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A B S T R A C T

The manifesto released by IBM in 2001 observing the software complexity crisis as the
main obstacle to the progress of the IT industry, has motivated the industry and the
academia to explore new paradigms for software development and for maintenance
and management of IT infrastructures. The Autonomic Computing paradigm was pro-
posed by IBM to tackle the software complexity problem. It pursues the development
of computing systems that can manage themselves given high-level objectives from
administrators. Self-healing is one of the most important aspects of Autonomic Com-
puting, addressing autonomous detection, diagnosis and repair of localized problems,
resulting from temporary issues in software and hardware.

Video-streaming services represent one of the classes of services that most benefit
from the self-healing concept. These services are characterized by soft real-time data
delivery requirements, long sessions and failures with significant impact on the quality
of experience of users, due to the upfront time spent when watching videos. The
importance of service continuity in these services is reinforced by the sensitivity of
users to the degradation of audio/video quality, and also by high quality expectations
created by decades of service quality patterns provided by traditional TV.

This thesis tackles the self-healing aspect of Autonomic Computing in two video-
streaming approaches: Pure Streaming (RTSP-based streaming) and HTTP Streaming.
Pure Streaming is founded on the original concept of streaming, which performs syn-
chronous transmission of video segments (groups of frames) to end-user’s players. In
HTTP Streaming, the video is entirely downloaded similarly to any other web object
(Progressive Download), or requested in small chunks stored either in the same file or
in distinct files (Adaptive Bitrate).

We propose a self-healing infrastructure for each video-streaming approach. Each in-
frastructure represents the framework of an Autonomic Element associated to a server
node in a video-streaming delivery system. Its main activities are monitoring (data
gathering and failure detection), failure prediction, failure diagnosis and repair. These
activities combined constitute the self-healing lifecycle for proactive recovery of fail-
ures. The failure assumptions of the self-healing infrastructures include performance
failures caused by intermittent faults and transient faults that could be overcome by
restarting components or rebooting the system.

The monitoring activity gathers log data to feed the failure detection process and
the other self-healing activities. Failure prediction exploits system models trained with
batch learning and online learning algorithms to detect abnormal system behaviors
before the occurrence of user-visible failures. All predicted failures are diagnosed to
determine the failure profile (type, resource and localization of the failure), which
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will decide the repair action to be executed. Repair techniques exploit container-based
virtualization for efficient failover and reboot of server instances.

All self-healing activities are evaluated experimentally using benchmarks that in-
clude representative workloads, combined with fault loads that perturb the main sys-
tem resources to induce performance failures with several intensities. The key premise
to be validated experimentally is that the patterns on log data relative to the period
between the fault activation and the failure occurrence can be modeled and recognized
to anticipate failures (failure prediction) and classify them (failure diagnosis).

The results from the experimental evaluation conducted in this thesis are resumed
as follows. The monitoring activity has low overheads in both Pure Streaming and
HTTP Streaming infrastructures. The failure prediction and failure diagnosis activi-
ties present recall and precision values not lower than 98%, using our benchmarks in
both infrastructures. In recovery scenarios, the failover of the server application using
virtual containers requires, in average, 1.5 seconds to checkpoint the server state to
another machine. This value also represents the minimum anticipation time provided
by failure prediction to rescue the client-server connections. Later, the server can be re-
stored in the fallback host in 1.4 seconds, in average. On the other hand, reboot-based
recovery requires less than 2 seconds to be executed. In Adaptive Bitrate streaming,
this activity is followed by a server warm-up period with a lifespan of 72 seconds for
virtual container reboots, and 253 seconds for operating system reboots.

The main conclusions of our thesis are resumed as follows. The patterns captured
by system models can provide high levels of failure prediction performance. These pat-
terns are also powerful discriminators for diagnosis of failures detected or predicted.
Yet, the diagnosis performance of predicted failures is better than the diagnosis per-
formance of detected failures, because the latter depends on more complex failure
patterns. Container-based virtualization is effective in isolating the performance of the
self-healing functionality from that of the video server within the Autonomic Element,
installed either in a physical or virtual machine. Container-based virtualization also
ensures the execution of repair techniques without impacting the quality of experi-
ence of users, using reboot and server migration techniques. The efficiency of repair
techniques also minimizes the impact of false positives on the system performance.
The analysis of variance of request-response times in Adaptive Bitrate streaming is an
effective approach to delimit the server warm-up period without impacting the service
quality, after reboot the server’s virtual container or the operating system.

Keywords: Video-streaming, Self-healing, Failure Prediction, Failure Diagnosis, Failure Re-
pair, Performance Failures, Dependability.



R E S U M O

A IBM publicou em 2001 um manifesto sobre a complexidade do software como ob-
stáculo principal para o progresso da indústria de Tecnologias de Informação. Este
manifesto levou a indústria e o meio académico a explorar novos paradigmas de
desenvolvimento, manutenção e gestão de software. O paradigma de Computação
Autónoma foi proposto pela IBM como uma solução para este problema, através do
desenvolvimento de sistemas computacionais capazes de se gerir autonomamente a
partir de objectivos de alto nível definidos pelos administradores. A auto-reparação é
o aspeto da Computação Autónoma responsável pela deteção, diagnóstico e reparação
autónoma de problemas resultantes de defeitos de software e hardware.

O conceito de auto-reparação tem uma utilidade muito importante nos serviços
de streaming de vídeo. Estes serviços impõem requisitos de transmissão de dados
soft real-time, sessões longas e falhas com um impacto significativo na qualidade de
experiência dos utilizadores, devido ao tempo entretanto despendido pelos mesmos
na visualização dos vídeos. A importância da continuidade neste tipo de serviços é
reforçada pela sensibilidade dos utilizadores à degradação da qualidade de audio e
vídeo e pelas expectativas criadas pelos padrões de qualidade da TV tradicional.

Esta tese aborda a aplicação do conceito de auto-reparação a dois tipos de serviço de
streaming de vídeo: Pure Streaming (RTSP Streaming) e HTTP Streaming. Os serviços
de Pure Streaming são fundados no conceito original de streaming, baseado na trans-
missão síncrona de segmentos de vídeo (grupos de frames) para os players dos uti-
lizadores. Em HTTP Streaming, os dados são transmitidos sem controlo de fluxo, tal
como qualquer outro objeto web (Progressive Download), ou solicitados em segmentos
armazenados num único ficheiro de vídeo ou em ficheiros distintos (Adaptive Bitrate).

Nós propomos uma infraestrutura de auto-reparação para cada tipo de serviço.
Cada uma dessas infraestruturas representa o framework de um elemento autonómico
associado a um nó de servidor no sistema. As atividades principais deste elemento
resumem-se à monitorização (recolha de logs e deteção de falhas), previsão, diagnós-
tico e reparação de falhas. Estas atividades combinadas representam o ciclo de vida
da recuperação proativa de falhas. Os pressupostos de falhas das infraestruturas de
auto-reparação incluem falhas de performance causadas por defeitos intermitentes ou
transientes, reparáveis pela reinicialização de componentes ou do sistema.

A atividade de monitorização captura dados de logs, de forma a alimentar o pro-
cesso de deteção de falhas e outras atividades de auto-reparação. A previsão de falhas
utiliza os dados da monitorização para detetar comportamentos do sistema anómalos
antes da ocorrência de falhas visíveis pelos utilizadores. As falhas previstas são diag-
nosticadas de forma a determinar o seu perfil, que vai decidir a escolha do tipo de ação
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de reparação a executar. As técnicas de reparação exploram virtualização baseada em
contentores virtuais para migração e reinicialização de servidores.

As actividades de auto-reparação são avaliadas experimentalmente recorrendo a
benchmarks com cargas de trabalho e cargas de falhas utilizadas por perturbar os re-
cursos do sistema, de forma a induzir falhas de performance com várias intensidades.
A premissa principal a validar é a existência de padrões nos dados de log, no período
entre a ativação do defeito do software e a ocorrência de falhas, passíveis de serem
modelados e identificados para antecipação (previsão) e classificação (diagnóstico) de
falhas.

Os resultados experimentais mais relevantes da avaliação das atividades de auto-
reparação podem ser resumidos como se segue. A atividade de monitorização da in-
fraestrutura de auto-reparação tem custos de performance reduzidos. A previsão de
falhas e o diagnóstico de falhas apresentam níveis de recall e precision superiores ou
iguais a 98%, em ambas as infraestruturas, utilizando os benchmarks propostos. Em
cenários de recuperação, a migração do checkpoint do servidor para a máquina de
destino pode ser feita em 1.5 segundos, em média. Posteriormente, a actividade do
servidor pode ser restabelecida na máquina de destino em 1.4 segundos, em média.
A reparação através da reinicialização de contentores virtuais requer menos do que 2
segundos para ser executada. Em serviços Adaptive Bitrate, esta atividade é comple-
mentada por um período de warm-up de 72 segundos para contentores virtuais e 253
segundos para o sistema operativo.

As conclusões principais da nossa tese podem ser resumidas como se segue. Os
padrões capturados pelos modelos do sistema fornecem altos níveis de performance
na previsão de falhas. Esses padrões são também bons classificadores para diagnós-
tico de falhas previstas ou detetadas. No entanto, a performance do diagnóstico de
falhas previstas é superior à das falhas detetadas, uma vez que as últimas dependem
de padrões mais complexos. A virtualização baseada em contentores virtuais é eficaz
no isolamento da performance associada à funcionalidade de auto-reparação relativa-
mente à do servidor de vídeo, dentro do mesmo elemento autonómico instalado num
máquina física ou virtual. Este tipo de virtualização suporta a execução de técnicas
de reparação sem comprometer a qualidade de experiência dos utilizadores, recor-
rendo a técnicas de reinicialização e migração de contentores virtuais entre máquinas.
A eficiência destas técnicas permite também minimizar o impacto de falsos positivos
na performance do sistema. Em serviços Adaptive Bitrate, a análise da variância dos
tempos de resposta do servidor a pedidos é uma abordagem eficaz para delimitar o
período de warm-up do servidor sem comprometer a qualidade de experiência dos
utilizadores.

Keywords: Streaming de Vídeo, Auto-Reparação, Previsão de Falhas, Diagnóstico de Falhas,
Reparação de Falhas, Falhas de Performance, Confiabilidade.
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1
I N T R O D U C T I O N

The cost of maintenance of computer systems by human operators has increased pro-
portionally to the ever-increasing complexity of these systems in the recent years. The
large size of computer systems, the diversity of technologies, the high frequency of
updates, the interconnectedness of systems and the adoption of emerging pervasive
computing devices demand new approaches to deal with the management of actual
computer systems. This problem is even more challenging in services with high sensi-
tivity to performance changes, such as video-streaming services.

Video-streaming services are predominant in the universe of Internet services. Their
dramatic growth in the last years has been potentiated by the convergence of TV with
the Internet and the increasing popularity of videos in e-learning, VoD and social
network services. On top of that, the ever increasing market of mobile video streaming
has been boosted by the rollout of the 4G service.

The creation of content, video formats and technology for video-streaming services
are hot topics in the research agenda of academics and are leveraging an entire soft-
ware industry. As well, the advent of HTML5 [Pilgrim 2010] has been in the origin of
a galaxy of new technologies, responsible for increasing the pervasiveness of video-
streaming services, customized for all types of devices (e.g., smartphones, tablets,
PCs).

Several reports show that video content distribution dominates the Internet traffic.
More precisely, real-time entertainment is responsible for over 68% of downstream
bytes, during the peak period in the North America [SANDVINE 2013]. Other statistics
[Systems 2013] show that: Internet video will increase from 17, 455 (PB per month) in
2013 to 62, 972 (PB per month) in 2018; and IP video traffic will be 79% of all consumer
Internet traffic in 2018, up from 66 percent in 2013.

Video-streaming services bring new challenges to content delivery infrastructures.
They are throughput-based services with long client-server sessions, during which,
data are transmitted to video players in small chunks. These chunks have strict delivery
deadlines to ensure service continuity.

Continuity is a critical aspect of video-streaming services due to large user aban-
donment costs resulting from interruptions in the middle of video playback, after an
upfront time invested by end-users watching the videos. Service continuity is easily
compromised in the form of quality degradation caused commonly by performance
problems occurring server-side or in the network [Wijesekera et al. 1999][Jiang and
Schulzrinne 2002]. Quality degradation has a strong impact on the Quality of Experi-
ence (QoE), due to the human sensitivity to variations in video and audio quality. Plus,

1



2 introduction

there are large demands for high quality imposed by the quality patterns provided by
traditional TV during decades.

Performance problems in video-streaming systems leading to service quality degra-
dation can have a similar impact on the viewer’s experience as service unavailability.
Playback interruptions and video glitches are disturbing events that are expected as a
consequence of performance degradation. These events require urgent intervention for
restoring the service to its original status. In the server context, performance failures
can be classified into workload-related failures — due to the lack of or ineffective load
control — and performance anomalies caused by software faults.

Detection and localization of performance problems can benefit from the use of
models of the system’s behavior to recognize anomalies. However, in complex sys-
tems with hundreds or thousands of server instances, it is impracticable to maintain
specific performance models for each instance and verify compliance of the moni-
tored server behaviors with that models globally. Autonomic Computing [Kephart
and Chess 2003][Ganek and Corbi 2003] deals with that problem by exploiting the
concept of self-awareness, which states that each Autonomic Element (server, compo-
nent or subsystem) should be aware of its internal state and behavior. Self-awareness
enables continuous analysis of the system behavior, accompanied with diagnosis and
recovery activities whenever the Autonomic Element detects any deviation from its
normal behavior. Therefore, it is possible to provide timely and decisive responses to
performance problems that could impact the users’ experience.

This thesis addresses the topic of self-healing in video-streaming services, focusing
on monitoring, online failure prediction, proactive diagnosis and proactive recovery
activities.

1.1 contributions

We propose two self-healing infrastructures for video-streaming services. The first self-
healing infrastructure is devised for traditional Pure Streaming services, also known as
RTSP services [PIP 1998]. The second infrastructure, named SHStream, targets HTTP
Streaming services. Both self-healing infrastructures implement monitoring, failure
prediction and failure diagnosis. The HTTP Streaming infrastructure also implements
repair using virtualization techniques.

1.1.1 Self-healing Infrastructures

Each self-healing infrastructure proposed represents an Autonomic Element in a video
system. The design of each self-healing infrastructure addresses important issues, as
such:
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• Localization of the monitoring probes for data gathering of application-specific
performance metrics, and also system, network and service quality metrics;

• Monitoring with low data gathering latencies, to provide fast responses to faulty
conditions;

• Scalability of the self-healing activities;

• Performance isolation between the main functionality of the server and the self-
healing activities, within the same Autonomic Element.

We propose a HTTP Streaming infrastructure that employs container-based virtualiza-
tion [Soltesz et al. 2007] to ensure performance isolation between the server application
and the self-healing activities. Thus, the self-healing functionality can be attached to
any video server to build an Autonomic Element. Container-based virtualization is
also exploited in the infrastructure to support efficient repair actions.

The monitoring activity is designed for each self-healing infrastructure to comply
with data and performance requirements of the Pure Streaming and HTTP Streaming
services. Its main tasks are gathering log data and failure detection.

Related Publications: [Cunha and Silva 2011][Cunha and Silva 2013a][Cunha and Silva
2016]

1.1.2 Failure Prediction

Failure prediction is a fundamental activity of the self-healing lifecycle. It creates the
opportunity to diagnose and repair failures proactively before end-users experience
any failure.

We propose a failure prediction approach based on the analysis of patterns of failure,
observed in the log data. These patterns are recognized using classifiers created by
machine learning algorithms. In the Pure Streaming infrastructure, these classifiers
are trained with historical data, using batch learning algorithms [Witten et al. 2011]. In
the HTTP Streaming infrastructure, the classifiers are trained with data stream mining
algorithms [Bifet and Kirkby 2009]. This is a new class of online learning algorithms
used to build classifiers iteratively, allowing the update of classification models when
new learning data becomes available. This characteristic contrasts with batch learning
algorithms, which avoid the update of classification models.

Important issues addressed in the failure prediction activity are: (1) failure predic-
tion performance; (2) look-ahead time provided by failure prediction; and (3) quantity
of learning data required to obtain the maximum performance of failure prediction
models.

Related Publications: [Cunha and Silva 2013b][Cunha and Silva 2013a]
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1.1.3 Failure Diagnosis

All predicted failures should be followed by countermeasures to restore the service.
Diagnosis is an important activity for selection of appropriate repair actions for the
underlying failure causes. These causes are attributed to: (1) software faults leading
to system behaviors unexplained by the current workloads (e.g., full CPU utilization
when the server is at half of its nominal capacity); (2) load control faults; and (3)
network faults.

The Pure Streaming and HTTP Streaming infrastructures implement diagnosis dif-
ferently. The Pure Streaming infrastructure discriminates workload-related failures
from performance anomalies caused by software faults, in the diagnosis activity. The
HTTP Streaming infrastructure implements a more complex diagnosis process. It clas-
sifies the origin of the error (server machine or network), the resource directly involved
(CPU, memory or I/O) and the internal location of the error (server application or
system-level). The classification outcomes will decide the granularity of the reboot
technique or otherwise, the execution of a failover mechanism.

Important issues addressed in the failure diagnosis activity are: (1) diagnosis perfor-
mance for failures predicted and failures detected; and (2) quantity of learning data
required to obtain the maximum performance of diagnosis models.

Related Publications: [Cunha and Silva 2016][Cunha and Silva 2012]

1.1.4 Failure Repair

The SHStream infrastructure exploits container-based virtualization techniques for re-
pairing the Autonomic Element. Repair techniques are coarsely divided into:

• Server migration techniques — based on checkpointing and migration of the
server application to another machine. These techniques rescue the server in-
memory state and client-server connections. They are adequate to recover envi-
ronmental errors not originated or propagated to the virtual container running
the server application;

• Reboot techniques — reboot the operating system or the virtual container run-
ning the server application. Operating system reboots can be combined with
server migration for recovering the server along with client-server connection
states. On the other hand, virtual container reboots are required for recovering
from virtual container’s internal failures (e.g., failures in the server application),
but are disruptive for video-streaming connections established between clients
and the server.

The time required to execute each repair technique is a main issue addressed in
the failure repair activity. The execution time of each repair technique represents the
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Figure 1: Dependencies between chapters of this thesis.

service downtime visible by end-users. In the same way, the time necessary to res-
cue the server checkpoint by transferring it to another host, represents the minimum
look-ahead time required from the failure prediction activity to restore the server ap-
plication along with the video-streaming connections in the destination host.

The reboot technique is complemented by a server warm-up approach. The reduc-
tion of the system capacity after a reboot would lead to temporary failures. Thus,
the server warm-up approach circumvent the problem of providing the service to end-
users without failures during the warm-up period, until the system reach its maximum
capacity.

Related Publications: [Cunha and Silva 2015a][Cunha and Silva 2015b]

1.2 structure of the thesis

This thesis is structured into eight chapters. These chapters have dependencies be-
tween themselves (see Figure 1) in terms of concepts, execution cycle of the presented
approaches and related experimental results.
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Chapter 1 introduces this thesis and Chapter 2 presents the background concepts
of Autonomic Computing, self-healing, failure analysis, video-streaming technologies
and virtualization. These concepts are necessary to understand the work presented in
this thesis.

Chapter 3 presents a state of the art on self-healing systems, video-streaming de-
pendability and recovery using virtualization techniques. It also identifies the research
gaps in the literature that will be addressed in this thesis.

Chapter 4 starts by presenting the self-healing approach developed in this thesis,
the general problem description, the research goals, the self-healing problem space
and the self-healing infrastructures for Pure Streaming and HTTP Streaming technolo-
gies. Then it presents the evaluation methodology and the benchmarks used for the
evaluation of each self-healing activity in the further chapters. Finally, it describes the
monitoring activity designed for each self-healing infrastructure, focusing on the fail-
ure model, log data gathered for analysis, failure detection approach and experimental
results exhibiting data gathering delays and overheads. The other self-healing activi-
ties depend on the metrics gathered for analysis by the monitoring activity and on the
outcomes of the failure detection process.

Chapter 5 addresses failure repair using virtualization techniques. Several repair
techniques are evaluated along with the server warm-up approach proposed to avoid
temporary failures. Repair actions are triggered by the failure detector (reactive repair)
or by the failure prediction activity (proactive repair).

Chapter 6 proposes and evaluates experimentally a prediction approach for perfor-
mance failures in video-streaming systems. The evaluation of the failure prediction
performance is performed for the look-ahead time required to execute the repair ac-
tions before the occurrence of failures.

Chapter 7 presents the failure diagnosis approach that complements the failure de-
tection (reactive diagnosis) and failure prediction (proactive diagnosis) activities for
identification of the failure profile that will indicate the appropriate repair action.

Chapter 8 closes this thesis with the most important conclusions and describes the
directions that convey the future work succeeding this thesis.



2
B A C K G R O U N D

This chapter presents the background and the main concepts that sustain the work
undertaken in this thesis. Firstly, it starts by presenting an overview of the Autonomic
Computing paradigm and its main aspects, with emphasis on the self-healing aspect,
which is exploited extensively in this thesis. Secondly, it presents a description of the
main concepts of failure analysis and the relation between these concepts. Thirdly, it
revisits the most relevant video-streaming technologies and their basic concepts. Lastly,
it describes the characteristics of the virtualization technologies exploited by the self-
healing infrastructures presented in this thesis.

2.1 autonomic computing

The work undertaken in this thesis is motived by the concept of Autonomic Comput-
ing. In October 2001, IBM introduced the concept of Autonomic Computing through
a manifesto [Horn 2001] used to denote a new generation of computing systems that
can manage themselves given high-level objectives from administrators. Autonomic
computing refers to a tangled hierarchy of self-governing systems, composed by a
myriad of interacting self-governing components that free system administrators from
the details of system operation and maintenance. The vision of Autonomic Computing
was later published [Kephart and Chess 2003][Parashar and Hariri 2005][Ganek and
Corbi 2003] after some development had taken place. Thereafter, this area has attracted
numerous computer science researchers from several research domains.

The four aspects of Autonomic Computing are:

• Self-configuration. The system configure itself automatically in accordance with
high-level policies. New components incorporate themselves automatically into
the system, and the rest of the system will adapt to their presence;

• Self-optimization. Complex systems may have hundreds of tunable parameters
requiring adjustment for the system to perform optimally. Systems must contin-
ually seek ways to improve their operation, by monitoring, experimenting with,
and tuning their own parameters and upgrade their function proactively, by find-
ing, verifying, and applying new updates;

• Self-healing. The system perceive that it is not operating correctly and, without
or with limited human intervention, makes the necessary adjustments to restore
itself to normal operation;

7
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• Self-protection. The system defends itself as a whole against problems arising
from malicious attacks or cascading failures that remain uncorrected by self-
healing measures.

Autonomic systems are organized into collections of Autonomic Elements related
among them, each one controlling a system constituent known as Managed Element.
Autonomic Elements manage their internal behavior in accordance with specified poli-
cies. One Managed Element can be any software or hardware resource (e.g., web server
or database) that is given autonomic behavior by coupling it with an Autonomic Man-
ager.

IBM suggested a reference model for Autonomic Elements based on control loops
called MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge), presented in Figure
2. In the MAPE-K control loop, the data gathered by sensors are analyzed by the
Autonomic Manager to monitor the Managed Element. Therefore, using the internal
knowledge of the system — produced by all MAPE-K tasks — the Autonomic Man-
ager analyzes whether the monitored information follows a designated action (e.g.,
by comparing status information to system specific thresholds). Designated actions
are aligned with high-level goals established by human administrators for specific
Autonomic Elements or the whole system. When the monitored information is not
in conformity with the goals, it is planned a series of changes to be effected on the
Managed Element.

This thesis addresses the self-healing aspect of Autonomic Computing. Therefore,
the Autonomic Manager should hold the features required to provide the Managed
Element with self-healing behavior.

2.2 self-healing systems

The term self-healing was drawn from the biological paradigm, as biological systems
exhibit adaptation, healing and robustness in face of continuing changing environ-
mental behavior. Accordingly, self-healing systems automatically detect, diagnose and
repair localized software and hardware failures resulting from the activation of perma-
nent faults or transient faults [Avizienis et al. 2004]. Self-healing systems should perceive
that they are operating incorrectly and, without or with limited human intervention,
make the necessary adjustments to restore itself to normalcy. Most of the time, self-
healing activities are performed using knowledge captured from system configura-
tions, log files and runtime information provided by monitored components.

Characterization of the self-healing activities represents one important step towards
the comprehension of the responsibilities of this aspect in the construction of full
autonomic systems. Researchers have different views on what comprises research in
self-healing systems [Saha 2007][Lemos 2003]. However, there is a common acceptance
that self-healing:
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Figure 2: Structure of an Autonomic Element.

• Is equivalent to fault tolerance in dynamic systems that do not know during
design time what resources they might have during runtime;

• Deals with imprecise specification and uncontrolled environments;

• Deals with adaptation and reconfiguration of systems according to their dynam-
ics.

As long as self-healing approaches deal with dynamic systems and imprecise spec-
ification, their fault assumptions are less restrictive than in traditional fault tolerance
approaches. Seeing that, traditional system fault models should be adapted to the
characteristics of self-healing systems.

Similarly to other fault tolerance approaches, self-healing solutions should be spec-
ified according to the respective problem space. One important contribution for the
specification of the self-healing problem space is given in [Koopman 2003]. That paper
proposes four categories of aspects for the self-healing problem (Figure 3), based on
the same terminology presented in [Avizienis et al. 2004] for fault tolerance, namely:

• Fault-model. The fault-model states what faults or injuries should be self-healed,
which includes the fault duration, fault source (e.g., operational or implementa-
tion errors and defective system requirements) and other fault characteristics;
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Figure 3: Self-healing problem space.

• System response. System response aspects consider fault detection, specification
of the degree of degraded operation provided by self-healing, fault response and
fault recovery issues. Fault detection is a broad area that includes techniques
such as application semantics-driven assertions, supervisory checks, computer
answers examination, comparison of replicated components, online self-testing,
between others. On the other hand, recovery can be performed partially or com-
pletely. The effectiveness of recovery depends on the built-in redundancy and
fault response techniques implemented (e.g., fault masking, retry, rollback and
rollforward operations);

• System completeness. The incompleteness of specifications and designs and the
limited knowledge of systems have implications on their recoverability. A thor-
ough understanding of application semantics and about the system behavior in
the absence and presence of faults is required to develop self-healing systems.
However, there are many challenges to obtain the complete knowledge about
the system, such as, the large frequency of updates and the use of Commercial
Off-the-Shelf (COTS) components by several modern systems. Self-knowledge
and system evolution are important research topics akin to this problem;

• Design-context. The design-context addresses abstraction-level problems, such
as the component-level heterogeneity, pre-deterministic behaviors, system scope,
system linearity and user involvement degree.

The specification of self-healing solutions proposed in this thesis is aligned with
the aforementioned problem space. Details of each aspect inherent to the self-healing
infrastructures developed in this thesis are presented in Chapter 4.
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2.3 basic concepts of failure analysis

This section describes the characteristics of a correct service and defines several concepts
respecting the origin and manifestation of failures.

Functionality, performance and dependability are three fundamental system characteris-
tics. Functionality represents the specification of what the system is intended to do and
is constrained by established performance requirements. Dependability represents the
ability of one system to deliver a trusted service, which can be described as its aptitude
to avoid functional and performance failures that are more frequent and more severe
than is acceptable [Avizienis et al. 2004]. Providing a dependable service is the main
goal of any self-healing approach for guaranteeing a correct service to end-users.

One system is providing a correct service to end-users when it yields the function-
ality intended for the service it provides and satisfies the performance parameters
specified for that functionality. However, the ever increasing complexity of actual sys-
tems makes them propitious to latent faults residing in production systems until their
activation. Faults are commonly introduced:

• During the development phase;

• Through interactions with external entities belonging to the system environment
(e.g., software, hardware or humans);

• By physical defects at the hardware level.

Under specific conditions, faults are activated as system errors during runtime exe-
cution of software, manifesting later as service failures. Thus, failures represent errors
visible by end-users, in the form of service unavailability, erratic service or service
quality degradation. In general terms, one failure occurs when the service deviates
from a correct service state. The meaning of correct service is described by the failure
model designated for the service.

Dependability techniques can actuate at either fault, error or failure levels. At the
fault level, static analysis tools have been used to help programmers removing de-
fects prior to the release of a software product [Zheng et al. 2006][Xie et al. 2007].
At the error and failure levels, research on fault tolerance techniques have been done
exhaustively with the aim of reestablishing fully or partially the functionality and per-
formance defined for the system during faulty periods. Fault tolerance techniques are
applied:

• At the error level, when the system monitoring tools detect the presence of errors,
by capturing error messages or error signals and actuate to avoid service failures;

• At the failure level, when the service monitoring tools detect service failures and
actuate to reestablish the service.
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The mechanism for detection of errors and failures is designed for specific error
conditions and failure conditions, respectively. These conditions are also associated to
the failure modes representing the different forms of deviation from correct service.

Figure 4 presents a taxonomy for classification of failure modes, similar to that pre-
sented in [Avizienis et al. 2004]. It classifies failures in terms of their domain, detectabil-
ity, consistency and consequences.

