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ABSTRACT 

The purpose of this study was to develop an orally disintegrating tablet (ODT) of 

diazepam, taken Quality by Design (QbD) approach to achieve it.  

Pharmaceutical development of ODT of diazepam started with the definition of the 

target quality attributes that it was expected for the final product. These QTPP formed the 

basis of the CQAs, which were identified consequently and used for all experiments.  

The experimental part were divided in two parts: drug product development and 

manufacturing process development. 

In drug product development study, an initial risk assessment was performed in order 

to identify the formulation variables that impact the CQAs. A feasibility study was performed 

and revealed the acceptable compression parameters and the importance of the binder on 

drug product. The factors identified on risk assessment, type and amount of disintegrant were 

analyzed and the results indicated crospovidone as the better superdisintegrant, allowing 

better ODT characteristics. Therefore, crospovidone was used in the next studies.  

For manufacturing process development, an initial assessment of each unit operation 

was made using a Fishbone diagram, to identify potential variables of the process impact 

product quality. A risk assessment was undertaken to identify the process variables (CPPs) 

that that impact on product quality. The manufacturing process development was conducted 

in two studies. The first study evaluated impact of the scaling-up on the compression 

machine, and settled the amount of crospovidone at 30%. A 32 full factorial Design of 

Experiment (DoE) design was used in the second study in order to understand the 

relationship between the compression machine speed and compression force with the drug 

product quality attributes. Results indicated that compression force was the most critical 

compression process factor affecting hardness, disintegration time, wetting time and 

dissolution. 

In summary, it was possible to development an ODT of diazepam through QbD.  

 

Keywords: Orally Disintegrating Tablet, Quality by Design; Design of Experiment; 

superdisintegrant. 
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RESUMO 

O objetivo deste estudo foi desenvolver comprimidos orodispersíveis de diazepam, 

numa abordagem Quality by Design (QbD). 

O desenvolvimento farmacêutico dos comprimidos orodispersíveis de diazepam 

começou com a definição dos atributos de qualidade pretendidos para o produto final. A 

partir destes atributos de qualidade definiram-se os atributos de qualidade críticos. 

A parte experimental foi dividida em duas partes: desenvolvimento da formulação e 

desenvolvimento do processo de fabrico. 

O estudo de desenvolvimento da formulação, iniciou-se por uma avaliação de risco 

com o objectivo de identificar as variáveis da formulação que impactam os atributos de 

qualidade críticos. Foi efetuado um estudo prévio de viabilidade de processo que revelou os 

parâmetros de compressão e a importância da presença do agente aglutinante. Os fatores 

identificados na avaliação de risco, tipo e quantidade de desagregante foram analisados e os 

resultados indicaram a crospovidona como o melhor superdesagregante, permitindo 

melhores características num comprimido orodispersível. Deste modo, a crospovidona foi 

usada nos estudos seguintes. 

Para o desenvolvimento do processo de fabrico, foi feita uma avaliação inicial de cada 

operação da unidade usando um diagrama de Fishbone, para identificar possíveis variáveis do 

processo que afetam a qualidade do produto. Foi efetuada uma avaliação de risco para 

identificar as variáveis do processo que impactam na qualidade do produto. O 

desenvolvimento do processo de fabrico foi realizado em dois estudos. O primeiro estudo 

avaliou o impacto do scale-up da máquina de compressão, e estabeleceu-se a quantidade de 

crospovidona em 30%. No segundo estudo foi delineada uma experiência 32 full factorial, a fim 

de compreender a relação entre a velocidade e força de compressão e os atributos de 

qualidade. Os resultados indicaram que a força de compressão foi o fator crítico processo de 

compressão afetando a dureza, tempo de desagregação, dissolução e tempo de molhagem. 

Em resumo, estes resultados demonstram que foi possível desenvolver comprimidos 

orodispersíveis de diazepam através QbD.  

 

Palavras-chave: Comprimidos orodispersíveis, Quality by Design; Design of Experiments; 

superdesagregante. 
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CHAPTER I – INTRODUCTION 

1. Orally Disintegration Tablets 

1.1. History 

Despite the remarkable development in drug delivery technology, orally drug delivery 

remains the preferred route for administration of drugs due the accurate dosage, low-cost of 

therapy, ease of administration and patient compliance.1 In this case, tablets and capsules 

represents the most popular forms among oral drug delivery systems, occupying a large 

portion of oral dosage forms that are presently available. However, traditional tablets and 

capsules may have some inconvenient for patients with swallowing difficulties, especially 

paediatric and geriatric patients, people with conditions related to impaired swallowing, and 

for treatment of patients when compliance may be difficult (e.g., for psychiatric disorders). 

Moreover, orally administered conventional tablets or capsules can be a problem for 

travelling patient with limited access to water. To overcome these difficulties, a large number 

of solid oral dosage forms have been developed, as the orally disintegration tablets (ODTs).  

Orally disintegrating tablets, classification assumed by United States Food and Drug 

Administration (FDA), is the general form of nomenclature for tablets that disintegrate 

rapidly or instantly in the oral cavity. In its turn, European Pharmacopoeia (Ph. Eur.) adopted 

the term orodispersible tablets. Despite the similarity between the names, they have owns its 

definition. The earliest United States regulatory definition for an ODT consisted in “a solid 

dosage form containing medicinal substances which disintegrates rapidly, usually within a 

matter of seconds when placed upon the tongue”.2 More recently, FDA approved a new 

guideline which recommend an in vitro disintegration time less than 30 seconds, when 

examined by the disintegration test or an alternative method, on United States Pharmacopeia 

(USP).3 Also, it suggests a tablet weight not more than 500 mg, although the combined 

influence of tablet weight, size, and component solubility all factor into the acceptability of an 

ODT for both patients and regulators.4 According to Ph. Eur., “orodispersible tablets are 

uncoated tablets intended to be placed in the mouth where they disperse rapidly before 

being swallowed”.  It also, should disintegrate within 3 minutes, when based on Ph. Eur. 

disintegration test method for tablets or capsules.5 

Historically, Claritine (loratidine) was the first ODT form of a drug to get approval 

from the FDA in 1996. It was followed by Klonopin (clonazepam) in 1997, Maxalt (rizatriptan) 

in 1998. Today, there are several pharmaceutical companies present ODTs in their portfolio, 

as shown in Table I. 
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Product Company Indication 

Zomig ZMT AstraZeneca Migraine 

Zofran ODT Glaxo SmithKline 
Reactions to surgery, 

chemotherapy, radiation 

Maxalt-MLT Merck Migraine 

Claritan RadiTabs Schering-Plough Antihistamine 

Aricept ODT Eisai Alzheimer’s disease 

Zyprexa Zydis Eli Lilly Schizophrenia, bipolar disorder 

Benadryl Fastmelt products Johnson & Johnson Allergy, cold, sinus 

Remeron SolTab Organon Depression 

Table 1 – ODTs commercially available. 

The first generation of ODT technologies revealed certain limitations. Despite these 

technologies produce tablets that dissolve rapidly in the mouth, provide convenience and 

ease of swallowing, they lack the ability to effectively mask poor-tasting active pharmaceutical 

ingredients and accommodate high doses. As a result, these technologies limited their 

application to non-bitter APIs and the therapeutic application to low dose drugs.6 

Furthermore, first generation ODTs are commonly characterized by high porosity, low 

density, and low hardness, making them brittle and difficult to handle.6  

Today, the available generation of ODT technologies overcome the first generation of 

ODTs problems and offer unique applications. In fact, these new technologies combine a 

process to improve taste masking, allow a modified-release profile, and enhance 

bioavailability.7-9 Consequently, new generation of ODT technologies provide higher API 

loading, more effective taste masking, low friability, cost-effective development, and more 

packaging options, expanding the range of therapeutic applications.7-9 As a result, new 

generation ODTs exhibit excellent physical robustness, a pleasant taste in mouth and 

tremendous disintegration properties. 

 

1.2. Ideal properties of ODTs 

The performance of ODTs depends on its formulation and manufacturing and the 

most necessary property is the ability of rapidly disintegrating and dispersing or dissolving in 

the saliva. ODTs should show some characteristics to distinguish them from traditional 

conventional dosage forms. Ideal appropriate characteristics of these dosage forms include:10-

12 

 Require no water for oral administration, but it should dissolve or disintegrate in the 

mouth usually within few seconds 

 Allow high drug loading 
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 Provide pleasant feeling in the mouth 

 Be compatible with taste masking and other excipients 

 Leave minimal or no residue in the mouth after oral administration 

 Should be harder and less friable. 

 

1.3. Advantages and Limitations of ODTs 

The ODTs show the following advantages, in comparison to the traditional oral 

formulations:13-16 

 Ease of administration to geriatric, paediatric, psychiatric and disabled patients who 

are unable or have difficulty in swallowing 

 Does not require water for oral administration, being useful for patients who are 

travelling or do not have immediate access to water 

 Easy manufacturing, accurate dosing, good physical and chemical stability as a solid 

dosage form 

 Adaptable to conventional processing and packaging machinery, allowing the 

manufacturing of tablets at low cost 

 Possibility of improved bioavailability due to rapid absorption and faster onset of 

therapeutic action, improving clinical performance and providing rapid drug therapy 

intervention. Also, it helps avoids hepatic metabolism by allowing pre-gastric drug 

absorption thus reducing the dose of drug required 

 Can be designed to leave minimal or no residue in the mouth after administration and 

also to provide a pleasant mouth feel 

 Provide new business opportunities in the form of product differentiation, patent-life 

extension, line extension, and life cycle management, and exclusivity of product 

promotion. 

Despite the numerous benefits, this fast dissolving tablets may have some limitations, 

including:17-21 

 The tablets usually have insufficient mechanical strength and therefore careful handling 

is required 

 It may leave unpleasant taste in mouth if not formulated properly 

 Drugs with relatively large doses are difficult to formulate into ODTs 

 Requires special packaging for properly stabilization and safety of stable product 

 It is hygroscopic in nature, so must kept in dry place. 
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1.4. Challenges in formulating ODTs 

Despite the recent advances, formulation and manufacturing of ODTs still possess a 

great challenge for the formulation scientist, since they have a number of problems in the 

manufacturing and quality control. 

A critical challenge and characteristic in oral drug delivery systems is palatability and 

mouth feel, affecting patient compliance. Many active pharmaceutical ingredients (API) have an 

offensive or bitter taste and require flavoring and sweeteners to overcome the unpleasant 

flavor. Other techniques are available for masking the bitter taste, which includes taste 

masking by ion-exchange resins, by coating with hydrophilic vehicles or using lipophilic 

vehicles.22 Also, ODTs should disintegrate into fine particles in the oral cavity in order to 

leave minimal or no residue in mouth after oral administration. The addition of flavoring and 

cooling agents like menthol improves the mouth feel.23 

For allowing disintegration of tablets in the oral cavity, ODTs should have a porous 

matrices or be compressed with very low compression force. These could result in soft, 

friable tablets with a weak mechanical strength. In other hand, tablets with high mechanical 

strength leads to a larger disintegrating time. Therefore, it is required a proper balance 

between the compression pressure and disintegrating time to get the quality ODT.24 

The hygroscopicity of ODT excipients is other challenge to overcome during 

pharmaceutical development. Most of these excipients are highly soluble in water in order to 

enhance fast dissolving properties as well to create good mouth feel. To overcome this 

challenge and protect ODT from humidity a good packaging should be provided.25 

The technology used for ODTs should be acceptable in terms of cost of the final 

product. Also, the special and specific packaging that they may need, could increase the cost 

to a remarkable extent. 

 

1.5. Formulation aspects of ODTs 

Important ingredients that are used in the formulation of ODTs should allow quick 

release of the drug, resulting in faster dissolution, promote a good taste and mouth feel, 

support mechanical strength of tablets, allows a good bioavaibility, keep the stability and 

exhibit swalloability properties. Excipients balance the properties of the active 

pharmaceutical ingredient in ODTs. This demands a thorough understanding of the chemistry 

of these excipients to prevent interaction with the actives.  

For drug selection, several factors may be considered for development of ODTs. The 
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critical characteristics of a drug for dissolution in mouth and pregastric absorption orally 

disintegration dosage forms include: 26,27 

 Ability to permeate through the oral mucosa 

 At least partially non-ionized at the oral cavity 

 Have the ability to diffuse and partition into the epithelium of the upper 

gastrointestinal tract (log P > 1 or preferably >2) 

 Small to moderate molecular weight (< 300) 

 Low dose drugs preferably less than 50 mg 

 Good stability in saliva and water 

 No bitter or unacceptable taste and odour. 

In contrast, the following characteristics may be unsuitable for drug delivery as an 

ODTs: 28 

 Short half-life and frequent dosing 

 Very bitter or otherwise unacceptable taste 

 Required controlled or sustained release 

 Combination with anticholinergics. 

Category Examples 

Anti-diabetics Glipizide, Tolbutamide, Glibenclamide, Tolazamide, Gliclazide, Chlorpropamide 

Anti-hypertensive Minoxidil, Nimodipine, Amlodipine, Terazosine, Prazosin, Diltiazem 

Anti-arrhythmics  Quinidine, Amiodarone, Disopyramide 

Anti-histaminics Loratadine, Cetrizine, Cinnarizine, Triprolidine, Texofenadine 

Diuretics Acetazolamide, Spironolactone, Furosemide, Amiloride 

Analgesics Ibuprofen, Ketoprofen, Diclofenac, Mefenamic acid, Piroxicam, Indomethacin 

Antibacterial agents Penincillin, Rifampicin, Trimethroprim, Cirpofloxacin, Tetracyclin, Doxycyclin 

Anxiolytics, sedatives, hypnotics, 

neuroleptics  

Diazepam, Alprazolam, Clozapine, Mylobarbitone, Lorazepam, Haloperidol, 

Nitrazepam , Midazolam, Phenobarbitone, Thioridazine, Oxazepam 

Corticosteroids Hydrocortisone, Betamethasone, Beclomethasone, Prednisolone 

Gastro-intestinal agents Ranitidine, Famotidine, Cimitidine, Omeprazole, Ondansteron, Domperidone 

Table 2 – API used in ODT formulation.29,30 

Researchers have formulated ODT for various categories of drugs, as shown in Table 

2. These include cardiovascular agents, antiallergic, diuretics, analgesics, antibacterial agents, 

anxiolytics, sedatives, hypnotics, neuroleptics, corticosteroids and gastro-intestinal agents. In 

this work, it will be used diazepam as active pharmaceutical compound. 

