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“We must understand the Cosmos as it is 

and not confuse how it is with how we 

wish it to be.”  

― Carl Sagan, Cosmos 
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Resumo 
Isoladas do pluriblasto do blastocisto de murganho, as células estaminais 

embrionárias, com a sua capacidade de auto-renovação e de diferenciação em todos os 

tecidos adultos, providenciam simultaneamente um excelente modelo de estudo das fases 

iniciais do desenvolvimento embrionário, com um potencial papel no campo da medicina 

regenerativa. Longe de compreender todos os mecanismos que governam a regulação da 

pluripotência e da diferenciação destas células pluripotentes, o metabolismo tem emergido 

como uma ferramenta para modular estes intricados processos de desenvolvimento celular. 

O paradigma actual em investigação em células estaminais é de que, durante a diferenciação, 

alterações metabólicas precedem alterações ao nível genético. Por outro lado, o controlo da 

actividade de enzimas relevantes para o metabolismo pode trazer também controlo da 

pluripotência de mESC. 

 A sirtuína 3, principal deacetilase mitocondrial, tem como alvos enzimas do ciclo de 

Krebs, a cadeia transportadora de electrões, e da sua actividade advém um aumento da 

actividade dessas enzimas. É, por isso, associada á activação do metabolismo mitocondrial. 

Por esse motivo, seria interessante saber se a SIRT3 possui um papel na regulação da 

pluripotência e/ou diferenciação de mESC. 

 O silenciamento da expressão de uma proteína providencia um modo de avaliar a 

importância dessa mesma proteína numa rede de sinalização ou numa via metabólica. 

Enquanto knockouts genéticos são algo difícil de obter, um knockdown de um gene é 

relativamente mais fácil de conseguir, enquanto se mantém uma especificidade de alvo que 

não é conseguida pelo uso de inibição farmacológica. Estes sistemas de knockdown baseiam-

se na tecnologia de interferência por RNA, um processo que inibe a expressão de uma proteína 

ao nível do transcriptoma. Para conseguir este silenciamento, introduzimos um siRNA, tendo 

como alvo a sequência de mRNA da proteína de interesse.  

Deste modo, pretendemos realizar o silenciamento da SIRT3, em mESC, através do uso 

de um shRNA que tem como alvo o mRNA da SIRT3. Como o propósito deste ensaio é realizar 

um silenciamento estável, utilizámos um plasmídeo que expressa o supracitado shRNA, 

incorporado pelas células estaminais por lipofecção. Assim, neste trabalho, pretendeu-se 

estabelecer um protocolo de silenciamento de uma proteína, com recurso à transfecção de 

um plasmídeo que expressa um shRNA que tem como alvo a SIRT3.  

Os resultados mostram que a transfecção de mESC não é tão simples e directa como 

previsto, e não pudemos obter uma cultura principalmente composta por células E14Tg2.a 

transfectadas. No entanto, conseguimos transfectar fibroblastos embriónicos de murganho 

(NIH-3T3) e ainda obtivemos uma cultura enriquecida em células transfectadas. Apesar disto, 

o silenciamento de SIRT3 não foi claro, e portanto, a avaliação deste silenciamento deve ser 

repetida. 

Palavras-chave: Células estaminais embrionárias de murganho; metabolismo; Sirtuína3; 

interferência de RNA; Lipofecção.  
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Abstract 
 

First derived from the inner cell mass of the mouse blastocyst, Embryonic Stem Cells, 

with their capability of self-renewal and of differentiation in all adult tissues, simultaneously 

provide an excellent model for studying early development and can play a role in regenerative 

medicine. Far from understanding all the mechanisms that rule the regulation of pluripotency 

and differentiation of these pluripotent cells, metabolism has emerged as a tool to modulate 

these intricate cell development processes. The current paradigm in stem cell research is that, 

during differentiation, metabolic alterations precede changes in gene expression, and also, 

that through the control of the activity of certain, metabolically relevant enzymes, one can 

modify the “stemness” of mESC. 

SIRT3, regarded as the main mitochondrial deacetylase, targets metabolic enzymes 
belonging to the Krebs’ Cycle and also the Electron Transport Chain, and its deacetylating 
activity promotes the activity of these enzymes. It is then associated with the activation of the 
mitochondrial metabolism. Therefore, we took interest in whether there is role of SIRT3 in the 
regulation of pluripotency and differentiation of mESC. 

Protein silencing provides a means of assaying the importance of a given protein to 

signaling network or a metabolic pathway. While specific genetic knockouts are rather difficult 

to obtain, a gene knockdown is relatively easier to obtain while maintaining a specificity 

degree that can’t be achieved through pharmacological inhibition. These knockdown systems 

are often based on RNA interference, a process by which the cell inhibits gene expression on 

the transcriptome level.  

Here, we expected to silence the expression of SIRT3 in mESC by using a SIRT3 mRNA-

targeting shRNA. As we aim for a relatively stable protein knockdown, we used shRNA 

expressing plasmids that were incorporated in mESC by Lipofection (a form of transfection). 

Thus, in this work, we aimed to establish a protein silencing protocol, with a SIRT3 shRNA-

encoding plasmid, previously transfected into the targeted cells. 

Results show that mESC are not as easy to transfect and select as previously reported, 

as we were not able to obtain a culture majorly composed of transfected E14Tg2.a cells. 

Nonetheless, we successfully transfected mouse embryonic fibroblasts (NIH-3T3), and 

obtained an enriched culture in transfected cells. Even so, the SIRT3 silencing rate was not 

clear, and further evaluation of this silencing should be performed. 

 

Keywords: mouse Embryonic Stem Cells; metabolism; Sirtuin3; RNA interference; 
Lipofection  
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1 INTRODUCTION 

1.1 MESC 
 

1.1.1 Historical context 

 

Embryonic Stem Cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst 

and were first identified in 1981 by Martin Evans, Matthew Kaufman (Evans and Kaufman, 

1981) and Gail R. Martin (Martin, 1981), from mouse embryos.  

As seen in Figure 1, ESCs have two main features: the ability to continuously self-renew 

(maintaining their pools by symmetric division) and the capacity to differentiate into cells from 

the three germ lineages (endo, meso and ecotderm). During this process cells change size, 

shape, and responsiveness to outer and internal signaling, and alter gene expression, in order 

to perform specific biological roles. 

 

Figure 1 – Derivation of embryonic stem cells (ESCs) from the ICM of the Blastocyst, and schematic differentiation and self-

renewal capabilities. Image acquired from https://www.umassmed.edu/iscr/stemcellfacts.aspx, accessed in 28/07/2014) 

 

Firstly appeared to describe an evolutionary, “family”-like relationship by using a 

phylogenetic tree, the term “stem cell” was coined in the late 19th century by the German 

biologist Ernst Haeckel (Haeckel, 1879), who employed the term “stembäume” for these 

phylogenetic trees – family trees, or stem trees, as was adapted to English. Thus, he chose the 

term “stammzelle’’, German for Stem cell, to address an unicellular organism ancestor from 

all the other organisms originated. Later, in 1892, Theodor Boveri used the term stem cell with 

the same “family lineage” purpose in mind (Ramalho-Santos and Willenbring, 2007). Again, in 

the beginning of the 20th century, the term was once more used by Alexander Maximow, in 

his Unitarian theory of Hematopoiesis (Maximow, 2009), where the stem cells were described 

to be the undifferentiated hematopoietic progenitors, that were “neither red nor white blood 

corpuscles”. But only during the 1960’s the term resurfaced, when proof of adult neurogenesis 

in the brain pointed to the existence of stem cells (Altman and Das, 1967). In the late 1970’s 
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it was established that stem cells were capable to support bone marrow transplants, a practice 

that is commonly employed today (Peister et al., 2004).  

 

1.1.2 Characterization of mouse ESC (mESC) 

 

Along with their ability to generate all three germ layers, ESCs are characterized by the 

increased expression of “core pluripotency markers”: Oct4, Sox2 and Nanog (Hanna et al., 

2010). These factors form a hierarchical pluripotency core network signaling that converges 

towards activation of self-renewal and pluripotency through Oct4, while exhibiting a strong 

self-regulation mechanism (Kim et al., 2008). As cells differentiate there is a loss of this 

network signaling and the levels of the aforementioned factors decreases over time. This is 

common to both human ESC (hESC) and mESC. This network can be stimulated exogenously, 

in order to maintain pluripotency of these cells while in culture. Leukemia inhibitory factor 

(LIF, an interleukin 6-class cytokine) is reported to keep the pluripotent phenotype of mESC 

mainly through activation of the Jak2/Stat3 signaling pathway, which culminates in an 

increased expression of Oct4. Nonetheless, LIF acts through other pathways culminating with 

the same effect. Figure 2 shows two alternative pathways by which LIF regulates pluripotency: 

1) through PI(3)K-Akt axis, increasing the expression of Tbx3 which will, in turn, strengthen the 

expression of the pluripotency core factors (Storm et al., 2007); and 2) also through mitogen-

activated protein kinase (MAPK). Incidentally, LIF-mediated activation of MAPK culminates in 

the inhibition of Tbx3 expression and thus, weakening pluripotency (Ying et al., 2008). Other 

works supporting this notion have demonstrated that inhibition of MAPK increases 

pluripotency of mESC (Wray et al., 2011). Alkaline phosphatase staining is regarded as a simple 

assay to access pluripotency, as ESCs express high levels of this enzyme, constituting therefore 

as another marker for pluripotency (Singh et al., 2012), that can be easily performed routinely 

to evaluate pluripotency in culture. Other surface markers for mESC include E-cadherin, CD 

133 (prominin-1), Integrin β-1; Epithelial cell adhesion molecule (EpCAM), and stage-specific 

embryonic antigen (SSEA) 3. (Zhao et al., 2012). 
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Figure 2  - LIF signals through both Jak/Stat and Akt pathways to stimulate the core pluripotency network and assure the 
pluripotent phenotype and self-renewal, in mESC.(Niwa et al., 2009) 

 

mESCs are morphologically distinguishable from their differentiated counterparts. 

Cultured pluripotent colonies are characterized by their round and compact morphology, 

growing not only in width but also in height; high optical refringence (brilliant, white borders); 

and a high nucleus/cytoplasm volume ratio. As these colonies start the differentiation process 

and lose their pluripotent phenotype, cells tend to spread away from the center of the colony, 

increasing their size (cells can be visually distinguished with the proper magnification), and 

decreasing refringence. An example of two very different mESC cultures can be seen in Figure 

3. Figure 3A shows colonies with good size and morphology, and are ready to be passaged. In 

Figure 3B, although the pluripotent phenotype is still perceivable in some of the colonies, most 

of the colonies begun the differentiation process. Strict monitoring of the culture’s pluripotent 

state is essential for its maintenance in culture, as well as confluence (higher or very low 

confluences may impact pluripotency). 

 

Figure 3 - Pluripotent E14 mESC culture in KODMEM medium. (A) – E14 culture, at day 3, with good morphology; (B) E14 
culture at day 3 with poor pluripotent morphology. 

 

(B) (A) 
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In ESCs, the mitochondrial DNA (mtDNA) copy number is low, which is a reflex of a low 

mitochondrial mass (Baharvand and Matthaei, 2003). Moreover, in these cells mitochondria 

are small, round, have few cristae in the inner mitochondrial membrane and have a 

perinuclear localization and low activity of the Electron Transport Chain (ETC) (Facucho-

Oliveira and St John, 2009; Ramalho-Santos et al., 2009). Once ESC differentiate, the 

mitochondria start to disperse throughout the cytoplasm away from the nucleus (as can be 

clearly seen in Figure 4), increasing in mass, cristae complexity and mtDNA, and start a 

mitochondrial network that leads to metabolically active mitochondria (Facucho-Oliveira et 

al., 2007). The expression of ETC complexes also increases, along with their activity, with a 

characteristic higher mitochondrial membrane potential (MMP) (Schieke et al., 2008). 

Antioxidant defense-associated enzymes such as manganese superoxide dismutase (Mn-SOD) 

have their expression increased, in order to counter the now-present reactive oxygen species 

(ROS) generated from the more-oxidative metabolism (Facucho-Oliveira and St John, 2009). 

 

Figure 4 - Mitochondrial morphology and localization, relatively to the nucleus, in WA07 cells (hESCs) and differentiated cells 
(H7TF, HFF, and IMR-90 lines). Blue (DAPI) is a fluorescent stain that binds to DNA. Green corresponds to GFP-tagged pyruvate 
dehydrogenase (coded via baculovirus system) (Varum et al., 2011). 

 

1.1.3 Potential uses of stem cells 

 

The current use of Stem Cells in research falls fundamentally at developmental 

investigation and tissue regeneration. Every medical, pathological situation where cell 

replacement (due to injury, disease, or other causes) is required, stem cell use may be the key. 

Type I diabetes, Spinal cord injury, Parkinson’s disease, retinal diseases, myocardial infarction, 

amyotrophic lateral sclerosis, deafness, baldness, blindness, wound healing, are all eligible for 

stem cell application (Barberi et al., 2003). Hematopoietic stem cells have been used since the 

1980’s in therapy given that blood marrow transplantation is but a transplantation of 

hematopoietic stem cells (Bianco et al., 2001; Lin et al., 2013). Stem cells are also a promising 

tool in toxicological investigation and disease modeling (Lin et al., 2013; Sousa et al., 2013).  
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Another field where stem cells are involved is cancer research: stem cells, in their 

pluripotent state, resemble carcinogenic cells in terms of their metabolism, growth rate, 

migration and signaling pathways. Many scientific aspects, described decades ago and that 

apply to cancer cells, also apply for stem cells(Martin, 1981). The term “Warburg effect”, 

which addressed the metabolism of cancer cells, coined in 1956, is being now applied for both 

cancer and ESC alike (Upadhyay et al., 2013; Warburg, 1956).  So, whatever we may be able 

to learn from one field, may be transposed to the other. 

 

 

1.1.4 Metabolism: Warburg-like effect & Metabolic Shift 

 

Along with self-renewal and pluripotency, ESCs should be also noted by their 

characteristic metabolism. ESCs use glycolysis as their primary source of energy and 

biosynthetic building blocks, in contrast with differentiated cells, who rely more on the Krebs’ 

Cycle and Oxidative Phosphorylation (OXPHOS) for the same purpose (Pereira et al., 2014). 

Each pathway requires different enzymatic machinery. Krebs’ Cycle shows increased energetic 

efficiency, complexity, need for oxygen availability, but decreased kinetics. Due to the 

elevated proliferation and hypoxic niche location in the ICM, in vivo, ESCs require a high 

demand of energy and biomolecules (that should be quickly available) in order to support their 

proliferation, and thus, ESCs favor glycolysis over oxidative metabolism (Stanley et al., 2013). 