In terms of their domain, failures can be classified as content failures, when they in-
terfere with the content handled by the system and timing failures, when they only in-
terfere with the delays on manipulating the data processed by the system. Fail-stutter
failures [Arpaci-Dusseau and Arpaci-Dusseau 2001] are timing failures that lead the
system performance to levels below its performance specification. Hence, they allow
the service to be maintained but with degraded performance. Error conditions associ-
ated to these performance problems are also denoted as performance anomalies in the
literature. When both content and timing are incorrect, the failures are classified as halt
failures and erratic failures. Halt failures (also known as fail-stop failures) occur when the
system activity is no longer perceptible to end-users. These failures are also associated
to crash failures, since when the service application crashes, it stops answering requests
issued by end-users. This type of failures requires low-complexity detection methods,
which looks for the absence of responses to external stimulus (i.e., requests) during a
specified period of time. For erratic failures, the service is delivered but is erratic.

In terms of their detection, detected failures (signaled failures) are detected by detecting
mechanisms. Otherwise, they are denoted as latent errors (unsignaled failures), in case
they are undetected. When the failure is detected without failure occurrence, it is
considered an false alarm.

In terms of consistency, consistent failures perturb the service correctness provided
to all users. On the other hand, inconsistent failures impact the system nondeterministi-
cally and would lead to different perception of service failures by different users. Incon-
sistent failures are also called byzantine failures [Lamport et al. 1982]. These failures are
characterized by nondeterministic system states and are not detected by conventional
detection mechanisms. Instead, they are commonly handled by diversity techniques
[Chun et al. 2008], using redundant components and applications with different im-
plementations or running in different infrastructures. Redundancy are complemented
with voting strategies (e.g., majority voting) [Parhami 1994] over the outputs of all repli-
cas, to decide the system output.

In terms of severity, errors can be minor, when their consequences are of similar cost
to the benefits provided by correct service delivery. Otherwise, they can be catastrophic,
when their cost is orders of magnitude higher than the benefit provided by correct
service delivery.
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Figure 4: Classification of Failure Modes.

2.4 failure characterization in video-streaming services

Self-healing mechanisms for detection, diagnosis and repair of software failures are
necessarily designed for specific failure profiles. Hence, the first step in devising a
self-healing system is defining the meaning of failure, which depends on the service
type.

The self-healing mechanisms devised in this thesis for video-streaming services
cover performance failures caused by server faults (originated at system or applica-
tion levels), network faults and also load control faults leading to server overloading.
These failures are classified in terms of severity as: hard failures and soft failures.

Hard failures are fail-stop failures. They are universal [Avizienis et al. 2004], since
they are objective and unambiguous, and are characterized by the total unavailability
of service to end-users. By contrast, soft failures are characterized specifically to one
type of service. Plus, they are often the reflex of system performance errors resultant
from complex interactions of faulty and non-faulty system elements.
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2.4.1 Soft Failures

Soft failures are fail-stutter failures. Since this thesis focuses on server-side perfor-
mance failures, soft failures start on performance degradation of the server or server-
side network and ends up on degradation of the service quality experienced by end-
users. Accordingly, soft failures are caused by:

• Large server transmission delays — the server is one potential contributor to
delays on transmission of video-streaming data during performance degradation
periods;

• Network packets delayed or lost — performance problems in the server-side
network (e.g, due to network congestion) can avoid the arrival of frames to video
players on time for playback.

In typical Internet services with short request-responses (e.g., web page requests),
soft failures are identified through comparison of request-response delays with speci-
fied thresholds. However, the specification of soft failures in video-streaming services
represents a complex and non-universal problem. In these services, request-responses
are broken down into fragments (containing groups of frames) with strict time deliv-
ery constraints, which are transmitted progressively by the server often during long
periods of time. Thus, failures are experienced by end-users when delays on transmis-
sion of individual video fragments will reduce the flow of data required by players for
continuous playback of videos. In other words, failures occur when video fragments
are undelivered, or delivered by players after their playback time, causing degradation
of the Quality of Experience (QoE) of end-users.

Soft failures can be specified in terms of the QoE. Approaches for evaluation of the
perceptual quality rely on the analysis of video content being played out for determin-
ing the QoE of end-users. The Peak Signal Noise Ratio (PSNR) is a common metric for
measuring the video quality through analysis of video content [Klaue et al. 2003] [Buc-
ciol et al. 2005]. However, metrics like PSNR depend not only on the correctness of the
video delivery service but also on the encoding quality (not addressed in this thesis).
PSNR is unable to discriminate quality degradation introduced at the encoding phase
from quality degradation caused by service delivery problems. Additionally, PSNR can
only be computed client-side after video decoding, requiring player instrumentation
and adding failure detection overheads.

Discarding the analysis of the video quality at the encoding level, the specification
of soft failures in video-streaming must rely on the association of video fragments not
delivered, or delivered after their playback time, with the user’s QoE. This strategy
depends on the protocol adopted for transmission of data between the server and
players, as will be further explained.
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2.4.2 Failure Specification Using Protocols Without Data Delivery Guarantees

The UDP protocol naturally supports graceful degradation of video quality in video-
streaming services, by allowing playback of video content without waiting for late
packets or the retransmission of lost packets. Therefore, the video playback is per-
formed with the data already received by the players, even with some quality degra-
dation.

Graceful degradation of video quality results into arduous failure detection, due
to the complexity of determining the impact of lost packets and packets arriving af-
ter their playback time on the end-users’ QoE. Several studies determined the quality
of multimedia services as a function of three content delivery performance parame-
ters: packet delivery delays, delays variation and information loss [Claypool and Tanner
1999][Jiang and Schulzrinne 2002][Ghinea and Thomas 1998][Cotroneo et al. 2003]. In
these studies, the analysis of the impact of service parameters on the perceptual quality
is based on thresholds that discriminate quality levels. As well, the SG 12 study group
of ITU-T, dedicated to definition of the quality attributes of multimedia services from
the user perspective, proposed the use of these service parameters to characterize the
quality of multimedia services [Coverdale 2001].

Other empirical studies correlate the user’s perceptual quality with data transmis-
sion losses. As an example, it was observed in [Wijesekera et al. 1999] that: (1) video
quality is visibly degraded when more than two consecutive frame losses is experi-
enced for video, and more than three frame losses is experienced for audio; (2) humans
are much more sensitive to audio losses than to video losses and are low sensitive to
video rate variations; (3) average losses below 17 out of 100 frames is imperceptible for
video playout rates of 30 frames per second; and (4) only audio-video desynchroniza-
tion above three frames is perceptible by users. These observations are consistent with
the findings presented in [Steinmetz 1996].

Previous empirical studies based on thresholding of service parameters for QoE
determination have been validated for videos with specific characteristics. However,
the lack of recognition and standardization of metrics and corresponding thresholds
in the academia and industry makes failure definition non-universal and requiring
laborious parameterization of failure detectors for each service configuration. However,
this problem is complex because it depends on the empirical mapping between data
losses — including data arriving late for playback — and the users’ QoE. That mapping
is defined by non-universal factors, such as, the minimum quality accepted by a class
of users, the distribution of data losses of individual audio and video components over
time, the encoding characteristics and the specification of the device’s screen used for
visualization [Ghinea and Thomas 1998][Wijesekera et al. 1999][Steinmetz 1996].
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2.4.3 Failure Specification Using Protocols With Data Delivery Guarantees

TCP became the most popular protocol for transmission of video-streaming over the In-
ternet. The firewalls and NAT Traversal problems solved by HTTP over TCP leveraged
the adoption of TCP for delivering video-streaming content in the Internet. Popular
video-streaming services like Youtube [you 2012] and Vimeo [vim 2012] use TCP to
transport video content between video-streaming servers and players.

TCP provides in-order data delivery guarantees to player applications. This charac-
teristic forces video playback to stop when there are delayed or lost packets in the
sequence of packets necessary to ensure playback continuity. Thus, graceful degrada-
tion of service quality is disallowed, as the TCP protocol forces packets to be received
in order before being delivered to the video player. However, this assumption simpli-
fies the failure detection process because the service quality can be measured in terms
of the time spent by end-users waiting for watching videos.

Soft failures in video-streaming services provided through TCP can be detected by
establishing one single threshold over the time spent by end-users waiting for watch-
ing videos. That threshold determines whether the user waiting time is large enough to
classify the service quality as a failure. The user waiting time is calculated through the
analysis of connection establishment delays and player buffer states. The player buffer
can be in one of two states: playing or buffering. Therefore, the user waiting time is cal-
culated by summing the connection establishing time to all (re)buffering times. During
playing periods, the user is watching the video and there are enough data stored in the
player buffer to ensure playback continuity. After connection establishment or during
buffer underflow events, the player is in the buffering state and the user is waiting for
watching the video.

Notwithstanding the maximum user waiting time tolerated by end-users is subjec-
tive, its value is independent of any encoding type and service delivery infrastructure
and is also interpretable in the user QoE domain. Thus, the threshold value can be set
by a Service Level Objective (SLO) for the video-streaming service. SLOs are specified
according to the perception of the minimum service quality accepted by end-users.
Standard industry metrics based on user waiting times also exist.

The Keynote StreamQ Grade [key 2010] is a popular metric for classifying user
waiting times into service quality degradation levels, in video-streaming services. It
is a leading industry standard metric that grades user experience by quantifying the
frustration time — the time the user is waiting for watching the video. This metric sums
the connection time, the buffering time and the accumulated rebuffering times (Figure 5) to
grade the service.

The buffering time represents the time required to accumulate the minimum amount
of data to start video playback, after the user presses the play button on the player. On
the other hand, the accumulated rebuffering times are the sum of the times required
to accumulate the minimum amount of data to restart the video playback after each



2.5 video-streaming technologies 17

Buffering RR

(Re)Buffering TimesFrustation Time = Connect Time + 

Connect Play Play Play

Figure 5: Calculation of frustration times in the Keynote StreamQ metric.

playback interruption due to the lack of buffered data. The Keynote StreamQ Grade
attributes the best grade (A+) to frustration times below 6 seconds, and lower grades
are classified in periods of 3 seconds above 6 seconds, being F− the lowest grade.

2.5 video-streaming technologies

Video-streaming services can be classified as Live Streaming and Video-on-Demand
(VoD), according to the source of the content.

In Live Streaming services, the video is captured at the source by a camera and is
broadcasted to all the client subscribers. The direct transmission of a soccer match
is an example of the application of Live Streaming services. The elements of a Live
Streaming service are usually a camera, an encoder to digitize the content, a media
publisher, and a delivery network to distribute and deliver the content.

In VoD services, the video content is stored in a storage device and is transmitted
when end-users request it. Popular Internet services as Youtube [you 2012] and Vimeo
[vim 2012] are VoD services. The self-healing infrastructures presented in this thesis
are conceived for VoD systems.

2.5.1 Delivery of Video Content in VoD Services

Figure 6 presents the elements of a VoD video-streaming service. At the source, the
video content is stored in storage devices (e.g., hard disks). When the server receives
a user request, the video data is retrieved from the disk to the main memory, where
are buffered waiting for its turn to be transmitted over the network. At the client side,
the video data are buffered until its turn to be decoded for playback.

Services that deliver video-streaming content are characterized as follows:

time delivery requirements Video-streaming services have soft-real-time deliv-
ery requirements [Krishna 2001]. That means that data and time integrities should
be preserved during the transmission of request-responses, while reducing the
delay as much as possible. In VoD applications, the soft-real-time delivery means
that the service is more tolerable to longer start-up delays than real-time appli-
cations, as long as smooth playback is maintained after the playback has started.
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Figure 6: Elements of a VoD video-streaming service.

streaming vs download The relationship between the transmission of data with
their consumption is different in download and streaming models. In the typi-
cal download model, the client application (e.g., web browser) retrieves the data
objects from the server (e.g., web server) and decodes and displays them to the
user after completely receiving them. By contrary, in the streaming model, the
video is played back simultaneously with the transmission of data between the
server and players. Accordingly, after sending a request of the video to the server,
the client waits for the reception of the first segment(s) of data and then begins
playback while receiving the remaining data. Hence, the data transfer and the
playback processes are pipelined to shorten the delay before beginning the play-
back, as illustrated in Figure 7.

application-level protocols The choice of the data delivery protocol adopted
for video-streaming services dictates the flow of data and client-server interac-
tions during the data transmission period. Traditional video-streaming services
adopt protocols designed specifically for video-streaming services, such as the
RTSP protocol. However, most of the modern Internet video-streaming services
use the standard HTTP protocol to deliver video data.

The design of the video content delivery infrastructures is conditioned by the applica-
tion-level protocol adopted, as will be explained in the next sections.

2.5.2 Pure Streaming

Traditional video-streaming services are implemented using Pure Streaming techniques
and protocols. Pure Streaming is also known as RTSP Streaming, since RTSP is the
most popular Pure Streaming protocol for streaming controls 1. Pure Streaming proto-
cols are designed specifically for streaming data over the Internet.

1 Playback control commands, such as play, pause and stop.
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Figure 7: Pipeline between the transmission of video segments and their playback, in video-
streaming services.

2.5.2.1 RTSP Workflow

RTSP is a stateful and session-oriented video-streaming protocol. After session estab-
lishment, the server controls the stream of packets to the client until the end of the
video or until the session is interrupted by the client. Both the RTSP server and the
client can issue RTSP requests.

Figure 8 presents the RTSP commands issued between the client and the server
during a typical video-streaming session. The client starts by issuing a DESCRIBE
command to obtain the presentation description file, typically in the Session Description
Protocol (SDP) format. This file lists the media streams controlled with the aggregate
URL. Alternatively, this file can be provided by a web server, while the media data is
provided by the RTSP streaming server [Lee 2005].

In the typical case, there is one media stream each for audio and video. A SETUP
request is issued for each media stream after the DESCRIBE request. Each SETUP
request specifies how a single media stream is transported and contains the local port
for receiving RTP data (audio or video) and another for RTCP data. The PLAY request
follows the SETUP requests and causes the streams to be played. During playback, the
client can issue PAUSE requests to temporarily halt streams. Finally, the TEARDOWN
request terminates the session by stopping the streams and freeing all session related
data on the server.

2.5.2.2 Companion Protocols of RTSP

The RTP [Schulzarine et al. 1996] protocol is used with RTSP for transporting media
streams (audio and video). RTP implements strict data rate control policies for provid-
ing the transmission bitrates required by players for playback. This protocol provides
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Figure 8: Sequence of commands issued during a video-streaming session using the RTSP pro-
tocol.

facilities for jitter compensation and detection of out of sequence arrival in data, which
are independent of the lower-layer protocol that carries the RTP packets (TCP or UDP).

RTP is accompanied by the RTP Control Protocol (RTCP) to provide control func-
tions (e.g., synchronization, reporting and data reception statistics). RTCP reports are
exchanged between players and the server and include transmission statistics, such as
the transmitted octets, packet counts, packet delay variations, packet losses and round-
trip delay times. The RTP protocol uses these statistics to adjust the transmission of
media data to players.

2.5.2.3 Buffering

Player buffers in Pure Streaming services are usually dimensioned only to compensate
expected variances on data transmission delays. Therefore, client-side storage require-
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ments are minimized and the waste of server resources and network bandwidth is
also reduced, since the data are transmitted at the same pace they are consumed by
players. This characteristic can be particularly relevant in long videos with high rates
of playback abandonment by users or when users perform time seek 2 interactions. In
such scenarios the efficiency of server, network and client resources is leveraged, since
the amount of data downloaded is roughly the same as that used for playback.

2.5.3 HTTP Streaming

Modern Internet services eschewed the adoption of streaming-dedicated protocols in
favor of the simplicity of the HTTP pull-based protocol. HTTP benefits from the:

• Permeability of HTTP traffic to traverse firewalls;

• Reuse of ubiquitous infrastructures of web servers, caches and Content Distribu-
tion Networks (CDNs) to deliver video content in the Internet;

• Ubiquity of web browsers, which are frequently used for displaying media con-
tents;

• The adoption of the recent HTML5 standard for video-streaming technologies.

HTTP Streaming servers are usually standard web servers that are agnostic of video
content semantics. Figure 9 shows the architecture of a typical video-streaming deliv-
ery service, covering the:

• Preparation of the media according to the service provided. In this stage, the
service quality desired and the clients’ device characteristics (desktop computer,
tablet, smartphone) determine the encoding profiles of the videos provided by
the service;

• Storage of media in the origin servers;

• HTTP caches, which could be CDN caching servers or caching proxies on the
client’s network. This architectural layer could help reduce the initial delay of
video playback (particularly important for time seek operations) and reduce the
consumption of server resources.

HTTP Streaming services are coarsely classified into Progressive Download and Adap-
tive Bitrate services.

2 Seeks the video to any position for playback.
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Figure 9: Architecture of a typical HTTP Streaming service.

2.5.3.1 Progressive Download

In Progressive Download services, the request-responses are transmitted by the server
until the end of the file — similarly to any other static web resource — or until the user
stops the transmission explicitly. At the player-side, once the minimum buffered data
is obtained, the client starts playing the media simultaneously with the download of
the video from the server in the background. This behavior contrasts with the typical
download model, which requires the complete download of the video before it can be
displayed.

HTTP Streaming servers, in general, deliver video objects without considering their
encoding bitrates and consequently, their data rate demand for guaranteeing the conti-
nuity of video playback. Thus, the server transmits video content to players as fast
as the underlying infrastructure allows. Consequently, the transmission bitrates of
request-responses can surpass considerably their respective playback bitrates (equiv-
alent to the encoding bitrates). This characteristic imposes large player buffers for
storing video content client-side in Progressive Download services.

Due to their large client-side buffers, Progressive Download services are also prob-
abilistically more resilient to performance fluctuations that affect temporarily the ser-
vice than Pure Streaming services. The impact that performance fluctuations have on
the service quality experienced by end-users depends on the volume of downloaded
data stored in client-side buffers before performance degradation is observed. Since
HTTP Streaming allows higher transmission data rates, the request-responses that
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have been running for longer periods before problems arise (older requests), have
a smaller probability of generating service quality issues.

2.5.3.2 Adaptive Bitrate Streaming

The simplicity of Progressive Download in HTTP Streaming has some limitations:

• Both the client and server applications lack control over the video downloaded;

• The download process is inefficient, since the streaming users that abandon vi-
sualization of videos or seek another playback position in time can download
significantly more content than that effectively played;

• The service does not provide adaptation to specific network conditions and
client-side resources. As an example, the network bandwidth can be insufficient
to maintain the player buffer with enough data for playback.

Adaptive Bitrate (ABR) streaming technologies [Stockhammer 2011] are becoming
default technologies for delivering videos over the Internet. They represent a subclass
of HTTP Streaming that integrates the benefits of Progressive Download with the effi-
ciency and adaptation features of dedicated Pure Streaming protocols.

ABR video files are decomposed into downloadable segments with short durations
that can be requested individually, as illustrated in Figure 10. Thus, instead of request-
ing the download of the whole file, players can request video segments progressively,
according to the progress of playback. This download strategy reduces the waste of
server, network and client resources when end-users abandon visualization of videos
after a short period of time or when they perform time seek operations.

ABR adds extra complexity to players, but works with low-complex video servers.
The reason is that ABR players are in control of service monitoring and adaptation
to end-users with different bandwidths and system resources. ABR players select the
video encoding profile dynamically during playback, for obtaining the highest video
quality, the quicker time seeking or the faster start-up.

ABR videos are encoded at several different bitrate streams, each segmented into
small multi-second segments. Therefore, streaming clients can switch between differ-
ent bitrate streams dynamically, according to their available local resources and net-
work bandwidth (Figure 11). Accordingly, before requesting the next video segment
during playback, the player decides the corresponding bitrate with the support of a
Media Presentation Description (MPD) file provided by the server.

The MPD file provides the information of each segment, as the timing, URL and
video characteristics (e.g., video resolution and bitrates). Since video segments are
available at multiple bitrates, then each client decides for the next best segment listed
in the MPD to retrieve, by examining several network and device parameters (e.g.,
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Figure 10: Workflow of ABR media delivery.

available bandwidth, state of TCP connections, display resolution, available CPU and
the size of the playback buffer).

ABR video segmentation can follow two approaches:

• Each video is encoded into a single file — each request specifies the time range
interval of the video for downloading, which is mapped onto the file range offset
to be retrieved;

• Each video segment is encoded into a separate file — each request specifies the
file corresponding to the video segment it references.

The segmentation approach that fragments the video into several files has a similar
performance to that of the segmentation using a single file [Summers et al. 2012a].
However, the approach that stores each segment into a independent file, reduces the
server-side implementation complexity, since the service can be provided by standard
web servers without plugins. Moreover, it reuses the existing HTTP web caches that are
prepared to store web resource files. On the other hand, encoding each video segment
into a separate file increases the file management complexity, seeing that each video is
spread over a large number of files, each of them containing one file segment encoded
with a specific quality.

ABR has several implementations. MPEG-DASH [Sodagar 2011] is the only ABR im-
plementation that is an international standard. Other commercial implementations are
Microsoft Smooth Streaming, Adobe Dynamic Streaming and Apple HTTP Adaptive
Streaming [Stockhammer 2011].
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Figure 11: Dynamic switching between video segments encoded with different bitrates.

2.6 failure context in vod services

Failures in VoD services can occur at several levels of the video distribution lifecycle,
namely:

1. Encoding — failures introduced during the video encoding process;

2. Storage — disk hardware failures;

3. Server — fail-stop and performance failures;

4. Server-side infrastructure — failures in infrastructure services (e.g., load bal-
ancer);

5. Network — connection failures and performance failures (e.g., packet losses and
delayed packets);

6. Client-side — failures caused by faults originated client-side.

A thorough review of the literature about techniques for handling failures in the
different levels of the video distribution lifecycle is presented in Chapter 3.

2.7 virtualization technologies

The self-healing approaches proposed in this thesis exploit virtualization for perfor-
mance isolation between the Autonomic Manager and the Managed Element, and
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to support recovery through migration of servers between hosts. Virtualization tech-
niques can be classified into two broad categories: hypervisor virtualization and container-
based virtualization [Soltesz et al. 2007].

Hypervisor virtualization, implemented by full virtualization or paravirtualization tech-
nologies [Sahoo et al. 2010], requires the installation of one dedicated operating system
instance within each virtual machine, as shown in Figure 12. Consequently, in server
migration scenarios, all in-memory data of the operating system and server applica-
tions should be checkpointed, transferred and reinstantiated in the destination server,
generating significant overheads.

Guest OS

Binaries /
Libraries

HOST OS / Hypervisor

Guest OS

Binaries /
Libraries

Guest OS

Binaries /
Libraries

Guest OS

Binaries /
Libraries

Guest OS

Binaries /
Libraries

Apps Apps Apps Apps Apps

Figure 12: Traditional hypervisor virtualization, implemented by full virtualization and par-
avirtualization technologies. It requires one full operating system image for each
virtual machine instance.

Container-based virtualization technologies use a single operating system instance
for all virtual containers sharing the same machine, generating significantly smaller
overheads than hypervisor virtualization technologies [Padala et al. 2007][Che et al.
2010]. Container-based virtualization is an operating system-level virtualization ap-
proach that allows several isolated user-space instances with their own network ad-
dresses, called virtual containers, to run on top of the operating system, as illustrated
in Figure 13. The operating system is installed natively on each host machine and the
virtualization layer is placed in the operating system kernel to guarantee isolation of
processes running in different virtual containers and fair scheduling on utilization of
resources by virtual containers. Each virtual container holds a set of processes virtu-
alized with its private memory address space, logical file system and virtual network
interface.

The advantages of container-based virtualization over hypervisor virtualization can
be resumed to the following:

• Small overheads — container-based virtualization adds smaller resource foot-
prints than hypervisor virtualization, as several virtual containers share the same
operating system kernel;
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Figure 13: Container-based virtualization shares a single operating system between virtual con-
tainers, and in some cases also shares binary and library resources.

• Small migration costs — the size of the virtual container is significantly smaller
than a typical virtual machine, because the operating system runs natively decou-
pled from virtual containers. For that reason, the memory addressed by a virtual
container is significantly smaller than by a typical virtual machine. Consequently,
less data have to be checkpointed, transferred and restored during migration of
servers between hosts;

• Error isolation — healthy virtual containers are isolated from errors originated
within other virtual containers running in the same host. Since propagation of
errors between virtual containers is avoided, server migration techniques can be
exploited to rescue the healthy virtual containers during faulty periods. As well,
container-based virtualization allows rebooting faulty virtual containers indepen-
dently of either the operating system or the other virtual containers running in
the same host;

• Efficient utilization of resources. System resources unused by a virtual container
can be used by other virtual containers and are only reclaimed by the legitimate
virtual container when needed.

Due to the small overheads of container-based virtualization, it can be also com-
bined with hypervisor virtualization to: (1) guarantee performance isolation between
applications running within the virtual machine; and (2) perform selective migration
of applications between virtual machines.

2.8 chapter summary

This chapter presented the research domain and general concepts that support the re-
search developed in this thesis. It provided the background on Autonomic Computing
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and their aspects, focusing on self-healing, which is a main topic of this thesis. Then,
it described the taxonomy of failures along with their characterization in software sys-
tems, and specifically in video-streaming services. The architectures, technologies and
protocols adopted by traditional and modern video-streaming services have been also
described. Finally, it described the characteristics of the virtualization technologies
adopted for the development of our self-healing infrastructures.

The vocabulary and concepts presented in this chapter represent the background
necessary to understand the related work of our research domain presented in the
next chapter, and our work presented in the following chapters of this thesis.



3
S TAT E O F T H E A RT

There is an extensive work related to the self-healing area, from complete architectures
and infrastructures, to research dealing with specific self-healing activities: offline fault
analysis1, monitoring2, failure prediction, failure diagnosis and recovery.

This chapter provides a state of the art on the self-healing and dependability areas
related with the research conducted in this thesis. It is structured into three main
parts. Firstly, it reviews the literature covering self-healing and dependable systems in
general, to provide an overview of the research area. Secondly, it reviews the work on
video-streaming dependability, which directly relates to our work. Finally, it presents
the gaps on the literature that we fill with our work.

Table 1 presents the list of relevant publications on self-healing architectures, in-
frastructures and techniques, organized by research domain and self-healing activities
addressed. Each of these publications is described in the next sections.

3.1 self-healing systems and dependability

This section reviews the generic literature on self-healing systems and dependability
areas. It revisits the work that contextualizes the research presented in this thesis.

3.1.1 Software Engineering

Software engineering techniques have been applied to self-healing and dependable
systems at the design and runtime levels. At the design level, they help building soft-
ware systems that allow recovering their state after the occurrence of failures caused
by software faults or by operations performed by human operators by accident — one
of the main causes of failures [Oppenheimer et al. 2003]. At runtime, techniques like
fault injection are popular in software engineering for exposing the properties of a
system, which allows the understanding of how the system behaves under stressed or
faulty conditions.

