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                                                                                                              Resumo 

Os ecossistemas estuarinos estão entre os mais produtivos do mundo, 

conferindo funções importantes como áreas de viveiro para juvenis de peixes 

cuja desova ocorre em alto mar e as suas larvas migram posteriormente para 

áreas costeiras e estuarinas. Uma dessas espécies é o linguado comum, Solea 

solea, com elevada importância comercial e vasta distribuição, desde o Senegal 

até à costa da Noruega. O objetivo do presente trabalho foi analisar a tendência 

latitudinal nos processos de colonização das áreas de viveiro pelos juvenis de 

linguado, ao longo da sua área de distribuição geográfica: lagoa de Veneza 

(Itália), estuário do Mondego (Portugal), estuário de Vilaine (França) e Balgzand 

(Holanda). A análise da microestrutura de otólitos foi usada para estimar a idade, 

duração das fases pelágicas, metamorfose e do período de postura, sendo 

encontrada uma tendência latitudinal para os principais processos do ciclo de 

vida. A desova iniciou-se em Dezembro nas áreas mais a sul e em Fevereiro na 

população de Balgzand, assim como a eclosão. Um padrão latitudinal claro 

também foi encontrado para a forma do otólito, sendo os das regiões mais a 

norte mais esféricos no entanto, este facto pode estar relacionado com a idade 

dos indivíduos. Foi encontrada uma clara distinção entre as populações do norte 

e sul para a relação entre a data eclosão e a data à metamorfose. Finalmente, 

as populações mais a norte tiveram taxas de crescimento mais elevadas, o que 

indica a existência de uma compensação do crescimento contragradiente. 

Concluiu-se assim o importante papel no controlo do ciclo de vida exercido pela 

temperatura ao longo de um gradiente latitudinal. 

Palavras chave: estuário; Solea solea; otólitos; padrão latitudinal; temperatura 
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                                                                                              Abstract 

 Estuaries are among the most productive ecosystems in the world, 

providing an important function as nursery grounds for marine fish whose 

spawning takes place offshore, and larvae migrate towards estuarine and shallow 

coastal areas. One of these species is Solea solea, a commercially important 

flatfish that is distributed between the Senegalese and Norwegian coasts. The 

aim of the present work was to analyse the latitudinal trend in nursery habitat 

colonization processes along its geographical distribution area: Venice lagoon 

(Italy), Mondego estuary (Portugal), Vilaine estuary (France) and Balgzand 

(Netherlands). Otolith microstructure was used to estimate age, the duration of 

the pelagic and metamorphosis stages, and the spawning period. A latitudinal 

cline was found for the main processes of the life cycle. Spawning started in 

December in the southernmost areas and in February in the Balgzand population, 

as well as hatching. A clear latitudinal pattern was also found for otolith shape, 

being the northern ones more spherical, despite that otolith shape may be related 

with age. A clear distinction between the northern and southern populations was 

found for the relationship between the hatch date and the date at metamorphosis. 

Finally, populations further north had higher growth rates, which indicate a 

countergradient growth compensation. This work highlighted the control exerted 

by temperature along the latitudinal gradient on species’ life cycle and early life 

dynamics. 

Keywords: estuary; Solea solea; otoliths; latitudinal pattern; temperature 
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1.1 Estuaries as nursery areas for fish 

 Estuaries are one of the most productive ecosystems in the world 

(Costanza et al., 1997; Beck et al., 2001; Elliott & Hemingway, 2002; Kennish, 

2002), although they are among  the most threatened too (Blaber et al., 2000; 

Vasconcelos et al., 2007). Over the last years, there has been an increasing of 

interest in studding these areas, in order to protect, preserve and recuperate them 

(Blaber et al., 2000; Elliott, 2002). They make the interface between land and 

ocean, which confers them several important functions, (Costanza et al., 1997; 

Elliott & Hemingway, 2002), such as the control of river flow, nutrient retention, 

protection against floods, recreation and navigation areas, nursery areas for fish 

and invertebrates, migratory routes for several species, preferential feeding 

areas, wintering areas and low predator pressure (Elliott & Hemingway, 2002; 

Beck et al., 2001; Elliott et al., 2007). Estuaries are frequently chosen for the 

implementation of industrial activities, leading to their damage through an 

increasing in eutrophication (Cardoso et al., 2004), over-exploitation and 

pollution, affecting the local fish communities (Costanza et al., 1997; Blaber et 

al., 2000; Elliott & Hemingway, 2002), among others.  

 Due to the natural mixing of marine and freshwater, the species that live in 

estuaries have special adaptations (Wolowicz et al., 2007). Once in estuaries, the 

individuals experiment several unfavourable natural and anthropogenic 

conditions, such as temperature and salinity fluctuation, chemical contamination 

and deepening of channels, which lead to an increasing of stress in organisms 

(Costanza et al., 1997; Kennish, 2002), leading to multiple ecological impacts 

(Vasconcelos et al., 2012). Since this physic and chemical characteristics vary 
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through estuaries, the densities of juveniles vary among them (Vasconcelos et 

al., 2007). 

 One of the most important functions of estuaries is providing nursery areas 

to several fish species, a large number of them commercially important, including 

flatfishes (Miller et al., 1984; Blaber et al., 2000; Cabral et al., 2007; Martinho et 

al., 2009; Vasconcelos et al., 2009). The nursery concept was created for fishes 

with complex life cycles, where spawning occurs offshore and than the larvae 

migrate to estuaries and shallow coastal areas. Once in the adult stage, fish leave 

estuaries and migrate to marine waters and join the adult community (Beck et al., 

2001; Vasconcelos et al., 2012). The timing of estuarine colonization depends on 

the balance between salt and freshwater, due to wind, river flow and tidal cycles 

(Amara et al., 2000; Vinagre et al., 2009). During the estuarine stage, density-

dependent processes influence the success of recruitment to adult habitats, for 

instance by variations in growth and survival (van der Veer, 1986; Miller et al., 

1991), habitat quality and availability (Rijnsdorp et al., 1992). The reasons that 

make the estuaries such good nurseries for fish are the high food availability, low 

predation pressure, high turbidity and availability of protection sites, high 

temperature and multiple habitats that fish can exploit (Dahlgren et al., 2006).  

