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Resumo 

A retinopatia diabética é uma das principais complicações da diabetes, sendo 

também uma das principais causas de perda de visão e cegueira. O controlo 

eficaz da glicémia, dislipidémia e pressão arterial podem reduzir 

significativamente o risco de desenvolver esta doença. Além disso, as opções 

terapêuticas disponíveis atualmente são limitadas e invasivas, e no essencial, 

são utilizadas nas fases mais avançadas da doença. Deste modo, é prioritário 

desenvolver novas estratégias terapêuticas para a prevenção e tratamento da 

retinopatia diabética. 

Os processos inflamatórios têm sido apontados como tendo um papel 

importante na patogénese da retinopatia diabética. Foi demonstrado que vários 

processos inflamatórios, tais como o aumento dos níveis de monóxido de azoto 

(NO) e de citocinas pró-inflamatórias, e também a ativação das células da 

microglia, da via do NF-κB e da PKCζ estão relacionados com a rutura da 

barreira hemato-retiniana. 

A sitagliptina é um inibidor da dipeptidil peptidase 4 (DPP-IV) que é utilizada no 

tratamento da diabetes tipo 2. Resultados recentes revelaram que a sitagliptina 

previne a rutura da barreira hemato-retiniana e também o aumento dos níveis 

de interleucina (IL)-1β em retinas de animais com diabetes tipo 1 e tipo 2.     

Além do seu efeito na estimulação da secreção de insulina, a DPP-IV tem um 

papel importante no metabolismo do neuropeptídeo Y (NPY). Assim, a inibição 

desta enzima pode afetar as funções moduladoras do NPY. 

Neste estudo, pretendeu-se avaliar se a sitagliptina inibe a ativação das células 

da microglia da retina e a neuroinflamação, e se os efeitos deste fármaco são 

mediados pelo sistema do NPY, e em particular pela ativação dos recetores Y1. 

Os efeitos da sitagliptina foram avaliados em culturas primárias de retina e em 

culturas organotípicas de retina. Para induzir uma resposta inflamatória, ambas 

as culturas foram expostas ao lipopolissacarídeo (LPS) e os efeitos da 

sitagliptina foram testados, na ausência e na presença do antagonista dos 

receptores Y1 (BIBP3226). 

Nas culturas primárias de retina, a sitagliptina inibiu o aumento da 

imunoreactividade da isoforma indutível da sintase do monóxido de azoto 

(iNOS-IR) nas células da microglia e também o aumento da produção de NO 
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induzidos por exposição a LPS. O bloqueio dos receptores Y1 inibiu 

parcialmente, mas não significativamente, o efeito da sitagliptina no aumento 

da iNOS-IR. No entanto, o antagonista do recetor Y1, BIBP3226, preveniu 

completamente o efeito da sitagliptina na produção de NO. Estes resultados 

sugerem que os efeitos da sitagliptina na inflamação podem ser mediados, pelo 

menos em parte e, sob determinadas condições, pela ativação dos recetores 

Y1. Os níveis do fator de necrose tumoral (TNF) e de IL-1β nas culturas 

primárias de retina não foram afetados pelo tratamento com sitagliptina nem 

pelo bloqueio dos recetores Y1. Contudo, resultados preliminares indicam que a 

sitagliptina atenua o aumento da imunoreactividade da IL-1β em células da 

microglia, induzido pelo LPS. 

Nas culturas organotípicas de retina, a sitagliptina preveniu as alterações na 

morfologia das células da microglia. Apesar de não ser significativo, este efeito 

foi parcialmente inibido pelo bloqueio dos recetores Y1, de modo semelhante ao 

que se tinha sido observado nas experiências em que se avaliou iNOS-IR em 

culturas primárias de retina, sugerindo que os efeitos da sitagliptina na 

morfologia das células da microglia não parecem depender da ativação dos 

recetores Y1. À semelhança do que foi observado nas culturas primárias de 

retina, a sitagliptina também inibiu o aumento da iNOS-IR em células da 

microglia nas culturas organotípicas. Mais uma vez, o bloqueio dos recetores 

Y1 inibiu, mas de forma parcial e não significativa, o efeito da sitagliptina. Por 

último, a sitagliptina não inibiu o aumento da expressão de mRNA da iNOS, 

induzido pelo LPS, mas o bloqueio dos recetores Y1 exacerbou o aumento da 

expressão de mRNA da iNOS induzido por LPS. 

Concluindo, estes resultados indicam que a sitagliptina tem efeitos anti-

inflamatórios, controlando a reatividade das células da microglia, mas estes 

efeitos parecem ser mediados por vias de sinalização específicas, como por 

exemplo a da iNOS. Apesar dos resultados sugerirem que o sistema do NPY, e 

em particular o recetor Y1, poderá contribuir parcialmente para alguns dos 

efeitos da sitagliptina, serão necessários mais estudos para clarificar se a 

activação dos recetores Y1 está efetivamente a mediar os efeitos da 

sitagliptina. 
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Abstract 

Diabetic retinopathy is one of the most common complications of diabetes and 

is a leading cause of vision loss and blindness. Intensive glycemic control, 

blood pressure regulation and lipid-lowering therapy reduce the risk of 

developing this disease. Moreover, there are significant limitations in the 

therapeutic approaches available, which are invasive and mainly targeted for 

the later stages of the disease. Therefore, there is a great need to develop new 

therapeutic strategies for prevention and treatment of diabetic retinopathy. 

It has been shown that low-grade inflammatory processes play an important 

role in the pathogenesis of diabetic retinopathy. Moreover, it has been reported 

that the blood-retinal barrier (BRB) breakdown is correlated with increased nitric 

oxide (NO) production in the retina, mainly via inducible nitric oxide synthase 

(iNOS), microglia activation, increased levels of pro-inflammatory cytokines, and 

nuclear factor-kB (NF-κB) and  protein kinase C (PKCζ) activation. 

Sitagliptin is an inhibitor of dipeptidyl-peptidase-IV (DPP-IV) used for the 

treatment of type 2 diabetes. Recent published data has shown that sitagliptin 

can prevent the BRB breakdown. Additionally, it prevented the increase of 

interleukin (IL)-1β in the retinas of type 1 and type 2 diabetic animals. 

Besides stimulating insulin secretion, the inhibition of DPP-IV also affects the 

modulatory functions of neuropeptide Y (NPY), because DPP-IV is a key 

enzyme on the metabolism of NPY. 

In this study, we aimed to investigate whether sitagliptin is able to inhibit retinal 

microglia activation and neuroinflammation and whether the effects of sitagliptin 

are mediated by the NPY system, and particularly through Y1 receptor 

activation. Using primary retinal neural cell cultures and retinal organotypic 

cultures exposed to lipopolysaccharide (LPS) to trigger an inflammatory 

response, we evaluated the effects of sitagliptin in microglial reactivity, in the 

absence or presence of Y1 receptor antagonist (BIBP3226).  

In primary retinal neural cell cultures, sitagliptin was able to inhibit the increase 

in iNOS immunoreactivity (iNOS-IR) in microglial cells and NO production 

triggered by LPS. The blockade of Y1 receptor partially inhibited the effect of 

sitagliptin on the increase of iNOS-IR triggered by LPS, although not 

significantly. However, the Y1 receptor antagonist, BIBP3226, completely 
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abolished the effect of sitagliptin on NO production, suggesting that Y1 receptor 

might mediate, at least in part, and under certain condition, the effect of 

sitagliptin on inflammation. Moreover, neither sitagliptin nor BIBP3226 affected 

tumor necrosis factor (TNF) or IL-1β levels in retinal neural cell cultures. 

However, preliminary results show that sitagliptin seemed to attenuate LPS-

induced upregulation of IL-1β immunoreactivity (IL-1β-IR) in microglial cells.  

In cultured retinal explants, sitagliptin prevented the alterations in retinal 

microglia morphology. The blockade of Y1 receptor by BIBP3226 slightly 

inhibited the effects of sitagliptin, although not significantly, similarly as was 

observed in the experiments where iNOS-IR was evaluated in retinal neural cell 

cultures, suggesting that the effects of sitagliptin on microglia morphology 

appear to be not dependent of the activation of Y1 receptor. As in retinal neural 

cell cultures, sitagliptin also inhibited the increase in iNOS-IR in microglial cells 

in cultured retinal explants, and again, despite a tendency for a partial inhibition 

of the effect of sitagliptin when cultures were also exposed to the Y1 receptor 

antagonist, this effect was not statistically significant. Finally, sitagliptin did not 

inhibit the increase in iNOS mRNA expression triggered by LPS, but the 

blockade of Y1 receptor enhanced the increase in iNOS mRNA expression 

induced by LPS. 

In conclusion, these results clearly indicate that sitagliptin has anti-inflammatory 

effects by controlling the reactivity of microglial cells, but these effects of 

sitagliptin appear to affect specific targets or pathways, such as iNOS. 

Moreover, it seems that the NPY system, and particularly the Y1 receptor, might 

eventually partially contribute for some of the effects of sitagliptin, but further 

investigation is required to clarify whether Y1 receptor activation mediates the 

effects of sitagliptin.  

 

Key-words: Microglial cells, neuroinflammation, sitagliptin, Y1 receptor. 
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1. Introduction 

1.1. Eye 

The eye is a very complex and highly developed structure that provides the 

sense of sight. This organ is capable of capturing incoming light and converting 

it into electrical signals that are processed and refined by our brain, which 

translates them into visual images (Purves, 2004). It is exceptional that visual 

information can be discerned over a wide range of stimulus intensities that 

allows us to distinguish shapes, colors, size and textures. 

The eyeball can be divided in three main layers: the outer, the middle and the 

inner layer. 

 

Fig. 1 - Anatomy of the human eye (from www.myvmc.com). 

The outer layer is composed by the sclera and the cornea. The sclera is a tough 

white, opaque, fibrous tissue that helps maintaining the eye form and protects 

its internal structures. At the front of the eye, in the area protected by the 

eyelids, the sclera is transformed into the cornea, a specialized, transparent 

tissue through which light rays enter the eye. This is the most powerful lens of 

the optical system and along with the crystalline lens, allows the production of a 

sharp image in the retina (Fig. 1) (Purves, 2004)  

The iris, ciliary body and the choroid form the uvea, which is the middle layer of 

the eye. The largest component of the uveal tract is the choroid that is formed 
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by a rich capillary bed that nourishes the photoreceptors in the outer retina. The 

choroid also has a high concentration of melanin that absorbs light, controlling 

reflection within the eye. The ciliary body is a muscular component that 

encircles the lens and changes its shape during the process of focusing. This 

part of the uvea also comprises a vascular component, the ciliary processes, 

which produce the fluid that fills the front of the eye: the aqueous humor. The 

iris is the circular, colored portion of the eye that surrounds the pupil. It contains 

two sets of muscles with opposing actions that allow the pupil to dilate or 

constrict, regulating the amount of light that enters the eye (Kolb, 1995; Purves, 

2004). 

