
	

	

Eudisley Gomes dos Anjos

ASSESSING MAINTAINABILITY IN SOFTWARE ARCHITECTURES

THE ELUSIVE SOCIO-TECHNICAL DIMENSIONS OF MAINTAINABILITY

Tese de doutoramento
do Programa de Doutoramento em Ciências e Tecnologias da Informação

orientada pelo Professor Doutor Mário Alberto da Costa Zenha-Rela
e apresentada ao Departamento de Engenharia Informática

da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Janeiro de 2017

UNIVERSIDADE DE COIMBRA

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Informática

Assessing Maintainability in Software Architectures
THE ELUSIVE SOCIO-TECHNICAL DIMENSIONS OF

MAINTAINABILITY

Eudisley Gomes dos Anjos

PhD Thesis Submitted to the University of Coimbra

Tese de Doutoramento submetida à Universidade de Coimbra

· Janeiro de 2017 ·

Agradecimentos

A minha mãe e irmãs por sempre terem me dado apoio em todas as decisões que tomei,
pelo companheirismo, lealdade e confiança.

A Dra. Danielle Rousy Silva, companheira de trabalho, amiga e confidente que
esteve ao meu lado sempre, fazendo com que eu não desanimasse e continuasse
focando em meus objetivos.

A Francielly Cardoso, Daniel Brito e principalmente Jansepetrus Brasileiro por
todos os momentos de investigações, discussões técnicas e “filosóficas” e que foram
cruciais para conclusão deste trabalho.

Aos amigos Amanda Cavalcanti, Isabela Fortunato, Ivano Irrera, Fernando Matos
e Paulo Geovane por terem propiciado uma ótima convivência nos anos de morada em
Portugal e continuarem apoiando-me até hoje.

Aos amigos de Coimbra e internacionais que permitiram que este período de
doutoramento não fosse apenas uma fase de aprendizado técnico e acadêmico, mas
também uma fase de alegria e companheirismo.

Aos amigos do Brasil, que mesmo de longe sempre me apoiaram.

A MONESIA: MObility Network Europe-SouthamerIcA: Erasmus Mundus
External Cooperation Window pelo apoio financeiro.

Agradeço também a uma força superior, a qual eu acredito que nos guia.

i

List of Publications

• Eudisley Anjos & Mário Zenha-Rela.A Framework for Classifying and
Comparing Software Architecture Tools for Quality Evaluation. In
Computational Science and Its Applications - ICCSA 2011, volume 6786
of Lecture Notes in Computer Science, pages 270 - 282. Springer Berlin
Heidelberg, 2011. [Anjos 11]

• Eudisley Anjos, Ruan Gomes & Mário Zenha-Rela. Assessing Maintainability
Metrics in Software Architectures Using COSMIC and UML. In Computational
Science and Its Applications - ICCSA 2012, volume 7336 of Lecture
Notes in Computer Science, pages 132 - 146. Springer Berlin Heidelberg,
2012. [Anjos 12b]

• Eudisley Anjos, Ruan Gomes & Mário Zenha-Rela. Maintainability Metrics
in System Designs: a case study using COSMIC and UML. In International
Journal of Computer Science and Software Technology, volume 5 of Lecture
Notes in Computer Science, pages 91 - 100. International Science Press,
2012 [Anjos 12a]

• Eudisley Anjos, Fernando Castor & Mário Zenha-Rela. Comparing Software
Architecture Descriptions and Raw Source-Code: A Statistical Analysis of
Maintainability Metrics. In Computational Science and Its Applications ICCSA
2013, volume 7973 of Lecture Notes in Computer Science, pages 199 - 213.
Springer Berlin Heidelberg, 2013 [Anjos 13]

• Braulio Siebra, Eudisley Anjos & Gabriel Rolim. Study on the Social Impact
on Software Architecture through Metrics of Modularity. In Computational
Science and Its Applications - ICCSA 2014 - 14th International Conference,
Guimaraes, Portugal, June 30 - July 3, 2014, Proceedings, Part V, pages 618 -
632, 2014 [Siebra 14].

iii

• Eudisley Anjos, Francielly Grigorio, Daniel Brito & Mário Zenha-Rela.
On Systems Project Abandonment: An Analysis of Complexity During
Development and Evolution of FLOSS Systems. In ICAST 2014, 6TH IEEE
International Conference on Adaptive Science and Technology, Covenant
University, Nigeria, 29 - 31 October 2014, Nigeria, 2014. [Anjos 14]

• Francielly Grigorio, Daniel Brito, Eudisley Anjos, and Mário Zenha-Rela.
Using Statistical Analysis of FLOSS Systems Complexity to Understand
Software Inactivity. In Covenant Journal of Informatics and Communication
Technology - CJICT, volume 2, pages 1 - 28, December 2014 [Grigorio 14].

• Eudisley Anjos, Pablo Anderson de L. Lima, Gustavo da C. C. Franco Fraga
& Danielle Rousy da Silva. Systematic Mapping Studies in Modularity in IT
Courses. In Computational Science and Its Applications âĂŞ ICCSA 2015,
volume 9159 of Lecture Notes in Computer Science, pages 132 - 146. Springer
International Publishing, 2015 [Anjos 15].

• Gabriel Rolim, Everaldo Andrade, Danielle Silva, Eudisley Anjos. Longitudinal
Analysis of Modularity and Modifications of OSS. 7th International Symposium
on Software Quality - ISSQ 2015, volume 9790 of Lecture Notes in
Computer Science, pages 363 - 374, Springer International Publishing,
2016 [Gabriel Rolim 16].

• Eudisley Anjos, Jansepetrus Brasileiro, Danielle Silva, Mário Zenha-Rela.
Using Classification Methods to Reinforce the Impact of Social Factors on
Software Success. 16th International Conference on Computational Science
and Its Applications, ICCSA 2016, volume 9790 of Lecture Notes in Computer
Science, pages 187 - 200, Springer International Publishing, Switzerland,
2016 [Anjos 16].

Resumo

Esta tese lida com um dos aspectos mais evasivos da engenharia de software, a
manutenibilidade do software. Esse caráter fugidio parece resultar da sua dependência
de uma multiplicidade de factores, desde os puramente técnicos —a forma como o
software está estruturado a diferentes níveis—aos de natureza social —a estrutura
da organização que o criou—passando pela capacidade humana de compreensão,
nomeadamente a forma como o código-fonte está documentado e a adesão a
convenções de programação.

Após uma extensa revisão da literatura científica sobre a manutenibilidade
e conceitos relacionados, nomeadamente requisitos não funcionais, atributos de
qualidade e arquitectura de software, na primeira parte deste estudo procurámos
perceber como esta propriedade era caracterizada e quantificada nas representações
mais abstratas do software, nomeadamente ao nível da arquitectura. Para isso
foi feita uma análise sistemática das ferramentas de desenho arquitectural mais
relevantes, e estudada a forma como abordam a manutenibilidade. Este estudo
permitiu-nos concluir que estas ferramentas quantificam esta propriedade do software
quase exclusivamente a partir do código-fonte, usando uma composição de métricas
envolvendo a coesão, acoplamento, complexidade e dimensão.

Uma vez que o nosso trabalho estava integrado num projecto cujo objectivo
era disponibilizar aos arquitectos de software um conjunto de metodologias e
ferramentas que lhes permitissem trabalhar a evolução do software preservando,
ou mesmo melhorando, a manutenibilidade para não prejudicar a sua longevidade,
era-nos relevante adoptar uma representação mais abstrata desta propriedade que
não estivesse tão directamente associada ao código-fonte. Para isso propusemos
um mapeamento entre a representação UML do sistema e a notação mais abstracta
adoptada pela COmmon Software Measurement International (COSMIC). A validade
deste mapeamento foi realizada comparando os valores de manutenibilidade extraídas
a partir do código-fonte de 39 versões do Apache Tomcat e as respectivas métricas na
notação COSMIC.

Contudo, quando esta primeira análise foi alargada para outros sistemas de grande
dimensão, a correlação entre as métricas de manutenibilidade extraídas a partir do
código-fonte e as extraídas a partir da sua representação arquitetural reduziu-se
significativamente. Estas observações levaram-nos a concluir que o pressuposto de
que todos os atributos de qualidade podem ser mapeados ao nível arquitectural não

se verifica, pelo menos no que à manutenibilidade diz respeito. Uma análise manual
e um inquérito a gestores de projecto na indústria levou-nos a concluir que uma das
possíveis causas para este desalinhamento se deve à existência de muita informação
presente ao nível do código-fonte (por exemplo, comentários, adopção de convenções
de programação, documentação), que manifestamente promovem a manutenibilidade
e que estão omissas nas representações mais abstractas do software, nomeadamente ao
nível arquitectural.

Perante a evidência desta natureza multidimensional da manutenibilidade, na
segunda parte deste estudo focámo-nos numa terceira perspectiva, a dimensão social
da estrutura do software e o seu impacto na manutenibilidade.

A primeira etapa foi procurar identificar projectos que manifestamente possuíssem
altos valores de manutenibilidade, por forma a poder identificar os factores que os
caracterizam. Para isso assumimos o pressuposto de que projectos de código-aberto
(OSS) com grande longevidade teriam de estar necessariamente correlacionados com
valores altos de manutenibilidade. Se assim não fosse, teriam grande dificuldade
em se manter activos, bem como grande dificuldade em atrair e reter colaboradores.
Ademais, a própria natureza voluntária e distribuída da colaboração em projectos
de código-aberto promove a modularidade, uma das propriedades intrínsecas da
manutenibilidade.

Após analisar cerca de 160.000 projectos de código-aberto concluímos que existe
efectivamente um pequeno conjunto de parâmetros que podemos designar como
‘sociais’ (número de voluntários, número de commits, número de issues registados,...)
que têm um impacto decisivo nas probabilidades de sucesso do projecto. De
um modo informal podemos então afirmar que quanto mais ‘activo’ um projecto
estiver, maiores as suas probabilidades de sucesso (activo nos dois anos seguintes).
Complementarmente, também podemos afirmar que quanto menos manutenível um
projecto, menos voluntários irá atrair, menor será o número de contribuições/commits,
e consequentemente terá uma reduzida capacidade e motivação para produzir código
mais modular e mais facilmente compreensível por uma comunidade alargada.

No final deste estudo sobre a natureza da manutenibilidade, podemos concluir que
esta relevante propriedade intrínseca do software tem uma natureza marcadamente
socio-técnica, nas suas múltiplas dimensões i) humana, ii) social e iii) estrutural
e portanto, qualquer tentativa para a gerir considerando apenas uma dimensão tem
reduzidas possibilidades de sucesso.

Keywords: manutenibilidade, atributos de qualidade, arquitectura de software,
OSS.

Abstract

This thesis deals with a most elusive aspect of software engineering, the
maintainability of software. Such elusiveness derives from its high dependence of
multiple orthogonal factors, from the purely technical —the way software is structured
at different levels—to the social dimension —the structure of the organization that
manages the software system—but also depends on raw human understanding, namely
how source-code is documented, and programming conventions adhered.

After a thorough review of the literature on maintainability and the related concepts
of software quality attributes and software architecture, in the first part of this study
we tried to identify how the maintainability quality of software was characterized and
quantified at a more abstract, architectural level. In this context, a systematic review
of contemporary software architecture design tools was performed, and its underlying
principles identified in order to understand how maintainability was handled by such
tools. It was much to our surprise to realize that every tool analyzed extracted its
maintainability metrics from source-code whenever this quality attribute was involved,
mostly through a few proxy variables (cohesion, coupling, complexity, and size).

Since our initial goal was to provide software architects with tools and
methodologies to evolve software systems preserving, hopefully increasing, its
maintainability, we proposed a mapping from the UML description of a software
system into the Common Software Measurement International (COSMIC) notation.
This mapping was validated by an extensive analysis of the evolution of 39 consecutive
versions of a major open-source software product (Apache Tomcat).

However, after extending this analysis to other large software systems, the
correlation between the maintainability metrics collected at the source-code and at
the more abstract architectural level dropped significantly. This observation lead us
to conclude that the assumption that quality attributes can be mapped at architectural
level does not hold for maintainability, i.e. there is relevant maintainability-related
information at the source-code (e.g. readability, adherence to code-conventions,
documentation) that is not present at the more abstract architectural level.

Faced with this multidimensional nature of maintainability, in the second part of
this study we addressed it from a third orthogonal perspective, the social dimension of
software structure, and its impact on maintainability.

The first step was to identify a set of projects characterized by high maintainability,
so that we could analyze its intrinsic social factors and how they differ from other
projects. It seems plausible that long-term successful OSS projects do have to
posses high maintainability, otherwise they would not achieve long-term success. So,
having previously concluded that maintainability cannot be explained solely on the
basis of structural/product characteristics, it is reasonable to assume that successful
OSS projects do possess those elusive properties that lead to maintainable software.
Thus, in the second part of our study we focused on identifying the long-term OSS
success predictors, so that light can be shed on the social factors that promote highly
maintainable software.

After analyzing about 160.000 OSS projects available in public repositories we
could conclude that a few social parameters do have a direct impact on the odds of
success of a software system. To state it in simple terms, the more ’alive’ a project is
(number of contributors, number of commits, number of issues), the more maintainable
it will tend to be. The opposite also holds, i.e. the harder to maintain is a software
system, the less contributors it will attract, leading to a reduction on the number of
contributions, and thus a lower concern on producing easily readable/understandable
code for a larger community.

So, after this study on the nature of maintainability, we can conclude that this
relevant software property has an intrinsic socio-technical nature, due to its multiple
dimensions, i) human, ii) social and iii) structural, thus any attempt to address it
considering only one dimension will seldom be successful.

Keywords: maintainability, quality attributes, software architecture, OSS.

Science is but a perversion of itself unless it has as its ultimate goal the
betterment of humanity.

Nikola Tesla, 1919

Contents

1 Introduction 1
1.1 Research questions . 2

1.2 Contributions . 4

1.3 Document organization . 10

2 Concepts and Tools 11

2.1 Relevance of Maintainability . 11

2.2 Maintainability Defined . 13

2.3 Maintainability Properties . 15

2.4 Maintainability Metrics . 19

2.4.1 Modularity . 20

2.4.2 Cohesion . 20

2.4.3 Coupling . 21

2.4.4 Complexity . 22

2.4.5 Size . 23

2.5 Quality Attributes . 25

2.6 Quality Attributes and Software Architecture 27

2.7 A Tools View on Maintainability . 33

2.7.1 Architecture Evaluation Methods 35

2.7.2 Architecture Evaluation Tools 36

2.7.3 Assessment of Tools . 38

2.7.4 Support for Maintainability 43

2.8 Summary . 45

ix

3 Research Design 47
3.1 Introduction . 47
3.2 Metrics . 48
3.3 Experimental Design . 51

3.4 Summary . 52

4 Results and Analysis (I) 53
4.1 Introduction . 53
4.2 Observations . 53
4.3 A Field Survey on the Meaning of Maintainability 57

4.4 Summary . 59

5 Revised Experimental Setup 61
5.1 Introduction . 61
5.2 OSS Data Repositories . 63

5.3 Phasing of Experiments . 64

5.4 Dataset and Classification Methods 66
5.5 Summary . 67

6 Results and Analysis (II) 69
6.1 Introduction . 69
6.2 Phase 1: SourceForge | 20 projects | Java 69

6.3 Phase 2: GitHub | 20K projects | 10 languages 70

6.4 Phase 3: GitHub | 160K projects | 16 languages 73

6.5 Discussion of the Results . 85
6.6 Summary . 87

7 Conclusions and future work 89
7.1 Scope and constraints . 89

7.2 Research summary . 90

7.3 Future work . 93
7.4 Concluding statement . 94

References 95

List of Figures

2.1 Quantifying Maintainability. 24

2.2 Software Quality Groups (adapted from [Malik 08]) 26

2.3 ISO Characteristics / Quality Attributes 27

2.4 Quality attributes relationship (adapted from [Kan 03]) 28

2.5 Conceptual model of architecture description from IEEE [IEEE 00] . 30

2.6 View points and Architecture Structure [Bass 03] 31

4.1 Vuze lacks meaningful code-to-architectural maintainability metrics
correlation . 56

5.1 How social factors might impact maintainability. 62

5.2 Phases of the experiments . 65

6.1 ROC curve for Java and Shell where: a) Java Dormants b) Java Actives
c) Shell Dormants d) Shell Actives 80

xi

List of Tables

2.1 Dimensions used for the evaluation of the tools 38

2.2 Dimensions evaluated for ArchE . 39

2.3 Dimensions evaluated for AET. 40

2.4 Dimensions evaluated for Acme Simulator 42

2.5 Dimensions evaluated for ArcheOpterix 43

2.6 Dimensions evaluated for DeSi . 44

2.7 Overview of tools according to the relevant dimensions 44

3.1 Source-code metrics adopted . 48

4.1 Pearson’s correlation and significance for Tomcat 54

4.2 Pearson’s correlation and significance for jEdit. 55

4.3 Pearson’s correlation and significance for Vuze 56

4.4 Core Survey Questions . 58

5.1 Social factors assessed during the experiments 66

5.2 Methods used to compare the results 66

5.3 Programming languages and number of projects used in Phase 3 . . . 67

6.1 Attribute-based considerations using classification methods 70

6.2 Accuracy, true positive (TP) and false positive (FP) for the
classification methods used in phase 2 72

6.3 Importance of attributes . 72

xiii

6.4 Average Attribute Merit for Java and Python 76

6.5 Average Attribute Merit for Assembly and Matlab 77

6.6 Global Average of Attributes Merit (all languages) 77

6.7 Results for Simple Logistic Classifier 79

6.8 Results for J48 Classifier . 81

6.9 Results for Bagging Classifier . 82

6.10 Results for IBk Classifier . 83

6.11 Results for Decision Table Classifier 84

6.12 Results for Multilayer Perceptron Classifier 85

List of Acronyms

AC Aferent Coupling

ADL Architecture Description Language

ATAM Architecture Trade-off Analysis Method

CASE Computer Aided Software Engineering

CBAM Cost Benefit Analysis Method

CBO Coupling Between Objects

CC McCabe Cyclomatic Complexity

CCC Coupling, Cohesion and Complexity

CCN Cyclomatic Complexity Number

EC Efferent Coupling

FAAM Family-Architecture Analysis Method

FFC Fan-in and Fan-out Complexity

FLOSS Free Libre Open Source Software

FSF Free Software Foundation

LCC Loose Class Cohesion

LCOM Lack of Cohesion of Methods

NBD Nested Block Depth

NC Number of Classes

NI Number of Interfaces

NOAM Net-based and Object-based Architectural Model

NOPK Number of Packages

NORM Number of Overridden Methods

IEEE Institute of Electrical and Electronics Engineers

xv

IETF Internet Engineering Task Force

ISO International Organization for Standardization

OMG Object Management Group

OO Object Oriented

OSSD Open Source Software Development

OSS Open-Source Software

RF Reasoning Framework

RFC Response For Class

ROC Receiver operating characteristic

SAAM Software Architecture Analysis Method

SwA Software Architecture

TCC Tight Class Cohesion

TLOC Total Lines of Code

UI User Interfaces

WMC Weighted Methods per Class

xvi

Chapter 1

Introduction

This thesis deals with one of the most elusive aspects of software engineering, the
maintainability of software. Maintainability is a quality attribute of software and as
such it is expected to be determined at its architectural level. Therefore in this thesis
we shall address the related concepts of maintainability, non functional requirements,
quality attributes and software architecture.

The initial phase of this study was carried out integrated in a EU/USA
project, AFFIDAVIT, involving universities from Portugal (University of Coimbra and
Madeira Interactive Technology Institute) and the USA (Carnegie Mellon University).
This project also involved the largest Portuguese software development company,
Novabase, which from the outset selected availability, reliability and maintainability as
the most relevant quality attributes that most concern a software services company. So,
our study was focused on maintainability while other researchers targeted availability
and reliability. The early field surveys (outside the scope of this thesis) confirmed
that maintainability was one of the most relevant quality attributes considered during
software design and evolution, and that it should be addressed at architectural level to
be manageable. Moreover, maintainability is highly related to other quality attributes
(e.g. extensibility, portability) which adds to the relevance of this research. In
the initial phase of this work we were very focused on the structural dimension
of maintainability, namely through the related concepts of modularity, complexity,
cohesion and coupling.

1

Chapter 1: Introduction

The observations from this initial study contradicted the common assumption that
software quality attributes are mostly determined at the architectural level. This
observation, valuable by itself, led to a refocus of our research. Thus, in the second part
of our research we addressed the social dimension of maintainability, namely through
the identification of success predictors of Open Source Software projects.

This second part of our study was carried out in a collaboration, ARENA, between
the Informatics Centre at the Federal University of Paraíba, Brazil, and CISUC,
the research center of the Informatics Engineering Department at the University of
Coimbra, Portugal.

1.1 Research questions

The initial goal of this thesis was to provide the software architect with methods and
tools that help her assess maintainability properties so that software can be designed
and evolved without hindering future changes, thus contributing to its long term
success. The research questions pursued in this phase can be stated as:

1. Is it possible to extract a maintainability index from a software architectural
description?

The goal addressed by this research question was to be able to provide software
architects with a quantified –even if multidimensional– maintainability index, so that
they could assess architectural alternatives when designing new systems or at major
system updates. However, this research question involves addressing first the following
question:

2. Is it actually possible to comprehensively map the multiple maintainability
dimensions into an architectural description?

In fact, before defining any maintainability index at architectural level, it is
necessary to ensure that maintainability itself can be properly mapped from source
code into a more abstract representation. Since maintainability is a quality attribute of
software we were looking for this mapping, expecting to find multiple complementary

2

1.1 Research questions

dimensions of maintainability. This research questions lead us to analyze state-of-art
architectural evaluation tools in order to understand how is this mapping currently
performed.

These research questions were addressed through our first hypothesis:

Source-code based metrics can be adapted to more abstract metrics and
applied to assess maintainability at architectural level. [H1]

Along this work in fact we gathered evidence that supports the multidimensional
nature of maintainability, its high dependence of multiple orthogonal factors, from
the purely technical —the way software is structured at different levels—to the social
dimension —the structure of the organization that manages the software system—but
also depends on raw human understanding, namely how source-code is documented,
and programming conventions adhered.

Thus, in the second part of this thesis new research questions were stated:

3. Is it possible to predict a software projects success from metrics related to its
’social’ dimension?

4. Which are the ’social’ variables that have the highest impact in the long term
software project success, assuming that successful projects implicitly embed high
maintainability.

These new research questions were addressed through the second hypothesis stated
in this thesis:

Social factors play a significant role in the success (longevity) of OSS projects.
[H2]

3

Chapter 1: Introduction

1.2 Contributions

To synthesize our major contributions to this research field we can state that we found
evidence that contradict the common assumption that maintainability –a software
quality attribute– is mostly determined at the architectural level. Moreover, we have
shown that there is a significant correlation among social factors and the future success
of OSS projects, which supports our claim that maintainability is a multidimensional
property of software, therefore cannot be assessed solely at the architectural level.
Thus, the major contributions of this thesis can be enumerated as follows:

Contribution (i): we proposed a framework to classify software architecture
tools in order to be able to map source-code maintainability into the more abstract
architectural representation of software.

We then used this framework to compare state-of-art tools, in order to understand
how is maintainability addressed by them.

Related paper:

A Framework for Classifying and Comparing Software Architecture Tools for
Quality Evaluation

In this paper we proposed a framework allowing a comparison to be made that
throws light on the key attributes that are needed to help categorize the different
tools for evaluating a software architecture. This is of value to the researchers and
practitioners in the area, as there are a growing number of methods and tools and it
is easy to be overwhelmed by the seemingly wide range of choices. Moreover, since
this thesis research was directly involved in an international project (EU/USA) to build
a comprehensive architectural support tool (AFFIDAVIT), it was necessary to examine
the current approaches and tools to identify their main strengths and learn from their
weaknesses.