The Warburg effect, first described by Otto Heinrich Warburg in 1956, reflects the high aerobic 

glycolysis by malignant tumors even in the presence of oxygen, and this Warburg-like effect 

in ESCs disappears over the course of differentiation, suggesting that a metabolic shift occurs 

somewhere along the process. This metabolic shift, requires a reshaping in many cellular 

aspects, such as mitochondrial morphology and subsequent activity, gene expression, 

antioxidant defenses, and metabolic reprograming (by activation of mitochondrial 

metabolism, namely Krebs’ Cycle, OXPHOS and the intermediary metabolism (displayed in 

Figure 5) (Pereira et al., 2014)) precedes alteration of genomic expression (Chen et al., 2012; 

Cho et al., 2006; Folmes et al., 2011a, 2012; Varum et al., 2011). Recent studies revealed that 

stem cell metabolism might be a tool for comprehension and fine tuning of differentiation 

(Chen et al., 2012; Chung and Dzeja, 2007; Folmes et al., 2011a, 2012, 2011b; Grayson and 

Zhao, 2006; Pattappa et al., 2011; Pereira et al., 2013, 2014; Rafalski et al., 2012; Ramalho-

Santos et al., 2009; Robinson et al., 1997; Signer and Morrison, 2013; Simsek et al., 2010; 

Sousa et al., 2013; Suda et al., 2011; Varum et al., 2011; Weisbart and Kwan, 1987; Yanes et 

al., 2010; Yoshida et al., 2009). By controlling the metabolic conditions of the medium, such 

as oxygen availability, forcing the expression of certain genes, such as HIF1-α (Mathieu et al., 

2014), or even by inhibiting enzymes that are crucial for key metabolic pathways, stem cell 

pluripotency /differentiation might be modulated. It has been shown by our group that 

inhibition of normal mitochondrial metabolism (namely through inhibition of Complex III of 

the ETC) can block mESC neuronal differentiation (Pereira et al., 2013). Moreover, blocking 

Complex III of the ETC can enhance the pluripotent phenotype in hESC (Varum et al., 2009). 

Also, inhibiting PDHK (and thus increasing PDH activity) would favor differentiation in mESC 



6 

(Rodrigues et al., 2015). Regulation of both human and mouse ESCs metabolism seems to be 

linked to their pluripotency and differentiation capacities. 

 

 

Figure 5 - Primary pathways of glucose metabolism. Both glycolysis, Krebs’ cycle, the pentose-phosphate pathway (PPP) and 

biosynthetic mechanisms are presented. (Pereira et al., 2014) 

 

1.2 MODULATION OF METABOLISM AND PLURIPOTENCY 
 

The metabolic remodeling that mESC undergo when they differentiate implicate two 

distinct metabolic profiles. This point is summarized in Figure 6. In this section, I will show 

evidence of metabolic changes during differentiation, and just how this process may even 

precede changes in genetic expression. 
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Figure 6 - The metabolic regulation and mitochondrial changes in the maintenance of self-renewal capability and induction 
of differentiation of different types of stem cells. Adapted from Chen et al. 2012. 

 

There are different metabolic statuses in mESCs, and differentiated cells (MEFs) have 

been reported, summarized in Figure 6. In order to assay their metabolic profile, lactate and 

acetate production (by-products of the glycolytic pathway) was measured, as well as the 

energetic ratio of ADP/ATP, and values of oxygen consumption (which determine the degree 

of oxidative metabolism), demonstrating that mouse iPSC and mESC show higher 

concentrations of these metabolites than their more differentiated counterparts, MEFs 

(Folmes et al., 2011b). Other works saw similar results regarding hESC and hiPSC vs somatic 

cells (Varum et al., 2011). 

Knowing that the metabolic profile is different for each type of cell, and that the aerobic 

metabolism requires mitochondrial activity, this analysis of the mitochondrial membrane 

potential of ESC vs MEFs concludes that stem and stem-like cells present higher values of 

MMP, while differentiated MEFs showed low MMP, as visible in Figure 7, reflecting changes 

towards a mature and metabolically active organelle (Schieke et al., 2008).  

 

Figure 7 - Live mitochondrial membrane potential (MMP) obtained via TMRM fluorescence. (Folmes et al. 2011) 
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Further characterization of this change in metabolism, focusing in genetic adaptations, 

revealed that expression of glycolytic enzymes precedes the expression of pluripotency 

markers, leading to the conclusion that metabolic adaptations occur before the cell can 

change its potency degree (Folmes et al., 2012). Again, this pattern was also verified in 

comparison studies in hESC/iPSCs and differentiated cells (Varum et al., 2011). 

 

1.3 SIRTUINS 
 

Sir-two homologue proteins – Sirtuins (SIRT) are NAD+-dependent lysine deacetylases. 

Homologues to Sir-two (first described in yeast), they are considered part of the Histone 

Deacetylase (HDAC) class I family. Although Sirtuins possess the ability to deacetylate 

histones, that does not seem to be their only role (Imai et al., 2000). There are seven known 

mammalian Sirtuins, with varying roles and sub-cellular localizations. Sirtuins 6 and 7 are 

present in the nucleus, while Sirtuin 1 and 2 allocate both in the cytoplasm and nucleus alike. 

The last three Sirtuins (3, 4 and 5) take residence in the mitochondrion (Finkel et al., 2009; 

Haigis and Guarente, 2006).  

Apart from Sirtuins 6 and 4 (which have the activity of ADP-ribosyl-transferase), the 

primary role of sirtuins is deacetylation, the removal of an acetyl group from a target protein 

or other molecule. This reaction is dependent on NAD+ (Imai et al., 2000), and for this reason, 

sirtuins can act as a metabolic and redox sensor, as their activity is sensitive to the cell 

NAD+/NADH ratio (Abdel Khalek et al., 2014). 

Some studies have tried to bridge sirtuins and pluripotency/differentiation in ESC, via 

their histone deacetylation activity, as well as deacetylation of other proteins (Rodriguez et 

al., 2013). SIRT1 has been implicated in histone deacetylation, as the sirtuin with the highest 

histone-deacetylation capability. SIRT1 KO mice die either in late stages of development or 

shortly after birth (Cheng et al., 2003). By deacetylating their respective histones, SIRT1 

deactivates and thus suppresses neuronal development-related genes (Calvanese et al., 

2010). Concomitantly, inhibition of SIRT1 seems to promote differentiation of mouse iPSC in 

neuronal stem cells (Hu et al., 2014). Also, SIRT1 appears to also be relevant in a pluripotency 

context by deacetylating elements of the FOXO-family (Brunet, 2004), and p53 (Langley, 

2002), mitigating their activity, which may facilitate differentiation (Gonzales and Ng, 2011; Li 

et al., 2012).  

Some studies hint that the cytoplasmic sirtuin SIRT2 may influence neuronal 

differentiation through targeting the α-tubulin subunit of microtubules (Southwood et al., 

2007). Other sirtuins have yet to be definitively linked to differentiation and/or pluripotency 

of ESC.  

Sir-two homologue protein 3 – Sirtuin 3 (SIRT3) is a NAD-dependent lysine deacetylase. 

Of the seven known Sirtuins, SIRT3 has been shown to be predominantly at the mitochondria, 

where it regulates mitochondrial acetylation profiles. There are two other sirtuins in this 

organelle, SIRT4 and SIRT5, but it is believed that SIRT3 is responsible for 90% of total 
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mitochondrial deacetylation (Brown et al., 2013). SIRT3 activates the global mitochondrial 

metabolism by deacetylating key proteins in different metabolic pathways, namely in the 

Krebs cycle (Acetyl-CoA sintetase, Isocitrate Dehydrogenase 2, and Succinate Dehydrogenase, 

Succinate Dehydrogenase and Complex I), and also Antioxidant defense (Mn-SOD2). 

Therefore, SIRT3’s primary action is the activation of mitochondrial metabolism. Along with 

these well-established roles, SIRT3 has been shown to regulate metabolic shift in cancer, as 

well as inducing proliferation of cancer stem cells. One study determined that SIRT3 appears 

to be necessary for in vitro differentiation of brown adipocytes, from HIB1B pre-adipocytes 

(Shi et al., 2005). Incidentally, SIRT3 is mostly expressed in brown adipose tissue, in adulthood. 

Thus, it would be of interest to assay if SIRT3 could have similar effects on mESC. 

It is relevant to report that there are SIRT3 knockout systems available, with both SIRT3 
KO cells and mice being commercialized. Studies performed on these systems show that both 
present overall similar phenotypes to their wild-type counterparts, the only difference 
residing in metabolic pathologies due to mitochondrial dysfunction (changes in ACeCS2, ATP 
levels and mitochondrial protein acetylation, deficient oxidative stress defenses) in older, KO 
mice model.  

 

1.4 SILENCING MECHANISTIC 
 

There are different methods for silencing or suppressing a protein or its activity. 

Pharmacological inhibition is perhaps the first obvious tool to achieve this purpose. However, 

there are other more specific and effective methods for this purpose, notably involving genetic 

silencing, which considers both genetic knockout (gene KO, genetic information is deleted 

from the organism’s genome, resulting in complete suppression of a protein) and knockdown 

(protein expression levels are diminished, usually by interfering with either DNA transcription, 

or mRNA stability/translation). Genetic knockdown (KD) is regularly achieved through the use 

of RNA interference (RNAi). RNAi consists in the use of small RNA nucleotides with sequences 

specific for an mRNA coding the protein of interest. There are several classes of interfering 

RNA molecules, namely shRNA (short-hairpin RNA), dsRNA (double-stranded RNA, avoided as 

it may activate interferon I pathway (Lambeth and Smith, 2013)), or siRNA (small interfering 

RNA). There is another RNAi system in the cell, which is natively used as part of its protein 

expression regulation, miRNA (microRNA). All of these interfering RNAs have similar 

mechanisms, in spite of slight differences between them, as their source or processing 

enzymes (Fellmann and Lowe, 2014).  

After being transcribed from the transfected DNA sequence, shRNA is processed by 

Dicer (an endoribonuclease (RNAse III family), typically expressed by cells for their own native 

RNA-interference processes), giving rise to a siRNA (double stranded, with an anti-sense 

strand and a sense strand). siRNA binds to RISC (Ameres et al., 2007) (RNA-interference 

silencing complex), being the antisense strand used to recognize the target mRNA (the sense 

strand), and bind to it, as shown in Figure 8. Perfect binding to sequences result in cleavage 

and degradation of target mRNAs, whereas imperfect binding, commonly seen with miRNAs, 
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results in translational repression (Fellmann and Lowe, 2014). Both these effects are managed 

through the catalytic component of RISC, the Argonaute protein group (Ameres et al., 2007).  

 

 

Figure 8 - Mechanism of shRNA silencing action. Pol II: RNA polymerase II. Ago: Argonaute protein. RISC: RNA-interference 
Silencing Complex. Adapted from:  (Fellmann and Lowe, 2014) 

  

Some of the advantages of shRNA KD over other silencing techniques include its 

relatively stable expression (compared to direct siRNA transfection, but still not as stable as 

when virus are employed), the fact that DNA delivery methodologies are well established, it 

is cost-effective advantageous for long-term experiments (cheaper than KO models), and 

provides an elegant solution for silencing proteins that may be crucial for the cell’s regulation, 

in which a KO would result in immediate cellular death (Wittmann, 2006). The greatest 

advantage for this type of silencing is its adaptability for the target: having established a 

silencing protocol in a certain cell line, we can virtually silence any protein as long as a specific 

shRNA-containing plasmid is available. Therefore we aimed to introduce and optimize this 

method in our laboratory in order to be available as a tool to understand pluripotency and 

differentiation mechanisms of ESCs. 
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2 OBJECTIVES 

 

The primary objective of this work was to establish a silencing protocol, via 

genetic knockdown in mouse Embryonic Stem Cells. This method was established by 

targeting a mitochondrial protein, Sirtuin3, with capacity for metabolism modulation, 

by transfection of a shRNA-expressing plasmid, ending with an evaluation of the 

knockdown level of the said protein. 

 

3 METHODS 

3.1 TASKS 

3.1.1 Task #1 – Cell culture 

 

The first task involved learning how to culture and maintain a mES cell line, E14Tg2.a, in 

which part of the study was performed. The prominence of this task is justified by its own 

complexity: mESCs culture requires a great amount of experience and awareness during their 

maintenance, as they are particularly sensitive to different stress stimuli, such as temperature, 

pH, nutrient availability, as well as various other different (toxic) molecules that can 

accumulate in the culture medium due to both normal cell metabolism and cell death, which 

can lead to its unwanted spontaneous differentiation.  

An example of mESCs co-cultured with mouse embryonic fibroblasts (MEFs) can be seen 

in Figure 9. It should be noted that some cells are starting to leave its most pluripotent state 

(red arrows) relatively to blue-arrowed colonies (stronger pluripotent phenotype from the 

morphological point of view). In this figure it can be seen how heterogeneous a mES cell 

culture can be. It is possible that, in a good stem cell culture, up to 10% differentiation levels 

can be seen as acceptable. Pluripotent colonies are characterized by their round morphology, 

high optical refringence (brilliant, white borders), and small cell size. As these colonies start 

the differentiation process and lose their pluripotent phenotype, cells tend to spread away 

from the center of the colony, increasing their size, and decreasing refringence. Strict 

monitoring of the culture’s pluripotent state is essential in the process of its maintenance, as 

well as confluence (higher or very low confluences may lead to spontaneous differentiation).  
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Unlike mES R1 cells, E14Tg2.a cells do not require MEFs in order to proliferate and 

maintain pluripotency (Ward et al., 2004), and thus were be cultured in (0.1%) gelatin coated 

dishes, yielding cultures very much like those of Figure 3. Cells were be kept undifferentiated 

by adding Leukemia inhibitory factor (LIF) (1000 U / ml), as LIF integrates signals into mESC to 

maintain pluripotency (Niwa et al., 2009). 

3.1.2 Task #2 – Plasmid choice, preparation and Lipofectamine® transfection 

 

SIRT3 activates the global mitochondrial metabolism by deacetylating key proteins in 

different metabolic pathways in the mitochondria, and previous studies determined that 

SIRT3 appears to be necessary for in vitro differentiation of brown adipocytes (Giralt et al., 

2011; Shi et al., 2005), it would be valuable to assay if SIRT3 could have similar effects on 

mESC. 

In spite of the availability of a SIRT3 inhibiting drug, 4-hydroxynonenal (4-HNE), its 

inhibiting effect is not specific towards SIRT3, inhibiting other deacetylases and having targets 

beyond Sirtuins. Therefore, this pharmacological approach is unadvisable if SIRT3-specific 

silencing is desired. Additionally, the possible inhibitory effect of 4-HNE on SIRT3 was already 

tested in our laboratory, and no effect was seen, at least regarding mESC E14. Thereby, in this 

project we attempted to use a different and hopefully better solution to study the effects of 

SIRT3 on mESCs. 

A group of four shRNA expressing plasmids (against different regions of SIRT3’s mRNA, 

Genecopeia™ #MSH032833-LVRH1MP) was chosen for our silencing protocol. Cells will be 

grown in a puromycin containing medium. As each plasmid contains a puromycin resistance 

gene (antibiotic selection marker), only transfected cells will be able to survive and form 

Figure 9 - Phase contrast microscopy of a mES R1 cell line co-cultured with MEFs. Examples of mESC colonies marked with 
blue arrows, a colony losing its pluripotent phenotype with reds arrows and MEF with green arrows. 
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colonies. These plasmids also contain a fluorescent reporter gene, which allows us to directly 

monitor the plasmid’s presence in the cells. Taken together, these elements aim to provide an 

effective RNA interference and knockdown of SIRT3’s levels. This plasmid contemplates the 

possibility of genomic integration of the shRNA coding region via HIV infection, providing an 

alternative way of transfecting the cells. The use of shRNA is favored over siRNA and dsRNA 

as it mimics the endogenous miRNA pathway, therefore it is significantly more efficient, 

assures increased knockdown stability, and mitigates a possible activation of interferon I 

pathways. Moreover, DNA handling and delivery methods are easier and well established in 

literature for mESC. Nonetheless, shRNA technologies are not devoid of disadvantages, as they 

require either a frequent re-acquisition of the plasmids, or expansion of plasmids in bacteria, 

and thus, conditions to work and manipulate bacteria.  