The retina is the innermost layer of the eye and contains, among other cell 

types, light-sensitive photoreceptors capable of transforming light into electrical 

signals that are sent to the brain through the optic nerve (Purves, 2004). 

The eye also comprises three different fluid chambers: the anterior chamber 

that lies behind the cornea and in front of the lens, the posterior chamber 

located between the iris and the lens, and the vitreous chamber that extends 

from the lens to the retina. The first two chambers are filled with aqueous 

humor, a watery liquid that supplies nutrients and oxygen to the cornea and 

lens. It is constantly produced by the ciliary processes and flows into the 

anterior chamber through the pupil, being continually drained through the 

trabecular meshwork. To maintain a constant intraocular pressure, it is 

important that the rates of production and drainage of this fluid are balanced. In 

the vitreous chamber lies a thicker, gelatinous substance called the vitreous 

humor that represents about 80% of the volume of the eye. Besides maintaining 

the shape of the eye, this fluid contains phagocytic cells that remove unwanted 

debris in the visual field (Kolb, 1995; Purves, 2004). 

 

1.2. Retina 

The retina is a light-sensitive neural tissue, approximately 0.5 mm thick in 

humans that lines the back of the eye (Kolb, 1995). When light strikes the 

retina, it is absorbed by the photoreceptors, where electrochemical signals are 

created and sent to the brain via axons into the optic nerve. The optic nerve is 

formed by axons of retinal ganglion cells (RGCs) and blood vessels that open 

into the retina to vascularize the inner layers of this tissue.  
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Being part of the central nervous system (CNS), the retina comprises five types 

of neurons: photoreceptors, bipolar cells, horizontal cells, amacrine cells and 

RGCs. These cells are highly organized in three layers of nerve cell bodies and 

two layers of synapses (Fig.2). The outer nuclear layer (ONL) is the outermost 

layer of the retina and contains cell bodies of the photoreceptor cells, rods and 

cones. Cell bodies of the bipolar, horizontal and amacrine cells are located in 

the inner nuclear layer (INL) and the ganglion cell layer (GCL) is composed by 

cell bodies of RGCs and displaced amacrine cells (Kolb, 1995). 

 

Fig. 2 – Schematic illustration of the structure of the retina (adapted from Purves, 2004).  

Between the GCL and the INL lies the inner plexiform layer (IPL), where the 

bipolar cells have their axon terminals and synapse with the dendrites of RGCs 

and amacrine cells (Fig.2). The other synaptic layer is called outer plexiform 

layer (OPL) and is located between the INL and the ONL. This part of the retina 

is where connections between photoreceptors and bipolar and horizontal cells 

take place. The retina is separated from the choroid by the retinal pigment 

epithelium (RPE), a layer of pigmented cuboidal cells that, among other 

functions, controls the access of nutrients from the choroid to the retina, 
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phagocytizes the outer segments of photoreceptors and contributes to the 

normal retinal immune regulation, secreting cytokines (Amirpour et al., 2014; 

Langmann, 2007). In addition to neurons, there are several other types of cells 

in the retina, which include glial cells, endothelial cells, pericytes and epithelial 

cells. 

While choroidal blood vessels supply photoreceptors, the inner retina is 

nourished by the retinal artery that branches into three capillary networks 

throughout the retina. Between endothelial cells and retinal capillaries there are 

tight junctions, which are also present in epithelial cells of the RPE. The RPE, 

along with retinal capillaries constitute the blood-retinal barrier (BRB) (Fig.3). 

The inner BRB is composed by retinal capillaries, while the outer BRB is formed 

by the RPE. By regulating the transport of molecules into the retina, the BRB 

plays a very important role in protecting the retina against circulating toxins (Siu 

et al., 2008). 

 

Fig. 3 - Schematic diagram of the blood-retinal barrier. RPE: retinal pigment epithelium; 

POS: photoreceptor outer segments; OLM: outer limiting ―membrane‖; ONL: outer nuclear layer; 

OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion 

cell layer; NFL: nerve fiber layer; ILM: inner limiting ―membrane‖ (Hosoya and Tomi, 2008). 

 

1.2.1. The Neuronal Retina 

1.2.1.1. Photoreceptors 

There are two types of photoreceptors: rods and cones. In the human retina, 

there are about 110-125 million rods. Functionally, these cells are specialized to 
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yield high sensitivity, permitting twilight and night vision. On the other hand, the 

6-7 million cones are responsible for high resolution and color perception (Lang, 

2000). Both have an outer segment, which contains light-sensitive 

photopigments and an inner segment, where the cell nucleus, mitochondria and 

synaptic terminals are located, and contact with bipolar and horizontal cells. 

Photoreceptors absorb light by the photopigment in the outer segment and this 

initiates a cascade of processes that change the membrane potential, and the 

amount of neurotransmitter released by the photoreceptor that synapses with 

horizontal and bipolar cells (Purves, 2004).  

The distribution of rods and cones across the retina is very important for vision. 

The density of rods throughout most of the retina is much greater than cones. 

However, in the fovea (a highly specialized region of the central retina), cone 

density increases almost 200-fold. This extremely higher density of cone 

receptors in the fovea provides high visual acuity (Purves, 2004). 

 

1.2.1.2. Bipolar Cells 

Bipolar cells transmit the synaptic input received from photoreceptors to 

ganglion and amacrine cells. There is only one type of bipolar cells that receives 

inputs from rods and they are called rod bipolar cells. On the other hand, there 

are ten different types of bipolar cells that synapse with cones and these cells 

are designated cone bipolar cells (Kolb, 1995). Cone bipolar cells can be 

classified as ON bipolar cells and OFF bipolar cells, depending on their 

response to glutamate released by photoreceptors. OFF bipolar cells have 

excitatory ionotropic glutamate receptors and are hyperpolarized by light. ON 

bipolar cells express metabotropic glutamate receptors and are depolarized by 

light (Fischbarg, 2006). 

 

1.2.1.3. Retinal Ganglion Cells 

Retinal ganglion cells are located in the innermost layer of the retina, being the 

final output neurons of this tissue. These cells collect visual signals from bipolar 

and amacrine cells and transmit them through axons to the brain. According to 

the pathways initiated by bipolar cells, RGCs can also be divided into ON and 

OFF (Kolb, 1995). 
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1.2.1.4. Horizontal cells  

Horizontal cells are connected laterally to many rods, cones, and bipolar cells. 

Their processes enable lateral interactions between these neighboring cells, 

maintaining the visual system sensitivity by selectively suppressing certain 

nerve signals. This process is called lateral inhibition and improves the contrast 

and definition of the visual stimulus (Kolb, 1995; Purves, 2004). 

 

1.2.1.5. Amacrine cells 

Amacrine cells are interneurons that integrate, modulate and interpose a 

temporal domain to the visual message presented to the RGCs. Synaptically 

active in the IPL, they can be classified into more than 20 subtypes and help to 

extract visual elements, such as contrast, color, brightness and movement 

(Kaneda, 2013; Kolb, 1995). 

 

1.2.2. Glial cells of the retina 

1.2.2.1. Müller cells 

Müller cells are the most abundant glial cells in the retina and span the entire 

depth of this tissue, forming architectural support structures. They play an 

essential role in the normal function of retina by regulating extracellular 

concentrations of potassium, which are increased upon light stimulation. In 

addition, Müller cells remove neurotransmitters, such as glutamate, from 

extracellular space following their release into the synapse (Newman and 

Reichenbach, 1996). 

 

1.2.2.2. Astrocytes 

Astrocytes exert several essential functions related to the CNS homeostasis. In 

response to insults to the CNS, these cells proliferate, change their morphology 

and increase the expression of glial fribrillary acidic protein (GFAP), in a 

process called astrogliosis. Astrocytes are part of the BRB, having a close 

association with retinal vessels and regulating its properties. Additionally, they 

form a nutritive support in providing glucose to neurons (Kolb, 1995). 
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1.2.2.3. Microglia 

Microglial cells play an important role in the surveillance of the CNS 

microenvironment. In healthy conditions, microglia presents a ramified 

morphology extending long thin processes. Upon infection, trauma, ischemia 

and neurodegenerative disease, these cells become activated and with 

increased phagocytic capacity. They migrate to the site of injury, proliferate and 

release a variety of factors, such as cytokines, nitric oxide (NO) and reactive 

oxygen species (ROS) (Kettenmann et al., 2011).  

Microglial cells are sensitive to pro-inflammatory mediators through surface 

molecules, such as cytokine receptors, scavenger receptors, pattern recognition 

receptors and chemokine receptors. The activation of these receptors leads to 

increased microglial activation, which contributes to the ongoing inflammation 

process (Kierdorf and Prinz, 2013). In neurodegenerative diseases, such as 

Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, chronic 

activation of microglia contributes to the progression of the disease. 

 

1.2.2.4. Microglia in the retina 

In the retina, under physiological conditions, microglial cells are found in a non-

activated state in the NFL, GCL and IPL (Fig. 4) (Santiago et al., 2014). 

 

Fig. 4 - Schematic draw of microglia localization in the retina. Microglial cells (pink arrows) 

in normal physiological conditions are mainly located in the plexiform layers. (A) Retinal layers: 

OS/IS, outer and inner segments of rods and cones; ONL, outer nuclear layer; OPL, outer 

plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. (B) 

Confocal image from a rat retinal section (Santiago et al., 2014). 

 



Introduction 

10 
 

 

As mentioned previously, in their resting state, microglial cells present highly 

motile protrusions and extensive processes that continuously scan their 

environment. They phagocytize cell debris and release mediators that regulate 

the survival of RGCs and photoreceptors (Langmann, 2007).  

In response to injury, microglial cells become activated and migrate throughout 

the retina to the site of lesion where they alter their morphology, becoming 

amoeboid-shaped cells with the ability to proliferate and phagocytize cellular 

debris and apoptotic cells (Fig. 5) (Garden and Moller, 2006).  

 

Fig. 5 - Schematic representation of microglia activation and migration in the retina. (A) In 

homeostatic conditions microglia are located mainly in the plexiform layers of the retina, scannig 

their environment, phagocytosing cell debris and secreting neurotrophins; (B) Stimulus that lead 

to abnormal cell functions are sensed by microglia; (C) Microglia migrates to the injury site, alter 

their morphology into an amoeboid-shape and become able to phagocytize. RPE, retinal 

pigment epithelium; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear 

layer; IPL, inner plexiform layer; GCL, ganglion cell layer (Karlstetter et al., 2010). 

 

In this activated state, microglia produce and release pro-inflammatory 

mediators, such as nitric oxide, reactive oxygen species and cytokines, such as 

tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6. In addition, microglial 

cells release chemokines that attract other immune cells and secrete several 

neurotrophic factors, influencing the physiology and survival of surrounding 

neurons (Kettenmann et al., 2011). 

