
Experimental and Computational

Studies of New Nonlinear Optical

Materials

Mauro António Pereira Gonçalves
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Abstract

Organic materials with nonlinear optical properties have various technological

and scientific applications. This work, had as main purpose the development and

structural characterization of these new substances.

Compared to dipolar molecules, the octupolar molecules proved to be sub-

stantially more advantageous for obtaining materials with high nonlinear optical

response. Focusing on octopular compounds, like guanidine salts and its deriva-

tives, and on thiocyanuric acid, some new salts were synthesized and the struc-

tural characterization was performed using the single crystal X-ray diffraction.

The salts that present noncentrosymmetric structures, were studied experi-

mentally with the Kurtz-Perry powder method for determination of the second

order susceptibility. For this materials the polarizabilities and hyperpolarizabil-

ities of microscopic units were calculated with various computational methods

(Hartree-Fock and DFT) using as starting point the geometries obtained experi-

mentally.

It was used the oriented gas model to calculate the second-order suscepti-

bilities from the microscopic optical properties, for crystals made of microscopic

units with no special symmetry. Two different local field corrections were used

in the oriented gas model. The first correction was Lorenz-Lorentz correction

for spherical cavity and the other an extension of the Onsager’s reaction field

developed by Wortmann and Bishop. Comparing with the experimental results,

the second correction describe better the nonlinear effects.

Nonlinear optical properties are intrinsically connected with the electronic

distribution of each compound, so it is important to understand its behavior and

the necessary conditions in order to improve the nonlinear optical response in

materials and consequently their applicability.
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0. ABSTRACT

The electronic density of two structures with guanidine derivatives were stud-

ied starting from the low temperature X-ray diffraction and applying a multipolar

refinement. This allowed us to obtain several properties of the electronic density.

This can be studied from a topological point of view, allowing us the obtention

of several properties of the electronic density and of the inter and intra-molecular

interactions.

Key-words: Charge density, topology, QTAIM, non-linear optics, octupolar

molecules, single crystal X-ray diffraction, ab initio calculations.
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Resumo

Os materiais orgânicos com propriedades de óptica não linear podem ser imple-

mentados em diversas aplicações tecnológicas e ciêntificas. Este trabalho, teve

como principal objectivo o desenvolvimento e caracterização estrutural destas

novas substâncias.

Quando comparadas com as moléculas dipolares, as moléculas octopolares

mostram ser substancialmente mais vantajosas para a obtenção de materiais com

elevada resposta de óptica não linear. Focando-nos em compostos tendencial-

mente octopolares, como os sais de guanidina e os seus derivados e na molécula

de tiocianúrico, sintetizámos alguns novos sais dos quais fizemos a determinação

estrutural recorrendo à difracção de Raios-X em cristal simples.

Os sais que apresentam estruturas cristalinas não-centrossimétricas foram es-

tudados experimentalmente com o método de Kurtz-Perry para a determinação

da susceptibilidade de segunda ordem. Para estes mesmos materiais foram estu-

dadas as polarizabilidades e hiperpolarizabilidades das unidades microscópicas,

obtidas da determinação de estrutura, através de cálculos computacionais de

Hartree-Fock e de DFT.

Foi realizado um tratamento com base no modelo do gás orientado para o

cálculo da susceptibilidade de segunda ordem a partir das propriedades ópticas

microscópicas, para cristais feitos de unidades microscópicas sem simetria espe-

cial. Foram usadas duas correcções de campo local no modelo do gás orientado.

A primeira, foi a correcção Lorenz-Lorentz para uma cavidade esférica e a se-

gunda uma extensão do modelo do campo de reacção de Onsager desenvolvida

por Wortamann e Bishop. Em comparação com os resultados experimentais, a

segunda correcção apresenta uma descrição melhor dos efeitos não-lineares.

A óptica não linear está intrinsecamente ligada à distribuição electrónica de

v



0. RESUMO

cada composto assim, é importante perceber o seu funcionamento e quais as

condições necessárias para podermos favorecer nos materiais uma maior resposta

não linear e consequentemente uma maior aplicabilidade destes materiais.

A densidade electrónica das duas estruturas de derivados da guanidina, foram

estudadas partindo dos resultados da difracção de Raios-X a baixa temperatura

e aplicando um refinamento multipolar, o que nos permitiu obter várias pro-

priedades da densidade electrónica. Esta pode ser estudada do ponto de vista

topológico e, desta forma, podemos obter as várias propriedades da densidade

electrónica e as suas interações inter e intra-moleculares.

Palavras chave: Densidade de carga, topologia, QTAIM, óptica não linear,

moléculas octopolares, difracção de raios-X em cristal simples, cálculos ab initio.
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eÅ−5 and bellow we have the ellipticity. The results along the BP

in the guanidine fragment are presented on the left side where the

bonds N1−C1, N2−C1 and N3−C1 are in red, the bonds N1−C14,

N2−C8 and N3−C2 are in blue. The phenyl group is presented in

middle and the bonds C2−C3 and C2−C7 are in red and the other

bonds between C atoms are in blue. The anion is presented on the

right side and the bonds O1−C21 are in blue, the bond between

C atoms (C21−C22) is in red and the three bonds with C22 and

F atoms are in pink. . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.20The properties along the BP of the hydrogen bonds between triph-

enylguanidinium cation and trifluoroacetate anion. On the top it

is presented the Laplacian in eÅ−5 and bellow we have the ellip-
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Chapter 1

Introduction

The nonlinear optics is related to the interaction between an external electro-

magnetic field and the electric charges inside a material with generation of a new

electromagnetic field with a new frequency or other physical properties. Materials

with this behavior have a great importance in the development and improvement

of technologies such as optical communications, optical computing, dynamic im-

age processing and storage of data.

Within the group of materials with nonlinear optical properties three compre-

hensive classes of different materials can be defined. One is multilayered semicon-

ductor structures that are composed by thin film layers, forming low dimensional

systems. These layers and heterojunctions increases the quantization effect of the

magnetic field and due to these quantum effects the multilayered semiconductor

structures have nonlinear optical properties.

The other two classes are traditional inorganic solids and molecular based

on macroscopic assemblies. The inorganic solids are used for several decades

in devices and are very common on our daily life. Some examples of inorganic

crystals are LiNbO3, KH2PO4 or BaTiO3, this kind of materials still presents

some disadvantages because they are not easily obtained with a high quality

single crystals, they are very costly and their integration in electronic devices is

dificult .

The last class is the organic materials, chosen because they are most appro-

priated for use in NLO applications since 1980s [2]. These materials have very

interesting characteristics for potential applications, such as fast response, lower
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dielectric constants or best features of processability. In several cases the NLO

responses are improved relatively to traditional inorganic solids and the organic

materials have a large versatility in synthesis that allows the manipulation of the

compounds. Usually, organic materials with second-order nonlinear properties are

composed of molecules with a conjugated π-electron system between two electron

donor and acceptor groups (one-dimensional charge transfer). This conformation

of molecules (adopted as ideal for NLO materials) is seen in p-nitroaniline (p-

NA) and 4-(N,N -dimethylamino)-4’- nitrostilbene (DANS) in Fig. 1.1 [2], for

example.

Figure 1.1: Typical molecular structures of dipolar molecules with diagram of the
p-nitroaniline (p-NA) and 4-(N,N -dimethylamino)-4’- nitrostilbene (DANS)

In both molecules the nitro group acts as the acceptor, in the p-NA the amino

group and in the DANS the dimethylamino group act as the donors group. The

conjugated π-electron system between acceptor and donor groups in the p-NA is

composed by a benzene ring and in the DANS is composed two benzene rings

and the double bond.

The molecules with this conformation typically have large dipole moments

associated and thus tend to crystallize in centrosymmetric space groups and to

show null second-order susceptibility. However, this disadvantage characteristic of

dipolar molecule can be solved by using octupolar molecules, because their three-

fold rotational symmetry assure that the molecular dipole moment is canceled

[3]. The advantage of these molecules is to crystallize more easily in noncen-

trosymmetric system. It is also verified the better ratio of off-diagonal against

diagonal tensor components of the molecular hiperpolarizability leading to an

better macroscopic response such as verified in the TTB (1,3,5-tricyano-2,4,6-

tris(p-diethylaminostyryl) benzene) crystal [4].
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The search for new chromophores start with the synthesis of the organic ma-

terials and the correspondent quantum-chemical calculations to be able to pre-

dict and understand which molecules have higher molecular hyperpolarizabilities.

Therefore, the macroscopic properties of the chromophores depends not only on

the molecular properties but also on their crystal packing of the new materials.

Thus, it is required a thorough knowledge of the crystal structure, which can be

achieved with single crystal X-ray diffraction technique. The technique used in

the determination of the second harmonic generation efficiency is the Kurtz-Perry

powder method. Furthermore, the experimental techniques are complemented

with several theoretical calculations to predict the effects of supermolecular as-

semblies in the macroscope NLO response. However, the predictions of the NLO

properties theoretically are extremely difficult especially in crystal structures with

strong interactions between molecules or ions.

The NLO properties are intrinsically related with motion of the electrons and

delocalization of the π electrons, thus the NLO studies are strongly dependent of

the electronic distribution throughout the material. Therefore the knowledge of

charge density distributions within the molecules and ions would help consider-

ably the understanding of the NLO properties. Charge-density distributions can

be experimentally assessed with x-ray diffraction experiments.

The X-ray scattering is dominated by interactions with electrons, thus the

intensities of the scattered X-rays defines the electron distribution in a crystal.

Typically the X-ray diffraction data are used to determine crystal structures from

the electron distribution considering that the maxima coincide with the nuclear

positions, taking into account the strong attraction of the electrons with the

nuclei. This assumption demonstrates good results with the exception of the H

atoms, because they have only one electron displaced towards the middle region

of the chemical bond.

However the conventional methods consider electronic distribution as a sum

of electron density of a spherically averaged isolated ground-state atom. So that

distribution of electronic charge density allows to obtain the crystalline structure

(although incorrect in neglecting interactions between atoms along the crystal).

On the other hand the main objective of the X-ray charge density is the analyzes
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of this interactions between atoms with a nonspherical model.

The first electron charge density distributions from the X-ray diffraction were

realized in 20s and early 30s and used imprecise techniques in which it was im-

possible to verify the deviations of the spherical distribution of the electrons

around the nucleus. Later in the 60s and 70s with the development of the new

diffractometers with different geometries, the possibility of the automatic data

collection and having access to great computational power, the quality of results

has increased. Furthermore, the neutron diffraction has also improved providing

Figure 1.2: A relief map representation of the electron density in the plane of
the phenyl group. Presents a set of marked maxima at the positions of the C
atoms and in the N atom. Besides the H atoms has a much smaller peaks at their
positions.

acurate positional and thermal parameters of atoms that can be used as a starting

point in X-ray diffraction.

The various technical developments and the introduction of the deformation

density allowed to obtain the first experimental electron density results that

proved the overlap between atomic orbitals, lone pairs and the bending of bonds
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in ring systems and in π bonding.

Nowadays, with appropriate equipment, a charge-density study can be per-

formed from the experimental electron charge density and several properties can

be discussed as deformation density, laplacian of charge density and electrostatic

potential. At 1990 Bader and co-workers introduced the theory of atoms in

molecules (AIM) [5], that is a powerful tool to relate the experimental and the-

oretical results of electron density with the chemical concepts. This analysis is

founded on topological description of the electronic density concentrated in the

study of the critical points and their properties, such as electron density, showed

in Fig. 1.2.

Hopefully, the X-ray charge density analyses and the implementation of the

AIM theory will allow the comprehension of the interactions and behavior of

electrons in the molecules and crystal structures aiming the development the new

materials with NLO properties.

In the sequence of this work three Posters were presented at two conferences:

Polymorphic Phases of Triphenylguanidine Derivatives: Charge-

Density Studies, Mauro Gonçalves, Pedro S. Pereira Silva, Manuela Ramos

Silva, JEEP2015 - Journées d’Étude des Équilibres entre Phases, 41st Conference

on Phase Equilibria, 25-27 Março 2015, Universidade de Coimbra, Coimbra, Por-

tugal.

L-histidinium thiocyanurate: Experimental and theoretical studies

of a new nonlinear optical material, M. A. Pereira Gonçalves, P. S. Pereira

Silva, M. Ramos Silva and J. A. Paixão, COLLOQUIUM SPECTROSCOPICUM

INTERNATIONALE XXXIX, 30 de Agosto- 3 de Setembro 2015, Figueira da

Foz, Portugal.

Structural and nonlinear optical studies of a salt with an octupo-

lar chromophore: guanidinium cyclopropanecarboxylate, Pedro Sidónio

Pereira Silva, M. Gonçalves, , M. Ramos Silva and J. A. Paixão, COLLOQUIUM

SPECTROSCOPICUM INTERNATIONALE XXXIX, 30 de Agosto- 3 de Setem-

bro 2015, Figueira da Foz, Portugal.
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From the work presented in this thesis resulted 5 articles that are in prepara-

tion:

Structural and nonlinear optical studies of a salt with an octupo-

lar chromophores: guanidinium cyclopropanecarboxylate, in preparation

for submission to the Spectrochimica Acta Part A: Molecular and Biomolecular

Spectroscopy ;

L-histidinium thiocyanurate: Experimental and theoretical studies

of a new nonlinear optical material, in preparation for submission to the

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;

Charge-density analysis of triphenylguanidine compounds: an ex-

perimental and theoretical study of weak interactions, in preparation for

submission to the Journal of Physical Chemistry A;

Two almost isostructural phenylguanidinium salts, in preparation for

submission to the Journal of Chemical Crystallography;

Supramolecular structures of guanidinium carboxylates, in prepara-

tion for submission to the Journal of Molecular Structure.
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Chapter 2

Nonlinear optics

2.1 Introduction

Nonlinear Optics is an important part of Optics that analyzes the processes where

the response of the materials is a nonlinear function of the electromagnetic field

of the light. The first experiment that showed a nonlinear response was carried

out by Kerr [6] who observed that the birefringence was provoked by a static

electric field in a glass. However the beginning of modern nonlinear optics is

associated to the first observation of second harmonic generation performed in a

quartz crystal by Franken et al. in 1961 [7]. This experiment was only possible

after the demonstration of the first working laser by Maiman in 1960 [8].

In a optical linear regime, the polarization P̃ (t), is proportional to the strength

Ẽ(t) of the optical field applied:

P̃ (t) = ε0χ
(1)Ẽ(t) (2.1)

where χ(1) is a constant of proportionality or linear susceptibility of the material

and ε0 is the permittivity of the vacuum. In Nonlinear Optics the response of the

material for a more intense optical field applied can be described by an expansion

of Eq. 2.1 in a power series of the strength Ẽ(t) of the optical field applied:

P̃ (t) = ε0[χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · ·]

≡ P̃ (1)(t) + P̃ (2)(t) + P̃ (3)(t) + · · ·.
(2.2)
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where χ(2) and χ(3) are know as the second and third-order nonlinear optical

susceptibilities, respectively. It is necessary to take into account the tensorial

nature of the susceptibilities χ(1), χ(2), . . ., χ(n) that correspond to anisotropic

tensors of second, third and n + 1 rank, respectively. In this thesis only the

second-order nonlinear optical susceptibility will be studied and analyzed.

The second-order nonlinear polarization, P̃ (2)(t) is associated to physical pro-

cesses distinct from those that occur as a result of the third-order polarization

P̃ (3)(t). We should refer that the second-order nonlinear polarization can occur

only in noncentrosymmetric crystals, therefore we need crystals without inversion

symmetry.

Moreover, we can predict that the term P̃ (2)(t) would be comparable to the

linear response, P̃ (1)(t), when the amplitude of the applied optical field has the

same order of magnitude of the electric field strength experienced by electrons

in atoms and molecules (typically of the order of 1010 − 1012V/m). Thus, it is

expected that under conditions of nonresonant excitation the second-order non-

linear susceptibility, χ(2), is of the order of χ(1)/Eat, where Eat is the electric

field in the material. In the next section, we present brief descriptions of the

nonlinear optical processes studied in the present work, namely second-harmonic

generation.

2.2 Nonlinear optical processes

The nonlinear optical processes, NLO processes, are often described by Eq. 2.2

that express the nonlinear contributions to the polarization, P̃ (t), considering a

lossless medium. The incident light in the material give rise to a time-varying

polarization, dependent of the optical field strength, that can act as the source

of the new components of the electromagnetic field. The wave equation in a

nonlinear optical material is given by

∇2Ẽ − n2

c2

∂2Ẽ

∂t2
=

1

ε0c2

∂2P̃NL

∂t2
(2.3)

where n is the linear refractive index and c is the speed of light in vacuum.

This equation can be interpreted as an inhomogeneous wave equation in which
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the polarization, P̃NL, associated with the nonlinear response drives the electric

field, Ẽ. The term ∂2P̃NL

∂t2
is associated with the measure of the acceleration

of the charges in the medium and this is consistent with Larmor’s theorem of

electromagnetism which states that accelerated charges generate electromagnetic

radiation. The last member of Eq. 2.3 therefore acts as a source term associated

with the nonlinear response of the system.

2.2.1 Second-harmonic generation

Let us consider a nonlinear material which is non-magnetic, anisotropic, non-

centrosymmetric and shall we discuss a nonlinear optical interaction known as

second-harmonic generation. For this it is required to analyze the interaction of

an optical electric field of the form:

Ẽ(t) = E cosωt =
1

2
E(eiwt + e−iwt) (2.4)

where w is a frequency. In the crystal there is a static electric field, E0, with null

second-order susceptibility, χ(2). Then, in the crystal the nonlinear polarization

is explicitly given by:

P̃ (2)(t) = ε0χ
(2)[

1

2
E2 cos 2ωt+ 2E0E cosωt+

1

2
E2 + E2

0 ] (2.5)

The first term in the equation oscillates at a frequency of 2ω which indicates

the emission of light at that frequency and this term depends only on the presence

of the optical electric field. Using the driven wave equation, Eq. 2.3, and the

expression of the nonlinear polarization we can get to the generation of radiation

at the second-harmonic frequency or frequency-doubling.

Figure 2.1: Geometry of the process of second-harmonic generation.

The second term oscillates with frequency w and is associated to the variation
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of the refractive index of the crystal, this process is known as linear electro-optic-

effect. Lastly, the third term correspond to a conversion of the optical electric

field oscillations to a static electric field and this is called optical rectification.

These effects can be described as the mixing of electric fields of various fre-

quencies in a nonlinear medium. So the polarization field depends of the incident

fields and the effects resulting from the nonlinear susceptibilities are represented

by a simplified notation dependent of the incident and resultant electric field

frequencies. The second-order polarization field can be written as:

P
(2)
i (ω3) = ε0

∑
jk

χ
(2)
ijk(−ω3;ω1, ω2)Ej(ω1)Ek(ω2) (2.6)

where ω1 and ω2 are the frequency of the incident fields and ω3 is the frequency

of the second-order polarization field where ω3 = ω1 + ω2 and its negative sign

only indicates that ω3 is the output. The signals of the input frequencies indicate

the relative phases of the two input fields. This formalism defines the effects

described before in Eq. 2.5 from the nonlinear susceptibility, therefore the second-

harmonic generation corresponds to χ
(2)
ijk(−2ω;ω, ω), the linear electro-optic-effect

is associated to χ
(2)
ijk(−ω;ω, 0) and the optical rectification to χ

(2)
ijk(0;ω,−ω).

The second-harmonic generation effect can be described by the figure below

in which two photons with frequency ω are absorbed and simultaneously it is

created a photon of frequency 2ω in a unique quantum-mechanical process. The

solid line represents a ground state and the dashed lines represent virtual states.

These levels do not correspond to the energy of eigenlevels of the free atoms but

correspond to the energy levels of the atom combined with one or more photons

of the radiation field.

Second-harmonic generation can be used to convert a fixed frequency laser

into a different radiation with a new frequency and consequently in a different

spectral region. For example, if we use the Nd: YAG laser that operates in a

infrared region with a wavelength of 1064nm in a nonlinear material where occurs

second-harmonic generation we will obtain an output radiation with 532nm that

is a green light in the visible spectrum.
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2.3 Symmetries in second-order nonlinear susceptibility

Figure 2.2: Energy-level diagram describing the process of the absorption and
emission of second-harmonic generation.

2.3 Symmetries in second-order nonlinear sus-

ceptibility

In this section we analyze the most important symmetry properties of the second-

order nonlinear susceptibility and use these symmetries to reduce the number of

independent components of the tensor χ(2).

2.3.1 Intrinsic Permutation Symmetry

Let us consider the second-order nonlinear polarization generated by two fields

Ej and Ek that oscillate with frequencies ω1 and ω2 respectively and we obtain

an output frequency ω3 given by the Eq. 2.6. We know that the relation between

the frequencies is given by

ω3 = ω1 + ω2 (2.7)

Then the analysis of the Eq. 2.6 allows us to verify that the permutation of the

order of the field amplitudes do not represent any physical change in value or

sign in the ith component of the nonlinear polarization, because the indices j

and k are dummy indices. We can represent this permutation with the following

relation:

Ej(ω1)Ek(ω2) = Ek(ω2)Ej(ω1) (2.8)

χ
(2)
ijk(−ω3;ω1, ω2) = χ

(2)
ikj(−ω3;ω2, ω1) (2.9)

11
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This symmetry is know as intrinsic permutation symmetry and can be applied in

resonant or nonresonant systems.

2.3.2 Symmetries for lossless medium

In this section we will introduce two additional symmetries of the nonlinear sus-

ceptibility for lossless nonlinear systems. The first condition implies that all non-

linear susceptibility tensor components, χ
(2)
ijk, must be real. In a lossless medium,

where all frequencies applied and their sums and differences are substantially dif-

ferent from the resonance frequency of the material, we can see that χ
(2)
ijk is purely

real.

The other condition that we present is the full permutation symmetry for

which it is required that all of the frequency arguments of the nonlinear suscepti-

bility can be freely interchanged, as long as the corresponding Cartesian indices

are also interchanged simultaneously.

This permutation is applied in all frequencies of the χ(2) and the corresponding

Cartesian indices. In the permutations of the nonlinear susceptibility the first

frequency must be equal to the sum of the other frequencies and the signs of the

frequencies must be altered when the first frequency is interchanged. These rules

allow to obtain the expression:

χ
(2)
ijk(−ω3;ω1, ω2) = χ

(2)
jki(−ω1;ω2,−ω3) (2.10)

We know that to ensure that the nonlinear polarization is real the right-hand

of last equation must be equal to χ
(2)
jki(ω1;−ω2, ω3)∗, but for a lossless medium

the χ(2) must be real, therefore we conclude that:

χ
(2)
ijk(−ω3;ω1, ω2) = χ

(2)
jki(ω1;−ω2, ω3) (2.11)

Similarly we can obtain:

χ
(2)
ijk(−ω3;ω1, ω2) = χ

(2)
kij(ω2;ω3,−ω1) (2.12)

These equations for a lossless medium with χ
(2)
ijk purely real imply that the

12



2.3 Symmetries in second-order nonlinear susceptibility

number of photons of the high-frequency field that are created is equal to the

number of photons of the low-frequency field that are annihilated. The reverse

process takes place in the same way.

2.3.3 Kleinman symmetry

In nonlinear optics the interactions depend of the frequencies ωi of the optical

fields. Frequently, these frequencies are much smaller than the lowest resonance

frequency of the material, ω0, and in these conditions the second-order nonlinear

susceptibility is practically independent of the applied frequencies ωi and this

allows us to use the full permutation symmetry. Therefore:

χ
(2)
ijk(−ω3;ω1, ω2) = χ

(2)
jki(ω1;−ω2, ω3) = χ

(2)
kij(ω2;ω3,−ω1) = · · · (2.13)

Taking into account that χ(2) is independent of the frequencies, we can permute

the indices without permuting the frequencies, thus obtaining:

χ
(2)
ijk(−ω3;ω1, ω2) = χ

(2)
jki(−ω3;ω1, ω2) = χ

(2)
kij(−ω3;ω1, ω2) = · · · (2.14)

So we can omit the dependence on frequencies and we obtain the Kleinman sym-

metry given by:

χ
(2)
ijk = χ

(2)
ikj = χ

(2)
jik = χ

(2)
jki = χ

(2)
kij = χ

(2)
kji (2.15)

The application of Kleinman symmetry relations reduce the number of indepen-

dent components of χ(2) from the 27 to 10.

