to an attractive interaction, do the models present a first-order phase
transition, otherwise the inclusion of a repulsive vector interaction turns the transition
into a crossover. As before, the parameter B∗ will be introduced and fixed so that the
deconfinement density in the hadron-quark model coincides with the chiral symmetry
restoration density of the NJL model.

Model GV /GS Type µcritB [MeV]
NJL 0.00 1st 999

NJL(V+P+VI+PI)

-0.25 1st 975
0.25 co 1023
0.50 co 1052
0.75 co 1087

NJL(V+P)

-0.25 1st 985
0.25 co 1013
0.50 co 1028
0.75 co 1045

NJL(VI+PI)

-0.25 1st 990
0.25 co 1008
0.50 co 1018
0.75 co 1028

Table 5.7: Type of the chiral symmetry phase transition (1st: first-order, co: crossover) and respective
baryonic chemical potential (µcrit

B ), for each value of GV [GS ].

In Figure 5.3 the EoS, pressure versus density (left panels), and the mass/radius and
mass/density plots (right panels) are presented. The light-grey and dark-grey bars represent,
once more, the mass constraint of the J0348+043 and J1614-2230 pulsars. The black
diamonds identify again the hadronic and quark transition densities while the coloured
circles correspond to the maximum mass configurations. Full (dashed) lines have been
used for the B∗ 6= 0 (B∗ = 0) results. Properties of hybrid stars, including maximum mass
configurations, obtained with the parametrization SUf (3) are presented in Table 5.8 with
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Figure 5.3: Left panels: equations of state with B∗ 6= 0 and B∗ = 0, for each value of GV [GS ], for
the NJL(V+P+VI+PI) (panel a)), NJL(V+P) (panel b)) and NJL(VI+PI) (panel c)) models. The star
maximum mass, central density and confinement-deconfinement phase transitions are highlighted. Right
panels: mass-radius and mass-central density diagrams with B∗ 6= 0 and B∗ = 0 for each value of GV [GS ]
for the NJL(V+P+VI+PI) (panel d)), NJL(V+P) (panel e)) and NJL(VI+PI) (panel f)) models. The star
maximum mass, central density and confinement-deconfinement phase transitions are highlighted. The
light-grey bar represents the mass constraint of the J0348+043 pulsar (M = 2.01±0.04 M�) while the
dark-grey bar the J1614-2230 pulsar (M = 1.928± 0.017 M�).

B∗ = 0 and a non zero B∗. As before, the following properties are presented: the baryonic
chemical potential at the deconfinement phase transition µtB, and respective hadronic and
quark densities ρH and ρQ, the central baryonic density, the maximum gravitational mass
Mm, and respective baryonic mass Mbm and radius Rm. As expected, the smaller GV
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Model GV /GS
B∗ µtB ρH ρQ ρc Mm Mbm Rm ρs/ρB

[MeV fm−3] [MeV] [fm−3] [fm−3] [fm−3] [M�] [M�] [km] [%]
NJL 0.00 0 1093 0.282 0.384 0.951 1.76 2.00 11.91 1.32

NJL -0.25 996 0.194 0.334 1.308 1.48 1.68 10.19 0.35

(V+P 0.25 0 1247 0.368 0.475 0.635 2.13 2.48 13.64 0.53

VI+PI) 0.50 1410 0.444 0.640 0.578 2.47 2.94 13.96 0.04
0.75 1541 0.504 0.755 0.757 2.63 3.18 13.76 0.01

NJL
-0.25 1028 0.230 0.347 1.053 1.51 1.69 11.20 1.63

(V+P)
0.25 0 1179 0.332 0.434 0.816 2.00 2.30 12.64 0.50
0.50 1285 0.386 0.496 0.663 2.25 2.63 13.46 0.02
0.75 1412 0.444 0.568 0.612 2.48 2.96 13.85 ∼ 0

NJL
-0.25 1047 0.248 0.358 1.162 1.69 1.92 10.88 0.19

(VI+PI)
0.25 0 1147 0.314 0.416 0.766 1.83 2.08 12.88 1.80
0.50 1208 0.348 0.469 0.578 1.96 2.24 13.82 0.85
0.75 1243 0.366 0.558 0.515 2.07 2.39 14.07 0.01

NJL 0.00 6.60 999 0.198 0.205 0.974 1.78 2.05 11.55 1.43

NJL -0.25 2.89 975 0.156 0.288 1.278 1.51 1.73 10.11 0.31

(V+P 0.25 10.09 1100 0.286 0.322 0.789 2.02 2.33 12.73 2.14

VI+PI) 0.50 14.62 1287 0.386 0.445 0.637 2.29 2.69 13.67 1.85
0.75 20.57 1431 0.454 0.581 0.626 2.51 3.00 13.88 0.46

NJL
-0.25 4.40 985 0.176 0.261 1.046 1.55 1.76 10.98 1.51

(V+P)
0.25 8.61 1049 0.250 0.282 0.896 1.98 2.28 12.08 0.98
0.50 10.92 1132 0.306 0.344 0.814 2.15 2.51 12.58 0.48
0.75 13.63 1246 0.366 0.414 0.727 2.33 2.75 13.08 0.12

NJL
-0.25 5.15 990 0.184 0.245 1.142 1.73 1.99 10.72 0.15

(VI+PI)
0.25 7.92 1029 0.232 0.259 0.856 1.80 2.05 12.21 2.83
0.50 9.33 1072 0.268 0.301 0.772 1.81 2.06 12.75 4.12
0.75 10.90 1129 0.304 0.342 0.688 1.84 2.08 13.24 4.77

Table 5.8: Baryonic chemical potential (µtB), confinement baryonic density (ρH), deconfinement baryonic
density (ρQ) and respective value of the Bag constant (B∗). Values of central baryonic density (ρc), maximum
gravitational mass (Mm), maximum baryonic mass (Mbm), radius (Rm) and percentage of strangeness
(ρs/ρB) of the respective neutron star, for each model and value of GV [GS ], for the SUf (3)−I parameter
set.

the earlier the deconfinement phase transition occurs. Also a finite B∗ produces a phase
transition at lower densities and with a smaller baryonic density discontinuity. As in the
SUf (2) model, the vector-isoscalar term is having the strongest effects on the EOS (see
Figure 5.3).

We have also considered a possible negative value of GV (magenta lines in Figure 5.3). In
this case we would have very low mass stars with a quark core. These stars are characterized
by the smallest radii, ∼ 11 km or below. However, this model predicts a maximum mass
configuration of the order of 1.5− 1.7M� well below 2M� (see Table 5.8). Again, similarly
to the SUf (2) model, some parametrizations predict 1.4M� stars with a quark content,
specially the NJL(VI+PI) model. For those cases, if GV ≤ 0, these parametrizations do
not describe 2M� stars (see Figure 5.3, right panels).

The SUf (3) NJL model includes strangeness and it is interesting to study the onset of
this new degree of freedom. In Figure 5.4 the s, d and u quark fractions are plotted. As
soon as the s-quark sets in the fraction of d-quarks suffers a strong reduction, the fractions
of d and s-quarks approach ∼ 1/3, asymptotically, the first from above a the second from
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below. If a large GV parameter is considered the amount of strangeness in the star is
residual, except for the NJL(VI+PI) model in this case the strangeness fraction increases
with larger values of GV (see Table 5.8).
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Figure 5.4: Fractions of each flavour of quark (Yi) in function of the baryonic density (ρB). The central
density (ρc) and initial quark phase density (ρQ) are shown (full and dashed vertical lines, respectively).
The threshold for the emergence of strange quarks in the NJL(V+P) model does not depend on GV (black
line).

Taking the vector-isoscalar interaction alone the strange fraction does not change with
GV , which is simply explained because the interaction energy does not depend separately
on each flavour (see Equations (3.112), (3.113) and (3.114) for Gρ = 0). The vector-
isovector interaction distinguishes the flavours (see Equations (3.112), (3.113) and (3.114)
for Gρ = Gω = GV or Gω = 0) and the larger GV the earlier occurs the s-quark onset.
The u quark fraction is practically independent of density, with a value close to 1/3, except
for a deviation that can be as high as 0.005 if GV /GS = 0.75. This deviation from 1/3 is
compensated by the presence of electrons in order to turn matter electrically neutral.

The onset of strangeness at quite high densities, generally above 0.5 fm−3 ≈ 3ρ0, is due to
the high constituent mass of the s-quark since the partial restoration of chiral symmetry
for the s-quark occurs at high densities [49].

In all cases considered, with B∗ 6= 0, there exists a pure quark matter in the center of the
star. All results obtained with a vector-isoscalar interaction generate maximum masses
above 2M� and radii above 12 km for GV /GS ≥ 0.25 (see Table 5.8). Smaller radii,
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below 12 km or even below 11 km are obtained if GV ≤ 0. In this case stars with a
mass of the order of 1.4M� or even below will have a reasonable amount of quark matter.
Taking GV /GS = −0.25 all stars with M > 1.4M� have a radius just above 10 km. For
GV /GS ≥ 0.5 the standard M = 1.4M� star will be a pure nucleonic star with the radius
determined by the hadronic EoS.

Recently, a mass as low as 1.18+0.10
−0.11M� of the pulsar PSR J1918-0642 has been measured

with quite large precision. The measurement of the corresponding radius would set
important constraints. In the present approach, taking a negative GV , a 1M� star is an
hybrid star with a radius ∼ 2.5 km smaller than an nucleonic star with the same mass.

Since the total strangeness contribution is not very large we may ask how much do the
predictions of the SUf (2)−II and SUf (3) NJL models differ. In fact, the parametrizations
that do not include vector contributions, or the one that include the vector-isoscalar and
vector-isovector terms with equal weight (NJL(V+P+VI+PI)) give similar maximum mass
star properties, however for the other combinations this is not true. This results from the
factor that affects the vector terms: the models NJL(V+P+VI+PI) have the same factor
in the definition of the chemical potential,

SUf (2) : µ̃i = µi − 4GV ρi , i ∈ {u, d},

SUf (3) : µ̃i = µi − 4GV ρi , i ∈ {u, d, s},

however for the models, NJL(V+P),

SUf (2) : µ̃i = µi − 2GV (ρi + ρj) , i, j ∈ {u, d} ∧ i 6= j,

SUf (3) : µ̃i = µi −
4
3GV (ρi + ρj + ρk) , i, j, k ∈ {u, d, s} ∧ i 6= j 6= k

and NJL(VI+PI),

SUf (2) : µ̃i = µi − 2GV (ρi − ρj) , i, j ∈ {u, d} ∧ i 6= j,

SUf (3) : µ̃i = µi −
4
3GV (2ρi − ρj − ρk) , i, j, k ∈ {u, d, s} ∧ i 6= j 6= k,

the factor multiplying the coupling GV is different. Since the vector terms have a smaller
contribution in the SUf (3) NJL(V+P) and NJL(VI+PI) models, the transition to quark
matter occurs for a smaller chemical potential and density and smaller maximum masses
are generally obtained.
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Chapter 6

Polyakov–Nambu–Jona-Lasinio
Model at Zero Temperature

6.1 Z(Nc) symmetry and deconfinement

The QCD Lagrangian (1.1), as stated in Section 1.2, is invariant under transformations U ,
of the gauge group SUc(Nc). As an element of SUc(Nc), U satisfies [71]:

U †U = 1Nc×Nc ∧ detU = 1. (6.1)

Since U is a local gauge transformation, it is a function of space-time. There is a special
gauge transformation Uc, constant in space-time that belongs to the group, a constant
phase times the unit matrix:

Uc = eiα1Nc×Nc . (6.2)

Being an element of SUc(Nc), its determinant must be one,

detUc = 1⇔ det
[
eiα1Nc×Nc

]
= 1⇔

⇔ eiα × eiα × ...× eiα︸ ︷︷ ︸
Nc

= eiαNc = 1. (6.3)

Using Euler’s identity, the above condition requires,

α = 2πn
Nc

n = 0, 1, ... (Nc − 1) . (6.4)

Since the integer n, cannot change continuously from point to point, this defines a global
Z(Nc) symmetry. This symmetry requires that the fields are rotated by the same element
of Z(Nc) at every space-time, maintaining the QCD Lagrangian invariant.
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6.1.1 Z(Nc) symmetry at finite temperature

The Matsubara formalism introduced in Section 2.2.1 requires that gluons (bosons, Aµ)
must be periodic in imaginary time, while quarks (fermions, ψq) must be antiperiodic (2.39)
i.e.:

Aµ (β,x) = Aµ (0,x) , (6.5)

ψq (β,x) = −ψq (0,x) . (6.6)

Once the Lagrangian is invariant under transformations of the SUc(Nc), the fields transfor-
mations at the boundaries have the following expressions:

ψq (0,x)→ U (0,x)ψq (0,x) , (6.7)

ψq (β,x)→ U (β,x)ψq (β,x) , (6.8)

Aµ (0,x)→ U † (0,x)Aµ (0,x)U (0,x) , (6.9)

Aµ (β,x)→ U † (β,x)Aµ (β,x)U (β,x) . (6.10)

As already stated in Section 1.2, gluons are adjoint fields and their transformation, Equations
(6.9) and (6.10), also involves the inverse transformation matrix. Considering the periodic
relation for the gluon field given in Equation (6.5) and using the transformation properties
(6.9) and (6.10), we have,

U † (0,x)Aµ (0,x)U (0,x) = U † (β,x)Aµ (β,x)U (β,x) . (6.11)

If we relate the transformation matrices U (0,x) and U (β,x) through a matrix that
commutes with the gluon field, the periodic relation is respected. By definition, the
SUc(Nc) matrices that commute with all gluon fields constitute the Z(Nc) group. As
a result, gauge transformations for the boundary conditions of the gluon fields must be
periodic up to an element of the Z(Nc) group, i.e.,

U (0,x) = zU (β,x) z ∈ Z(Nc). (6.12)

Using this in Equation (6.11), we may write:

U † (β,x) z†Aµ (0,x) zU (β,x) = U † (β,x)Aµ (β,x)U (β,x) , (6.13)

Due to the fact that the gluon field is invariant under global Z(Nc) transformations, we
can write:

z†Aµ (0,x) z = Aµ (0,x) z ∈ Z(Nc). (6.14)

Substituting this in Equation (6.13), yields:

Aµ (0,x) = Aµ (β,x) . (6.15)
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However, quarks does not behave in the same manner. Quarks are in the fundamental
representation of the gauge group SUc(Nc), which means their transformation properties
involve only one transformation matrix. Considering the antiperiodic relation for the quark
field given in Equation (6.6) and using the transformation properties (6.7) and (6.8), one
has,

U (0,x)ψq (0,x) = −U (β,x)ψq (β,x) . (6.16)

This relation seems to imply that, to respect the antiperiodicity of the fermionic fields,
U (0,x) must be exactly equal to U (β,x) i.e.,

U (0,x) = U (β,x) . (6.17)

Comparing Equations (6.12) and (6.17), only a particular choice of z (an element of Z(Nc)),
will respect the antiperiodicity of the quark field. The Z(Nc) symmetry of the boundary
conditions1 is respected by the gluon fields, but is explicitly broken when dynamical quarks
are included in the theory.