Plasmids were expanded in E.coli and transfected in mESC using lipofectamine-mediated 

transfection. This method takes advantage of the interaction between the positive charges of 

lipofectamine and the negative charges of the plasmidic DNA. The resulting complex is then 

internalized into the cell. The choice of this transfection protocol above others of the kind 

(electroporation, heat shock) is due to the reported efficiency for the stem cell line E14Tg2.a 

(Christophorou et al., 2014). 

 

 

 

Figure 10 - Transfection protocol for Lipofectamine® mediated transfection. (Lipofectamine® 2000 DNA Transfection Reagent 
Protocol) 

 

E14Tg2.a cells were transfected in the third day after passaging, using the Lipofectamine 

2000® (Invitrogen™) reagent as described in the manufacturer’s protocol (Invitrogen(tm) by 
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life technologies, 2000), shown in Figure 10, and later with Lipofectamine® 3000, using a 

similar protocol. 

 

3.1.3 Task #3 – Assay for knockdown effectiveness and stability 

 

In order to assay knockdown effectiveness and stability, both Western Blot and qRT-PCR 

were employed.  

Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR), which allows 

us to measure the expression and the existing amount of a given mRNA strand, by using the 

appropriate primers, was applied to conclude about the levels of SIRT3’s coding mRNA in the 

cell. Nonetheless, taking into account that shRNA silencing can culminate with both the 

degradation of the target mRNA or solely the repression of its translation by rRNA (the 

multitude of effects is dependent of the Argonaute protein present in the catalytic domain of 

the RISC complex), SIRT3 mRNA levels may or may not be significantly different between KD 

and control cases.  

After collecting the total protein contents of transfected cell cultures, SIRT3 levels were 

be measured by Western Blot.  

In order to perform the two aforementioned techniques, both the protein and mRNA 

contents of cultured cells were collected. In case of a successful SIRT3 knockdown, the same 

protein and mRNA samples would be used to measure the expression of pluripotency markers 

such as Nanog and Oct4, thus allowing to infer on how SIRT3 may or may not affect 

pluripotency, and also differentiation. 

Being a lysine deacetylase responsible for the acetylation of 90% of mitochondrial 

proteins (Lombard et al., 2007), and taking into account that SIRT3 primarily operates in this 

organelle, SIRT3 KD cells should reveal increased acetylation in their mitochondrial proteins. 

This measurement was possible by using an antibody against Acetylated lysine (a measure of 

activity), by Western Blot analysis. 
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3.2 CELL LINES, CELL CULTURE AND DIFFERENTIATION 
 

E14Tg2.a mES cell line was chosen to perform all ESC assays. mESCs were cultured in 

0.1% gelatin-coated dishes, with the denominated “KODMEM medium” consisting in 

Knockout™ Dulbecco modified Eagle medium (Gibco #10829-018) supplemented with 15% 

Knockout Serum Replacement (KSR; Gibco #10828-028), 1000 U/mL LIF (Merckmillipore 

#ESG1107), 100U/mL penicillin, 100 µg/mL streptomycin (Gibco #151910-122), 2 mM L-

Glutamine (Gibco #25030-024), 0.1 mM non-essential amino acids (Sigma #M7145), and 0.1 

mM β-mercaptoethanol (Sigma M17522-100mL) at 37°C / 5% CO2. Media was replaced daily, 

and cells passaged every 2 to 3 days, with a density of 6000 cells/ cm2. StemPro® Accutase® 

(Gibco #A1110501) was used as dissociation agent. Briefly, old culture medium was removed, 

and the cells were then rinsed with warm PBS, and accutase was added. After a 5 minutes 

incubation at 37°C, new, warm culture medium was added to inactivate the enzyme, and cells 

were collected into a 15mL conical tube. Then, cells were centrifuged at 200g for 5 minutes at 

room temperature. Supernatant was discarded, and the cells were then resuspended in 

KODMEM. Cells were then counted as described in section 3.4.3, and the appropriate volume 

containing the wanted cell number was plated in a new, gelatin coated dish with warm 

KODMEM.  

Non-directed differentiation into embryoid bodies (EBs) was made using E14Tg2.a cells. 

This differentiation was conducted to assay changes in the expression of both pluripotency 

and differentiation markers. Therefore, 106 cells were plated in non-adherent 60mm dishes 

with 5 mL KODMEM medium. Cells were then incubated for 3 days at 37°C and 5%CO2, while 

replacing the culture medium daily. At the third day, EBs were plated in 100mm tissue-culture 

dishes coated with 0.1% gelatin, with 10% Fetal Bovine Serum (FBS, Gibco #10270-106))-

supplemented KODMEM culture medium. On the following day, “normal” KODMEM culture 

medium was added and medium was daily replaced from the fourth day onwards. Total 

protein contents were collected every two days during 14 days of protocol. 

A differentiated cell line (NIH-3T3, mouse embryonic fibroblasts), 3T3, was employed to 

validate that the plasmid and as a control for the low efficiency of transfection. 3T3 cells were 

grown in Dulbecco modified Eagle medium, hereby referred to as “DMEM medium”, 

consisting of DMEM (DMEM, Gibco #41965-039) with 10% FBS, 100U/mL penicillin, 100 µg/mL 

streptomycin, 0.1 mM nonessential amino acids, and 1mM sodium pyruvate (Gibco #11360-

039), while being incubated at 37°C and 5% CO2. Cells were detached with TrypLE (Gibco 

#12605-028), and passaged with dilutions ranging from 1:30 to 1:60, when 70-80% confluence 

was achieved. The passaging protocol is very much alike the one described for mESC: DMEM 

medium was removed, cells were washed with warm PBS and TrypLE was added. After a 5 

minutes incubation at 37°C, new, warm culture medium was added. Cells in suspension were 

collected into a 15mL conical tube. Then, cells were also centrifuged at 200g for 5 minutes. 

The supernatant was removed, and the cells were then resuspended in new DMEM. Cells were 

then counted; the appropriate volume of cells was plated in new, cell culture flasks with 

DMEM.  
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3.3 E.COLI TRANSFORMATION; PLASMID AMPLIFICATION, ISOLATION AND ANALYSIS 
 

LB-agar plates for bacterial culture were prepared following the manufacturer’s 

instructions (Nzytech #MB14502) in 90mm bacterial dishes. Briefly, 50g of LB broth (Nzytech 

#MB14502) and 40g of agar (Becton Dickson #214050) per liter of distilled water were 

sterilized through autoclaving (121°C for 45 minutes). Following this process, the broth was 

kept at 60°C, averting solidification. The appropriate antibiotic was then added to get a 

final/working concentration of 100 µg /mL for carbenicillin (Fisher Scientific #BP26481) or 50 

µg /mL for kanamycin (AcrosOrganics® #450810100), whenever the LB-agar plates were meant 

for antibiotic-based selection. Approximately 20mL of LB-agar broth was poured directly into 

the 90mm bacterial dishes, in sterile conditions (flux chamber), and left to cool until 

solidification. Each dish was then inverted (lid facing down), date, user, antibiotic name and 

concentration were written, and lastly, sealed with parafilm (PARAFILM #05170002). Sealed 

sterile dishes were kept in a sealed bag at 4°C until needed.  

E. coli was transformed via the heat-shock transformation protocol (Nzytech, 2013). 40 

µL of glycerolated stock NZY5 E.coli (Nzytech #MB00401) was transfected with 2ng of 

plasmidic DNA. The eppendorf containing the bacteria and DNA was incubated on ice for 5 

minutes and then, heat-shocked in a water bath at 42°C for 45 seconds. After, the eppendorfs 

were returned to ice for another 2 minutes. 500 µL SOC broth (Nzytech #MB11901) was then 

added to each eppendorf and incubated in a 37°C incubator with agitation for 20 minutes, 

allowing bacteria to recover from the ice-heat cycles. 150 µL were plated in LB-agar plates with 

100 µg /mL carbenicillin or 50 µg /mL for kanamycin, which allows plasmid positive and 

negative (respectively) E.coli selection, as the chosen plasmids encode for an 

ampicillin/carbenicillin resistance-conferring gene. A Bunsen burner was employed to achieve 

sterile conditions and thus minimize contamination chances of all reagents and materials. 

Plasmid amplification was attained by two steps of E.coli culture. Plasmid-positive 

colonies were picked early in the morning to a 15 ml falcon tube containing 5 mL SOC broth 

with 100 µg /mL carbenicillin, and incubated at 37°C and 180 rpm, over day. Then, the pre-

culture was transferred to a 500 mL Erlenmeyer flask with 200mL SOC broth with 100 µg /mL 

carbenicillin and incubated overnight in the aforementioned conditions. Next morning, E.coli 

were harvested (by centrifuging the bacterial suspension, at 4000g) in order to perform DNA 

isolation via the PureLink® HiPure Plasmid Filter Maxiprep Kit (Invitrogen #K2100-17). This 

isolation process includes the sequential additions of kit buffers, such as RNAse containing 

buffers. The procedure was performed as recommended by the manufacturers. 

After elution of the DNA-binding columns, the isolated DNA was precipitated with 2-

propanol (Sigma #59304-1L-F) and centrifuged at 16000g for 30 minutes. The supernatant was 

discarded; the pellets were rinsed with 70% ethanol (MerckMillipore #1085430250) and then 

centrifuged again at 16000g for 10 minutes. Ethanol was removed; the DNA pellets were left 

to dry, and then resuspended in Molecular Biology-grade water (MerckMillipore 

#H20MB0501).  
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 DNA concentration was determined via a NanoDrop® 1000 Spectrophotometer. 

Molecular Biology-grade water was used as blank for the measurements, and 1 µL of DNA 

solution was pipetted in order to determine the concentration and purity of the nucleic acid. 

Following this procedure, DNA samples were aliquoted and kept at -20°C pending use. 

 

3.4 SELECTION CONDITIONS  

3.4.1 Antibiotic Concentration  

 

The minimum concentration of puromycin that was able to kill every cell/colony was 

determined in order to select plasmid-positive cells/colonies. As the chosen plasmid for 

transfection carries a puromycin resistance-conferring gene (PAC - puromycin N-acetyl-

transferase), an enzyme that disables the inhibition of protein synthesis from puromycin, by 

acetylation of a moiety of the said antibiotic (Gómez Lahoz et al., 1991; Vara et al., 1985)), 

successfully transfected cells must be resistant to concentrations of puromycin that would 

otherwise kill them. So, both non-transfected cell lines were plated in 12-well plates and 

cultured in the presence of increasing concentrations of puromycin (ranging from 0.5 µg/mL 

to 2.5 µg/mL. Puromycin concentrations were chosen according to existing data (Aubert et al., 

2002; Chambers et al., 2003; Conti et al., 2005; Simsek et al., 2010; Wang et al., 2007; Zhang 

et al., 2006)). Then, cells were treated with different concentrations of puromycin, 24 hours 

after plating. Antibiotic selection was conducted for 3 days (ESCs) and 7 days (3T3). The next 

step was to determine the antibiotic’s effectiveness by cell counting under a microscope, and 

Sulforhodamine B colorimetric assay. 

 

3.4.2 Sulforhodamine B (SRB) colorimetric assay 

 

Cells were fixed with 4% Para-formaldehyde (Sigma #P6148-500G) for 15 minutes at 

room temperature. After removing the fixative solution, cells were washed with PBS for three 

times, 5 minutes each. PBS was then removed and the plate was allowed to dry overnight. In 

the following day, 500 µL of 0.1% SRB (Sigma #S9012-256) solution was added to each well 

containing cells exposed to different concentrations of SRB. After an incubation period of 1 

hour at 37°C, the SRB solution was removed, and washed trice with a 1% acetate solution. 

Following this step, the plates were left to dry overnight, at room temperature. Next day, 1 

mL of 10mM TRIS, pH=10 buffer was added to each well. The plates were then subject to 

stirring for 15 minutes. From each well, 200 µL of the TRIS buffer was collected to a 

transparent, 96-well plate, and read with a spectrophotometer (at 540nm) in order to 

determine the amount of remaining SRB, which had bound to  proteins, and would give a 

measure of total protein content. 
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3.4.3 Cell counting 

 

Cell counting allowed the quantification of the number of surviving cells in each selecting 

condition. Cells were detached with either Accutase® (E14 cells) or TrypLE™ (3T3 cells), having 

previously rinsed the cells with PBS, to ensure maximum enzyme activity. Following the 

addition of the detaching agent, both cell lines were incubated at 37°C for 5 minutes. The 

detaching action of both reagents was inhibited with the addition of culture medium (with a 

total volume of 4 times the volume of detaching enzyme employed), and the cell suspension 

was collected then centrifuged at 1200 rpm for 5 minutes. Supernatant was promptly 

discarded and the cells were ressuspended in 1 mL of the corresponding culture medium. An 

aliquot of 20 µL was mixed with 20 µL of Trypan Blue Solution, 0.4% (Sigma #T8154). A total 

volume of 10 µL of the resulting cell suspension was pipetted to a Nebauer Improved Counting 

Chamber (Marienfeld #0610010, as shown in Figure , with 0.1 mm of depth) and counted 

under a microscope. The four outer quadrants (with 1mm2 areas) were counted. 

 

 

Figure  - Grid size for the Nebauer Improved Counting Chamber.   

The total number of counted cells is calculated according to Equation 1. As each 

quadrant has an area of 1mm2, and a depth of 0.1mm, the corresponding volume, per 

quadrant, is of 0.1mm3 (1mm*1mm*0.1mm), or 0.1µL. In order to obtain a cell concentration 

in the order of the mL, the total number of cells must thus be multiplied by 10000. Four 

quadrants were counted in order to decrease the chance of systematic counting errors, which 

implies that the total number of cells counted (in the four quadrants) must be normalized to 

obtain a fixed number of cells per quadrant. As cells were diluted in Trypan Blue prior to 

counting, this dilution must be taken into account. 

𝐶𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑐𝑒𝑙𝑙

𝑚𝐿
) =

#𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

#𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
∗ 10000 ∗ 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 

 

[1] 
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After obtaining the total number per condition, those values were divided by the 

number of cells in the control condition and the result is expressed in a percentage of live cells 

relatively to control, as calculated using Equation 2. 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑠𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 𝐶𝑒𝑙𝑙𝑠 =
#𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑐𝑢𝑙𝑡𝑢𝑟𝑒

#𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 
∗  100 

 

3.5 TRANSFECTION 
 

Both cell lines were transfected using Lipofectamine 2000 (Invitrogen #11668-030) and 

Lipofectamine 3000 (Invitrogen L3000-008) reagents. Transfection was made according to 

manufacturer’s instructions, albeit modified.  