Concerning to excipient selection, the most used in orally disintegration dosage 

forms includes at least a disintegrant, a diluent, a lubricant, and optionally, a swelling agent, 

sweeteners, and flavoring agents. Excipients to be used for the preparation of ODTs should 
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disperse and dissolve in the mouth within a few seconds without leaving any residue, masks 

the taste of drug and offers a pleasant mouth feel, enables sufficient drug loading and remains 

relatively unaffected by changes in humidity or temperature. Therefore, excipients has an 

important role in the formulation of ODTs. These excipients, when incorporated in the 

formulation, offers the desired organoleptic properties and product efficacy. In formulation of 

ODTs, it can be used: 

 Flavoring agents to increase product acceptability and patient compliance. Its intent to 

produce pleasant taste and mouth feel. Examples of flavors used are vanilla, citrus oil, 

fruit essence, eucalyptus oil and peppermint oil. 

 Sweeteners, which can be natural or artificial and it act as bulking agents. They exhibit 

a good aqueous solubility and sweetness and have an important taste masking 

property. Typical sweeteners used in ODT formulation are aspartame, dextrose, 

fructose, mannitol, sorbitol and maltose. 

 Fillers or diluents, which are added to formulations to enhance bulk of dosage form. It 

also improve cohesion, enhance flow properties of the powder and allow direct 

compression manufacturing. Mannitol, sorbitol, xylitol, calcium carbonate, magnesium 

carbonate, calcium sulfate, magnesium trisilicate are the fillers most used for 

formulating ODTs. 

 Surface active agents, which reduce interfacial tension and thus enhances 

solubilization of ODTs. Examples of surface active agents are sodiumlaurlysulfate, 

sodiumdoecylsulfate, polyoxyethylene sorbitan fatty acid esters and polyoxyethylene 

stearate. 

 Lubricants, which are incorporated into dosage forms to support the manufacturing 

process. It help to reduce friction and wear by introducing a lubricating film. 

Lubricants include calcium and magnesium stearate, polyethylene glycol, stearic acid 

and talc. 

 Coloring agents, which help with product identification and are also used for 

consistency with flavors, particularly in children’s formulations. Its enhance appearance 

and organoleptic properties of dosage form. Coloring agents include sunset yellow, 

red iron oxide and amaranth. 

 Binders or adhesives, which are the substances that promotes cohesiveness. It 

maintains integrity of dosage form. Some common binders are povidone, PVP, 

Polyvinylalchol, Hydroxy propyl methylcellulose. 

 Disintegrants, which increase the rate of disintegration and dissolution. For the 
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success of orally disintegrating tablet, the tablet having quick dissolving property 

which is achieved by superdisintegrants. The most common superdisintegrants are 

crospovidone, croscarmellose sodium, sodium starch glycolate, 

carboxymethylcellulose and modified corn starch. The next point details the most 

important aspects of superdisintegrants. 

 

1.6. Superdisintegrants 

As seen before, disintegrants are agents added to tablet formulations to promote the 

breakup of the tablet into smaller fragments in presence of water and the dispersion of the 

tablet matrix. This phenomenon increases the available surface area and promotes a more 

rapid release of the drug substance. Disintegrants have the important purpose to compete 

against the efficiency of the binder and the physical forces that act in tableting. In its turn, 

superdisintegrant refers to a substance which achieves disintegration faster than the 

disintegrants conventionally used, resulting in higher rates of drug dissolution.31 In fact, 

disintegration has received a significant consideration as an critical step in obtaining faster 

drug release, improving the availability of the drug.32 Therefore, the proper choice of 

superdisintegrants have a primary role in ODT formulation. Ideally, superdisintegrant should 

exhibit poor solubility, leads to poor gel formation, have good hydration capacity, 

compressibility and flow properties and no tendency to form complexes with the drugs. 

 The mechanism for tablet disintegration affects decisively the rate and extent of tablet 

disintegration and drug release, and depends on the type disintegrant used. There are some 

mechanisms responsible for the breaking of tablets into small particles, including: 

 Swelling 

 Porosity and capillary action (Wicking) 

 Deformation Recovery 

 Particle Repulsive Forces 

 Heat of wetting 

 Chemical reaction 

 Enzymatic reaction 

Swelling is the most widely accepted and principal mechanism for tablet 

disintegration. In this situation, superdisintegrants particles swells when they come in contact 

with water, resulting in loss of adhesiveness of the tablet components. In consequence the 

matrix breaks up into fine particles. It is important to note that tablets with high porosity 

show poor disintegration due to lack of adequate swelling force. The same result are 
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presented in tablets with very low porosity: water has troubles in penetrates into matrix, and 

so, superdisintegrants do not swells.33,34 

Capillary action is the mechanism by which the water penetrates into the tablets and 

replace the air adsorbed on the particles. Tablet porosity provides pathways for the 

penetration and as result, intramolecular bonds break and the tablet disintegrates into 

smaller particles. The water penetration depends on hydrophilicity of the tablet components 

and on the porous structure of the tablet.33,34 

 In deformation recovery, the deformed particles get into their normal structure when 

they are exposed to aqueous environment. These deformed particles are result from the high 

compaction force during tableting. The energy potential of the particle size increasing causes 

a breaking up of the tablet.33,34 

 The particle repulsion mechanism is based on the electric repulsive forces between 

particles, in presence of water, resulting in tablet disintegration. This mechanism is secondary 

to wicking.33,34 

Another mechanism of disintegration is the chemical reaction between tartaric acid 

and citric acid (acids) with alkali metal carbonates or bicarbonates (bases) in presence of 

water. This reaction release CO2 in gas form, and creates a pressure within the tablet, 

promoting the tablet disintegration. These disintegrants are highly sensitive to humidity level 

and temperature, requiring a strict control environment during manufacturing and good 

packaging material.33,34 

In heat of wetting, disintegrants exhibit exothermic properties, and when wetted, a 

stress is generated, which helps the disintegration of tablet.33,34 

Enzymes can also act as disintegrants. This substances, through enzymatic reaction, 

disrupt the binding action of binder and facilitates the disintegration. The water absorption 

and swelling mechanism are enhanced. Amylase, protease and cellulase are some examples of 

disintegrating enzymes.33,34 

 Despite all mechanisms described, swelling, wicking and deformation are the three 

major mechanisms observed for tablet disintegration.  Also, it is noted that a combination 

action of mechanisms occurs for a large number of superdisintegrants.35 

Superdisintegrants can be classified into 2 classes, based on its origin: 

 Natural 

 Synthetic  

Natural superdisintegrants are original from Nature and in comparison to synthetic 

superdisintegrants, are comparatively cheaper, abundantly accessible, non-irritating and 
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nontoxic.36 These superdisintegrants are bio-acceptable, eco-friendly and come from a 

renewable source. Also, based on their molecular structures, they are capable of chemical 

modifications, generating superdisintegrants with different properties.37 Mucilages and gums 

are the most explored substances as natural superdisintegrants. Table 3 shows the most 

common natural superdisintegrants used in ODT formulation. 

Superdisintegrant Mechanism 

Alginate  

(Alginic acid) 

It has affinity for water absorption and high 

sorption 

Soy polysaccharides 
Rapid swelling in aqueous medium or wicking 

action 

Gums  

(Guar gums, gum Karaya, Agar, Gellan gum) 
Swells in water 

Chitin and Chitosan Moisture sorption and water uptake 

Smecta 
It has a large specific area and high affinity for 

water makes it good disintegrant 

Isapghula Husk 
It has high swellability and gives uniform and 

rapid disintegration 

Table 3 – Natural superdisintegrants. 

The group of synthetic superdisintegrants integrates a variety of compounds, being 

modified cellulose, crosslinked polyvinyl-pyrrolidone and modified starch the classes of 

superdisintegrants most commonly used in ODT formulation. These fast working 

disintegrants are chemically modified polymeric molecules, typically by crosslinking the 

organic chains. Synthetic superdisintegrants are more effective in lower concentrations than 

standard disintegrants and the compressibility and flowability are less affect in the presence 

of these substances.38 However, they have a hygroscopic nature, which can affect moisture 

sensitive drugs, and some of them are anionic and may cause, in vitro, some slight binding with 

cationic drugs.39 The most common synthetic superdisintegrants used are sodium starch 

glycolate, crospovidone and croscarmellose sodium and they will be subject of study in this 

work. 

 Sodium starch glycolate is, chemically, a sodium salt of carboxymethyl ether of starch. 

It is white to off white tasteless, odorless, relatively free flowing powder, and it can be used in 

direct compression and wet-granulation processes. Figure 1 shows the structure of sodium 

starch glycolate. The mechanism by which disintegration occurs is by rapid water absorption 

and swell leading to a huge increase in volume which result in rapid and uniform tablet 

disintegration. However, sodium starch glycolate gels on prolonged exposure to water and at 

high concentration.39The extent of crosslinking and the degree of substitution are important 

factors in disintegration properties of this substance.40 In fact, crosslinking allows the 

reduction of the water soluble fraction of the polymer and the viscosity of dispersion in 
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water. In addition, the inclusion of large hydrophilic carboxymethyl groups disrupt the 

hydrogen bonding within the polymer structure, allowing water penetration into molecule. A 

good balance between the degree of substitution and the extent of cross-linking allows for 

rapid water uptake by the polymer without the formation of a viscous gel that might hinder 

dissolution.41 For instance, natural pre-dried starches swell in water to the extent of 10-20 

percent and the modified starches increase in volume by 200-300 percent in water.42 Sodium 

starch glycolate is commercially available as Explotab® and Primogel® among others. 

 

Figure 1 – Basic chemical structure of sodium starch glycolate. 

Croscarmellose sodium is a cross-linked polymer of carboxymethylcellulose and it 

may be used in tablets prepared by direct compression and wet granulation processes. 

Crosslinking makes it insoluble, hydrophilic, highly absorbent material. Thus, croscarmellose 

sodium swells in a large extent in aqueous medium, with minimal gel formation, resulting in 

rapid disintegration.43 Also, the fibrous structure of croscarmellose particles allows intra and 

extraparticulate wicking, results in rapid disintegration.44 Figure 2 shows the chemical 

structure of croscarmellose sodium.  This modified cellulose substance reveals a degree of 

substitution higher than that of sodium starch glycolate. Furthermore, the mechanism of 

cross-linking is different, where the carboxymethyl groups are themselves used to crosslink 

the cellulose chains. Croscarmellose sodium swells 4-8 folds in less than 10 seconds.45 Ac-Di-

Sol® or Primellose® are examples of croscarmellose sodium commercially available. 

 

Figure 2 – Basic chemical structure of croscarmellose sodium. 

Crospovidone is a synthetic homopolymer of cross-linked N-vinyl pyrrolidinone and it 
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is a white, free flowing, compressible powder and hygroscopic in nature. Direct compression, 

wet and dry granulation processes can be used to prepared tablets with crospovidone. 

Besides the rapid swelling capacity in water, without gel formation, crospovidone use 

deformation and wicking action as mechanism for tablet disintegration. The basic chemical 

structure of crospovidone is represented in Figure 3. In fact, unlike other superdisintegrants 

which have a lower crosslink density and, as a result, form gels when fully hydrated, 

particularly at the higher use levels in ODT formulations, crospovidone has a higher degree 

of crosslinking, providing rapid swelling and dispersion in water, with no gel formation even 

after prolonged exposure. Also, the granular and highly porous morphology of crospovidone 

particles facilitates water absorption by capillary action and excellent compressible 

properties, unlike other superdisintegrants which are poorly or non-compressible, resulting 

in extremely deformed crospovidone particles. Therefore, crospovidone uses a combination 

of deformation, wicking and swelling actions to tablet disintegration: when the water contacts 

the deformed crospovidone particles, being wicked into the tablet, the particles recuperate 

their normal structure and then swell, resulting in rapid volume expansion and high 

hydrostatic pressures that cause tablet disintegration.36,39 Crospovidone is commercially 

available as PolyplasdoneTM or Kollidon® among others. 

 

Figure 3 – Basic chemical structure of crospovidone.  

 Table 4 resumes the characteristics and properties of the superdisintegrants used in 

the work. 

Superdisintegrant Chemical structure Mechanism 

Sodium Starch Glycolate 
Sodium salt of carboxymethyl 

ether of starch 

Water uptake followed by rapid 

and enormous swelling 

Croscarmellose Sodium 
Crosslinked from sodium 

carboxymethylcellulose 

Swelling with minimal gelling and 

wicking 

Crospovidone 
Synthetic homopolymer of cross-

linked N-vinyl-2-pyrrolidone 

Combination of deformation, 

wicking and swelling actions 

Table 4 – Characteristics and properties of superdisintegrants. 
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1.7. Technology used in ODT formulation 

The performance of ODTs depends on the technologies used in their manufacturing. 

A number of different techniques such as direct compression, freeze drying/lyophilization, 

moulding, mass extrusion or spray drying are used for manufacturing ODTs.  