When activated, microglial cells can be either beneficial or harmful, depending 

on their immunological phenotype and the local cytokine milieu. Chronic 
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activation leads to exaggerated responses that can induce retinal damage and 

neuronal apoptosis (Langmann, 2007). In fact, studies reveal that microglia is 

activated in an early stage of retinal disease, suggesting that these cells have 

an inductive role in disease progression (Lee et al., 2008).  

 

1.3. Diabetic retinopathy 

Diabetic retinopathy is one of the most common complications of diabetes and 

is the leading cause of preventable blindness in working-age adults (Fong et al., 

2004). Nearly all individuals who have had diabetes for more than 15 years 

develop the disease to some degree, regardless of whether they have type 1 

(due to loss of insulin secretion) or type 2 (due to insulin resistance) diabetes 

(Barber, 2003). According to the International Diabetes Federation, in 2013, 

there were 382 million people living with diabetes and it is expected that this 

number will reach 471 million by 2035 (Nam Han Cho et al., 2013). As the 

global prevalence of diabetes increases, so will the number of people with 

diabetic retinopathy. 

The prevalence of diabetic retinopathy increases with the duration of diabetes. 

In addition, hyperglycemia, hypertension and dyslipidemia are three major risk 

factors for developing this disease that can be controlled by patients (Yau et al., 

2012). 

Diabetic retinopathy is a chronic microvascular complication triggered by 

chronic hyperglycemia. The disease can progress from mild nonproliferative 

abnormalities, characterized by increased vascular permeability, to 

nonproliferative diabetic retinopathy that presents vascular closure, and to 

proliferative diabetic retinopathy, characterized by the development of fragile 

abnormal blood vessels along the retina and posterior surface of the vitreous 

(Fong et al., 2004). Total or partial vision loss can occur through vitreous 

hemorrhage or retinal detachment, and central vision loss can be caused by 

retinal leakage and subsequent macular edema (Sheetz and King, 2002). 

Laser photocoagulation is an effective treatment for diabetic retinopathy. With 

this therapy, the areas of the retina that contain leaking blood vessels are 

sealed with burning laser flashes. However, many side-effects of this approach 

have been described. These include macular edema, impaired peripheral retinal 
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function and increased light sensitivity. Additionally, misplaced burns can 

damage retinal blood vessels (Dowler, 2003). 

The exact mechanisms by which high levels of blood glucose lead to vascular 

disruption in diabetic retinopathy are poorly defined. However, several 

biochemical pathways have been proposed as potential links between 

hyperglycemia and diabetic retinopathy. These include increased polyol 

pathway, aldose reductase pathway, oxidative stress, activation of protein 

Kinase C pathway, accelerated formation of glycation end products (AGEs) and 

increased expression of growth factors such as vascular endothelial growth 

factor (VEGF) and insulin-like growth factor-1 (IGF-1) (Tarr et al., 2013; Zhang 

et al., 2011). These pathways lead to cell dysfunction and apoptosis through the 

activation of mitogen-activated protein kinases (MAPKs) and oxidation of 

intracellular components that will induce the production of angiogenic cytokines 

and BRB breakdown (Zhang et al., 2011).  

Much of the research effort in diabetic retinopathy is often targeted at retinal 

vasculature, such as the administration of anti-VEGF agents (Abu El-Asrar, 

2013). However, there is accumulating evidence that inflammation plays a 

critical role in the development of this disease (Kern, 2007). 

 

1.4. Diabetic retinopathy and inflammation 

Although microvascular changes are a hallmark of diabetic retinopathy, it has 

been demonstrated that the neural retina function can be compromised before 

the onset of vascular lesions (Antonetti et al., 2006). There is increasing 

evidence that inflammatory processes have a considerable role in the 

development of this disease. The loss of chromatic discrimination, contrast 

sensitivity and dark adaptation has been detected using electrophysiological 

methods both in diabetic patients (Frost-Larsen et al., 1980) and in diabetic 

animals (Matsubara et al., 2006) before microvascular alterations could be 

detected. In addition, loss of RGCs and glial activation has been detected in 

diabetic humans (Barber et al., 1998) and rats (Seki et al., 2004). All of these 

alterations together can be considered neurodegenerative and precede 

microvascular abnormalities, indicating that neural impairment occurs before the 

alterations in the BRB. Diabetes induces the dysregulation of the nitric oxide 
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synthase pathway, increases NO production, nuclear factor-kB (NF-κB) 

activation and the release of pro-inflammatory cytokines (TNF, IL-1β and IL-6), 

upregulates intracellular adhesion molecule-1 (ICAM-1) and increases 

leukostasis (Zeng et al., 2008; Zhang et al., 2011). 

These findings offer new insights into the pathogenesis of diabetic retinopathy 

and the possibility to develop novel therapeutic approaches to treat this 

disease.  

 

1.5. Neuropeptide Y 

Neuropeptide Y (NPY) is a 36-amino-acid peptide that was first isolated in 1982 

from porcine brain (Tatemoto, 1982) and was proven to be highly conserved 

throughout evolution (Larhammar, 1996). It is a 

neurotransmitter/neuromodulator synthesized by neurons and is one of the 

most abundant peptides in the central and peripheral nervous system (Gray and 

Morley, 1986). NPY belongs to the family of peptide tyrosine-tyrosine (PYY) and 

the pancreatic polypeptide (PP). These three peptides share considerable 

amino acid homology, amidated C-terminal ends, and the presence of a large 

number of tyrosine residues (Larhammar, 1996). They share a common tertiary 

structure of an alpha-helix and polyproline helix connected by a beta-turn that 

results in a characteristic U-shaped peptide known as a PP-fold (Berglund et al., 

2003) (Fig. 6). PYY is predominantly synthesized and released by L cells in the 

distal ileum and colon (Adrian et al., 1987). PP is mainly found in pancreatic 

cells, distinct from those producing insulin, glucagon or somatostatin 

(Larhammar, 1996). These two peptides act as hormones and are mainly 

associated with the regulation of food intake (Simpson et al., 2012). 

 

Fig. 6  – Tertiary structure of porcine NPY (Kaske, 2012). 
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Sympathetic neurons are the main source of NPY in the periphery, where it is 

co-localized with norepinephrine (NE) (Ekblad et al., 1984). In the CNS, it is one 

of the most abundant and widespread peptides, being associated with several 

physiological and pathological conditions. Among other functions, this peptide is 

involved in the modulation of pain, memory, eating behavior and anxiety 

(Wettstein et al., 1995). 

 

1.5.1. Biosynthesis and metabolism  

The expression of NPY gene results in a 97-amino-acid pre-pro-NPY (Minth et 

al., 1984). In order to synthesize the mature form of NPY1-36, a series of 

proteolytic steps takes place. A signal peptidase cleaves the signal peptide of 

pre-pro-NPY originating pro-NPY, and then a prohormone convertase cleaves 

pro-NPY at a dibasic site thus removing the C-terminal peptide of NPY (CPON) 

from NPY1-39 (Funkelstein et al., 2012; Funkelstein et al., 2008). NPY1-39 is 

further processed by carboxypeptidase into NPY1-37. Finally, a peptidylglycine 

α-amidating monooxygenase is responsible for the C-terminal amidation of 

NPY, which results in the mature and biological active form of NPY (NPY1-36) 

(Fig. 7). The mature NPY1-36 can be cleaved in the serum into three main 

fragments: NPY3-36, NPY3-35, and NPY2-36 (Abid et al., 2009). Dipeptidyl 

peptidase IV (DPP-IV) is a major enzyme responsible for NPY metabolism. 

DPPIV cleaves NPY1-36 into NPY3-36. Alternatively, NPY1-36 is processed by 

aminopeptidase P into NPY2-36. NPY3-36 and NPY2-36 loose the affinity for Y1 

receptor while maintaining high affinity for Y2 and Y5 receptors. In addition, the 

enzyme kallikrein can further cleave NPY3-36 into NPY3-35 which does not 

bind to any of NPY receptors and is likely a metabolic clearance product of 

NPY3-36.  
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Fig. 7 - Biosynthesis and metabolization of NPY. NPY gene is composed of four exons and 

results in the synthesis of a 97-amino-acid pre-pro-NPY. After a series of proteolytic steps and 

final C-terminal amidation, the mature and biological active NPY1-36 is formed (Pedrazzini et al., 

2003). 

 

1.5.2. NPY Receptors  

Functional active NPY receptors, Y1, Y2, Y4, and Y5, in humans and rats, are all 

G protein-coupled receptors, consisting of an extracellular N-terminus, seven 

transmembrane domains and an intracellular C-terminus. These receptors are 

widely distributed throughout the rat brain, especially in regions such as 

hypothalamus, hippocampus, and amygdala (Parker and Herzog, 1999). The Y1 

receptor binds to NPY family peptides with an order of potency of NPY ≥ PYY ≥ 

[Pro34] substituted analog >> C-terminal fragment > PP (Michel et al., 1998). Y1 

receptor has been found in several brain regions, namely the cerebral cortex, 

hippocampus, hypothalamus, thalamus, amygdala, and brainstem (Shaw et al., 

2003; Wolak et al., 2003). The Y2 receptor typically binds NPY family peptides 

with an agonist order of potency of NPY ≈ PYY ≥ C-terminal fragment >> 

[Pro34]substituted analog > PP (Michel et al., 1998), and it is also widely 

distributed in the brain, namely the thalamus, caudate nucleus, hippocampus, 

and cerebellum. The Y4 receptor typically binds preferentially to PP (13.8 pM, 

Ki) (Lundell et al., 1995), though it also binds NPY and PYY (9.9 and 1.44 nM, 

respectively). Y4 receptor is mainly found in peripheral nervous system though 

low levels are also found in the brain (Parker and Herzog, 1999). The Y5 
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receptor binds NPY family peptides (NPY ≥ PYY ≈ [Pro34]substituted analog ≈ 

NPY2-36 ≈ PYY3-36 >> NPY13-36) and it is also found in different brain 

regions, such as olfactory bulb, lateral septum, thalamus, hippocampus, 

amygdala, brainstem, nucleus tractus solitarius and area postrema (Dumont et 

al., 1998; Wolak et al., 2003). Up to date, Y3 receptor has not been cloned and 

no specific agonist or antagonist has been described, and initial studies 

reporting Y3 may have result from experimental artefacts (Michel et al., 1998). 

Regarding Y6 receptor, first cloned from mouse genomic DNA (Weinberg et al., 

1996), and although a human homologous has been cloned, it does not result in 

a functional protein (Gregor et al., 1996). 