2.3.4 Contracted notation

In nonlinear optics it is used a notation where the frequency arguments don’t

appear and the susceptibility tensor is usually presented as dijk

dijk =
1

2
χ

(2)
ijk (2.16)

13
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where the factor 1
2

comes from an historical convention. Moreover, we can con-

tract the last indices of the tensor using the intrinsic permutation symmetry. So

we rewrite the indices in the following form:

jk : 11 22 33 23, 32 31, 13 12, 21

l : 1 2 3 4 5 6
(2.17)

When we use this contracted notation the susceptibility tensor can be repre-

sented as a 3×6 matrix, therefore we stand with 18 components. We can use now

the Kleinman symmetry condition and the contracted tensor shows new relations

between the components of the form:

d12 ≡ d122 = d212 ≡ d26 (2.18)

d14 ≡ d123 = d213 ≡ d25

In the same manner we can obtain the relations:

d13 = d35 d14 = d36

d15 = d31 d16 = d21 (2.19)

d23 = d34 d24 = d32

After we apply the Kleinman symmetry to the matrix dil we get only 10

different elements. So the matrix is given by:

dil =

 d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14

 (2.20)

So, the use of intrinsic permutation symmetry and the Kleinman symmetry

in the nonlinear susceptibility allows us to reduce the number of independent

elements of the matrix dil from 18 to 10 in a lossless medium.

14



2.3 Symmetries in second-order nonlinear susceptibility

2.3.5 Effect of inversion symmetry on the second-order

susceptibility

Previously we mentioned that in crystals with inversion symmetry or centrosym-

metry the nonlinear susceptibility χ(2) is zero. With this argument 11 of the 32

crystal classes that have an inversion symmetry are automatically ruled out as

possible materials with second-order nonlinear optical interactions. Let us demon-

strate why this happens. For this we begin by considering a medium in which

the response to a optical field is instantaneous. So let’s consider the simplest

situation with the following expression for nonlinear polarization

P̃ (t) = ε0χ
(2)Ẽ2(t) (2.21)

and applying the optical field of the form of Eq. 2.4. Therefore if we intro-

duce an electric field with a change of the sign, the field applied is −Ẽ(t) and

consequently the sign of the nonlinear polarization must also change, because we

consider a centrosymmetric crystal. Thus we obtain the following equation:

−P̃ (t) = ε0χ
(2)[−Ẽ(t)]2 = ε0χ

(2)Ẽ2(t) (2.22)

Through the analysis of the Eq. 2.21 and Eq. 2.22, we see that P̃ (t) must be

equal to −P̃ (t) and the only way to verify this condition is χ(2) = 0. Thus we have

demonstrated that for a centrosymmetric crystal the second-order susceptibility

vanishes.

2.3.6 Influence of spatial symmetry on the second-order

susceptibility

In the last section we studied the nonlinear susceptibility for centrosymmetric

crystals. However, there are several symmetry properties, beyond the centrosym-

metry, that come from the nonlinear optical medium and can impose additional

restrictions on the form of the nonlinear susceptibility tensor. This comes from

Neumann’s principle which says that the macroscopic physical properties of a

crystal must be invariant with respect to the same symmetry operations of the
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crystal. These symmetries of the nonlinear optical medium allow an important

reduction in the number of nonzero independent components of the nonlinear

susceptibility tensor. The derivation of the simplifications for the second-order
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The elements with same component of the tensor dij have equal value; the bar
indicates the opposite sign; blue coefficients correspond to the elements that are
zero when the Kleinman symmetry condition is valid; the letters a,.., g, denotes
components that are equal only if Kleinman symmetry condition is valid.

susceptibility tensor, were performed originally by Butcher in 1965 [9] and can

be found in appropriate tables [10]. Later on the second-order susceptibility was

describe using the contracted notation and adapted by Zernike and Midwinter in

1973 [11]. The form of the dil tensor for the 21 classes without inversion symmetry
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is shown in Fig. 2.3.

2.4 Molecular nonlinear optical properties

Let us focus now on the molecular side of nonlinear optics and understand how

molecular structure can influence the nonlinear response. We have to consider

the relation between the dipole moment of the molecule and the external optical

electric field that is given by:

pi = µo,i + ε0αijEj (2.23)

where µo,i is the permanent dipole moment and αij is the linear polarizability

tensor. In the expression above it is implicit the use of the Einstein summation

convention. When the electric field applied is strong the previous expression is

expanded and is no longer linear:

pi = µo,i + ε0(αijEj + βijkEjEk + γijklEjEkEl + . . .) (2.24)

This expression defines the static molecular polarizability tensors, α, β, and γ.

The tensors β and γ are, respectively, the second- and third-order polarizability

or first and second hyperpolarizabilities. These are polar tensors fully symmetric

in the permutation of cartesian indices.

The evaluation of the macroscopic response of the crystal must be analyzed

starting from the molecular response and adding the effects of the microscopic

surroundings.

We will now study the formal aspects of the molecules and ions to understand

the origins of the second-order nonlinear response.

2.4.1 Effect of the structure of molecules for nonlinear

response

We focus mainly on understanding the second-order polarizability, β, and how

this is affected by the structure of the molecules taking into account the length
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of the conjugated π electrons, the effect of the planarity of the molecules and the

effect of the presence of donor/acceptor substituents.

Organic molecules are characterized by the capacity of the carbon atoms to

form a large variety of stable bonds. This bonding is primarily of two types, the

σ bond where the electrons are confined along the intermolecular axis. The other

type is the π bond with regions of delocalized electronic charge density above and

below the interatomic axis.

This way the π bonds are more susceptible to the applied external field due

to the delocalization and large mobility of the electrons. Beyond the delocaliza-

tion there are other factors that can improve the nonlinear response such as the

inclusion of electron acceptor and donor groups in the ends of a molecule, with

these groups linked by a π bridge. Usually these molecules are called “push-pull”

molecules, see in Fig. 2.4. In these molecules when it is applied an external elec-

Figure 2.4: Typical organic molecule with donor and acceptor groups and electron
π ring system.

tric field the π electrons flow from the donor to the acceptor group. The optical

nonlinearity of push-pull molecules can be increased dramatically by adding con-

jugated bonds or by using strong donor and acceptor groups. But the increase

in the hiperpolarizability with the increase of conjugation length inevitably leads

to loss of transparency in the crystal. That is a consequence of the increase of

conjugation that leads to a shift of the absorption for longer wavelengths.

The last effect that we have to analyze is the planarity of the molecules (mainly

systems with two or more rings). The extent of the planarity has influence in the

size of the π electron system and the mobility of the delocalized electrons. The

twist angles in the molecule can be the cause of the decrease of the charge transfer

contribution and consequently the decrease of the hiperpolarizability [12].

One molecular property that has a significant importance in the hiperpolar-
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izability is the permanent moment of the molecule. In the “push-pull” molecules

we consider a two-level system suggested by Oudar and Chemla [13], with the

ground state (g) and the first excited state (e) of the molecule. The dipole mo-

ment of these molecules depend on the difference between these two levels and

consequently the hiperpolarizability can be given as:

β ∝ ∆µge
µ2
ge

E2
ge

(2.25)

where µge and Ege are the dipole matrix element and energy transition, respec-

tively, between the two levels previously referred and the ∆µge is the difference

of the dipole moment of these levels.

2.4.2 Dipolar and octupolar molecules

The “push-pull” molecules have an electronic asymmetry that leads to a charge

transfer and a large permanent dipole moment in the ground state which is posi-

tive for the hiperpolarizability of the molecule. However this polarity is a disad-

vantage because it leads to the dipole-dipole interaction between the molecules

in the crystal, giving rise to centrosymmetric crystals and consequently, to a

material without second-order nonlinear optical properties.

The octupolar molecules were proposed by Zyss and co-workers [3; 14; 15; 16]

from the experimental evidence and based on general tensorial considerations.

These are nonpolar molecules that have nonlinear optical properties, but the

structure of these molecules leads to the cancelation of all vector-like observ-

ables, so does not make sense to apply the two-level model because the difference

between the ground and excited state dipole moments is zero. However we can

apply a model with a minimum of three states, two excited states defined as e

and e′ and the ground state, g.

Thus the hiperpolarizability must be proportional to the product of the tran-

sitions dipole moments of these three states. Therefore we obtain:

β ∝ µgeµee′µge′

EgeEge′
(2.26)

19



2. NONLINEAR OPTICS

Figure 2.5: The two possible octupolar molecules that optimize the β tensor of
octupolar molecules. On the left the Guanidinium route and on the right the
TATB route. In these cases, the donors can be permuted with the acceptors.

The hiperpolarizability as referred previously is a fully symmetric third-rank

tensor when the Kleinman symmetry is valid. So this tensor can be decomposed

in a sum of the irreducible tensorial components applying the reduction spectrum

equation of the tensor T (n):

T (n) =
n∑

J=0,τJ

T
(n),τJ
J (2.27)

where T (n) is a general tensor of rank n and the τJ is the superscript that distin-

guishes the different linearly dependent components of rank J .

The hiperpolarizability tensor can be decomposed only in two components

with J = 1 for the dipolar or vector part and J = 3 that correspond to the

octupolar or septor part :

β = βJ=1 ⊕ βJ=3. (2.28)

where each component has 2J+1 independent coefficients. We can show that for

molecules belonging to a multipolar symmetry group of order J , only the com-

ponents of the higher orders of J remain and the others vanish due to symmetry

requirements. Therefore all dipolar components with J = 1 vanish and only oc-

tupolar components with J = 3 will stay in the hiperpolarizability tensor. Then

the comparison of the magnitudes of dipolar and octupolar components of the

molecular quadratic hyperpolarizability is obtained with the parameter ρ given
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by:

ρ =
‖βJ=3‖
‖βJ=1‖

(2.29)

where ‖βJ=3‖ and ‖βJ=1‖ are the scalar invariants of the septor and the vector

parts [3] of the β tensor.

The cancelation of dipolar moments in octupolar molecules promote the for-

mation of noncentrosymmetric crystals contrary to what happens with dipolar

molecules. Other difference between dipolar and octupolar molecules is the

nonlinearity-transparency trade-off. This is due to the different selection rules for

transitions in octupolar molecules. The selection rules in dipolar systems allow

the transitions between ground state end low-lying states and these transitions

lead to the decrease of the hiperpolarizability. But for octupolar molecules these

transitions are forbidden because of the increase in the symmetry constraints for

this systems.
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Chapter 3

Charge density

3.1 Introduction

The knowledge of the charge density of the molecular and crystal structures is

fundamental to understand all interactions and the physical and chemical macro-

scopic properties of the materials. The study of the charge density began with

the description of the behavior of electrons in the first quantum model of the

atom. In molecules we have to take into account the interactions between the

atoms which will shape the distribution of electrons and for this it is required the

calculation of the probability density of the electrons.

The experimental determination of the charge density was only possible after

the discovery of the X-ray diffraction in 1912 [17] and the subsequent development

of quantum mechanics. Shortly after in 1915, Debye stated “It seems to me that

experimental study of scattered radiation, in particular from light atoms, should

get more attention, since along this way it should be possible to determine the

arrangement of electrons in the atoms” [18].

Let us consider a molecular system with N electrons and M nuclei. The

probability of finding any of N electrons at r1 independently of the positions of

all the other electrons is given by ρ(r1)dr1. In the same way we can obtain the

position electron density defined by:

ρ(r) = N

∫
Ψel(r, r2, . . . rN ; R) ·Ψ∗el(r, r2, . . . rN ; R)dr2, . . . drN (3.1)
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where Ψel is the stationary wavefunction for fixed nuclear space coordinates de-

fined by R that denote all M nuclear coordinates.

We have to emphasize that the charge density is given by the sum of electron

and nuclear density in a point of space. But in literature “charge density” and

“electron density” are often used interchangeably. Typically the term charge

density is used for the cases where the determination of the distribution of both

positive (nuclear) and negative (electronic) charge has taken place simultaneously,

as it happens with X-ray diffraction experiments.

The electron density may be obtained either from experiment or from ab initio

calculations.

3.2 Independent atom model

Initially, let us consider the more simple model wherein the electron density is

described as a superposition of the independent spherical atomic densities. This

model does not describe any deformation on the charge density. In other words

the independent atom model does not describe chemical bonds or lone-pairs.

Neglecting these chemical elements of the molecule the promolecular density

for the independent atom model is given by:

ρpro(r) =
∑
i

ρati (ri) (3.2)

where ρat is the charge density of each isolated atom. The model only need

the positional parameters of all atoms and the parameters that describe thermal

motion of the atoms.

The independent atom model is a very good approximation for the heavier

atoms, because for these atoms the valence electrons are a small percentage of

the total electron density and consequently the core electrons must have a higher

weight. On the other hand for light atoms the outer shells of electrons and their

directional characteristics have an important impact on the electron density and

consequently the description achieved with the independent atom model is not

good. This effect is more relevant for hydrogen atoms because its whole electronic

cloud is shifted towards the bonded X atom, ending up in a position much too
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close to this atom, resulting in a too short X−H bond.

3.3 Aspherical density model

Previously we discussed the independent atom model where we considered an

atomic spherical density that works well as a first approximation for heavy atoms.

We can consider now a model based on atomic aspherical densities centered in the

atomic nuclei that describe in a better way the atoms in a molecular environment.

The aspherical density model like the independent atom model, considers that

the promolecular density is obtained by Eq. 3.2. The difference between these

models comes from the different form used for defining each of the atomic electron

densities.

ρat(r) = ρcore(r) + ρvalence(r) + ρdeformation(r, θ, φ) (3.3)

where the first two components are the spherical core and valence densities, re-

spectively, and the third term ρdeformation is the deformation of the atomic elec-

tron density that give a good approximation to describe the effect of interactions

between atoms in the electron density of the molecule.

There are many refinements of the experimental electron density where it is

applied the aspherical density model to obtain a more realistic description of

interactions such as different types of bonds in the electron density.

3.4 Properties from the charge density distribu-

tion

The charge density distribution allows to obtain several physical properties that

establish relationships between the atoms and provide important information on

the crystalline environment.

These properties of the molecules or crystals are obtained using the aspherical

density model or comparing the aspherical and spherical density models to analyze

the interactions and their features.
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3.4.1 Deformation density

Since the total density is dominated by the core electrons and only slightly affected

by interactions between atoms, difference densities relative to a reference density

are often used to illustrate bonding features. A commonly used function is the

deformation density ∆ρ(r), defined as the difference between the total density

ρ(r) and the density corresponding to the independent atom model. Usually the

static deformation density is given by:

∆ρstatic(r) = ρ(r)−
∑
i

ρati (ri) (3.4)

The deformation density shows the accumulation of density in the bonding

and lone-pair regions of a molecule. Deformation density maps are widely used

and an important tool in the analysis of bonds.

Figure 3.1: Deformation density of the phenyl group.

3.4.2 Electrostatic potential

The charge density can be seen as a distribution of the positive charges of nu-

clei and negative charges of the electron distribution which give rise to physical
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properties such as the electrostatic potential and consequently allows to obtain

the electric field and the gradient of the electric field.

The electrostatic potential at one point define the energy required to bring a

positive charge from the infinite to that point, an important physical property

of the molecules that allows to understand the interactions in crystals especially

interactions between charge acceptors and receptors. The electrostatic potential

can be defined through the Coulomb equation for the point r′, due to a charge Q

at r that is given by:

Φ(r′) =
Q

4πε0|r− r′|
(3.5)

The factor 4πε0 is omitted when we use atomic units. The electrostatic poten-

tial between two points correspond to the work required to bring a charge from

the first point to the other, so the choice of zero is arbitrary.

Thus we can divide the total charge density in positive charge distribution

that is a punctual distribution that can be calculated trough the sum of the

contributions of all nuclei, but the electrons leads to a continuous negative distri-

bution of charge given by electron density, this component of potential energy is

obtained from the integration over space. Therefore, the electrostatic potential

is of the form:

Φ(r′) =
∑
M

ZM
|RM − r′|

−
∫

ρ(r)

|r− r′|
dr (3.6)

where ZM is the charge of nucleus M at the point given by RM .

This property is an important tool to analyze the energy of the interactions.

In the crystal the evaluation of the electrostatic potential allows to analyze the

lattice energy.

3.5 Quantum Theory of Atoms in Molecules

Electronic charge density, ρ(r), is a scalar field in three dimensions which has a

definite value in each point of space and can be described through the quantum

theory of atoms in molecules (QTAIM) developed by Professor Richard F. W.

Bader and his coworkers [5].

The topological analysis of the total density, leads to a scheme of natural
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partitioning of the molecular space into separate mononuclear regions identified

as atoms in molecules. Within this theory, an atom in a molecule is a region

in real space, containing one nucleus, bound to other atoms by surfaces, called

“zero flux surfaces”, defined by ∇ρ = 0. The atoms can exchange charge and

momentum across this interaction surface.

The QTAIM theory leads to a completely new idea of atoms in the field of

chemistry because atoms of the same element are no longer identical since they

depend on the chemical environment within the molecule.

3.5.1 Topological properties of the electron density

The topology of the charge density distribution is dominated by forces between

atoms in the molecules. The attractive force exerted by fixed nucleus leads to a

concentration of electrons closer to the atoms. The same forces are responsible

for depletion of electron density between the atoms, defining their boundaries.

The points of the charge density in which the first derivative, ρ(r), vanishes

are defined as Critical Points (CP):

∇ρ(r) = î
∂ρ

∂x
+ ĵ

∂ρ

∂y
+ k̂

∂ρ

∂z
= 0 (3.7)

where î, ĵ and k̂ are the unit vectors in cartesian coordinates. Where the zero

vector indicate that each individual partial derivative in the gradient is zero and

not just their sum.

Therefore from the Eq. 3.7 we find the critical points in the charge density,

but cannot discriminate between a local minimum, a local maximum or a saddle

point. In order to make this distinction we must use the second derivatives, ∇∇ρ,

in the critical point with coordinates rc. The nine second derivatives of ρ(r) can

be organized in a so-called Hessian matrix:

H(rc) =


∂2ρ
∂x2

∂2ρ
∂x∂y

∂2ρ
∂x∂z

∂2ρ
∂y∂x

∂2ρ
∂y2

∂2ρ
∂y∂z

∂2ρ
∂z∂x

∂2ρ
∂z∂y

∂2ρ
∂z2


r=rc

(3.8)

The Hessian matrix is obtained from the charge density and can be diagonal-
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ized since it is real and symmetric. This operation of diagonalization is equivalent

to a rotation of the coordinate system and the new axes are x′, y′, z′ that are

also the principal curvature axes of the critical point. To obtain the diagonalized

Hessian matrix we must apply the three eigenvalue equations Hui = λiui where

ui is the ith column vector. Then the diagonalized Hessian matrix is given by:

Λ =


∂2ρ
∂x′2

0 0

0 ∂2ρ
∂y′2

0

0 0 ∂2ρ
∂z′2


r′=rc

=

λ1 0 0

0 λ2 0

0 0 λ3

 (3.9)

where λ1, λ2 and λ3 correspond to the principal curvatures of the charge density

in the critical point.

The critical points are found in charge density distribution with the Eq. 3.7

and they are distinguished using the Hessian matrix. The critical point are clas-

sified according to their rank (ω) and signature (σ), therefore each type of critical

point is symbolized by (ω, σ).

The rank is the number of non-zero curvatures of the charge density in the

critical point. If we consider a rank less than three, ω < 3, we will verify that

the critical point is mathematically unstable and will vanish or bifurcate under

small perturbations with the motion of the atoms in the structure. Thus we can

conclude that the rank of critical points in the charge density is usually ω = 3.

The signature is the algebraic sum of the signs of the curvatures, so each of the

curvatures contributes with ±1 depending on whether it is a positive or negative

curvature. There are four different types of critical points classified by their

rank and signature, each type corresponding to an element of chemical structure

like (nuclear critical point, bond critical point, ring critical point or cage critical

point).

The critical points (3,−3) are local maxima in ρ, thus corresponding to atoms

in the charge density. For a bond critical point or saddle point the charge density

is found between all pairs of atoms which are considered linked by a chemical bond

and has a maximum in the plane defined by the corresponding eigenvectors but is

a minimum along an axis perpendicular to this plane. In the ring critical points

the density have a local minimum in the plane of the ring and is a maximum in the
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3. CHARGE DENSITY

Table 3.1: Types of critical points, (ω, σ), with the topological description and
their chemical structural meaning in the molecule.

CP type Curvatures of ρ Chemical entity
(3,−3) Local maximum of ρ Nuclear critical point (NCP)
(3,−1) Local maximum of ρ in a plane and Bond critical point (BCP)

a minimum along the third axis
(3,+1) Local minimum of ρ in a plane and Ring critical point (RCP)

a maximum along the third axis
(3,+3) Local minimum of ρ Cage critical point (CCP)

axis perpendicular to the ring plane. Lastly the cage critical point is a minimum

in the charge density, therefore in these critical points there is a depletion of

charge.

Figure 3.2: Critical points in the electron density of the phenyl group.

The number and type of critical points that can coexist in a molecule or crystal

depend of the following topological relationship:

nNCP − nBCP + nRCP − nCCP =

1 Isolated molecules

0 Infinite crystals
(3.10)

where n is the number of critical points of each type. The first equation is applied

in finite systems like molecules and is known as Poincaré-Hopf theorem and the
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3.5 Quantum Theory of Atoms in Molecules

second equation is for infinite and periodic systems like crystals and is called the

Morse equation. The violation of these relations implies that the set of critical

points determined is not complete. On the other hand Eq. 3.10 cannot be used

to prove that the analysis of the system is correct because it is easy to obtain an

apparently correct result due to a cancelation of errors.

3.5.2 Atoms in molecules from the gradient vector field

of the charge density

The pronounced maxima in the electron density at the positions of the nuclei give

rise to a natural partitioning of the molecular space into separate mononuclear

regions, Ω, that can be identified as atoms in molecules. The surface that bounds

an atom in a molecule is characterized as a zero flux surface in a gradient vector

field of the electron density. So mathematically we can define this surface with

the following equation:

∇ρ(r) · n(r) = 0 (3.11)

where r is the position vector and n is the unit vector normal to the surface,

S(Ω). This surface of zero flux is not crossed by any line of the gradient vectors

at any point and the volume inside the surface is known as atomic basin. Gradient

vector field lines belonging to an atomic basin converge all to one nucleus that

acts as an attractor to these gradient vector field lines. So, these gradient vector

field lines sweep a portion of space associated with one nucleus that is identified

as the basin of an atom in a molecule.

The topological definition of an atom results from the boundary condition

expressed in Eq. 3.11 and which applies to every point on the surface. This real

space partitioning of the electron density has been shown to be based in quantum

mechanics bringing into coincidence the topological definition of an atom in a

molecule with that of a proper open quantum system.

3.5.3 The bond paths and the molecular graphs

The zero flux surfaces between bonded atoms in a molecule have an important

topological element associated called “bond path” that is a single line of locally
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ZFS&
Atomic&basin&

Nucleus&

Figure 3.3: The gradient of the electron density with the respective critical points
and surface of zero flux in the phenyl group.

maximum density linking two nucleus. The bond path is an indicator of chemical

bonding for all types of interactions such as weak, strong, closed-shell and open

shell. The point on the bond path with minimum electron density is the bond

critical point (BCP) and it is also the point where the bond path intersects the

zero-flux surface between the two bonded atoms.

The set of all bond paths that link the nuclei of bonded atoms in an equilib-

rium geometry, including the associated critical points, is known as the molecular

graph. In a optimized geometry the molecular graph gives a unique definition of

the molecular structure that can thus be used to locate structural changes along

a reaction path.