The three conventional technologies most commonly used are direct compression, 

freeze drying, and molding.46-48 Direct compression is the favorite method since it uses 

conventional equipment, commonly available excipients and a limited number of processing 

steps that minimizing manufacturing costs, and provides strong tablets that can be handled 

without disintegrating. Freeze drying or lyophilization is the process in which water is 

sublimed from the product after it is frozen. The resulted tablets have an amorphous porous 

structure and are fragile, requiring a special blister pack, and a higher cost for equipment and 

packaging. Freeze drying also requires longer processing time. The tablets prepared by 

lyophilization disintegrate rapidly in less than 5 seconds due to quick penetration of saliva. 

Also, lyophilization is useful for heat sensitive drugs. Tablets prepared by moulding are solid 

dispersions. The major advantage of this technique is that as the dispersion matrix is made 

from water soluble sugars, moulded tablets disintegrate more rapidly and offer improved 

taste Molded tablets are typically soft and can break during handling or when blister packets 

are opened.  Others conventional technologies included: mass extrusion, sublimation, spray 

drying, cotton candy process and nanonization.49-52 

The new generation of ODT technologies overcomes many of conventional 

technologies problems and offers unique applications. Some can be combined with other 

drug delivery technologies for enhanced therapeutic benefits. Some patented formulation 

technologies, used to formulate the fast disintegrating tablets are described in Table 5.53 

 

Patented technology Company Commercially available products 

AdvaTabTM  Eurand AdvaTab Cetrizine, AdvaTab Paracetamol 

Durasolv Cima Labs Inc. NuLev, Zomig ZMT 

Flashtab Prographarm Nurofen®, Flashtab® 

LyocTM Cephalon-France, Inc. Sermion®, Paralyoc®, Seglor® 

Orasolv Cima Labs Inc. Remeron Soltab, Tempra FirstTabs 

Quicksolv Janssen Pharmaceutica Risperdal QuickletTM, Propulsid® 

Oraquick KV Pharmaceutical Co., Inc. Hyoscyamine Sulfate ODT 

Wowtab Pfizer/Yamanouchi Pharma Benadryl Allergy, Sinus Fastmelt 

Zydis Catalent Ativan®, Claritin, Imodium®, Feldene melt, Zyprexa® 

Table 5 – Patented formulation technologies for ODTs. 
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2. Quality by Design 

2.1. History 

Quality by Design (QbD) is increasingly becoming an important and widely used term 

in the pharmaceutical industry quality system. QbD can be considered to be a holistic, 

system-based approach to the designing and developing formulation and manufacturing 

processes which ensures predefined product specifications.54 

In 2002, in order to establish a more systematic and risk based approach to the 

development of pharmaceutical products, using the progresses in science and technology, 

Food and Drug Administration (FDA) announced the “cGMP for the 21st Century: A Risk 

based Approach” Initiative.55 This initiative, focused on QbD, and the publication of the 

Process Analytical Technology (PAT) Guidance in 2004 by the FDA contributed decisively for 

the modernization of the pharmaceutical industry and challenged them to look beyond the 

traditional approach of Quality by Testing (QbT).56 In addition to these new ideas, three 

important guidance documents were published as part of International Conference on 

Harmonization (ICH) guidelines: Q8 Pharmaceutical Development and Q9 Quality Risk 

Management, in 2005, and ICH Q10 Pharmaceutical Quality System, in 2008. These guidance 

documents implemented together, in a holistic manner, provides an effective system that 

emphasizes a harmonized science and risk-based approach to product development, assuring 

an improving in Quality in pharmaceutical industry.54,57-59 

In ICH Q8 guidance, the concept of QbD was mentioned, stating that “quality cannot 

be tested into products, i.e., quality should be built in by design”.54 In 2009, the ICH Q8 

guidance was reviewed, clarifying key concepts of the original guidance. Additionally, the 

principles of QbD were describes and QbD defining as “a systematic approach to 

development that begins with predefined objectives and emphasizes product and process 

understanding and process control, based on sound science and quality risk management”.57  

This framework represents a move away from the traditional approach in the industry 

of QbT and was relatively new to the pharmaceutical industry at the beginning of the twenty-

first century.  However, it can be found the application of some principles of QbD across the 

industry long before then, but in an isolated way.  Table 6 compares the current state to the 

desired QbD state. 
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Aspect Current state Desired QbD state 

Pharmaceutical Development Empirical; typically univariate Systematic; multivariate experiments 

Manufacturing Process 
Locked down; validation on three 

batches; focus on reproducibility 

Adjustable within design space; 

continuous verification within design 

space; focus on control strategy 

Process Control 
In-process testing for go/no-go; 

offline analysis 

PAT utilized for feedback and feed 

forward in real time 

Product Specification 
Primary means of quality control; 

based on batch data 

Part of overall quality control strategy; 

based on product performance 

Control Strategy 
Mainly by intermediate and end 

product testing 

Risk-based; controls shifted upstream; 

real-time release 

Lifecycle Management 
Reactive to problems and OOS; 

postapproval changes needed 

Continual improvement enabled within 

design space 

Table 6 – Comparison between the current state and the desired QbD state. 

In fact, QbD is a comprehensive approach targeting all phases of drug discovery, 

manufacture, and delivery. The aim is to improve the quality and reduce the costs of 

medicines for the consumer.  This may be an interactive systematic approach and thus the 

circular design as shown in Figure 4. This circle of QbD can be divided into two general areas, 

product knowledge and process understanding. These two areas meet in the design space and 

the interaction of product knowledge and process understanding allows for continuous 

improvement. 

 

Figure 4 – Quality by Design concept. 
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QbD begins by defining the desired product performance and also by defining a 

product that meets those performance requirements. The characteristics of the desired 

product are the basis for designing the manufacturing process, which needs to be monitored 

in terms of performance. Each of these steps influence each other, continuing the cycle. The 

inner circle interacts with many other specific measures of pharmaceutical manufacturing, 

such as specifications, critical process parameters, ensuring the product knowledge and 

process understanding. 

The underlying principles of QbD are explained in the quality guidelines of 

international conference on harmonization i.e. ICH Q8 Pharmaceutical Development, ICHQ9 

Quality Risk Management, and ICH Q10 Pharmaceutical Quality System. Figure 5 presents 

the guidelines that explain QbD.  

 

Figure 5 – ICH Q8/Q9/Q10 triangle in QbD paradigm. 

The application of QbD presents several advantages and can be summarized as:60 

 Patient safety and product efficacy are focused 

 Scientific understanding of pharmaceutical process and methods is done 

 It involves product design and process development 

 Science based risk assessment is carried 

 Critical quality attributes are identified and their effect on final quality of product is 

analyzed 

 It offers robust method or process 

 Business benefits are also driving force to adopt QbD 
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2.2. Elements of Quality Design 

ICH guideline Q8 refers all elements of pharmaceutical development included in QbD. 

In a marketing authorization application, the Pharmaceutical Development section is 

projected to provide a complete understanding of the product and manufacturing process. 

The aim of this section is to design a quality product and its manufacturing process to 

consistently deliver the intended performance of product. The information and knowledge 

gained from pharmaceutical development studies and manufacturing experience provide 

scientific understanding to support the establishment of the specifications, and manufacturing 

controls. During pharmaceutical development, QbD suggests that it should include the 

following elements: 

 Defining the quality target product profile (QTPP) 

 Identifying potential critical quality attributes (CQAs) 

 Link raw material attributes and process parameters to CQAs and perform risk 

assessment 

 Developing a design space 

 Designing and implementing control strategy 

 Continuous improvement 

 

2.2.1. Defining Product Design Requirements and Critical Quality 

Attributes 

The product design requirements must be well understood in the early design phase, 

and they can be found in a Quality Target Product Profile (QTPP). The QTPP is derived from 

the desired product information and it has been defined as “a prospective summary of the 

quality characteristics of a drug product that ideally will be achieved to ensure the desired 

quality, taking into account safety and efficacy of the drug product”.57Therefore, 

pharmaceutical companies construct a target product profile that describes: 

 Intended use in clinical setting, route of administration, dosage form, delivery Systems 

 Dosage strength(s), Container closure system 

 Therapeutic moiety release or delivery and attributes affecting, Pharmacokinetic 

characteristics (e.g., dissolution, aerodynamic performance) 

 Drug product quality criteria like sterility, purity, stability and drug release as 

appropriate for dosage form the intended for marketing  

The QTPP guides scientists to establish strategies and keep the product developing 
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effort focused and efficient. 

In addition to defining the requirements to design the product, the QTPP will help 

identify critical quality attributes (CQAs). ICH Q8 defines CQA as “a physical, chemical, 

biological, or microbiological property or characteristic that should be within an appropriate 

limit, range, or distribution to ensure the desired product quality”.3 CQAs are generally 

linked with the drug substance, excipients, intermediates (in-process materials) and drug 

product. Quality risk management tools, found in the ICH Q9 guideline, are often used to 

identify and prioritize the potential CQAs.58 Relevant CQAs can be identified by a dynamic 

process quality risk management and experimentation that evaluates the extent to which 

their variation can have an impact on the ultimate quality product. The accumulated 

experience, the knowledge obtained from similar products and from literature references are 

essential to make these risk assessments. Taken together, this data provides a rationale that 

links the CQA with the safety and efficacy of the product. The outcome of the risk 

assessment would be a list of CQAs ranked in order of importance. The potential CQAs can 

be modified when the formulation and manufacturing processes are selected and as product 

knowledge and process understanding increase.  

 

2.2.2. Quality Risk Management in QbD 

Risk management has become a priority process in the pharmaceutical industry with 

the advances in the QbD. As seen before, QbD is based on sound science and quality risk 

management. It is a systematic approach to development that begins with predefined 

objectives and an emphasis on product process understanding and process control. In order 

to achieve this, a risk management process has to be a priority.58 

Quality risk management is a systematic process for the assessment, control, 

communication and review of risks to the quality of the drug product across the product 

lifecycle.58 ICH Q9 discusses the role of risk management in pharmaceutical industry. For 

pharmaceutical development, ICH Q9 suggests the application of the principles and tools of 

quality risk management to:58 

 Select the optimal product design and process design 

 Enhance knowledge of product performance over a wide range of material attributes, 

processing options, and process parameters 

 Assess the critical attributes of raw materials, solvents, Active Pharmaceutical 

Ingredient (API), starting materials, APIs, excipients, or packaging materials 

 To establish appropriate specifications, identify critical process parameters and 
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establish manufacturing controls 

 Decrease variability of quality attributes 

 Assess the need for additional studies relating to scale up and technology transfer 

 Make use of the “design space” concept (see ICH Q8). 

Quality risk management supports a scientific and practical approach to decision-

making, assessing the probability, severity and sometimes detectability of the risk. In 

pharmaceutical development, risk assessment is important in identifying which material 

attributes and process parameters potentially have an effect on product CQAs – Critical 

Material Attributes (CMAs) and Critical Process Parameters (CPPs). Risk assessment is 

typically performed early in the pharmaceutical development process and is repeated as 

more information becomes available and greater knowledge is obtained. 

Risks to quality can be assessed in a variety of informal ways (empirical and / or 

internal procedures) based on, for example, compilation of observations, trends and other 

information. Such approaches continue to provide useful information that might support 

topics such as handling of complaints, quality defects, deviations and allocation of resources.58 

Additionally, the pharmaceutical industry can evaluate the risk using recognized risk 

management tools. Some of these tools are:58 

 Basic risk management facilitation methods (flowcharts, check sheets, cause and effect 

diagram, etc.) 

 Failure Mode Effects Analysis (FMEA) 

 Failure Mode, Effects and Criticality Analysis (FMECA) 

 Fault Tree Analysis (FTA) 

 Hazard Analysis and Critical Control Points (HACCP) 

 Hazard Operability Analysis (HAZOP) 

 Preliminary Hazard Analysis (PHA) 

 Risk ranking and filtering. 

These tools might be adapted for use in specific areas to drug substance and drug 

product quality. Also, quality risk management methods and some supporting statistical tools 

can be used in combination. Combined use provides flexibility that can facilitate the 

application of quality risk management principles.58 

The statistical tools can support and facilitate quality risk management. They can 

enable effective data assessment, aid in determining the significance of the data set(s), and 

facilitate more reliable decision making. Example of statistical tool are Design of Experiments, 

Control Charts, Histograms, etc.  
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2.2.2.1. Design of Experiments (DoE) 

Traditional pharmaceutical development approaches are often limited by experiments 

that test one-at-a-time variability. Comprehensive Design of Experiments uses 

multidisciplinary teams to design and execute soundly based statistical designs to gain a full 

understanding of the product and its manufacturing process. The output of DoE confirms 

CQAs and CPPs that need to be controlled in the manufacturing process. 

In an experiment, one or more factors are deliberately changed in order to observe 

the effect on one or more response variables. This may lead to an extend number of 

experiments. In DoE, it is ensured that the selected experiments produce the maximum 

amount of relevant information, keeping costs low by conducting few experiments. 

Created by Sir Ronal A. Fisher in the 1920s and 1930s, DoE is defined as a structured 

and efficient statistical method for planning experiments, so that the data obtained can be 

analyzed to yield valid and objective conclusions and for determining the relationships among 

the factors affecting a process and its output.57 

DoE initiates with defining the objectives of an experiment and selecting the process 

factors for the study. An experimental design is the laying out of a detailed experimental plan 

in advance of doing the experiment.  

The statistical theory underlying DoE generally begins with the concept of process 

models, and the most common it is the process model of the “black box” type, with several 

discrete or continuous input factors that can be controlled and one or more measured 

output responses, as shown in Figure 6. The measured responses describe the properties of 

the investigated system. By changing the most influential factors (e.g. amount of disintegrant, 

time of mixture, force of compression) the features of the system might be altered according 

to a response (e.g. disintegration time, content uniformity, hardness). 

