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Abstract 

A knowledge of pelagic seabird foraging patterns is important to evaluate key 

areas for marine pelagic top predators. The main objective of this thesis was to 

describe the sex-driven foraging patterns of a pelagic top predator - Cory’s 

Shearwater, Calonectris borealis - breeding in the small island of Berlengas, 

Portugal, during the chick-rearing seasons of 2010-2014. We identified the 

environmental predictors that determine the selection of foraging areas by 

female and male Cory’s Shearwaters and the role of breeding experience in this 

process. This medium-term study also assessed, in a scenario of climate 

stochasticity, the ecological impacts of climatic conditions in marine 

environments and the possible change in the distribution of this species in the 

North Atlantic, considering the increase in sea surface temperature and given 

the vulnerability of seabird predators to extreme climatic events. We studied the 

foraging distribution of fifty-five male and female Cory’s shearwaters with GPS 

tracking devices during the chick-rearing period between 2010 – 2014, and 

accessed their trophic choices with stable isotope analysis (SIA) of their 

plasma. The study sample was also divided between experienced and 

inexperienced individuals using the total number of breeding attempts as a 

proxy for experience, and the prediction that reproductive success typically 

increases with breeding age and experience in seabirds. This study benefited 

from a long-term database of the breeding population, such that minimum age, 

sex and previous breeding experience were known for most of the individuals. 

We found spatial segregation of female versus male Cory’s Shearwaters as well 

as inexperienced versus experienced breeders, which increased during the last 
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couple of years. Males relied heavily on static variables like the bathymetry of 

the area, while females were much more explorative, having a different 

combination and weighting of important variables (i.e. productivity proxies). 

Females undertook much larger foraging journeys than males, in years of 

greater environmental stochasticity. Finally, climate stochasticity might have a 

significant influence on the spatial distribution of the species, exercising greater 

influence on male and experienced individuals (i.e. the group showing a more 

static distribution). Nevertheless, the true effects of such large-scale events 

cannot be encompassed on such a short-term study, making the continuity of 

monitoring the foraging ecology of this species crucial to understand the impact 

of climate change on this and other marine taxa. 

 

Keywords: Sex-driven foraging segregation, Breeding experience, Calonectris 

borealis. 
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Resumo 

Um conhecimento dos padrões da ecologia de aves marinhas, representa uma 

contribuição importante para compreender quais as áreas de alimentação 

destas aves e o porquê de estas as escolherem. Permite ainda conhecer, de 

que modo é que a presença de condições ambientais adversas influencia o 

comportamento destas aves. O principal objetivo desta tese foi descrever os 

padrões comportamentais de ambos os sexos de um predador pelágico, tendo 

como modelo de estudo a Cagarra, Calonectris borealis, reprodutores na 

pequena ilha da Berlenga, Portugal, durante o período de desenvolvimento das 

crias de 2010 a 2014. Foram identificados os principais fatores ambientais que 

influenciam a seleção e os seus padrões de alimentação, e qual o papel do 

sexo e da experiência de indivíduos nestas escolhas. Este estudo de médio-

prazo também reflete, num cenário de mudanças climáticas, os impactos 

ecológicos que estes terão em ambientes marinhos e a qual a possível 

alteração na distribuição desta espécie no Atlântico Norte, considerando o 

aumento da temperatura da superfície do mar e a vulnerabilidade destes 

predadores face a eventos climáticos extremos. Para dar resposta a estes 

objetivos, utilizamos dispositivos GPS para acompanhar indivíduos desta 

população durante os quatro anos deste estudo e comparamos os resultados 

com a sua ecologia trópica através de análises isotópicas. Em seguida, 

analisamos as diferenças na distribuição espacial e comportamental de 

cinquenta e cinco indivíduos pertencentes a esta população de Cagarras 

reprodutoras na costa litoral portuguesa. O grupo foi dividido entre indivíduos 

experientes e inexperientes usando o número total de tentativas de 

acasalamento como um indicador para a experiência, e a suposição de que o 
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sucesso reprodutivo normalmente aumenta com a idade e a experiência em 

aves marinhas. Este estudo beneficiou de um conhecimento de longo prazo da 

população alvo, sabendo a priori dados como a idade mínima das aves, o sexo 

e o historial do sucesso reprodutor para a maioria dos indivíduos. Através da 

análise de isótopos de azoto e carbono do plasma e sangue destas aves, 

inferimos qual o efeito da experiência de um individuo na seleção de presas na 

sua ecologia trófica. Os resultados confirmam a existência de segregações 

espaciais entre machos e fêmeas, assim como de aves experientes e 

inexperiente. As principais variáveis ambientais que influenciaram a distribuição 

espacial de indivíduos do sexo feminino foram a distância à colónia e a 

temperatura da superfície do mar, fazendo com que adotem um 

comportamento mais exploratório e pelágico em anos de maior estocacidade. 

Por sua vez, nos indivíduos do sexo masculino essas variáveis dizem respeito 

à profundidade da água e das concentrações de clorofila a. Os resultados 

deste estudo mostram ainda que o aquecimento global pode exercer influência 

significativa sobre a distribuição espacial da Cagarra, especialmente em aves 

experientes (que apresentam uma distribuição mais estática). No entanto, os 

verdadeiros efeitos de tais eventos de grande escala não podem ser 

englobados num estudo de tão pequena duração, tornando a continuidade de 

monitorização ecológica desta espécie cruciais para entender o impacto das 

mudanças climáticas sobre este grupo de animais marinhos. 

 

Palavras-chave: Segregação espacial, Experiência reprodutiva, Calonectris 

borealis 
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1.1  Marine environment and Marine top predators 

Marine environment ecosystems are complex adaptive systems, among the 

most diverse on Earth, linked across multiple scales by flow of water and 

species movements (Levin and Lubchenco 2008). The immense oceans 

encompass habitats ranging from highly productive coastal regions to much 

less productive deep-sea environments. Taking into account the size of such 

ecosystems, their resources are sparse and scattered over large areas, making 

their location largely unpredictable (Weimerskirch et al. 2007). Oceans are 

subdivided into several ecosystems based on different characteristics of depth, 

oceanography, productivity and populations of organisms that are linked in 

trophic food chains and webs (Sherman 1993). They also experience seasonal 

patterns in primary productivity, particularly at higher latitudes, leading to 

changes in predator distributions. As marine productivity tends to be distributed 

heterogeneously, with high productive areas located close to specific locations 

such as shelf edges or coastal upwellings (Ainley and Boekelheide 1990; Bakun 

1990; Crawford 2007), marine organisms such as fish are found in patches of 

different sizes, depending on the process concentrating them and on the 

specific behaviour of the species.  Oceanographic phenomena such as ocean 

currents, winds or river influx introduce varying complexities in the interlinkages 

between biotic components and environmental characteristics especially in the 

coastal waters (Chen et al. 2004; Tweddle et al. 2010; Wetz and Wheeler 

2004). Wind-driven coastal upwellings consists on the rise of cold and deep 

subsurface waters that are rich in nutrients, and contribute for an increase in the 

density of primary producers such as phytoplankton, which will consequentially 

attract zooplankton, followed by zoo – and phyto – planktivorous pelagic fish 
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which in turn will attract top predators such as large fish, cetaceans or seabirds 

(Malik et al. 2015). Such diversity in vertebrate and invertebrate communities 

allow top marine predators such as seabirds to specialize, coping with this 

unpredictable location of prey by adopting specific foraging strategies perfected 

by strong natural selection processes (Hunt & Schneider 1987; Weimerskirch 

2007). Within such diverse and dynamic environments, animals seek highly 

productive areas, by changing their foraging grounds and strategies, 

determined by species dispersal capacity and energy requirements, which may 

vary during the annual cycle (Green et al. 2009). Altering foraging grounds also 

depends on food availability in order to fulfil their energetic requirements and, 

consequently, maximizing fitness (Polovina et al. 2001; Péron et al. 2010). 

Top marine predators are important top consumers in marine environments, 

having major influence in ecological processes that occur in these ecosystems 

(Scheriber and Burger 2001; Werner 2010; Paiva et al. 2013a). Such predator, 

including marine mammals, large teleosts, seabirds and sharks, occupy high 

trophic levels in marine habitats, and have been declining worldwide (e.g. Estes 

et al. 2006; Myers and Worm 2003; Baum et al. 2003; Pauly et al. 1998). Many 

studies show that the decline of these populations can have cascading effects 

on lower trophic levels on both coastal and pelagic areas (Myers and Worm 

2003; Scheffer et al. 2005; Heithaus et al. 2008).  In fact, declines in top 

predator abundance often alleviate predation pressure on meso-consumers, 

which indirectly increase the mortality rate of resource species (Myers et al. 

2007; Scheffer et al. 2005). The loss of top predators is thus predicted to cause 

numerical increases in meso-consumers and declines in resource species. Due 

to the position and importance that top predators undertake in the food chain, 
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they usually are considered indicators of the status and performance of the 

marine ecosystems. These conditions also qualify them as good subjects for 

ecological studies and favour the development of research programs aimed at 

identifying and analysing any trends that could lead to the better understanding 

and management of marine ecosystems, potentially preventing deregulation of 

ecological processes and disruption of ecosystem services (Block et al. 2011). 

Given the conspicuity of seabirds as marine predators, they play an important 

role as sentinel organisms because unexpected changes in their numbers, 

health or breeding success provide an alarm that may indicate an unknown 

pollution or food supply problem (Furness and Camphuysen 1997).  