3.5.4 Laplacian of electron density

One important function of the electron density is the Laplacian, given by

∇2ρ(r) =
∂2ρ

∂x′2
+
∂2ρ

∂y′2
+
∂2ρ

∂z′2
= λ1 + λ2 + λ3 (3.12)

The Laplacian is equal to the trace of the Hessian and is invariant under a

rotation of the coordinate system.
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3.5 Quantum Theory of Atoms in Molecules

The Laplacian of the electron density, ∇2ρ(r), indicates the regions of con-

centration or depletion of electronic charge. So, when ∇2ρ(r) > 0 the electron

density is locally depleted and expanded relative to its average distribution, but

if ∇2ρ(r) < 0 the density is locally concentrated and is compressed relative to its

average.

For an isolated atom the Laplacian reproduces the spherical shell structure

in terms of alternating shells of charge concentration followed by shells of charge

depletion. The spherical nodes in the Laplacian are envelopes surrounding regions

of density depletion or concentration. The outer shell of charge concentration,

which is followed by a shell of charge depletion that extends to infinity, is called

the valence shell charge concentration (VSCC). This is valid for an isolated atom

but in a molecule or crystal, where the atom is involved in bonding, the spherical

symmetry of the VSCC is broken.

The Laplacian is a fundamental tool for finding and characterizing regions of

charge concentration or depletion and, since it is a second-derivative function, is

very sensitive to subtle changes in the charge density.

3.5.5 The atomic partitioning of molecular properties

Previously, we defined the topological partitioning of the molecules into atomic

basins and this concept is essential for the development of the quantum mechanics

of open system. The atomic basin is a volume defined by a zero-flux surface and

this surface is a necessary constraint for the application of Schwinger’s principle

of stationary action for each atomic basin.

The partitioning of the molecular space into atomic basins allows the con-

sistent partitioning of electronic properties into atomic contributions. Then the

properties of the molecules are given by the sum of the electronic properties of

each atomic basin. Therefore, the expectation value of a quantum operator aver-

aged over all space is given by the sum of the expectation values of the operator
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over all atom basins of the molecule:

〈Ô〉 =
all atoms∑

i

(
N

∫
Ωi

{∫
1

2
[Ψ∗ÔΨ + (ÔΨ)∗Ψ]dτ ′

}
dr

)

=
all atoms∑

i

(∫
Ωi

ρOdr

)
=

all atoms∑
i

O(Ωi)

(3.13)

where 〈Ô〉 is the molecular expectation value of the operator Ô, the integration∫
dτ ′ correspond to the integration over all electrons less one and the summation

over all spins, and O(Ωi) is the average of this operator over an atomic basin Ωi,

and where the sum are performed over all the atoms in the molecule or crystal.

The Eq. 3.13 implies that any property O that can be expressed in terms of a

corresponding property density in space ρO(r) can be written as a sum of atomic

contributions obtained by averaging the appropriate operator over the volume of

the atom, so that property has atomic additivity.

3.5.6 Bond properties

A zero-flux surface is defined by a particular set of ∇ρ(r) trajectories that ter-

minate at a single point, the bond critical point, where ∇ρ(r) = 0. There is

one BCP between each pair of bonded atoms, that are defined topologically as

atoms linked by a bond path and that share a common interatomic zero-flux sur-

face. Besides the set of trajectories which terminate at the BCP and define an

interatomic surface, a pair of trajectories originates at the BCP and terminate at

the nuclei of the chemically bonded atoms thus defining the bond path between

the two atoms. Chemical bonding interactions are characterized and classified

according to the properties of the electron and energy densities at the BCP, that

are called collectively “bond properties” [5; 19; 20]
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3.5 Quantum Theory of Atoms in Molecules

3.5.6.1 Electron density at the bond critical point

The amount of electron density at the bond critical point, ρ(rBCP ) = ρbcp, defines

the strength of the chemical bond which consequently defines the bond order.

Bond Order = exp[A(ρbcp −B)] (3.14)

where A and B are constants that only depend of the nature of the two bonded

atoms. Generally, ρbcp is larger than 0.20 au in covalent bonds and less than 0.10

au in closed-shell interactions like ionic and van der Waals bonding.

3.5.6.2 The bonded radius of an atom

The “bonded radius” of an atom A relative to a bond critical point of an interac-

tion is the distance between the nucleus of atom A and the BCP and is designated

as rBCP (A). The sum of the two associated bond radii of the same bond path is

known as bond path length. If the bond path is coincident with the internuclear

axis the bond path length is equal to the bond length. But when bond paths are

curved the bond path length will exceed the bond length. This situation is found

frequently in hydrogen-bonded interactions or in cyclic molecules as in rings.

B

A

BCP&

rbcp(B)&

rbcp(A)& Bond&length&

Figure 3.4: Scheme that relates the bond path and distances of atoms A and B
to BCP with the bond length.
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3.5.6.3 The Laplacian of the electron density at the bond critical point

The Laplacian of the electron density at the BCP is the sum of the three curva-

tures of the density in the critical point (see Eq. 3.12). The two curvatures

perpendicular to the bond path, λ1 and λ2, are negative and by convention

|λ1| > |λ2|. The third curvature, λ3, is along the bond path and is positive. The

negative curvatures measure to what extent the density is concentrated along the

bond path and the positive curvature measures the depletion in the region of the

interatomic surface and the concentration in the individual atomic basins.

In covalent bonds the two negative curvatures are dominant and ∇2ρbcp < 0.

On the other hand, in close-shell interactions, like ionic, hydrogen-bonding or

van der Walls interactions, the fundamental characteristic is the depletion of the

electron density in the critical point and ∇2ρbcp > 0.

Lastly, in strong polar bonds there is a significant accumulation of the electron

density between the nuclei, as happens in all shared interactions, but it’s not

possible to use the sign of the Laplacian to distinguish this type of bond since it

can have either sign.

3.5.6.4 The bond ellipticity

The ellipticity is an important quantity in the analysis of bonds and it measures

the amount of electron density accumulated in the plane that contains the bond

path. The ellipticity is given by:

ε =
λ1

λ2

− 1 (3.15)

From the analysis of this expression we can easily see that when λ1 = λ2 the

ellipticity is zero and for this case the bond is cylindrically symmetrical. The

ellipticity is a measure of the π-character of the bonding up to the limit of the

“double bond” in which case the ellipticity reaches a maximum. Going from a

double to a triple bond, the tendency is reversed and the ellipticity decreases with

the increase of the bond order, because at the limit of “triple bond” the bonding

regains its cylindrical symmetry (two π-bonding interactions in two orthogonal

planes and one cylindrically symmetric σ-bonding interaction). The ellipticity
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of an aromatic bond is around 0.23 in benzene and for a formal double bond is

approximately 0.45 in ethylene.
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Chapter 4

Experimental methods

4.1 Introduction

In this thesis a detailed structural analysis of the new compounds synthesized,

using the single crystal X-ray diffraction technique, was performed in order to

obtain the molecular structure of the compounds. Moreover in the specific case

of noncentrosymmetric crystal structures, beyond the structural analysis, the

nonlinear optical properties were also studied for each new compound.

For this reason in this chapter we describe some experimental methods such

as X-ray diffraction and the Kurtz and Perry technique.

4.2 Synthesis and crystal growth

4.2.1 Synthesis

In this thesis several new salts were synthesized by acid-base reactions. Several

solvents were used like water (for most acids, for L-histidine and for guanidinium

carbonate and phenylguanidinium carbonate), ethanol (for triphenylguanidine)

and acetone (for thiocyanuric acid) and the reactions were performed under am-

bient conditions of temperature and pressure.
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4.2.2 Crystal growth

The quality of the crystals used in diffraction experiments is very important to

determine structures with quality. The effects of a low quality crystal will affect

the quality of the final structure. The single crystals used in data collections

usually have dimensions of 0.1 − 0.4 mm. To obtain single crystals with good

quality they should grow slowly, taking from hours to months, depending on

the material. In this thesis the crystals were grown by slow evaporation of the

solutions.

4.3 Single-crystal X-ray crystallography

The single-crystal X-ray diffraction is the more common technique used to de-

termine the molecular structure of the crystals at the atomic level. The X-ray

diffraction was first performed in 1912 by W. H. and W. L. Bragg and it has been

used to determine the structure of conventional small molecules with extraordi-

nary success in the last 100 years.

In a crystal structure the X-rays are scattered by the electrons of the atoms,

and for this reason it is possible to determine the electron-density distribution,

averaged over time and over the vibrations of the atoms. As the crystal structure

is periodic, it is only needed to determine the constitution of one unit cell and the

existence of other symmetries besides pure translation reduces this even more, to

the asymmetric unit of the crystal structure, which is a fraction of the unit cell

for all cases except for the space group P1.

Within a unit cell, each atom is a source of scattered X-rays and the waves sum

in a constructive or destructive way depending on the direction of the diffracted

beam and on the atomic positions.

The geometrical conditions under which a diffracted beam is observed is given

by Bragg’s law:

nλ = 2dhkl sin θ (4.1)

where λ is the wavelength of the X-ray, θ is the Bragg’s angle and dhkl is the

interplanar distance between planes of a family of planes. These geometrical con-

ditions determine that there is constructive interference when the path difference
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is a whole number of wavelengths.

The diffraction pattern obtained is the Fourier transform of the crystal struc-

ture and the mathematical relationship for this is given by:

F (hkl) =
N∑
j=1

fj exp[2πi(hxj + kyj + lzj)] (4.2)

where fj is the atomic scattering factor for the jth atom of the unit cell with

coordinates xj, yj and zj and F (hkl) is the structure factor for one particular

reflection defined by the Miller indices h,k and l.

This structure factor can be expressed as a diffracted beam with an amplitude,

|F (hkl)|, and its relative phase, φ(hkl). Thus, the structure factor also can

expressed as:

F (hkl) = |F (hkl)| exp[iφ(hkl)] (4.3)

The intensity is proportional to |F (hkl)|2 and the experimental measurements

allow the determination, after application of the correction factors, of the quan-

tities h, k, l, |F (hkl)|.
From the X-ray diffraction pattern the electron density at every point of the

unit cell can be obtained. The electron density is expressed through the structure

factor by:

ρ(xyz) =
1

V

∑
hkl

F (hkl) exp[−2πi(hx+ ky + lz)] (4.4)

where V is the volume of the unit cell and the summation is over all structure

factors measured. This expression allows to obtain the electron density of a single

unit cell from the X-ray diffraction performed over the entire crystal, therefore

the electron density of the unit cell obtained correspond to an average over the

whole crystal.

There is a phase problem associated with the complete determination of the

structure factors since the measured X-ray intensities give only the amplitudes

of the structure factors but not their phases. The determination of the electron

density cannot be performed directly from the experimental measurements and

the phases must be obtained by other processes. The most common way of

solving this problem is using methods, so-called direct, that attempt to derive
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the structure factor phases from the X-ray intensities by using mathematical

relations.

The direct methods are only possible because the structure factor amplitudes

and phases are dependent and are linked by the knowledge of the electron density.

This way, if the amplitudes are known, the phases can be calculated according to

the information of electron density and vice versa. Therefore, the mathematical

constraints on the electron density function will impose corresponding constraints

on the structure factors. Since the amplitudes of the structure factors are known,

most constraints restrict the values of structure factor phases and are sufficient

to determine the phase values directly in most of the cases.

In this thesis all the structures were solved through these direct methods

implemented in the SHELXS-97 program [21] and refined on F 2s by full-matrix

least-squares with SHELXL-97 program [21].

The new compounds in this thesis were determined through the X-ray diffrac-

tion experiments performed with the four circle diffractometer with κ geometry

Bruker-Nonius Kappa Apex II. The radiation used in diffractometer APEX II

is Mo Kα with a wavelength λ = 0.71073 Å and the detection is made with a

Charge-Coupled Device (CCD) with 4096×4096 pixels, each pixel with a dimen-

sion 15µm×15µm.

The low temperature X-ray diffraction data used in this thesis was obtained in

diffraction experiments using a dual flow nitrogen and helium cooler, the N-HeliX

from Oxford Cryosystems, which allows to perform diffraction experiments with

the APEX II diffractometer at temperatures between 28-300K.

4.4 Experimental methods for NLO

4.4.1 Kurtz and Perry powder method

Kurtz and Perry devised an experimental technique which allows a fast and ef-

ficient way of testing candidate NLO materials [22]. This method requires that

the nonlinear optical material is a powder, which is usually easy to obtain. The

Kurtz and Perry powder method can give some qualitative measure of the second-

harmonic efficiency to check if a material can be useful for nonlinear optics [23].
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Now we will describe the experimental set-up used to perform measurements

by Kurtz and Perry method. The crystalline powder material is placed in a

sample holder and it is irradiated by an high-power pulsed laser beam with a

wavelength of 1064 nm that is expanded before reaching the sample.

Figure 4.1: Experimental set-up for Second-harmonic generation measurements
with the Kurtz and Perry powder method

In the sample the intensity of the second-harmonic, I2ω, generated in all direc-

tions, is limited only by the sample holder geometry, then this SHG light coming

from the sample is focused on a concave mirror that collimate this light. The

collimated beam is focused on the photomultiplier (PMT) by a bi-convex lens.

The light go through a Neutral Density filter (ND) that reduces the intensity

Figure 4.2: Optics paths in the set-up after the beam expander.

of SHG light hitting the photomultiplier. Before the photomultiplier there is an
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interference filter that only allows the passage of light with a wavelength around

the intended wavelength of the SHG light. The photomultiplier voltage and pre-

vious filters are optimized to get a good signal-to-noise relation and avoid the

saturation of the photomultiplier. This voltage is measured with a digital os-

cilloscope which is triggered by the signal itself. The signals are exported to a

computer and integrated with a script written with the software Mathematicar

version 8.0. The result of the integral of the signal is proportional to the SHG

intensity generated by the tested material, but the real result of SHG efficiency

is obtained by comparison with a signal generated by a reference material, that

in this thesis will be urea, under the same experimental conditions.

In this thesis all measurements were performed with a fundamental wavelength

of 1064 nm and the laser pulses were produced by a Nd:YAG laser at low power,

11 mJ per pulse, with a duration of 10 ns and a frequency of 10 Hz.
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Chapter 5

Multipole Refinement

5.1 Introduction

The electron density, ρ, was obtained from X-ray diffraction experiments per-

formed at low temperatures which was discussed earlier. Usually, the structures

obtained from X-ray diffraction experiments are solved applying the independent

atom model, where the electron density of a crystal is given by a sum of the iso-

lated atomic densities. As discussed above, this model is a good approximation

for the heavier atoms because most of their electrons are in the core of the atom.

On the other hand, for the lighter atoms, we cannot consider a spherical electron

density because this is not a good description of these atoms in a crystal.

It should be noted that an important assumption of the IAM model is that

the atoms in a crystal are neutral, which contradicts the fact that molecules have

dipole and higher electrostatic moments. In part, the dipole moments arise from

the nonspherical distribution of the atomic densities but a large part is due to

the charge transfer between atoms of different electronegativity in a molecule. A

better description of atoms in crystal is obtained using an aspherical model that

allows a good description of all atoms, with the exception of hydrogen atoms, so

the application of this model provide a more complex electron density.

A commonly applied model for an aspherical description of electron density is

the atom-centered finite multipole expansion, initially developed by Stewart [24]

and later changed by Hansen and Coppens [25]. The multipole model has emerged
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as one of the most popular models of aspherical atom refinement, which considered

functions that resemble atomic orbitals to describe the electron density, so this

model consider that atomic orbitals are an appropriate description of the electron

density in the crystal.

The description of an atom using this formalism is given by three components

in the following form:

ρat = ρc(r) + ρv(κr) + ρd(κ
′r) (5.1)

where ρc(r) and ρv(r) are the spherical core and valence densities, respectively,

and ρd(r) is the aspherical deformation density, κ and κ′ are the expansion and

contraction parameters associated to spherical valence density and aspherical

deformation density.

Let us now understand how to describe the electron density and introduce

several improvements in the interactions between atoms in a crystal.

5.2 Improvement of scattering models

5.2.1 Kappa formalism

The first improvement is a simple modification in the IAM that allows a charge

transfer between atoms. The scattering of the valence electrons are separated

from that of the core shell, what makes possible to adjust the valence population

and the radial extension of the valence shell. In addiction to the conventional

parameters of the structure analysis, it is introduced the valence shell population

parameter, Pv, that is dependent of the number of electrons in the valence shell,

and κ, a variable that control the expansion or contraction of the valence shell.

In the κ-formalism, the atomic electron density is given by:

ρat = ρc + ρ′v(κr) = ρc + Pvκ
3ρv(κr) (5.2)

The scale parameter, which is used to constrain the radial coordinate, is the

κ variable. So, ρv(κr) is shaped in such manner that for κ > 1 the density is

contracted and for κ < 1 the valence density is expanded. The κ3 factor, in
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equation 5.2, is a normalization factor that satisfies the condition:

N4π

∫
ρv(κr)r

2dr = 1 (5.3)

From the new density form with κ factor, the structure factor can be rewritten,

dividing this in two components. The component correspondent to the scattering

factor of valence is affected by κ this way:

f ′v(S) = fv(S/κ) (5.4)

The structure factor is given by:

F (H) =
∑
j

[{Pj,cfj,c(H) + Pj,vfj,v(H/κ)}exp(2πiH · rj)Tj(H)] (5.5)

where Pj,c and Pj,v are the core and valence electron populations associated to

the respective scattering factors.

The kappa formalism allows to verify that the valence shell of the more positive

atoms are contracted and this is justified by the decrease of the electron-electron

repulsion.

5.2.2 The multipole description of the charge density

The most successful model based on atom-centered multipolar functions, is that

in which the electron density contains aspherical density functions. Later, it was

used spherical harmonic density functions centered on each of the atomic nuclei,

in a generalized X-ray scattering formalism.

There are several atom-centered multipole models available. We can distin-

guish between valence-density models, where the density functions represent all

valence electrons and the deformation-density models, in which the aspherical

functions describe the deviation from the independent atom model and conse-

quently the bonds, lone-pair and other interactions. In the atom-centered multi-

pole models, the aspherical density is added to the unperturbed core density, as

in the κ−formalism, while in deformation-density models the aspherical density

is superimposed on the IAM density, but the expansion and contraction of the
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valence density is not treated in an explicit form.

5.2.2.1 Multipolar density functions

The multipolar density functions are usually expressed in three coordinates r, θ

and φ. This way, it is possible to express the multipolar density functions as the

product of radial functions, which depend only on the r component, with the

angular function, which depends on the θ and φ.

So, the angular functions are represented by real spherical harmonic functions,

ylm± that are given by a linear combination of the complex spherical harmonic

functions Ylm. This relation is given by:

yl0 = Yl0 (5.6)

for m ≥ 0 is:

ylm+ = (−1)m(Ylm + Yl,−m)/21/2 (5.7)

ylm− = (−1)m(Ylm − Yl,−m)/(21/2i) (5.8)

And these functions can be given in other form, by:

ylm+(θ, φ) = NlmP
m
l (cos θ) cosmφ (5.9)

ylm−(θ, φ) = NlmP
m
l (cos θ) sinmφ (5.10)

where Pm
l (cos θ) are the associated Legendre functions and Nlm is the normaliza-

tion factor dependent of l and m.

The symmetry properties of these functions are analyzed for different values

of l and m. For l = 0 and consequently m = 0 the function is spherically

symmetric. When l 6= 0 and m = 0 the functions present a cylindrical symmetry

along the z axis, because the φ dependence disappears. The l even functions have

a symmetric inversion in relation to the atomic site, in contrast the odd functions

are antisymmetric. Then, for a particular site in a molecule it is possible to

restrict the values of l and m for a better description of the local symmetries of

the molecule.
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The functions ylmp, where p = ±, are the atomic orbitals and y2
lmp is the

probability distribution, then their integral should be equal to 1. Therefore,∫
y2
lmpdΩ = 1 (5.11)

where dΩ is the volume element in θ − φ space. This normalization expression

is appropriate for wave functions, however for charge density the normalization

equations are different because the charge is given by the integral over the first

power of the function. This way, we generally use the density functions, dlmp,

that are equal to ylmp but with a different normalization factor, N ′lm. The new

normalization condition is given by:
∫
|dlmp|dΩ = 2 if l > 0∫
|dlmp|dΩ = 1 if l = 0

(5.12)

So this normalization conditions denote that the population parameter is equal

to 1 when there is a population of one electron in the spherically symmetric

function, d00. On the other hand the nonspherical functions for l > 0 have

positive and negative lobes with equal number of electrons.

Finally, the function dlmp can be expressed in a system of cartesian coordinates

using clmp, but it is necessary to reformulate the normalization factor for Llm in

this new system of coordinates,

dlmp = Llmclmp. (5.13)

The l index is associated to the multipoles, where l = 0, 1, 2, ... correspond

to the monopole, dipole, quadrupole and so on, moments of the atomic charge

distribution in the system.

Such as previously defined, the valence and core density are spherical and only

the valence is redefined using the κ parameter, but the deformation density has

a different radial dependence to describe the interaction between atoms, in the

bond regions where the radial dependence should be more diffuse.

The electron density is a sum over the product of the atomic orbitals and the

radial dependence is related directly with Slater-type radial functions, then the
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5. MULTIPOLE REFINEMENT

normalized radial density functions is given by:

Rl(r) = κ′3
ζnl+3

(nl + 2)!
(κ′r)nlexp(−κ′ζlr) (5.14)

The κ′ parameter describe the expansion and contraction of the deformation

density and is independent of the κ parameter of spherical valence density. The

single-Slater ζ values are obtained for the electron sub-shells of isolated atoms,

in energy optimized system, by the calculations of Clementi and Raimondi [26].

In electron density this functions are multiplied by a factor of 2. Finally, the

coefficient nl is limited by condition nl ≥ l, imposed by Poisson’s electrostatic

equation.

5.2.2.2 The multipole density formalism

The description of the electron density of each atom by applying the multipole

formalism includes in the deformation valence density the angular and radial

functions previously analyzed. Thus the atomic density can be presented with

the multipolar density formalism expressed by:

ρat(r) = Pcρc(r) + Pvκ
3ρv(κr) +

lmax∑
l=0

κ′3Rl(κ
′r)

l∑
m=0

Plm±dlm±(θ, φ) (5.15)

The multipole formalism describes the initial density form obtained from the

IAM, with the expansion or contraction of the valence shell parameter, to which is

added the sum term of multipolar functions with a description of the deformation

density using the Slater-type radial, the spherical harmonic functions and the

associated κ′ parameter of the expansion or contraction.

This formalism is usually applied using local atomic coordinates system and

their local symmetries, which allows the introduction of the chemical constraints

of the crystal.
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Chapter 6

Computational methods

6.1 Introduction

The Schrödinger equation is the fundamental basis of the ab initio computational

methods. Applying the principles of quantum mechanics it is possible to obtain

several properties of the molecular system such as total energy, electronic struc-

ture, nonlinear optical response and others. The Schrödinger equation for an

isolated molecule is

ĤΨ = i
∂Ψ

∂t
(6.1)

where Ĥ and Ψ are the Hamiltonian and the time-dependent many particle wave

function, respectively.

The Hamiltonian of the system with M nuclei and N electrons is given by,

Ĥ =−
M∑
A=1

1

2MA

∇2
A +

M−1∑
A=1

M∑
B>A

ZAZB
RAB

−
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N−1∑
j>1

N∑
i=1

1

rij

(6.2)

where, the nucleus A is defined by a mass, MA, and charge, ZA and RAB, riA and

rij are the distances between the nuclei (A and B), between the electron i and

nucleus and between electrons i and j, respectively.

When the calculations with quantum chemical methods are performed without
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6. COMPUTATIONAL METHODS

using empirical or semi-empirical parameters they are designated as ab initio

methods.

6.2 Ab initio calculations

6.2.1 Born-Oppenheimer approximation

In the ab initio calculations it is possible to perform the separation of the elec-

tronic and nuclear wave functions, this is the Born-Oppenheimer approximation

(BO). Separation is achieved knowing that nucleus are much heavier than elec-

trons and assuming that electrons are moving between frozen nucleus. Then the

total wave function can be expressed by,

Ψ(R, r) = Ψel(r,R)Ψnuc(R) (6.3)

where the electronic wave function depend on the nuclear positions R paramet-

rically. Then, the Schrödinger equation can be solved only for an electronic wave

function, obtaining the electronic energy for a set of nuclear coordinates that

defines the structure. The electronic energy and the nuclear repulsion energy can

then summed and the result is used as a potential energy surface in the equation

of the nuclear wave function.