 

Figure 6 – A “Black Box” Process Model Schematic. 
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Frequently, the experiments are affected by a number of uncontrolled factors that 

may be discrete, such as different machines or operators, and/or continuous such as ambient 

temperature or humidity. 

Once factors have been chosen and responses measured, it is desirable to get an 

understanding of the relationship between them, that is, linking the changes in the factors to 

the changes in the responses with a mathematical model.  In fact, the base for DoE is an 

approximation of reality with the help of a mathematical model. This model is never 100% 

right, but simply helps to transport the complexity of the reality into an equation which is 

easy to handle. The most common empirical mathematical models fit to the experimental 

data take are polynomial functions, usually in a linear form or quadratic form.61 

The choice of an experimental design is an important part of a DoE process, being 

critical for the success of the study. This choice depends on a number of aspects, including 

the nature of the problem and study (e.g., a screening, optimization, or robustness study), the 

factors and interactions to be studied (e.g., four, six, or nine factors, and main effects or two-

way interactions), and available resources (e.g., time, labour, cost, and materials).61 Numerous 

statistical experimental designs are known. The following list gives the commonly used design 

types: 

 Full factorial design 

 Fractional factorial design  

 Central composite design 

 Plackett-Burman design 

 Box-Behnken design 

 Taguchi robust design 

 

2.2.3. Design Space and Control Strategy 

A key concept in the QbD paradigm is Design Space – a multidimensional space that 

encompasses combinations of process inputs (material attributes and process parameters) 

and the CQAs that provide assurance of suitable product performance. ICH Q8 (R2) 

guideline introduces the concept of Design Space to the pharmaceutical industry and defines 

it as “the multidimensional combination and interaction of input variables (e.g., material 

attributes) and process parameters that have been demonstrated to provide assurance of 

quality.”57 

A Design Space is a way to represent the product and process understanding which 

will be establish (Figure 7). The product and process understanding and Design Space helps to 
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identify and explain the all sources of variability and thus way out from this variability by 

measuring and controlling the CPPs and CMAs responsible for variability. Finally, this 

assignment predicts the accurate and reliable product quality attributes within specifications 

in terms of quality. 

 

Figure 7 – Potential process design space, comprised of the overlap region of design ranges for friability and or 

dissolution.58 

Once a sufficient level of product and process understanding is achieved, through 

Design Space, a Control Strategy should be developed that assures that the process will 

remain in control within the normal variation in material attributes and process operating 

ranges. Figure 8 shows how Control Strategy are connected and interact with Design Space 

and Knowledge Space. 

 

Figure 8 – Linkage between Knowledge Space, Design Space, and Control Strategy. 

Control Strategy is defined as “a planned set of controls, derived from current 

product and process understanding that ensures process performance and product quality.  

The controls can include parameters and attributes related to drug substance and drug 
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Design 
Space 
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product materials and components, facility and equipment operating conditions, in-process 

controls, finished product specifications, and the associated methods and frequency of 

monitoring and control.”57 

A Control Strategy is designed to ensure that a product of required quality will be 

produced consistently. The elements of the control strategy should describe and justify how 

in-process controls and the controls of input materials (drug substance and excipients), 

intermediates (in-process materials), container closure system, and drug products contribute 

to the final product quality. These controls should be based on product, formulation and 

process understanding and should include, at a minimum, control of the CPPs and CMAs. In a 

QbD approach, pharmaceutical development will generate process and product 

understanding and identify sources of variability. This sources of variability may impact on 

product quality and therefore should be identified, understood, and subsequently controlled. 

Product and process understanding, in combination with quality risk management, will 

support the control of the process such that the variability can be compensated for in an 

adaptable manner to deliver consistent product quality.57 

Scale-up, technology transfer and manufacturing experience can lead to refinements 

of the control strategy. 

 

1.2.5. Continuous improvement throughout product life cycle 

QbD focuses on building quality into the product and manufacturing processes, as 

well as continuous process improvement. Continuous improvement of a product and process 

should be employed throughout the lifecycle of a product. 

ICH Q10 describes a model for the establishment of an effective Pharmaceutical 

Quality System (PQS) that can be used by manufacturers implementing QbD systems and 

can evaluate and improve product quality throughout the product lifecycle.59 In fact, PQS 

facilitate continual improvement, helping the identification and implementation of appropriate 

product and process quality improvements, reducing the variability, and identifying and 

prioritizing areas for continual improvement. It is important to share the knowledge gained 

during development and implementation that is relevant for utilization of that Design Space 

on the manufacturing floor and under the PQS. This knowledge can include results of risk 

assessments, assumptions based on prior knowledge, and statistical design considerations. 

Linkages among the Design Space, Control Strategy, CQA and QTPP are an important part 

of this shared knowledge.59 

In the case of changes to an approved design space, appropriate filings should be made 
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to meet regulatory requirements. Movement within the approved design space, as defined in 

the ICH Q8 (R2) glossary, does not call for a regulatory filing. For movement outside the 

design space, the use of risk assessment could be helpful in determining the impact of the 

change on quality, safety and efficacy and the appropriate regulatory filing strategy.57
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3. Diazepam as Model 

Diazepam, the most representative benzodiazepine, is widely used as sedative, 

anxiolytic and anticonvulsant agent.62 For rapid onset action, diazepam is very useful in 

suppressing epileptic convulsions, epileptic seizures, anxiety attacks and panic attacks.63  

Chemically, diazepam is 7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-

benzodiazepin-2-one. It is a colorless to light yellow crystalline compound, insoluble in water. 

The empirical formula is C16H13ClN2O and the molecular weight is 284.75. The structural 

formula is represented in Figure 9. 

 

Figure 9 – Structural formula of diazepam. 

 
As benzodiazepines, diazepam is a positive allosteric modulator of the GABA type A 

receptors (GABAA). The binding of diazepam to the GABAA receptor increases the affinity of 

gamma amino butyric acid (GABA) and its receptor, thereby increasing the opening 

frequency of GABAA receptor. As a consequence of this diazepam potentiate GABAergic 

neurotransmission: the binding of GABA to the site opens the chloride channel, resulting in a 

hyperpolarized cell membrane that prevents further excitation of the cell. The excitability of 

the neurons is therefore diminished. 

Although intravenous therapy is the most rapid way to get a rapid action, this route of 

drug administration shows some inconvenient to the patient, such as the pain, the syringe 

manager, the risk of needle infection, etc., carrying discomfort and poor patient compliance. 

Oral immediate-release dosage forms can be a good alternative to intravenous therapy. 

However, diazepam exhibits poor aqueous solubility that produces erratic and delayed 

absorption when administered orally. In fact, diazepam is a poorly soluble, highly permeable 

Biopharmaceutics Classification System (BCS) Class II compound.64 

The drugs of class II have a high absorption but a low dissolution number. Therefore, a 

faster absorption of diazepam requires rapid dissolution from the tablet, being in vivo drug 

dissolution the rate-limiting step for absorption. 
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Other characteristics make diazepam a good model to develop an orally disintegrating 

tablet:65,66 

 log P: 2.82  

 pKa: 3.4 
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4. Objectives 

The main objective of this work was the development of ODTs of diazepam and 

studying effect of formulation and process variables on formulations, taken the QbD concept.  

QbD comprises all elements of pharmaceutical development mentioned in the ICH guideline 

Q8 and it will be reflected in this work. 

Under the concept of QbD, when designing and developing a product, it is needed to 

define desired product performance and identify CQAs. On the basis of this information, the 

first aim of the project was define the QTPP and identify the quality attributes that impact 

directly the product quality. 

A key objective of risk assessment in pharmaceutical development was the 

identification of formulation and process variables that affect drug product CQAs. Therefore, 

the second aim was to identify and prioritize formulation and process variables. Under this 

task preliminary formulation and manufacturing process studies were carried out in order to 

understand and mitigate the risk associated to it, namely composition (binder presence and 

disintegrant type and amount) and process parameters (compression force).  

As a third objective, it was intended to provide approaches to the rational 

development of a Design Space for the current process. In consequence, DoE was used to 

understand the interaction between critical formulation and process variables and the quality 

attributes identified as critical. Particularly, it was studied the impact of disintegrant and 

compression force parameters on CQAs of an orally disintegrating diazepam tablet. 
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CHAPTER II – MATERIALS AND METHODS 

1. Material 

 Diazepam, lactose, povidone, magnesium stearate, croscarmellose sodium, sodium 

starch glycolate, crospovidone were used in the manufacture of diazepam ODT tablet and 

were provided by BIAL. 

Hydrochloride acid 35-37% (Sigma-Aldrich, Germany), sodium phosphate dibasic 

(Merck KGaA, Germany), potassium phosphate monobasic (Merck KGaA, Germany), sodium 

chloride (Merck KGaA, Germany), diazepam reference standard (USP, USA). 

 

2. Methods 

2.1. Batch Manufacturing 

The manufacturing process consisted in a direct compression. Where, diazepam, 

lactose, disintegrant and povidone were blended for 15 minutes. Magnesium stearate was 

then added to the previous blend and mixed for 5 minutes more, and the obtained blend was 

compressed. 

 

2.2. Analytical Techniques 

2.2.1. Weight variation 

Randomly, twenty tablets were selected after compression and the mean weight was 

determinated (METTLER XS205 Balance, USA). None of the tablets deviated from the 

average weight by more than ± 7.5%. 

 

2.2.2. Dissolution 

In vitro drug release was performed for diazepam ODT according to the USP30-

NF25 “Dissolution procedure” for immediate release dosage forms. A minimum of 6 tablets 

of each formula were tested. The dissolution of oral disintegrating tablets was executed using 

USP 30 (apparatus 2) paddle method (Vankel VK700 Dissolutor, USA). Dissolution was 

carried out in 900 ml of HCl 0.1M medium for 15 minutes. The paddle was rotated at 100 

rpm at 37±0.5 ºC.  

Samples were filtered through a 0.45 μm pore size membrane filter (Millipore Co., 

USA) and analyzed spectrophotometrically (Shimadzu UV2101PC UV-Vis 

Spectrophotometer, Japan) at 284 nm.  
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2.2.3. Disintegration 

In vitro disintegration test was assessed according to the USP30-NF25 requirements. 

One dosage unit was put in each of the six tubes of the basket. The apparatus was operated, 

using distilled water as the immersion fluid, maintained at 37°C±2°C. Time for complete 

disintegration of each tablet, standard deviation and relative standard deviation were 

calculated. 

 

2.2.4. Hardness 

Tablet hardness was determined using the Hardness Tester (Pharmatest PTB311 

Hardness Tester, Germany) for 10 tablets of each batch; the average hardness, standard 

deviation and relative standard variation were reported. 

 

2.2.5. Wetting Time 

Five circular tissue paper of 10 cm diameter were placed in a Petri dish. 10 ml of 

simulated saliva pH (pH 6.8 phosphate buffer) was poured into the tissue paper placed in the 

Petri dish. Few drops of crystal violet solution were added to the Petri dish. A tablet was 

placed carefully on the surface of the tissue paper. The time required for the solution to 

reach upper surface of the tablet was noted as the wetting time.67 

 

2.2.6. Water Absorption Ratio 

The weight of the tablet before keeping in the Petri dish was noted (W2). Fully wetted 

tablet from the Petri dish was taken and reweighed (W1).
67 

The water absorption ratio can be determined according to the following formula: 

                       
     
  

     

 

2.3. Quality by Design Tools 

2.3.1. Risk Assessment 

Risk assessment was used throughout development to identify potentially high risk 

formulation and process variables and to determine which studies were necessary to 

increase our knowledge. Each risk assessment was then updated to capture the reduced the 

level of risk based on our improved product and process understanding. The relative risk that 

each attribute was ranked as high, medium, or low, as shown in Table 7. Those attributes that 
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could have a high impact on the drug product CQAs warranted further investigation whereas 

those attributes that had low impact on the drug product CQAs required no further 

investigation. 

Low Broadly acceptable risk. No further investigation is needed. 

Medium 
Risk is accepted. Further investigation may be needed in order to reduce the 

risk. 

High Risk is unacceptable. Further investigation is needed to reduce the risk. 

Table 7 – Overview of relative risk ranking system. 

This relative risk ranking system was used to assess the risk in the pharmaceutical 

development of some drug products. 

 

2.3.2. Ishikawa Diagram 

The Ishikawa diagram is an important scientific tool used to identify and clarify the 

causes of an effect of interest. When lead improvement team members construct such a 

diagram, it allows them to build a visual theory about potential causes and effects that can be 

used to guide improvement work. Also called fishbone or cause and effect diagram, it can 

stimulate the formation of hunches worth empirically testing. In addition, the Ishikawa 

diagram promotes a disciplined use of major categories of potential causes. As a result, rather 

than allowing people to focus on a few top-of-the-mind areas, it facilitates deeper thinking 

about possible causation. Finally, it can help the team answer the question of where to begin 

the process of improvement. 

 

2.3.3. Design of Experiment 

For DoE, a two factors three variables (level) (32) factorial was used in first and 

second steps which requires 9 experiments in each step. In the first step, the two factors X1, 

type of disintegrant and X2, level of disintegrant are represented by –1, 0, and +1, 

corresponding to the low, middle and high values respectively. 

 

Figure 10 – 32 full factorial design. 
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The following quadratic model was built to describe the response: 

                             
         

            

Yi is the dependent variable or the response, b0 is the arithmetic mean response of 

the nine runs, and b1 and b2 is the estimated coefficient for the factor X1 and X2, respectively. 

The main effects (X1 and X2) represent the average result of changing one factor at a time 

from its low to high value. The interaction terms (X1X2) show how the response changes 

when two factors are simultaneously changed. The polynomial terms (X1
2 and X2

2) are 

included to investigate non-linearity. 

In the second step, the two factors X1, press speed and X2, compression force are 

represented by –1, 0, and +1, corresponding to the low, middle and high values respectively. 