Cells were passaged as described, and seeded on 12 well plates at 15000 cells per cm2 

(NIH-3T3 cells) and 5000 cells/cm2 (E14Tg2.a cells), with 1 mL of the corresponding culture 

medium (KODMEM for E14 cells and DMEM for 3T3 cells). Concomitantly, different ratios of 

DNA:Lipofectamine (DNA mass: Lipofectamine volume) were tested, starting with 0.5 µg of 

Plasmidic DNA.  

Two references of Lipofectamine were used: Lipofectamine 2000 and Lipofectamine 

3000. DNA and Lipofectamine 2000 solutions were prepared, separately, by dilution in 

OptiMEM medium (Gibco #31985-047). Each mixture was incubated at room temperature for 

5 minutes, before adding the contents of the DNA-OptiMEM tube to the Lipofectamine 2000-

OptiMEM containing tube. This DNA-Lipofectamine 2000-OptiMEM mixture was then 

incubated for another 5 minutes at room temperature in the dark, and finally added to each 

well dropwise. The plates were incubated at 37°C, 5% CO2 overnight. On the next day the 

plates were assayed for the emission of fluorescence (caused by expression of mCherry), and 

1 mL of culture medium was added. On the third day, the culture was monitored for 

fluorescence and confluence the culture medium was removed and replaced with fresh 

culture medium supplemented with puromycin in order to select plasmid-positive cells.  

Transfection with Lipofectamine 3000 followed the same guidelines, except the addition 

of the reagent dubbed “P3000 reagent” to the DNA-OptiMEM mixture. For each µg of DNA 

added, 2 µL of P3000 reagent were added. With both methods, following antibiotic selection, 

cells were passaged, as described, for wild type E14 and 3T3 cells. 

 

3.6 FLOW-CYTOMETRY 
 

Flow-cytometry was performed with transfected 3T3 cells in order to quantitatively 

evaluate transfection efficiency. The transfection efficiency could be measured through the 

[2] 
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red fluorescence of positively transfected cells, conferred by the mCherry-expressing plasmid. 

Therefore, 3T3 cells (two samples of transfected and non-transfected cells) were detached 

with TrypLE, as described. Following the centrifugation step, the supernatant was discarded 

and the cell pellet was resuspended in warm PBS, and analyzed with a BD FACSCalibur flow-

cytometer. For each “cell line”, a total of 20.000 events were recorded. After a quick run, the 

aberrant cells and cellular debris was gated out, based on light scattering, and by designing a 

region that only included those who were considered to possess a “normal” forward and side 

light scattering. Red fluorescence (mCherry absorbs at the wavelength of 387nm, emitting 

maximally at 610nm) was promptly measured in the FL2 channel. Data was analyzed using the 

Cell Quest Pro Acquisition software, and the percentage of Fluorescent/non-fluorescent 3T3 

cells was calculated.  

 

3.7 RNA  

3.7.1 RNA isolation 

 

Cells were washed with warm PBS and the adequate detaching agent was added. After 

a 5 minutes incubation period at 37°C, medium was added to inactivate the enzyme, and cells 

were collected into a 15mL conical tube. Then, cells were centrifuged at 200g for 5 minutes at 

room temperature. Supernatant was discarded; cells were washed in PBS 1x and centrifuged 

again. 

Afterwards, in an RNAse free environment and using RNAse-free pipette tips, pipettes, 

and eppendorf tubes, the supernatant was removed, 1 ml of TRIZOL reagent (Invitrogen 

#15596026) was added and the samples were vortexed for 10 seconds. Then, 200 µL of 

chloroform (Sigma #C242-25mL) was added to the mixture, and vortexed for 30 seconds. The 

samples were then centrifuged at 4000 rpm for 5 minutes (room-temperature), and the 

transparent/aqueous phase was collected to an RNAse/DNase-free eppendorf tube, without 

disturbing the phenol red-containing phase. Lastly, 600 µL of isopropanol were added to each 

eppendorf tube, the tubes were labeled and kept at -20°C, until DNA clean-up. 

3.7.2 DNA cleanup, quantification and first strand cDNA synthesis 

 

Following the isolation step, RNA samples were centrifuged at 16.000g at 4°C for 30 

minutes, and the resulting supernatant was discarded. 1ml of 75% ethanol, previously 

prepared with molecular biology-grade water, was added and the RNA samples were 

centrifuged at 16000g at 4°C for 10 minutes. The supernatant was discarded and the pellets 

were left to air-dry. 20 µL of nuclease-free water was added. These samples were then ready 

to undergo DNA clean-up. DNAse I buffer (0.2 µL, Ambion #816962)) and rDNase I (2 µL, 

Ambion #2224G) were then added to the RNA samples, and the contents were gently mixed. 

These RNA-containing tubes were incubated at 37°C for 30 minutes. After, DNAse Inactivation 

reagent (0.2µL, Ambion #8174G) was added to each sample, and incubated at room 

temperature for 2 minutes, while mixing occasionally. Finally, the samples were centrifuged 
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at 10.000g for 1.5 minutes, and the RNA-containing supernatant was transferred to a new, 

labeled, RNAse free tube. 

The resulting RNA was then quantified via Nanodrop®, as described before, albeit 

choosing a different quantification profile (one adequate for RNA instead of DNA).  

In order to perform cDNA synthesis, a reaction mix with a total volume of 20 µL, 

containing 4µL of iScript reaction mix (BIORAD #170-8890), 1µL iScript reverse transcriptase 

(BIORAD #720001205), and the volume equivalent to 1.5µg of RNA (20µL total volume was 

achieved by adding Nuclease free water), was prepared in PCR-ready tubes. These tubes were 

then subject to the PCR reaction, with the definitions shown in Figure 11. 

 

 

Figure 11 - Thermocycler definitions for cDNA synthesis. 

 

 

3.7.3 qRT-PCR 

 

The expression of four genes was evaluated through qRT-PCR, and the resulting 

expression was normalized to β-actin. The three-mitochondrial sirtuins (SIRT3, SIRT4 and 

SIRT5) had their mRNA equivalent measured, as well as SIRT1, the most widely studied sirtuin. 

The primers chosen and ordered for this step of the protocol are shown in Table 1. The 

sequences were obtained from the PrimerBank database 

(http://pga.mgh.harvard.edu/primerbank/), and the primers were ordered from Integrated 

DNA Technologies (IDT).  

 

 

 

 

 

http://pga.mgh.harvard.edu/primerbank/
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Table 1 - Identification and characterization of the primers chosen to perform qRT-PCR. 

TARGET 
GENE 

FW/RV SEQUENCE 
AMPLICON SIZE 

(BP) 
PRIMERBANK ID 

β-ACTIN 
Forward GGCTGTATTCCCCTCCATCG 

154 6671509a1 
Reverse CCAGTTGGTAACAATGCCATGT 

SIRT1 
Forward GCTGACGACTTCGACGACG 

101 9790229a1 
Reverse TCGGTCAACAGGAGGTTGTCT 

SIRT3 
Forward ATCCCGGACTTCAGATCCCC 

126 11967963a1 
Reverse CAACATGAAAAAGGGCTTGGG 

SIRT4 
Forward CAAGAAACTCCTCGTGATGACA 

97 267844848c2 
Reverse GTCAGTGCGGGCGTAAAGT 

SIRT5 
Forward CTCCGGGCCGATTCATTTCC 

130 30578432a1 
Reverse GCGTTCGCAAAACACTTCCG 

 

For each gene to be analyzed, a master mix (with a total volume of 20µL) was prepared 

by adding: 10µL SsoFast™ EvaGreen® Supermix (Biorad #750000117); 1µM of both Forward 

and Reverse primers, cDNA template of the desired sample, and 5µL of nuclease free water, 

to a 96 well RT-PCR plate (Biorad). qRT-PCR is run in CFX96 Touch™ Real-Time PCR Detection 

System, and mRNA fold change was calculated using the -∆∆Ct method. 

 

3.8 PROTEIN EXPRESSION ANALYSIS 

3.8.1 Immunocytochemistry 

 

Cells were plated at 10.000 cells/cm2 in cell culture 13mm coverslips (Thermanox 

174950) and grown for three days. The cells were then fixed with 4% paraformaldehyde in PBS 

for 15 minutes, at room temperature. After fixation, cells were washed with cold PBS and kept 

at 4°C in 0.1% sodium azide in PBS 1x, pending use. For the immunocytochemistry protocol 

per se, cells were firstly permeabilized and blocked with a 1% Triton-X100 and a 3% BSA, 

solution in PBS respectively, for 30 minutes. Cell-containing coverslips were incubated with 

the primary antibodies (antibodies employed can be consulted in Table 2) overnight diluted in 

a 1% BSA, 0.25% Triton-X in PBS solution. In the following morning, the coverslips were 

incubated with the corresponding secondary antibody for 1h at room temperature, after three 

washes in PBS for 5 minutes each. Incubation with Hoechst 33342 (to allow staining of the 

nucleus) was also performed, diluted 1:1000 in PBS, for 10 minutes at room temperature. Cell-

containing coverslips were washed three times with PBS before mounting. Samples were 

mounted in slides with a drop of Vectashield® (Vector H1000) with a glass coverslip, and sealed 

with nail polish to prevent samples from drying. 
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Table 2 - List of Antibodies used in immunocytochemistry, their sources, and dilutions. 

Antibody Strain Manufacturer Reference Dilution Incubation Time 

OCT4 rabbit Cell Signaling #2840 1:750 overnight 
SOX2 goat Santa Cruz sc-17320 1:500 overnight 
TOM-20 rabbit Santa Cruz sc-11415 1:200 overnight 
SIRT3 rabbit Abcam ab86671 1:1000 overnight 

 

 

3.8.2 Western Blot 

3.8.2.1 Protein Extraction & Quantification 

 

Total protein content was obtained from cell extracts for later characterization through 

Western Blot. Cells were washed with PBS, and detached with either Accutase® (for E14 ES 

cells) or TrypLE® (for 3T3 cells), centrifuged at 200g for 5 minutes. The pellet was washed with 

PBS and centrifuged again. Having discarded the supernatant, the pellet was then digested 

with RIPA® buffer (Sigma #R0278-50mL) supplemented with protease inhibitors (Protease 

Inhibitor Cocktail (Sigma #P8340) and PMSF (Sigma #78830)) and phosphatase inhibitors 

(Thermo Fisher Scientific #78830) for a minimum of 5 minutes, on ice. Following this process, 

samples were centrifuged at 500g for 15 minutes. The supernatant was carefully collected to 

a 1.5 ml eppendorf tube, labeled, and stored at -80°C. Protein concentration must be 

determined before sample preparation for blotting, to allow the loading of 30 µg of protein 

into each well, to standardize the amount of protein in each lane/sample. Protein 

concentration determination for each sample was accomplished using the Pierce™ BCA 

Protein Assay Kit. 

 

 

3.8.2.2 Western Blot 

 

Quantified protein extracts were subject to sodium dodecylsulphate polyacrylamide gel 

electrophoresis (SDS-PAGE), in a 12% acrylamide gel and the electrophoretic conditions were 

selected according to the characteristics of the proteins of interest. Protein samples were 

denatured prior to the electrophoresis. In order to do so, 30 µg of protein from each sample 

(determined after the quantification process) were diluted in water and to each tube, an equal 

volume of Laemmli buffer (BioRad #161-0737) with β-mercaptoethanol (Sigma M7522-

100mL) (a denaturing buffer) was added. The protein samples were then subject to heating, 

at 70°C, for 10 minutes, and vortexed for 1 minute afterwards. Electrophoresis gels were 

prepared accordingly to Table 3 (running gel portion) and Table 4 (stacking gel portion). 
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Table 3 - Chemical components of the Acrylamide running gel for protein electrophoresis. 

REAGENT/SOLUTION VOLUME (PER GEL) 

ddH2O 3.4 mL 
40% ACRYLAMIDE (BIORAD #161-0148) 2.4 mL 
1.5M TRIS, pH 8.8 (BIORAD #161-0798) 2 mL 
10% SDS (BIORAD #161-0418) 80 µL 
10% APS (BIORAD #161-0737) 80 µL 
TEMED (BIORAD #161-0800) 8 µL 

 

 

Table 4 - Chemical components of the Acrylamide stacking gel for protein electrophoresis. 

REAGENT/SOLUTION VOLUME (PER GEL) 

ddH2O 2,48 mL 
40% ACRYLAMIDE (BIORAD #161-0148) 0.4 mL 
0.5M TRIS, pH 6.8 (BIORAD #161-0799) 1 mL 
10% SDS (BIORAD #161-0418) 40 µL 
10% APS (BIORAD #161-0737) 40 µL 
TEMED (BIORAD #161-0800) 4 µL 

 

 

After polymerization, the gel was placed in an electrophoresis buffer chamber. 

Denatured samples were loaded into each well (30 µL, with 30 µg protein), as well as 5 µL of 

the adequate protein standard/ladder (Precision Plus Protein™ Dual Color Standards #161-

0374). Electrophoresis was carried out with TGS buffer (10x Tris/Glycine/SDS #161-0772). 

Firstly, electrophoresis is run at 60V for 30 minutes, allowing the steady and efficient 

incorporation of the protein samples in the stacking gel, and at 140 V, for approximately one 

hour allowing the separation by size of the loaded proteins. In the meantime, PVDF 

membranes were activated with methanol (AppliChem Pancreac #131091.1212) for 15 

seconds, then with water for 5 minutes, and lastly with transfer buffer (whose constituents 

are shown in Table 5) for at least 15 minutes, always under stirring. 

 

Table 5 - Electrotransference buffer chemical constitution. 
 

 

Following electrophoresis, proteins were electrotransfered from the acrylamide gel to a 

PVDF membrane. All the components of the “electrotransference cassette” of the Mini Trans-

Blot cell (BIORAD) were also soaked in transfer buffer, and then mounted as shown in Figure 

12. After the assembly of the cassette containing both the electrophoresis gel and the PVDF 

REAGENT CONCENTRATION / VOLUME 

TRIS-BASE (SIGMA #T150-1KG) 25mM 
GLYCINE (SIGMA #G7126-1KG) 190mM 
METHANOL (APPLICHEM PANCREAC #131091.1212) 200 mL 
DISTILED WATER Enough to 1 L of transfer buffer 
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membrane the electrotransference (BIORAD Tetra Blotting Module), was conducted at 4°C, at 

140V for 90 minutes in a BioRad Tetra Blotting Module. In order to improve the efficiency of 

the process and the integrity of the electrophoresis gel, the electrotransference system was 

immersed in ice. Also, to assure the homogeneity of the electrotransference buffer, the 

electrotransference system was coupled with magnetic stirring. 

  

 

Figure 12 - Electrotranfer system scheme 
(https://www.lifetechnologies.com/content/dam/LifeTech/Images/integration/PDetectFig24_400x.jpg) 

In the end of the electrotransference process, the PVDF membrane containing the 

transferred proteins was briefly washed in TBS-T solution (whose constitution is presented in 

Table 6). 