 

1.6. Neuropeptide Y system in the retina  

The NPY presence in the retina has been reported in many different species, 

such as frog, chicken, pig, rabbit, cat, rat and mouse (Santos-Carvalho et al., 

2014). In mouse and rat retina, NPY is mainly present in amacrine cells and 

displaced amacrine cells in GCL, co-localizing mainly with gamma-aminobutyric 

acid (GABA) (Oh et al., 2002; Sinclair and Nirenberg, 2001). In human retina, 

NPY has been reported in amacrine cells and RGCs (Jen et al., 1994; Jotwani 

et al., 1994). In addition, in primary retinal cell cultures NPY is found in different 

rat retinal cells such as neurons, endothelial cells, microglial cells and Müller 

cells (Alvaro et al., 2007). Moreover, Y1 receptor is detected in horizontal and 

amacrine cells of rat retina (D'Angelo et al., 2002). In primary retinal neural cell 

cultures, Y1 and Y2 receptors are found in different neuronal types and glial cells 

(Santos-Carvalho et al., 2013). In addition, in the disease human retina, Y1 

receptor is mainly detected in glial cells (Canto Soler et al., 2002). The role of 

NPY in retinal physiology remains poorly studied. Nevertheless, NPY has been 

found to regulate neurotransmitter release (Bruun and Ehinger, 1993), possibly 

via regulation of calcium influx (Alvaro et al., 2009). In addition, NPY might also 

be involved in the regulation of RGC physiology (Sinclair et al., 2004) and 

Müller glial cell swelling in the rat retina (Uckermann et al., 2006). 
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1.7. Neuropeptide Y and microglia 

Increasing evidence shows that NPY plays an important role in the immune 

system (Dimitrijevic and Stanojevic, 2013). This peptide has been shown to 

modulate several actions that include cytokine production and release, NO and 

ROS production and the activation of immune cells (Bedoui et al., 2007; 

Ferreira et al., 2011; Ferreira et al., 2010). Among other immune cells, it has 

been demonstrated that NPY is present in retinal microglial cells (Alvaro et al., 

2007) and in N9 microglial cell line (Ferreira et al., 2010). In fact, it was 

demonstrated that NPY, by the activation of Y1 receptor, inhibits microglia cell 

activation, the release of IL-1β and the production of NO (Ferreira et al., 2010). 

Additionally, the activation of Y1 receptor by NPY also inhibited microglia cell 

motility and phagocytic capacity (Ferreira et al., 2012). These data suggests 

that NPY, through the activation of Y1 receptor, can prevent the excessive 

microglial activity, avoiding the overproduction of pro-inflammatory mediators 

and phagocytic aggressive behavior. 

 

1.8. Sitagliptin and DPP-IV 

DPP-IV, also known as CD26, is a membrane-associated peptidase. Being 

widespread throughout the body, it has pleiotropic biological activities. In fact, 

DPP-IV has several substrates, including NPY, glucagon-like peptide-1 (GLP-

1), PYY, gastric inhibitory polypeptidase, and paracrine chemokines (Mentlein, 

1999). 

Sitagliptin was the first DPP-IV inhibitor to be used in clinical practice. It is used 

for the treatment of type 2 diabetes in monotherapy or in combination with other 

antihyperglycemic agents, such as metformin or thiozolidinedione (Garg et al., 

2013). By inhibiting DPP-IV, sitagliptin stabilizes the GLP-1 stimulating its 

receptor, which enhances the production of insulin (Drucker and Nauck, 2006).  

Research has been made focusing the anti-inflammatory effects of DPP-IV 

inhibitors. Among other findings, it has been shown that the anti-inflammatory 

properties of NPY depend, in part, on its modulation by DPP-IV (Dimitrijevic et 

al., 2008). More recently, it was reported that the inhibition of DPP-IV by 

sitagliptin prevents the BRB breakdown, by inhibiting inflammation, apoptosis, 

nitrosative stress and changes in tight junctions. In addition, it was 
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demonstrated that these effects are independent of insulin secretion (Goncalves 

et al., 2012; Goncalves et al., 2014).  

These evidences point DPP-IV inhibitors as potential anti-inflammatory agents, 

opening new perspectives for the treatment of inflammatory diseases, such as 

diabetic retinopathy. 
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Objectives 

Diabetic retinopathy, a leading cause of vision loss and blindness among 

working-age adults, is classically considered to be a chronic retinal 

microvascular complication. However, increasing evidence indicate that retinal 

neurodegeneration is also an early event in the development of this disease. It 

has also been shown that low-grade inflammatory processes, associated with 

microglia activation, appear to have a major role in the pathogenesis of diabetic 

retinopathy. Sitagliptin is a DPP-IV inhibitor, which has been used since 2006 

for the treatment of type 2 diabetes, by stimulating insulin secretion. Besides 

this effect, it has been recently reported that sitagliptin can exert anti-

inflammatory effects in the retina. Moreover, DPP-IV is a key enzyme in the 

processing of NPY. This peptide is expressed by retinal microglial cells and 

there is increasing evidence indicating that NPY has anti-inflammatory 

properties. 

Therefore, the main aims of this work were: a) to investigate the ability of 

sitagliptin to control retinal microglial reactivity and neuroinflammation triggered 

by a pro-inflammatory stimulus; b) to evaluate the potential contribution of the 

NPY system, and particularly the Y1 receptor activation, for the effects of 

sitagliptin on microglia. 

In order to achieve these goals, we used two different experimental models: 

primary retinal neural cell cultures and retinal organotypic cultures. Both 

cultures were exposed to LPS to elicit a pro-inflammatory response and were 

treated with sitagliptin in the absence or presence of Y1 receptor antagonist 

(BIBP3226). Microglia morphology, iNOS immunoreactivity in microglial cells, 

iNOS expression and NO production, as well as pro-inflammatory cytokine 

levels (TNF and IL-1β) or immunoreactivity in microglial cells were assessed. 
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2. Methods 

2.1. Animals 

All Wistar rats used in this study were kept under temperature and humidity 

controlled conditions, with 12h light/dark cycle and with free access to water 

and food. The animals were handled according with the Association for 

Research in Vision and Ophthalmology (ARVO) statement for the use of 

animals in vision and ophthalmic research. 

 

2.2. Primary Retinal Neural Cell Cultures 

Primary retinal cell cultures were prepared from 3-5 days old rats, as previously 

described in (Santiago et al., 2006). The rat pups were decapitated, the eyes 

were enucleated and the retinas were dissected in sterile Ca2+- and Mg2+-free 

Hanks balanced salt solution (HBSS; in mM: 137 NaCl, 5.4 KCl, 0.45 KH2PO4, 

0.34 Na2HPO4, 4 NaHCO3, 5 glucose; pH 7.4). The retinas were then digested 

for 12 min, at 37ºC with 0.1% trypsin (w/v; Gibco, USA). After dissociation, cells 

were pelleted by centrifugation (1280 g, 1 min) and ressuspended in Eagle’s 

minimum essential medium (MEM) supplemented with 26 mM NaHCO3, 25 mM 

HEPES, 10% heat-inactivated fetal bovine serum (FBS), penicillin (100 U/mL; 

Life Technologies, USA) and streptomycin (100 mg/mL; Life Technologies, 

USA). Cells were plated at a density of 2.0x106cells/cm2 on 6-well plates or on 

12-well plates with glass coverslips, pre-coated with poly-D-lysine (0.1 mg/mL; 

Sigma-Aldrich, USA), and maintained at 37ºC in a humidified incubator with 5% 

CO2 for seven days. 

 

2.3. Retinal Organotypic Cultures 

8 to 10 weeks old wistar rats were killed by cervical dislocation. Eyes were 

enucleated and dissected in sterile Ca2+ and Mg2+ free HBSS and flat-mounted 

onto 30 mm diameter culture plate inserts with a 0.4 μm pore size (Millicell, 

Millipore, USA), with the GCL facing upwards. Explants were then cultured in 6-

well plates containing Dulbecco’s modified Eagle medium: Nutrient Mixture F-12 

(DMEM/F-12) media containing GlutaMAX I (Life Technologies, USA), 

supplemented with heat-inactivated 10% FBS (Life Technologies, USA), 0.1% 

gentamicin (Life Technologies, USA). The explants were maintained for four 
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days in vitro (DIV) in a humidified incubator at 37ºC with 5% CO2. At DIV1 and 

DIV2, culture medium was replaced with fresh media. 

 

2.4. Drug Exposure 

At DIV 6, cells were incubated with LPS (1 μg/mL; Sigma-Aldrich, USA) for 24h. 

Cell cultures were pre-treated with BIBP3226 (Y1 receptor antagonist; 1μM; 

Tocris, UK), for 1 h before LPS incubation. Cells were also treated with 

sitagliptin (200μM; Sigma-Aldrich, USA), for 45 min before LPS incubation (Fig. 

8). 

 

Fig. 8 - Schematic representation of drug exposure in primary retinal cell cultures. 

Concerning the retinal organotypic cultures (Fig. 9A), LPS (3 μg/mL; Sigma-

Aldrich, USA) was incubated at DIV3, and the retinal explants were challenged 

for 4h or 24h. The explants were incubated with BIBP3226 (1 μM) 1 h before 

LPS incubation and with sitagliptin (200μM; Sigma-Aldrich, USA), for 45 min 

before LPS incubation (Fig. 9B). 

 

Fig. 9 – (A) Image depicting organotypic retinal cell culture. (B) Schematic representation 

of drug exposure in organotypic retinal cell culture. 
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2.5. Immunocytochemistry 

Primary retinal cell cultures were washed three times with warm phosphate-

buffered saline (PBS; in mM: 137 NaCl, 2.7 KCl, 10 Na2HPO4, and 1.8 KH2PO4; 

pH 7.4) and fixed with 4% paraformaldehyde (PFA) with 4% sucrose for 10 min 

at room temperature (RT). Cells were again washed three times with PBS and 

permeabilized with 1% Triton X-100 in PBS for 10 min at RT. Non-specific 

binding was prevented by incubation with 3% Bovine Serum Albumin (BSA) in 

PBS with 0.2% Tween-20, for 1 h at RT. Cell cultures were then incubated with 

primary antibodies (Table 1) in blocking solution for 90 min at RT. After being 

washed with blocking solution, cells were incubated with secondary antibodies 

(Table 1) for 1 h at RT in the dark. The cells were washed with PBS and 

incubated with 4',6-diamidino-2-phenylindole (DAPI) (1:2000; Life Technologies, 

USA) for 10 min in the dark to stain nuclei. After washing, coverslips were 

mounted on glass slides with Glycergel mouting medium (Dako, Denmark). The 

preparations were visualized in a laser scanning confocal microscope LSM 710 

(Zeiss, Germany).  

2.6. Immunohistochemistry 

Retinal explants were washed three times with warm PBS and fixed with ice-

cold 100% ethanol for 10 min at 4ºC. Explants were again washed with PBS 

and non-specific binding was prevented by incubation with 3% BSA, 10% 

normal goat serum (NGS) and 0.1% Triton X-100, in PBS, for 1 h at RT. 