 

2.4. Statistical Data Analysis 

The mean ± standard deviation of the experiments results were analyzed using Mann-

Whitney test. Differences were considered significant if the associated probability level (p) 

was lower than 0.05. 

The statistical analysis of the factorial design batches was performed by multiple linear 

regression analysis carried out in Microsoft Excel 2013.
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CHAPTER III – EXPERIMENTAL DESIGN 

1. Quality Target Product Profile and Critical Quality 

Attributes 

The pharmaceutical development of diazepam ODTs begins with identification of the 

desired dosage form and performance attributes through the target product profile. 

Diazepam ODTs are being developed for the treatment of epileptic convulsions, epileptic 

seizures, anxiety attacks and panic attacks. The pharmaceutical target profile for diazepam is a 

safe efficacious ODT that will facilitate patient compliance and promotes a rapid onset 

action. The manufacturing process for the tablet should be robust and reproducible, and 

should result in a product that meets the appropriate drug product critical quality attributes. 

The drug product should be packaged in a container closure system that will provide 

adequate protection from moisture, protection through distribution and use as well as 

convenience of use for the patient. 

Table 8 summarizes the expected quality profile for drug product. 

QTPP elements Target 

Dosage form Orally Disintegrating Tablet 

Route of administration Oral 

Dosage strength 5 mg 

Pharmacokinetics Tmax in 2 hours or less 

Palatability 
Minimum bitter taste intensity and duration, absence of gritty 

texture desirable 

Appearance Tablet conforming to description shape and size 

Identity Positive for diazepam 

Assay 95 – 105% 

Impurities 

Known impurity: NMT 0.5%, 

Any unknown impurity: NMT 0.2%, 

Total impurities: NMT 1.0% 

Water NMT 1% 

Content Uniformity Meets UPS criteria 

Hardness NLT 10 N 

Friability NMT 1,0% 

Dissolution NLT 80 % (Q) at 15 minutes 

Disintegration NMT 30 seconds 

Microbiology Meets USP criteria 

Table 8 – QTPP elements expected. 
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As discussed above, the QTPP form the basis for determining the CQAs, critical 

process parameters (CPPs), and Control Strategy.  

From the target product profile, the initial CQAs which were used to define 

satisfactory quality were identified. The CQAs definition were based on empirical evidence 

derived from previous experimentation as well as similar experiences with other products. 

Table 9 indicates which quality attributes were classified as CQAs. 

CQA Justification 

Hardness 

Hardness will affect friability, disintegration and dissolution which can 

impact the bioavailability. Both formulation and process variables affect the 

hardness. 

Disintegration 

Disintegration will affect dissolution, and therefore can impact the 

bioavailability. Both formulation and process variables affect the 

disintegration. 

Friability 

Friability should be sufficient to ensure physical integrity during packaging, 

transport and patient handling. Both formulation and process variables 

affect the friability. 

Assay 
Assay variability will affect safety and efficacy. Process variables may affect 

the assay of the drug product.  

Impurities 
Degradation products can impact safety and must be controlled based on 

compendial/ICH requirements. 

Content Uniformity 
Variability in content uniformity will affect safety and efficacy. Both 

formulation and process variables impact content uniformity. 

Dissolution 
Failure to meet the dissolution specification can impact bioavailability. 

Both formulation and process variables affect the dissolution profile. 

Palatability 
Palatability influence decisively the patient compliance and should be 

appropriate for target patient population. 

Table 9 – Critical Quality Attributes. 
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2. Formulation and Manufacturing Process Selection 

Table 10 lists the composition of diazepam ODT. This formulation was composed by 

Diazepam, a filler, a binder, superdisintegrant and a lubricant. 

Lactose is a widely used excipient and was selected as filler due to its water solubility 

and acceptable compressibility properties. A direct compression grade of lactose was 

selected and its amount varied accordingly to the superdisintegrant content.  A binder was 

included in the formulation in a very small amount in order to improve the mechanical 

properties of the tablets. Povidone was selected due to its acceptable compressibility in a dry 

from and due to its water solubility. Magnesium stearate which is the most used lubricant 

was selected due to its good compressibility properties in a relatively low concentration.  

Moreover, the level provided for each excipient is consistent with previous experience and 

based on literature. The formulation has a final mass of 220 mg. 

Ingredient Function Quantity (mg) 

Diazepam Active Pharmaceutical Compound 5 

Lactose 80 M Filler 139.0 - 183.0 

Povidone Binder 0 - 5.6 

Superdisintegrant Disintegrant 22 – 66 

Magnesium stearate Lubrificant 4.4 

Table 10 – Formulation composition of diazepam ODT. 

A direct compression process was chosen based on prior scientific knowledge of 

products with similar physical and chemical properties, advantages of the process and 

available technologies and equipment. Figure 11 shows the flowchart of the manufacturing 

process of diazepam ODT. 

 

Figure 11 – Flowchart of manufacturing process. 

Diazepam, lactose, disintegrant and povidone were blended for 15 minutes at 25 rpm. 

Then, magnesium stearate was added to the previous blend and mixed for 5 minutes more at 

Blending 

Lubrication 

Compression 
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25 rpm. Finally, the obtained blend was compressed. 

A risk analysis, in accordance with ICH Q9, was used to establish which variables and 

unit operations were likely to have the greatest impact on product quality. This initial risk 

assessment is shown in Table 11. 

CQA 
Variables 

Formulation Blending Lubrication Compression 

Hardness High Low Medium High 

Disintegration High Low Medium High 

Friability High Low Low High 

Assay Low High Low High 

Impurities High Low Low Low 

Content Uniformity High High Low Low 

Dissolution High Medium Low High 

Palatability High Low Low Low 

Table 11 – Risk assessment to identify variables potentially impacting product quality. 

From the perspective of the project purposes, it was investigated the CQAs of the 

drug product that has a high potential to be impacted by the formulation and the 

manufacturing process: 

• Hardness 

• Disintegration 

• Dissolution 
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3. Drug Product Formulation Development 

3.1. Initial risk assessment 

In this initial risk assessment for formulation development, the manufacturing process 

has not been established in detail. The study was conducted in a laboratory scale, using a 

hydraulic press for the compression step. The use of the hydraulic compression press would 

allow a better control of the compression force applied as well as the compression time. 

Therefore, risks were rated assuming a similar behavior between the equipment used in the 

formulation development and in the manufacturing process development. 

CQA 

Formulation Variables 

Diazepam Lactose M80 Povidone Disintegrant 
Magnesium 

stearate 

Hardness Low Low Medium Medium Low 

Disintegration Low Low Low High Low 

Dissolution High Low Medium High Medium 

Table 12 – Initial risk assessment of the formulation variables. 

The physical and chemical properties of diazepam have some impact in the CQAs, 

particularly in dissolution. The drug substance is a BCS class II compound and therefore, it 

was considered that the diazepam particle size is a critical variable affecting dissolution. 

Lactose 80 M, as filler, is not expected to have a decisive influence over the CQAs 

defined, especially because its grade is defined as 80M which is the most adequate for direct 

compression.  As a consequence, the risk is considered low for all CQAs. 

Povidone, as binder, affects directly tablet cohesiveness and breaking force, but can be 

controlled during compression. Therefore its risk is considered medium for hardness. In a 

less extension it can also affect dissolution and disintegration, which can be managed by the 

type and amount of disintegrant. Therefore, both quality attributes have a medium and low 

risk, respectably.  

Regarding the defined CQAs, the disintegrant is considered as a critical variable and 

was subject of study. Disintegrant level impact the disintegration time and, ultimately, 

dissolution. Since achieving rapid disintegration is important for an ODT containing a BCS 

class II compound, the risk is high. Therefore, three disintegrants were studied, sodium starch 

glycolate, croscarmellose sodium and crospovidone, at different level. 

 As lubricant, magnesium stearate may have an influence in dissolution since lubrication 

due to excessive lubricant may retard the drug release. It can also have some impact in the 

tablet hardness due to over-blending. However this risk is minimized by the use of a brittle 
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filler (lactose). Consequently, it is considered a medium risk variable. 

The risk assessment also indicates that hardness and disintegration time should be 

used as the response variables. Additionally, to predict the behavior of the tablet in the 

mouth, the wetting time was tested. As well, water absorption ratio were tested to 

understand the mechanism of disintegration of the different disintegrant used. 

 

3.2. Study Design 

Formulation development was focused on evaluation of the high risk formulation 

variables as identified in the initial risk assessment shown in Table 12.  

The formulation development was conducted in two studies: the first formulation 

study was a feasibility study of the compression step and also studied the impact of the 

binder on the drug product CQAs and the second formulation study was conducted to allow 

the selection of the disintegrant and it level. Formulation development studies were 

conducted at laboratory scale. 

 

3.2.1.  Feasibility Studies 

The first formulation study evaluated the feasibility of the manufacturing process and 

studied the impact of the binder on the drug product CQAs. In order to understand the 

properties of the initial formulation and the compression parameters to produce tablets by 

direct compression, four formulations were prepared with varying the superdisintegrant and 

the presence of binder as shows Table 13. All four formulations were prepared without the 

drug substance. 

Formulation code A1 B1 A1’ B1’ 

Superdisintegrant  
Sodium starch 

glycolate at 10 % 

Croscarmellose 

sodium at 10 % 

Sodium starch 

glycolate at 10 % 

Croscarmellose 

sodium at 10 % 

Binder  Povidone Povidone Absent Absent 

Table 13 – Formulation code characterization. 

Crospovidone has some binder properties, therefore the study was performed only in 

sodium starch glycolate and croscarmellose sodium at 10%, assuming the worst case for both 

disintegrants. 

All four formulation were tested for two different compression parameters. Table 14 

details the equipment and the associated process parameters used in these studies. 
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Process step Equipment Process parameters 

Blending 
V Blender coupled to 

ERWEKA Rotor AR402 
375 revolutions for blending (15 min at 25 rpm) 

Lubrication 
V Blender coupled to 

ERWEKA Rotor AR402 
125 revolutions for blending (5 min at 25 rpm) 

Compression SPECAC Hydraulic Press 2 tonnes during 10 seconds or 5 tonnes during 5 seconds 

Table 14 – Equipment and fixed process parameters used in formulation development studies. 

Tablets were analyzed regarding hardness, disintegration and wetting time. The 

compression parameters showing the higher hardness without compromise the 

disintegration time was selected for the following experiments. The same study was 

performed for the effect of the presence of the binder in the formulation.  

 

3.2.2. Selection of Disintegrant 

 To evaluate the influence of the disintegrant and it level a second set of experiments 

was designed. Therefore, batches differing in the disintegrant type and disintegrant level were 

prepared. The study is described in detail in Table 15. 

Table 15 – Design of the selection of the disintegrant study. 

The superdisintegrants croscarmellose sodium, sodium starch glycolate, crospovidone 

were challenged at 3 different levels, 10%, 20% and 30%.  

The results obtained from de previous study allowed the selection of the 

compression parameters for this study. Additionally, the presence or absence of the binder in 

formulation was concluded in the feasibility study. Table 14 details the equipment and the 

associated process parameters for blending and lubrication. 

 Tablets were analyzed regarding hardness, disintegration and wetting time. Additionally, 

it was studied the water absorption capacity for the obtained tablets. The disintegrant 

showing the lowest disintegration time and good physical properties was selected for the 

following experiments. 

 

 

 

 

 

Factor 

Disintegrant 

Level 

-1 0 1 

Type of Disintegrant  Sodium starch glycolate Croscarmellose sodium Crospovidone 

Disintegrant level (%) 10 20 30 
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3.3. Results and Discussion 

3.3.1. Feasibility Studies 

In order to understand the properties of the initial formulation, the compression 

parameters and the presence of binder, four formulations were prepared with two different 

disintegrants and with and without binder, as shown in Table 15. These four formulations 

were compressed with different compression parameters values. 

The powder blend was compressed using a hydraulic press, and the compression 

parameters were predefined. Initially, it was tested a compression force of 10 tonnes during 2 

seconds and the obtained tablets exhibited a fragile consistence. Due to the weak physical 

properties, none of the four formulations were tested. Then, it was changed the compression 

force for 5 tonnes during 5 seconds and the tablets showed good mechanical properties. 

Therefore, the selected compression parameters were a force compression of 5 tonnes with 

a duration of 5 seconds. 

For the selected compression parameter, the obtained tablets were evaluated for 

weight, thickness, diameter, hardness, disintegration time and wetting time. 

Formulations A1 and B1 were successfully compressed, resulting in flat, white, uniform 

tablets. The tablets manufactured from formulations A1’ and B1’ exhibit a weaker consistence 

due the absence of binder. Table 16 summarizes the results of weight, thickness, diameter and 

hardness. 

Formulation code Weighta (mg) Thicknessb (mm) Diameterb (mm) Hardnessb (N) 

A1 217.1 ± 1.6 1.15 ± 0.02 12.77 ± 0.04 19.4 ± 2.2 

A1’ 213.3 ± 1.9 1.18 ± 0.01 12.12 ± 0.82 7.0 ± 0.7 

B1 217.1 ± 2.7 1.14 ± 0.01 13.08 ± 0.01 20.9 ± 1.2 

B1’ 215.1 ± 3.3 1.16 ± 0.02 13.07 ± 0.01 14.8 ± 2.4 

Table 16 – Mean weight, thickness, diameter and hardness results of tablets. The results are mean ± SD of a 10 

tablets; b 3 tablets. 