6.2.2 Hartree-Fock

The Hartree-Fock (HF) method assumes a non-relativistic many-electron system

where it is applied the BO approximation. This method converts the many-

electron molecular Schrödinger equation into a set of one-electron Schrödinger

equations with the application of the mean field approximation where the electron-

electron interaction is replaced by an averaged effective potential.

Ĥe =
N∑
i=1

ĥ(i), ĥ(i) = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

Za
riA

+ veff (ri) (6.4)

52



6.2 Ab initio calculations

where ĥ(i) is an one-electron Hamiltonian for the ith electron. The average effec-

tive potential, veff (ri), is caused by all other N − 1 electrons of the system. This

Hamiltonian can be called the Fock operator, F̂ (i), where the effective potential

is replaced by summation of the Coulomb operator, Ĵi that gives the electron-

electron repulsion and K̂i is the operator that defines the exchange energy. Then,

the Fock operator is given by

F̂ (i) = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

Za
riA

+
N∑
i=1

(Ĵi − K̂i) (6.5)

The electronic wave function depends of the spacial and spin coordinates of

all atoms and these functions are antisymmetric in respect to interchange of two

electrons. This requirement is satisfied by the Slater determinant built from the

one-electron wave functions for all N electrons:

Ψ(r1, · · · , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) · · · ψN(r1)

ψ1(r2) ψ2(r2) · · · ψN(r2)
...

...
. . .

...

ψ1(rN) ψ2(rN) · · · ψN(rN)

∣∣∣∣∣∣∣∣∣∣
(6.6)

These one-electron wave functions satisfy the Hartree-Fock equations:

F̂ (i)ψk(ri) = εkψk(ri) (6.7)

each of these functions are called Hartree-Fock molecular orbitals and their eigen-

values are orbital energies. Then, according to the variational theorem, using a

trial wave function can only lead to a value of energy larger than or equal to the

true energy of the ground state of system.

So, starting from a set of initial guessed orbitals appropriately chosen one

can solve the Hartree-Fock equations to obtain an approximation of the molecu-

lar ground state and this is repeated in a self-consistent manner until a certain

threshold is reached.
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6. COMPUTATIONAL METHODS

6.2.3 Density Functional Theory

The Density Functional Theory (DFT) does not depend on a large number of

variables as HF methods. In the HF it is required the use of 3N variables for

electron, even after applying the BO approximation. In DFT the number of

variables is reduced with the introduction of the electron density, ρ(r), with the

advantage of only depending on the three spacial coordinates and allowing the

determination of the molecular energy from the electron density instead of a wave

function.

The modern DFT is based on two fundamental theorems of P. Hohenberg and

W. Kohn [27] where the first says The ground-state energy from Schrödinger’s

equation is a unique functional of the electron density, then the electron density

allows to determine unequivocally all properties of the system. The other the-

orem stating that The electron density that minimizes the energy of the overall

functional is the true electron density corresponding to the full solution of the

Schrödinger equation. Thus, having the correct functional we can vary the elec-

tron density and when this is minimized we say that we have obtained the relevant

electronic density.

A way of implementation of DFT was performed by Kohn and Sham [28] and

proves that solving a set of equations that only involves single electrons, we can

find the correct electron density. Then the energy functional of isolated molecule

is given by:

E[ρ] = VNe[ρ] + T [ρ] + Vee[ρ] (6.8)

where all terms of the equation are functionals, with VNe, T and Vee the nuclear-

electron attraction, kinetic energy and electron-electron interaction, respectively.

The Kohn-Sham method use the effective potential in a non-interacting system

with a functional energy,

Es[ρ] = Ts[ρ] + Veff [ρ] (6.9)

where index s denote the system considered non-interacting. The only way of

non-interacting electron density, ρs(r), to be equal to the real electron density,

ρ(r), is when Veff [ρ] = VNe[ρ] + (T [ρ]− Ts[ρ]) + Vee[ρ].
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6.3 Calculation of Optical Properties

The Kohn-Sham equations is given by:

[−1

2
∇2
i + VNe(r) +

∫
ρ(r′)

|r− r′|
dr′ + Vxc[ρ(r)]ψi(r) = εiψi(r) (6.10)

where the term Vxc[ρ(r)] describe the exchange correlation functional. The inte-

gral in equation describe the electron-electron Coulomb repulsion.

This equation is solved iteratively in a SCF which allows to obtain orbitals,

ψi(r), that gives the electron density of the real system studied by the expression

ρ(r) ≡ ρs(r) =
N∑
i=1

|ψi(r)|2. (6.11)

But the density functional is not exact because the exchange-correlation part

does not have a known explicit form. In most functionals the exchange-correlation

part is divided in a pure exchange contribution, Ex[ρ], and in a pure correlation

contribution, Ec[ρ]. Each functional has a different contribution of exchange and

correlation that are well defined. The choose of the functional applied in system

leads to different performances in the calculations and can be adapted to the

properties that we want to obtain.

6.3 Calculation of Optical Properties

6.3.1 Microscopic Optical Properties

While the molecules are described with quantum mechanical theory, the electro-

magnetic field is treated classically. Thus, from these treatments we introduce

the methods used in this thesis for computing the electronic linear and nonlinear

polarizabilities.

6.3.1.1 Finite Field method

The Finite Field (FF) method uses numerical differentiation to calculate the

static limit of the linear and nonlinear polarizabilities. In uniform electrostatic

fields, the total molecular energy E can be expanded into a Taylor series over the
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6. COMPUTATIONAL METHODS

electric field strength F ,

E(F ) = E(0)− µiFi −
1

2!
αijFiFj −

1

3!
βijkFiFjFk −

1

4!
γijklFiFjFkFl − . . . (6.12)

where E(0) is the energy of a molecule without the presence of a field. Fi is the

component in the i direction of the external uniform electrostatic field and µi is

the i component of the molecular dipole moment vector.

In this method the total energy of the molecular system is calculated for

different applied Finite Fields at certain directions. So, by means of polynomial

fitting, it is possible to obtain the corresponding components of the coefficients

in expansion equation 6.12, µ, α, β and so on.

The advantage of the Finite Field method is that it is simple and easy to

implement in software. But it has some disadvantages like long time of compu-

tation and it is appropriate only for static fields. In this thesis the molecular

nonlinear properties were calculated with the Finite Field method. This method

is implemented in the software package and GAMESS US [29].

The GAMESS US calculations of this thesis were performed in the Navigator

Cluster of the Laboratory for Advanced Computing at University of Coimbra.

6.3.2 Macroscopic Optical Properties

In most organic molecular crystals the energy of intermolecular interactions is

much smaller than that of intramolecular chemical bonds. Molecules remain dis-

tinguishable entities and the macroscopic nonlinear response of the materials can

be described by a simple summation scheme, following the oriented gas model,

where the macroscopic second-order susceptibility tensor dIJK originates essen-

tially from the molecular quadratic tensor βijk expressed in molecular coordinates

i, j, k [30]. The susceptibility coefficients depend on the crystal symmetry, the

precise orientation of the molecule with respect to the crystal axes and the molec-

ular conformation. This form, the relation between microscopic and macroscopic

parameters is:

dIJK(−ω;ω1, ω2) =
N

V
fI(ω)fJ(ω1)fK(ω2)bIJK (6.13)
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6.3 Calculation of Optical Properties

where I ,J ,K are the crystal axes, N is the number of molecules in a volume of

unit cell, V and f(ω) is the local field factors associated each crystal axis. The

term bIJK is given by expression:

bIJK =
1

Ng

∑
s

∑
ijk

cos θ
(s)
Ii cos θ

(s)
Jj cos θ

(s)
Kk × β

(s)
ijk(−ω;ω1, ω2) (6.14)

where Ng is the number of equivalent positions in the unit cell and the product of

cosines correspond to the rotation of the molecule defined by index s in relation

to the molecular reference in crystal.

The fundamental correction consists in the application of local field factors

for reproduce the effect of the local field in the material. Thus, the first approxi-

mation for the local field factors, is to consider that these are equal to 1, so the

system is isotropic and the local field correction is null. However, an anisotropic

system is more realistic one and of these the simplest is the Lorenz-Lorentz spher-

ical cavity model where the local field factors are expressed by:

fI(ω) =
(nI(ω)2 + 2)

3
=

1

1− 4
3
πN
V
aII

(6.15)

where, nI(ω) is the refractive indices in the I axis and the components of aII are

a set of refractive indices of the three principal axes that represents a tensor of

average polarizability of the unit cell.

Other model by Wortmann and Bishop (W-B) [31] solved the problem of

the local field factors with a extension of Onsager’s reaction field model [32].

According to this model we consider the molecule as a point to which is associated

the dipole moment in a cavity immersed in a homogeneous dielectric continuum

with dielectric constant, ε. The dipole of the molecule gives rise to a reaction field,

even when the external field is zero, and the reaction field acts on the molecule

itself. However, when it is applied an external field, E, in an empty cavity, it

arises a cavity field, EC . Then, by the superposition principle the local field, EL,

the field acting in the cavity with the molecule is obtained by the sum of the

field, but generalizing the W-B model for a nonlinear response we can decompose
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it into components with amplitudes ELΩ, ECΩ, and ERΩ, therefore:

ELΩ = ECΩ + ERΩ (6.16)

when the electric field applied is uniform as the response of the medium. Taking

into account the continuous and induced components, we can relate the cavity

field with the macroscopic field and the reaction field with the dipole moment,

pΩ, and these relations can be expressed by:

ECΩ = fCΩ · EΩ

ERΩ = fRΩ · pΩ
(6.17)

where fCΩ and fRΩ are the cavity and reaction field tensors at frequency Ω. From

this tensor it can be obtained the effective first-order hiperpolarizability of the

molecule in W-B model given by:

βeffrst (−2ω;ω, ω) = FR2ω
rr (FRω

ss f
Cω
ss )(FRω

tt fCωtt )

× βsolrst(−2ω;ω, ω)
(6.18)

Where the βsolrst(−2ω;ω, ω) is the hyperpolarizability obtained in the first ap-

proximation without local field. This treatment based on the W-B model is fully

described in an article by Silva et al. [33] and is implemented using the compu-

tational software package Mathematicar version 8.0.
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Chapter 7

Guanidine salts

Guanidine a small molecule with 3-fold symmetry and formula CH5N3 has great

interest from the physical point of view, mainly in research of compounds with

potential nonlinear optical properties, such as demonstrated by Zyss et al. [34].

Within crystalline structures, guanidine promotes formation of hydrogen-bonding

interactions with organic acids, since this cation is a strong base, with pKa = 13.5,

and has six potential H-donor to participate in hydrogen-bonding interactions.

Some examples of the guanidinium salts structures are with the aromatic mono-

Figure 7.1: Geometry of the guanidinium cation after optimization.

carboxylic acids [35; 36], in the hydrated form and with 3-nitrobenzoic acid [37],

4-amino-3,5,6-trichloropicolinic acid, [38], and guanidinium 4-aminobenzoate [39],

in the anhydrous form. These structures are dominated by hydrogen-bonding in-

teractions, where the guanidinium cation forms several H-bonds with acceptor

groups of other molecules.
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7. GUANIDINE SALTS

The guanidinium cation is completely planar and the symmetry is trigonal,

D3h, as shown in Fig. 7.1. This symmetry corresponds of an equilateral triangle

with one 3-fold axis, 3 horizontal twofold axes, one horizontal plane and 3 vertical

planes containing the horizontal axes [40]. The guanidinium ion has three C-N

bonds for central carbon atom with bond lengths between 1.313 and 1.329 Å and

the bond order of 1.33. Therefore, if guanidinium cation would have a perfect

trigonal symmetry, the hyperpolarizability would be given only by the octupolar

component (β = βJ=3), as was analyzed in section 2.4.2 (molecules with strong

octupolar component has several advantages). After geometry optimization cal-

culations show a dipole component of 0.05au and an octupolar component of

157.37au. Using these values Expression 2.28 yields ρ = 3383.84 that shows a

strong octupolar character of guanidinium cation.

7.1 Guanidinium nicotinate

The salt guanidinium nicotinate (g1) is monoclinic with the centrosymmetric

space group P21/c and the asymmetric unit contains one guanidinium cation

and a nicotinate anion (Fig. 7.2).

Figure 7.2: A plot of the asymmetric unit of g1. Displacement ellipsoids are
drawn at the 50% probability level.

Regarding the anion, as usual, the O−C−O angle of the carboxylate group is

larger than 120◦ [125.1(1)◦] because of the steric effect of lone-pair electrons on

both O atoms. The bond lengths in the deprotonated carboxyl group [1.2572(13)

and 1.2439(13) Å] indicate delocalization of the charge over both O atoms. The

carboxylate group is rotated 22.6◦ around the C7−C3 bond.
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7.1 Guanidinium nicotinate

Table 7.1: Hydrogen-bonding geometry (Å,◦) of guanidinium nicotinate.
D−H· · ·A D−H H· · ·A D · · ·A D−H· · ·A
N2−H2A· · ·O1 0.86 1.98 2.8245(13) 165.8
N2−H2B· · ·N1ii 0.86 2.16 2.9897(16) 161.3
N3−H3A· · ·O2iii 0.86 2.09 2.8206(13) 142.2
N3−H3B· · ·O1i 0.86 1.96 2.8132(14) 173.9
N4−H4A· · ·O2i 0.86 2.02 2.8767(13) 172.3
N4−H4B· · ·N1ii 0.86 2.69 3.3896(16) 139.5
symmetry codes i : −x+ 1, y + 1/2,−z + 1/2; ii : −x,−y,−z;
iii : −x+ 1,−y,−z + 1.

The structure has an extensive 3D network with six distinct hydrogen-bond

interactions (see Table 7.1 and Fig. 7.3) with all the H atoms of the guanidinium

cation participating in N−H· · ·O and N−H· · ·N interactions with the anion.

Figure 7.3: A packing diagram for g1, viewed down the a axis, with the hydrogen
bonds depicted by dashed lines.

The finite graphs of descriptor D are the dominant hydrogen-bonding motifs,

at the first level. In the hydrogen-bond network, there are also second order rings

with descriptors R2
2(8) and R4

4(16) and chains with the graph-sets C2
2(10), C2

2(8)

and C2
2(6).
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7.2 Guanidinium isonicotinate

Guanidinium isonicotinate, g2, (Fig. 7.4) crystallizes in the monoclinic and cen-

trosymmetric space group P21/c with four positive ions and four negative ions

per unit cell.

Figure 7.4: A plot of the asymmetric unit of g2. Displacement ellipsoids are
drawn at the 50% probability level.

The negative ion, the deprotonated isonicotinic moiety has the carboxylic

group slightly rotated from the aromatic ring plane as seen by the torsion an-

gle, C3−C4−C7−O1 -2.8(2)◦. The C−O distances are characteristic of a depro-

tonated carboxylic group with a delocalized character, 1.245(2) (O1−C7) and

1.239(2) Å (O2−C7). The C−N distances within the ring are 1.325(2) (N1−C2)

and 1.328(2) Å (N1−C6).

The structure is stabilized by a three-dimensional network of N−H· · ·O and

N−H· · ·N hydrogen bonds between the anions and cations (Fig. 7.5, Table 7.2).

Table 7.2: Hydrogen-bonding geometry (Å,◦) of guanidinium isonicotinate.
D−H· · ·A D−H H· · ·A D · · ·A D−H· · ·A
N2−H2A· · ·N1i 0.86 2.12 2.9425(19) 159.6
N2−H2B· · ·O1ii 0.86 2.07 2.8177(18) 145.7
N3−H3A· · ·O2 0.86 2.17 2.9192(17) 146.2
N3−H3B· · ·O2ii 0.86 2.05 2.8959(16) 167.0
N4−H4B· · ·O1ii 0.86 1.97 2.8264(17) 171.4
symmetry codes i : −x+ 2, y − 1/2,−z − 1/2;
ii : x,−y + 1/2, z − 1/2; iii : −x+ 1,−y,−z.
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7.2 Guanidinium isonicotinate

Each guanidinium cation is linked to four anions but one hydrogen atom does

not participate in any hydrogen bond.

Figure 7.5: A packing diagram for g2, viewed down the a axis, with the hydrogen
bonds depicted by dashed lines.

The only first-order hydrogen-bond motifs are noncyclic dimers with graph-

set D1
1(2). At the second level, there are chains with the graph-sets C2

2(8) and

C1
2(6), rings of descriptor R2

2(8) formed by anion/cation pairs and rings formed

by two anions and two cations with graph-sets R4
4(16) and R4

4(18).

Figure 7.6: A packing diagram for g2, viewed down the c axis, showing the layer
formation. Alternate layers are colored blue (cations) and green (anions).

The cations and the anions in the g2 are packed in alternate layers parallel

to the bc plane (see Fig. 7.6).
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7.3 Guanidinium 2,5-dihydroxyterephtalate

The salt Guanidinium 2,5-dihydroxyterephtalate, (g3) (Fig. 7.7),is monoclinic

with the centrosymmetric space group P21/c and the asymmetric unit consists

of one guanidinium cation and a 2,5-dihydroxyterephtalate anion.

Figure 7.7: A plot of the asymmetric unit of g3. Displacement ellipsoids are
drawn at the 50% probability level.

In the anion, due to the presence of an inversion at the center of the ring,

there is disorder in the carboxylic groups, each one having an hydrogen atom

with 0.5 occupancy.

The anion is almost in a planar conformation, with a dihedral angle of 5.55(36)◦

between the aromatic ring and the carboxylate groups. The hydroxyl groups are

also in the plane of the phenyl ring.

Figure 7.8: A packing diagram for g3, viewed down the a axis, with the hydrogen
bonds depicted by dashed lines.
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7.4 Guanidinium 2,5-dihydroxyterephtalate monohydrate

There are six N−H· · ·O hydrogen bonds and one O−H· · ·O hydrogen bond

in this structure (see Fig. 7.8, Table 7.3) forming a 3D network. Each cation is

linked to four anions.

Table 7.3: Hydrogen-bonding geometry (Å,◦) of Guanidinium 2,5-
dihydroxyterephtalate.

D−H· · ·A D−H H· · ·A D · · ·A D−H· · ·A
O3−H3· · ·N3i 0.86 2.43 3.0168(19) 125.6
N1−H1A· · ·O1ii 0.86 1.93 2.7867(17) 175.8
N1−H1B· · ·O2i 0.86 1.99 2.8334(18) 166.2
N2−H2A· · ·O2 ii 0.86 2.12 2.9611(18) 166.4
N2−H2B· · ·O3iii 0.86 2.40 3.138(2) 144.6
N2−H2B· · ·O1iv 0.86 2.42 2.9242(18) 117.7
N3−H3C· · ·O3iii 0.86 2.24 3.0168(19) 150.4
symmetry codes i : x,−y + 1/2, z − 1/2;;
ii : x+ 1, y, z, z − 1/2; iii : x,−y + 1/2, z + 1/2z;
iv : x+ 1,−y + 1/2, z + 1/2.

7.4 Guanidinium 2,5-dihydroxyterephtalate mono-

hydrate

The crystals of guanidinium 2,5-dihydroxyterephtalate monohydrate (g4) are

monoclinic with the space group P21/m.

Figure 7.9: A plot of the asymmetric unit of g4. Displacement ellipsoids are
drawn at the 50% probability level.
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The asymmetric unit has one guanidinium cation, one 2,5-dihydroxyterephtalate

anion and one water molecule (see Fig. 7.9). As in the previous structure, the

anion has disordered carboxylic groups due to the inversion symmetry. Each

carboxylic group has one hydrogen atom with 0.5 occupancy. The oxygen atom

of the water molecule lies on a crystallographic mirror and it was impossible to

refine the hydrogen atoms positions in a meaningful way.

The anion is almost planar, with a dihedral angle of 4.22(18)◦ between the

least-squares planes of the aromatic ring and the carboxylate groups. The hy-

droxyl groups lie in the plane of the ring. Comparing the anion in this structure

with that in g3 it is evident the different orientations of the hydroxyl groups and

of the carboxylic groups.

Figure 7.10: A packing diagram for g4, viewed down the a axis, with the hydrogen
bonds depicted by dashed lines.

Table 7.4: Hydrogen-bonding geometry (Å,◦) of Guanidinium 2,5-
dihydroxyterephtalate monohydrate.

D−H· · ·A D−H H· · ·A D · · ·A D−H· · ·A
O3−H3· · ·N3i 0.86 2.43 3.0168(19) 125.6
O3−H3· · ·O2 0.82 1.84 2.5664(16) 146.2
N1−H1A· · ·O2i 0.86 2.19 2.9754(18) 152.5
N2−H2A· · ·O1ii 0.86 2.37 3.086(2) 140.7
N2−H2B· · ·O1W 0.86 2.17 2.941(2) 148.6
symmetry codes i : x+ 1, y, z;
ii− x+ 1,−y,−z + 1.

The structure is stabilized by N−H· · ·O hydrogen bonds (see Fig. 7.10, Ta-
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ble 7.4). There is an intramolecular hydrogen bond (graph-set S1
1(6)) involving

the hydroxyl group and one of the carboxylic oxygen atoms.

7.5 Guanidinium cyclopropanecarboxylate

The crystal structure of the salt guanidinium cyclopropanecarboxylate (g5) (Fig.

7.11), is orthorhombic with the noncentrosymmetric space group P212121, thus

allowing second harmonic generation. The asymmetric unit consists of one guani-

dinium cation and a cyclopropanecarboxylate anion.

Figure 7.11: A plot of the asymmetric unit of guanidinium cyclopropanecarboxy-
late. Displacement ellipsoids are drawn at the 50% probability level.

The asymmetric unit consists of one guanidinium cation and a cyclopropanecar-

boxylate anion. In the anion the 3-member ring is almost perpendicular to the

carboxylate group, with a dihedral angle of 86.8(2)◦ between the least-squares

planes. The O−C−O angle of the carboxylate group is larger than 120◦ [123.7(2)◦]

because of the steric effect of lone-pair electrons on both O atoms. The bond

lengths in the carboxylate group [1.239(3) and 1.240(3) Å] are intermediate be-

tween the single Csp2−O (1.308-1.320 Å) and double Csp2=O bond lengths (1.214-

1.224 Å) [41], indicating delocalization of the charge over both O atoms of the

COO− group.

All the H atoms on the guanidinium cation participate in N−H· · ·O interac-

tions with the anion (Fig. 7.12, Table 7.5) and each carboxylate O atom accepts

three hydrogens. forming infinite layers propagating in the ab plane (Fig. 7.13).

In each layer the cation is bonded to three anions, two approximately perpendic-

ular and one approximately coplanar. The dominant first-order hydrogen-bond

motifs are noncyclic dimers with graph set D, according to Etter’s graph-set
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7. GUANIDINE SALTS

Table 7.5: Hydrogen-bonding geometry (Å,◦) of guanidinium cyclopropanecar-
boxylate.

D−H· · ·A D−H H· · ·A D · · ·A D−H· · ·A
N1−H1A· · ·O1 0.86 1.93 2.783(2) 169.9
N1−H1B· · ·O1i 0.86 2.13 2.922(2) 153.9
N2−H2A· · ·O2 0.86 2.06 2.901(2) 164.0
N2−H2B· · ·O2ii 0.86 2.12 2.907(2) 151.4
N3−H3A· · ·O2ii 0.86 2.27 3.018(2) 144.8
N3−H3B· · ·O1i 0.86 2.33 3.072(2) 144.8
symmetry codes i : x− 1/2,−y + 3/2,−z + 1;
ii : x− 1/2,−y + 1/2,−z + 1.

theory [42]. In the hydrogen-bond network, there are also second order rings of

descriptor R2
2(8) and several chains with the graph-sets C2

2(8) and C2
2(6).

Figure 7.12: A packing diagram for g5, viewed down the a axis, with the hydrogen
bonds depicted by dashed lines.
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7.6 Bis(guanidinium) 2,2’-bipyridine-3,3’- dicarboxylate

Figure 7.13: A packing diagram for g5, viewed down the a axis, showing the layer
formation. Alternate layers are colored blue (cations) and green (anions).

