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Abstract

Black Holes (BHs) are predicted within Einstein’s General Relativity, and
they are a consequence of the gravitational collapse of matter into a ex-
tremely compact state, from which even light is prevented to escape. This
master thesis explores the shadows of BHs and some of their fascinating prop-
erties. For an observer, a shadow is a BH’s apparent shape in the sky due to
gravitational lensing of nearby radiation, emitted by an external source. Not
surprisingly, the shadow bears an indirect fingerprint of the space-time geom-
etry around the BH. Kerr BHs, which are BHs with rotation, are presently
the most “standard” solutions, and possibly also the most realistic ones.
However, in order to provide alternative shadow templates for upcoming as-
tronomical observations, namely for the observation of the supermassive BH
candidate Sgr A* in the center of our galaxy by the Event Horizon Telescope,
it is timely to also consider different types of solutions.

Hence, a novel class of BHs in equilibrium with a massive scalar field,
dubbed “hair”, was considered, exhibiting intriguing properties. The readers
are assumed to be familiar with General Relativity, but not necessarily with
BH physics. The first chapter of this thesis covers some important features
of the Kerr solution, necessary for the following discussion on “hairy” BHs
in the second chapter. This family of solutions yields interesting features,
some of which are shadows that differ significantly from the Kerr prediction.
In particular, during this thesis development it was discovered that these
“hairy” BHs possess smaller shadows than the corresponding Kerr BHs. Ad-
ditionally, under some conditions novel exotic shadow shapes can arise. Thus,
hairy BHs could potentially provide new shadow templates for the aforemen-
tioned experiments.
These are the main results of this thesis, along with the analysis of gravi-
tational lensing of Boson Stars (BSs). The latter are simply self-gravitating
scalar configurations, described by the massive Klein-Gordon equation in
curved space-time.
Two different “ray-tracing” algorithms were developed in order to represent
the shadows, the first for Kerr BHs and the other for hairy BHs (plus BSs).
Additionally, high definition images of the shadows were produced during
this work. The main results presented here are qualitatively new and have
already been submitted for publication.

Resumo

Os Buracos Negros (BNs) são previstos pela Relatividade Geral de Einstein,
e são uma consequência do colapso gravitacional de matéria para um estado
extremamente compacto, do qual a luz é impedida de escapar. Esta tese de
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mestrado explora as sombras de BNs e algumas das suas propriedades fasci-
nantes. Para um observador, uma sombra é a aparente forma do BN no céu
devido ao efeito de lente gravitacional da radiação próxima, emitida por uma
fonte externa. Não é pois surpreendente que a sombra seja uma manifestação
indirecta da geometria do espaço-tempo em redor do BN. BNs de Kerr, que
são BNs com rotação, são presentemente as soluções mais “padrão”, e pos-
sivelmente também as mais realistas. No entanto, é necessário fornecer vari-
ados templates experimentais para analisar os futuros dados de observações
astronómicas. Em particular, avizinha-se a observação do candidato a BN
supermassivo Sgr A* no centro da nossa galáxia pelo “Event Horizon Tele-
scope”. É pois actual e adequado também considerar outros tipos de soluções.

Deste modo, foi considerado uma nova classe de BNs em equiĺıbrio com
um campo escalar, denominado “cabelo”, exibindo propriedades intrigantes.
Assume-se que os leitores estão familiarizados com a Relatividade Geral, mas
não necessariamente com a f́ısica de BNs. O primeiro caṕıtulo desta tese
cobre alguns aspectos importantes da solução de Kerr, necessários para a
discussão seguinte sobre BNs “cabeludos” no segundo caṕıtulo. Esta famı́lia
de soluções é caracterizada por alguns aspectos interessantes, entre os quais
sombras que diferem de forma significativa das associadas a BNs de Kerr.
Em particular, durante o desenvolvimento desta tese foi descoberto que estes
BNs cabeludos possuem sombras mais pequenas do que os BNs de Kerr corre-
spondentes, e também que sob certas condições novas formas exóticas podem
aparecer para as mesmas. Portanto, os BNs cabeludos podem potencial-
mente fornecer novos templates experimentais para as referidas observações.
Estes são os principais resultados da tese, juntamente com a análise do efeito
de lente gravitacional de Estrelas de Bosões (EBs). Estas últimas são sim-
plesmente configurações escalares que auto-gravitam, descritas pela equação
massiva de Klein-Gordon em espaço-tempo curvo.
Dois algoritmos de ray-tracing foram desenvolvidos de forma a representar
sombras, o primeiro para BNs de Kerr e o outro para BNs cabeludos (junta-
mente com EBs). Além disso, imagens de alta-definição foram desenvolvidas
durante este trabalho. Os principais resultados aqui apresentados são quali-
tativamente novos e já foram submetidos para publicação.
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Chapter 1

Kerr Black Holes

1.1 Brief introduction to Black Holes

Black Holes (BHs) are extremely compact objects predicted by Einstein’s
Theory of General Relativity and are one of the most enigmatic places in
the universe. They are by definition “regions in space-time in which the
gravitational field is so strong that it precludes even light from escaping to
infinity” [1].
There is astronomical evidence for a supermassive Black Hole (BH) in our
galaxy center, namely from star trajectories suffering a strong deviation by
an extremely massive object (see Fig. 1.1.1) [2]. However, a large mass by
itself does not imply the existence of a BH. A BH candidate must also be very
compact, with a size not much larger than the gravitational radius ∼ GM/c2,
where M is the mass of the object, G is the gravitational constant and c is
the velocity of light in vacuum [3].

After BHs, neutron stars are the most compact objects in the cosmos
and can be formed at the endpoint of stellar dynamics [4]. Still, the neutron-
degeneracy pressure, which prevents the gravitational collapse, cannot over-
come the gravitational attraction above a certain mass. Thus any compact
astrophysical object detected with a mass bigger than ≈ 3M⊙ (M⊙ is the
solar mass) is thought to be a BH, since this is the expected upper mass
limit for a neutron star [1, 3, 4].

Three possible types of BHs in the Universe are considered in modern
astrophysics: stellar BHs, supermassive BHs and primordial BHs [1]. Stellar
mass BHs are most likely created in the final stage of massive star collapse,
due to the tremendous pressure in the star core and in situations where
the fermionic pressure between particles is not enough to prevent further col-
lapse [5,6]. Therefore this type of BH is expected to have a few star masses in
order of magnitude (≃ 3M⊙ up to ∼ 10M⊙). In contrast, supermassive BHs

1
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Figure 1.1.1: Plot of star orbits around a massive object dubbed Sagittarius A*
(Sgr A*) in the center of our galaxy, the Milky Way. The coordinate system was
chosen such that Sgr A* is at rest. This graph combines data from a survey that
spanned 16 years. From this analysis it was possible to measure the mass of the
object Sgr A* to be (4.31±0.36)×106M⊙, where M⊙ is the mass of the Sun. It is
suspected that this object is a supermassive BH. Image adapted from the article
from Gillessen et al. (2009) [2].

found in the center of galaxies, like our Milky Way galaxy, can be millions
of times more massive than stellar BHs (from 106M⊙ up to 1010M⊙) [1, 3].
It has also been hypothesized that some BHs could have been formed in the
early stages of the expansion of the Universe, namely with microscopic sizes,
due to the enormously high matter density at that time. Hence these are
given the name primordial BHs. [1].

A surprising discovery was made recently, which implies that the mass
of supermassive BHs correlate quite strongly with global properties of their
host galaxies, namely luminosity and velocity dispersion. This correlation is
fairly intriguing since typically the supermassive BH is 108 smaller and 103

less massive that his host galaxy [3]. At present however (2015), powerful
accretion disk winds were observed, produced in a active galactic nuclei and
driven by a supermassive BH [7]. These winds generate large scale molecular
outflows, which influence the evolution of the entire galaxy. This process
could hence be a possible mechanism which might explain the previous cor-
relation.
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According to the Theory of General Relativity (GR), the geometry of
space-time is determined by the Einstein field equations

Rµν −
1

2
gµνR =

8πG

c4
Tµν ,

where Rµν is the Ricci tensor, gµν is the metric, R is the Ricci scalar and
Tµν is the energy-momentum1 tensor [5]. An extra term which incorporates
the cosmological constant can also be included. The left-hand side of the
equations concerns the geometric side of space-time, namely its curvature,
whereas the right-hand side is connected to distribution of mass and en-
ergy. Thus curvature influences the distribution and motion of matter in
the cosmos, but on the other hand matter (and energy) also determines the
curvature of space-time.

The simplest BH solution to the Einstein equations is given by the
Schwarzschild metric for a static, non-charged and spherically symmetric
(non-rotating) BH in vacuum. However, more astrophysically relevant are
uncharged spinning BHs in vacuum, described by the Kerr metric. The
electric charge2 is not likely to play a major role, due to the fact that in
average matter in the cosmos is mostly neutral [1, 5].

1.1.1 Kerr metric in Boyer-Lindquist coordinates

The metric gµν of a hyper-space with n dimensions contains its relevant
geometric information. The line element is generally written in the form:

ds2 = gµνdx
µdxν ,

where summation is implied by Einstein convention.

The space-time geometry in General Relativity (n = 4) for a spinning BH
is given by the Kerr metric. In Boyer-Lindquist coordinates {t, r, θ, ϕ} this
metric3 is given by [5, 6]:

ds2 = −
(
1− 2mr

ρ2

)
dt2 −

(
4mar sin2 θ

ρ2

)
dtdϕ+

(
ρ2

∆

)
dr2 + ρ2dθ2+

+sin2 θ

(
r2 + a2 +

2mra2 sin2 θ

ρ2

)
dϕ2. (1.1.1)

1The exponent of c depends on the units used for Tµν . For the present case, the scalar
Tµ

µ = T has units of energy density.
2However the so called Kerr-Newman metric for a spinning and electrically charged BH

is also known [5].
3We use the (−,+,+,+) signature convention [1].
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The parameter m is given by m = GM/c2 where M is the mass4 of the
BH [5]. Also, the expressions for ρ2 and ∆ are given by

ρ2 = r2 + a2 cos2 θ,

∆ = r2 − 2mr + a2.

The parameter a is related to the spin of the BH and it turns out to be the
specific angular momentum a = J/(Mc) (where J is the BH’s angular mo-
mentum) [1,5]. In order to prevent a naked singularity (one observable from
infinity), as imposed by the Cosmic Censorship Conjecture [6, 8], the value
of a is restricted to the interval a ∈ [−m,m], or equivalently m2 ≥ a2. A
physical interpretation for this restriction (dubbed Kerr bound) comes from
the fact that during the formation of a BH from matter, the centrifugal forces
due to rotation cannot overcome the gravitational pull [9] (see also Appendix
A.1). BHs with |a| = m are also named “extremal” and correspond to the
cases with maximum rotation. Notice also that the parameter m has dimen-
sions of a distance and defines the scale of the physical system: a stellar
and a supermassive BH are both equally described by the Kerr metric (in
vacuum), although with different values of m (in S.I. units). Throughout
the text sometimes the dimensionless rotation parameter ao = a/m is used
instead of a.

Despite what the notation {t, r, θ, ϕ} used for Boyer-Lindquist coordi-
nates might suggest, if a 6= 0 the limit m → 0 (which is Minkowski space)
does not yield spherical coordinates for the spatial part of the metric5. In-
stead, the coordinates {r, θ, ϕ} are part of a coordinate system with spheroidal
symmetry, not spherical6. For instance, the set of spatial points defined by
the condition r = Const. is given by an ellipsoid of revolution. The devia-
tion from a sphere is characterized by the rotation parameter a (for a = 0
we get a sphere). Despite this fact, usually the coordinate r is loosely called
“radius” and surfaces of constant r are designated as “spherical”7. Also, the
coordinate θ will sometimes be referred to as the “latitude” coordinate and ϕ
as the “azimuthal” coordinate, due to their interpretation in the limit a→ 0
and m → 0. For instance, the condition θ = {0, π} corresponds to the set
of points in space-time along the BH’s axis of rotation and the condition
θ = π/2 corresponds to the BH’s equatorial plane.

4Some authors use units c = 1 and G = 1, which is equivalent to say that the m is the
mass of the BH but measured in units of distance.

5The spatial part is obtained by setting dt = 0.
6Unless of course if a = 0, which yields spherical coordinates in the limit m→ 0.
7Although this surfaces are topologically spherical, they are certainly not geometrically

spherical in most cases.
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Notice that the coordinate t in (1.1.1) has spatial rather than time di-
mensions, as the symbol notation would naively suggest. In fact, in the limit
m → 0 (which is Minkowski space-time (flat space)), t does embody the
classical time coordinate t∗ by the transformation t = ct∗. Equivalently, we
can use t as a time coordinate but in units c = 1 and with time as measured
in units of distance.

A close inspection of the Kerr metric (1.1.1) reveals that no element
gµν depends explicitly on either t or ϕ. This solution to the Einstein field
equations is therefore stationary and also has axial symmetry. However it is
not static, since the time reversal operation t→ −t does not leave the metric
invariant (due to the crossed term dtdϕ). Only by applying both t → −t
and ϕ → −ϕ is the solution unchanged. Each of these symmetries can be
expressed by a Killing8 vector field, namely ∂t (stationary) and ∂ϕ (axial
symmetry), where the partial derivative operators stands for a coordinate
basis vector field [5].

1.1.2 Inverse metric

For some purposes it is useful to compute the inverse metric gµν :

∂2s = gµν∂µ∂ν .

In this formalism the partial derivative operator ∂ν stands for the coordinate
basis vector associated with the coordinate ν; the element ∂µ∂ν stands for a
tensor product ∂µ ⊗ ∂ν between basis vectors.
In Boyer-Lindquist coordinates the inverse metric is:

∂2s = − 1

∆

(
r2 + a2 +

2mra2 sin2 θ

ρ2

)
∂2t −

(
4mar

∆ρ2

)
∂t∂ϕ +

(
∆

ρ2

)
∂2r

+

(
1

ρ2

)
∂2θ +

(
ρ2 − 2mr

ρ2∆sin2 θ

)
∂2ϕ. (1.1.2)

The elements of gµν were computed by assigning each component of the
metric gµν to elements of a matrix and by using standard algebra techniques
for matrix inversion [10].
Some of the inverse metric components can also be rewritten as:

gtt = − 1

ρ2∆
[(r2 + a2)2 − a2∆sin2 θ], (1.1.3)

8The Killing vectors express isometries, in the sense that the Lie derivative of the metric
tensor is zero in the direction of those vectors. A Killing vector ξµ has then to satisfy the
equation ∇νξµ +∇µξν = 0 [5,8].
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2gtϕ = − 2a

∆ ρ2
(r2 + a2 −∆) and gϕϕ =

∆− a2 sin2 θ

ρ2∆sin2 θ
. (1.1.4)

1.1.3 Event horizon and ring singularity

The Kerr metric (1.1.1) has a singularity if either

∆ = r2 + a2 − 2mr = 0, (1.1.5)

or
ρ2 = r2 + a2 cos2 θ = 0. (1.1.6)

The roots of the equation (1.1.5) are coordinate singularities, as they
can be eliminated by a change of coordinates. The condition ∆ = 0, or
equivalently

r = r± ≡ m±
√
m2 − a2,

gives rise to two null surfaces r− and r+, with r− ≤ r+; the surface defined
by r+ is commonly called event horizon. This surfaces is a “one-way mem-
brane”, as it can only be crossed once [6], even by light. As a consequence,
the event horizon r+ is for an observer at infinity the limit from which infor-
mation can be measured. In fact, any events that occur beyond this surface
will never be observed for r > r+ and so r+ can be taken as the boundary
of the BH. Therefore, throughout the text, analysis will be done outside r+
and will be not continued inside9 this surface.

The second equation (1.1.6) corresponds to a physical singularity, as it
can be proven for instance that the Kretschmann scalar RµναβR

µναβ, which is
invariant, is infinite in this region of space-time [8]. This singularity cannot
be removed by any change of coordinates and it is thus an intrinsic property
of the Kerr space-time. Equation (1.1.6) yields

r = 0 and θ =
π

2
. (1.1.7)

Notice that the condition r = 0 does not correspond to a single point in
space-time if a 6= 0. In fact, recalling that the limit m → 0 yields coor-
dinates with spheroidal symmetry, embedding in Cartesian space of points
satisfying condition r = 0 gives a disc of radius a. Condition (1.1.7) yields
then only the edge of that disk, a ring singularity [8, 11].

As a final remark, notice that ∆ = 0 only has real roots if m2 ≥ a2.
Outside this range the singularity is not “cloaked” by an event horizon, giving
rise to a naked singularity as was previously stated.

9By the words “beyond” or “inside” the event horizon surface it is meant r < r+.
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1.1.4 Ergoregion

For a static time-like observer/particle we have dr = dϕ = dθ = 0 and so the
line element (1.1.1) becomes

ds2static = −
(
1− 2mr

ρ2

)
dt2.

For time-like trajectories we must have

ds2static < 0,

which requires (
1− 2mr

ρ2

)
> 0.

This condition breaks down for

r+ < r < m+
√
m2 − a2 cos2 θ.

We conclude that in this region, which is outside the event horizon, it is
impossible to have static observers. For reasons that will become apparent
in a moment, this interval is called ergoregion. Also, the surface defined by
r = m+

√
m2 − a2 cos2 θ is called ergosphere and only photons can be static

on it. The ergosphere is therefore the static limit10 [1]. Because grr, gθθ and
gϕϕ are all positive for r > r+ we must have in the ergoregion:

dϕ > 0 if a > 0,

or
dϕ < 0 if a < 0,

as consequence of the coupled term between t and ϕ (in the ergoregion it is
the only negative metric term). A time-like particle/observer in this region is
therefore “forced to rotate”11 around the BH, and must do so in the sense of
the spin. For instance, a trajectory in the ergoregion with opposite rotation
relative to the BH would require a velocity higher than the speed of light,
an impossible condition (see also [1, 12]). This result is independent of the
angular momentum of the particle and it is valid even for counter-rotating
particles at infinity that enter the ergoregion (see Fig. 1.1.2).

This effect is a consequence of the cross term dtdϕ in the metric and it
is connected to frame-dragging, which is an angular shift in the azimuthal
coordinate ϕ as measured by infinity, due to the fact that space-time itself

10In the ergoregion even photons cannot be static.
11A static observer at infinity will observe the particle rotate around the BH. The word

“rotation” here is only associated with variations in the azimuthal coordinate ϕ.
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is “dragged” by the BH spin [1, 5]. Frame-dragging is not specific to the er-
goregion, but it rather occurs in all space-time (although not equally for all
points). The ergoregion is then the set of points in space-time with r > r+
where frame-dragging is “too strong” to overcome (counter rotation is im-
possible). Notice however that particles can enter the ergoregion and still
escape to infinity since the ergosphere is not a null surface.

It can be proven [5, 13] that energy extraction is possible within the er-
goregion by the so called Penrose process. In very simple terms, this consists
on sending a particle A, that latter decays into particles B and C, inside
the ergoregion (see Fig. 1.1.3). Particle C is created such in a way that its
energy is negative in relation to infinity12 and it is also absorbed by the BH.
The energy of the BH is then decreased by C and if particle B escapes it
will have more energy that the initial particle A, by conservation of the total
energy. The difference comes in practice from the rotational energy of the
BH, which decreases after this process is implemented [6].
This is part of the reason for the name: ergo in “ergoregion” comes from the
Greek word for work [14].

12However, the energy measured by a local observer must be positive for physical par-
ticles
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Figure 1.1.2: Any particle must rotate in the sense of the BH before entering the
ergoregion, even for initially counter-rotating particles. Image adapted from [15].

A
B

C
Ergosphere

Ergoregion

Event Horizon

Figure 1.1.3: Illustrative drawing of the Penrose process. A particle A enters
the ergoregion and decays into particle B and C. Particle C has negative energy
in relation to infinity and is absorbed by the BH. Particle B escapes with more
energy that particle A by conservation of the total energy. The grey area in the
figure represents the BH.
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1.2 Hamilton-Jacobi formalism in GR

Much can be learned by the the study of geodesics of massive particles and
photons around BHs, leading to some insight about the underlining space-
time physics. For the analytic study of this trajectories it is sometimes
easier to use a certain type of formalism. In this section the Hamilton-Jacobi
formalism is developed, in order to be used as a tool in the next section to
understand geodesics in the Kerr metric.

1.2.1 Hamilton Equations

The geodesic equations of motion of a particle are obtained by requiring the
action functional S[xµ] to be stationary13 [6, 8, 16]:

S[xµ] =
∫ λ2

λ1

L(xµ, ẋµ, λ) dλ,

where the Lagrangian14 is given by L(xµ, ẋµ, λ) = 1
2
gµν ẋµẋν . The set of n

coordinates {xµ} used is general and so the arguments used below do not
rely on a specific coordinate system15. The metric of such a hyper-space gµν
is assumed to depend only on the coordinates {xµ}. Also, the integration
and the derivative ẋµ are given with respect to an affine parameter.

The proper time τ ∗ is the elapsed time in the rest frame of a given par-
ticle. It is a frame invariant quantity, which makes it a promising candidate
for an affine parameter. However, following the nomenclature used for the
coordinate t, we will use a parameter τ with spatial dimensions and related
to proper time τ ∗ by τ = cτ ∗ (see page 5). Despite this fact, the symbol τ will
still be sloppily called “proper time”, in order to be consistent with literature.

For time-like particles, the proper time τ is usually a good choice for
an affine parameter. However, for null or massless particles there is no rest
frame and so dτ = 0; in this case τ is not good for parametrization or dif-
ferentiation. It is then more convenient to use an affine parameter λ defined
from the proper time τ by τ = µλ . If the parameter µ (which here is not a
component index!) is proportional to the rest mass of the particle, then the
affine parameter λ can be used for both null and time-like particles, since

13For time-like particles this condition is equivalent to find an extremum for the proper-
time (actually not necessarily an extremum but rather a stationary point).

14Observation regarding notation: The Einstein summation convention is implied
throughout the text. Also, an index of a variable in functions is taken to be free (for
instance in the expression L(xµ, ẋµ, λ), µ is a free index).

15For a space-time in General Relativity we consider the specific case n = 4.
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µ = 0 does not imply dλ = 0. We have then the following normalization [17]:

−dτ 2 = gµνdx
µdxν ,

−µ2 = gµν ẋ
µẋν .

By convention, the affine parameter λ is taken to be dimensionless. Since τ
has spatial dimensions, then µ must also have dimensions of a distance. We
conclude therefore, by dimensional analysis, that µ = Gµ∗/c2, where µ∗ is
the rest mass. If units c = 1 and G = 1 are used however, then µ is the same
as the mass of the particle (see also footnote 22 on page 17).

The Euler-Lagrange equations provide the stationary condition for the
functional S[xµ]:

∂L

∂xµ
=

d

dλ

(
∂L

∂ẋµ

)
. (1.2.1)

This equation gives n second order differential equation for the geodesic mo-
tion of the particle.

The physical domain of L(xµ, ẋµ, λ) is restricted by the normalization

condition to the hyper-surface −µ2

2
= L(xµ, ẋµ, λ). Defining the conjugate

momenta as

pµ =
∂L

∂ẋµ
= gµν ẋ

ν ,

the Hamiltonian is given by the Legendre transform:

H(xµ, pµ, λ) = pµẋ
µ − L(xµ, ẋµ, λ). (1.2.2)

Hence:

H = gµν ẋ
µẋν − 1

2
gµν ẋ

µẋν =
1

2
gµν ẋ

µẋν = L.

Consequently H has the same magnitude as the Lagrangian L and so there
are no potentials involved (the motion only depends on the curvature of
space-time) [14]. However these two functions have different functional de-
pendencies, as in this formalism pµ is an independent coordinate (pµ is con-
nected to xµ and ẋµ only a posteriori by the equations of motion16) [18].

16Observation: Defining

pµ − ∂

∂ẋµ
L(xµ, ẋµ, λ) = ξ(pµ, x

µ, ẋµ, λ),

where pµ, x
µ, ẋµ and λ are independent coordinates, and the Hamiltonian as

H(xµ, ẋµ, pµ, λ) = pµẋ
µ−L(xµ, ẋµ, λ), we get

∂H

∂ẋµ
= pµ−

∂

∂ẋµ
L = ξ(pµ, x

µ, ẋµ, λ).

Restricting ourselves by choice to the hyper-surface ξ(pµ, x
µ, ẋµ, λ) = 0, the Hamiltonian

does not have an effective dependence on ẋµ, but the coordinates {pµ, xµ, ẋµ, λ} are still
strictly speaking independent, there is only a implicit dependence a posteriori.
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Nonetheless, in the end of the day ẋµ = pµ in magnitude; this symbol no-
tation is fortunate since for the normalization used ẋ is the 4-momentum
vector17 in units c = 1, G = 1. If this units are not used then p = Gp∗/c3,
with p∗ in S.I. units18.