 

1.2  Procellariiformes seabirds  

The tubenosed seabirds (albatrosses, petrels and shearwaters) are well 

known for their pelagic wide-ranging lifestyle. These long-living cosmopolitan 

birds spend most of their life at sea and are tied to small oceanic islands only 

for breeding (Dell’ariccia et al. 2010). The Procellariiformes order includes four 

families: Hydrobatidae (storm petrels), Pelecanoididae (diving petrels), 

Diomedeidae (albatrosses), and Procellariidae (shearwaters), and has the most 

long-lived species among birds (Bried 2003; Werner 2010). Generally, most 

species belonging to this group are colonial and gather annually in large 

numbers at somewhat few locations in order to reproduce (Piatt and Sydeman 

2007). They present extreme life history strategies, such as the laying of a 

single egg per breeding season, followed by a long incubation and chick rearing 

period (Warham 1990; Schreiber & Burger 2001). 
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The evolution of aggregated breeding systems, generally referred to as 

colonies, is believed to have benefited from information exchange, cooperation, 

efficient defence against predators and several other benefits (Wittenberger and 

Hunt 1985; Danchin and Wagner 1997; Brown and Brown 2001). Breeding is 

generally considered one of the most energy-consuming phase because of the 

high resource expenditure that it involves (egg production, nest attendance etc) 

and the constraints that it generates. Pelagic birds are true sea travellers during 

most of the year, but during the breeding season are central place foragers that 

need to return to the colony regularly, to incubate their eggs or attend their 

chicks. During this period, they are forced to commute between their colonies 

and pelagic feeding zones at sea to provision their offspring (i.e. central-place 

foraging behaviour; Jouventin & Weimerskirch 1990). This strategy imposes 

energetic constraints which limit foraging range and thus accessibility of certain 

marine habitats. Breeding occurs generally during summer, when productivity is 

highest. During the non-breeding season, birds can disperse over wide areas or 

migrate to completely different habitats as they no longer need to be central-

place foragers (Shaffer et al. 2006; Bost et al. 2009a; Egevang et al. 2010).  

Despite the advantages of breeding in large aggregations, there are 

distinct costs such as competition for resources or disease transmission, and 

the complex trade-off between costs and benefits leads to large variation in 

colony size across species, space and time (Wittenberger and Hunt 1985; 

Brown and Brown 2001).  Although a great understanding of these animal’s life 

style and their functional ecology in environments with high unpredictability of 

food resources, has been achieved in the last decades, most of the information 

regarding the group is based on the reproductive phase of their life cycles. Such 
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knowledge has been gathered especially during the chick-rearing period, when 

food and energy demand is augmented, and when the birds have their 

distribution restricted to the surroundings of their breeding colonies, making 

them easier to handle and track (Paiva et al. 2010a; Haug 2015). Throughout 

the non-breeding season, seabirds are not bound to return to their nests, and 

usually take on migratory routes that can cover many thousands of kilometres 

into remote oceanic areas. Due to the inherent difficulty in equipping and 

tracking seabirds for a long period of time, and through such distances, 

information about the non-breeding period is still relatively scarce (i.e. when 

compared to the breeding season; Wilson et al. 2002).  

 

1.3  Environmental variability  

It is known that seabirds forage over conspicuous regions, where ocean 

productivity is naturally enhanced due to several oceanographic features and 

processes, which include upwelling areas associated with continental shelves 

(Louzao et al. 2006) or seamounts (Morato et al. 2008b); water mass properties 

like temperature (Paiva et al. 2010b) or salinity (Ainley et al. 2005); processes 

like tidal currents (Becker et al. 1983; Hunt et al. 1998); fronts (Spear et al. 

2001; Bost et al. 2009) and thermoclines (Navarro & González-Solís 2009); 

distance to shore (Briggs et al. 1987) or colony (Hunt Jr. 1997); and wind 

conditions (Garthe et al. 2009). Tremblay et al. (2009) concluded that the 

relative importance of diverse environmental predictors of marine productivity 

depend on several factors, such as the species considered, sex, breeding 

status, locality and scale of the study. It is most likely that Procellariiformes take 

advantage of their dimethyl sulphide (DMS) olfactory capabilities in searching 
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for advantageous areas (Nevitt 1999; Nevitt et al. 2002), and then might use 

visual cues to locate prey at smaller scales (Tremblay et al. 2009). 

These processes have been affected greatly by climate change, which is 

closely related to large-scale atmospheric phenomena, correlating changes 

observed in atmospheric circulation with changes in oceanic circulation. This 

typically leads to harsh outcomes in biological processes throughout food webs 

all across the oceans. One of the best known large-scale atmospheric 

phenomena associated with climate change is the North Atlantic Oscillation 

(NAO) (reviewed by Stenseth et al. 2003). The NAO refers to a north−south 

alternation in atmospheric mass between the subtropical Atlantic and the Arctic 

and therefore involves desynchronised behaviours between the climatological 

low-pressure centre near Iceland and the high-pressure centre near the Azores 

(Hurrell et al. 2003). The effects of NAO over the north Atlantic varies regionally 

(Stenseth et al. 2003). For instance, along the Portuguese Current system a 

negative NAO index indicate a perceptible decrease in the sea surface 

temperature (SST), caused by strong winds that toughen the upwelling 

phenomenon. This in turn can be related to an overall increase in abundance 

and accessibility of marine organisms from lower trophic levels, to top marine 

predators (Mann & Lazier 2006). 

Paiva et al. (2013a) concluded that dramatic changes in the distribution and 

foraging behaviour of Cory’s shearwaters during 2010, comparatively to 

previous years seems to have been mostly related to a climatic event that 

occurred during the winter of 2009-2010. This climatic phenomenon was clearly 

depicted by a record-breaking negative NAO index (Osborn 2011), which 

significantly affected the productivity and decreased the abundance of pelagic 
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prey fish, which in turn altered the foraging and feeding ecology of Cory’s 

shearwaters and decreased their reproductive success. These negative trends 

in the abundance of pelagic prey cause great concern because not only does 

the NAO affect these lower trophic organisms but they also suffer the influence 

of intensive commercial fishing activities. (Paiva et al. 2013a). Overall, It seems 

that for the Portuguese Current system, moderate either negative or positive 

values of the extended winter NAO index are indicative of higher prey 

availability months latter (i.e. spring-summer), when Cory’s shearwaters are 

breeding. While more severe (i.e. far from zero), either negative or positive, 

extended winter NAO index values leading to a notorious decrease in prey 

availability, and thus an altered foraging pattern and low reproductive success 

for Cory’s shearwaters (Paiva et al. 2013a; Haugh et al. 2015). 

 

1.4 Trophic markers 

Understand and reporting how animals exploit their environment and how 

they cope with seasonal variation in resource abundance has been a major 

question in ecology (Johnson 1980; Wilcove & Wikelski 2008). Migratory 

animals depend on multiple regions (e.g.,non-breeding, breeding and migratory 

stop-over sites) and therefore these species may be more vulnerable to 

environmental perturbations than sedentary species (Wilcove & Wikelski 2008; 

Forman & Godron 1986; Kelly et al. 2005). For example, anthropogenic 

alteration within a species’ breeding range may cause decreased breeding 

success (Robinson & Wilcove 1994) and disturbance at stop-over sites may 

affect the ability to refill fat reserves (Blem 1980; Moore et al. 1995). Hence, 
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conservation management of animal populations depends on an understanding 

of these trophic and spatial ecology behaviours (Aarts et al. 2008).  

As previously stated, marine ecosystems are highly heterogeneous 

environments in which productivity is controlled by physical features and 

processes, and the spatial ecology of seabirds at sea will have a direct 

influence on the prey that these animals exploit and consequently on their diet 

composition (Haury et al. 1978). The study of seabird foraging behaviour has 

always been hampered by the problem of assessing at-sea distribution, 

individuals being particularly difficult to track (Votier et al. 2010). Stable isotopic 

analysis (SIA) of biological tissues are often used to measure the isotopic 

signatures of seabirds and thus interpret their trophic choices. The rationale of 

using SIA is generally based on the assumption that when stable isotope 

signatures are incorporated in the proteins of consumers, they reflect those of 

the proteins in their diet in a predictable manner (Post 2002; Bearhop et al. 

2004). 

Stable isotope signatures can then be a fundamental alternative to the 

conventional ways of analysing diets, i.e. through collecting stomach contents 

or faeces (Cherel et al. 2007), and may simplify the monitoring of changes in 

marine ecosystems. Stable isotope ratios of Carbon (13C/12C, δ13C) and 

Nitrogen (15N/14N, δ15N) are most commonly used in seabird stable isotope 

ecology (Ramos and González-Solís 2012). The use of δ15N is based on the 

trophic richness of 15N as we go up on the trophic web (Forero and Hobson 

2003).  According to Bond and Jones (2009), in each trophic level the 15N 

values increase 3 to 5% due to the production of urea, since the 14N is 

preferentially excreted in comparison with 15N. On the other hand, the use of 
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δ13C on the marine environment is based on the 13C gradient, because 13C 

enriches from offshore to inshore regions, from benthic to pelagic strata of the 

water column and with decreasing latitude, allowing δ13C to behave like a 

geographical indicator of foraging habitats (Cherel, Hobson & Weimerskirch 

2000; Forero and Hobson 2003, Quillfeldt, McGill & Furness 2005; Cherel et al. 