3.1.1.1 Recovery Oriented Computing

Recovery Oriented Computing (ROC) [Patterson et al. 2002] is an important research
area overlapping with the self-healing requirements. ROC exploits reduction of the

1 Dynamic and static analysis.
2 Including data gathering and failure detection.
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Areas Project/Approach
Offline / 

Static 
Analysis

Monitoring 
a)

Failure Prediction / 
Anomaly Detection

Failure 
Diagnosis / 

Localization

Recovery / 
Adaptation

Overview and 
Concepts

Dependability evaluation in distributed real-time systems [Han et al. 1995] ✔

Processor-level fault injection for evaluation of software [Carreira et al. 1998] ✔

Validation of the fault-tolerance mechanisms [Arlat et al. 1990] ✔

FIG (Fault Injection in glibc) [Patterson et al. 2002a] ✔

Recursive Restartability [Candea and Fox 2001a][Candea and Fox 2001b] ✔

Recovery Oriented Computing [Patterson et al. 2002a] ✔ ✔

Reversible Systems for Operators [Patterson et al. 2002a] ✔

Detection of Web application vulnerabilities [Jovanovic et al. 2006] ✔

Automatic workarounds in Web applications [Carzaniga et al. 2008] ✔ ✔

Instrumentation of applications [Portokalidis et al. 2011] ✔ ✔ ✔

Feedback loops for handling Runtime Exceptions [Gaudin et al. 2011] ✔ ✔ ✔

AOP for generation of code assertions from UML stereotypes [Gorla et al. 2012] ✔ ✔ ✔ ✔

Automated recovery of smartphone apps using patching [Azim et al. 2014] ✔ ✔

Anomaly detection in UNIX programs [Forrest et al. 1996] ✔ ✔

Dynamic identification of dependencies [Brown et al. 2001] ✔

Time-based and prediction-based rejuvenation [Castelli et al. 2001] ✔

Pinpoint [Chen et al. 2002] ✔ ✔ ✔

Computing optimal rejuvenation schedules [Li et al. 2002] ✔

Failure prediction and diagnosis using Time Series [Sahoo et al. 2003] ✔ ✔

Diagnosis and forecasting of performance states [Cohen et al. 2004] ✔ ✔

Operator involvement in Failure Detection and Localization [Bodik et al. 2005] ✔ ✔

Anomaly detection/diagnosis in global applications [Kelly 2005] ✔ ✔ ✔

Forecasting system performance in enterprise systems [Powers et al. 2005] ✔

Failure prediction in clusters of scientific applications [Liang et al. 2006] ✔

Diagnosis of failures using process traces [Mirgorodskiy et al. 2006] ✔

Trend detection and estimation of resources utilization [Grottke et al. 2006] ✔

Anomaly detection/diagnosis in Grids using the Fourier [Yang et al. 2007] ✔ ✔

Diagnosis in Grids using the Otho Toolkit [Hofer et al. 2007] ✔

Prediction of response times/free memory [Hoffmann 2007] ✔

Rejuvenation in VOIP services [Koutras et al. 2007] ✔

Anomaly detection/diagnosis in 3-tier web servers [Cherkasova et al. 2008] ✔ ✔ ✔

Failure prediction in data stream nodes [Gu et al. 2009] ✔

Just-in-time anomaly prediction in stream processing clusters [Tan et al. 2010] ✔

Anomaly detection in computational nodes [Lan et al. 2010] ✔ ✔

Consequence-oriented self-healing [Dai et al. 2011] ✔

Performance diagnosis through code level analysis [Attariyan et al. 2012] ✔

Detection of features misbehavior [Schneider et al. 2014] ✔ ✔

DARPA [Laddaga 1997] ✔

Self-adaption principles and challenges [Laddaga 1999] ✔

Framework for Adaptive Systems [Cheng et al. 2002] ✔ ✔ ✔

Self-adaptation in legacy systems [Kaiser et al. 2002] ✔ ✔ ✔

Automatic generation of recovery descriptions[Dashofy et al. 2002] ✔

Architectural adaptation [Garlan and Schmerl 2002] ✔ ✔

Rainbow framework [Garlan et al. 2004] ✔ ✔ ✔

Software self-awareness [Robertson and Laddaga 2005] ✔ ✔

MAPE Cycle in SOA [Gurguis and Zeid 2005] ✔ ✔ ✔

QoS-oriented reconfigurable middleware [Ben Halima et al. 2008] ✔ ✔ ✔ ✔

VieCure framework [Psaier et al. 2010] ✔ ✔ ✔

Autonomic Management of Application Workflows [Kim et al. 2011] ✔ ✔

QoS architectural patterns [Menasce et al. 2011] ✔ ✔

Adaptive self-testing applications [King et al. 2011] ✔

Context-aware feedback loops in service-oriented systems [Villegas et al. 2013] ✔ ✔

Multi-algorithm redundancy [Huhns et al. 2003] ✔ ✔

Self-assembly of structures of agents [Nagpal et al. 2003] ✔ ✔

Programming paradigm based on cell division [George et al. 2003] ✔

Swarm Intelligence [Dai et al. 2006] ✔ ✔ ✔

Self-healing using embryonic models [Miorandi et al. 2010] ✔ ✔

a) Data Gathering and Failure Detection

Self-adaptive 
Systems

Multi-agent and 
Evolutionary 
Systems

Statistical 
Analysis and Data 
Mining

Software 
Engineering

Table 1: Self-healing architectures, infrastructures and related techniques found in previous
work.
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Mean Time to Repair (MTTR), as a strategy for increasing availability. It has roots on
the assumption that the increase of the Mean Time To Failure (MTTF) has the same
impact on availability as the reduction of the MTTR, considering that unavailability
is approximately MTTR/MTTF. ROC inspired several lines of research, such as fault
injection, error determination and the design of applications to tolerate rebooting of
system components and undo operations executed by operators.

Recursive Restartability [Candea and Fox 2001b][Candea and Fox 2001a] is a recov-
ery approach based on the design of systems that gracefully tolerate successive restarts
at multiple levels. By rebooting or restarting partially the system, it is possible to avoid
bugs leading software applications to crash, deadlock, spin, leak memory, or fail in a
way that leaves restart or reboot the unique way to restore the system.

Recursive Restartability also allows strong fault containment. Dependencies between
components are organized in a hierarchy of restartable components in which nodes are
highly failure-isolated. When one tree node (i.e., component) is restarted, the entire
subtree rooted at that node (dependent components) is restarted with. Identification
of faulty components is performed using an approach similar to Pinpoint [Chen et al.
2002].

Reversible systems for operators is another research topic explored by ROC. These
systems allow recovery from operator errors, one of the main causes of service failures
today. They provide operators a mean to retroactively repair latent errors that went
undetected until too late, using a 3-step undo process: rewind, repair, and replay. The
rewind step rolls back the virtual state. In the repair step, the operator can perform
the changes to the system. In the replay step, all user interactions with the system
are executed again with the changes performed in the repair step. An undoable email
system capable of recovering from errors caused by accidentally deleting messages or
by a virus or spam attack is presented in [Patterson et al. 2002].

3.1.1.2 Fault Injection

Research on fault injection is vast. Relevant work in this area includes validation of
fault-tolerance mechanisms [Arlat et al. 1990], detection of Web application vulnera-
bilities [Jovanovic et al. 2006], processor-level fault injection for evaluation of software
[Carreira et al. 1998], and dependability evaluation in distributed real-time systems
[Han et al. 1995].

One important application of fault injection in software engineering is the identifi-
cation of common patterns of software faults. These patterns lead to the development
of software development practices to improve the design of dependable software. The
Fault Injection in Glibc (FIG) [Patterson et al. 2002] is an example of a lightweight tool
for triggering and logging errors at the application/system boundary. The application
of this tool to the evaluation of several popular applications (Emacs, Netscape browser,
Berkeley DB database library, MySQL and Apache web server) has exposed effective
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practices for programming dependable applications. Examples of these practices are
resource preallocation, graceful degradation, selective retry and process pools.

3.1.1.3 Code-level approaches

Code-level self-healing activities can be incorporated into software at the design time
or through instrumentation of existing applications.

In [Gorla et al. 2012], it is addressed the design of applications with mechanisms
for detection, localization and recovery of failures. Failure detection uses UML model
stereotypes that are mapped onto assertions encapsulated in aspects3, which are in-
serted into the system using dynamic load-time weaving. Fault localization is per-
formed through analysis of sequences of method invocations and data exchanged dur-
ing interactions, to infer models that summarize and generalize the observed execu-
tions. Additionally, recovery is performed through workarounds, a sequence of correct
operations that is specification-equivalent to the sequence of operations that leads to a
failure.

The use of automatic workarounds for self-repair was also explored for Web appli-
cations [Carzaniga et al. 2008]. Workarounds are automatically generated sequences
of service invocations that have the same intended effect as the failing sequence, de-
termined according to the specifications. These sequences are executed for failure re-
covery, after the server has been brought back to an internally consistent state. The ap-
proach was successfully evaluated using failing sequences of invocations to the Flickr
and Google Maps services.

A failure detection and recovery approach for Android applications that seals off
the crashing part of applications to avoid future crashes is presented in [Azim et al.
2014]. Recovery relies on bytecode rewriting using static analysis to build models that
represent discrete, safe and unsafe points in the app, and transitions between them.
After failure occurrence, the app is restarted to a nearby safe point, while the bytecodes
associated with the crash point are rewritten.

[Gaudin et al. 2011] proposed a control theory approach for automatically disabling
system functionalities that have led to runtime exceptions. The system is instrumented
prior to deployment, so that it can later interact with a supervisor that encodes the
sequences of actions allowed for the system.

REASSURE [Portokalidis and Keromytis 2011] implements recovery of applications
by introducing rescue points in specific code locations. Rescue points are identified
and intercepted through instrumentation of the application, to gracefully handle un-
expected errors by returning an error code.

3 The main abstraction mechanism of Aspect-Oriented Programming.
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3.1.2 Statistical Learning and Data Mining Approaches

Statistical learning and data mining areas provide powerful techniques for prediction,
detection and diagnosis of failures. These techniques have been applied to perfor-
mance anomalies in general, to the specific area of software aging and also to predic-
tion of performance in non-faulty scenarios.

3.1.2.1 Detection and Diagnosis of Performance Anomalies

Detection and diagnosis of performance anomalies have been studied extensively for
both generic systems and for systems supporting specific services.

An approach for detection of anomalies in computational nodes is proposed in [Lan
et al. 2010]. Anomalies are detected via automated analysis of system data, using
Principal Component Analysis (PCA) and Independent Component Analysis (ICA)
for feature extraction and anomaly identification. These techniques were successfully
evaluated through fault injection of CPU, memory, I/O and network faults and also
deadlock faults.

An offline anomaly detection method for standard UNIX programs is presented in
[Forrest et al. 1996]. It scans traces of normal behavior to build a database of char-
acteristic normal patterns (sequences of system calls). Latter, the database is used to
scan for new traces that might contain abnormal behavior, recognized as patterns not
present in the database.

The problem of detecting and diagnosing performance anomalies in Grid environ-
ments is addressed in [Yang et al. 2007]. The Fourier transform is explored to filter
periodic patterns of resources utilization. The diagnosis activity is based on a compar-
ison of each resource utilization observed with the expected consumption provided
by the baseline model. Experimental results show several improvements over simple
window average strategy.

An approach for detection and diagnosis of performance anomalies for separating
server overloading states from application logic and configuration faults is presented
in [Kelly 2005]. It uses multivariate regression models of aggregate response times
from the transaction mix to discriminate between anomaly types. The approach was
successfully evaluated using three large data sets collected in global distributed sys-
tems.

Failure prediction in clusters of scientific applications is addressed in [Liang et al.
2006]. That work explores temporal and spacial locality of past failures to predict fu-
ture failures and uses information about non-fatal events to predict application crashes.
Transitions between server states according to specific probabilities are modeled using
sequential patterns.

Time series methods, rule-based classification and bayesian network models are ap-
plied in [Sahoo et al. 2003] to prediction of anomalous events in commercial and scien-
tific applications. Results show that time series are more accurate to predict continuous



34 state of the art

variables than to predict event characteristic variables and bayesian networks are better
for modeling dependencies between variables for root cause analysis.

Diagnosis of anomalies in Grid services is addressed in [Hofer and Fahringer 2007],
using customized wrapper services synthesized by the Otho Toolkit. The approach
relies on models formulated by the support staff or application developers to perform
fault diagnosis.

In [Mirgorodskiy et al. 2006], it is proposed an approach for localization of anomalies
through dynamic instrumentation and analysis of system processes that stop earlier
or behave differently than the rest. Anomalies are localized by looking at differences
in the control flow across processes. The faulty process is identified as the process
that stopped generating traces first or that had shown outlier traces. The cause of the
anomaly is determined through the analysis of the last trace entry (i.e., last function
called). The approach was validated in a real-world distributed environment.

Root cause analysis at the code level is explored in [Attariyan et al. 2012], for diag-
nosis of performance anomalies. Diagnosis is implemented by instrumenting binaries
at runtime, for tracking dynamic information flows. These flows are used to estimate
the likelihood that a block of the application is executed due to each potential root
cause.

Performance anomalies in web applications is a research topic studied extensively.
Pinpoint [Chen et al. 2002] is a diagnostic tool that relies on data mining techniques to
identify combinations of components that are most highly correlated with request fail-
ures. This tool monitors request traces automatically without beforehand knowledge
of request paths. Request paths are determined by instrumenting the J2EE middleware,
to see which components instances are traversed by each request. Faulty modules are
pinpointed by analyzing the components used by failed requests, but not used by
successful requests. External failure detection detects end-to-end failures, whereas in-
ternal failure detection captures HTTP and TCP failures masked by the system, with
the support of a packet sniffer tool.

Statistical analysis techniques and visualization tools are proposed in [Bodik et al.
2005] to help operators detecting and diagnosing performance failures. Their method-
ology relies on learning a baseline of web page hit frequencies and detecting deviations
from that baseline. The baseline represents the model of the users’ normal behavior.
Therefore, the efficacy of the approach is supported by the assumption that the end-
users’ behavior changes when they encounter a malfunction.

In [Cherkasova et al. 2008], it is proposed an approach for detection of workload
changes, performance anomalies and application changes in three-tier web servers.
The performance model is based on regression of the CPU consumption, and the
runtime behavior is reflected by application performance signatures. The approach
is able to accurately detect anomalies as changes in the CPU consumption pattern of
the application and identify the transactions responsible for the anomalies using the
performance signatures.
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Tree Augmented Based Networks (TANs) are explored in [Cohen et al. 2004] to
identify correlations between groups of system-level metrics and high-level perfor-
mance states. These correlations are applied to forecasting and diagnosis of failures in
three-tier network services. The interpretability and modifiability properties inherent
to TANs are important criteria for their adoption, since they allow human inspection
and analysis of models. The experimental results have shown better performance of
TANs for diagnosis than for forecasting.

An active dependency discovery technique for diagnosis of web commerce dis-
tributed applications is proposed in [Brown et al. 2001]. The approach determines
dependencies between request types and components by perturbing the system with
specific workloads and applying statistical modeling techniques to compute depen-
dency strengths.

Prediction of performance anomalies in data streaming services was investigated in
[Gu and Wang 2009]. It studies the combination of Bayesian classifiers with Markov
models to predict bottleneck failures (insufficient CPU, insufficient memory and mem-
ory leaks) in distributed data stream nodes. Markov models are applied to forecasting
of feature values, used afterwards by Bayesian classifiers to identify symptoms of fail-
ure. Additionally, context-aware models are explored to group anomalous occurrences
into contexts.

In [Tan et al. 2010], the authors investigated the problem of performing just-in-time
anomaly prediction in stream processing clusters. A context-aware anomaly predic-
tion scheme is proposed to avoid redundant learning, combined with decision trees
to classify component states. The approach exhibited better performance than mono-
lithic, incremental and ensemble approaches, for several types of stream processing
components with real-time performance requirements.

A diagnosis tool that combines Multi-variate Decision Diagrams (MDDs), Fuzzy
Logic, and Neural Networks is presented in [Dai et al. 2011]. MDDs determine failure
severity levels and are complemented with Fuzzy Logic to infer the possible conse-
quences. Neural network technology is applied to train the fuzzy logic inference.

Identification of behavioral changes in software features is addressed in [Schneider
et al. 2014]. The normal behavior of each feature is modeled by Hidden Markov Mod-
els and Artificial Neural Networks, using historical performance and configuration
data periodically gathered from the system. The approach was evaluated experimen-
tally, using configuration faults and direct fault injections responsible for crashing the
service. Experimental results show that both types of models are able to reliably detect
faults and generate an accurate ordered list of potential root causes.

3.1.2.2 Software Aging

The related work on software aging is vast. This research topic focuses mainly on the
analysis of consumption of resources to determine the system degradation level. Sys-
tem degradation is caused by software faults leading to the accrual of errors, mostly



36 state of the art

related with the allocation of resources without appropriate further deallocation. In
that case, the portion of allocated resources not being used increases along time, con-
tributing to system performance degradation.

Software aging solutions are evaluated according to their ability to quantify levels
of degradation of resources and to forecast these levels for determining the appropri-
ate moment to apply software rejuvenation techniques. Rejuvenation employs reboot-
based recovery to restore the system to a known good state without degradation.

In [Hoffmann et al. 2007], it is explored the use of statistical regression techniques
to predict the response time and the amount of free physical memory of an Apache
web server system, using numerical system metrics/parameters. Experimental results
show that Universal Basis Functions (UBFs) yield the best results for free physical
memory prediction and Support Vector Machines (SVMs) perform better predicting
server response times.

The problems of trend detection and estimation of resource utilization in web servers,
using non-parametric statistical methods, are studied in [Grottke et al. 2006]. This work
combines time series models to support prediction of resource usage using parameters
with seasonal patterns. The authors start by testing the statistical independence of data
sets using the Mann-Kendall test for trend, and then calculates the slope estimates us-
ing the Sen’s estimator method. A modified Man-Kendall test addresses seasonal data
captured from parameters with seasonal behavior, which is followed by time series
analysis to determine sudden local increases that may lead to resource exhaustion.
An autoregressive model is created for parameters showing both seasonal and non-
seasonal patterns.

Trend analysis of performance degradation in web servers is addressed in [Li et al.
2002], for computing optimal rejuvenation schedules that maximize availability and
minimize downtime cost. Parameters estimation is performed through linear regres-
sion and ARX models that fit the time series data captured during system-level mon-
itoring. Additionally, the Sen’s method estimates the performance degradation slope
for each observed resource. A comparison between models shows that ARX models
performs better for the estimation of resource exhaustion and are computationally less
intensive than linear regression models.

Detection of software aging and estimation of the remaining time until exhaustion
of resources are also investigated in [Castelli et al. 2001]. The execution of proactive
software rejuvenation for an application, process group or entire operating system is
weighted in terms of the downtime generated, for selection of the most appropriate
rejuvenation granularity. Analytical models based on Stochastic Reward Nets (SRNs)
are applied to both time-based 4 and prediction-based rejuvenation 5, with the goal of
maximizing system availability while minimizing cost.

4 Based on the time elapsed since the last rejuvenation.
5 Performed by relying on a variety of indicators of aging.
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Software rejuvenation for increasing availability of VOIP services is explored in
[Koutras and Platis 2007]. They propose rejuvenation policies indicating when to per-
form rejuvenation and a semi-Markov process (SMP) to model the time the system
enters a new resource degradation level. The VOIP service reliability is evaluated in
terms of how the Mean Time To Failure (MTTF) is affected by each rejuvenation policy
chosen to maximize the VoIP service availability.

3.1.2.3 Prediction of Performance

Statistical analysis of performance data has been explored to predict the system per-
formance with future loads, for load admittance and for planning future resource
requirements. This problem is related with the detection of performance anomalies,
since both manifest as performance failures. In diagnosis problems, it is often required
to determine whether performance failures are caused by software faults or by loads
generated by client requests. Therefore, if the system performance degradation is pre-
dicted for the organic client requests, then eventual failures are not caused by software
faults.

The problem of forecasting performance in enterprise systems for automating the
assignment of resources is approached in [Powers et al. 2005]. Forecasting of service
level objectives (SLOs) one hour ahead revealed that: (1) Multi-variate Regression and
Bayesian Network Classifiers perform better than auto-regression methods; and (2)
models are not reusable between machines without accuracy losses, but can be used
as bootstrapping models on machines where learning data are scarce.

3.1.3 Self-Adaptive Software

Self-adaptive software shares several characteristics with self-healing systems. They
both monitor their operations and attempt to correct deviations from the expected
behavior. Accordingly, self-adaptive software changes its own behavior when it is not
accomplishing what it is intended to do or when its performance can be improved.
Self-adaptability is implemented by designing software for having several ways of
accomplishing its purpose and having knowledge of its construction (self-awareness)
to make changes at runtime.

The DARPA Broad Agency Announcement on Self-Adaptive Software [Laddaga
1997] is one of the most important seminal contributions to research on self-adaptive
software. It presents the concepts and principles that have driven the development
of self-adaptive software in the last decade. Another seminal publication about self-
adaptive systems [Laddaga 1999] pointed software self-evaluation as one of the hard-
est challenges to self-adaptiveness. The reason is that it is not always intuitively clear
how to evaluate functionality and performance at runtime. Other challenges are the
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self-evaluation overhead and the lack of adequate metrics for measuring the degree of
robustness and adaptation of self-adaptive software.

The principles of self-adaptive systems are explored in [Robertson and Laddaga
2005], using a case study involving systems inspired in the natural vision. The software
designed for these case studies has knowledge about the contexts presented by the
environment (context-awareness) and meta-knowledge about the state of the program
(self-awareness). Therefore, context specific software are synthesized at runtime to
adapt to changes in both the environment context and the program state. In the case
study, each context is associated to a specific way of interpreting images, whereas
transitions between contexts are modeled using Hidden Markov Models.

The related work in self-adaptive software is divided between the adaptation through
architectural models and through the use of service-oriented architectures.

3.1.3.1 Adaptation of Architectural Models

One of the major research outcomes of self-adaptive software is centered on adapta-
tion of architectural models. Several researchers have proposed architectural models
to represent the system as a composition of components. One architectural model sets
constraints and properties on the components and connectors, so that it can be used
to detect violations on the managed model elements, and thus trigger further adapta-
tions.

A framework for adaptive grid computing written in the domain of architectural
models is proposed in [Cheng et al. 2002]. When the framework recognizes the need
of adaptation, it follows a repair logic — written in an architectural model language
— previously propagated throughout the running system. Data used for analysis are
collected using probes (the lowest level of abstraction) and are reported using gauges
to be analyzed according to predefined policies, performance objectives and resource
constraints. The use of the framework is illustrated for a load-balancing system.

The Rainbow framework [Garlan et al. 2004] provides architectural-based self-adap-
tation using a reusable infrastructure, complemented with mechanisms to promote its
specialization to specific system requirements. Data are gathered for analysis using
probes, whereas features for determining network latencies, available bandwidth and
for discovering network resources are implemented by specialized off-the-shelf tools.

An architectural approach similar to Rainbow is presented in [Kaiser et al. 2002]
for retrofitting legacy systems with self-healing, self-adaptation and self-management
capabilities. The infrastructure is designed to be independent of the running system,
with the exception of probes and effectors, which are specialized to the implementa-
tion technology. Additionally, gauges and decision mechanisms are specialized to the
problem domain and environmental context. The decision and control layer receives in-
formation from gauges to decide for the introduction of new modules or for changing
system parameters dynamically.
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SASSY [Menasce et al. 2011] is a framework for representing system architectures
automatically, and dynamically adapt them during runtime to maintain the QoS goals.
Architectures are represented by the xADL language 6, using service instances mod-
eled as software components. The self-architecting problem is approached by maxi-
mizing the system’s overall utility function, subject to a set of constraints (e.g., cost).
Adaptation involves the reuse of QoS architectural patterns (one or more components
linked by connectors), which capture strategies known to promote QoS attributes.

In [Kim et al. 2011], it is presented a framework for provision of the appropriate
mix of resources demanded by application requirements in commodity clusters and
clouds. The framework adapts the application and resources to respond to changing
requirements or environmental changes in High Performance Computing. Adaptation
is performed according to objectives (acceleration, conservation and resilience) while
satisfying deadline and budget constraints. The autonomic manager uses a compu-
tational model or benchmarks to estimate runtime, and schedules tasks to attain the
user objectives within the constraints. Experimental results using a hybrid infrastruc-
ture of clusters and clouds, show that the framework can maintain performance and
cost objectives and recover from unexpected delays and failures.

Automatic generation of recovery descriptions for specification of architectural re-
configurations is proposed in [Dashofy et al. 2002]. Recovery descriptions are obtained
from the differences (diffs) between the current and desired architecture. Diffs are archi-
tectural patches that are analyzed before being applied to a running system, with the
support of design critics. Design critics determine whether a patch of an architecture
description will create a valid result or not.

Another approach for architectural model-based adaption is proposed in [Garlan
and Schmerl 2002]. The adaptation is triggered by violations of constraints established
for properties of architectural models. Experimental results show a significant improve-
ment of the system performance using architectural adaptation, when compared with
the same infrastructure without it.

A comparative case study performed on three autonomic adaptive applications engi-
neered for self-testing is presented in [King et al. 2011]. The study show up the benefits
of having reusable designs, proper tools and frameworks for building self-testable au-
tonomic software. It also identifies the inexperience of the autonomic development
and testing teams and the complexity of self-test features as the main threats to the
implementation of self-testing software architectures.

3.1.3.2 Service-oriented Architectures

Web Services and Service-Oriented Architectures (SOA) are de facto standards for
designing distributed applications. However, dealing with the complexity of depen-
dencies between services exposed to permanently changing constraints, both at the

6 xADL is a XML-based architecture description language.
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communication and execution levels, is challenging. Self-healing properties can help
dealing with such complexity when incorporated in that type of systems, by exploring
the dynamic composition of services interconnected via loosely-coupled bindings.

Self-healing is proposed as a web service for SOA environments in [Gurguis and
Zeid 2005]. The service implements the MAPE cycle that accompanies the Autonomic
Computing original concept. It includes features for discovering, diagnosing and react-
ing to unexpected events responsible for service malfunctions. Event logs, represented
according to the standard Common Base Event Format (CBE) [Ogle et al. 2004], feed
the database that maps symptoms to recovery actions.

Self-healing web services are implemented using QoS-Oriented Self-healing middle-
ware (QOSH) in [Ben Halima et al. 2008]. QOSH supports both reactive and proactive
self-healing. The latter is implemented through analysis of tendencies in QoS param-
eters (e.g., continuous increasing response time). Data used for analysis of QoS pa-
rameters, in the requester and provider sides, are gathered using metadata fields of
SOAP message headers. Diagnosis is implemented through analysis of interactions of
each web service with the other web services, to identify the source of degradation.
Recovery is implemented through architectural reconfigurations providing single and
composed substitutions for the faulty web services.

The VieCure framework performs monitoring, diagnosis and recovery of failures in
SOA systems [Psaier et al. 2010]. The self-healing process implemented by the frame-
work covers services provided by human actors and software. Diagnosis is performed
by detecting abnormal interaction behaviors (through comparison with previously
seen events) between software services, and between human services and software
services. Recovery is ensured by each computer node, through control of the through-
put of tasks accepted by it and by delegation of tasks to other nodes.

DYNAMICO [Villegas et al. 2013] addresses the management of adaptation proper-
ties and goals in service-oriented systems. It focuses on modularization of the feedback
loops that manage control objectives over time, context-aware adaptation mechanisms
and dynamic monitoring. The applicability of DYNAMICO is demonstrated for a SOA
governance application based on an industrial case study, for guaranteeing SLAs in a
cloud-based infrastructure.

3.1.4 Multi-agent Systems

Agents can be used as building blocks for development of self-healing software. They
can be composed dynamically in a system during runtime and are customizable over
their lifetime. By design, they can handle unexpected conditions in environments with
unpredictable behavior. Being self-aware, multiple cooperative and persistent, agents
can adapt to support the overall system objectives.

Multi-agent software have been used to create self-healing software. They assist
both conventional software systems and traditional software engineering techniques



3.1 self-healing systems and dependability 41

to improve the robustness of complex systems. The multi-agent paradigm has sev-
eral properties aligned with the self-healing requirements, such as high dependability,
robustness and high degree of adaptability. Additionally, agent-based programming
produces code that is easier to reuse and add to existing systems, seeing that agents
are designed to interact with an arbitrary number of other agents.

In [Huhns et al. 2003], the multi-agent paradigm is applied to software development
for attaining high levels of robustness, proportionated by multi-algorithm redundancy
provided by several agents. Distributed decision making and control using several
agents allows detection and correction of inconsistencies in each other’s behavior, with-
out a fixed leader or controller. The proposed approach is studied using a case study
that involves running several sorting algorithms using several agents.

An approach for engineering self-organizing systems using agents is presented in
[Nagpal et al. 2003]. Instead of attributing goals directly to the behavior of individual
agents, the authors propose a global decomposition of goals, described at a abstract
level, into construction steps to be mapped to local rules implemented by agents. Self-
repair of systems is implemented by conceiving agents aware of their other neighbor-
ing agents, with the purpose of launching replication when a neighbor agent disap-
pears. Therefore, when an agent fails, it is replaced through reproduction, if there is
room at the chosen location for another neighboring agent. Hence, the structure of
agents can grow to any size and be automatically maintained through replacement of
dying parts.

3.1.5 Evolutionary Systems

Self-healing systems have several characteristics encountered in the biological para-
digm. One typical analogy for recovering from a error in self-healing systems is, in bi-
ological systems, the expectation that the body autonomously recovers from a wound.
Research on evolutionary systems, in particular, proportionates important concepts
inspired in the biological paradigm with an application into the self-healing domain.

A programming paradigm based on the actions of biological cells is proposed in
[George et al. 2003]. The healing concept is built on the cell-division analogy, where
cells divide and communicate between each others through diffusion of chemicals
within a given radius. The programming paradigm is evaluated using an application-
layer peer-to-peer file sharing service running over a wireless network — the service
is designed to run on wireless nodes that can be mobile. Results show that movement
and death of nodes and network path failures are potentially overcome through cell-
division.

Swarm Intelligence is proposed in [Dai et al. 2006] for building self-healing systems.
Autonomous diagnosis and curing are consequence-oriented and are implemented
in a swarm of robots (computer machines) using prescriptions. Each robot monitors
other robots and, in case of detection of faulty behaviors, the underlying problem is
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diagnosed using Fuzzy Logic, Bayesian Networks or Hidden Markov Models, to nar-
row down the possible causes and their domain. The knowledge base used for iden-
tification of possible diseases responsible for the symptoms is built up from generic
statistics on historical data.

In [Miorandi et al. 2010], it is studied the development of self–healing distributed
services, using an architecture inspired on metaphors of biological organisms. Each
system is an embryo made of stem cells that develops into a full organism, in which
every cell (system node) assumes a different and specialized function. Each system
node has a genome that contains the full service specification: (1) the expected service
behavior as a whole; (2) single tasks to be performed by cells; and (3) a set of rules
for deciding, based on the context, which task is to be performed next. The genome
is spread throughout the network through self-replication and is interpreted by each
cell. Additionally, cells exchange information about the state of their neighbors for
failure detection — upon detection of a failure in a neighboring cell, they replicate the
genome to a new cell and re-enter the embryo state.

3.2 video-streaming dependability

Dependability techniques have been applied to video-streaming services at several
levels. This section reviews the literature addressing failures in every stage of the
delivery of video content to end-users. Figure 14 summarizes the most relevant related
work in the area of video-streaming dependability.

3.2.1 Encoding Failures

Techniques that measure the QoE of end-users, such as the Peak Signal Noise Ratio
(already referred in Section 2.4) have been exploited for detection of encoding errors.
However, encoding errors are out of the scope of our work, since they are related
with the implementation of video codecs. Our work addresses failures occurring in
the infrastructure that delivers video-streaming content to end-users.