H is then a 2n coordinate function:

H(xµ, pµ, λ) =
1

2
gµνpµpν . (1.2.3)

The geodesic motion can also be obtained from Hamilton equations [18],
starting from Euler-Lagrange:

∂H

∂xµ
= − ∂L

∂xµ
= − d

dλ

(
∂L

∂ẋµ

)
= − d

dλ
pµ = −ṗµ.

Because ẋµ is independent of pµ we get:

ṗµ = − ∂H

∂xµ
(xµ, pµ, λ), (1.2.4a)

ẋµ =
∂H

∂pµ
(xµ, pµ, λ). (1.2.4b)

Those 2n first order differential equations are called the Hamilton equations.
This set contains the same information as the n Euler-Lagrange equations
(1.2.1), and both lead to the same geodesic motion. Additionally, we have:

∂H

∂λ
= −∂L

∂λ
.

The Hamilton equations can also be obtained from the variational principle,
by requiring the action functional to be stationary:

∫ λ2

λ1

L(xµ, ẋµ, λ)dλ =

∫ λ2

λ1

(pµẋ
µ −H(xµ, pµ, λ)) dλ =

∫ λ2

λ1

f(xµ, ẋµ, pµ, ṗµ, λ)dλ.

Formally speaking the last integral can be taken as a functional of 2n inde-
pendent coordinates xµ and pµ, although f does not depend effectively on
pµ. So without loss of generality we can fix δpµ = 0 for λ = {λ1, λ2}, in
addition to the condition δxµ = 0 in those points. Therefore, the variational
principle can be generalized to the coordinate set {xµ, pµ}.

17The notation a represents the full vector a = aµ∂µ.
18By units of a vector a it is meant the units of its norm

√
aµaµ.
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From the Euler-Lagrange equations (1.2.1) for the 2n coordinate function
f :

d

dλ

(
∂f

∂ẋµ

)
=

∂f

∂xµ
−→ d

dλ
(pµ) = − ∂H

∂xµ
−→ ∂H

∂xµ
= −ṗµ,

d

dλ

(
∂f

∂ṗµ

)
=

∂f

∂pµ
−→ ∂f

∂pµ
= 0 −→ ∂H

∂pµ
= ẋµ.

We obtain Hamilton equations as expected (see (1.2.4)). We conclude that
the geodesic equations can be obtained by applying the variational principle
to the integral: ∫ λ2

λ1

(pµẋ
µ −H(xµ, pµ, λ)) dλ.

1.2.2 Canonical transformations

The coordinates used were general, so it should also be possible to write the
Lagrangian L′ in another system of coordinates {Qµ, Q̇µ} with equivalent
geodesic motion19. The Hamiltonian in this coordinates will take the form:

K(Qµ, Pµ, λ) = PµQ̇
µ − L′(Qµ, Q̇µ, λ),

where the canonical momenta is

Pµ =
∂L′

∂Q̇µ
(Qµ, Q̇µ, λ).

We use a different symbol for the Hamiltonian because K(Qµ, Pµ, λ) is a dis-
tinct function from H(xµ, pµ, λ); however K is simply the same Hamiltonian
in a different coordinate system and written in a different form [18].

In fact, this corresponds to assign new coordinates to the same point
in phase space (xµ, pµ) −→ (Qµ, Pµ). Canonical transformations is the set
of transformations in phase space that preserves the form of the Hamilton
equations:

∂K

∂Qµ
(Qµ, Pµ, λ) = −Ṗµ,

∂K

∂Pµ

(Qµ, Pµ, λ) = Q̇µ.

The variational principle applied to the following integrals should lead to the
same geodesic motion:

δ

∫ λ2

λ1

(pµẋ
µ −H(xµ, pµ, λ)) dλ = δ

∫ λ2

λ1

(
PµQ̇

µ −K(Qµ, Pµ, λ)
)
dλ = 0.

19The following reasoning strongly follows the book by Goldstein [18].
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Of course the integrand functions are not necessarily equal, only the sta-
tionary solution for each functional is equivalent. Each of these solutions
is invariant by multiplying a constant σ and by adding the derivative of a
function F , namely dF

dλ
. This function F only depends on the coordinates

and should have continuous second order derivatives [18].

The integrand functions should then be related by:

σ (pµẋ
µ −H(xµ, pµ, λ)) = PµQ̇

µ −K(Qµ, Pµ, λ) +
dF

dλ
.

The factor σ is only associated with a scale change and is always possible to
find a scale transformation to intermediate coordinates (xµ, pµ) −→ (x′µ, p′µ)
such that σ = 1 for the transformation (x′µ, p′µ) −→ (Qµ, Pµ). So without
loss of generality we will set σ = 1.

We have then:

pµẋ
µ −H(xµ, pµ, λ) = PµQ̇

µ −K(Qµ, Pµ, λ) +
dF

dλ
.

The function F can depend on any of the coordinates {xµ, pµ, Qµ, Pµ, λ}, as
the variation of any of them is zero for λ = {λ1, λ2}, and so it does not affect
the stationary solution of the functional (although it can shift the value of
the integral by a constant value).

The function F is most useful when half the variables are from the old
coordinate set and the other half from the new one. F works then like a
“bridge” between the two systems, establishing an implicit connection be-
tween them. That is why F is usually called a “generating function”.

We now define F (xµ, Qµ, λ) = S(xµ, Pµ, λ)−QµPµ where S is called action
function and also constitute a generating function.
We then have:

dF

dλ
=
dS

dλ
− Q̇µPµ −QµṖµ,

=
∂S

∂xµ
ẋµ +

∂S

∂Pµ

Ṗµ +
∂S

∂λ
− Q̇µPµ −QµṖµ.

So we get:

pµẋ
µ−H(xµ, pµ, λ) =✟✟✟✟

PµQ̇
µ−K(Qµ, Pµ, λ)+

∂S

∂xµ
ẋµ+

∂S

∂Pµ

Ṗµ+
∂S

∂λ
−✟✟✟✟
Q̇µPµ−QµṖµ,

which can be organized into
(
∂S

∂xµ
− pµ

)
ẋµ +

(
∂S

∂Pµ

−Qµ

)
Ṗµ +

(
H +

∂S

∂λ
−K

)
= 0.
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Because ẋµ and Ṗµ are both independent, this relation requires [18]:

∂S

∂xµ
(xµ, Pµ, λ) = pµ, (1.2.5a)

∂S

∂Pµ

(xµ, Pµ, λ) = Qµ, (1.2.5b)

H(xµ, pµ, λ)+
∂S

∂λ
(xµ, Pµ, λ) = K(Qµ, Pµ, λ). (1.2.5c)

This set of equations makes the connection from the old coordinates (xµ, pµ)
to the new ones (Qµ, Pµ) and the relation between the different forms of the
Hamiltonian H and K.

1.2.3 Hamilton-Jacobi equation

In the Hamilton-Jacobi formalism the new coordinates (Qµ, Pµ) are chosen
such that they are constants of motion, namely associated with the initial
conditions of the problem. The idea is that by knowing xµ(Qµ, Pµ, λ) we
have obtained a solution to the motion of the particle.

Choosing K = 0 it is assured that Qµ and Pµ are constants of motion,
since:

∂K

∂Qµ
= −Ṗµ = 0,

∂K

∂Pµ

= Q̇µ = 0.

We then obtain the equation:

∂S

∂λ
(xµ, Pµ, λ) +H(xµ, pµ, λ) = 0,

with pµ = ∂S
∂xµ . It is then possible to write a differential equation for the

action function S(xµ, Pµ, λ) called Hamilton-Jacobi equation:

H

(
xµ,

∂S

∂xµ
, λ

)
= −∂S

∂λ
. (1.2.6)

The Hamilton-Jacobi equation contains n + 1 partial derivatives of the
function S, associated with n + 1 integration constants. However the total
function S does not appear itself in the equation, only its derivatives. Any
transformation of the form S −→ S + Const. still gives the same physical
solution. There is therefore one extra degree of freedom in the integration
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constants that has no significance. So we conclude that S has in fact n inte-
gration constants to be evaluated.

Designating the n significant constants of integration αµ, there is liberty
in choosing αµ = Pµ; however the choice of the constants is to a certain
extent arbitrary, as we can equally choose αµ = αµ(Pν). In that case the ac-
tion S has the functional dependence S = S(xµ;αµ;λ) (here a semicolon “;”
is used instead of a comma “,” to distinguish from the S dependence on Pµ. )

Because ∂αµ

∂Pν
= Const., we have:

∂S

∂αµ

=
∂S

∂Pν

∂Pν

∂αµ

= Qν ∂Pν

∂αµ

= Const. ≡ βµ,

where βµ is also a constant of motion (see 1.2.5).
In the end this is equivalent to the transformation (Qµ, Pµ) −→ (βµ, αµ) [18].

After a given function S has been determined that satisfies the Hamilton-
Jacobi equation is then possible to establish a connection between the coor-
dinates (xµ, pµ) and (βµ, αµ).

From (1.2.5) we have that ∂S
∂xµ (x

µ;αµ;λ) = pµ, and so for a given value
λ = λo for which the initial conditions are defined, we can obtain the values
of the constants αµ as function of the initial values of xµ and pµ (n equations
for n unknowns).

Because ∂S
∂αµ

(xµ;αµ;λ) = βµ, for λ = λo, we can obtain the values of

the constants βµ as function of the initial values of xµ and the values of the
constants αµ already obtained (n equations for n unknowns).

Finally xµ(βµ;αµ;λ) can be obtained using the last equation “inside out”
for any value of λ. At this point the solution is complete.

1.2.4 Cyclic coordinates

For the special case that a given coordinate xa with µ = a is cyclic, or
∂H
∂xa = 0, the physical system is invariant along that coordinate and has an
associated symmetry.

From Hamilton equations:

∂H

∂xa
= −ṗa = 0 =⇒ pa = Const. ≡ γ.
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Because ∂S
∂xµ = pµ this implies that:

γ =
∂S

∂xa
(xµ;αµ;λ) −→ S = γxa + S̃(xµ;αµ;λ)µ 6=a.

So for each cyclic coordinate xa is possible to write a term in S associated
with that coordinate in the form xapa, where pa is constant.

1.3 Hamilton-Jacobi equation in Kerr space-

time

The Hamiltonian in General Relativity is given by (see (1.2.3)):

H(xµ, pµ, λ) =
1

2
gµνpµpν .

The Hamilton-Jacobi equation in (1.2.6),

H

(
xµ,

∂S

∂xµ
, λ

)
= −∂S

∂λ
,

gives then:
1

2
gµν

∂S

∂xµ
∂S

∂xν
= −∂S

∂λ
.

In the Kerr space-time, due to the symmetry of the problem, the Hamil-
tonian does not depend explicitly on t, ϕ and λ (see (1.1.1)), giving rise to
three different separable terms in the function S:

S(xµ;αµ;λ) = ptt+ pϕϕ+ γλ+ S2(r, θ),

with20

∂S

∂λ
= γ = −H =

µ2

2
.

The conserved quantities E ≡ −pt and pϕ ≡ Φ turn out to be respectively
the energy and the axial (z) component of the angular momentum in relation
to infinity21, if units c = 1 and G = 1 are used22. See also footnote 42 on
page 44.

20Observation: µ in this next equation is the rest mass of the particle, not an index
component!

21More specifically in relation to a static observer at infinity.
22In S.I. units: Φ = GΦ∗/c3, E = GE∗/c4 and µ = Gµ∗/c2, where Φ∗ and E∗ are

respectively the z component of the angular momentum and the energy with respect to
infinity; also µ∗ is the rest mass of the particle. However for simplicity and following the
standard nomenclature in literature, Φ, E and µ are named after the respective physical
quantities.
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1.3.1 Variable separation

We now assume that the function S2(r, θ) can be decoupled [14,19] into two
terms of the form

S2(r, θ) = Sr(r) + Sθ(θ).

If S is built from this ansatz, and it is a solution to the Hamilton-Jacobi
equation then it should provide the correct motion for the particle.
According to the ansatz, the function S then becomes

S(xµ;αµ;λ) =
µ2

2
λ− Et+ Φϕ+ Sr(r) + Sθ(θ).

Substitution in the Hamilton-Jacobi equation yields:

1

2
gtt [∂tS]

2 +
2

2
gϕt ∂tS ∂ϕS +

1

2
grr [∂rS]

2 +
1

2
gθθ [∂θS]

2 +
1

2
gϕϕ [∂ϕS]

2 = −∂λS,

gttE2 + gϕϕΦ2 − 2gtϕEΦ︸ ︷︷ ︸
C

+grr
(
dSr

dr

)2

+ gθθ
(
dSθ

dθ

)2

= −µ2.

Explicitly (see (1.1.3) and (1.1.4)):

C = − E2

ρ2∆
[(r2+a2)2−a2∆sin2 θ]+

(∆− a2 sin2 θ)Φ2

ρ2∆sin2 θ
+
2EΦa(r2 + a2 −∆)

∆ρ2
,

C =

(
−E

2(r2 + a2)2

ρ2∆
− a2Φ2

ρ2∆
+

2a(r2 + a2)EΦ

ρ2∆

)
+

(
E2a2 sin2 θ

ρ2
+

Φ2

ρ2 sin2 θ
− 2aEΦ

ρ2

)
.

This expression can be simplified using factorization [20]:

C = − 1

ρ2∆
[E(r2 + a2)− aΦ︸ ︷︷ ︸

P

]2 +
1

ρ2 sin2 θ
[aE sin2 θ − Φ]2.

Using pr(r) = ∂S/∂r and pθ(θ) = ∂S/∂θ, the initial expression becomes

C +
∆

ρ2
p2r +

1

ρ2
p2θ = −µ2,

− 1

ρ2∆
P 2 +

1

ρ2 sin2 θ
[aE sin2 θ − Φ]2 +

∆

ρ2
p2r +

1

ρ2
p2θ = −µ2.
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Multiplication by ρ2∆sin2 θ on both sides yields:

−P 2 sin2 θ +∆[aE sin2 θ − Φ]2 + p2r∆
2 sin2 θ + p2θ∆sin2 θ = −ρ2∆µ2 sin2 θ.

Expanding the ρ2 factor and moving the terms with only θ dependence on
sin2 θ to the left side of the equation:

−P 2 sin2 θ+p2r∆
2 sin2 θ+∆ r2µ2 sin2 θ = −∆

(
a2µ2 sin2 θ cos2 θ + [aE sin2 θ − Φ]2 + p2θ sin

2 θ
)
.

Dividing by ∆ sin2 θ:

−P 2 +∆2p2r +∆ r2µ2

∆
= fr(r) = fθ(θ) = −a2µ2 cos2 θ−

(
aE sin θ − Φ

sin θ

)2

−p2θ.

Because ∆(r) and P (r), the left side of the equation only depends on r
and the right side only depends on θ. This equality implies that both sides
are equal to a constant [19, 21] that we define as:

fr(r) = fθ(θ) = Const. ≡ −K.

where K is a constant of motion. Sometimes other conserved quantity is
used:

Q ≡ K − (aE − Φ)2.

This constant Q is called Carter constant after Brandon Carter. Its geomet-
ric interpretation is not obvious, although it is related to θ motion [17,21].

Starting from the left side:

∆2p2r = P 2 −∆[Q+ (aE − Φ)2 + µ2r2].

Using the relation ṙ = pr = grrpr =
∆
ρ2
pr, we can write the equation of motion

in r:

ρ2ṙ = ±
√
R, with R ≡ P 2 −∆[Q+ (aE − Φ)2 + µ2r2] , (1.3.1)
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and P = E(r2 + a2)− aΦ.

The θ equation of motion can be obtained from the right side of the initial
equation:

K = a2µ2 cos2 θ +

(
aE sin θ − Φ

sin θ

)2

+ p2θ.

From this relation it is clear that we must have:

K ≥ 0,

p2θ = Q− a2µ2 cos2 θ + (aE − Φ)2 −
(
aE sin θ − Φ

sin θ

)2

︸ ︷︷ ︸
ζ

.

Simplifying the ζ term:

ζ = (a2E2 + Φ2 −✘✘✘✘2aEΦ)−
(
a2E2 sin2 θ +

Φ2

sin2 θ
−✘✘✘✘2aEΦ

)
,

ζ = a2E2 cos2 θ − Φ2 cos2 θ

sin2 θ
.

Therefore we have:

p2θ = Q− cos2 θ

(
a2(µ2 − E2) +

Φ2

sin2 θ

)
.

Using θ̇ = pθ = gθθpθ =
1
ρ2
pθ we obtain the θ equation of motion:

ρ2θ̇ = ±
√
Θ, with Θ = Q− cos2 θ

(
a2(µ2 − E2) +

Φ2

sin2 θ

)
. (1.3.2)

1.3.2 Motion in t and ϕ

Due to the symmetry of the problem, the following conjugate momenta are
conversed:

pt = −E and pϕ = Φ.

For t:
pt = gttpt + gtϕpϕ.

So we get:

ρ2ṫ =
E

∆
[(r2 + a2)2 − a2∆sin2 θ]− 2mar

∆
Φ. (1.3.3)

For ϕ:
pϕ = gϕtpt + gϕϕpϕ,
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ρ2ϕ̇ =
2maEr

∆
+Φ

(∆− a2 sin2 θ)

∆ sin2 θ
. (1.3.4)

1.3.3 Solution in integral form

The equations of motion obtained in the previous subsection completely
determine the tangent vector dxµ/dλ along the geodesic path (see (1.3.1),
(1.3.2), (1.3.3) and (1.3.4)). The trajectory can thus be found directly by
numerical integration. However, a full solution can still be obtained in inte-
gral form.

From a close analysis of the equations of motion we can conclude that
there is still coupling between different coordinates, namely θ and r. To avoid
integrals with mixing coordinates one can continue to use the Hamilton-
Jacobi approach and also use the fact that derivatives of the action function
S with respect to the constants of integration αµ are also constants (see sec-
tion 1.2.3).

Making use of the relations pr = ∂Sr(r)/∂r and pθ = ∂Sθ(θ)/∂θ, the
action S can be written as [22]:

S(xµ;αµ;λ) =
µ2

2
λ− Et+ Φϕ+ εr

∫ r
√
R

∆
dr + εθ

∫ θ √
Θ dθ.

The integrals here only express an anti-derivative operation, as any constant
of integration is the same as adding a constant to S, which has no physical
implications as was previously discussed. The numbers εr and εθ are inde-
pendent and both can be either 1 or −1. These come from the plus and
minus sign (±) in the r and θ equations of motion (see (1.3.1) and (1.3.2)).

From the Hamilton-Jacobi formalism, the function S has n constants of
integration with physical significance, which were named αµ. For space-time
n = 4, and so we must select four constants of integration to be our set αµ.
At this point the most natural choice is αµ = {µ2, E,Φ, Q}, although there
are other possible choices which are equally valid. For instance, some authors
use the constant K = Q+(aE−Φ)2 instead of Q (see [21]). For that matter
any independent combination of these constants should do the job.

In section 1.2.3 it was described a general procedure to obtain a solution
for a particle’s motion: from initial values of xµ and pµ at λ = λo we can
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obtain the constants αµ; afterwords one could obtain the values of the βµ

constants of motion (more on that later) and then obtain xµ as function of
αµ, β

µ and the affine parameter λ.

The initial conditions are then set by the values {to, ro, θo, ϕo} and by
{pto, pro, pθo, pϕo} at λ = λo.

The equation ∂S/∂xµ = pµ explicitly becomes:

∂S

∂t
= −E = pt, (1.3.5a)

∂S

∂ϕ
= Φ = pϕ, (1.3.5b)

∂S

∂r
= εr

√
R

∆
= pr, (1.3.5c)

∂S

∂θ
= εθ

√
Θ = pθ. (1.3.5d)

For λ = λo, the equations (1.3.5a) and (1.3.5b) directly give the values of E
and Φ. Equations (1.3.5c) and (1.3.5d) both lead to:

R(ro, E,Φ, Q, µ
2) = ∆2pr

2
o, (1.3.6a)

Θ(θo, E,Φ, Q, µ
2) = pθ

2
o. (1.3.6b)

From this set of two equations one can obtain the values of the constants Q
and µ2 as function of the initial coordinates xµo and momenta pµo. Explicitly
these relations are given by:

µ2 =
1

ρ2

{
P 2

∆
− (aE − Φ)2 + a2E2 cos2 θo −

Φ2

tan2 θo
− pθ

2
o −∆ pr

2
o

}
, (1.3.7)

and also by23:

Q = pθ
2
o − a2E2 cos2 θo +

Φ2

tan2 θo
+ (a2 cos2 θo)µ

2, (1.3.8)

with P = E(r2o + a2)− aΦ and ∆ = r2o + a2 − 2mro.

The set of constants of motion αµ were thus determined by the initial con-
ditions. However, the constants of motions used here are much more strongly
linked to physical quantities (such as energy and angular momentum) than
the conjugate momenta pµ. Therefore it can be much more convenient to

23The value of µ is determined by the previous equation.
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express the initial conditions by the constants of motion {µ2, E,Φ, Q} and
by the initial coordinates {to, ro, θo, ϕo} instead. Despite this fact, we can
equally use the conjugate momenta as part of the initial conditions.

An interesting consequence of the Hamilton-Jacobi formalism is that the
derivative of S with respect to the constant αµ is also a constant of motion,
here named βµ:

∂S

∂αµ

(xµ;αµ;λ) = βµ. (1.3.9)

This equation explicitly becomes:

∂S

∂(µ2)
= β1,

∂S

∂E
= β2,

∂S

∂Φ
= β3,

∂S

∂Q
= β4.

This leads to [20, 22]:

λ = 2β1 + εr

∫ r r2√
R
dr + εθ

∫ θ a2 cos2 θ√
Θ

dθ,

t+ β2 = εr

∫ r r2(r2 + a2)E + 2mar(aE − Φ)√
R

dr + εθ

∫ θ a2E cos2 θ√
Θ

dθ,

ϕ = β3 + εr

∫ r r2Φ + 2mr(aE − Φ)

∆
√
R

dr + εθ

∫ θ Φ

tan2 θ
√
Θ
dθ,

2β4 + εr

∫ r dr√
R

= εθ

∫ θ dθ√
Θ
.

It is now possible to determine the values of the constants {β1, β2, β3, β4} for
the initial conditions {to, ro, θo, ϕo} at λ = λo, assuming that the constants
{µ2, E,Φ, Q} are already known. These indefinite integrals are defined up to
a constant of integration and so there are different possible choices for this
functions. All these choices are all equally valid, as long as the constants βµ

are adjusted accordingly. Also, the numbers εr and εθ only change signal at
turning points, namely for ṙ = 0 and θ̇ = 0 respectively.

These integral expressions are a set of four equations with four variables
{t, r, θ, ϕ} and so it defines implicitly the geodesic trajectory. It is therefore a
solution in integral form [20]. However, the last step in section 1.2.3, which is
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to “turn the equation inside out” is not trivial in this case, although it could
be done in principle. Notice also that each integral does not have mixed
coordinates, since each depends either on θ or on r, which eases the use of
numerical techniques.

If the choice of constants αµ was different, the final set of integral equa-
tions would also be different due to the differentiation (1.3.9). For instance,
in the reference [21] the authors choose K = Q + (aE − Φ)2 instead of Q
and as consequence the final form of the solution is not the same as here.
However different choices can describe the same geodesic motion since in that
case the constants βµ would have to be different.

1.4 Spherical photon orbits for Kerr

We now focus on photon geodesics with constant radial coordinate24. These
are called spherical photon orbits and exhibit some interesting properties.
For short, in the following text the name “orbits” is only assigned to
geodesics with constant radial coordinate.

Photons have zero rest mass (µ = 0) and follow null geodesics. The r and
θ equations of motion then become (see (1.3.1)(1.3.2)):

ρ4θ̇2 = Θ(θ) = Q− cos2 θ

(
Φ2

sin2 θ
− a2E2

)
,

ρ4ṙ2 = R(r) = P 2 −∆[Q+ (aE − Φ)2],

with P = E(r2 + a2)− aΦ. We reduce the number of parameters [22, 23] by
defining the impact factors25:

λ =
Φ

E
and η =

Q

E2
, (1.4.1)

and dividing each equation of motion by E2.