The features outlined in this paper are essentially as follows: a) the ability to handle
multiple modelling approaches, b) their integration with the industrial standard UML,
but also specific ADL whenever needed, c) support provided by a trade-off analysis of

4

1.2 Contributions

multiple competing quality attributes and, of utmost importance, d) an opportunity to
reuse knowledge by building up new architectural solutions.

Contribution (ii): we proposed and assessed a mapping between an architectural
description using the COSMIC standard notation and the corresponding source-code
originated UML description in order to assess whether it would be possible to
extract a meaningful maintainability index from a (standardized) software architectural
description.

Related papers:

Assessing Maintainability Metrics in Software Architecture using COSMIC
and UML.

Software systems are subject to constant change. The evolution of these systems
requires a trade-off between specific attributes to ensure the quality of the system
architecture remains acceptable. Highly maintainable systems are needed since
maintainability is one of the most important software quality attributes. However, the
analysis of the changes in software architectures is hindered by a lack of common
metrics. There are many software metrics to assess the maintainability from the
source code but if the system yet has no source-code available, it is unfeasible
an analysis of its maintainability properties. However, the COmmon Software
Measurement International Consortium (COSMIC) has already defined standards
and measurement models for analyzing Software Architectures (SwA). The SwA
assessment proposed relies on COSMIC and UML, relating Object-Oriented (OO)
metrics to the source-code, in particular Complexity, Coupling and Cohesion (CCC),
which are linked to the methods and notations defined by COSMIC, and employ
metrics-based models to evaluate CCC in SwA diagrams.

Maintainability Metrics in System Designs: A Case Study using COSMIC and
UML.

This paper illustrates the use of COSMIC and UML applied to a small case study.
Furthermore, we examined the evolution a complex architecture, thirty-nine versions
of Apache Tomcat, showing that the correlations between the two types of metrics hold
as the system evolved.

5

Chapter 1: Introduction

Contribution (iii): we provided evidence that maintainability metrics present at
source code level might not be correlated to maintainability at architectural level.

Related papers:

Comparing Software Architecture Descriptions and Raw Source Code: A
Statistical Analysis of Maintainability Metrics.

Most scientific literature on architectural evaluation methods is mainly concerned
with scenario-based methods. Most of them employ surveys, meetings and interviews,
and do not carry out the evaluation through an application of automatic metrics. Other
works provide more extensive surveys but do not include architecture-level metrics
either. Before it is possible to predict any quality attribute from an architectural
description, we need to define which information we have available. In the case of
software code metrics, the lexical rules and the grammar of the language already
takes care of this and there are a large number of studies in this field. But software
architecture has no standard language or standard definition and we should be careful
not to use data that is not clearly a part of software architecture. In this paper we show
that the type of information obtained from code metrics and from architectural metrics
might not be correlated.

Contribution (iv): We provided evidence that the social dimension of the
organizations that develop software, not only impact its maintainability, but also that a
few social variables are good predictors of project success.

In this second part of the thesis we assumed that long-term successful OSS projects
do need to posses high maintainability, otherwise they would not have achieved such
success.

Related papers:

Study of the Social Impact on Software Architecture through Metrics of
Modularity.

The "divide and conquer" (separation of concerns/modularity) principle that is used
for managing complexity can be applied during the architectural design process and
reinforces the belief that the concept of modularity is very effective in dealing with

6

1.2 Contributions

complex architectures. Thus, modularity can be understood as a way of improving
maintenance. The idea of breaking a system into modules and allowing concurrent
development, has led researchers to compare the structure of the organization that
develops the software with the structure of the software itself, a research known as
addressing the ’Mirroring Hypothesis’ (informally also known as ’Conway’s Law’).
Thus the similarity of these structures has attracted the interest of academia, which
is addressing the impact of multiple factors inherent in this relationship. Among
other factors, in our study we focused on the number of people who collaborate in a
project, the geographic location of developers, the number of commits into the project
repository, and showed that these provide us with the relevant social dimension that
can impact maintainability.

On Systems Project Abandonment: An Analysis of Complexity During
Development and Evolution of FLOSS Systems.

In recent years, Open Source Software (OSS) has increasingly attracted the
attention of the developer community. The main idea is very simple: the first version
of a system is developed locally by a single developer, or a small team of developers,
and is freely available over the Internet, so that other developers and contributors can
read, modify, document and debug the source code.

Even though there is a great commitment to nurturing OSS projects, it is not
unusual to find projects in which the lead developer(s) has lost the interest in it.
Evidence for this was shown by the large number of "inactive" or "dormant" projects
hosted by SourceForge.net and other repositories. Occasionally, there are contributors
who are willing to continue the development, but its complexity (hinting a lack of
maintainability) makes it more feasible for them to start a new project as a replacement
to the original. Sometimes even the lead developer(s) realizes that the code has become
so unmanageable that it is more cost-effective to rewrite large parts of the software, or
even to rewrite it entirely from scratch, than spend time enhancing the existing code.

The relation between software metrics and "abandonment" has shown to be a
fruitful area of research. Several studies have shown that in the SourceForge repository,
the average complexity of inactive projects has grown substantially along the years.
The complexity of the first version of the project contrasts markedly with its last
version. At the same time, active projects were found to be more controlled, and

7

Chapter 1: Introduction

had an almost constant and lower degree of complexity. This inability to handle the
extra work needed to control the system’s complexity, might be the factor that causes
the abandonment of a software project, as predicted by one of Lehman’s empirical
laws of software evolution [Lehman 80]: there seems to be a correlation between the
abandonment of projects and its complexity.

Using Statistical Analysis of FLOSS Systems Complexity to Understand
Software Inactivity.

A statistical analysis using Pearson’s correlation coefficient extracted from many
projects using SonarQube showed behavioural variants in the features of the projects
and software complexity metrics. Some projects, such as those of Jaxen and IdeaVim,
have a strong correlation between all the diverse complexities (class, file and function)
and the total complexity. Others, such as Jo! and Gilead, have a really weak correlation
between all of the three variations and the total complexity. On the basis of this,
we decided to study the question further, and then examined what had happened
to each project separately. Despite the fact that the IdeaVim project showed an
increasing growth in complexity until its 4th released version, later, its development
team managed to keep this complexity under control. When we accessed its website,
we found that it had been incorporated into another application.

These results lead us to conclude that although the complexity may be a
contributory factor in the software abandonment, since an uncontrolled complexity
requires a greater amount of work from contributors, it requires extra information about
the project so that decisions can be made to improve its activity. In view of this, it is
mandatory to evaluate the external factors that may interfere with the evolution of the
software. We believe that the results of this study can be helpful for practitioners
of OSS projects, since it provides them with an explanation for the decrease in
involvement from its contributors. We also believe that this work can underpin future
works in the area of OSS projects, particularly in the area of discontinued projects,
which still needs further investigation.

Longitudinal Analysis of Modularity and Modifications of OSS

Open source software systems are always evolving with the additions of new
features, bug fixes and the collaboration of many developers around the world. The

8

1.2 Contributions

modularity of the system provides a better understanding of the main features of the
system and promotes the quality of the software. In this paper, we sought to compare
the evolution of some software metrics, in particular complexity and coupling, with
the evolution of the number of bug fixes, additions and contributory features from
developers of different software versions. An attempt has been made to show that bug
fixes when adding new features and the number of developers exert a strong influence
on the improvement of those metrics.

Using Classification Methods to Reinforce the Impact of Social Factors on
Software Success

Defining the path to success in software development can be an arduous task,
especially when dealing with OSS projects. In this case, it is extremely difficult to
have control over all the stages of the development process. Many researchers have
adopted different approaches to identify factors (whether social or technical) that have
had some effect on the success or failure of software. Despite the large number of
promising results obtained, there is still no consensus about which types of attributes
are more successful. Thus, after determining the technical and social factors that
influence the success of OSS using data-mining techniques in about 20.000 projects
with data from GitHub, this study aimed to compare them to determine how far the
OSS project has been successful. The results show that it is possible to establish the
status (active or dormant) in more than 90% of the projects, largely on the basis of its
social attributes.

Other works in this area are currently being submitted to conferences and journals,
the most advanced being :

Determining OSS Factors to Support Architectural Enhancements Towards a
Project’s Success

The constant modifications being made to software and the unsuitability of many
of the alternative replacement systems, means that there is a demand for software that
is highly maintainable. However, although systems must allow quick and easy changes
in the long term, ensuring a high level of maintenance for architectural projects is still
a very complex task. The study addressed by this work focuses on the problem of
evaluating software architectures through activity indicators to determine the success

9

Chapter 1: Introduction

of open source systems. The purpose of understanding these indicators is to identify
which factors, (with regard to maintainability), are more effective as predictors of the
project’s success. Several experiments were performed on about 160,000 open source
systems to identify the key factors that are best predictors of OSS projects success.

Classifying the Importance of OSS Using Socio-Technical Factors

This is one of the ongoing follow-ups of this thesis which has already reached
an advanced stage. It involves determining taxonomies and frameworks that classify
several project ’states’ from inactive to active, which are subsequently analysed and
compared. Most of this work do not involve OSS, and the attributes that have been
evaluated are not known or make no sense in an open-source approach.

1.3 Document organization

This thesis is organized as follows. In the next chapter we present the main
concepts and tools regarding maintainability and the related concepts of non functional
requirements, quality attributes and software architecture. A survey on how this
software quality is handled by contemporary architecture design and assessment tools
will drive the first part of this study, presented in chapters 3, the experimental design,
and chapter 4, the observations and its discussion. In the second part of this thesis
we turn our focus onto the identification of success predictors of OSS projects; thus,
in chapter 5 the new experimental setup is presented, followed by the discussion of
observation results in chapter 6. Finally, in chapter 7 we briefly summarize the whole
research path, the major contributions and the ongoing work that derives from this
thesis.

10

Chapter 2

Concepts and Tools

This chapter addresses the main concepts and tools regarding maintainability, quality
attributes and software architecture. When designing a software architecture there
are decisions that will impact the final system for many years or even for its
whole life-cycle, namely how easy it will be to maintain and evolve. However,
maintainability is just one of the many quality attributes that will have to be embedded
in the software architecture, and whose competing trade-offs must be balanced by the
architecture designer. The concepts covered here reflect the different understanding of
researchers on software architecture and quality attributes, with a particular focus on
maintenance of software.

2.1 Relevance of Maintainability

It is a well known fact that software maintenance takes up a huge amount of the overall
software budget. Several surveys have presented evidence that maintenance is one of
the most expensive phases in software development [Schneidewind 87, Benaroch 13].
Some studies have addressed the ratio of maintenance costs versus initial software
development costs [Buchmann 11, Galorath 06]. These studies conclude that at
least 50% of the total life cycle is devoted to maintenance, from about 50% for a
pharmaceutical company, to 75% for an automobile company. Several technical and
managerial problems are added to the costs of software maintenance.

11

Chapter 2: Concepts and Tools

Two significant examples of its weight in the software development life cycle
are shown in [Bennett 00]. A posteriori of most of the work in this thesis, it is
interesting to note that besides structural characteristics, these studies refer explicitly
the contribution of social factors to the maintainability effort required:

Case 1:

[in 2000]The city of Toronto lost out on nearly $700,000 in pet fees
because nearly half of Toronto’s dog and cat owners were never billed due
an outdated computerized billing system. The staff who knew how to run
the computerized billing system was laid off. [...] Only one city employee
ever understood the system well enough to debug it when problems arose,
and that employee was also laid off in 2000 due to downsizing, leaving
no one to get things going again when the system ran into trouble and
collapsed.

Case 2:

The Associated Press today [April 14, 1997] reports that Robin Guenier,
head of the UK’s TaskForce 2000, estimates that Y2K reprogramming
efforts will cost Britain $50 billion dollars, three times the guesstimates
of business consultants and computer service companies. Guenier
suggested that 300,000 people may be required to tackle the problem.
Coincidentally, that number is roughly equivalent to the number of
full-time computer professionals in the UK.

Furthermore, many failures of software products can be attributed to maintenance
problems. Sneidewind [Schneidewind 87] after an extensive study on project
abandonment, concludes that "’the main problem in doing maintenance is that we
cannot do maintenance on a system which was not designed for that’. Even if a system
is carefully designed, there are inherent difficulties in performing maintenance, the
intrinsic nature of software and its production process that make software maintenance
an unequalled challenge [Canfora 95]. Brooks [Brooks 87] identifies complexity,
domain conformity, changeability, and invisibility, as four inherent difficulties of

12

2.2 Maintainability Defined

developing and maintaining software. [Rajlich 10] adds discontinuity (small changes
of input can result in huge changes of output) to this list.

Owing to these difficulties of maintaining software systems, maintenance activities
should be well planned and maintainability should be embedded in the software
structure itself. This is why it should be given special attention during the whole
software development lifecycle. A system with a high degree of maintainability leads
to either low total maintenance costs, or improved functionalities at the same total
cost [Wang 02]. Therefore the sooner decisions are made to improve the level of
maintainability, the lower the maintenance costs incurred. This is the rationale for
addressing maintainability right at the architectural design phase, leading to systems
designed to lower the maintenance, thus capable of dealing with the many constraints,
new requirements or new problems that will eventually appear.

All these aspects underline the motivation for our research along with countless
works that have emerged in an attempt to define new directions, approaches,
assessments and guidelines for a better understanding of maintainability, a concept
with very concrete impact on systems design, operation and longevity, but whose
definition remains somehow elusive.

2.2 Maintainability Defined

The lack of a unique definition of the term maintainability is the first difficulty we face
when addressing this research topic. This also hints that as we try to precisely define
this concept, the more complex its nature is revealed. As we shall see, maintainability
is mostly defined by its characterizations, a set of intertwined properties, rather than
by a concise, but mostly nonoperational definition.

Maintainability is the term used to describe the quality attribute concerned
with software maintenance. In ISO/IEC 9126 [ISO/IEC 01] maintainability is
described as ’a set of attributes that have a bearing on the effort needed to
make specified modifications’. The IEEE standard computer dictionary [Board 90]
defines maintainability as ’the ease with which a software system or component can
be modified to correct faults, improve quality attributes, or adapt to a changed

13

Chapter 2: Concepts and Tools

environment’. In the standard ISO/IEC 14764 [ISO/IEC 06] software maintenance
is linked to software engineering and is defined as ’the modification of a software
product after it has been delivered to correct faults and improve performance or other
attributes’.

So, both for ISO and IEEE, maintainability is defined as the capability of
the software product to be modified. On what concerns the motivations, these
modifications may be due to corrections, new requirements, functional specifications,
improvements, or the adaptation of software to changes in the environment. On
what concerns type of modifications, these standards identify four categories of
maintenance: corrective, preventive, adaptive and perfective.

• Corrective Maintenance: refers to carrying out modifications of a software
product after delivery to correct faults or defects and thus satisfy system
requirements. A defect can result from design errors, logic errors and coding
errors [Erdil 03]. Examples of corrective maintenance include correcting a
failure to test for all possible input conditions, or a failure to process the last
record in a file [Martin 83].

• Preventive Maintenance: refers to modifications to detect and correct latent
faults in the software product before they become operational faults. This
involves carrying out activities to increase the system’s future maintainability
such as updating documentation, adding comments, and improving the modular
structure of the system [Lassing 00]. Examples of preventive change
include restructuring and optimizing code (code refactoring), and updating
documentation.

• Adaptive Maintenance: refers to activities to adapt a software system to a
changed or changing environment. The need for adaptive maintenance can only
be recognized by monitoring the environment [Bensoussan 09]. An example
is implementing a database management system for an existing application and
making a modification to two programs so that they can use the same record
structures [Martin 83].

• Perfective Maintenance: is concerned with accommodating new or changed
user environments. It requires modifying a software product to detect and correct

14

2.3 Maintainability Properties

latent faults before a failure occurs. Examples of perfective maintenance include
modifying a payroll program to incorporate a new union settlement, adding a
new report to a sales analysis system, improving a terminal dialogue to make it
more user-friendly, or adding a contextual help functionality.

The corrective and preventive types are classified as correction types while those
that are adaptive and perfective are enhancement types, although some authors also
include preventive maintenance as an enhancement type. The correction type is
considered to be a ’traditional’ kind of maintenance while enhancement types are
tightly related to the concept of Software Evolution [Chapin 01].

While the ISO/IEC and IEEE maintainability definitions presented above (the
capability of a software product to be modified) frame our research topic, they are
somehow tautological, and are not much helpful to characterize its intrinsic nature and
underlying properties. Another way of reasoning about maintainability is to link it to
other software properties. For example, performance can be improved by maintenance,
or security can be improved by fixing errors that might allow unauthorized accesses.
In fact, when Avizienis [Avizienis 04] classifies dependability as having a set
of six sub-attributes, availability, reliability, safety, confidentiality, integrity and
maintainability, maintenance is understood as a property of a dependability. This
taxonomy has the significant disadvantage of requiring the description of other
descriptions to define what maintainability actually is.

However, maintainability can be also classified as a quality attribute on its own.
According to ISO 9126, quality attributes are classified as functionality, reliability,
usability, efficiency, maintainability and portability. This is our understanding and in
this thesis we shall address maintainability as a quality attribute on its own.

2.3 Maintainability Properties

Having considered maintainability as a core quality attribute of software, there are
several properties that characterize it. Gilb [Gilb 08] considers ten properties (referred
as ’patterns’) of highly maintainable systems:

15

Chapter 2: Concepts and Tools

• Adaptability: Time needed to adapt a system from a defined initial state to a
defined final state using defined means.

• Flexibility: Ability of the system to adapt to suitable conditions or be
adapted by its users (without any fundamental change to the system by system
development).

• Connectability: The cost of connecting the system to its environment, enabling
the system to be connected to different interfaces.

• Tailorability: The cost of altering the system to suit its conditions.

• Extendibility: The cost of adding a defined extension class and a defined
extension quantity using a defined extension mean.

• Interchangeability: The cost of modifying use of system components.

• Upgradeability: The cost of radically changing the system; either by installing
it or changing the system components.

• Installability: The installation costs in defined conditions.

• Portability: The cost of moving from one location to another.

• Improvability: The cost of enhancing the system.

While this characterization can be useful to distinguish different kinds of change
that might occur in software, in our perspective these are properties that emerge from
a maintainable system, i.e. are dependent properties, they do not help us characterize
maintainability itself.

In a very different perspective, Gustavsson and Osterlund [Gustavsson 05] address
maintainability properties based on the software development phase (architecture,
design construction, etc.) they need to be addressed at. They argue that identifying
the associated software development phase makes it possible to classify the types of
changes in the system. Their categorization is described as:

• Documentation: To document how the system is designed and implemented
can be of great value when carrying out maintenance tasks.

16

2.3 Maintainability Properties

• Architecture and Design: The chosen software architecture and the design of
a system will affect its maintainability, and thus it may be important to have
built-in maintainability requirements from the start.

• Source Code: Complying with coding standards and having comments in the
source code might benefit maintainability.

• Environment by Third-parties: The environment where the software operates
is often made up by several items from third parties, such as programming
languages, databases, code-libraries and operating systems.

• Test Cases: Having a suite of regression test cases can be a way to reduce the
risk of introducing faults when carrying out maintenance.

• Running Systems: Maintainability requirements for the running systems
include requirements about availability when carrying out maintenance, (e.g.
a limit saying how long a version change may take).

• Maintenance Organization: One approach to handling maintenance is to
require somebody else to handle it, i.e. to have the system delivered together
with some kind of maintenance services.

• Process: Requirements can be made on how the system should be developed.
For example: requiring certain stages to be followed such as formal inspections
with a focus on maintainability.

• Crosscutting Systems: Some maintainability requirements are not tied to a
specific entity, but rather crosscut the whole system.

• Ownership: Before being allowed to carry out maintenance on the system it
might be necessary to require ownership of various items, such as the source
code and documentation.

This software development life-cycle based characterization is very interesting in
that the process is the defining criteria for maintainability activities. This is a very
unique perspective, as the code structure, modularity and related concepts are not
explicitly addressed. While this perspective might be useful from a management
point-of-view, it is not so useful from an engineering standpoint.

17

Chapter 2: Concepts and Tools

[Hashim 96] presents a model where maintainability has seven properties:
modularity, readability, programming language, standardisation, level of validation
and testing, complexity, and traceability. The model can be used to highlight the
need to improve the quality of the product so that maintenance can be carried out
properly and efficiently. The maintainability properties of Khairuddin’s classification
are described as follows:

• Modularity: decomposition of a system into functional units, imposing
hierarchical ordering on functional usage so that data abstractions can be
deployed and useful systems developed independently.

• Readability: the degree to which a reader can quickly and easily understand the
source code.

• Programming Language: adequacy of the programming language to the
problem domain (fitness-for-purpose).

• Standardisation: adoption of coding standards to act as a guide in source-code
construction to avoid idiosyncrasies among the developers.

• Level of Validation and Testing: Ratio of effort spent on design validation,
inspections and software testing, versus the total development effort.

• Complexity: refers to the intrinsic complexity of the problem, reflected in the
software artifact developed.

• Traceability: the ability to trace a design representation or actual program
components back to its requirements and vice-versa.

It is very enlightening to realize that these properties can be grouped in
different dimensions: the structural nature of the software artifact (modularity,
complexity), development process related (programming language, standardization,
level of validation and testing, and traceability). Readability could be considered as
a human intelligibility dimension on its own, or included as part of the later, as it is
promoted by standardization.

18

2.4 Maintainability Metrics

From the above overview, it seems almost impossible to make a general claim
about which maintainability properties should be taken into account when designing
or evolving a maintainable system. The nature of the maintainability properties seems
to depend on the type of system and development phase that is being assessed, or
on emerging properties from maintainability itself. Furthermore, the maintainability
requirements depends on the specific software development process adopted. For
example, if there is a requirement that eXtreme programming should be used, this
might imply that documentation may be minimal but test cases must be explicitly
managed [Gilb 08].

This discussion should be enough for the reader to understand why maintainability
is such an elusive property of software systems. To avoid this elusivenss many
authors have focused their efforts on the maintainability characteristics of specific
programming paradigms [Al-Hudhud 15] or to the relationship between software
design and maintainability [Malhotra 13]. Since our major goal is to provide software
architects with tools and methodologies to maintain or improve maintainability during
design and evolution, we need to define this elusive concept in concrete, objective
terms. Thus, we shall now turn our focus into how can maintainability be quantified.

2.4 Maintainability Metrics

For the purposes of this thesis, we identified maintenance metrics from academic
research, some of which have also been adopted by commercial tools. The most
common metrics explicitly addressing maintenance are extracted from structural
properties of source-code, namely WMC (Weighted Methods per Class), NORM
(Number of Overridden Methods), AC (Afferent Coupling), EC (Efferent Coupling),
CC (McCabe Cyclomatic Complexity), LCOM (Lack of Cohesion of Methods), but
there are many others [Fernández 11, Al-Ajlan 09, Fenton 98, Colomo-Palacios 14].

Actually we can oberve that all those metrics have at its core the concept of
modularity. A more modular organization of software offers many advantages in
facilitating maintenance by promoting understandability, and by constraining the
impact of changes to the module modified, and reducing or eliminating the impact

19

Chapter 2: Concepts and Tools

on other modules [Bertolino 13]. This is one of the reasons why modularity has been
adopted in many different areas, from hardware, software, social organization, and
so forth. Therefore in the next subsections we will focus on modularity and describe
the main modularity and related metrics that will be used in the experiments for the
remaining of this thesis.