7.6 Bis(guanidinium) 2,2’-bipyridine-3,3’- dicar-

boxylate

The crystal structure of the salt bis(guanidinium) 2,2’-bipyridine-3,3’-dicarboxylate,

g6, is orthorhombic with the noncentrosymmetric space group Pna21.

Figure 7.14: A plot of the asymmetric unit of g6. Displacement ellipsoids are
drawn at the 50% probability level.

The asymmetric unit consists of two guanidinium cations and one doubly

deprotonated anion, 2,2’-bipyridine-3,3’-dicarboxylate (Fig. 7.14). In the anion,

the carboxylate groups are rotated out of the planes of the respective bipyridine

rings (37.5◦ for O1−C12−O2 and 40.0◦ for O3−C13−O4). The angle between

the least-squares planes of the aromatic rings is 59.3◦.
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Table 7.6: Hydrogen-bonding geometry (Å,◦) of g6.
D−H· · ·A D−H H· · ·A D · · ·A D−H· · ·A
N3−H3A· · ·O3i 0.86 2.17 3.018(3) 167.4
N3−H3B· · ·O1ii 0.86 2.04 2.886(2) 168.0
N4−H4A· · ·N2iii 0.86 2.37 3.165(3) 154.4
N4−H4B· · ·O2ii 0.86 2.04 2.888(2) 170.4
N5−H5A· · ·O4i 0.86 2.60 3.188(3) 126.1
N5−H5B· · ·O1iii 0.86 1.98 2.805(3) 160.6
N6−H6A· · ·O4vi 0.86 2.03 2.873(2) 167.6
N6−H6B· · ·N2ii 0.86 2.66 3.373(3) 141.3
N7−H7A· · ·O2ii 0.86 2.13 2.985(3) 171.8
N7−H7B· · ·O4 0.86 1.98 2.815(2) 164.1
N8−H8A· · ·O3vi 0.86 2.05 2.902(2) 169.7
N8−H8B· · ·N1 0.86 2.34 3.120(3) 150.6
symmetry codes i : x+ 1/2,−y + 1/2, z;
ii : −x− 3/2, y − 1/2, z + 1/2; iii : −x− 3/2, y + 1/2, z + 1/2;
vi : x, y − 1, z.

The structure is stabilized by an extensive 3D network of 12 distinct hydrogen-

bond interactions (see Table 7.6 and Fig. 7.15).

Figure 7.15: A packing diagram for g6, viewed down the a axis, with the hydrogen
bonds depicted by dashed lines.

The finite graphs of descriptor D are the dominant hydrogen-bonding motifs,

at the first level. In the hydrogen-bond network, there are also second order

rings with descriptors R2
2(8), associated with H-bonds involving the carboxylate

groups, and chains with the graph-sets C2
2(11) and C2

2(13) just to mention the
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7.7 NLO properties of guanidine salts

most relevant motifs.

In this structure the guanidinium cations are parallel to the plane (605) or

to the plane (605). The cations and the anions are packed in alternate layers

parallel to the ab plane (see Fig. 7.16).

Figure 7.16: A packing diagram for g6, viewed down the a axis, showing the layer
formation. Alternate layers are colored blue (cations) and green (anions).

7.7 NLO properties of guanidine salts

Of the guanidine compounds previously described only the guanidinium cyclo-

propanecarboxylate and guanidinium 2,2’-bipyridine-3,3’-dicarboxylic crystallize

in noncentrosymmetric space groups.

The guanidinium cyclopropanecarboxylate compound crystallizes with a space

group P212121 and belongs to the crystal class of 222. Consequently, the second-

order susceptibility tensor for this crystal is given by:0 0 0 d14 0 0

0 0 0 0 d25 0

0 0 0 0 0 d36

 (7.1)

Considering that the Kleinman permutation symmetry is valid, d14 = d25 =
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7. GUANIDINE SALTS

d36, such as showed by Eq. 2.18 and Eq. 2.19.

On the other hand the guanidinium 2,2’-bipyridine-3,3’-dicarboxylic com-

pound has a space group Pna21 where the class is mm2. Therefore the matrix

dij is given by:  0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0

 (7.2)

Then, if the Kleinman symmetry is valid for this system we can reduce the number

of the independent components so that d31 = d15 and d32 = d24. Therefore we

stand with just the components d31, d32 and d33.

7.7.1 Experimental Kurtz and Perry powder results

The results are obtained from the Kurtz and Perry powder method for guanidine

salts and are presented in the Table 7.7 for g5 and g6.

Table 7.7: The guanidine salts g5 and g6 SHG efficiencies compared to the urea
standard.

Salt g5 g6
SHG efficiency 0.29 0.30

These results are conditioned by several factors of the experimental arrange-

ment like particle size and other conditions of the experimental setup. Compari-

son to the urea standard is necessary in several steps of the experiment and the

uncertainty error is estimated around the 10% value.

7.7.2 Computational nonlinear optical properties

The computational calculations of the macroscopic NLO coefficients, dIJK , were

performed from the molecular hiperpolarizability tensor, βijk, of the asymmetric

units of the guanidine salts g5 and g6 using several methods.

The Table 7.8 shows the results obtained for some elements of the βijk tensor

obtained with distinct methods as HF and DFT with different functionals like

LYP, BHHLYP, B3LYP and BLYP. The calculations shows a better agreement

between results obtained with HF methods and DFT with LYP functional. There
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7.7 NLO properties of guanidine salts

Table 7.8: The βijk components of the isolated molecules of guanidinium cyclo-
propanecarboxylate and guanidinium 2,2’-bipyridine-3,3’-dicarboxylic, calculated
with HF method and with some functionals of the DFT method.

g5 g6
βXXX βXXZ βXXX βY Y Y βZZZ

HF 29.8 -45.5 -161.5 144.8 -152.9
LYP 31.1 -44.6 -160.9 141.1 -150.8
BHHLYP 94.4 -95.5 -384.5 290.6 -434.9
B3LYP 227.7 -204.8 541.0 6393.7 -4822.4
BLYP 600.6 -508.8 699.0 11250.0 -5518.7

is a large discrepancy between the functional LYP and the hybrid functionals

B3LYP and BHHLYP, and a large discrepancy with BLYP. The deficiency in the

description of the molecular hyperpolarizability tensor is due to the treatment of

the electron exchange with these functionals [43]. The percentage of HF exchange

in these functionals is well defined and is showed in Table 7.9.

Table 7.9: The percentage of the HF exchange in different DFT functionals and
in HF method.

Methods % HF exchange
HF 100
LYP 100
BHHLYP 50
B3LYP 20
BLYP 0

Looking at the values for the asymmetric unit in Table 7.8 where are the

results of the two structures, it is evident the increase of the calculated values of

the molecular hiperpolarizability with the decrease of percentage of HF exchange.

The calculations performed with DFT method and with LYP functional pro-

vide the best results in the description of the βijk these values were then used to

calculate the macroscopic NLO coefficients, dIJK and the angular average of the

NLO susceptibility, 〈d2ω〉, from the expression deduced by Kurtz and Perry [22]:
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Results are shown in Table 7.10, using two different local field factors (Lorenz-

Lorentz and Wortmann-Bishop as explained in section 6.3.2).

Table 7.10: Theoretical susceptibility components (pm/V) for g5 and g6, calcu-
lated from the βijk components of the isolated molecule using the LYP functional,
with Lorenz-Lorentz (L-L) and Wortmann-Bishop (W-B) local-field factors.

g5 g6
dXY Z 〈d〉 dZXX dZY Y dZZZ 〈d〉

L-L 0.12 0.10 -2.07 -1.20 -3.34 2.53
W-B 0.11 0.09 -1.60 -1.02 -2.52 1.97

The components which were calculated with the Lorenz-Lorentz factors tend

to be large than the values obtained with Wortmann-Bishop local-field factors. A

result already expected since the Wortmann-Bishop correction does not assumes

the nonlinear contribution of the local field as negligible. Calculating the SHG

efficiencies, (with a Wortmann-Bishop local-field correction factors) one obtain

for g5 0.04 per urea which is much smaller than 0.29 obtained from the Kurtz

and Perry powder method. For g6 the SHG efficiency is 0.74, that is about the

double as obtained experimentally. Possibly, intermolecular interactions within

the crystal account for the experimental/calculated discrepancies.

7.7.3 Scalar invariants of the hyperpolarizability

The best way verify the dipolar/octupolar character of the molecules is to compare

the vector and sector irreducible components and to evaluate the ρ parameter,

see Table 7.11.

In this table is evident the octupolar character of the molecule of guanidinium

in the two compounds which favors NLO properties as mentioned earlier. The

two anions shows a behavior almost entirely dipolar (as expected).
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Table 7.11: The values of the dipolar and octupolar components and the param-
eter ρ for asymmetric units of compounds g5, g6 and the corresponding anions
and cations that are represented by compound− and compound+, respectively.

Fragments invariant vector invariant septor ρ
g5 79.28 90.23 1.14
g5+ 1.83 117.73 64.10
g5− 149.71 33.48 0.22
g6 492.92 205.79 0.42
g6+ 2.07 117.74 56.83
g6− 219.30 133.41 0.61

The results obtained for the asymmetric unit show a greater octupolar com-

ponent for g5 and this fact can be justified by a stronger octupolar component in

the guanidinium cation of asymmetric unit of the g5. The crystals with a point

group 222 like the case of g5 with space group P212121 the tensor,dij is composed

only by octupolar components and in this way solely the octupolar part of the

second hyperpolarizabilities calculated will contribute for the total crystalline d

tensor.

7.8 Experimental and computational methods

7.8.1 Single crystal X-ray diffraction

The diffraction measurements were performed with a MoKα radiation on a

Bruker APEX II diffractometer [44]. The Lorenz and polarization corrections

were applied on the diffraction data and the structures were solved using SHELXS-

97 and SHELXL-97 programs [21] (the direct methods and implementation of the

refinement of the F 2s by full-matrix least-squares, respectively). In the refine-

ment process, non H-atoms were assigned anisotropic displacement parameters.

The H-atoms were placed at calculated positions, refined using the riding model

with isotropic displacement parameters.

The crystal details of the structure refinement and the data collected are

shown in the Table 7.12 and Table 7.13.
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Table 7.12: The crystal details of the structure refinement and the data collected
of the Guanidinium nicotinate, g1, Guanidinium isonicotinate, g2, Guanidinium
2,5-dihyterephtalic, g3, and Guanidinium 2,5-dihyterephtalic monohydrate, g4.

Salt g1 g2 g3 g4
Emp. formula C7H10N4O2 C7H10N4O2 C10H16N6O6 C42H40N6O5

Formula weight 182.19 182.19 316.29 708.80
Temperature (K) 293(2) 293(2) 293(2) 293(2)
Wavelength (Å) 0.71073 0.71073 0.71073 0.71073
Crystal system Monoclinic Monoclinic Monoclinic Triclinic
Space group P21/c P21/c P21/c P1
a (Å) 9.2432(3) 8.6708(3) 4.80680(10) 11.9846(2)
b (Å) 9.9748(3) 10.9357(3) 14.4861(2) 12.7020(2)
c (Å) 10.6214(3) 9.9012(3) 9.90500(10) 13.1431(3)
α(◦) 90 90 90 96.6840(10)
β(◦) 117.000(2) 108.492(2) 104.5820(10) 103.1680(10)
γ(◦) 90 90 90 91.6080(10)
Volume (Å3) 872.55(5) 890.37(5) 667.486(18) 1931.82(6)
Z 4 4 4 2
Calc. dens.(g/cm3) 1.387 1.359 1.574 1.219
Abs. coef. (mm−1) 0.106 0.103 0.131 0.082
F (000) 384 384 332 748
data collec. range 2.47-27.91◦ 2.48-27.18◦ 2.55-27.95◦ 2.08-28.38◦

Index ranges: −12 < h < 12, −11 < h < 10, −6 < h < 6, −15 < h < 16,
−12 < k < 13, −14 < k < 14, −18 < k < 19, −16 < k < 16,
−13 < l < 13, −12 < l < 11, −12 < l < 12, −17 < l < 17

Reflections collected/unique 15350 / 2061 14434 / 1966 14189 / 1596 31894
R(int) 0.0216 0.0210 0.0265 0.0241
Completeness (θ=25.00◦) 99.1 % 99.8% 99.7% 99.9%
Refin. method Full-matrix least-squares on F 2

Data/restraints/parameters 2061/0/118 1966/0/118 1596/0/101 17920/3/957
F 2 Goodness-of-fit 1.016 1.049 1.071 0.988
R indices:
final [I > 2σ(I)] 0.0363 0.0421 0.0424 0.0504
wR2 0.0990 0.1165 0.1330 0.1375
all data 0.0463 0.0539 0.0502 0.1057
wR2 0.1077 0.1260 0.1558 0.1953
Largest diff. peak and hole (eÅ−3) 0.152 / -0.216 0.197 / -0.187 0.440 / -0.562 0.485
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Table 7.13: The crystal details of the structure refinement and the data collected
of the noncentrosymmetric structures of the Guanidinium cyclopropanecarboxy-
late, g5, and Guanidinium 2,2’-bipyridine-3,3’-dicarboxylic, g6.

Salt g5 g6
Emp. formula C10H22N6O4 C14H20N8O4

Formula weight 290.32 344.22
Temperature (K) 293(2) 293(2)
Wavelength (Å) 0.71073 0.71073
Crystal system Orthorhombic Orthorhombic
Space group P212121 Cc
a (Å) 7.8245(11) 12.7749(6)
b (Å) 8.2030(12) 7.5364(3)
c (Å) 11.8751(17) 17.3605(8)
α(◦) 90 90
β(◦) 90 90
γ(◦) 90 90
Volume (Å3) 762.20(19) 1671.41(13)
Z 4 4
Calc. dens.(g/cm3) 1.265 1.368
Abs. coef. (mm−1) 0.099 0.107
F (000) 312 688
data collec. range 3.02-27.11◦ 2.35-27.15◦

Index ranges: −10 < h < 9, −16 < h < 16,
−10 < k < 10, −9 < k < 9,
−15 < l < 14 −22 < l < 22

Reflections collected /unique: 8486 / 1686 29521 / 3724
R(int) 0.0169 0.0320
Completeness (θ=25.00◦) 100% 100%

Refin. method Full-matrix least-squares on F 2

Data/restraints/parameters: 1686/0/91 3724/1/236
parameters
F 2 Goodness-of-fit 1.275 1.086
R indices:
final [I > 2σ(I)] 0.0475 0.0434
wR2 0.1480 0.1227
all data 0.0513 0.0473
wR2 0.1537 0.1352
Largest diff. peak and hole (eÅ−3) 0.298 / -0.134 0.479 / -0.223
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7.9 Kurtz and Perry powder method

The SHG efficiency was measured for g5 and g6 using the K-P powder method

described in the section 4.4.1. The results obtained with this method are pre-

sented in terms of the SHG efficiency of Urea, but due the instability of the

system is required to perform the measurement of the SHG efficiency of Urea, an

usual standard.

7.10 Computational methods

The calculations of microscopic optical properties with the oriented gas model us-

ing HF and DFT was carried out with GAMESS US package [45]. The DFT cal-

culations were performed with the GGA functional BLYP [46; 47], the correlation-

corrected functionals, LYP [47] with HF exchange and GGA correlation and the

hybrid functionals as B3LYP [48] and BHHLYP [49]. The basis set used in all cal-

culations throughout this thesis was the 6-311++G**. The results were obtained

using the relative positions and geometries of the ions as obtained from X-ray

diffraction. First the static α and β tensorial components were calculated, then,

from the microscopic optical properties we calculate the unit cell NLO properties

per molecule, bIJK , (using the β tensor and introducing the crystal symmetry of

the structure of the salt). Lastly, the macroscopic optical properties are calcu-

lated using the Eq. 6.13 and Eq. 6.14 to yield the coefficients dIJK (applying

either the L-L or the W-B local field factors described in section 6.3.2).
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Chapter 8

Phenylguanidine salt

The phenylguanidine is studied in this thesis because of its potential to form salts

which may be interesting for nonlinear optics. However, the phenylguanidine

unlike the guanidine is not a purely octupolar molecule. This property of the

phenylguanidinium cation can be proved by calculating the dipolar, βJ=1, and

octupolar component, βJ=3, explained in section 2.4.2. The calculations are show

a scalar invariants of the vector of 89.05au and a scalar invariants of the septor of

221.18au. Therefore, ρ = 2.48 and this result demonstrates the weak octupolar

character of the phenylguanidinium cation. The phenylguanidinium cation is

Figure 8.1: The phenylguanidinium cation after geometry optimization.

composed by a guanidinium group and a phenyl group and these are bonded by

a N(guan)-C(phenyl) bond. Rotation around this single bond make the molecule

flexible and different conformations may be found in the solid-state.

Some phenylguanidine salts have been studied by others like bis( phenylguani-

dinium) squarate [50] and bis(phenylguanidinium) carbonate monohydrate [51].

In this thesis a new salts are presented with phenylguanidinium cation.
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8.1 Phenylguanidinium trifluoroacetate

The crystal structure of the salt phenylguanidinium trifluoroacetate (pg1) (see

Fig. 8.2) is orthorhombic with the noncentrosymmetric space group P212121.

Figure 8.2: Asymmetric unit of phenylguanidinium trifluoroacetate, pg1. Dis-
placement ellipsoids are drawn at the 50% probability level. For clarity, only the
major disorder component is shown.

In the phenylguanidinium cation the torsion angle C1−N1−C2−C3 is 80.7(2)◦.

The -CF3 group of the anion is rotationally disordered and the disorder was mod-

eled over two sites with occupancies 0.517(12) and 0.483(12).

Figure 8.3: The packing of pg1, viewed down the a axis. Dashed lines denote
hydrogen bonds. For clarity, only the major disorder component is shown.
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The structure is stabilized by a network of N−H· · ·O hydrogen bonds between

the anions and cations (Fig. 8.3, Table 8.1). All the hydrogen-bonding capability

of the guanidinium group is used with each cation being linked to three anions.

The only first-order hydrogen-bond motifs are noncyclic dimers with graph-set

Table 8.1: Hydrogen-bonding geometry (Å,◦) of phenylguanidinium trifluoroac-
etate.

D−H· · ·A D−H H· · ·A D · · ·A D−H· · ·A
N1−H1· · ·O1 0.86 2.11 2.913(5) 155.5
N2−H2B· · ·O2i 0.86 2.15 2.972(5) 161.1
N2−H2A· · ·O2ii 0.86 2.10 2.932(5) 161.4
N3−H3A· · ·O1i 0.86 2.18 2.982(5) 155.0
N3−H3B· · ·O1 0.86 2.25 3.013(6) 147.8
symmetry codes i : −x+ 1/2,−y + 1, z − 1/2;
iii : −x, y + 1/2,−z + 1/2.

D1
1(2). At the second level, there are chains with the graph-sets C2

2(8) and C1
2(6)

and rings of descriptor R2
2(8) and R1

2(6) formed by anion/cation pairs.

The structure of pg1 is remarkably similar to the structure of the salt phenyl-

guanidinium chlorodifluoroacetate [52] as can be seen in a whole-lattice over-

lay of the two structures (see Fig. 8.4). The two salts crystalize in the same

space group with similar unit cell parameters (pg1:a=7.5390(2)Å, b=9.1464(2)Å,

c=16.2872(4)Å, V=1123.08(5)Å3; phenylguanidinium chlorodifluoroacetate: a=

7.5239(1)Å, b=9.5722(2)Å, c=16.2316(3)Å, V=1169.00(4)Å3)

Figure 8.4: Whole-lattice overlay for the structures of phenylguanidinium chlorod-
ifluoroacetate (blue) and pg1 (red) viewed along the a axis (Software used for
visualization: VMD, version 1.9.1, January 29, 2012 [1].
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8.2 NLO properties of phenylguanidine salt

The crystal structure of the compounds phenylguanidinium trifluoroacetate and

phenylguanidinium chlorodifluoroacetate pg2 belongs to the Orthorhombic sys-

tem with a noncentrosymmetric space group P212121 and the crystals class is

222. With this crystal symmetries the second-order susceptibility tensor is of the

form: 0 0 0 d14 0 0

0 0 0 0 d25 0

0 0 0 0 0 d36

 (8.1)

Adding Kleinman permutation symmetry (in the section 2.3.3) we conclude that

all components are equal, so the susceptibility depend only on the component d14

or, in other form, on dXY Z .

8.2.1 Experimental Kurtz and Perry powder results

The SHG efficiency of the pg1 and pg2 were evaluated using the experimental

Kurtz and Perry powder method.

The result were null in spite of the noncentrosymmetric molecular arrange-

ment. Nevertheless, HF and DFT calculations were performed hoping to better

understand the null response.

8.2.2 Computational nonlinear optical properties

The computational NLO calculations were performed for the phenylguanidine

salt previously described (pg1 salt), to get the molecular components of the

hiperpolarizability tensor, βijk, and from this the macroscopic NLO coefficients,

dIJK and the angular average of the NLO susceptibility, 〈d2ω〉.
The same methodology applied in the guanidine salts in section 7.7.2, is imple-

mented in the phenylguanidine salts. So let’s begin by the analysis of elements of

the molecular hiperpolarizability tensor, βijk, obtained from two different meth-

ods, HF and DFT with several functionals: there is a better agreement between

the HF methods and DFT with LYP functional.
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Table 8.2: The βijk components of the isolated molecule of phenylguanidinium
trifluoroacetate, pg1, calculated HF method and DFT methods.

pg1
βXXY βZZZ

HF -78.7 172.5
LYP -77.4 167.2
BHHLYP -93.5 283.4
B3LYP -115.0 870.8
BLYP -182.1 9943.8

The values calculated using DFT-LYP were then used for the calculation of

the macroscopic values.

The angular average of the NLO susceptibility obtained applying the W-B

factors are 0.40 pm/V and the SHG efficiencies are 0.17 (pg1). However, the ex-

perimental result obtained with Kurtz and Perry powder method, in section 8.2.1,

is zero and this discrepancy between experimental and computational methods

can be justified by the low crystallinity of the material (that compromised the

experimental result).

8.3 Experimental and computational methods

8.3.1 Single crystal X-ray diffraction

The determination of the phenylguanidine structure was carried out through of

diffraction measurements performed with a MoKα radiation on a Bruker APEX

II diffractometer [44]. All necessary corrections were applied in the collected

(like Lorenz and polarization corrections) and the structures were solved with

application of the direct methods and implementation of the refinement of the F 2s

by full-matrix least-squares using SHELXS-97 and SHELXL-97 programs [21].

For non Hydrogen atoms in the structure anisotropic displacement parameters

were applied, on the other hand the hydrogen atoms were placed at calculated

positions and only were applied isotropic parameters.

The details of the crystal structure, the data collected and treatment applied

are showed in the Table 8.3.
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8. PHENYLGUANIDINE SALT

Table 8.3: The crystal details of the structure refinement and the data collected
of the noncentrosymmetric structure of the phenylguanidinium trifluoroacetate,
pg1.

Salt pg1
Emp. formula C9H10F3N3O2

Formula weight 249.20
Temperature (K) 293(2)
Wavelength (Å) 0.71073
Crystal system Orthorhombic
Space group P212121
a (Å) 7.5390(2)
b (Å) 9.1464(2)
c (Å) 16.2872(4)
α(◦) 90
β(◦) 90
γ(◦) 90
Volume (Å3) 1123.08(5)
Z 4
Calc. dens.(g/cm3) 1.474
Abs. coef. (mm−1) 0.138
F (000) 512
data collec. range 2.55-28.77◦

Index ranges: −10 < h < 9,
−12 < k < 12,
−21 < l < 21

Reflections collected/unique: 21633 / 2757
R(int) 0.0302
Completeness (θ=25.00◦) 99.6%
Refin. method Full-matrix least-squares on F 2

Data/restraints/parameters 2757/0/154
F 2 Goodness-of-fit 1.037
R indices:
final [I > 2σ(I)] 0.0806
wR2 0.2402
all data 0.1110
wR2 0.2699
Largest diff. peak and hole (eÅ−3) 0.617 / -0.427
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Chapter 9

Triphenylguanidine salt

Triphenylguanidine salts may have nonlinear optics properties, since triphenyl-

guanidine has octupolar character and may favous crystallization in a noncen-

trosymmetric structure.