For r we have:
(
ρ4

E2

)
ṙ2 =

R(r)

E2
=
(
(r2 + a2)− aλ

)2 − (η + (a− λ)2)(r2 + a2 − 2mr)

24The discussion below is strongly based on Edward Teo’s article [23].
25In this context the symbol λ does not stand for the affine parameter. Unless otherwise

mentioned λ is now assumed to be defined by (1.4.1)
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= (r2+a2)2+a2λ2−2aλ(r2+a2)−η(r2+a2)−(a2+λ2−2aλ)(r2+a2)+2mr[η+(a−λ)2]
= r4+a4+2r2a2+a2λ2−η(r2+a2)−(a2+λ2)r2−(a2+λ2)a2+2mr[η+(a−λ)2].
So we get:

R(r)

E2
≡ R(r) = r4 + (a2 − η − λ2)r2 + 2m[η + (a− λ)2]r − ηa2. (1.4.2)

For the θ equation, defining:

u ≡ cos θ,

we get:
u̇ = −θ̇ sin θ and sin2 θ = 1− u2;

so we have:

Θ

E2
=

(
ρ4

E2 sin2 θ

)
u̇2 = η − cos2 θ

(
λ2

sin2 θ
− a2

)
,

(
ρ4

E2

)
u̇2 = η[1− u2]− u2(λ2 − a2[1− u2]),

which leads to:

(
ρ4

E2

)
u̇2 = −a2u4 − [η + λ2 − a2]u2 + η ≡ Ξ(u). (1.4.3)

Notice that Ξ(u) ≥ 0 for real values of u̇ and also that:

Ξ =
sin2 θ

E2
Θ.

1.4.1 Motion in latitude (θ)

We now consider separately three different cases η > 0, η < 0 and η = 0.

For η > 0 :

The zeros of the equation Ξ(u) = 0 are:

u2o =
[a2 − η − λ2]±

√
[a2 − η − λ2]2 + 4a2η

2a2
. (1.4.4)

Because η > 0 we must necessarily have that the discriminant

D = [a2 − η − λ2]2 + 4a2η
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obeys: √
D > |a2 − η − λ2|.

Therefore, the root associated with the plus sign in (1.4.4) is always positive
and the root with minus sign in (1.4.4) is always negative.
Because u2o ≥ 0 only the positive root is meaningful:

u2o =
[a2 − η − λ2] +

√
[a2 − η − λ2]2 + 4a2η

2a2
. (1.4.5)

For the allowed range 0 ≤ |u| ≤ 1 the function Ξ(u) has then only one zero.
In the limits of this interval:

Ξ(u=1) = −λ2,

Ξ(u=0) = η.

Because only Ξ ≥ 0 is physically allowed, we conclude that orbits with η >
0 cross the equatorial plane repeatedly (u = 0 ⇐⇒ θ = π/2) and are
restricted to the interval 0 ≤ |u| ≤ |uo| (see Fig. 1.4.1). The points of
intersection in the equatorial plane are called nodes.
For η < 0 :

From (1.4.3) we must have:

η + λ2 − a2 < 0, (1.4.6)

so there can be a value u 6= 0 such that Ξ is non negative. For spherical
photon orbits this is an impossible requirement. As it is proven in Appendix
A.3, these orbits are always required to have η + λ2 − a2 > 0 for r > r+.
However condition (1.4.6) can be met for other types of geodesics.

For η = 0 :

The roots of Ξ(u) are now:

u2o =
a2 − λ2 ± |λ2 − a2|

2a2
,

this leads to:

u2o = 0 or u2o =
a2 − λ2

a2
= 1− λ2

a2
. (1.4.7)

As it is proven in Appendix A.3, for η = 0 we have λ2 > a2 for spherical
orbits and so 1−λ2/a2 < 0. Therefore, of the two roots in (1.4.7) only u2o = 0
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Figure 1.4.1: Graph of Ξ(u2) for a = m, η = m2 and λ = m. The values of Ξ for
u = 0 and u2 = 1 are respectively η and −λ2. The root of Ξ is given by u2o and it
is clear from the graph that η > 0 and λ 6= 0 implies 0 < u2o < 1. Notice however
that the allowed range for the photon is 0 ≤ |u| ≤ |uo|.

is relevant for orbits. From the Fig. 1.4.1 is clear that η = 0 =⇒ uo = 0
and that the orbit is restricted to the equatorial plane (u = 0).

We conclude that for spherical orbits we must have η ≥ 0 and there is
only one allowed value |u| = |uo| in the interval 0 ≤ u2 ≤ 1, such that
Ξ(u) = 0. The orbits are therefore either restricted to the equatorial plane
or cross it repeatedly [17].
Only for the case λ = 0 =⇒ |uo| = 1 and η > 0 can the photon reach the
poles (θ = 0 or θ = π), that is when the angular momentum Φ = 0.

1.4.2 Radial motion (r)

The conditions for spherical orbits, which are geodesics with constant radial
coordinate r, are:

ṙ = 0 and r̈ = 0,

which only state, in analogy with Newtonian physics, that the “velocity” and
“acceleration” are both zero in the radial component. These conditions do
not make any assumptions or restrictions regarding the stability of the orbits.
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From (1.4.2) is clear the equivalence of the conditions:

ṙ = 0 ⇐⇒ R = 0,

as we have:
ρ4ṙ2

E2
= R(r).

Differentiation with respect to the affine parameter yields:

2ρ4ṙ

E2
r̈ +

4ρ3ρ̇

E2
ṙ2 = ṙ

dR
dr
.

Dividing by ṙ:
2ρ4

E2
r̈ +

4ρ3ρ̇

E2
ṙ =

dR
dr
.

In the limit ṙ → 0:
2ρ4

E2
r̈ =

dR
dr
.

Therefore for ṙ = 0:

r̈ = 0 ⇐⇒ dR
dr

= 0.

The conditions for spherical orbits [17, 22] are therefore also given by :

R = 0 and
dR
dr

= 0. (1.4.8)

The solution to this set of equations is given by two roots of a quadratic
equation (see Appendix A.2 for full calculations). Each of those two roots
leads to a different class of solutions, i) and ii) for spherical orbits:

λ =
r2 + a2

a
,

η = −r
4

a2
;





i) (1.4.9)

λ = −r
3 − 3mr2 + a2r +ma2

a(r −m)
,

η = −r
3(r3 − 6mr2 + 9m2r − 4a2m)

a2(r −m)2
.





ii) (1.4.10)

It is important to notice that λ and η are here depicted as functions of the
orbital radius r; however, given a photon following a geodesic, {λ, η} are con-
stants of motion and do not depend on the coordinate r. Equations (1.4.9)
and (1.4.10) simply state the necessary values of λ and η for the geodesic
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motion to be a spherical orbit of radius r. These orbits are all unstable26, as
assured by the “No Bound Theorem” proven in Appendix A.5.
As discussed previously, η < 0 is impossible for orbits, so class i) is automat-
ically excluded for being unphysical.

For class ii), the condition η ≥ 0 restricts the range of the radial coordi-
nate to r1 ≤ r ≤ r2, where r1 and r2 are the roots27 of η (see Appendix A.4
for deduction):

r1 = 2m

{
1 + cos

(
2

3
arccos

[
−|a|
m

])}
, (1.4.11)

r2 = 2m

{
1 + cos

(
2

3
arccos

[ |a|
m

])}
. (1.4.12)

It turns out that r1 is associated to a prograde orbit and r2 to a retrograde
orbit (see Fig. 1.4.2) [23].
The radius r3 is also defined as the root of λ(r) and corresponds to an orbit
with zero angular momentum, Φ = 0 (see (1.4.1)). It can be computed as
(see Appendix A.4 and [23]):

r3 = m

{
1 + 2

√
m2 − 1

3
a2 cos

(
1

3
arccos

m(m2 − a2)
(
m2 − 1

3
a2
)3/2

)}
.

Notice that r1 ≤ r3 ≤ r2, as one can observe from Fig. 1.4.2.

For a = 0 we obtain r1 = r2 = 3m as expected for the Schwarzschild
space-time [24] (see Fig. 1.4.2).
For a = 1 we have r1 = m and r2 = 4m. Although r1 appears in this case
to coincide with the event horizon r+, there is a non-zero proper distance
between r1 and r+ (see [22]).

For r = r1 or r = r2, we have η = 0 and so by the previous discussion in
subsection (1.4.1) the motion is restricted to the equatorial plane28.

26This could also be checked by realizing that d2
R

dr2
> 0 [17].

27A curious exception occurs for the extremal case |a| = m, since for this case η(r1=m)

is not well defined (indeterminate form of type 0/0) and the limit of η(r) as r → r1 = m
is not zero but the constant value 3m2.

28This orbit is stable to perturbations in θ but never in r as it is show in Appendix A.5.
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Figure 1.4.2: Plot of the values of the orbital radii r1, r2 and r3 for different values
of the rotation parameter a. The radius of the event horizon is also represented
for reference. The orbits with r = r1 and r = r2 are respectively associated with
prograde and retrograde geodesics and r3 with zero angular momentum orbits
(Φ = 0), which implies λ = 0 (see Fig. 1.4.3 and equation (1.4.1)). Notice that for
a = 0 we have the Schwarzschild case r1 = r2 = 3m and r+ = 2m. From this plot
is easy to realize that we have r+ ≤ r1 ≤ r3 ≤ r2.

1.4.3 Some properties of η and λ

The typical form of the functions λ(r) and η(r) are depicted in Fig. 1.4.3.
The maximum value of η in the range r1 ≤ r ≤ r2 is always 27m

2 at r = 3m,
independently of the value of a 6= 0. In fact we have:

η(r=3m) = 27m2
✘✘✘4ma2

✘✘✘4ma2
= 27m2.

The derivative dη/dr is easily computed:

dη

dr
=
r2(−4r4 + 24r3 − 48m2r2 + 4a2mr + 36m3r − 12a2m2)

a2(r −m)3
.

For r = 3m this yields
dη

dr
(r = 3m) = 0

The value of η is closely related to the θ-velocity when the photon crosses
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Figure 1.4.3: Plot of the dimensionless functions ηo(r) = η(r)/m2 and λo(r) =
λ(r)/m (see (1.4.10)) as function of the orbital radius r, for the rotation parameter
a = 0.8m. Notice the maximum of η at r = 3m with value 27m2. From this graph
it is clear that η(r1) = η(r2) = λ(r3) = 0 and also that λ(r1) > 0 and λ(r2) < 0.

the equatorial plane (u = 0) (see (1.4.3)). The value 27m2 is the maximum
because for r = 3m we have ϕ̇ = 0 in the equatorial plane (photon crosses
the equatorial plane vertically [23]):

λ(r=3m) = −2a.

From (1.3.4):
∆ ρ2

E
ϕ̇(r=3m) = 2mar + λ(∆− a2) = 0.

The value of λ monotonically decreases [23] from a positive value λ(r=r1)

to a negative value at λ(r=r2). Because λ is proportional to Φ (see (1.4.1)) we
conclude that r1 and r2 are associated with a prograde and retrograde orbit
respectively.

1.4.4 Connection between θ and ϕ motions

The analysis of the relation between θ and ϕ motions have some interesting
features (see also [25]). The equation (1.3.4) is repeated for convenience:
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∆ ρ2ϕ̇ = 2mrEa+
Φ(∆− a2 sin2 θ)

sin2 θ
.

Defining the new variable:

z ≡ u2 = cos2 θ,

with derivative ż = 2uu̇, we obtain:

ϕ̇ =
2mraE

∆ ρ2
+

Φ(∆− a2(1− z))

∆ρ2(1− z)
=

2mraE − a2Φ

∆ ρ2
+

Φ

ρ2(1− z)
.

In the new variable, the latitude equation (1.4.3) becomes:

ρ4u̇2

E2
= Ξ(u) −→ ρ4

E2

ż2

4z
= Ξ(u).

We get an equation29 for ż:

ż =
2E

ρ2

√
z Ξ︸ ︷︷ ︸

Y (z)

,

which combined with the expression for ϕ̇ leads to the derivative:

dϕ

dz
=

1

2

(2mra− a2λ)

∆Y (z)
+

λ/2

Y (z)(1− z)
. (1.4.13)

The expression for Y 2(z) is:

Y 2(z) = zΞ = z
(
−a2z2 − (η + λ2 − a2)z + η

)
= −a2z3−(η+λ2−a2)z2+ηz.

The roots of Y 2(z) are then30:

z = 0 or z± =
(a2 − η − λ2)±

√
(a2 − η − λ2)2 + 4a2η

2a2
.

Therefore Y 2(z) can be factorized in the following form:

Y 2(z) = a2z(z+ − z)(z − z−). (1.4.14)

For spherical photon orbits we have a2 − η − λ2 < 0 (see Appendix A.3)
and η ≥ 0 (for θ̇ to be real). As such, z− is always negative and z+ is always
positive or zero. From its definition z ≥ 0 , and so the root z− is excluded
for spherical orbits.

29A positive root for the square root is assumed, however this does not affect our con-
clusions.

30Observation: z+ = u2o (see page 26)
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Because Ξ = 0 gives the turning points in latitude, we conclude that the
range of z is:

0 ≤ z ≤ z+.

For 1/4 oscillation in latitude, the azimuthal variation31 is ∆ϕ′:

∆ϕ′ =
1

2

2mra− a2λ

∆

∫ z+

0

dz

Y (z)
+

1

2
λ

∫ z+

0

dz

Y (z)(1− z)
. (1.4.15)

For a full oscillation in latitude the azimuthal variation is simply ∆ϕ = 4∆ϕ′,
as the equation (1.3.4) is invariant by the transformations:

θ̇ → −θ̇ and θ → π − θ,

and so we get the same change ∆ϕ′ in each 1/4 latitude oscillation [17].

Changing the integration variable by the transformation:

z = z+ cos2 x with dz = −2z+ cos x sin x dx,

one of the relevant integrals in (1.4.15) becomes:

∫ z+

0

dz

Y (z)
=

∫ 0

π
2

(
−2z+ cos x sin x

a cos x
√
z+
√
(z+ − z+ cos2 x)

√
(z+ cos2 x− z−)

)
dx

=

∫ π
2

0

(
2 sin x

a sin x
√

(z+ − z− − z+ sin2 x)

)
dx

=

∫ π
2

0


 2

a
√
z+ − z−

√
z+−z−−z+ sin2 x

z+−z−


 dx

=
2

a
√
z+ − z−

∫ π
2

0

dx√
1− k2 sin2 x

,

where k =
√

z+
z+−z−

. This expression can be rewritten as:

∫ z+

0

dz

Y (z)
=

2K(k)

a
√
z+ − z−

, (1.4.16)

where K(k) is the complete elliptic integral of the first kind [26].
For the second integral in (1.4.15):

∫ z+

0

dz

Y (z)(1− z)
=

2

a
√
z+ − z−

∫ π
2

0

dx

(1− z+ cos2 x)
√

1− k2 sin2 x
.

31In this context ∆ϕ stands for variation in the coordinate ϕ.
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The term 1− z2+ cos2 x can be rewritten as:

1− z2+ cos2 x = 1− z+ + z+ sin2 x = (1− z+)


1−

(
z+

z+ − 1

)

︸ ︷︷ ︸
n

sin2 x


 .

So we have:
∫ z+

0

dz

Y (z)(1− z)
=

2

a(1− z+)
√
z+ − z−

∫ π
2

0

dx

(1− n sin2 x)
√

1− k2 sin2 x
.

This expression can be rewritten as:

∫ z+

0

dz

Y (z)(1− z)
=

2Π(n, k)

a(1− z+)
√
z+ − z−

, (1.4.17)

where a complete elliptic integral of the third kind Π(n, k) was used32 in the
last equation [26].

Combining equations (1.4.15 - 1.4.16) we obtain the azimuthal change
over a complete33 oscillation in θ:

∆ϕ =
4√

z+ − z−

(
(2mr − aλ)K(k)

∆
+
λΠ(n, k)

a(1− z+)

)
, (1.4.18)

with n = z+
z+−1

and k2 = z+
z+−z−

.
The graph of ∆ϕ as function of the orbit radius is given in Fig. 1.4.4.

Notice the discontinuity at r = r3, where by definition λ = 0 (see [17, 23]).
The value of ∆ϕ at exactly r = r3 is only due to frame dragging, as for that
case Φ = 0. That value is defined to be:

∆ϕ(r=r3) ≡ ∆ϕ0.

The following limits are also defined as:

lim
r→r−

3

∆ϕ ≡ ∆ϕ+,

32Sometimes a different convention for Π(n, k) is used, corresponding to a transformation
n→ −n.

33If the oscillation is not complete but between z+ and z, the expression (1.4.18) can
be written in a similar way but with incomplete elliptic integrals rather than complete
ones: the x integration variable would be in that case between 0 and an angle ψ such that
cos2 ψ = z/z+. Only for a complete oscillation in θ where the photon reaches the equator
(z = 0) is ψ = π/2.
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Figure 1.4.4: Plot of the azimuthal change ∆ϕ over a complete oscillation in θ, as
function of the orbital radius r and for the rotation parameter a = 0.8m. Notice
the discontinuity at r = r3, point for which λ = Φ = 0. The value of ∆ϕ at
exactly r = r3 is given by the circular point in the figure, which is exactly half-way
between the upper and lower limits by a value of 2π.

lim
r→r+

3

∆ϕ ≡ ∆ϕ−.

As one can observe from Fig. 1.4.4, we have ∆ϕ+ > 0, ∆ϕ0 > 0 and
∆ϕ− < 0. The azimuthal variation ∆ϕ has therefore always the same sign
of the angular momentum Φ (see [17]) (except for exactly Φ = 0).
Defining the ratio f of frequencies of oscillation34 in θ and ϕ as:

f ≡ νϕ
νθ

=
|∆ϕ|
2π

,

we have in the limit r → r3:

∆ϕ > 0 −→ 2πf+ ≡ ∆ϕ+,

∆ϕ < 0 −→ 2πf− ≡ −∆ϕ−.

The angle of advance of the nodes for Φ 6= 0, after each full oscillation in θ,
is given by:

∆Ω = 2π|f − 1|.
34This frequency f is also not continuous in r.
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This angle is a continuous function of the orbit radius, as one can see from
Fig. 1.4.5. For Φ = 0 we must have ∆ϕ0 = ∆Ω as for that case only frame-
dragging is responsible for a change in the azimuthal coordinate ϕ. Since
∆Ω is a continuous function we conclude that in the limit r → r3:

∆ϕ0 = lim
r→r3

∆Ω (1.4.19)

= 2π(f+ − 1) (1.4.20)

= 2π(1− f−), (1.4.21)

which leads to:

∆ϕ+ −∆ϕ− = 4π,

∆ϕ0 = ∆ϕ+ − 2π and ∆ϕ0 = ∆ϕ− + 2π.

At the discontinuity in ∆ϕ, the difference between the left and right limits

 1
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 2  2.5  3  3.5

∆Ω

r (m)

Plot of ∆Ω as function of orbital radius r (a = 0.8m )

r3
r1 r2

Figure 1.4.5: Plot of the angle of advance of the nodes ∆Ω as function of the
coordinate radius r and for the rotation parameter a = 0.8m. Notice that ∆Ω is
continuous at r = r3 and that the circular point is the same as in Fig. 1.4.4.

(Fig. 1.4.5) is therefore always equal to 4π and the value ∆ϕ(r=r3) is always
half-way between those two values [23].
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1.4.5 Examples of spherical orbits

In this subsection a few interesting examples of spherical photon orbits35

are presented. The orbits were obtained by numerical integration of the
first-order differential equations of motion (1.3.1 - 1.3.4). A standard fourth-
order Runge-Kutta algorithm was used for this purpose [27], implemented in
a C++ code. The integration step used for the affine parameter was small
enough such that the numerical value of uo (see (1.4.5)) was correct up to
five decimal places.

Orbits were analysed for special cases of the radial coordinate r around
a BH with spin ao = 0.8 and ao = 0.01 (see Fig. 1.4.6 up to Fig. 1.4.9). For
each set {r, θ, ϕ} of Boyer-Lindquist coordinates it was assigned a point in
Cartesian space as if they were spherical coordinates. The impact parameters
λ and η used (see (1.4.1)) are given by (1.4.10), as required for spherical
photon orbits. For simplicity the value of E/m was set to one; this is hardly
very significant since according to the equations of motion (1.3.1 - 1.3.4) a
different value of E would just lead to a rescaling of the affine parameter.
The variation of the latter along the orbit was either 150 or 300; notice that
the affine parameter is a dimensionless quantity (see page 10). The initial
position was always set at θ = π/2 and ϕ = 0 (r was constant for each
numerical simulation).

35See Teo’s article [23] for a more complete discussion.
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Figure 1.4.6: Representations in Cartesian space of a single spherical photon
orbit. All BHs have a = 0.8m; the variation of the affine parameter along the
orbit was 150. (Top): r = 1.1 r1 (Bottom): r = 1.01 r1; notice that because r ≃ r1
the orbit is almost in the BH equatorial plane, as the scale in the z axis suggests.
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Figure 1.4.7: Representations in Cartesian space of a single spherical photon orbit
with a = 0.8m and r = 3m for both images; the variation of the affine parameter
along the orbit was 300 also for both. (Top): For r = 3m the constant Q is
a maximum and the photon crosses the equatorial plane perpendicularly (in the
equatorial plane ϕ̇ = 0). Notice that there is a latitude range which cannot be
reached by the photon. (Bottom): Top view (z axis) of the orbit in the top figure.
The sharp edges are a consequence of ϕ̇ = 0 in the equatorial plane.
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Figure 1.4.8: Representations in Cartesian space of a single spherical photon orbit
with a = 0.8m and r = r3 for both images; the variation of the affine parameter
along the orbit was 300 also for both. (Top): A side view (y axis) of the orbit
is here used. For r = r3 the axial angular momentum Φ is zero. Notice that the
photon crosses the equatorial plane with ϕ̇ 6= 0 due to frame dragging. (Bottom):
Top view (z axis) of the orbit in the top figure. Due to the fact that Φ = 0 for
r = r3 the photon can reach the poles (compare with Fig. 1.4.7 bottom).
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Figure 1.4.9: Representations in Cartesian space of a single spherical photon orbit
with a = 0.01m; the variation of the affine parameter along the orbit was 300 also
for both. Because ao ≃ 0 the orbit is almost in a plane. However because a 6= 0
there is a small frame dragging effect (when compared with ao = 0.8) that shifts
the orbital plane in the sense of the BH spin. (Top): r = 3m, which implies
the orbital “plane” crosses the equator perpendicularly. (Bottom): In this case
r = (r1 + r3)/2, and so the orbital “plane” crosses the equator diagonally; its
projection on the xy plane is therefore an ellipse. A top view (z axis) is here used.
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1.5 BH Shadows

The observational perspective of a BH is in itself an interesting subject, with
potentially practical astronomical utility. We now develop the tools necessary
to discuss this topic.

1.5.1 Local observer basis

For each point in space-time is possible to find a orthonormal basis associated
with an observer in that point [22, 28]. This basis can be expanded in the
coordinate basis {∂t, ∂r, ∂θ, ∂ϕ}, associated with Boyer-Lindquist coordinates
(see (1.1.1)). It is clear that ∂r and ∂θ are each already orthogonal to the
rest of the basis vectors (just not normalized), since gµr = 0 for µ 6= r and
gµθ = 0 for µ 6= θ.
Therefore our vector orthonormal basis {ê(t), ê(r), ê(θ), ê(ϕ)} should have the
form36:

ê(θ) = Aθ∂θ, (1.5.1)

ê(r) = Ar∂r, (1.5.2)

ê(ϕ) = A∂ϕ + B∂t, (1.5.3)

ê(t) = ζ ∂t + γ ∂ϕ, (1.5.4)

where {A,B, ζ, γ, Aθ, Aϕ} are real coefficients. The normalization of these
vectors are defined by the scalar products37:

1 = ê(θ). ê(θ), (1.5.5)

1 = ê(ϕ). ê(ϕ), (1.5.6)

1 = ê(r). ê(r), (1.5.7)

−1 = ê(t). ê(t), (1.5.8)

The ê(t) vector has a time-like normalization and the rest of the basis vectors
a space-like one, as locally the observer perceives Minkowski space-time.
We also require that

0 = ê(t). ê(ϕ).

So we obtain:

1 = gθθ
(
Aθ
)2
, (1.5.9)

1 = grr (A
r)2 , (1.5.10)

1 = gϕϕA
2 + gttB

2 + 2gtϕAB, (1.5.11)

−1 = gttζ
2 + gϕϕγ

2 + 2gtϕζγ, (1.5.12)

0 = gtϕAζ + gϕϕAγ + gttBζ + gtϕBγ. (1.5.13)

36However many other, less simple combinations are also possible, allowing for spatial
rotations and Lorentz boosts.