6.1.2 The Polyakov loop

If we consider the pure glue theory (quarks with infinite mass), the boundary conditions are
respected by the Z(Nc) symmetry. However, as already stated in Section 2.1, a symmetry
of the Lagrangian density may not be a symmetry of the vacuum, and a spontaneous
symmetry breaking may occur. An order parameter for the possible Z(Nc) symmetry
breaking can be defined using the thermal Wilson line L (x),

L (x) = P exp
[
i

∫ β

0
dτ A4 (τ,x)

]
. (6.18)

P is the path ordering operator2 and A4 is the gluon field in the time direction,

A4 = igsAaµ
λa
2 δ

µ
0 , a = 1, ..., N2

c − 1. (6.19)

Here, Aaµ is the gluon field of colour index a.

Under gauge transformations the Wilson line transforms as the gluon field. This means we
can write:

L (x)→ U † (β,x)L (x)U (0,x) . (6.20)
1Not to be mistaken with the global Z(Nc) symmetry of the Lagrangian which corresponds to rotating

the fields by the same element of Z(Nc) at every space-time event. The Z(Nc) symmetry of the boundary
conditions is a symmetry of the gluon fields at τ = β.

2The fields in the power series expansion of the exponential are in the order they appear in the taken
path.
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The Polyakov loop Φ can be defined as the trace over colour of the thermal Wilson line:

Φ = 1
Nc

tr
c
L (x) . (6.21)

Under a global Z(Nc) symmetry, the Polyakov loop transform as the quarks, i.e., only a
particular choice of element of Z(Nc) maintains the symmetry:

Φ→ zΦ z ∈ Z(Nc). (6.22)

This means that, to respect the Z(Nc) symmetry, the VEV of the Polyakov loop must be
zero. However, due to asymptotic freedom, at high energies (temperatures and/or densities),
the strong coupling constant of QCD in Equation (6.19) and consequently in Equation
(6.18) is expected to vanish. In these conditions, the thermal Wilson line and Polyakov
loop tend to one [71]. At this point, any element of Z(Nc) is equally good in Equation
(6.22), but only one very specific element (identity), will respect the Z(Nc) symmetry of
the theory, signalling the spontaneous breakdown of the symmetry. Summarizing, the
Polyakov loop work as an order parameter in the following way:

〈Φ〉 = zΦ0 z ∈ Z(Nc), (6.23)

Φ0 =

 0, if the symmetry is respected,

> 0, if the symmetry is spontaneously broken.
(6.24)

6.1.3 Polyakov loop and deconfinement

Studying the connection between the Polyakov loop and the (Helmholtz) free energy of
a system of quarks in a static gluonic background, leads to interpreting the phase where
the Polyakov loop is zero (Z(Nc) symmetry is respected) as a confined phase, and when
the Polyakov loop is bigger then zero (Z(Nc) symmetry is spontaneously broken) as a
deconfined phase.

In order to see this feature, we start with the static Dirac equation (in imaginary time),
coupled to a static gluonic background field [72]:[

iγ0∂τ − γ0A4 +m
]
ψ (τ,x) = 0, (6.25)

whose positive energy solution is:

ψ (τ,x) = e−mτ T exp
[
i

∫ τ

0
dτ ′A4

(
τ ′,x

)]
ψ (0,x) , (6.26)

where T is the time ordering operator which, in this case, is equivalent to the path ordering
operator P. The Helmholtz free energy of the quark can be written as,

e−βFq = 1
Nc

∑
i,n

〈n|ψi (0,x) e−βĤψ†i (0,x) |n〉 , (6.27)
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where the sum is made over gluonic states |n〉 and colour states i. ψi (0,x) (ψ†i (0,x))
creates (detroys) a quark of colour i at the point x. Relation (2.37) allows us to write,

eβĤψi (0,x) e−βĤ = ψi (β,x) . (6.28)

By using this relation in Equation (6.27) we have,

e−βFq = 1
Nc

∑
i,n

〈n|e−βĤeβĤψi (0,x) e−βĤψ†i (0,x) |n〉 = (6.29)

= 1
Nc

∑
i,n

〈n|e−βĤψi (β,x)ψ†i (0,x) |n〉 . (6.30)

We use Equation (6.26) in ψi (β,x), to write:

e−βFq = e−mβ
∑
i,n

〈n|e−βĤ
(

1
Nc
T exp

[
i

∫ β

0
dτA4 (τ,x)

])
ij

ψj (0,x)ψ†i (0,x)︸ ︷︷ ︸
=δij

|n〉 =

= e−mβ
∑
i,n

〈n|e−βĤ |n〉 〈n|
(

1
Nc
T exp

[
i

∫ β

0
dτA4 (τ,x)

])
|n〉 =

= e−mβ
∑
n

e−βEn 〈n|tr
i

(
1
Nc
T exp

[
i

∫ β

0
dτA4 (τ,x)

])
|n〉 . (6.31)

Using the definition of the Polyakov loop (6.21):

e−βFq = e−mβ
∑
n

e−βEn 〈n|Φ|n〉 = (6.32)

= e−mβ
∑
n

〈n|e−βĤΦ|n〉 (6.33)

= e−mβ tr
[
e−βĤΦ

]
. (6.34)

Comparing the Equation above with Equation (2.25), the trace operation is the thermal
average of the Polyakov loop at zero chemical potential times the partition function for
free gluons, i.e.,

e−βFq = e−mβZg 〈Φ〉µ=0 . (6.35)

The free energy for a single quark is (subtracting F0, the free energy of gluons):

Fq = F0 +m− 1
β

ln
[
〈Φ〉µ=0

]
. (6.36)

Analysing Equation (6.36), two distinct scenarios emerge: 〈Φ〉µ=0 → 0 or 〈Φ〉µ=0 > 0.
If 〈Φ〉µ=0 is zero, it is necessary an infinite amount of energy to create a quark in a
gluonic background i.e, states with a single quark are not possible. However, if 〈Φ〉µ=0 is
bigger than zero, it is necessary a finite amount of energy to create a quark in a gluonic
background i.e, states with a single quark are possible. The Polyakov loop at zero chemical
potential is associated with the free energy necessary to create a single quark in a gluonic
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background field. Thus the Polyakov loop function as an order parameter for the confined
and deconfined phase of nuclear matter. Summarizing:

• 〈Φ〉µ=0 → 0⇒ Fq → +∞ : confined phase;

• 〈Φ〉µ=0 > 0⇒ Fq is finite: deconfined phase;

This suggests that the confinement-deconfinement phase transition is deeply related to the
spontaneous breaking of the Z(Nc) symmetry. At finite chemical potential the free energy
is not totally real, and the argument given above is not totally correct, but the Polyakov
loop continues being a good order parameter. In [71], it is proposed that the Polyakov loop
should be interpreted as the propagator of the quark, and confinement is equivalent with
the vanishing of this propagator.

6.2 The PNJL model

In Chapter 3, we used the NJL model as an effective model of QCD due to its similar
characteristics to QCD, like continuous symmetries and spontaneous chiral symmetry
breaking. However, the NJL model is not gauge invariant, indeed, the gluonic degrees of
freedom are frozen and in a certain way, contained in the Gs coupling constant (Figure
(3.1)). This means that the Z(Nc) spontaneous symmetry breaking of finite temperature
QCD and the confinement-deconfinement phase transition (they are connected as laid out
in previous sections) are features that cannot be studied within the formalism of the NJL
model. The Polyakov–Nambu–Jona-Lasinio model (PNJL), was introduced to include the
confinement-deconfinement phase transition in the NJL model.

In such model it is necessary to include an effective potential which contains the spontaneous
symmetry breaking of the Z(Nc) symmetry. The Polyakov loop effective potential can be
constructed using the Ginzburg-Landau theory of phase transitions. Within this approach,
the effective potential has to respect the Z(Nc) symmetry and to reproduce its spontaneous
breaking at some high temperature. There are several effective potentials who fulfill these
properties, in this work we will consider the commonly used logarithmic form [3, 73, 74]:

U
(
Φ,Φ;T

)
T 4 = −1

2a (T ) ΦΦ + b (T ) ln
[
1− 6ΦΦ + 4

(
Φ3 + Φ3

)
− 3

(
ΦΦ
)2
]
, (6.37)

with the T -dependent parameters [3, 74]:

a (T ) = a0 + a1

(
T0
T

)
+ a2

(
T0
T

)2
, (6.38)

b (T ) = b3

(
T0
T

)3
. (6.39)
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For simplicity, we can write the argument in the logarithm as:

X(Φ,Φ) = 1− 6ΦΦ + 4(Φ3 + Φ3)− 3(ΦΦ)2. (6.40)

The parameters T0, a0, a1, a2 and a3 are fixed by reproducing lattice QCD results at
µ = 0 [75–77]. A commonly used set is:

T0 = 270 in the pure gauge sector, (6.41)

a0 = 3.51, a1 = −2.47, (6.42)

a2 = 15.2, a3 = −1.75. (6.43)

However, in the presence of quarks, T0 may depend on the number of flavours, and even
on the chemical potential of each quark [78–82]. In the later sections, we will consider a
T0 which depends explicitly on the chemical potential, allowing for calculations at zero
temperature3.

The Lagrangian density of the PNJL model for a three flavour quark system, considering
vector interactions is:

L PNJL = ψ
(
iγµDµ − m̂+ µ̂γ0

)
ψ +GS

8∑
a=0

[(
ψλaψ

)2
+
(
ψiγ5λ

aψ
)2
]

−L det −L vec − U
(
Φ,Φ;T

)
. (6.44)

The terms L det and L vec are given by Equations (3.4) and (3.77), respectively. This
Lagrangian density is analogous to the three flavour NJL Lagrangian in Equation (3.75)
however, in this case, we have a contribution from the gluonic sector of QCD. The effective
Polyakov loop potential U

(
Φ,Φ;T

)
brings the spontaneous breaking of Z(Nc) symmetry

while a static gluonic background field interacts with the quark field ψ through the covariant
derivative:

Dµ = ∂µ −A4δ
0
µ. (6.45)

Here A4 is the gluonic background field given in Equation (6.19). This covariant derivative
is the zero component of the covariant derivative in QCD, defined in Equation (1.4).

3In the T = 0 limit, the PNJL model yields the NJL model. By adding a µ dependence on the effective
Polyakov loop, this is not the case, as we will see.
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6.2.1 PNJL model in the MFA

Following the same steps as in Section 3.3.1, the PNJL Lagrangian can be linearised to
yield:

LMFA = ψ
[
iγµ

(
∂µ −A4δ

0
µ

)
− m̂+ µ̂γ0

]
ψ − U

(
Φ,Φ;T

)
+ 2GS

(
ψλ0ψ

)√2
3 (σu + σd + σs)−

2
3GS (σu + σd + σs)2

+ 2GS
(
ψλ3ψ

)
(σu − σd)−GS (σu − σd)2

+ 2GS
(
ψλ8ψ

) 1√
3

(σu + σd − 2σs)−
1
3GS (σu + σd − 2σs)2

− 2GDψ∆ψ + 4GDσuσdσs

− 2Gω
(
ψγ0λ0ψ

)√2
3 (ρu + ρd + ρs) + 2

3Gω (ρu + ρd + ρs)2

− 2Gρ
(
ψγ0λ3ψ

)
(ρu − ρd) +Gρ (ρu − ρd)2

− 2Gρ
(
ψγ0λ8ψ

) 1√
3

(ρu + ρd − 2ρs) + 1
3Gρ (ρu + ρd − 2ρs)2 . (6.46)

Expressing the Lagrangian in the form given by Equation (2.44) yields:

LMFA = ψ
[
iγµ

(
∂µ + iV0δ

0
µ

)
− (m̂+ S)

]
ψ + U. (6.47)

The auxiliary field S is given by Equation (3.102) while V0 and U are written:

V0 = V NJL
0 + iA4, (6.48)

U = UNJL − U
(
Φ,Φ;T

)
. (6.49)

V NJL
0 and UNJL are the auxiliary V0 field and the mean field potential U in the three

flavour NJL model give in Equations (3.101) and (3.103), respectively.

The effective mass is the same as in the NJL model, i.e., given by Equation (3.104). In a
similar way to the auxiliary field V0 and mean field potential U , we can write the effective
chemical potential of the PNJL using the one obtained in the usual NJL (µ̃NJL is defined
in Equation (3.105)):

µ̃ = µ̃NJL − iA4, (6.50)

The grand canonical potential is:

ΩMFA − Ω0 = U
(
Φ,Φ;T

)
− UNJL

− 2T tr
f,c

∫
d3p

(2π)3

[
βE + ln

(
1 + e−β(E+µ̃)

)
+ ln

(
1 + e−β(E−µ̃)

)]
. (6.51)
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The effective mass for each flavour of quark is given in Equations (3.108), (3.109) and
(3.110). The effective chemical potential in flavour space is:

µ̃ =


µ̃NJLu 0 0

0 µ̃NJLd 0
0 0 µ̃NJLs

−

iA4 0 0
0 iA4 0
0 0 iA4

 =


µ̃u 0 0
0 µ̃d 0
0 0 µ̃s

 , (6.52)

µ̃u = µ̃NJLu − iA4, (6.53)

µ̃d = µ̃NJLd − iA4, (6.54)

µ̃s = µ̃NJLd − iA4. (6.55)

The effective chemical potentials for each flavour µ̃NJLu , µ̃NJLd and µ̃NJLs are defined in
Equations (3.112), (3.113) and (3.114) respectively.

Like for the NJL model, the trace over flavour space yields a sum over flavours. However,
now the trace over colour is not simply a Nc factor. Due to the contribution of the gluonic
background field, the effective chemical potential has internal structure in colour space.
Explicitly, the grand canonical potential is (using the identity tr lnA = ln detA):

ΩMFA − Ω0 = U
(
Φ,Φ;T

)
− UNJL

− 2T
∑

f=u,d,s

∫
d3p

(2π)3

{
NcβEf + ln det

c

[
1 + e−β(Ef+µ̃f)

]
+ ln det

c

[
1 + e−β(Ef−µ̃f)

]}
=

= U
(
Φ,Φ;T

)
− UNJL

− 2T
∑

f=u,d,s

∫
d3p

(2π)3

{
NcβEf + ln det

c

[
1 + e−β

(
Ef+µ̃NJL

f −iA4
)]

+ ln det
c

[
1 + e−β

(
Ef−µ̃NJL

f +iA4
)]}

. (6.56)

Using the definition of the thermal Wilson line (Equation (6.18)) for a static gluonic
background field we may write:

L = eiβA4 , (6.57)

L† = e−iβA4 . (6.58)

The terms with colour structure can then be rearranged to yield:

det
c

[
1 + e−β

(
Ef−µ̃NJL

f +iA4
)]

= det
c

[
1 + L† e−β

(
Ef−µ̃NJL

f

)]
, (6.59)

det
c

[
1 + e−β

(
Ef+µ̃NJL

f −iA4
)]

= det
c

[
1 + Le−β

(
Ef+µ̃NJL

f

)]
. (6.60)

To calculate the determinant over colour space, without loss of generality we can work
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on the Polyakov gauge proposed in [83]. In this gauge A4 is diagonal with components
A4 = diag (A11, A22, A33). Besides, because L belongs to the SUc(Nc) group, it is a
traceless matrix. This means,

A11 +A22 +A33 = 0. (6.61)

Writing (6.59) in matrix form in colour space, and performing the determinant yields (the
case for (6.60) is analogous),

det
c

[
1 + L† e−β

(
Ef−µ̃NJL

f

)]
= det

c

13×3 + e−β
(
Ef−µ̃NJL

f

)
exp


−iβA11 0 0

0 −iβA22 0
0 0 −iβA33


 .