2.4.1 Modularity

The IEEE defines modularity as ’the degree to which a system is composed of discrete
components where a change to one component has a minimum effect on the other
components’ [ISO/IEC/IEEE 10].

In fact, the larger a system is the more difficult it is to understand and maintain.
This ’divide and conquer’ strategy –along with abstraction and reuse– is a paradigmatic
approach to manage complexity that has also been applied to software design. Its
underlying principle is that dividing large problems into smaller ones –or systems into
components– makes large software systems more manageable.

Seminal works such as [Parnas 72] emphasized the idea of modules being
independent through both cohesion and coupling. A modular system consists of other
smaller and nearly independent parts, the modules, which cooperate and communicate
with each other through a common interface, and where changes in one module only
minimally affect the others. However, despite all the known benefits of modularity,
its practical use is not always simple as sometimes cohesion and coupling have to be
traded-off.

2.4.2 Cohesion

A module is said to have high cohesion when the relationships between its elements are
tight and the module provides a single functionality. The higher the module’s cohesion,
the easier it is for the module to be developed, maintained, and reused. Moreover, there
is empirical evidence that supports the importance of cohesion in structured design

20

2.4 Maintainability Metrics

[Card 86]. Thus, every software engineering text describes high cohesion as a very
desirable property of a module [Chae 04, Pressman 10].

Numerous cohesion metrics have been proposed, most of them for object-oriented
languages [Briand 01, Chae 00]. Researchers have always extracted cohesion metrics
from the OO methods’ structure [Chae 04]. It must be noted that cohesion metrics have
not been applied to software architecture designs which prevents its application in a
more abstract way. The reason for this is that the architectural descriptions normally
do not specify behavior so they do not possess the internal content of a component that
could be used as input for current cohesion metrics. So, the (code-based) cohesion
metrics adopted in this thesis are presented below:

Tight and Loose Class Cohesion (TCC and LCC): TCC and LCC metrics
provide a way to measure the cohesion of a class. In the case of TCC and LCC
only visible methods are considered (methods that are not private). TCC represents
a density of attribute-sharing relationships between public methods in a class. LCC
represents extended relationships, which are constructed by the transitive closure of
attribute-sharing relationships. The higher TCC and LCC are, the more cohesive the
class is [Bieman 95].

Lack of Cohesion (LCOM): Defined by Chidamber and Kemerer [Hitz 96], this
metric acts as a role model for many other proposed cohesion metrics and few other
metrics have been used to redefine LCOM. This metric counts the number of “method
pairs” that do not directly share their attributes [Al Dallal 11]. A lower LCOM value
indicates high cohesion and vice versa. LCOM is widely applied and compared to
other metrics in both a theoretical and empirical way [Al Dallal 12], [Briand 98].

2.4.3 Coupling

Coupling is one of the attributes of modularity with most influence on software
maintainability. Coupling metrics are used in tasks such as impact analysis
[Briand 01], assessing the fault-proneness of classes [Yu 02], fault prediction
[Thongmak 09], re-modularization [Abreu 00], identifying software components
[Lee 01], design patterns [Antoniol 98], assessing software quality [Briand 01], etc. In

21

Chapter 2: Concepts and Tools

general, the main goal in the software design is to obtain the lowest coupling possible.
In OO, classes that are strongly coupled are affected by changes and defects in other
classes [Poshyvanyk 06]. Modules with high coupling have a considerable detrimental
effect on software maintenance and thus need to be identified and restructured. The
coupling metrics adopted in this thesis are the following:

Coupling Between Object (CBO): This is one of the initial metrics proposed
by Chidamber and Kemerer (CK) [Hitz 96] and used to measure the coupling between
classes. It has two inputs: the number of classes within a package and the relationships
between these classes with others in different packages. Later, other parameters were
added such as the number of methods in the class relationships, and the inheritance
relationships between classes.

Response For Class (RFC): Another CK metric, it calculates the number of
distinct methods and constructors invoked by a class. It is the number of methods in
a particular class plus the number of methods invoked in other classes. Each method
is counted just once, even if that method has many relationships with methods in other
classes.

Afferent Coupling and Efferent Coupling (AC/EC): The Afferent Coupling
(AC) metric determines the number of classes and interfaces from other packages,
depending on the number of classes in the analyzed package. It is also known as
Incoming Dependencies. The Efferent Coupling (EC) or Outgoing Dependencies
includes all the packages that the classes in the current package depend upon.

2.4.4 Complexity

According to the IEEE, ’complexity is the degree to which a system or component has a
design or implementation that is difficult to understand and verify’ [ISO/IEC/IEEE 10].
This definition assumes that complexity is a structural property of the software artifact.
It is self-evident that the more complex the structure of a software architecture or the
internal structure of modules, the harder it is to understand, change, and reuse, and
therefore also more prone to defects. We present below the complexity metrics adopted
in our work:

22

2.4 Maintainability Metrics

Cyclomatic Complexity Number (CCN): This was one of the first complexity
metrics [McCabe 76]. This metric is obtained by counting the number of independent
execution paths inside a method or function. If the code is represented as a
directed-graph, CCN is also the number of disjoint regions. This metric is extensively
used both in the academia and industry.

Fan-in and Fan-out Complexity (FFC): Henry and Kafura [Henry 81] consider
fan-in (number of calls from a software module) and fan-out (number of calls into a
software module) as a complexity measure, also referred as information flow. The
fan-in and fan-out metrics by themselves are regarded by some authors as coupling
metrics, since they also measure afferent and efferent coupling respectively.

Nested Block Depth (NBD): This metric represents the maximum number of
blocks of code nested in a particular method of a class.

Weighted Methods per Class (WMC): According to Rosemberg [Rosemberg 98],
this metric measures the individual complexity of a single class. In fact, the number of
methods of a class and their complexities are indicators of the time and effort required
for the development and maintenance of that class.

2.4.5 Size

Size metrics might not seem very relevant if compared to more obvious maintainability
issues but they can be very useful as simple dependent variables especially when they
correlate positively with other attributes [Fenton 14]. It is reasonable to expect that
a million LOC software system, is clearly more difficult to maintain than one with
1000 LOC, therefore we expect evidence of a positive correlation between size and
complexity. Below we present the metrics used in this thesis to account for software
size.

Total Lines of Code (TLOC): The total number of lines of source-code, excluding
empty (blank) lines. There are many variations of this metric such as logical source
lines of code (SLOC-L), comment lines of code (CLOC), method lines of code
(MLOC) lines with both code and comments (CSLOC), and more.

23

Chapter 2: Concepts and Tools

Number of Packages (NOPK): The number of packages refers to the ’packages
count’ that of the software that is subject to analysis. This metric also includes all
the sub-packages. It is very useful in planning when design diagrams are subject to
inspections or revisions.

Number of Classes and Interfaces (NC and NI): This metric also indicates how
extensible a package is. It considers the number of both concrete and abstract classes
(and their interfaces).

§§§

We have now a set of metrics that can be used to assess maintainability through its
constituent properties, modularity (cohesion and coupling), complexity and size. Not
surprisingly, these metrics have originated from source-code.

Figure 2.1: Quantifying Maintainability.

24

2.5 Quality Attributes

2.5 Quality Attributes

Up to this point we have been discussing maintainability and referred it as a quality
attribute of software. But what exactly do we mean by quality and in particular by a
quality attribute of software? In this section our concern is with quality attributes, their
definition and relationship with software architecture so that we later we can study its
impact on maintainability.

Software quality refers to several attributes that contribute to fully characterize
a software system as it is not enough to ensure that the functional requirements of
that system are satisfied. Depending on its nature, there is also a need to meet
domain specific quality requirement, e.g. critical systems are mostly concerned with
availability and performance, banking system are mostly concerned with security,
etc. [Barbacci 95]. Regardless of what are its most relevant functions, the system
should maintain a level of quality that allows it to be used in a satisfactory way. This
means that the quality of a system can be defined as the degree to which its required
quality attributes are met.

According to the IEEE Standard 1061 [IEEE 98], software quality is ’The degree
to which a system, component, or process, meets specified requirements, customer,
user needs or expectations’ while the ISO/IEC 9126 [ISO 01] standard, describes the
software quality of a product as ’The totality of the characteristics of an entity that have
a bearing on its ability to satisfy stated and implied needs’. So, although different
definitions for software quality have been proposed, the need for conformance with
expectations (requirements, either functional and non-functional) can be found in all
of them.

We can find in the literature different classifications and models for quality
attributes. These definitions use different names (e.g. characteristics, parameters,
attributes, etc.) to refer to indicators of software quality. The ISO 9126 standard
[ISO 01] defines them as ’A feature or characteristic that affects an item’s quality’
and, [Eisenbarth 03] as ’A property of a work product or goods by which its quality
will be judged by some stakeholder or stakeholders’. Indeed, the characterization of
a quality attribute, in simple terms, refers to specific features that influence the global
perceived quality of a system.

25

Chapter 2: Concepts and Tools

Figure 2.2: Software Quality Groups (adapted from [Malik 08])

According to [Malik 08] software quality can be divided into five groups
(producer’s utility, customer’s utility, quality of product, quality of process and
quality of environment) as shown in Figure 2.2. The producer and customer utility
are obtained through the achievement of the quality of the product, process and
environment. The quality of the product is related to all the attributes that can be
experienced while using or seeing the product. Quality of process indicates the ability
of a process to develop a quality product, and quality of environment is related to all the
environments in which the software is embedded, including the tools used to develop
and also the system management.

In the ISO 9126 standard [ISO 01], the quality model is classified in a structured
set of characteristics. Each characteristics is further divided into sub-characteristics.
In this model, the attribute is regarded as an entity of a software product which can be
measured. In the case of ISO 9126, the characteristics and sub-characteristics are fixed
in the definition while the attributes can vary between the different software products.
The main characteristics and sub-characteristics according to ISO 9126 are depicted in
Figure 2.3. The attributes can be tuned to meet the requirements of the project, which
means that not all of the sub-characteristics or their attributes have to be addressed in
the design.

26

2.6 Quality Attributes and Software Architecture

Figure 2.3: ISO Characteristics / Quality Attributes

2.6 Quality Attributes and Software Architecture

Quite often quality attributes are not congruous with each other, for instance,
security versus usability or performance versus maintainability [Hohmann 03]. Thus,
depending on the type of software and its customers, different weighting factors are
needed for different quality attributes. Figure 2.4 shows the possible relationships
between the quality attributes proposed by [Kan 03] and highlights the conflicting
attributes and the cases when one quality attribute promotes another.

This is why, according to Barbacci [Barbacci 95], a core activity of the software
architect is to analyze the trade-offs between the multiple conflicting quality attributes
and still meet the user’s requirements. The aim is to evaluate the trade-offs amongst
the competing quality attributes so that a better overall system can be achieved, i.e.
the best compromise for a given context. It should be stressed that is difficult to add
quality as an afterthought; it has to be built into the system from its inception. Thus,
the quality attributes are major drivers for the architectural structure for any software
system where it is necessary to balance amongst competing quality requirements. It is
therefore relevant to define precisely what we do mean by software architecture.

27

Chapter 2: Concepts and Tools

Figure 2.4: Quality attributes relationship (adapted from [Kan 03])

Perry and Wolf [Perry 92] define a software architecture as a group of processing
elements, data elements, and connecting elements. Hohmann [Hohmann 03] includes
specific technology choices and the required capabilities of the desired system.
According to [Aagedal 02], the architecture of a system consists of structures of the
system, which comprise software elements, the externally visible properties of those
elements, and the relationships between them. Fielding [Fielding 00] defines software
architecture as a set of architectural elements that have a particular form, and propose
the software architecture as a set of elements, forms and its rationale. Garlan and
Shaw [Garlan 94] define a system for an architecture model as being a collection of
computational components and connectors. The architecture of a software system
is thus defined in terms of components and interactions between components. A
structural element can be a subsystem, a process, a library, a database, a computational
node, a legacy system, an off-the-shelf product, and so on. Systems can contain more
than one structure and some structures are much more closely involved with interaction
at runtime and are thus able carry out the system’s function. Again, each of these
elements can be instantiated in a variety of ways. For example, a connector might
be a socket, synchronous or asynchronous, or combined with a particular protocol
[Aagedal 02]. If a graph is used to indicate the features of an abstract architectural
description, the nodes represent the components and the arcs represent the connectors

28

2.6 Quality Attributes and Software Architecture

between them. The connectors represent the interactive elements such as procedure
call, event broadcast, database queries, and pipes. Thus, an architectural style is a
’vocabulary’ of components and connectors that can be used in instances of that style,
together with a set of constraints that determine how they can be combined.

Garlan goes even beyond this ’operational’ view, stating that the definitions
for the design level are concerned with issues that go beyond algorithms and data
structures, and defines software architecture as an evolution of design over time
[Garlan 94, Garlan 95]. According to the IEEE definition, ’Architecture is the
fundamental organization of a system embodied in its components, their relationships
to each other and the environment, and the principles guiding its design and evolution
[IEEE 00], a definition that seeks to provide a common frame of reference within
which it is possible to codify common elements between the different views of
architectural descriptions. This definition has become influential and used as a
baseline for architectural description frameworks, for instance within OMG (Object
Management Group). In 2007 this standard was also adopted by ISO/IEC as a standard
(ISO/IEC 4201, ’Systems and software engineering: recommended practice for the
architectural description of software-intensive systems’ [ISO/IEC 07]). Figure 2.5
shows a graphical representation of the IEEE conceptual model of an architectural
description.

The standard also defines the following concepts that are tightly related to the
definition:

• System: is a collection of components arranged to accomplish a specific
function or set of functions. The term system encompasses individual
applications, systems in the traditional sense, subsystems, a system of systems,
product lines, product families, whole enterprises, and aggregations of interest.

• Environment: also referred as ’context’, it determines the setting and
circumstances of developmental, operational, political, and other influences
upon that system.

• Mission: is a use or operation for which a system is intended by one or more
stakeholders to meet a set of objectives.

29

Chapter 2: Concepts and Tools

Figure 2.5: Conceptual model of architecture description from IEEE [IEEE 00]

• Stakeholder: is an individual, team, or organization with interests in, or
concerns about a system.

Although the ISO terminology has mostly been employed to describe systems
and their environments, the IEEE standard is also concerned with architectural
descriptions, architectural views and viewpoints. As a systems’ architecture is the
result of a set of business and technical decisions there are many influences on
its design and an awareness of these influences will impact a specific architectural
design namely due to factors such as technology, user knowledge, the market, the
environment, and so forth, in which the architecture is required to perform.

Architectural design is considered to be so complex that even with the same
requirements, hardware, support software, and human resources available, an architect

30

2.6 Quality Attributes and Software Architecture

designing a system today is likely to design a different system from what might have
been designed five years ago. Thus, while the definitions used in the ISO/IEEE
standards are general enough to cover many types of software architectures they do
not provide architects and developers of large-scale systems with detailed guidelines.

Bass [Bass 98] in ’Software Architecture in Practice’, proposes a set of methods for
quality evaluation in software architectures. The rationale for this evaluation assumes
that the architect relies heavily on the quality of communication to improve the results.
Without information being exchanged between the stakeholders and architect, it is
difficult to understand a large and complex system well enough to make a decision. In
[Bass 03], the terms ’structure’ and ’view’ are adopted to define the term ’architecture’.
A view is a set of architectural elements and consists of a representation of the elements
and the relations between them. A structure is the set of elements itself as they exist
in software or hardware. Thus, the architect is concerned about how to employ a
strategy that can achieve all of the stakeholders goals and provide a common language
to express different ideas and concepts at a level that is intellectually suited to the
different parts by expressing the system under different views. Figure 2.6 provides a
graphical representation of a model depicting different elements - the lights represent
the views and the groups of elements represent an architectural structure.

Figure 2.6: View points and Architecture Structure [Bass 03]

From the above discussion it is apparent that most of the architectural evaluation
methods include some sort of trade-off analysis as a means of assisting the architect

31

Chapter 2: Concepts and Tools

to achieve the most adequate balance between competing quality attributes on the
system being designed. This is why the development of systematic ways of embedding
quality attributes into the architecture of a system provides a solid basis for making
objective decisions about design trade-offs. This enables architects to make reasonably
accurate predictions about a system’s attributes without following trends or making
assumptions [Barbacci 95]. One way used to represents quality in architecture is to
employ a model with quality profiles and/or architectural styles and patterns: quality
profiles attach quality properties to a model whereas styles and patterns embody
the desired quality requirements in the structure [Matinlassi 05]. There are many
definitions of architectural styles. According to [Garlan 97] an architectural style is
what supports the building of classes of architectures in a specific domain. For Perry
and Wolf [Perry 92], an architectural style consists of components and the relationship
between them (with the constraints imposed on their application) and the combined
composition and design rules needed for their construction. Furthermore, according to
Bass [Bass 03] an architectural style is a set of architectural patterns and consists of a
few features and rules for combining them as a means of preserving the architectural
integrity. In this way, an architecture can adopt an architectural style, and thus achieve
specific architectural qualities.

A different perspective uses ’quality profiles’, i.e. map the quality requirements
into an architecture, a mapping that could support automated or semi-automated
architectural evaluation [Immonen 05]. One way to implement quality profiles is to
use UML profiles. A UML profile is a language extension mechanism that allows
metaclasses from existing metamodels to be extended to adapt them for different
purposes [OMG 03]. That is, UML may be tailored (e.g. to model different platforms
or domains) and it has already been extended, especially to represent quality in the
software model [Matinlassi 05]. Examples include also a UML profile for modeling
quality of service and fault tolerance characteristics and mechanisms [OMG 08], a
UML profile for schedulability, performance and time specification [OMG 03], a
reliability profile [Rodrigues 04] and a quality profile for representing the reliability
and availability requirements in architectural models [Immonen 06].

We can find several studies in the literature that compare or categorize architectural
styles and profiles [Shaw 95, Levy 99, Keshav 98]. In the last decade several works
have proposed new categorizations, such as in [Glinz 05] where the authors divide

32

2.7 A Tools View on Maintainability

the non-functional attributes into kind, representation, satisfaction and role. However,
there is no common understanding or agreement about this subject. For example, there
is no consensus about which quality attributes should be supported by different styles,
although some studies have begun to address this problem [Andersson 01,Niemelä 05].
In [Morasca 15] there is a discussion about the need to rethink the question of how
quality attributes should be categorized. He criticizes the decision to divide them
into external and internal categories as this causes several problems and sets out the
main issues that arise from the current approaches. Moreover, this work makes some
interesting points about new categorizations, and analyses attributes from a macro
perspective and argues that they will always be liable to different interpretations.

§§§

From the above description is manifest that there are still many open issues
involved in the characterization of quality attributes and its mapping into architectural
descriptions. A core problem is objectively quantifying each system quality. This
problem is further exacerbated by the fact that many characteristics can only be
measured at run-time or after the system has been fully developed, which makes nearly
impossible to assess them during the architectural design phase (e.g. usability and
maintainability).

Despite all this uncertainty there are already a few tools that assist the architect
in designing and evaluating the quality of software architectures, which, as we
have already seen, involves selecting the ’best’ trade-off among competing quality
attributes. Therefore one of the first tasks of our research, was to establish a framework
that could enable us to compare how different architectural design tools assess quality
attributes, namely maintainability.

2.7 A Tools View on Maintainability

Several tools and methodologies have been proposed to help the architects design and
evaluate the system requirements right from an early architecture model.

33

Chapter 2: Concepts and Tools

There are several methods in literature to evaluate software architecture quality
namely: SAAM, Software Architecture Analysis Method [Clements 01, Kazman 94],
with a focus on modifiability; ATAM, Architecture Trade-off Analysis Method
[Clements 01, Barbacci 98], mainly used to modifiability but also applied to
other quality attributes evaluation and trade-off verification; ARID, Active Reviews
for Intermediate Design [Clements 01], CBAM, Cost Benefits Analysis Method
[Kazman 01], FAAM, Family Architecture Assessment Method [Dolan 01]. Most of
these methodologies describe a set of steps that should be followed in order to check
and evaluate the quality of an architectural design.

Therefore, the architect can select one of the existing evaluation tools to support
the application of a specific method in order to reduce the effort on analysis and
improve the results of the evaluation process. These tools perform different types
of evaluation depending on the method used and which design features are the
focus of assessment. Many such architecture evaluation tools have been proposed
but most of them are limited to a specific purpose (e.g. for deployment only) or
support a generic approach but providing only a subset of possible functionalities for
demonstration purposes. Some researchers have proposed a taxonomy framework
to classify and compare software architecture evaluation techniques, selecting key
features of each methodology to categorize them. In [Babar 04] a framework is
proposed to compare and assess eight software architecture evaluation methods (most
of them scenario-based) and demonstrate the use of the framework to discover the
similarities and differences among these methods. In [Zhang 10] are described the
main activities in model checking techniques defining a classification and comparison
framework and, in [Mattsson 06], the focus is on evaluation of ten models to assess
performance, maintainability, testability and portability. These works focus essentially
on model checking, simulation-based or scenario-based approaches.

Some researchers have also tried to assess architecture tools based on the evaluation
techniques adopted and comparing them across different tools. However, little work
has been done to classify and compare evaluation tools from a generic perspective,
describing the main characteristics and assisting the perception of which are the
relevant features these tools should provide.

Below we present a comparison framework that highlights a set of relevant
attributes to help categorize the different architecture evaluation tools. This is

34

2.7 A Tools View on Maintainability

necessary to understand how these most well-know/mature tools deal with quality
attributes, namely the one that is in our focus, maintainability.

2.7.1 Architecture Evaluation Methods

Any serious software architecture evaluation process needs to consider and categorize
several different architectural aspects of the system’s requirements (e.g. kind of
requirements, architectural description, etc.). Depending on how these aspects are
addressed by the evaluation methods, it is possible to identify different evaluation
methods categories. Regardless of category, the evaluation methods can be used in
isolation, but it is also possible and common to combine different methods to improve
the insight and confidence in the architectural solution to evaluate different aspects of
the software architecture, if needed. After deciding for a specific evaluation method,
the architect has to select the Architecture Description Language (ADL), tool and the
best suited technique to her or his specific project.

In this survey we classified the architecture evaluation methods according to the
categorization presented in [Mattsson 06] and [Bosch 00]. The authors consider
four evaluation categories: scenario-based, formal-modeling, experience-based and
simulation based. Other authors (e.g. [Zhang 10]), use model-checking to address
techniques which verify whether architectural specifications conform to the expected
properties. Since in our study we are category agnostic since our focus is
maintainability, we considered all presented categories that can be used to assess an
architectural model. Model-checking was not considered as it as a different evaluation
category.

Below we present a brief characterization of each category adopted to classify the
tools analyzed:

• Scenario-Based: Methods in this category use operational scenarios that
describe the requirements to evaluate the system quality. The scenarios are used
to validate the software architecture using architectural tactics and the results
are documented for later analysis including for system evolution, maintenance

35

Chapter 2: Concepts and Tools

and the creation of a product line. There are several scenario-based evaluation
methods namely SAAM [Clements 01, Kazman 94], ATAM [Clements 01,
Barbacci 98], CBAM [Kazman 01], FAAM [Dolan 01].

• Formal-Modeling: Uses mathematical proofs for evaluating the quality
attributes. The main focus of this category is the evaluation of operational
parameters such as performance. An example of formal-modeling is NOAM
(Net-based and Object-based Architectural Model) [Deng 97]. Usually, the use
of formal-modeling and simulation-based methods can be joined to estimate the
fulfillment of specific qualities.

• Experience-based: The methods in this category use previous experience of
architects and stakeholders to evaluate the software architecture [del Rosso 06].
The knowledge obtained of previous evaluations is maintained as successful
examples to design new similar solutions and drive further architecture
refinements.