Figure 9.1: The triphenylguanidinium cation after optimization.

The octupolar character of the triphenylguanidinium cation can be calculated

scalar invariants of the vector associated to dipole component is 72.25au and the

scalar invariants of the septor associated to octupolar part is 435.44au. Therefore

ρ = 6.03 that shows a octupolar character of triphenylguanidinium cation, but is

obvious that this value is much lower than the value of ρ = 3383.84 obtained for

guanidinium cation previously presented.

The N, N ’, N ”-triphenylguanidinium cation is composed by guanidinium

group (fragment CN3 that presents a planar conformation). The three phenyl
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9. TRIPHENYLGUANIDINE SALT

groups bonded to the N atoms of the guanidinium group and are not coplanar

with this plane. Each of this phenyl groups usually have different twist angles

with guanidinium fragment and just as in the phenylguanidine this cation shows

structural flexibility. Moreover, the triphenylguanidine as well as the guanidine

and phenylguanidine have a great tendency to form many hydrogen bonds and

this capability gives rise to strong crystal structures with several inter and intra-

molecular interaction that can be studied.

Some examples of the triphenylguanidine salts are N, N ’, N ”- Triphenylguani-

dinium nitrate [53], N, N ’, N ”- Triphenylguanidinium trifluoroacetate [54], N, N ’,

N ”- Triphenylguanidinium hydrogensulfate [55], and N, N ’, N ”- Triphenylguani-

dinium bromide [56].

In the following sections, we will analyze only the nonlinear optical properties

of the N, N ’, N ”- Triphenylguanidinium cyanoacetate salt (see Fig. 9.2). The

crystal structure of this salt was previously determined and study in other work

[52].

Figure 9.2: Asymmetric unit of Triphenylguanidinium cyanoacetate. Displace-
ment ellipsoids are drawn at the 50% probability level.
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9.1 NLO properties of triphenylguanidine salts

9.1 NLO properties of triphenylguanidine salts

The Triphenylguanidinium cyanoacetate is a noncentrosymmetric salt that crys-

talize in the Orthorhombic system in a space group P212121 (class 222), therefore

the second-order susceptibility is given by:0 0 0 d14 0 0

0 0 0 0 d25 0

0 0 0 0 0 d36

 (9.1)

Once again the application of symmetry reduces the number of components in

the matrix, however it is possible to further reduce the number of components, in-

troducing the Kleinman permutation symmetry. In this case only the component

d14 ( ordXY Z in other notation).

9.1.1 Experimental Kurtz and Perry powder results

The result obtained for Triphenylguanidinium cyanoacetate from the Kurtz and

Perry powder method for the SHG efficiency is 0.33 compared to the urea standard

measured in the same conditions. This result is strongly affected by experimental

conditions like a particle size and the conditions of the experimental setup.

9.1.2 Computational nonlinear optical properties

The computational calculations initially yields the components of the hiperpo-

larizability tensor, βijk, and from these we can arrive to the macroscopic NLO

coefficients, dIJK , like it has been done in sections 7.7.2 and 8.2.2.

Table 9.1 shows HF and DFT-LYP gives almost equal result. The elements of

tensor dIJK are then calculated with implementation of the Lorentz-Lorentz (L-

L) and Wortmann-Bishop (W-B) models, previously explained in section 6.3.2.

The results are presented in Table 9.2.

The SHG efficiency of the tpg1 is evaluated from the results obtained using

the LYP functional and applying Wortmann-Bishop local-field correction factors.

From the computational result of the 〈d2ω〉 presented in Table 9.2 and comparing

that value with the urea response we obtain the SHG efficiency of the 0.49 per
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9. TRIPHENYLGUANIDINE SALT

Table 9.1: The βijk components of the isolated molecules of triphenylguanidinium
cyanoacetate ,tpg1, calculated using HF and DFT methods.

% HF exchange tpg1
βXXX βXXY βY Y Z

HF 100 -304.5 131.9 102.1
LYP 100 -300.9 129.9 -101.5
BHHLYP 50 -385.9 197.7 -150.5
B3LYP 20 -518.2 319.8 -221.3
BLYP 0 -518.5 320.0 -223.1

Table 9.2: Theoretical susceptibility components (pm/V) for tpg1, calculated
from the βijk components of the isolated molecule using the LYP functional, with
Lorenz-Lorentz (L-L) and Wortmann-Bishop (W-B) local-field factors.

tpg1
dXY Z 〈d〉

L-L -1.70 1.44
W-B -1.34 1.13

Urea and was as stated above in section 9.1.1 the experimental result is 0.33. This

shows a good agreement between the experimental and computational results.

9.1.3 Scalar invariants of the hiperpolarizability

The study of the octupolar character of the tpg1 is show in Table 9.3.

Table 9.3: The values of the dipolar and octupolar components and the parameter
ρ for asymmetric units of compounds tpg1 and the corresponding anions and
cations that are represented by compound− and compound+, respectively.

Fragments invariant vector invariant septor ρ
tpg1 393.57 478.48 1.22
tpg1+ 112.00 459.62 4.10
tpg1− 136.65 180.81 1.32

The cation presents a octupolar behavior, but in the neutral molecule the

components are similar and consequently the value of ρ is close to unity. The

tpg1 crystals has a space group P212121 and the class is 222 such as referred

previously and it is known that in this type of crystals the tensor,dij is compose
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mainly by octupolar component of the asymmetric unit.
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Chapter 10

Thiocyanuric salt

In this chapter we study the compound with thiocyanuric acid molecule in neu-

tral and deprotonated form. This molecule is completely planar with a central

cyanuric ring with hydrogen atoms in the most stable geometry were bonded to

nitrogen atoms of the ring and the carbon atoms of the ring were bonded to sulfur

atoms. This conformation of the thiocyanuric acid molecule present a trigonal

symmetry, D3h, such as the guanidinium cation. The trigonal symmetry presup-

poses the existence of an equilateral triangle formed by atoms of the molecule,

where the symmetry elements are one 3-fold axis, 3 horizontal twofold axes, one

horizontal plane and 3 vertical planes containing the horizontal axes [40].

Figure 10.1: The thiocyanuric molecule after optimization.
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10. THIOCYANURIC SALT

The molecular symmetry of the thiocyanuric acid justifies the interest for

NLO studies since this is a purely octupolar molecule. The octupolar behavior

of the thiocyanuric molecule can be proved through the decomposition of the

hiperpolarizability in the dipolar component (βJ=1) and octupolar component

(βJ=3). For a optimized geometry the result for the scalar invariants of the vector

associated to dipole component is 0.29au and the scalar invariants of the septor

associated to octupolar part is of 1176.52au, yielding value of ρ = 4083.21 (strong

octupolar character).

10.1 L-histidinium thiocyanurate thiocyanuric acid

dihydrate

The crystal structure of the compound L-histidinium thiocyanurate thiocyanuric

acid dihydrate (thio1) belongs to the monoclinic system with the noncentrosym-

metric space group P21. The asymmetric unit consists of one L-histidinium cation,

one neutral molecule of thiocyanuric acid (or trimercaptotriazine), one thiocya-

nurate anion and two water molecules (see Fig. 10.2).

Figure 10.2: Asymmetric unit of L-histidinium thiocyanurate thiocyanuric acid
dihydrate. Displacement ellipsoids are drawn at the 50% probability level.

The L-histidinium cation is in the zwitterionic form, with protonated and pos-
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10.1 L-histidinium thiocyanurate thiocyanuric acid dihydrate

itively charged α-amino and imidazolium groups and a deprotonated and nega-

tively charged α-carboxylate group. The side chain of the cation adopts a closed

conformation (g+) [57], with torsion angles φ1[N1−C2−C3−C4]=71.5(3)◦ and

φ21[N5−C4−C3−C2]=-111.8(3)◦ [58].

The molecule of thiocyanuric acid is planar and has approximately the sym-

metry D3h. This almost perfect trigonal symmetry implies that the molecular

hiperpolarizability has an octupolar component (βJ=3) much higher than the

dipolar part (βJ=1).

There is a large number of hydrogen bonds in this structure (see Table 10.1)

forming an intricate 3D network.

Table 10.1: Hydrogen-bonding geometry (Å,◦) of thio1.
D−H· · ·A D−H H· · ·A D · · ·A D−H· · ·A
N18−H18· · ·O1i 0.86 2.58 3.299(3) 141.5
N18−H18· · ·O2i 0.86 2.00 2.836(3) 162.1
N20−H20· · · S2 0.86 2.35 3.1944(17) 168.8
N12−H12· · · S6 0.86 2.57 3.4109(17) 166.8
N16−H16· · · S3ii 0.86 2.35 3.1977(17) 168.1
N14−H14· · · S4iii 0.86 2.56 3.4089(17) 171.8
O1W−H1A· · ·O1iv 0.83 2.05 2.824(3) 156.0
O1W−H1B· · ·O2v 0.93 2.10 3.030(3) 174.5
N7−H7· · ·O1Wvi 0.86 1.96 2.808(3) 167.7
C2−H2· · ·O1vii 0.98 2.37 3.312(3) 160.4
N1−H1C· · ·N10 0.89 2.13 3.015(2) 179.2
N1−H1D· · ·O2Wv 0.89 1.92 2.810(3) 176.4
N1−H1E· · ·O2viii 0.89 2.09 2.977(3) 176.1
C6−H6· · · S1ii 0.93 2.94 3.644(2) 133.8
C8−H8· · · S5ix 0.93 2.79 3.577(3) 142.6
O2W−H2A· · · S3 0.85 2.56 3.398(2) 171.7
O2W−H2B· · ·O1W 0.85 2.13 2.906(3) 150.4
N5−H5· · · S2 0.86 2.40 3.234(2) 163.0
C3−H3B· · · S6iv 0.97 2.81 3.491(2) 128.2
symmetry codes i : x, y, z + 1,−z + 1/2; ii : x− 1, y, z;
iii : x+ 1, y, z; iv : −x, y − 1/2,−z; v : −x, y + 1/2,−z
vi : x− 1, y, z − 1; vii : −x, y − 1/2,−z − 1;
viii : −x, y + 1/2,−z − 1; ix : x, y, z − 1.

The N−H· · · S hydrogen bonds between the acid molecules and anions create
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10. THIOCYANURIC SALT

a two-dimensional zigzag ribbon structure with alternation of acid molecules and

anions along the a axis . The cations are anchored to these ribbons by N−H· · · S
hydrogen bonds. N−H· · ·O between acid molecules and the cations link the

ribbons leading to the formation of layers perpendicular to the b axis. N−H· · ·O
hydrogen bonds between the cations and the water molecules form helical chains

along the b axis and connect the layers.

10.2 NLO properties of thiocyanuric salts

The thio1 compound crystalizes in a noncentrosymmetric structure with Mon-

oclinic system, space group P21 with the associated class 2. Then, this crystal

is a potential candidate to have a good nonlinear optical response. Through the

analysis of all symmetry features is possible show the second-order susceptibility

matrix of the form:  0 0 0 d14 0 d16

d21 d22 d23 0 d25 0

0 0 0 d34 0 d36

 (10.1)

Therefore, there are eight independent components with application of the

symmetry, but applying the Kleinman permutation symmetry, explained in sec-

tion 2.3.3, the number of the independent non zero elements of the matrix is

reduced to the elements dY Y Y , dY XX , dY ZZ and dXY Z .

10.2.1 Experimental Kurtz and Perry powder results

The Kurtz and Perry powder method is applied to evaluate the nonlinear optical

response of this material yielding a SHG efficiency of 0.37 times Urea. This

result shows a good optical response. The following sections are devoted to the

calculation of the above value through ab initio methods.
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10.2 NLO properties of thiocyanuric salts

10.2.2 Computational nonlinear optical properties

We have calculated the molecular hiperpolarizability tensor, βijk, of the isolated

asymmetric unit of the thio1 from several calculations using the HF and DFT

method. The results of the components with higher values are presented in Table

10.2, for comparison purposes.

Table 10.2: βijk components of a cluster of molecules of L-histidinium thiocya-
nurate thiocyanuric acid dihydrate,thio1, calculated computationally with HF
method and for some functionals of DFT method.

% HF exchange thio1
βXXX βXZZ

HF 100 -111.4 268.0
LYP 100 -125.5 270.0
BHHLYP 50 -161.5 367.9
B3LYP 20 189.3 605.3
BLYP 0 1630.7 1618.7

As in the previous cases reported in this thesis, the values obtained are quite

similar for HF and DFT-LYP. With the diminution of the percentage of the HF

exchange, the calculated values increase by a factor of 10. Consecutive calcula-

tions are performed with DFT method and with LYP functional.

The calculations of d-matrix elements and the angular average of the NLO

susceptibility were performed using the Lorentz-Lorentz (L-L) and Wortmann-

Bishop (W-B) models (explain in section 6.3.2).

Table 10.3: Theoretical susceptibility components (pm/V) for thio1, calculated
from the βijk components of the isolated molecule using the LYP functional, with
Lorentz-Lorentz (L-L) and Wortmann-Bishop (W-B) local-field factors.

thio1
dY XX dY ZZ dY Y Y dXY Z 〈d〉

L-L -0.21 0.64 -0.15 2.63 2.26
W-B -0.65 0.12 0.02 1.96 1.71

Once again the average value 〈d〉 is large when the local field factor (essentially

a correction for the difference between the applied field that would be felt by the

molecule in the free space and the actual local field felt inside the material) is the
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simplest Lorenz-Lorentz spherical cavity factor. When the more sophisticated

Wortmann and Bishop model is used, lower values are obtained. These lower

values are more concordant with the experimental ones. With the Wortmann-

Bishop local-field correction factors the SHG efficiencies is 0.74 per Urea. On

the other hand, the experimental result is 0.37 times Urea, such as referred in

section 10.2.1. These results show some concordance between the experimen-

tal methodology using the K-P powder method and the chosen computational

approach.

10.2.3 Scalar invariants of the hiperpolarizability

The calculated values of the invariant vector, sector and ρ show an huge octupolar

character when in the neutral form, but such character diminishes abruptly upon

deprotonation.

Table 10.4: The values of the dipolar and octupolar components and the param-
eter ρ for asymmetric units of compounds thio1 and the corresponding anions
and cations.

Fragments invariant vector invariant septor ρ
thio1 157.69 598.05 3.79
Thiocyanuric 24.69 1139.71 46.16
Thiocyanurate 400.88 1346.02 3.36
L-histidinium 260.33 109.98 0.42

Table 10.5: The βijk components of isolated thiocyanuric acid molecule and thio-
cyanurate anion obtained from the calculations (LYP functional).

Thiocyanuric acid Thiocyanurate anion
X Y Z X Y Z

XX 464.80 -38.56 324.19 -799.61 39.02 -310.90
YY -5.34 0.65 -5.11 -0.62 -0.12 -7.62
ZZ -456.72 41.43 -343.37 563.37 -29.10 -4.76

This is evident in table above: the elements of molecular hiperpolarizability

in the neutral form satisfy the following conditions βXXX ≈ βXZZ , βZXX ≈
βZZZ , βXY Y ≈ βZY Y and βY XX ≈ βY ZZ , but for thiocyanurate anion the dipolar
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component break these relations. So the parameter ρ decrease with the loss of

symmetry.

Finally, in Table 10.4 it is shown that the l-histidinium anion present a strong

dipolar behavior since the ρ parameter is lower than unity, on the other hand the

asymmetric unit with the conjugation of all molecules has an overall octupolar

character.

10.3 Experimental and computational methods

10.3.1 Single crystal X-ray diffraction

The crystal structure of thio1 was determined using the X-ray data collected on

a Bruker APEX II single crystal diffractometer, at the room temperature with

MoKα radiation. The structure was solved by direct methods as implemented

in SHELXS-97 and refined by full-matrix least-squares using SHELXS-97. The

refinement was done allowing the non H-atoms to freely refine with anisotropic

displacement parameters. The H-atoms were constrained to ride on their ”parent

atoms” with isotropic displacement parameters. the Table 10.6.
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Table 10.6: The crystal details of the structure refinement and the data collected
of the noncentrosymmetric structure of the L-histidinium thiocyanurate thiocya-
nuric acid dihydrate, thio1.

Salt thio1
Emp. formula C12H19N9O4S6

Formula weight 545.72
Temperature (K) 293(2)
Wavelength (Å) 0.71073
Crystal system Monoclinic
Space group P21
a (Å) 11.3096(2)
b (Å) 6.94250(10)
c (Å) 14.2779(3)
α(◦) 90
β(◦) 98.9193(9)
γ(◦) 90
Volume (Å3) 1107.50(3)
Z 2
Calc. dens.(g/cm3) 1.636
Abs. coef. (mm−1) 0.659
F (000) 564
data collec. range 1.44-28.32◦

Index ranges: −15 < h < 15,
−9 < k < 9,
−18 < l < 19

Reflections collected/unique: 28225 / 5501
R(int) 0.0183
Completeness (θ=25.00◦) 99.9%
Refin. method

Full-matrix least-squares on F 2

Data/restraints/parameters 5501/0/281
F 2 Goodness-of-fit 1.036
R indices:
final [I > 2σ(I)] 0.0239
wR2 0.0656
all data 0.0263
wR2 0.0674
Largest diff. peak and hole (eÅ−3) 0.273 / -0.197
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Chapter 11

Charge density of

triphenylguanidine salts

In this chapter we will study the charge density distribution of some triphenyl-

guanidine crystals using the results of the X-ray diffraction experiments at low

temperature. The charge density distribution of the triphenylguanidine molecule

in the neutral and cationic form is obtained from the implementation of the mul-

tipole refinement. An important part of this study is carried out by analyzing

the topology of the charge density taking into account the main interactions in

each system.

The triphenylguanidine (tpg) has three electron donor atoms with two amino

groups, −NH and one imine group = N . The nitrogen atoms of the guani-

dine fragment, CN3 with Y-conjugation, shows strong donor ability that changes

with the organic substituents and for crystal environment. Its H-banding ability

may be explored, in charge density distributions with especial attention to the

inter and intra-molecular interactions [59]. The study of electron density is not

restricted to the guanidine fragment, is may also be interesting to analyze the

behavior of the charge density distribution in the three aromatic rings of the tpg.

The first structural study was performed in 1988 [60] for a tpg crystal with or-

thorhombic symmetry. Later on, it was discovered and studied a new polymorph

of the tpg that crystallizes in a monoclinic phase [61]. The tpg molecule can be

easily protonated and in this form shows a great ability to form ionic crystals with
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many acids like in the salts: N, N ’, N ”- Triphenylguanidinium chloride [62], N,

N ’, N ”- Triphenylguanidinium bromide [63], N, N ’, N ”- Triphenylguanidinium

nitrate [64], N, N ’, N ”- Triphenylguanidinium hydrogensulfate [65], N, N ’, N ”-

Triphenylguanidinium 5-nitro-2, 4-dioxo-1, 2, 3, 4-tetrahydropyrimidin-1-ide [66],

and others.

Of these set of ionic crystals the N, N ’, N ”-Triphenylguanidinium trifluoroac-

etate, tpgtfa, was chosen. In the tpgtfa crystal we will study the interaction

within the triphenylguanidinium cation and of the trifluoroacetate anion, and the

interaction between these ions. In the following section we will discuss the crystal

structure of the tpg and tpgtfa and the principal differences between structures

obtained at room temperature and low temperature. A previous structural study

was reported on ref [67].

11.1 Molecular structures

The determination of the charge density distribution is only possible if it is known

beforehand the molecular structure of the crystals and the symmetries in each

crystal. The structures of tpg and tpgtfa are determined in the literature at

room temperature [61; 67], but at low temperatures the structure suffer some

variations that can be quite important for the correct application of multipole

refinement. The monoclinic polymorph of tpg is defined with a centrosymmetric

space group P21/c. In the crystal chains are formed parallel to the c axis through

weak hydrogen bonds with one of the amino groups and the imine group nitrogen

atom (Fig. 11.1, Table 11.1). The guanidine CN3 fragment, in the tpg molecule,

is a planar group but the Caryl atoms are not coplanar with such fragment.

Table 11.1: Hydrogen-bonding geometry (Å,◦) of monoclinic polymorph of tpg
at temperature 30K.

D−H· · ·A D−H H· · ·A D · · ·A D−H· · ·A
N1−H1· · ·N3i 0.88 2.14 3.003(2) 165.7
C3−H3· · ·N3 0.95 2.51 3.027(2) 114.5
symmetry codes i : x,−y + 1/2, z + 1/2.

The parameters of the crystal structure at low temperature presents a quite
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11.1 Molecular structures

Figure 11.1: Packing diagram of the monoclinic polymorph with the H-bonds
drawn as dashed lines. H atoms not involved in hydrogen bonding have been
omitted for clarity.

evident variation. Generally, the cell parameters of the network have a tendency

to decrease at low temperature, mainly due to the decrease in thermal vibration

of the atoms of the structure. The comparison of the unit cell parameters is

showed in the Table 11.2.

Table 11.2: The unit cell parameters (Å) of the monoclinic polymorph of tpg at
the room temperature and at low temperature (30K).

Low temperature Room temperature
a 12.4789(11) 12.4060(4)
b 14.2304(14) 15.1653(6)
c 8.7425(8) 8.7028(3)

The analysis of the unit cell axes shows that the axes a and c remain fairly

constant and the axis b has a great decrease, approximately 0.9Å. This variation

in unit cell parameters proves the great anisotropy in the loss of cell volume

with temperature. So, this uneven compression in the structure leads to uneven

changes in the bond lengths. We can compare the various lengths at different

temperatures using two-dimensional fingerprint plots [68; 69] of the tpg. This
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plots are obtained from the surface of Hirshfeld [70; 71] , calculating the internal

distance to the surface, di and the distance external , de, which measure the

distance from the surface for the atoms of the neighboring molecules . The 2D-

fingerprint plots are obtained using the software CrystalExplorer, version 3.1 [72]

and are presented in the Fig. 11.2.

Figure 11.2: Two-dimensional fingerprint plots of the monoclinic phase of the
tpg at low temperature (a) and at room temperature(b).

These finger print plots show the obvious reduction of the bond lengths in the

low temperature structure. We can see this since all the fingerprint is shifted to

lower values of di and de. One of the main differences is associated to the central

hump in the region with di and de of about 1.0Å that is more pronounced in low

temperature structure. The other differences are presents in profiles of the long

range interactions for larger values of di and de defined by interactions between

H· · ·H and C· · ·H.

The N, N ’, N ”-Triphenylguanidinium trifluoroacetate, tpgtfa, which corre-

sponds to an ionic crystal composed by one cation of triphenylguanidinium and

one anion of trifluoroacetate, is shown in Fig. 11.3. This structure crystalize in

a monoclinic form with the centrosymmetric space group P21/c.

These anion is a very strong carboxylic acid due to the charge transference

of the F atoms for the C atom. Therefore, the structures with this anion show
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Figure 11.3: Asymmetric unit of tpgtfa at low temperature (120k). Displacement
ellipsoids are drawn at the 50% probability level.

a tendency to form crystals with phase transitions and superstructures. In this

ionic crystals, at room temperature, the CF3 group presents a rotational disor-

der. Theoretical calculations have shown that the rotation energy barrier of the

disordered group is low [67].

Furthermore, this crystal also presents superstructures formed by chains par-

allel to the c axis assembled from hydrogen bonds between amino groups of the

triphenylguanidinium (Fig. 11.4) and the O atoms of the carboxylic group of tri-

fluoroacetate (the set of the hydrogen bonds of this structure at low temperature

are presented in the Table 11.3).

Table 11.3: Hydrogen-bonding geometry (Å,◦) of tpgtfa at the temperature of
120k.

D−H· · ·A D−H H· · ·A D · · ·A D−HA
N1−H1· · ·O1 0.88 1.87 2.7509(18) 178.5
N2−H2· · ·O2i 0.88 1.97 2.8305(17) 164.4
N2−H2· · ·F1 0.88 2.55 3.0206(17) 114.0
N3−H3· · ·O2i 0.88 2.01 2.8040(18) 150.0
symmetry codes i : x,−y + 1/2, z − 1/2.