(6.62)

Using (6.61) we can write the determinant in (6.59) as:

det
c

[
1 + L† e−β

(
Ef−µ̃NJL

f

)]
= 1 + e−β

(
Ef−µ̃NJL

f

) [
e−iβA11 + e−iβA22 + e−iβA33

]
+ e−2β

(
Ef−µ̃NJL

f

) [
eiβA11 + eiβA22 + eiβA33

]
+ e−3β

(
Ef−µ̃NJL

f

)
. (6.63)

Besides, from the definition of Polyakov loop we may write:

Φ = 1
Nc

tr
c
L = 1

Nc

[
eiβA11 + eiβA22 + eiβA33

]
, (6.64)

Φ = 1
Nc

tr
c
L† = 1

Nc

[
e−iβA11 + e−iβA22 + e−iβA33

]
. (6.65)

Using (6.64) and (6.65), the determinant yields:

det
c

[
1 + L† e−β

(
Ef−µ̃NJL

f

)]
= 1 +NcΦe−β

(
Ef−µ̃NJL

f

)
+NcΦe−2β

(
Ef−µ̃NJL

f

)
+ e−3β

(
Ef−µ̃NJL

f

)
.

(6.66)

Repeating the calculations to calculate the determinant in (6.60) yields:

det
c

[
1 + Le−β

(
Ef+µ̃NJL

f

)]
= 1 +NcΦe−β

(
Ef+µ̃NJL

f

)
+NcΦe−2β

(
Ef+µ̃NJL

f

)
+ e−3β

(
Ef+µ̃NJL

f

)
.

(6.67)
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Putting all together, the grand canonical potential for the PNJL model is now:

ΩMFA − Ω0 = U
(
Φ,Φ;T

)
− UNJL − 2

∑
f=u,d,s

{∫
d3p

(2π)3NcEf

+ T

∫
d3p

(2π)3 ln
[
1 +NcΦe−β

(
Ef+µ̃NJL

f

)
+NcΦe−2β

(
Ef+µ̃NJL

f

)
+ e−3β

(
Ef+µ̃NJL

f

)]
+T

∫
d3p

(2π)3 ln
[
1 +NcΦe−β

(
Ef−µ̃NJL

f

)
+NcΦe−2β

(
Ef−µ̃NJL

f

)
+ e−3β

(
Ef−µ̃NJL

f

)]}
. (6.68)

Defining the thermal functions F and F∗,

F
(
p, T, µ̃NJLf

)
= T ln

[
1 + e−3

(
Ef−µ̃NJL

f

)
/T +NcΦe−

(
Ef−µ̃NJL

f

)
/T +NcΦe−2

(
Ef−µ̃NJL

f

)
/T
]
,

(6.69)

F∗
(
p, T, µ̃NJLf

)
= T ln

[
1 + e−3

(
Ef+µ̃NJL

f

)
/T +NcΦe−

(
Ef+µ̃NJL

f

)
/T +NcΦe−2

(
Ef+µ̃NJL

f

)
/T
]
,

(6.70)

we can write the grand canonical potential in a simpler form:

ΩMFA − Ω0 = U
(
Φ,Φ;T

)
− UNJL − 2Nc

∑
f

∫
d3p

(2π)3Ef

− 2
∑
f

∫
d3p

(2π)3

[
F
(
p, T, µ̃NJLf

)
+ F∗

(
p, T, µ̃NJLf

)]
. (6.71)

To evaluate the thermodynamics we apply the thermodynamic consistency relations (Section
2.3):

∂ΩMFA
∂σf

= ∂ΩMFA
∂Φ = ∂ΩMFA

∂Φ
= 0, f = u, d, s. (6.72)

These relations define the value of the quark condensate (see Appendix C.4.3):

σu = −2 Nc

∫
d3p

(2π)3
Mu

Eu
(1− νu − νu) , (6.73)

σd = −2 Nc

∫
d3p

(2π)3
Md

Ed
(1− νd − νd) , (6.74)

σs = −2 Nc

∫
d3p

(2π)3
Ms

Es
(1− νs − νs) . (6.75)
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Here νf and νf are the particle and antiparticle occupation numbers in the PNJL model,
defined as:

νf =
3
Nc
e−3

(
Ef−µ̃NJL

f

)
/T + Φe−

(
Ef−µ̃NJL

f

)
/T + 2Φe−2

(
Ef−µ̃NJL

f

)
/T

1 + e−3
(
Ef−µ̃NJL

f

)
/T +NcΦe−

(
Ef−µ̃NJL

f

)
/T +NcΦe−2

(
Ef−µ̃NJL

f

)
/T
, (6.76)

νf =
3
Nc
e−3

(
Ef+µ̃NJL

f

)
/T + Φe−

(
Ef+µ̃NJL

f

)
/T + 2Φe−2

(
Ef+µ̃NJL

f

)
/T

1 + e−3
(
Ef+µ̃NJL

f

)
/T +NcΦe−

(
Ef+µ̃NJL

f

)
/T +NcΦe−2

(
Ef+µ̃NJL

f

)
/T
. (6.77)

The gap equations for the Polyakov loop fields Φ and Φ are (see Appendix C.4.3):

T 4

−1
2a (T ) Φ−

6b (T )
(
Φ− 2Φ2 + Φ2Φ

)
1− 6ΦΦ + 4

(
Φ3 + Φ3

)
− 3

(
ΦΦ
)2

 =

2NcT
∑
f

∫
d3p

(2π)3

 e−(Ef+µ̃NJL
f

)
/T

eF
∗
(
p,T,µ̃NJL

f

)
/T

+ e−2
(
Ef−µ̃NJL

f

)
/T

eF
(
p,T,µ̃NJL

f

)
/T

 , (6.78)

T 4

−1
2a (T ) Φ−

6b (T )
(
Φ− 2Φ2 + ΦΦ2

)
1− 6ΦΦ + 4

(
Φ3 + Φ3

)
− 3

(
ΦΦ
)2

 =

2NcT
∑
f

∫
d3p

(2π)3

e−(Ef−µ̃NJL
f

)
/T

eF
(
p,T,µ̃NJL

f

)
/T

+ e−2
(
Ef+µ̃NJL

f

)
/T

eF
∗
(
p,T,µ̃NJL

f

)
/T

 . (6.79)

Equations (6.73), (6.74), (6.75), (6.78) and (6.79) alongside the effective mass for each
flavour of quark (Equations (3.108), (3.109) and (3.110)), define the gap equations of the
PNJL model.

6.3 The modified Polyakov loop potential

From the definition of the Polyakov loop effective potential and from the gap equations of
the Polyakov loop field (Equations (6.78) and (6.79)) it is clear that when the limit T = 0
is taken, the PNJL model becomes the NJL model of Section 3.3. If we want to treat
neutron stars with a model that have built in an order parameter for the confinement-
deconfinement phase transition, we should adopt a different scheme, modify the PNJL
in such a way that the Polyakov loop effective potential does not vanish in such a regime
(T = 0, for extremely degenerate matter).

It has been proposed by many authors [78–81], that an explicit dependence on the chemical
potential and number of flavours of quarks could be added to the T0 parameter of the
effective potential.
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6.3.1 Stefan-Boltzmann pressure

Following [84], to modify the effective Polyakov loop potential we modify both sides of
the definition of the Polyakov loop potential (Equation (6.37)). To modify the left side
of Equation (6.37), we use the pressure for the QCD plasma, which to first-order in the
coupling constant, is the Stefan-Boltzmann pressure for an ideal gas of quarks and gluons.

The pressure for a gas of massless quarks Pq can be extracted from Equation (2.94), putting
NI = Nc, the number of colours, and making a sum over the flavours of quarks:

Pq =
∑
f

Pf = NcNf
7π2T 4

180 +Nc

∑
f

(
T 2µ2

f

6 +
µ4
f

12π2

)
. (6.80)

The pressure for a gas of massless gluons PG can be obtained from Equation (2.122),
by setting NI = 2

(
N2
c − 1

)
, where these represent the degrees of freedom of the gluons,

there are N2
c − 1 gluon fields, each with two transverse propagating modes (number of

polarizations a spin-1 particle can have):

PG = 2
(
N2
c − 1

) π2T 4

90 . (6.81)

In SUc(3)⊗ SUf (3) we have Nc = 3 and Nf = 3. The Stefan-Boltzmann pressure PSB is
the sum of the quark and gluon contributions:

PSB = Pq + PG =

= 19π2T 4

36 +
∑
f

(
T 2µ2

f

2 +
µ4
f

4π2

)
= 19π2

36

T 4 +
∑
f

( 18
19π2T

2µ2
f + 9

19π4µ
4
f

) .
(6.82)

The first modification to the effective Polyakov loop potential is the substitution of the
global T 4 dependence on the left side of Equation (6.37) by the dependence in the Stefan-
Boltzmann pressure [84]:

T 4 → T 4 +
∑
f

( 18
19π2T

2µ2
f + 9

19π4µ
4
f

)
. (6.83)

Note that when µf = 0, we recover the usual effective Polyakov loop. This idea is inspired
by the Dyson–Schwinger calculation in [78].

The µ dependence on the right side of Equation (6.37) will be given by µ dependent
T0. Perturbative calculations (hard thermal loop and hard dense loop calculations of
perturbative QCD) allows the following substitution [79]:

T0
T
→ T0(µ)

T
= Tτe

− 1
C1−C2µ2

T
. (6.84)
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The constants C1 and C2 are:

C1 = α0
6π (11Nc − 2Nf ) , (6.85)

C2 = 16α0
π

Nf

T 2
τ

. (6.86)

The parameters Tτ and α0 are free. In [85], Tτ is chosen to be the temperature scale,
Tτ = 1.77 GeV. This constitutes a reasonable UV scale for the MFA. The parameter α0 is
fixed by requiring T0 = 270 MeV, when pure Yang-Mills theory (Nf = 0) is considered, in
that case α0 = 0.304.

In the present work this parametrization will be different. We will consider a fixed value
for α0 = 0.304 and choose a certain value for T0. This will then lead to some temperature
scale, Tτ . This approach allows the study of the relation between the deconfinement and
chiral transitions at T = 0, for different T0 when quarks are considered. Fixing T0 and
then calculating the energy scale, is a valid approximation if the chemical potentials for a
given flavour of quark are not higher then the calculated scale.

The T0(µf )/T in Equation (6.84), have a divergence at T = 0, exactly the limit we are
interested in. Following [5], in order to study the T → 0 limit of the modified Polyakov
loop potential, a phenomenological function is adopted,

T0
T
→ T0√

T 2 + g(µf )
, (6.87)

where the function g(µf ) is expanded as a power series in µf . With this approach we are
fitting Equation (6.84) as

g(µf ) =
∞∑
n=1

ηnµ
n
f . (6.88)

By Taylor expanding (6.84) around the lattice QCD deconfinement temperature at vanish-
ing chemical potential, (T, µf ) = (T dec

lat , 0), one can match the coefficients ηi in the Taylor
expansion of Equation (6.87) around the same point, (T dec

lat , 0). The sum starts in n = 1 in
order to recover the usual T0/T when µf = 0. Making the expansion to sixth order in µf
we can write:

g(µf ) = η2µ
2
f + η4µ

4
f + η6µ

6
f . (6.89)
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Taylor expanding Equations (6.84) and (6.87), and using Equation (6.89), to sixth order in
µf , one can match the coefficients of equal power in µf and write:

g(µf = 0) : T0 = Tτe
− 1
C1 , (6.90)

µ2
f : η2 = 2

(
T dec

lat

)2 C2
C2

1
, (6.91)

µ4
f : η4 = η2

2(1 + C1)
2
(
T dec

lat
)2 , (6.92)

µ6
f : η6 =

(
T dec

lat

)2

3C6
1

[(
6C2

1 − 6C1 + 1
)
C3

2

]
− 5η3

2

8
(
T dec

lat
)4 + 3η2η4

2
(
T dec

lat
)2 . (6.93)

The parameters a(T ) and b(T ) will have an explicit dependence on the chemical potential,
a(T, µf ) and b(T, µf ). Each flavour of quark can have different contributions to these
parameters (in the case where the chemical potentials are different). Thus, it is necessary
to make an explicit sum of these parameters over the flavour space:

a(T )→ 1
Nf

∑
f

a(T, µf ), (6.94)

b(T )→ 1
Nf

∑
f

b(T, µf ). (6.95)

The factor 1/Nf is a normalization constant that allows us to retrieve the usual Polyakov
loop effective potential (6.37), in the limit µf → 0. The modified Polyakov loop potential
can finally be written as:

U(Φ,Φ;T, µf )
T 4 +

∑
f

(
18

19π2T 2µ2
f + 9

19π4µ
4
f

) = − ΦΦ
2Nf

∑
f

a(T, µf ) + 1
Nf

∑
f

b(T, µf ) ln
[
X(Φ,Φ)

]
.

(6.96)

Where a(T, µf ) and b(T, µf ) are now parameters that depend on temperature and quark
chemical potential in the following way:

a(T, µf ) = a0 + a1
T0

[T 2 + g(µf )]1/2
+ a2

T 2
0

[T 2 + g(µf )] , (6.97)

b(T, µf ) = b3
T 3

0

[T 2 + g(µf )]3/2
. (6.98)
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6.4 The modified PNJL model

The modified PNJL (mPNJL) Lagrangian is exactly the same as the one for the PNJL
model (6.44), except that we introduce the modified Polyakov potential of Equation (6.96):

L mPNJL = ψ
(
iγµDµ − m̂+ µ̂γ0

)
ψ +GS

8∑
a=0

[(
ψλaψ

)2
+
(
ψiγ5λ

aψ
)2
]

−L det −L vec − U(Φ,Φ;T, µf ). (6.99)

The grand canonical potential for this theory, in the mean field approximation, is (the sum
over flavour is to be made over f = u, d, s):

ΩMFA − Ω0 = U
(
Φ,Φ;T, µf

)
− UNJL − 2Nc

∑
f

∫
d3p

(2π)3Ef

− 2
∑
f

∫
d3p

(2π)3

[
F
(
p, T, µ̃NJLf

)
+ F∗

(
p, T, µ̃NJLf

)]
,

(6.100)

Here, UNJL is given by Equation (3.103).