All the batches of tablets passed the uniformity of weight test, showing a low weight 

variation, regardless of the type of the disintegrants used and the presence of binder. The 

thickness of the tablets ranged from 1.15 to 1.18 mm and the diameter ranged from 12.12 

mm to 13.08 mm. The hardness of the tablets was particularly affected by the presence of 

binder, which ranged from 7.0 to 20.9 N. Tablets formulated with binder exhibited the highest 

breaking force. In fact, the presence of binder helps with the formation of interparticle bonds, 

promoting cohesiveness and maintaining integrity of the tablets. This results in higher 

hardness values. However, strong interparticle bond strength correlates to bad disintegrability 

of tablets, being important examine the effect of binder on disintegration time test.68 
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The results of disintegration and wetting time are given in Table 17. 

Formulation code Disintegration time (s) Wetting time (s) 

A1 19.8 ± 2.6 92.4 ± 5.7 

A1’ 14.6 ± 2.2 14.4 ± 1.3 

B1 30.0 ± 4.6 44.8 ± 4.3 

B1’ 12.8 ± 0.8 13.3 ± 1.5 

Table 17 – Disintegration time and wetting time results of tablets. The results are mean ± SD of 3 tablets. 

Disintegration time is an important criterion for selecting an optimum orally 

disintegrating tablet formulation. In the present study, the lowest disintegrating time it was 

observed for formulations without binder (A1’ and B1’), as it was expected. For formulations 

with binder, it was seen that the lowest disintegration time (19.8 seconds) was found when 

sodium starch glycolate was used as disintegrant and the highest disintegration time (30.0 

seconds) was found with croscarmellose sodium. However, all formulations complies the 

specification expected. The measurement of wetting time may be used as another test to 

predict the disintegration of tablets. Wetting time is closely related to the inner structure of 

the tablets and to the hydrophilicity of the excipients.69 In the wetting time study, the wetting 

time was faster in formulations without povidone (formulation A1’ and B1’). The presence of 

povidone, which acts as binder, increases the time taken for wetting. Also, it was observed 

that the formulation A1 required a larger time for the solution reach upper surface of the 

tablets. 

The presence of binder enhanced the tablets consistence but affected considerably its 

disintegration time. Several studies have been referring that selecting an appropriate binder 

content is extremely important in designing ODTs.68 Disintegration time can be reduced by 

increasing the amount of disintegrant, which was evaluated in the second study. The selected 

compression parameters were a force compression of 5 tonnes with a duration of 5 seconds. 

 

3.3.2. Selection of Disintegrant 

The goal of this formulation study was to select the type of disintegrant and 

disintegrant level.  In fact, although sodium starch glycolate, croscarmellose sodium and 

crospovidone are used to provide the same function within the formulation, they differ in 

their chemical structure, particle morphology, and powder properties, which influence the 

characteristics of the tablets. Also, the amount of disintegrant in the formulation has an 

important role in ODT formulation design. Therefore, to study the impact of these two 

formulation factors on the response variables, a set of experiments were performed, as 

shown Table 18. 
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Factor 
Experiment 

#1 #2 #3 #4 #5 #6 #7 #8 #9 

Type of Disintegrant SSG SSG SSG CS CS CS CP CP CP 

Disintegrant level (%) 10 20 30 10 20 30 10 20 30 

Table 18 – DoE design for the selection of disintegrant. 

 This results in the manufacturing of 9 batches, according to Table 19, obtained by 

direct compression. The compression parameters, selected in the previous study, was a force 

compression of 5 tonnes with a duration of 5 seconds. 

Ingredient (mg) 
Formula code 

A1 A2 A3 B1 B2 B3 C1 C2 C3 

Diazepam 5 5 5 5 5 5 5 5 5 

Lactose 80 M 183.4 161.4 139.4 183.4 161.4 139.4 183.4 161.4 139.4 

Povidone 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 

Sodium starch glycolate 22 44 66 - - - - - - 

Croscarmellose sodium - - - 22 44 66 - - - 

Crospovidone - - - - - - 22 44 66 

Magnesium stearate 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 

Total 220 220 220 220 220 220 220 220 220 

Table 19 – Tablet formulation. All the quantities expressed are in mg / tablet. 

The obtained tablets were evaluated for weight, thickness, diameter, hardness, 

disintegration time, wetting time and water absorption ratio. 

All formulations were successfully compressed, resulting in flat, white, uniform tablets, 

showing good consistence. The results of weight, thickness and diameter are given in Table 20. 

Formulation code Weighta (mg) Thicknessb (mm) Diameterb (mm) 

A1 222.1 ± 1.4 1.18 ± 0.02 13.07 ± 0.02 

A2 222.3 ± 1.5 1.22 ± 0.02 13.10 ± 0.04 

A3 222.0 ± 1.3 1.23 ± 0.02 13.14 ± 0.05 

B1 220.5 ± 1.6 1.23 ± 0.03 13.14 ± 0.02 

B2 222.2 ± 2.0 1.25 ± 0.03 13.25 ± 0.03 

B3 225.0 ± 1.3 1.23 ± 0.02 13.24 ± 0.05 

C1 223.1 ± 1.7 1.25 ± 0.03 13.11 ± 0.02 

C2 222.6 ± 2.3  1.38 ± 0.05 13.12 ± 0.03 

C3 228.2 ± 1.8 1.46 ± 0.03 13.33 ± 0.11 

Table 20 – Mean weight, thickness and diameter results of tablets. The results are mean ± SD of a 20 tablets; b 10 

tablets. 

All the batches of tablets passed the uniformity of weight test, showing a low weight 

variation, regardless of the type of the disintegrants used and its level. The thickness of the 

tablets ranged from 1.18 to 1.46 mm and the diameter ranged from 13.07 mm to 13.33 mm.  
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Since mechanical integrity is crucial in successful formulation of ODTs, hence the 

hardness of tablets were determined and were found to be in the range of 9.8-15.5 N. Figure 

12 summarizes the results obtained in hardness test. 

 
Figure 12 – Hardness results of tablets. The results are mean ± SD of 10 tablets. 

Tablets prepared using crospovidone showed higher breaking force values compared 

to sodium starch glycolate and croscarmellose sodium. For formulations prepared with 

sodium starch glycolate, it was observed a decrease in hardness values as the amount of 

disintegrant increase, while no significant variations were observed for croscarmellose 

sodium and crospovidone, as its levels increase.  

Table 21 summarizes the results obtained for disintegration time, wetting time and 

water absorption ratio. Figure 13 shows the relation between disintegration time and wetting 

time. 

Disintegration time is a crucial parameter that needs to be optimized in the 

development of ODTs. The disintegration times for all nine formulation were found to be 

ranged from 10.5 seconds (A3) to 33.7 seconds (B2). In this study, it was observed that the 

disintegration time of the tablets decreased with increasing level of crospovidone and sodium 

starch glycolate. 
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Formulation code 
Disintegration 

timea (s) 
Wetting timea (s) 

Water absorption 

ratiob (%) 

A1 14.8 ± 2.5 40.5 ± 5.7 131.2 ± 6.4 

A2 13.2 ± 1.7 72.8 ± 3.1 235.4 ± 3.1 

A3 10.5 ± 1.7 94.7 ± 3.1 370.7 ± 5.9 

B1 29.0 ± 3.3 24.2 ± 2.5 108.0 ± 6.1 

B2 33.7 ± 2.3 46.9 ± 2.8 185.2 ± 8.2 

B3 31.7 ± 2.6 87.9 ± 8.2 253.0 ± 15.1 

C1 19.4 ± 1.5 20.6 ± 1.5 61.5 ± 2.1 

C2 18.3 ± 1.5 17.2 ± 1.2 91.1 ± 0.5 

C3 15.6 ± 2.2 12.3 ± 1.5  103.8 ± 1.4 

Table 21 – Disintegration time, wetting time and water absorption ratio results of tablets. The results are mean 

± SD of a 6 tablets; b 3 tablets. 

Also, no differences were observed in the disintegration time when it was used 

croscarmellose sodium. Theoretically, as the concentration of superdisintegrant increased, the 

disintegration time should decrease. This fact is easily explained by the fact that 

superdisintegrants may sorb liquid and cause swelling of the tablet in proportion to the 

amount added.70 However, there is a sufficient amount of disintegrant that expose particles 

to the perfect wetting and therefore, there is stagnancy in the disintegration time after this 

perfect amount.70 In other hand, few disintegrant particles do not expose particles to the 

wetting and it may lead to the production of larger aggregates, which will have difficulty in 

disaggregate.70 
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Figure 13 – Disintegration time and wetting time results of tablets. The results are mean ± SD of 6 tablets. 
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Among the superdisintegrants used, sodium starch glycolate showed better 

performance in disintegration time when compared to croscarmellose sodium. This fact may 

be explained by the mechanism by which disintegration occurs, which is by rapid water 

uptake that leads to a huge increase in volume which result in rapid and uniform tablet 

disintegration.35,36 Crospovidone shows a disintegration time closer to the sodium starch 

glycolate, reflecting the combining mechanism of swelling, deformation and wicking for tablet 

disintegration. 35,36 

As seen in the previous study, wetting time is closely related to the inner structure of 

the tablets and to the hydrophilicity of the excipients and it is used as an indicator from the 

ease of the tablet disintegration in buccal cavity and indicates penetration velocity of water 

into the tablets. The wetting time study showed that the time required for the solution to 

reach the upper surface of the tablet was shorter in formulas using crospovidone followed by 

croscarmellose sodium and sodium starch glycolate, at equivalent concentration. Remya et al. 

and Bi et al reported a high wetting time for tablet formulations containing sodium starch 

glycolate and croscarmellose sodium.71,72 Also, it was observed that the wetting time of the 

tablets increased with increasing level of sodium starch glycolate and croscarmellose sodium. 

This is explained by the fact of sodium starch glycolate and croscarmellose sodium gels on 

exposure to water. Consequently, increasing the level of disintegrants, the gel formation 

increases and may act as an obstacle to solution uptake into the tablet and thus the wetting 

time is delayed. 73,74 The larger extent of gel formation in sodium starch glycolate may explain 

the larger time required for tablet wetting, compared to croscarmellose sodium.  In 

disintegration test this phenomenon did not occurs, because the gel formed by contact with 

water is always removed from the tablet, due to the equipment agitation. Consequently, the 

water has access to tablet permanently. In the case of tablets prepared with crospovidone, 

due to the combination of deformation, wicking and swelling actions, without gel formation, 

the wetting time was shorter. 35,36 

Figure 14 shows the appearance of ODTs containing sodium starch glycolate, 

croscarmellose sodium and crospovidone at 30% before wetting, during and after wetting 

time experiment. For tablets containing sodium starch glycolate and croscarmellose sodium 

was observed a huge increase of tablet volume, explaining the mechanism of action of these 

disintegrants. For tablets containing crospovidone was observed a small increase of volume, 

and a distortion in the circular shape of the tablet, reflecting the deformation action as 

mechanism for tablet disintegration. 35,36 
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Figure 14 – Appearance of ODTs containing I) sodium starch glycolate, II) croscarmellose sodium and III) 

crospovidone at 30% a) before wetting, b) during and c) after wetting time experiment. 

The increasing of volume due to water intake is a very important phenomenon in 

disintegration of ODTs. The water absorption ratio reflects the capacity of the tablet to take 

the water from the outside to the inner structure. 

The water absorption ratio ranged from 131.2 to 370.7% for sodium starch glycolate 

formulation, 108.0 to 253.0% for ODTs containing croscarmellose sodium and 61.5 to 

103.8% for ODTs with crospovidone, increasing as the superdisintegrant concentration 

increase, in a proportional relationship (R2 > 0.95), as shown in Figure 15. Also, at the same 

amount of superdisintegrant, the water absorption ratio of sodium starch glycolate has 

greater values compared to croscarmellose sodium and crospovidone. This results confirm 

the differences between the superdisintegrants properties. The water uptake ability is 

extremely high for sodium starch glycolate, generating a greater volume expansion in the 

tablet. This creates a hydrostatic pressure inside the tablet leading to disintegration. 

Croscarmellose sodium shows a similar behavior, but with less extension compared to 

sodium starch glycolate. 
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Figure 15 – Correlation between amount of disintegrant and water absorption ratio. The results are mean ± SD 

of 3 tablets. 

The wetting time of the ODTs was found to be directly related to the water 

absorption ratio of the tablets. Linear regression analysis of wetting time and water 

absorption ratio of all tablets formulated showed a coefficient of determination (R2) value of 

0.911, as shown in Figure 16. A similar phenomenon was observed for different swellable and 

no-swellable disintegrants by Pabari et al.75 
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Figure 16 – Correlation between water absorption ratio and wetting time. 
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Taken together, all data show that crospovidone is very effective at wetting the tablet 

matrix, requiring low amount of water to promote tablet disintegration. These characteristics 

are fundamental in ODT formulation development. Furthermore, crospovidone provides 

good mechanical strength, essential to maintain integrity of dosage form. 

 

3.4. Conclusion 

The formulation composition was finalized based on formulation development studies. 

Direct compression technique was a suitable method to produce ODT tablets. Based on the 

results of the formulation development studies, the risk assessment of the formulation 

variables was updated as given in Table 22. 

CQA 

Formulation Variables 

Diazepam Lactose M80 Povidone Disintegrant 
Magnesium 

stearate 

Hardness Low Low Low Low Low 

Disintegration Low Low Low Low Low 

Dissolution High Low Low Low Medium 

Table 22 – Updated risk assessment of the formulation variables. 

The presence of povidone, evaluated in first study, was crucial to enhance the tablets 

consistence but affects its disintegration time. Therefore, the risk of the quality attribute 

hardness was reduced to low, and the disintegration time remained in the pre-defined target, 

lowering it risk as well.  

In the second study, it was concluded that the disintegrant crospovidone leads to 

acceptable ODTs. Tablet with crospovidone shows excellent disintegration times, and 

therefore the risk was reduced to low. Consequently, being dissolution depending on the 

disintegration time, the risk was reduced to low too. 

From the study it can be concluded the formulation for drug product manufacturing 

process study, as shows Table 23. 