Samples were then incubated with primary antibodies (Table 1) in blocking 

solution for 48 h at 4ºC. After being washed several times with PBS, they were 

incubated with secondary antibodies (Table 1) overnight at 4ºC in the dark. 

Explants were washed with PBS and incubated with DAPI (1:1000; Life 

Technologies, USA) for 15 min in the dark to stain nuclei. After washing, they 

were flat-mounted on glass slides with the GCL facing upwards and 

coverslipped with Glycergel mouting medium (Dako, Denmark). The 

preparations were visualized in a laser scanning confocal microscope LSM 710 

(Zeiss, Germany). 
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Table 1 - List of primary and secondary antibodies used for immunofluorescence labeling 

 

2.7. Image Analysis 

Stained primary cultures and explants were examined in a Zeiss LSM 710 

confocal microscope (Zeiss, Germany). For each condition, 10 to 15 images 

were acquired randomly with a 20x objective. All images taken to compare 

samples were acquired using identical gain and exposure settings. 

Densitometric analysis was performed for iNOS/CD11b and IL-1β/CD11b 

stained cells using the public domain ImageJ program (http://rsb.info.nih.gov/ij/). 

Each cell’s immunoreactivity was calculated using the following formula: 

Corrected Total Cell Fluorescence = Integrated Density-(Area of selected cell x 

Mean Fluorescence of Background Readings), as previously described in 

(Gavet and Pines, 2010). 

To assess differences in microglia morphology, the particle measurement 

feature in ImageJ was used to calculate the 2D area, perimeter, circularity and 

Feret’s diameter of each microglia cell present in each image collected. As 

previously described (Kurpius et al., 2006), threshold was uniformly set to 

outline microglia cells and the four parameters were then automatically 

measured. Circularity was evaluated using the formula: 

 Host Dilution Supplier (catalog number) 

Primary Antibodies    

Anti-CD11b Mouse 1:100 Serotec (MCA275G) 

Anti-iNOS Rabbit 1:200 
Santa Cruz Biotechnology 

(NOS2M-19) 

Anti-IL-1β Goat 1:100 R&D Systems (AF-501-NA) 

Secondary Antibodies    

 Alexa Fluor® 568 
anti-mouse IgG 

Goat 1:200 Invitrogen (A11004) 

Alexa Fluor® 568 
anti-mouse IgG 

Donkey 1:200 Invitrogen (A11037) 

Alexa Fluor® 488 
anti-rabbit IgG 

Goat 1:200 Invitrogen (A11008) 

Alexa Fluor® 488 
anti-goat IgG 

Rabbit 1:200 Invitrogen (A11078) 

http://rsb.info.nih.gov/ij/
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circularity=4π(area/perimeter2). A circularity value of 1.0 indicates a perfect 

circular cell, and as the value approaches 0, it indicates increasingly ramified 

cells. Feret’s diameter is a measure of the cell’s length. It represents the longest 

distance between any two points along the selection boundary. 

 

2.8. Nitrite Quantification Assay 

Griess reaction method was used to determine NO production in retinal neural 

cell cultures. This is an indirect colorimetric assay that involves the 

spectrophotometric measurement of nitrites formed by the oxidation of NO. Cell 

culture medium was collected and cell debris were removed by centrifugation. 

Samples were then incubated (1:1) with Griess reagent mixture (1% 

sulfanilamide, in 5% phosphoric acid with 0.1% N-1-naphtylenediamine) for 30 

min in the dark. Optical density was measured with a microplate reader 

(Synergy HT; Biotek, Winooski, USA) at 550 nm. Nitrite concentration was 

determined using a sodium nitrite standard curve. 

 

2.9. Enzyme-Linked Immunosorbent Assay 

Quantification of intracellular and extracellular pro-inflammatory cytokines – IL-

1β and TNF – in primary retinal neural cell cultures was performed using 

enzyme-linked immunosorbent assay (ELISA). 

Cells were washed with warm PBS and then they were homogenized in lysis 

buffer (20 mM imidazole HCl, 100 mM KCl, 1 mM MgCl2, 1% Triton X-100, 1 

mM EGTA, 1 mM EDTA, 10 mM NaF, 1 mM Na3VO4; pH 6.8) supplemented 

with protease inhibitor and kept at -80ºC for further analysis. A small aliquot was 

saved to measure protein concentration using the BCA protein assay kit 

(Pierce, USA). Cell media was collected, centrifuged and stored at -80ºC, as 

well. 

For the assay, samples were defrosted and kept on ice and all kit’s reagents 

were kept at RT. ELISA procedure was then performed following the 

instructions provided by the manufacturer (R&D Systems, USA). The 

absorbance was measured at 450 nm, with wavelength correction set at 540 

nm, using a microplate reader (Synergy HT; Biotek, Winooski, USA). TNF and 

IL-1β concentrations were determined by comparison with the standard curve 
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using recombinant cytokines provided by manufacturer and normalized to the 

total amount of protein in the samples. 

 

2.10. RNA Extraction  

After washing with PBS, retinal organotypic cultures were collected and 

completely submerged in collection tubes containing the appropriate volume 

(300 µL) of RNAlater RNA Stabilization Reagent (Qiagen, Germany) which 

allows tissue to be stored without jeopardizing the quality or quantity of the RNA 

obtained. Samples were kept at -20ºC for later processing.   

Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Germany), following 

the manufacturer’s instructions. Briefly, the samples were defrosted, and the 

retinal tissue was removed from RNAlater using forceps and placed into suitably 

sized tubes for disruption with a lysis buffer (RLT buffer), provided with the kit. 

Subsequently, samples were homogenized in a QIAshredder homogenizer and 

transferred to RNeasy spin columns to yield an RNA enriched solution. RNA 

concentrations and purity ratios were then measured using a NanoDrop ND-

1000 Spectrophotometer (NanoDrop Technologies, USA).  

To eliminate possible genomic DNA contamination, RNA samples were treated 

with Deoxyribonuclease I (DNase I, Amplification Grade, Invitrogen, Life 

Technologies, USA), according to manufacturer’s instructions. 

 

2.11. cDNA Synthesis 

First-strand cDNA was synthesized using NZY First-Strand cDNA Synthesis Kit 

(Nzytech, Portugal), following supplier’s instructions. NZYRT 2x Master Mix and 

NZYRT Enzyme Mix were added to each RNA sample followed by incubation 

for 10 min at 25ºC. This was followed by a 30 min at 50ºC step and the reaction 

was inactivated by heating at 85ºC, for 5 min. cDNA was treated with RNase H 

(E. coli) for 20 min at 37ºC to degrade the RNA template in cDNA:RNA hybrids. 

cDNA synthesis and purity were evaluated using a conventional polymerase 

chain reaction (PCR) for β-actin using intron-spanning primers. Briefly, cDNA (1 

µL) was subjected to a 35-cycle PCR amplification using 2x MyTaq Red Mix 

(Bioline, UK) and 200nM of forward (GCTCCTCCTGAGCGCAAG) and reverse 

(CATCTGCTGGAAGGTGGACA) primers. After electrophoresis on 1.5% (w/v) 
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agarose gel containing 0.005% (v/v) ethidium bromide, samples were visualized 

in a transilluminator (Versadoc, Bio-Rad, USA). cDNA was diluted 1:2 in Tris-

EDTA (TE) buffer and stored at -20ºC. 

 

2.12. Real-Time Quantitative PCR 

mRNA expression of cultured retinal explants was quantified by qRT-PCR using 

a 2500 Real-Time PCR System (Applied Biosystems, USA).  

qRT-PCR was performed using 20 µL of total reaction volume containing 10 µL 

of 2x iTaqTMSYBR® Green Supermix (BioRad, USA), 200 nM of forward and 

reverse pre-optimized and costum-design primers (Table 2; Sigma-Aldrich, 

USA) and 2 µL of 1:2 diluted cDNA. Samples were loaded in duplicates into a 

96-well plate and tested according to the following protocol:  

 

 

Fig. 10 - Schematic representation of qRT-PCR protocol. 

Nontemplate controls were also performed in duplicate for each gene.  

 

2.13. qRT-PCR data analysis 

The expression stability of three candidate reference genes – YWHAZ, HPRT 

and TBP - was tested. NormFinder software (Andersen et al., 2004) identified 

YWHAZ as the most stable and therefore, it was used as the housekeeping 

gene for accurate normalization of gene expression.   



Methods 

28 
 

Relative quantification of target gene expression was calculated using the 

comparative cycle threshold (Ct) method, also referred as the ΔΔCt Method. Ct 

values were determined for each sample and subsequently, the ΔCt was 

calculated using the equation: ΔCt = Cttarget gene – Cthousekeeping gene. Afterwards, 

ΔΔCt was determined using the following formula: ΔΔCt = (Cttarget gene – 

Cthousekeeping gene)treated group - (Cttarget gene – Cthousekeeping gene)control group. The relative 

quantification describes the change in expression of the target gene in treated 

samples relative to its expression in control samples. Furthermore, a melting 

curve analysis was performed to evaluate unspecific products and primer-dimer 

formation. 

 

Table 2 - Primers used for qRT-PCR. 

 

 

2.14. Statistical Analysis 

Results are presented as mean ± SEM. Statistical analysis was performed 

using GraphPad Prism Version 5.00 for Windows (http://www.graphpad.com; 

GraphPad Software, USA). All results were submitted to non-parametric 

Kruskal-Wallis test, followed by Dunn’s multiple comparison test. Differences 

were considered statistically significant for p<0.05. 

 

Genes Forward Primer (5’-3’) Reverse Primer (3’-5’) 
Annealing 

Temperature (ºC) 

Reference 

Genes 
   

Hprt ATGGGAGGCCATCACATTGT ATGTAATCCAGCAGGTCAGCAA 60 

Tbp ACCAGAACAACAGCCTTCCACCTT TGGAGTAAGCCCTGTGCCGTAAG 58 

Ywhaz CAAGCATACCAAGAAGCATTTGA GGGCCAGACCCAGTCTGA 60 

Target 

Genes 
  

 

 

iNOS AGAGACAGAAGTGCGATC AGATTCAGTAGTCCACAATAGTA 60 
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3. Results 

In the present work, we aimed to investigate if sitagliptin could inhibit pro-

inflammatory processes in the retina, namely microglial cell activation. 

Moreover, we intended to investigate whether the potential inhibition of 

microglia activation by sitagliptin could be mediated by the NPY system, and 

particularly by Y1 receptor activation. For this purpose, primary retinal neural 

cell cultures and cultured retinal explants were exposed to a pro-inflammatory 

stimulus, LPS, and the effect of sitagliptin, in the absence or in the presence of 

the Y1 receptor antagonist on inflammation was evaluated. 