6.4.1 T = 0 Limit

We are interested in the T → 0 limit of the mPNJL model. We may write:

ΩMFA(µf ) = lim
T→0

ΩMFA(µf , T ) =

= Ω0 + lim
T→0
U
(
Φ,Φ;T, µf

)
− UNJL − 2Nc

∑
f

∫
d3p

(2π)3Ef

− 2
∑
f

∫
d3p

(2π)3

[
lim
T→0
F
(
p, T, µ̃NJLf

)
+ lim
T→0
F∗
(
p, T, µ̃NJLf

)]
. (6.101)

The thermal functions (6.69) and (6.70) have the following limits (presented in the Appendix
D.1.2):

lim
T→0
F
(
p, T, µ̃NJLf

)
= 3

(
µ̃NJLf − Ef

)
θ
(
Ef − µ̃NJLf

)
, (6.102)

lim
T→0
F∗
(
p, T, µ̃NJLf

)
= 0. (6.103)
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Where θ(Ef − µ̃NJLf ) is the heaviside step function. The modified Polyakov loop potential
in the T → 0 limit is,

U
(
Φ,Φ;µf

)
9

19π4
∑
f µ

4
f

= − ΦΦ
2Nf

∑
f

a(µf ) + 1
Nf

∑
f

b(µf ) ln
[
1− 6ΦΦ + 4

(
Φ3 + Φ3)− 3

(
ΦΦ
)2
]
,

(6.104)

a(µf ) = a0 + a1
T0

[g(µf )]1/2
+ a2

T 2
0

[g(µf )] , (6.105)

b(µf ) = b3
T 3

0

[g(µf )]3/2
. (6.106)

The grand canonical potential in the T = 0 limit is,

ΩMFA − Ω0 = U
(
Φ,Φ;µf

)
− UNJL

− 6
∑
f

∫
d3p

(2π)3

[
Ef +

(
µ̃NJLf − Ef

)
θ
(
Ef − µ̃NJLf

)]
. (6.107)

Where Ω0 is the vacuum contribution defined in Equation (3.125). We are now able to
derive the thermodynamics of the system in this limit, by applying Equations (6.72) to the
grand canonical potential. This yields the following gap equations:

∂Ω
∂σi

= 0 ⇒ Mi = mi − 4gSσi + 2gDσjσk i 6= j 6= k, (6.108)

∂Ω
∂Φ = 0 ⇒ − Φ

2Nf

∑
f

a(µf ) = 6
Nf

∑
f

b(µf )Φ− 2Φ2 + Φ2Φ
X(Φ,Φ)

, (6.109)

∂Ω
∂Φ

= 0 ⇒ − Φ
2Nf

∑
f

a(µf ) = 6
Nf

∑
f

b(µf )Φ− 2Φ2 + ΦΦ2

X(Φ,Φ)
. (6.110)

The pressure, and energy density will be the same as in the NJL model (Equations (3.121)
and (3.123)). The additional chemical dependence in the Polyakov loop potential will
modify the quark densities:

ρf = − ∂Ω
∂µf

= 6
∫

d3p

(2π)3 θ (Ef − µf )−
∂U

(
Φ,Φ;µf

)
∂µf

=

=
λ3
Ff

π2 −
∂U

(
Φ,Φ;µf

)
∂µf

. (6.111)
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Where λFf is the Fermi momentum of the quark of flavour f and:

∂U
(
Φ,Φ;µf

)
∂µf

=

 9
19π4

∂

∂µf

∑
f

µ4
f

− ΦΦ
2Nf

∑
f

a(µf ) + 1
Nf

∑
f

b(µf ) ln
[
X(Φ,Φ)

]
+

 9
19π4

∑
f

µ4
f

 ∂

∂µf

− ΦΦ
2Nf

∑
f

a(µf ) + 1
Nf

∑
f

b(µf ) ln
[
X(Φ,Φ)

]
= − 9

19π4
ΦΦ
2Nf

4µ3
f

∑
f

a(µf ) + da(µf )
dµf

∑
f

µ4
f


+ 9

19π4
1
Nf

ln
[
X(Φ,Φ)

] 4µ3
f

∑
f

b(µf ) + db(µf )
dµf

∑
f

µ4
f

 , (6.112)

da(µf )
dµf

= −
(
a1
2

T0

[g(µf )]3/2
+ a2

T 2
0

[g(µf )]2

)
dg(µf )
dµf

, (6.113)

db(µf )
dµf

= −
(

3b3
2

T 3
0

[g(µf )]5/2

)
dg(µf )
dµf

, (6.114)

dg(µf )
dµf

= d

dµf

∞∑
n=1

ηnµ
n
f =

∞∑
n=1

nηnµ
n−1
f . (6.115)

To sixth order in µf we can write Equation (6.115) as,

dg(µf )
dµf

= 2η2µf + 4η4µ
3
f + 6η6µ

5
f . (6.116)

The quark density is finally given by:

ρf =
λ3
Ff

π2 + 9
19π4

ΦΦ
2Nf

4µ3
f

∑
f

a(µf ) + da(µf )
dµf

∑
f

µ4
f


− 9

19π4
1
Nf

ln
[
X(Φ,Φ)

] 4µ3
f

∑
f

b(µf ) + db(µf )
dµf

∑
f

µ4
f

 . (6.117)

Where the derivatives are given by Equations (6.113), (6.114) and (6.115). Note that in
the limit Φ→ 0, the quark density reduces to the one of the NJL model (see Equation
(3.122)).

In this limit, the pressure and energy density are the ones calculated for the SUf (3) NJL
model (Equations (3.121) and (3.123)), with a contribution from the modified Polyakov
loop effective potential:

PMFA = −Ω0 − U
(
Φ,Φ;µf

)
+ UNJL + 3

π2

∑
f

∫ Λ

λFf

dpp2Ef +
∑
f

µ̃NJLf

λ3
Ff

π2 , (6.118)
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εMFA = Ω0 + U
(
Φ,Φ;µf

)
− UNJL − 3

π2

∑
f

∫ Λ

λFf

dpp2Ef +
∑
f

(
µf − µ̃NJLf

) λ3
Ff

π2 . (6.119)

The major changes between the NJL in SUf (3) and the modified Polyakov loop at zero
temperature is the additional terms in the particle density (Equation (6.117)) and the
contribution of the modified Polyakov loop potential to the pressure (Equation (6.118))
and to the energy density (Equation (6.119)). This extra contribution may be compared
to the phenomenological Bag constant introduced in Section 4.3. However, this Bag is not
simply a constant, but it depends on the chemical potential of the quarks and it is related
to gluonic degrees of freedom through the Polyakov loop field.

6.5 The deconfinement phase transition at T=0

Focusing on the gap equations for the Polyakov loop field Φ, Equation (6.109) and Φ,
Equation (6.110), one can realize that these equations are independent from the quark
condensates (6.108) and respective constituent masses. This means that they can be solved
separately from the other gap equations. Isolating X(Φ,Φ) on both equations, yields:

X(Φ,Φ)
∑
f

a(µf ) = −12
∑
f

b(µf )Φ− 2Φ2 + Φ2Φ
Φ

, (6.120)

X(Φ,Φ)
∑
f

a(µf ) = −12
∑
f

b(µf )Φ− 2Φ2 + ΦΦ2

Φ . (6.121)

Equating the right sides of the above equations gives:

Φ− 2Φ2 + Φ2Φ
Φ

= Φ− 2Φ2 + ΦΦ2

Φ ⇔

⇔ ΦΦ− 2Φ3 + Φ2Φ2 = ΦΦ− 2Φ3 + Φ2Φ2 ⇔

⇔ Φ3 = Φ3 ⇔

⇔ Φ = Φ. (6.122)

This means we only have one independent Polyakov loop field. Substituting this in
Equations (6.120) and (6.121), yields,

Φ
∑
f

a(µf ) = −12
∑
f

b(µf ) Φ− 2Φ2 + Φ3

1− 6Φ2 + 8Φ3 − 3Φ4 . (6.123)

We define the sums over flavour of the chemical potential dependent parameters as:

∑
f

a(µf ) = A, (6.124)

∑
f

b(µf ) = B, (6.125)
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and write (6.123) as:

ΦA
(
1− 6Φ2 + 8Φ3 − 3Φ4

)
+ 12B

(
Φ− 2Φ2 + Φ3

)
= 0. (6.126)

This equation is simply the calculation of the five zeros of some fifth order polynomial
function, which depends on the parameters A and B (defined in (6.124) and (6.125)). If
we factorize the above equation, we can re-write it as:

(Φ− 1)2 Φ
(
A+ 12B + 2AΦ− 3AΦ2

)
= 0. (6.127)

The five solutions of (6.127) are:

Φ = 0, (6.128)

Φ = 1 (double solution), (6.129)

Φ = 1
3 ∓

2
3

√
1 + 9B

A
. (6.130)

The first solution (6.128) implies that the Polyakov loop will be always zero, meaning
we always have a confined phase i.e., a spontaneous symmetry breaking of the Z(3)
symmetry does not occur. The second solution Equation (6.129), represents the opposite,
the symmetry is explicitly broken because the Polyakov loop will always be bigger than
zero. The third solution (6.130) depends on the parameters A and B, i.e., depend on the
chemical potential of the quarks. Substituting the definition of these parameters the third
solution is:

Φ∓ = 1
3 ∓

2
3

√√√√1 + 9
∑
f b(µf )∑
f a(µf ) . (6.131)

To evaluate how the Polyakov loop field Φ behaves, we have to provide some relation
between the chemical potentials so we have some Φ (µ). In order to do this, we consider
equal chemical potentials for each flavour of quark4:

µu = µd = µs = µB
3 . (6.132)

Next, we fix GV = 0 and following [86], fix T dec
lat = 170 MeV. We then search for the value

of the T0 parameter which, in the usual PNJL, yields this deconfinement temperature.
We obtained the parametrization given in Table 6.1.

In Figure 6.1 we can see the plot of the Polyakov loop versus the chemical potential. From
this figure we can extract some information: the chemical potential and Polyakov loop are
positive, implying that some solutions are unphysical; The Polyakov loop becomes larger

4Later, when applying the modified PNJL to neutron star matter, the relation between the chemical
potential will be given by the β−equilibrium. This represent a more complicated case than considering all
chemical potentials to be equal, due to the influence of the electrons.
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T0[MeV] Tτ [GeV] η2 η4 × 10−6 η6 × 10−11

214.00 2.127 0.313 2.432 1.585

Table 6.1: T0 parameter which reproduces T dec
lat = 170 MeV in the PNJL model. Calculated Tτ (energy

scale) and parameters η2, η4, η6.

than zero when it changes from the trivial solution Φ = 0 (red line) to Φ− (green dashed
line), which in turn becomes Φ+ (blue line).
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Figure 6.1: All the five solutions of the Polyakov loop field, considering equal chemical potential for every
flavour of quark (T0 = 214MeV).

In Figure 6.2, the chemical potential and Polyakov loop are restricted to positive values.
We can define conditions that must be satisfied for the Polyakov loop to change from
solution Φ = 0 to Φ− (condition 1 ) and Φ− to Φ+ (condition 2 ). The points in which
these conditions are met are drawn in Figure 6.2.

Condition 1, as already stated, is satisfied when Φ changes from solution Φ = 0 to Φ−.
This means we can find some constraint on the parameters A and B (defined in Equations
(6.124) and (6.125)) by imposing:

Φ− = 0⇔ 1
3 = 2

3

√
1 + 9B

A
⇔

⇔ 1 = 4
(

1 + 9B
A

)
⇔

⇔ A+ 12B = 0⇔

⇔
∑
f

a(µf ) + 12
∑
f

b(µf ) = 0. (6.133)
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Figure 6.2: Physical solutions of the Polyakov loop field, considering equal chemical potential for every
flavour of quark (T0 = 214MeV). The points in which conditions 1 and 2 are verified are drawn (square and
triangle, respectively).

Condition 2 is satisfied when Φ changes from solution Φ− to Φ+. Following the previous
steps, we can find the constraint on the parameters A and B, by writing:

Φ+ = Φ− ⇔

⇔ 1
3 + 2

3

√
1 + 9B

A
= 1

3 −
2
3

√
1 + 9B

A
⇔

⇔

√
1 + 9B

A
= −

√
1 + 9B

A
. (6.134)

The quantities under the square roots must be positive (they are sums of chemical potentials).
This means that the above equality is only true if both sides are equal to zero,√

1 + 9B
A

= 0⇒ A+ 9B = 0⇔

⇔
∑
f

a(µf ) + 9
∑
f

b(µf ) = 0. (6.135)

Condition 2 is verified when the above equation is verified. Although we have derived
these conditions by observing the behaviour of the Polyakov loop field when the chemical
potentials are all equal, Equations (6.133) and (6.135) hold for other relations between
the chemical potentials. This is true because these relations have been derived using the
solutions of the Polyakov loop field written in terms of sums of the chemical potential
dependent parameters A and B.

The change of the value of the Polyakov loop field from zero to some positive value, can be
used as an order parameter for the spontaneous breaking of the Z(3) symmetry which is
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Figure 6.3: Left panel: Quark condensate (up) and pressure (down) versus the baryonic chemical potential
for the SUf (3) mPNJL model with T0 = 214 MeV and GV = 0. The chiral phase transition is highlighted
(black dot). Right panel: Polyakov loop field (up) and pressure (down) versus the baryonic chemical potential
for the SUf (3) mPNJL model with T0 = 214 MeV and GV = 0. The confinement-deconfinement phase
transition is highlighted (black dot).

related to the transition from a confined phase, to a deconfined phase (see Section 6.1).
This phase transition can be defined like the chiral symmetry restoration (see Section
3.1.5).

The pressure and light quark condensates plotted as a function of the baryonic chemical
potential (Figure 6.3, left panel), shows the presence of branches with stable, metastable
and unstable solutions, for baryonic chemical potentials in the domain µaB < µB < µbB,
which corresponds to three solutions of the gap equations (see Figure 6.3, top left panel).
The stable solutions are realized by the minimum of the thermodynamic potential or,
equivalently, maximum of the pressure. When stable and metastable solutions give the
same value for the thermodynamic potential at the same µB, the phase transition occurs
as illustrated in Figure 6.3 (left panel). This results in a first-order phase transition (black
dot), defined as the µχB at which there is a discontinuity in the quark condensate (see
bottom left panel of Figure 6.3). The phase of broken symmetry is realized for µB < µχB
and the “symmetric” phase is realized for µB > µχB. At this crossing point of the curve,
the two phases are in thermal and chemical equilibrium (obeying the Gibbs criteria, see
Figure 6.4 and Section 4.3). All first-order phase transitions found throughout this work,
have this type of behaviour. For a more detailed discussion see [3].

The confinement-deconfinement phase transition (Figure 6.3, right), is completely analogous
to the chiral transition, a first-order phase transition, characterized by a discontinuity on
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Figure 6.4: Pressure versus the baryonic chemical potential and Gibbs construction for the chiral (χ-
transition) and deconfinement (dec-transition) transitions in the mPNJL model. Each flavour of quark has
the same chemical potential and T0 = 214 MeV. The different colors (red, green and blue) correspond to
different solutions of the Polyakov loop field.

the first derivative of the pressure. The deconfinement point (µdecB ) is defined as the µB at
which there is a discontinuity in the Polyakov loop field, the order parameter (see right
panel of Figure 6.3).

6.6 Results

In the present Section we follow Chapter 5 and investigate the existence of hybrid stars
described by the modified PNJL model derived in this chapter and the possibility of
describing the gluonic degrees of freedom by the modified Polyakov loop potential at T = 0.
Therefore, we do not use the phenomenological parameter B∗ in this Section. The effect
of the T0 parameter in the position of the deconfinement point (µdecB ) and the position
of the chiral symmetry restoration point (µχB) is studied, and a value for T0 is found in
such a way that the transition from the hadronic EoS to the quark EoS, coincides with
the confinement-deconfinement phase transition. We will use the hadronic EoS from the
previous Sections.