• Simulation-based: Uses architectural component implementations to simulate
the system requirements and evaluate the quality attributes. The methods in this
category can be combined with prototyping to validate the architecture in the
same environment of the final system. Examples include LQN [Aquilani 01]
and RAPIDE [Luckham 95].

It is important to notice that the evaluation categories are not directly linked to
the evaluation tools. They specify how to apply the theory behind the tools and
commonly define steps to assess the architectural quality. Some tools support different
methods to get a better insight. In fact, very few ADLs, like Aesop [Garlan 94],
Unicon [Shaw 95] and ACME [Garlan 10], provide support for different evaluation
processes. They are closely serving as an evaluation tool themselves and assist in
modeling specific concepts of architectural patterns, although unfortunately in most
cases these are applicable to very restricted purposes only.

2.7.2 Architecture Evaluation Tools

The diversity of techniques focusing on restricted contexts and attributes turns the
selection of an architectural method into a complex task. Architects typically need to

36

2.7 A Tools View on Maintainability

adapt several models and languages depending on the attributes they want to evaluate.
Thus, it is necessary to know different description languages, scenarios specification,
simulation process, application contexts and others method’s features to make the
best choice and perform the intended evaluation process. While generic tools do not
become widespread, we have observed that architects tend to adopt the methods, tools
and ADLs that they have previously been in contact with.

Many evaluation methods (e.g. ATAM), describe a sequence of manual activities
that the architect should perform to identify the main issues concerning quality
assessment. Based on these descriptions or instructions, software tools are used to
automate only parts of the evaluation process, such as architectural scenario definition,
analysis of architectural components relationships and others. Automating the whole
validation of architectural quality requires the mediation of the architect to tailor the
model according to the requirements and to solve errors and conflicts detected by the
tools.

ADLs have also evolved and new features were assembled to aid the architect.
According to [Medvidovic 00] the tools provided by ADLs are the canonical
components (also referred as ADL toolkit [Garlan 98]). Among these components we
can mention the active specification, which that guides the architect or even suggests
wrong options in the design and architectural analysis, which is the evaluation of
the system properties detecting errors at the architectural phase and reducing costs of
corrections during the development process. We have take into account that most tools
have consraints that hinder the use of an ADL already known by the architect, forcing
the learning of new architecture description languages or require designing the model
directly at the interface of the tool.

Many characteristics have to be managed and balanced by the architect, thus
selecting the best tool is not a simple task. Sometimes, it is necessary that the architect
knows how the tool works to decide whether it is useful in a specific project. The
system requirements guide the architect about the type of tool to be used but still
lack specific information about methods and features or this information is dispersed,
preventing a sound and informed a-priori evaluation by the architect.

There are few studies to assist the architect in the selection of the best tool to
support the architectural quality evaluation. In [Tang 10] for example, the authors

37

Chapter 2: Concepts and Tools

compare different knowledge management tools to understand architectural knowledge
engineering and future research trends in this field. The knowledge about how to assess
a particular kind of system requires that the architect knows which characteristics the
tool should have.

In order to understand how maintainability is handled by actual tools, we surveyed
different types of architecture evaluation tools and classified them according to the
six dimensions presented in Table 2.1 below. Our goal was to identify significant
dimensions from where to analyze the applicability of an evaluation tool in a
particular context to a specific goal, but also to understand how each tool and the
related ’enforced’ methodology assessed or handled the specific software attribute of
maintainability.

Method The evaluation method used. One tool can support
several methods.

ADL Assess if the tool has its own ADL, use another
know ADL or if the architect must describe the
architecture manually using the tool interface.

Qualities Indicate which quality attributes are covered by the
tool.

Trade-off The ability of the tool to understand and measure the
trade-offs between two or more quality attributes.

Stakeholder Whether the tool supports the participation of
stakeholders (beyond the architect) during the
architecture evaluation or somewhere during the
architectural design.

Knowledge Evaluate if the tool preserves the knowledge (e.g.
architectural patterns) since the last architectural
evaluation for performing new designs.

Table 2.1: Dimensions used for the evaluation of the tools

2.7.3 Assessment of Tools

A major criteria on the tool selection was to cover different methods of architectural
evaluation, and in fact several tools use multiple methods to achieve the proposed
objectives. This is especially true when the tool is more generic, therefore supports

38

2.7 A Tools View on Maintainability

Method This tool uses a scenario-based method, but each RF
can have its own evaluation method.

ADL There is no specific ADL linked with this tool, only
the XML file used as manifesto.

Qualities All quality attributes can be evaluated, depending
on which RF is used. There are no predefined RFs
for all QAs.

Trade-off The trade-off among different RFs uses a
’traffic-light’ metaphor to indicate potential
scenario improvements when applying different
tactics.

Stakeholder It is an architect-focused tool; other stakeholders are
only involved when scenarios are identified.

Knowledge ArchE does not build knowledge from past
evaluation (architectural patterns) to apply in new
projects.

Table 2.2: Dimensions evaluated for ArchE

different techniques depending on the quality attribute to be evaluated. The tools have
also been selected based on their maturity and relevance in the scientific literature.
It must be stressed that most of these tools are research prototypes even if also
used in industry. After an extensive literature survey, and according to the above
criteria, we selected five tools that we considered the more representative of the
current state-of-art on architectural design and evaluation. Thus we selected ArchE
design assistant [Diaz-Pace 08], Architecture Evaluation Tool (AET) [Thiel 03], Acme
Simulator [Schmerl 06], ArcheOpterix [Aleti 09] and DeSi [Mikic-Rakic 04].

ArchE Design Assistant

This tool is an Eclipse plug-in that manages reasoning frameworks (RF) to evaluate
software architectures. The evaluation models are the knowledge sources and the
Architecture Expert (ArchE) baseline tool manages their interaction. A relevant point
of this ’assistant’ is that a researcher can focus on the modeling and implementation
of a reasoning framework for the quality attribute of interest. The tool has no semantic
knowledge and consequently supports any reasoning framework. So, ArchE is an
assistant to explore quality-driven architecture solutions.

39

Chapter 2: Concepts and Tools

Method This tool use scenarios as main method for
evaluation. It uses both dynamic and static
(experience-based) evaluation types.

ADL There is no ADL linked with this tool. The data is
inserted directly using the tool interface.

Qualities All quality attributes can be evaluated as it is a
mostly manual operation.

Trade-off The trade-off is performed based on the data
introduced by the architect and stakeholders during
the achievement of quality attributes and scenarios.
The tool combines this information to guide the
architect showing the risks and the impact of
changes.

Stakeholder In the initial steps of data gathering, the tool
requires that stakeholders participate to fill the
quality requirements scenarios.

Knowledge The knowledge (experience repository) is stored in
the databases as input to new evaluations.

Table 2.3: Dimensions evaluated for AET.

The ArchE receives from each RF a manifesto. This manifesto is a XML file that
lists the element types, scenarios and structural information handled by the reasoning
framework. In ArchE many actors collaborate to produce the solution of a problem. In
this case, the actors are the RF and every other actor can read information provided by
other RFs. This communication can produce new information useful to some of them.

The flexibility of ArchE is its major strength but also its major weakness:
researchers and practitioners are able/forced to develop or adapt their own
quality-attribute model if not already supported. An input conversion for non
supported ADLs might also be necessary.

It is significant that ArchE is most useful during the assessment phase of
architectural development and, as ArchE authors state, ArchE is not intended to
perform an exhaustive or optimal search in the design space; rather, it is an assistant
to the architect that can point out “good directions” in that space.

40

2.7 A Tools View on Maintainability

Architecture Evaluation Tool (AET)

AET is a research tool developed at BOSCH to support the evaluation team in
documenting results and managing information during an architecture review. AET
has two databases to assist the architect with the information management: General,
(i.e. static data) and Project (i.e. dynamic data) databases. This tool is present during
the gathering of quality attributes information and architectural scenarios. So, the
information obtained from stakeholders is stored in AET databases. The information
is used in the current project and storage in the general database for new architectural
projects. Although this tool was initially developed to evaluate performance and
security, the project is still under development to include more attributes. This tool is
focused in the initial phases of requirements gathering and quality attributes trade-off
analysis.

Acme Simulator

This tool is an extension of AcmeStudio and uses its existing features for defining
architectural models. It also provides specific architectural styles to specify relevant
properties and topology to the kind of analysis. This tool uses ’Acme’ as design ADL
to model the software architectures and it is clearly focused on architectural assessment
and evolution. The Acme simulator as originally developed supported security and
performance analysis using Monte Carlo simulation to evaluate the properties under
predefined assumptions about their stochastic behaviour. An extension for reliability
and availability was also developed [Franco 13, Franco 14]. Since the simulator
is embedded in the AcmeStudio framework (an Eclipse plug-in) it allows flexible
extensions.

ArcheOpterix

This tool provides a framework to implement evaluation techniques and optimization
heuristics for AADL (Architecture Analysis and Description Language) based
specifications. The algorithms should follow the principle of model-driven
engineering, allowing reasoning about quality attributes based on an abstract

41

Chapter 2: Concepts and Tools

Method A Monte-Carlo simulation using specifically
designed scenarios (behavior model trees) for
evaluation.

ADL Acme Simulator is linked with AcmeStudio, thus
Acme ADL is necessary to model the architecture
design before the evaluation.

Qualities Initially only performance and security were
supported using Monte Carlo simulation.
Availability and Reliability have been added
later [Franco 13, Franco 14] using stochastic
approaches. This framework is general enough
to be extended to other quality attributes, but it
requires that the adequate extension is developed.

Trade-off The trade-off is presented as a table; the comparison
is realized manually with the information provided
by the tool. The authors plan to support the
comparison directly.

Stakeholder The stakeholders do not participate during the use
of this tool.

Knowledge No knowledge is explicitly preserved to new
projects.

Table 2.4: Dimensions evaluated for Acme Simulator

architecture model. The focus of ArcheOpterix is embedded and pervasive systems
(AADL is extensively used in the automotive indistry).

The quality evaluation is represented using AttributeEvaluator modules that
implements an evaluation method and provides metrics for a given architecture.
This tool can evaluate all quality attributes as long as there are suitable evaluation
algorithms. The two initial attribute evaluators use mathematical methods to measure
the goodness of a given deployment, data transmission reliability and communication
overhead. Thus, this tool was classified as formal, although the AttributeEvaluator
may use different methods.

DeSi

DeSi is presented as an environment that supports flexible and tailored specification,
manipulation visualization and re-estimation of deployment architectures for

42

2.7 A Tools View on Maintainability

Method Although the tool uses formal modeling to
evaluate the attributes, the AttributeEvaluator
which contains the algorithm can adopt other
methods.

ADL Uses the AADL standard to describe the
architecture to be evaluated.

Qualities All quality attributes can be evaluated as long an
algorithm exists. Currently two quality attributes
have been evaluated: data transmission reliability
and communication overhead.

Trade-off The tool uses an architecture optimization module
to solve multi-objective optimization problems
using evolutionary algorithms.

Stakeholder The stakeholders do not participate during the use
of this tool.

Knowledge ArcheOpterix does not preserve the knowledge of
evaluations to be used in new projects.

Table 2.5: Dimensions evaluated for ArcheOpterix

large-scale and highly distributed systems. Using this tool it is possible to integrate,
evaluate and compare different algorithms improving system availability in terms of
feasibility, efficiency and precision.

This tool was implemented in the Eclipse platform. Its architecture is
flexible enough to allow exploration to other system characteristics (e.g., security,
fault-tolerance, etc.). DeSi was inspired in tools for visualizing system deployment
using UML descriptions for improving support to specifying, visualizing and
analyzing different factors that influence the quality of a deployment.

2.7.4 Support for Maintainability

In Table 2.7, we present a summary of dimensions analyzed for the selected tools,
with a synthesis of the most relevant aspects that are required to assess its nature,
applicability and usefulness for a specific goal.

As can be seen, although every tool claims to be devoted to architectural
assessment their focus can be very distinct. While ArchE, AET and ArcheOpterix

43

Chapter 2: Concepts and Tools

Method Formal, DeSi uses algorithms to improve system
availability.

ADL The data is input directly in DeSi interface and the
tool does not use any ADL.

Qualities Availability, although, depending on the taxonomy,
some of its features could be independently
classified, namely security and performance. The
tool allows the integration of new components to
explore different quality attributes.

Trade-off There is no trade-off function. DeSi simply
provides a benchmarking capability to compare the
performance of various algorithms.

Stakeholder The stakeholders do not participate during the use
of this tool.

Knowledge No knowledge is preserved for future evaluations.

Table 2.6: Dimensions evaluated for DeSi

ArchE AET ACME ArchOpterix DeSI
Method Scenario Scenario Simulation Formal Formal
ADL – – X X –
Quality Attr. All All Perf., Secur., Avail., Reliab. All Availability
Trade-offs X X X – –
Stakeholder – X – – –
Knowledge – X – – –

Table 2.7: Overview of tools according to the relevant dimensions

goals cover every quality attribute (depending on whether the corresponding models
are implemented), AcmeSimulator and DeSi have a specific focus. On the other
hand, while ArchE, AET and AcmeSimulator support human guided trade-off analysis,
Archepterix and DeSi provide absolute assessment metrics. Since our focus is on
maintainability, it was clear from this survey that no tool addresses explicitly this
quality attribute. In fact, tools using formal methods for assessment are best suited to
analyze operational –runtime– quality attributes (e.g. performance), which is clearly
not the case of maintainability, a ’static’ property of software.

Nevertheless, we searched further to understand how was this attribute considered
whenever a trade-off involving maintainability was to be analyzed by each tool. Much
to our surprise we realized that, if the need arises, these tools simply import metrics
from other tools (namely Eclipse plugins) that use modularity (cohesion and coupling),

44

2.8 Summary

cyclomatic complexity, and size as proxy variables to quantify maintainability. So,
since most of this tools are still mostly used in a research context –and maintainability
is not been explicitly addressed– or if used in an industry setting, the practitioners
revert mostly to code-based metrics using external tools. This insight was the driver
for the next step in our study.

2.8 Summary

This section provided an overview of the baseline concepts used in our study:
maintainability as a quality attribute, and software architecture as the context
where quality attributes are enforced. Then, we presented a systematic review of
contemporary software architecture design tools to identify its underlying principles in
order to understand how maintainability was handled by such state-of-art frameworks.
Much to our surprise we realized that every tool analyzed extracted its maintainability
metrics from source-code whenever this quality attribute was involved, mostly through
a few proxy variables (cohesion, coupling, complexity, and size).

Since our goal is to provide software architects with tools and methodologies that
allow them to deal with maintainability at architectural level, in the next chapter
we present our first step into mapping ’low-level’ structures into more abstract
representations.

45

Chapter 2: Concepts and Tools

46

Chapter 3

Research Design

Assessing the mapping of source-code maintainability
onto its architectural description

3.1 Introduction

During architectural design the first decisions are made about the essential structures of
a system, but there are few means of evaluating those decisions until much later in the
development process [Bosch 01]. In particular, it is extremely difficult to predict how
maintainable is a system at the software architecture level of abstraction. Despite this,
information about the estimated effort and costs incurred by the architecture is needed,
so that the trade-offs on future maintenance effort can be compared. For instance, if it
is claimed that a software architecture will have a maintenance effort equivalent to ten
full-time engineers per year, this raises the question of whether and how an alternative
architecture could reduce maintenance costs.

The impact of software architecture on maintainability, and the need for a
maintenance evaluation while the architecture is being designed or modified, has led
us to formulate the first hypothesis of this study and conduct several experiments to
validate it. Our first hypothesis states that:

47

Chapter 3: Research Design

Source-code based metrics can be adapted to more abstract metrics and
applied to assess maintainability at architectural level. [H1]

In this chapter we set the stage for the experiments performed aiming at validation
the hypothesis stated above. We present and discuss the metrics adopted in the
experiments and an overview of the experimental setup. The results and discussion
are presented in the next chapter.

3.2 Metrics

As we referred above, most maintainability metrics identified were based on
source-code. This prevents the assessment of maintenance during the software design
phases, when the source code may not yet exist. Therefore we decided to map
source code metrics into a more abstract, architectural level. Several assumptions
have been made on how maintainability can influence software architecture. First,
we adapted a set of metrics used to evaluate Object-Oriented source-code into
metrics applied to package diagrams. The most common metrics were taken from
academic works, as well as from estimation tools used to measure code quality
(Eclipse plugins and SonarQube). The most common code attributes that were
considered were Complexity by class, Number of files of project, Number of functions,
Complexity by Function, Lines of Code, Complexity by file, Cyclomatic Complexity,
Duplications, and Technical Debt. After an importance and relevance prioritization,
and considering its potential of mapping into package diagram models, we selected
McCabe Cyclomatic Complexity (CC), Afferent Coupling (AC), Efferent Coupling
(EC) and Lack of Cohesion (LCOM) as the metrics on which our study was going to
be based (Table 3.1).

CC Cyclomatic Complexity
AC Afferent Coupling
EC Efferent Coupling
LCOM Lack of Cohesion

Table 3.1: Source-code metrics adopted

48

3.2 Metrics

We must stress that the metrics adopted have been extensively used to evaluate
source-code, mostly for object-oriented systems. Other studies that address the impact
of software changes in software architecture, e.g. [Bengtsson 98], have refered that it
should be possible to adapt OO metrics to abstract levels of the system. Also the work
presented in [Shen 08] demonstrates how evolution can increase the complexity of
maintaining a software system, and the need for a quality evaluation before the changes
required for the system evolution can be coded. In [Garlan 09] a tool named Ævol was
developed to define and plan the evolution of systems by means of its architectural
model. Zayaraz [Zayaraz 05] uses COSMIC to define architectural metrics in order to
evaluate maintainability, reliability and usability. His work uses the sub-characteristics
of maintainability –complexity, coupling and cohesion– as the target metrics. This is
exactly the same approach we adopted.

The initial experiments were performed manually by analysing the connections
between the packages so that the results between the code and software architecture
could be compared. We realized that we were actually working with package diagrams
and its connections, which could be treated as graphs. So, in trying to validate
hypothesis 1 we applied these metrics to package diagrams extracted directly from
the source code. This mapping was performed automatically using an external tool,
Visual Paradigm 1. We did not use independently produced package diagrams, as if
we did, we could not ensure that the representation had the required fidelity. In fact, it
is very common that the models are not reflected in the actual code. Moreover, we did
not have 39 models, one for each version of Tomcat. Lest it suffice to say that some
major version number changes had indeed a redesigned package diagram, an these
agreed with our automatically generated model. We think that these models might
have also been reverse-engineered from the source code.

To further abstract the diagrams we adapted the UML package diagrams into the
COSMIC notation [ISO/IEC 11], so that the our metrics could be applied to different
versions of architectural models or systems in a semi-automatic way. The COSMIC
Full Function Point (FFP) uses Functional User Requirements (FUR) to measure
the software size. It also quantifies the software’s sub-processes, known as data
movements, by measuring the functionality of the software as did Dumke [Dumke 11],
which used COSMIC to unify the architectural notation that would be used by the

1www.visual-paradigm.com

49

Chapter 3: Research Design

code metrics. With the aid of COSMIC data movements, it is possible to classify the
processes by means of COSMIC standard notation. The main data movements defined
in COSMIC are as follows: E: Entry, X: Exit, R: Read, W: Write, N: Number of
components, and L: Layer.

The adaptation of UML diagrams to the COSMIC notation allowed us to propose
that our new metrics-based models can be used to evaluate the software architecture.
Each package UML diagram can be regarded as an architectural layer and the COSMIC
data movements are linked to diagram elements. It should be mentioned that each
metric has a scope of application. For example, concerning the complexity metrics,
a component which possesses sub-components, is viewed as only one element for the
layer being evaluated. It has the whole diagram as its scope of application without
taking account of the internal relations of the component. However, in the cohesion
metrics, the elements of evaluation consists of the component itself, and thus, in
this case, the sub-components are necessary for the measurement. If the component
has no sub-components, the calculation of TCC and LCC may indicate it has the
maximum cohesion. The formulas below show an example of the McCabe Cyclomatic
Complexity for code and its adaptation for Software Architecture and the adapted
formulas for the other used metrics: Fan-in Fan-out Complexity, Coupling Between
Objects, Response For Class, Tight Class Cohesion, Loose Class Cohesion and Lack
of Cohesion.

Cyclomatic Complexity (CCN) for code:

CCN = (E - N) + 2P
Where:
E: Number of edges
N: Number of nodes (vertices)
P: Number of independent graphs (usually P= 1)

CCN adaptation to package diagrams:

CCN = ((E + X + W + R) - N) + 2L
Where
E: Dependencies from the component

50

3.3 Experimental Design

X: Dependencies to the component.
W: Interfaces provided by the component.
R: Interfaces used by the component.
N: Number of components in a diagram
L: Number of layers in a diagram

It must be stressed that for the remaining three metrics (Afferent Coupling, Efferent
Coupling, and Lack of Cohesion), the formulas have been preserved, only the formula
inputs have been adapted (using packages rather than classes).

3.3 Experimental Design

From the above description we can now present our approach to validate our first
hypothesis (H1). First we had to selected a well known, widely used project in
production for several years, so that a large number of versions were available. A
private, restricted usage, unknown project, would not be as interesting an relevant as a
very common one. We opted for a well know, widely used project to ensure relevance
of the results. The choice fell on Apache Tomcat, the most widely adopted web server
on the Internet. Moreover, Tomcat’s source code is available, along with previous
versions. Thus, we downloaded and analyzed 39 consecutive versions of Tomcat (from
version to 6.0.0 a 7.0.26).

For each version we extracted the source-code metrics referred in the previous
section. For each source-code version available, the corresponding package diagram
using Visual Paradigm was generated and the mapping into COSMIC applied. Then,
we applied our maintainability metrics adapted to this more abstract notation. Finally,
the metrics extracted from code and the metrics from the abstract notation were
compared using statistical correlation methods. Initially four methods were used,
Pearson, Kendall, Spearman and Factorial Analysis. Later we used only Pearson
Correlation to reduce the effort, as no significant additional insights were achieved
by using the other statistical techniques.

51

Chapter 3: Research Design

3.4 Summary

In this chapter we set the stage for the experiments performed to validate our
first hypothesis (H1), that states Source-code based metrics can be adapted to
more abstract metrics and applied to assess maintainability at architectural level.
Therefore, if the metrics used to assess maintainability at source code level are
significantly correlated to its mapping applied to the more abstract representation of
the same software system, we can conclude that the mapping is not only feasible, but
meaningful. This would open the possibility of designing and comparing architectural
alternatives on what future maintainability is concerned. In the next section the results
of this first study are presented and discussed.

52

Chapter 4

Results and Analysis (I)

Mapping source-code maintainability metrics onto its
architectural equivalent

4.1 Introduction

In this chapter we present and analyse the first experimental results of this thesis. It
focuses on determining the correlation between source-code and architecture derived
metrics with the intention of validating hypothesis 1 of this thesis, i.e. whether
source-code based metrics can be adapted to more abstract metrics and applied to
assess maintainability at architectural level.

4.2 Observations

As stated earlier, the purpose this study is to understand if it was possible to map code
metrics into architectural metrics as a way to support maintainability-related decisions
of the software architect. Automatically generated package diagrams in UML were
adapted to COSMIC notation and its graph representation. The maintainability-related

53

Chapter 4: Results and Analysis (I)

Complexity
(Package)

Efferent
Coupling
(Package)

Afferent
Coupling
(Package)

Cohesion
(Package)

Complexity (Code) 0.793
(0.000)

0.710
(0.000)

0.748
(0.000)

0.534
(0.000)

Efferent Coup (Code) 0.973
(0.000)

0.957
(0.000)

0.951
(0.000)

-0.727
(0.000)

Afferent Coup (Code) 0.973
(0.000)

0.957
(0.000)

0.951
(0.000)

-0.727
(0.000)

Cohesion (Code) - 0.967
(0.000)

- 0.919
(0.000)

- 0.940
(0.000)

0.719
(0.000)

Table 4.1: Pearson’s correlation and significance for Tomcat

metrics were applied to the same versions of the systems, both to code and diagrams.
Then the correlation was analyzed by means of Pearson correlation.