The parameters of unit cell of the tpgtfa at low temperature shows a variation,

that is displayed in Table 11.4.
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Figure 11.4: Packing diagram of the tpgtfa at low temperature with the H-bonds
drawn as dashed lines.

Table 11.4: The unit cell parameters (Å) of the tpgtfa at the room temperature
and at low temperature (120K).

Low temperature Room temperature
a 9.9447(6) 9.9905(8)
b 14.5037(9) 14.9348(13)
c 14.1147(9) 14.1194(10)

Datermination of the unit cell axes shows that the greater decrease is in b axis

(of about 0.4Å). On the other hand the c axis remains approximately constant

with a small decrease of 0.005Å and the a axis undergoes a very small decrease

of approximately 0.05Å. This variation on the unit cell parameters proves the

anisotropy in the loss of volume with temperature.

The variations of the bond lengths are analyzed again using the two-dimensional

fingerprint plots through the same strategy previously used for tpg. These plots

are presented in the Fig. 11.5 for the structures at room temperature and at low

temperature and show the obvious reduction of the bond lengths in the low tem-

perature structure. This change corresponds to a translation of the plot points

to lower values of di and de. Furthermore, the analysis of shorter interactions
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with lower values of di and de shows a set of peaks associated to the several in-

teractions. The central peak of the H· · ·H interactions with values of di and de

about 1.1Å for two temperatures has different profiles. At low temperature, there

are higher concentration of points in this peak making it broadest.The other two

symmetrical peaks more pronounced with values of di = 0.7Å and de between

1.1 and 1.0Å for structure at low temperature are defined by interactions be-

tween O· · ·H. These peaks have the same profile, but the low temperature have

a more concentration of points and is more “compact”. The interaction C· · ·H
is associated to the smaller peak, with values of di and de about 1.1Å and 1.6Å

, respectively. These peaks are better defined at low temperature (having a thin

peak profile), while at room temperature they are more similar to a hump. The

other important difference is in the region of the lighter color with values of di

and de of approximately 1.5Å for both, due the interaction between the F atoms

and all the others. This region, at room temperature, corresponds to an unde-

fined, but at low temperature we can distinguish three peaks. This difference is

explained by the disappearance of the disorder in the F atoms group.

Figure 11.5: Two-dimensional fingerprint plots of the tpgtfa at low temperature
(a) and at room temperature (b).

The structures presented in this chapter were previously solved using direct

methods implemented in SHELXS-97 program and refined on F 2s by full-matrix

least-squares with SHELXL-97 program [21]. These data were obtained from
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Table 11.5: The crystal details of the structure refinement and the data col-
lected at low temperature of the Triphenylguanidine, tpg, and N, N ’, N ”-
Triphenylguanidinium trifluoroacetate, tpgtfa.

Salt tpg tpgtfa
Emp. formula C19H17N3 C21H18F3N3O2

Formula weight 287.35 401.38
Temperature (K) 30(2) 120(2)
Wavelength (Å) 0.71073 0.71073
Crystal system Monoclinic Monoclinic
Space group P21/c P21/c
a (Å) 12.4789(11) 9.9447(6)
b (Å) 14.2304(14) 14.5037(9)
c (Å) 8.7425(8) 14.1147(9)
α(◦) 90 90
β(◦) 104.003(6) 104.159(4)
γ(◦) 90 90
Volume (Å3) 1506.4(2) 1974.0(2)
Z 4 4
Calc. dens.(g/cm3) 1.267 1.351
Abs. coef. (mm−1) 0.076 0.108
Extinction coef. - -
F (000) 608 832
data collec. range 1.682-27.912◦ 2.046-27.915◦

Index ranges: −14 < h < 16, −13 < h < 13,
−18 < k < 17, −19 < k < 19,
−11 < l < 10 −18 < l < 18

Reflections collected/unique: 10897 / 3459 33884 / 4717
R(int) 0.0659 0.0595
Completeness (θ=25.00◦) 98.9% 100%
Refin. method

Full-matrix least-squares on F 2

Data/restraints/parameters 3459/0/199 4717/0/262
F 2 Goodness-of-fit 1.027 1.020
R indices:
final [I > 2σ(I)] 0.0566 0.0452
wR2 0.1166 0.0991
all data 0.1037 0.0815
wR2 0.1345 0.1141
Largest diff. peak and hole (eÅ−3) 0.494 / -0.513 0.485 / -0.338

the experimental X-ray diffraction performed with a fourcircle diffractometers

with k geometry resorting to a Bruker-Nonius Kappa Apex II. The APEX II

diffractometer uses the radiation Mo Kα with a wavelength λ = 0.71073 Å and the

detection is performed using a Charge-Coupled Device (CCD) with 4096× 4096

pixels, each pixel with a dimension 15µm×15µm. For charge density studies, it

is necessary to use X-ray diffraction data collected at low temperature that were

measured using the N-HeliX from Oxford Cryosystems with a dual flow nitrogen

and helium cooler. It allows experiments with the APEX II diffractometer with

sample temperatures between 28-300K. Parameters of the data collection and

crystal structure presented in Table 11.5.
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11.2 Multipole refinement strategy

11.2 Multipole refinement strategy

The multipole refinement is implemented using the program XD2006 [73] with the

structures presented in the preceding section. The structures of tpg and tpgtfa

at low temperature were solved using the SHELXL program and these results

allow us to begin the multipolar refinement explained in chapter 5. We begin

by remaking the IAM refinement using the XD program as a first approximation

to the charge density of the molecules and this procedure enables us to refine

positions, thermal displacement parameters and scale factor.

Then, the multipolar refinement is implemented starting with the definition of

sets of atoms in structure with the same k parameter and the chemical equivalents.

The multipoles are applied in stages and according with the local symmetries of

each atom in the molecules. In the next sections we will present in detail the

strategy applied to each of the studied structures.

11.2.1 tpg strategy

The strategy applied in the tpg crystal has as first objective the description of

the chemical equivalents in the structure to reduce the number of independent pa-

rameters. So, the atoms, assumed as equivalent, should be associated to the same

chemical environment, only taking into account the nearest neighbors. Thus, in

the guanidine fragment two chemical constraints are applied in the two amino

groups:

N(1) = N(2) (11.1)

H(1) = H(2)

In the phenyl groups the C atoms are considered chemically equivalent, except

the ipso C atom bonded to N atoms. The definition of these equivalences is equal

for the three phenyl groups. All Hydrogens of these rings are considered as
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chemical equivalents.

C(3) = C(4) = C(5) = C(6) = C(7) (11.2)

C(9) = C(10) = C(11) = C(12) = C(13)

C(15) = C(16) = C(17) = C(18) = C(19)

Figure 11.6: The atoms of the tpg molecule with each color representing the
group of chemical equivalent atoms. The atoms with black color correspond to
the atoms without chemical equivalents.

The atoms in a multipole refinement are associated with the expansion and

contraction parameters k and k′. The number of parameters can be reduced by

defining sets of atoms with the same values of the k and k′ parameters. The sets

of k defined for the tpg structure are:

N(1) and N(2) k set 1
N(3) k set 2
C(1) k set 3

C(2), C(8) and C(14) k sets 4 ,6 and 8
C(3) – C(7) k set 5
C(9) – C(13) k set 7
C(15) – C(19) k set 9
H(1) and H(2) k set 10

Other Hs k set 11
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The local symmetries are applied in the atoms of the tpg molecule taking

into account the atom and its closest neighbors. So, in the central C atom of the

guanidine fragment and in the three N atoms it was applied the mm2 symmetry.

In the C atoms of the phenyl groups the m symmetry or planar symmetry was

applied . The local symmetries are an important part of the multipole refinement

because they restrict the number of multipole functions that we can refine and

so the number of parameters is reduced even further.

Then, before the application of the IAM and starting from these results, κ

parameters are applied and several chemical equivalences are imposed such as

described previously and all non-hydrogen atoms are refined together with PV

and κ. After this refinement, the local symmetries are introduced and with them

are defined the sets of Plm functions that we will refine. Together with these

parameters the κ′ parameters are introduced using the theoretical values from the

multipole refinements of theoretical structure factors [74] (this parameter is fixed

during the refinement). Then the positional and thermal parameters are refined

along with PV and Plm for all non-hydrogen atoms. Lastly, all parameters are

refined with exception for the κ′ parameter and the final results of the multipolar

refinement are obtained.

11.2.1.1 Refinement results

The analysis of the multipolar refinement is an important indicator of the quality

of the model. The R-factor shows how good is the adjustment of the model

applied to the data and is presented in Table 11.6.

Table 11.6: The statistics of the fitting applied in the multipole refinement of
tpg.

Model R Rω GOF Ndata/Nparameters

Spherical refinement (in XD) 0.070 0.055 1.309 148.81
MM, with dipoles 0.067 0.052 1.250 30.79

MM, with quadrupoles 0.066 0.051 1.224 28.69
MM, with octupoles 0.062 0.048 1.159 26.75

MM, with hexadecapoles 0.062 0.048 1.157 24.72

The results obtained show the decrease of the R-factor with introduction of
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the aspherical model, so it is verified that the R-factor decrease by increasing

the multipolar level of the functions. On the other hand, the Goodness of Fit

decreases along the refinement tending to 1. Finally, the ratio of data to the

number of parameters in refinement shows the increase of parameters that allows

a better adjustment of the model to the experimental data, which is verified with

the decrease of the R-factor.

After the multipole refinement we can analyze the residual density maps of

the guanidine fragment and the phenyl fragment presented in Fig. 11.7.

Figure 11.7: The residual density maps after multipole refinement in a tpg phenyl
ring (a) and in the guanidine fragment (b). The red and blue solid contour lines
represent the positive and negative contours, respectively, and the black dashed
contours represent the lines with zero residual density. Step width is 0.1eÅ−3.

In these maps, residual density is distributed randomly, such as expected,

between −0.344 and 0.415eÅ−3 showing that the model applied is good for the

description of the structure. Furthermore, the analysis of the DMSDAs (Differ-

ences of Mean-Squares Displacement Amplitudes) after the multipole refinement

show that these are much lower than those obtained with spherical refinement,

the highest amplitude is 7.0 ·10−3Å2 associated to the N(1) atom of the guanidine

fragment.

11.2.2 tpgtfa strategy

The same strategy used in the tpg structure was implemented in the tpgtfa. So,

two chemical constraints were applied in the fragment of guanidine taking into
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account the difference between the triphenylguanidine molecule and the triph-

enylguanidinium cation:

N(1) = N(2) = N(3) (11.3)

H(1) = H(2) = H(3)

The three phenyl rings exhibit the same conformation in the two compounds,

therefore the same chemical equivalents were applied in the two compounds. Sim-

ilarly, all H atoms of the rings were considered as the same chemical equivalents.

Finally, in the trifluoroacetate anion were defined two more chemical equivalents:

O(1) = O(2) (11.4)

F (1) = F (2) = F (3)

All chemical equivalents are summarized, in a more easily understandable

form, in Fig. 11.8.

Figure 11.8: The atoms of the tpgtfa with the same color represent a group of
chemical equivalents atoms. The atoms with black color correspond to the atoms
without chemical equivalents.

The atoms are associated to the expansion parameters k and k′. So, the sets

of k defined for the tpgtfa structure are:
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F(1), F(2) and F(3) k set 1
O(1) and O(2) k set 2

N(1), N(2) and N(3) k set 3
C(1) k set 4

C(2), C(8) and C(14) k sets 5 ,7 and 9
C(3) – C(7) k set 6
C(9) – C(13) k set 8
C(15) – C(19) k set 10

C(21) and C(22) k set 11 and 12
H(1) and H(2) and H(3) k set 13

Other Hs k set 14

The local symmetries were applied to the atoms of tpgtfa in the same way as

in the tpg, with the exception of the central C atom of the guanidinium fragment.

In this C atom the 3m symmetry is applied, to which are associated three planes

defining its neighboring atoms. Furthermore, in the trifluoroacetate anion the

local symmetries are applied initially to the F atoms by imposing the planar

symmetry m and the same is applied to the O atoms. On the other hand, in the

C atom bonded to the F atoms the 3m local symmetry is defined and finally, for

the C atom of the carboxylic group, the mm2 symmetry is applied. The sequence

used to introduce the parameters in the refinement and the parameters that are

refined in the tpgtfa is the same used in tpg and was described in section 11.2.1.

11.2.2.1 Refinement results

The analysis of the multipole refinement applied in the tpgtfa structure is an

important indicator of the quality of the model described in the previous section.

The first results analysed are the statistics results that shows the adjustment of

the model applied to the data and are presented in Table 11.7.

The results presented in Table 11.7 show the decrease of the R-factor with

introduction of the aspherical model. Furthermore, the R-factor decreases with

increasing multipolar level of functions. On the other hand the Goodness of Fit

shows the decreases along the refinement tending to 1. Lastly, the ratio of data to

refinement parameters shows the increase in parameters and hence the increase

in the complexity of the refinement model and in TGPTFA this ratio is much

smaller than in tpg.
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Table 11.7: The statistics of the fitting applied in the multipole refinement of
tpgtfa.

Model R Rω GOF Ndata/Nparameters

Spherical refinement (in XD) 0.070 0.055 1.309 848.42
MM, with dipoles 0.058 0.041 1.324 73.53

MM, with quadrupoles 0.057 0.040 1.283 69.37
MM, with octupoles 0.055 0.038 1.231 65.26

MM, with hexadecapoles 0.055 0.038 1.230 61.62

After the multipole refinement we can analyze the residual density maps of

the guanidinium fragment, of one phenyl fragment in the triphenylguanidinium

cation and also the carboxylate group and the plane of F atoms of the anion

presented in Fig. 11.9.

Figure 11.9: The residual density maps after multipole refinement in the tpgtfa
guanidinium fragment (a), one phenyl ring (b), the carboxylate group (c) and the
plane of F atoms (d). The red and blue solid contours lines represent the positive
and negative contours respectively and the black dashed contours represent the
lines with zero residual density. Step width is 0.1eÅ−3.

In this residual density maps of the tpgtfa we can see that the residues are

distributed randomly as expected and the residual density is between −0.399
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and 0.439eÅ−3 showing that the model applied is good for the description of the

tpgtfa structure. The analysis of the DMSDAs, after the multipole refinement,

shows that these are much lower than the ones obtained with spherical refinement

such as in the multipole refinement of tpg. The highest DMSDAs is 4.3 · 10−3Å2,

associated to the N(3) atom of the guanidinium fragment.

11.3 Discussion of charge density properties

The properties of the charge density can be studied from the results obtained

with the application of the multipole refinement and in this way we can analyze

the deformation density, the electrostatic potential, the features of the critical

points and other properties described in section 3.4. In the following sections

we will analyze and compare the results of the two structures studied and the

experimental results of the properties are compared with theoretical results.

These theoretical results are obtained using optimized geometries of the tpg

and tpgtfa and calculating the wave functions of the structures using the software

package GAMESS US [45]. The analysis of these wave functions and calculation

of properties was performed with the software package Multiwfn version 3.3.7

[75; 76].

11.3.1 Deformation of the charge density

The deformation density shows the difference between densities obtained from the

multipolar model and the conventional spherical model. It is expected that the

deformation density will show a non-spherical component of the charge density.

So it is predictable to see the concentration of charge density along the bonds,

the lone-pairs and other interactions in structures. In the tpg crystal we study

the static deformation density of the experimental and theoretical results of the

guanidine fragment and phenyl rings. These results are presented in Fig. 11.10.

The static deformation density shows the concentration of electron density

along the bonds, which is neglected in the conventional spherical model and,

on the other hand, it is verified the depletion of the electronic density in the

core of the atoms. So, in the aspherical density the charge is “taken” from the
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Figure 11.10: Contour plots of the static deformation density obtained from the
multipole refinement for the guanidine (a)and phenyl fragments(b), respectively
and the plots of the theoretical static deformation of the same fragments(c)and
(d). The red and blue solid contours lines represent the positive and negative
contours, respectively, and the black dashed contours represent the lines with
zero residual density. Step width is 0.1eÅ−3.

core to the regions of the interactions. In the multipole charge density of the

guanidine fragment it is evident the trigonal symmetry in the regions with positive

deformation density in the central C atom. Furthermore, the deformation density

shows that the interaction with the N atom of the imine group is stronger than the

interactions with the N atoms of the amino groups. The other important feature

in the deformation density is that the bond N−ipsoC shows a strong interaction,

where the deformation closer to the N atom is strongly positive and closer to the

C atom is slightly negative due to the electronegativity of the N atoms. In the

phenyl fragment the multipole static deformation density shows a charge density
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in the bonds between the C atoms of the ring, showing the delocalization of the

electron density. In the figure 11.10 (d) there is one more critical point due to

the Poincaré-Hopf theorem (see Eq. 3.10).

Comparing the theoretical and experimental deformation densities it is ev-

ident that the two results have the same behavior. However, the deformation

density in the theoretical results is larger than the one in experimental results.

This difference is justified by the optimization of the geometry correspondent to

an ideal case (at a temperature of 0K) and so the density is more localized.

The static deformation density for the tpgtfa structure is obtained in the

same way as performed for the tpg structure and is presented in Fig 11.11. In

the guanidinium fragment of the tpgtfa the deformation around the C atom

shows a trigonal symmetry and it is evident the similarity between the three

C − N bonds. The great difference between the fragment of the guanidine in

the two structures is the substitution of the imine group in the tpg by an amino

group in the tpgtfa. In the phenyl ring, the deformation is similar to the same

tpg group, due to the great stability of this group and so the results show a great

deformation density along the C−C and C−H bonds of the rings of the cation.

The carboxylate group shows the expected mm2 symmetry and the strong

interaction in the bonds C − O with high concentrations of deformation density

along these bonds. Furthermore, we can also see the evidence of hydrogen bonds

between carboxylate group of the anion and the guanidinium fragment of the

cation with a slight charge concentration in the region between the ions in the

theoretical results and the depletion in the same region of the experimental re-

sults. The deformation around the O atoms shows the characteristic lone-pair.

In the anion the deformation of the C − C bond shows a greater interaction be-

tween these atoms and this is justified by the charge transferred between the two

electronegative groups of this anion. The comparison of the deformation den-

sity obtained with multipole refinement and the theoretical results show a good

consistence and this proves the good description of the carboxylate group.
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Figure 11.11: Experimental and theoretical contour plots of the static deforma-
tion density. In the (a) and (b) plots are presented the multipole and theoretical
static deformation densities of the guanidine fragment, respectively and in the
same way the (c) and (d) plots present the densities for a phenyl fragment and
the (e) and (f) plots are for the carboxylate group. The red and blue solid con-
tours lines represents the positive and negative contours respectively and the
black dashed contours represent the lines with zero residual density. Stepwidth
is 0.1eÅ−3.
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11.3.2 Electrostatic potential

The electrostatic potential is an important characteristic of molecular structures

and explain the interactions between the molecules along crystals such as de-

scribed in section 3.4.2. These properties of the structures can be determined

from the charge density distribution of the tpg and tpgtfa that was obtained

from the multipole refinement.

The atomic positions obtained from the multipole refinement are used for the

calculation of the point distribution of the positive electrostatic potential and the

electron density distribution is treated as a continuous distribution of negative

charge. The results of the electrostatic potential of tpg are shown in a isosurface

of the charge density, with the value of the electrostatic potential at each point

on the surface color coded.

Figure 11.12: The isosurface of the tpg charge density at 0.5eÅ−3, with the value
of the electrostatic potential in eÅ−1 at each point on the surface color coded.

The isosurface shows that electrostatic potential is very low in all the rings,

indicating that the two components of the electrostatic potential cancel each other

out in the phenyl groups. However when we analyze the fragment of guanidine it

is evident the great variation of the electrostatic potential along the isosurface.

In the two amino groups (−NH) in the hydrogen region it is obtained a value of

2.9eÅ−1 which reveals that the electrostatic potential in this region is dominated
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by the distribution of the positive charge associated to the nucleus. In contrast

with this region, we see in the imine group (= N) a negative electrostatic potential

of about −0.13eÅ−1. This shows a slight preponderance of potential electrostatic

component associated to the electron density. These two regions with minimum

and maximum of the electrostatic potential, will form chains along the crystal

characteristic of this structure.

In the same manner the electrostatic potential of the tpgtfa is analyzed using

the isosurface such as in tpg and the results of this treatment are presented in

the Fig. 11.13.

Figure 11.13: The isosurface of the tpgtfa charge density at 0.5eÅ−3, with the
value of the electrostatic potential in eÅ−1 at each point on the surface colour
coded.

The triphenylguanidine molecule shows a similar behavior in tpg and tpgtfa

with an important difference due to the protonation of the N3 atom in the tpgtfa

structure. Thus, the triphenylguanidinium cation has three regions with negative

electrostatic potential of about 2.4eÅ−1 close to the H atoms of the guanidinium
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fragment. In the trifluoroacetate anion the electrostatic potential is more in-

teresting in the regions close to the O atoms. These two atoms participates in

three hydrogen bonds with the triphenylguanidinium cation and have a positive

electrostatic potential, but very close to zero.

The electrostatic potentials studied are important to understand the interac-

tions between asymmetric units in each crystal and it is crucial in the stability

of the crystal lattices. So the electrostatic interactions between asymmetry units

described leads to the formation of chains in the two structures.

11.3.3 Laplacian of the charge density

The Laplacian of the charge density, shows the regions with concentration or

depletion of the charge from the analysis of the sign of the Laplacian. This way,

the regions with negative laplacian are related to concentration of the charge and

for positive regions are associated to the depletion of charge. We will present

the contour plots of the Laplacian of the charge density for principal fragments

of this two structures. In the tpg we focused in the Laplacian of the guanidine

fragment and phenyl groups obtained from the experimental and theoretical result

presented in the Fig. 11.14.

These maps of the Laplacian of the guanidine fragment show regions of con-

centration of charge mainly in the bonding regions between atoms. Especially in

the N atom of the imine group it is found a large region of charge concentration

that allows to prove the existence of a non-bonding lone-pair that corresponds to

a peak at the Laplacian function outside the core atom and usually defined as

valence shell charge concentration (VSCC). The other VSCCs in this guanidine

fragment are related to the bonds and in these cases the VSCC is observed close

to each atom on the bonding vector. On the other hand, the more evident regions

of the depletion of the charge density is around the core of atoms. These regions

appear due to displacement of the charge density from the core of the atoms

to the bonds between the atoms. The phenyl group shows again concentration

regions along the bonds with VSCCs associated with the bonds and the regions

of depletion around the cores of C atoms.

The analysis of all results presented in Fig 11.14 shows a good agreement with
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Figure 11.14: The contour plots of the Laplacian of the charge density of the tpg
structure. The results for the guanidine fragment are presented in the (a) and
(b) plots from multipole charge density and theoretical calculations, respectively.
Similarly the results of the phenyl fragments are (c) and (d) plots from multipole
charge density and theoretical calculations, respectively. The red and blue solid
contours lines represents the depletion and concentration of the charge density
and are represented with geometric progression.

experimental results obtained from the multipole refinement and with theoretical

results obtained from optimized geometry.

The same treatment was applied in the tpgtfa structure and the results of

the Laplacian of the charge density are presented in Fig.11.15. In all results

obtained for tpgtfa it is verified the same charge density behavior with charge

concentration regions along the bonds and depletion regions located around the

atoms cores.

The guanidine fragment in this crystal presents a big difference compared to

the same fragment in tpg due to the N atom being protonated in tpgtfa and
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consequently the non-bonding lone-pair VSCC will form the bond with the extra

H atom in this structure.

The Laplacian of the carboxylate group shows the existence of three VSCCs

in the O atoms. One of them corresponds to a non-bonding lone-pair VSCC, the

other is associated to the bond of O atoms with the C atom of the carboxylate

group. The last VSCC of the two O atoms allows the formation of hydrogen bonds

between triphenylguanidinium and trifluoroacetate ions. In the carboxylate group

the experimental and theoretical plots of the Laplacian show a small difference

over the hydrogen bonds.
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Figure 11.15: The contour plots of the Laplacian of the charge density of the
tpgtfa structure. The results for the guanidinium fragment are presented in
the (a) and (b) plots from multipole charge density and theoretical calculations,
respectively. Similarly the results of the phenyl fragments are presented in the (c)
and (d) plots and carboxylate group (e) and (f). The red and blue solid contours
lines represents the depletion and concentration of the charge density and are
represented with geometric progression.
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11. CHARGE DENSITY OF TRIPHENYLGUANIDINE SALTS

In the middle of these hydrogen bonds, the experimental results show a very

small depletion, but the theoretical plot for the same region shows a small VSCC,

which indicates a concentration of charge between the two ions of the asymmetric

unit of tpgtfa.