We remark on the difference between the definition of deconfinement in the present Section
from the definition used in the previous Chapters. Previously, deconfinement was defined as
the change of degrees of freedom i.e., the change from a hadronic EoS to a quark EoS. In
the present Section we still have this kind of phase transition but it will be called explicitly
as the change from the hadronic EoS to a quark EoS. Deconfinement will be related to
the spontaneous symmetry breaking of the Z(3) symmetry, measured by the respective
order parameter, the Polyakov loop.
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We will impose β−equilibrium to describe neutron star matter and use the SUf (3)−I
parameter set (given in Table 5.5) alongside the usual parametrization of the Polyakov
loop given in Equations (6.42) and (6.43). The parameter T0 however, will be left free and
its effect on the EoS will be studied. As we are only interested in understanding the effect
of the modified Polyakov loop potential, we will not take into account vector interactions
i.e., Gω = Gρ = GV = 0. The effect of the vector interactions in the mPNJL model is left
for future work. The applicability of the mPNJL model is defined in the same way as the
previous quark models (see Section 5.1.1).

We fix the lattice deconfinement temperature to T dec
lat = 170 MeV [86] and consider the

T0 = 214, 210, 206, 202, 198 MeV. From these values we extract the temperature scale Tτ
and the fitting parameters η2, η4 and η6. Results are presented in Table 6.2.

T0[MeV] Tτ [GeV] η2 η4 × 106 η6 × 1011

214.00 2.127 0.313 2.43 1.58
210.00 2.087 0.325 2.62 1.77
206.00 2.045 0.338 2.83 1.99
202.00 2.008 0.351 3.06 2.24
198.00 1.968 0.366 3.32 2.53

Table 6.2: Different T0 parameters and respective temperature scale Tτ and the fitting parameters η2, η4
and η6 obatined by fixing T dec

lat = 170 MeV.

In Table 6.3 the type of chiral transition and confinement-deconfinement phase transition
that the model undergoes at β−equilibrium, when the T0 parameter decreases, is shown.
From this Table, some remarks may be done: a) All transitions are first-order phase

T0 Typeχ
µχB Typedec

µdecB

[MeV] [MeV] [MeV]

214 1st- order 999 1st- order 1201
210 1st- order 999 1st- order 1155
206 1st- order 999 1st- order 1109
202 1st- order 999 1st- order 1060
198 1st- order 1003 1st- order 983

Table 6.3: Type of the chiral symmetry phase transition and confinement-deconfinement phase transition
and respective baryonic chemical potentials of phase transition (µχB and µdec

B , respectively).

transitions; b) The T0 parameter does not influence the type of phase transition; c)
Decreasing the value of T0 makes the confinement-deconfinement closer to the chiral
transition; d) The confinement-deconfinement phase transition always happens after the
chiral symmetry restoration of the model, except when T0 = 198 MeV. In this case the
deconfinement phase transition occurs first.

The fact that the chiral symmetry restoration occurs before the confinement-deconfinement
phase transition implies the existence of a quarkyonic phase which is confined, yet chirally
symmetric [87] i.e., a phase of quark matter where chiral symmetry is restored but quarks



106 Chapter 6. Polyakov–Nambu–Jona-Lasinio Model at Zero Temperature

are still confined. With the decrease of the T0 parameter, the range of existence of
this phase shrinks but it does not disappear (at least until the deconfinement phase
transition occurs before the chiral transition, e.g. T0 = 198 MeV). In fact, it is not
possible to find a T0 parameter for which this phase does not exist, i.e., where the chiral
symmetry restoration coincide exactly with the confinement-deconfinement phase transition
(µχB = µdecB ). When the confinement-deconfinement phase transition approaches the chiral
transition, a complicated behaviour takes place: instead of appearing only two stable phases
of quark matter, one which is confined and chirally broken and one which is deconfined and
chirally symmetric, other two intermediate phases appear. In the first of these intermediate
phases, matter is deconfined and chirally broken and in the second, matter is chirally
symmetric but confined. This non-trivial behaviour owes its existence to the unstable
and metastable solutions of the Polyakov loop field, not being possible to make the chiral
transition and confinement-deconfinement transition perfectly coincide in the present model.
However, if the chiral transition were a crossover, coinciding the transitions might be
possible. As we saw from Chapter 5, in the SUf (3) NJL model, the chiral transition is a
crossover if we consider a positive GV parameter. This is left for further work.

In Figure 6.5 we can see the behaviour of the Polyakov loop field versus the baryonic
chemical potential in β−equilibrium. Comparing with Figure 6.2, where equal chemical
potentials for each flavour of quark were considered, we see that the Polyakov loop in
β−equilibrium has the same qualitative behaviour. The only exception, is when T0 = 198
MeV, the case where the chiral transition occurs after the deconfinement and there is no
quarkyonic (confined-chirally symmetric) phase.
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Figure 6.5: Polyakov loop field in β−equilibrium for several values of the T0[MeV] parameter.

In Figure 6.6 the EoS, pressure versus density (left panel), and the mass/radius and
mass/density plots (right panel) are presented. The light-grey and dark-grey bars represent
again the mass constraint of the J0348+043 and J1614-2230 pulsars. The big dots
correspond to the maximum mass configurations.
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From the analysis of these figures some comments may be drawn: a) The T0 parameter does
not have a major influence in the central density of the star, but decreasing this parameter
translates into increasing maximum star masses (see also Table 6.4); b) Decreasing the
parameter T0 makes the EoS a little harder; c) For T0 = 202 MeV and T0 = 198 MeV, the
transition of the hadronic model to the quark model, occurs to a deconfined quark phase,
i.e., we change from a hadronic EoS to a deconfined quark EoS.
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Figure 6.6: Left panel: equations of state, for each value of T0[MeV], for the mPNJL model. The star
maximum mass, central density, the chiral transition (χ−transition), the hadronic-quark model transition
(had-quark transition) and confinement-deconfinement phase transitions (dec-transition) are highlighted.
Right panel: mass-radius and mass-central density diagrams for each value of T0[MeV] for the mPNJL model.
The star maximum mass, central density, hadronic-quark model transition and confinement-deconfinement
transition are highlighted. The light-grey bar represents the mass constraint of the J0348+043 pulsar
(M = 2.01±0.04 M�) while the dark-grey bar the J1614-2230 pulsar (M = 1.928± 0.017 M�).

In Figure 6.7 the s, d and u quark fractions are plotted. Decreasing T0 makes the onset
of strangeness occur earlier, giving rise to stars with a larger strangeness content. This
effect is due to the additional term in the quark densities, as a result of the modified
Polyakov loop effective potential, as one can see in Equation (6.117). When Φ = 0, the
quark fractions are the same as the one in the NJL model. However, when Φ > 0, the
quark densities are changed due to a new term in Equation (6.117).

In Table 6.4 we present, for several values of T0, the baryonic chemical potential (µtB) of the
transition between the hadronic EoS and quark EoS, baryonic density of the end of the
hadronic phase (ρH), baryonic density of the beginning of the quark phase (ρQ), baryonic
density of the end of the confined (ρconf) and beginning of the deconfined ρdec) phases.
The respective values of central baryonic density (ρc), maximum gravitational mass (Mm),
maximum baryonic mass (Mbm), radius (Rm) and fraction of strangeness (ρs/ρB).

From Table 6.4, several conclusions may be drawn: a) The baryonic chemical potential
(µtB) of the transition between the hadronic and quark model and the respective baryonic
densities of transition (ρH and ρQ) are the same for T0 = 214, 210, 206 MeV because the
system changes from the hadronic EoS to the confined quark EoS, which is T0 independent;
b) The central density (ρc) and maximum radius (Rm) are almost T0 independent; c) The
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Figure 6.7: Fractions of each flavour of quark (Yi) in function of the baryonic density (ρB) for several
values of the T0[MeV] parameter. The quark fraction for the usual SUf (3) NJL model is represented for
comparisons purposes.

T0 µtB ρH ρQ ρconf ρdec ρc Mm Mbm Rm ρs/ρB
[MeV] [MeV] [fm−3] [fm−3] [fm−3] [fm−3] [fm−3] [M�] [M�] [km] [%]

214 1093 0.282 0.384 0.518 0.594 1.342 1.78 2.19 11.56 9.29
210 1093 0.282 0.384 0.459 0.526 1.379 1.82 2.33 11.53 10.90
206 1093 0.282 0.384 0.402 0.459 1.387 1.88 2.51 11.58 12.09
202 1081 0.274 0.429 0.274 0.429 1.384 1.94 2.70 11.64 13.19
198 1062 0.260 0.410 0.260 0.410 1.374 2.01 2.92 11.71 14.63

Table 6.4: T0 parameter, baryonic chemical potential (µtB) of the transition between the hadronic and
quark model, baryonic density of the end of the hadronic phase (ρH), baryonic density of the beginning of
the quark phase (ρQ), baryonic density of the end of the confined phase (ρconf) and baryonic density of the
beginning of the deconfined phase (ρdec). Values of central baryonic density (ρc), maximum gravitational
mass (Mm), maximum baryonic mass (Mbm), radius (Rm) and percentage of strangeness (ρs/ρB) of the
respective neutron star for the mPNJL model.

maximum gravitational and baryonic masses and strangeness percentage, increases with
decreasing T0 since the onset of strangeness occurs earlier.

We look for the T0 parameter for which the transition from the hadronic EoS to the
quark EoS coincides exactly with the confinement-deconfinement phase transition i.e.,
µtB = µdecB , the transition from the hadronic EoS to the quark EoS5 exactly coincides
with the confinement-deconfinement phase transition related to the Polyakov loop and
spontaneous breaking of the Z(3) symmetry in the mPNJL model. In Table 6.5, this T0

and respective temperature scale Tτ and fitting parameters (η2, η4 and η6) are presented.

As previously stated, the type of chiral transition is T0 independent, resulting in a first-order
5This phase transition corresponds to a change of degrees of freedom and respective Lagrangian (called

deconfinement in Chapter 5).
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µtB = µdecB T0[MeV] Tτ [GeV] η2 η4 × 106 η6 × 1011

1093 204.65 2.034 0.342 2.91 2.07

Table 6.5: T0 in which µtB = µdec
B and respective temperature scale Tτ and the fitting parameters η2, η4

and η6 obatined by fixing T dec
lat = 170 MeV.

phase transition. The confinement-deconfinement phase transition is also a first-order
phase transition. The baryonic chemical potentials of each phase transition are presented
in Table 6.6.

T0 Typeχ
µχB Typedec

µdecB

[MeV] [MeV] [MeV]

204.65 1st- order 999.24 1st- order 1093

Table 6.6: T0 in which µtB = µdec
B , type of chiral and confinement-deconfinement phase transitions and

respective baryonic chemical potentials (µχB and µdec
B ) in the mPNJL model.

As we can see from Table 6.6, the chiral transition has already occurred when the system
changes from the hadronic EoS to the deconfined quark EoS. This means we have a
transition from a hadronic EoS to a deconfined, chirally symmetric quark EoS.

In Table 6.7, we present the results from integrating the TOV equations for this choice
of T0. We stress the high fraction of strangeness in a star described by this EoS, as well
as a gravitational mass, which is within the mass constraints given by the J0348+043
(M = 2.01±0.04 M�) and the J1614-2230 (M = 1.928± 0.017 M�) pulsars.

T0 µtB ρH ρQ ρconf ρdec ρc Mm Mbm Rm ρs/ρB
[MeV] [MeV] [fm−3] [fm−3] [fm−3] [fm−3] [fm−3] [M�] [M�] [km] [%]

204.65 1093 0.282 0.437 0.282 0.437 1.383 1.90 2.58 11.62 12.43

Table 6.7: T0 parameter in which µtB = µdec
B , baryonic chemical potential (µtB) of the transition between

the hadronic and quark model, baryonic density of the end of the hadronic phase (ρH), baryonic density of
the beginning of the quark phase (ρQ), baryonic density of the end of the confined phase (ρconf) and baryonic
density of the beginning of the deconfined phase (ρdec). Values of central baryonic density (ρc), maximum
gravitational mass (Mm), maximum baryonic mass (Mbm), radius (Rm) and percentage of strangeness
(ρs/ρB) of the respective neutron star for the mPNJL model.

Comparing the results for the usual SUf (3) NJL model with GV = 0, without Bag
constant presented in Table 6.8, with the results for the SUf (3) mPNJL (see Table 6.7),
we can take some conclusions: a) By introducing gluonic degrees of freedom, the mPNJL
predicts stable hybrid stars with larger masses (both gravitational and baryonic) and
central densities; b) The fraction of strangeness is much larger for the mPNJL model than
for the usual NJL model without Bag constant. This can be justified with the additional
term in the quark density (see Equation (6.117)).
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Model GV /GS
B∗ µtB ρH ρQ ρc Mm Mbm Rm ρs/ρB

[MeV fm−3] [MeV] [fm−3] [fm−3] [fm−3] [M�] [M�] [km] [%]
SUf (3) NJL 0.00 0 1093 0.282 0.384 0.951 1.76 2.00 11.91 1.32

Table 6.8: Baryonic chemical potential (µtB), confinement baryonic density (ρH), deconfinement baryonic
density (ρQ) and respective value of the added Bag constant (B∗). Values of central baryonic density
(ρc), maximum gravitational mass (Mm), maximum baryonic mass (Mbm), radius (Rm) and percentage of
strangeness (ρs/ρB) of the respective neutron star, for GV = 0, for the SUf (3)−I parameter set. Results
taken from Table 5.8.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

We have analyzed the possibility of obtaining hybrid stars with a quark core described
within the SUf (2) and SUf (3) NJL and SUf (3) mPNJL models. Previous works showed
that it was not possible to predict a pure quark matter core [9] but, in some conditions, it
could be possible that non-homogeneous hadron-quark matter would exist in the center of
the star. However, in [12, 13] a pure quark matter core was predicted if the NJL model
EoS is determined in such a way that the hadron-quark deconfinement transition coincides
with the NJL chiral symmetry restoration. This result shows that the use of a non-unified
EoS to describe the hadron and quark matter should be considered with care and it is
important to conciliate the properties of the hadron and the quark phase. In the present
work besides considering the coincidence between the deconfinement phase transition and
the chiral symmetry restoration, two new parametrizations of the SUf (2) and SUf (3) NJL
models are proposed that satisfy the condition that the vacuum mass of three quarks equals
the vacuum mass of a nucleon, as well as reproducing approximately the usual vacuum
properties.

We have considered together with the usual scalar and pseudoscalar terms in the NJL
model also vector-isoscalar and vector-isovector terms. The first ones have an important
effect on the order of the chiral phase transition and turns the EoS harder: if GV /GS ≥ 0.25
the chiral phase transition in β−equilibrium matter becomes a crossover. This, in fact,
is also true for the vector-isovector model, although the EoS does not become so hard
and smaller maximum mass configurations are obtained. A larger coupling GV shifts the
deconfinement to larger densities and gives rise to a smaller quark contribution to the
hybrid star properties. If the 2M� constraint is considered as defining acceptable hadronic
models, NJL models should include vector-isoscalar terms. We also have considered the
possibility of including both vector- isoscalar and isovector terms, having equal strength.
This choice gives only indicative results and the relative strength in the vacuum could
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be defined by experimental results, such as predicting correctly the mass of the ω and ρ
mesons.