Larval transport depends mainly on passive coastal processes (Rooper et 

al., 2006), using the currents to reach the estuaries (Churchill et al., 1999). In 

order for the species enter on estuaries they undergo vertical migrations, by 

actively moving to the bottom of the water column in order to catch the denser 

current of marine water that is entering in the estuary, facilitating their movements 

(Rowe & Epifanio, 1994; Shanks, 1995; Grioche et al., 1997). Changes in the 

extent of river plumes, as a consequence of different regimes in freshwater 
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discharge, are also an important factor to their successful migration to estuaries, 

mainly by the presence of chemical cues (salinity, temperature, turbidity and 

potential higher primary production) that orient the individuals to the estuaries, 

indicating their proximity (Amara et al., 2000). In highly explored populations by 

fishing activities, recruitment is very important in order to compensate those 

losses (Brunel & Bourcher, 2006), since the fluctuation of the adult population 

size is controlled by the recruitment variability (Amara et al., 2001). The carrying 

capacity of the nursery and the connexion between estuaries and coastal areas 

is also very important to recruitment (van der Veer et al., 2000). A rapidly growth 

in this first months is very important to improve the survival (van der Veer & 

Bergman, 1987; Sogard, 1992), since fast growth means less time spent in the 

vulnerable life stages (Sogard, 1992). In addition, the inter-annual variability in 

juveniles densities and consequently in recruitment is associated to the variation 

in transport and survival of eggs (Nielsen et al., 1998; van der Veer et al., 2000; 

Martinho et al., 2009).  

 

1.2 Latitudinal patterns in fish life cycle 

 Fishes have indeterminate growth patterns influenced by the environment 

(Campana & Thorrold, 2001) and populations in their limits of distribution seem 

to be mostly controlled by abiotic factors (Vinagre et al., 2008a; Martinho et al., 

2013). The most dramatically variable in marine abiotic gradient is temperature, 

which decreases towards the poles (Gibson, 2005). The latitudinal variation of 

temperature leads to differences in the nurseries colonization, occurring earlier in 

southern areas, where the water temperature is higher (Amara et al., 2000). 

However, differences in the distance of the spawning areas to the nurseries, 
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topography, transport and retention mechanisms, may also affect the nursery 

colonization patterns (Bailey et al., 2008).  

In fact, a latitudinal cline has been observed in spawning of marine fish, 

starting earlier at lower latitudes and latter at more northern ones (e.g. Gibson et 

al., 2005; Vinagre et al., 2008a; Martinho et al., 2013). In southern areas, higher 

water temperature at the beginning of the spawning season contributes to a faster 

growth and an earlier colonization of the nursery areas (Martinho et al., 2013). In 

contrast, northern populations have a tendency to spawn at slightly lower 

temperatures and at shorter day length (Conover & Present, 1989). In areas with 

lower water temperature, this is compensated with faster growth during the most 

favourable period by countergradient compensation growth (Campos et al., 

2009). The availability of food and predators pressure are also important factors 

that can exercise some influence and the food stock seems to be correlated with 

the latitude; however, a latitudinal gradient in predation is less clear (Miller et al., 

1991). Also the recruitment variation exhibits a relationship with latitude (Leggett 

& Frank, 1997; Philippart et al., 1998) and the time of settlement varies from year 

to year, depending on the temperature (van der Veer et al., 2001).  Some studies 

suggested that even the photoperiod has an effect on growth and spawning 

(Gibson, 2005; Laffargue et al., 2007; Vinagre et al., 2009; Martinho et al., 2013). 

 Over the last few years, climate has been suffering some changes and 

consequently, the marine ecosystems have been changing too, leading to shifts 

in geographical distribution of species (Brander et al., 2003; Perry et al., 2005; 

Grebmeier et al., 2006) and in the seasonal timing of biological events (Sims et 

al., 2005). The changes introduced by the climate strongly differ throughout the 

globe, and the increasing of temperature is expected to be more pronounced at 
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poles (MacDonald et al., 2005). Since the southern species are more adapted to 

deal with the rise of temperatures, it is expected for fish to spread their range 

(Hermant et al., 2010). As said before, temperature has a main role on the life 

cycle (Gibson, 2005), regulating directly the metabolic factors (activity and 

feeding rates), swimming speeds and reproduction (Pörtner et al., 2001). Despite 

that the temperature has an indirect effect on mortality (Houde et al., 1987), 

drastical changes can lead to a direct mortality (Colton, 1959) and also the match 

between prey and predator life cycles can be affected (Drinkwater et al., 2010). 

For example, considering that spawning depends on temperature, it is expected 

an earlier occurrence of this stage (Martinho et al., 2013), which will influence the 

rest of the individual life cycle. 

 

1.3 Fish otoliths 

 Otoliths are composed by calcium carbonate, and are the first calcified 

structures formed in the ontogenic process, which can be found in the 

membranous labyrinth of the inner ear in fishes (Popper et al., 2005). They are 

metabolic inert, with continuous growth and with the chemical elements of the 

surrounding ambient impregnated in them (Campana, 1999). Their unique mode 

of calcification may result from their physical and chemical isolation (Campana & 

Thorrold, 2001), and their function is related with the postural equilibrium and 

hearing (Popper et al., 2005). Bony fishes have three pairs of otoliths: sagittae, 

lapilli and asterisk. 