In Table 4.1 we show the Pearson correlation and significance between the code and
architecture for 39 versions of TomCat. The information show how is the correlation
between source-code metrics and package diagrams. Coupling and complexity had
the higher correlation, reaching more than 0.9 with a 100% of significance. This
results were very encouraging, as they showed a clear correlation between the code
and architectural metrics along the 39 versions of Tomcat. Thus would lead us to
conclude that the code-to-architecture mapping is not only feasible, but meaningful.
This opens the possibility of designing and comparing architectural alternatives on
what concerns future maintainability.

However, during the analysis of the results, we noticed that some code metrics had
a significant higher correlation than the other architectural metrics and which were also
different of the others that were tested. From the example in Table 4.1, it can be seen
that the architectural complexity (package) has a strong correlation with the coupling
of the code, even greater than with the complexity of the code. This observation lead us
to further develop our study, and select other complex software systems to understand
this behavior, and whether the correlations hold, or if this correlation was specific of
the Apache Tomcat.

Therefore, we performed exactly the same study, now extending it to two other
complex software systems: JEdit and Vuze. JEdit is a Java editor and Vuze is a

54

4.2 Observations

Complexity
(Package)

Efferent
Coupling
(Package)

Afferent
Coupling
(Package)

Cohesion
(Package)

Complexity (Code) -0.940
(0.000)

0.110
(0.328)

0.946
(0.000)

0.314
(0.095)

Efferent Coup (Code) 0.955
(0.000)

0.056
(0.410)

-0.798
(0.000)

-0.248
(0.153)

efferent Coup (Code) 0.974
(0.000)

0.175
(0.237)

-0.777
(0.000)

-0.225
(0.177)

Cohesion (Code) 0.613
(0.003)

0.775
(0.000)

-0.151
(0.268)

0.015
(0.475)

Table 4.2: Pearson’s correlation and significance for jEdit.

widespread peer-to-peer client (formely Azureus). Both are open-source software, so
we could access multiple version of its source code.

jEdit results, presented in Table 4.2, again show high correlation values between
code complexity and architectural complexity. It also shows a strong correlation
between package complexity and the code coupling (afferent and efferent). However
coupling in code shows a weak correlation with architectural coupling. The same
occurs for cohesion. This lack of correlation can also be seen in the significance
values. These observations indicate that the previous correlation results obtained
for Apache Tomcat do not hold for some of the metrics, hinting that some metrics,
namely cohesion, might be inherently different in source-code and at its architectural
representation.

Vuze, the largest system of our case study (in number of components), finally
showed few similarities between the metrics. The only significant results are the
comparison between package complexity with coupling (afferent and efferent). The
other comparisons are not meaningful since they show a low coefficient or a high
significance value. These results are presented in the Table 4.3 and displayed
graphically in Fig. 4.2.

We extended this analysis up to twenty OSS projects, which confirmed these
findings.

55

Chapter 4: Results and Analysis (I)

Complexity
(Package)

Efferent
Coupling
(Package)

Afferent
Coupling
(Package)

Cohesion
(Package)

Complexity (Code) -0.028
(0.461)

0.207
(0.220)

-0.155
(0.290)

0.215
(0.221)

Efferent Coup (Code) 0.930
(0.000)

0.572
(0.013)

-0.530
(0.021)

0.547
(0.017)

efferent Coup (Code) 0.378
(0.001)

0.415
(0.062)

-0.363
(0.090)

0.384
(0.079)

Cohesion (Code) 0.469
(0.039)

0.282
(0.154)

-0.224
(0.211)

0.253
(0.182)

Table 4.3: Pearson’s correlation and significance for Vuze

Figure 4.1: Vuze lacks meaningful code-to-architectural maintainability metrics
correlation

At this point we were faced with the evidence that our metrics did not reflect at
architectural level the source-code properties of a software system, i.e. the abstraction
process clears information that is meaningful in what maintainability is concerned.

56

4.3 A Field Survey on the Meaning of Maintainability

This observation suggests that there are quality attributes that are not apparent at
more abstract levels of description. This contradicts the widely held belief that
maintainability –a quality attribute– is determined at the architectural level and
directed us to explore other complementary dimensions of maintainability.

4.3 A Field Survey on the Meaning of Maintainability

Up to this point our study considered that maintainability is an emergent property
of modularity and the related concept of complexity. Our argument is based on the
assumption that the more modular is a software system, the less complex it is, and
therefore easier to maintain. This is the line followed by most of the literature, already
discussed in chapter 2.

In order to further clarify this point, a field survey was conducted with software
architects to understand what they understood was meant by architectural complexity
as it relates to maintainability. In total, we surveyed 22 software architects with over
5 years experience from different countries, namely USA, Portugal, Brazil, Japan,
Germany, Mexico, Spain and Italy. The survey confirmed that size, coupling and
complexity were considered the most important metrics to assess maintainability. It
was also found that developers tend to make constant checks of the size and level of
complexity of the project, as they are concerned about the risk of the system being too
complex, and therefore abandoned. The technical questions are shown in the Table
4.41. Only 4 of the architects who responded to the survey agreed to the disclosure of
their replies. These work for the following companies KVH (USA), NovaBase (PT),
SESM Scarl (IT) and Compsis (BR).

This survey was answered only by 22 of the more than one hundred architects that
have been contacted. Thus, we cannot extract solid quantified information from such
a small sample of software architects. In fact, many respondents did not even fill the
questionnaire, but rather sent their personal opinion about this issue in free form text.

A manual analysis and reflection on the feedback provided by this survey lead us to
conclude that the conceptualization of maintainability, as perceived by the developers

1The remaining questions address socio-demographic aspects

57

Chapter 4: Results and Analysis (I)

Question Description

Q1 How do team members communicate with each other regarding
important aspects of design and architecture?

Q2 What kind of languages are used to describe the projects?
Q3 Do you agree that these languages are complete?

Q4 Is it possible to express everything that is relevant to the project using
these languages?

Q5 What architectural aspects are hard to document using these
languages?

Q6 How does your company check the non-functional requirements?
(quality attributes)

Q7 How important do you think software architecture is on a project?
(1-10)

Q8 Does your company have a preferred (or predominant) architectural
style?

Q9 A modification of the system implies a modification of system
architecture?

Q10 What quality attributes do you consider to be the most important
ones?

Q11 What kind of methods/techniques are used to evaluate modularity
(e.g. complexity, coupling, cohesion, etc.)?

Q12 Do you know some technique used to evaluate modularity in
architectural phase? Which one?

Q13
Do you think the modularity evaluation during the architectural
phase could reduce the cost of changes in the development and
maintenance phases?

Q14 Would you adopt a new modularity evaluation technique if it could
improve the level of maintainability of your systems?

Table 4.4: Core Survey Questions

and software architects alike, can be best described as the degree of “disorganization”
of the modules, i.e. the architectural entropy, which in fact, reflects the degree of
coupling of the different architectural components. This perspective –that is quite
in line with our ’structural’ research line– was invariably linked with the perception
that maintainability is addressed both at very low level (code conventions, meaningful
comments) and at the ’social’ level, i.e. the organization itself can promote or hinder
good maintainability practices.

Faced with the previous observations that support the limitations of constraining
maintainability to a purely technical perspective, and the insight gathered from this
survey, a new research line was then formulated: it seeks to understand whether
maintainability is a multidimensional property of software and therefore whether it
can only be fully grasped if these multiple dimensions are taken into account.

58

4.4 Summary

4.4 Summary

In this chapter we have presented and discussed the mapping of source-code level
maintainability-related metrics into more abstract representations. While the first
observations supported our hypothesis that it would be possible to map source-code
metrics into more abstract, architectural ones, further observations have shown that
the correlations did not hold for other systems analyzed. This was a very significant
insight, as it means that not all quality attributes, namely maintainability, can be
described solely from an architectural (structural) perspective.

Faced with the understanding that it would not be possible to fully map this quality
attribute only at an abstract (architectural) level, the end-goal of providing the system
architect with a set of tools and recommendations to help her/him evolve long-term
software preserving maintainability for further evolution, lead us to surveying
professionals responsible for software architecture from many different countries
and companies. From this survey we concluded that there is a ’social’ dimension
to maintainability. In fact, it is well known that the organization (architecture) of
software artifacts reflect the structure of the organization that develops it. This is know
informally as Conway’s Law, also referred in scientific literature as ’the mirroring
hypothesis’ [Colfer 16].

Thus, in the second part of this thesis we turn our focus onto the social dimension
of maintainability.

59

Chapter 4: Results and Analysis (I)

60

Chapter 5

Revised Experimental Setup

Assessing the impact of social factors on maintainable
software projects

5.1 Introduction

The first results that are set out in the first part of this study motivated us to expand our
analysis into the social dimension of maintainability.

Actually, in this second part of the thesis we are addressing a new hypothesis that
can be stated as:

Social factors play a significant role in the success (longevity) of OSS projects.
[H2]

This newly formulated hypothesis sets the groundwork to answer two
complementary research questions:

• Is it possible to predict a software projects success from metrics related to its
’social’ dimension?

61

Chapter 5: Revised Experimental Setup

• Which are the ’social’ variables that have the highest impact in the long term
software project success, assuming that successful projects implicitly embed
high maintainability.

By identifying the social variables that impact the project longevity we provide the
software architect/project manager with knowledge that can be actually used to drive
successfully the project. This is perfectly aligned with the initial objectives, while
embracing this new dimension.

The first challenge we faced was to identify a set of projects characterized
by high maintainability, so that we could analyze its intrinsic social factors and
how they differ from other projects. After a careful and informed reflection we
realized the plausibility that long-term successful OSS projects do have to posses
high maintainability, otherwise they would not achieve long-term success. Thus, in
this second part of our study we will be focusing on identifying the long-term OSS
success predictors, so that light can be shed on the social factors that promote highly
maintainable software.

Figure 5.1: How social factors might impact maintainability.

In the next section we shall discuss the rationale behind the selection of OSS
repositories. Then we present the experimental setup used in this second part of our
study, describing the three phases of the experiments that were performed, after which
the dataset and the classification methods used are presented.

62

5.2 OSS Data Repositories

5.2 OSS Data Repositories

The experiments in this second part will use the OSS projects available in several
web repositories. However, the need to automate the validation process, demanded a
comparison between them to support the choice best suited to our research. Amongst
the most important repositories, we decided to use GitHub and SourceForge, both of
which have already been used in many other research studies.

SourceForge was launched in 1999 and was one of the first repositories to work on
managing the OSS system. For a long time, it was one of the leading and most reliable
code repositories. Currently, SourceForge claims to have more than 430,000 projects
and over 3.7 million registered users1, but not all are active projects. SourceForge also
allows integration of the projects with different version control systems: CVS, Git,
Mercurial and SVN.

GitHub is a collaborative code hosting facility, which emerged in 2008. It is based
on the Git version control software and was the first platform to support it. GitHub
became one of the most popular repositories and currently has more than 11,000,000
users collaborating with more than 27,200,000 repositories2. It has a greater social
emphasis than SourceForge, and allows users to follow updates from other repositories
or users. Unlike SourceForge, GitHub only allows integration with the Git version
control and partly with SVN.

In 2013, SourceForge experienced a popularity problem and as a result included
advertising buttons inside the project’s websites which made the users confused and
reduced its usability. In response, many developers removed the download option
from their project’s website. At that time, SourceForge had 3 million registered
users (700,000 less than today) while GitHub had approximately 2.5 million users
in early 2013, reaching 3 million users in April 2013 and almost 5 million (with
10 million repositories) in December. Additionally, data extracted from Alexa.com
shows the increasing popularity of GitHub in recent years, as SourceForge continues
to decline. Furthermore, GitHub provides an access speed that is about 64% greater

1http://sourceforge.net/about
2Data from September 2015 on https://github.com/about/press

63

Chapter 5: Revised Experimental Setup

than SourceForge (1.117s vs 2.155s in average). Today, GitHub is among the top one
hundred most visited Web sites (89th), while the SourceForge is at 272th.

One of the reasons for the extensive use of SourceForge in academic studies is the
availability of free databases aimed at research, such as FLOSSmole, from Syracuse
University (discontinued today), and the SourceForge Research Data Archive (SRDA)
from University of Notre Dame. This database has been backing up instances of data
from SourceForge for academic purposes for many years.

So, although GitHub has a large project database that is publicly available, there
are some difficulties in using it for data mining, as demonstrated in [Kalliamvakou 14].
That may be the reason why so many academic researchers end up by choosing
SourceForge which also explains the large number of references to it in our literature
review, and also what first led us to choose SourceForge as a the main repository for
analysis. However, Weiss [Weiss 05] found some problems with SourceForge, namely
its unexpected categorization changes and high rate of abandonment. Furthermore,
Rainer and Gale [Rainer 05] analysed the quality of SourceForge data and advised
caution in the use of this data also due to the large number of abandoned projects. On
the other hand, few studies have highlighted the quality of the GitHub data, and there
is still a lack of information about what kind of methodology can be employed for its
categorization.

Some attempts have already been made to make GitHub project data available on
external databases namely through GHTorrent and GitHub Archive. However due to
restrictions in their use, we had to design and build our own acquisition tools and
analysis methods from the central GitHub repository. Thus, the choice of GitHub was
threefold: the rising importance of this repository, the lack of academic work and the
inclusion of social factors, some of them absent in SourceForge.

5.3 Phasing of Experiments

In this second study we shall use a large dataset from project data extracted from the
OSS project repositories described above. The roadmap for these experiments is shown
in Figure 5.2.

64

5.3 Phasing of Experiments

Figure 5.2: Phases of the experiments

In phase 1 of this second part of our study, the same twenty projects used in
the first experiments (Tomcat, Jedit, Vuze,...) were used, but now we extended the
analysis to include the ’social’ parameters listed in Table 5.1. All the twenty Java
systems analyzed confirmed that social factors are indeed relevant in predicting the
future success of the OSS project. In phase 2, the most significant factors found
in the previous phase were re-analyzed, but now using a larger number of systems
–20,000 projects involving ten programming languages– to confirm the previous
results. Finally, in phase 3, improvements were made since there was a need to
increase the number of case studies in the dataset and conduct a more comprehensive
experiment to account for language dependency bias. In this phase, about 160,000
OSS projects were used.

In the different phases of the study, the results were compared by using more than
one correlation and classification technique determine which was the best evaluation
model and to mitigate analysis bias. This is discussed in the next section.

65

Chapter 5: Revised Experimental Setup

Social Factors

Number of forks Number of stars Has pages
Number of subscribers Project size Has wiki
Number of contributors Number of issues Has downloads

Number of commits Open issues Number of watchers
Number of downloads Branch attributes URL and dates

Table 5.1: Social factors assessed during the experiments

Classification J48 Simple Logistic IBk (K=3)
Bagging Decision Table Multilayer Perceptron

Table 5.2: Methods used to compare the results

5.4 Dataset and Classification Methods

The dataset used in the final (phase 3) experiments included 17 programming
languages with different programming paradigms (scripting, procedural, and
object-oriented). Initially the dataset had a larger number of languages but for different
reasons, it was impossible to use all of them them. For example, the Swift language
had no dormant project as the language was introduced by Apple in 2014 during the
WWDC (Worldwide Developers Conference). Table 5.3 provides the distribution of
the programming languages we used in the third phase of the experiments.

In this second part of our study, we used the Weka environment (Waikato
Environment for Knowledge Analysis) [Frank 10] as a data analysis platform. Weka
has all the models and algorithms needed to analyze the extracted datasets and allowed
us to carry out a detailed analysis that otherwise would require independent tools.

In total, 4 attributes evaluation algorithms and 10 classification methods
were used. However, owing to the significance of the results obtained in the
preliminary experiments, after phase 2 we adopted only one attribute evaluation
algorithm (Information Gain) and six classification methods (Table 5.2): Simple
Logistics (mathematical functions), IBk (from the group of lazy classifiers), J48
(classification trees), Bagging (meta-learning algorithms), Decision Tables (from
rule-based classifiers), and Multilayer Perceptron (from neural network).

66

5.5 Summary

Language Dormant
Projects

Active
Projects

Ratio
Act/Dor Total Projects

Java 2371 13712 578% 16083
JavaScript 8984 36308 404% 45292

C 1972 7328 372% 9300
C++ 1141 6511 571% 7652
C# 752 4029 536% 4781

Objective-C 3076 8765 285% 11841
Haskel 163 1021 626% 1184
Ocaml 41 267 651% 308
Shell 678 4282 632% 4960
Go 347 4629 1334% 4976

Arduino 32 203 634% 235
Assembly 27 146 541% 173

PHP 2734 11315 414% 14049
Ruby 6688 11278 169% 17966

Python 3716 15901 428% 19617
R 73 636 871% 709

Matlab 31 145 468% 176
Total 32826 126476 385% 159302

Table 5.3: Programming languages and number of projects used in Phase 3

5.5 Summary

This section sets the stage for the observations performed in the second part of
this study. We present the rationale for using successful long-term OSS projects
as plausible evidence of high levels of maintainability, then the present the OSS
repositories from where project data was extracted, followed by the experimental
phasing to be performed. Finally the dataset and the classification methods used
in this part of the study are presented and justified. The results and analysis of the
observations are presented in the next chapter.

67

Chapter 5: Revised Experimental Setup

68

Chapter 6

Results and Analysis (II)

6.1 Introduction

In this chapter we present and discuss the three phases of the second set of experiments
aiming at assessing the impact of social factors on the success of OSS projects.
On this second experimental phase, we compared the impact of code metrics versus
social factors to determine its relative importance as project success predictors. This
comparison was made using several distinct classifications algorithms. Due to the
many parameters involved we tried to use as many systems as feasible for each step.
So, all social-related information available in the repositories as well as an extensive
list of source-code metrics were used.

6.2 Phase 1: SourceForge | 20 projects | Java

In the first step, after collecting all this project-related information from the OSS public
repositories, we used several distinct statistical analysis algorithms to compare the
data. The initial comparisons included all the project attributes presented in Table 6.1.
In all the comparisons, the main objective was to analyse which factors were more

69

Chapter 6: Results and Analysis (II)

effective to predict the success of the project. At this stage, 20 Java projects were
tested and the code metrics were extracted using SonarQube 1.

These first results (Table 6.1) showed that the project’s success is mostly
influenced by social parameters. The code-related parameters (including complexity)
were practically irrelevant and close to zero when compared with the former.
This observation supports the argument of some researchers that OSS systems are
intrinsically more modular [Baldwin 15], and therefore code attributes per se may not
be a distinctive factor in determining the success or abandonment of a project.

Social Factor Consideration Code Metrics Consideration
Forks 0.9612 Files 0.0000

Subscribers 0.9612 Duplicated lines density 0.0000
Stars 0.9611 Functions 0.0000

Number of contributors 0.5716 Complexity by file 0.0000
Size 0.3739 McCabe Complexity 0.0000

Number of commits 0.3217 Comment Lines Density 0.0000
Issues 0.3204 Directories 0.0000

Has page 0.1938 NLOC 0.0000
Has wiki 0.0328 Violations 0.0000

Has downloads 0.0276 TLOC 0.0000

Table 6.1: Attribute-based considerations using classification methods

It is also manifest that some of the social metrics have the greatest impact, namely
forks, subscribers, and stars). These results also lead us to reflect on the influence
of the specific repository that was being used to analyze the data. At this phase we
were using a database extracted from SourceForge. So, despite the extensive use of
SourceForge in most research papers, we decided to switch to GitHub as our main
source of OSS project data to continue the experiments.

6.3 Phase 2: GitHub | 20K projects | 10 languages

As the initial experiments only considered 20 object-oriented OSS projects, we were
concerned that these results could have been biased by the programming paradigm

1https://docs.sonarqube.org/

70

6.3 Phase 2: GitHub | 20K projects | 10 languages

or the small sample size (number of projects). Thus, in the second phase of this set
of experiments, we decided to increase the number of target systems significantly,
as well as extend the programming languages and programming paradigms analyzed.
Therefore we designed and built a tool to semi-automate the entire process, namely the
information extraction using the GitHub API.

In this new setup we analyzed 19.994 projects (of which 9,995 considered dormant
and 9,999 active) using 10 different programming languages: Java, Python, C, Shell,
C++, C#, Objective-C, JavaScript, Ruby and PHP. During this second phase, we
reduced the number of attributes tested, by using the most relevant attributes identified
in Phase 1. This decision was motivated by the fact that the first preliminary results (of
this second phase) confirmed their relevance was again very low for the subset tested.
On the other hand, we increased the number and sophistication of the classification
algorithms, in order to mitigate analysis tool bias, as might happen when complex
systems are analyzed.

The results observed in this second phase confirmed the observations of phase 1.
They strengthened the hypothesis that the social parameters are very effective
predictors of OSS project success.

Table 6.2 presents the degree of accuracy, True Positives (TP) and False Positives
(FP) of the classification algorithms applied on the second dataset. Accuracy is defined
as the percentage of correctly classified instances, true positives are related to instances
that are correctly classified as a given class and in the same way, false positives are
instances that are falsely classified as a given class. Interestingly enough, source-code
related attributes (complexity and programming language) have again shown to be the
least relevant in the classification (Table 6.3).

The results presented on Table 6.3 draw our attention to the fact that the
programming language was not assigned a significant weight as a success predictor.
Moreover, the values of attributes relevance were smaller then in the first
experiment. This information contradicts results found in other studies [Emanuel 10,
Ghapanchi 14]. After a careful analysis of the results, we concluded that having
merged all the datasets together might have concealed the relevance of language.
Finally, we realized that in our global dataset (20K projects) the number of stars
–the attribute with the greatest weight in the correlation– was biased. This was due

71

Chapter 6: Results and Analysis (II)

Simple Logistic J48 Bagging IBk (K=3) Multilayer
Perceptron Desicion Table

Accuracy 92.56% 96.25% 96.62% 93.72% 92.86% 95.05%
TP Rate Active

Projects 91.00% 98.80% 99.50% 96.00% 93.50% 99.10%

FP Rate Active
Projects 5.90% 6.30% 6.30% 8.60% 7.80% 9.00%

TP Rate Dormant
Projects 94.10% 93.70% 93.70% 91.40% 92.20% 91.00%

FP Rate Dormant
Projects 9.00% 1.20% 0.50% 4.00% 6.50% 0.90%

Table 6.2: Accuracy, true positive (TP) and false positive (FP) for the classification
methods used in phase 2

Attribute Importance
Stars 0.52531051

Subscribers 0.50602662
Forks 0.39342657

Number of contributors 0.35564825
Issues 0.25643352

Has pages 0.01838373
Has downloads 0.00001036

Language 0.00000109
Cyclomatic Complexity 0.00000000

Table 6.3: Importance of attributes

to the way the data is returned by the GitHub API. Even without using any data
sort command, the API always returns first the projects with the larger number of
stars. Since the number of active systems is much higher than that of the dormant
systems and we had acquired the same number of dormant and active projects for
each language, the set of active systems had considerably more stars than the set of
dormant systems. These observations led us to refine the experiments, and in phase
3 we decided to consider the maximum number of projects by stars to ensure that the
results obtained were not biased.