11.3.4 Topology of the charge density

The topology of the charge density distribution can only be performed with the

determination of the atomic basins and allows us to obtain all the critical points

(CP) and bond paths (BP). Such as explained in previous sections the CPs are

determined from the expression 3.7, that depends on the gradient of the charge

density, thus in this section it is important to study the gradient density plots.

The results of tpg are presented in Fig. 11.16 and shows the CPs of the charge

density and the type of these. Furthermore these plots also allow us to visualize

the atomic basins defined by the zero flux surfaces and BPs.

C(2)

C(3) C(4)

C(5)

C(6)C(7)

H(3) H(4)

H(5)

H(6)H(7)

N(1)

N(2)

N(3)

C(1)

a" b"

Figure 11.16: The plots of the gradient trajectories of the charge density for
different fragments of the tpg structure. The result for the guanidine fragment is
presented in the (a) plot and the result of the phenyl fragment is presented in the
(b) plot. The red lines denote the gradient trajectories of the electron density,
the bond paths and the lines of the zero flux surfaces in this plane are represented
in black. The points flagged with a cross are the NCP, the blue points are the
BPC, and the green points are the RCP.

The gradient trajectories of the charge density plots of the tpg show the set of

trajectory lines within the atomic basin converging in the NCP such as explained
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11.3 Discussion of charge density properties

in section 3.5.2. This trajectory lines never cross and define the zero flux surface

in this plane of atoms represented by a line. The zero flux line in these plots are

intersected by the BP and in this intersection it is found the BCP.

In the guanidine fragment plot we can see the three BCP associated to the

N−C bonds, however the difference between the atomic basins of the N atoms is

pronounced, with a different distribution of the trajectory lines in the N3 basin.

Besides, the basin of the central C atom has a triangular shape conditioned by

the N atoms around, as it was predictable. The three phenyl group shows the

same result in the plots of the gradient trajectories and it is easy to verify that

all C atoms have very similar atomic basins generating a great symmetry with

a very small difference in the C2 atom because this is bonded with a N atom

instead of an H atom. In this group apart from the various BCP and BP, it is

found an RCP that has been also determined in the center of the ring and that

shows the local minimum of ρ in a phenyl plane and a maximum along the axis

normal to this plane.

The gradient trajectory plots of the tpgtfa structure are performed in the

same way and are presented in Fig 11.17.
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Figure 11.17: The plots of the gradient trajectories of the charge density for differ-
ent fragments of the tpgtfa structure. The result for the guanidinium fragment
is presented in the (a) plot, the results of the phenyl fragment is presented in (b)
and the carboxylate group are in the (c) plot. The red lines denote the gradient
trajectories of the electron density, the bond paths and the lines of the zero flux
surfaces in this plane are presented in black. The points flagged with a cross are
the NCP, the blue points are the BPC, and the green points are the RCP.

The guanidinium fragment in the tpgtfa shows a similar result to the obtained
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11. CHARGE DENSITY OF TRIPHENYLGUANIDINE SALTS

in tpg with a difference between the N3 atoms in the two structures. In this

structure the N3 atom shows the same distribution of the gradient trajectories

as the other N atoms contrary to what happened in tpg. Thus, we can say that

in tpgtfa the guanidinium fragment presents a real trigonal symmetry because

in this structure the N3 atom is protonated. Comparing the results of the two

structures it is obvious the similarity of the phenyl rings, displaying the same

topological structures (same number of BCP and one RCP in the center of the

ring).

The Fig. 11.17 (c) shows the gradient trajectories in the carboxylate group.

The C21 atom has a small basin because this is strongly conditioned by the basins

of the O atoms and C22 atom. On the other hand the O atoms presents large

basins that are bonded with C22 atom. Furthermore, the O atoms also form

hydrogen bonds between anion and cation, but in the plot the H3 atom has a

strange behavior, this atom is not in the carboxylate group plan and likewise

the H1 atom does not appear in this plot. Finally, between two hydrogen bonds

there is a RCP. This critical point shows up due to the pseudo ring formed by two

O−C bonds of the carboxylate group, the two N−C bonds of the guanidinium

fragment and the hydrogen bond between molecules.

The study of the gradient allows to obtain the atomic basins, CP and BP, of

the charge density structures. So we are now able to analyze in following sections

the several properties of the charge density from this topological entities.

11.3.4.1 Discussion of the BCPs properties

In this section we discuss the properties of the BCPs in the structures and with

this information we analyze the type of the bonds. The differences between the

two compounds are analyzed mainly in the guanidine fragment that is similar in

the two structures. Then we focus in the BCP associated to the several bonds

between central C atom and the three N atoms of the guanidine fragment .

The results of the tpg show an important difference between the values of

the N3−C1 bond. The bond path length of this bond is slightly shorter than the

other two which may indicate a stronger bond. The results for these bonds in

tpg gives a great difference in the ρ(rBCP ) with the similar values for bonds with
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11.3 Discussion of charge density properties

Table 11.8: The topological properties of the BCP of the main bond of the
guanidine fragment of the two crystals studied. The distances d(A − B), d(A −
BCP ) and d(BCP −B) are presented in Å, the charge density and Laplacian of
the same are presented in eÅ−3 and eÅ−5, respectively.

Bond d(A−B) d(A−BCP ) d(BCP −B) ρ(rBCP ) ∇2ρ(rBCP )
tpg

N1−C1 1.3617 0.9000 0.4618 1.856 -1.933
N2−C1 1.3852 0.9089 0.4763 1.822 -4.444
N3−C1 1.3136 0.6746 0.6390 2.865 -30.408

tpgtfa
N1−C1 1.3253 0.8065 0.5187 2.072 -13.961
N2−C1 1.3415 0.8095 0.5320 2.023 -13.016
N3−C1 1.3527 0.8130 0.5397 1.994 -12.613

N1 and N2, but the value of the bond with N3 is larger than the other and this

proves again that this bond is much stronger than the other two. Finally, the

Laplacian of the charge density is negative in the three bonds which shows the

concentration of charge in the BCP, however the values are substantially different

and it is important to refer the large value of the bond N3−C1 which shows an

higher charge concentration on this bond.

In the results of the tpgtfa it is evident the similarity between the values of

all properties in the three BCP. The results show that the BCPs are closer to

the central C atom. Besides, the values of the ρ(rBCP ) and ∇2ρ(rBCP ) shows

great interaction between atoms and concentration of charge in the BCP. The

comparison of the two structures show great differences and proves that different

types of bonds are involved in the guanidine fragments. In the tpg this fragment

is composed by two single bonds and one double bond, on the other hand the

tpgtfa has three delocalized bonds with the same character.

The other fragment that can be compared between both structures are the

phenyl rings analyzing the C atoms and taking into account their positions in the

ring. These results are presented in the Table 11.9.

The results show concordance between all values proving the stability of these

groups in the two structures.

The analysis of the positions of the BCP in the C−C bonds shows that they are

at the same distance of two C atoms, maintaining these distances approximately

127



11. CHARGE DENSITY OF TRIPHENYLGUANIDINE SALTS

Table 11.9: The topological properties of the BCP of each C−C bonds of one
phenyl ring of the two crystals studied. The distances d(A − B), d(A − BCP )
and d(BCP − B) are presented in Å, the charge density and Laplacian of the
same are presented in eÅ−3 and eÅ−5, respectively.

Bond d(A−B) d(A−BCP ) d(BCP −B) ρ(rBCP ) ∇2ρ(rBCP )
tpg

C2−C3 1.4066 0.6975 0.7091 2.144 -21.226
C3−C4 1.3990 0.7011 0.6979 2.098 -19.824
C4−C5 1.3865 0.6929 0.6935 2.129 -20.791
C5−C6 1.3950 0.6977 0.6973 2.106 -20.140
C6−C7 1.3908 0.6936 0.6972 2.122 -20.455
C2−C7 1.4027 0.6955 0.7073 2.156 -21.500

tpgtfa
C2−C3 1.3860 0.7191 0.6670 2.101 -19.771
C3−C4 1.3814 0.6895 0.6919 2.105 -21.018
C4−C5 1.3933 0.6964 0.6969 2.078 -20.111
C5−C6 1.3842 0.6919 0.6923 2.103 -20.795
C6−C7 1.3802 0.6919 0.6882 2.109 -21.116
C2−C7 1.3996 0.7241 0.6755 2.065 -18.753

constant. The charge density in the BCP is approximately 2.1eÅ−3 and the

Laplacian of the charge density around the −20eÅ−5 is in agreement with charge

density studies that include phenyl rings [20].

In the tpgtfa structure it is necessary to study the BCPs of the anion pre-

sented in the Table 11.10.

Table 11.10: The topological properties of the BCPs of the anion and the hy-
drogen bonds in the tpgtfa crystal. The distances d(A − B), d(A − BCP ) and
d(BCP − B) are presented in Å, the charge density and Laplacian of the same
are presented in eÅ−3 and eÅ−5, respectively.

Bond d(A−B) d(A−BCP ) d(BCP −B) ρ(rBCP ) ∇2ρ(rBCP )
O1−C21 1.2364 0.8371 0.3993 2.833 -14.803
O2−C21 1.2458 0.8437 0.4021 2.806 -17.447
C21−C22 1.5439 0.6526 0.8913 1.885 -22.397
O1· · ·H1 1.7179 1.1707 0.5472 0.221 4.419
O2· · ·H3 1.9001 1.2351 0.6651 0.171 2.904

The bond between the two C atoms shows a distance slightly greater than
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11.3 Discussion of charge density properties

expected, and it is verified further that the critical point is closest to the C21

atom which shows a shift of the charge to the carboxylate group. Furthermore,

this BCP has a Laplacian more negative showing a large charge concentration.

The bonds of the carboxylate group have the same bond length and in both the

BCP is nearest to the atom C21. But these two BCP show different results of the

Laplacian and consequently the O2−C21 bond has a higher charge concentration.

This result can be explained by the fact that O2 participates in two hydrogen

bonds in the crystal structure.

The two hydrogen bonds between anion and cation have the same behavior

with a much greater distance than all other bonds such as expected. Besides,

in the BCP these bonds show a very low density and the Laplacian is low and

positive which shows a depletion in this BCPs.

11.3.4.2 Bond path properties

Another important study is the analysis of the Laplacian and ellipticity along

the bond paths. This study allows to compare the main bonds in each structure

and also prove the similarities between the bonds shown in the previous section,

obtained from the analysis of the BCPs.

The results obtained for the tpg structure from the multipole refinement are

presented in Fig. 11.18 for different groups that make up the tpg.

The results obtained for the Laplacian in the guanidine fragment bonds show

the complete concordance between bonds formed by N1 and N2 atoms with the

central C atom. These two bonds show a great minimum in the N basin that

indicates the charge concentration in this region of the bonds. The Laplacian of

the bonds of N1 and N2 atoms with the C atoms of the rings shows the same

profile as the above bonds. The bond formed by N3 atom with the central C

atom shows a higher symmetry in the charge concentration with a minimum in

the C basin. The other bond with N3 and C atom of the ring shows a similar

profile with a deviation for the N basin and a lower charge concentration.

The ellipticity in the bonds of the guanidine fragments gives a measure of the

distortion of the electron density from the cylindrical symmetry, σ in the BP. In

the N basin it is obvious the existence of the peak in ellipticity in all bonds due
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11. CHARGE DENSITY OF TRIPHENYLGUANIDINE SALTS

BCP"N"basin" C"basin" BCP"C"basin" C"basin"

Figure 11.18: The properties along the BPs of the most interesting bonds of
the tpg structure. On the top it is presented the Laplacian in eÅ−5 and bellow
we have the ellipticity. The results along the BP in the guanidine fragment are
presented on the left side where the bonds N1−C1 and N2−C1 are in red, the
bond N3−C1 is in green, the bonds N1−C2 and N2−C8 are in blue and the bond
N3−C14 is in light blue. The phenyl group is presented on the right side and the
bonds C2−C3 and C2−C7 are in red and the other bonds between C atoms are
in green.

to the transfer of electron density to the bond. However, the bonds N1−C1 and

N2−C1 have a large ellipticity only in the N basin and in BCP, but in C basin

the ellipticity decreases to very low values. This shows the distortion of charge

density in the bonds close to the N atoms. For the bond N3−C1 the ellipticity

has a large value around the BCP and this gives a proof of the π character of

this bond. The bonds of N atoms with C ring atoms shows a lower value of the

ellipticty in the BCP and in the C basin, with the exception of bond N3-C14

which has an ellipticity of the 0.16. The peak in N3 basin shows the transfer of

lone-pair density to the bonds N3−C14 and N3−C1.

The phenyl group has a similar behavior over all the bonds, thus the Lapla-

cian gives a large concentration of charge around the BCP, but the bonds with

C ring atoms bonded with guanidine fragment have a lower value of ellipticity.

However these results of the ellipticity in the phenyl ring demonstrate the well-
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11.3 Discussion of charge density properties

known π-character along the phenyl ring.

The same study is performed in the tpgtfa to complement the knowledge of

this structure and to check for possible differences with the tpg structure. Thus,

the results are presented in Fig. 11.19.

BCP"N"basin" C"basin" BCP"C"basin" C"basin" BCP"

Figure 11.19: The properties along the BP of the most interesting bonds of the
tpgtfa structure. On the top it is presented the Laplacian in eÅ−5 and bellow
we have the ellipticity. The results along the BP in the guanidine fragment are
presented on the left side where the bonds N1−C1, N2−C1 and N3−C1 are in
red, the bonds N1−C14, N2−C8 and N3−C2 are in blue. The phenyl group is
presented in middle and the bonds C2−C3 and C2−C7 are in red and the other
bonds between C atoms are in blue. The anion is presented on the right side and
the bonds O1−C21 are in blue, the bond between C atoms (C21−C22) is in red
and the three bonds with C22 and F atoms are in pink.

The bonds with N atoms shows a great concordance in Laplacian with a

minimum in the same region of the N basin which again indicates a large charge

concentration. Furthermore the ellipticity of the same bonds shows in same region

of the charge concentration a large value of ellipticity that decrease in the BCP,

but for bonds with the central atom the ellipticity in the BCP is approximately

0.5 that indicates the large distortion of the electron density in the N basin and

in BCP. In the phenyl rings it is verified the same profile that was obtained in

tpg and this is because, as mentioned, these groups have a great stability only
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11. CHARGE DENSITY OF TRIPHENYLGUANIDINE SALTS

disturbed in the C atom bonded with N atom of the guanidine.

The results for the anion shows in the bond with C atoms the large concen-

tration of the charge around the BCP with a slight deviation to the C22 atom,

besides the ellipticity of this bond shows one ellipticity always very close to zero.

On the other hand the bonds between the C22 atom and F atoms shows a large

concentration of the charge in the F basins such as expected because of their

characteristics. The ellipticity of this three bonds has a large values and this

is explained with a trigonal symmetry in C22 atom and the electronic repulsion

between this regions of charge concentration and F atoms. The other important

group is the carboxylic that shows the same profile of the Laplacian along the

C−O bonds with a high charge concentration on the O basins such as expected

in this bonds. In the ellipticity the result along the BP shows a distortion on the

O basins because the transfer of electron density from the characteristic lone-pair

to this bonds.

The anion and cation are linked by hydrogen bonds between O atoms of the

carboxylic group and the two N atoms of the guanidine fragment. The properties

of these two hydrogen bonds are presented in Fig. 11.20.

In the O basins of the hydrogen bonds it is verified the great charge concen-

tration and large ellipticity. This indicates a distortion of the electron density

of the O atoms. Around the BCP the Laplacian is close to 0 and the ellipticity

is very low. In the H basins it is verified a large charge concentration of charge

because the H atoms, however in the ellipticity are evident the differences. In

bond O1· · ·H1 the ellipticity is almost zero and constant, but the bond O2· · ·H3

has a great peak and this shows a large distortion in the bond. This difference

is explained by analyzing the planes formed by the O atoms and each N atom

bonded to H atom. So, in the plan defined by O1, O2 and N1 the H1 is contained

in that plan, therefore the ellipticity is almost zero. But in the plan formed by

O1, O2 and N3 the H3 is out of this plan and consequently the ellipticity shows

a large peak because the distortion of the electron density.
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BCP"O"basin" H"basin"

Figure 11.20: The properties along the BP of the hydrogen bonds between triph-
enylguanidinium cation and trifluoroacetate anion. On the top it is presented
the Laplacian in eÅ−5 and bellow we have the ellipticity along the BPs. The
hydrogen bond O1· · ·H1 are in red and the O2· · ·H3 are in green.

11.3.5 Net charges and higher moments

The net charges from the integration over the topological basins in the two com-

pounds are presented in Table 11.11.

In tpg the N atoms in the guanidine fragments always have negative charges,

which is in agreement to what is expected for electronegative atoms. The scrutiny

of the values obtained from the integration of basins shows that in tpg all atoms

have values very close, between −1.2428 and −1.4099au, but in tpgtfa the N

atoms of the amino group have a greater charge than the N atoms of tpg and

the N atom of the imine group presents the lowest charge of all the N atoms in

this two structures.

The central C atom has positive charge because the N atoms introduces a

polarization in C atom. In the same way the C atoms of the rings linked to

the guanidine fragment( C2, C8 and C13) presents positive charge, but this is

considerably lower than the central C.

The rings in these structures show a great coherence between themselves, in
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Table 11.11: Charges from the integration over the atomic basins in tpg and
tpgtfa

Atom Charge(au) Atom Charge(au)
tpg tpgtfa

C(1) 1.4324 C(1) 1.4205
N(1) -1.9423 N(1) -1.2956
N(2) -1.8391 N(2) -1.4099
N(3) -1.0082 N(3) -1.2428
C(2) 0.7019 C(2) 0.3965
C(3) -0.2042 C(3) -0.1570
C(4) -0.1286 C(4) -0.2544
C(5) -0.1295 C(5) -0.2520
C(6) -0.1291 C(6) -0.2500
C(7) -0.2068 C(7) -0.1626

– – O(1) -1.4240
– – O(2) -1.4205
– – C(21) 2.5632
– – C(22) 1.1884

the first carbons of the rings the charge is positive as would be expected, and

all other C atoms exhibit a negative charge. Making a more detailed analysis of

the value of the charges along the ring it is possible to find a trend showing the

charge of the C atoms becoming increasingly more negative with the increase of

the distance to the atom N such as is showed in Fig 11.21. The only ring that

does not have this behavior is the ring connected to the N1 atom that has the

higher negative charge of all N atoms.

In the anion of the tpgtfa the charges are dominated by electronegative atoms

and in Table 11.11 it is showed the negative charge of the O atoms of the car-

boxylate group, having approximately the same charge. The three F atoms also

have negative charge with an average value of -0.541au. Consequently, the C

atoms between these two negative groups have positive charge. The polariza-

tion introduced by the electronegativity of the O atoms polarize the C atom of

the carboxylate group withdrawing electrons from it’s basin, leading to a large

positive charge of 2.5632 for this carbon atom.

Finally the H atoms can be divided in two groups, the H atoms of the guani-

dine fragments in the two molecules that have an average charge of the 0.7025au
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Distance"to"the"N"atom""
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&0.2411%% &0.3080%

&0.3085%%

&0.3069%%&0.2369%%

Figure 11.21: The charge of the C atoms of the ring in atomic units with the
distance to the atom N.

and the H atoms of the rings that shows lower values of charge with an average

charge of the 0.2042au.
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Chapter 12

Conclusions

This thesis shows several results of the nonlinear optical experimental and com-

putational studies applied to various new compounds with high octupolar char-

acter such as guanidine derivatives and thiocyanuric acid. The characterization

of the structures was performed using single crystal X-ray diffraction; the non-

linear optical response was evaluated using the Kurtz-Perry method and several

computational methods.

Structural determination and the respective study of six new guanidine salts

was aclomplished. Two new structures of guanidine salts, that crystallize in a

noncentrosymmetric group, were found. These two crystals were evaluated with

the Kurtz-Perry method showing SHG reasonable results. Interestingly, although

the computational results are usually higher than the experimental values, we

calculate for g5 a smaller value than the value obtained experimentally, which

indicates that some effects in this structure were discarded in computational cal-

culations.On the other hand the computational result of the g6 is approximately

double the experimental value(as it is usual).

In this work, it was demonstrated the loss of much of the octupolar character

of the phenylguanidine in relation to guanidine molecule. Two phenylguanidine

salts were studied (one with structural determination). The nonlinear optical

responses were measured showing that the SHG efficiency for these compounds

is null.

The third guanidine derivative used was triphenylguanidine that exibits a large

octupolar character (such as guanidine). The Kurtz-Perry method was used for
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study of its nonlinear optical properties. This study reveals a modest result for

the SHG efficiency that is in concordance with the computational results.

In all computational results it was verified a concordance in the behavior of

the highest components of the hiperpolarizability, increasing to unrealistic values

when functionals with less exchange of HF. This behavior allows us to conclude

that the description of the electron density along the calculations with less ex-

change of HF leads to bad computational results. The SHG efficiency was calcu-

lated for each material using two different local field corrections. The anisotropic

Lorenz-Lorentz local field factors in all structures presents substantially worse re-

sults than those obtained with approach by Wortmann and Bishop (extension of

the Onsager’s reaction field model). Finally all computational results of the SHG

efficiency, with exception of the g5, are larger than those obtained experimen-

tally. The possible justification for this discrepancy can be the low crystallinity

of some materials and the losses of beam intensity in the experimental set up.

This work also focused on the comprehension of the charge density due to

its strong influence in the nonlinear optical response. For the study of the TPG

and TPGTFA structures it was applied the multipole refinement to experimental

data. The results obtained show a good description of the charge density when

are compared with theoretical results of the deformation and laplacian of the

density (and when analyzed the results of the residual density).

The results of the properties of the charge density and the topology analyses

were used for comparison of the triphenylguanidine molecule and triphenylguani-

dinium cation in the two structures. In these structures there is a large similarity

in all properties of the charge density in the rings groups, on the other hand the

most of the differences are associated to the guanidine fragment. The properties

obtained show a different interaction between atoms in guanidine fragment with

protonation of the one N atom in TPGTFA and in this conformation the three N

atoms has the same type of properties. The equivalent atom in TPG is deproto-

nated and the properties are differ completely of all other N atoms presenting a

electrostatic potential with a positive sign while the others have a negative elec-

trostatic potential. Furthermore the Laplacian of the two guanidine fragments

shows different regions of the concentration and depletion of charge around equiv-
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alent N atoms. The topological analyses proves that these differences between

these fragments are related with the N3−C1 bond of the TPG. This bond shows

a high π character (a double bond) as seen in BCP and BP properties. On the

other hand the results in the TPGTFA show that all N−C bond are single bonds

with a large delocalization in the guanidine fragment.

Finally in the trifluoroacetate anion the study focused on the carboxylic group

and it was checked that the two O atoms have the same properties. This was ver-

ified from analysis of BCP, BP and charge values obtained from the integration

of the each atom along atomic basins. It was further reinforced by the fact the

length of C−O bonds are practically the same in the anion.

In coclusion, this dissertation allowed me to obtain and develop scientific

knowledge in the Nonlinear Optic and Charge density studies. Furthermore it

gave me the possibility of understand and apply several experimental techniques

and data treatments such as single crystal X-ray diffraction and consequent de-

termination of the crystal structures, Kurtz-Perry method and subsequent anal-

ysis necessary to obtain the nonlinear optical response. Furthermore this work

gave me a large set of computational skills with use of several programs such

as GAMESS (US), Mathematica R©, SHELXS- 97 and SHELXL-97 mainly in the

determination of the structure and nonlinear optical properties. The multipole re-

finement and charge density analyzes made use of the XD program and Multiwfn

version 3.3.7, besides other already mentioned. This work has great importance

in my formation and search for knowledge to better understand the world around

us.
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