  Fish otoliths are a powerful tool in fisheries ecology, due to their use for 

age estimation (Campana & Thorrold, 2001), since they form daily basis in age 

and growth (Campana & Thorrold, 2001; Stares et al., 2014). Because they are 
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not digested, they are useful for trophic studies, allowing to identify the prey and 

their length, permitting also the reconstruction of the environment where the 

individual was in a specific time (environmental history) by studying their chemical 

composition (Campana, 1999; Campana & Thorrold, 2001; Brown, 2006). So, 

they function as “flight–box recorders” for biological and chemical information 

from the formation of otolith to a death of the individual (Campana & Thorrold, 

2001). 

 Otoliths record important events, allowing the age determination during the 

early life history – hatching, mouth opening, first feeding (Nash & Geffen, 2004), 

metamorphosis (Fox et al., 2007; Martinho et al., 2013) and habitat transitions 

(Tanner et al., 2011). They have a continuously growth through the individual life 

and during that time there are a formation of growth rings (Campana & Thorrold, 

2001). The larval and juveniles stages present daily rings with constant 

frequency, and in adults they are annual with short periodicity (Campana, 1992). 

One day after hatching, there is a nuclear area with irregular form (Amara et al., 

1998) and the appearance of the increments is more prominent after the mouth 

opens. Otolith growth is directly proportional to the somatic growth and is used 

for retro–calculation of growth (e.g. Lea, 1919; Campana & Jones, 1992; Martinho 

et al., 2013). Even in periods when the somatic growth is non-existent, the otolith 

growth is maintained (Maillet and Checkley, 1990). 

With age, and especially in flatfishes, the complexity of otoliths increase: 

their shape changes and changes in increments’ appearance at the end of the 

larval stage are also visible (Neilson, 1992). This is due to the metamorphosis 

process (Gibson, 2005), changing from spherical to hemispherical form (Nash & 

Geffen, 2004; Gibson, 2005). On the initial phase of the metamorphosis, occurs 
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the formation of an extra circumference of the otolith and during the first days the 

number of circumferences increases. These circumferences (i.e. accessory 

primordia) may appear as a result of the gravity during the transition of the 

orientation from dorsoventral to lateral (Mondin et al., 1996), and represent the 

passage from the pelagic to the demersal life - larval to juvenile stage (Lagardére 

& Troadec, 1997). After the metamorphosis, the increments return to their normal 

daily formation (Gibson, 2005). Hence, this process leads to marked differences 

between the increments of larvae and juveniles, since in the larval stages they 

are thinner and more regular. There also are some differences between the 

different pairs of otolith: the asterisk otoliths are irregular in shape and produce 

increments that are not related with daily patterns (Lagardére & Troadec, 1997); 

the lapilli otoliths have a bigger axis due to their latitudinal asymmetry, because 

they are relatively thin, with well defined increments and more uniform; the 

sagittae have the primordial accessory structures, which confers them more 

information (Vinagre et al., 2008a), being more amplified than the lapilli and 

easier to calculate the larval age (Lagardére & Troadec, 1997).  

 Data from otoliths can be used to determine growth rate in early life stages, 

stages durations and the effects of physical process on larval survival, as well as 

to reconstruct instantaneously daily growth rates of larvae fish, based on an 

empirical relationship between otolith size and fish size (Campana & Thorrold, 

2001). In some otoliths clear patterns of summer and winter growth has also been 

found (Nash & Geffen, 2004). By analysing otolith microstructure it is also 

possible to identify periods of larval stress such as starvation, temperature or 

salinity stress (Campana, 1983; Eckman & Rey, 1987; Berghahn & Karakiri, 

1990). The use of long-term datasets and with a wide spatial coverage will allow 
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determining the influence of changes in climate in population dynamics (Starrs et 

al., 2014).  

 

1.4 Solea solea 

Flatfishes are among the marine species with higher commercial value that 

use estuaries and coastal areas as nursery grounds. Spawning takes place 

offshore and then larvae and juveniles migrate from the continental coastal to the 

nursery grounds inshore (Rijnsdorp et al., 1985; Grioche et al., 1997; Cabral et 

al., 2007), and transport varies seasonally with the meteorological and 

hydrological conditions (Talbot, 1977; Rijnsdorp et al., 1985) The spawning 

location is also critical, determining the success of the rest of the life cycle due to 

the variability in connectivity between habitats (Bailey et al., 2008).  

Variations in water temperature, salinity and food availability, lead to a 

seasonal variation of the pelagic stage duration, since they function as regulators 

(Champalbert et al., 1992; Leggett & Frank, 1997; Amara et al., 1998). Also 

hydrodynamics is a key factor (Amara et al., 1993), which may lead to a higher 

dispersion, genetic variation, but also to higher mortality rates (Chambers & 

Leggett, 1987; Amara et al., 1993).This stage is responsible for determining the 

recruitment strength (Leggett & Frank, 1997; Gibson, 2005) and its inter-annual 

variation result from ambient fluctuations (wind, temperature, currents, tidal 

transport), fluvial discharges and predation (Leggett & Frank, 1997; van der Veer 

et al., 2000; Brunel & Bourcher, 2005; Martinho et al., 2012) that vary in 

geographic scale and along the latitudinal gradient (van der Veer et al., 2000; 

Vinagre et al., 2008a). 
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The species in study in this present work is the common sole, Solea solea, 

a marine migrant flatfish species, (Rijnsdorp et al., 1992; Elliott, 2002; Gibson, 

2005; Vinagre et al., 2008a). It is characterized for having both eyes on the same 

side of the head, flattened shape, and ability to match the colour and patterns 

with their background. This is a species widely distributed in cold, temperate and 

tropical areas (Gibson, 2005) from the North Atlantic to Senegal (Whitehead et 

al., 1986). The adults live offshore, reproduce and then produce eggs that will 

drift in the water column. After hatching, larvae gain some ability to swim and start 

their migration to estuaries (van der Veer et al., 1990; Rijnsdorp et al., 1992; Bolle 

et al., 1994) and the year-class strength is determined in the pelagic phase stage 

(Rijnsdorp et al., 1995). Spawning is mainly controlled by the seasonal 

photoperiod and water temperatures (Scott, 1979), and sole enter in estuaries 

after metamorphosis and settlement (Amara et al., 2000; Ramos et al., 2010). 