72

6.4 Phase 3: GitHub | 160K projects | 16 languages

6.4 Phase 3: GitHub | 160K projects | 16 languages

When designing the phase 3 of experiments, we were very confident that our
hypothesis would be confirmed. In this final step we collected data from the largest
number of projects as possible from GitHub. This involved including all the projects
available using the languages under consideration, while complying with an inclusion
and exclusion criteria. These criteria were essential to ensure the dataset had no bias.
Below, we describe the criteria used for the phase 3 experiments and in the next section
we will outline the execution, analysis and results of these experiments.

Number of stars: Since GitHub has a free user profile, this repository has many
small academic projects or "hobby-projects". To avoid including such projects in our
experiments, we made use of a significant number of stars (a star shows the user’s
interest or satisfaction with regard to a project). After analysing the relevance of the
number of stars, we found that many of the personal data projects had few stars and so
it was decided not to include projects with less than 15 stars. This value was obtained
after analyzing about 10.000 projects.

Active or dormant projects: Unlike SourceForge, GitHub has no tag to show
if a project is not active. In view of this, as mentioned earlier and based on other
works [Khondhu 13], we decided that if the last modifications of a project had been
made earlier than 2 years before, it should be regarded as being dormant or abandoned
i.e., in our criteria, ’not successful’. The date set for these last experiments was July
3rd, 2015.

Programming language: On the basis of our initial hypotheses, as well as
the studies of other authors (e.g. [Cass 15]), we drew up a list of heterogeneous
programming languages with the necessary characteristics. These are: Java, Python,
C++, C#, PHP, JavaScript, C, Ruby, Assembly, Arduino, R, Shell, Haskel, Ocaml,
Go and Matlab. Since there were similarities in the results, in the next sections we
will single out those that are most relevant by examining some anomalous situations
observed.

Classification models: We employed the same six classification methods used
in Phase 2: Simple Logistics, J48, Bagging, IBk, Decision Table and Multilayer
Perceptron. A brief explanation of each is given in the results section.

73

Chapter 6: Results and Analysis (II)

§§§

We must now take a brief pause and recall that the goal of this second study aims at
identifying which factors are the most relevant as predictors of an OSS project success,
as paradigms of projects possessing high maintainability. These factors are of great
importance during architectural evolution as a lack of attention to them might be the
root cause of project abandonment.

This section analyses the results of Phase 3, which is concerned with validating
the second hypothesis after the experiments have been refined. In the validation
process, different classification models were applied to the same dataset. The analysis
of the results takes note of the strengths and weaknesses of each project attribute.
Since our dataset is very large and the classification methods allow a wide range of
analytical procedures, the results shown here are restricted to the most important sets
of languages. Nonetheless, all the possible situations found in the analysis are covered.

The feasibility of predicting the success of the project was confirmed by carrying
out classification experiments with popular machine learning algorithms in Weka.
This contains a collection of algorithms, as well as preprocessing tools, and allows
users to compare different methods and select the most appropriate for tackling the
problem [Frank 10]. Each instance of the dataset is represented by the set of attributes
(metadata) and its associated class (active or dormant). First we examined the most
important attributes (i.e. the social factors) by means of algorithms used for attribute
evaluation. This involved six different classifiers from different classes, as mentioned
previously: Simple Logistics, J48, Bagging, IBk, Decision Table and Multilayer
Perceptron. The default parameters adopted by Weka were used for all of them.

All the adopted methods employed a cross-validation model, using 10 folds during
the application of the classification. In this approach the method is executed 10 times,
using the proportion of 90% to train the classifier and 10% to test it. In each execution,
different segments are used for training and testing. Cross-validation is regarded as a
highly effective method for automatic model selection [Moore 94]. A more detailed
explanation about how cross-validation works is beyond the scope of this thesis, and
can be found in [Refaeilzadeh 09]. The key factor is that this choice enabled us to

74

6.4 Phase 3: GitHub | 160K projects | 16 languages

obtain more accurate results than other studies that relied on more common methods,
such as the use of only one training set.

When applying the selected methods in Weka, a wide range of information is
produced and provides many opportunities for interpretation as well as for future
research. This information is described below:

Accuracy: Accuracy can be defined as the degree to which a result conforms to
a correct value or standard. In Weka, there are several accuracy measures. Here it
expresses the percentage of correctly classified instances (higher is better).

Precision: Precision is the probability that a retrieved sam+ple is important, when
selected at random.

Recall: Also named ’sensitivity’, reflects the proportion of instances classified as
a given class divided by the actual total in that class. Precision and recall are usually
combined (F-measure). They use the number of true positives, true negatives, false
negatives and false positives in their calculation. In the last section, we showed these
values for phase 2. In phase 3 we prefer to discriminate precision and recall to be more
specific.

F-Measure: Precision and Recall can give different information in a single metric.
If one of them excels the other, for example, the F-measure will reflect it. For that
reason, F-measure can be a better combined metric. It is the weighted harmonic mean
for precision and recall.

ROC: The Receiver Operating Characteristic, also known as the ROC curve, is
a graph that illustrates the performance of a classifier system. This curve traces
the behaviour of the classification rate when there is a variation in the classification
threshold. The normal threshold for two classes is 0.5. If it is above this value, the
algorithm classifies the date in one class, and if below in the other class.

75

Chapter 6: Results and Analysis (II)

Evaluating the Relevance of Attributes

The assessment of the projects’ socio-technical attributes was initially based on an
attribute evaluation algorithm. This type of algorithm is used to define the importance
of each attribute in a dataset. The algorithm named ’Information Gain Attribute
Evaluator’, is available in Weka, and estimates the value of an attribute by measuring
the information gain with respect to the class. Despite being a simple algorithm, it is
very efficient [Karegowda 10] and has been adopted to train the classifiers used in our
approaches.

The tests showed that all the languages included achieved almost the same results.
The most important attributes were: Number of Contributors, Number of Subscribers,
Number of Commits and Project Size, while ’Has Wiki’, ’Has Issues’ and ’Has
Downloads’ are less important as predictors. Table 6.4 shows these results for Python
and Java. It should be noted that as cross-validation is used (with 10 folds), the
algorithm is executed 10 times to show the mean average of the results and a margin
of error.

Java Python
Average Merit Attribute Average Merit Attribute
0.055 +-0.001 Number of subscribers 0.084 +- 0.001 Project size
0.054 +-0.001 Number of contributors 0.080 +- 0.001 Number of contributors
0.046 +-0.001 Number of commits 0.074 +- 0.001 Number of subscribers
0.040 +-0.001 Project size 0.063 +- 0.001 Number of commits
0.030 +-0.000 Number of watchers 0.037 +- 0.001 Number of open issues
0.030 +-0.000 Number of stars 0.032 +- 0.001 Number of forks
0.029 +-0.001 Number of open issues 0.025 +- 0.000 Number of stars
0.022 +-0.001 Number of forks 0.025 +- 0.000 Number of watchers
0.004 +-0.000 Has wiki 0.002 +- 0.000 Has wiki
0.000 +-0.000 Has issues 0.000 +- 0.000 Has downloads
0.000 +-0.000 Has downloads 0.000 +- 0.000 Has issues

Table 6.4: Average Attribute Merit for Java and Python

Although there were slight variations in the results for most of the languages, five of
them, Assembly, R, Ocaml, Arduino and Matlab, had a completely different attribute
evaluation. The observations for Assembly and Matlab can be seen in Table 6.5. When
these results were compared with other languages, we realized that these languages had

76

6.4 Phase 3: GitHub | 160K projects | 16 languages

less than 1000 instances in the dataset, which suggests that this behavior is due to a
lack of projects that are suitable for evaluation.

Assembly Matlab
Average Merit Attribute Average Merit Attribute
0.061 +-0.005 Number of subscribers 0.097 +- 0.009 Number of contributors
0.007 +-0.001 Has issues 0.080 +- 0.004 Number of commits
0.007 +-0.004 Has download 0.014 +- 0.005 Has issues
0.001 +-0.001 Has wiki 0.003 +- 0.001 Has downloads
0.000 +-0.000 Number of watchers 0.022 +- 0.027 Number of open issues
0.006 +-0.017 Forks count 0.004 +- 0.004 Has wiki
0.000 +-0.000 Number of commits 0.000 +- 0.000 Number of forks
0.000 +-0.000 Number of stars 0.000 +- 0.000 Number of watchers
0.000 +-0.000 Number of open issues 0.000 +- 0.000 Number of subscribers
0.005 +-0.016 Number of contributors 0.000 +- 0.000 Number of stars
0.000 +-0.000 Project size 0.000 +- 0.000 Project size

Table 6.5: Average Attribute Merit for Assembly and Matlab

Despite these outliers for lack of representativeness, the average of attribute merits
for all languages still suggests that contributors, subscribers, commits and project size
are the most relevant success predictors. Table 6.6 presents the global average merit of
different project attributes.

Attribute Average Merit
Number of Contributors 0.097
Number of Subscribers 0.085
Number of Commits 0.064

Project Size 0.057
Number of Forks 0.047

Number of Open Issues 0.045
Number of Stars 0.027

Number of Watchers 0.027
Has Wiki 0.003

Has downloads 0.003
Has Issues 0.002

Table 6.6: Global Average of Attributes Merit (all languages)

From an analysis of these results, we can concluded that:

77

Chapter 6: Results and Analysis (II)

1) As the number of contributors increases, the prospect of success also increases.
The reason for this may be that more people are working on the project, keeping it
active or improving the development flow.

2) When the projects have many subscribers it is more likely that the project will
remain active. Subscribers can help by giving feedback when they act as customers or
even forking the repository and fixing bugs when they act as developers.

3) The number of commits is an indicator of development activity. Thus, if there
is a reduction in the frequency of commits, it means that the project is declining or has
become too mature and does not require frequent updates any more. This may lead the
project to a state of dormancy.

4) It is not possible to make precise assumptions about the impact of project size
on the project success, but there are signs that larger projects have a higher chance
of success. Since large-sized projects are usually accompanied by a large number of
contributors, commits and subscribers, it is reasonable to admit that size can have a
indirect influence on the success of the project.

The importance of the attributes is supplied by the Information Gain Attribute
Evaluation. In this way, it is possible to answer the main question which is whether
an OSS project is active or dormant. Thus, the classification methods confirm that it is
possible to classify projects using social factors.

We shall now present the observation results grouped by each the six algorithms
used in the analysis of the about 160 000 OSS projects dataset.

Simple Logistic

Simple logistics is a kind of regression algorithm that fits a multinomial logistic
regression model. In each iteration, it adds one Simple Linear Regression model per
class into the logistic regression model. Logistic regression is a powerful statistical
means of modeling a binomial outcome with single or multiple explanatory variables.
One of the main advantages of this model is that it uses more than one dependent
variable, and also provides a quantified value for the strength of the attributes

78

6.4 Phase 3: GitHub | 160K projects | 16 languages

association. However, a large sample size is needed and the variables must be carefully
defined to ensure precise results. Table 6.7 shows the results of using this algorithm.

This algorithm displays a high degree of accuracy, more than 80% for almost all
the languages. However, when other values were analysed, especially the ROC curve,
there tended to be a considerable number of false positives. This is demonstrated by
the low value obtained in this variable. To illustrate how the ROC curve is generated,
Figure 6.1 shows the ROC curve of the Java and Shell languages. Java has the best
ROC curve while Shell has the worst. Despite this, the accuracy, recall and precision
values of the method are almost the same for both of them.

Accuracy Precision Recall F-Measure ROC Area
Arduino 86.383% 0.746 0.864 0.801 0.5
Assembly 83.815% 0.711 0.838 0.77 0.609

C 78.7993% 0.833 0.788 0.695 0.725
C++ 85.1365% 0.725 0.851 0.783 0.731
C# 84.09% 0.762 0.841 0.771 0.758
Go 92.9765% 0.864 0.93 0.896 0.603

Haskel 86.0899% 0.803 0.861 0.802 0.762
Java 85.0441% 0.873 0.85 0.782 0.744

JavaScript 79.6081% 0.767 0.796 0.711 0.737
Matlab 80.6818% 0.733 0.807 0.753 0.681

Objective-C 73.9748% 0.731 0.74 0.634 0.7
OCaml 87.3377% 0.847 0.873 0.848 0.868

PHP 82.4613% 0.801 0.825 0.752 0.776
Python 81.1082% 0.77 0.811 0.729 0.758

R 89.7616% 0.806 0.898 0.849 0.616
Ruby 73.872% 0.729 0.739 0.726 0.793
Shell 85.7204% 0.854 0.857 0.793 0.678

Table 6.7: Results for Simple Logistic Classifier

J48

J48 decision tree is an open-source implementation available on Weka and has a C4.5
algorithm developed by Ross Quinlan [Quinlan 93]. Both are an evolution from ID3

79

Chapter 6: Results and Analysis (II)

Figure 6.1: ROC curve for Java and Shell where: a) Java Dormants b) Java Actives c)
Shell Dormants d) Shell Actives

(Iterative Dichotomiser 3) and adopt a "divide and conquer" approach to growing
decision trees [Bhargava 13]. J48 is a classification algorithm where the division
criterion is based on the standardized measure of lost information when a set A is
used to approximate B, designated as ’information gain’. The attribute used to divide
the set is the highest value of the information gain. The results for J48 are shown in
Table 6.8.

This classifier behaved in a similar way to the Simple Logistics with regard to the
ROC area. However, the J48 has a very poor performance when the dataset is too
small, a behavior typical of tree-based algorithms. What happens is that even with
high accuracy ratings, these languages will show a lot of false positives, and sharply
reduce the area under the ROC curve. The results for Matlab, for example were under
0.5, which makes it completely random (thus unusable) for this subset.

80

6.4 Phase 3: GitHub | 160K projects | 16 languages

Accuracy Precision Recall F-Measure ROC Area
Arduino 86.383% 0.746 0.864 0.801 0.47
Assembly 84.3931% 0.712 0.844 0.773 0.51

C 79.2304% 0.761 0.792 0.765 0.712
C++ 85.0065% 0.816 0.85 0.822 0.724
C# 84.153% 0.803 0.842 0.807 0.683
Go 92.4532% 0.891 0.925 0.901 0.602

Haskel 84.2239% 0.804 0.842 0.817 0.673
Java 85.8494% 0.829 0.858 0.826 0.726

JavaScript 80.9102% 0.779 0.809 0.774 0.739
Matlab 80.6818% 0.715 0.807 0.745 0.486

Objective-C 75.7064% 0.728 0.757 0.721 0.687
OCaml 85.3896% 0.824 0.854 0.834 0.606

PHP 85.1546% 0.834 0.852 0.835 0.774
Python 82.7038% 0.803 0.827 0.806 0.757

R 88.6396% 0.805 0.886 0.844 0.519
Ruby 76.5827% 0.76 0.766 0.76 0.793
Shell 86.5916% 0.84 0.866 0.84 0.676

Table 6.8: Results for J48 Classifier

Bagging

Bagging (Bootstrap Aggregating), creates separate samples of training datasets and
classifies each sample, by combining them by average or voting2. Each trained
classifier addresses the problem from a different perspective, and this increases the
accuracy of the results. The advantage of Bagging is that it reduces variance and
avoids overfitting3. The results for Bagging are shown in Table 6.9. One of the main
advantages of bagging is its capacity of handling small datasets sets. Another factor is
that this algorithm is less sensitive to noise or outliers.

The results for the Bagging classifier are very similar to J48, but in this case no
language has a ROC area equal to, or below, a random guess of the threshold. It

2Voting is a well-known aggregation procedure for combining opinions of voters in order to
determine a consensus, an agreement on a given issue, within a given time frame.

3It occurs when the data model fits too closely to the statistical model and causes deviations,
normally due to undesirable consideration of measurement errors

81

Chapter 6: Results and Analysis (II)

Accuracy Precision Recall F-Measure ROC Area
Arduino 85.9574% 0.746 0.86 0.799 0.548
Assembly 83.237% 0.711 0.832 0.767 0.504

C 80.6208% 0.78 0.806 0.779 0.784
C++ 85.9428% 0.83 0.859 0.828 0.796
C# 84.5313% 0.809 0.845 0.809 0.759
Go 93.057% 0.908 0.931 0.908 0.826

Haskel 85.6658% 0.809 0.857 0.816 0.775
Java 85.99% 0.832 0.86 0.828 0.787

JavaScript 81.2451% 0.786 0.812 0.786 0.786
Matlab 82.9545% 0.795 0.83 0.775 0.698

Objective-C 75.2326% 0.723 0.752 0.722 0.718
OCaml 87.6623% 0.853 0.877 0.854 0.828

PHP 86.2113% 0.848 0.862 0.844 0.854
Python 83.7947% 0.818 0.838 0.815 0.811

R 89.3408% 0.805 0.893 0.847 0.682
Ruby 78.2033% 0.777 0.782 0.777 0.845
Shell 86.7828% 0.843 0.868 0.839 0.763

Table 6.9: Results for Bagging Classifier

must be noted that there has been a great improvement in the classification of Matlab
repositories, from 0.486 to 0.698 (regarding the ROC Area).

IBk

The IBk (Instance Based KNN) is a Weka implementation of the K-Nearest Neighbour
Algorithm. IBk generates a prediction for a just-in-time test instance which differs
from other algorithms which build a prediction model. The IBk algorithm uses
a distance measure that relies on k-close instances to predict a class for a new
instance. In this way, it computes similarities between the selected instance and
training instances to make a decision. The use of cross validation allows this algorithm
to select appropriate values of k. Table 6.10 shows the results for this method.

These results were less satisfactory than all the previous methods. There was a
marked increase in the randomness of the results, since all the ROC areas are close to

82

6.4 Phase 3: GitHub | 160K projects | 16 languages

Accuracy Precision Recall F-Measure ROC Area
Arduino 74.4681% 0.757 0.745 0.751 0.514
Assembly 75.1445% 0.755 0.751 0.753 0.575

C 72.6342% 0.725 0.726 0.726 0.588
C++ 79.0897% 0.788 0.791 0.79 0.581
C# 78.5624% 0.781 0.786 0.783 0.59
Go 88.2069% 0.881 0.882 0.882 0.535

Haskel 81.4249% 0.811 0.814 0.813 0.597
Java 78.1989% 0.781 0.782 0.782 0.571

JavaScript 73.38% 0.731 0.734 0.733 0.587
Matlab 71.5909% 0.749 0.716 0.731 0.539

Objective-C 66.928% 0.67 0.669 0.67 0.576
OCaml 81.4935% 0.797 0.815 0.805 0.549

PHP 82.5709% 0.822 0.826 0.824 0.684
Python 75.0166% 0.749 0.75 0.75 0.591

R 82.0477% 0.833 0.82 0.826 0.568
Ruby 69.5057% 0.694 0.695 0.694 0.661
Shell 77.9006% 0.773 0.779 0.776 0.535

Table 6.10: Results for IBk Classifier

50%. In Ruby, which had featured prominently in other methods, there was a decline
in performance for true positives, although it offers a very low value for false positives.

Decision Table

The Decision Table has two main components: a schema and a body. The Schema is a
set of features and the body consists of labeled instances defined by the features in the
schema [Kohavi 95]. When applied to unlabeled instances, the classifier searches the
decision table using the features in the schema to find out in which class the instance
will be classified. Table 6.11 shows the results for this classifier.

Again, for languages with few instances, this classifier (tree-based) obtained low
values for the ROC area. the ’Go’ language provides a very high degree of Accuracy,
but apart from the high TP, it’s FP is still too high, which means that such high rate of
Accuracy does not necessarily imply it is a good classification.

83

Chapter 6: Results and Analysis (II)

Accuracy Precision Recall F-Measure ROC Area
Arduino 86.383% 0.746 0.864 0.801 0.473
Assembly 84.3931% 0.712 0.844 0.773 0.47

C 80.3406% 0.774 0.803 0.766 0.748
C++ 85.6177% 0.823 0.856 0.819 0.741
C# 84.0479% 0.793 0.84 0.794 0.739
Go 92.9765% 0.9 0.93 0.897 0.744

Haskel 86.0051% 0.821 0.86 0.826 0.715
Java 85.7216% 0.826 0.857 0.82 0.737

JavaScript 81.094% 0.783 0.811 0.773 0.757
Matlab 81.8182% 0.678 0.818 0.741 0.506

Objective-C 75.5686% 0.726 0.756 0.717 0.71
OCaml 86.3636% 0.751 0.864 0.803 0.546

PHP 84.2461% 0.82 0.842 0.817 0.796
Python 83.6061% 0.816 0.836 0.806 0.769

R 89.7616% 0.806 0.898 0.849 0.486
Ruby 71.2021% 0.714 0.712 0.713 0.768
Shell 86.7191% 0.842 0.867 0.841 0.686

Table 6.11: Results for Decision Table Classifier

Multilayer Perceptron

Multilayer Perceptron is an artificial neural network model that use layers between
input and output and creates feedback flows between them. It is a logistic classifier
that uses a non-linear transformation that has been learnt, by projecting input date into
a space where it becomes linearly separable. It is known as a supervised network
because it requires a desired output in order to the neural network learn. The results
for Multilayer Perceptron are shown in Table 6.12.

In the case of this classifier, only Ruby obtained a satisfactory result. Despite it
obtained an Accuracy value of 76% it was the only language where the value of TP
was high, different from the others, and higher than FP by obtaining and as a result
obtained a high ROC area, of approximately 0.81.

84

6.5 Discussion of the Results

Accuracy Precision Recall F-Measure ROC Area
Arduino 86.383% 0.746 0.864 0.801 0.617
Assembly 84.3931% 0.712 0.844 0.773 0.553

C 78.7778% 0.751 0.788 0.697 0.681
C++ 85.1365% 0.725 0.851 0.783 0.682
C# 84.195% 0.709 0.842 0.77 0.708
Go 92.9765% 0.864 0.93 0.896 0.612

Haskel 86.0899% 0.789 0.861 0.799 0.733
Java 85.0377% 0.723 0.85 0.782 0.7

JavaScript 79.4293% 0.728 0.794 0.705 0.709
Matlab 81.25% 0.742 0.813 0.757 0.668

Objective-C 73.7767% 0.68 0.738 0.632 0.652
OCaml 85.3896% 0.75 0.854 0.799 0.739

PHP 82.2165% 0.768 0.822 0.744 0.739
Python 80.9655% 0.713 0.81 0.727 0.711

R 89.6213% 0.806 0.896 0.848 0.644
Ruby 76.7576% 0.763 0.768 0.755 0.815
Shell 85.6354% 0.805 0.856 0.79 0.632

Table 6.12: Results for Multilayer Perceptron Classifier

6.5 Discussion of the Results

The main objective in this second phase of our study was to determine which project
attributes are most important to determine the success of an OSS project, with a focus
on its social dimension. The first results showed it is possible to identify a certain
pattern of significance for languages with more than 1000 projects. The attribute
evaluation singled out four attributes as being important: number of contributors,
number of subscribers, number of commits and size of the project. Most of the
classifiers had a rate of accuracy higher than 80% for these projects with acceptable
values in the ROC area, of more than 0.5. This shows that it is possible to predict if
a project will remain active or becomes dormant in a time-span of two years on the
basis of the created classification model. In the case of a few languages, for which had
less than 1000 projects, the attribute evaluation was more random, due to the reduced
number of samples. The tree-based algorithms were the worst of these cases. They
produced very random results, with ROC area values close to 0.5.

85

Chapter 6: Results and Analysis (II)

When the classifiers were compared, IBk had the worst results, since its
classification results were very close to random guess and had a relatively low rate
of accuracy. On the other hand, Bagging showed the best results of all of them. It had
acceptable results even for the smallest datasets. It should be noted that the comparison
between two classifiers should not only be estimated in terms of accuracy. For instance,
one classifier may be better than another when it obtains a high ROC area value but
lower accuracy values, which makes it more realistic and reliable. Low ROC area
value indicates randomness for the classifier and may lead to high accuracy, especially
with short-term databases.