37The scalar product between the 4-vectors a and b is given by a . b = gµν a
µbν .
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We have three equations (1.5.11 - 1.5.13) for the four unknowns {A,B, ζ, γ}.
We have in fact one extra degree of freedom associated with rotations in
the (t, ϕ) plane, each configuration being an orthogonal set. The analogy in
Cartesian 3-space is rotations along the z axis, as each new configuration of
the x, y axis in the (x, y) plane is of course orthonormal.
Therefore, we can choose

B = 0,

without loss of generality, in order to have a more familiar vector ê(ϕ) with no
t component. This particular choice is connected to a reference frame with
zero axial angular momentum in relation to infinity, and hence it is sometimes
called the ZAMO reference frame38 [1]. However an observer at rest in this
frame moves with respect to the Boyer-Lindquist coordinate system, as a
consequence of frame-dragging (see page 8).
With this new condition we have

Aθ =
1√
gθθ

, (1.5.14)

Ar =
1√
grr

, (1.5.15)

A =
1

√
gϕϕ

, (1.5.16)

where the sign of the square roots were chosen positive so that at infinity we
have the standard orthogonal basis in spherical coordinates.
We also have

−1 = gttζ
2 + gϕϕγ

2 + 2gtϕζγ,

and

ζ = −gϕϕ
gtϕ

γ, (1.5.17)

which combined lead to

−1 = gtt
g2ϕϕ
g2tϕ

γ2 + gϕϕγ
2 − 2

gtϕgϕϕ
gtϕ

γ2,

γ2 =
g2tϕ

gϕϕg2tϕ − gttg2ϕϕ
.

So we obtain

γ = ± gtϕ
gϕϕ

√
gϕϕ

g2tϕ − gttgϕϕ
.

38ZAMO stands for zero angular momentum observers.
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We choose the negative root for γ in order to have at spatial infinity ê(t) → ∂t
(see below).
Using this choice and also (1.5.17) we obtain [28]:

γ = − gtϕ
gϕϕ

√
gϕϕ

g2tϕ − gttgϕϕ
, (1.5.18)

ζ =

√
gϕϕ

g2tϕ − gttgϕϕ
. (1.5.19)

As one can easily check in the limit r → ∞,

gϕϕ → r2 sin2 θ, gtϕ → 0, gtt → −1,

so we have
γ → 0, ζ → 1,

and
ê(t) → ∂t

as intended.

The locally39 measured energy p(t) of a particle is given by the projection40

of its 4-momentum41 p onto ê(t) [22]:

p(t) = −(ê(t) . p) = −(êµ(t) pµ) = −(ζpt + γpϕ).

As was previously mentioned, E = −pt and pϕ = Φ are respectively
the particle’s energy and angular momentum relative to a static observer at
infinity42 [22] (in units c = 1, G = 1, see footnote 22 on page 17).
We have therefore

p(t) = Eζ − γΦ. (1.5.20)

We also have for the locally measured linear momentum in the ê(θ), ê(ϕ) and
ê(r) directions:

p(θ) = êµ(θ) pµ =
1√
gθθ

pθ, (1.5.21)

39A local measurement of a particle’s property is performed by an observer at a given
frame in the same position as the particle.

40Notice that the projection of the 4-momentum p onto ê(t) must be multiplied by a
minus sign to yield the locally measured energy. This is a consequence of the time-like
normalization ê(t). ê(t) = −1.

41The 4-vector p is only the 4-momentum in units c = 1, G = 1. Otherwise p = Gp∗/c3

(see page 12).
42This statement can be justified by setting r → ∞, which leads to p(t) = E and to

p(ϕ)r sin θ = Φ.
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p(ϕ) = êµ(ϕ) pµ =
1

√
gϕϕ

Φ, (1.5.22)

p(r) = êµ(r) pµ =
1√
grr

pr. (1.5.23)

Notice than a photon with zero angular momentum43 (Φ = 0), or any
other type of particle for that matter, is observed in the ZAMO frame with
no momentum component in the ê(ϕ) direction. This is due to the fact that
an observer at rest at ZAMO also has zero angular momentum with respect
to infinity, as was previously stated.

1.5.2 Impact parameters x′ and y′

The photons detected can be projected in an image plane, according to the
observer’s perspective. The Cartesian coordinates (x′, y′) assigned to each
photon in this image plane are defined as its impact parameters [28] and are
proportional to the respective observation angles (α, β) (see Fig. 1.5.1).

The solid angle or angular size that a given object (such as a BH) occupies
in the observer’s sky depends strongly on the distance between the two.
However this “distance” is a very subtle concept in a curved space-time: for
instance, the proper distance to a Kerr BH diverges in some cases [22]. For
this reason a different quantity is used. Given a circumference at the equator
(θ = π/2) with constant radial coordinate r, its perimeter P is given by

P =

∫ 2π

0

√
gϕϕ dϕ = 2π

√
gϕϕ.

Since gϕϕ does not have a dependence on the coordinate ϕ the integration is
trivial. The perimetral or circumferential radius r̃ is then defined as

r̃ ≡ P
2π

=
√
gϕϕ. (1.5.24)

This quantity is a possible choice44 to measure the distance to a BH (the
radial coordinate r would itself be a very naive option). We expect the
angles α, β to have typically a 1/r̃ dependence, at least for large distances to
the BH and so the impact parameters are more naturally defined as [22,28]:

x′ = −r̃β and y′ = r̃α, (1.5.25)

43This angular momentum is only orbital, it is not related to the photon’s Quantum
Mechanical spin!

44Other choices are of course equally possible, such as the radius defined by a topological
spherical surface area.
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where the perimetral radius r̃ is computed at the position of the observer.
The minus sign in the x′ equation comes from the fact that a detection with
β > 0 corresponds to a point in the left side of the image plane (if observer
is looking at the BH), and therefore to a negative x′ (see Fig. 1.5.1). The
associated vectors êx′ and êy′ are defined by

êx′ = ê(ϕ) and êy′ = −ê(θ).
The observation angles (α, β) are both defined to be zero in the direction
pointing to the center of the BH, in the observer’s frame.

êy′ = −ê(θ)

êx′ = ê(ϕ)
ê(r)

α
β

~p

Figure 1.5.1: Perspective drawing of the geometric projection of the photon’s
linear momentum ~p in the observer’s frame {ê(r), ê(θ), ê(ϕ)}. The observation angles
α, β were drawn as positive. The planes associated with the angles α and β are
perpendicular between themselves and the 3-vector ~p is in the same plane as α.
The vectors êx′ and ê(r) and the β angle are also all in the same plane. The BH is
represented by the grey sphere in the image.

In the following steps |~p| = p is the modulus of the classic 3-vector linear
momentum45, with components p(r), p(θ) and p(ϕ) in a Cartesian 3-space with
a spherical orthonormal basis. We then have

p
2 =

[
p(r)
]2

+
[
p(θ)
]2

+
[
p(ϕ)
]2
.

Attending to the geometry of the photon detection angles α, β (see Fig.
1.5.1), we also have

p(ϕ) = p sin β cosα, (1.5.26a)

p(θ) = p sinα, (1.5.26b)

p(r) = p cos β cosα. (1.5.26c)

45This 3-vector momentum is in c = 1 and G = 1 units like the corresponding 4-
momentum p.
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In the following calculations the observer will be assigned a radial coor-
dinate ro and a latitude angle θo. The distance between the observer and
the BH will be assumed to be very large (r ≫ m) and so in this limit we
have r̃ → ro (the full calculation without this approximation can be found
in Appendix A.6). The observation angles α, β ≪ 1 will also be very small
and so

p(ϕ) ≃ p β,

p(θ) ≃ pα.

The locally measured energy ε of a photon is ε = pc (in S.I. units). We have
therefore, in units c = 1, that

β ≃ p(ϕ)

ε
, and α ≃ p(θ)

ε
.

Because the locally measured energy is p(t) then we have

ε = p(t).

The impact parameters are then given by

x′ = −ro
p(ϕ)

p(t)
, (1.5.27)

and by

y′ = ro
p(θ)

p(t)
. (1.5.28)

Using (1.5.20), (1.5.21), (1.5.22) and from (1.3.2) the fact that

pθ = gθθ p
θ = ρ2θ̇ = ±

√
Θ,

we obtain for the impact parameters

x′ = − ro
Φ

(Eζ − γΦ)
√
gϕϕ

,

y′ = ±ro
√
Θ

(Eζ − γΦ)
√
gθθ

.
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In the limit ro → ∞ for very far observers, like for instance one set on
planet Earth, we have

gϕϕ → r2o sin
2 θo, (Eζ − γΦ) → E and gθθ → r2o.

So we get [20]

x′ = − Φ/E

sin θo
= − λ

sin θo
, (1.5.29)

and

y′ = ±
√
Θ

E
= ±

√
η + a2 cos2 θo − λ2/ tan2 θo, (1.5.30)

where (1.3.2) and (1.4.1) were used. Notice that these last equations are only
valid in the limit for very far observers (r ≫ m).

1.5.3 Shadow of a BH

Imagine there is a light source in the background, behind a Kerr BH relatively
to the observer, and which angular size is large when compared with the
mentioned BH (for instance background stars) [22].
The optical perception for a distant observer will be a silhouette over the
background light (for illustrative purposes see Fig. 1.5.2). This region in the
image plane for which no light is detected is called the BH’s shadow [28].
The “rim” of this shadow depends only on the space-time metric around the
BH [28] . This outer rim, also called photon ring, is connected with the
photons that can get closest to the BH and still escape to infinity.

Due to the “No Bound Theorem” (see Appendix A.5) there can be at
most two turning points46 outside the event horizon. Given {Q,Φ}, the en-
ergy E can be chosen in order to have two, one or no turning points (this
is easiest to see through the effective potential V+ in Appendix A.5). The
unstable spherical orbits are the limit between two turning points and none,
at a specific value of E (given Q,Φ). Spherical orbits are therefore the clos-
est photons can get to the BH and still be able to escape. Photon rings
are thus created by photons that almost follow spherical orbits and, because
these are unstable, they are on the verge of either being captured or escaping.

From (1.4.10) it is known the values of λ(r) and η(r) for each orbital
radius r. Using (1.5.29) and (1.5.30), the photon rings can be parametrically

described in the image plane
(
x′(r), y′(r)

)
as function of the orbital radius

r of each photon, within the range r1 ≤ r ≤ r2 (condition for η ≥ 0). These
rings are represented in Fig. 1.5.3 and Fig. 1.5.4 for different values of a and
observation angles θo.

46A turning point occurs when R = 0
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Figure 1.5.2: Computer simulation of gravitational lensing produced by a BH
passing in front of the Magellanic Clouds in the Southern Hemisphere (simulation
by A. Riazuelo) [29–31]. The dark region in the picture is the BH’s shadow and
its edge is the photon ring.

To continue the analysis and investigate other interesting features, such
as gravitational lensing near the shadow’s rim, it is adequate to conduct a
numerical simulation of light rays from a given source to a “camera” (our
observer). The information carried by each ray (such as intensity, color)
would be respectively assigned to a pixel in a final image, which embodies
the optical perception of the observer47.

Numerically this could be done by integrating the equations of motion for
null geodesics. The most naive approach would be to evolve the light rays
directly from the source and detect which ones reach the camera. However
this procedure is very inefficient since most rays would not reach it and thus
spend unnecessary computation time.

A better approach is to evolve the light rays from the camera backwards in
time and identify its origin [32–34], a method named backward ray-tracing,
also used in video-game engines. The angular coordinates (α, β) (see Fig.
1.5.1) of a point in the camera’s local sky48 define the direction of the associ-
ated light ray and establishes its initial conditions. A very interesting prob-
lem however is to obtain the constants of motion of the photon {E,Φ, Q}
given the coordinates (α, β).

47The human eye in this sense is also considered a “camera”.
48The local sky is the apparent projection of stellar objects in a sphere centered on the

observer.
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The 4-momentum p squared is given by

p · p = −µ2 = −
(
p(t)
)2

+ p
2.

Therefore for photons with rest mass µ = 0 we have

p(t) = p.

Combining the equations of motion (1.3.1 - 1.3.4) and the 4-momentum pro-
jections (1.5.20 - 1.5.26), we obtain:

pθ = p
√
gθθ sinα, (1.5.31a)

Φ = p
√
gϕϕ sin β cosα, (1.5.31b)

pr = p
√
grr cos β cosα, (1.5.31c)

E = p

(
1 + γ

√
gϕϕ sin β cosα

ζ

)
. (1.5.31d)

Notice that by using equations (1.5.20 - 1.5.23) we are implicitly assuming
that our observer (or camera) is a ZAMO frame. Also, curiously the value
of p is redundant49 for the geodesic trajectory since its variation leads to a
simple rescaling of the affine parameter. For this reason the value of p can
be set to unity for simplicity.
The relations (1.3.7) and (1.3.8) are now useful to obtain the values of Q
and µ given {pr, pθ, E,Φ}. Naturally for a photon we have µ = 0 but this
procedure can be implemented numerically as a cross-check.

In practice the camera’s local sky is divided into small solid angles, each
corresponding to a pixel in the camera’s final image (see Fig. 1.5.5). For
each pixel the constants of motion {E,Φ, Q} are determined from the pixel’s
coordinates (α, β). The equations of motion (1.3.1 - 1.3.4) are then integrated
numerically backwards, which can be achieved by setting the affine parame-
ter’s numerical differential negative. If the photon reaches a light source or
a BH then the integration stops, there is optical information assigned to the
respective pixel and the process is repeated.
The field of view of the observer is related to the range of α, β. For instance,
if the range of α is [−ψ, ψ], where ψ is some bound, then the field of view
angle is 2ψ; also for short one can say that the range is ±ψ.

A simple and interesting paradigm is a source placed at infinity, very far
from both the observer and the BH. For numerical reasons however, it was
considered a different but similar configuration, with a finite spherical light

49The value of p only establishes the photon’s frequency and does not influence the
trajectory itself.
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source, which will be named “celestial sphere”, englobing and enclosing both
the BH and the observer, but concentric with the first (see Fig. 1.5.6). The
ray tracing algorithm is thus a mapping between a point in the camera’s
local sky and a point in the celestial sphere. If a pattern is “imprinted” on
the celestial sphere (see Fig. 1.5.7 for instance), then a ray that reaches a
given point on that surface retrieves the pattern information at that point
back to the initial pixel, in the local sky. The pattern could for instance be
grey levels of an image, related to light intensity of the source. On the other
hand, a ray that has its origins from a point on the event horizon50 of the
BH corresponds naturally to a black pixel (no light came from that direction).

Although two BHs with different values of a are each still a member of
the Kerr family, they have distinct space-time geometries; the coordinate
r is not even directly comparable between such solutions. At this point
it is important to establish a criteria for similar observation conditions in
different space-times: two observers are in similar observation conditions if
the perimetral radius r̃ is the same for both observers (see (1.5.24)). This
implies √

gϕϕ(1) =
√
gϕϕ(2),

where each superscript (1) and (2) labels the respective space-time. Of course
some reference distance must still be provided to make the final link; for the
moment, the distance51 defined by the parameter m will be used for such a
purpose.
An interesting point is that for flat space (which is an endpoint of the Kerr
family) we have

r̃ =
√
gϕϕ(flat) = r(flat).

Comparing observations in flat space with observations for a Kerr BH at a
radial coordinate r yields then

r̃ =

√
r2 + a2 +

2ma2

r
.

The inversion of this equation leads to (see Appendix A.4)

r = 2

√
r̃2 − a2

3
cos

(
1

3
arccos

[
3a2m

a2 − r̃2

√
3

r̃2 − a2

])
. (1.5.32)

So, given a radius r̃ in flat space, we can compute the equivalent radial coor-
dinate r in Kerr space-time that leads to similar observation conditions. In

50This condition is obtained if either r ≤ r1 or ∆ ≤ 0.01m.
51The massM is fixed for all cases. The distance m is thus a well defined quantity, even

for flat space (where there is no BH).
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practice however, the difference (r̃−r) is quite small compared with r̃, unless
the Kerr observer is very close to the BH. For example, for a = 0.999m we
have r̃ = 15m =⇒ r ≃ 14.96m.
Continuing the current reasoning we can also define the celestial sphere to
be at a given perimetral radius52 (different from the observer) and compute
the respective Kerr radial coordinate using (1.5.32).

For the numerical integration an embedded Runge-Kutta method with
Dormand-Prince 5(4) parameters was used [27]. This method has an adap-
tive step size and was implemented in a C++ code. The data from the nu-
merical simulations was then processed by MatLab and saved into images53,
from Fig. 1.5.7 to Fig. 1.5.13. No gravitational or Doppler frequency shifts
were considered and neither was the Liouville’s54 brightness shift. Also, no
optical aberrations were taken into account [32].

52For simplicity the perimetral radius r̃ is computed at the equator (θ = π/2) but set
constant on the surface r = Const..

53These images are all new. They are either completely original or are modifications of
pictures which originally did not display a BH.

54By Liouville’s theorem the specific intensity Iν ∝ ν3 [32].
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Figure 1.5.3: Graphic representation of the photon ring, as observed from very
large distances (r ≫ m) in the equatorial plane of the BH (θo = π/2) (see (1.5.29)
and (1.5.30)). Different values of the dimensionless rotation parameter ao = a/m
are displayed. Notice that for ao ≃ 0 we have almost a circle due to the symmetry of
the Schwarzschild solution and for ao ≃ 1 we have a highly asymmetric geometric
shape due to the symmetry violation in the latitude coordinate θ for the Kerr
metric. Notice that the shadow (region inside photon ring) is larger than the
event horizon’s angular size, as we must have r+ ≤ 2m.
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Figure 1.5.4: Graphic representation of the photon ring as observed from very
large distances (r ≫ m) in the z axis (θo = 0) of the BH (see (1.5.29) and (1.5.30)).
Different values of the dimensionless rotation parameter ao = a/m are displayed.
From this observation perspective the photon rings are circles for all values of
a, due to the symmetry in the azimuthal ϕ coordinate. Notice that the shadow
(region inside photon ring) is larger than the event horizon’s angular size, as we
must have r+ ≤ 2m.
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Figure 1.5.5: Graphical representation of the light rays (blue lines) and a BH
(red sphere) with spin a = 0.8m. The numerical data is displayed as if the Boyer-
Lindquist coordinates were spherical. The rays branching point in the figure cor-
responds to the position of the observer, which is at the equatorial plane with
r̃ = 15m.

Figure 1.5.6: Schematic drawing of the spherical light source paradigm. The
celestial sphere is represented as the larger circle, the BH as the black circle in
the center of the image and the observer as the small star. Notice that both the
observer and the BH are inside the celestial sphere. The observer is at a perimetral
radius r̃ = 15m and the celestial sphere is on the surface r̃ = 30m. Because the
observer is not centered within the celestial sphere then the projection of the latter
on the local sky has parallax distortions (see Fig. 1.5.9).
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Figure 1.5.7: A possible pattern on the celestial sphere. This figure corresponds to
the optical perception of an observer at coordinates θ = π/2, ϕ = 0 and perimetral
radius r̃ = 15m but without a BH (it is flat space) (compare with Fig. 1.5.8).

The grey level pattern of the image is given by [(1 + sin(10ϕ) sin(10 θ))/2]1/5,
normalized into the range [0, 1]; the coordinates (θ, ϕ) are the respective Boyer-
Lindquist coordinates on the celestial sphere (surface at r̃ = 30m). The range of
(α, β) (field of view) is ± arctan (10/15) for both angles. The horizontal axis is
connected to β and the vertical axis to α.
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Figure 1.5.8: (Top): This figure corresponds to the optical perception of an
observer in the same conditions as in Fig. 1.5.7 but with an extremal BH (a = m).
The strong lensing effect over the background pattern is very clear. It is also
interesting to compare the edge of the shadow (the dark region) with Fig. 1.5.3.
The range of (α, β) (field of view) is ± arctan (10/15) for both angles. This image
was generated by ray-tracing of 500 × 500 photon trajectories. (Bottom): Image
on top with a periodic pseudo color scale from MatLab that enhances the local
differences in the grey level. With this curious representation is easier to perceive
the fractal-like recurrence pattern near the shadow’s edge.
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Figure 1.5.9: This figure corresponds to the optical perception of an observer in
the same conditions as in Fig. 1.5.7 (thus without a BH) but with a larger field of
view that spans all the local sky: α ∈ [−π/2, π/2] and β ∈ [−π, π]. The horizontal
axis is connected to β and the vertical axis to α. The distortion in the pattern
is only due in this case to parallax, since the observer is not centered within the
celestial sphere and it is at a finite distance from it. The two star like structures
are each one a pole on the celestial sphere.

Figure 1.5.10: This figure corresponds to the optical perception of an observer in
the same conditions as in Fig. 1.5.9 but with an extremal BH (a = m). The image
surrounding the shadow is the same as in Fig. 1.5.8.
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Figure 1.5.11: This image is similar to Fig. 1.5.10 but with a different pattern
in the celestial sphere, just for fun. The projection on the celestial sphere was
also corrected for the parallax distortion (see Appendix A.7). The background
image shown is the campus of Santiago at the University of Aveiro, Portugal.
The Einstein ring, an important feature of gravitational lensing, is here easily
discernible as a sharp circle: notice that inside it objects are inverted/upside down,
like the blue sky for instance. [35]

Figure 1.5.12: Similar as in Fig. 1.5.11 but with a star field in the background.
The original image is from the European Space Agency and taken with the Hub-
ble Space Telescope. It is listed as the LH 95 star forming region of the Large
Magellanic Cloud. [36]
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Figure 1.5.13: Different variation of Fig. 1.5.12 and 1.5.11. The star field is from
real images of the Milky Way. [37]. Notice the halo around the shadow, produced
by the Einstein ring.
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1.5.4 Shadow of a BH with accretion disk

In the previous section we considered shadows with a large light source in
the background (e.g. stars). However a luminous accretion disk orbiting a
BH is also astrophysically relevant to analyse. For this case was used the
free software GYOTO, or General relativitY Orbit Tracer of Observatoire de
Paris, for the ray tracing algorithm [34,38], which is not unlike the one used
in the previous section. This software has several astrophysical structures
already included, one of which is an infinite optically thick thin accretion
disk, theoretically developed by Page and Thorne [39].

Using GYOTO several images of shadows of a BH with a Page-Thorn ac-
cretion disk were obtained, from Fig. 1.5.14 up to Fig. 1.5.15. These images
are as perceived by a static observer at r = 100m, ϕ = 0 but for different
values of coordinate θ and spin a. In this case the gravitational, Doppler
and Liouville shifts were taken into consideration. As a consequence the
original images obtained were very dim and difficult to read. For this reason
was applied a common tool from image processing techniques named gamma
correction, which aims to enhance hidden features in the grey levels without
producing image artifacts. This operation is a transformation function of the
original grey level Po to a new level P ′ according to the expression

P ′ = P1/γ
o

where the parameter γ is a positive real number and the grey levels are
normalized into the interval [0, 1].
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Figure 1.5.14: Images of the optical perception of a Schwarzschild BH (a = 0) with
a Page-Thorne accretion disk. The field of view angle is 0.3 (full range α, β). The
images were subjected to a gamma correction of γ = 3.6. (Top): The observer is at
θ = 50π/180 (or 50◦). The inner structure of the dark region is actually inside the
Einstein ring (but outside the shadow) and is a secondary image of the entire disk.
The shadow of the BH, which is a circle for Schwarzschild, is partially covered by a
portion of the accretion disk, from the observer’s perspective. (Bottom): observer
at θ = 85π/180 (or 85◦) Although the observer is almost at the equatorial plane
it is possible to recognize the section of the disk “behind” the BH in an apparent
position above it, as consequence of gravitational lensing (see [32]). Also due to
the rotation of the disk, the brightness is larger from the left side than from the
right side of the disk (Doppler and Liouville’s shift).
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Figure 1.5.15: In both images the observer is at θ = 85π/180 (or 85◦), but the
values of a are different. (Top): a = 0.5m; notice the asymmetry in the inner
structure of the Einstein ring and the increased difference in light intensity due
to frame-dragging. The field of view angle is 0.3 and the image was subjected
to a gamma correction of γ = 3.6. (Bottom): a = 0.999m (almost a maximally
spinning BH). The inner structure of the Einstein ring is now not discernible and
the shadow is highly asymmetric. The field of view angle is 0.2 and the gamma
correction parameter is γ = 7.7.
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Chapter 2

Hairy Black Holes

2.1 Event Horizon Telescope and GRAVITY

Despite the considerable amount of astronomical data that supports the exis-
tence of BHs, there is still no absolute proof that the observed BH candidates
are indeed BHs. The unequivocal smoking gun of a BH is its shadow and
one is yet to be detected. The BH candidates might be a compact configura-
tion without an event horizon, made of some type of exotic matter, although
such an hypothesis is rather unlikely. For instance, there are indirect tests
which suggest that BH candidates do not have a “normal” surface [3]. Also,
signatures of a very compact synchroton-emitting region with size ∼ GM/c2,
consistent with the BH scenario, have been reported for some cases [3, 40].
Still these are by no means a direct evidence for the existence of a BH.