The common sole nursery grounds are located in estuaries but also in marine 

coastal areas, and usually prefers areas with lower salinity; however, depth and 

sediment type also influence where they are located (Cabral et al., 2007; Ramos 

et al., 2010). 

 During the migration towards estuarine and coastal nurseries, they pass 

through a process of metamorphosis typical of all flatfishes, which include several 

marked morphological and physiological changes, passing from the pelagic larval 

stage to a highly specialized benthic life style (Rijnsdorp et al., 1995; Geffen et 

al., 2007). This period of transition is an important process to the recruitment, and 

adult success depends on it (Amara et al., 2000). The metamorphosis ends with 

the gain in length, shape and behaviour of juveniles, occurring morphological, 

anatomic and physiological transformation without interfering with their 
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continuous growth (Lagardère et al., 1999; Amara et al., 2000). This is a process 

that depends on energy (Balon, 1986) and include drastic changes in body 

conformation, food type, in assimilation and digestion, since their internal organs 

are rearranged, and may become more vulnerable to predators, due to the 

affected vision and other senses (Geffen et al., 2007). The visible evidence that 

this process is occurring is the eye migration with a rotation of 90o (Amara et al., 

2000; Gibson, 2005). 

 

1.5 Objectives 

 The aim of this study was to identify the latitudinal patterns in estuarine 

nursery ground colonization processes for the common sole, Solea solea, in the 

Northeast Atlantic and Mediterranean coasts. Considering a wide geographical 

area, the specific objectives were: a) to determine the duration of larval and 

metamorphosis stages; b) estimate the duration of the spawning season; c) 

determine possible variability in juvenile growth rates across sampled areas; d) 

and to ascertain the possibility of occurrence of countergradient growth 

compensation, considering the constraints that latitudinal gradients might impose 

on specific populations.  
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2.1 Study area and sampling process 

 Juvenile fish for this study were obtained from several nursery areas 

located in the Northeast Atlantic and Mediterranean, ranging between 40oN and 

53oN: Balgzand (Wadden Sea) - The Netherlands, Vilaine estuary – France, 

Mondego estuary – Portugal, and Venice lagoon – Italy (Fig. 1, Table 1). The 

sampling sites were chosen in order to cover a wide geographical area, which 

comprises most of the central and northern areas of distribution of Solea solea 

(Whitehead et al., 1986). Fish were collected in the Venice lagoon using a fyke 

net with 5 chambers and mesh size from 14mm (entrance) and 8mm (cod-end), 

in the Mondego estuary and Balgzand using a 2m beam trawl and 5mm mesh 

size in the cod-end and in the Vilaine estuary by using an 8m beam traw with 

5mm mesh sizel. After fishing, fish samples were frozen and transported to the 

laboratory in iceboxes, and kept frozen until further analyses. Since the aim of 

this project didn’t involve analyses of juvenile densities trends, the differences in 

sampling methods were not considered (as in Martinho et al., 2013).  

Sampling was performed in the beginning of summer in all areas, 

considering the available information of the spawning period in literature, in order 

to catch individuals once the migration towards the nursery areas was terminated. 

Sampling in the Balgzand took place on the 7th of Jully 2010, in the Vilaine estuary 

on the 1th of July, in the Mondego estuary on the 3th of June and the 6th of July 

2011, and in the Venice lagoon on the 10th of June 2012.  

The average monthly sea surface temperature (SST) data for 2010, 2011 

and 2012 for each coastal area near to the chosen estuaries were obtained from 

the International Comprehensive Ocean Atmosphere Data Set (ICOADS) online 

database (http://dss.ucar.edu/pub/coads, dataset 540.1, Waley et al., 2005). 
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Figure 1 – Geographical location of the sampled nursery areas of 0-group Solea solea 

in the Northeast Atlantic and Mediterranean. 

 

2.2 Otolith microstructure analysis 

 All fish were measured (total length, TL, mm) and weighted (wet weight, 

WW, g) (Table 1). Posteriorly, a sub-sample was chosen randomly from each 

site, representative of range of total lengths. The sagittae otoliths were removed, 

cleaned and mounted with the help of a resin, Crystalbond 509, on microscope 

slides. After this process, the otoliths were polished in the sagittal plane using 

3µm sandpaper till a clear visibility of the daily rings. Using a light microscope, all 
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microscope slides. Afterthis process, the otoliths were polished in the sagittal 

plane using 3µm sandpaper till a clear visibility of the daily rings. Using a light 

microscope, all daily increments were counted at 1000x magnification for the 

nucleus and 400x magnification for the metamorphosis and peripheral areas. 

The otoliths measurements were also performed at light microscope at 40x 

magnification for the otolith greater length and greater width. The otolith 

microstructure was used to determine the duration of the different stages 

duration: pelagic larval stage, which correspond to the otolith nucleus; the 

metamorphosis stage, corresponding to the irregular rings (i.e. accessory 

primordial); the benthic stage was determined from the first ring after 

metamorphosis till the edge of the otolith (Fig. 2). The increments were counted 

three times for each stage and an average was performed. 