 

Table 6 - TBS-T constituents 

REAGENT CONCENTRATION / VOLUME (PER LITRE OF 
SOLUTION) 

TRIS-BASE (SIGMA #T150-1KG) 2,42 g/L 
NACL (SIGMA #S7653-1KG) 8g/L 
TWEEN-20 (BIORAD #161-0781) 10mL 

 

Before incubation with the desired antibodies, the membrane must be blocked with 5% 

non-fat milk/blocking regain in TBS-T, for one hour at room temperature. Primary antibody 

incubations were carried out overnight, at 4°C. Antibodies were diluted in 5% non-fat milk in 

TBS-T to the desired concentration. The list of antibodies employed, as well as their dilution 

and manufacturer, can be seen in Table 7. The following morning, the antibody was collected 

and the membrane washed in TBS-T, three times exchanging the TBS-T solution every 10 

minutes. The corresponding secondary antibody was diluted in 5% non-fat milk (BioRad #170-

6404) in TBS-T, as done with the primary antibody, and incubated for 1 hour at room 

temperature. In the end of this incubation period membranes were washed with TBS-T as 

described. 
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Table 7 - List of Antibodies used in immunocytochemistry, their sources, and dilutions 

Antibody Strain Manufacturer 
Referenc

e 
Dilution Incubation Time 

AFP rabbit Cell Signaling #2137 1:400 overnight 
αSMA mouse Abcam Ab7817 1:600 overnight 
OCT4 rabbit Cell Signaling #2840 1:750 overnight 
β-ACTIN mouse Sigma-Aldrich A2228 1:25000 1 hour 
SOX2 goat Santa Cruz sc-17320 1:500 overnight 
SIRT3 rabbit Abcam ab86671 1:1000 overnight 
SIRT1 mouse Sigma-Aldrich s5196 1:1500 overnight 
ACLYS rabbit Cell Signaling #9441 1:1000 overnight 
TOM-20 rabbit Santa Cruz sc-11415 1:200 1 hour 

 

 The revelation step was carried out with ECL (GE Lifesciences RPN2235), in a BioRad® 

Versadoc™ apparatus. The membrane was incubated with ECL for a standard time of 5 

minutes, protected from the light. Regarding the exposition settings in the Versadoc™ 

apparatus, they ranged from 10 to 30 seconds. When either over or underexposure was 

detected, these exposition periods were adapted. In the case of β-actin labelling, the very 

incubation time with ECL was reduced to decrease the chance of overexposure. Quantification 

of Western Blot images was carried out with the Quantity One® (by Bio-Rad) software. 
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4 RESULTS AND DISCUSSION 

4.1 MESC CULTURING 

4.1.1 Pluripotency in mouse Embryonic Stem Cells 

 

mESC cultures are, to say the least, more sophisticated than other cultured cells. These 

cultures require daily medium exchange, while always monitoring the morphology, size and 

density of stem cell colonies. This is due to the fact that mESC cultured in the absence of feeder 

cells tend to differentiate in a spontaneous manner. They are also very sensitive to sudden 

changes in their environment: temperature, acidity, micronutrient concentration, and so on. 

While many other cell cultures only require passaging when certain levels of confluence are 

reached, mESCs morphology must be followed, as it is, by itself, a good indicator of the level 

of “stemness” of the colonies. When passaging, these cells must be plated within certain 

density values: if plated too densely, mESC will tend to differentiate (more on mESC 

differentiation ahead); and if plated too sparsely, the cells won’t be able to form colonies and 

will eventually differentiate or die.  

As a result, the culture medium for mESC culturing must be well defined and favor not 

only growth, but also pluripotency. KSR replaces the more common form of serum, FBS, in 

order to avoid unwanted animal contaminants (such as cytokines) present in the serum itself, 

as they may lead the cells to differentiate (Cheng et al., 2004). β-mercaptoethanol, which acts 

as an antioxidant, helps to regulate the redox potential of the culture medium and also 

contributes towards stem cell pluripotency, allegedly through sequestration of reactive 

oxygen species, and creating conditions that allow the uptake of cysteine (this uptake is easier 

in reductive environment, and cysteine and its metabolism are important for endogenous 

redox balancing (Bannai, 1992; Janjic and Wollheim, 1992)). The medium’s base is KODMEM, 

as opposed to the usual DMEM, as it contains less serum-derived animal contaminants. In 

conclusion, all these components increase the quality of the stem cell culture, causing them 

to be notoriously expensive when compared to traditional cell lines. 

Figure 13 shows microphotographs of E14 mESC cultured in two different conditions, 

with LIF (images A, B, and C) and without LIF (D, E and F), up to three days after passaging, and 

the most distinguishable characteristic of both groups is colony morphology: colonies cultured 

in pluripotency-sustaining conditions (i.e. with LIF) are rounder, have smaller cells (visually 

indistinguishable at this magnification), and light refraction is very different, when comparing 

to the less pluripotent colonies, which resembles which is commonly referred in the literature 

(Cahan and Daley, 2013). While maintaining E14 mESC cells in culture, one must seek to 

passage when colonies are rather large (in order to assure enough cells to maintain the culture 

and also plate for the ongoing experiments), but still pluripotent. As stated before, such can 

only be attained if the culture is strictly monitored. 
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Figure 13 – Microphotographs of mESC cultures in different days after passaging, and with and without added LIF. Figures A, 
B and C refer to mESC cultured in KODMEM supplemented with LIF, 1, 2 and 3days after plating, respectively. Figures D, E and 
F present the same cell line cultured in KODMEM but with no LIF supplementation. Scale bar is 100µm. 

 

Nevertheless, there are other, more accurate means to determine the pluripotency (or 

“stemness”) of a cell culture. ESCs possess various specific markers that indicate their 

pluripotency, such as transcription factors OCT4, SOX2 and NANOG (“pluripotency core”). 

Therefore, immunocytochemistry was performed on both LIF-supplemented and non-

supplemented E14 cultures, to show that the morphology observed in the previous figure is 

concomitant with the stronger or weaker pluripotent phenotype.  In Figure 14 shows the 

results for this technique. The first row of each sets of images refer to ESC cultured with LIF, 

the second, cultured without LIF.  
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Figure 14 - Immunocytochemistry for Oct4 and Sox2 (pluripotency markers) and TOM20 (mitochondrial marker), with and 
without LIF. Phalloidin (actin-binding probe) and Hoecsht (DNA binding dye) staining allow co-localization all three proteins. 
63x magnification. 

 

Both SOX2 and OCT4 staining seem to be higher in cells cultured with LIF-supplemented 

medium, which suggests they could be labeled as having a more pluripotent phenotype than 

those in the second row, which were cultivated in medium without LIF. This result supports 

the theory that the morphology of mESC colonies is a fairly good indicator of the “stemness” 

of these E14 cells.  

Along with transcription factors, immunocytochemistry was also performed against 

TOM20, a mitochondrial surface protein, commonly used as a measure of total mitochondrial 

mass and cell localization. These results suggest that mESC possess a diminished mitochondrial 

mass, which increases with differentiation. 

Besides the use of antibodies for the aforementioned pluripotency markers, two 

molecular probes for actin (phalloidin) and the nucleus (Hoecsht), which were meant to 

With LIF 

Without LIF 

With LIF 

Without LIF 

With LIF 

Without LIF 
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provide structural context and, in a way, co-localize the proteins assayed. In this case, both 

SOX2 and OCT4 co-localize with Hoechst, indicating their nuclear localization, while TOM20 is 

located in the cytoplasm, as expected, through its co-localization with phalloidin. 

Being able to both culture and handle ESC, we then proceeded to perform 

differentiation protocols for these cells, to further characterize their stem profile. 

 

4.1.2 Differentiation of mESC 

4.1.2.1 Embryoid Body differentiation 

 

ESC are able to differentiate into the three germ layers (endoderm, mesoderm and 

ectoderm). While some (metabolic) modulators may affect the pluripotent phenotype of ESCs, 

some of them only reveal modulating action when cells start to differentiate. Therefore, an 

established protocol for ESC differentiation is required, if the mechanisms of said modulators 

are to be assayed. 

In vitro, the differentiation process can be either directed towards a (rather) specific cell 

type or tissue, or it may be unspecific, generating embryoid bodies (EBs). EBs consists of 

disordered, differentiated tissue, presenting a heterogeneous mixture of cell types. In order 

to achieve both directed and undirected differentiation, the first step requires for an exchange 

of medium, abandoning the use of a pluripotency-inducing medium. In the case of the 

undirected differentiation, the difference resides in ceasing to supplement the KODMEM 

culture medium with LIF, and plating cells considerably more densely in non-adherent cell 

culture dishes to let them to aggregate and then, at day three putting them in normal growth 

dishes coated with gelatin. 

 

Figure 15 - Embroyd body differentiation through days 2, still in suspension (A); 4, adhered 1 day (B); 7, adhered 4 days (C); 9, 
adhered 6 days (D); 11, adhered 8 days (E); and adhered for 11 days 14 (F). Scale bar is 100 µm. 
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 Throughout the 14 day differentiation protocol, increasingly complex structures 

assemble, the three-dimensional organization becoming obvious after day 7, with the 

existence of two or more focal points in microscopy imaging, which is an indication of different 

heights in the colonies, as evident in Figure 15 (as some of the cells in culture seem unfocused 

in these photographs). In the later days of differentiation, the cores of these megastructures 

appear as black or brown, a possible indicator of necrosis/apoptosis. Due to the sheer cell 

density in this culture type, the nutrient demands require daily media exchange. 

As stated, this differentiation process gives rise to precursors of all three germ layers, 

and whole-protein lysates reveal the expression of differentiation marks for those germ layers, 

with a concomitant decrease of the expression of pluripotency markers. So, in order to prove 

the “stemness” of these cells, western blot for different both pluripotency and differentiation 

markers was performed, and the expression of these markers, quantified. The next figures 

refer to an Embryoid Bodies differentiation, over 14 days, while collecting the total protein 

content every two days (starting from day 2 after plating). 

 

Figure 16 - Western Blotting for Pluripotency Markers for E14 ESC and EBs. These blot images and respective quantifications 
are the result of one experiment. 

Pluripotency was measured by the expression of different pluripotency markers. In 

Figure 16, some of these markers can be observed, and their expression lowers throughout 

the differentiation process. This is obvious for OCT4 and SOX2 two of the “core” pluripotency 

potency markers (the others are KLF4 and NANOG). These four pluripotency markers are 

transcription factors, which were found to be highly expressed in the first stages of murine 

embryonic development(Zhao et al., 2012). 
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This steady decrease shows that loss of pluripotency is a gradual process and that cells 

do not immediately start to lose pluripotency after ceasing to be cultured in pluripotency-

sustaining conditions. 

 

Figure 17 - Western Blotting for Differentiation Markers for E14 ESC and EBs. Resulting quantifications are the result of one 
experiment each. 

Along with a progressive loss of pluripotency, cells differentiating in this way will show 

increasing levels of specific markers for specific tissues. Therefore, to further characterize 

these differentiating culture, western blotting for markers of primordial germ layers. Figure 

17 shows that overtime, markers for all two germ layers (AFP for primordial endoderm(Abe et 

al., 1996), αSMA for mesoderm (Skalli et al., 1989)) are increasing somewhat steadily.  The 

different expression rates (in cases, decreasing, as seen for the levels of αSMA) may not refer 

to a lesser increase of that specific cell type, but that its increase may be lessened when 

compared with other cell types: seeing as this quantification is normalized to β-actin, that is a 

measure of total protein mass, there could be more cells contributing to the whole protein 

content, but not specifically expressing one cell marker. Case in point, and while not evident 

because of the very different scale, it appears that AFP-positive cells show an approximate 

enrichment of 400% on day six, having increased through the whole assayed period in a stable 

manner, greatly outmatching the apparent enrichment of αSMA–positive cells. In order to 

fully understand and measure the true enrichment for each germ layer, flow-cytometry could 

be performed. But as the purpose of the aforementioned assay was to show the 

differentiation capabilities of E14 cells, the WB analysis clearly showed that capability.  

A similar assay should have been performed to characterize the capability of these cells 

to commit to a neuronal lineage, but the antibody did not work for western blot. Nonetheless, 

these cells are able to generate neuronal germ line, as shown in Figure 21. 
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Figure 18 - Western Blot image and quantification for TOM20, a mitochondrial mass indicator. 

It has been shown before that along with differentiation comes an increase in the 

mitochondrial mass, cause and consequence of an increased mitochondrial metabolism and 

general activity(Cho et al., 2006; Facucho-Oliveira and St John, 2009; Facucho-Oliveira et al., 

2007). With this in mind, a western blot against TOM20, an outer mitochondrial membrane 

protein, which would provide a measure of mitochondrial mass, was performed, and the 

corresponding results can be seen in Figure 18. There is a trending increase in the expression 

of this protein, as expected. Nonetheless, this crude measure doesn’t possess the means to 

hint an increased mitochondrial function. Noticing the sudden decrease in the quantification 

graph, referring to the last differentiation day in the expression of TOM20, it is due to the 

slight overexposure of the western blot membrane during the image acquisition process. As it 

is visible in the blot image, the band of immunostained TOM20 is considerably larger than the 

preceding band (day 12), and therefore, should mean that indeed, the increase of TOM20’s 

expression throughout the differentiation period is steadily increasing. 

 

 

Figure 19 - Western Blot images and quantification of the primary mitochondrial sirtuin (SIRT3) and the most studied sirtuin, 
SIRT1. Quantifications are the result of two independent experiments. 
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Having characterized the differentiation of mESC, we then shifted our attention to the 

expression of both SIRT1 and SIRT3 along the differentiation process. It has been reported that 

mESC have increased expression of SIRT1 when compared with more differentiated cells 

(Saunders et al., 2010), and is vital for normal embryonic development (Cheng et al., 2003). 

The data in Figure 19 appear to support the former, as the expression of SIRT1 during the 

assayed period steadily drops. The measurement of SIRT1 were meant to, in part, further 

characterize the differentiation of E14 in Embryoid Bodies, but also to support the study of 

eventual influence of SIRT3 KD in the levels of other sirtuins (namely, SIRT1) during 

differentiation.   

 

Figure 20 – Microarray data analysis for the expression for Sirt3 mRNA during different stages of mouse embryonic 
development. Acquired from GENEVESTIGATOR (7th of July, 2015). 

 

On the other hand, the expression of SIRT3 seems to increase during differentiation, as 

seen in Figure 19, which supports the notion that SIRT3 is involved in the activation of the 

mitochondria’s metabolism and activity, which has in turn been reported to increase as ESC 

differentiate(Abdel Khalek et al., 2014; Kawamura and Uchijima, 2010; Rodriguez et al., 2013; 

Wang et al., 2014). This increase is also supported by already reported data, although referring 

to mRNA, as shown in Figure 20. As it has been reported that the inhibition of mitochondrial 

metabolism could compromise mESC differentiation (Pereira et al., 2013), mitigating the 

effects of SIRT3 through silencing could present a similar effect. 
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4.1.2.2 Neuronal Differentiation 

 

To differentiate stem cells in a more or less specific cell type, which is to say, generate a 

less heterogeneous culture, a more chemically defined medium, with specific supplements, is 

required. Neuron progenitors were differentiated from E14 cells and immunostained for β-III 

Tubulin after 14 days off neuronal differentiation. Cells were also incubated with Hoescht 

33342, a DNA-binding probe, which allowed staining of the nucleus. The resulting images, are 

shown in Figure 21, along with the correspondent phase contrast microphotographs. 