3.2.2 Storage Failures

Failures in the storage subsystem can be classified into fail-stop failures and perfor-
mance failures.

3.2.2.1 Fail-stop Disk Failures

With respect to fail-stop failures, disk arrays have been used during decades as a
way of improving parallelism between multiple disks to increase both the aggregate
I/O performance and reliability through data redundancy. Redundant Arrays of Inex-
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Areas Project/Approach
Storage Arrays of Inexpensive Disks (RAID) [Chen et al. 1994]

Admission control algorithm to guarantee performance levels [Vin et al. 1994]
Parallel streaming using data striping among servers with proxies [Lee 1998]
Parallel streaming using data stripping and erasure correction [Lee et al. 2000]
Server-less architecture using inter-node striping and erasure correction [Lee et al. 2002]
Distributed video transcoding system in Cloud Computing using Hadoop and MapReduce 
[Kim et al. 2013]

Network Graceful QoS degradation using Multiple Description Coders [Reibman et al. 1999]
Comparison of multiple-description coding and layered coding [Singh et al. 2000]
FEC performance in multimedia streaming [Frossard 2001]
Recovering from different packet loss using the same redundant data using FEC [Horn et al. 2001]
Rate allocation scheme using FEC in order to minimize packet losses in bursty loss environments 
[Nguyen et al. 2002]
Performance analysis of implementations of multiple description coding and layered coding 
[Chakareski et al. 2005]
Autonomous fault recovery through distribution of layered coding data between server nodes using the 
Faded Information Field architecture [Nakatogawa et al. 2006]
FEC strategies over wireless environments [Nafaa et al. 2008]
Comparison of Multiple Description Coding with FEC [Zhao et al. 2012]
Correlation of user-induced interruptions of TCP connections with performance metrics  
[Collange et al. 2012]

Server Calculation of the resources costs of media requests [Cherkasova et al. 2003]
Prediction of overloading failures in streaming servers [Covell et al. 2004]
Energy-based anomaly detection in smart phones [Ickin et al. 2013]

Figure 14: Related work on video-streaming dependability.

pensive Disks (RAID) [Chen et al. 1994] technologies have been widely deployed to
prevent data losses resulting from disk failures.

The distribution of video content fragments among an array of servers in the sys-
tem is also popular to increase parallelism and reliability. Video data are segmented
into stripe units that are spread over several servers. In this way, the video content re-
quested by a single client request can be delivered by several servers to achieve linear
scalability. Data retrieved by several servers can be merged by clients or by proxies
[Lee 1998].

Data striping between servers requires extra redundancy for reliability. Erasure cor-
rection has been exploited with data stripping in [Lee and Wong 2000][Lee and Leung
2002] to tolerate failures in individual servers through redundancy. Redundant data
blocks are distributed among the servers, so that in case a server fails, the client can
recover the unavailable video blocks using the redundant blocks and the main data
blocks through XOR operations. This approach is similar to that exploited by RAID
systems to recover data losses caused by disk failures with small redundancy over-
heads.

A distributed video transcoding system for cloud computing that uses Hadoop for
data replication between server nodes is proposed in [Kim et al. 2013]. On top of
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data replication, the system adopts the fault tolerance and load balancing mechanisms
implemented by Hadoop.

3.2.2.2 Disk Performance Failures

Video-streaming services are data intensive. Thus, disk I/O is a typical performance
bottleneck. Performance failures caused by disk bottlenecks should be avoided through
load control mechanisms. That means that user requests should be accepted only when
the disk can handle the associated load.

In [Vin et al. 1994], it is proposed an admission control algorithm to guarantee statis-
tical performance levels of streaming services, while maximizing the server utilization.
The algorithm relies on the analysis of variation in the access times of disk media
blocks to infer the maximum server capacity. The ability of the approach to restrain
the server load to its maximum capacity is evaluated successfully through simulation.

Performing load control through the analysis of the disk I/O activity is only effective
when the disk is the server bottleneck. In other server configurations and workload
types, the bottleneck can be other system resource, such as the CPU or the network.

3.2.3 Network Failures

The most common strategies for overcoming network failures in video-streaming ser-
vices are graceful degradation of video quality and redundancy using erasure correc-
tion. These strategies can be employed without mechanisms for detection of network
anomalies.

3.2.3.1 Detection of Anomalies

Network anomalies are commonly detected through analysis of network parameters,
such as, packet losses and packet delays. The analysis of these parameters allows:
(1) Adaptive Bitrate video players to switch between videos encoded with different
bitrates; and (2) RTSP servers to control the transmission of data to video players.

There are other less common approaches for server-side detection of network anoma-
lies. The work presented in [Collange et al. 2012] shows that the customers’ experience
can also be used for network monitoring. That work is based on the premise that
there are strong correlations between the interruption rates of TCP connections and
the network quality-of-service.

3.2.3.2 Graceful Degradation

Some video formats embrace graceful degradation of video quality when some packets
are not received by the player on time for playback. Hence, during graceful degrada-
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tion periods, end-users are able to continue watching videos but with degraded quality
(e.g., experiencing glitches or reduced resolution).

Layered coding [Chakareski et al. 2005][Nakatogawa et al. 2006] is a popular graceful
degradation technique used for encoding videos with several quality layers. The maxi-
mum quality is achieved when all layers are available for playback. When only part of
the set of layers is available, it is possible to ensure video-playback continuity without
waiting for the reception of all layers. Hence, lost and delayed packets (associated to
some layers) during transmission will not interrupt the video playback. However, lay-
ered coding requires the base layer to provide the basic level of video playback quality.
That means that only the enhancement layers that improve de video quality can be lost
during transmission.

Multiple description coding [Reibman et al. 1999][Singh et al. 2000] is an alternative
to layered coding, which decomposes the quality of videos using descriptions (equiv-
alent to layers in layered coding). Each description alone can guarantee a basic level
of reconstruction quality of the source, and every additional description can further
improve that quality. This characteristic provides additional resilience against packet
losses compared with layered coding, since it affords transmission losses in any of the
descriptions.

Graceful degradation techniques at the encoding-level help overcoming non-sequen-
tial intermittent data losses in the network. However, graceful degradation can only
be implemented with network transport protocols without data delivery guarantees
(e.g., UDP). The reason is that network transport protocols providing data delivery
guarantees (e.g., TCP) force data to be received in order and to be delivered to the
application sequently and without loss. Consequently, the player application only re-
ceives one frame fi when all preceding frames fj (being j < i) were correctly received
by it, forcing the video playback to stop when one or more frames of the video frame
sequence arrive after their playback time.

3.2.3.3 Erasure Correction

Erasure correction techniques exploit data transmission redundancy to allow the re-
ceiver to correct transmission errors without retransmission. Forward Error Correction
(FEC) has been used during decades to encode messages in a redundant way through
Error-Correcting Codes (ECCs).

FEC methods has been applied to multimedia streaming services to overcome fail-
ures caused by packet losses in video transport [Frossard 2001][Horn et al. 2001][Nguyen
and Zakhor 2002][Nafaa et al. 2008]. Contrasting with graceful degradation techniques,
which tolerate data losses by degrading the video quality, FEC methods can recover
the original data without quality degradation. However, FEC approaches are less ef-
fective in bursty loss environments than graceful degradation techniques [Zhao et al.
2012].
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3.2.4 Server-side Failures

Server fail-stop failures are usually addressed by generic fault tolerance techniques.
On the other hand, performance failures have complex failure modes that are specific
to the service type. These failures are often caused by: software faults that manifest
as performance anomalies (described in Section 2.3) or ineffective load control mecha-
nisms permitting server overloading.

Performance anomalies in video-streaming services is a research topic not so exhaus-
tively explored. The work presented in [Ickin et al. 2013] addresses detection of user
interface and network anomalies in video-services provided to smartphones. It shows
that the instantaneous power consumption of the smartphone is an accurate predictor
of anomalies.

A modeling approach to predict failures caused by saturation of the capacity of
video-streaming servers is presented in [Covell et al. 2004]. It uses models that map
low-level metrics measurements to utilization of resources, built using a small number
of calibration workloads. These models are used to predict the performance impact of
new loads, so that the load admitted is controlled to avoid server overloading.

Several benchmarks are proposed in [Cherkasova and Staley 2003] to train perfor-
mance models represented as cost functions that determine the resources involved in
the processing of media workloads. These models are built specifically for requests
served either from the disk or from the memory7. By determining the cost of each re-
quest in terms of resources, the impact of the acceptance of new requests on the server
performance can be predicted. Thus, the acceptance of new requests can be controlled
to avoid overloading of media servers.

3.3 recovery using virtualization techniques

Failover is a popular fault tolerance strategy that switches the service provided by an
active computer server to a redundant or standby computer server, upon the failure of
the active computer server. Its implementation relies commonly on checkpointing tech-
niques [Elnozahy et al. 2002] for rescuing the server application state and client-server
connection states to another computer server. However, since server application states
are stored in application-specific structures and connection states are operating-system
structures inaccessible by applications, the failover process would require several lev-
els of instrumentation.

Virtualization techniques simplify the implementation of failover. It provides server
migration with generic checkpointing and migration of video-streaming services be-
tween hosts, while maintaining the same network IP address. Generic checkpointing of
virtual machines avoids the assumption of applications designed (or instrumented) to
checkpoint and restore their state during recovery. Additionally, virtualization allows

7 Requests benefiting from temporal locality.
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generic recovery of client-server connections. This feature, implicit in virtual machines,
constitutes an alternative to native migration of TCP connections, which require oper-
ating system instrumentation [Sultan et al. 2002].

Server migration requires access to the last state of the server application and each
client-server connection in the active host, for guaranteeing resumption of the service
in the fallback host8. However, failures are unexpected events that can occur anytime
and consequently, it is nontrivial to provide guarantees of obtaining the last server
state during failover. One solution for guaranteeing service continuity after failover is
to implement synchronous checkpointing techniques [Marcus and Stern 2000], for ensur-
ing permanent consistency between the active and standby replicas.

3.3.1 Synchronous Checkpointing

Lock-step checkpointing [Bressoud and Schneider 1996] is an active-standby replication
technique commonly used to maintain consistency between two virtual machine repli-
cas. This synchronous replication technique works by updating one virtual machine
replica in the standby host on each update of the virtual machine replica running in
the active host, guaranteeing that both replicas are consistent anytime. Thus, the last
state of the virtual machine running in the active host can be recovered anytime using
the replica of the standby host.

Synchronous replication techniques similar to the lock-step checkpointing technique
ensure service continuity after failover, when the checkpointed virtual machine state is
correct (fault-free). However, notwithstanding several optimization attempts have been
done to these techniques [Lu and cker Chiueh 2009], they still have scalability problems
and introduce complexity and overheads [Elnozahy et al. 2002], compromising their
use in services with data-intensive workloads [Cully et al. 2008][Tamura 2008]. Most
overheads are caused by network latencies compromising the replication performance
of symmetric virtual machine replicas.

3.3.2 Single Checkpoint

Proactive recovery — implemented with the support of failure prediction — allows the
adoption of efficient techniques for migration of server checkpoints. These techniques
are based on the assumption that before the failure of the active server, it is possible
to perform a copy of the server checkpoint from the active host to the fallback host.

Virtualization technologies have evolved to provide mechanisms with capabilities
for migration of virtual machines between hosts with small service downtimes. These
mechanisms are valuable because virtual machine checkpoints are large and thus re-
quire long periods of time to be transferred between hosts, even in a local area network.

8 Destination host of the migrated server instance.
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These checkpoints enclose the operating system, applications and their in-memory
states.

Techniques for migrating virtual containers using a single checkpoint can be clas-
sified into stop-and-copy migration and live migration. Typical stop-and-copy migration
processes [Sapuntzakis et al. 2002][Akoush et al. 2010] involve:

1. Stopping the virtual machine and consequently, the service provided by the
server running inside. This action involves checkpointing all in-memory states
required to resume the service afterwards;

2. Copying the virtual machine image with the checkpoint to the destination host,
throughout the network. Alternatively, when replicas of the virtual machine im-
age coexist in the origin and destination hosts, only the checkpoints are copied
between hosts;

3. Starting the virtual machine in the destination host.

The process of copying the virtual machine image and/or checkpoint to the des-
tination host is commonly the main contributor of service downtimes during server
migration. To reduce the cost of copying data between hosts, several virtualization
technologies implement techniques for live migration of virtual machines. Live migra-
tion introduces very low downtimes and has two implementations: pre-copy migration
[Theimer et al. 1985][Clark et al. 2005] and demand-migration [Zayas 1987] techniques.

3.3.2.1 Pre-copy Migration

In pre-copy migration, the virtual machine’s memory pages are copied between hosts
during the warm-up phase of the migration process (Figure 15). During this phase, the
memory pages are copied without stopping the service in the origin host, which stills
in production until the end of the migration process. If some memory pages change
(i.e., become dirty) during this process, they will be copied again until the rate of re-
copied pages is higher than the page dirtying rate. In a second stage, after stopping
the virtual machine in the origin host, the remaining dirty pages will be copied to the
destination host. Finally, the service is reestablished in the destination host.

The pre-copy migration process reduces the service downtime and consequently,
the likelihood of QoE degradation resulting from server migration between hosts is
reduced as well.

3.3.2.2 Demand-Migration

In demand-migration, the memory pages are copied after stopping the service in the
origin host and starting the service in the destination host. The server starts in the des-
tination host with a minimal subset of the execution state of the virtual machine. Then,
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Figure 15: Steps of pre-copy migration of virtual machines.

whenever the virtual machine references pages that have not yet been transferred, it
generates page faults. These page faults are trapped and redirected towards the origin
host over the network, to be transferred to the destination host.

Demand-migration reduces the virtual machine migration time but introduces sig-
nificant overheads after migration and for that reason, is less popular than pre-copy
migration.

3.4 research gaps

Self-healing systems should distinguish between their normal and faulty states and/or
behaviors, diagnose failure conditions and execute the adequate repair actions to
restore the system to a correct or error-free state. To implement self-healing video-
streaming systems, it is required to fulfill several research gaps in the literature.

Most of the research gaps identified are related to prediction, detection, diagnosis
and repair of performance anomalies in the video-streaming domain, and to the inte-
gration of the video-streaming systems with the self-healing activities.

3.4.1 Research on Performance Anomalies

Performance anomalies are a research topic that has been studied for services with
characteristics different than those of video-streaming services. Software aging and re-
juvenation are examples of extensively studied subjects associated to this topic. Perfor-
mance anomalies have also been studied in the context of failure diagnosis to identify
system elements with abnormal behavior, which are those more likely to be responsi-
ble for the failures.

In video-streaming services, the failure prediction and diagnosis activities should
work with small time resolutions of log data and provide responses to anomalous
states in short periods of time. These requirements are challenged by the: (1) varia-
tions of individual system parameters/metrics, which demand more complex models
and domain-specific metrics to avoid compromising the accuracy of failure prediction
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and diagnosis; and (2) management and efficient exploitation of system models to
anticipate user failures and thus, employ proactive remedial actions.

Repair of performance anomalies is another area of concern, which commonly relies
on reboot techniques to restore the system to normal operation. However, reboot op-
erations can be disruptive to the established client-server sessions. This can be critical
in some video-streaming technologies that require the continuity of the sessions until
the end of playback. It is important to investigate reboot techniques that support the
rescue of client-server sessions to another hosts. Still, these techniques should control
the impact of the reboot downtime and the further initial server warm-up period on
the QoE of services.

3.4.2 Research in Self-healing Video-streaming Systems

Performance issues have a significant impact on the QoE of video-streaming services.
Therefore, the anticipation of performance failures, accompanied with the subsequent
proactive diagnosis and repair activities, are desirable in this type of services. The de-
sign of an automatic proactive recovery lifecycle integrating all these activities would
help maintaining high levels of service.

The use of Autonomic Computing in video-streaming systems deserves a long re-
search agenda. The performance sensitivity of video-streaming systems makes them
excellent candidates for the implementation of the Autonomic Computing principles,
such as the self-awareness and self-control capabilities. Thus, Autonomic Elements can
be build from video-streaming servers by adding them self-awareness through the lo-
cal management of server models, and efficient self-control capabilities through the
continuous analysis of the server behavior while ensuring reduced response latencies
to performance issues.

The self-healing activities implemented by each Autonomic Element should be de-
signed to work together, by respecting the specification dependencies between self-
healing activities. As an example, failure diagnosis should be addressed according to
the automatic repair actions available. That means that the diagnosis classification out-
comes, such as, the type and localization of the failure will determine the appropriate
repair action to be executed. As well, failure prediction should provide the look-ahead
time required to execute each specific repair action.

3.5 chapter summary

This chapter reviewed the state of the art on self-healing systems and dependability of
video-streaming services. The literature about self-healing involves multidisciplinary
research work in the areas of software engineering, statistical learning, data mining,
self-adaptive systems, multi-agent systems and evolutionary systems. On the other
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hand, dependability of video-streaming services has been mainly studied at the stor-
age and network levels.

The related work presented in the literature allows the understanding of the pub-
lished work and the research gaps that are fulfilled with our work. The major research
gaps result from the overlapping of the self-healing concepts with the dependability
issues raised by performance failures in video-streaming services.

The next chapter explains in detail the research problems addressed in this thesis
and presents our self-healing infrastructures for video-streaming systems.





4
S E L F - H E A L I N G A P P R O A C H A N D I N F R A S T R U C T U R E S F O R
V I D E O - S T R E A M I N G

Video-streaming users are sensitive to QoS fluctuations. QoS degradation is usually
manifested by: (1) rebuffering events that interrupt the video playback; (2) the increase
of (re)buffering times; and (3) glitching in the display of video. These events diminish
the users’ QoE proportionally to their severity and to the upfront time invested by
each user watching the video.

In video-streaming services, the request-response data can be sent progressively
by servers to players during several seconds, minutes or even hours. To ensure video
playback continuity and avoid QoS degradation, each video fragment (group of several
frames) transmitted in the course of each request-response should be delivered by
players before its playback time. Performance anomalies in the network and server
infrastructures are a common cause of QoS failures due to data arriving too late for
playback.

Proactive recovery is a promising strategy for overcoming performance failures be-
fore their occurrence, by grounding execution of repair actions with failure prediction
and failure diagnosis activities. Failure prediction addresses the identification of spe-
cific patterns in the log data that indicate performance failures in the future. On the
other hand, failure diagnosis classifies these patterns in terms of fault type and/or
location. Both failure prediction and failure diagnosis activities are challenged by the
difficulty in recognizing and classifying automatically recurring patterns of system
behavior. These patterns can be complex and depend often on the underlying infras-
tructure and respective configurations.

The repair activity is challenged by the recovery of client-server sessions/connec-
tions and the impact of repair actions on the QoE of the service. Thus, the migration
of client-server sessions between hosts, the reduction of the server downtime during
reboots and the control of the server load during the warm-up stage are research issues
to be addressed.

All self-healing activities are grouped in an element of the infrastructure (Autonomic
Manager) that controls the element represented by the video server application (Man-
aged Element). These elements are performance-isolated to avoid interference between
their activities. Performance isolation can be achieved in the same machine through
virtualization of by installing the Autonomic Manager and the Managed Element in
independent machines.

This chapter contextualizes and describes our self-healing approach and the self-
healing infrastructures for HTTP Streaming and Pure Streaming (RTSP Streaming)

53
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services. It starts by presenting the self-healing problem space, assumptions and goals.
Then, it presents the self-healing activities and components of each infrastructure. Af-
terwards, it specifies the methodology and benchmarks (with the workloads and faults
loads) employed for the evaluation of the self-healing activities presented in the next
chapters of this thesis. Finally, it presents the performance and QoS metrics covered
by the monitoring activity and the monitoring overheads observed experimentally.

4.1 infrastructure requirements

The self-healing infrastructures proposed in this thesis adopt proactive recovery as a
strategy for ensuring the continuity of video-streaming services without QoE degra-
dation. Therefore, they should provide facilities for: (1) providing log data with small
time resolutions to the self-healing activities; (2) maintaining a knowledge base with
the models representative of healthy and unhealthy system behaviors created dynam-
ically using log data; and (3) implementing efficient repair.

The research goals established for the HTTP Streaming self-healing infrastructure
are the following:

1. Conceiving the structure of an Autonomic Element build from each video server
instance, while ensuring performance isolation between the main server func-
tionality and the self-healing functionality;

2. Devising an efficient data gathering mechanism for providing system, applica-
tion and network performance metrics/parameters values, periodically, to self-
healing activities;

3. Ensuring that the structure of the Autonomic Element is designed to facilitate
the implementation of efficient reboot and checkpoint mechanisms.

We establish equivalent goals for the Pure Streaming self-healing infrastructure.
However, in the HTTP Streaming infrastructure, the performance isolation between the
self-healing functionality and the server is ensured through virtualization. By contrast,
in the Pure Streaming infrastructure, the self-healing functionality runs in a physical
machine independent of the server’s machine. Consequently, the repair actions are not
implemented in this infrastructure, since they depend on the virtualization infrastruc-
ture.

The decision for different infrastructures for HTTP Streaming and Pure Stream-
ing services provides diversity that can be exploited for the evaluation of our ap-
proach under different underlying infrastructure configurations (e.g., virtualized or
non-virtualized) and machine learning strategies (e.g., offline learning or online learn-
ing).
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Fault Duration
Fault Manifestation Anomalous system behavior QoS degradation Fail-stutter Fail-stop

Fault Source Client workloads Server application faults System faults (operating 
system/other processes) Network faults*

Granularity Server application Virtual container 
(Heisenbugs)

Fault Profile Expectations

Fault Detection Failure detection by external 
agent Load analysis Failure prediction through anomaly detection

Degradation
Fault Response

Fault Recovery Automatic diagnosis of 
failures predicted or detected Rebooting server application Rebooting virtual container Migration of virtual 

containers

Time Constants

Assurance

Architectural completeness
Designer knowledge
System self-knowledge
System evolution
Abstraction level
Component homogeneity
Behavioral predetermination
User involvement in healing
System linearity
System scope

* Addressed by failure diagnosis but not covered by failure prediction

Not applicable

Redirect requests

Recovery delays lower than look-ahead times

Intermittent/transient faults

System

Unexpected faults / Performance Failures

Fault Model

Online learning

Multiple computers in a closed network system Users are in an Internet-based system

Full performance QoS degradation

System 
Response

System 
completeness

Design 
context

Only the video-streaming technology is known. The system behavior is learned dynamically using machine learning 
algorithms

Virtual container and computer system
Not applicable
Behavior is discovered using machine learning
Fully automatic

Data gathering and data analysis delays with minimum 
impact on look-ahead times provided by failure prediction

Statistical guarantees of failure prediction performance 
updated continuouslyExternal QoS Monitoring

Retraining machine learning models

Table 2: Self-healing problem space, describing the fault model, system response and assump-
tions about the knowledge and the design of the system.

4.2 self-healing problem space

Self-healing infrastructures should provide adequate system responses to failures. The
effectiveness of these responses are evaluated according to the specification of the
fault model and the assumptions about system completeness and design context, as
described in Section 2.2. Table 2 presents the problem specification that will drive the
design of the self-healing infrastructures presented in this chapter.

4.2.1 Fault-model and System Response

The fault profile assumed by our self-healing approach comprehends both expected
and unexpected faults, as long as they expose system abnormal behaviors that are in
the origin of performance failures. Accordingly, our failure assumptions follow not
only the traditional fail-stop model associated to hard failures, but also the fail-stutter
model representing system performance irregularities responsible for QoS degrada-
tion.

Recovery techniques have two strategies. They can be applied before failure occur-
rence (proactive recovery), using failure prediction techniques, or after failure occur-
rence (reactive recovery). Figure 16 illustrates the normal and faulty system states
with the corresponding detection and repair strategies. Intuitively, proactive recovery
— triggered by detection of performance anomalies — is the most interesting approach,



56 self-healing approach and infrastructures for video-streaming

Normal State Performance 
Anomalies

User Visible 
Failure

Failure Prediction Failure Detection

Reactive Recovery

Proactive Recovery

Figure 16: Normal and faulty system states with corresponding detection and repair strategies.

since it provides an opportunity to fix the problem before end-users start experiencing
failures.

Selection of recovery techniques is dependent on the failure types. Performance
failures are one of the main types of failures occurring server-side [Oppenheimer et al.
2003][Pertet and Narasimhan December 2005]. Figure 17 presents the taxonomy of
performance failures in video-streaming services and the respective repair techniques
explained later in this section. We coarsely classify performance failures according to
their source into:

• Client-workloads overloading, when client-workloads leads the server to sur-
pass its nominal capacity. This type of performance failures are caused by work-
loads generated by organic client-server requests that force the server infrastruc-
ture to exceed its maximum load capacity;

• Performance anomalies, when the server misbehavior is explained by software
faults — e.g. memory leaks, configuration errors or parasite processes sharing
resources with the video server.

Client-workload overloading and performance anomalies have different causes and
require different recovery strategies.

4.2.1.1 Client-workload Overloading

Client-workload overloading failures are caused by load balancing errors or ineffec-
tive load control. In a typical cluster configuration, the requests are assigned to server
instances by load balancers according to specified policies. Load balancing errors lead-
ing to uneven distribution of loads between machines occur even in large scale global
services, such as Amazon EC2 [ama 2012] and Google Applications[goo 2012]. Also,
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Figure 17: Taxonomy of performance failures and corresponding repair techniques.

in video-streaming services, the load admission activity is complex and depends of-
ten on the workload type. Factors like the video encoding bitrate, the video format
and the popularity of the videos provided by the server, interfere with the maxi-
mum number of requests allowed simultaneously by the server. Thus, workload type
changes lead often to service failures caused by server overloading [Cherkasova et al.
2008][Cherkasova and Staley 2003].

Workload-related failures are caused by external factors to the server. However, the
context of the Autonomic Element is delimited by the server instance, which should
guarantee self-protection against this type of failures by detecting and diagnosing
them. In which concerns to recovery, all the repair actions pursue the reduction of the
server load, as such:

• Selective termination of requests being handled by the server;

• Renegotiation of server resources, when the server is running over a virtualiza-
tion infrastructure;

• Migration of the server application to a better provisioned host.

The first action disrupts part of the connections established between clients and
the server and thus, should be avoided whenever it is possible. The last two actions
relies on infrastructure capacity management features for negotiating more resources
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or moving the server application from a underprovisioned host to a better provisioned
host with sufficient resources to sustain the workload.

4.2.1.2 Performance anomalies

Performance anomalies are triggered by transient faults, also known as Heisenbugs
[Gray 1996], a class of faults that are difficult to reproduce and, consequently, to diag-
nose. Performance anomalies can be breakdown into network anomalies, system anoma-
lies and application anomalies.

In video-streaming services, network anomalies have standard solutions based on
graceful degradation of video quality. Examples of these solutions are the Adaptive
Bitrate streaming techniques to adapt the service to limited network conditions [Stock-
hammer 2011] (e.g., the recent MPEG-DASH standard [Sodagar 2011]), temporal data
redundancy [Feamster and Balakrishnan 2002] and spatial data redundancy [Puri and
Ramchandran 1999].

System anomalies and application anomalies bring the server to undeterministic
states at irregular and unpredictable times. During these periods, the observed appli-
cation and/or system behavior is unexplained by the observed workload. That means
that the type and volume of client requests processed by the application suggests a
different behavior (e.g., higher than expected request-response times). These types of
performance anomalies can be commonly handled by rebooting the faulty components
[Li et al. 2002][Grottke et al. 2006][Candea and Fox 2003] and/or migrating healthy
components to another failure-free infrastructure for reestablishing the service there
[Dobre et al. 2011].

We anticipate user-visible failures through detection of performance anomalies, us-
ing classification models created by supervised learning algorithms [Hastie et al. 2001]
for capturing scenarios representative of normal and anomalous system behaviors.

Since it is often unlikely to attain 100% of accuracy using classification models, the
unpredicted failures are detected later by a failure detector, when they manifest as QoS
degradation or fail-stop failures. Reactive recovery is applied to these failure scenarios.

4.2.2 Assumptions About System Completeness

The design of a self-healing system is constrained by the assumptions of the knowl-
edge about the system behavior. The specification of most systems is incomplete and
thus, the self-healing approaches must deal with the limits of knowledge.

The architecture of our self-healing system is known but not its behavior during
normal and faulty periods. An Autonomic Element encloses one server application
that are usually delivered without the specification of the performance behaviors ex-
pected for the underlying infrastructure. On top of that, these behaviors can change
along with new software updates and changes in the underlying infrastructure. There-
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fore, system behaviors are modeled automatically in our self-healing systems using
machine learning algorithms, for normal and faulty periods.

Workload-related failures have less complex server behaviors than performance
anomalies, since the fault profile is known and the failures are explained by the ex-
haustion of specific system resources. Still, their failure patterns are also difficult to
diagnose. Notwithstanding server overloading is often bound to specific resources,
the resultant error patterns can involve several resources in complex ways. Since re-
sources have dependencies between themselves, the exhaustion of one resource can
lead to exhaustion of the others. As an example, memory exhaustion often leads to
trashing in the paging system, originating intense CPU utilization and I/O activity at
the beginning, while moving pages from memory to disk and back again. Later, this
behavior can be followed by low CPU utilization when: (1) the operating system re-
duces the multi-programming level to reduce the CPU load; and (2) the CPU starts
waiting for disk operations, while moving pages from memory to disk and back again.
The complex interactions between resources demand diagnosis models able to identify
the patterns associated to workload-related failures, using the same approach used for
performance anomalies.