In the present work we have fixed the bag term B∗ imposing that the deconfinement and
chiral phase transitions coincide. Presently, it is still not clear if both phase transitions
coincide, and other scenarios are possible, such as a chiral symmetry restoration occurs
before the deconfinement is attained, giving rise to a quarkyonic phase like the one observed
in the mPNJL model (see Section 6.6). Imposing different constraints on the B∗ will have
essentially quantitative effects, shifting the onset of quark matter and giving rise to a smaller
or larger density jump at the first-order phase transition, but the qualitative features are
similar to the ones discussed imposing the coincidence of the chiral and deconfinement
transitions. The inclusion of gluonic degrees of freedom in the mPNJL model showed a
similar behaviour to the NJL model with a Bag pressure B∗ (with GV = 0) and stable
stars with quark cores were also obtained. This seems to indicate that the addition of a
Bag constant is a phenomenological way of introducing the pressure of gluonic degrees
of freedom when deconfinement occurs. However, introducing these degrees of freedom
through the Polyakov loop potential hardens the EoS and gives rise to 2M� stars even
without vector terms.

The main conclusion of the present work is the importance of choosing conveniently the
quark model and respective parameters when building a hadron-quark EoS. We have
shown that fixing the vacuum quark constituent mass with a value that is one third of the
vacuum nucleon mass allows the appearance of a pure quark core in the center of a neutron
star. Choosing a strong enough coupling GV will result in maximum mass configurations
with masses above 2M�, if vector-isoscalar terms are considered. However, as in previous
studies that have included the strangeness degree of freedom, the strangeness content
of these stars is generally very small. However, using the mPNJL model, due to the
additional term, the onset of strangeness happens at smaller densities which gives rise to
larger fractions of strange quarks in stars.

7.2 Further work

Throughout the work several possible ideas for future investigations emerged.

A different approach to the calculation of the effective action instead of the MFA, like the
1-loop approximation or Functional Renormalization Group would give some insight on
the importance on going beyond mean field theory.

Neutrons star have intense magnetic fields and their inclusion in the PNJL model is
known to affect the chiral transition and pressure [88]. This way, it would be interesting
to see the effect of magnetic fields on the hadronic-quark transition, as well as on the
confinement-deconfinement phase transition in the mPNJL model.
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Another way to improve the models would be to include pion condensation and color-
superconductivity. Pion condensation is known to appear if the isospin chemical potential
exceeds the mass of the pion [49].

One might try another regularization approach to the models. Avoiding the 3-momentum
cut-off, allows the NJL model to bound baryons as chiral solitons or as quark-diquark
structures [40]. One may calculate the nucleon mass and compare it with a the hadronic
model and propose a parametrization which makes the nucleon mass from the NJL model
equal to the hadronic model.

Regarding more technical aspects, as stated in Section 6.6, if the chiral transition in the
mPNJL is a crossover, it may be possible to make this transition coincide with the
confinement-deconfinement transition. As we saw from Chapter 5, in the SUf (3) NJL
model, the chiral transition is a crossover if we consider a positive GV parameter.

One should also test a different modified Polyakov loop effective potential based on the
Stefan-Boltzmann pressure only, i.e. using Equation (6.83) alongside a different substitution
of Equation (6.87),

T0
T
→ T0

4

√
T 4 +

∑
f

(
18

19π2T 2µ2
f + 9

19π4µ
4
f

) , (7.1)

and compare with the results from this work.

The mPNJL model may improve some constraints on the hadronic model in the two-model
approach used in this work. When making the transition between some hadronic model
and the mPNJL coincide with the confinement-deconfinement transition of the mPNJL,
the hadronic model may be constrained to make the hadron-quark transition happen for
a T0 parameter which, at zero chemical potential and finite temperature reproduces the
lattice QCD results for the deconfinement temperature and chiral symmetry restoration.
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Appendix A

Theorems

A.1 Noether’s theorem

Noether’s theorem states that every continuous global symmetries of the Lagrangian density
gives rise to a conserved current jµ(x) i.e.,

∂µj
µ(x) = 0. (A.1)

To prove this theorem we work infinitesimally (following the derivation made in [36]). First
we derive the Euler-Lagrange equations of motion.

The equations of motion can be derived through the principle of least action:

δS[φa] = 0⇒ δS[φa] =
∫
d4x

[
∂L

∂φa
δφa + ∂L

∂ (∂µφa)
∂µ (δφa)

]
= (A.2)

=
∫
d4x

{[
∂L

∂φa
− ∂µ

∂L

∂ (∂µφa)

]
δφa + ∂µ

(
∂L

∂ (∂µφa)
δφa

)}
= 0.

(A.3)

The last term is a total derivative and vanishes for any δφa(t,x) that goes to zero at
spatial infinity and obeys δφa(t1,x) = δφa(t2,x) = 0. Requiring that δS[φa] = 0, yields
the equations of motion for the fields φa,

∂L

∂φa
− ∂µ

∂L

∂ (∂µφa)
= 0. (A.4)

Finally, to prove the theorem, we say that the transformation:

δφa(x) = Xa (φ) , (A.5)
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is a symmetry if the Lagrangian density changes by a total derivative,

δL = ∂µF
µ, (A.6)

for some functions Fµ(φ). We make an arbitrary transformation of the fields φa. Then:

δL = ∂L

∂φa
δφa + ∂L

∂ (∂µφa)
∂µ (δφa) =

=
[
∂L

∂φa
− ∂µ

∂L

∂ (∂µφa)

]
δφa + ∂µ

(
∂L

∂ (∂µφa)
δφa

)
. (A.7)

When the Equations of motion (A.4) are satisfied, the first term vanishes. We are left with:

δL = ∂µ

(
∂L

∂ (∂µφa)
δφa

)
. (A.8)

For the symmetry transformation δφa = Xa (φ), we have by definition δL = ∂µF
µ. We

can write:

δL = ∂µ

(
∂L

∂ (∂µφa)
Xa (φ)

)
= ∂µF

µ. (A.9)

Which means we can write:

∂µ

(
∂L

∂ (∂µφa)
Xa (φ)− Fµ

)
= 0. (A.10)

Defining the current jµ as:

jµ = ∂L

∂ (∂µφa)
Xa (φ)− Fµ. (A.11)

The current conservation follows from Equation (A.10):

∂µj
µ(x) = 0. (A.12)
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Appendix B

Definitions and conventions

B.1 Dirac matrices

The Dirac matrices are defined as γµ =
(
γ0,γ

)
. They obey the anticommutation relations:

{γµ, γν} = γµγν + γνγµ = 2gµν . (B.1)

They have the following properties: (
γ0
)†

= γ0, (B.2)(
γi
)†

= −γi, (B.3)(
γ0
)2

= 14×4, (B.4)(
γi
)2

= −14×4. (B.5)

The γ5 matrix, is defined as the product of the four gamma matrices as follows:

γ5 ≡ iγ0γ1γ2γ3. (B.6)

This matrix anticommutes with the other Dirac matrices:

{γ5, γ
µ} = γ5γ

µ + γµγ5 = 0, (B.7)

and it has the following properties:

(γ5)† = γ5, (B.8)

(γ5)2 = 14×4. (B.9)
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In the Dirac basis this matrices are given by:

γ0 =
(
12×2 0

0 −12×2

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 12×2

12×2 0

)
. (B.10)

Here, σi are the three Pauli matrices of the SU(2) group (see Appendix B.2).

B.2 SU(N) and U(N) matrices

We denote the matrices that form the algebra of the SU(N) group by Γi. The matrices
1
2Γa are the generators of the U(N) group and are normalized by:

tr ΓaΓb = 2δab (a, b) = 1, 2, ..., N2 − 1. (B.11)

For N = 2 we have the three Pauli matrices of SU(2):

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (B.12)

The commutation relations for the SU(2) algebra are

[τa, τb] = 2iεabc τc. (B.13)

The anticommutation relations are

{τa, τb} = 2δab1. (B.14)

For N = 3 we have the eight Gell-Mann matrices of SU(3):

λ1 =


0 1 0
1 0 0
0 0 0

 , λ2 =


0 −i 0
i 0 0
0 0 0

 , (B.15)

λ3 =


1 0 0
0 −1 0
0 0 0

 , λ4 =


0 0 1
0 0 0
1 0 0

 , λ5 =


0 0 −i
0 0 0
i 0 0

 , (B.16)

λ6 =


0 0 0
0 0 1
0 1 0

 , λ7 =


0 0 0
0 0 −i
0 i 0

 , λ8 =
√

1
3


1 0 0
0 1 0
0 0 −2

 . (B.17)
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The commutation relations for the SU(3) algebra are

[λa, λb] = 2ifabcλc. (B.18)

The anticommutation relations are

{λa, λb} = 4
3δab + 2dabcλc. (B.19)

The antisymmetric structure constants fabc are:

f123 = 1, (B.20)

f147 = −f156 = f246 = f257 = f345 = −f367 = 1
2 , (B.21)

f458 = f678 =
√

3
2 . (B.22)

while all other not related to these by permutation are zero. The symmetric structure
constants dabc are:

d118 = d228 = d338 = −d888 = 1√
3
, (B.23)

d448 = d558 = d668 = d778 = − 1
2
√

3
, (B.24)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1
2 . (B.25)

Adding the identity to the SU(N) algebra, Γ0 =
√

2/N1, we obtain the U(N) algebra. In
this case the commutators and anticommutators are:

[Γa,Γb] = 2ifabcΓc, (B.26)

{Γa,Γb} = 2dabcTc. (B.27)

Where the additional totally symmetric and totally antisymmetric structure constants are:

d0ab =
√

2
N
δab ∧ f0ab = 0. (B.28)

For N = 2, the additional τ0 matrix is:

τ0 =
(

1 0
0 1

)
, (B.29)
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while for N = 3 it is:

λ0 =
√

2
3


1 0 0
0 1 0
0 0 1

 . (B.30)

B.3 Polylogarithm function

The polylogarithm Lin(z), is a function defined as:

Lin(z) =
∞∑
k=1

zk

kn
. (B.31)

In the special case when z = 1, this function (B.31) reduces to the Riemann zeta function.
These functions may arise in the closed form of the integrals of the Fermi-Dirac and
Bose-Einstein distributions. Their integral representation can be written as:

∫ +∞

0
dx

xj

ex−µ + 1 = −Γ (j + 1) Li(j+1) (−eµ) , (B.32)

for the Fermi-Dirac case, and:

∫ +∞

0
dx

xj

ex−µ − 1 = Γ (j + 1) Li(j+1) (eµ) , (B.33)

for the Bose-Einstein case. Here, Γ (n) is the gamma function, an extension of the factorial
function, with its argument shifted by one, to real and complex numbers.
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Appendix C

Auxiliary calculations

C.1 Product between two and three operators in the MFA

First we write an operator Ôi as its own expectation value, plus a small perturbation δÔi
around it:

Ôi = 〈Ôi〉+
(
Ôi − 〈Ôi〉

)
= 〈Ôi〉+ δÔi, (C.1)

here, the perturbation is defined as:

δOi = Ôi − 〈Ôi〉 . (C.2)

The product between two operators in this approximation is:

ÔiÔj =
(
〈Ôi〉+ δÔi

) (
〈Ôj〉+ δÔj

)
=

= 〈Ôi〉 〈Ôj〉+ 〈Ôi〉 δÔj + δÔi 〈Ôj〉+ δÔiδÔj , (C.3)

we keep only linear terms on the perturbations, i.e., δÔiδÔj ≈ 0. Writing the perturbation
as in Equation (C.2), yields:

ÔiÔj ≈ 〈Ôi〉 〈Ôj〉+ 〈Ôi〉
(
Ôj − 〈Ôj〉

)
+
(
Ôi − 〈Ôi〉

)
〈Ôj〉 =

= 〈Ôi〉 〈Ôj〉+ 〈Ôi〉 Ôj − 〈Ôi〉 〈Ôj〉+ Ôi 〈Ôj〉 − 〈Ôi〉 〈Ôj〉 . (C.4)

This yields the MFA of the product between two operators:

ÔiÔj ≈ 〈Ôi〉 Ôj + Ôi 〈Ôj〉 − 〈Ôi〉 〈Ôj〉 . (C.5)
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Within this approach, the product between three operators is:

ÔiÔjÔk =
(
〈Ôi〉+ δÔi

) (
〈Ôj〉+ δÔj

) (
〈Ôk〉+ δÔk

)
=

=
(
〈Ôi〉 〈Ôj〉+ 〈Ôi〉 δÔj + δÔi 〈Ôj〉+ δÔiδÔj

) (
〈Ôk〉+ δÔk

)
=

= 〈Ôi〉 〈Ôj〉 〈Ôk〉+ 〈Ôi〉 δÔj 〈Ôk〉+ δÔi 〈Ôj〉 〈Ôk〉+ 〈Ôi〉 〈Ôj〉 δÔk
+ δÔiδÔj 〈Ôk〉+ 〈Ô〉i δÔjδÔk + δÔi 〈Ô〉j δÔk + δÔiδÔjδÔk. (C.6)

Once again, keeping only terms linear in perturbation, and using Equation (C.2) yields:

ÔiÔjÔk ≈ 〈Ôi〉 〈Ôj〉 〈Ôk〉+ 〈Ôi〉 δÔj 〈Ôk〉+ δÔi 〈Ôj〉 〈Ôk〉+ 〈Ôi〉 〈Ôj〉 δÔk
= 〈Ôi〉 〈Ôj〉 〈Ôk〉+ 〈Ôi〉 〈Ôj〉 Ôk − 〈Ôi〉 〈Ôj〉 〈Ôk〉+ 〈Ôi〉 Ôj 〈Ôk〉

− 〈Ôi〉 〈Ôj〉 〈Ôk〉+ Ôi 〈Ôj〉 〈Ôk〉 − 〈Ôi〉 〈Ôj〉 〈Ôk〉 . (C.7)

The product between three operators in the MFA approximation is finally given by:

ÔiÔjÔk ≈ Ôi 〈Ôj〉 〈Ôk〉+ 〈Ôi〉 Ôj 〈Ôk〉+ 〈Ôi〉 〈Ôj〉 Ôk − 2 〈Ôi〉 〈Ôj〉 〈Ôk〉 . (C.8)

C.2 ’t Hooft determinant in SUf(2)

The ’t Hooft determinant for two flavours of quarks can be written as:

L det = GD

(
det
f

[
ψ (1 + γ5)ψ

]
+ det

f

[
ψ (1− γ5)ψ

])
, (C.9)

where ψT = (ψu ψd):

det
f
ψOψ ≡

∑
i,j

εij
(
ψuOψi

) (
ψdOψj

)
= ε11

(
ψ1Oψ1

) (
ψ2Oψ1

)
+ ε21

(
ψ1Oψ2

) (
ψ2Oψ1

)
+ ε12

(
ψ1Oψ1

) (
ψ2Oψ2

)
+ ε22

(
ψ1Oψ2

) (
ψ2Oψ2

)
. (C.10)

Here we made the following correspondence u = 1 and d = 2. Using the definition of the
two-dimensional Levi-Civita symbol:

εij =


+1 if (i, j) is (1, 2),

−1 if (i, j) is (2, 1),

0 if i = j

(C.11)

we can write Equation (C.10) as:

det
f
ψOψ =

(
ψuOψu

) (
ψdOψd

)
−
(
ψuOψd

) (
ψdOψu

)
. (C.12)
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Substituting O = (1± γ5), we can write the ’t Hooft determinant as:

L det =2GD
[(
ψuψu

) (
ψdψd

)
+
(
ψuγ5ψu

) (
ψdγ5ψd

)
(C.13)

−
(
ψuψd

) (
ψdψu

)
−
(
ψuγ5ψd

) (
ψdγ5ψu

)]
. (C.14)

Using the three Pauli matrices of SU(2) and the identity matrix (Appendix B.2), we can
write [89]:

ψτ0Oψ = ψuOψu + ψdOψd, (C.15)

ψτ1Oψ = ψuOψd + ψdOψu, (C.16)

ψτ2Oψ = −i
(
ψuOψd − ψdOψu

)
, (C.17)

ψτ3Oψ = ψuOψu − ψdOψd. (C.18)

Squaring the equations above gives:(
ψτ0Oψ

)2
=
(
ψuOψu

)2
+ 2

(
ψuOψu

) (
ψdOψd

)
+
(
ψdOψd

)2
, (C.19)(

ψτ1Oψ
)2

=
(
ψuOψd

)2
+ 2

(
ψuOψd

) (
ψdOψu

)
+
(
ψdOψu

)2
, (C.20)(

ψτ2Oψ
)2

= −
(
ψuOψd

)2
+ 2

(
ψuOψd

) (
ψdOψu

)
−
(
ψdOψu

)2
, (C.21)(

ψτ3Oψ
)2

=
(
ψuOψu

)2
− 2

(
ψuOψu

) (
ψdOψd

)
+
(
ψdOψd

)2
. (C.22)

Writing O = 1 and O = iγ5, we can write the following equality:

GD
2

{(
ψτ0ψ

)2
−
(
ψiγ5τ

0ψ
)2
−

3∑
i=1

[(
ψτ iψ

)2
−
(
ψiγ5τ

iψ
)2
]}

=

= 2GD
[(
ψuψu

) (
ψdψd

)
+
(
ψuγ5ψu

) (
ψdγ5ψd

)
−
(
ψuψd

) (
ψdψu

)
−
(
ψuγ5ψd

) (
ψdγ5ψu

)]
= L det. (C.23)

This means we can write the ’t Hooft determinant in SUf (2) given by Equation (C.9), as:

L det = GD
2

{(
ψτ0ψ

)2
−
(
ψiγ5τ

0ψ
)2
−

3∑
i=1

[(
ψτ iψ

)2
−
(
ψiγ5τ

iψ
)2
]}

. (C.24)

C.3 ’t Hooft determinant in the MFA (two and three flavours)

In this section, we calculate the ’t Hooft determinant in the MFA, for two and three
flavours of quarks.
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C.3.1 Two flavours

The ’t Hooft determinant for two flavours can be calculated through:

det
f
ψOψ ≡

∑
i,j

εij
(
ψuOψi

) (
ψdOψj

)
. (C.25)

Using the MFA of the product between two operators (C.5), one can write:

det
f
ψOψ ≈

∑
i,j

εij
[(
ψuOψi

)
〈ψdOψj〉+ 〈ψuOψi〉

(
ψdOψj

)
− 〈ψuOψi〉 〈ψdOψj〉

]
=

=
(
ψuOψu

)
〈ψdOψd〉 −

(
ψuOψd

)
〈ψdOψu〉

+ 〈ψuOψu〉
(
ψdOψd

)
− 〈ψuOψd〉

(
ψdOψu

)
− 〈ψuOψu〉 〈ψdOψd〉+ 〈ψuOψd〉 〈ψdOψu〉 . (C.26)

Only condensates who will have a non-vanishing VEV (in our approximation) will con-
tribute, i.e., we consider:

〈ψiψj〉 = 〈ψiψi〉 δij , (C.27)

〈ψiγ5ψj〉 = 0. (C.28)

Inserting the operator O = 1± γ5 and taking only non-vanishing condensates, the ’t Hooft
determinant for two flavours is:

L det = GD

(
det
f

[
ψ (1 + γ5)ψ

]
+ det

f

[
ψ (1− γ5)ψ

])
≈

≈ 2GD
[(
ψuψu

)
〈ψdψd〉+ 〈ψuψu〉

(
ψdψd

)
− 〈ψuψu〉 〈ψdψd〉

]
. (C.29)

C.3.2 Three flavours

The ’t Hooft determinant for two flavours can be calculated through:

det
f
ψOψ ≡

∑
i,j,k

εijk
(
ψuOψi

) (
ψdOψj

) (
ψsOψk

)
. (C.30)

Using the MFA of the product between two operators (C.5), one can write:

det
f
ψOψ ≈

∑
i,j,k

εijk
[(
ψuOψi

)
〈ψdOψj〉 〈ψsOψk〉+ 〈ψuOψi〉

(
ψdOψj

)
〈ψsOψk〉

+ 〈ψuOψi〉 〈ψdOψj〉
(
ψsOψk

)
− 2 〈ψuOψi〉 〈ψdOψj〉 〈ψsOψk〉

]
.

(C.31)
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The Levi-Civita symbol in three dimensions is defined as:

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),

0 if i = j or j = k or k = i.

(C.32)

Let’s calculate every term individually (we make the following correspondence u = 1, d = 2,
s = 3):

∑
i,j,k

εijk
(
ψuOψi

)
〈ψdOψj〉 〈ψsOψk〉 =

=
(
ψuOψu

) [
〈ψdOψd〉 〈ψsOψs〉 − 〈ψdOψs〉 〈ψsOψd〉

]
+
(
ψuOψd

) [
〈ψdOψs〉 〈ψsOψu〉 − 〈ψdOψu〉 〈ψsOψs〉

]
+
(
ψuOψs

) [
〈ψdOψu〉 〈ψsOψd〉 − 〈ψdOψd〉 〈ψsOψu〉

]
. (C.33)

∑
i,j,k

εijk 〈ψuOψi〉
(
ψdOψj

)
〈ψsOψk〉 =

=
(
ψdOψu

) [
〈ψuOψs〉 〈ψsOψd〉 − 〈ψuOψd〉 〈ψsOψs〉

]
+
(
ψdOψd

) [
〈ψuOψu〉 〈ψsOψs〉 − 〈ψuOψs〉 〈ψsOψu〉

]
+
(
ψdOψs

) [
〈ψuOψd〉 〈ψsOψu〉 − 〈ψuOψu〉 〈ψsOψd〉

]
. (C.34)

∑
i,j,k

εijk 〈ψuOψi〉 〈ψdOψj〉
(
ψsOψk

)
=

=
(
ψsOψu

) [
〈ψuOψd〉 〈ψdOψs〉 − 〈ψuOψs〉 〈ψdOψd〉

]
+
(
ψsOψd

) [
〈ψuOψs〉 〈ψdOψu〉 − 〈ψuOψu〉 〈ψdOψs〉

]
+
(
ψsOψs

) [
〈ψuOψu〉 〈ψdOψd〉 − 〈ψuOψd〉 〈ψdOψu〉

]
. (C.35)

∑
i,j,k

εijk 〈ψuOψi〉 〈ψdOψj〉 〈ψsOψk〉 =

= 〈ψuOψu〉
[
〈ψdOψd〉 〈ψsOψs〉 − 〈ψdOψs〉 〈ψsOψd〉

]
+ 〈ψuOψd〉

[
〈ψdOψs〉 〈ψsOψu〉 − 〈ψdOψu〉 〈ψsOψs〉

]
+ 〈ψuOψs〉

[
〈ψdOψu〉 〈ψsOψd〉 − 〈ψdOψd〉 〈ψsOψu〉

]
. (C.36)

Only condensates who will have a non-vanishing VEV (in our approximation) will con-
tribute, i.e., we consider:

〈ψiψj〉 = 〈ψiψi〉 δij , (C.37)

〈ψiγ5ψj〉 = 0. (C.38)
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Inserting the operator O = 1± γ5 and taking only non-vanishing condensates, the ’t Hooft
determinant for two flavours is:

L det ≈ −2GD
[(
ψuψu

)
〈ψdψd〉 〈ψsψs〉+ 〈ψuψu〉

(
ψdψd

)
〈ψsψs〉

− 〈ψuψu〉 〈ψdψd〉
(
ψsψs

)
− 2 〈ψuψu〉 〈ψdψd〉 〈ψsψs〉

]
. (C.39)

C.4 Gap equations

C.4.1 NJL model in SUf (2)

The gap equations of the two flavour NJL model can be found by using Equation (3.60):

∂ΩMFA
∂σu

= ∂ΩMFA
∂σd

= 0, (C.40)

which defines the values of the quark condensates σu and σd. The grand canonical potential
of this model is given by Equation (3.59):

ΩMFA = Ω0 + 2GS
(
σ2
u + σ2

d

)
+ 2GDσuσd −Gω (ρu + ρd)2 −Gρ (ρu − ρd)2

− 2T Nc

∑
f=u,d

∫
d3p

(2π)3

[
βEf + ln

(
1 + e−β(Ef+µ̃f)

)
+ ln

(
1 + e−β(Ef−µ̃f)

)]
.

(C.41)

And, the effective mass is (Equation (3.61)):

Mi = mi − 4GSσi − 2GDσj , i 6= j ∈ {u, d}. (C.42)

Using Equation (C.40) one can write:

∂ΩMFA
∂σu

= ∂ΩMFA
∂σu

+ ∂ΩMFA
∂Mi

∂Mi

∂σu
= ∂ΩMFA

∂σu
+ ∂ΩMFA

∂Mu

∂Mu

∂σu
+ ∂ΩMFA

∂Md

∂Md

∂σu
= 0, (C.43)

∂ΩMFA
∂σd

= ∂ΩMFA
∂σd

+ ∂ΩMFA
∂Mi

∂Mi

∂σd
= ∂ΩMFA

∂σd
+ ∂ΩMFA

∂Mu

∂Mu

∂σd
+ ∂ΩMFA

∂Md

∂Md

∂σd
= 0. (C.44)

Using Equations (C.41) and (C.42), for the up quark, each term yields:

∂ΩMFA
∂σu

= 4GSσu + 2GDσd, (C.45)

∂Mu

∂σu
= −4GS , (C.46)

∂Md

∂σu
= −2GD, (C.47)

∂ΩMFA
∂Mf

= −2T Nc

∫
d3p

(2π)3
∂

∂Mf

[
βEf + ln

(
1 + e−β(Ef+µ̃f)

)
+ ln

(
1 + e−β(Ef−µ̃f)

)]
=

= −2 Nc

∫
d3p

(2π)3
Mf

Ef
(1− nf − nf ) = If . (C.48)
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Here, nf and nf are the particle and anti-particle occupation numbers defined in Equations
(2.82) and (2.83). Putting it all together, Equation (C.43) yields:

4GS (σu − Iu) + 2GD (σd − Id) = 0. (C.49)

In a similar way, Equation (C.44) yields:

4GS (σd − Id) + 2GD (σu − Iu) = 0. (C.50)

If GS and GD are non-zero, the above equalities verify if and only if:

σu = Iu = −2 Nc

∫
d3p

(2π)3
Mu

Eu
(1− nu − nu) , (C.51)

σd = Id = −2 Nc

∫
d3p

(2π)3
Md

Ed
(1− nd − nd) . (C.52)

Defining the quark condensates and the gap equations.

C.4.2 NJL model in SUf (3)

The gap equations of the three flavour NJL model can be found by using Equation (3.116):

∂ΩMFA
∂σu

= ∂ΩMFA
∂σd

= ∂ΩMFA
∂σs

= 0, (C.53)

which defines the values of the quark condensates σu, σd and σs. The grand canonical
potential of this model is given by Equation (3.115):

ΩMFA = Ω0 + 2GS
(
σ2
u + σ2

d + σ2
s

)
− 4GDσuσdσs

− 2
3Gω (ρu + ρd + ρs)2 −Gρ (ρu − ρd)2 − 1

3Gρ (ρu + ρd − 2ρs)2

− 2T Nc

∑
f=u,d,s

∫
d3p

(2π)3

[
βEf + ln

(
1 + e−β(Ef+µ̃f)

)
+ ln

(
1 + e−β(Ef−µ̃f)

)]
.

(C.54)

The effective mass is (Equation (3.117)):

Mi = mi − 4GSσi + 2GDσjσk i 6= j 6= k ∈ {u, d, s}. (C.55)

Like for the two flavour case, using Equation (C.53) one can write:

∂ΩMFA
∂σu

= ∂ΩMFA
∂σu

+ ∂ΩMFA
∂Mu

∂Mu

∂σu
+ ∂ΩMFA

∂Md

∂Md

∂σu
+ ∂ΩMFA

∂Ms

∂Ms

∂σu
= 0, (C.56)

∂ΩMFA
∂σd

= ∂ΩMFA
∂σd

+ ∂ΩMFA
∂Mu

∂Mu

∂σd
+ ∂ΩMFA

∂Md

∂Md

∂σd
+ ∂ΩMFA

∂Ms

∂Ms

∂σd
= 0, (C.57)

∂ΩMFA
∂σs

= ∂ΩMFA
∂σs

+ ∂ΩMFA
∂Mu

∂Mu

∂σs
+ ∂ΩMFA

∂Md

∂Md

∂σs
+ ∂ΩMFA

∂Ms

∂Ms

∂σs
= 0. (C.58)
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Using (C.54) and (C.55), for the up quark, each term yields:

∂ΩMFA
∂σu

= 4GSσu − 4GDσdσs, (C.59)

∂Mu

∂σu
= −4GS , (C.60)

∂Md

∂σu
= 2GDσs, (C.61)

∂Ms

∂σu
= 2GDσd, (C.62)

∂ΩMFA
∂Mf

= −2T Nc

∫
d3p

(2π)3
∂

∂Mf

[
βEf + ln

(
1 + e−β(Ef+µ̃f)

)
+ ln

(
1 + e−β(Ef−µ̃f)

)]
=

= −2 Nc

∫
d3p

(2π)3
Mf

Ef
(1− nf − nf ) = If . (C.63)

Once again, nf and nf are the particle and anti-particle occupation numbers defined in
Equations (2.82) and (2.83). Putting it all together, Equation (C.56) yields:

4GS (σu − Iu) + 2GD (σsId + σdIs − 2σdσs) = 0. (C.64)

In a similar way, Equations (C.57) and (C.58) are given by:

4GS (σd − Id) + 2GD (σuIs + σsIu − 2σsσu) = 0, (C.65)

4GS (σs − Is) + 2GD (σdIu + σuId − 2σuσd) = 0. (C.66)

If GS and GD are non-zero, the above equalities verify if and only if:

σu = Iu = −2 Nc

∫
d3p

(2π)3
Mu

Eu
(1− nu − nu) , (C.67)

σd = Id = −2 Nc

∫
d3p

(2π)3
Md

Ed
(1− nd − nd) , (C.68)

σs = Is = −2 Nc

∫
d3p

(2π)3
Ms

Es
(1− ns − ns) . (C.69)

Defining the quark condensates and the gap equations.

C.4.3 PNJL model in SUf (3)

The gap equations of the three flavour PNJL model can be found just like in the NJL
case, done in Appendix C.4.2. We use:

∂ΩMFA
∂σu

= ∂ΩMFA
∂σd

= ∂ΩMFA
∂σs

= ∂ΩMFA
∂Φ = ∂ΩMFA

∂Φ
= 0, (C.70)

which defines the values of the quark condensates σu, σd and σs and the Polyakov loop
fields Φ and Φ. The grand canonical potential of the PNJL model is given by Equation
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(6.71):

ΩMFA − Ω0 = U
(
Φ,Φ;T

)
− UNJL − 2Nc

∑
f

∫
d3p

(2π)3Ef

− 2
∑
f

∫
d3p

(2π)3

[
F
(
p, T, µ̃NJLf

)
+ F∗

(
p, T, µ̃NJLf

)]
. (C.71)

Where the the thermal functions F and F∗ are given by Equations (6.69) and (6.70),
respectively. The effective mass in the PNJL model is given by Equation (3.117), exactly
the same effective mass as in the NJL model. We use the relations given in Equations
(C.56), (C.57) and (C.58) to define the value of the condensates. For the up quark, each
term yields:

∂ΩMFA
∂σu

= 4GSσu − 4GDσdσs, (C.72)

∂Mu

∂σu
= −4GS , (C.73)

∂Md

∂σu
= 2GDσs, (C.74)

∂Ms

∂σu
= 2GDσd, (C.75)

∂ΩMFA
∂Mf

= −2
∫

d3p

(2π)3

[
Nc

∂Ef
∂Mf

+ ∂

∂Mf
F∗
(
p, T, µ̃NJLf

)
+ ∂

∂Mf
F
(
p, T, µ̃NJLf

)]
.