Ingredient Quantity (mg) 

Diazepam 5 

Lactose 80 M 139.0 - 183.0 

Povidone 5.6 

Crospovidone 22 – 66 

Magnesium stearate 4.4 

Table 23 – Formulation selected for diazepam ODT. 
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4. Manufacturing Process Development 

4.1. Initial risk assessment 

A risk assessment of the overall process was performed to identify the high risk steps 

that may affect the CQAs of the final drug product. Using the attributes given above the team 

organized a set of CPPs utilizing a risk-based approach to all of the unit operations. This was 

based on previous experience with this project as well as other similar dosage forms with 

equivalent or similar equipment trains. 

An Ishikawa diagram was used to identify all potential variables on direct compression 

technique, such as raw materials, compression parameters, and environmental factors, which 

can have an impact.  Figure 17 represents the Ishikawa diagram of direct compression, 

identifying the potential variables that can affect the CQAs.  

Ishikawa diagram helped to assess the risk in manufacturing process steps.  

A risk assessment for the manufacturing process was performed and result is 

depicted in table 24. This identifies the unit operations which require further investigation to 

determine the appropriate control strategy. 

CQA 
Process Step 

Blending Lubrication Compression 

Hardness Low Low High 

Disintegration Low Medium High 

Dissolution Low Medium High 

Table 24 – Initial risk assessment of the manufacturing process development. 

Figure 17 – Ishikawa diagram for direct compression technique. 
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Blending step may impact the distribution of crospovidone in the blend which could 

impact disintegration of the tablets and, ultimately, its dissolution. Nevertheless, blending is 

considered a low risk variable. 

Over-lubrication due to an excessive number of revolutions may impact disintegration 

and, ultimately, dissolution of the tablets. The risk is medium for both CQAs. 

Tablet hardness is impacted by compression force and in consequence, compression is 

considered a high risk variable. Since tablet hardness affects directly the disintegration time, 

and consequently dissolution, compression is also a high risk variable for these quality 

attributes. 

The risk assessment also indicates that hardness and disintegration time should be 

used as the response variables. Additionally, it was tested the wetting time and drug release 

profile of the diazepam ODTs. 

 

4.2. Study Design 

Manufacturing process development was focused on evaluation of the high risk 

process variables, or CPP, as identified in the initial risk assessment.  

The manufacturing process development was conducted in two studies: the first study 

evaluated impact of the scaling-up on the compression machine and allowed to settle the 

amount of crospovidone and the second study was conducted to allow the selection of the 

ideal compression parameters. 

 

4.2.1. Feasibility Study 

In this study it was evaluated the impact of a laboratory scale manufacturing and the 

behavior of a new type of tablet on tablet quality attributes. Furthermore, this study allowed 

the selection of the amount of crospovidone for the last study.  Crospovidone, was 

challenged at different level and different compression forces. Table 25 summarizes the set of 

experiments performed. 

Table 25 – Design for the selection of disintegrant. 

Table 26 details the equipment and the associated process parameters used in these 

studies. 

Factor 
Level 

-1 0 1 

Disintegrant level (%) 10 20 30 

Compression Force - + ++ 
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Process step Equipment Process parameters 

Blending 
V Blender coupled to 

ERWEKA Rotor AR402 
375 revolutions for blending (15 min at 25 rpm) 

Lubrication 
V Blender coupled to 

ERWEKA Rotor AR402 
125 revolutions for blending (5 min at 25 rpm) 

Compression 
KILLIAN Compressing 

Machine (eccentric) 
At three compression forces 

Table 26 – Equipment and process parameters used in manufacturing process development studies – feasibility 

study. 

Tablets were analyzed regarding hardness, disintegration and wetting time. The 

amount of crospovidone showing the higher hardness and the lower disintegration time was 

selected for the following and final experiment. 

 

4.2.2. Selection of the Compression Parameters 

In the final study, a series of experiments were undertaken to investigate the 

relationship between the process parameters related to compression and the drug product 

quality attributes. The compression variables were tested using 32 full factorial experiment 

DoE. Compression force varied between 15 and 25 kN and the velocity of compression 

varied between 5000 to 20000 tablets per hour.  Table 27 presents the study design. 

Table 27 – Design of the full factorial DoE to study the compression parameters. 

Table 28 details the equipment and the associated process parameters used for 

compression step, in these study. For blending and lubrication, the equipment and process 

parameters are shown in Table 26. 

Process step Equipment Process parameters 

Compression 
Fette 1200i Compression 

machine (rotative) 
According to DoE 

Table 28 – Equipment and process parameters used in manufacturing process development studies. 

Tablets manufactured were tested regarding hardness, disintegration, wetting time and 

dissolution rate. 

The compression condition showing the lowest disintegration time and highest 

dissolution rate, maintaining acceptable hardness was considered the ideal conditions to 

manufacturing process. 

 

Factor 

Process parameters 

Level 

-1 0 1 

Compression Force (kN)  15 20 25 

Velocity (x 1000 tablets/hour)  5 10 20 
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4.3. Results and Discussion 

4.3.1. Feasibility Studies 

In order to comprehend the effects of a laboratory scale manufacturing and the 

behavior of a tablet shape, a preliminary study was performed. The disintegrant selected in 

the previous work was challenged at different level (10, 20 and 30%) and different 

compression forces (Table 29). The compression force was selected by the changing the 

distance between the rollers, since the compression machine did not allow the selection of a 

specific compression force. To schematize the different compression forces used, it was used 

the symbols (-), (+) and (++) to express the lower, medium and higher compression force, 

respectively. 

Factor 
Experiment 

#1 #2 #3 #4 #5 #6 #7 #8 #9 

Formulation code C1- C2- C3- C1+ C2+ C3+ C1++ C2++ C3++ 

Disintegrant level (%) 10 20 30 10 20 30 10 20 30 

Compression force - - - + + + ++ ++ ++ 

Table 29 – Design for the selection of disintegrant. 

All formulations were successfully compressed, by direct compression, resulting in 

oblong, white, uniform tablets, exhibiting a good consistence, with the exception of 

formulations with the lower compression force, which showed a weak consistence (C1-, C2- 

and C3-).  

Formulation code Weighta (mg) Lengthb (mm) Widthb (mm) Thicknessb (mm) 

C1- 209.6 ± 4.4 11.28 ± 0.03 5.91 ± 0.03 4.24 ± 0.02 

C1+ 213.6 ± 2.7 11.14 ± 0.02 5.82 ± 0.01 4.11 ± 0.03 

C1++ 207.6 ± 3.6 11.08 ± 0.02 5.78 ± 0.02 3.88 ± 0.09 

C2- 206.1 ± 2.5 11.39 ± 0.05 5.94 ± 0.03 4.48 ± 0.02 

C2+ 208.5 ± 3.8 11.15 ± 0.03 5.80 ± 0.02 4.28 ± 0.06 

C2++ 214.9 ± 5.0  11.18 ± 0.03 5.81 ± 0.01 4.00 ± 0.04 

C3- 210.4 ± 5.7 11.41 ± 0.05 5.95 ± 0.04 4.82 ± 0.07 

C3+ 212.2 ± 4.8 11.15 ± 0.01 5.79 ± 0.01 4.36 ± 0.07 

C3++ 211.2 ± 5.0 11.13 ± 0.02 5.79 ± 0.01 4.26 ± 0.05 

Table 30 – Mean weight, length, width and thickness results of tablets. The results are mean ± SD of a 20 tablets; 
b 10 tablets. 

The prepared tablets were evaluated for physical parameters. The results of weight, 

length, width and height are given in Table 30. 

As expected, the results obtained for weight, width and thickness were similar in all 

formulations. The thickness results showed variances, which can be attributed to the 
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compressibility and cohesion of the tablets. 

The results of hardness, disintegration time and wetting time are given in Table 31. 

Formulation code Hardnessa (N) 
Disintegration 

timeb (s) 
Wetting timeb (s) 

C1- < LD 9.9 ± 0.7 64.5 ± 3.1 

C1+ 28.2 ± 2.8 9.4 ± 0.4 76.2 ± 2.7 

C1++ 32.4 ± 1.7 9.5 ± 0.5 85.5 ± 2.2 

C2- < LD 9.6 ± 0.7 58.3 ± 3.6 

C2+ 35.9 ± 3.5 11.5 ± 0.7 62.4 ± 2.1 

C2++ 37.0 ± 3.5 12.8 ± 0.3 69.4 ± 1.6 

C3- < LD 9.4 ± 0.4 60.9 ± 3.6 

C3+ 44.1 ± 1.8 11.4 ± 0.7 60.9 ± 3.0 

C3++ 46.2± 4.3 11.8 ± 0.8 86.6 ± 3.8 

Table 31 – Hardness, disintegration time and wetting time results of tablets. The results are mean ± SD of a 10 

tablets; b 6 tablets. LD: limit of detection. 

Concerning the hardness results, tablets compressed with the lower compression 

force showed not enough breaking force as a hardness tester can detect. The remaining 

formulas showed a good breaking force (28.2 N – 46.2 N).  

The disintegration time test revealed that all formulations disintegrates less than13 

seconds. For wetting time, it was observed that the time required for the solution to reach 

the upper surface of the tablet was greater than 60 seconds. 

Based on the results, the formulation containing crospovidone at 30% exhibited a 

good performance as ODT formulation. 

 

4.3.2. Selection of the Compression Parameters 

Compression parameters have a crucial impact in ODTs properties and quality. The 

objective of the this manufacturing development study was to select the optimum 

compression parameters that leads to the tablets manufacturing with the quality attributes 

assessed in the beginning of the experimental work. 

The unit operations that require more investigation were assessed and it was 

identified the compression step as the top priority operation to study. In this step, the 

parameters: compression force and press speed were identified as the critical parameters and 

therefore the experimental design explores these two CPPs and established the relationship 

between these parameters and the critical drug product quality attributes. 

A 32 full factorial experiment DoE was performed, varying the compression force 

between 15 and 25 kN and the velocity of compression between 5000 and 20000 tablets per 

hour. Table 34 summarizes the experiment number performed in the study. 
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Factor 
Experiment 

#1 #2 #3 #4 #5 #6 #7 #8 #9 

Formulation code F1 F2 F3 F4 F5 F6 F7 F8 F9 

Compression force (kN)) 15 15 15 20 20 20 25 25 25 

Press speed (x 1000 

tablets/hour) 
5 10 20 5 10 20 5 10 20 

Table 32 – Experimental design for the compression parameters study. 

The obtained tablets were evaluated for weight, thickness, diameter, hardness, 

disintegration time, wetting time and dissolution. 

All formulations were successfully compressed, resulting in oblong, white, uniform 

tablets. Table 33 shows the results of weight, length, width and thickness. 

Formulation code Weighta (mg) Lengthb (mm) Widthb (mm) Thicknessb (mm) 

F1 232.7 ± 2.6 11.28 ± 0.03 5.91 ± 0.03 4.63 ± 0.03 

F2 226.3 ± 1.1 11.39 ± 0.05 5.82 ± 0.01 4.65 ± 0.02 

F3 220.2 ± 1.6 11.41 ± 0.05 5.78 ± 0.02 4.68 ± 0.03 

F4 232.3 ± 1.1 11.14 ± 0.02 5.94 ± 0.03 4.50 ± 0.02 

F5 226.5 ± 1.1 11.24 ± 0.02 5.80 ± 0.02 4.47 ± 0.02 

F6 219.3 ± 1.3  11.28 ± 0.03 5.81 ± 0.01 4.51 ± 0.02 

F7 229.6 ± 3.4 11.25 ± 0.02 5.95 ± 0.04 4.34 ± 0.02 

F8 226.2 ± 1.5 11.23 ± 0.01 5.79 ± 0.01 4.35 ± 0.02 

F9 222.1 ± 3.0 11.13 ± 0.02 5.79 ± 0.01 4.41 ± 0.02 

Table 33 – Mean weight, length, width and thickness results of tablets. The results are mean ± SD of a 20 tablets; 
b 10 tablets. 

The tablets showed a low weight variation, irrespective of the compression force and 

press speed used. The thickness of the tablets ranged from 4.34 to 4.68 mm and was related 

to the compression force applied. Also, it can be observed a slightly effect of the press speed 

in the tablet thickness. As the press speed increases, tablet thickness tends to increase, 

reflecting the decreasing of the dwell time. 
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Table 34 summarizes the results obtained for hardness, disintegration time and 

wetting time. 

Formulation code Hardnessa (N) 
Disintegration 

timeb (s) 
Wetting timeb (s) 

F1 5.5 ± 0.7 44.0 ± 1.8 48.2 ± 3.3 

F2 5.8 ± 0.6 43.8 ± 0.9 47.1 ± 2.7 

F3 5.0 ± 0.7 41.8 ± 2.0 47.8 ± 1.4 

F4 8.0 ± 0.7 57.7 ± 1.8 55.4 ± 3.8 

F5 8.3 ± 0.7 55.3 ± 2.9 53.8 ± 4.4 

F6 6.8 ± 0.5 47.5 ± 1.6 51.9 ± 3.4 

F7 10.2 ± 0.5 61.0 ± 1.4 67.4 ± 4.4 

F8 9.7 ± 0.7 56.8 ± 1.3 62.8 ± 4.7 

F9 7.7 ± 0.6 54.3 ± 1.9 58.3 ± 4.5 

Table 34 – Hardness, disintegration time and wetting time results of tablets. The results are mean ± SD of a 10 

tablets; b 6 tablets. 

The summary of DoE results for hardness show that a very good model (R2 = 0.996, 

Figure 20) was obtained and are present on Table 35. Figures 18 and 19 portray the response 

surface plot and the contour plot for hardness test, respectively, showing the influence of 

press speed and compression force. 