 

3.1. Sitagliptin reduces LPS-triggered increase in iNOS immunoreactivity 

and NO production in microglia in primary retinal neural cell cultures 

Inducible Nitric Oxide Synthase (iNOS) is one of the enzymes responsible for 

the production of NO and is typically expressed in response to cellular stress 

(Morris and Billiar, 1994). It has been shown that NO derived from iNOS plays a 

role in causing tissue damage and inflammation. Moreover, iNOS is strongly 

involved in the induction of early vascular changes in diabetes, suggesting that 

this enzyme has a key role in early diabetic retinopathy (Leal et al., 2007; Morris 

and Billiar, 1994). 

We evaluated the modulation of LPS-induced microglia activation by sitagliptin, 

assessing iNOS-IR, specifically in microglia, and NO release, indirectly, by 

measuring nitrites in the medium (Griess reaction method). The 

immunoreactivity of iNOS was assessed in microglial cells after 24 h exposure 

to LPS (Fig. 11). Microglial cells were identified by CD11b staining. In control 

and sitagliptin-treated cultures (104 ± 21.7% of the control), iNOS-IR in 

microglial cells was barely detected. On the contrary, when cultures were 

incubated with 1 μg/mL LPS, iNOS-IR significantly increased in CD11b-positive 

cells to 1011 ± 117% of the control (Fig. 11A and 11B). When cells were treated 

with sitagliptin before LPS exposure, iNOS-IR in CD11b-positive cells 

significantly decreased to 368.1 ± 30% of the control (Fig. 11A and 11B). 

Incubation with Y1 receptor antagonist (1 µM BIBP3226) before treatment with 

sitagliptin and exposure to LPS seemed to partly inhibit the effect of sitagliptin 
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(533.7 ±56.6% of the control). However, no statistically significant differences 

were detected. 
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Fig. 11 - Effect of sitagliptin on the LPS-triggered increase of iNOS-IR in microglial cells 

in primary retinal neural cell cultures. iNOS expression was evaluated in microglia (CD11b-

immunoreactive cells) in primary retinal cultures. Cells were cultured for 7 days and were 

exposed to LPS (1 μg/mL) for 24h in the absence or presence of 200 μM sitagliptin and with 1 

μM Y1R antagonist (BIBP3226). (A) Immunocytochemistry was performed using anti-CD11b 

(red) and anti-iNOS (green) antibodies. Nuclei were counterstained with DAPI (blue). Scale bar: 

100 μm. (B) iNOS immunoreactivity was quantified in CD11b-immunoreactive cells, in 10 

random fields (20x magnification), using corrected total cell fluorescence (CTCF) formula. Data 

are presented as mean ± SEM of 5 independent experiments, as a percentage of control. 

***p<0.001, compared to control; ##p<0.01, compared to LPS; Kruskal-Wallis, followed by 

Dunn's multiple comparison test. Sita: sitagliptin; Y1R ant: Y1R antagonist.  

 

Additionally, the production of NO in primary retinal neural cell cultures was 

assessed by quantifying nitrite concentration in the culture media by Griess 

reaction method. In control conditions, nitrite concentration was 1.08 ± 0.18 μM, 

and treatment with sitagliptin alone did not induce any change (0.99 ± 0.19 μM).  

NO release was significantly increased after LPS exposure to 5.76 ± 0.56 μM. 

Pre-treatment with sitagliptin before LPS incubation significantly inhibited the 

increase in nitrites concentration induced by LPS. Furthermore, the effect of 

sitagliptin was completely abolished when cells were pre-treated with the Y1 

receptor antagonist, BIBP3226 (7.96 ± 1.3 μM), indicating an important 

contribution of Y1 receptor activation mediating sitagliptin effect (Fig. 12). 
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Fig. 12 - Sitagliptin partially inhibits LPS-induced increase in nitrites production and 

blockade of NPY Y1 receptor abolishes this effect. The concentration of nitrites in primary 

retinal cell cultures media was determined by the Griess reaction method. Cells were cultured 

for 7 days and were exposed to LPS (1 μg/mL) for 24h in the absence or presence of 200 μM 

sitagliptin and with 1 μM BIBP3226 (Y1R antagonist). Results represent the nitrites 

concentration (μM) and are expressed as mean ± SEM of 5 to 7 independent experiments, 

performed in duplicate. **p<0.001, compared to control; #p<0.05, compared to LPS; $$p<0.001, 

compared to Sita+LPS, Kruskal-Wallis test, followed by Dunn's multiple comparison test. Sita: 

sitagliptin; Y1R ant: Y1R antagonist.    

 

3.2. Effect of sitagliptin and Y1 receptor blockade in LPS-induced increase 

in cytokine production in primary retinal neural cell cultures 

Microglia respond to proinflammatory factors becoming activated and shifting 

towards their cytotoxic phenotype, potentiating the inflammatory response, as 

they produce and release proinflammatory mediators, such as interleukin-1β 

(IL-1β) and tumor necrosis factor (TNF). The release of these cytokines has 

been used as a marker of microglia activation. 

The levels of TNF (Fig. 13) and IL1β (Fig. 14) were quantified by ELISA in 

primary retinal neural cell cultures, both in cell lysates (intracellular levels) and 

in cell culture media supernatants (extracellular levels). Exposure to 1 μg/mL 

LPS for 24 h increased the production and release of TNF. Quantification of 

TNF levels in cell lysates revealed a clear increase to 106.8 ± 26 pg/mg of 

protein compared to 10.5 ± 3.2 pg/mg of protein detected in control (Fig. 13A). 

Similarly, the extracellular TNF levels were increased to 380.6 ± 25.7 pg/mg of 

protein upon LPS application, compared to control (2.6 ± 0.6 pg/mg; Fig. 13B). 

However, pre-treatment with sitagliptin, or sitagliptin and BIBP3226 (Y1 receptor 

antagonist), did not prevent the alterations triggered by LPS on either 
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intracellular (Fig. 13A), and extracellular TNF levels (Fig. 13B). Sitagliptin alone 

did not affect the TNF levels. 

 

Fig. 13 - Sitagliptin does not prevent the increase of TNF levels triggered by exposure to 

LPS in retinal cell cultures. Primary retinal cell cultures were challenged with 1 μg/mL LPS for 

24 h, in the absence or presence of 200 μM sitagliptin and 1 μM BIBP3226 (Y1R antagonist). 

Intracellular (A) and extracellular (B) levels of TNF were quantified by ELISA and normalized to 

the total amount of protein in the samples. Results represent TNF concentration (pg/mg of 

protein) and are expressed as mean ± SEM of 4 independent experiments for the cell lysates 

and 5 to 7 for cell supernatants, both performed in duplicate. *p<0.05, compared to control, 

Kruskal-Wallis test, followed by Dunn’s multiple comparison test. Sita: sitagliptin; Y1R ant: Y1R 

antagonist. 

Exposure to LPS also triggered an increase in the production and release of IL-

1β in primary retinal cell cultures (Fig. 14). Intracellular IL-1β levels increased 

from 60 ± 8.6 pg/mg of protein, in control conditions, to 9103 ± 2126 pg/mg of 

protein upon exposure to LPS for 24 h (Fig. 14A). Similarly, as for TNF levels, 

the pre-treatment with sitagliptin did not prevent the effect of LPS on 

intracellular IL-1β levels. Although very low amounts of IL-1β have been 

detected in the extracellular media in control conditions (18.81 ± 0.5 pg/mg of 

protein), LPS also triggered an increase in extracellular IL-1β levels to 35.7 ± 

4.9 pg/mg of protein (Fig.14B). In sitagliptin-treated conditions, there was a 

small reduction in the extracellular IL-1β levels to 26.6 ± 1.9 pg/mg of protein, 

although no statistically significant differences were detected compared to LPS. 

Sitagliptin alone did not affect the IL-1β levels and the pre-treatment with Y1 

receptor antagonist, BIBP3226, did not also affect the levels of IL-1β in cells 

exposed to to LPS in the presence of sitagliptin. 
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Fig. 14 - Sitagliptin does not significantly prevent the LPS-induced increase in IL-1β 

levels in retinal cell cultures. Primary retinal cell cultures were challenged with 1 μg/mL LPS 

for 24h, in the absence or presence of 200 μM sitagliptin and 1 μM BIBP3226 (Y1R antagonist). 

Intracellular (A) and extracellular (B) levels of IL-1β were quantified by ELISA and normalized to 

the total amount of protein in the samples. Results represent IL-1β levels (pg/mg of protein) and 

are expressed as mean ± SEM of 4 independent experiments for the cell lysates and 5 to 7 for 

cell supernatants, both performed in duplicate. ***p<0.001, compared to control, Kruskal-Wallis 

test, followed by Dunn’s multiple comparison test. Sita: sitagliptin; Y1R ant: Y1R antagonist.   

IL-1β immunoreactivity (IL-1β-IR) was also assessed in primary retinal neural 

cell cultures. We quantified IL-1β-IR in microglial cells, labeled with an anti-

CD11b antibody. In both controls and cultures treated with sitagliptin conditions, 

a very faint staining was detected for IL-1β (Fig. 15A). However, when cells 

were stimulated with LPS, IL-1β-IR in microglial cells significantly increased to 

1138 ± 8% of the control (Fig. 15A and 15B). Pre-treatment with sitagliptin 

appears to prevent the LPS-induced IL-1β-IR increase in microglial cells (535.3 

± 40% of the control, Fig. 15A and 15B). However, these are still preliminary 

results, with a small number of independent experiments (n=2) and thus 

statistical significance was not assessed. 
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Fig. 15 - Sitagliptin appears to inhibit LPS-induced increase in IL-1β immunoreactivity (IL-

1β-IR) in microglial cells. IL-1β-IR was evaluated in microglia in primary retinal cell cultures. 

Cells were cultured for 7 days and were exposed to LPS (1 μg/mL) for 24h in the absence of 

presence of 200 μM sitagliptin. (A) Immunocytochemistry was performed using anti-CD11b (red) 

and anti-IL-1β (green) antibodies. Nuclei were counterstained with DAPI (blue). Scale bar: 100 

μm. (B) iNOS-IR was quantified in CD11b-IR cells, in 10 random fields (20x magnification), 

using corrected cell fluorescence (CTCF) formula. Data are presented as mean ± SEM of 2 

independent experiments, as a percentage of control. Sita: sitagliptin; Y1R ant: Y1R antagonist. 

 

3.3. Sitagliptin prevents LPS-induced alterations in microglia morphology 

in cultured retinal explants 

Under physiological conditions microglial cells present a ramified morphology, 

which is associated with a surveillance phenotype. Changes in homeostasis 

may lead microglia to adopt a less ramified morphology, in agreement with a 

reactive phenotype (Kettenmann et al., 2011). Therefore, we investigated 

whether sitagliptin could modulate microglia reactivity elicited by LPS in cultured 

retinal explants, by assessing morphological alterations after CD11b labelling. 