2006). 

Depending on tissue-specific isotopic turnover, stable isotope 

measurements reflect average dietary records over days (blood plasma) to 

years (feathers) and have thus the potential to portrait nutritional variation at 

different time-scales (Dalerum & Angerbjörn 2005) as isotopic forms are 

fractioned and incorporated in new formed tissue through diet at specific 

temporal or spatial scales (Cherel et al. 2007). For instance, feathers allow us to 

analyse a period of information correspondent to the time of feather growth but, 

in contrast, red blood cells represents a period of a few weeks and plasma to 

about 7 days (Cherel et al. 2005; Hobson 2005). To infer geographical positions 

with isotopic analyses, the most reliable materials are those that are 

metabolically inactive so they retain signatures during a fixed growth period 

(Hobson 2005). As reported by Forero and Hobson (2003), keratinous materials 

such as feathers are particularly suitable because keratin is metabolically 

inactive and conserves dietary signals integrated over the period in which they 

grew. Moult patterns of bird feathers are seasonally predictable and consistent 

over time (Inger and Bearhop 2008; Ramos et al. 2009). 

The great benefit of using such techniques over stomach regurgitations for 

instance, is that it provides not only information about the food ingested in the 

sort-term (like a snapshot picture of the individual diet) but also the food that 
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was assimilated by tissues (from short- to long-term depending on the tissue). 

Conventional dietary analysis are also more prone to misinterpretations of the 

proportions of some food sources, due to the diverse rates of digestion of 

different prey types. Lastly the gathering of feather and/or blood samples is less 

stressful for the bird than the collection of diet samples by flushing their 

stomach contents (Paiva et al. 2010a).  

 

1.5  Tracking devices 

Seabirds spend most of their time at sea and are challenging to observe 

when not attending nests during the breeding season. Although they are 

considered the most threatened group of birds worldwide, conservation efforts 

were traditionally centred on threats faced at their breeding grounds (Ramirez et 

al. 2008) which are beneficial but highly insufficient, lacking the insight of the 

quality, location and extent of their feeding grounds which have crucial 

importance for the breeding success and survival of these marine top predators 

(Davis et al. 2005).    Research has been therefore biased toward land-based 

observations, with the at-sea biology of smaller species generally limited to 

counts of travelling and foraging birds from opportunistic or research vessels 

which has also provided insight into the distribution and at-sea behaviour of 

these animals. Such studies are time or area restricted and unable to give 

detailed insights, such as distinguishing breeding status, sex or even species 

(Grecian et al. 2012), limiting the data and insights of the foraging behaviour of 

such individuals (Weimerskirch et al. 2005a). Also, the presence of vessels 

alters the normal behaviour of the birds and are normally associated with high 

costs (Grecian et al. 2012). 
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However, knowledge of foraging behaviour is essential to understand both 

the ecological roles of seabirds and constraints acting upon them in marine 

ecosystems (Wilson et al. 2002). The most productive and cost-effective way to 

study the flight and foraging behaviour of birds at sea employs electronic 

devices attached to individuals (Wilson et al. 2002; Daunt et al. 2003; Garthe et 

al. 2007). A variety of loggers and techniques have been revolutionizing the 

study of habitat foraging and selection, being developed and improved during 

the last 40 years (Grémillet et al. 2000; Hamer et al. 2007; Weimerskirch and 

Wilson 2000), equipped with increasing availability of remotely sensed data, 

computation power and the sophistication of analytical methods (Fauchald & 

Tverraa 2003; Ballance et al. 2006, Tremblay et al. 2009). 

Since 1990 there was an upgrade of the technology used to study seabird 

ecology at sea, with the use of satellite telemetry (platform terminal transmitters 

[PTTs]), accurate devices (1-3 km) with solar power improved lifespan that do 

not require recovery for data processing. (Weimerskirch and Jouventin 1990). 

Presently two types of devices are heavily used to study seabirds: Global 

location sensing or geolocation (GLS) and global positioning system (GPS). 

Geolocation uses changes in ambient light levels to estimate sunrise, sunset, 

day length, and hence, longitude and latitude. The spatial resolution of these 

devices can be improved with the addition of temperature sensors to record 

long range movements (Burger & Shaffer 2008). One of the most recent 

tracking devices to come on line are GPS devices. These are unlimited in range 

and are capable of much higher resolution and accuracy than satellite 

transmitters or conventional radio telemetry (Hulbert and French 2001; 

Hünerbein et al. 2000). As with most new technologies, the first GPS data 
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loggers were too heavy to deploy on all but very large-bodied seabirds such as 

albatrosses (Diomedae; (Waugh et al. 2005; Weimerskirch et al. 2002) and 

gannets (Sulidae; (Grémillet et al. 2004). The possibility of recording locations 

every second at accuracies within meters of true location and, the rather 

inexpensive price and small size of such devices have made them suitable 

enough to be used in several seabird species. The latest equipment, with 

package sizes in the range of 8-12 g, bring small and medium-sized seabirds (c. 

300 g and larger) into the scope of possible applications. Currently, attachment 

of miniaturized sensors linked to data loggers has been popularized since these 

loggers do not call for long-distance signal reception and are lightweight devices 

with unmatched precision useful for identifying key habitat areas. However, as 

with GPS or GLS recorders, the limitation is that birds have to be recaptured or 

pass close to a remote data-recovery system to download the information, and 

thus involves a risk of losing data (Wilson et al. 2007, Burger & Shaffer 2008). 

The only time where birds faithfully return to the colony is during the breeding 

season, so most of the information available is restricted to this period of their 

life cycle. Tracking studies should control for adverse effects of the transmitter 

load and biases, and although it has been questioned (Barron et al. 2010, 

Kidawa et al. 2011) Burger and Shaffer (2008) propose a guideline, recognizing 

that behavioural and fitness changes can be avoided by keeping the transmitter 

weight below 3% of the bird’s body weight (Phillips et al. 2003). The studies 

performed by using this type of technology has already contributed significantly 

to conservation planning and monitoring of several species according to BirdLife 

International (www.birdlife.org/). 
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1.6 Foraging strategies in relation to age and breeding experience 

Marine predator foraging behaviour depends largely on the distribution, 

abundance and reliability of their prey (Staniland et al. 2006), but also on 

intrinsic factors such as body mass, sex (Hindell et al. 1991; Kato et al. 2008) 

and breeding stage (Shaffer et al. 2003). As seen before, marine food 

resources are scarce and often patchily distributed (Weimerskirch et al. 2007), 

with this, clutches of a single egg and the development pattern of chicks, 

predominantly the prolonged nestling period resulting from slow growth, and the 

large accumulation of fat, are among some of the adaptations to such an 

unpredictable environments (Boersma & Parrish 1998). Foraging behaviour and 

flexibility in the diet is particularly important, as it allows individuals to exploit 

shifting prey diversity and adjust to changing spatio-temporal distributions of 

prey (Bowen et al. 2006; Montevecchi et al. 2009). Although studies focusing on 

seabirds during the last decades have multiplied immensely, the vast majority of 

this work has been focused on breeding individuals (Votier et al. 2011). This 

tendency is due to the fact that breeders represent an important part of the 

population and are more likely to return to the colony, increasing the chances 

for logger retrieval. Seabirds have a long life spans and an extensive period of 

immaturity (Burger & Shaffer 2008) corresponding up to 50% of the non-

breeding adults of the population (Klomp & Furness 1992). Generally these 

non-breeders attend the colonies along with the breeders for most, if not all the 

breeding season, but these inexperienced and failed breeders are not 

necessarily forced as central place foragers since they have no duties at the 

colony/nest. Therefore the prospect to adapt a more explorative foraging 

behaviour at sea and rely on different areas than the rest of the population is 
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then possible. Immature individuals normally show higher dispersal rates when 

compared with breeders (Huyvaert & Anderson 2004) and it’s generally 

believed that the lower breeding success of younger birds is at least partially 

associated to lower foraging success (Forslund & Pärt 1995), but there are very 

few studies which compare the foraging efficiency of experienced and 

inexperienced individuals (Weimerskirch et al. 2005a).  

However, there is no golden rule to such tendencies. Some exceptions have 

been observed, showing that young inexperienced wandering albatrosses 

(Diomedae exulans) had similar foraging success when compared to 

experienced adults, differing only on their foraging strategies (Weimerskirch et 

al. 2005b). Some exceptions include the aforementioned study, which found 

that young, inexperienced wandering albatrosses (Diomedae exulans) actually 

had similar foraging success to that of experienced adults, but differed in their 

strategies. Inexperienced birds foraged more intensively and found more prey 

during the night. In another study by Bunce et al. (2005) on Australasian 

gannets (Morus serrator), it was interestingly found that inexperienced breeders 

had lower breeding success only when food availability was scarce, though this 

was not evident in a later and perhaps more detailed work on the same species 

(Pyk et al. 2007). Other studies show that immature gannets (Morus bassanus) 

breeding on the British Isles, (Votier et al. 2011) can disperse widely, potentially 

exploring other colonies, but mainly acted as central place foragers when 

compared with experienced breeders. While first time breeders of black-browed 

albatross (Talassarche melanophrys) had lower reproductive success and lower 

survival rates when compared with older, more experienced individuals (Nevoux 

et al. 2007). With such disperse results, it is believed that foraging efficiency 
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develops and increases with age and experience (Zimmer et al. 2011; Le 

Vaillant et al. 2013; Gutowsky et al. 2014), possibly leading to the notion that 

some species have such an extended period of immaturity that they are efficient 

foragers by the time they start breeding (Weimerskirch et al. 2005a; 

Weimerskirch et al. 2014).  