The most promising candidates for a shadow observation are by far the
supermassive BHs at the centers of the Milky Way (Sgr A*) and the giant
elliptical galaxy M87 [40,41]. The Sgr A* has a mass of 4.3× 106M⊙ and is
at a distance of 8.3 kpc from Earth. The M87’s BH (or M87 for short) is con-
siderably further away, almost 17.9 Mpc from Earth, but is also much more
massive, with a mass of about 6.6 × 109M⊙ [41]. So both shadows have an
expected angular diameter1 of the same order of magnitude, about ≃ 50µas
for Sgr A* and ≃ 40µas for M87 (as seen from Earth) [40]. These angular
scales are already accessible within existing techniques, namely the Very Long
Baseline Interferometry (VLBI) operating at millimeter and sub-millimeter
wavelengths (0.8 mm - 1.3 mm). This frequency range is favored due to
synchroton radiation, which peaks at this interval in Sgr A* and is expected
not to be self-absorbed, allowing the horizon scales to be resolved [42, 43].
Moreover, longer wavelengths are dominated by interstellar scattering, which

1AKerr shadow’s angular diameter is of the order≃ 10GM/(lc2), where l is the distance
to the BH (for very distant observers!).

65
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overcomes the source structure.

At the moment, with VLBI it is possible to have angular resolutions of
the order ∼ 20 − 30µas, already within the scale necessary to examine phe-
nomena in the accretion disk [41]. Since 2003 sporadic flares in Sgr A* have
been detected with a quasi-periodic structure in a typical time scale of 20
min, each lasting ∼ 2h [44]. These flares can potentially be explained within
the hot spot model, in which density inhomogeneities in the accretion disk
orbit the BH at horizon scales [45]. It has been suggested that the fastest
periodicity can be used to constrain the possible value of the BH spin, since
the period of the Innermost Stale Circular Orbit2 (ISCO) is rather dependent
on that quantity [46]. For instance, for Sgr A* the period timescale of the
ISCO ranges from 30 min up to 4 min (in prograde orbits), as the spin is
increased from zero to its maximum.

Figure 2.1.1: Location of possible VLBI telescopes of the EHT project as observed
from Sgr A*. Adapted from [46].

Despite these recent advances, the detection of a BH shadow is still one
of the main goals of VLBI observations. To meet this end, an international
project named Event Horizon Telescope (EHT) is being developed [41,42,46].
It aims to produce high quality images of shadows using an array of VLBI
telescopes scattered across planet Earth. In addition to upgrading existing
telescopes in Hawaii, Chile, Greenland, Spain, France, USA, and the South
Pole it has also been considered the possibility of including new ones in
Mexico, South Africa, Kenya and New Zealand (see Fig. 2.1.1) [42, 46]. In
clear contrast with centimeter wavelength astronomy, (sub)millimeter obser-
vations are limited by the requirement that the operating station must be
above most of the water vapor in the atmosphere. Therefore possible sites

2ISCO is the closest stable orbit around a BH for time-like particles.
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suitable for mm VLBI astronomy are quite sparse [46].

In addition to the EHT, there are plans for another international project,
still in the preliminary design phase, designated GRAVITY [44]. It is “specif-
ically designed to observe relativistic motions of matter” and aims to test
General Relativity (GR) in the strong field regime for an extremely heavy
mass [44, 47]. Near-infrared light from four telescopes of ESO’s Very Large
Telescope will be interferometrically combined, measuring angular distances
between a reference star and a target object up to an accuracy of 10µas [44].
Such a high precision tool will allow direct measurement of on-sky motion
of objects, such as stars very close to Sgr A* and the previously mentioned
flares at horizon scales. The analysis of relativistic effects and the testing of
possible deviations from GR predictions makes the name GRAVITY a cer-
tainly suitable name for the project.

It is important to mention that GRAVITY will not actually resolve shad-
ows. It is much more focused on a more dynamical picture of gravitational
phenomena. This comes in clear contrast with the EHT, since for the latter
are also expected much longer exposure times than the typical orbital periods
in Sgr A* at horizon scales [41, 44].
Besides the galactic center, GRAVITY might also play a role in the search for
Intermediate Mass BHs, with mass ranging between stellar BHs and super-
massive BHs. Although they are expected to be found in dense star clusters,
none has been confirmed to this date [3, 47]. GRAVITY also promises to be
an ideal tool to investigate young stellar objects, namely forming planets in
circumstellar disks [47].

2.2 Brief introduction to “hair”

Up to this point only Kerr BHs were considered in the discussion and so it
is reasonable to ask if other types of BHs might exist in the cosmos. For the
remainder of this chapter units G = 1 and c = 1 will be used.

2.2.1 Uniqueness Theorems and the No-hair conjec-
ture

A set of influential theorems by Israel, Carter and Wald that became known
as the uniqueness theorems establish that all stationary BHs in vacuum3

which are regular and asymptotically flat are given by the Kerr metric (Kerr-
Newman if electric charge exists) [48, 49]. The underlying assumptions are

3Of course many other solutions are possible for BHs which are not in vacuum.
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fairly reasonable, namely that the cosmic censorship conjecture holds and
the space-time outside the event horizon is free of closed time-like loops,
which would violate causality [50]. A direct consequence of the uniqueness
theorems is that BHs in vacuum are totally described by their total mass M
and angular momentum J (and electric charge if present, which will not be
considered). This implies that two BHs with the same M and J are iden-
tical, which comes in clear contrast with other celestial bodies such as stars
that cannot be fully characterised by only two quantities. During the forma-
tion of a BH, any residual information other than the mass and spin of the
original system must then be radiated away, namely through gravitational
radiation [51].

The uniqueness theorems inspired the conjecture that the dynamical end-
point of gravitational collapse in the presence of any type of matter-energy
configuration is given by the Kerr metric [52], described only by the final
mass and angular momentum. This extrapolation was captured in John
Wheeler’s4 mantra “BHs have no hair”, where hair is a metaphor for other
BH parameters needed to fully describe the BH. This is the no-hair conjec-
ture, immensely influential in BH physics and often regarded as a theorem,
although it is not proven [48, 52]. Notice that the no-hair conjecture is a
much stronger statement than the uniqueness theorems since it concerns the
outcome of gravitational collapse and not just the existence of BH solutions
in equilibrium with a matter-energy field.

The Einstein equations are highly nonlinear and therefore it is not al-
ways possible to solve them using an expansion of orthonormal polynomials.
However, it has been shown that a multipole expansion of curved space-time
does exist [50].
The first two multipole moments of a BH can be identified as the massM and
the angular momentum J . If the no-hair conjecture holds, then all higher
multipole moments, namely the quadropole moment, must be exclusively de-
pendent on those two quantities. Possible observations that could test this
conjecture have already been designed, namely in a series of papers by Jo-
hannsen et al. [28, 45, 50, 51, 54, 55]. In these papers a perturbed version of
Kerr with an independent quadropole moment, dubbed “quasi-Kerr” metric,
is considered. This quasi-Kerr metric is only a solution to the Einstein equa-
tions up to quadropole order and reduces smoothly to Kerr [50]. Using this
approach one concludes that even moderate deviations from the Kerr metric
lead to measurable deformations of the BH shadow, which could potentially
be observed by the EHT.

4John Wheeler is also credited for coining the names “black hole” and “wormhole”. He
would allegedly lay “in a warm bath for hours on end, letting his mind soar in a search
for just the right word or phrase”. [1, 53].
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With the advent of high resolution VLBI techniques and international
projects such as the EHT and GRAVITY, researchers hope to discover within
the next few decades if BH candidates in the cosmos are really the paradig-
matic Kerr BHs suggested by the no-hair conjecture. It is therefore timely to
explore alternative BH solutions from which templates can be built for the
upcoming astronomical data [56].

In physics, scalar5 fields are probably one of the simplest descriptions
of matter and so it should come as no surprise that one might search for
BH solutions coupled with scalar fields. The discovery in 2012 of a scalar
particle in the Large Hadron Collider (at CERN), identified as the Higgs bo-
son, suggests that fundamental scalar fields do exist in Nature. Furthermore,
these fields can also be used as a toy model for realistic matter, such as dark
matter [52]. Moreover, scalar fields are motivated as well from high energy
theories beyond the standard model, namely from string theory [56].

A no-scalar-hair theorem by Chase established that a BH cannot support
in equilibrium a static, regular and massless scalar field. Bekenstein also
proved a (different) no-hair-theorem that became influential, which could be
extended to massive scalar fields as well [52]. A generalization of the original
proof can be found in Appendix B.1 for a stationary and axi-symmetric BH
interacting with a scalar field φ. This theorem makes three crucial assump-
tions:

• The scalar field is minimally coupled to Einstein’s gravity, or in other
words, the field equation for φ does not involve the curvature of space-
time. This assumption excludes non-minimally coupled interactions,
such as scalar-tensor theories of gravity. The non-linearity of these ex-
otic matter fields produces resistance to the collapse of the field into
the BH. However they have probably little astrophysical relevance, at
least at macroscopic scales. Nevertheless the existence of such solutions
show there are limitations to the no-hair conjecture [52].

• The scalar potential V (φ), defined in Appendix B.1, satisfies V ′φ ≥ 0,
where the derivative is taken with respect to the field φ. A non-self
interacting massive scalar field, probably the simplest case, satisfies
this condition. However, there are physical potentials that can violate
it, namely the Higgs potential. Nonetheless other types of no-scalar-
hair theorems exist in similar circumstances, although they rely on the

5Scalar fields are defined by a single value at each point in space-time and are invariant
by a local coordinate transformation [57].
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(strong) weak energy condition, which state that the (potential) energy
density is non-negative. Still, if the (strong) weak energy condition is it-
self broken, then hairy BH solutions are possible, albeit unphysical [52].

• The scalar field φ has the same symmetries as the space-time, namely
∂tφ and ∂ϕφ are both zero. The coordinates t, ϕ are chosen such that
the vectors ∂t and ∂ϕ are the two Killing vectors related respectively
to the space-time stationary symmetry and to axial symmetry. This
assumption appears quite obvious at first, but it is not compulsory.
What is mandatory is that the energy-momentum tensor Tµν of the
scalar field has the same symmetries as the space-time, which is not
equivalent. If the scalar field φ is complex, it can have a harmonic
time dependence of the form ∼ e−iwt that cancels out in the energy-
momentum tensor. This loophole will be explored in the next sections.

2.2.2 Superradiance

Naively, one might expect that a wave scattered by a BH should always
have a smaller (at most equal) amplitude than the incident wave. However
surprisingly, it is possible in fact for the scattered wave to have a larger
amplitude than the incident one, if certain conditions are met. This physi-
cal phenomenon called superradiance is the wave scattering analogue of the
Penrose process. Indeed, the additional energy of the scattered wave is only
possible at the expense of the BH rotational energy [1, 58].

It is interesting to reproduce here an impressive thermodynamic argu-
ment, that can be found in Novikov’s book [1], which leads to the superradi-
ance condition. The formulation of BH thermodynamics has curiously quite
a familiar form. For instance the 1st law of BH thermodynamics is given
by [1]:

dM =
κ

8π
dA+ ΩHdJ,

where M,A, J, κ are respectively the mass, area, angular momentum and
surface gravity of the BH [5] (there is a small discussion about the event
horizon’s angular velocity ΩH for Kerr in Appendix A.1). The thermody-
namic analog of this expression is

dE = TdS − PdV,

where E, T, S, P, V are respectively the energy, temperature, entropy, pres-
sure and volume of a given thermodynamic system. The similarity between
both expressions is closer than one might think, since the area of the horizon
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A is indeed proportional to the entropy of the BH and the surface gravity κ
is proportional to a temperature, related to the famous Hawking radiation.
It follows naturally that the BH analog for the 2nd law of thermodynamics
is given by

dA ≥ 0.

This relation, proven by Hawking in 1971, implies that in any process the
area of the BH cannot decrease [5].

Consider now a bosonic field φ ∼ e−i(wt−mϕ) with quantum numbers6

w,m that could describe a scalar, electromagnetic or gravitational wave [1].
Far from a BH, each quanta has an energy δE = ~w and an axial angular
momentum δJ = ~m, where h = 2π~ is the Planck constant. Thus the flux
ratio of the angular momentum and energy of the field φ across a large sphere
surrounding the BH is given by δJ/δE = m/w (this argument can be made
precise [1]). An interaction of the scalar wave with the BH will then lead to
a change of mass δM and angular momentum δJ of the latter:

δJ =
m

w
δM.

By the 1st and 2nd law of BH thermodynamics (and since κ ≥ 0), we must
have

δM − ΩHδJ ≥ 0,

which combined with the previous equation leads to

(
1− ΩH

m

w

)
δM ≥ 0.

For superradiance to occur, energy must be extracted from the BH. Thus
δM < 0 and one must have

w < mΩH .

An interesting situation happens for exactly w = mΩH , since it will lead to
bound states between the BH and a scalar field (this topic will be continued
ahead).

It can be found that the maximum amplification of an incoming wave
due to superradiance is 0.3%, 4.4% and 138% respectively for scalar, elec-
tromagnetic and gravitational waves (the main reason for this difference is
the quantum spin of the field) [1]. Superradiance has also been equally pre-
dicted for other types of fields, such as massive vector fields defined by the
Proca equation [59, 60]. With this in mind, one can conceive an interesting

6Until the end of this chapter a different notation is used: M is the BH mass, m is the
azimuthal harmonic index and w is the field frequency.
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academic paradigm, namely a reflecting mirror surrounding a BH. The wave
would then bounce back and forth between the mirror and the BH, with the
wave’s amplitude being exponentially augmented in each iteration. Such a
device is called a “BH bomb” [58, 59, 61].

Although the construction of such an apparatus is very unlikely, nature
sometimes provides its own mirrors [58]. For instance, a proposed mechanism
for astrophysical gamma-ray bursts involve magnetosonic plasma waves suf-
fering multiple reflections on the inner boundary of an accretion disk, which
is orbiting a BH. The enormous amount of energy released by supperradi-
ance amplification is then collimated into an outburst of gamma radiation.
The mass µ of a scalar field also works effectively as a mirror, as long as the
condition w < µ is fulfilled [58].
See [62] for a (much more complete) review on superradiance.

2.2.3 Massive scalar clouds

We will now focus on a massive scalar field φ on the background space-time
of a Kerr BH. This means that φ is a probe field, not massive enough to
“back-react” on the geometry. For this reason, the field φ is usually dubbed
a “scalar could”, since it does not truly qualifies as “hair” [63].

Considering the massive Klein-Gordon equation on the Kerr space-time,
we have

∇ν∇νφ− µ2φ = 0,

where µ is the mass of the scalar particle7, if units G = c = ~ = 1 are used.
Notice that 1/µ has dimensions of a distance, defined by the Compton wave-
length of the particle [64] . Also, the metric information of the space-time is
contained on the covariant derivative operator ∇ν = gµν∇µ.

To solve the Klein-Gordon equation, the field φ is decomposed in its
modes φ =

∑
l,m φlm, and separation of variables are used:

φlm = Rlm(r)Slm(θ)e
−iwteimϕ.

In the previous expression {t, r, θ, ϕ} are the Boyer-Lindquist coordinates and
Slm are the spheroidal harmonics, which satisfy the equation (see [63, 65])

1

sin θ

d

dθ

(
sin θ

dSlm

dθ

)
+

(
Klm + a2(µ2 − w2) sin2 θ − m2

sin2 θ

)
Slm = 0.

7In S.I. units we have µ = cµ∗/~, where µ∗ is the particle mass [64].
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The spheroidal harmonic index l has the range −l ≤ m ≤ l, where m is the
azimuthal harmonic index; both l and m are integers [63]. The term Klm

is simply a separation constant. The radial functions Rlm are given by the
Teukolsky equation [49,63,65]:

d

dr

(
∆
dRlm

dr

)
−
(
a2w2 − 2maw + µ2r2 +Klm − [(r2 + a2)w − am]

2

∆

)
Rlm = 0,

where ∆ = r2+a2−2Mr and a is the spin of the Kerr BH, as before. Notice
that in this chapter a different notation is used for the BH mass M , which is
not to be confused withm, which is now the azimuthal harmonic index. Also,
an non-negative integer index n can be introduced, which counts the number
of nodes of the radial function Rlm. Curiously enough, the mathematical
structure of this solution does resemble the familiar analysis on atomic or-
bitals. However it does not share the probabilistic character of the latter [65].

In the search for bound states one must impose physical boundary condi-
tions, namely purely ingoing scalar waves at the BH horizon (as measured by
a comoving observer) and an exponentially decaying profile at spatial infin-
ity [63,65]. Applying these conditions, a set of possible ressonance frequencies
w̃ can be obtained, resembling an eigenvalue problem [63]. However, it turns
out that w̃ are complex numbers, which means they generally correspond
to quasi-bound states. Decomposition on the real and imaginary parts of w̃
yields

w̃ = R(w̃) + i I(w̃).
So for φlm we obtain a harmonic time dependence of the form

φlm ∼ e−iR(w̃)t e I(w̃)t.

We have then three different scenarios. From a more detailed analysis (see
[58, 63, 65]) it is possible to conclude that:

• I(w̃) < 0, for R(w̃) > mΩH . In this regime the field decays expo-
nentially with time, and thus it is infalling into the BH. This case is
the only one present for Schwarzschild BHs (no rotation), which is in
agreement with well known no-scalar-hair theorems for static hair [63].

• I(w̃) > 0, for R(w̃) < mΩH . This is the superradiant regime, in
which the field amplitude increases exponentially with time. Notice
however, that this situation cannot be sustained indefinitely, since ΩH

also decreases as the BH’s rotational energy is extracted due to super-
radiance. Moreover, above a certain energy level, the field starts to
back-react on the space-time geometry and the initial assumption is no
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longer valid.

• I(w̃) = 0, for w̃ = mΩH . This limit of the superradiant regime yields
the true bound states of scalar clouds, for a (infinitely) long-lived solu-
tion [66].

Fixing the values of l,m, n, the possible scalar cloud solutions with w =
mΩH follow an existence line in the (M,J) parameter space of Kerr BHs.
For instance, in Fig. 2.2.1 are displayed several existence lines for different
values of m in a M(ΩH) diagram, fixing l = m and n = 0 (fundamental
modes). Since scalar clouds lie at the threshold of the superradiant regime,
points to the right of each existence line in the M(ΩH) diagram correspond
to Kerr space-times which exhibit superradiant instabilities against those
clouds [49, 65]. In other words, if a given scalar cloud configuration in an
existence line is “relocated” to a Kerr space-time to the right of its initial
position in the diagram, the cloud would be come unstable due superradi-
ance. Moreover, since existence lines with l > m, n = 0 lie to the right of
the fundamental mode (l = m, n = 0), the latter also defines the threshold
of instability for a given m [65]. This means that although each mode in its
existence line is stable per se with respect to superradiance, a combination
of different modes is not. For this reason only scalar clouds with l = m will
be promoted to hair in the next section, in the full Einstein-Klein-Gordon
system [49].

As a final remark, since scalar clouds in equilibrium can only lie along ex-
istence lines, one might expect that these solutions are unstable with respect
to perturbations. However it is plausible that clouds are in fact dynamical
attractors [65]. For instance, given a BH with a scalar field, if w > mΩH

then the field will transfer mass and angular momentum to the BH, resulting
respectively in an increase and decrease of the values of ΩH and w. The
opposite situation occurs for w < mΩH , in which the field retrieves energy
and angular momentum from the BH due to superradiance, leading to an
increase of w and to a decrease of the angular velocity ΩH of the BH. The
bound state w = mΩH can then be regarded as the situation in which the
field and the BH are in a synchronous rotation state.
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Figure 2.2.1: Graph of the Kerr parameter space of solutions in a M versus ΩH

diagram. Examples of existence lines of scalar clouds are displayed for different
values of m (l = m and n = 0). The solid black curve corresponds to extremal
BHs and all Kerr BHs solutions exist below it (shaded region). Inset : The function
R11(r) is displayed for two different clouds, identified in the right of the M(ΩH)
diagram as the green and red dots. The r scale starts at r = rH ≡ r+ and the
function R11 is normalized such that R11(rH) = 1 for both clouds. The values of
a and rH are in units of 1/µ. Figure adapted from [49].

2.3 Hairy BHs with scalar hair

The well known no-scalar-hair theorems previously discussed led to the widespread
belief that regular BH solutions with scalar hair were not possible, unless the
“hair” was anchored to non-linear interactions, for which case solutions have
been shown to exist. However these have questionable astrophysical rele-
vance.

Nevertheless, a novel family of BH solutions was recently found [49],
dubbed Kerr BHs with Scalar Hair (KBHsSH), which can potentially be
more relevant in astrophysics. In these solutions, the massive scalar hair
does not rely either on non-linear matter effects or self-interactions as means
to sustain itself against gravitational collapse into the BH. Instead, these
Hairy BHs (HBHs) are the non-linear generalization of scalar clouds for a
back-reacting scalar field, and hence made possible by superradiant instabil-
ities. Also, the harmonic dependence makes it possible for these solutions to
be outside the scope of the mentioned no-hair theorems. A detailed review
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for these solutions can be found in [56], which will also be strongly followed
in this section.

Consider a complex massive scalar field φ minimally coupled to Einstein’s
gravity. Instead of a complex field, it is also equivalent to consider two real
fields in opposite phases. Both the Einstein equations and the field equation
for φ can be obtained from the Hilbert functional S[gµν , φ] by the variational
principle:

S[gµν , φ] =
∫
d4x

√−g
[
R

16π
− 1

2
∇µφ∇µφ∗ − µ2φ∗φ

]
,

where g is the determinant of the metric, R is the Ricci scalar, µ is the
mass of the scalar particle (not to be confused with the index) and φ∗ is the
complex conjugate of the field φ. One can then obtain the Einstein equations
and the massive Klein-Gordon equation for the field φ:

Rµν −
1

2
gµνR− 8πTµν = 0,

∇µ∇µφ = µ2φ,

where the expression for energy-momentum tensor is given by [56]:

Tµν = ∇µφ
∗∇νφ+∇νφ

∗∇µφ− gµν

[
1

2
∇αφ∇αφ∗ + µ2φ∗φ

]
.

The action is invariant by a global U(1) transformation φ→ eiβφ, where
β is a constant. This symmetry yields a conserved quantity, a Noether charge
Q, consequence of the conservation of the scalar 4-current [56]. Thus, the
charge8 Q, which counts the number of particles in the scalar field, follows
a continuity equation. This does not forbid however charge flux into a BH.
Moreover, charge loss would leave no signature on the BH exterior since Q
does not follow a Gauss law.

The following ansatz for a stationary and axial-symmetric metric is now
made:

ds2 = e2F1

(
dr2

N
+ r2dθ2

)
+ e2F2r2 sin2 θ(dϕ−Wdt)2 − e2F0Ndt2, (2.3.1)

where N = 1−rH/r and rH is the radial coordinate of the BH event horizon.
The ansatz for the scalar field is given by

φ = φ̃(r, θ)ei(mϕ−wt),

8Q has absolutely no relation with the electric charge!
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where w is the field frequency andm is an integer named azimuthal harmonic
index. Notice that the coordinates used {t, r, θ, ϕ} are not Boyer-Lindquist
coordinates, although there is a close connection between the two sets (see
Appendix A of reference [56]). The physical interpretation however is still

the same for each coordinate, as the notation suggests. Also, φ̃ and the
metric functions F0, F1, F2,W only depend on r and θ due to the assumed
symmetries for the space-time. Moreover, all the solutions analysed in refer-
ence [56] are symmetric with respect to a reflection on the equatorial plane,
so it is enough to consider the range θ ∈ [0, π/2]. Furthermore, since this

is a non-linear setup, it is not clear that the function φ̃ can be decomposed
in a product of radial and angular functions, as was done in the analysis for
scalar clouds.

Although the metric has two Killing vectors, namely ∂t and ∂ϕ, the full
solution (space-time plus scalar field) does not. The latter has only one
Killing vector, expressed by the helicoidal vector field

χ = ∂t +
w

m
∂ϕ.

It is important to clarify that (remarkably) the space-time is still stationary
and axial-symmetric, since the harmonic dependence in the field cancels out
in the energy-momentum tensor. The latter will depend however on m and
w, and so will the space-time geometry.