 

Figure 21 - Neuronal-directed differentiation of E14 mESC. Immunocytochemistry for B-III Tubulin (pan neuronal marker). 
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4.2 MOLECULAR BIOLOGY: PLASMID CHARACTERIZATION, BACTERIAL CULTURE AND DNA 

AMPLIFICATION/ISOLATION 

4.2.1 Plasmid elements and description 

      

Figure 22 – mRNA sequences for the three main alternative splicings for Sirtuin3, with the shRNA targets highlighted. A – 
mRNA sequence for the SIRT3 transcript variant 1, regarded as cytoplasmic. B - mRNA sequence for the SIRT3 transcript variant 
2, regarded as cytoplasmic. C - mRNA sequence for the SIRT3 transcript variant 3, regarded mitochondrial. D – mRNA target 
sequences for plasmid-expressed shRNAs. E – shRNA-expressing plasmid chosen for transfection. 

The first step we must take when aiming to perform a protein knockdown is to have 

knowledge of the target protein’s mRNA sequence, in order to design short nucleotide 

sequences that will later be used by the cell’s enzymatic silencing machinery, as described 

before. These short sequences, typically of 19 to 30 nucleotides should be specific to the target 

sequence and, very much like primer designing, shouldn’t align with other sequences. In 

Figure 22, the canonical mRNA sequences for SIRT3 are shown, where sequences A and C give 

rise to the shorter isoform of SIRT3 (Isoform S, 28kDa), which is regarded as cytoplasmic and 

not possessing relevant deacetylating activity. The remaining sequence (B) may equally code 

for the three isoforms of SIRT3, and therefore, a longer isoform (Isoform L, 36kDa), will surely 

A     1 acttccgcta aacttctccc gggtttctgg ccctgccctt gaggcattaa agagtagagg 

       61  tgcctgggga cagctagcca ctgactggtc acgtagcctc aagcctgcag acttgggtcc 

      121 tctgaaaccg gatggcgttt ggcgaggact agtgttacag gtgggagaag gcccatatcc 

      181 ctctgtgtgg gagcctcagg cggctttgga ggtggaggaa gcagtgagaa gaagttttct 

      241 ctgcaggatg tagctgagct gcttcggacc agagcctgca gtagggtggt ggtcatggtg 

      301 ggggccggca tcagcacacc cagtggcatc ccggacttca gatccccagg gagcggcctc 

      361 tacagcaacc ttcagcagta tgacatcccg taccctgaag ccatctttga acttggcttt 
      421 ttctttcaca accccaagcc ctttttcatg ttggccaagg agctgtaccc tgggcactac 

      481 aggcccaatg tcactcacta cttcctgagg ctcctccacg acaaggagct gcttctgcgg 

      541 ctctatacac agaacatcga cgggcttgag agagcatctg ggatccctgc ctcaaagctg 

      601 gttgaagccc acgggacctt tgtaacagct acatgcacgg tctgtcgaag gtccttccca 

      661 ggggaagaca tatgggctga tgtgatggcg gacagggtgc cccgctgccc tgtctgtact 

      721 ggcgttgtga aacccgacat tgtgttcttt ggggagcagc tgcctgcaag gttcctactc 

      781 catatggctg acttcgcttt ggcagatctg ctactcattc ttgggacctc cctggaggtg 

      841 gagccttttg ccagcttgtc tgaagcagta cagaaatcag tgccccgact gctcatcaat 
      901 cgagacttgg tggggccgtt cgttctgagt cctcgaagga aagatgtggt ccagctaggg 

      961 gatgtagttc atggtgtgga aaggctggtg gacctcctgg ggtggacaca agaactgctg 

     1021 gatcttatgc agcgggaacg tggcaagctg gatggacagg acagataaga ctatggcttc 

     1081 ttcacctggg gaagtcacac agcagatcat cctatgtcca gcaagacttc atgcctgaag 

     1141 acagctccaa cacgtttaca aacatgaacc agaccacaac atgtggcctg gacagtggtc 

     1201 ctccgaggct gcctttggaa aggctgacca gggatgtcta cccttggggc ccctccatgt 

     1261 gtgcgccctg tccacctcat cactgctgaa ggtgtagtgc aggtgctgct ttctgcagcg 

     1321 gcccttaagt tatcacgagg gcagcacagc acgcccgtcg ccaggcaggc gatgcactag 

     1381 ggcaatctag catgttgatc ggtaaagtgg catctttaac tacaacatca tttcttgcat 
     1441 gaaataaact tagtataaaa acttggcaaa aaaaaaaaaa aaaa 

B   1 ggggattcgg atggcgcttg accctctagg cgccgtcgtc ctgcagagca tcatggcgct 

       61 aagcggtcga ctggcattgg ccgcgctcag actgtggggt ccgggagtgt tacaggtggg 

      121 agaaggccca tatccctctg tgtgggagcc tcaggcggct ttggaggtgg aggaagcagt 

      181 gagaagaagt tttctctgca ggatgtagct gagctgcttc ggaccagagc ctgcagtagg 

      241 gtggtggtca tggtgggggc cggcatcagc acacccagtg gcatcccgga cttcagatcc 

      301 ccagggagcg gcctctacag caaccttcag cagtatgaca tcccgtaccc tgaagccatc 

      361 tttgaacttg gctttttctt tcacaacccc aagccctttt tcatgttggc caaggagctg 

      421 taccctgggc actacaggcc caatgtcact cactacttcc tgaggctcct ccacgacaag 

      481 gagctgcttc tgcggctcta tacacagaac atcgacgggc ttgagagagc atctgggatc 

      541 cctgcctcaa agctggttga agcccacggg acctttgtaa cagctacatg cacggtctgt 

      601 cgaaggtcct tcccagggga agacatatgg gctgatgtga tggcggacag ggtgccccgc 

      661 tgccctgtct gtactggcgt tgtgaaaccc gacattgtgt tctttgggga gcagctgcct 
      721 gcaaggttcc tactccatat ggctgacttc gctttggcag atctgctact cattcttggg 

      781 acctccctgg aggtggagcc ttttgccagc ttgtctgaag cagtacagaa atcagtgccc 

      841 cgactgctca tcaatcgaga cttggtgggg ccgttcgttc tgagtcctcg aaggaaagat 

      901 gtggtccagc taggggatgt agttcatggt gtggaaaggc tggtggacct cctggggtgg 

      961 acacaagaac tgctggatct tatgcagcgg gaacgtggca agctggatgg acaggacaga 

     1021 taagactatg gcttcttcac ctggggaagt cacacagcag atcatcctat gtccagcaag 

     1081 acttcatgcc tgaagacagc tccaacacgt ttacaaacat gaaccagacc acaacatgtg 

     1141 gcctggacag tggtcctccg aggctgcctt tggaaaggct gaccagggat gtctaccctt 

     1201 ggggcccctc catgtgtgcg ccctgtccac ctcatcactg ctgaaggtgt agtgcaggtg 

     1261 ctgctttctg cagcggccct taagttatca cgagggcagc acagcacgcc cgtcgccagg 

     1321 caggcgatgc actagggcaa tctagcatgt tgatcggtaa agtggcatct ttaactacaa 

     1381 catcatttct tgcatgaaat aaacttagta taaaaacttg gcaaaaaaaa aaaaaaaaa 
 

C    1 ggggattcgg atggcgcttg accctctagg cgccgtcgtc ctgcagagca tcatggcgct 

       61 aagcggtcga ctggcattgg ccgcgctcag actgtggggt ccgggaggtg ggagaaggcc 

      121 catatccctc tgtgtgggag cctcaggcgg ctttggaggt ggaggaagca gtgagaagaa 

      181 gttttctctg caggatgtag ctgagctgct tcggaccaga gcctgcagta gggtggtggt 

      241 catggtgggg gccggcatca gcacacccag tggcatcccg gacttcagat ccccagggag 

      301 cggcctctac agcaaccttc agcagtatga catcccgtac cctgaagcca tctttgaact 

      361 tggctttttc tttcacaacc ccaagccctt tttcatgttg gccaaggagc tgtaccctgg 

      421 gcactacagg cccaatgtca ctcactactt cctgaggctc ctccacgaca aggagctgct 

      481 tctgcggctc tatacacaga acatcgacgg gcttgagaga gcatctggga tccctgcctc 

      541 aaagctggtt gaagcccacg ggacctttgt aacagctaca tgcacggtct gtcgaaggtc 

      601 cttcccaggg gaagacatat gggctgatgt gatggcggac agggtgcccc gctgccctgt 

      661 ctgtactggc gttgtgaaac ccgacattgt gttctttggg gagcagctgc ctgcaaggtt 
      721 cctactccat atggctgact tcgctttggc agatctgcta ctcattcttg ggacctccct 

      781 ggaggtggag ccttttgcca gcttgtctga agcagtacag aaatcagtgc cccgactgct 
      841 catcaatcga gacttggtgg ggccgttcgt tctgagtcct cgaaggaaag atgtggtcca 

      901 gctaggggat gtagttcatg gtgtggaaag gctggtggac ctcctggggt ggacacaaga 

      961 actgctggat cttatgcagc gggaacgtgg caagctggat ggacaggaca gataagacta 

     1021 tggcttcttc acctggggaa gtcacacagc agatcatcct atgtccagca agacttcatg 

     1081 cctgaag aca gctccaacac gtttac aaac atgaaccaga ccacaacatg tggcctggac 

     1141 agtggtcctc cgaggctgcc tttggaaagg ctgaccaggg atgtctaccc ttggggcccc 

     1201 tccatgtgtg cgccctgtcc acctcatcac tgctgaaggt gtagtgcagg tgctgctttc 

     1261 tgcagcggcc cttaagttat cacgagggca gcacagcacg cccgtcgcca ggcaggcgat 
     1321 gcactagggc aatctagcat gttgatcggt aaagtggcat ctttaactac aacatcattt 

     1381 cttgcatgaa ataaacttag tataaaaact tggcaaaaaa aaaaaaaaaa a 

scr - GCTTCGCGCCGTAGTCCTA 

sh1- CGGCTCTATACACAGAACA 

sh2- TGCAAGGTTCCTACTCCAT 

sh3- GACTGCTCATCAATCGAGA 

sh4- ACAGCTCCAACACGTTTAC 

E 

D 
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derived from this sequence(Yang et al., 2010). Yang and colleagues demonstrated the 

differential expression of SIRT3’s isoforms, and also established their localization and activity, 

which have been previously hinted by others (Bao et al., 2010; Cooper et al., 2009; Shi et al., 

2005). As we were interested in the mitochondrial portion of the cell metabolism, and SIRT3 

is documented to mainly deacetylate mitochondrial proteins, we will focus on SIRT3 Isoform 

L (Sirt3-L). 

Many knockdown solutions are commercially available, depending on the specific 

silencing one wishes to achieve. siRNAs can be directly transfected and very transiently 

knockdown a target protein. Viral vectors allow for the chromosomal integration of shRNA 

expressing DNA sequences, generating a genetic, stable, knockdown. Or, if a balanced solution 

is sought, plasmids expressing those shRNAs are perhaps the most adequate choice. The 

advantage of using this type of construct, along with increased stability, is that other elements 

can be included in the same plasmid, such as reporter proteins and/or selection markers. The 

first allows the user to quickly identify if the transfection was successful, and the second 

provides a way to obtain a more or less homogeneously transfected culture. 

Therefore, we for a plasmid construct that would provide all the elements described. 

Among many suppliers, the best plasmid choices were given by Genecopeia™, which allowed 

us to choose the target protein, selection marker and the reporter gene. Figure 22E shows the 

chosen plasmid for transfection. It includes the fluorescent reporter protein mCherry (allows 

us to fluorescently track the transfection status of cultured cells), and also a selection marker 

(a puromycin resistance gene). The plasmid also includes two “strong” promoters, H1 

(histone1) and SV40 (Simian vacuolating virus 40), to assure extensive expression of both the 

shRNA and annex components of the plasmid. 4 plasmids expressing shRNA for 4 different 

regions of SIRT3 mRNA and one plasmid encodes for a “mock” shRNA (shRNAscr, which does 

not recognize none of the presented sequences. This plasmid, therefore, is meant to show 

that the decrease in SIRT3 is due to the shRNA sequences present, and not to the plasmid 

itself. The sequences targeted by each shRNA in mRNA of SIRT3 are highlighted, and each color 

corresponds to a different shRNA-targeting sequence. BLAST analysis for both the shRNAscr 

and each individual shRNA (1-4), showed that a) the target sequence for the shRNAscr has a 

low sequence alignment score for mus musculus transcripts, and b) shRNA (1-4) have 

maximum sequence alignment score to the aforementioned SIRT3 mRNA sequences, and a 

low score for every other mRNA sequence in Mus musculus transcripts. 

It should be noted that this plasmid also incorporates elements that allow it to be 

integrated in a host genome if lentiviral vectors were to be used. These elements (5’ and 3’ 

LTR and Psi (Ψ)) are used by retroviruses to integrate their genetic information on the host 

genome, allowing the virus to replicate.(Klimo et al., 2004; Xu, 2011).  

 

4.2.2 Bacterial transformation 

 

After choosing the plasmid that will be employed to transfect and silence SIRT3 in 

mammalian cell lines, we proceeded to transform E.coli in order to amplify the initial amount 
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of DNA. This would allow me to have a steady stock of plasmidic DNA for each shRNA, without 

needing to continuously order new plasmids. As the chosen plasmid contains, among other 

elements, a prokaryote origin of replication (pUC ori), it allows for this type of procedure. After 

transformed with each shRNA-expressing plasmid (separately) through heat-shock, bacteria 

were plated in different LB-agar plates, as shown in Figure 23, and incubated overnight. To 

assure both the sterility of our work, and the stability of the antibiotics in the LB-agar plates, 

adequate controls were used. Therefore, WT (non-transformed E.coli, putatively sensitive to 

carbenicillin) were plated in LB-agar plates with and without antibiotic, as presented in Figure 

23A and Figure 23B. As they are not resistant to carbenicillin, WT E.coli does not proliferate, 

as seen in LB-agar without addition of any antibiotic. Nevertheless, plasmid positive E.coli 

colonies are seen throughout Figure 23C to Figure 23H, as they are resistant to carbenicillin, 

the resistance being conferred by the shRNA-expressing plasmid. Before following up to 

plasmid DNA isolation, these colonies must be visually analyzed, and only E.coli colonies 

without satellite colonies (indicators of antibiotic depletion) were picked and cultured in SOC 

medium to increase the plasmid-containing bacterial mass. 

 

 

Figure 23 -Transformed E.coli in LB-agar plates, after overnight incubation. A - Bacterial streaking of WT E.coli in LB-agar 
plate. B -Bacterial streaking of WT E.coli in LB-agar plate with 50ug/mL carbenicillin antibiotic. C – LB-agar plate with 50ug/mL 
carbenicillin, plated with shRNA1 transformed E.coli. D –Zoomed section of plate C, with two plasmid-positive E.coli colonies, 
ready to be picked to the DNA isolation process. E - LB-agar plate with 50ug/mL carbenicillin, plated with shRNA2 transformed 
E.coli. F - LB-agar plate with 50ug/mL carbenicillin, plated with shRNA3 transformed E.coli. G - LB-agar plate with 50ug/mL 
carbenicillin, plated with shRNA4 transformed E.coli. H - Zoomed section of plate C, with an already picked plasmid-positive 
colony circled in blue ink. 