4.2.3 Design-context

The design context is delimited by the system scope. In our infrastructures, the system
scope is confined to the Autonomic Element, which is composed by the server ap-
plication instance (Managed Element) and the self-healing functionality (Autonomic
Manager).

In both self-healing infrastructures, the server application is changed to incorporate
probes that provide relevant monitoring data to the self-healing activities. On the other
hand, all the core self-healing functionalities are added without design assumptions
about the Managed Element.

4.3 self-healing infrastructure for pure streaming

Figure 18 presents our self-healing infrastructure for Pure Streaming services. It in-
cludes the monitoring, failure prediction and failure diagnosis activities.

The server host represents the Managed Element in the Autonomic Computing ar-
chitecture. It has installed the video-streaming server application and the apparatus
necessary to generate the logs required by the self-healing activities.

The probing agent monitors the service using a video-streaming workload generator,
which establishes synthetic RTSP requests with the server periodically and collects
service quality measurements. The probing agent also runs a performance analyzer,
which represents the Autonomic Manager in the Autonomic Computing architecture.
The performance analyzer integrates data relative to service quality metrics and sys-
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Figure 18: Self-healing infrastructure for Pure Streaming.

tem, network and application-level metrics/parameters gathered server-side. After-
wards, it uses these data for failure detection, failure prediction and failure diagnosis.



4.3 self-healing infrastructure for pure streaming 61

4.3.1 Data Gathering

Server-side performance metrics are gathered by the Server Log Module and are pro-
vided to the performance analyzer using a pull-based approach1. System parameter
values (e.g., CPU and memory usage) are provided by the operating system. On the
other hand, application-level performance metrics require server application instru-
mentation and the development of a video server application module.

Application-level metrics expose the server transmission delays of frames to end-
users (players). Pure Streaming servers control the timing for transmission of video
frames to end-users. The frames read from disk are grouped into packets that are
queued and scheduled by the server application to be transmitted at a specific time.
The scheduled time is estimated according to statistics provided by RTCP reports is-
sued periodically by players (e.g., round-trip delay and inter-arrival jitter). Therefore,
the server application performance can be measured through comparison of the packet
scheduled times with the respective transmission times. In other words, server perfor-
mance degradation is being experienced at the server application-level when packets
are being transmitted after their scheduled time. In addition to the data transmission
delays, it is also measured at the application-level the client-server interaction delays
relative to RTSP commands (e.g., PLAY or PAUSE).

The performance analyzer integrates server-side metrics/parameters with service
quality metrics obtained by probing the server with synthetic sessions. Data integra-
tion involves preprocessing operations, such as, formatting, correction of structural
errors, calculation of derived metrics, temporal alignment of data coming from the
several sources and finally, flattening data into a single table. Each table row repre-
sents a log instance representative of the global service performance at a specific time.

4.3.2 Prediction and Diagnosis of Failures

Failure prediction and failure diagnosis are online activities that relies on classification
models [Hastie et al. 2001] to detect performance anomalies and determine their cause,
respectively. At the prediction time, performance anomalies signal errors that should
be handled before they manifest as service failures. Later, performance anomalies are
classified in the failure diagnosis activity by classification models, using metrics values
forecasted from the prediction time to the failure time by means of regression models
[Hastie et al. 2001] (described in Section 7.2).

Initially, all models are evaluated offline using historical data through ten-fold val-
idation (described in Section 6.3.2). Afterwards, they are evaluated online using new
arriving data, according to the correctness of predictions performed by them.

1 The probing agent requests the log data every t seconds.
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4.3.3 Components of the Evaluation Infrastructure

For the evaluation of the self-healing approach proposed in this thesis for Pure Stream-
ing systems, we use the following elements in the infrastructure:

• Darwin Streaming Server (DSS) [dar 2012], an open-source popular streaming
server;

• DSS Log Module build by us to capture application-level metrics server-side.
This module is presented as the Server Log Module in the infrastructure;

• System Activity Report (SAR) tool [sar 2012], for capturing system metrics in
the server host;

• An instrumented version of the StreamingLoadTool load generator [str a] (dis-
tributed with the DSS). We instrumented this tool for probing the service quality,
by generating synthetic streaming sessions periodically and obtaining service
quality metrics over these sessions;

• Weka [Hall et al. 2009], an implementation of machine learning algorithms for
feature selection, model building and model evaluation.

Details of the configurations, metrics analyzed and activities performed by the in-
frastructure are presented in the respective chapters of this thesis.

4.4 self-healing infrastructure for http streaming

The self-healing infrastructure for HTTP Streaming is named SHStream. This infras-
tructure is presented in Figure 19. It represents an Autonomic Element in the system,
which is divided into two main parts: the virtual container running the web server
(Managed Element) and the SHStream self-healing application (Autonomic Manager)
that implements the self-healing activities.

The Autonomic Element represents either a virtual machine or a non-virtualized
machine running the video server application. It incorporates the Autonomic Manager
and the Managed Element in the same machine, by employing container-based virtu-
alization for isolating the performance of both elements. Thereupon, the self-healing
functionality is attached transparently to standard video servers without performance
interference between them.

In HTTP Streaming services, the video server application is usually a web server.
Accordingly, the virtual container runs the web server with the video-streaming mod-
ule that implements HTTP requests semantics for video-streaming — e.g., time seek
requests that enable viewers to jump to any part of the video. Plus, a web server
module developed by us (mod_SHS) provides the metrics required for measuring the
application-level performance.
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Figure 19: SHStream infrastructure.

4.4.1 Self-healing Activities

SHStream is divided into four functionality groups: monitoring, failure prediction, failure
diagnosis and recovery. Each of these groups is associated to a specific stage of the
self-healing cycle.

In the first stage, the monitoring group of functionalities manages the data gath-
ering process and performs failure detection. It starts by aggregating, cleaning and
formatting the log data every n seconds, gathered from:

• Application-level reports, containing web server performance metrics;

• System-level reports, which also include network statistics associated to network
interfaces;

• Web server probing status reports, created using HTTP HEAD requests issued
every n seconds to determine server responsiveness.
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At each period, these reports are integrated to build a log instance. The resultant log
instance is used by the failure detector to determine the service state: normal state or
failure state.

In the second stage, the failure prediction group of functionalities uses each log
instance for load admittance and for:

• Online learning — incremental learning of normalcy patterns 2 and pre-failure
patterns 3 (described in Section 6);

• Failure prediction — prediction of performance failures through detection of
pre-failure patterns;

• Model evaluation — continuous evaluation of the pool of models created using
several algorithms and selection of the best prediction model from the pool.

The SHStream application is a framework for multi-model failure prediction. It
works with several machine learning algorithms to provide diversity of models. At
each failure prediction iteration, the classification output given by the model with the
best prediction performance in the framework is taken to decide whether proactive
recovery is needed. In the same iteration, the performance statistics of each model are
updated and are used to select the model that will be used for predicting failures in
the next iteration. These statistics expose the accuracy of predictions, by taking into
account the observation or not of failures predicted in the past.

In the third stage, each failure predicted by the classifier is handled by the failure
diagnosis group of functionalities. Thus, the log instance of the failure predicted is
classified by several diagnosis classifiers and the classification output given by the
most accurate model classifier will decide which type of recovery action is needed.
Diagnosis models are trained and evaluated similarly to the failure prediction models.

Finally, the recovery manager coordinates the execution of repair actions, selected
according to the diagnosed failures. Repair techniques include the reboot at different
granularity levels — full machine reboot and virtual container reboot — and migration
of virtual containers between hosts.

4.4.2 Virtualization

The SHStream application runs in the server’s machine in the virtual environment zero
— also called host domain — to promote:

• Integration and performance isolation — virtualization isolates the SHStream
application from the web server application (both running in the same machine);

2 Log data associated to error-free periods.
3 Log data associated to performance anomalies preceding user-visible failures.
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• Dependability, self-responsibility and scalability — avoidance of single points
of failure, since the self-healing functionality fails along with the server appli-
cation. Scalability problems are also avoided, since each server application is
controlled by its own self-healing apparatus;

• Timeliness — all communication delays are minimized by performing data gath-
ering, data analysis and direct server repair actuation in the server’s machine.

Virtual containers can run inside a typical standard virtual machine to structure the
Autonomic Element. Due to the small size of virtual containers, they can be rebooted
or migrated between hosts, with significantly smaller overheads than virtual machines.

4.4.3 Components of the Evaluation Infrastructure

The infrastructure used for evaluation of the self-healing approach proposed in this
thesis for HTTP Streaming servers has the following elements:

• OpenVZ [ope] for container-based virtualization. OpenVZ is open-source, well
documented and provides a rich set of features for migration of virtual contain-
ers;

• Lighttpd web server 1.4.30, a popular and efficient web server that has been
used by video-streaming services such as Youtube, for several years, to deliver
videos [Do Cuong 2007];

• mod_SHS module, a Lighttpd module implemented by us to gather application-
level metrics data. The mod_SHS module also performs load control, by redi-
recting new connections to other server instances when the server reaches its ca-
pacity. The disk is used for communication between the mod_SHS module and
the SHStream application, using a directory shared between the virtual container
and the host domain;

• H264 Streaming module (mod_h264_streaming version 2.2.7) [h26 2012] for the
Lighttpd web server. This module performs bandwidth control and handles time
range requests and requests targeting specific video segments in Adaptive Bitrate
streaming.

The SHStream application represents the Autonomic Manager in the Autonomic
Element. It is developed in Java and has the following main dependencies:

• SIGAR [sig 2012], the API for gathering reports of system statistics;

• Massive Online Analysis (MOA) [Bifet et al. 2010], the library with the imple-
mentation of online machine learning algorithms.
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4.4.4 Load Control

Load control mechanisms handle the problem of avoiding server overloading failures.
Load control is a typical problem of any Internet service. A service should not accept
more load than its underlying infrastructure could handle. Load balancing and load
admittance errors combined with underprovisioned server resources during workload
peaks make overloading one probable cause of failure [Pertet and Narasimhan Decem-
ber 2005][Oppenheimer et al. 2003].

In other types of Internet services, load admittance is usually performed statically
by limiting the number of requests being accepted, by limiting selectively the accep-
tance of sessions according to their type [Cherkasova and Phaal 2002] or by modeling
the server performance (e.g., using queueing theory [Aweya et al. 2002][Robertson
et al. 2003]). In video-streaming services, the load admittance problem has been ad-
dressed by assuming stable workload types when determining the server capacity and
its current utilization [Cherkasova and Staley 2003] and through dynamic prediction
of server saturation by considering the current utilization of resources to decide the
acceptance of new loads [Covell et al. 2004]. However, these approaches are less effec-
tive in controlling the server load when the workload type changes. Such is the case of
a change in the temporal locality of reference of the workload that can change the vol-
ume of requests supported by the server and the profile of consumption of resources
by each request. As well, these approaches are ineffective when other applications run-
ning in the same machine interfere with the resources available to the video server
application.

SHStream implements a self-protection mechanism against overloading, which redi-
rects video-streaming requests when they cannot be afforded by the server or the net-
work bandwidth. This mechanism anticipates overloading conditions when other load
control mechanisms external to the Autonomic Element fails. Notwithstanding load
control is not in the core of our research, it represents an important activity of our
self-healing infrastructure required to protect the server against this type of failures.

4.4.4.1 Load Control Implementation

Load control is implemented in SHStream through the analysis of the server through-
put provided in excess to the requests being handled. Thus, in spite of changes on
the throughput provided by the server (increase or decrease), the acceptance of new
requests will adapt accordingly.

New requests are accepted by the server when the excess margin, calculated in (1) as
the difference between the average of the ratio of actual transmission bitrates TBR to
encoding bitrates EBR, for the requests associated to videos with the highest bitrate, is
higher than 1 plus a safe margin a. The value of a should be carefully chosen, because
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it represents the margin of server throughput provided in excess to actual requests
that can be used by new requests.

excess margin =

∑nCurrent
i=1

TBR(i)
EBR(i)

nCurrent
excess margin > 1+ a (1)

In our implementation, the excess margin focuses only on the requests with the max-
imum bitrate in the current workload. The rationale behind this decision is that these
requests are the first being impacted by reduction of throughput. Intuitively, since the
throughput is not shaped per request according to the respective video encoding bi-
trate, the requests targeting videos with the highest encoding bitrate are those with
lowest throughput in excess.

SHStream controls load admittance using a flag file to inform the mod_SHS Module
that the server has reached its capacity. The existence of this file indicates that new
connections should be redirected to an alternative host, by sending a HTTP REDI-
RECT command to the client. The client then reissues the connection request to the
alternative host provided in the REDIRECT command.

The problem of selecting alternative hosts during redirection of requests are orthog-
onal to our work. Host selection policies (e.g., random selection and resource-aware
selection of hosts) have to be developed to complement our load admission mecha-
nism.

4.4.4.2 Limitations

Notwithstanding the advantages of performing dynamic load admission based on the
excess of service bandwidth, one pitfall should be mentioned. There is a temporal gap
between the acceptance of new requests and their reflection in the excess margin of
throughput. This phenomena is explained by startup delays on transmission of request-
responses, measured from the time the server accepts each request until stabilization
of its transmission bitrate.

Figure 20 illustrates two scenarios exhibiting the impact of the acceptance of new
requests and the termination of requests in the throughput excess margin. The ter-
mination of requests is represented by a suddenly increase of the excess margin. By
contrast, the acceptance of new requests is represented by a suddenly decrease of the
excess margin followed by an increase until stabilization. The explanation for this be-
havior is that new requests are accounted by nCurrent in the formula presented in (1)
before the server starts transmitting request-responses data. Consequently, the average
of the ratio of TBR to EBR drops, forcing temporarily the excess margin to drop below
the safe margin a. During that period, the server redirects new requests, until the data
transmitted for the last requests reflect in the excess margin.
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Figure 20: Two scenarios illustrating the excess margin of throughput, when the server receives
and terminates several requests simultaneously.

Transition gaps can lead to rejection of connections, even when the server can afford
them. However, this is an expected scenario only when the server is close to the limit
of its capacity and the number of requests in the startup phase is significant.

4.5 evaluation methodology

This section describes the testbed and benchmarks used to evaluate each of the self-
healing activities presented in the respective chapters of this thesis.

4.5.1 Experimental Testbed

Our experimental testbed presented in Figure 21 has the following configuration:

• Five machines configured with an Intel(R) Pentium(R) D CPU 3.00GHz, 4Gb of
RAM, running the Linux 2.6.18− 92.1.22.el5 Kernel;

• All machines are connected by a 1Gbps Ethernet network;

• Workload generators installed on two machines, for avoiding client-side over-
loading. We use the httperf tool [Mosberger and Jin 1998] for generation of HTTP
video-streaming requests and the StreamingLoadTool for generation of RTSP re-
quests;
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Figure 21: Experimental Testbed

• Two machines run an instance of the Pure Streaming and HTTP Streaming in-
frastructures;

• One machine runs the probing agent (implementing the performance analyzer)
of the Pure Streaming infrastructure;

• Server-side performance failures are induced using the Stress tool [str b].

The experimental testbed runs benchmarks representative of typical system usage
for evaluation of the self-healing activities. Client workloads are an important compo-
nent of benchmarks, which allows evaluation of the system behavior in the presence
of representative client-server interactions.

4.5.2 Workload Characterization

We define client workload as the load imposed by client requests to servers. Standard
web server benchmarks, such as SPECweb 2009 [Corporation 2009] reflect traditional
web server traffic.

Traditional web items are typically small and benefit intensively from locality [Pariag
et al. 2007][Brecht et al. 2004]. Video-streaming traffic contrasts with the characteristics
of traditional web traffic, since videos are commonly large objects that are streamed
during long periods of time and only a small portion of the video content is effec-
tively downloaded during the lifespan of most request-responses [Finamore et al.
2011][Gill et al. 2007]. At anytime, streaming users can stop watching the videos and
consequently, avoid downloading the unplayed portion of the video content not down-
loaded yet. This behavior contrasts with other short web items, as those accessed by
web pages, which are downloaded completely before the user evaluate his interest in
the respective content.

Client workloads are basically characterized by three parameters: popularity, encoding
bitrate and number of connections of videos [Cherkasova and Staley 2003][Covell et al.
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2004]. Other parameters also important are the user abandonment, the video duration, the
inter-arrival request times and the download bitrate.

4.5.2.1 Popularity of Videos

Popularity represents the dispersion of video-streaming requests over video files dur-
ing a delimited period of time. In popular workloads, the requests handled simultane-
ously by the server are distributed over a small number of video files, as illustrated
in Figure 22. By contrast, in unpopular workloads, the requests are distributed homoge-
neously over a large number of video files.
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Figure 22: In popular workloads, the requests are concentrated in a small number of videos. By
contrast, in unpopular workloads, the requests are spread out over a large number
of videos.

We devised three workload configurations to represent the popularity of videos:

• Cached — the same file is streamed by all requests;

• Disk — each request streams exclusively one video file;

• Mix — the distribution of requests over videos files is performed according to a
Zipf distribution.

The Cached and Disk workloads represent popularity extremes. The Cached work-
load explores the scenario where the video-streaming content requested are extremely
popular, obtaining the maximum benefit from temporal locality. On the contrary, the
Disk workload explores the scenario of a pure disk-intensive workload, obtaining the
lowest temporal locality.
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The Mix workload represents popularity according to a Zipf distribution. Previous
studies have shown that the Zipf distribution fits the popularity of web traffic in gen-
eral [Breslau et al. 1999]. Even web caching strategies are designed to account for a
Zipf distribution in the number of requests for webpages [Adamic and Huberman
2002]. As well, several studies suggest that the popularity of video-streaming traffic
also follows a Zipf distribution, as observed for Youtube [Gill et al. 2007] and other
video-streaming services [Yu et al. 2006][Cherkasova and Gupta 2004]. However, there
is no universal agreement regarding the acceptance of the Zipf distribution for mod-
eling popularity of video-streaming workloads. Several studies addressing characteri-
zation of video traffic showed that the Zipf distribution does not fit the popularity of
videos, due to a drop-off in the tail of the observed distribution [Cha et al. 2007][Mitra
et al. 2011], as shown in Figure 23. Other studies have shown that the Weibull and
Gamma distributions have better adjustment to popularity of video objects in Internet
video services [Cheng 2007][Cheng et al. 2008][Abhari and Soraya 2010].
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Figure 23: Typical ranked video view count in log-log scale, as observed in some video-
streaming services.

The benchmarks devised in this thesis for the evaluation of the self-healing infras-
tructures adopt the Zipf distribution for modeling popularity. We believe that the ad-
justment error of Zipf relatively to real popularity distributions will not interfere with
the representativeness of our results. Also, the adoption of Zipf is a fair assumption
due to the observation of this distribution in popular video-streaming services (e.g.,
Youtube) and the lack of consensus about the distribution that could fit better the pop-
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ularity of videos. Our assumption was also followed in a recent work for the same
reasons [Summers et al. 2012b].

4.5.2.2 User Abandonment

Since videos are downloaded progressively by end-users, when they lose interest in
a given video, they will stop downloading it. Thus, the workload should incorporate
the portion of each video that is effectively downloaded.

Workload studies addressing user abandonment are rare. In the Youtube service,
was observed that only about one quarter of the transactions were complete [Gill et al.
2007]. However, to represent user abandonment of visualization of videos, we use the
statistics provided by a more recent study [Finamore et al. 2011] about the Youtube
service. To simplify the reproduction of user abandonment from the Cumulative Dis-
tribution Function (CDF) presented in that study, we selectively discretize the CDF
and select key points from it. Accordingly, we force randomly 40% of the videos to
terminate at 10% of playback time, plus 20% of videos at 20% of playback time and
finally, plus 30% at 50% of playback time.

4.5.2.3 Video Duration

According to [Ameigeiras et al. 2012][Zink et al. 2009], approximately 90% of the In-
ternet videos have a duration between 10 seconds and 16 minutes. We adopt the same
configuration using 100 different durations, starting at 10 seconds and ending at 1000
seconds, at intervals of 10 seconds.

4.5.2.4 Encoding Bitrate

In [Ameigeiras et al. 2012], it is shown that 99% of video clips of the three most popular
video configurations, have a video stream encoding rate below 500 kbps, 810 kbps
and 1300 kbps. Similar results can be found in [Gill et al. 2007]. In [Zink et al. 2009],
most videos are encoded with a bitrate varying between 632 and 908 kbps. Another
study [Finamore et al. 2011] shows that the 360p videos in Youtube (currently the
default choice) surrounds 600Kbps video rate, in average, while 480p and 720p videos
surrounds 1 Mbps and 2.5 Mbps in average, respectively.

In our benchmarks, all videos are encoded by H.264 at bitrates of 650 Mbps (360p),
1 Mbps (480p) and 2.5 Mbps (720p), covering the most popular video encodings.

4.5.2.5 Download Bitrate

In HTTP streaming, the download bitrates are higher than the encoding bitrates during
periods of normalcy. Some server implementations have two different behaviors with
respect to the download bitrate provided for each request: burst and throttling. The
burst phase has a lifespan of a few seconds, during which, all data downloaded by
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players are transferred at the maximum speed allowed by the server and network.
Afterwards, in the throttling phase, the traffic is shaped by the server. In the case of
Youtube, during the throttling phase, the video is sent at the speed of the video clip
encoding rate multiplied by 1.25 [Ameigeiras et al. 2012].

The lifespan of the burst phase depends on the available network bandwidth and
server resources. In the Youtube, the burst phase is limited by an amount of approx-
imately 40 seconds of video data downloaded [Ameigeiras et al. 2012], but is higher
for low bitrate videos.

Since the H264 Streaming module used in our HTTP Streaming infrastructure only
allows specification of the burst period in seconds, we define an approximate value
for that phase in seconds, considering the time required for downloading 40 seconds
of video for the intermediate bitrate (1 Mbps) using our infrastructure, in average.

4.5.2.6 Inter-arrival Request Times

In our benchmarks, the request inter-arrival times follows a Poisson distribution [Forbes
et al. 2011]. Request inter-arrival times have been modeled by a Poisson process for sev-
eral years for web workloads in general [Arlitt and Williamson 1997][Adhikari et al.
2012][Gupta et al. 2009] and, specifically, for video-streaming [Kang et al. 2008][Mori
et al. 2010][Adhikari et al. 2012].

The benchmarks presented in this chapter also uses a Poisson distribution for mod-
eling the request inter-arrival times.

4.5.3 Design of Benchmarks

We devise several benchmarks for experimental evaluation of the self-healing infras-
tructures: mix+spike, popular+spike, unpopular+spike, mix+anomaly, popular+anomaly, un-
popular+anomaly and mix+anomalyNet. All benchmarks comprehend two periods:

• Long period of normality — a fault-free normal period;

• Short faulty period — a period during which the server is exposed to either
high loads (client-workload overloading) or performance anomalies.

Each evaluation benchmark is structured into a single run with a timespan of ap-
proximately 90 hours. All benchmarks use 100 H.264 videos.

4.5.3.1 Mix+spike, Popular+spike and Unpopular+spike Benchmarks

The Mix+spike, Popular+spike and Unpopular+spike benchmarks combine periods of
normality with periods of failure generated by server overloading conditions. These
benchmarks are distinguished by the workload configuration they use.
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The Mix+spike benchmark uses the Mix workload (presented in Section 4.5.2), which
models popularity of videos according to a Zipf distribution. The Mix workload rep-
resents typical video-streaming workloads, specified according to previous studies.
The remaining benchmarks adopt workloads associated to extremes of popularity of
videos. These benchmarks are used for evaluation of the system behavior when the
popularity of videos changes significantly.

The Popular+spike benchmark uses the Cached workload, which exercises the server
by streaming the same file in all requests. This workload type is low disk-intensive, as
the video content obtains the maximum benefit from temporal locality. By the con-
trary, the Unpopular+spike is a disk-intensive benchmark that uses the Disk workload
to exercise the server by streaming each video at most once during the experiments,
until all the other videos have been requested. Hence, this workload avoids temporal
locality benefits.

The number of connections in all the three benchmarks varies sinusoidally in time
between [10%− 50%] (Type I) and [10%− 90%] (Type II) of the server nominal capacity
during periods of normality, as illustrated in Figure 24. During these periods, the selec-
tion of Type I and Type II loads is performed randomly. During overloading periods
(spikes), the number of connections varies between [10% − 120%] of the server nom-
inal capacity, to induce overloading failures. The period of normality has a duration
of 10 minutes and is followed by a overloading period with a duration of 1 minute.
During both periods, the videos are requested according to the popularity distribution
specified by the workload.

4.5.3.2 Mix+anomaly, Popular+anomaly, Unpopular+anomaly and Mix+anomalyNet Bench-
marks

The Mix+anomaly, Popular+anomaly, Unpopular+anomaly and Mix+anomalyNet ben-
chmarks combine normal service activity with periodic performance anomalies. Per-
formance anomalies show up as exhaustion of resources, as the result of activation of
software faults.

The space of potential faults responsible for performance anomalies is large. Studies
characterizing these faults are not available or are incomplete since root cause analysis
is very complex for this type of failures. It is common the use of techniques to tolerate
these faults (e.g., using software rejuvenation) instead of fixing the software. For that
reason, instead of reproducing the line (or lines) of faulty code, we reproduce their
effects. Performance anomalies manifest in terms of system conditions unexpected
for the actual workload. Thereupon, we perturb the main system resources to induce
performance anomalies that are reflected in system, application and network parame-
ters/metrics as signatures representative of performance failures.
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Figure 24: Structure of the Mix+spike, Popular+spike and Unpopular+spike benchmarks.

Performance anomalies might point to either system anomalies4 or server application
anomalies5. Accordingly, performance anomalies are injected at two levels: system and
server application.

System anomalies are generated by creating performance irregularities that compro-
mise the relationship between the server workload and the main system resources
being consumed. During faulty periods, performance anomalies are generated by an
independent process that selectively steals system resources to induce resource exhaus-
tion unexplained by the server workload generated by client requests. Three types of
performance anomalies are considered for injection using the Stress tool:

• CPU Stress - spawn fork processes, each spinning on sqrt() function;

• I/O Stress - spawn fork processes, each spinning on sync(), which writes any
data buffered in memory out to disk;

• Memory - spawn fork processes, each spinning on malloc().

The intensity of each fault injected is proportional to the number of times each func-
tion is invoked. The intensity of each fault is regulated randomly to induce conditions
of performance degradation either with and without associated user-visible failures.

4 Environmental faults unrelated with the server application.
5 Faulty application behavior caused by not fully debugged server application code.
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Thus, it is possible to evaluate the ability of the self-healing functionality to handle
only performance anomalies associated to failures.

Figure 25 presents the structure of all *+anomaly benchmarks. They have the same
structure of the *+spike benchmarks, but maintain the same load during periods of
normality and faulty periods. In replacement of the overloading period devised for
*+spike benchmarks, faults are injected in the *+anomaly benchmarks during an equiv-
alent period of 1 minute, every 10 minutes.
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Figure 25: Structure of the Mix+anomaly, Popular+anomaly, Unpopular+anomaly and
Mix+anomalyNet benchmarks.

Experimental tests are organized into scenarios. A scenario is delimited by the be-
ginning of the period of normality and the end of the faulty period. Each scenario
is associated to a single fault type: normal (no fault), CPU, Memory, I/O and Misc6.
The association between faults and scenarios are performed sequently, in a way that
one fault is only associated to a scenario n times when all the other faults have been
already associated to previous scenarios n − 1 times. This behavior is implemented
by picking randomly from a list the fault type to be injected in a scenario, and only
inserting it again in the list when all the other faults have been picked out.

Server application anomalies are induced by changing the video-streaming server
code. We built an instrumented version of the original server application with CPU,
memory and I/O faults equivalent to those used for inducing system anomalies. Thus,
the stress functions are invoked within the server application, instead of being invoked
by an external tool.

6 Misc faults are organic faults (not injected intentionally by the fault injection tool) activated during the
experimental period.
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4.5.3.3 Mix+anomalyNet Benchmark

The Mix+anomalyNet adds network faults to the list of faults covered by the Mix+anom-
aly benchmark. Network faults are injected in the form of packet losses and variance
of packet delays, emulated using the Netem tool [Hemminger 2005]. The injection of
network faults was calibrated through experimental analysis to induce network errors
with several severity levels, giving a large amplitude of fault roughness in network
failure scenarios.

Packet losses are emulated with a probability of occurrence between 10% and 50%,
and a correlation between packet losses of 25% (i.e., the probability of a packet to be
lost depends by a quarter on the last one). Correlation of packet losses emulates bursti-
ness7 of packet losses, a common phenomenon in the Internet [Jiang and Schulzrinne
2000]. The packet loss probability is modeled by (2).

LossProbability(n) = 0.25 ∗ LossProbability(n− 1) + 0.75 ∗ Random (2)

Packet delays are set to 100ms, with variance of 2000ms and a correlation of variance
of 25%, and are emulated according to a normal distribution [Forbes et al. 2011].