 

1.7  Foraging sexual segregation 

Segregation of males and females is particularly common in marine central 

place foragers during the breeding period, when foraging ranges are restricted 

by the need to return repeatedly to the breeding site to care for offspring (Page 

et al. 2005, Weimerskirch et al. 2009). Sexual segregation is thought to reveal 

competitive exclusion by the dominant sex, or to reflect niche specialisation 

(Phillips et al. 2004) but could also be a consequence of differing parental roles 

(Thaxter et al. 2009, Elliott et al. 2010) or differences in the nutritional 

requirements of males and females as proposed by Lewis et al. (2002).  Many 

studies show that males and females exploit different prey species or habitats, 

reflecting in between-sex differences in isotopic signatures (Bearhop et al. 

2006, Phillips et al. 2011).  

Foraging segregation can occur at various spatial scales, ranging from 

differences in local habitat use to broad geographical distributions (Catry et al. 

2005). A recent study by Cleasby et al. (2015) provides clear evidence of sexual 

segregation in northern gannets (Morus bassanus), where males and females 

differed in their usage of mixed and stratified waters, proving sex-specific 

habitat segregation across tidal mixing regimes. Other sexual differences in the 

foraging behaviour of seabirds are often related to sexual size dimorphism 
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found in many species such as the giant petrels (Macronectes spp; Gonzáles-

Solís et al. 2000) Wandering Albatross (Diomedea exulans; Weimerskirch et al. 

1993; Weimerskirch 1995) and Gray-headed Albatross (T. chrysostoma; Phillips 

et al. 2004). In some seabirds, sexual dimorphism in body mass and wing 

morphology is thought to play a functional role in flight performance and is used 

to explain differences in distribution of males and females at sea at least for part 

of the year (Phillips et al 2004). However, sexual differences in size and shape 

may be poor predictors of differentiation in the way male and female seabirds 

exploit the marine environment. In some species with considerable sexual 

dimorphism, such as the Cory’s Shearwater (Calonectris borealis) recent 

studies show that pronounced sexual size dimorphism in bill size, body mass 

and wing-length has no apparent connection to foraging behaviour and feeding 

ecology, at least during the stage of incubation (Navarro et al. 2009; Ramos et 

al. 2009).  Therefore inspecting other stages of this species life cycle, is 

necessary to understand if sexual segregation and sexual behaviour is due to 

sexual dimorphism or environmental factors such as food resources. Moreover, 

the influence of sex on the feeding ecology of seabirds may also be related with 

the experience of the individual, and, in this study we try also to relate these two 

variables, sex and breeding experience, in describing the foraging ecology of 

the birds. 

 

1.8  Study questions 

 We deployed GPS-loggers in male and female (also inexperienced and 

experienced) Cory’s shearwaters during September of 2010 – 2014 (i.e. mid 

chick-rearing period), in order to disentangle possible intersexual segregation 
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on the foraging strategies, at-sea distribution and trophic ecology of this 

species. We specifically wanted to answer a three-fold question: (1) Do female 

Cory’s shearwaters differ from males in their foraging strategies and 

distribution? Until now, most studies reported the inexistence of inter-sexual 

differences (e.g. Navarro & González-Sólis 2009, Paiva et al. 2010a, but see 

Ramos et al. 2009 and Navarro et al. 2009 for a counterpoint), especially during 

the chick-rearing phase when the task of provisioning the growing chick is 

equally shared between sexes; (2) Will both sexes react differently to life history 

trait factors, such as environmental stochasticity and breeding experience? We 

expect females to react more obviously to annual changes of productivity in the 

colony surroundings, and thus exploit more pelagic waters, like they do during 

the pre-laying exodus when they segregate from males (Paiva et a. 2013a, 

Haug et al. 2015). Moreover, inexperienced individuals should exhibit higher 

values on foraging effort parameters (e.g. maximum distance to colony), 

especially during years of poor productivity on the colony surroundings (Haug et 

al. 2015); (3) Will the inter-sexual foraging segregation translate into isotopic 

segregation and differential body condition between sexes? In this species, like 

for other marine predators, spatial segregation usually leads to isotopic 

segregation, through the exploitation of different baseline isoscapes (Graham et 

al. 2010), through the choice of feeding on isotopically different prey species 

(Paiva et al. 2010b) or a combination of both. A higher foraging effort usually 

results into lower adult body condition and overall breeding success (Paiva et 

al. 2013a). 
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2 2.1 Study Area  

2.1.1 Berlengas archipelago 

The Berlengas archipelago is located in the Portuguese coast, at 

approximately 10Km west of the town of Peniche, in the north Atlantic. The 

largest Island of the archipelago is the granitic skerry called Berlenga Island 

(39°12’40’’49N, 09°30’29’’W), that reaches an altitude of 88m, with a maximum 

length of 1,5Km and a total area of 78,8ha. Two groups of smaller Islets called 

Estelas and Farilhões are also part of the archipelago and, together with 

Berlenga, are the three main dry land extensions of the area. The archipelago 

reached the status of natural reserve in 1981 by the Portuguese government 

and since then, the islands passed through successive improvements on total 

area covered and conservation importance, which culminated in June 28th 

2011, when the Berlengas Natural Reserve (R.N.B.) was included in the World 

Network of Biosphere Reserves (W.N.B.R.), under positive ruling of UNESCO 

(Santos et al. 2012).  

The entire archipelago presents high biodiversity, with 76 fish species 

currently reported in the reserve area (Rodrigues et al. 2008). This, allied with 

the favourable combination of bathymetric features and ocean and wind 

circulation (namely the Azorean anti-cyclone and the Portuguese continental 

shelf upwelling), characterizes the area as rich feeding and breeding grounds 

for several seabird species (Paiva et al. 2010b; Werner 2010). Berlenga 

features the only breeding populations of pelagic seabirds in continental 

Portugal: the Cory’s Shearwater (Calonectris borealis), and the Madeira Storm-

Petrel (Oceanodroma castro), the former only in Farilhões. Presently, the 

archipelago hosts approximately 850 breeding pairs of Cory’s Shearwaters, 
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distributed among Farilhões Islets (500-550 pairs) and Berlenga Island (300 

pairs) (Lecoq et al. 2011). The European Shag (Phalacrorax aristotelis), Lesser 

Black-backed Gull Larus fuscus, and until recently, the critically endangered 

Common Murre Uria aalgae also attended breeders on the island.  The most 

abundant bird is the Yellow-legged Gull (Larus michahellis) which possibly 

undertakes a negative effect on the other seabird populations as stated by 

Lecoq et al. (2011) when they registered predation of Cory’s shearwater eggs at 

Farilhões islets. Other limiting factors for the presence of seabirds on Berlenga 

Island are the introduced mammals: Black rats, Rattus rattus, and wild rabbits, 

Oryctolagus cuniculus (Amado 2007). It is known that the presence of rats and 

other introduced mammals can lead to the decrease of population numbers or 

even to the extinction of other species including seabirds (Towns et al. 2006; 

Jones et al. 2008). The archipelago is not only an important breeding ground 

but its marine area is also important during spring (March) and autumn 

(September) migrations of the Northern gannet, Morus bassanus, which is 

regularly seen in flocks of several thousand individuals. There are also 

observations of a Critically Endangered species, Balearic shearwater, Puffinus 

mauretanicus, in large flocks passing near Cape Carvoeiro (Ramirez et al. 

2008).  

In 2011, the Berlengas Natura 2000 site (SPA) was enlarged to include a 

significant proportion of its marine area. Linked to this site extension, the 

Portuguese nature conservation agency (ICNF) launched an initiative to 

develop a management plan for the new area. Unfortunately, the baseline 

information proved to be insufficient and clear planned actions were lacking. As 

a result, the LIFE + Berlengas, launched on June 1st with a total duration of four 
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years was created, coordinated by the Portuguese Society for the Study of 

Birds (SPEA), in partnership with the Conservation Institute for Nature and 

Forest (ICNF), the Municipality of Peniche (CMP), the Faculty of Social 

Sciences and Humanities (FCSH) of the Universidade Nova de Lisboa and with 

an external observer the School of Tourism and Maritime Technology (ESTM), 

the Polytechnic Institute of Leiria. 

LIFE Berlengas aims to monitor the fauna and flora of the archipelago, 

control and eradicate invasive species of plants and mammals and implement a 

sustainable management strategy of natural values, contributing to the 

conservation of a vast area that includes the Natura 2000 network. 

Management of seabirds also take place, as monitoring the breeding seabird 

species (Cory’s shearwater, Madeira Storm petrel, Cormorant among others) as 

well as augmenting the number of artificial nests for Cory’s shearwater and 

storm-petrel, individual tracking of species and metal ringing of these birds, are 

also included in this project. (http://berlengas.eu/pt/enquadramento). 

 

2.1.2 The Atlantic Ocean 

When studying top marine predators such as the Cory’s Shearwater, the 

study area is greatly enlarged since most of the tracking data from their 

migratory processes extends the surrounding colony area to cover large 

portions of the Atlantic Ocean, as individuals are often present in coastal areas 

of the North and South America as well as the African coast. Oceanographic 

characteristics over such large areas are under influence of several 

environmental factors, showing remarkable variations in ecological aspects, 

such as sea surface temperature and marine productivity which, in turn, can 
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play a significant role in species distribution and behaviour (Warham 1996; 

Louzao et al. 2006; Paiva et al. 2010c).  