The Einstein-Klein-Gordon system yields an impressive set of five non-
linear coupled partial differential equations for the functions F0, F1, F2,W
and φ̃, which was solved numerically (see [56] for details). Two remaining
Einstein equations were also used both as constrains and as a numerical
accuracy check. The relative error of the solutions found was estimated to
be less than 10−3.
For the boundary conditions, it was required that on the axis of rotation
(θ = {0, π}):

∂θFi = ∂θW = φ̃ = 0, and F1 = F2,

where the last equality prevents conical singularities. Due to reflection sym-
metry on the equatorial plane (θ = π/2), one should also have

∂θFi = ∂θW = ∂θφ̃ = 0.

In addition to these boundary conditions, the solution was also required to
be asymptotically flat:

lim
r→∞

Fi = lim
r→∞

W = lim
r→∞

φ̃ = 0.
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The boundary conditions for Fi and φ̃ at the event horizon are not so clear;
they can be obtained by a series expansion near the horizon (r = rH), using
a new radial coordinate x =

√
r2 − r2H :

∂xFi = ∂xφ̃ = 0.

Still at the horizon, the boundary condition for the function W is given by:

ΩH = W(r=rH) =
(w
m

)
,

which comes naturally as a generalization of the synchronous rotation con-
dition discussed for scalar clouds, and it is thus related to superradiance.
Also, this guarantees that the horizon surface is a Killing horizon, since the
normal to that surface is a combination of the Killing vector fields, which in
this case is only χ [1]. This further implies that the flux of the scalar field
into the BH is zero, a necessary result for an equilibrium configuration:

χµ∂µφ =χt ∂tφ+ χϕ ∂ϕφ, (2.3.2a)

=− iwφ+
(w
m

)
(im)φ = 0. (2.3.2b)

For the numerical integration itself, the input parameters used in refer-
ence [56] were {w,m, rH}, where with no loss of generality was set w > 0.
Quantities of physical relevance are then infered posteriorely from the solu-
tion, namely M,J,Q and n, where the latter is the number of nodes in the
equatorial plane for the function φ̃, reminiscent of the integer n defined for
scalar clouds. A reasonable and covariant definition of the mass M and an-
gular momentum J of the system is actually not obvious. When considering
asymptotically flat space-time, which is the case, the mass M and angular
momentum J of the solution are read from the asymptotic expansion of the
metric at spatial infinity:

gtt = e2F2 W 2r2 sin2 θ −Ne2Fo ≃ −1 +
2M

r
+ · · · ,

gtϕ = −e2F2 Wr2 sin2 θ ≃ −2J

r
sin2 θ + · · · .

The quantities M and J are then referred to as ADM quantities, after
Arnowitt-Deser-Misner [1,65]. It is worth mentioning that, up to this point,
the mass and angular momentum of a BH system were always ADM values,
and that the ADM definition also includes mass and angular momentum con-
tained in possible fields around the BH (if present). For instance, in Kerr,
which is a solution in vacuum, all the mass/energy is contained in the BH
itself. However for HBHs this is no longer the case, since M also contains
the mass/energy of the field. Thus, the ADM mass M can be interpreted



2.3. HAIRY BHS WITH SCALAR HAIR 79

as the total mass of the system, with all its components. Nevertheless, the
intrinsic mass and angular momentum of a BH, excluding contributions from
an exterior field, can still be computed using the Komar integrals over the
horizon [56]; these will be referred to as horizon quantities.

A very interesting feature of these HBH solutions is that they make a
continuous connection between Kerr BHs (plus scalar clouds) and another
well known class of objects known as Boson Stars (BSs). A Boson Star (BS)
is a self-gravitating configuration of a complex scalar field in equilibrium.
It is a “macroscopic quantum state” since the gravitational collapse is pre-
vented by Heisenberg’s uncertainty principle and also by the dispersive wave
character of the scalar field [56, 66]. Moreover, BSs have been considered as
possible alternatives when considering either BH or dark matter candidates,
since BSs are also extremely compact objects. Is interesting that the metric
ansatz for BSs is almost identical as the one used for HBHs, only this time
with rH = 0, since BSs do not have an event horizon. It is also intriguing
that although both spherical and rotating BSs solutions are known in litera-
ture, only the latter can be continuously connected to HBH solutions. Part
of the reason for this is that Schwarzschild BHs cannot support a scalar field
in equilibrium [66]. A review on BSs can be found on [67,68].

To better translate this continuous connection, it is useful to introduce a
normalized Noether charge q, defined in [56] as

q =
mQ

J
,

where q has simply the range q ∈ [0, 1]. For instance, when q = 0 the HBH
solution corresponds to a scalar cloud in Kerr space-time, whether for q = 1
we obtain a BS, since for the latter J = mQ. This leads to the perspective
that a HBH is in fact a BS in equilibrium with a BH in its center, with the
configuration being more BS like or BH like depending on the value of q.

At this point it is interesting to analyse the solution space of HBHs in a
diagramM(ΩH), similar to the one in Fig. 2.2.1. In Fig. 2.3.1 there is such a
representation for m = 1 and n = 0, which has an interesting spiral fashion.
The red line in this figure corresponds to BSs, the blue line to scalar clouds
(which is the same as the m = 1 blue line in Fig. 2.2.1) and the green line
to extreme9 HBHs. The latter is still poorly understood, since the center of
the spiral is numerically challenging to explore. As a consequence, a more
sophisticated picture in the center of the diagram is not yet excluded [56].
Also, the black line in the figure establishes the upper boundary of Kerr BH

9Extreme HBHs are defined to have zero Hawking temperature, or equivalently zero
surface gravity.
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Figure 2.3.1: Domain of existence of the HBH family of solutions (bluish region)
in a M versus ΩH = w/m diagram, for m = 1 and n = 0. The solid black line
sets the upper boundary of Kerr space-time solutions and corresponds to extremal
Kerr BHs. Also, it is the same black line as in Fig 2.2.1. Additionally, the blue
curve in this figure is the same as the m = 1 existence line in Fig 2.2.1 for scalar
clouds. Adapted from [56].

solutions and it is the same black line as in Fig. 2.2.1. From this diagram
one can then have a better understanding of the space of solutions of HBHs,
which is given by the bluish region.

From reference [56] it is clear that HBHs can violate the Kerr bound
(M4 ≥ J2). Moreover, it turns out that some solutions can also violate this
bound in terms of horizon quantities, rather than ADM [69]. In addition to
this, there can be an overlap of HBH and Kerr BH solutions in parameter
space. In other words, there exist HBHs and Kerr BHs with the same ADM
quantities M and J . Since these are the only asymptotic parameters, as Q
does not follow a Gauss law, there is non-uniqueness. Thus, as seen by a far
observer, a HBH and a Kerr BH cannot be distinguished from one another
just from the ADM quantities. To raise the degeneracy one must also specify
q, since in reference [56] no distinct solutions with the same three parameters
(M,J, q) were found.
In the region of non-uniqueness it is also interesting to compare the horizon
surface area of HBHs and Kerr BHs with the same M and J (ADM). The
intriguing conclusion is that the surface area, and thus the entropy, is always
larger for HBHs that the corresponding Kerr BHs, and so, remarkably, this
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implies that HBHs cannot decay adiabatically to the latter.

Notably, HBHs have appealing phenomenological properties, some of
which are significantly different from those of Kerr BHs, which is an un-
common feature in alternative theories of gravity [56]. For instance, the
quadropole moment, which can potentially be measured, can have devia-
tions of more than one order of magnitude compared with Kerr. Likewise,
the orbital frequency at the ISCO can suffer some moderate deviations, and
the ergoregion of these HBHs also has some new features such as toroidal
and Saturn like profiles (see [70]). For these reasons, the shadows of HBHs
promise to reveal significant discrepancies with respect to Kerr, which will
prove to be correct (see next section).

We will end this section with some remarks considering the particle mass
µ of the scalar field. Consider a HBH configuration such that

Mµ = η.

The dimensionless quantity η makes the physical connection between the two
length scales defined either by the gravitational radius or by the Compton
wavelength of the scalar field.
Converting the last expression to S.I. units yields

M
(
GM⊙

c2

)(µ c
~

)
= η,

where the dimensionless numberM expresses the ADM mass in solar masses.
Thus:

µ =
η

M × 1.32× 10−10 eV/c2.

Since for the previously discussed solutions we have η ∼ 1, then for a HBH
with three solar masses (M = 3) we obtain:

µ ∼ 10−11 eV/c2,

whereas if we choose the Sgr A* mass (M = 4× 106):

µ ∼ 10−17 eV/c2.

Scalar particles in this mass range are not known, or predicted within the
context of the standard model of particle physics. However such extremely
light particles have been suggested within more exotic theories, such as the
string axiverse [49]. Nevertheless, these HBHs solutions can still be dynam-
ically important for microscopic BHs, such as primordial BHs, although the
laws of physics are still poorly understood on such scales.
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2.4 Shadows of HBHs

This section contains a novel discussion, to the knowledge of the author,
about the gravitational lensing produced by BSs and the shadows of HBHs
(e.g. Kerr BHs with scalar hair). This recent family of solutions provides
qualitatively and quantitatively new shadow templates that could be used
by future VLBI observations and by the EHT. The content of this section
and its main results were already submitted for publication [71].

2.4.1 Ray-tracing without Carter’s constant

The general form of the geodesic equations is given by [8]:

ẍµ + Γµ
αβ ẋ

αẋβ = 0,

where the derivative is taken with respect to the affine parameter and Γµ
αβ

are the Christoffell symbols. This set of second order differential equations
does not assume any type of symmetries for the space-time. For Kerr, the
geodesic equations (1.3.1 - 1.3.4) are first order, since symmetry integration
constants {E,Φ, Q, µ̃} are used. The constant E is related to the space-time
stationary property, Φ to the axial symmetry and µ̃ (here the mass of the
moving particle) is connected to the normalization of the 4-momentum ẋν

(which is constant).

All these last symmetries are still valid for the previously discussed HBH
space-times. However the Carter constant Q is specific for Kerr, consequence
of an hidden symmetry10, and generally does not exist. Thus, the geodesic
equations for a HBH space-time are given by:

r̈ + Γr
tt ṫ

2 + Γr
rr ṙ

2 + Γr
θθ θ̇

2 + Γr
ϕϕ ϕ̇

2 + 2Γr
tϕ ṫ ϕ̇+ 2Γr

rθ ṙ θ̇ = 0, (2.4.1a)

θ̈ + Γθ
tt ṫ

2 + Γθ
rr ṙ

2 + Γθ
θθ θ̇

2 + Γθ
ϕϕ ϕ̇

2 + 2Γθ
tϕ ṫ ϕ̇+ 2Γθ

rθ ṙ θ̇ = 0, (2.4.1b)

ṫ = −Egtt + Φgtϕ, (2.4.1c)

ϕ̇ = −Egtϕ + Φgϕϕ, (2.4.1d)

where the last two equations are repeated for convenience. Defining the in-
tegration variables zr ≡ ṙ and zθ ≡ θ̇, one can then solve a system of six
first order differential equations with a standard numerical method, such as
Runge-Kutta. Interestingly, the initial conditions (1.5.31) are still valid for

10In fact, both E and Φ can be computed by multiplying the respective Killing vectors
by the 4-momentum, which always yields a constant. The Carter constant is due to the
existence of a Killing tensor, which yields Q after multiplication with the 4-momentum
twice [8, 16,21].
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HBHs, given that the coordinate notation is re-interpreted as the one used
in the HBH metric (2.3.1).

Usually, the normalization condition for the 4-momentum could be used
to further reduce the number of second order differential equations from two
to just one. For photons, ẋµẋνgµν = 0, which explicitly yields

ṫ2gtt + θ̇2gθθ + ṙ2grr + ϕ̇2gϕϕ + 2 ṫ ϕ̇ gtϕ = 0.

However, solving this equation for either ṙ or θ̇ would only supply infor-
mation for the modulus of that respective component. Since the sign only
changes at turning points, this approach could still be implemented in prin-
ciple. Nevertheless, it is still easier numerically to solve instead the set of
equations (2.4.1) (see also [72]).

The Christoffel symbols can be computed directly from the metric:

Γµ
αβ =

1

2
gµγ (∂β gγα + ∂α gγβ − ∂γ gαβ) .

Using an algebra manipulation software such as Maxima, it is straight for-
ward to obtain the Christoffel symbols from the metric (2.3.1), as function
of F0, F1, F2,W . The explicit expressions can be found in Appendix B.2.

The numerical values of the functions F0, F1, F2,W are provided on a
rectangular11 grid in the (r, θ) plane (see [56] for details). In order to eval-
uate the Christoffel symbols at every point, one must be able to assign an
approximate value for the functions Fi,W everywhere, and not only at the
grid points. As a first approach, an engineered function was fitted to the
data points using the least mean squared algorithm. The r and θ depen-
dence was modulated respectively with a log-normal type function h(x) and
with a cosine function, within a good approximation.
The log-normal function h(x) is given by

h(x) =
A

x− γ
exp

{
− [ln(x− γ)− q]2

2σ2

}
+ ε,

where {A, γ, q, σ, ε} are fit parameters. The possibility to organize these pa-
rameters in a table (∼ 70 for all 4 functions) is an advantage of this method.
Although this approach was successfully implemented, interpolation is easier
and more practical.

11Actually, the rectangular grid is not regular on the (r, θ) coordinates but rather on

(x, θ), where x is the compactified radial coordinate: x =
√
r2 − r2H/

(
1 +

√
r2 − r2H

)
.
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Two local interpolation methods were tested, namely bilinear and bicu-
bic, which are standard in two dimensional problems [27]. A single function
estimate requires information from 4 grid points for the bilinear method, or
16 points for the bicubic, in order to obtain local interpolation parameters.
Since these parameters are different between rectangular grid elements, and
a typical grid size is 250× 29, the total number of interpolation parameters
is clearly too large to tabulate. After some tests, it was concluded that the
bilinear method was considerably faster than the bicubic, without suffering
much accuracy loss. However, the partial derivatives are known to have dis-
continuities for a bilinear interpolated function. Thus, a smoothing algorithm
for the derivative was also applied.

The ray-tracing paradigm which will be now considered is quite similar
to the one in section 1.5.3, namely a celestial sphere concentric with a HBH
and a non-centered observer inside the sphere (the observer is also in the
equatorial plane). Similarly, the celestial sphere has twice the perimetral ra-
dius of the observer. However, the pattern chosen is different: a colored code
is assigned to each quadrant of the celestial sphere. Additionally, a square
grid is combined with the latter, with its lines uniformly spaced by 10o both
in the latitude and longitude (see Fig. 2.4.1). Moreover, a white spot (which
center is dubbed point F ) was added directly in front of the observer’s line of
sight. For this pattern configuration we closely follow an interesting paper on
binary BH mergers [73]. Additionally, an image smoothing thecnique, also
discussed on that paper, was applied to produce some high definition im-
ages. This thecnique envolves the construction of a 2000× 2000 pixels image
and then applying an averaging algorithm on the latter to build a smooth
500 × 500 image. However, due to reflection symmetry on the equatorial
plane, 1000 × 2000 = 2 × 106 photon trajectories need to be integrated in
practice.

The analogous of Fig. 1.5.7, now with the new pattern, is given by Fig.
2.4.2. The apparent curvature of the grid lines is only related to the geometry
of the projection.

It will be informative to compare observations in Minkowski, Kerr, and
HBH space-times and so a similar observation criteria is necessary. Thus, re-
calling the discussion in section 1.5.3, different radial coordinates are equiv-
alent if the perimetral radius r̃ is the same:

r̃ =

√

r2k + a2 +
2ma2

rk
= rh e

F2(rh),

where rk and rh are respectively the radial coordinates for Kerr and hairy
BHs. The inversion relation rk(r̃) has already been discussed in (1.5.32),
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Figure 2.4.1: Graphical representation of the celestial sphere with a section re-
moved in order to display its interior. The white spot on the inner surface is
centered with the observer’s line of sight. The perimetral radius of the celestial
sphere is double the observer’s, which is located on the equatorial plane.

whereas the relation rh(r̃) is not known analytically and so it must be deter-
mined numerically. To meet this end, the bissection method was used [27].
Hence, given a value of r̃, one can obtain the equivalent radial coordinates
between a Kerr BH and a HBH.

Still, as in section 1.5.3, a length scale must be provided to make the final
link. When considering HBHs there are two distinct length scales available to
serve as a unit of measurement, namely the Compton wavelength of the par-
ticle and the gravitational radius of the HBH. Thus, there are two different,
and equally valid options, depending on which length scale is set constant
throughout the analysis. One might for instance, compare HBH configura-
tions with the same ADM mass M with the cost of changing µ, since the
dimensionless product Mµ typically varies between solutions. Changing µ
only means that the type of particle is distinct, and hence we are compar-
ing different theories. The other option is to fix the particle type and set
µ constant, which implies that distinct solutions might have different ADM
masses. This last option will be chosen when comparing BSs, whereas the
previous is favored for configurations with an event horizon. Fixing M is
indeed more appropriate to construct an observational template, since one
wishes to compare different shadow predictions given a celestial object with
a fixed ADM mass. Either case, the link between a HBH and a Kerr BH is
only possible through the ADM mass of the latter, which has to be compared
with a similar scale of the HBH. The most natural choice for this scale is the
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Figure 2.4.2: Observed pattern of Fig. 2.4.1 by an observer in flat space
(Minkowski space-time). The apparent curvature of the grid lines is only related
to the geometry. Notice the white spot, which is centered within the field of view.
The range of the observation angles (α, β) (field of view) is ± arctan(10/15).

HBH ADM mass, although the usage of horizon quantities is also possible.

2.4.2 Gravitational lensing of BSs

In this subsection, the pattern in Fig. 2.4.2 is gravitationally lensed by BSs.
Since BSs do not possess an event horizon, no shadow will be observed.
Spherically symmetric BS (SBS) are first addressed in Fig. 2.4.4, followed
by Rotating BS (RBS) in Fig. 2.4.5. Although SBS are not continuously
connected to the HBH family of solutions, they are important to understand
the lensing structure of RBS. All BS solutions are labeled from 1 to 12 in
Fig. 2.4.3, according to their position on the BS spiral curve in the solu-
tion diagram. These numbers will be displayed as indices of w [71]. Due
to the spiral character of the BS curve, a single value of w does not define
a solution unambiguously. Then, the curve is also divided into branches,
each being bounded by spiral backbending points [56]. The branch num-

ber is represented as the superscript of w. For example, “w
(b1)
2 ” stands for

the frequency of the BS solution 2, which also belongs to the first branch (b1).

We first look at the lensing due to SBSs (see Fig. 2.4.3, m = 0). We set
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the observer at the equator and always at the perimetral radius r̃ = 22.5/µ,
with µ fixed for the different BS solutions. Moving along the SBS spiral
and starting from vacuum (i.e. w = 1µ), we find a set of “weak gravity”
solutions: non-compact BSs, which have a size larger than the corresponding
gravitational radius, regardless of any reasonable choice for the SBS effective
radius. The BS with w

(b1)
1 = 0.95µ in Fig. 2.4.4 illustrates such a case, where

only a small distortion of the background is observed.

Moving further along the spiral, an Einstein ring appears at w(b1) ≃
0.94µ, consequence of the lensing of F . Interestingly, a small region on the
celestial sphere around F is duplicated and inverted inside the Einstein ring.
This detail can be observed in Fig. 2.4.4 for a BS with w

(b1)
2 = 0.9µ. The

appearance of the first Einstein ring defines the transition from non-compact
to compact BSs.

Moving even further along the spiral, the region in the celestial sphere
which is duplicated inside the Einstein ring becomes increasingly larger, as
is illustrated for the BS with w

(b1)
3 = 0.8µ in Fig. 2.4.4. Shortly after the

spiral’s first backbending (from the 1st to the 2nd branch), at w ≃ 0.767µ,
the full celestial sphere becomes duplicated, starting at the BS with w(b2) ≃
0.77µ. Then, due to the lensing of the point immediately behind the observer
(dubbed B), two further Einstein rings emerge, which can be observed in the

bottom left panel in Fig. 2.4.4, for a BS with w
(b2)
4 = 0.8µ.

Progressing inside the spiral, additional pairs appear in between the previ-
ous two (new) Einstein rings. This can be seen in Fig. 2.4.4 for w

(b2)
5 = 0.84µ.

Each new pair of Einstein rings is related to the alternate projection of either
F or B in the image plane, and to a additional copy of the full celestial sphere.

Then, if spherical photon orbits and light rings are formed, one expects
to obtain an infinite number of these copies, and a corresponding self-similar
structure, marking the transition from compact to ultra-compact BSs. In-
deed, photon orbits occur well inside the spiral, on the third branch (after
the second backbending), starting at the BS solution with w(b3) = 0.842µ,
marked as the blue star “LR” point on the m = 0 spiral of Fig. 2.4.3 [71].

We now analyse RBSs. Again starting from vacuum and following the
BS spiral curve (this time with m = 1, see Fig. 2.4.3), we also find a region
of non-compact BSs, i.e without multiple images. There are however impor-
tant differences with respect to SBS, namely an asymmetric lensing, with an
amplification of the side rotating away from the observer and a shift of the
point F to the left, due to frame dragging. These effects are well illustrated
in Fig. 2.4.5 for a BS with w

(b1)
6 = 0.95µ.
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Figure 2.4.3: Location of some of the discussed solutions in parameter space.
The red spiral with m = 0 and m = 1 are respectively the solution curve of SBS
and RBS. BS are labeled with Arabic numerals, whereas configurations with event
horizons are labeled with Roman numerals.

The set of compact rotating BS begins at w(b1) ≃ 0.92µ, since an Einstein
ring appears for that configuration. In Fig. 2.4.5, this is also the case for the
RBSs with w

(b1)
7,8 /µ = {0.85, 0.8}. The ring encloses again two inverted copies

of part of the celestial sphere, but its shape is now elliptic-like. Additionally,
the inversion shifts the image of point F inside the Einstein ring to the right.

Further following the spiral, new Einstein rings appear, just as in the case
of SBSs, but instead of being circular they have a squashed “D-shape”. An
interesting example is the BS with w

(b1)
9 = 0.75µ, which is shown in Fig.

2.4.5. Then, at w(b1) ≃ 0.747 a light ring emerges on the equatorial plane
(see symbol “LR” in Fig. 2.4.3) [71]. Progressing even further through the
spiral, multiple images of the celestial sphere are formed, presumably into a
fractal structure, one might conjecture [71]. This point is illustrated by the

BSs with w
(b1)
10,11/µ = {0.7; 0.65} and w

(b2)
12 = 0.7µ in Fig. 2.4.5.

2.4.3 Examples of HBH shadows

We now analyse in this subsection shadows of HBHs. Since the Kerr bound
can be violated both in terms of the ADM and horizon quantities, it is
expectable that some HBH shadows will be significantly different from the
Kerr ones. This expectation is indeed confirmed in Fig. 2.4.6, where the



2.4. SHADOWS OF HBHS 89

Figure 2.4.4: Examples of gravitational lensing of SBS. From left to right: (first

row) w
(b1)
1,2,3/µ = {0.95, 0.9, 0.8}; (second row) w

(b2)
4,5 /µ = {0.8, 0.84}. The field of

view is ± arctan(10/15) for the first row and ±0.493 arctan(10/15) for the second
row (the latter is zoomed). Notice that there is no shadow in the images.
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Figure 2.4.5: Examples of RBS. The rotation axis is given by the “up” direction

in the paper surface. From left to right: (first row) w
(b1)
6,7,8/µ = {0.95, 0.85, 0.8};

(second row) w
(b1)
9,10/µ = {0.75, 0.7}; (third row) w

(b1)
11 /µ = {0.65} and w

(b2)
12 /µ =

{0.7}. The field of view is always ± arctan(10/15). Notice that there is no shadow
in the images.
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shadows12 and lensing effects of three HBHs are exhibited, together with
comparable Kerr configurations. These three main examples are labeled by
the Roman numerals I to III, and their position on the solution space can
be found in Fig. 2.4.3. The physical quantities of the HBHs I – III are
summarised as follows, where the labels ADM and H concern respectively
ADM quantities and horizon quantities:

µMADM µMH µ2 JADM µ2 JH
MH

MADM

JH
JADM

JADM

M2
ADM

JH
M2

H

I 0.415 0.393 0.172 0.150 95% 38% 0.999 0.971
II 0.933 0.234 0.739 0.114 25% 15% 0.849 2.08
III 0.975 0.018 0.85 0.849 1.8% 99.9% 0.894 2620

In this subsection the observer is always set at the perimetral radius r̃ = 15M ,
in the equatorial plane, with the ADM mass M fixed, and at the equatorial
plane. Also, the displayed Kerr shadows were computed using the full sym-
metries of Kerr space-time.
In Fig. 2.4.6 it is shown the shadow of configuration I (or shadow I for short).
For this HBH only 5% of the total mass is contained in the scalar hair, and
neither the ADM or the horizon quantities violate the Kerr bound, since
JADM/M

2
ADM < 1 and JH/M

2
H < 1. The similarity between shadow I and

the shadow of a Kerr BH with the same ADM mass and angular momentum
(KerrADM for short) is striking; but they are nevertheless distinguishable
(see Fig.2.4.6). The shadow of the latter is in fact more D-like, since it is
almost an extremal Kerr BH. However, shadow I is much more similar to
the shadow of a Kerr BH with the same horizon quantities for the mass and
angular momentum (KerrH for short), as one can observe in Fig. 2.4.6, which
is an interesting result.