Using confocal microscopy, we acquired images from microglial cells at the 

level of GCL, where there is a high density of microglial cells in the retina. We 

also evaluated whether the potential effect of sitagliptin could be mediated by 

the involvement of the NPY Y1 receptor. Cultured retinal explants were exposed 

to LPS (3 μg/mL) for 24 h to trigger an inflammatory response. In control 

conditions microglial cells are typically ramified, and upon LPS stimulation they 

present an amoeboid-like morphology with fewer ramifications (Fig. 16A). In 

order to evaluate the changes in microglia morphology, we assessed four 

different morphological parameters in microglial cells: area, perimeter, circularity 

and Feret’s diameter. Exposure to 3 μg/mL LPS for 24 h resulted in a significant 
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decrease in cell area from 873 ± 101.1 μm2 in control conditions to 492.1 ± 25.7 

μm2 (Fig.16A and 16B). Pre-treatment with sitagliptin prevented the decrease in 

the area of microglial cells triggered by LPS (1017 ± 81.8 μm2) (Fig. 16A and 

16B). Upon LPS stimulation, cell perimeter also diminished to 148.4 ± 5.3 μm 

comparing to the cell area in control conditions (241.8 ± 15.8 μm) and this effect 

was prevented by sitagliptin (257 ± 6.4 μm) (Fig. 16A and 16C). Feret’s 

diameter also decreased from 62.23 ± 3.4 μm in control conditions to 39.9 ± 0.9 

μm after LPS exposure and, similarly to the above mentioned parameters, 

sitagliptin inhibited this decrease (61.3 ± 2.1 μm) (Fig. 16A and 16D). On the 

other hand, the circularity index of microglial cells was significantly higher in 

LPS-treated explants (0.33 ± 0.1 μm), when compared to control (0.20 ± 0.01 

μm) (Fig. 16A and 16E). Pre-treatment with sitagliptin prevented the increase in 

circularity index of microglia (0.22 ± 0.01), when compared to LPS condition 

(Fig. 16A and 16E). Sitagliptin alone did not affect any of the analyzed 

parameters. Pre-treatment with the Y1 receptor antagonist (1 μM BIBP3226) 

appears to slightly inhibit the effects of sitagliptin pre-treatment on the 

parameters analyzed, pointing to a potential partial involvement of the Y1 

receptor on the effects of sitagliptin. However, no statistically significant 

differences were observed, and so, altogether, these results suggest that the 

anti-inflammatory effect of sitagliptin against microglia activation appears to be 

independent of NPY Y1 receptor activation. 
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Fig. 16 - Sitagliptin inhibits morphological changes in retinal microglia triggered by LPS. 

The analysis of microglia morphology was performed in cultured retinal explants. Explants were 

cultured for 4 days and were exposed to LPS (3 μg/mL), at day 3 in culture, for 24h, in the 

absence or presence of 200 μM sitagliptin and 1 μM BIBP3226 (Y1R antagonist). (A) 

Immunohistochemistry was performed using an anti-CD11b (red) antibody. Nuclei were 

counterstained with DAPI (blue). Scale bar: 100 μm. Microglia area (B), perimeter (C), Feret’s 
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diameter (D) and circularity (E) were evaluated in CD11b-IR cells. In each explant, 12 random 

fields (3 fields per retinal quadrant) were analyzed (20x magnification). Data are presented as 

mean ± SEM of 4-5 independent experiments. *p<0.05, compared to control; **p<0.01, 

compared to control; #p<0.05, compared to LPS; ##p<0.01, compared to LPS, Kruskal-Wallis 

test, followed by Dunn’s multiple comparison test. Sita: sitagliptin; Y1R ant: Y1R antagonist.    

 

3.4. Sitagliptin reduces the increase in iNOS immunoreactivity in 

microglial cells triggered by LPS in cultured retinal explants 

In order to confirm the results obtained in primary retinal neural cell cultures 

(Fig.11), the effect of sitagliptin on iNOS-IR upon LPS stimulation was assessed 

in cultured retinal explants. Firstly, we analyzed the iNOS mRNA levels, which 

were normalized to YMHAZ. Exposure to 3 μg/mL LPS for 4 h significantly 

increased iNOS mRNA expression by 121.9 ± 8.9 fold, when compared with 

control (Fig. 17). Treatment with sitagliptin did not prevent this increase (110.1 ± 

16.3 fold increase). However, pre-treatment with the Y1 receptor antagonist (1 

μM BIBP3226) resulted in significantly higher levels of iNOS mRNA expression 

(189.2 ± 23.24 fold increase), when compared to LPS (Fig. 17). This result 

suggests that basal activation of Y1 receptor by endogenous NPY might 

regulate iNOS expression. Sitagliptin alone did not affect the iNOS mRNA 

levels. 

 

 

Fig. 17 - Sitagliptin does not affect the increase in iNOS mRNA expression triggered by 

LPS in cultured retinal explants, but treatment with Y1 receptor antagonist exacerbates 

LPS effect. After 3 days in culture, retinal explants were challenged with 3 μg/mL LPS for 4h, in 

the absence or presence of 200 μM sitagliptin and 1 μM BIBP3226 (Y1R antagonist). iNOS 

mRNA expression in cultured retinal explants was assessed by qRT-PCR. Data are presented 

as mean ± SEM of 6 independent experiments. **p<0.01, compared to control; #p<0.05, 
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compared to LPS, Kruskal-Wallis test, followed by Dunn’s multiple comparison test. Sita: 

sitagliptin; Y1R ant: Y1R antagonist. 
   

Moreover, iNOS-IR was also quantified in microglia in cultured retinal explants. 

Microglia were identified by CD11b immunostaining and analyzed in the GCL. 

Sitagliptin per se did not affect the iNOS-IR in microglial cells. Upon 24 h 

exposure to LPS, iNOS-IR significantly increased (2960 ± 289.3% of the 

control) in microglial cells (Fig. 18A and 18B). When explants were treated with 

sitagliptin before exposure to LPS, iNOS-IR was significantly inhibited (1535 

±137.9% of the control) when compared to LPS condition (Fig. 18A and 18B). 

Pre-treatment with the Y1 receptor antagonist (1 μM BIBP3226) did not affect 

the effect of sitagliptin. 
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Fig. 118 - Sitagliptin reduces the increase in iNOS-IR triggered by LPS in microglial cells 

in cultured retinal explants. iNOS expression was evaluated in microglia localized in the GCL 

in cultured retinal explants. Explants were cultured for 4 days and exposed at day 3 in culture to 

LPS (3 μg/mL) for 24h, in the absence or presence of 200 μM sitagliptin and 1 μM BIBP3226 

(Y1R antagonist). (A) Immunohistochemistry was performed using anti-CD11b (red) and anti-

iNOS (green) antibodies. Nuclei were counterstained with DAPI (blue). Scale bar: 100 μm. (B) 

iNOS immunoreactivity was quantified in CD11b-IR cells. In each explant, 12 random fields (3 

fields per retinal quadrant) were analyzed (20x magnification), using corrected cell fluorescence 

(CTCF) formula. Data are presented as mean ± SEM of 6 independent experiments, as a 

percentage of control. **p<0.01, compared to control; ##p<0.01, compared to LPS, Kruskal-

Wallis test, followed by Dunn’s multiple comparison test. 
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4. Discussion 

Sitagliptin is a DPP-IV inhibitor that enhances insulin secretion and is used in 

the treatment of type 2 diabetes. Sitagliptin treatment was shown to prevent the 

breakdown of the BRB and the increase of IL-1β immunoreactivity in the retinas 

of type 1 and 2 diabetic animals (Goncalves et al., 2012; Goncalves et al., 

2014). However, this effect was not due to the normalization of glucose levels or 

insulin secretion, thus suggesting that sitagliptin can have anti-inflammatory 

effects in the retina. Taking these evidences into account, we hypothesized that 

sitagliptin is able to inhibit retinal microglia reactivity. 

DPP-IV cleaves NPY1-36 to NPY3-36, and although NPY1-36 binds to Y1 and 

Y2 receptors with similar affinity, NP3-36 is an Y2/Y5 receptor preferring peptide 

(Grandt et al., 1996; Mentlein, 1999). Therefore, DPP-IV is a key enzyme in the 

regulation of NPY as its activity terminates NPY action on Y1 receptor. Since 

NPY can have anti-inflammatory effects on microglial cell cultures via Y1 

receptors (Ferreira et al., 2010), we also hypothesized that the effects of 

sitagliptin could be mediated through the activation of Y1 receptor by NPY. In 

addition, preliminary results obtained in our lab, in cultured retinal explants, 

showed that NPY and Y1 receptor agonist inhibited LPS-induced microglial 

reactivity and the increase in iNOS expression in microglial cells localized in the 

GCL. 

To test these hypothesis, we used primary retinal neural cell cultures and 

cultured retinal explants that were pre-incubated with sitagliptin and with 

BIBP3226, an antagonist of the Y1 receptor. Because inflammation plays a 

critical role in diabetic retinopathy (Kern, 2007), we exposed both cultures to 

LPS, to trigger a pro-inflammatory response, in order to test the anti-

inflammatory effects of sitagliptin on microglia. LPS is a major component of the 

outer membrane of Gram-negative bacteria that binds to toll-like receptors 4 

(TLR4), expressed by microglia, leading to the activation of several signaling 

cascades and secretion of pro-inflammatory cytokines (Lehnardt et al., 2003). 

It has been reported that changes in microglia morphology are associated with 

alterations in microglia reactivity. In healthy conditions, microglial cells are 

highly ramified. Upon an insult, microglial cells undergo a transformation from 

resting to activated state and become amoeboid (Kettenmann et al., 2011). In 
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the present study, we evaluated four different morphological parameters (area, 

perimeter, Feret’s diameter and circularity) in microglial cells (CD11b-

immunoreactive cells) in retinal organotypic cultures. Upon LPS stimulation, we 

observed that microglial cells presented an amoeboid-like morphology with 

fewer ramifications. Pre-treatment with sitagliptin resulted in a rescue of the 

ramified phenotype, indicating that sitagliptin has an anti-inflammatory effect, 

exerted directly on the immune cells of the CNS, which may account for the 

anti-inflammatory effects of sitagliptin detected in the retina of diabetic animals 

(Goncalves et al., 2012; Goncalves et al., 2014). In all the four parameters 

measured, there was a small inhibition, although not significant, of the sitagliptin 

effect when Y1 receptor was blocked, thus suggesting that the inhibitory effect 

of sitagliptin on microglia activation appears not be mediated by the NPY 

system, but rather through other mechanisms.  