The North Atlantic Basin is under influence of the North Atlantic Gyre, one 

of the five major oceanic gyres. It is a circular system of ocean currents that 

stretches across the North Atlantic from near the equator almost to Iceland, and 

from the east coast of North America to the west coasts of Europe and Africa. 

The composing currents of the North Atlantic Gyre include the Gulf Stream in 

the west, the Canary Current in the east, the North Atlantic Current in the north 

and finally the Atlantic North Equatorial Current in the south, forming a 

clockwise rotating subtropical gyre (Barton 2001). 

This gyre is particularly important for the central role it plays in the 

thermohaline circulation, bringing salty water west from the Mediterranean Sea 

and then north to form the North Atlantic Deep Water, as well as nutrient-poor 

warm water extracted from subtropical areas by the Gulf Stream, and nutrient-

rich cold water injected into the system via the Arctic Labrador Current (Barton 

2001). This cycling profile is not the same throughout the year, with seasonal 

variations occurring during summer. This effect is caused by the increase of the 

sea surface temperature (SST), and results in a significant shift of productivity 

values of areas close to the Portuguese coast towards areas located in the 

Arctic Circle (Paiva et al. 2010b; Soares 2013). Consequences such effects on 

the at-sea distribution and behaviour of Cory’s Shearwater in the North Atlantic 

can be found throughout the literature (e.g. Granadeiro et al. 1998; Paiva 2009; 

Roscales et al. 2011), although it’s generally focused on the breeding period. 
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2.2 Study Species 

The Cory’s Shearwater (Calonectris borealis) is a colonial, medium sized 

long-distance migrant procellariform. Like most other Procellariiformes, they 

show no sexual dimorphism in plumage characters, however, sexual 

dimorphism in bill size and shape, wing length, and overall body size is 

considerable. Nevertheless, accurately sexing a bird by analysing a single 

morphometric variable has shown to be almost impossible (Granadeiro 1993, 

Thibault et al. 1997, Navarro et al. 2009). Until very recently (2014), we could 

consider two subspecies, Scopoli's shearwater and Cory's shearwater (the 

Mediterranean Calonectris diomedea diomedea, and the Atlantic Calonectris 

diomedea borealis respectively), that are now split into two distinct species 

following Del Hoyo et al. 2014 (http://www.birdlife.org/). They are nocturnal on 

their breeding grounds, and in late afternoon birds can be observed waiting for 

darkness at sea in front of their colonies, in flocks of hundreds or thousands of 

individuals, before coming onshore (Warham 1990).  

C. borealis migrates through long trans-equatorial migration routes to 

move between non-breeding and breeding areas. During the non-breeding 

season (December-February) they migrate to productive areas located in the 

South Atlantic which are associated with the Benguela, Agulhas, Brazil and 

Canary Currents (González-Solis et al. 2007; Ramos et al. 2012). During the 

breeding season (March-October) Cory’s shearwater migrate and breed in the 

North Atlantic archipelagos such as Berlengas, Azores, Madeira and Canary 

archipelagos (Navarro et al. 2007; Paiva et al. 2010b). 

Their reproductive behaviour is characterized by a great energetic 

investment from both parents, spread throughout the 8 months of the breeding 
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cycle, with a long egg incubation period (54 days) and a very long chick rearing 

period (90 days). During this period, the parents take alternate foraging trips to 

provide food for the young and restock their own nutritional necessities, often 

travelling tens to hundreds of kilometres from the breeding site on a single 

journey (Magalhães 2008). Their food regime consists mainly on epi - and - 

mesopelagic fish and also on squid (Granadeiro et al. 1998; Xavier et al. 2011). 

At the start of the breeding season – pre-laying period - Cory’s 

shearwaters begin to attend their nesting colony around one month prior to 

laying. These birds present high levels of philopatry, and thus tend to maintain 

the same nest of previous years, and couples are also usually faithful for life. 

Males will arrive first and attend the colony more frequently than females, partly 

in order to protect the selected nest against other conspecifics and copulate.  

Thereafter they leave the nesting area to feed, replacing the energy lost during 

migration from the non-breeding areas and stocking up on nutritional reserves 

that will sustain them through the early stages of the reproductive process 

(Werner 2010, Paiva et al. 2013a). 

Females embark on an approximate twenty day journey (Jouanin et al. 

2001) a pre-laying exodus after copulation, key to build up body reserves to 

form and lay their egg. This departure starts in early May and after their return 

to the colony, in late May, females lay the egg which will be incubated in shifts 

by the breeding pair during almost two months (Paiva et al. 2010b). This dual 

effort of biparental care also extends to the high energy demand period of chick-

rearing, after the eggs are hatched (starting at the end of July). To respond to 

these high energetic needs, the foraging strategy employed by the species is 

based on a cycle between short (1-2 days) and long trips (3-9 days), with short 
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trips used to provide for the chick, while long trips are performed to replenish 

the adult’s nutritional reserves. (Magalhães et al. 2008; Navarro and González-

Solís 2009; Paiva et al. 2010a; 2010b; 2010c). This strategy allows birds to 

balance the constraint of regularly visiting the colony on the one hand, and 

accessing better fishing areas farther from the colony on the other. 

As the chick rearing process progresses, both the frequency of food input 

and degree of digestion by the parents decrease (Ramos et al. 2003). By the 

end of September, the chick will stop growing and a reduction in the overall 

body size will be compensated by wing growth. This process lasts until late 

October and early November when chicks finally fledge to start exploring the 

ocean at night (Warham 1990).  During winter, the species travels thousands of 

kilometres to feed in warmer climates, being found mainly in South Africa, 

Brazil, and southern central Atlantic (Camphuysen & Van Der Meer 2001; 

Ramos et al. 2009b) 

 

2.3  Fieldwork 

The tracking study was conducted on Berlenga Island located in the 

Portuguese coast (39° 23’ N, 9° 36’ W), during September (chick-rearing period 

data) of 2010 – 2014. GPS tracking devices CatTraq Travel Loggers (Fig. 1) 

(Perthold Engineering LLC) were employed as GPS-loggers, as these gadgets 

seem to provide the most accurate data, with an error of meters (Ramirez et al. 

2008). This specific device (44.5 * 28.5 * 13mm) weighs 15g and contains a 

SiRF StarIII chipset, a patch antenna and an 180mAh Lithium-ion battery. 

Devices were stripped of their original plastic case and sealed with a thermo-
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Figure 1 - GPS tracking devices, CatTraq Travel 
Loggers employed as GPS-loggers. 

retractile rubber sleeve for waterproofing. Loggers weight represented between 

1.9% and 2.7% (median = 2.5%) of the birds weight. 

Devices were set to record data each 5 minutes, with loggers’ batteries 

draining out in about 15 days. The study colony is situated on the eastern side 

of the “Old Island” of Berlenga where approximately 130 pairs of Cory’s 

shearwater nest in rock crevices, burrows and (mostly) artificial nests.  

 

 

 

 

 

 

 

 

Birds were captured during the night at their nest sites, weighed and 

individually identified by their ring numbers. GPS loggers were then attached 

using TESA® tape (Wilson et al. 1997) to the contour feathers along and in 

between both scapula’s (Fig. 2). As an extra security measure we glued the tips 

of each tape stripe used to attach the logger. The birds were then returned to 

their nests, this process took less than 10 minutes in order to minimize the 

overall stress. At logger retrieval, a blood sample (Fig. 2) of about 0.5 ml was 

collected from the tarsal vein of each individual, for evaluation of its trophic 

choices during the tracking period, through stable isotope analysis (SIA; trophic 

ecology). 
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The 55 tracked birds (N = 27 female and N = 28 male Cory’s shearwaters) 

were divided into experienced and inexperienced individuals using the total 

number of breeding attempts as a proxy for experience, following indications of 

previous studies (Jones & Ryan 2014; Froy et al. 2015; Haug et al. 2015) and 

the prediction that reproductive success typically increases with breeding age 

and experience in seabirds (e.g. Forslund and Pärt 1995). Our study benefited 

from a long-term database of the breeding population, such that minimum age, 

sex and previous breeding experience (i.e. fledging success) were known for 

most of the individuals (Lecoq et al. 2011). 

 

 

 

Thus, birds included in this study were categorized as inexperienced (≤ 2 

years of breeding successfully; N = 26) and experienced (> 2 successful years; 

N = 29) individuals, based on the frequency distribution of the historical 

breeding success records. The breeding scores extended back to 2005 for our 

study site, and we considered the 7-year breeding success of the individuals, 

prior to our study (2005–2010). The former assumption is supported by a 

Figure 2 - Fieldwork procedures at the breeding colony (A) Process of logger 

deployment; (B) Collection of blood samples. 
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positive significant correlation (Spearman rs = 0.77, N = 55, P < 0.001) between 

estimated age of individuals and chicks that fledged by each individual per 

breeding attempt since 2005. 

Each year, the tracked birds were measured (body weight and wing 

length) in order to calculate their body condition index (BCI). This index was 

obtained from the residuals of the linear regression of body weight on wing 

length, a measure of structural size (Brown 1996). BCI is therefore a measure 

of mass corrected for size and is considered an indicator of energetic reserves. 