(C.76)

The major difference between the NJL and PNJL model comes from Equation (C.76).
The thermal functions F and F∗ are defined in Equations (6.69) and (6.70),

F
(
p, T, µ̃NJLf

)
= T ln

[
1 + e−3

(
Ef−µ̃NJL

f

)
/T +NcΦe−

(
Ef−µ̃NJL

f

)
/T +NcΦe−2

(
Ef−µ̃NJL

f

)
/T
]
,

(C.77)

F∗
(
p, T, µ̃NJLf

)
= T ln

[
1 + e−3

(
Ef+µ̃NJL

f

)
/T +NcΦe−

(
Ef+µ̃NJL

f

)
/T +NcΦe−2

(
Ef+µ̃NJL

f

)
/T
]
.

(C.78)

The derivatives in Equation (C.76) are given by:

∂Ef
∂Mf

= Mf

Ef
, (C.79)

∂

∂Mf
F
(
p, T, µ̃NJLf

)
= −Nc

Mf

Ef
νf , (C.80)

∂

∂Mf
F∗
(
p, T, µ̃NJLf

)
= −Nc

Mf

Ef
νf . (C.81)
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Where νf and νf are the particle and antiparticle occupation numbers in the PNJL model
(Equations (6.76) and (6.77)), defined as:

νf =
3
Nc
e−3

(
Ef−µ̃NJL

f

)
/T + Φe−

(
Ef−µ̃NJL

f

)
/T + 2Φe−2

(
Ef−µ̃NJL

f

)
/T

1 + e−3
(
Ef−µ̃NJL

f

)
/T +NcΦe−

(
Ef−µ̃NJL

f

)
/T +NcΦe−2

(
Ef−µ̃NJL

f

)
/T
, (C.82)

νf =
3
Nc
e−3

(
Ef+µ̃NJL

f

)
/T + Φe−

(
Ef+µ̃NJL

f

)
/T + 2Φe−2

(
Ef+µ̃NJL

f

)
/T

1 + e−3
(
Ef+µ̃NJL

f

)
/T +NcΦe−

(
Ef+µ̃NJL

f

)
/T +NcΦe−2

(
Ef+µ̃NJL

f

)
/T
. (C.83)

Substituting Equations (C.79), (C.80) and (C.81) in Equation (C.76), it yields:

∂ΩMFA
∂Mf

= −2 Nc

∫
d3p

(2π)3
Mf

Ef
(1− νf − νf ) = If . (C.84)

Replicating the above calculations for the other flavours of quarks and using the same
arguments as in Appendix C.4.2, the condensates for each flavour of quark in the PNJL
model are defined as:

σu = Iu = −2 Nc

∫
d3p

(2π)3
Mu

Eu
(1− νu − νu) , (C.85)

σd = Id = −2 Nc

∫
d3p

(2π)3
Md

Ed
(1− νd − νd) , (C.86)

σs = Is = −2 Nc

∫
d3p

(2π)3
Ms

Es
(1− νs − νs) . (C.87)

To complete the calculations we have to define the value of the Polyakov loop field Φ and
its complex conjugate Φ using Equation (C.70). We treat Φ and Φ as being independent
real variables, even though they are by definition complex. This is made to avoid problems
arising from minimizing a complex potential [46, 82]. We write:

∂ΩMFA
∂Φ = ∂

∂ΦU
(
Φ,Φ;T

)
− 2

∑
f

∫
d3p

(2π)3

[
∂

∂ΦF
(
p, T, µ̃NJLf

)
+ ∂

∂ΦF
∗
(
p, T, µ̃NJLf

)]
= 0,

(C.88)
∂ΩMFA

∂Φ
= ∂

∂Φ
U
(
Φ,Φ;T

)
− 2

∑
f

∫
d3p

(2π)3

[
∂

∂Φ
F
(
p, T, µ̃NJLf

)
+ ∂

∂Φ
F∗
(
p, T, µ̃NJLf

)]
= 0.

(C.89)

Considering the logarithmic Polyakov loop effective potential defined in Equation (6.37),

U
(
Φ,Φ;T

)
T 4 = −1

2a (T ) ΦΦ + b (T ) ln
[
1− 6ΦΦ + 4

(
Φ3 + Φ3

)
− 3

(
ΦΦ
)2
]
, (C.90)
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its derivatives are:

∂

∂ΦU
(
Φ,Φ;T

)
= T 4

−1
2a (T ) Φ−

6b (T )
(
Φ− 2Φ2 + Φ2Φ

)
1− 6ΦΦ + 4

(
Φ3 + Φ3

)
− 3

(
ΦΦ
)2

 , (C.91)

∂

∂ΦU
(
Φ,Φ;T

)
= T 4

−1
2a (T ) Φ−

6b (T )
(
Φ− 2Φ2 + ΦΦ2

)
1− 6ΦΦ + 4

(
Φ3 + Φ3

)
− 3

(
ΦΦ
)2

 . (C.92)

The derivatives of the thermal functions are given by:

∂

∂ΦF
(
p, T, µ̃NJLf

)
= T

Nc e
−2
(
Ef−µ̃NJL

f

)
/T

eF
(
p,T,µ̃NJL

f

)
/T

, (C.93)

∂

∂Φ
F
(
p, T, µ̃NJLf

)
= T

Nc e
−
(
Ef−µ̃NJL

f

)
/T

eF
(
p,T,µ̃NJL

f

)
/T

, (C.94)

∂

∂ΦF
∗
(
p, T, µ̃NJLf

)
= T

Nc e
−
(
Ef+µ̃NJL

f

)
/T

eF
∗
(
p,T,µ̃NJL

f

)
/T

, (C.95)

∂

∂Φ
F∗
(
p, T, µ̃NJLf

)
= T

Nc e
−2
(
Ef+µ̃NJL

f

)
/T

eF
∗
(
p,T,µ̃NJL

f

)
/T

. (C.96)

Gathering all the results yields the gap equations for the Polyakov loop:

T 4

−1
2a (T ) Φ−

6b (T )
(
Φ− 2Φ2 + Φ2Φ

)
1− 6ΦΦ + 4

(
Φ3 + Φ3

)
− 3

(
ΦΦ
)2

 =

2NcT
∑
f

∫
d3p

(2π)3

 e−(Ef+µ̃NJL
f

)
/T

eF
∗
(
p,T,µ̃NJL

f

)
/T

+ e−2
(
Ef−µ̃NJL

f

)
/T

eF
(
p,T,µ̃NJL

f

)
/T

 , (C.97)

T 4

−1
2a (T ) Φ−

6b (T )
(
Φ− 2Φ2 + ΦΦ2

)
1− 6ΦΦ + 4

(
Φ3 + Φ3

)
− 3

(
ΦΦ
)2

 =

2NcT
∑
f

∫
d3p

(2π)3

e−(Ef−µ̃NJL
f

)
/T

eF
(
p,T,µ̃NJL

f

)
/T

+ e−2
(
Ef+µ̃NJL

f

)
/T

eF
∗
(
p,T,µ̃NJL

f

)
/T

 . (C.98)
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Appendix D

Thermal limits

D.1 T=0 limit of thermal functions

D.1.1 General thermal functions

Consider the T = 0 limit of the following thermal functions (we suppose that µ̃f > 0):

nf (µ̃f , T ) = 1
e(Ef−µ̃f)/T + 1

, (D.1)

nf (µ̃f , T ) = 1
e(Ef+µ̃f)/T + 1

, (D.2)

f+
f (µ̃f , T ) = T ln

(
1 + e−(Ef+µ̃f)/T

)
, (D.3)

f−f (µ̃f , T ) = T ln
(
1 + e−(Ef−µ̃f)/T

)
. (D.4)

Equations (D.1) and (D.2) define the particle and anti-particle nf occupation numbers,
respectively. The thermal functions (D.3) and (D.3) are defined in the grand canonical
potential of several studied models. The T = 0 limit of Equations (D.1) and (D.2) are
given by:

lim
T→0

nf (µ̃f , T ) =

1 if Ef < µ̃f

0 if Ef > µ̃f
= θ (Ef − µ̃f ) , (D.5)

lim
T→0

nf (µ̃f , T ) = 0 , because µ̃f > 0. (D.6)

The T = 0 limit of the thermal functions (D.3) and (D.3) are:

lim
T→0

f+
f (µ̃f , T ) = 0 , because µ̃f > 0, (D.7)
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lim
T→0

f−f (µ̃f , T ) = lim
T→0

T ln
(
1 + e−(Ef−µ̃f)/T

)
∧ k = (Ef − µ̃f ) , k/T = x

=


lim

x→+∞
k

ln(1+e−x)
x if k > 0

lim
x→−∞

k
ln(1+e−x)

x if k < 0
=

=


k lim
x→+∞

d
dx

ln(1+e−x)
d
dx
x

if k > 0

k lim
x→−∞

d
dx

ln(1+e−x)
d
dx
x

if k < 0
=

=


−k lim

x→+∞
1

ex+1 if k > 0

−k lim
x→−∞

1
ex+1 if k < 0

=

=

0 if k > 0

−k if k < 0
= − (Ef − µ̃f ) θ (Ef − µ̃f ) =

= (µ̃f − Ef ) θ (Ef − µ̃f ) . (D.8)

D.1.2 Thermal functions in the PNJL model

To simplify the Equations (6.69) and (6.70), one can write:

xf = (Ef − µ̃f ) /T, (D.9)

x∗f = (Ef + µ̃f ) /T. (D.10)

The thermal functions are then given by:

F (p, T, µ̃f ) = T ln
(
1 + e−3xf +NcΦe−xf +NcΦe−2xf

)
, (D.11)

F∗ (p, T, µ̃f ) = T ln
(
1 + e−3x∗f +NcΦe−x

∗
f +NcΦe−2x∗f

)
. (D.12)

The T = 0 limit is (for Nc = 3):

lim
T→0
F (p, T, µ̃f ) = lim

T→0
T ln

(
1 + e−3xf + 3Φe−xf + 3Φe−2xf

)
, (D.13)

lim
T→0
F∗ (p, T, µ̃f ) = lim

T→0
T ln

(
1 + e−3x∗f + 3Φe−x

∗
f + 3Φe−2x∗f

)
. (D.14)

We assume that µf ≥ 0. For Equation (D.13) we have:

lim
T→0
F (p, T, µ̃f ) =


lim

xf→+∞
Ef−µ̃f
xf

ln
(
1 + e−3xf + 3Φe−xf + 3Φe−2xf

)
if Ef > µ̃f ,

lim
xf→−∞

Ef−µ̃f
xf

ln
(
1 + e−3xf + 3Φe−xf + 3Φe−2xf

)
if Ef < µ̃f .

(D.15)
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If Ef > µ̃f one can use L’Hôpital’s rule to help evaluate the limit:

lim
xf→+∞

Ef − µ̃f
xf

ln
(
1 + e−3xf + 3Φe−xf + 3Φe−2xf

)
=

= (Ef − µ̃f ) lim
xf→+∞

d
dxf

ln
(
1 + e−3xf + 3Φe−xf + 3Φe−2xf

)
d
dxf

xf
=

= (µ̃f − Ef ) lim
xf→+∞

3e−3xf + 3Φe−xf + 6Φe−2xf

1 + e−3xf + 3Φe−xf + 3Φe−2xf
. (D.16)

Term by term:

(µ̃f − Ef ) lim
xf→+∞

3e−3xf

1 + e−3xf + 3Φe−xf + 3Φe−2xf
=

= 3 (µ̃f − Ef ) lim
xf→+∞

1
1 + e3xf + 3Φe2xf + 3Φexf

= 0,

(µ̃f − Ef ) lim
xf→+∞

3Φe−xf
1 + e−3xf + 3Φe−xf + 3Φe−2xf

= 3Φ (µ̃f − Ef ) lim
xf→+∞

1
exf + e−2xf + 3Φ + 3Φe−xf

= 0,

(µ̃f − Ef ) lim
xf→+∞

6Φe−2xf

1 + e−3xf + 3Φe−xf + 3Φe−2xf
=

= 6Φ (µ̃f − Ef ) lim
xf→+∞

1
e2xf + e−xf + 3Φexf + 3Φ

= 0.

This implies that, for Ef > µ̃f :

lim
T→0
F (p, T, µ̃f ) = 0. (D.17)

If Ef < µ̃f :

lim
xf→−∞

Ef − µ̃f
xf

ln
(
1 + e−3xf + 3Φe−xf + 3Φe−2xf

)
=

= (µ̃f − Ef ) lim
xf→−∞

3e−3xf + 3Φe−xf + 6Φe−2xf

1 + e−3xf + 3Φe−xf + 3Φe−2xf
. (D.18)

Term by term:

(µ̃f − Ef ) lim
xf→−∞

3e−3xf

1 + e−3xf + 3Φe−xf + 3Φe−2xf
=

= 3 (µ̃f − Ef ) lim
xf→−∞

1
1 + e3xf + 3Φe2xf + 3Φexf

= 3 (µ̃f − Ef ) ,
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(µ̃f − Ef ) lim
xf→−∞

3Φe−xf
1 + e−3xf + 3Φe−xf + 3Φe−2xf

=

= 3Φ (µ̃f − Ef ) lim
xf→−∞

1
exf + e−2xf + 3Φ + 3Φe−xf

= 0,

(µ̃f − Ef ) lim
xf→−∞

6Φe−2xf

1 + e−3xf + 3Φe−xf + 3Φe−2xf
=

= 6Φ (µ̃f − Ef ) lim
xf→−∞

1
e2xf + e−xf + 3Φexf + 3Φ

= 0.

This implies that, for Ef < µ̃f :

lim
T→0
F (p, T, µ̃f ) = 3 (µ̃f − Ef ) .

Assuming again that µf ≥ 0, Equation (D.14) gives:

lim
T→0
F∗ (p, T, µ̃f ) = lim

T→0
T ln

(
1 + e−3x∗f + 3Φe−x

∗
f + 3Φe−2x∗f

)
= (µ̃f − Ef ) lim

x∗
f
→+∞

3e−3x∗f + 3Φe−x
∗
f + 6Φe−2x∗f

1 + e−3x∗
f + 3Φe−x

∗
f + 3Φe−2x∗

f
= 0,

after all, this expression is similar to the previous calculated limits. Summarizing:

lim
T→0
F (p, T, µ̃f ) = 3 (µ̃f − Ef ) θ (Ef − µ̃f ) , (D.19)

lim
T→0
F∗ (p, T, µ̃f ) = 0). (D.20)

θ (Ef − µ̃f ) is the Heaviside step function.
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