The use of data mining techniques to validate software engineering hypotheses
about the success of software is addressed in many studies. In [Ramaswamy 12]
several clustering algorithms are applied on a set of projects to predict success based on
a count of defects. Their findings indicate that K-means algorithms are more efficient
than other clustering techniques in terms of processing time, efficiency and reasonable
scalability. Similarly, in [Wang 07] it is shown that the success of an OSS project can
be predicted by just considering its first 9 month development data with a K-Means
clustering predictor at a relatively high rate of confidence.

There are other studies where the authors apply concepts of machine learning to
predict how healthy a project is at a given moment of time. In [Piggot 13], the authors
claim they used machine learning to create models that can determine with reasonable
accuracy the stage a software project has reached. When designing this model they
took into account time-invariant variables such as type of license, the operating system
the software runs on, and the programming language in which the source code is
written. They also included time-variant variables such as project activity (number of
files, bug fixes and patch releases), user activity (number of downloads) and developer
activity (number of developers per project). The authors validated their model using
two performance measures: the success rate for classifying an OSS project in its exact
stage and the success rate when classifying a project in an immediately lower or higher
stage than its actual one. In all the cases, they obtained an accuracy of above 70%
with a “one way” classification (a classification which differs by one) and about 40%
accuracy with an exact classification.

Along this line of using concepts from machine learning4, our extensive set of
4It should be stressed that this study is not undertaken in the field of Artificial Intelligence (AI) or

86

6.6 Summary

experiments and techniques were very satisfactory. Classification models confirmed
that social factors are effectively good predictors of OSS projects’ success and it was
possible to identify the six more relevant social attributes: number of contributors,
number of subscribers, number of commits, project size, number of forks, and number
of open issues.

The validity of these observations is constrained basically by the nature of projects,
specifically whether they are OSS or commercial/closed source. The fact that we have
used only OSS repositories constrains the validity of the results to OSS projects. It is
not possible to generalize these conclusions to commercial software, as the voluntary
nature of OSS contributions seems to have a determinant impact on the observations.
This constraint is an interesting research topic that should be addressed in future
studies. In what concerns the validity of data, we think that the large number of projects
analyzed, the different programming languages targeted, and the adoption of several
different techniques and models safeguard the validity of these results. Finally we
should not forget that the circa 160.000 projects analyzed were extracted from gitHub,
not SourceForge neither any other repository. This creates a significant dependence
on the validity/applicability of these results, but due to the significant share of gitHub
projects in the contemporary OSS landscape (section 5.2), we think this is clearly a
minor threat to the validity of the results.

6.6 Summary

After observing in the first part of this study, that there is relevant
maintainability-related information at the source-code that is not present at the
more abstract architectural level (e.g. readability, adherence to code-conventions,
documentation), we then turned our attention to the social dimension of software
structure, and its impact on maintainability. Thus, in this second part of our study we
focused on identifying the long-term OSS success predictors, so that light can be shed
on the social factors that promote highly maintainable software.

Data Mining. Our aim on using different classifiers was to strengthen our confidence in the results and
avoid classifier bias, it was not to compare mining algorithms or models created by them.

87

Chapter 6: Results and Analysis (II)

Our second hypothesis was that ’social factors play a significant role in the
success (longevity) of OSS projects’. Many decisions had to be made on the basis
of well-controlled experiments to validate this hypothesis. These decisions range from
the tools used for the extraction of the source-code metrics, from which OSS project
repositories should we extract the information, and which programming languages
should be selected, among others.

GitHub proved to be the best repository for the validation of this hypothesis.
Among the reasons mentioned previously, we highlight the fact that it logs many
social attributes and is on the rise in the market and academic world. Hence, the
experiments started by analysing 20 projects from SourceForge and GitHub, then went
through about 20,000 GitHub projects, and the last experiment collected data from
about 160,000 OSS projects in different programming languages.

Although at the end of phase 2 we were very confident that our hypothesis
was valid, the experiments performed in phase 3 served to further consolidate our
assumptions and do some corrections. Thus, we collected data from projects of
seventeen different languages. Then we applied an attribute selection algorithm in
order to identify the most relevant attributes. Finally, six classifications algorithm
were used in order to identify whether it was possible to classify projects in active or
dormant based on these attributes. Moreover, using these models, it was possible to
correctly classify such projects with an accuracy of more than 80% and an average
high value for ROC area.

The results of these experiments were very satisfactory. Classification models
confirmed that social factors are effectively good predictors of OSS projects’ success
and it was possible to identify the six more relevant social attributes: number of
contributors, number of subscribers, number of commits, project size, number of forks,
and number of open issues.

88

Chapter 7

Conclusions and future work

7.1 Scope and constraints

In this thesis we addressed the elusive nature of maintainability and we observed
how this quality attribute is a multidimensional entity. On one hand, it has a solid
structural dimension, promoted by the modularity of the components that make up a
software system. On the other hand, it is also dependent on the human capacity to
understand and modify existing source-code. While this later dimension is seldom
addressed by software systems’ researchers, it is the daily struggle of software
professionals. Last but not least, the empiricism of Conway’s Law, now a research
topic on its own as the ’Mirroring Hypothesis’, is starting to shed light on the
correlation between architectural software structures with those of the organizations
that build them. This third ’social’ dimension has also been addressed in this thesis,
under the assumption that long-term successful OSS projects are implicitly associated
with software possessing high levels of maintainability. Thus, at least on what
OSS projects are concerned, the nature of maintainability cannot be fully understood
without considering both its structural (technical) dimension, as well as its human
and social dimensions. This is the rationale behind our view of maintainability as a
socio-technical property of software, which was a direct result of the research path
followed along this thesis.

89

Chapter 7: Conclusions and future work

7.2 Research summary

In the first part of this thesis our goal was to understand whether it would be possible
to quantify maintainability at an architectural level. This involved validating our
first hypothesis, which stated that source-code based metrics can be adapted to more
abstract metrics and applied to assess maintainability at architectural level.

This lead us to look for a mapping of source-code metrics related to maintainability
into equivalent architectural metrics. This endeavour seemed feasible, as source-code
is the ultimate reference of software-systems related information. Its architectural
description, while more abstract, has necessarily to reflect the source-code structures
and dimensions (e.g. complexity, cohesion, coupling).

After proposing a framework to classify software architecture tools in order
to be able to map source-code maintainability into the more abstract architectural
representation of software (Contribution (i)), we used this framework to compare
state-of-art tools, in order to understand how is maintainability addressed by them.

Further, we proposed and assessed a mapping between an architectural description
using the COSMIC standard notation and the corresponding source-code originated
UML description in order to assess whether it would be possible to extract
a meaningful maintainability index from a standardized software architectural
description (Contribution (ii)).

Our observations contradicted a common held assumption (Contribution (iii)):
while abstract models extracted from source code do reflect code structure, (both
at component and interconnection levels) it became evident along our research that
the abstraction process applied to source-code lead to a loss of information with
meaningful impact on assessing the maintainability of software. It might be enough
to refer that e.g. comments and the adherence to code-conventions are missing
in architectural descriptions (and so should be). Thus, on what maintainability
is concerned, the advantages of abstraction are achieved at the loss of ’low-level’
information that is actually needed to fully characterize this software property.

Faced with the understanding that it would not be possible to fully describe this
quality attribute only at an abstract architectural level, the end-goal of providing the

90

7.2 Research summary

system architect with a set of tools and recommendations to help her evolve long-term
software while preserving maintainability for further evolution, directed us to explore
the impact that the social dimension of software development might have on the
maintenance capability. This goal was embedded in the second hypothesis explored
in this thesis, Social factors play a significant role in the success (longevity) of OSS
projects.

Thus, in the second part of this thesis we started with a reasonable assumption:
that long-term successful projects do need to posses high maintainability properties.
This was our axiom, whose demonstration is out-of-scope of this thesis, a topic to be
addressed by further research, that served as the foundation to search for predictors
of long-term software success. The rationale behind this further research line was
that if maintainability has a social dimension, and long-lasting successful projects
are characterized by high maintainability, it is of utmost importance to the software
architect to understand this dimension so that it can serve as input when evolving a
system so that it maintains or improves its maintainability level.

Due to the many factors involved in what characterizes a ’software project success’
we tried to be as comprehensive as possible, and performed an extensive study on
about 160 000 OSS projects. The use of OSS was a research constraint as we had no
other feasible alternative to access such a large number of software projects.

After this extensive study, presented in chapter 6, we concluded that in fact a few
’social’ variables (number of contributors, number of subscribers, number of commits,
number of forks, number of open issues) were highly correlated with software success
(Contribution (iv)). Our conclusions can be informally synthesized as ’lively projects
tend to last longer’. Whether this is a cause or a consequence is irrelevant as there is
an obvious feedback loop at play: lively projects tend to last longer, and long-lasting
projects require a active community to move it forward. On what maintainability is
concerned the same feedback loop applies: hard to maintain projects do not attract
contributors, and a software system with low community involvement does not benefit
from the motivation, neither has the resources to promote an easy to maintain system.

It is meaningful that, from a very different perspective, this same observation
also holds: it is well known that long-lasting software projects (both OSS and
proprietary), that undergoes successive updates, either to correct defects or add new

91

Chapter 7: Conclusions and future work

functionality tend to become brittle, harder and harder to maintain. Indeed, we can
observe a significant decrease on the number of ’activity’ and people involved during
maintenance, when compared with the development phase.

While these social indicators should not be taken at face value, e.g. it seems
unreasonable to enforce meaningless commits to promote maintainability, as it would
be unreasonable to nano-decompose a module with the same goal, if used wisely
they can actually serve as maintainability indicators and guide software architects
–and project managers– to promote maintainability-inducing best practices. However,
while structural properties can be directly measured and –to some extend– enforced,
the same can not happen with its social dimension. We would say that a project
’successfulness’ predictor should account for both structural and social metrics: on
one had the modularity, on the other hand the liveness of its community. If a decrease
in activity is perceived, it can be balanced with an increase in structural modularity in
order to facilitate the interest of new contributors; on the other hand a reduction on the
structural maintainability properties should be addressed by requesting contributors to
apply their effort into re-factoring and/or documenting the software so that it improves
its ’attractiveness’ to current and new contributors.

We want to believe that the present research is a minor, but relevant step in
the perception that maintainability, a paradigmatic ’evolution’ quality attribute –as
opposed to ’execution’ quality attributes such as security and performance– can only
be fully addressed by considering its multidimensional nature.

We do believe that researchers and practitioners alike have been struggling with
the elusive nature of maintainability because it is being addressed either as a people
issue (readability, understandability) or as a structural (modularity, complexity) system
property. After this study we conclude it is both, and more, there is also a significant
social dimension on it, to be fully grasped.

This is one of the major contributions of this thesis, providing evidence that
contradict a widespread assumption of the software architecture community: that
maintainability –a quality attribute– can be fully described solely at the architectural
level.

The second major contribution, a much less hard-based fact as its common in the
social sciences, is to highlight the importance that ’soft’ social factors can have on

92

7.3 Future work

assuring the environment that fosters maintainability. In the end, what practitioners
and researches are looking for, are guidelines to identify and monitor the right set of
parameters that impact maintainability, irrespective of where they come from. We do
believe that our work brought a sound, quantified, contribution to the consideration of
maintainability in its multiple dimensions.

7.3 Future work

As part of the research team at Universidade da Pararíba, the candidate keeps working
on the topics addressed in this thesis along three complementary research lines:

Coverage of non-OSS projects – as referred above, an immediate follow-up of
this research is extending the results for non-OSS projects. It is questionable to state
that these results can be extended to commercial and/or proprietary software even if
a growing number of companies are using OSS-like software development models.
As long as the voluntary nature of OSS is practiced in such contexts, we think these
results might be applicable. However, most commercial software have an implicit
structure in place that enforces authority and hierarchy as the management paradigm.
Thus, while we cannot exclude a-priori that the same observations apply to commercial
software, more research inside one or more large software organizations are be needed
to conclude sensibly such hypothesis. Having a software factory integrated in the
Federal University of Paraíba will provide us with the subjects to initiate such study.

Processualization of Software Evolution – since the work performed along this
thesis lead us to understand that socio-technical factors have a considerable impact
in maintainability, it should be possible to consolidate such insights into processes
supporting architectural and managerial improvements during project evolution.
However, we still need to make a more extensive study on how the emergent rules and
indicators will be shown to architects and project managers. We will study whether
ontology-based semantic annotations can be used as a means of creating flexible, and
yet standardized, representations for architectural description languages, as well as
supporting BPMN descriptions.

93

Chapter 7: Conclusions and future work

Validation support – the work performed along this thesis also open up new
perspectives for validation metrics. Currently our team is designing a tool,
ArchEntropy, that can support the activities of the software architect. Its main objective
is to use the classification model devised earlier to allow an assessment and refinement
of the project design in a semi-automatic fashion. This can expose irregularities and
pinpoint improvements to be made.

7.4 Concluding statement

Maintainability is only one of the four software evolution qualities, along with
testability, extensibility and scalability. Our work has just begun.

94

Bibliography

[Aagedal 02] Jan Aagedal. Summary of IEEE 1471. SINTEF Journal of
Telecom and Informatics, 2002.

[Abreu 00] Fernando Brito e Abreu, Gonçalo Pereira & Pedro Sousa. A
Coupling-Guided Cluster Analysis Approach to Reengineer the
Modularity of Object-Oriented Systems. In Proceedings of
the Conference on Software Maintenance and Reengineering,
CSMR ’00, pages 13–22, Washington, DC, USA, 2000. IEEE
Computer Society.

[Al-Ajlan 09] A. Al-Ajlan. The Evolution of Open Source Software Using
Eclipse Metrics. In New Trends in Information and Service
Science, 2009. NISS ’09. International Conference on, pages
211–218, June 2009.

[Al Dallal 11] Jehad Al Dallal. Improving Object-oriented Lack-of-cohesion
Metric by Excluding Special Methods. In Proceedings of the
10th WSEAS International Conference on Software Engineering,
Parallel and Distributed Systems, SEPADS’11, pages 124–129,
Stevens Point, Wisconsin, USA, 2011. World Scientific and
Engineering Academy and Society (WSEAS).

[Al Dallal 12] Jehad Al Dallal & Lionel C. Briand. A Precise Method-Method
Interaction-Based Cohesion Metric for Object-Oriented Classes.
ACM Trans. Softw. Eng. Methodol., vol. 21, no. 2, pages
8:1–8:34, March 2012.

95

BIBLIOGRAPHY

[Al-Hudhud 15] Ghada Al-Hudhud. Aspect oriented design for team learning
management system. Computers in Human Behavior, vol. 51,
Part B, pages 627 – 631, 2015. Computing for Human Learning,
Behaviour and Collaboration in the Social and Mobile Networks
Era.

[Aleti 09] Aldeida Aleti, Stefan Bjornander, Lars Grunske & Indika
Meedeniya. ArcheOpterix: An extendable tool for architecture
optimization of AADL models. In Model-Based Methodologies
for Pervasive and Embedded Software, 2009. MOMPES’09.
ICSE Workshop on, pages 61–71. IEEE, 2009.

[Andersson 01] Jonas Andersson & Pontus Johnson. Architectural Integration
Styles for Large-Scale Enterprise Software Systems. In
Proceedings of the 5th IEEE International Conference on
Enterprise Distributed Object Computing, page 224. IEEE
Computer Society, 2001.

[Anjos 11] Eudisley Anjos & Mário Zenha-Rela. A Framework for
Classifying and Comparing Software Architecture Tools for
Quality Evaluation. In Beniamino Murgante, Osvaldo Gervasi,
Andrés Iglesias, David Taniar & BernadyO. Apduhan, editeurs,
Computational Science and Its Applications - ICCSA 2011,
volume 6786 of Lecture Notes in Computer Science, pages
270–282. Springer Berlin Heidelberg, 2011.

[Anjos 12a] Eudisley Anjos, Ruan Gomes & Mário Zenha-Rela. Assessing
Maintainability Metrics in Software Architectures Using
COSMIC and UML. In Beniamino Murgante, Osvaldo Gervasi,
Sanjay Misra, Nadia Nedjah, AnaMariaA.C. Rocha, David
Taniar & BernadyO. Apduhan, editeurs, Computational Science
and Its Applications - ICCSA 2012, volume 7336 of Lecture
Notes in Computer Science, pages 132–146. Springer Berlin
Heidelberg, 2012.

[Anjos 12b] Eudisley Anjos, Ruan Gomes & Mário Zenha-Rela.
Maintainability Metrics in System Designs: a case study

96

BIBLIOGRAPHY

using COSMIC and UML. In International Journal of Computer
Science and Software Technology, volume 5 of Lecture Notes in
Computer Science, pages 91–100. International Science Press,
2012.

[Anjos 13] Eudisley Anjos, Fernando Castor & Mário Zenha-Rela.
Comparing Software Architecture Descriptions and Raw
Source-Code: A Statistical Analysis of Maintainability Metrics.
In Murgante et al., editeur, Computational Science and Its
Applications, ICCSA 2013, volume 7973 of Lecture Notes in
Computer Science, pages 199–213. Springer Berlin Heidelberg,
2013.

[Anjos 14] Eudisley Anjos, Francielly Grigorio, Daniel Brito & Mário
Zenha-Rela. On Systems Project Abandonment: An Analysis
of Complexity During Development and Evolution of FLOSS
Systems. In ICAST 2014, 6TH IEEE International Conference on
Adaptive Science and Technology, Covenant University, Nigeria,
29 âĂŞ 31 October 2014, Nigeria, 2014.

[Anjos 15] Eudisley Anjos, PabloAnderson de L. Lima, Gustavo da C. C.
Franco Fraga & DanielleRousyD. da Silva. Systematic Mapping
Studies in Modularity in IT Courses. In Osvaldo Gervasi,
Beniamino Murgante, Sanjay Misra, Marina L. Gavrilova, Ana
Maria Alves Coutinho Rocha, Carmelo Torre, David Taniar &
Bernady O. Apduhan, editeurs, Computational Science and Its
Applications – ICCSA 2015, volume 9159 of Lecture Notes
in Computer Science, pages 132–146. Springer International
Publishing, 2015.

[Anjos 16] Eudisley Anjos, Jansepetrus Brasileiro, Danielle Silva &
Mário Zenha-Rela. Using Classification Methods to Reinforce
the Impact of Social Factors on Software Success. In
16th International Conference on Computational Science and
Its Applications, ICCSA 2016, pages 187 – 200. Springer
International Publishing, 2016.

97

BIBLIOGRAPHY

[Antoniol 98] G. Antoniol, R. Fiutem & L. Cristoforetti. Using metrics to
identify design patterns in object-oriented software. In Software
Metrics Symposium, 1998. Metrics 1998. Proceedings. Fifth
International, pages 23–34, Nov 1998.

[Aquilani 01] Federica Aquilani, Simonetta Balsamo & Paola Inverardi.
Performance analysis at the software architectural design level.
Performance Evaluation, vol. 45, no. 2-3, pages 147–178, July
2001.

[Avizienis 04] A. Avizienis, J.-C. Laprie, B. Randell & C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing.
Dependable and Secure Computing, IEEE Transactions on,
vol. 1, no. 1, pages 11 – 33, jan.-march 2004.

[Babar 04] Muhammad Ali Babar & Ian Gorton. Comparison of
Scenario-Based Software Architecture Evaluation Methods. In
Proceedings of the 11th Asia-Pacific Software Engineering
Conference, APSEC ’04, pages 600–607, Washington, DC, USA,
2004. IEEE Computer Society.

[Baldwin 15] Carliss Baldwin. Modularity and organizations, pages 718–723.
In International Encyclopedia of the Social & Behavioral
Sciences, Amsterdam - Elsevier, 2st edition, 2015.

[Barbacci 95] Mario Barbacci, Mark Klein, Thomas Longstaff & Charles
Weinstock. Quality Attributes: Technical Report. Rapport
technique, Carnegie Mellon University, 1995.

[Barbacci 98] Mario R Barbacci, Mario R Barbacci, S. Jeromy Carriere,
S. Jeromy Carriere, Peter H Feiler, Peter H Feiler, Rick Kazman,
Rick Kazman, Mark H Klein, Mark H Klein, Howard F Lipson,
Howard F Lipson, Thomas A Longstaff, Thomas A Longstaff,
Charles B Weinstock & Charles B Weinstock. Steps in an
Architecture Tradeoff Analysis Method: Quality Attribute Models
and Analysis. Software Engineering Institute, Carnegie Mellon
University, pages 219—230, 1998.

98

BIBLIOGRAPHY

[Bass 98] Len Bass, Paul Clements & Rick Kazman. Software architecture
in practice. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998.

[Bass 03] Len Bass, Paul Clements & Rick Kazman. Software architecture
in practice. Addison-Wesley Professional, 2 edition, apr 2003.

[Benaroch 13] Michel Benaroch. Primary Drivers of Software Maintenance
Cost Studied Using Longitudinal Data. In Proceedings of the
International Conference on Information Systems, ICIS 2013,
Milano, Italy, December 15-18, 2013, 2013.

[Bengtsson 98] Perolof Bengtsson. Towards Maintainability Metrics on Software
Architecture: An Adaptation of Object-Oriented Metrics. In First
Nordic Workshop on Software Architecture (NOSA’98), 1998.

[Bennett 00] Keith H. Bennett & Václav T. Rajlich. Software Maintenance
and Evolution: A Roadmap. In Proceedings of the Conference
on The Future of Software Engineering, ICSE ’00, pages 73–87,
New York, NY, USA, 2000. ACM.

[Bensoussan 09] Alain Bensoussan, Radha Mookerjee, Vijay Mookerjee & Wei T.
Yue. Maintaining Diagnostic Knowledge-Based Systems: A
Control-Theoretic Approach. Manage. Sci., vol. 55, pages
294–310, February 2009.

[Bertolino 13] Antonia Bertolino, Paola Inverardi & Henry Muccini. Software
architecture-based analysis and testing: a look into achievements
and future challenges. Computing, vol. 95, no. 8, pages 633–648,
2013.

[Bhargava 13] Neeraj Bhargava, Girja Sharma, Ritu Bhargava & Manish
Mathuria. Decision Tree Analysis on J48 Algorithm for
Data Mining. International Journal f Advanced Research in
Computer Science and Software Engineering, vol. 3, no. 6, pages
1114–1119, June 2013.

[Bieman 95] James M. Bieman & Byung-Kyoo Kang. Cohesion and Reuse
in an Object-oriented System. In Proceedings of the 1995

99

BIBLIOGRAPHY

Symposium on Software Reusability, SSR ’95, pages 259–262,
New York, NY, USA, 1995. ACM.

[Board 90] IEEE Standards Board. IEEE Standard Glossary of Software
Engineering Terminology, IEEE Std 610.12-1990, 1990.

[Bosch 00] J. Bosch. Design and use of software architectures; adopting and
evolving a product-line approach. Addison-Wesley Professional,
2000.

[Bosch 01] Jan Bosch & PerOlof Bengtsson. Assessing Optimal Software
Architecture Maintainability. In Pedro Sousa & JÃijrgen Ebert,
editeurs, CSMR, pages 168–175. IEEE Computer Society, 2001.

[Briand 98] LionelC. Briand, JohnW. Daly & JÃijrgen WÃijst. A Unified
Framework for Cohesion Measurement in Object-Oriented
Systems. Empirical Software Engineering, vol. 3, no. 1, pages
65–117, 1998.

[Briand 01] Lionel C. Briand, Christian Bunse & John W. Daly. A
Controlled Experiment for Evaluating Quality Guidelines on the
Maintainability of Object-Oriented Designs. IEEE Trans. Softw.
Eng., vol. 27, no. 6, pages 513–530, June 2001.