 

2.4  Area of Restricted Search (ARS) zones 

Fauchald & Tveraa (2003) developed a technique, named First Passage 

Time (FPT) to assess the spatial scale that animals use to encounter their prey. 

FPT is, by definition, the time required for an animal to pass through a circle 

with a given radius r. By moving this circle along the path of the animal, we will 

obtain a scale-dependent measure of search effort and therefore the 

behavioural response of an individual in the environment. Because top marine 

predators usually forage in a patchy and hierarchical environment (Fauchald 

1999), increases in the turning rate and/or decreases in speed of its foraging 

path should be related to the so-called Area Restricted Search (ARS) 

behaviour. ARS will then appear as an individual reaction to changes in the 

resources availability and distribution, by increasing the residence time in the 

productive patch (Fauchald & Tveraa 2003). 

Zones of Area Restricted Search (ARS) were estimated applying First 

Passage Time (FPT) analysis, following (Fauchald & Tveraa 2003) and using 

software R 3.0 (R Development Core Team 2014). Usually, ‘in water’ positions 
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result in very small-scale ARS zones (<100 m diameter), which considerably 

increase the variance in FPT and can camouflage larger-scale ARS zone 

(Weimerskirch et al. 2007). To address this problem, we removed bouts on the 

water and interpolated locations to obtain a distance interval of 0.1 km for FPT 

analysis (Pinaud 2008). We considered positions with speed < 3 km h-1 as 

resting or preening behaviours on the water or inland, after inspection of the 

frequency distribution of speeds. Following the recommendations of (Pinaud 

2008), FPT analysis was performed in two steps: 1) to detect large-scale ARS 

we run the analysis on the whole path, estimating the FPT every 1 km for a 

radius r from 1 to 50 km; 2) to detect small spatial scale events we run again 

FPT analysis every 0.1 km for an r varying between 0.1 and 10 km. The plot 

representing variance in log (FPT) as a function of r allowed us to identify the 

ARS scales by peaks in the variance. In this calculation, FPT was log 

transformed to make the variance independent of the magnitude of the mean 

FPT (Fauchald & Tveraa 2003). It is also possible to locate where the bird 

entered an ARS zone and the time spent on that area by plotting FPT values 

where a peak of variance occurred as a function of time since departure from 

the colony. ARS locations were also used to feed the General Linear Additive 

Models (GAMMs). 

 

2.5  Habitat use 

GPS locations of each bird where ARS behaviour was detected (ARS 

zones) were examined under the adehabitatHR R package (Calenge 2006) 

generating Kernel Utilization Distribution (Kernel UD) estimates. The most 

appropriate smoothing parameter (h) was chosen via least squares cross-
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validation for the unsmoothed GPS data, and then applied as standard for the 

other datasets and grid size was set at 0.05º (to match the grid of environmental 

predictors). We considered the 50% and 95% kernel UD contours to represent 

the core foraging areas (FR) and the home range (HR), respectively. 

The extent of within-year overlap between male and female home ranges 

was estimated using Bhattacharyya’s affinity (BA; Bhattacharyya 1943), which 

ranges from 0 (no overlap) to 1 (complete overlap). Using BA as a measure of 

spatial overlap, we used a randomization technique to test the null hypothesis 

that there was no difference in the spatial distribution of males and females in 

each year of the study. If the null hypothesis was true, the magnitude of the 

overlap between males and female 50% and 95% kernels should not differ 

significantly from that calculated if sex were randomly assigned. Therefore, for 

each year the sex of each bird was randomly assigned using the same sex ratio 

as the observations in that year. In total, we generated a null distribution for BA 

based on 1000 randomizations of our dataset in order to test whether the 

overlap between male and female home-ranges was significantly different than 

expected. P-values were determined by the proportion of random overlaps that 

were smaller than the observed overlap, if the observed overlap was smaller 

than all 1000 randomly generated overlaps, then p was ≤ 0.005 (see Breed et 

al. 2006 for a similar approach). More details on BA and other measures of 

spatial overlap can be found in Fieberg & Kochanny (2005). 

 

2.6  Environmental data 

The extended winter North Atlantic Oscillation (NAO) index was used as a 

large-scale environmental predictor for the North Atlantic area, and specifically 
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for the Western Iberia Upwelling Ecosystem (WIUE). The NAO index refers to a 

north–south alternation in atmospheric mass between the subtropical Atlantic 

and the Arctic, and thus involves out-of-phase behaviour between the 

climatological low-pressure centre near Iceland and the high-pressure centre 

near the Azores (https://climatedataguide.ucar.edu/climate-data/hurrell-north-

atlantic-oscillation-nao-index-station-based). We also used some small-scale 

environmental predictors, such as chlorophyll a concentration (CHL) and SST 

data, downloaded from http://oceanocolor.gsfc.nasa.gov/, as daily night-time 

products with a resolution of 0.04° (approx. 4 km) in the SMI-HDF format. 

Bathymetric data (BAT), taken as water depth, was downloaded from the 

ETOPO2v2 database at a spatial resolution of 0.03° (approximately 3 km; 

http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html). HDF files were converted 

to raster using the Marine Geospatial Ecology Tools in ArcGIS 9.2 (Roberts et 

al. 2010), and then to ASCII to create composites. All composites were 

constructed using the freeware R environment (version 2.14, R Core Team 

2014) and mosaic function of the raster package. Spatial gradients of SST, CHL 

and BAT (SSTG, CHLG and BATG, respectively) were obtained by estimating 

the proportional change (PC) within a surrounding 3 × 3 cell grid using a moving 

window as follows: PC = [(maximum value − minimum value) × 100/maximum 

value] (Louzao et al. 2006). SSTG and CHLG are believed to be good indicators 

of oceanic fronts, while the BATG was used as a proxy for slope. Additionally, 

two more static variables were generated. Distance to land (DLAN) was 

calculated using the distance tool in the ArcGIS 10.1 spatial analyst toolbox. 
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2.7  Stable isotope analysis (SIA) 

Stable-nitrogen isotope ratios (15N: 14N, expressed as δ15N) and stable-

carbon isotope ratios (13C: 12C, expressed as δ13C) on plasma and red blood 

cells of Cory’s shearwater were assessed to investigate the effect of experience 

on their foraging ecology and prey selection. The ratios represent the prey 

ingested in the past few weeks before the blood sample. The δ15N is mainly 

used to define the trophic position of the consumer, while δ13C reflects the 

foraging habitat of the consumer (Inger & Bearhop 2008, Ceia et al. 2012). It is 

assumed that potential intraspecific differences in assimilation efficiency or 

physiology, does not impact the blood isotope values significantly (Votier et al. 

2011). There is a gradient of high to low values of δ13C from coast to offshore 

due to the organic enrichment at the coast that is gradually diluted. Red blood 

cells (RBC) are regenerated every 12-22 days while plasma has a turnover rate 

of about 7 days, therefore they represent prey ingestion in different time scopes: 

RBC reflects the trophic ecology the last few weeks, and plasma reflects 

choices made in the last trips before sampling (i.e. around 7 days; Inger & 

Bearhop 2008). 

Each of the tracked birds was sampled upon return from a foraging trip. 

Blood samples (1 ml) were collected from the tarsal or brachial vein using 25-

gauge needles under license. Blood samples were then separated into plasma 

and red blood cells (hereafter termed RBC) by a centrifugation at 12000 rpm for 

15 min, within 2-4 hours of sampling and stored frozen at –20 °C until 

preparation for analysis. Successive rinses with a 2:1 chloroform/methanol 

solution were performed on the plasma samples in order to deplete it for lipids, 

which may disturb the results (Cherel et al. 2005b). Plasma samples were dried 
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in an aspirating hood for 48h at 60°C for the ethanol to evaporate. Isotope ratios 

of carbon and nitrogen were then determined through standard methodology 

(Bearhop et al. 2006, Phillips et al. 2009) by continuous-flow isotope ratio mass 

spectrometry, using an EA-IRMS (Isoprime, Micromass, UK). The analytical 

precision for the measurement was 0.2‰ for both carbon and nitrogen. All 

values presented are means ± 1 SD unless otherwise stated. 

 

2.8 Statistical analysis  

Generalized Linear Mixed Models (GLMMs) tested the effect of (1) year 

(2010 – 2014), (2) sex and, (3) the interaction between 1 and 2 (i.e. 

independent variables) on the (1) regional and (2) local environmental 

predictors, (3) foraging trip characteristics, (4) habitat of foraging areas, (5) 

trophic ecology and (6) fitness parameters (i.e. dependent variables). Trip 

identity was nested within the individual as a random term to avoid potential 

pseudo-replication problems, since all individual birds performed multiple trips. 

Gaussian distribution of error terms and a log-link function were used in the 

modelling. Post-hoc multiple comparisons with Bonferroni correction were used 

to identify significant differences between categories of each independent 

variable. R packages used in the GLMMs were lme4 (Bates et al. 2014) and 

lmerTest (Kuznetsova et al. 2014).  