 

Figure 2 – Main structure of the sagittal otolith of sole juvenile: 1 – pelagic stage; 2 – 

metamorphosis; 3 – benthic stage. Based on Fig.2 in thePontual et al., 2003. 

1        2                   3 
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Whenever there were difficulties in age estimations with the sagittae 

otoliths due to a more irregular appearance, lapilli otoliths were used to confirm 

the counts. 

Table I – Geographical features of each nursery area sampled for juvenile Solea solea: 

country, latitude (Lat.), longitude (Long.) and area, including also the total number of fish 

caught, the number of analysed fish for otolith microstructure, and respective mean wet 

weight (WW) and mean total length (TL). 

Nursery 
area 

Country Lat. Long. 
Area 
(Km2) 

Total 
fish (n) 

Analysed 
fish (n) 

WW 
(g) 

TL 
(mm) 

Balgzand Netherlands N53º06' E5º06' 52.0 35 34 0.9 40.0 

Vilaine 
estuary 

France N46º30' W2º30' 11.3 55 45 2.6 75.0 

Venice 
lagoon 

Italy N45º18' W12º54' 550.0 48 43 6.9 95.0 

Mondego 
estuary 

Portugal N40º09' W8º53' 8.6 64 56 3.6 80.6 

 

In order to estimate the total age in days, spawning period, beginning of 

the pelagic stage, age at metamorphosis and hatch date, the following 

calculations were performed accordingly to Fox et al., (2007) and Martinho et al., 

(2013): 

Estimated age = larval stage + metamorphosis stage + juvenile stage 

Spawning period = hatch day of the oldest fish – hatch date of the youngest fish 

Beginning of the pelagic stage = sampling date – average of the age 

Age at metamorphosis = all increments counted until the onset of metamorphosis 

Hatch date = sampling day – duration of the three stages 

 An estimated timing and duration of the spawning period for Solea solea 

at different latitudes, comprehending the species range, was collected from 

literature in order to compare with the present work and analyse a possible 
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latitudinal pattern. In order to verify differences in the shape of the sagittae 

otoliths, the greater length (GL) and the greater width (GW) were measured 

perpendicularly, and was calculated the ratio between GL and GW; a ratio equal 

to 1 indicates a rounded shape, whereas a ratio larger than 1 indicated a more 

oval-shaped otolith. 

 

2.3 Data analyses 

 The respective total length – otolith length relationship was determined for 

all populations. After counting all rings, a linear regression was performed 

between the total length and the estimated age for all populations. Geographical 

differences in hatch day, duration of the pelagic stage and metamorphosis were 

assessed using a one way non-parametric Kruskal-Wallis ANOVA, since data did 

not meet the necessary requirements for an ANOVA, followed by Dunn’s pairwise 

multiple comparison. It was also performed an ANCOVA to compare the slopes 

of the relationship between total length – otolith length and total length – age 

relationship amongst all the sampled areas. A significance level of 0.05 was 

considered in all test procedures. 

 In order to find a possible latitudinal pattern in the shape of the otoliths it 

was performed a relationship between the length and the width of the otolith. 

Finally, a relationship between the hatch day (days) and the day at 

metamorphosis (days) and between the hatch day and temperature (oC) was also 

established. 

 

 



20 

 

 

 

 

 

 

                                                                            Chapter 3 - Results 

 

 

 

 

 

 

  

  



21 

 

3.1 Environmental conditions 

Sea surface temperature (SST) for the coastal areas near each nursery 

followed a typical pattern of temperate regions, with warmer temperatures in the 

summer months and colder during the winter (Fig. 3). The lowest water 

temperature was recorded near the Balgzand, with an average of 10.7oC (±1.0), 

followed by the Vilaine estuary (13.6oC ± 1.1). The Mondego estuary was next on 

the temperature range with an average of 17.2oC (±0.6), where the water 

temperature was more constant during the three years, and finally, the Venice 

lagoon with an average of 18.9oC (±1.2), being the area with the highest thermal 

amplitude. 

 

Figure 3 – Average sea surface temperature (SST) values for the period between 2010 

and 2012, for the coastal areas near the sampled areas. The vertical bars represent 

the standard deviation. 

 

0 

5 

10 

15 

20 

25 

30 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

S
e

a
 s

u
rf

a
c

e
 t

e
m

p
e

ra
tu

re
 (
ºC

) 

Balgzand 

0 

5 

10 

15 

20 

25 

30 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

S
e

a
 s

u
rf

a
c

e
 t

e
m

p
e

ra
tu

re
 (
ºC

) 

Vilaine estuary 

0 

5 

10 

15 

20 

25 

30 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

S
e

a
 s

u
rf

a
c

e
 t

e
m

p
e

ra
tu

re
 (
ºC

) 

Venice lagoon 

0 

5 

10 

15 

20 

25 

30 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

S
e

a
 s

u
rf

a
c

e
 t

e
m

p
e

ra
tu

re
 (
ºC

) 

Mondego estuary 



22 

 

3.2 Otolith microstructure analysis 

In Figure 4 is represented the relationship between the total length (mm) 

and otolith length (mm). A significant linear relationship was obtained for all 

sampling areas, and differences between slopes where observed for the 

Balgzand and Mondego (F=285.2; p<0.05). 

 

Figure 4 – Linear regression between total length (mm) and the otolith length (mm) for 

0-group juvenile Solea solea in all sampled areas. 
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Figure 5 – Linear regression between total length (mm) and estimated age (days) for 

0-group juvenile Solea solea in all sampled areas. 

 

Age-standardized total length values for fish with 150 days were different 

across sites, with larger individuals from the Balgzand and the smaller ones from 

the Mondego estuary (Fig. 6). 