To achieve an initial mass of plasmid positive bacteria large enough to assure a profitable 

amount of amplified plasmid DNA, two SOC broth cultures were performed. This broth is 

somewhat similar to LB broth, while differing in cation presence (increased Ca2+ and Mg2+) and 

also increased glucose content, important for catabolite repression, which, in short, allows 

bacteria to adapt and have increased growth rate. The choice of this medium over LB was due 

to it being reported to increase the efficiency of bacterial transformation (Hanahan, 1983).  

An overnight culture starting with a single colony, picked as described above, and 

inoculated in a typical volume of 5 mL, with 50ug/mL carbenicillin. Again, to assure the sterility 
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of the process and the stability of the components, three controls were performed, as shown 

in Figure 24. WT E.coli were picked from the corresponding LB-agar plate (shown above) in 

SOC broth with and without antibiotic (Figure 24A and D), proving that the antibiotic is still 

selecting bacteria based on the plasmid presence (or rather absence). Another experiment, 

meant to show that in fact, antibiotic resistance conferred by the shRNA-expressing plasmid 

is specific for carbenicillin was conducted, by inoculating shRNA-expressing plasmid colonies 

in SOC broth with added kanamycin (100ug/mL). As seen in Figure 24C, by the lack of turbidity 

of the medium, transformed E.coli aren’t able to grow. 

 

Figure 24 – SOC cultures of both WT and transformed E.coli, after 8 hours of incubation at 37°C with agitation. Turbidity 
indicates bacterial growth. (A) - WT E.coli + SOC broth + 50ug/mL carbenicillin. B – Plasmid positive E.coli + SOC broth + 
50ug/mL carbenicillin. C – Plasmid positive E.coli + SOC broth + 100ug/mL kanamycin. D - WT E.coli + SOC broth. 

 In the following morning, these containers are observed to confirm bacterial growth 

(visible turbidity), and then prepared to undergo the DNA extraction/isolation process. 

 

4.2.3 DNA isolation, quantification, characterization 

 

Nowadays DNA isolation is usually performed with premade kits that rely in 

chromatographic isolation of DNA, with adequate chromatographic columns. Various kits are 

commercially available, the distinguishing attribute being mainly the bacterial culture volume 

that we want to start from. As we were unsure of the efficiency of our transformation 

protocol, we started by ordering a smaller kit (dubbed “Miniprep”, short for minipreparation, 

a fast and small-scaled isolation process), starting with bacterial cultures up to 5 mL. After 

conducting the aforementioned process, we proceeded to quantify the DNA isolates (as seen 

in Figure 25). We also electrophorectically confirmed the plasmid size through a 1% agarose 

gel, which showed well-defined bands of approximately 8500 bp, as expected. 
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Figure 25 - Quantification of shRNA-expressing plasmids isolated from E.coli through the Miniprep kit. 

 

Having both our transformation and bacterial growth protocols validated, and having an 

increased pool of plasmid DNA to work with (so we could save the ordered aliquots of both 

consumption and freeze-thaw-derived degradation), we scaled up the process, to increase the 

yield of plasmid DNA. Therefore, we tested the DNA yield of a Maxiprep kit, which required at 

least 200 mL of bacterial culture. This large culture required a pre-culture of picked E.coli. 

After the “overday” incubation of picked colonies, very much alike the one shown in 

Figure 24, a scaled up culture is prepared. The contents of the shRNA-expressing plasmid-

positive colonies were transferred to a 1L Erlenmeyer flask with 300 mL of SOC broth with 

50µg/mL carbenicillin, labelled, and incubated overnight at 37°C with agitation. 

In the morning following this incubation period, the Maxiprep kit for DNA isolation is 

used according to the manufacturer’s instructions. The isolated DNA is then precipitated with 

isopropanol, and “cleaned” with ethanol before being diluted in water. This water-diluted 

DNA is, like before, characterized by quantification and agarose electrophoresis, the resulting 

images visible in Figure 26. The plasmid DNA isolates were aliquoted and frozen, pending 

transfection. 

 

Figure 26 - Characterization of shRNA expressing plasmids isolated via the Maxiprep kit. A - Quantification of plasmid DNA for 
each isolate. B - Agarose gel electrophoresis for plasmid DNA, along with a DNA ladder. 
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In addition to the plasmid size and concentration, another factor we took into 

consideration in order to further characterize the DNA isolates were the absorvance ratios for 

each samples. During the quantification process by the Nanodrop® apparatus, two absorbance 

ratios are obtained, as seen in Table 8. These ratios reflect the purity of the DNA sample, 

regarding both protein contamination (proteins absorb mainly at 280nm, while double-

stranded DNA absorbs at 260 nm), but also contamination with organic reagents, often used 

during the isolation of nucleic acids (some of these reagents, like TRIzol, absorb primarily at 

230nm). Therefore, relatively high values for both absorbance ratios is a good indicator of DNA 

purity. The values for both absorbance ratios, for all the assayed samples, are higher than 

those regarded as the “minimum optimal values” by the manufacturer (Thermo Scientific, 

2011), and so, we consider that our samples are pure, and were rather satisfied with the new 

DNA pool and turned to this kit whenever new DNA samples were required. 

 

Table 8 - DNA quantification for Maxiprep kit isolates. Quantification was performed in a Nanodrop® apparatus. 

shRNA-expressing 

plasmid 
Concentration (ng/µL) Absorbance Ratios 

260/280 260/230 

shRNA 1 1400.1 2.01 2,44 

shRNA 2 1072.7 1.99 2,39 

shRNA 3 1207 1.98 2,38 

shRNA 4 1347.5 2.02 2,42 

Scrambled shRNA 2152 1.93 2,38 

 

4.3 SIRT3 SILENCING IN MESC 

4.3.1 mESC selection conditions (SRB and cell counting) 

 

After cell transfection, the plasmid-positive cells must be selected, so that the most 

homogeneous culture of positively transfected cells can be achieved. As explained above, the 

chosen plasmid contains a gene that gives resistance to puromycin in mammalian cells. This 

allows us to use the antibiotic puromycin to select the plasmid-positive cells, while killing all 

other, non-transfected cells. Therefore, we must determine beforehand which amount of 

puromycin is enough to eliminate all cells without the resistance-conferring gene: 

unstransfected cells are plated, and then, different concentrations of puromycin are added in 

the following day. Media was exchanged daily until day 7, when the highest of puromycin was 

able to eliminate every cell in culture. After, the surviving cell number and total cell density 

was assayed, in order to select the adequate puromycin concentration. 

This procedure was conducted for E14 mESCs, and the results for both cell counting and 

cell density (attained through SRB) is seen in Figure 27. We have chosen 1µg/mL puromycin 

as an adequate concentration to select puromycin-resistant cells, once it was the lowest 

tested concentration of puromycin that was able to eliminate all cultured cells. 
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Figure 27 - Selection conditions for transfected E14 cells. Cells were either manually counted (A) or subject to sulforhodamine 
B (B). These results were obtained from three independent experiments. 

 

4.3.2 Transfection protocol and optimization (DNA:Lipofectamine ratios, incubation times) 

 

Having prepared all the elements required to achieve transfection in mESC, the first step 

of the process was to assay for the eventual toxicity of Lipofectamine® 2000 in these cells. As 

seen in Figure 28, there was no apparent toxic effect of lipofectamine on the cultured cells. 

The amount of both OptiMEM and Lipofectamine® 2000 added was concomitant with those 

employed in the following transfections with shRNA-expressing plasmids. 

 

Figure 28 - Microscopy imaging for E14 cells 24 hours after plating with (A) OptiMEM and (B) OptiMEM with 
Lipofectamine®2000 

 The next step in transfecting mESC and optimizing the transfection protocol was to use 

different Lipofectamine:DNA ratios, as it has been reported that these ratios may influence 

the transfection efficiency(Maurisse et al., 2010). This lead us to, based on literature, select a 

total of 4 DNA:Lipofectamine® 2000 ratios (DNA:Lipofectamine®2000 1:1, 1:2, 1:3 and 1:4 

ratio), preparing the transfections accordingly, and evaluating the transfection efficiency after 

the application of the protocol. Without any antibiotic selection, the cells were observed with 

fluorescence microscopy 48 hours after transfection, as shown in Figure 29.  

Increasing concentrations of Lipofectamine® seem to increase the total number of 

mCherry-fluorescent cells, even when comparing with the total cell number as visible in phase 

contrast images. Based in these results, subsequent transfections were performed using a 1:4 

ratio for DNA:Lipofectamine® 2000. 
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Figure 29 - Representative images of E14 mESC transfected with different Lipofectamine®2000:DNA ratios, with the 
DNA:Lipofectamine 3000 ratios adjacent. A, C, E and G represent phase contrast images, while B, D, F and H represent 
fluorescence images. Scale bar is 100µm. 

While we understand, to some extent, that the transfection had been successful, as the 

plasmid entered the cells, and its reporter gene (mCherry) is being expressed, the ratio of 

transfected/non-transfected cells was low, revealing that the process was inefficient. As it was 

been reported that Lipofectamine® 3000 would yield better transfection rates, we repeated 

the protocol while using this improved reagent. Figure 30 presents the results for the new 

transfected mESCs, and better rates for transfected/non-transfected colonies greatly 

improved. A parallel, control experiment was performed in order to, as before, determine if 

there is a toxic effect of Lipofectamine® 3000 on mESC. Like before, no visible effects were 

seen, yielding results very much alike those of Figure 28. 

 

Figure 30 – Representative images of E14 mESC transfected with different Lipofectamine®3000:DNA ratios, with the 
DNA:Lipofectamine 3000 ratios adjacent. A, C, E and G represent phase contrast images, while B, D, F and H represent 
fluorescence images. Scale bar is 100µm. 

Following transfection, transfected cells were meant to be selected through addition of 

puromycin, which would kill all unstransfected cells, while leaving plasmid-positive cells 
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unaffected. So, 48 hours after transfecting, puromycin was added with every medium 

exchange, as per determined in section 4.3.1. Nevertheless, using a concentration of 1µg/mL, 

which was the minimum concentration that would kill non-transfected cells, would result in 

the death of all cells in culture, either plasmid-positive or negative. As no cells survived this 

process, no further experiments were possible. After a new transfection, we applied a 

concentration of 0.5µg/mL puromycin, instead of 1µg/mL. This would provide a milder 

selection and allow us to obtain, in the very least, an enriched population of positively 

transfected cells. Alas, this smaller concentration would reveal itself to have the same effects 

as the preceding one. Again, there are no results to support this. This effect may be explained 

by the relatively low rate of transfection for these cells: as some colonies are only partly 

transfected (an example of a partially transfected mESC colony with an GFP-tagged protein 

can be seen in Figure 31, courtesy of a fellow lab colleague), killing the non-resistant cells may 

compromise the entire colonial structure, leading to further loss of both transfected and non-

transfected cells. Another cause that may be contributing to the lack of general survivability 

may be the apoptotic cytokines and factors released by cells dying due to puromycin.  

 

Figure 31 - Partly transfected mESC colony. This transfection was achieved by using the protocol described above, albeit with 
a GFP reporter-expressing plasmid. This image was kindly provived by a lab colleague. 

 

As we weren’t able to generate an enriched, much less pure, culture of transfected E14 

mESC, three courses of action were considered: transfect these cells recurring to a different 

transfection method, as viral vectors or osmotic shock; or experiment with the same reagents 

(the same DNA samples and Lipofectamine® reagents) in another cell line. As it is reported to 

be easy to transfect (Tekle et al., 1991), are not as expensive to culture as mESC, and possess 

an active mitochondrial metabolism, the NIH-3T3 cell line was chosen for the next segment of 

the study. 

 

4.4 SIRT3 SILENCING IN A DIFFERENTIATED CELL LINE: 3T3 
 

As mESCs proved difficult to both efficiently transfect and select, we chose another cell 

line to proceed with the transfection protocol. This cell line would validate not only the 
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transfection protocol, but also the plasmid construct itself. If the transfection protocol would 

not work in these (documented to be easy to transfect) cells, this would point out that the 

transfection protocol was inadequate. If we manage to transfect these cells and observe a 

diminished levels of SIRT3, we must procure another transfection protocol, as the plasmid 

itself performs its inherent function.  

 

4.4.1 3T3 cell line culturing 

 

NIH-3T3 cells (hereby designated by 3T3 cells) are a cell line of mouse embryonic 

fibroblasts, firstly isolated in 1962 from National Institute of Health (NIH) Swiss mouse 

embryos. These cells, which are inhibited by benzodiazepines as well as contact, got their 

designation according to the “3 day transfer, inoculum 3x105 cells” method of passaging, and 

are nowadays a standardized and widely used fibroblast cell line. 

 

 

Figure 32 - The 3T3 cell line in culture with 60% confluence. Scale bar is 100µm. 

 

 Figure 32 shows 3T3 cells in culture, nearing adequate density of passaging. When 

compared with ESC, 3T3 cells are also cultured while adherent, but are much easier to culture: 

while they are contact-inhibited, their growth is fairly easy to follow, and the cell density does 

not hinder their growth nor survival. Therefore, they can be plated with much less accuracy 

than their pluripotent counterparts. Also, they grow in a basic, much cheaper culture medium, 

which does not need to be exchanged daily. Moreover, the detaching reagent used for these 

cells (TrypLE, an animal origin-free replacement for trypsin enzyme) is also less expensive than 

the Accutase used for mESC while maintaining a low toxicity and high efficiency. 3T3 cells 

suffer less from external factors as temperature or medium acidity.  Finally, as 3T3 grow in a 

single-cell fashion (unlike E14 cells, which grow in colony structures), they should be easier to 

both transfect and select. 
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4.4.2 Selection conditions (SRB) 

 

Similar to E14 cells, 3T3 cells were tested for the concentration of puromycin would kill 

all non-transfected cells and then will allow the selection of resistant cells. In a protocol very 

similar to that which was applied before, 3T3 cells were plated with a density of 5000 

cells/cm2, and exposed to different concentrations of the antibiotic. After 7 days after plating 

and 6 days of puromycin selection, the cells were fixed with PFA 4% and subjected to the SRB 

assay. The result for this assay are in Figure 33, which shows that concentrations of puromycin 

starting at 1.5µg/mL were able to virtually kill all non-resistant cells. 

 

 

Figure 33 - Selection conditions for 3T3 cells. Cells were subject to sulforhodamine B colorimetric assay. Cells were fixed after 
7 days in culture. These results were obtained from three independent experiments. 

 

While selecting transfected cells, however, this concentration proved insufficient to kill 

all non-transfected cells in culture, forcing us to increase the amount of puromycin added to 

2 µg/mL. This was probably due to the sheer number of plasmid-positive cells in the culture. 

As the puromycin resistance gene expressed by the plasmid encodes for Puromycin N-

acetyltransferase, which inactivates puromycin by acetylation (Gómez Lahoz et al., 1991), 

puromycin degradation by these resistant cells does occur, thus lowering the effective 

puromycin concentration in the culture medium, to levels in which the available antibiotic is 

not enough to eliminate plasmid-negative cells. 