Early microglia activation in the retina is known to be induced by ischemia, 

autoimmune mechanisms, neuronal injury, ocular infections, and metabolic and 

hereditary retinopathies (Schuetz and Thanos, 2004). When microglial cells 

become activated, they can release several molecules, which can be 

neurotoxic, depending on their concentration, such as NO. It has been 

described that NO derived from iNOS is strongly involved in the induction of 

early vascular changes, suggesting that this enzyme has a key role in early 

diabetic retinopathy (Leal et al., 2007). In this work, exposure to LPS increased 

iNOS-IR in microglial cells present both in retinal primary neural cell cultures 

and in retinal organotypic cultures. Although other cells present in these 

cultures (astrocytes, Mϋller cells, and neurons) are known to express iNOS 

(Saha and Pahan, 2006; Wang et al., 2011), in this study, iNOS-IR was 

observed almost exclusively in microglial cells. This result is consistent with 

several studies that show that microglial cells produce high amounts of NO by 

iNOS, after stimulation with LPS (Fiebich et al., 1998; Lieb et al., 2003; Zhang 

et al., 2012). Pre-treatment with sitagliptin significantly inhibited the increase in 

iNOS-IR induced by LPS, thus confirming the anti-inflammatory effects of 

sitagliptin. 

Both in primary retinal neural cell cultures and in retinal organotypic cultures, 

incubation with Y1 receptor antagonist seemed to partly inhibit the effect of 

sitagliptin in iNOS-IR, but the effect was not statistically significant. One 
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possible explanation for this observation is that NPY1-36 can be activating not 

only Y1 receptors but Y2 receptors as well, which are also present in retinal 

microglial cells (Santos-Carvalho et al., 2013) and have been described to be 

overexpressed by immune cells upon LPS insult (Nave et al., 2004). In order to 

test this, additional experiments, for example blocking the Y2 receptor, need to 

be performed. Besides this possibility, there are also other pathways being 

affected by DPP-IV inhibition. In fact, sitagliptin is used for the treatment of type 

2 diabetes because the inhibition of DPP-IV increases the intact levels of GLP-1 

(Drucker and Nauck, 2006). It has recently been described that exendin-4, a 

GLP-1 agonist, is able to inhibit LPS-induced iNOS expression and nitrite 

production in Raw264.7 macrophage cells (Chang et al., 2013). 

Despite the inhibitory effect of sitagliptin on iNOS-IR in microglial cells exposed 

to LPS, in cultured retinal explants sitagliptin was not able to prevent the 

increase in iNOS mRNA expression. In fact, iNOS mRNA expression and iNOS-

IR were evaluated at different time points after exposure to LPS (4 h for iNOS 

mRNA expression and 24 h for iNOS-IR) and this fact might explain the 

discrepancy in the results. However, for many proteins in different biological 

systems it is not uncommon getting divergent results when mRNA and protein 

expression are compared. Moreover, the blockade of Y1 receptor exacerbated 

the effect of LPS in iNOS mRNA expression, suggesting that basal activation of 

Y1 receptor by endogenous NPY might have a role in regulating iNOS 

expression in retinal tissue. 

In accordance with the results obtained for iNOS-IR and expression, LPS 

increased the levels of NO released by primary retinal neural cell cultures. 

Production and release of NO by N9 murine microglial cells after LPS has been 

previously reported (Dimayuga et al., 2007; Ferreira et al., 2010). Pre-treatment 

with sitagliptin before LPS incubation partially inhibited the increase in the 

concentration of nitrites triggered by LPS. Furthermore, the Y1 receptor 

antagonist completely abolished the effect of sitagliptin, indicating an important 

contribution of the activation of the Y1 receptor by NPY for the protective effect 

of sitagliptin against the increase in NO levels. In line with these findings, the 

inhibition of LPS-induced NO production by NPY has been reported in murine 

N9 microglia cell line and it was demonstrated that this effect involved the 

activation of Y1 receptor (Ferreira et al., 2010). Regarding the results of the 
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effect of sitagliptin, and the Y1 receptor antagonist, on iNOS mRNA expression, 

iNOS-IR, and NO production (Griess method) either in primary retinal neural 

cells cultures or cultured retinal explants, there is apparently some discrepancy, 

particularly related with the effect of the the Y1 receptor antagonist. In fact, 

BIBP3226 antagonized the effects of sitagliptin when the NO levels were 

indirectly measured by the Griess reaction, but the same antagonist was not 

able to significantly affect the inhibitory effect of sitagliptin on iNOS-IR. 

However, we must keep in mind that we are dealing with different techniques 

that are measuring different parameters and have different sensitivities. 

Moreover, it is important to emphasize that there was a clear tendency (not 

statistically significant), for a partial antagonizing effect of the Y1 receptor 

antagonist against the effect of sitagliptin on iNOS-IR, suggesting that we 

cannot completely exclude the involvement of the NPY system, and particularly 

the Y1 receptor, on the effects of sitagliptin. In fact, the involvement of the Y1 

receptor was clearly seen in the experiments using the Griess reaction. 

To further test the potential inhibitory effect of sitagliptin on retinal microglia 

activation and neuroinflammation, its effect on the production of cytokines, 

namely TNF and IL-1β, was also evaluated. The levels of TNF (both intracellular 

and extracellular) increased after LPS exposure. Other studies have previously 

demonstrated that TNF is increased in microglial cells after LPS stimulation and 

may participate in retinal neovascularization (He et al., 2002; Yoshida et al., 

2004). There is evidence indicating that astrocytes and Mϋller cells can also 

play an important role in neuroinflammation, releasing TNF in response to 

bacterial insult (Chung and Benveniste, 1990; Kumar et al., 2013). Therefore, 

the contribution of these cells to the increased levels of TNF cannot be 

discarded. Nevertheless, concerning TNF levels, the treatment with sitagliptin, 

in the absence or the presence of the Y1 receptor antagonist, did not affect the 

increase in TNF production triggered by LPS, suggesting that the potential anti-

inflammatory effects of sitagliptin appear to be selective, affecting specific 

molecules such as iNOS. 

As for TNF, IL-1β upregulation in the retina and retinal vessels of diabetic rats 

has previously been described (Liu et al., 2012). In the present study, exposure 

to LPS increased the production and release of IL-1β in primary retinal neural 

cell cultures. There was a tendency for an inhibitory effect of sitagliptin, since 
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the increase in IL-1β extracellular levels, but not intracellular levels, triggered by 

LPS, was diminished in the presence of sitagliptin, although not statistically 

significant, further suggesting that sitagliptin does not appear to affect 

significantly the production of cytokines. Moreover, the presence of the Y1 

receptor antagonist did not affect the production of IL-1β, which is not in 

agreement with previous findings showing that the activation of Y1 receptor by 

NPY inhibits LPS-induced IL-1β release (Ferreira et al., 2010). However, 

Ferreira and colleagues used a cell line, and we are using mixed primary retinal 

cell cultures, which are two very distinct biological systems, where the 

expression of NPY receptors can be substantially different. It must be also 

emphasized that DPP-IV inhibition does not affect exclusively the NPY system. 

For instance, inhibiting DPP-IV prolongs the half-life of endogenously released 

GLP-1 (Ahren and Schmitz, 2004), which has been described to prevent LPS-

induced IL-1β production in cultured rat astrocytes (Iwai et al., 2006). Since we 

did not detect any significant effect of sitagliptin on IL-1β levels, it seems that 

endogenous GLP-1, as the NPY system, also does not have a particular role in 

modulating the production of IL-1β in retinal cell cultures exposed to LPS. 

As mentioned above, sitagliptin presented a tendency to inhibit the increase of 

IL-1β levels triggered by LPS, and so we further evaluated a potential effect of 

sitagliptin on IL-1β production, by analyzing the immunoreactivity of this 

cytokine. IL-1β-IR was clearly upregulated upon LPS exposure, and sitagliptin 

seems to attenuate this effect, which is somehow consistent with the inhibitory 

tendency caused by sitagliptin on IL-1β levels detected by ELISA. Moreover, 

these immunocytochemistry experiments allowed us concluding that this 

cytokine is being mainly produced and released by microglial cells. This effect 

of LPS in microglial cells has previously been described (Kim et al., 2004). 

Taken together, our findings indicate that sitagliptin is able to inhibit retinal 

microglia activation, as evidenced by its capacity to inhibit microglial 

morphological changes triggered by LPS as well as the upregulation in iNOS-IR 

in microglial cells and iNOS-derived NO levels, which might explain the 

protective effects detected previously in the retina of diabetic animal models 

(Goncalves et al., 2012; Goncalves et al., 2014). However, sitagliptin was 

unable to significantly inhibit the upregulation of pro-inflammatory cytokines 

triggered by LPS, despite there was a tendency for the inhibition of IL-1β. 
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Moreover, the results also indicate that the NPY system, and particularly the Y1 

receptors, do not have a relevant contribution for some of the inhibitory effects 

of sitagliptin detected. Therefore, despite evidences showing clear anti-

inflammatory effects of sitagliptin, directly in retinal microglia, it is likely that 

sitagliptin can only affect some pro-inflammatory pathways in microglia, and so 

the exact mechanisms involved in these protective effects against inflammation 

remain to be clarified. 
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5. Conclusion 

With the results obtained in the present study, we demonstrated that: 

 Sitagliptin prevented the alterations in microglia morphology triggered by 

LPS. Despite a tendency for a potential involvement of the Y1 receptor 

on the effects of sitagliptin, the lack of significance does not allow 

concluding that the effect of sitagliptin is partially dependent on Y1 

receptor activation; 

 Sitagliptin significantly inhibited the LPS-induced increase in iNOS 

immunoreactvity in both primary retinal neural cell cultures and retinal 

organotypic cultures. The inhibitory effects of sitagliptin were not 

significantly altered by the blockade of Y1 receptor; 

 Sitagliptin significantly inhibited the increase in NO production triggered 

by LPS in primary retinal neural cell cultures, and this inhibitory effect 

appears to be mediated by Y1 receptor activation; 

 Sitagliptin did not prevent the increase in iNOS mRNA expression 

triggered by LPS in retinal organotypic cultures. However, pre-treatment 

with Y1 receptor antagonist enhanced the effect of LPS, suggesting that 

basal activation of Y1 receptor by endogenous NPY might have a role in 

regulating iNOS expression; 

 Neither sitagliptin nor Y1 receptor antagonist affected the increase in 

extracellular and intracellular TNF levels triggered by LPS in primary 

retinal neural cell cultures; 

 Neither sitagliptin nor Y1 receptor antagonist significantly affected the 

increase in extracellular and intracellular TNF levels triggered by LPS in 

primary retinal neural cell cultures. However, preliminary results indicate 

that sitagliptin was able to attenuate the LPS-induced increase of IL-1β 

immunoreactivity in primary retinal neural cell cultures. 

In summary, this study clearly showed that sitagliptin has anti-inflammatory 

properties, exerting direct inhibitory effects on retinal microglia activation, as 

demonstrated by the inhibition of a) alterations on microglia morphology, b) 

increase in iNOS immunoreactivity in retinal microglia and NO production, c) 

increase in IL-1β immunoreactivity in retinal microglia, triggered by LPS.  
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