Compression force is the most important factor impacting tablet hardness, indicated 

by a high coefficient value of   . 

In fact, hardness is directly related to the compression force.  As the compression 

force increases, it is expected that the tablet breaking force increases too. That observation 

was detected in the hardness test, showing the higher hardness values for higher 

compression forces, as depicted in Table 34 and Table 35. As the compression force increases, 

the bulk volume is reduced and the particle interaction is increased, resulting in higher tensile 

strength of tablets. 

Coefficient Value 

   8,200 

   -0,697 

   1,860 

    -0,510 

    -0,710 

    -0,430 

Table 35 – Coefficient values obtained for hardness. 
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Figure 18 – Response surface plot showing the influence of compression force and press speed on the hardness. 

 

Figure 19 – Contour plot showing the influence of compression force and press speed on the hardness. 
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Figure 20 – Correlation between the experimental and the predicted values on hardness. 

Press speed reveals also to be an important factor, affecting negatively the CQA 

hardness, with a coefficient value of -0.697. The reason for that is that as the punch speed 

increases, the length of time the punches are under pressure, also called as dwell time, 

decreases, and the tensile strength of compacts tends to decrease. This phenomenon 

especially happens for materials such as lactose, which initially shows some fragmentation, 

but then may exhibit plastic flow under increased pressure.76 

The interactive coefficient reveals that effect of press speed is bigger at higher 

compression force values, affecting negatively the hardness values. At lower compression 

force, the effect of press speed is almost insignificant. Also, the results show that the effect of 

compression force is bigger at lowers press speeds rather than high press speed, but both 

with a positive significant impact on hardness. 

Schiermeier et al and Late et al studies show the key influence of the compression 

force in tablet hardness.77,78 The tensile strength at different compression pressures and at 

different dwell times has also been studied by Tye et al. The tablet hardness increased with 

the increase in compaction pressure. The dwell time also affected the tensile strength, being 

higher at low dwell time, in general.79 

For disintegration studies, the value of the correlation coefficient indicate a good fit, 

suggesting a good model (R2 = 0.963), as shown in Figure 23. The summary results of DoE are 
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presented on Table 36. Figures 21 and 22 depict the response surface plot and the contour 

plot of the impact of press speed and compression force on disintegration time. 

The results for disintegration time showed a similar behavior compared to the effect 

of the compression parameters studied on tablet hardness. It was observed a major impact 

of the compression force in comparison to press speed on disintegration time, but both with 

an important impact. This fact is directly related to the hardness values obtained, as depicted 

in Figure 27. A linear correlation between disintegration time and hardness was observed, 

showing a coefficient of determination (R2) value of 0.913. Schiermeier et al and Late et al 

refer the key role of the compression force in disintegration time.77,78 Both studies concluded 

that by increasing compression force, disintegration time of tablets increased. The increase of 

compression force, the tablet density and tablet strength increase as well, decreasing the 

space between the tablet particles. This situation hinders the liquid penetration into the 

tablet structure, and delays the action of the disintegrant particle, leading to an increasing in 

disintegration time.80 

The interactive coefficient reveals that effect of press speed is bigger at higher 

compression force values, affecting negatively the time to tablet disintegration. At lowers 

compression forces, the impact of press speed decrease. Also, the results show that at lowers 

press speeds, the effect of compression force increase. On the other hand, the effect of 

compression force has a slight decrease at faster compression speed. 

Coefficient Value 

   54,087 

   -3,175 

   7,105 

    -1,140 

    -0,925 

    -3,185 

Table 36 – Coefficient values for disintegration time. 
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Figure 21 – Response surface plot showing the influence of compression force and press speed on 

disintegration time. 

 

Figure 22 – Contour plot showing the influence of compression force and press speed on disintegration time. 
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Figure 23 – Correlation between the experimental and the predicted values on disintegration time. 

A confirmative test to disintegration study was performed and reveals a similar 

performance of the wettability of the tablets.  

A good model was found to describing the effect of compression parameters on 

wetting time, with a R2 value of 0.998, as shown in Figure 26. The coefficient values obtained 

for wetting time are presented on Table 37. Figures 24 and 25 show influence of compression 

force and press speed on wetting time, represented in a response surface plot and in a 

contour plot, respectively. 

Coefficient Value 

   53,522 

   -2,167 

   7,567 

    -2,175 

    0,267 

    1,567 

Table 37 – Coefficient values obtained for wetting time. 
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Figure 24 – Response surface plot showing the influence of compression force and press speed on wetting time. 

 
Figure 25 – Contour plot showing the influence of compression force and press speed on wetting time. 
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Figure 26 – Correlation between the experimental and the predicted values on wetting time. 

 
 

 

Figure 27 – Correlation between hardness and disintegration time and hardness and wetting time. 
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As predicted, compression force exercised a much higher influence on wetting time, 

compared to press speed. This is directly related to the hardness values obtained. A linear 

relationship observed between wetting time and hardness values (R2 = 0.897, Figure 27), 

reflecting the importance of the hardness, and ultimately of compression force, in water 

intake into tablet matrix. 

The increasing of tablet hardness, as a result of higher compression force mostly, 

become the space between the tablet particles smaller, which delays the liquid penetration 

into the tablet structure. Consequently, the time to water required for the solution to reach 

the upper surface of the tablet will increase. 

The interactive coefficient reveals that effect of press speed is bigger at higher 

compression force values, affecting negatively the wetting time values. At lower compression 

force, there is no effect of press speed. Also, the effect of compression force increases as the 

press speed increases too. 

The in vitro dissolution profiles of the tablets are shown in Table 38 and Figure 28. The 

results obtained clearly indicate that the values of drug release on 1st minute, 2nd minute and 

5th minute, are dependent on the independent variable in study, the press speed and the 

compression force. That observation and the magnitude of the effect of each process 

parameter studied on dissolution are shown in the statistical analysis of the factorial design. 

Figures 29 to 34 portray the 3-dimensional response surface plots and the 

correspondent contour plots for the drug release studies at 1 minute, 2 minutes and 5 

minutes. Table 39 summarizes the DoE results obtained for dissolution testing. 

 Dissolution 

Formulation code 1st minute 2nd minute 5th minute 

F1 56.8 ± 3.3 82.4 ± 1.7 93.1 ± 1.1 

F2 62.6 ± 6.0 85.9 ± 2.6 97.2 ± 0.3 

F3 65.6 ± 2.6 88.2 ± 1.2 98.9 ± 1.7 

F4 69.0 ± 3.8 88.0 ± 3.0 96.1 ± 1.8 

F5 80.6 ± 4.2 90.6 ± 1.1 98.0 ± 0.4 

F6 77.4 ± 3.4 90.3 ± 2.2 98.3 ± 2.0 

F7 76.6 ± 2.4 88.4 ± 0.7 94.2 ± 1.0 

F8 73.6 ±3.5 91.5 ± 2.3 94.9 ± 1.4 

F9 76.2 ± 6.5 94.7 ± 3.5 98.9 ± 1.8 

Table 38 – In vitro drug release results obtained on 1st, 2nd and 5th minute. 
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Figure 28 – In vitro dissolution profile of diazepam from tablet formulation F1 to F9. The results are mean ± SD 

of 3 tablets. 
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Figure 29 – Response surface plot showing the influence of compression force and press speed on drug release 

on 1st minute. 

 

Figure 30 – Contour plot showing the influence of compression force and press speed on drug release on 1st 

minute. 
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Figure 31 – Response surface plot showing the influence of compression force and press speed on drug release 

on 2nd minute. 

 

Figure 32 – Contour plot showing the influence of compression force and press speed on drug release on 2nd 

minute. 
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Figure 33 – Response surface plot showing the influence of compression force and press speed on drug release 

on 5th minute. 

 

Figure 34 – Contour plot showing the influence of compression force and press speed on drug release on 5th 

minute. 
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Figure 35 – Correlation between the experimental and the predicted values on dissolution at 1st minute. 

 
 

 
Figure 36 – Correlation between the experimental and the predicted values on dissolution at 2nd minute. 
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Figure 37 – Correlation between the experimental and the predicted values on dissolution at 5th minute. 

 

Coefficient 1st minute 2nd minute 5th minute 

   77,000 90,078 97,544 

   2,800 2,400 2,117 

   6,900 3,017 -0,200 

    -2,300 0,125 -0,275 

    -2,000 -0,667 -0,117 

    -7,100 -1,117 -1,267 

Table 39 – Coefficient values obtained for dissolution testing. 
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results obtained on dissolution testing, as depicted in Figures 35 to 37. 
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released from the tablets, influencing the obtained model and reducing the effect of both 

variables. 

Other studies suggest that hardness has an important role on dissolution profile, 

promoting a faster dissolution if tablet presents lower breaking forces.80,81 As seen before, 

higher hardness values increase the tablet disintegration and wettability being expected, for 

this reason, a delay on the drug release. Logically, as hardness values fairly depend on the 

compression force, it should be expected that, as the compression force increases, the drug 

released from the tablet decreases. Although with a minor impact, it is similarly expected that 

the growth of press speed will affect positively the dissolution due to the lower harness 

values found at higher press speeds. 

A positive effect of press speed is found in dissolution study at all three time-points. 

That means that with an increasing of press speed, the release of the drug from the tablet 

increases as well, which corroborates the role of hardness on dissolution. 

Au contraire, a positive effect was also found for compression force on time-points 1st 

minute and 2nd minute, which means that, increasing the compression force, increases the 

drug release.  The prediction that higher compressions forces leads to lower drug releases via 

higher hardness tablet values was not found, suggesting others factors for the obtained 

results. 

These data suggest that a good balance between press speed and compression force 

is needed in order to obtain a fast release. That means that there is a range of hardness 

values that allow rapid drug release from tablets. 

 

 

4.4. Conclusion 

In manufacturing process development, the identified high risks for compression 

process step were assessed. Experimental studies were defined and executed in order to 

establish additional scientific knowledge and understanding, reducing the risks to an 

acceptable level. Finalized the experimentation, the initial manufacturing process risk 

assessment was updated with the current process understanding. Table 40 presents updated 

risk assessment of the manufacturing process. 

The manufacturing process studies, involving the process parameters considered as 

critical in compression step, show, in general, a higher influence of compression force in 

comparison to press speed, on CQAs studied. 

 



A Quality by Design Approach on Pharmaceutical Development of Orally Disintegrating Tablet of Diazepam 

69 

CQA 
Process Steps 

Pre-Blending Blending Compression 

Hardness Low Low Medium 

Disintegration Low Medium Low 

Dissolution Low Medium Low 

Table 40 – Updated risk assessment of the manufacturing process development. 

From the QTPP, it was initially expected diazepam ODT with hardness values not less 

than 10N, with a disintegration time not more than 30 seconds and with not less than 80% 

(Q) of diazepam released from the tablet at 15 minutes, in dissolution test. 

The risk of the quality attribute hardness was considered high in the beginning of the 

study, due to the influence of compression force. Also, hardness affects directly the 

disintegration time and dissolution and consequently it was studied in detail. From the 

obtained results, it can be seen that formula F7 and F8 present hardness values within the 

acceptable range. Therefore, the risk was reduced to medium by using these compression 

parameters.  

Formula F7 and F8 present disintegration times of 61.0 and 56.8 seconds respectively, 

failing the desired value. Furthermore, the DoE results obtained for disintegration time show 

that none of the formulas achieved the pre-defined target of not more than 30 seconds. 

Despite that, the risk was updated to low risk due to the results obtained in dissolution test, 

where it was observed that disintegration had no impact on dissolution. 

In dissolution test, the amount of diazepam released from the tablets were more than 

80% (Q) at 5 minutes for all batches prepared. Consequently, dissolution risk was reduced to 

low too. 

From the study it can be concluded that using the following manufacturing process 

conditions to prepared ODTs of diazepam (Table 41) we have a controlled process and a 

product with the desired quality. 

Process step Equipment Process parameters 

Blending V Blender  375 revolutions for blending (15 min at 25 rpm) 

Lubrication V Blender  100 revolutions for blending (5 min at 25 rpm) 

Compression 
Fette 1200i Compression 

machine (rotative) 
25 kN, 5000 tablets/hour 

Table 41 – Manufacturing process parameters selected for diazepam ODT. 
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 CHAPTER IV – CONCLUSION 

ODT technology offers significant advantages for lifecycle management, patient 

convenience and market share and should be considered, being a growing trend in 

pharmaceutical dosage forms. 

In this project, ODTs of diazepam were successfully prepared on a QbD approach, 

using a direct compression method.  

In formulation study, sodium starch glycolate, croscarmellose sodium and 

crospovidone were challenged in accordance with an experimental design. The study 

concluded that crospovidone allowed better quality attributes for ODT of diazepam, at 30% 

in formulation. Also, the presence of binder was crucial to enhance the tablets consistence 

but affects its disintegration time.   

For manufacturing process development, compression was considered as the most 

important step, and therefore a multivariate analysis was used to understand the relationship 

between the critical compression variables and the drug product quality attributes. The study 

showed a higher influence of compression force on hardness, disintegration time, wetting 

time and dissolution, over press speed. 

Additional work should be planned in order to investigate the impact of others 

formulation and process variables on properties on the ODT.  

QbD proves to be an excellent method to develop pharmaceutical systems, providing 

several tools that increase a much better understanding of the formulation and 

manufacturing process.  
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ANNEXES 

Solutions and Buffers 

Dissolution medium 

Hydrochloridric acid at 0.1M solution: 83 mL of Hydrochloridric acid 35-37% in 10L of 

distilled water 

 

Simulated saliva 

pH 6.8 phosphate buffer (Wetting time and Water Absorption Ratio): 2.38 g Na2HPO4 and 

0.19 g KH2PO4 and 8.00 g NaCl per liter of distilled water adjusted with phosphoric acid to 

pH 6 .8±0.05 
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