 

4.4.3 Transfection & selection efficiency 

 

As stated before, 3T3 cells were transfected following the same protocol as with E14 

cells. Cells were transfected with a 1:1:1:1 mixture of all 4 shRNA-expressing plasmids. The 

first transfection, like before, was meant to assay the most effective ratio of 

DNA:Lipofectamine. Surprisingly, the most effective ratio of DNA:Lipofectamine was of 1:1, 

and so, this ratio was chosen for subsequent transfections. Transfections with 3T3 cells were 
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performed with Lipofectamine 2000, as it is considerately cheaper than Lipofectamine 3000, 

and we verified this reagent to be good enough in the 3T3 cells. 

                  

 

Figure 34 – Representative microphotographs of 3T3 cells, 24h after transfection, 48h after transfection. 3T3 cells, 7 days 
after transfecting, and 6 days after starting puromycin (2µg/ml) selection. Transfected 3T3 cell culture, 14 days after 
transfection, cultured in 2µg/ml puromycin. Scale bar is 100 µm. 

Figure 34 shows the result of this transfection protocol in 3T3 cells, and subsequent 

selection, up to the point of obtaining a visually “pure” culture of fluorescent, puromycin 

resistant 3T3 cells. These cells able to be were cultured for a period of two months, circling 15 

passages. During this period, both RNA and total protein content were collected to evaluate 

the silencing by SIRT3 shRNA expressed by the plasmids. In order to assure a transfected stock 

of 3T3 cells, cultures were also frozen and stored at -80°C. Furthermore, and in spite of not 
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knowing if in fact the levels of SIRT3 were knocked down, positive plasmid cells were dubbed 

“Knockdown”, of KD, for short.  

 

4.4.4 Cytometry analysis of Transfected/Non-Transfected cells 

 

In order to further characterize the transfection efficiency in 3T3 cells, we performed a 

flow cytometry analysis to measure the percentage of cells with red fluorescence, which 

would be exclusive to cells expressing the mCherry fluorescent reporter protein, encoded by 

our plasmid. 

 

 

Figure 35 – Flow-cytometry results for the analysis of both transfected and non-transfected 3T3 cells. A and B refer to WT 3T3 
cells. C and D refer to KD 3T3 cells. E shows the merge for both FL2 fluorescence analysis. 

Figure 35 shows the flow-cytometry profiles for both transfected and non-transfected 

cells. After selecting the adequate gates for each cell sample (A and C), the percentage of red 

fluorescent cells was measured. While WT 3T3 cells show autofluorescence, as seen in Figure 

35B, this fluorescence is lower than that of plasmid-positive cells (Figure 35D) and proper 

compensation was done when settings were defined during data acquisition. In spite of the 

entirety of transfected and selected 3T3 cells being visibly fluorescent (by fluorescence 

(A) (B) 

(C) (D) 

(E) 
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microscopy), only approximately 70% of the KD 3T3 cells were fluorescent. As these cells were 

being cultured in selected conditions, we assume that this lack of fluorescence can be caused 

by photobleaching of mCherry, once the detaching of these cells was not conducted in the 

dark. Therefore, and although it couldn’t be quantified, some of the low-fluorescing cells (as 

seen in Figure 35D) could be plasmid-positive cells, and not just autofluorescent cells. 

Nevertheless, these results show that both the transfection and selection of 3T3 cells was 

successful, and mean that we can now focus on evaluating the effectiveness of protein 

knockdown. 

 

4.4.5 Evaluating SIRT3 silencing 

 

Because transfection of 3T3 cells with the shRNA-expressing plasmid doesn’t necessarily 

mean that the target protein is being silenced, we must evaluate the knockdown of SIRT3 

levels, firstly through qRT-PCR (which is the quantification of expressed Sirt3 mRNA), and then 

by Immunocytochemistry and Western Blot (the protein). 

4.4.5.1 qRT-PCR analysis 

 

As explained before, shRNA-mediated silencing is done at the mRNA level. Therefore, it 

seemed logic to evaluate the silencing extension by qRT-PCR, the measurement of the levels 

of Sirt3 mRNA. The result for this evaluation (with a single experiment) is shown in Figure 36, 

and interestingly contrasts with the expected knockdown of Sirt3 mRNA, as there appears to 

be a slightly increased expression of these mRNA in transfected cells (KD) when compared 

with non-transfected cells (WT). The levels of the other two mitochondrial Sirtuins (Sirt4 and 

5), as well as of Sirtuin1 (the major cellular deacetylase) were also evaluated to verify a 

possible unspecific silencing or a possible compensatory effect for Sirt3 silencing, but no effect 

could be visible to in Sirt1, 4 and 5 mRNA levels, similarly to Sirt3. As these results correspond 

to only one sample, a new qRT-PCR should be performed, with new RNA samples. 

 

Figure 36 - qRT-PCR analysis for expression of mitochondrial Sirtuins (Sirt3, Sirt4, Sirt5) and also Sirt1 mRNA for both non-
transfected (WT) and transfected (KD) cells. This image is the result of one experiment with 2 replicas for the same sample. 
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In spite of this unexpected result, there was a plausible and logical explanation for an 

increased expression of mRNA for Sirt3 in theoretically silenced cells. With siRNA mediated 

silencing, the mRNA for the target protein is either signaled to degradation by processed siRNA 

binding or, in an alternative manner, the siRNA binds to the target mRNA and blocks its 

translation in the ribosome. In this case, we hypothesize that Sirt3 mRNA is not being primarily 

targeted for degradation, but can be instead being repressed and hindered from being 

translated, and thus accumulating in the cells(Fellmann and Lowe, 2014; Rao et al., 2009). 

Besides, this repression of translation could be in fact lowering the levels of SIRT3 (protein), 

and the cell could try and compensate this by expressing more and more Sirt3 mRNA. All these 

factors would end up increasing the total levels of mRNA as measured by qRT-PCR. Therefore, 

the knockdown of SIRT3 must be confirmed through other techniques, specifically, 

downstream of mRNA, which is, the protein level. 

 

4.4.5.2 Immunocytochemistry 

 

The first manner by which the protein levels of SIRT3 was assayed was through 

Immunocytochemistry. Both transfected and non-transfected cells were plated in plastic 

cover-slips in which ICC would be performed. When the cells reached 70% confluence, they 

were fixed with a 4% PFA solution, blocked and incubated with an anti-SIRT3 primary antibody 

and correspondent secondary antibody. Cells were also stained with Hoecsht 33342 (DNA-

binding dye) for co-localization purposes. This can be seen in Figure 37. mCherry fluorescence 

can be faintly perceived in transfected cells, and its weak fluorescence is most likely derived 

from the fixation process and the time that separates the moment of fixation from the time 

in which this ICC was performed. Nonetheless, said fluorescence could not be seen in non-

transfected (WT) cells, as was expected. This proves that 3T3 cells do not possess auto 

fluorescence for this wavelength.  

The resulting images for ICC failed to show a clear, definitive and obvious decrease in 

SIRT3. We were led to believe that either the silencing of SIRT3 was at least minimum, or 

entirely absent. Nevertheless, while it is possible to quantify protein expression by ICC, this 

measure is not precise, and would be more qualitative than quantitative. So, we took the total 

protein contents isolated from transfected 3T3 cultures and performed Western Blotting for 

SIRT3. 
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Figure 37 - Microphotographs of Immunostained 3T3 cultures. SIRT3 expression was evaluated, as well as the presence and 
absence of plasmid-derived mCherry. The first row shows transfected 3T3 cells, while the lower row shows non-transfected 
cells. 

 

4.4.5.3 Western Blot analysis 

 

Western Blotting provides the means to detect and quantify specific proteins with the 

use of an antibody, specific for a target protein. We performed western blotting for whole-

cell protein samples from both WT and KD 3T3 cells. 

 

 

 

Figure 38 - Western blotting for transfected (KD) and non-transfected (WT) 3T3 cells.  

 

In Figure 38, the various isoforms described for SIRT3 are evident. Considering, as 

mentioned above, that isoforms L (36kDa) and S (28kDa) as the two primary isoforms for 

SIRT3. Again, as expected after ICC, the differences between the levels of SIRT3 of non-

transfected (WT) and transfected (KD) 3T3 cells are not visually evident, for neither isoform. 

Quantification was then performed, and the resulting image is shown in Figure 39.  
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Figure 39 - Quantification for the expression of SIRT3's two canonical isoforms. This quantification is the result of a total of 6 
individual protein samples. 

 

As shown in section 4.2.1, the mRNA sequences targeted by all four shRNAs are common 

to both canonical isoforms of SIRT3. Therefore, we expected a similar silencing of both 

mitochondrial (isoform L) and cytoplasmic (isoform S) SIRT3, an observation that did not occur 

as per Figure 39: only the Isoform L appears to have its expression levels diminished. This led 

us to theorize that while both the fluorescence and puromycin resistance is conferred to 3T3 

cells by all four plasmids, the knockdown capability of each shRNA sequence could differ from 

one another. The most logical step to take, from that moment on, was to transfect 3T3 cells 

with each individual plasmid, and yet again, verify the existence of SIRT3 knockdown. 

 

4.4.6 Individual shRNA transfection 

 

As stated, there could be a competitive effect between the four shRNA-expressing 

plasmids (once all them have the same promoter sequences and require the same machinery 

to be transcribed), with a specific mRNA-recognizing sequence being favored over the others. 

If a shRNA sequence with low knockdown capacity was being favored, this could explain the 

absence of obvious SIRT3 silencing. Therefore, each plasmid was individually transfected 

through the same protocol as before. Transfected cells were selected and cultured, also as 

described, and total protein contents were collected in order to perform Western Blot 

analysis. 

 

4.4.6.1 Western Blot analysis 

 

As before, Western Blot analysis for the protein contents of both transfected and non-

transfected 3T3 cells was conducted. What was thought to be a turning point was yet again 

the inception for an inconclusive result. Again, antibody binding proved unreliable (Figure 40). 
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Labelling for the cytoplasmic isoform (28kDa, isoform S) largely surpassed the labelling on the 

longer isoform (36kDa, isoform L), and quantification suffered from this labeling. 

 

 

 

 

Figure 40 - Western blot for SIRT3 expression in non-transfected (WT), transfected with a scrambled shRNA (scr), and the 
individual SIRT3 shRNAs, 3T3 cells. 

 

In Figure 41 lies the resulting quantification. In spite of what we postulated about the 

competition of each shRNA expression, the expression of one shRNA at a time doesn’t seem 

to increase the knockdown efficiency. Strangely, the “silencing” pattern changed: it would 

appear that now, SIRT3 isoform S has a lesser expression when compared with its sibling 

isoform. Nonetheless, as this analysis is the result of one set of protein samples, the assay 

should be repeated and statistically analyzed.  

 

Figure 41 - Quantification for the expression of SIRT3's two canonical isoforms. This quantification is the result of a total of 
one individual set of protein samples. 

 

Because this experiment also failed to clearly knockdown SIRT3’s expression (of either 

isoform), we couldn’t prove if a) some of the shRNA-expressing plasmids present a stronger 

knockdown capability (although shRNA4 could be thought as unable to knockdown SIRT3, 

when comparing with the other shRNA sequences), and b) using all four shRNAs at the same 
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time presents a more pronounced knockdown of SIRT3’s levels. Again, more assays should be 

performed, and perhaps, validated with a different anti-SIRT3 antibody (because, as visible 

throughout this essay, SIRT3 immunostaining presented different labeling, even when using 

the same samples). 

After these negative results, we searched for what could be negatively affecting our 

silencing, because, as has been shown, the cells are definitely transfected. Many causes could 

potentially explain why the silencing appears non-existent. We looked for clues to what 

mechanisms could inhibit this silencing (as the shRNA was, most likely, and alike mCherry and 

PAC, being expressed). It has been reported that the expression of SIRT3 vary, depending on 

the proliferative state of cells (Abdel Khalek et al., 2014). Khalek and collaborators found that 

during the proliferative state of mouse myoblasts (C2C12), the expression of SIRT3 is 

negligible, and greatly increased when cells stopped proliferating and started to differentiate. 

Unfortunately, this work does not specify the silenced isoform(s) of SIRT3. Nevertheless, a 

parallelism could be drawn to our work: the assayed protein samples for transfected and non-

transfected 3T3 were all collected nearing confluence. If the SIRT3 expression pattern in 3T3 

cells mimics that of C2C12 cells, one could argue that SIRT3 expression would be also greatly 

increased, and the short-hairpin silencing mechanisms could not mitigate this increase of their 

target sequence. Therefore, in the future, these assays should be repeated bearing this work 

in mind. Also, the selected sequences may not be the right/adequate sequences to block 

translation/degrade SIRT3 mRNA. Furthermore, plasmids should be sequenced to confirm the 

sequences provided by the manufacturer, as the slightest mis-match of the shRNA sequence 

can void its silencing capability (Taxman et al., 2006). 
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5 CONCLUSION AND FINAL REMARKS 

 

This work was meant to be a stepping stone to the establishment of a silencing protocol, 

aiming to provide means to protein silencing in mouse Embryonic Stem Cells, by specifically 

targeting a mitochondrial protein, SIRT3, a metabolically relevant protein with the ability to, 

overall, regulate the mitochondrial metabolism. Besides a possible evaluation of the 

mechanisms and relevance of SIRT3 in the pluripotency and differentiation of mESC, this work 

would provide a tool to silence any given protein in our working models, as long as its coding 

sequence was known. It can be said that the basis for this tool are set. 

 

Transfection couldn’t be performed on E14 ES cells, but it seemed relatively stable in 

3T3 cells. The transfection and selection of 3T3 cells was accomplished: cells were both 

resistant to antibiotic and fluorescent; both attributes are conferred by the transfected 

plasmid. If mESC transfection is to be achieved, a possible solution to surpass the inability to 

obtain an enriched, transfected mESC culture would be by turning to viral vectors. Increasing 

the starting number of plasmid positive cells would indubitably ease the selection process, 

yielding sturdier colonies, and generating steadier cultures. 

 

In spite of the success in transfecting 3T3 cells with our shRNA-expressing plasmids, the 

silencing rates are, at the very least, dubious. The results in 3T3 cells, when transfecting either 

all four shRNA-expressing plasmids, or each plasmid individually, the silencing rate hardly 

reached 50%, was regarded as an underachievement, compared to the promising and 

reported capabilities of this silencing technique. The next steps should include the return to 

the laboratory, and re-evaluate the silencing rate in 3T3 cells in a non-confluent state. If this 

does not prove to surpass the low silencing rate, we must look into de shRNA sequences. As 

discussed before, the shRNA sequences may not be the most adequate for our sequence, and 

so, the next step would be that of the choice of different shRNA sequences for SIRT3.   

 

Closing this work, I’d like to state that this work, the establishment of the said protocol, 

while not as successful as initially predicted, should not be entirely abandoned. This work 

served, at least to show the hurdles of both transfection, and protein silencing. Seeing as 

numerous reports of transfection (and protein silencing) are achieved in mESC, in general, and 

E14Tg2.a in particular, and Armed with this knowledge, we may yet succeed, if only should we 

press on. 
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