When modelling the occurrence of ARS behaviour (First Passage Time – 

FPT – duration) in male and female Cory’s shearwaters we used GAMMs to (1) 

select the most parsimonious models explaining FPT and (2) estimate 

smoothers for each of the environmental parameters for the top-ranked models 

(ΔAICc < 2). GAMMs combine the utilities of linear mixed models (Pinheiro & 



 

35 

Bates 2000) and generalized additive models (Hastie & Tibshirani 1990) so that 

random factors, fixed factors and nonlinear predictor variables can all be 

estimated in the same statistical model. We developed separate models for 

male and female birds and included (1) year, (2) breeding experience and (3) all 

different environmental predictors of productivity (e.g. SST) as fixed factors, trip 

identity within bird identity as a random term (to account for pseudoreplication 

issues). 

As part of the gam functions within the R package mgcv (Wood 2002) the 

smoothing parameter is chosen automatically using generalised cross-validation 

(GCV). In order to model spatial auto-correlation we included an isotropic thin 

plate spline which is set up as a two-dimensional smoother based on both x and 

y coordinates (in R this would be specified as s(x,y)). Incorporating a spatial 

smoother is one means of modelling a spatial trend within a model, more details 

on this approach can be found in Wood (2002). Prior to modelling we examined 

correlations between all environmental variables in order to ascertain whether 

collinearity may have occurred. We assumed that a correlation of greater than 

Spearman correlation: rs = 0.5 was problematic, and thus the environmental 

predictor (from the pair of highly correlated ones) which produced the highest 

Akaike Information Criteria (AIC) value on a univariate analysis was excluded. 

Initially we restricted GAMMs to a maximum of 5 knots to prevent over-fitting, 

however if GAMMs failed diagnostic checks we increased the number of knots 

until these checks were satisfactory. For the spatial smoothers in the models we 

used the default settings in the mgcv package (Wood 2002) to estimate the 

number of knots required. When performing GAMMs, minimum adequate 
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models were selected by backwards selection, using K-fold cross-validation, 

where K = 5, following Hastie & Tibshirani (1990). 

To establish the isotopic niche among periods with the stable isotope data 

we applied the recent metric SIBER (Stable Isotope Bayesian Ellipses in R), 

which is based in a Bayesian framework that confers a robust comparison to be 

made among data sets concerning different sample sizes (Jackson et al. 2011). 

The area of the standard ellipse (SEAc, an ellipse that has 40% probability of 

containing a subsequently sampled datum) was adopted to compare between 

inexperienced and experienced bird isotopic signatures and their overlap in 

relation to the total niche width (both groups combined), and a Bayesian 

estimate of the standard ellipse and its area (SEAB) to test whether group 1 is 

smaller than group 2 (i.e. p, the proportion of ellipses in inexperienced birds that 

were lower than in experienced individuals; see Jackson et al. 2011 for more 

details). All the metrics were calculated using standard.ellipse and convexhull 

functions from SIBER implemented in the package SIAR (Stable Isotope 

Analysis in R; Parnell et al. 2010) under R 2.15.2 (Core Team 2014). All data 

are presented as mean ± 1 SD, unless otherwise stated. Results were 

considered significant at p ≤ 0.05.  
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3 Results 

During 2010, 2011 and 2013 the NAO index (Jun - Aug) was on average 

5.7 values significantly lower and the SST within 200km off Berlenga was 2.8 ºC 

significantly higher when compared to 2012 and 2014. During the same 3 years, 

birds travelled ~ 187.3 km significantly further from their colony and spent more 

14.1 % of time in foraging areas when compared to 2012 and 2014. Moreover, 

females travelled ~101.8 km significantly further from their colony and spent 

more 18.5 % of time in foraging areas when compared to male Cory’s 

shearwaters (Table I and II, Fig. 3). SST and ASST were on average 3.2 and 

4.1 ºC significantly higher, respectively, in 2010, 2011 and 2013 than in 2012 

and 2014, while CHLA was 1.1 mgm-3 lower on 2010 when compared to the 

other four years. The plasma carbon and nitrogen signatures were 2.1 and 1.5 

‰ significantly lower and higher, respectively, in the years 2010, 2011, 2014 

than in 2012 and 2013. Females showed a plasma nitrogen signature 2.1 ‰ 

lower and a plasma SEAb 1.2 units higher than males. The adult’s BCI was 0.6 

significantly lower in 2010, 2011, 2013 than in 2012, and 2014, while females 

had a 0.7 lower BCI than males. 

During 2010, 2011 and 2013 there was a significantly smaller proportion of 

overlaps between sexes for both the 50% and the 95% Kernel UD. During 2012 

and 2014, the percentage of overlap between sexes was high (>42.8%) and 

non-significantly different (Table III). 
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41 

 

Figure 3. Home range (contour lines; 95% kernel UD) and foraging areas (filled areas; 50% 
kernel UD) of male (blue) and female (pink) Cory’s shearwaters during the chick-rearing seasons 
of 2010-2014. Polygons a) Raw location data; b) kernel density based utilization distributions at 
95% (dotted lines) and 50% (solid lines). Bass Rock is shown as a square and the approximate 
position of the tidal mixing front each year is shown as a solid black line in (b). Also shown at the 
top-right corner of each map, the value of extended winter (december-march) North Atlantic 
Oscillation (NAO) index according to Hurrel 1995 (https://climatedataguide.ucar.edu/ climate-
data/hurrell-north-atlantic-oscillation-nao-index-station-based). 
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Table III. Estimated overlap (Bhattacharyya's Affinity, BA) between male and female Cory’s 

shearwaters Kernel Utilisation Distributions (Kernel UD). p represents the proportion of randomised 

overlaps that were smaller than the observed overlap 

 

Kernel UD Year % Overlap 

between 

sexes 

BA p 

50% 2010 34.5 0.29 0.02 

 2011 32.4 0.31 0.01 

 2012 42.8 0.42 0.12 

 2013 31.1 0.32 0.01 

 2014 44.6 0.49 0.15 

95% 2010 56.3 0.65 0.04 

 2011 53.1 0.68 0.03 

 2012 68.2 0.76 0.11 

 2013 50.9 0.70 0.05 

 2014 65.8 0.81 0.19 

 

 

Overall, our models showed a good predictable capacity, explaining > 22.4% and > 

22.7% of the deviance in the FPT duration (proxy of foraging activity) of females and 

males, respectively (Table IV). The FPT duration in females increased with increasing BAT 

and BATG and with decreasing distance to land and SST (Fig. 4). Moreover, FPT duration 

was typically higher in experienced females and with lower SSTA, than in inexperienced 

females with higher SSTA. The FPT duration was also higher in recent years and in 

experienced females, than in earlier study years and inexperienced females. FPT duration 

increased in males, with decreasing BAT and BATG, SST and DLAN, while it increased 

with increasing CHLG. Also, FPT duration was also higher in recent years and in 

experienced males, than in earlier study years and inexperienced males (Table IV, Fig. 4).
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4.1 General discussion 

 

 Several studies report partial or complete inter-sexual spatial foraging 

segregation in seabird species, such as in black-browed albatrosses Thalassarche 

melanophris (Huin 2002), cape gannets Morus capensis (Grémillet et al. 2004), 

Hawaiian petrels Pterodroma sandwichensis (Wiley et al. 2012) or streaked 

shearwaters Calonectris leucomelas (Yamamoto et al. 2011). While seeking if inter-

sexual segregation occurred in our study species, our results reveal that individual 

experience as well as sex differences can play a significant role in Cory’s 

Shearwater’s ecology and at-sea behaviour during the chick-provisioning season, 

specially taking into account the changing levels of productivity that occurred in the 

surroundings of the birds’ colony throughout the time frame of our study (2010-

2014). As described by former studies (e.g. Paiva et al. 2013a, 2013b; Haug et al. 

2015) our results also link the negative NAO index values (Hurrel et al. 1995) and 

the subsequent decrease in productivity (proxied by a decrease in CHLA and 

increase in SST) in the Northeast Atlantic with alterations in the foraging behaviour 

of Cory’s Shearwaters breeding in the continental shelf of Portugal.  

In fact, there are a number of studies in relating sexual differences with 

foraging ecology, often with contradictory results. Overall, seabirds with pronounced 

sexual size dimorphism are often more associated with sexual differences in foraging 

behaviour and ecology (González-Solís et al. 2000, Phillips et al. 2004). Sex-specific 

differences in foraging behaviour are usually credited to the influence of body size on 

foraging efficiency and intra-specific competition but there are also studies showing 

no sexual differences in foraging ecology and behaviour (Navarro et al. 2009, Ramos 

et al. 2009). The study presented here shows the importance of examining a large 

range of environmental conditions, indispensable to detect sexual differences in 
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foraging ecology and behaviour, even if such differences are relatively small. 

However, even small differences may be ecologically relevant because both sexes 

will face strong competition when environmental conditions are poor. 

According to our first prediction, our study suggests that inter-sexual 

differences in the foraging behaviour and distribution of Cory’s shearwaters do exist. 

These differences are evident in years of greater stochasticity (specially during 2010, 

2011 and 2013, when NAO index values were very low), when females travelled 

significantly further from their colony and spent more time in foraging areas when 

compared to male Cory’s shearwaters (Table I and II, Fig. 3). Contrastingly during 

the breeding seasons of 2012 and 2014, no significant differences in foraging areas 

were observed, leading us to believe that productivity plays an important role in inter-

sexual differences in the foraging behaviour of these birds.  

On the other hand, and according to our second prediction, life history trait 

factors such as environmental stochasticity, affected both sexes in different ways. 

Females exploited more pelagic waters during poor oceanographic productivity while 

males remained closer to areas surrounding the colony. Interestingly, experience 

also seems to play an important role on the birds foraging behaviour, as our result 

show that inexperienced males exhibit higher values on foraging effort parameters 

(e.g. maximum distance to colony) when compared to more experienced ones. 