4.5.4 Training and Evaluation of Models Using Benchmarks

Classification models used for failure prediction and failure diagnosis are learned us-
ing the mix+* benchmarks, because they have workloads closer to those found in real
production systems. These benchmarks are denoted in this thesis as learning bench-
marks. The other benchmarks are used exclusively for evaluation of models, when the
workload varies in two opposite video popularity directions: popular and unpopular.
These benchmarks are denoted in this thesis as evaluation benchmarks.

4.6 monitoring

Monitoring is the foundation of failure prediction, diagnosis and repair activities. Self-
healing systems implement the monitoring activity to:

• Obtain and prepare the log data to be provided to other self-healing activities;

• Perform failure detection through analysis of QoS metrics.

This section presents the monitoring activity incorporated in the self-healing video-
streaming lifecycle devised for the Pure Streaming and HTTP Streaming infrastruc-
tures presented in this thesis. It presents the monitoring scope, log data gathered and
evaluation results of the monitoring performance and overheads.

7 Temporal dependency between consecutive events.
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4.6.1 Monitoring Definition and Scope

We define monitoring as the activity responsible for obtaining log data, preparing
such data for analysis and performing failure detection. The log data contains values
of metrics/parameters required for analysis. For succinctness, we refer to metrics/pa-
rameters only as metrics.

The log metrics are divided into:

• System-level metrics: system health, resource utilization levels and other global
system metrics;

• Application-level metrics: application-level performance metrics relative to the
video-streaming server;

• Network-level metrics: network performance metrics respecting the transmis-
sion of data between the server and players. These metrics include network in-
terface statistics and TCP data transmission statistics;

• QoS metrics: metrics relative to the service quality provided to end-users.

The raw log data relative to these metrics have the following workflow:

1. Data preparation for analysis, by integrating, formatting and cleaning data;

2. Failure detection, through analysis of metrics representative of the service quality
provided to end-users;

3. Data analysis by the failure prediction, failure diagnosis and repair activities;

4. Archiving of data for future analysis.

The monitoring activity should hold the following properties:

• Timeliness: video-streaming services are sensitive to performance variations.
Hence, the entire monitoring lifecycle should be efficient enough to ensure short
delays between the occurrence of errors and failures and their reflection on the
data available for analysis;

• Transparency: monitoring probes should work with standard video players. That
means that the monitoring activity should be transparent to players and codecs;

• Coverage: placement of monitoring probes should be devised to cover metrics
representative of QoS and system, application and network performance.

The monitoring infrastructure should be designed to hold all these three properties.
Data gathering volume, sampling frequency and placement of monitoring probes are main
aspects of the monitoring apparatus that should be managed to ensure the aforemen-
tioned properties.
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Figure 26: Breakdown of the monitoring delays into their contributors.

4.6.1.1 Timeliness

As illustrated in Figure 26, monitoring delays are decomposed into:

• The time required for error conditions to be reflected in metrics (constrained by
the nature of the error);

• The time required for metrics to be reported — set by the data reporting fre-
quency;

• The time required to analyze the reported metrics values. Efficient techniques for
data preparation and failure detection are required to minimize the data analysis
delay.

The monitoring delay will sum to delays added by other self-healing activities.

4.6.1.2 Transparency and Coverage

We consider the placement of monitoring probes at two levels: client-side and server-
side. Client-side probes gather the data required for analysis of service quality pro-
vided to end-users. They present two challenges. Firstly, aggregation and analysis of
log data from all clients can be unacceptably time consuming due to the volume of data
involved, compromising the timeliness of failure detection and other self-healing activ-
ities. Secondly, client-side transparency is compromised, since all players are required
to implement the monitoring functionality. This requirement is unviable in open sys-
tems accepting standard off-the-shelf player implementations. Server-side probes are
placed to obtain server application metrics and system metrics. Network performance
metrics can be also gathered server-side using TCP statistics and network interface
statistics.
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4.6.2 Implementation of the Monitoring Activity

Monitoring of the system performance in distributed systems is often done by off-the-
shelf tools as Zabbix [Olups 2010] and Nagios [Barth 2008]. These tools monitor cluster
machines, by periodically polling the servers to obtain data relative to service quality
and performance metrics for analysis. These off-the-shelf monitoring tools are imple-
mented as application-independent services running in the cluster. Some of them are
also extensible to allow for development of customized server modules that provide
application-level metrics for analysis.

Video-streaming players consume data in real-time and thus, impose strict time lim-
its for the transmission of the video content requested. Therefore, performance degra-
dation in these infrastructures should lead to responsive actions capable of restoring
the normal performance levels within short periods of time. Hence, the monitoring so-
lution chosen to integrate the self-healing lifecycle of video-streaming services should
enforce these time constraints.

We decided for a monitoring solution built from scratch, instead of reusing a generic
monitoring solution, for several reasons. Firstly, it is designed to provide guarantees
of gathering, integrating, analyzing and providing monitoring data to self-healing ac-
tivities within the time requirements imposed by video-streaming services. Secondly,
it gathers application-level metrics and logs data in the format adopted by the self-
healing infrastructure. Finally, instead of building a new monitoring service traversal
to several servers, we integrate the monitoring activity with the other self-healing
activities responsible for controlling each server. Thus, the server is promoted to an
Autonomic Element with all self-healing dimensions incorporated.

4.6.3 Design and Evaluation of the Monitoring Activity

The monitoring activity integrated in our self-healing infrastructures is challenged
by the coverage of metrics and the fault and design assumptions intrinsic to video-
streaming services. Therefore, the following questions convey the design of the moni-
toring activity:

• What are the failure modes covered by the failure detector?

• Which QoS metrics are appropriate for failure detection in video-streaming ser-
vices?

• How to monitor the service quality provided to end-users without compromising
client-side transparency?

• Which metrics are required for the failure prediction, failure diagnosis and fail-
ure repair activities in the Pure Streaming and HTTP Streaming infrastructures?
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• How to perform scalable and non-intrusive data gathering of metrics for analysis
in video-streaming services?

Efficiency is an important characteristic of the monitoring apparatus. Therefore,
the following questions addressing the monitoring performance should be answered
through experimental evaluation:

• What is the expected monitoring overhead for the monitoring solution?

• What are the monitoring delays during periods of normalcy and during periods
of server overload?

While the monitoring overhead represents the impact of the monitoring apparatus
on the server performance, the monitoring delays determine whether the monitoring
data can be timely provided for analysis, independently of the server condition.

4.6.3.1 Failure Assumptions and Data Gathering Strategies for Failure Detection

The failure model adopted in this thesis is agnostic of video encoding faults and client-
side faults unrelated directly with the service. Hence, the service is considered correct
when the server is accepting new requests (i.e., the server is responsive) and all data
(i.e., video frames) transmitted to clients, for each request accepted, are transmitted on
time for playback. Accordingly, incorrect service states are caused by server and server-
side network faults leading to performance failures when providing video content to
end-users.

As explained in Section 2.4, the assumption of in-order packet delivery guarantees
at the transport protocol level, in video-streaming services, constrains the method and
metrics adopted for measuring service quality. We assume the use of TCP for transmis-
sion of video-streaming data. This choice is justified by the universality of the service
quality metrics used with this protocol and the widespread adoption of TCP for trans-
mission of video-streaming data in modern Internet services.

Detection of hard failures is usually performed by an external agent that probes the
service periodically to determine whether the service is responding to requests. On the
other hand, detection of soft failures can be implemented either server-side — through
comparison of video data rates transmitted by servers with data rates established by
the video encoding for playback — or client-side — through analysis of player buffer
states or connection establishment times.

Client metrics can be gathered from players or alternatively, by an external agent.
In the latter case, the service is probed periodically by the agent using requests repre-
sentative of the overall service quality. This approach is more appropriate for service
monitoring than the analysis of the data gathered from all players. It is non-intrusive
to end-users’ players and has small overheads. Yet, it depends on the assumption of
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probing representativeness. This assumption considers that service quality degrada-
tion affects equally the probing requests and all organic requests.

The analysis of server metrics for failure detection compares the transmission bitrate
with the encoding bitrate of each video. This failure detection scheme enables the
detection of soft failures transparently to end-users, for each request handled by the
server. When compared with the use of client metrics for failure detection, it avoids: (1)
the data gathering and data integration overheads required for analysis of all organic
requests using client metrics; and (2) the representativeness assumption of probing
requests.

4.6.4 Performance Metrics and Parameters in Pure Streaming Services

The monitoring activity should cover the entire request path. Client-side metrics can
provide information for failure detection. On the other hand, the server-side metrics
support the analysis of server performance problems even before they degrade the
QoS seen by users.

As in any failure type, a performance failure starts with the fault activation, which
gives rise to errors that propagate through the system up to end-users (Figure 27).
In the error propagation process, performance degradation usually starts manifest-
ing at the resource-level (e.g., CPU exhaustion). Then, resource problems turn out to
application-level performance degradation (late transmission of video frames) before
being reflected in the end-users’ QoS (late reception of video frames).

System Performance Application-level 
Performance QoS Degradation

End-user

CPU Memory

I/O NIC
Packet i .... Packet 

i+n Packet i .... Packet 
i+n

Late
Transmission
of Data

Late
Reception
of Data

Server

Resources 
Overloading

Fault 
Activation

Error Propagation

Figure 27: Propagation of Performance Errors.

Table 3 presents the system, network, server application and service quality metric-
s/parameters gathered by the monitoring activity.
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Encoding(Bit+rate
Establishing(Time
Buffering(Time
Dead(Reason
CPU$+
Memory$+
Virtual$Memory$+
I/O$+
Desc+Setup
Setup+Setup
Setup+Play
Frame(Transmission(Delay
Number(of(Connections
Throughput
Transmission$+
Reception$+
Errors$+
Transmission$+
Reception$+
Errors$+

TCP

Network$Interface

Network

Interaction

SchedulingApplication

ConnectionClient

Aggregate

System Global Process

Table 3: Metrics and parameters gathered by the monitoring activity. Groups of parameters are
presented in bold.

4.6.4.1 System and Network Metrics and Parameters

System and network metrics/parameters are folded into groups, which are presented
in bold in Table 3 for succinctness. As an example, the CPU group contains the CPU
Idle Time, CPU System Time, CPU User Time, CPU Waiting Time, CPU Nice Time and CPU
Stolen Time metrics. In the network interface class of metrics, the transmission group con-
tains data transmission metrics, such as the packets transmitted and the bytes transmitted,
and the reception group contains data reception metrics equivalent to the transmission
metrics. The error group contains metrics representative of transmission and reception
errors, overruns, collisions and packets dropped. The TCP class of metrics contains the
statistics of TCP segments transmitted and received and also TCP errors, including,
connection resets, retransmissions and errors on transmission and reception of TCP
segments. A complete list of system and network metrics can be found in the SIGAR
API documentation [sig 2012]. SIGRAR is used in the HTTP Streaming infrastructure
for providing a comprehensive set of system and network metrics/parameters. The
Pure Streaming infrastructure uses the same metrics gathered using the equivalent
system commands.

Process-level metrics are gathered for the operating system process associated to the
video server application. They expose the process state and resources being consumed
by the server application (e.g., CPU User Time of the process). The rationale for the
use of both global and process-level metrics is that, through analysis of both types of
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metrics, it is possible to discern whether system performance problems are the reflex
of server application problems or otherwise, are caused by other processes sharing
resources with the server application process. As an example, a CPU utilization of
100% is caused by the server process when the equivalent process-level metric also
reveals a similar CPU utilization level.

4.6.4.2 Application-level Metrics

Application-level performance degradation manifests at two request stages. In the first
request stage, the connection establishment times increase, forcing users to wait more
time than usual to start watching videos. In the second request stage, after connec-
tion establishment, the server send packets after their scheduled time. Accordingly,
application-level performance is represented by two metrics: interaction delays and
scheduling delays. Each of these metrics respects a request stage.

The interaction delays metric captures client-server interaction delays, observed
when players issue commands to the server for establishing new sessions and also
for stopping and resuming video playback. On the other hand, the scheduling delays
metric captures delays on transmission of video fragments by the server to players,
for the established sessions. The combination of both interaction delays and schedul-
ing delays covers the overall application-level performance. Both metrics are gathered
server-side using the Darwin Streaming Server monitoring module developed by us
and through instrumentation of the server application.

4.6.4.3 Interaction delays

The interaction delays metric measures the time spent by the server handling the re-
quest at system and application levels, which includes the server queuing time and
the server execution time of requests.

The request execution time is usually accessible from server modules. However, the
time spent by each request in system and application queues is difficult to obtain. This
problem creates the challenge of accounting the request reception delay 8 into the total
request handling time. For guaranteeing transparency of the data gathering method,
the total request handling time should be obtained without resorting to operating
system or server application instrumentation.

We exploit the characteristics of the RTSP protocol to calculate the server request
handling time. The use of several RTSP commands during the session establishment
phase are exploited for that purpose. Hence, the delay between each pair of commands
issued sequently by players is used as a client-server interaction performance metric
in replacement of the request execution time. This metric will absorb both the request
reception delay (queueing time) and the request execution time.

8 The time since the request arrives at the server until it is executed by the server application.
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Figure 28 illustrates the process of calculation of the interaction delays metric. It
shows the RTSP state machine and corresponding commands triggering transition be-
tween session states. Each interaction delay is calculated from the timespan between
two sequential commands, issued during the session handshaking phase between the
client and the server. Delays between DESCRIBE-SETUP, SETUP-SETUP 9 and SETUP-
PLAY commands are averaged during each time interval to calculate the interaction
delays metric. The DESCRIBE-SETUP delay, for example, is calculated as the differ-
ence between times t2 and t6 (the beginning of execution of two sequential RTSP
commands), absorbing the:

• Relative request execution delay of the DESCRIBE command by the server —
difference between the times t2 and t3;

• Relative request reception delay of the SETUP command by the server — differ-
ence between the times t3 and t6.

The relative values of interaction delays are similar to the relative values of request
handling times. As an example, an increase of 5 seconds in the interaction delays
metric is justified by an increase of 5 seconds in the server handling time, considering
stable client and network delays. Thus, the use of the interaction delays as a metric rep-
resentative of the server-side request handling performance requires the nullification
of the effect of the network delay variance in its calculation. Thus, we calculate inter-
action delays only for synthetic requests issued by the probing agent in a controlled
network environment. Therefore, the assumption of statistical invariance of both net-
work and client-side delays allows considering the server the unique contributor of
variance to interaction delays.

4.6.4.4 Scheduling delays

The scheduling delays metric represents delays on transmission of video-streaming
packets (encapsulating groups of frames) by the server. Packet transmission delays
are calculated relatively to their respective scheduled times, as illustrated in Figure 29.
Pure Streaming servers schedule each packet p in advance, marking it to be sent at
Time(Schedulep) to the respective client. When the server is experiencing degraded
performance, it will likely start transmitting packets after their scheduling times. This
scenario is illustrated for the delayed packet stored in the queue that is scheduled to
be transmitted at the time t0, but it is actually transmitted later at the time t1.

Intuitively, the temporal distance between the transmission time and the scheduled
time provides a simple indicator of the server performance for established client-server
sessions. Accordingly, the severity of performance degradation is proportional to υ, cal-

9 SETUP of audio and SETUP of video channels belonging to the same session.
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Figure 28: Calculation of interaction delays using the sequence of messages of the RTSP proto-
col.

culated in (3) as the mean difference between the scheduled time and the transmission
time of all n packets transmitted by the server, during a given period of time.

υ =

∑n
p=1 Time(Transmissionp) − Time(Schedulep)

n
(3)

Similarly to the interaction delays, there is no direct correspondence between values
of scheduling delays and QoS provided to end-users. Instead, these metrics expose the
server application performance and are used by failure prediction and failure diagno-
sis techniques for modeling normal and anomalous system conditions.

4.6.4.5 Service Quality Metrics

Our failure detection approach uses QoS parameters obtained for synthetic requests
issued by the probing agent. Synthetic requests are issued to fetch interaction delays
and are used for failure detection, since they offer several advantages over organic
requests, as such:
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Figure 29: Scheduling delays during server performance degradation periods.

• Manageable data volume — service quality metrics and interaction delays are
collected only for synthetic requests established and terminated at each n sec-
onds;

• Adoption of standard players — players that do not require to be instrumented
or be designed to provide service quality metrics;

• Constant data gathering frequency — data gathering frequency is ensured, even
during periods without client-server interactions.

Generation of synthetic requests by the probing agent is constrained by:

• Intrusiveness and time constraints — the number, length and encoding bitrate of
synthetic requests should be carefully specified to be low intrusive and to allow
evaluation of service quality with enough frequency to ensure timely failure
detection;

• Isolation of server performance from the network and client interference —
synthetic requests are established between the probing agent and the server in
a controlled environment. This assumption is required for calculation of interac-
tion delays, because the server is seen as the unique responsible for performance
degradation.

Synthetic requests should be representative of all organic requests. Representative-
ness means that the QoS of synthetic requests is consistent with the QoS of organic
requests. QoS unbalancing between synthetic requests and organic requests is caused
by differences on the impact of performance degradation on requests with different
characteristics — e.g., different QoS levels observed for high bitrate and low bitrate
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videos during periods of performance degradation. In these scenarios, synthetic re-
quests will hardly represent the overall service quality provided by the server. There-
fore, QoS probing is only viable when the impact of server performance on QoS is con-
sistent in both synthetic requests and organic requests. Representativeness is a strong
assumption of the monitoring infrastructure that should be validated experimentally
for specific server implementations and configurations. We evaluate this assumption
for our infrastructure in Section 4.6.6.

We use the Keynote StreamQ grade metric (presented in Section 2.4.3) for QoS evalu-
ation. Thus, to calculate this metric, we gather the following service quality parameters
over synthetic requests:

• Connection time — timespan between the moment the player sends a session
request to the server and the moment it receives the confirmation of session
establishment, by the end of the session handshaking phase;

• Buffering time — time required to fill the player buffer with enough data to
start the playback, after the session handshaking phase;

• Play time — time spent playing the video;

• Rebuffering time — time required to refill the player buffer, when the video
playback stalls due to the lack of buffering data.

The Keynote StreamQ grade metric establishes QoS degradation for frustration
times (sum of the connection time with buffering and rebuffering times) higher than 6
seconds. Hence, we consider this value the threshold for a soft failure.

4.6.5 Performance Metrics and Parameters in HTTP Streaming Services

The SHStream infrastructure gathers the same system and network parameters used
by the Pure Streaming infrastructure (shown in Table 3). SIGAR interfaces the oper-
ating system for gathering these parameters. More information about the system and
network parameters gathered by SIGRAR can be found in [sig 2012].

Server application performance metrics and service quality metrics are specific to
HTTP Streaming. Service quality metrics and parameters are also specified specifically
for Progressive Download and Adaptive Bitrate services.

4.6.5.1 Application-level Metrics

SHStream gathers the following application-level performance metrics for each time
period:

• Average response time. Average of the time since the server receives the request
until the transmission of the first packet of the request-response to the client;
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• Number of degraded connections. Number of request-responses with a trans-
mission bitrate, in average, lower than their respective encoding bitrate;

• Number of connections with negative gap. Number of ABR request-responses
transmitted after the playback time;

• Standardized average of bytes written per session. Average of bytes transmitted
by the server, per request, standardized by the respective encoding bitrate;

• Total bytes written. Number of bytes transmitted to the network (payload data
without protocol overheads);

• Bytes read from disk. Number of bytes read from disk by the server;

• Number of active connections. Number of requests being handled by the server;

• Number of accepted connections. Number of requests accepted by the server;

• Number of connections recovered. Number of requests redirected by the server
to avoid congestion. This parameter is conditioned by the load admittance mech-
anism.

The standardized average of bytes written per session metric is a global server perfor-
mance indicator. This metric is calculated in the left side of condition (4) and is lower
than 1 during periods of service quality degradation. In that condition, BitsTransmitted
represents the bits transmitted by the server to the player within each request since it
starts at time t0 until the present time ti. When, in average, the sum of transmitted
bits, for each active connection, since the beginning of transmission t0 (i.e., time of the
first byte transmitted), is smaller than the sum of the respective video encoding bitrate,
during the same period of time, the service is in a degraded state. That means that, in
average, the server transmitted less data to each player than the data required by it to
play videos up to time ti. The unit of time used to quantify data consumption is the
second, as usually the encoding bitrate is quantified in multiples of bits per second
(bps).

∑nConnections
j=1

BitsTransmittedj(t0(j),ti)
(ti−t0(j))·EncodingBitratej

nConnections
< 1 (4)

Application-level performance metrics are gathered using the mod_SHS module.
Some of these metrics are already calculated internally by the Lighttpd and are grabbed
by the mod_SHS module. The remaining metrics are calculated by the mod_SHS mod-
ule, by accessing the Lighttpd internal state through instrumentation.
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4.6.5.2 Service Quality Metrics

We use different metrics for detection of hard failures and soft failures in the HTTP
Streaming infrastructure. Detection of hard failures is performed through analysis of
the number of failed connections metric. This metric exposes the number of HTTP HEAD
probing requests failed due to network server unreachability and HTTP 5xx errors.

Detection of soft failures in the SHStream infrastructure relies on metrics calculated
server-side. Compared with the service monitoring approach using client-side metrics
calculated for synthetic sessions, server-side metrics allow measurement of the service
quality provided to all end-users, but disallows the evaluation of QoE.

The Keynote StreamQ metric adopted by the Pure Streaming infrastructure allows
quantification of the user waiting time, one important metric to determine the QoE. By
constrast, server-side metrics only suggest that end-users are either receiving or not the
throughput required for maintaining playback continuity. However, both monitoring
approaches are acceptable, since the main goal of failure detection in the self-healing
infrastructure is the identification of failure conditions demanding recovery, caused by
server and network problems.

Service quality metrics used for detection of soft failures are different for Progressive
Download and Adaptive Bitrate services.

4.6.5.3 Soft Failures in Progressive Download

Soft failures are exposed by the number of degraded connections metric calculated in the
mod_SHS module. This metric counts the number of requests with the ratio between
the average server transmission throughput10 and the corresponding video encoding
bitrate inferior to 1. Accordingly, all requests satisfying the condition (5) are accounted
by this metric.

BitsTransmitted(t0, ti)
(ti − t0) · EncodingBitrate

< 1 (5)

The rationale of the number of degraded connections metric is intuitive. Client-side
video playback consumes data at the same rate of the encoding bitrate. Therefore,
the video encoding bitrate is the minimum server throughput required to guarantee
continuity of video playback.

4.6.5.4 Soft Failures in Adaptive Bitrate Services

In Adaptive Bitrate streaming, each video segment delivered by one request respects
a fixed and small period of playback time. Thus, one healthy server should ensure
that each video segment is transmitted to the player before the previous segment has

10 Transmission bitrate provided for the request.
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completed its playback. Accordingly, we consider that the player requests each video
segment Vi+1 at latest when the previous video segment Vi starts its playback. Thus, it
is a fair assumption to consider that the server is failing to provide the service correctly
when the gap defined as in (6) is negative.

gap = 10− (Rrec(Vi+1) − Rsend(Vi+1)) (6)

Rrec(Vi+1) represents the reception time of the next video segment and Rsend(Vi+1),
the transmission time of the request of the same video segment. We assume video
segments with the duration of 10 seconds for the calculation of the gap. As a deduction,
considering that the player issues the request for a specific video segment when it
starts the playback of the previous one (worst scenario), the player receives the data
for the requested segment after its playback time when the gap is negative.

The gap is calculated for segments of 10 seconds, but other segment sizes can be
chosen. However, video segments with time lengths of 10 seconds are typical in ABR
services. Smaller segment sizes have the disadvantage of the: (1) high number of I-
frames, demanding more bits in the overall bitstream [Lederer et al. 2012]; and (2)
small Groups of Pictures (GOP), providing a lower encoding performance and quality
[Schonfeld 2011]. On the other hand, video segments larger than 10 seconds increase
the adaptation time unnecessarily.

4.6.5.5 Detection of Soft Failures

Organic client requests are used in HTTP Streaming for detection of server-side per-
formance failures. However, failing requests captured by the failure detector can be
caused by:

• Performance problems originated client-side;

• Client-side network anomalies (e.g., last mile network failures).

A threshold established for the proportion of failed requests is required to separate
server-side performance issues from client-side performance issues. In our experimen-
tal work, the detection of failures caused by server-side errors is performed based on
the assumption that, during error-free periods, at least 95% of all requests handled by
the server do not fail. This is an empirical value that do not compromise our exper-
imental results and can be readjusted whenever it has been proven inappropriate in
specific production services.

4.6.6 Experimental Evaluation of the Monitoring Performance

We evaluate experimentally the monitoring performance to determine the:
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• Monitoring delays, including data gathering, data preparation and data analysis;

• Monitoring overheads, measured in terms of the reduction in the maximum num-
ber of requests handled simultaneously by the server when the monitoring activ-
ity is active;

• Representativeness of the QoS of synthetic sessions in the Pure Streaming infras-
tructure.

Experimental results provide a basis for interpretation of the results of other self-
healing activities presented in the next chapters of this thesis. Monitoring delays are
the most critical factor for the efficacy of the whole self-healing lifecycle. As the server
load approaches maximum capacity, the monitoring delays could rise substantially
due to scarcity of available system resources required to provide timely log data for
failure detection, prediction, diagnosis and repair.

Since we ensure performance isolation between data gathering — provided by func-
tionality attached to the server — and data analysis — performed in an independent
virtual container or host machine — the variation in monitoring delays is explained
only by variation in data gathering delays.

4.6.6.1 Monitoring Delays

Figure 30 presents the average monitoring delays for both Pure Streaming and HTTP
Streaming infrastructures. Monitoring delays were obtained using the Mix+spike bench-
mark (Section 4.5.3.1) but limited to 180 simultaneous requests during the overloading
period. The monitoring delays are presented for different number of connections (re-
quests).

The Pure Streaming server reaches its nominal capacity at 110 connections, as evi-
denced in the graph, whereas the nominal capacity of the HTTP Streaming server is
140. In both infrastructures, the monitoring delays are maintained below 200 millisec-
onds, in average, up to the server nominal capacity. However, it is noticeable that in
the Pure Streaming monitoring infrastructure, the monitoring delay increases signifi-
cantly after surpassing the server capacity — monitoring delays reach approximately
1200 milliseconds in average (1400 milliseconds in the 95% percentile) for 140 connec-
tions.

Figure 31 presents the monitoring delays when the number of connections keeps
rising, bringing also the HTTP Streaming server above its capacity. It is visible that
during overloading states, the monitoring performance continues degrading in Pure
Streaming — monitoring delays reach 15 seconds, in average, after 180 connections, in-
creasing above 30 seconds in the 95% percentile. In the HTTP Streaming infrastructure,
the monitoring delays keep at the same level, during normal and overloading periods.

The low monitoring delays in the SHStream infrastructure during overloading peri-
ods mean that:
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Figure 30: Average monitoring delays observed for Pure Streaming and HTTP Streaming. The
error bars are presented for the 5% and 95% percentiles.

1. Server-side log data can be timely provided to the self-healing activities during
overloading periods;

2. Container-based virtualization is effective in isolating the performance of the
virtual container running the server from the performance of the self-healing
activities running in the same virtual machine.

Although the monitoring performance is stable during overloading periods in the
HTTP Streaming infrastructure, this result is specific to the server implementation.
It shows that the application-level logs can be provided by the server’s module dur-
ing overloading periods. Consequently, since system metrics are gathered outside the
virtual container (isolated from the server performance), the overall data gathering
activity can be performed efficiently during overloading periods. Yet, the self-healing
activities rely on the assumption of monitoring efficiency only during periods of nor-
mality.

The experimental results indicate that the data gathering process is efficient during
normal conditions in both infrastructures, independently of the server load. Hence,
proactive recovery can be ensured by both self-healing infrastructures, since log data
are timely provided for failure prediction, failure diagnosis and repair during failure-
free periods.

4.6.6.2 Monitoring Overhead

In the same way that the video server application can interfere with the performance of
the monitoring activity, the monitoring performance overhead can also interfere with
the server application performance. Monitoring overheads reduce the server capacity,
due to consumption of resources by this activity stolen to the video server application.
Therefore, with less resources available, the video server can handle a lower number
of client requests simultaneously.
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Figure 31: Average monitoring delays observed for Pure Streaming and HTTP Streaming, dur-
ing normal and overloading periods. The error bars are presented for the 5% and
95% percentiles.

We evaluated the monitoring overhead during failure-free periods in Pure Streaming
and HTTP Streaming servers, for several server load levels. The monitoring overhead is
equivalent to the reduction in the maximum number of requests without degradation
provided by the server after the activation of the monitoring activity.

Through experimental analysis, we observed that the maximum number of requests
handled simultaneously by the HTTP Streaming infrastructure is the same either the
monitoring is active or not. This observation was expected, seeing that the data gath-
ering probes implemented by our Lighttpd module has low computational complex-
ity and the HTTP HEAD requests issued by SHStream introduce relatively low per-
formance penalties compared to video-streaming requests. By contrast, in the Pure
Streaming infrastructure the server nominal capacity is decreased by 1 session. This
capacity loss was expected, in view of the synthetic connections established by the
probing agent for collecting service-level metrics.

4.6.6.3 Representativeness of Synthetic Requests

The QoS of synthetic sessions issued by the probing agent in the Pure Streaming infras-
tructure should be representative of the overall sessions being handled by the server.
Using the results obtained for analysis of monitoring delays (Section 4.6.6.1) we ob-
served that during overloading periods, the frustration time increases homogeneously
over all synthetic and organic requests.