Fascinatingly, shadows II and III in Fig. 2.4.6 yield novel shapes, with
clear deviations from the corresponding KerrADM BHs. It is worth mention-
ing that for both cases JH/M

2
H > 1, which means that the central BH is

non-Kerr like. This is most apparent for configuration III, for which JH/M
2
H

∼ 2 × 103, consequence of “heavy hair” dragging. Interestingly, the gravi-
tational lensing of configuration III closely resembles the ultra-compact BS
in Fig. 2.4.5 with w

(b1)
11 = 0.65µ. Moreover, shadow III is actually con-

sisted by multiple disconnected regions, most of which much smaller that
the largest “hammer-like” part, which points to a self-similar structure. Two
“eyebrows” can indeed be easily observed above and below this main region
at symmetric positions in Fig. 2.4.7. It is also interesting to understand the

12A light ray is considered to intersect with the event horizon when gtt is ∼ 1000 larger
that its “typical” value.
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transition from shadow II to shadow III, illustrated in Fig. 2.4.8.

As a final remark for this subsection, HBH shadows can be made arbi-
trarily small, since HBHs are continuously connected to BSs, which have no
shadow. Also, the redshift, which depends only on the position of both the
celestial sphere and observer, is constant throughout the images and has not
been considered.

2.4.4 Shadow parameters

There are at least six possible parameters that could be used to distinguish
and classify shadows, to be defined below. For the definition of these param-
eters we strongly follow a paper by Johannsen [28].
Consider a possible13 shadow in Fig. 2.4.9, represented in the image plane
of the observer and parametrized by the Cartesian coordinates (x′, y′). The
origin (0, 0) of this coordinate system is defined as point O and corresponds
to the direction pointing towards the center of the BH (local observation
angles {α, β} = 0), from the reader into the paper.

The point C in the figure, taken to be the center of the shadow, is such
that its abscissa is given by:

x′C =
1

2
(x′max + x′min),

where x′max and x′min are respectively the maximum and minimum abscissae
of the shadow’s edge. Since the observer is assumed to be in the equato-
rial plane, and due to reflection symmetry, C must be in the x′ axis, which
implies y′C = 0. Since the points C and O need not to coincide, a specific
feature of a shadow is the displacement DC = |x′C | between the shadow
and the center of the image plane O.

Other particular characteristics are both the width Dx′ and height Dy′

of the shadow, defined by:

Dx′ = x′max − x′min,

Dy′ = y′max − y′min,

where y′max and y′min are respectively the maximum and minimum ordinates
of the shadow’s rim.

13The shadow region is assumed to be simply connected.
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Figure 2.4.6: Examples of shadows and gravitational lensing of HBHs. From left
to right: (first row) configuration I and respective KerrADM and KerrH ; (second
row) configuration II and the respective KerrADM ; (third row) configuration III
and respective KerrADM . The ray-tracing algorithm for the Kerr shadows uses all
the symmetries of that space-time.
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Figure 2.4.7: Representation of shadow III, now with the background pattern of
Fig. 1.5.7. Two large eyebrows are clearly visible at symmetric positions, together
with much smaller regions. This image is zoomed (the field of view is ± ≃ 0.33).

A generic point P at the shadow’s edge is at a distance r from C:

r ≡
√
y′P

2 + (x′P − x′C)
2.

Introducing the angle α between the line CP and the x′ axis, such that

tanα =
y′P

x′P − x′C
,

we can define the average radius r̄ of the shadow as:

r̄ ≡
∫ 2π

0
r(α) dα
∫ 2π

0
dα

=
1

2π

∫ 2π

0

r(α) dα.

A parameter σr that measures the deviation from sphericity can also be
defined, based on the standard deviation:

σr =

√
1

2π

∫ 2π

0

(
r(α)− r̄

)2
dα.

For instance, due to spherical symmetry the shadow of a Schwarzschild BH
is a circle (with radius ro for example), and so we have r̄ = ro and σr = 0.



2.4. SHADOWS OF HBHS 95

Figure 2.4.8: Examples of shadows which illustrate the transition between shadow
II and III.

Another example, albeit purely academic, is a square shadow of side 2 ℓ; this

leads to r̄ = 4ℓ
π
ln
[
1+tanπ/8
1−tanπ/8

]
≃ 1.12 ℓ and σr =

√
4ℓ2

π
− r̄2 ≃ 0.12 ℓ

A final parameter that could be defined is the relative deviation to
a Kerr BH with the same ADM mass and angular momentum as the BH
under consideration (as long as the Kerr bound is not violated for the ADM
quantities). By making the central points C coincide for both BHs we can
compute a parameter σKerr:

σKerr =

√
1

2π

∫ 2π

0

(
r(α)− rKerr(α)

rKerr(α)

)2

dα.

If r = rKerr for all α ∈ [0, 2π] then σKerr = 0. Also, if r = 2 rKerr for all
α ∈ [0, 2π] then σKerr = 1 (a 100% deviation from Kerr). Therefore, given a
shadow, we have at least six parameters {DC , Dx′ , Dy′ , r̄, σr, σKerr} that could
be used to describe it.

In the next table are displayed some of the discussed parameters for shad-
ows I – III (in units of ADM mass M), together with the corresponding Kerr
configurations with the same ADM quantities. The Kerr BH with ao = 0.971
in the table is an exception, since it has the same horizon parameters, not
ADM, as the HBH in configuration I (see Fig. 2.4.6, first row in the right);
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P
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y′

x′CO

Figure 2.4.9: Representation of a BH shadow in the (x′, y′) plane of the observer.

this specific case is labeled with (*).

DC Dx′ Dy′ r̄ σr σr/r̄ (%) σKerr (%)
Configuration I 2.07 8.48 9.33 4.48 0.17 3.8 4.8
Configuration II 2.39 7.14 6.91 3.60 0.12 3.3 25.5
Configuration III 1.79 5.30 4.67 1.63 0.84 51.3 68.1

Kerr ao = 0.99869 (I) 2.39 8.70 9.86 4.70 0.26 5.5 0.27
Kerr ao = 0.971 (I*) 2.10 8.48 9.33 4.50 0.19 4.1 0.41
Kerr ao = 0.849 (II) 1.82 9.33 9.83 4.82 0.11 2.3 0.37
Kerr ao = 0.894 (III) 1.94 9.23 9.83 4.80 0.13 2.7 0.35

Kerr ao = 0.99869 (I†) 2.38 8.66 9.86 4.70 0.26 5.5 0
Kerr ao = 0.971 (I†*) 2.08 8.48 9.36 4.50 0.18 4.0 0
Kerr ao = 0.849 (II†) 1.79 9.32 9.86 4.82 0.10 2.2 0
Kerr ao = 0.894 (III†) 1.92 9.22 9.86 4.80 0.13 2.6 0

The displayed Kerr parameters are either obtained from the respective an-
alytic solution for the shadow (marked with the symbol †) or from numerical
ray-tracing. For the latter conservation symmetries of the Kerr space-time
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were used, namely the Carter constant. The details of the analytic solution
can be found in Appendix A.6.
The integrals defined previously, namely for r̄, σr and σKerr, were all computed
using a modified Simpson’s rule. Also, each parameter σKerr was calculated
with respect to the corresponding analytic Kerr shadow with the same ADM
parameters. Furthermore, there is an observable difference if the analytic
solution for the Kerr shadow is computed for an observer at infinity, rather
than at r̃ = 15M (ADM).

For shadow I, besides σKerr = 4.8%, we can also compute σ∗
Kerr = 0.52%,

e.g. its deviation from the analytic Kerr shadow with the same horizon quan-
tities (not ADM), marked in the table with (†*). Thus the shape and size of
shadow I is almost identical to the shadow of the associated KerrH . Addi-
tionally, notice that r̄ of shadow II is almost ∼ 75% smaller than the mean
radius associated with the KerrADM . Shadow II is also much more square-
like, with a larger normalized deviation from sphericity (σr/r̄). However, the
strongest deviation from Kerr is clearly for shadow III: almost 70%!

This shadow parametrization allows us to estimate the numerical error
for the shadows. For instance, it is clear that there is a deviation ∼ 0.3%
between Kerr shadows computed analytically and ones obtained from the
Kerr ray-tracing code with the full symmetries, such as the Kerr shadows in
Fig. 2.4.6. Additionally, it is estimated that for HBH shadows the associated
error is of order ∼ 1%. This can be obtained by analysing the shadow for
a Kerr configuration obtained numerically, using the methods described in
section 2.3 as an endpoint of the HBH family (not shown here). This shadow
can then be compared with the analytic solution, which is known for Kerr.
The total ∼ 1% deviation then includes numerical error for the space-time
geometry, the interpolation of that data, and the possible difference between
the ADM parameters of the numerical space-time and of the comparable Kerr
BH. The numerical error of the HBH ray-tracing algorithm itself also makes
a contribution but it is estimated to be only of the order ∼ 0.3%. This can
be done by using the analytic form of the Kerr geometry.
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2.5 Conclusions

Kerr BHs with scalar hair (KBHsSH) are novel exact solutions of Einstein’s
General Relativity which display very interesting properties. Some of these
features are shadows with a significant deviation from standard Kerr predic-
tions. Indeed, as it is illustrated by shadows II and III, new types of shadows
can arise. However, even for HBHs close to Kerr in the solution space, there
is a significant difference between the corresponding shadows, given that they
have the same ADM quantities; this is well illustrated by shadow I.
Another important result is that HBH shadows are smaller than for the cor-
responding KerrADM . This is anticipated, since part of the total energy is
contained in the “hair” besides the central BH. As such, when compared with
a Kerr BH with the same total (ADM) mass, the HBH shadow is expected
to be smaller. Although the astrophysical relevance of these solutions is not
absolutely clear, they could provide an appealing alternative to Kerr pre-
dictions, namely since HBHs can make a continuous connection from Kerr
shadows to some other exotic shapes. Thus, possible shadow templates could
be provided for future VLBI and EHT observations using this family of so-
lutions.

The gravitational lensing produced by BSs is also a fascinating subject,
with a close connection to HBH shadows. Indeed, it proves helpful to un-
derstand the shapes of the latter and some of its features, such as possible
fractal structures. To the knowledge of the author, lensing images of BS had
not yet been provided in literature, together with the realization that they
have no shadow [71].

The present work can be continued, opening a line of possible research
directions. For instance, analysis of shadows can be made exhaustively for all
the space of solutions, and even extended for observers outside the equatorial
plane; preliminary work in this direction has already revealed potentially in-
teresting results. Furthermore, the introduction of more realistic light sources
such as an accretion disk, instead of a celestial sphere, is also a compelling
possibility. For the latter, a red-shift analysis would also be conducted.

Moreover, the HBH ray-tracing algorithm can be improved, and the usage
of other ray-tracing codes, such as GYOTO, would also allow a cross-check
of the results. The fit approach, tested as a numerical approximation tool to
the HBH geometry, could be further developed and used to ease the public
access to HBH solutions. This pseudo-analytic form of the metric would also
improve computational performance.
Additionally, this analysis could even be extended to BH solutions with more
general hair, namely scalars with self-interactions or Proca hair [59, 60].
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Appendix A

A.1 Heuristic arguments for a2 ≤ m2 (Kerr

bound)

This appendix is aimed to give three reasonable and heuristic arguments for
the condition m2 ≥ a2, which establishes a maximum limit for the rotation
of a Kerr BH. The following reasoning strongly follows a private talk by Prof.
Carlos Herdeiro [9].

First we will start by analysing the geodesic motion of a photon near the
event horizon. The equations for ϕ̇ and ṫ are given by (1.3.4) and (1.3.3) on
page 20. They are here repeated for convenience:

ρ2ϕ̇ = 2mr
Ea

∆
+Φ

∆− a2 sin2 θ

∆sin2 θ
, (A.1.1a)

ρ2ṫ =
E

∆

[
(r2 + a2)2 − a2∆sin2 θ

]
− 2mr

aΦ

∆
. (A.1.1b)

Dividing both equations and using 2mr = (r2 + a2 −∆) we obtain:

ϕ̇

ṫ
=
dϕ

dt
=

(r2 + a2 −∆)Ea+ Φ(∆− a2 sin2 θ)/ sin2 θ

E
[
(r2 + a2)2 − a2∆sin2 θ

]
− aΦ(r2 + a2 −∆)

.

On the outer event horizon r = r+ and ∆ = 0:

dϕ

dt (r=r+)
≡ ΩH =

(r2+ + a2)Ea− Φa2

E(r2+ + a2)2 − aΦ(r2+ + a2)
,

=

(
a

r2+ + a2

)
(r2+ + a2)E − Φa

E(r2+ + a2)− aΦ
.

101



102 APPENDIX A.

We conclude therefore that the photon’s angular velocity1 as observed from
infinity [21] is given by:

ΩH =
a

r2+ + a2
.

This result does not depend on the constants of motion E and Φ of the photon
and neither on the latitude coordinate θ. This angular velocity is therefore
an intrinsic property of the event horizon itself, which rotates uniformly as
if it was a solid body [11]. For this reason, in literature ΩH is defined to be
the angular velocity of the event horizon of a Kerr BH [1,5].

The “perimeter” of the horizon equator (θ = π/2 and r = r+) is given
by:

P =

∫ 2π

0

√
gϕϕ dϕ = 2π

√
gϕϕ ;

since none of the metric terms depends on ϕ the integration is trivial. Defin-
ing the perimetral radius r̃ (see 1.5.24) such that:

P = 2πr̃,

we conclude that r̃ =
√
gϕϕ. Defining the velocity2 of the horizon ṽ as:

ṽ = ΩH r̃,

we obtain

ṽ =
a

r2+ + a2

√

r2+ + a2 +
(r2+ + a2 −��∆)a2

r2+
=
a
√
r2+ + a2

r2+ + a2

√
1 +

a2

r2+
=

=
a

✘✘✘✘✘✘√
r2+ + a2

√
✘✘✘✘✘
(r2+ + a2)

r2+
=

a

r+
=

a

m+
√
m2 − a2

.

We conclude that ṽ it always less or equal than 1 for m2 ≥ a2. Because
the velocity ṽ is measured in units of c, it means that the “horizon speed”
never surpasses the speed of light. Curiously enough, the speed of light is
in fact only reached for the extremal case |a| = m. From this analysis, a
possible heuristic viewpoint is that the restriction m2 ≥ a2 in fact enforces
the horizon velocity not to be greater than the speed of light.

1In fact, because t has units of distance, ΩH only has dimensions of an angular velocity
if units c = 1 are used. If not, it is cΩH that has the correct dimensions.

2The quantity ṽ only has dimensions of a velocity if units c = 1 are used.
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Another heuristic argument relies on the order of magnitude of the gravi-
tational and rotational energies of a BH as expected classically. For instance,
the gravitational bending energy is of order:

Eg ∼
GM2

r
,

and the energy associated with rotation is of order:

Er ∼
J2

Mr2
,

where J is the BH angular momentum.
Because the centrifugal forces cannot overcome the gravitational attraction,
we must have:

Eg & Er =⇒ GM2

r
&

J2

Mr2
,

Also, r has the same order of magnitude as the event horizon length scale:

r ∼ GM

c2
.

This leads to:
G2M2

c4
&

J2

M2c2
=⇒ m2 & a2.

It is interesting that although we followed a very simple (and almost naive)
reasoning, we have in fact obtained an exact result!

A third heuristic argument starts from the requirement for the velocity
of the event horizon to be less than the speed of light, in order of magnitude:

v = ωr . c,

where ω is given by:

ω ∼ J

Mr2
.

This leads to:

Jr

Mr2
. c =⇒ J

Mc
.
GM

c2
=⇒ a . m,

where r ∼ GM/c2 was also used.
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A.2 Kerr spherical orbits

From equations (1.4.8) and (1.4.2) we have the conditions for spherical orbits
in the Kerr metric:

R = r4 + Ar2 + Br + C = 0, (A.2.1)

dR
dr

= 4r3 + 2Ar + B = 0, (A.2.2)

with

A = a2 − η − λ2, B = 2m
(
η + (a− λ)2

)
and C = −ηa2.

Combining (A.2.1) and (A.2.2) we get

−3r4 − Ar2 + C = 0,

or
−3r4 + ηr2 − (a2 − λ2)r2 − η2a2 = 0,

which can be solved for η:

η =
3r4 + (a2 − λ2)r2

r2 − a2
. (A.2.3)

Inserting this expression back into (A.2.2) yields

4r3+2r

(
a2 − λ2 − 3r4 + r2(a2 − λ2)

r2 − a2

)
+2m

(
(a− λ)2 +

3r4 + r2(a2 − λ2)

r2 − a2

)
= 0,

Multiplication by (r2 − a2)/2 gives after some algebraic manipulations

A2λ
2 +B2λ+ C2 = 0, (A.2.4)

with

A2 = a2(r−m), B2 = −2ma(r2−a2), and C2 = −(r2+a2)(r3+ra2−3mr2+ma2).

The solution to the quadratic equation (A.2.4) is

λ =
−B2 ±

√
D

2A2

, (A.2.5)
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were the discriminant D = B2
2 − A2C2 is given by

D = 4(r2 − a2)2m2a2 + 4a2(r −m)(r2 + a2)(r3 + ra2 − 3mr2 +ma2),

which can be simplified into

D = 16a2r4m2 − 16a2r3(r2 + a2)m+ 4a2r2(r2 + a2)2.

Making use of the expression 2mr = r2 + a2 −∆, we obtain

D = 4a2r2(r2 + a2 −∆)2 − 8a2r2(r2 + a2)(r2 + a2 −∆) + 4a2r2(r2 + a2)2,

which leads to [20]

D = 4a2r2∆2.

The root (A.2.5) has therefore the form

λ =
2ma(r2 − a2)±

√
4a2r2∆2

2a2(r −m)
,

or

λ =
m(r2 − a2)± r∆

a(r −m)
. (A.2.6)

For the positive sign in (A.2.6):

λ+ =
m(r2 − a2) + r3 + a2r − 2mr2

a(r −m)
=

(r2 + a2)✘✘✘✘✘(r −m)

a✘✘✘✘✘(r −m)
,

or

λ+ =
r2 + a2

a
. (A.2.7)

Using (A.2.3) we obtain for η+

η+ =
1

r2 − a2

(
3r4 + a2r2 − r2

(r2 + a2)2

a2

)
= −r

4
✘✘✘✘✘(r2 − a2)

a2✘✘✘✘✘(r2 − a2)
,

and thus we obtain

η+ = −r
4

a2
. (A.2.8)

The class of solutions λ+ and η+ are called class i). In subsection 1.4.1 it is
proven that this class does not correspond to spherical orbits and thus it is
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not physical [22, 23].

For the negative sign in (A.2.6):

λ− =
m(r2 − a2)− r3 − a2r + 2mr2

a(r −m)
,

which leads to

λ− = −r
3 + a2r +ma2 − 3mr2

a(r −m)
. (A.2.9)

The value of η− can be computed using (A.2.3):

η− =
r2

(r2 − a2)
(3r2 + a2 − (λ−)

2)

=
r2

(r2 − a2)(r −m)2a2
{(3r2 + a2)(r −m)2a2 − (r3 + a2r +ma2 − 3mr2)2}.

After some algebraic simplifications and factorization this yields:

η− =
r2✘✘✘✘✘(r2 − a2)

✘✘✘✘✘(r2 − a2)(r −m)2a2
(−r4 − 9m2r2 + 6mr3 + 4rma2),

or

η− = −r
3(r3 + 9m2r − 6mr2 − 4ma2)

a2(r −m)2
. (A.2.10)

The class of solutions λ− and η− are called class ii). They correspond to the
physical photon orbits [22, 23].

A.3 Theorem 1

Theorem:

For spherical photon orbits in the Kerr metric we must always have [23]:

f(r) ≡ a2 − η − λ2 < 0,

for r > r+ and 0 ≤ a2 ≤ m2. Here r+ = m +
√
m2 − a2 is the outer event

horizon radial coordinate and r is the orbit radius.
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Proof :

Starting from (A.2.3) in Appendix A.2,

η =
3r4 + a2r2 − λ2r2

r2 − a2
, we get λ2 = 3r2 + a2 +

(
a2

r2
− 1

)
η,

and so,

f(r) = a2 − η − 3r2 − a2 +

(
1− a2

r2

)
η = −

(
3r2 +

a2

r2
η

)
, ∀ |ao| ∈ [0, 1].

Because η is finite, if a = 0 we have f(r) = −3r2 < 0, ∀ r > r+ > 0. So
the theorem is proven for all classes if a = 0.

For class i) 3, and for r > r+ > 0, |ao| ∈]0, 1] we have (see (A.2.8))

η = −r
4

a2
, and so f(r) = −

(
3r2 − a2

r2
r4

a2

)
= −2r2 < 0.

We conclude therefore that for class i) we must have f(r) < 0 for r > r+, as
pretended, ∀ |ao| ∈ [0, 1].

For class ii) the function f takes the form (see (A.2.10)):

f(r) = −3r4(r −m)2 + a2(r −m)2η

r2(r −m)2

= −3r4(r −m)2 − r3(r3 − 6mr2 + 9m2r − 4a2m)

r2(r −m)2
,

which simplifies to

f(r) = −2r(r3 − 3rm2 + 2a2m)

(r −m)2
. (A.3.1)

The derivative of this function is easily computed as

df

dr
(r) = −4(r +m)

(r −m)3
(r3 − 3mr2 + 3m2r −ma2), (A.3.2)

For the moment being we will take 0 < a2 < m2 and r ≥ r+ > m. The case

3See Appendix A.2 for discussion.
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a2 = m2 will be analyzed later.
We now prove that (A.3.2) is always negative for r > m. Proving this
statement is equivalent to show that

F (r) ≡ r3 − 3mr2 + 3m2r −ma2 > 0, for r > m.

Notice that
dF

dr
(r) = 3r2 − 6mr + 3m2,

which is a parabola in the r coordinate with only one zero:

r =
6m±

√
✘✘✘36m2 −✘✘✘✘✘

4× 32m2

6
= m.

Because the parabola has a positive curvature we have

dF

dr
(r) > 0, for r > m.

Also
F(r=m) = m(m2 − a2) > 0,

so we conclude therefore that

F (r) > 0, for r > m,

which proves
df

dr
(r) < 0, for r > m.

For r ≥ r+ > m, we then have

f(r) ≤ f(r+), (A.3.3)

where

f(r+) = − 2r+
(r+ −m)2

(r3+ − 3r+m
2 + 2a2m)

︸ ︷︷ ︸
ξ

. (A.3.4)

The factor ξ can be simplified into

ξ = (m2 − a2)(m+
√
m2 − a2) > 0,

which implies by (A.3.4) that

f(r+) < 0.

From (A.3.3) we conclude therefore that

f(r) = a2 − η − λ2 < 0 ,
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for r ≥ r+ and 0 ≤ a2 < m.

The case a2 = m2 should be handle with special care due to the pole at
r = r+ = m. We have then from (A.3.1) and (A.3.2):

f(r) = −2(r4 − 3r2m2 + 2m3r)

(r −m)2
,

df

dr
(r) = −4(r4 + 2m3r −m4 − 2mr3)

(r −m)3
.

The limit r → m+ is of type 0/0 for both f and df/dr. Using L’Hospital
rule [26]:

lim
r→m+

f(r) = lim
r→m+

−4r3 − 6m2r + 2m3

r −m
= lim

r→m+
−(12r2 − 6m2) = −6m2 < 0,

as for

lim
r→m+

df

dr
(r) = lim

r→m+
−4(4r3 + 2m3 − 6mr2)

3(r −m)2
= lim

r→m+
−4(12r2 − 12mr)

6(r −m)

= lim
r→m+

−4

6
(24r − 12m) = −8m < 0.

These limits are well defined from positive values and the derivative df/dr is
well behaved all the way until r = m. The previous argument for a2 6= m2

can then still be used to conclude that

df

dr
(r) < 0, for r > m.

If we now take r > (r+ = m) and make the substitution in the previous
reasoning (a2 6= m2)

f(r+) → lim
r→m+

f(r),

we would still obtain

f(r) < 0, for r > m.