Inexperienced individuals presented a higher pelagic behaviour than experienced 

ones, with feeding strategy based on prey located on lower trophic levels. 

Experienced individuals’ distribution was greatly concentrated around coastal areas, 

with few foraging areas and diet based on higher trophic level prey. These results 

could be explained by the fact that young Cory’s shearwaters (non-breeders) spend 

most of the time at sea, as do many other species of seabirds (Warham 1996). Thus, 



Justin da Silva Pereira (2015) Environmental driven sexual segregation in a marine predator 
 

48 

the opportunity is presented to learn and gather information on the conditions and 

foraging opportunities of different sites, allowing them to forage on different location 

of more experienced individuals when productivity is low. By analysing foraging 

distributions of King Penguins (Aptenodytes patagonicus), Péron (2012) emphasised 

the impact of increases on sea surface temperatures. In her study, increases in 

temperature acted as one of the main drivers of foraging distribution on the species, 

inducing birds to search for resources in higher latitudes. It is not unreasonable to 

extrapolate that a similar scenario occurred in Cory’s shearwater, since sea surface 

temperature (SST) was considered one of the most influential environmental 

predictors affecting the spatial distribution of both male/female and 

experienced/inexperienced individuals. 

Finally, results from the stable isotope analysis depicted significant differences 

on the foraging ecology of female and male individuals. Results from the Carbon 

isotope analysis indicates that males foraged closer to land during chick provisioning 

seasons, while females tended to forage in more pelagic areas. These results 

support the conclusions made based on tracking and activity patterns, and fall into 

accord with data from isotopic analyses reported for the breeding season by Haug 

(2015) and Missagia (2015). 

 

4.2  Environmental factors driving inter-sexual foraging segregation  

Our study has considered the NAO as a surrogate of marine productivity. 

Studies by Osborn 2011; Paiva et al. 2013a, have unveiled details about the 

relationship between large scale atmospheric phenomena, driven by the NAO, and 

its effects on different levels of the food web. Negative values for 2010, 2011 and 

2013 have coincided with significant increases in SST and reductions in CHLA, 
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contrasting to what happens in 2012 and 2014, when positive NAO where observed. 

Despite the fact that the at-sea patterns were generally similar between sexes, 

sexual segregation was observed in years of greater environmental stochasticity, 

when marine productivity was the lowest. Birds travelled greater distances from their 

colony as well as spent more time in foraging areas when compared to years of 

higher productivity. Therefore, previous studies finding no evidence of sexual 

segregation in foraging behaviour and foraging strategies of Cory’s shearwater 

(Ramos et al. 2009, Navarro et al. 2009) are partly explained by the fact that they 

were conducted solely during the incubation period, and presumably during years of 

relatively good environmental conditions. In fact, Ramos et al. (2009) suggested that 

subtler differences between the two sexes might exist, for instance in diving 

behaviour, or be detected in resource partitioning such as differences in the size of 

prey consumed between both sexes. While we did not examine such factors in this 

study, we were able to show significant differences between males and females in 

foraging distribution and oceanographic features within the birds’ foraging areas, as 

well as in several aspects of trophic ecology. Foraging trip characteristics, habitat of 

foraging areas, trophic ecology (measured by stable isotope signatures) and body 

condition of females during years of poor environmental conditions were significantly 

affected, and thus differed from those of males (also from females during good 

years). Therefore, our study suggests that sexual differences in foraging ecology for 

the Cory’s shearwater are likely to be relevant during poor environmental conditions. 

Our results make sense in the light of the competitive exclusion by the dominant sex, 

i.e. males over females (Phillips et al. 2004), which will occur mostly when 

environmental conditions are poor and resources are scarce.  Furthermore, previous 

studies regarding such effects were conducted merely during a single breeding 
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season, and thus failed to detect such important influence of environmental 

conditions on sexual foraging segregation. 

Sex-specific niche divergence and habitat segregation can arise from a 

difference between sexes in parental roles (Thaxter et al. 2009) but the roles of male 

and female Cory’s Shearwater do not appear to differ during chick-rearing (Navarro 

et al. 2009). However, males and females could forage in different areas in order to 

ensure that their chicks receive the optimum blend of prey species. Sex-specific 

differences were observed by analysing the first passage time (FPT; a proxy of 

foraging effort), where experienced females appear to spend less time searching for 

prey comparatively with inexperienced female. The foraging ecology of a marine 

predator is highly dependent on the abundance and distribution of prey (Bell 1991), 

and their dispersion is associated to large-scale ocean productivity (Hyrenbach et al. 

2002). Thus the differences presented in foraging behaviour may be given by the 

contrasting productivity in the proximity of the island of Berlenga. The comparison of 

the two NAO values (2010; -4.64 and 2011; -1.6) suggests a large difference in 

oceanographic conditions (Osborn 2011), and therefore, may be a threshold in the 

surroundings of BER when the structure and functioning of marine ecosystems is 

severely affected (Walther et al. 2002) to force birds to leave their habitually 

productive grounds in search of higher prey availability.  

  

4.3 Differential effects of the foraging choices on the trophic ecology of 

both sexes 

Overall, the carbon isotopic signatures suggest that males seem to feed on 

prey inhabiting coastal environments (i.e. higher carbon signature) when compared 

to females, which exhibited a more exploratory and pelagic-oriented foraging pattern 
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(Quillfeldt et al. 2005). The option to forage over more pelagic environments, where 

prey availability is naturally more unpredictable (Weimerskirch 2007), might have 

impacted the body condition of females during our study period. Females seem to 

have been preying on low trophic level prey when compared to males, because they 

presented a lower nitrogen signature mostly during 2010, 2011 and 2013. There 

might be at least two reasons for this, 1) females were more explorative in 2010, 

2011 and 2013 (i.e. years of poor environmental conditions, thus probably with lower 

food availability) preying on low trophic level prey, such as cephalopod or less 

nitrogen rich small pelagic fish species (e.g. Scomber sp; Paiva et al. 2010c), or 2) in 

years of food scarcity birds tend to attend more to fishery discards (Bicknell et al. 

2013) and when doing so, males might gain access to higher trophic level prey in 

competition with females (Navarro et al. 2010). Although both hypotheses can be 

true, only the collection of more tracking and blood data along with vessel monitoring 

system data during subsequent years will disentangle the major driver of this pattern 

between females and males. Nevertheless, both groups were isotopically segregated 

even in years where both sexes were foraging on similar regions (i.e. a higher 

foraging area overlap in 2012 and 2014 than on the other study years), which 

certainly results from individuals feeding on isotopically different prey (Votier et al. 

2011) 

 

4.4 Conservation considerations  

Much has been discussed concerning the impact of climate change on the 

distribution of seabirds. The general agreement points towards the prejudicial effects 

and fluctuations of highly influential environmental predictors, like sea surface 

temperature, dissolved oxygen and productivity rates (Schreiber and Burger, 2001, 
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Irons et al., 2008). In fact, in years of food scarcity birds tend to attend more to 

fishery discards (Bicknell et al. 2013) which arises great concerns, given the danger 

that these behaviours represent to the birds (i.e. mortality through bycatch events; 

Barcelona et al. 2010). It is expected that changes in the environment should cause 

an increase on the global spatial distribution of Cory’s Shearwaters, with 

experienced and inexperienced birds foraging in areas that until now have been 

ignored. Temperature increase can act as one of the main drivers of foraging 

distribution on the species, maybe inducing birds to search for resources in 

increasingly offshore areas and higher latitudes. Although previous studies have 

shown that Cory’s Shearwater present a remarkable foraging plasticity, and may be 

among the species of seabirds better adapted to endure climatic variations (Dias et 

al. 2010; Paiva et al. 2010a), some concerns arise with these shifts in environment 

conditions. For instance, we can also speculate that experienced birds would be 

more affected by shifts in distribution than inexperienced ones, since these birds 

already engage in migratory events that takes them to more pelagic areas (Missagia 

et al. 2015). 

 

4.5  Conclusion 

This study documented a clear spatial segregation of female versus male 

Cory’s Shearwaters as well as inexperienced versus experienced breeders, which 

increased during the last couple of years. Males relied heavily on static variables like 

the bathymetry of the area, while females were much more explorative, having a 

different combination and weighting of important variables (i.e. productivity proxies). 

Females undertook much larger foraging journeys than males, in years of greater 

stochasticity, similar to those during the pre-laying period. This study also adds to 
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previous studies (e.g. Ramos et al. 2009; Navarro et al. 2009), proving that by 

analysing multiple year breeding seasons, sexual segregation in foraging behaviour 

and foraging strategies in Cory’s Shearwater can be observed and thus, subtler 

differences between both sexes may be especially important in years of poor 

environmental conditions. 

Our results also allow us to conclude that experience plays an important role 

determining the occurrence of spatial segregation in the species, showing it as a trait 

that should not be considered by itself, but added to a much bigger group of 

influencing factors. Climate stochasticity might have a significant influence on the 

spatial distribution of the species, exercising greater influence on male and 

experienced individuals (i.e. the group showing a more static distribution). 

Nevertheless, the true effects of such large-scale events cannot be encompassed on 

such a short-term study, making the continuity of monitoring the foraging ecology of 

this species crucial to understand the impact of climate change on this and other 

marine taxa. 
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