 

Figure 6 - Age-standardized total length values for fish with 150 days, calculated by 

means of the significant linear relationships obtained in all sampling sites between total 

length (mm) and age (days). Error bars represent the 0.95 confidence level. 
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 Otolith shape analysis, given by the ratio between GL and GW (Fig. 7), 

identified two groups: the north group, composed by the Vilaine estuary and 

Balgzand, with a more regular and spherical shape, and the south one, composed 

by the Venice lagoon and Mondego estuary populations, with more oval-shaped 

otoliths. 

 

Figure 7 – Relationship between greater length (GL) and greater width (GW) for 0-

group juvenile Solea solea otolith, for all sampled areas. 
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different between sites, except between the Vilaine estuary and the Venice 

lagoon (H=106.03; p<0.05), being longer in theBalgzand population. 

 

Figure 8 – Life-history stage duration by juvenile Soleasolea in all sampled areas.The 

mean values are presented, and horizontal bars represent the standard deviation. 

 

 A latitudinal cline was also observed for the mean hatch day according 

with sea surface temperature, with the southern populations hatching earlier in 

the season, at higher seawater temperature (Fig. 9). The more northern 

populations (Balgzand) hatched nearly 100 days later, at nearly half the 

seawater temperature when compared to the Venice lagoon populations. 

 

Figure 9 – Average variation of the hatch day with the average of sea surface 

temperature for 2010, 2011 and 2012 near to all sampled areas. 
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The duration of spawning according with the present work and published 

literature is presented on Table II. There was a greater variability in the spawning 

duration in the central range of the species distribution, being longer in the Vilaine 

estuary and a smaller in the Venice lagoon. 

 

Table II – Duration of the spawning and metamorphosis for the different sampled areas 

and literature for 0-group juvenile Solea solea. 

Site Lat. Date Spawning 
Duration (days) 

Author 

North Sea N56o30’ April -May ~60 van der Veer et al., 2001 

North Sea N56o30’ April-August ~120 Cuveliers et al., 2010 

Irish Sea N53o51’ Mid May peak Fincham et al., 2013 

Wadden Sea N53o35’ April-June ~90 Fonds, 1979 

Balgzand N53o06’ 18th February-
29th April 

73 Present work 

Bristol Channel N51o22’ End of March peak Fincham et al., 2013 

Authie estuary N51o18’ 28th January-
15th April 

78 Vinagre et al., 2008a 

Vilaine estuary N46o30’ 3rd December-
5th April 

123 Vinagre et al., 2008a 

Vilaine estuary N46o30’ 4th January-
19th February 

44 Present work 

Venice lagoon N45o18’ 6th December-
10th January 

36 Present work 

Douro estuary N41o10’ 23rd January-
3rd March 

39 Vinagre et al., 2008a 

Mondego estuary N40o09’ 1st December-
5th March 

94 Present work 

Tejo estuary N38o37’ 12th February-
2nd April 

50 Vinagre et al., 2008a 

   

A relationship between hatch day and the day at metamorphosis was 

observed for all the sampled areas (Fig. 10), comprising two distinguishable 

groups: the north group, composed by the Vilaine estuary and Balgzand 





28 

 

 

 

 

 

 

                                                                      Chapter 4 - Discussion 

 

 

 

 

 

 

  



29 

 

4.1 Environmental conditions 

This study described the variation of Solea solea early life stages along a 

latitudinal gradient ranging from 40oN till 53ºN, allowing the establishment of 

trends along a significant portion of the species’ distribution range. In fact, 

considering large-scale approaches in ecological studies allows determining 

patterns and processes along species distribution ranges, relating them with the 

prevailing environmental gradients (Martinho et al., 2013). Site selection was 

performed taking into consideration the species distribution range in the 

Northeast Atlantic and Mediterranean, and accessibility to samples: from the 

Balgzand, Wadden Sea (Netherlands, 53ºN) to the Mondego estuary (Portugal, 

40ºN). The two intermediate sites, the Venice lagoon (Italy, 45oN) and the Vilaine 

estuary (France, 46ºN), despite being almost at the same latitude, the prevailing 

environmental conditions were assumedly different, since the Venice lagoon is 

located in the Mediterranean Sea, where the temperatures and photoperiod are 

higher, whereas the Vilaine estuary is located in the French Atlantic coast. 

During the period considered in this study, sea surface temperature near 

the sampled nursery grounds showed a typical variation of temperate 

ecosystems, with colder winter and warmer summer months mean values for 

2010-2012: near the Venice lagoon were observed the higher water temperatures 

(18oC ± 1.2), especially during summer, while near the Mondego estuary were 

observed the more constant temperatures during the three years (17oC ± 0.6). 

Finally, near the northernmost area (Balgzand, Wadden Sea) were observed the 

lowest water temperatures (11oC ± 1.0). Water temperature has a determinant 

role in the life cycle of fishes (e.g. Brett, 1979), by influencing fecundity (Pauly, 

1994), spawning, egg growth and survival (Fonds, 1979), being also highly 
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responsible for variability in recruitment patterns in marine fish (van der Veer et 

al., 2000). In addition to temperature, a latitudinal gradient can also be observed 

for photoperiod, which influences the onset of early life stages, their extent and 

respective growth rates (Devauchelle et al., 1987; Amara et al., 1993; Pörtner et 

al., 2001; Vinagre et al., 2008b; Dolbeth et al., 2010).  

 

4.2 Otolith microstructure 

Otolith growth is a function of somatic fish growth (Lea, 1910; Hickling, 

1933), with a recognized function in equilibrium and hearing (e.g. Campana & 

Neilson, 1985). In agreement, a significant linear relationship between fish length 

and otolith length was observed for all areas, whose slope was only significantly 

different for the Balgzand and Mondego populations. Given these results, 

northern sole populations were characterized by much smaller otoliths than the 

remaining populations. Considering that otolith shape and growth can be 

influenced by temperature, growth rates and food consumption (Hussy, 2008; 

Javor et al., 2011), it seems that the northern populations of the Balgzand face 

highly contrasting environmental conditions than more southern populations, 

leading to distinct otolith growth patterns. 