4.7 chapter summary

This chapter presented the general self-healing approach, the self-healing infrastruc-
tures and the monitoring activity. It firstly described the self-healing problem space
with the problems and assumptions in the basis of the development of the self-healing
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activities presented in this thesis. Secondly, it presented the two self-healing infrastruc-
tures, one each for Pure Streaming and HTTP Streaming services, with the respective
architecture, elements and activities. Thirdly, it explained the experimental methodol-
ogy used to evaluate the self-healing activities presented in the next chapters of this
thesis, along with the testbed and the benchmarks. Finally, the monitoring approach
was described along with the QoS, system, network and server application metrics
used by the monitoring activity and other self-healing activities presented in the next
chapters of this thesis.

Results of the experimental evaluation of monitoring performance show that, dur-
ing periods of normality, the monitoring delays in both the Pure Streaming and HTTP
Streaming infrastructures are short enough to provide timely log data to the self-
healing activities. Additionally, there are no monitoring overheads in the HTTP Stream-
ing infrastructure, while the overheads in the Pure Streaming infrastructure are equiv-
alent to 1 session of the server capacity, representing the synthetic session issued by
the infrastructure to probe the QoS.

The infrastructures, monitoring activity, experimental methodology, testbed and
benchmarks presented in this chapter are required by the following self-healing ac-
tivities: failure repair (Chapter 5), failure prediction (Chapter 6) and failure diagnosis
(Chapter 7). The next chapter addresses failure repair in video-streaming systems. It
presents the way the repair activity integrates with the monitoring activity to achieve
small recovery delays in the self-healing infrastructure.





5
FA I L U R E R E PA I R

The real-time characteristic of video playback demands tight performance control over
video-streaming systems to avoid playback interruptions. Performance control is im-
plemented through efficient monitoring mechanisms that pursue timely detection of
failures and efficient countermeasures to restore the service to appropriate levels with
minimum impact on service quality.

This chapter addresses the problem of repairing video-streaming systems experi-
encing performance issues. Failure repair complements the monitoring activity in the
self-healing infrastructures, to provide a failure recovery service that is not only able to
gather log data and perform failure detection, but also to repair the service after each
failure occurrence. This chapter also sets time requirements imposed by repair tech-
niques to failure prediction and failure diagnosis techniques, addressed in Chapter 6

and Chapter 7, respectively.

5.1 failure repair approach

Our self-healing infrastructures implement two classes of repair techniques that can be
applied with both reactive recovery and proactive recovery strategies: server migration
and reboot. Devising a solution that exploits these techniques to minimize the impact of
recovery on the QoE of video-streaming services is the main objective of this chapter.

5.1.1 Server Migration

Self-healing systems should provide service continuity. The role of repair activities in
the pursuit of service continuity is to reestablish the service with minimal downtime
and preferably, without disrupting video-streaming sessions established between end-
users’ players and the server.

Video-streaming sessions are automatically resumed when the video players imple-
ment detection of service failures and automatic reconnection with video servers after
failure occurrence. Therefore, the video players will reissue their connection requests,
as soon as the service becomes available. Then, each player continues receiving video-
streaming data, starting from the point in the video where it was left off when the
service was interrupted. This behavior is common in Adaptive Bitrate streaming ser-
vices, where the player issues independent requests for each small segment of the
video. Thus, if one requests fails, the player reissues the request for the same segment.
By contrast, the long request-responses of Progressive Download services require that
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the server application and connection states have to be rescued server-side during the
recovery process to ensure playback continuity.

Server migration techniques transfer the video-streaming service with the estab-
lished client-server connections to a fallback host, when the active host starts showing
signs of failure. This is an effective approach to counteract performance failures in
video-streaming servers when:

1. Migration of server applications between hosts during failover is performed with
small delays;

2. The state of the video-streaming server application and all client-server connec-
tion states can be reestablished after failover;

3. Faulty components are not migrated during failover, to avoid migration of errors
to the target host;

4. Video-streaming data are transmitted progressively during long periods, as oc-
curring in Progressive Download or Pure Streaming services.

Virtualization provides a facility for generic migration of virtual machines between
hosts. By encapsulating processes, memory, connections and other structures reserved
by the video-streaming application into a single checkpointable structure, it is possible
to create an application-independent unit of migration between hosts.

5.1.1.1 Server Migration Using Virtual Containers

Container-based virtualization provides small server checkpoints, since it leaves the
global operating system structures out of virtual containers. Virtual containers only
embody structures required for their management, and private data of processes, such
as the address space, register set, opened files/pipes/sockets, IPC structures, current working
directory, signal handlers, timers, terminal settings, user identities (e.g., uid and gid) and
process identities (e.g., pid, pgrp, sid and rlimit).

Failures caused by server performance problems and server-side network problems
would potentially benefit from recovery using migration of virtual containers between
hosts. However, only server performance problems originated outside the virtual con-
tainer (at the operating system level or in other virtual containers) can be avoided by
migrating the virtual container to another host. That means that migration is ineffec-
tive when errors originate within the virtual container or are propagated to the virtual
container. Errors resulting from the activation of faults within the virtual container can
be repaired by rebooting it.

5.1.1.2 Checkpoint Replication Strategy

We adopt the single checkpoint replication strategy, due to the large overheads of
synchronous checkpointing (described in Section 3.3). Thus, the checkpoint should be
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transferred to the fallback host within the time interval between the detection time of
each soft failure and the further occurrence time of a hard failure.

Single checkpoint replication is unable to provide recovery guarantees, so it can be
complemented with reboot techniques (detailed in Section 5.1.2). Therefore, when the
time window available before the occurrence of hard failures is insufficient to rescue
the server checkpoint, the service is reestablished using a rebooted server in the same
host or in the fallback host, at the cost of disruption of client-server connections.

A proactive recovery strategy is also explored to increase the window of opportunity
available for rescuing the server checkpoint before the occurrence of hard failures. In
proactive recovery, the checkpoints are performed during the look-ahead time window
provided by failure prediction (addressed in Chapter 6). Thus, both soft failures and
hard failures can be anticipated and avoided. Failure prediction provides an opportu-
nity to handle failures gracefully, without impacting the users’ experience.

5.1.1.3 Server Migration Technique

In recovery scenarios, the reduction of virtual machine migration times should have
priority over the reduction of service downtimes caused by the migration process.
When the server starts experiencing performance problems, the virtual machine has to
be transferred to the fallback host as fast as possible. Reduction of virtual machine mi-
gration times would increase the chance of moving the virtual machines’ checkpoints
to fallback hosts before:

• The occurrence of hard failures, in reactive recovery scenarios. Otherwise, hard
failures occurring in the middle of this process will disallow the recovery of
server application and connection states in the destination host;

• The occurrence of soft failures, in proactive recovery scenarios. In this scenario,
the anticipation time provided by failure prediction is used to migrate the server
before end-users start experiencing failures.

Notwithstanding live migration techniques (Section 3.3) introduce small downtimes
when used during failure-free periods, they are inappropriate for recovery purposes,
due to the large migration times imposed by progressive data synchronization between
hosts [Clark et al. 2005][Che et al. 2010]. Instead, we use stop-and-copy migration to
migrate the server from the active host to the fallback host.

Stop-and-copy migration simplifies the migration process and reduces the time nec-
essary to rescue the virtual container, by suspending it (bringing it to a stable state)
and copying its state (memory, network and processes) to the fallback host at once.
Also, by stopping the service before starting the migration process, a larger amount of
system and network resources will be available for supporting the migration process.
Hence, the probability of successfully rescuing the checkpoint increases along with the
reduction of the time required for its execution.
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Figure 32: Migration phases and respective actions.

The stop-and-copy migration process is broken down into two main phases illus-
trated in Figure 32: server state rescue and service reestablishment.

The server state rescue phase represents a critical step to reestablish the service with-
out disruption of client-server connections. This phase is responsible for rescuing the
server’s checkpoint to the fallback host. If the server fails to complete this phase be-
fore the occurrence of hard failures, the service cannot be resumed later in the fallback
host, using the checkpoint. The server state rescue phase is composed by the suspend,
dump and move actions. The suspend action moves virtual container’s processes to a
beforehand known state and stops the network interfaces. The dump action executes
the checkpoint that saves the state of individual processes and the global state of the
virtual container to a dump file. The move action transfers the dump file to the fallback
host, completing the server state rescue phase.

During the service reestablishment phase, the checkpoint file is undumped in the
fallback host and is further resumed to continue its execution. This phase involves
reconstructing all in-memory structures required to reestablish the service from the
checkpoint.

5.1.2 Reboot-based Recovery

Recovery using server migration techniques can ensure the continuity of video stream-
ing connections established between clients and the server. However, disruption of
client-server connections established for video-streaming requests are inevitable when
hard failures arise abruptly without allowing migration of the server’s checkpoint to
the fallback host. In the same way, performance failures caused by server application
faults cannot be recovered through server migration. The reason is that checkpointing
techniques would replicate in-memory server states with errors to the fallback host,
avoiding the recovery of the server.

Despite some previous work has addressed the problem of repairing applications at
runtime by changing them dynamically [Fuad et al. 2006][Carzaniga et al. 2008][Por-
tokalidis and Keromytis 2011], none of them is generic, provides full recovery of ap-
plications and guarantees application correctness after recovery. By contrast, reboot-
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based techniques have shown a singular ability for overcoming transient failures, by
renewing the system and/or server application.

Reboots are generic recovery solutions with low complexity that are implemented in
our HTTP Streaming infrastructure for overcoming: (1) application-level failures; and
(2) system-level failures that are not detected with the necessary anticipation to finish
the checkpoint of the server application before the occurrence of hard failures.

5.1.2.1 Impact of Reboots on the Service

Reboot techniques are more disruptive than server migration techniques, because they
force the termination of all video-streaming connections. Typical Progressive Down-
load request-responses are long and the clients are bound to the server during the
download of the entire video. Thus, after the execution of a reboot operation, the end-
users may have to interact with the player application to reissue the requests again.

In typical Adaptive Bitrate streaming services, the impact of reboot on the service
quality can be comparable to that of server migration. The reason is that requests can
fail and be issued again without compromising the service quality. Each of the video
segments can be requested again before its playback in case of failure, considering that
reboots introduce small server downtimes.

5.1.2.2 Reboot Granularity

Reboots should be performed with the appropriate granularity to avoid ineffective re-
covery actions or recovery costs larger than required. An operating system reboot is
expensive and its cost is proportional to the server downtime caused by the execution
of several activities: stopping all services, restarting the operating system, starting the
services again and warming-up the server. However, reboots can be performed at a
finer granularity than the operating system. Often, errors accrue at the server appli-
cation level and, in many cases, the kernel goes back to a consistent and clean state
simply by killing and revoking the resources of the faulting process [Yoshimura et al.
2011]. Thus, whenever it is possible, only the server application should be rebooted,
since it presents significantly smaller costs.

Even when rebooting the server application (or the VC where it runs) is enough
to recover the service, the service downtime can be large enough to force the aban-
donment by end-users. The reason is that the service downtime includes the reboot
time and the partial downtime incurred due to the limited server’s capacity expected
before the end of its warm-up period. Hence, at least during the warm-up period, the
rebooted server requires the assistance of an alternative server to assume part of the
load.

Operating system reboots are required when errors originate at — or are propagated
to — the operating system level. This reboot granularity introduces larger server down-
times and server warm-up times than server application or VC reboots, as the entire
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operating system should be rebooted and warmed-up along with the server applica-
tion. To circumvent this problem, the service should be backed by alternative hosts
during recovering periods.

5.1.2.3 Challenges

The most important challenges of the execution of server migration and reboot strate-
gies concern the execution delays of these techniques and the service downtime caused
by their execution. During the server migration process, the checkpoint rescue time
should be minimized to increase the probability of being completed before the occur-
rence of hard failures. Also, the service downtime introduced by the recovery process
should be minimized in both recovery strategies to avoid client-side interruptions of
video playback and to minimize the periods of server unresponsiveness when players
issue new video-streaming requests.

After rescuing the active server to the fallback host, the server should be warmed-up
appropriately before receiving the entire active server’s load. Thus, we avoid failures
caused by handling loads in the fallback server larger than those supported by it before
the end of the warm-up period. However, during the warm-up period, the remaining
load not received by the fallback server should be handled by another server (e.g., the
active server). So, the warm-up period is accounted as partial server downtime in the
fallback host, which should be minimized.

5.2 research questions

The design of the repair solution is guided by the following research questions:

1. How to implement and integrate the server migration and reboot techniques into
the SHStream infrastructure?

2. What is the downtime generated by server migration?

3. What is the look-ahead time before failure occurrence demanded by server mi-
gration for rescuing the checkpoint of the server state to the fallback host?

4. What is the breakdown of the server migration time into the times required to
checkpoint the server application to the local disk, transfer the checkpoint to
the fallback host over the network and start the video-streaming service in the
fallback host?

5. What is the impact of server migration on the service quality?

6. Which reboot techniques are more efficient?

7. How to choose the appropriate reboot granularity?
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8. What is the service downtime generated by reboots?

9. How to warm-up the server after executing the repair action without introducing
significant server downtimes?

10. How to delimit the server warm-up period?

11. What is the length of the server warm-up period for server reboots and operating
system reboots?

The experimental evaluation of the repair approach should answer these questions.

5.3 implementation of server migration in shstream

To reduce the virtual container migration time, one copy of its basic structure should
coexist in the origin and destination hosts. That structure contains a stopped replica
of the virtual container with its filesystem. Maintaining both replicas of the file sys-
tem synchronized is essential to avoid unnecessary transference of files between hosts
during migration. The video files stored inside the virtual container are examples of
files that should coexist in both hosts before starting the migration, to reduce virtual
container migration times.

In our implementation of stop-and-copy migration, we maintain a copy of the ini-
tial virtual container in the fallback host and only copy the in-memory structures (i.e.,
checkpoint data) during migration. Transference of checkpoints between hosts is per-
formed using rsync [rsy], a popular tool for efficient incremental file transfer.

5.4 implementation of reboot-based recovery in shstream

Our recovery approach performs reboot of servers at two granularity levels: (1) virtual
container and (2) operating system. We design a two-phase reboot strategy (Figure 33)
that starts by rebooting the faulty VC. Then, a full operating system reboot is executed,
if the faulty behavior persists after the VC reboot. This multi-phase reboot strategy
aims to reduce recovery costs by avoiding full reboots when errors are confined to
specific VCs. A VC reboot offers several advantages over a operating system reboot:

• It is less expensive, since it has smaller reboot delays;

• It reduces the server warm-up period significantly, since the kernel in-memory
structures are isolated from the VC reboot process;

• It can be performed without additional resources provided by the actual host or
other hosts selected to assist the reboot process.
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Figure 33: Two-phase reboot process.

Our solution combines the execution of VC and operating system reboots with a
further server warm-up period, for recovering the server without compromising the
service quality provided to end-users.

5.4.1 Virtual Container Reboot

Reboots at the virtual container level aim to refresh the execution context of the server
application, using one of the following techniques:

1. Restart the video-streaming application process — restarts the operating system pro-
cess attached to the server application;

2. Restart the virtual container — restarts the virtual container where the server ap-
plication process is running along with all internal processes;

3. Start a fresh replica of the virtual container — stops the virtual container and starts a
rebooted replica in the same or in another host. This technique requires a replica
of a rebooted VC (a snapshot of a VC after a previous reboot) — henceforth
presented as secondary VC — to replace the active VC — henceforth presented as
primary VC.

We choose the last technique for recovering VCs because it is more efficient than the
other techniques — as demonstrated by the experimental results presented in Section
5.8 — and also because it supports our server warm-up implementation.
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5.4.2 Operating System Reboot

An operating system reboot is significantly more expensive than a VC reboot. However,
it is an appropriate recovery technique when performance anomalies originate in the
operating system.

Operating system reboots are accompanied by the instantiation of a VC replica into
another host, to handle the server load during the reboot process. We use the term
primary host to refer to the faulty host and secondary host to refer to an alternative host
that assists temporarily the recovery process of the primary host.

The operating system reboot process has two phases. In the first phase, a replica
of the primary VC (secondary VC) is instantiated into the secondary host. Then, the
requests are redirected progressively until the secondary VC is warmed-up and takes
the IP of the primary VC, similarly to a VC reboot. Finally, a full operating system
reboot is executed. The second phase initiates when the primary host finishes the
operating system reboot process. Then, the entire process followed in the first phase is
executed again to move the server back to the primary host.

5.4.3 Delimitation of the Server Warm-up Period

Despite reboot techniques can be applied to any HTTP Streaming technology, only
ABR services can potentially benefit from our warm-up approach. Since the size of
ABR request-responses is small, video players have to issue requests with high fre-
quency, allowing temporary redirection of requests between servers and performance
control over each request delivered. Thus, these characteristics of ABR streaming pro-
portionate:

• Progressive protocol-level redirection of requests to warm-up the secondary server
during recovery;

• Analysis of variance of request-response delays1 to delimit the server warm-up
period. This process determines when the secondary server rebooted is ready to
accept the full load of the primary server.

The server warm-up period should be respected to avoid failures caused by the tran-
sition from the primary VC to the secondary VC rebooted. The VC warm-up process
starts with the creation of the secondary VC with its own IP address, in the same host
of the primary VC. Afterwards, the web server running in the primary VC redirects
part of the requests to the secondary VC, using the HTTP REDIRECT method (Figure
34). The number of redirected requests grows progressively to warm-up the server
running in the secondary VC. Finally, the primary VC is destroyed and the secondary
VC becomes the primary VC, by taking its IP address.

1 Difference between the time the client transmits the request until it receives the response.
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Figure 34: Progressive migration of requests to warm-up the server running in the secondary
VC.

5.4.3.1 Insight Behind the Server Warm-up Approach

Figure 35 relates the running standard deviation [Knuth 1997] of request-response
delays with the number of video requests handled by the server after the reboot, using
a variant of the mix+spike benchmark without the overloading period. It is noticeable
a pattern of large standard deviations of request-response delays during the server
warm-up period. The variability of these values is dictated by the large delays of some
request-responses.

Request-responses with large delays can be responsible for user visible failures dur-
ing the server warm-up period. Figure 36 shows the gap between the length of each
video segment streamed (10 seconds) and its download delay, calculated as in (6), for
the same dataset of Figure 35. It exposes several requests with negative gaps during
the server warm-up period, representing potential failures experienced by streaming
users.

It is noticeable that the variability of request-response delays stabilizes after a certain
number of requests have been handled by the server. We use that characteristic to con-
trol the transference of load between the primary server and the secondary server dur-
ing the server warm-up period. Thus, the server warm-up period is delimited through
analysis of variance of request-response delays. For that purpose, we formulate the
hypothesis that the statistical distribution of request-response delays of the secondary
VC is similar when the server is warmed-up, but different during the server warm-up
period.
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Figure 35: Relation between the standard deviation of request-response delays and the number
of complete videos streamed after the reboot.

5.4.3.2 Server Warm-up Approach

During recovery, the primary server redirects the load progressively to warm-up the
secondary server, and handles the remaining load. At each warm-up stage, the primary
server redirects more requests to the secondary server (randomly selected) than in the
previous stage, increasing in the proportion of L% of the primary server’s capacity.
The resulting load of the secondary server is only increased again after stabilization
of the variance of request-response delays. This incremental process intends to avoid
transient failures during the server warm-up period and to warm-up the secondary
server with a realistic workload taken from the primary server.

Figure 37 shows the distribution of the load between the primary and secondary
servers along time, during the warm-up period of the secondary server. The primary
server controls the warm-up process, by redirecting requests and deciding when to
increase the number of redirected requests. That decision is based on the analysis of
server request-response delays gathered from the logs of the secondary server.
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Figure 36: Difference between the length of video segments (10 seconds) and each request-
response delay, after the reboot.

We use the Kruskal-Wallis method to compare statistical distributions of request-
response delays. It is an efficient non-parametric method2 used to test whether several
groups of samples originate from the same distribution. The test statistic is given by
(7), being ni the number of observations of the group i with n samples, rij the rank of
the observation j from group i, r̄i and r̄ calculated as in (8) and N the total number of
observations.

K = (N− 1)

∑g
i=1 ni(r̄i − r̄)

2∑g
i=1

∑ni
j=1 (rij − r̄)

2
(7)

r̄i =

∑ni
j=1 rij

ni
r̄ =

1

2
(N+ 1) (8)

The evaluation of our server warm-up approach depends on the observation that:

2 Does not assume that the data are normally distributed.
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Figure 37: Distribution of load between the primary VC and secondary VC and comparison
between the statistical distributions of request-response delays of different server
load levels.

• For the lowest load level (25%), the Kruskal-Wallis test rejects the null hypothesis
that the distributions of request-response delays, belonging to each pair of time-
adjacent groups of request-response delays, are similar during the server warm-
up phase;

• For higher load levels (> 25%), the Kruskal-Wallis test rejects the null hypothesis
that the distribution of each group of request-response delays, gathered during
the server warm-up phase for the current server load, is similar to that of the last
group of request-response delays belonging to a lower server load level already
validated by the warm-up process.

When the null hypothesis is not rejected, the server is considered warmed-up for
the provided load level and consequently, the load is increased in the secondary server.
The server warm-up process finishes when more than 75% of the requests are being
redirected to the secondary server.

5.4.3.3 Data Gathering for Analysis

We store the access log of the secondary server in a folder shared between both VCs, to
provide data for analysis during the reboot of VCs (Figure 34). For operating system
reboots, the content of the access log of the secondary server is synchronized between
hosts using the rsync tool, at each 5 seconds.
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5.5 selection of the secondary host

Operating system reboots and server migration techniques require the assistance of
other hosts to receive the video server during the recovery period. Any host with
available resources to handle the load of the faulty VC can be used to that end. Thus,
the secondary host can be either one passive machine specifically dedicated to assist
the recovery of other hosts or any of the active machines with available resources.

Container-based virtualization infrastructures provide statistics about utilization of
system resources for each VC. These statistics are useful to select one of the active hosts
as the secondary host. Host selection activities are performed through comparison of
resource utilization statistics provided for the primary VC with equivalent statistics
provided for VCs running in other hosts. In other words, any host with idle resources
sufficient to afford the consumption of resources by the primary VC can assist its
recovery.

OpenVZ, for example, measures the utilization and capacity of resources for each
VC using beancounters. Beancounters represent the units of utilization of resources and
are presented as such:

vzctl exec 101 cat /proc/user_beancounters

uid resource held maxheld barrier limit

101: kmemsize 803866 1246758 2457600 2621440

lockedpages 0 0 32 32

privvmpages 5611 7709 22528 24576

shmpages 39 695 8192 8192

[...]

The held column represents the current resource utilization, the maxheld the maxi-
mum resource utilization since the last VC reboot and the barrier and limit represent
the capacity of the given resource — the distinction between the last two metrics is
specific to each resource.

The OpenVZ statistics provided for each VC enable the selection of eligible sec-
ondary hosts based on resources not consumed by their VCs. One straightforward
method for selecting the secondary host is to find a host where the maxheld value of all
resources in the primary VC fits the available resources of one VC running in the sec-
ondary host, as formulated in (9). Thus, a replica of the primary VC can be instantiated
in the secondary host to assist the reboot of the primary host.

maxheldprimary < limitsecondary −maxheldsecondary (9)

The host selection process depends on a data sharing mechanism that provides the
faulty servers with resource utilization statistics of the other hosts. That mechanism
can be implemented by a reporting service accessible to all hosts to report resource
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utilization statistics periodically. The design of that service is out of the scope of this
thesis.

5.6 experimental methodology

This section presents the experimental methodology followed to evaluate our repair
approach. It presents the experimental testbed, benchmarks and evaluation metrics,
used to answer the research questions stated in Section 5.1.

5.6.1 Evaluation Benchmark

We use two benchmarks for the evaluation of server migration techniques: popular
benchmark and unpopular benchmark. These benchmarks have the same specification of
the popular+spike and unpopular+spike benchmarks presented in Section 4.5.3, respec-
tively, but:

• Do not have the overloading period (the spike period);

• The virtual container is migrated every 10 minutes;

• The number of requests ranges from 1 up to the maximum number of simulta-
neous requests supported by the server.

These benchmarks allow the evaluation of server migration with workloads posi-
tioned in the extremes of temporal locality: a cache-intensive workload and a disk-
intensive workload. Despite the low probability of being observed in real production
services, these workloads are required for knowing the worst-case recovery behaviors
associated to the limits of the recovery performance.

The mix benchmark is used for evaluation of reboots. This benchmark is a variant
of the mix+spike benchmark without the overloading period. As explained in Section
4.5.3, the workload associated to this benchmark is designed to approximate real work-
loads, which makes it adequate to understand the server behavior during the warm-up
phase. The performance of server reboots are evaluated by rebooting the server every
10 minutes.

5.6.2 Server Migration in HTTP Progressive Download

We use the testbed described in Section 4.5 for evaluation of server migration between
hosts in HTTP Progressive Download services. The experimental evaluation process
addresses the analysis of the impact of server migration on the service provided to
end-users, measured as such:
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Algorithm 1 Sequence of instructions executed to evaluate server migration.
loop
sleep(600)
ssh(host1,suspend|dump|rsync)
ssh(host2,undump|resume)
sleep(600)
ssh(host2,suspend|dump|rsync)
ssh(host1,undump|resume)

end loop

• Time required to execute each server migration step;

• The impact of server migration on the service quality metrics.

Migration of virtual containers between hosts is controlled by Secure Shell (SSH)
commands issued by a shell script. Algorithm 1 describes the sequence of instructions
executed by the shell script during the experimental tests.

5.6.2.1 Evaluation Metrics

Experimental evaluation of server migration is done using two types of metrics: recov-
ery delays and service quality. Recovery delays metrics represent the server downtime
and are divided into:

• Server state rescue time — the time spent rescuing the checkpoint. It sums the time
required for checkpointing the virtual container locally to the time required for
transferring the checkpoint data to the destination host;

• Service reestablishment time — the time required to reestablish the service in the
destination host.

Service quality metrics are gathered at every time interval, for evaluating the impact
of server migration on the service quality experienced by end-users. We consider the
following service quality metrics:

• Number of degraded connections — measures the number of soft failures manifested
as playback interruptions. This metric counts the number of connections with
transmission bitrates smaller than their encoding bitrates (the minimum bitrate
required to play videos without interruption of playback);

• Standardized average of bytes written per session — reveals the global server condi-
tion, represented by the average of the transmission bitrate of all sessions, stan-
dardized by the respective encoding bitrate.

Service quality metrics are calculated in the monitoring activity and are described
in detail in Chapter 4.
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5.6.3 Reboot in ABR Streaming

Our reboot approach is evaluated in scenarios in which: (1) the server is rebooted in
the same host, using one of the techniques presented in this chapter; and (2) a rebooted
replica of the virtual container is instantiated in the secondary host.

5.6.3.1 Evaluation Metrics

Reboot is evaluated for its efficacy and efficiency using the following metrics:

• Total recovering time — includes the reboot and server warm-up times;

• Total reboot delay — time required to reboot the server, virtual container or oper-
ating system;

• VC suspend delay and VC start delay — time required to suspend and instantiate
a VC in the same or in another host, respectively;

• Number of failed requests served by the secondary server — represents the efficacy of
the server warm-up approach;

• IP takeover time — time required by the secondary VC to take the IP of the pri-
mary VC.

Despite not impacting the service directly, the total recovering time has a direct
impact on the risk of failure. Typically, performance anomalies lead to the increase of
the severity of failures along the time. Hence, the occurrence of hard failures could
compromise the service quality provided to some users, since the server is involved
in the recovery process. In that scenario, the warm-up phase in the secondary VC is
interrupted, forcing the secondary VC to take the IP of the primary VC and handle
its entire load without being warmed-up. So, to minimize the risk of service failures
caused by a server not correctly warmed-up, the recovery time should be minimized
as well.

The number of failed requests in ABR streaming services is equivalent to the number
of requests with negative gaps, defined as in (6). These requests represent potential in-
terruptions of video playback, seeing that the gap represents the time distance between
the reception of one video segment and its playback time, in the worst-case scenario.
Therefore, to avoid failures, the downtime created by the recovery process should be
smaller than the gap of each video segment obtained without reboots. However, since
the gap varies for each request, we consider enough to have service downtimes signif-
icantly smaller than the time length of segments (10 seconds) to reduce the chance of
being larger than the gaps.

The service downtime is the sum of the time required to suspend the primary VC
with the time required by the secondary VC to take the IP of the primary VC —
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and vice-versa in the case of operating system reboots. The other recovery-related
operations do not contribute to the service downtime, because they are performed
while the primary server is providing the service.

5.7 experimental results for progressive download

This section presents the experimental results of the evaluation of server migration
and reboot as recovery strategies for performance failures in video-streaming services.
It starts by presenting the server state rescue time and service reestablishment time for
server migration, broken down into the migration phases depicted in Figure 32. Then,
it presents the impact of server migration on the service quality provided to end-users.
Finally, it presents the server warm-up time, the total recovery time and the downtime
generated by reboot techniques.

During the experimental tests, the migration of virtual containers is performed 100
times in both directions — from the primary host to the secondary host and backwards.
Reboot techniques are executed 100 times.