We have therefore proven the theorem for r > r+ and 0 ≤ a2 ≤ m2.
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A.4 Cubic roots

The solution to a cubic equation is not very well known in the science com-
munity, except for mathematicians. In this appendix the roots of a generic
cubic equation are computed. We follow a trigonometric approach, discov-
ered by François Viéte (1540-1603) more than 400 years ago [74].

Starting from a generic cubic equation4

x3 + bx2 + cx+ d = 0, (A.4.1)

we can change the variable5 x by

x = t− b

3
,

which yields the depressed cubic form

t3 + pt+ q = 0, (A.4.2)

where

p =
3c− b2

3
and q =

2b3 − 9bc+ 27d

27
.

By a new change of variable

t = 2

√
−p
3
cos θ, with p < 0,

we then obtain

23
√
−p
3

(
−p
3

)
cos3 θ + 2p

√
−p
3
cos θ = −q,

which leads to the form

4 cos3 θ − 3 cos θ =
3

2

q

p

√
−3

p
. (A.4.3)

From trigonometry it can be shown that [26]

4 cos3 θ − 3 cos θ = cos(3θ),

and so from (A.4.3) we conclude that

cos(3θ) =
3

2

q

p

√
−3

p
,

4This cubic equation is indeed general: if the factor multiplied by x3 is non unity, all
the equation can by divided by that factor, which gives the form (A.4.1).

5Notice on notation: x, t, θ are not related to the variables depicted in the main text.
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and that

θ =
1

3
arccos

(
3

2

q

p

√
−3

p

)
− 2π

3
k,

with k ∈ {0, 1, 2}.

The solution of the cubic equation has then the form

x = − b
3
+ 2

√
−p
3
cos

(
1

3
arccos

[
3

2

q

p

√
−3

p

]
− 2π

3
k

)
, (A.4.4)

where the integer k ∈ {0, 1, 2} yields the three possible solutions.

A.4.1 Applications: finding roots of η and λ

In section 1.4.2 it is necessary to compute the roots of the equation (see
(1.4.10))

η(r) = 0.

This implies, for r 6= 0, that

r3 − 6mr2 + 9m2r − 4a2m = 0.

This cubic equation can be brought into dimensionless form by defining

x ≡ r

m
and ao =

a

m
,

where 0 ≤ a2o ≤ 1. We have then

x3 − 6x2 + 9x− 4a2o = 0.

Comparison to (A.4.1) yields b = −6, c = 9 and d = −4a2o.
For the depressed cubic form we have:

p = −3, and q = 2− 4a2o.

We then get:

x = 2 + 2 cos

(
1

3
arccos

(
2a2o − 1

)
− 2π

3
k

)
, (A.4.5)

with k ∈ {0, 1, 2}.
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To simplify expression (A.4.5) we now prove that

arccos(2a2o − 1) = 2 arccos(|ao|).

We start from the complex form of arccos β [26]:

arccos β = i ln
(
β − i

√
1− β2

)
, with 0 ≤ β2 ≤ 1.

It is possible to set β = 2a2o − 1 because 0 ≤ a2o ≤ 1 =⇒ 0 ≤ β2 ≤ 1. We
have therefore

arccos(2a2o − 1) = i ln
(
2a2o − 1− i

√
✁1− 4a4o − ✁1 + 4a2o

)

= i ln
(
2a2o − 1− 2|ao|i

√
1− a2o

)
.

Because of the equality

(
|ao| − i

√
1− a2o

)2
= 2a2o − 1− 2|ao|i

√
1− a2o,

we then obtain

arccos(2a2o − 1) = i ln

([
|ao| − i

√
1− a2o

]2)

= 2i ln
(
|ao| − i

√
1− a2o

)

= 2arccos(|ao|),

as pretended.

The solutions to the equation η(r) = 0 are therefore given by

r = 2m

{
1 + cos

(
2

3
arccos

( |a|
m

)
− 2π

3
k

)}
,

with k ∈ {0, 1, 2}.

For k = 0 :

r = r2 ≡ 2m

{
1 + cos

(
2

3
arccos

( |a|
m

))}
,

and it corresponds to a orbit with retrograde motion (see section 1.4.3).

For k = 1 the value of θ is:

θ =
2

3
arccos |ao| −

2π

3
.
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Using the trigonometric relation

arccos(y) = π − arccos(−y),

we get

θ =
✁
✁
✁2π

3
− 2

3
arccos (−|ao|)−

✁
✁
✁2π

3
= −2

3
arccos (−|ao|) ,

The associated root is then

r = r1 ≡ 2m

{
1 + cos

(
2

3
arccos

(
−|a|
m

))}
,

and it corresponds to a orbit with prograde motion (see section 1.4.3).

For k = 2 the value of θ is:

θ =
2

3
arccos |ao| −

4π

3
.

The trigonometric inequalities now used are:

x1 > x2 =⇒ arccos x1 < arccos x2,

and
θ1 > θ2 =⇒ cos θ1 < cos θ2,

for θ1, θ2 both in the first and second trigonometric quadrants.
We then have

0 ≤ |ao| ≤ 1 =⇒ π

2
≥ arccos |ao| ≥ 0 =⇒ π ≥ 2 arccos |ao| ≥ 0,

and so

−3π ≥ (2 arccos |ao| − 4π) ≥ −4π =⇒ −π ≥
(
2

3
arccos |ao| −

4π

3

)
≥ −4π

3
.

Because both −π and −4π
3
are in the second quadrant we have

cos(−π) ≤ cos θ ≤ cos

(
−4π

3

)
=⇒ −1 ≤ cos θ ≤ −1

2
=⇒ 0 ≤ r ≤ m.

This is not a physical solution as r < m is always inside the event horizon.

In section 1.4.3 is necessary to compute the roots of the equation λ(r) = 0.
From (1.4.10) we obtain the condition

r3 − 3mr2 + a2r + a2m = 0;
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in dimensionless form:

x3 − 3x2 + a2ox+ a2o = 0.

Comparison to (A.4.1) yields b = −3, c = a2o and d = a2o.
For the depressed cubic form we have then

p = a2o − 3, and q = 2(a2o − 1).

The solution with k = 0 in (A.4.4) is then

r = r3 ≡ m




1 + 2

√
1− a2o

3
cos



1

3
arccos




1− a2o(
1− a2o

3

)3/2










,

with ao = a/m. The other two solutions are nonphysical, as one is always
inside the event horizon (0 ≤ r ≤ m) and the other has negative r, although
this is not proven here (similar to above).

A.5 Theorem 2: “No Bound Theorem”

No Bound Theorem:

In a Kerr space-time, photon geodesics are never bounded, which means
the radial coordinate r is never restricted to a limited interval: the photon
either escapes to infinity or it is captured by the BH.

The spherical photon orbits mentioned in section 1.4.2 are necessarily
unstable. These orbits are not considered here as bounded since any small
perturbation causes the photon to escape or being captured.

Proof 6:

Starting from (1.4.2):

R = E2r4 + (a2E2 − Φ2 −Q)r2 + 2mr
[
(aE − Φ)2 +Q

]
− a2Q,

it can be rearranged into

R = (r4 + a2r2 + 2mra2)E2 − 4mraΦE −
[
(Q+ Φ2)∆− a2Φ2

]
.

6This proof is strongly follows the work by Wilkins [17].
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So R is a parabola as a function of E.
A radial potential V (r) is by definition one such that [17]

E = V (r) =⇒ R(r) = 0.

Solving for E yields two solutions:

V± =
4mraΦ±

√
16m2r2a2Φ2 + 4[r4 + a2r2 + 2mra2][(Q+ Φ2)∆− a2Φ2]

2(r4 + a2r2 + 2mra2)
,

and so R can be factorized as

R = (r4 + a2r2 + 2mra2)(E − V+)(E − V−).

From (1.3.1) we have that R ≥ 0. From the parabolic behaviour in E (see
Fig. A.5.1) this implies that

E ≥ V+ or E ≤ V−.

By making the simultaneous transformations

E → −E and Φ → −Φ, (A.5.1)

we can transform the inequality E ≤ V− into E ≥ V+ and vice-versa. Since
transformations (A.5.1) leave the value of R invariant the analysis can be
made with either V+ or V−, with no loss of generality.

We can gain insight into the conditions for bending by computing the
limits of V+ and V− at infinity:

lim
r→∞

V+ = lim
r→∞

√
Q
r3

r4
= 0+,

lim
r→∞

V− = lim
r→∞

−
√
Q
r3

r4
= 0−.

The physical interpretation of this result is that at infinity the radial potential
is equal to the rest energy of the particle, which is zero for the case of a
photon.
In order to have a region for bending, we thus must have at least three zeros
of R (three turning points) for a given value of E > 0 (see Fig. A.5.2), since
V+ → 0+ at infinity. In fact it will proven that such a case is not possible for
photons, as the typical form of V+ has only two such zeros or less (see Fig.
A.5.3).

We will now assume E > 0 for the moment and 0 ≤ a2 ≤ m2. Using a
variable transformation

r = x+m,
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Figure A.5.1: Plot of R as function of the energy at infinity E and for radial
coordinate r = 4m. The roots are E = V+ and E = V−. Because we must have
R ≥ 0 this implies E ≥ V+ or E ≤ V−.

we obtain for R:

R(x) = E2(x+m)4+(a2E2−Φ2−Q)(x+m)2+2m(x+m)
[
(aE − Φ)2 +Q

]
−a2Q,

which can be expanded into

R(x) = E2x4 + (4mE2)x3 + c2 x
2 + c1 x+ co,

with

c2 = E2(6m2 + a2)− Φ2 −Q,

c1 = 4E2(m3 +ma2)− 4maEΦ,

co = (m2 − a2)(Q+ E2m2) +m2(2aE − Φ)2.

The so called Descartes’s rule of signs, after his work in “Le Géométrie”,
states that the number of positive roots of a polynomial is always less than
or equal to the number of changes in sign between consecutive (non-zero)
coefficients, ordered by power of the monomials. For the case of an inequality,
the number of positive roots must be less by a even number [75].
Using this rule, R can have in principle three roots at maximum, if the
following conditions are met:

c2 < 0, c1 > 0 and co < 0. (A.5.2)
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 0

V
+
(r

)

r

Dummy potential V+(r)

V+(r)
E

Figure A.5.2: Dummy potential V+(r) as function of the radial coordinate r, with
three turning points for the given value of energy E (doted line). Because we must
have E ≥ V+ and the potential approaches zero by positive values at infinity, it is
clear that binding requires three turning points. In this picture there is a binding
region between the first two turning points, counting from the origin. This type
of potential does not actually exist for photons and in fact there are at most two
turning points.

Taking into account dimensional analysis, then we can write

mc1 > co +m2 c2;

this yields after some algebra simplifications

a2Q > 3m4E2.

For E > 0, as assumed, we must have 3m4E2 > 0 and therefore

if a = 0 =⇒ 0 > 0, (A.5.3)

if a 6= 0 =⇒ Q > 0 =⇒ co > 0. (A.5.4)

Condition (A.5.3) is not possible and condition (A.5.4) contradicts the initial
assumption (A.5.2). Therefore, for E > 0, is only possible to have at most
two positive roots of R(x).
As was already discussed, the system is invariant by transformation (A.5.1).
The previous result for E > 0 does not depend on Φ so the conclusion can
also be extended for E < 0.
The case E = 0 yields

R(x) = −(Φ2 +Q)x2 +
[
Q(m2 − a2) +m2Φ2

]
,
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Figure A.5.3: Potential V+ for photons with a = 0.8m, Φ = m2 and Q = 10m4,
as function of the radial coordinate r. The vertical doted black line displays the
BH’s event horizon, the limit of the potential’s domain. Three different values of
E are given by the horizontal doted lines. Each represent one of the possible three
cases: of one, two or no turning points. From this picture it is clear that a bending
region is not possible. For the case of one turning point (E ≃ 0.755m given the
mentioned parameters) an unstable photon orbit is possible at the intersection
between V+ and the doted pink line.

which has only one positive root.

We conclude that it is possible to have at most two roots of R(x) for
x > 0, or equivalently r > m. Attending to the fact that r+ ≥ m, the region
outside7 the event horizon is always covered by the previous condition r > m
. Therefore binding is not possible for photons8. From this theorem it is
clear that photon orbits are necessarily unstable, since a stable one would
imply the existence of bounded states.

As a curiosity:

7The possible existence of a turning point at exactly r = m, which can only happen
for |a| = m, should be of no concern. It is possible in fact to have R = 0 and dR/dr = 0
at that point if Φ = 2mE (for a = m). However it can be proven that for that case there
can be at most one turning point for r > m (similar above).

8However for time-like particles with rest mass µ > |E|, bounded orbits are possible [17].
Photons are a special case for which the rest mass µ = 0 and so the previous condition
can never be met.
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R(E, r) defines a 2-surface (see Fig. A.5.4), with Φ, Q constant. By definition
of V+(r):

R
(
V+(r), r

)
= 0,

so the derivative with respect to r is also zero:

dR

dr
(V+, r) = 0 =⇒ ∂R

∂E

dV+
dr

+
∂R

∂r
= 0;

if
dV+
dr

= 0 =⇒ ∂R

∂r
= 0.

So if V+(r) = E and dV+

dr
= 0, then we have R = 0 and ∂R

∂r
= 0, the conditions

for a spherical photon orbit.

Plot R(r,E) for a = 0.8m, φ = m2, Q = 10m4 
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Figure A.5.4: Surface plot of R as function of the radial coordinate r and energy
at infinity E for the photon. The parameters used were a = 0.8m, Φ = m2 and
Q = 10m4. Curves of constant E are polynomials of 4th order and curves of
constant r are parabolas (see Fig. A.5.1). The intersection of the R surface with
the xy plane of the graph yields both V+ and V−. The potential V+ is given by
the red line in the figure and is the same as in Fig. A.5.3.

A.6 Calculation of a shadow edge for a Kerr

BH

In this section the shadow’s edge of a Kerr BH will be calculated analytically
for a more general ZAMO observer, rather than one at infinity as was done
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in page 48.

In the following calculations the observer is at a given perimetral radius
r̃ and latitude coordinate θo. Also, the radial coordinate ro can be com-
puted from r̃ by using (1.5.32). Equations (1.5.26) are now repeated for
convenience:

p(ϕ) = p sin β cosα,

p(θ) = p sinα,

p(r) = p cos β cosα.

Solving for the observation angles α, β we obtain

tan β =
p(ϕ)

p(r)
,

sinα =
p(θ)

p(t)
.

Since the domain of α is [−π/2 : π/2] and assuming9 p(r) ≥ 0 =⇒ cos β ≥ 0:

β = arctan

[
p(ϕ)

p(r)

]
,

α = arcsin

[
p(θ)

p(t)

]
.

Combining equations (1.3.1), (1.3.2) and (1.5.20 - 1.5.23) we have

p(θ) = ±
√
Θ√
gθθ

,

p(ϕ) =
Φ

√
gϕϕ

,

p(r) =

√
R

∆
√
grr

,

p(t) = Eζ − γΦ.

Using the definition of the impact parameters λ = Φ/E and η = Q/E2 in
(1.4.1) and of the Cartesian parameters x′, y′ in (1.5.25):

y′ = r̃ arcsin

[
p(θ)/E

p(t)/E

]
= r̃ arcsin

[
±1

(ζ − λγ)

√
η + a2 cos2 θo − λ2/ tan2 θo√

r2o + a2 cos2 θo

]
,

9This is a reasonable assumption since it implies that, given an observer facing towards
the BH, photons that are coming from the edge of the shadow are never received from
“behind”.
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x′ = −r̃ arctan
[
p(ϕ)/E

p(r)/E

]

= −r̃ arctan
[

λ
√
ρ2∆

√
gϕϕ
√
r4o + (a2 − η − λ2)r2o + 2mro[η + (a− λ)2]− ηa2

]
.

For the edge of the shadow the impact parameters λ, η are given by (1.4.10)
as functions of the spherical photon orbit radius r (which is not the radial
coordinate of the observer). The shadow’s edge in the x′, y′ image plane is
then defined parametrically by allowing r to vary in the range r ∈ [r1, r2]
(both defined in (1.4.11-1.4.12)).

A.7 Mapping (θ, ϕ) → (α, β) in flat space

In this section the mapping in flat space from the spherical coordinates (θ, ϕ)
on a celestial sphere to the observation angles (α, β) is formulated (see page
1.5.1).
This mapping is useful to correct the parallax distortion due to the fact that
the observer is not centered within the celestial sphere (see Fig. 1.5.9). Given
a regular pattern imprinted on a “local sphere”, which is centered on the ob-
server, smaller than the celestial sphere and parametrized by the angles α, β,
we can project the pattern on the celestial sphere via ray-tracing. Since in
flat space rays follow straight lines this problem is purely euclidean geometry.
After this projection is done, an observer would perceive the pattern on the
celestial sphere undistorted; of course the projection itself is not uniform but
from the observer’s perspective it looks regular.
If this projection on the celestial sphere is locked for a curved space-time, a
backward ray-tracing algorithm has to assign a pattern information to the
point (θ, ϕ) on that sphere. This can be accomplished with the mapping
(θ, ϕ) → (α, β) in flat space, given that the pattern is regular on those last
coordinates (on the “local sphere”).

Attending to Fig. A.7.1 we have

~R = ~r − ~ro, (A.7.1)

where those vectors are given by

~ro = ro x̂, (A.7.2a)

~r = r sin θ cosϕ x̂+ r sin θ sinϕ ŷ + r cos θ ẑ, (A.7.2b)

~R = −R cos β cosα x̂−R sin β cosα ŷ +R sinα ẑ. (A.7.2c)

The value of ~R squared is

R2 = r2 + r2o − 2~r · ~ro
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~r

~R

~ro

x̂

ŷ

ẑ

α β

θ
ϕ

Figure A.7.1: Drawing of the geometric configuration. The observer is at position
~ro and assumed to be on the equatorial plane (θ = π/2.). A generic point on the
celestial sphere is at position ~r. The respective planes of α, β are perpendicular
between themselves. All angles are drawn positive.

= r2 + r2o − 2 rro sin θ cosϕ.

So we obtain

R =
√
r2 + r2o − 2 rro sin θ cosϕ .

The vectorial equations (A.7.1-A.7.2) yield

r sin θ cosϕ = ro −R cos β cosα, (A.7.3a)

r sin θ sinϕ = −R sin β cosα, (A.7.3b)

r cos θ = R sinα. (A.7.3c)

From this set of equations we obtain

sinα =
r cos θ

R
,

sin β = −r sin θ sinϕ

R cosα
≡ A and cos β =

ro − r sin θ cosϕ

R cosα
.

We can now have the following algorithm to compute the value of β:

if cos β ≥ 0 =⇒ β = arcsinA;

if cos β < 0 and sin β ≥ 0 =⇒ β = π − arcsinA;

if cos β < 0 and sin β < 0 =⇒ β = −π − arcsinA.

Because α ∈ [−π/2, π/2]:

α = arcsin

[
r cos θ

R

]
.
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B.1 Bekenstein’s no-scalar-hair theorem for

V-scalar-vacuum

The following reasoning closely follows [52]. Units G = 1, c = 1, ~ = 1 will
be used.

Given a rotating, stationary, asymptotically flat BH with axial symmetry
one may pose the question if it is possible to have a scalar field φ in equilib-
rium with it.

Assumption 1: the scalar field is minimally coupled to gravity.
The Hilbert action functional S[gµν , φ] has then the form:

S[gµν , φ] =
∫
d4x

√−g
(
R

16π
−∇µφ∇µφ− 2V (φ)

)
,

where g is the determinant of the metric. Both the Einstein equations and
the field equation for φ can be obtained from this functional by the vari-
ational principle. Then the scalar field should obey a generalized Klein-
Gordon equation with a potential V (φ), which accounts for possible non-
linear self-interactions but does not depend on the space-time curvature. For
instance, one of simplest cases is a non-self-interacting massive scalar, for
which V (φ) = 1

2
µ2φ2, where µ stands for the mass of the particle; however

such a specific case will not be considered. The generalized Klein-Gordon
then yields:

∇µ∇µφ− V ′(φ) = 0,

where the derivative V ′ is taken with respect to the field φ.

Assumption 2: The scalar field φ has the same symmetries as
the space-time, namely

∂tφ = 0 = ∂ϕφ.

123
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The coordinates t, ϕ are chosen such that the vectors ∂t and ∂ϕ are the two
Killing vectors related respectively to the space-time stationary symmetry
and to axial symmetry. Multiplying the Klein-Gordon equation by φ and
integrating over the BH exterior space-time leads to

∫
d4x

√−g (φ∇µ∇µφ− φV ′) = 0.

After integration by parts1 of the first term we obtain
∫
d4x

√−g (−∇µφ∇µφ− φV ′) +

∫

H

d3σ φnµ∇µφ = 0.

The contribution of the boundary term from infinity vanishes, since φ must
decrease fast enough to ensure asymptotically flatness. The other boundary
contribution from the BH’s event horizon turns out also to be zero. The event
horizon of a stationary, asymptotically flat space-time is a Killing horizon [1]
and so the normal vector nµ to the horizon surface is a combination of the
Killing vector fields. Then due to the assumed symmetries for φ we must
have

nµ∇µφ = 0.

This leads to ∫
d4x

√−g (−∇µφ∇µφ− φV ′) = 0. (B.1.1)

Assumption 3: The potential V follows the condition φV ′ ≥ 0
everywhere. Since the gradient of φ is orthogonal to both Killing vectors,
the gradient cannot be time-like:

∇µφ∇µφ ≥ 0.

For equality (B.1.1) to hold, then we must have everywhere either φ = 0 or
φ = Const. ≡ φi, such that V ′ = 0 for that constant value of φi. For the last
case, φi simply narrows down to a cosmological constant. This conclusion
establishes the no-scalar-hair theorem.

B.2 Christoffel symbols for the HBH metric

For a Kerr Black Hole with Scalar Hair (KBHSH) the metric is given by the
ansatz:

ds2 = e2F1

(
dr2

N
+ r2dθ2

)
+ e2F2r2 sin2 θ(dϕ−Wdt)2 − e2F0Ndt2,

1The integration by parts can be done using the Divergence (or Gauss) Theorem, by
selecting the integrating vector F = φ∇φ [57].
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with

N = 1− rH
r
.

Therefore we have for the metric components gµν :

gtt = W 2r2 sin2 θ e2F2 −N e2Fo , (B.2.1a)

gtϕ = −Wr2 sin2 θ e2F2 , (B.2.1b)

gϕϕ = r2 sin2 θ e2F2 , (B.2.1c)

grr =
e2F1

N
, (B.2.1d)

gθθ = r2 e2F1 . (B.2.1e)

For the inverse metric gµν the components are:

gtt =
gϕϕ

gtt gϕϕ − g2tϕ
= − 1

N
e−2Fo , (B.2.2a)

gtϕ = − gtϕ
gtt gϕϕ − g2tϕ

= −W
N
e−2Fo , (B.2.2b)

gϕϕ =
gtt

gtt gϕϕ − g2tϕ
= −W

2

N
e−2Fo +

1

r2 sin2 θ
e−2F2 , (B.2.2c)

grr =
1

grr
= Ne−2F1 , (B.2.2d)

gθθ =
1

gθθ
=

1

r2
e−2F1 , (B.2.2e)



126 APPENDIX B.

Due to symmetry the functions F0, F1, F2 and W only depend on r and θ.
The relevant Christoffel symbols Γk

ij for the r̈ and θ̈ geodesic equations are:

Γr
tt =

e−2F1 (rH − r)A

r3

A = Wr4 sin2 θe2F2

(
W

r
+W,r +WF2,r

)
− rH e

2Fo

(
r2Fo,r

rH
− rFo,r +

1

2

)

Γr
rr =

2rH rF1,r + rH − 2 r2F1,r

2 r (rH − r)

Γr
θθ =

(
rF1,r + 1

)
(rH − r)

Γr
ϕϕ = sin2 θ e2(F2−F1)

(
rF2,r + 1

)
(rH − r)

Γr
ϕt = −1

2
sin2 θ e2(F2−F1) (rH − r)

(
rW,r + 2 rF2,rW + 2W

)

Γr
θr = F1,θ

Γθ
tt = −e

−2F1B

r3

B = Wr3e2F2(sin2 θ[W,θ +WF2,θ] + cos θ sin θW ) + Fo,θ e
2Fo(rH − r)

Γθ
rr =

F1,θ

r (rH − r)

Γθ
θθ = F1,θ

Γθ
ϕϕ = − sin θ e2(F2−F1)

(
sin θ F2,θ + cos θ

)

Γθ
ϕt =

1

2
sin θ e2(F2−F1)

(
sin θW,θ + 2W sin θ F2,θ + 2W cos θ

)

Γθ
θr = F1,r +

1

r
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