Age estimation from calcified structures such as otoliths is based on the 

assumption that the formation of distinguishable features follows a periodical (i.e. 

daily) frequency, and that the distance between features is proportional to fish 

growth (Campana & Neilson, 1985). For Solea solea, age reading in otoliths has 

been performed (e.g. Lagardère and Troadec, 1997; Amara et al., 1998; Vinagre 

et al., 2008a), providing a powerful tool for estimating age, as well as early life-
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cycle stage duration (Amara et al., 1998; Vinagre et al., 2008a). A significant 

linear relationship was found for all sites between the total length and the 

estimated age of S. solea juveniles. Differences between slopes and intercept 

were also found, in particular between the Mondego and Venice lagoon 

populations. These results indicate that there were different growth parameters 

between populations, and that the Mondego populations are older for a given 

length. Through an age-standardized total length values for fish with 150 days it 

was evident that individuals from different populations, with the same age, didn't 

present the same total length, which means that the growth rates were different: 

the individuals from Balgzand had a higher growth rate when compared with the 

southernmost populations. This provides evidence for the existence of a 

countergradient growth compensation mechanism, where individuals further 

north have a faster growth capability during the time window of more favourable 

environmental conditions (shorter in the northernmost areas). Similar patterns in 

growth parameters have been observed in northern populations of both marine 

fish and crustaceans (e.g. Campos et al., 2009; Martinho et al., 2013). 

 Otolith shape analysis was also performed, by assessing the relationship 

between the otolith length and width, which allows determining whether they are 

more round or oval-shaped. In this case, a value closer to 1 means that they are 

more spherical. It was evident a separation between northern and southern 

populations, with the northernmost presenting a more spherical shape, and the 

ones further south a more hemispherical one. On one hand, and since otolith 

shape analysis has been used as a tool for stock identification in marine fish (e.g. 

Aguera & Brophy, 2011; Javor et al., 2011), it might be possible that both groups 

can be considered as different stocks, given the existence of reproductive barriers 
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at specific areas. Additional documentation has been provided by Symonds and 

Rogers (1995), who observed that sole adults from different populations in the 

Irish Sea and Bristol Channel have limited movements, with well-defined and 

exclusive spawning grounds. On the other hand, the northern populations were 

also the younger ones, which might explain the more round-shaped otoliths. As 

fish growth and metamorphosis occurs, otolith suffers morphological changes 

and tend to become more hemispherical (Nash & Geffen, 2005; Gibson, 2005). 

Still, more focused investigations on otolith shape at various latitudes will provide 

further information on the relationship between age, growth and otolith shape for 

this species. 

 

4.3 Geographical variations in spawning 

 The most important requirements for a successful spawning are 

temperature, photoperiod and the presence of suitable hydrographic conditions 

for the transport of the eggs and larvae for the coastal waters (Symonds and 

Rogers, 1995; Vinagre et al., 2008a, 2009). Seasonal variations in these abiotic 

characteristics will lead to changes on the beginning, as well as on duration of 

this stage (Symonds & Rogers, 1995; Amara et al., 2000). However, spawning is 

also adapted to the timing of occurrence of both prey and predators (Grioche et 

al., 1997; Bailey et al., 2005). Populations further north tend to spawn at 

considerable lower temperatures and shorter day length (Conover & Present, 

1990), starting later when compared with the populations further south (Vinagre 

et al., 2008a; Martinho et al., 2013). 
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In response to the different temperature regimes, a clear latitudinal cline 

was found for the day at which the spawning started: first in the Venice lagoon 

and in the Mondego estuary (6th December and 1st December, respectively), 

followed by the Vilaine estuary populations (January 4th), and lastly in the 

Balgzand (February 18th), exhibiting a delay between the southernmost and 

northern of nearly three months. Similar results were also observed for several 

other species, such as the European seabass Dicentrarchus labrax (Vinagre et 

al., 2009), European flounder Platichthys flesus (Martinho et al., 2013), and even 

for the studied species S. solea (Vinagre et al., 2008a). 

The duration of spawning also increased with increasing latitude, with one 

exception: the Mondego population was out of trend, with an average duration of 

94 days, when compared to the other populations: Venice lagoon – 36 days; 

Vilaine estuary – 44 days; Balgzand – 73 days. At higher latitudes, spawning of 

S. solea starts with increasing temperatures, (e.g. Devauchelle et al., 1987; Van 

der Land, 1991), with this process being related with gonadal maturation, which 

needs a minimum temperature to be fully completed (Lam, 1983). Again, with the 

exception of the Mondego population, the present results seem to agree with the 

established concept that egg growth and development is related with temperature 

(Fonds, 1979), and thus, northern populations should present longer spawning 

periods. Nevertheless, Vinagre et al. (2008a) already reported that major 

latitudinal gradients might be overrun by local conditions such as photoperiod, 

water temperature and coastal upwelling, which can provide an explanation for 

the especially prolonged spawning period in the Portuguese coast. 

Based on published literature and on the present results, it was observed 

that sole spawning season lasts between 36 and 123 days, with an average 
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duration of 73 days. In addition, the duration of spawning seems to follow a 

latitudinal trend. Comparing the present results with the ones from Vinagre et al. 

(2008a) also for the Vilaine estuary, it is clear a difference of 79 days in this stage 

duration, which may be due to the temporal difference on the sampling process 

(2011 and 1992, respectively), related to the increase in the water temperature 

over the last two decades, triggering specific responses by early life history 

dynamics of fish. 