[Brooks 87] Frederick P. Brooks Jr. No Silver Bullet Essence and Accidents
of Software Engineering. Computer, vol. 20, pages 10–19, April
1987.

[Buchmann 11] I. Buchmann, S. Frischbier & D. Putz. Towards an Estimation
Model for Software Maintenance Costs. In Software Maintenance
and Reengineering (CSMR), 2011 15th European Conference on,
pages 313–316, March 2011.

[Canfora 95] Gerardo Canfora, , Gerardo Canfora & Aniello Cimitile. Software
Maintenance. In In Proc. 7th Int. Conf. Software Engineering and
Knowledge Engineering, pages 478–486, 1995.

100

BIBLIOGRAPHY

[Card 86] D N Card, V E Church & W W Agresti. An Empirical Study
of Software Design Practices. IEEE Trans. Softw. Eng., vol. 12,
no. 2, pages 264–271, February 1986.

[Cass 15] Stephen Cass. The 2015 Top Ten Programming Languages, July
2015. Accessed: 2015-09-09.

[Chae 00] Heung Seok Chae, Yong Rae Kwon & Doo-Hwan Bae. A
Cohesion Measure for Object-oriented Classes. Softw. Pract.
Exper., vol. 30, no. 12, pages 1405–1431, October 2000.

[Chae 04] Heung Seok Chae, Yong Rae Kwon & Doo Hwan Bae. Improving
cohesion metrics for classes by considering dependent instance
variables. Software Engineering, IEEE Transactions on, vol. 30,
no. 11, pages 826–832, Nov 2004.

[Chapin 01] Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil
& Wui gee Tan. Types of software evolution and software
maintenance. Journal of Software Maintenance and Evolution:
Research and Practice, vol. 13, pages 3–30, 2001.

[Clements 01] Paul Clements, Rick Kazman & Mark Klein. Evaluating software
architectures: Methods and case studies. Addison-Wesley
Professional, November 2001.

[Colfer 16] Lyra J. Colfer & Carliss Y. Baldwin. The Mirroring Hypothesis:
Theory, Evidence and Exceptions. Harvard Business School
Finance Working Paper No. 16-124, May 2016.

[Colomo-Palacios 14] Ricardo Colomo-Palacios. Agile estimation techniques and
innovative approaches to software process improvement. IGI
Global, Hershey, PA, USA, 1st edition, 2014.

[del Rosso 06] Cristian del Rosso. Continuous evolution through software
architecture evaluation: a case study. Journal of Software
Maintenance and Evolution: Research and Practice, vol. 18, no. 5,
2006.

101

BIBLIOGRAPHY

[Deng 97] Y Deng, S Lu & M Evangelist. A Formal Approach for
Architectural Modeling and Prototyping of Distributed Real-Time
Systems. In HICSS (1), pages 481–490, 1997.

[Diaz-Pace 08] Andres Diaz-Pace, Hyunwoo Kim, Len Bass, Phil Bianco & Felix
Bachmann. Integrating Quality-Attribute Reasoning Frameworks
in the ArchE Design Assistant. In Steffen Becker, Frantisek Plasil
& Ralf Reussner, editeurs, Quality of Software Architectures.
Models and Architectures: 4th International Conference on
the Quality of Software-Architectures, QoSA 2008, Karlsruhe,
Germany, October 14-17, 2008. Proceedings, pages 171–188.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[Dolan 01] Dolan, Wortmann, Hammer & Technische Universiteit
Eindhoven. Architecture assessment of information-system
families : a practical perspective. PhD thesis, Technische
Universiteit Eindhoven, 2001.

[Dumke 11] Reiner Dumke & Alain Abran. Cosmic function points. theory
and advanced practices. Auerbach Publications, Boston, MA,
USA, 2011.

[Eisenbarth 03] Thomas Eisenbarth, Rainer Koschke & Daniel Simon. Locating
Features in Source Code. IEEE Trans. Softw. Eng., vol. 29, no. 3,
pages 210–224, March 2003.

[Emanuel 10] A.W.R. Emanuel, R. Wardoyo, J.E. Istiyanto & K. Mustofa.
Success factors of OSS projects from sourceforge using
Datamining Association Rule. In Distributed Framework and
Applications (DFmA), 2010 International Conference on, pages
1–8, Aug 2010.

[Erdil 03] K Erdil, E Finn, K Keating, J Meattle, S Park & D Yoon. Software
Maintenance As Part of the Software Life Cycle. Comp180
Software Engineering Project, 2003.

102

BIBLIOGRAPHY

[Fenton 98] Norman E. Fenton & Shari Lawrence Pfleeger. Software metrics:
A rigorous and practical approach. PWS Publishing Co., Boston,
MA, USA, 2nd edition, 1998.

[Fenton 14] Norman Fenton & James Bieman. Software metrics: A rigorous
and practical approach, third edition. CRC Press, Inc., Boca
Raton, FL, USA, 3rd edition, 2014.

[Fernández 11] Alejandro Fernández. Hierarchical Complexity: Measures of
High Level Modularity. CoRR, vol. abs/1105.2335, 2011.

[Fielding 00] Roy Thomas Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, University of
California, Irvine, 2000.

[Franco 13] João Miguel Franco, Raul Barbosa & Mário Zenha Rela.
Reliability Analysis of Software Architecture Evolution. In Sixth
Latin-American Symposium on Dependable Computing, LADC
2013, Rio de Janeiro, Brazil, April 1-5, 2013, pages 11–20, 2013.

[Franco 14] João Miguel Franco, Raul Barbosa & Mário Zenha Rela.
Availability Evaluation of Software Architectures through Formal
Methods. In 9th International Conference on the Quality of
Information and Communications Technology, QUATIC 2014,
Guimaraes, Portugal, September 23-26, 2014, pages 282–287,
2014.

[Frank 10] Eibe Frank, Mark Hall, Geoffrey Holmes, Richard Kirkby,
Bernhard Pfahringer, IanH. Witten & Len Trigg. Weka-A Machine
Learning Workbench for Data Mining. In Oded Maimon &
Lior Rokach, editeurs, Data Mining and Knowledge Discovery
Handbook, pages 1269–1277. Springer US, 2010.

[Gabriel Rolim 16] Danielle Silva Eudisley Anjos Gabriel Rolim Everaldo Andrade.
Longitudinal Analysis of Modularity and Modifications of OSS.
In 7th International Symposium on Software Quality - ISSQ
2015, volume 9790 of Lecture Notes in Computer Science, pages
363–374,. Springer International Publishing, 2016.

103

BIBLIOGRAPHY

[Galorath 06] Daniel D. Galorath & Michael W. Evans. Software sizing,
estimation, and risk management. Auerbach Publications,
Boston, MA, USA, 2006.

[Garlan 94] David Garlan & Mary Shaw. An Introduction to Software
Architecture. Rapport technique, Carnegie Mellon University,
Pittsburgh, 1994.

[Garlan 95] David Garlan & Dewayne E. Perry. Introduction to the Special
Issue on Software Architecture. IEEE Trans. Softw. Eng., vol. 21,
no. 4, pages 269–274, April 1995.

[Garlan 97] David Garlan, Robert Monroe & David Wile. Acme: an
architecture description interchange language. In Proceedings
of the 1997 conference of the Centre for Advanced Studies on
Collaborative research, page 7, Toronto, Ontario, Canada, 1997.
IBM Press.

[Garlan 98] David Garlan, John Ockerbloom & David Wile. Towards an ADL
Toolkit. In EDCS Architecture and Generation Cluster, December
1998.

[Garlan 09] David Garlan & Bradley Schmerl. ÆVol: A Tool for
Defining and Planning Architecture Evolution. In Proceedings
of the 31st International Conference on Software Engineering,
ICSE ’09, pages 591–594, Washington, DC, USA, 2009. IEEE
Computer Society.

[Garlan 10] David Garlan, Robert Monroe & David Wile. Acme: an
architecture description interchange language. In CASCON First
Decade High Impact Papers, CASCON ’10, page 159–173, New
York, NY, USA, 2010. ACM. ACM ID: 1925814.

[Ghapanchi 14] Amir Hossein Ghapanchi & Madjid Tavana. A Longitudinal
Study of the Impact of OSS Project Characteristics on Positive
Outcomes. Information Systems Management, 2014.

104

BIBLIOGRAPHY

[Gilb 08] Tom Gilb. Designing Maintainability in Software Engineering :
a Quantified Approach. In Principles of Software Maintainability,
2008.

[Glinz 05] Martin Glinz. Rethinking the Notion of Non-Functional
Requirements. In in Proceedings of the Third World Congress
for Software Quality (3WCSQ’05, pages 55–64, 2005.

[Grigorio 14] Francielly Grigorio, Daniel Brito, Eudisley Anjos & Mário
Zenha-Rela. Using Statistical Analysis of FLOSS Systems
Complexity to Understand Software Inactivity. In Covenant
Journal of Informatics and Communication Technology - CJICT,
volume 2, pages 1–28, December 2014.

[Gustavsson 05] Jens Gustavsson & Magnus Osterlund. Requirements on
Maintainability of Software Systems. In Fifth Conference on
Software Engineering Research and Practice in Sweden,2005,
pages 39–47, 2005.

[Hashim 96] Khairuddin Hashim & Elizabeth Key. A Software Maintainability
Attributes Model. Malaysian Journal of Computer Science, vol. 9,
no. 2, 1996.

[Henry 81] S. Henry & D. Kafura. Software Structure Metrics Based on
Information Flow. Software Engineering, IEEE Transactions on,
vol. SE-7, no. 5, pages 510–518, Sept 1981.

[Hitz 96] Martin Hitz & Behzad Montazeri. Chidamber and Kemerer’s
Metrics Suite: A Measurement Theory Perspective. IEEE Trans.
Softw. Eng., vol. 22, no. 4, pages 267–271, April 1996.

[Hohmann 03] Luke Hohmann. Beyond software architecture: Creating
and sustaining winning solutions. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[IEEE 98] IEEE. IEEE Standard for a Software Quality Metrics
Methodology. Rapport technique, IEEE, December 1998.

105

BIBLIOGRAPHY

[IEEE 00] IEEE. IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems, 2000.

[Immonen 05] Anne Immonen & Antti Niskanen. A Tool for Reliability and
Availability Prediction. In EUROMICRO Conference, pages
416–423, Los Alamitos, CA, USA, 2005. IEEE Computer
Society.

[Immonen 06] Anne Immonen. A Method for Predicting Reliability and
Availability at the Architecture Level. In Software Product Lines,
pages 373–422. Springer Berlin Heidelberg, 2006.

[ISO 01] ISO. ISO - Software engineering — Product quality.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39752,
2001.

[ISO/IEC 01] ISO/IEC. Iso/iec 9126. software engineering – product quality.
ISO/IEC, 2001.

[ISO/IEC 06] ISO/IEC. International Standard - ISO/IEC 14764 IEEE Std
14764-2006. ISO/IEC 14764:2006 (E) IEEE Std 14764-2006
Revision of IEEE Std 1219-1998), pages 1–46, 2006.

[ISO/IEC 07] ISO/IEC. ISO 42010: Systems and Software
Engineering — Architectural Description.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=45991,
2007.

[ISO/IEC 11] ISO/IEC. ISO/IEC 19761:2011, COSMIC: a functional size
measurement method, 2011.

[ISO/IEC/IEEE 10] ISO/IEC/IEEE. ISO/IEC/IEEE 24765 - Systems and software
engineering - Vocabulary. Rapport technique, ISO/IEC/IEEE,
2010.

[Kalliamvakou 14] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif
Singer, Daniel M. German & Daniela Damian. The Promises and
Perils of Mining GitHub. In Proceedings of the 11th Working

106

BIBLIOGRAPHY

Conference on Mining Software Repositories, MSR 2014, pages
92–101, New York, NY, USA, 2014. ACM.

[Kan 03] Stephen H. Kan. Metrics and models in software quality
engineering. Addison-Wesley, 2003.

[Karegowda 10] A.G. Karegowda, A.S. Manjunath & M.A.Jayaram. Comparative
Study of Attribute Selection Using Gain Ratio and Correlation
Based Feature Selection. In International Journal of Information
Technology and Knowledge Management, volume 2 of 2, pages
271–277, December 2010.

[Kazman 94] Rick Kazman, Len Bass, Gregory Abowd & Mike Webb. SAAM:
A Method for Analyzing the Properties of Software Architectures.
Rapport technique, Software Engineering Institute, 1994.

[Kazman 01] Rick Kazman, Jai Asundi & Mark Klein. Quantifying the
Costs and Benefits of Architectural Decisions. In Proceedings
of the 23rd International Conference on Software Engineering,
ICSE ’01, pages 297–306, Washington, DC, USA, 2001. IEEE
Computer Society.

[Keshav 98] R. Keshav & R. Gamble. Towards a taxonomy of architecture
integration strategies. In Proceedings of the third international
workshop on Software architecture, pages 89–92, Orlando,
Florida, United States, 1998. ACM.

[Khondhu 13] Jymit Khondhu, Andrea Capiluppi & Klaas-Jan Stol. Is It All
Lost? A Study of Inactive Open Source Projects. In Etiel Petrinja,
Giancarlo Succi, Nabil El Ioini & Alberto Sillitti, editeurs, Open
Source Software: Quality Verification, volume 404 of IFIP
Advances in Information and Communication Technology, pages
61–79. Springer Berlin Heidelberg, 2013.

[Kohavi 95] Ron Kohavi. The Power of Decision Tables. In Proceedings of
the 8th European Conference on Machine Learning, ECML ’95,
pages 174–189, London, UK, UK, 1995. Springer-Verlag.

107

BIBLIOGRAPHY

[Lassing 00] Nico Lassing, PerOlof Bengtsson, Hans Vliet & Jan Bosch.
Experiences with SAA of Modifiability, 2000.

[Lee 01] Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, Woo Hyun
Jang & Dong Han Ham. Component identification method with
coupling and cohesion. In Software Engineering Conference,
2001. APSEC 2001. Eighth Asia-Pacific, pages 79–86, Dec 2001.

[Lehman 80] M. M. Lehman. Programs, life cycles, and laws of software
evolution. Proceedings of the IEEE, vol. 68, no. 9, pages
1060–1076, Sept 1980.

[Levy 99] N. Levy & F. Losavio. Analyzing and Comparing Architectural
Styles. In Chilean Computer Science Society, International
Conference of the, page 87, Los Alamitos, CA, USA, 1999. IEEE
Computer Society.

[Luckham 95] David C Luckham, John J Kenney, Larry M Augustin, James
Vera, Doug Bryan & Walter Mann. Specification and analysis of
system architecture using Rapide. IEEE Transactions on Software
Engineering, vol. 21, pages 336—355, 1995.

[Malhotra 13] Ruchika Malhotra & Anuradha Chug. An Empirical Study to
Redefine the Relationship between Software Design Metrics and
Maintainability in High Data Intensive Applications. World
Congress on Engineering and Computer Science, pages 61 – 66,
October 2013.

[Malik 08] Malik. Software quality. Tata McGraw-Hill, 2008.

[Martin 83] J. Martin & C. McClure. Software maintenance, the problem and
its solutions. Prentice Hall, Englewood Cliffs, New Jersey, 1983.

[Matinlassi 05] Mari Matinlassi. Quality-Driven Software Architecture Model
Transformation. In Software Architecture, Working IEEE/IFIP
Conference on, pages 199–200, Los Alamitos, CA, USA, 2005.
IEEE Computer Society.

108

BIBLIOGRAPHY

[Mattsson 06] Michael Mattsson, Håkan Grahn & Frans Mårtensson.
Software architecture evaluation methods for performance,
maintainability, testability, and portability. In Second
International Conference on the Quality of Software
Architectures. Citeseer, 2006.

[McCabe 76] Thomas J. McCabe. A Complexity Measure. In Proceedings of
the 2Nd International Conference on Software Engineering, ICSE
’76, pages 407–, Los Alamitos, CA, USA, 1976. IEEE Computer
Society Press.

[Medvidovic 00] Nenad Medvidovic & Richard N. Taylor. A Classification and
Comparison Framework for Software Architecture Description
Languages. IEEE Trans. Softw. Eng., vol. 26, no. 1, pages 70–93,
2000.

[Mikic-Rakic 04] Marija Mikic-Rakic, Sam Malek, Nels Beckman & Nenad
Medvidovic. A tailorable environment for assessing the quality
of deployment architectures in highly distributed settings. In
International Working Conference on Component Deployment,
pages 1–17. Springer, 2004.

[Moore 94] Andrew Moore & Mary Soon Lee. Efficient Algorithms for
Minimizing Cross Validation Error. In W. W. Cohen & H. Hirsh,
editeurs, Proceedings of the 11th International Confonference on
Machine Learning, pages 190–198. Morgan Kaufmann, 1994.

[Morasca 15] Sandro Morasca. Rethinking Software Attribute Categorization.
In Emerging Trends in Software Metrics (WETSoM), 2015
IEEE/ACM 6th International Workshop on, pages 31–34, May
2015.

[Niemelä 05] Eila Niemelä. Strategies of Product Family Architecture
Development. In Software Product Lines, pages 186–197.
Springer Berlin Heidelberg, 2005.

[OMG 03] Object Management Group. Unified Modeling Language, March
2003.

109

BIBLIOGRAPHY

[OMG 08] OMG. UML Profile for Modeling QoS
and FT Characteristics and Mechanisms v1.1.
http://www.omg.org/technology/documents/formal/QoS_FT.htm,
April 2008.

[Parnas 72] D. L. Parnas. On the Criteria to Be Used in Decomposing Systems
into Modules. Commun. ACM, vol. 15, no. 12, pages 1053–1058,
December 1972.

[Perry 92] Dewayne E. Perry & Alexander L. Wolf. Foundations for the
Study of Software Architecture. SIGSOFT Softw. Eng. Notes,
vol. 17, no. 4, pages 40–52, October 1992.

[Piggot 13] James Piggot & Chintan Amrit. How Healthy Is My Project?
Open Source Project Attributes as Indicators of Success. In
Etiel Petrinja, Giancarlo Succi, Nabil El Ioini & Alberto Sillitti,
editeurs, Open Source Software: Quality Verification, volume
404 of IFIP Advances in Information and Communication
Technology, pages 30–44. Springer Berlin Heidelberg, 2013.

[Poshyvanyk 06] Denys Poshyvanyk & Andrian Marcus. The Conceptual Coupling
Metrics for Object-Oriented Systems. In Proceedings of the
22Nd IEEE International Conference on Software Maintenance,
ICSM ’06, pages 469–478, Washington, DC, USA, 2006. IEEE
Computer Society.

[Pressman 10] Roger Pressman. Software engineering: A practitioner’s
approach. McGraw-Hill, Inc., New York, NY, USA, 7 edition,
2010.

[Quinlan 93] J. Ross Quinlan. C4.5: Programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[Rainer 05] A. Rainer & S. Gale. Evaluating the quality and quantity of data
on open source software projects, pages 29–36. IGI Global9,
2005.

110

BIBLIOGRAPHY

[Rajlich 10] Václav Rajlich & Leon Wilson. Program Comprehension. In
Encyclopedia of Software Engineering, pages 753–760. Taylor
and Francis, 2010.

[Ramaswamy 12] V. Ramaswamy, V. Suma & T.P. Pushphavathi. An approach
to predict software project success by cascading clustering and
classification. In Software Engineering and Mobile Application
Modelling and Development (ICSEMA 2012), International
Conference on, pages 1–8, Dec 2012.

[Refaeilzadeh 09] Payam Refaeilzadeh, Lei Tang & Huan Liu. Cross-Validation.
In LING LIU & M. TAMER ÖZSU, editeurs, Encyclopedia of
Database Systems, pages 532–538. Springer US, Boston, MA,
2009.

[Rodrigues 04] Genaína Nunes Rodrigues, Graham Roberts & Wolfgang
Emmerich. Reliability Support for the Model Driven
Architecture. In Architecting Dependable Systems II, pages
394–412. Springer Berlin Heidelberg, 2004.

[Rosemberg 98] Linda Rosemberg. Applying and Interpreting Object Oriented
Metrics. Rapport technique, Software Assurance Technology
Center NASA - SATC, April 1998.

[Schmerl 06] Bradley Schmerl, Shawn Butler & David Garlan.
Architecture-based Simulation for Security and Performance,
2006.

[Schneidewind 87] N. F. Schneidewind. The State of Software Maintenance. IEEE
Trans. Softw. Eng., vol. 13, pages 303–310, March 1987.

[Shaw 95] Mary Shaw, Robert DeLine, Daniel V Klein, Theodore L Ross,
David M Young & Gregory Zelesnik. Abstractions for Software
Architecture and Tools to Support Them. IEEE Transactions on
Software Engineering, vol. 21, pages 314–335, 1995.

[Shen 08] Haihao Shen, Sai Zhang & Jianjun Zhao. An Empirical Study
of Maintainability in Aspect-Oriented System Evolution Using

111

BIBLIOGRAPHY

Coupling Metrics. In Proceedings of the 2008 2Nd IFIP/IEEE
International Symposium on Theoretical Aspects of Software
Engineering, TASE ’08, pages 233–236, Washington, DC, USA,
2008. IEEE Computer Society.

[Siebra 14] Braulio Siebra, Eudisley Anjos & Gabriel Rolim. Study on
the Social Impact on Software Architecture through Metrics of
Modularity. In Computational Science and Its Applications
- ICCSA 2014 - 14th International Conference, Guimarães,
Portugal, June 30 - July 3, 2014, Proceedings, Part V, pages
618–632, 2014.

[Tang 10] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla &
Muhammad Ali Babar. A comparative study of architecture
knowledge management tools. Journal of Systems and Software,
vol. 83, no. 3, pages 352–370, March 2010.

[Thiel 03] Steffen Thiel, Andreas Hein & Heiner Engelhardt. Tool Support
for Scenario-Based Architecture Evaluation. In STRAW, pages
41–45. Citeseer, 2003.

[Thongmak 09] Mathupayas Thongmak & Pornsiri Muenchaisri. Maintainability
Metrics for Aspect-Oriented Software. In International Journal
of Software Engineering and Knowledge Engineering, pages
389–420, April 2009.

[Wang 02] Hongzhou Wang. A survey of maintenance policies of
deteriorating systems. European Journal of Operational
Research, vol. 139, no. 3, pages 469 – 489, 2002.

[Wang 07] Y. Wang. Prediction of success in open source software
development. University of California, Davis, 2007.

[Weiss 05] Dawid Weiss. Quantitative Analysis of Open Source Projects
on SourceForge. In OSS2005: Open Source Systems, pages
140–147, 2005.

[Yu 02] Ping Yu, T. Systa & H. Muller. Predicting fault-proneness
using OO metrics. An industrial case study. In Software

112

BIBLIOGRAPHY

Maintenance and Reengineering, 2002. Proceedings. Sixth
European Conference on, pages 99–107, 2002.

[Zayaraz 05] G. Zayaraz, Dr. P. Thambidurai, Madhu Srinivasan & Dr. Paul
Rodrigues. Software Quality Assurance Through COSMIC
FFP. SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pages 1–5,
September 2005.

[Zhang 10] H. Muccini Zhang & B. Li. A classification and comparison
of model checking software architecture techniques. Journal of
Systems and Software, vol. 83, no. 5, pages 723–744, May 2010.

113

	

AS
SE

SS
IN

G
MA

IN
TA

IN
AB

IL
IT

Y
IN

 S
OF

TW
AR

E
AR

CH
IT

EC
TU

RE
S

Eu
dis

ley
 G

om
es

do
s A

njo
s

UN
IV

ER
SI

DA
DE

 D
E

CO
IM

BR
A