Following the onset and respective duration of spawning in all nursery 

grounds, the first individuals to hatch were the ones from the Mondego estuary 

and Venice lagoon in early December, followed by the Vilaine juveniles in the 

beginning of January and the last ones in Balgzand, in mid-February. In result, 

the onset of hatching exhibited a delay of nearly three months between the south 

and north populations, a situation similar to other flatfishes in the Northeast 

Atlantic (e.g. Martinho et al., 2013). These differences can also be explained by 

the prevailing environmental conditions (water temperature, day length and food 

availability), since the areas further south have higher water temperatures during 

all year, especially during winter, when compared with the northern areas. A 

particularly important negative relationship was observed with water temperature 

and hatch day. Other factors that might influence hatching are the evolutionary 

capacity of matching this stage with the ideal environmental conditions, as well 

as the phenology (Fincham et al., 2013), since the seasonal and interannual 

variations in climate and habitat influence the life cycle events. 

 

 



35 

 

4.4 Pelagic and metamorphosis development stages 

The pelagic stage lasted longer in the central area surveyed, with an 

average of 38 days in the Vilaine estuary populations. In the northernmost area, 

Balgzand, the pelagic stage duration was the shortest of all sites. In fact, the 

coastal area exhibited the lowest average water temperature (10oC ± 1.0), so it 

would be expected a longer pelagic stage. However, and since the time window 

of favourable conditions in this area is smaller than in more southern locations, 

fish larvae tend to grow faster during the time when conditions are more 

favourable. This mechanism is referred to as countergradient growth 

compensation as previously mentioned, according to which organisms at higher 

latitudes have developed microevolutionary adaptation responses for specific 

climatic patterns, which results in differential physiological performance (Kokita, 

2004). Still, the duration of the pelagic stage is similar to what was determined by 

Rijnsdorp et al. (1992) for the Northeast Atlantic (20-40 days). In addition, shorter 

stage duration can also be caused by the proximity between the spawning and 

nursery areas (Martinho et al., 2013), which is the case for this area, as observed 

by Rijnsdorp et al. (1992). 

Flatfishes usually reach the nursery areas in the end of metamorphosis, 

which sets the end of the pelagic stage; hence, and as stated previously, the 

longer the distance between the spawning and nursery areas, the longer it is 

expected for this stage to last. In fact, the spawning area is an initial critical factor 

for larval transport towards coastal nurseries (Bailey et al., 2008), with specific 

variability associated to its location, where temperature, winds, hydrographic 

conditions and retention mechanisms are determinant for a successful transport 

and dispersion (Fonds, 1979; Amara et al., 2000). The local interannual variability 
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in the transport from the spawning areas to the nursery grounds is large (Tiessen 

et al., 2014), increasing with the increasing of distance between these two sites 

(van der Veer et al., 1998). However, different fish populations in different areas 

can adapt to different strategies (Nash et al., 2000), which may lead to local 

adjustments to the current or seasonal events (Boehlort & Mundy, 1987). This is 

what seems to occur in the Vilaine estuary, since the distance between the 

spawning and nursery areas is supposedly the largest, leading to a larger pelagic 

stage. 

The onset of estuarine colonization can also vary greatly due to the 

balance between salt and freshwater, regulated by the combination of the wind 

direction and intensity, currents and tidal cycle (Primo et al., 2013). The extension 

of river plumes in adjacent coastal areas is also crucial for guiding the individuals 

to estuaries, given the presence of signals that attract larvae (Arvedlund & 

Takemura, 2006). In years with higher river flow, these plumes extend over a 

larger area and increase the probability of being detected by larvae (Vinagre et 

al., 2007; Martinho et al., 2013).  

 Metamorphosis corresponds to a transition stage between the pelagic and 

benthic environments, which in this species co-occurs with settlement (Geffen et 

al., 2007). Metamorphosis is also considered as a critical period for flatfishes, 

affecting the population dynamics (Yamashita et al., 2001; Van der Veer et al., 

2000). The present results showed a longer duration in the Balgzand populations 

(31 ± 4.1 days), followed by the Mondego (26 ± 2.8 days). The shorter periods 

were recorded for the Vilaine and Venice lagoon populations (23 ± 1.4 and 22 ± 

3.0, respectively). This lack of pattern may be attributed, once again, to the 

distance between the spawning and nursery areas, through the currents that 
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allow the transport of the metamorphosing larvae (Rijnsdorp et al., 1985; Grioche 

et al., 1997; Bailey et al., 2005), combined with adaptations to local environmental 

conditions. Despite that Amara et al. (2000) associated the time at 

metamorphosis to the gain of a competent size, no influences of larval length on 

the onset of the metamorphosis were found in the present study. However, it was 

observed a clear effect of the hatch day on the onset of metamorphosis, with an 

evident segregation between the northernmost and southern areas. In the north 

(Vilaine and Balgzand) the later hatched individuals started earlier the process of 

metamorphosis, while the contrary was observed for the southern populations 

(Mondego and Venice lagoon). Such evidence can be explained by the 

development of adaptation strategies to the time window in which all the 

environmental conditions are more favourable, which is expectedly higher in 

more southern latitudes. Hence, northern populations seem to shorten their 

pelagic stage by growing faster, since their time window with suitable temperature 

and food availability is shorter. 

  

4.5 Final considerations 

The present work elucidated about the importance of otolith microstructure 

analysis as a powerful tool for estimating age and stage duration of marine fish. 

It was also clear the main role of temperature as a control mechanism of these 

processes, leading to a clear latitudinal pattern in spawning, hatch day and 

consequently in the onset of the remaining stages, which began sooner at lower 

latitudes. Growth rates also followed this trend, where populations further north 

presented a slower growth. Considering the present climate change scenarios, 
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with increasing air and water temperatures, it is expected that this species will 

suffer changes in its distribution range, abundance and life cycle characteristics. 
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