5.7.1 Analysis of Server Migration Times

Figure 38a and Figure 38b show the average and standard deviation of the server state
rescue time for the popular benchmark and unpopular benchmark, respectively. The
server state rescue time is presented for a progressive number of connections, up to
the maximum server capacity observed for the respective workload type. The values
are broken down into the average time to suspend the VC, save the VC checkpoint to
the disk (dump) and copy the checkpoint to the secondary host.

It is noticeable that the virtual container’s checkpoint can be rescued in less than
1.5 seconds, in average, for most server load levels and both benchmarks, increasing
slightly when the server approximates its maximum capacity. It is also observable that
a large portion of the server state rescue time (more than 1 second), during server
migration, is spent copying data to the destination host.

The maximum number of connections afforded by the server using the unpopular
benchmark (19 connections) is significantly smaller than in the popular benchmark
counterpart (116 connections). This observation is expected because the unpopular
benchmark does not benefit from temporal locality, since all requests are issued for
exclusive video content. That means that the content is fetched from the disk without
benefit from caching, creating a disk bottleneck.

The time required to reestablish the service in the destination host is presented
in Figure 38c and Figure 38d. The service reestablishment time is broken down into
the checkpoint restore time (checkpoint undump time) and the VC startup time (VC
resume time). Both benchmarks have service reestablishment times below 1.4 seconds,
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Figure 39: Maximum number of degraded connections of all runs, during the server migration,
using the popular benchmark.

in average. Almost all of that time is spent restoring the VC state from the checkpoint
file.

The total standard deviation is represented on top of each stacked bar in all graphs
of Figure 38, for both server state rescue times and service reestablishment times. It
is noticeable that the standard deviation is relatively small and thus, there is low vari-
ability around the average values presented.

5.7.2 Analysis of the Impact of Server Migration on Service Quality

As described before, the impact of migration of virtual containers on the service quality
provided for ongoing video-streaming request-responses is evaluated in terms of the
number of degraded connections and the standardized average of bytes written per
session.

Figure 39 and Figure 40 show the maximum number of degraded connections (pre-
sented as failed connections) of all runs, using the popular benchmark and unpopular
benchmark, respectively. Failed connections induced by the popular benchmark are
only visible when the server approximates its maximum capacity. By contrast, the
number of failed connections induced by the unpopular benchmark increases signifi-
cantly after 11 connections (approximately half of the server capacity).

The global service levels provided by the server are represented by the standardized
average of bytes written per session in the Figure 41 and Figure 42, for the popular
benchmark and unpopular benchmark, respectively. Values higher than 1 represent
average transmission bitrates higher than the respective encoding bitrates.

The results of the standardized average of bytes written per session for the popu-
lar benchmark are consistent with the failures exposed by the number of degraded
connections. The exception is the migration of the server when it is near full capacity.
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Figure 40: Maximum number of failed connections of all runs, during the server migration,
using the unpopular benchmark.
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Figure 41: Standardized average of bytes written per session after recovery, using the popular
benchmark. The presented values are normalized to the encoding bitrate.

In that scenario, the number of degraded connections can expose some failures unre-
flected by the standardized average of bytes written per session metric. This result is
likely to occur, since the number of degraded connections reveals the maximum fail-
ures of all runs. Thus, it is likely that it includes sporadically connections that have
had no time to buffer sufficient data to maintain playback continuity.

The results of the unpopular benchmark are also consistent with those obtained
from the analysis of individual connections: above 11 connections, the aggregate bi-
trate transmitted by the server is insufficient to guarantee continuity of playback by
players.
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Figure 42: Standardized average of bytes written per session after recovery, using the unpopu-
lar benchmark. The presented values are normalized to the encoding bitrate.

5.7.3 Discussion of Results

Experimental results presented in this section uncovered several important insights
about the use of server migration for recovery of video-streaming servers. We summa-
rize the experimental results as follows:

1. The virtual container state can be rescued in approximately 1.5 seconds, in aver-
age;

2. The average service downtime visible by players trying to establish new connec-
tions during server migration is below 4 seconds;

3. Transference of checkpoints between hosts is responsible for most of the server
state rescue times;

4. Service quality degradation is expected for ongoing video-streaming request-
responses during server migration, but only for extreme disk-intensive work-
loads and server loads above approximately half of the server capacity.

Experimental results show that container-based virtualization allows migration of
video-streaming servers with small service downtimes and without service quality
interference on ongoing request-responses. The exception is the disk-intensive work-
load incorporated in the unpopular benchmark. This workload induces service quality
degradation when the server surpasses roughly half of its nominal capacity. This phe-
nomenon is mainly explained by the warm-up period that avoids the server to attain
its maximum throughput during an initial period after server migration.

Despite the small server state rescue times observed, these values can be reduced
even more using faster networks connecting hosts, as the transference of VC check-
points between hosts dominates the server state rescue time. Additionally, server
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warm-up approaches can be necessary to avoid service failures in disk-intensive work-
loads. We evaluate a server warm-up approach in Section 5.8.

Experimental results taken for the recovery process respect the scenario where the
active host is in a healthy state. However, during periods of performance degradation,
the time necessary to rescue the server can be larger, depending on the resources avail-
able to support the server migration process. Performance anomalies, in particular,
impact the server performance in unpredictable ways, avoiding determining, in ad-
vance, the time and system resources available for rescuing the checkpoint to another
host. However, by stopping the VC during the migration period, the host has more re-
sources available, increasing the likelihood of successfully rescuing the checkpoint to
the fallback host. Even though, the unpredictability of the host condition disallows pro-
viding recovery guarantees when applying server migration to overcome performance
anomalies.

Server migration techniques can be combined with reboot techniques to provide re-
covery guarantees. Therefore, in case the server migration fails to complete, the server
is rebooted to circumvent failures. However, when the reboot action is required, the ser-
vice is harmed in two ways. Firstly, all ongoing streaming connections are destroyed.
Secondly, the rebooted server instance has no time to warm-up, limiting its capacity
during a certain period of time. Reboot techniques are evaluated experimentally in
Section 5.8.

5.8 experimental results for abr streaming

This section reveals the experimental results of the evaluation of reboot techniques in
ABR streaming services.

5.8.1 Comparison between Reboot Techniques

We start by evaluating the techniques presented in Section 5.4 to reboot the server ap-
plication: (1) restart the video-streaming application process; (2) restart the virtual container;
and (3) start a fresh replica of the virtual container. We execute the reboot process 100
times to have statistical significance.

Table 4 presents values of the 5th, 50th and 95th percentiles of the execution delays,
for each reboot technique responsible for service downtimes. The technique that starts
a fresh replica of the virtual container presents the smallest downtime of all the reboot
techniques, reaching 1.4 seconds in the 95th percentile (the median is 0.9 seconds). The
technique that restarts the video-streaming application process presents the second-
best performance, with 3.7 seconds in the 95th percentile. Finally, the worst downtime
is achieved by the technique that restarts the virtual container, reaching 12.3 seconds
in the 95th percentile.



120 failure repair

Technique 5th 50th 95th
Restart	
  the	
  video-­‐streaming	
  application	
  process 2.4 3.1 3.7
Restart	
  the	
  virtual	
  container 10.2 11.5 12.3
Start	
  a	
  fresh	
  replica	
  of	
  the	
  virtual	
  container 0.8 0.9 1.4

Percentiles	
  in	
  Seconds

Table 4: Downtime generated by each reboot technique.

5.8.2 Server Warm-up Time

Figure 43 and Figure 44 show the p-values of the Kruskal-Wallis test, using groups of
20 samples. Assuming a significance level of 95%, the null hypothesis is rejected for
p-values lower than 0.05. Accordingly, the load of the secondary server is increased
when the p-value increases above 0.05. The presentation of p-values is segmented by
the proportion of the number of requests transferred to the secondary server relative
to the primary server’s capacity (represented by N).

Figure 43 shows that the server warm-up time is approximately 178 seconds for
a operating system reboot. This value contrasts with the 70 seconds of server warm-
up time required for a VC reboot shown in Figure 44. The smaller warm-up times
observed for VC reboots are expected, since the VC state are renewed in the same
host, preserving the operating system kernel structures and caches.

We observed that all requests handled during the operating system and VC reboot
activities have positive gap values. That means that all requests were processed with-
out failures.

5.8.3 Recovery Time and Downtime

Figure 45 presents the time required to execute each recovery step. It is required 72
seconds to recover the VC and, if the failure condition persists, 253 seconds to continue
the service into the secondary host after reboot the VC. The entire reboot lifecycle is
completed after 434 seconds, plus the time required to perform a operating system
reboot in the primary host. The service downtime, represented by the time required
by the secondary VC to suspend and take the IP of the primary VC, is less than 2
seconds (rounded to 2 seconds).

5.8.4 Discussion of Results

Reboot proved to be an efficient alternative repair approach to server migration for
ABR streaming. This recovery strategy can prejudice considerably the service qual-
ity in Progressive Download services, since it can interrupt long ongoing request-
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Figure 43: p-values of the Kruskal-Wallis test for the operating system reboot. N represents the
primary server’s capacity.

responses. However, video segments in ABR streaming can be downloaded again by
players in case of failure. This is possible because players are in control of the service
quality provided and because the small size of video segments permits the download
of each segment more than once before playback, in case of failures.

We observed that the reboot technique that starts a fresh replica of the virtual con-
tainer revealed to be approximately 3 times more efficient than the restart of the video-
streaming application and approximately 10 times more efficient than the restart of the
virtual container. This technique provides service reestablishment times lower than 1.4
seconds, in 95% of cases. Additionally, it can be used to reboot the server not only in
the same host, but also in the secondary host, seeing that the rebooted replica has been
stored in the local disk of the host where it will be started.

Experimental results have shown that our reboot-based approach for recovery of per-
formance anomalies in video servers can be executed with server downtimes smaller
than 2 seconds — the time required by the secondary VC to suspend and take the IP
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Figure 44: p-values of the Kruskal-Wallis test for the VC reboot. N represents the primary
server’s capacity.

of the primary VC. Downtimes of this order are small, considering that, in the worst-
case scenario, the request has to be downloaded in less than the playback time span of
the video segment (10 seconds in our configuration) to avoid playback interruptions.
Therefore, the server downtime could shorten the maximum download time of the
video segment by less than 2 seconds.

Our recovery approach assumes that performance anomalies will not affect the abil-
ity of the server to handle requests, before and during the recovery process. That
means that during 72 seconds for VC recovery and 253 seconds for operating system
recovery, in the worst-case scenario — when the server is running at full capacity —
the primary server should be able to handle the requests not redirected to the sec-
ondary server. This is an important assumption because, most of the time spent by the
recovery process, is spent warming-up the server. Otherwise, replacing the primary
VC by the secondary VC without warming-up the server, when the primary server is
experiencing severe failures, can impact less the service quality than maintaining the
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Figure 45: Cumulative time required to recover the server by executing a VC reboot and, if
necessary, an operating system reboot.

primary server active during the warm-up period. On the other hand, by redirecting
part of the primary server’s load to the secondary server during the warm-up phase,
the service quality provided by the primary server could return to normalcy — e.g.,
the utilization of an exhausted resource can decrease below its limit. For the afore-
mentioned reasons, the server warm-up process should be tried before replacing the
primary VC by the secondary VC. Then, if failures still occur during the warm-up
phase, the secondary VC replaces the primary VC immediately.

5.9 chapter summary

This chapter presented and evaluated two recovery approaches for performance anoma-
lies in video-streaming services: server migration and reboot. The implementation of
these approaches is integrated in the SHStream infrastructure (HTTP Streaming infras-
tructure) presented in Section 4. SHStream adopts container-based virtualization for
performance isolation between the self-healing functionality and the video-streaming
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server, within the Autonomic Element. This virtualization approach is exploited for
recovery, in order to attain: (1) efficient checkpointing and resumption of virtual con-
tainers during server migration between hosts; (2) efficient server reboots; and (3) re-
duction of the server warmup time.

Experimental evaluation of server migration in Progressive Download services, us-
ing workloads with popular videos (high temporal locality), showed short service
downtimes without impacting the service quality provided to end-users. On the other
hand, service quality degradation was observed during server migration for work-
loads with unpopular videos (disk-intensive workloads with low temporal locality),
when the server load exceeds approximately half of its capacity. That phenomenon is
explained not only by the service downtime, but also by the lack of appropriate warm-
up after server migration. Experimental analysis also showed that the transference of
checkpoint data during server migration is the main contributor of service downtime.
Thus, the impact of server migration on the service quality can be reduced using faster
networks.

Server migration has shown a promising technique for recovering performance fail-
ures in Progressive Download streaming services. Yet, only the failures originating
outside the virtual container where the server application is running are recoverable
by this technique. Also, the primary host participates in the process of transferring
the checkpoint data to the secondary host. Consequently, since performance anoma-
lies generate nondeterministic service behaviors, we are unable to provide completion
guarantees for the transference of the checkpoint before the occurrence of hard failures
in the primary host.

Reboot techniques are more adequate than server migration for ABR streaming ser-
vices, since they have low complexity and can be applied to these services without
service quality degradation. These techniques are also required for Progressive Down-
load services, when the internal state of virtual containers is compromised or when the
recovery process fails rescuing the server checkpoint to the secondary server. In these
scenarios, the reboot is disruptive for client-server connections, but can reestablish the
service with short service downtimes.

Experimental analysis has shown that by applying reboot techniques without warm-
ing-up the server is often insufficient to avoid service quality failures. Therefore, we
propose an approach that uses the variance of request-response times to delimit the
server warm-up period during the recovery period. The experimental results demon-
strated the efficacy of our server warm-up approach, whenever the failure conditions
allow the faulty server instance to handle part of the load during the warm-up period.

Failure prediction is addressed in the next chapter. This activity cooperates with the
repair activity for enabling proactive recovery of video-streaming systems. Proactive
recovery provides guarantees of successfully rescuing server checkpoints during server
migration, by proportionating a time window of opportunity to rescue the server’s
checkpoint to an alternative host even before the occurrence of soft failures. Plus, the
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classification outcome provided by the failure diagnosis activity presented in Chapter
7 will decide which repair action to execute.





6
FA I L U R E P R E D I C T I O N

Repair techniques that deal with performance failures in video-streaming services can
be applied to reactive recovery and proactive recovery scenarios. In reactive recovery
scenarios, the repair techniques are triggered after failure detection, which presents
two main problems: (1) soft failures are not anticipated, resulting in an exponential
decay in the quality of experience [Fiedler et al. 2010]; and (2) during server migration,
the anticipation time window1 can be insufficient to rescue the server checkpoint.

Proactive recovery is an attractive alternative to reactive recovery. It aims to restore
the service after manifestation of the error, but before end-users start noticing failures.
Failure prediction supports proactive recovery by signaling service failures in advance.
Thus, it enables the execution of repair actions before errors start impacting the ser-
vice quality. Also, it provides the enlargement of the time window of opportunity
required to rescue server checkpoints during server migration and thus, yields higher
guarantees of service continuity.

Failure prediction is backed by models that allow detection of abnormal system
conditions preceding failures. The accuracy of these models is challenged by the rep-
resentation of failure patterns that allow the disambiguation between effective system
error conditions preceding failures from other temporary conditions unrelated to sys-
tem failures, such as, server and network performance fluctuations [Dean and Barroso
2013].

This chapter presents the methodologies and algorithms used by our approach for
prediction of performance failures in video-streaming services. It addresses several
issues related to the creation, maintenance and evaluation of prediction models for
Pure Streaming and HTTP Streaming technologies, using online learning and offline
learning algorithms. The failure prediction approach is evaluated experimentally for
performance failures caused by performance anomalies and workload-related failures.

6.1 failure prediction approach

Failure prediction assumes the existence of patterns of alarm, hinting performance fail-
ures occurring in the future. Thus, failure prediction is defined as a pre-failure pattern
detection problem.

Pre-failure patterns become visible after fault activation (Figure 46), which leads to
errors that force the server to expose an abnormal behavior. We hypothesize that these
errors are capturable by system, application and network metrics, interpreted as per-

1 Time gap between the moment the soft failure is detected until the occurrence of a hard failure.
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formance signatures named as pre-failure patterns. Failure prediction aims to capture
pre-failure patterns before errors become exposed to end-users as service failures.

Normal Pre-
failure Failure

Fault

Error
propagation

Failure 
detection 

delay

Normal

Recovery State clean/
Fault removed

Figure 46: Illustration of the positioning of pre-failure patterns on the failure recovery cycle.

Failure prediction models are two-class classifiers that discriminate normalcy pat-
terns from pre-failure patterns. These classifiers, after being learned using different
types of machine learning algorithms, are applied to online classification of new log
data. Later, the log data and respective classification are stored along with the ob-
served service state (failure or non-failure) observed by the end of the look-ahead time
period of prediction. The service state attests the failure prediction correctness, neces-
sary for evaluating the models’ classification performance and also for training failure
prediction models.

Transferability of models between systems is limited by their dependence on hard-
ware and software configurations [Powers et al. 2005]. Thus, every host has its own
set of models for prediction, which can be replaced anytime by new models in face of
major software updates and hardware upgrades.

6.1.1 Formalization of the Approach

Our failure prediction approach is formalized as follows. Being F ={normal, pre-failure,
failure} the list of service states and M the space of vectors of values corresponding
to application, system, service and network metrics and parameters, each model is
trained incrementally to discriminate the subspace S1 of M associated to the service
state f ={normal} (normalcy patterns) from the subspace S2 of M associated to the ser-
vice state f ={pre-failure} (pre-failure patterns), being f ∈ F. The latter state is observed
between periods where f ={normal} and periods where f ={failure}. In other words,
pre-failure patterns are vectors of the multidimensional space M that are observed
between fault activation and the exposition of the corresponding service failures to
end-users.
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6.1.2 Failure Prediction Hypotheses

Failure prediction is supported by several hypotheses set out for pre-failure patterns.
Pre-failure patterns should:

1. Be exhibited in an unambiguous way before the failure — pre-failure patterns
should precede service failures and should be exclusive to faulty periods;

2. Be represented by the features (metrics and parameters) covered by monitoring
— the availability of features absorbing these patterns and the selection of repre-
sentative features compel the performance of failure prediction models;

3. Be representable by models able to classify them with an acceptable margin of
error — selection of algorithms for learning models is a determinant activity to
attain high prediction performance;

4. Provide an acceptable failure anticipation time — the look-ahead time2 provided
by prediction should suffice to apply countermeasures to restore the service to
normal levels.

These hypotheses pose the most important challenges of our failure prediction ap-
proach. The validity of these hypotheses is a necessary condition to obtain accurate
failure prediction models using our approach.

6.2 derived metrics

The failure prediction activity uses metrics data gathered by the monitoring activity.
These data are represented as periodic snapshots, which are unable to expose the ten-
dency of metrics values along the time. To circumvent this limitation, we calculate
second-order metrics, designated as derived metrics, to represent the temporal ten-
dency of metric values.

As we are doing short-term prediction of failures (in the order of seconds), the
temporal tendency of metrics values will likely help improving the model performance.
As an example, a CPU utilization close to 100% may indicate a possible failure in the
near future if the utilization of this resource is increasing but not if the tendency is for
decreasing utilization.

By adding one derived metric per each metric selected for the model, it is possible
to determine the tendency of metrics values. Each derived metric is calculated as the
angle between the first and the last values of a given time window, as shown in Figure
47. The angle θ ∈ [−90, 90] degrees measures the slope of the tangent line calculated
for each metric. Intuitively, the strength of each metric tendency is proportional to |θ|.

2 Time between the observation of the pre-failure pattern and the failure occurrence.
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Positive values of θ represent a tendency to increase the metric value, whereas negative
values of θ represent a tendency to decrease its value.

tfti

time window

Figure 47: Derived metric calculated as the angle formed by the first and the last value of a
given time window.

6.3 evaluation of prediction models

The success of any failure prediction approach depends on the accuracy of its predic-
tion models, which depends on:

• Coverage of metrics and parameters — all metrics and parameters capable of
identifying pre-failure patterns should be included in the model training dataset;

• Data gathering frequency — this parameter limits the look-ahead time of predic-
tion. Smaller data gathering intervals allow smaller delays between the reflection
of errors in metrics and their analysis in the failure prediction process. In other
words, the sooner the metrics measurements representative of pre-failure pat-
terns are gathered, the larger the look-ahead time of failure prediction will be;

• Adjustment of models to learning data — models should fit the training data
and thus, correctly classify the pre-failure patterns included in the learning
dataset with small errors;

• Model generalization — new log data resulting from measurements taken from
production services (i.e., data not included in the learning dataset) should be
accurately classified.

Accurate prediction models should not only be able to correctly predict events regis-
tered in the model training dataset, but also to correctly predict events in new log mea-
surements (unseen data). However, the models that best adjust the learning dataset can
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be those that least adjust to future events requiring classification. This phenomenon
occurs because the reduction of prediction errors over training datasets can be done at
the cost of increased model complexity, which are in the origin of the overfitting phe-
nomena [Hawkins 2004]. An overfitted model can perfectly model events registered in
the learning dataset but lacks prediction generalization to other events unseen in the
learning dataset. For that reason, the models’ accuracy has to be evaluated using both
training data (historical data) and unseen data.

6.3.1 Metrics for Measuring the Performance of Prediction Models

Failure prediction performance are commonly measured by four metrics:

• True Positives (TP) — the number of pre-failure patterns correctly classified;

• False Positives (FP) — the number of normalcy patterns classified as pre-failure
patterns;

• True Negatives (TN) — the number of normalcy patterns correctly classified;

• False Negatives (FN) — the number of pre-failure patterns classified as normalcy
patterns.

These metrics provide the elements for reasoning about the model prediction per-
formance. However, it is complex to interpret the models’ performance and compare
several models using each of these metrics individually. To simplify the interpretation
of results, several metrics imported from the information retrieval domain [Manning
et al. 2008] are commonly used to evaluate models: recall, precision and the f-measure
metrics.

Recall (10) is a measure of completeness or quantity. This metric is also known as the
sensitivity or coverage of the model. It represents the fraction of failure events captured
by the classifier.

Recall =
TP

TP+ FN
(10)

Precision (11), also called positive predictive value, is a measure of exactness or quality
that captures the true positive rate of failure events.

Precision =
TP

TP+ FP
(11)

The models’ classification performance can be evaluated and compared using the
recall and precision metrics. However, using a single metric to represent the models’
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performance simplifies the comparison of performance between models. F-measure is
a metric that combines recall and precision, by calculating their weighted harmonic
mean (12).

F−measure =
2 · Precision · Recall
(Precision+ Recall)

(12)

Notwithstanding the simplicity of the f-measure metric for evaluation of models —
since it exposes a single value representative of the classification performance — the
analysis of recall and precision metrics individually would be required. The reason
is that false positives (captured by the precision metric) can have a larger negative
impact on the service provided to end-users than true positives (captured by the re-
call metric). As an example, models with a large number of false positives can have
prohibited costs when the repair actions triggered to recover the system are expensive
(e.g., repair generates large service downtimes). In such cases, f-measure would be less
representative of the model performance, as high precision values would be preferable
to high recall values.

Both precision and recall metrics are robust to unbalanced datasets [Chawla 2005],
which makes them good metrics for evaluation of failure prediction performance. Un-
balanced datasets hold a disproportionate number of instances respecting each clas-
sification outcome. In failure prediction problems, it is common to have more log
instances gathered during periods of normalcy than log instances gathered during
faulty periods. This is because the service is running most of the time without failures.

6.3.2 Model Evaluation Process

As explained before, prediction models should be evaluated during the training phase
with historical data, and later with new log data. Models with poor classification per-
formance predicting historical events recorded in the training dataset should be dis-
carded before being used in production services. Further, failure prediction models
that start showing unacceptable prediction performance with new log data should
be removed from the prediction process or replaced by others. The model evaluation
scheme depends on the learning algorithm type. Basically, learning algorithms can
be decomposed into: offline learning (also known as batch learning) and online learning
algorithms.

Models created with offline learning algorithms remain unchanged after their cre-
ation. Cross-validation techniques [Kohavi 1995] are commonly employed to evaluate
these models with historical data, after being created. Afterwards, per-instance valida-
tion evaluates continuously the models’ prediction performance with new gathered
data, after each prediction, as soon as the information about the prediction correctness
becomes available.
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Compared with offline learning algorithms, online learning algorithms assume that
the historical datasets are unavailable for learning or that they have insufficient histor-
ical data to create accurate models. Hence, models are trained progressively with data
gathered iteratively from logs. Due to the incremental nature of this learning approach,
only per-instance validation is appropriate for the evaluation of prediction models.

6.3.2.1 Cross-validation

Cross-validation techniques determine how predictions performed by a given model
will generalize between different subsets of the learning dataset. This form of vali-
dation measures bias and variance errors in the learning dataset. Bias errors respect
modeling errors on each subset of the learning dataset. On the other hand, variance
errors are taken for model predictions using different learning subsets. In other words,
variance errors measure the prediction error for a given dataset using different realiza-
tions of the model — each one excluding a learning subset of the dataset. To determine
the variance, the entire model building process is repeated several times, one for each
subset.

The bulls-eye diagram in Figure 48 illustrate the bias and variance concepts. The
center of the target is a model that perfectly predicts the correct values. The entire
model building process is repeated to get a number of separate hits on the target.
Each hit means one individual model realization, given the chance variability in the
training data. Thus, different realizations will result in a scatter of hits on the target.
Intuitively, low bias errors are achieved when the hits are close to the center of the
target and low variance errors are achieved when all hits are close together.

High VarianceLow Variance

Low Bias

High Bias

Figure 48: Illustration of bias and variance.
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In K-fold cross-validation, the logged data instances are randomly segmented into
k independent equal-sized folds, as illustrated in Figure 49. The evaluation process
repeats k times, one for each model realization and, at each time, a different fold is
used for evaluation. The remaining folds are combined and used for training. Ten-fold
validation (i.e., k-fold cross-validation with k = 10) is the most common configuration
for cross-validation. Performance metrics used for evaluation expose bias from each
model realization and variance between model realizations.

D1 D2 D3 Dn

Run 1

Run 2

Run 3

Run n

Figure 49: At each run, the data segment colored as gray is used to evaluate accuracy and the
others are used to train the classifier.

Bias and variance are two main prediction error terms. Considering f̂(x) a model
estimation of f(x), the expected squared prediction error is determined as in (13).

Err(x) = E
[
(Y − f̂(x))2

]
(13)

The error decomposition into bias and variance components is formulated in (14).

Err(x) =
(
E[f̂(x)] − f(x)

)2
+ E

[
f̂(x) − E[f̂(x)]

]2
+ σ2ε

Err(x) = Bias2 + Variance+ IrreducibleError
(14)

The third term of (14) represents the irreducible error, which cannot fundamentally
be reduced by any model, as it represents the noise term. Bias and variance terms can
be reduced to 0, given the true model and infinite data to calibrate it. Since real models
are imperfect and data is finite, there is a trade-off between minimizing both bias and
variance.
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6.3.2.2 Per-instance validation

Classification models require continuous evaluation after being settled for prediction
in production environments. As well, in online learning scenarios, only a limited
amount of data can be available for learning initially. Thus, the learning process runs
continuously and simultaneously with classification of log instances. Hence, the mod-
els’ performance metrics should be recalculated after each classification.

6.4 failure prediction methodology

The failure prediction activity rolls out into several phases:

1. Data preparation — prepare the log data to optimize the classification perfor-
mance;

2. Feature selection — select relevant features for building accurate prediction
models. When the learning algorithm performs feature selection intrinsically, this
phase is avoided;

3. Model learning — train prediction models using log data;

4. Model evaluation — this phase starts after model creation (cross-validation) and
afterwards, to determine the model classification error iteratively with new log
data (per-instance validation);

5. Classification — apply prediction models to classification of log instances into
normalcy patterns and pre-failure patterns.

Some machine learning algorithms demand the preparation of data and selection of
relevant features (first two phases). These activities will be further described.

6.4.1 Data Preparation

The monitoring activity is responsible for providing log data for the model training
and classification activities. However, these data should be prepared to maximize the
models’ accuracy.

We consider two data transformations: rescaling of feature values and data discretization.
Rescaling changes the range of each feature to the interval [0, 1], so that each feature
value x is rescaled to x ′ using the formula (15).

x ′ =
x−min(x)

max(x) −min(x)
(15)
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Not all learning algorithms allow both continuous and discrete feature variables.
The values of continuous feature variables have to be discretized before being used
by some learning algorithms. We use equal-width binning to divide the range of pos-
sible values of each feature into N subranges of the same size, so that each range is
represented by an integer.

6.4.2 Feature Selection

Only a subset of the features (metrics and parameters) included in the learning dataset
has discriminatory power for prediction. Some features are irrelevant and add com-
plexity to prediction models when considered by learning algorithms. The role of
feature selection is to identify the list of features relevant for prediction models, in the
list of metrics provided by the learning dataset. Feature selection can be performed
intrinsically by learning algorithms or otherwise, it may require an independent ap-
proach.

6.4.2.1 Curse of Dimensionality Problem

The curse of dimensionality [Witten et al. 2011] is a phenomenon in high dimensional
data spaces that prejudices the prediction performance. Dimensionality represents the
number of features in the data space. When the dimensionality increases in data spaces,
the available data become sparse. Consequently, the amount of data needed to achieve
statistical significance in the model training process grows exponentially with the di-
mensionality. Additionally, high dimensional spaces lead to complex models having
large computational and time costs, and low discriminative performance. Therefore,
the reduction of dimensionality is desirable to build powerful and efficient models.

By reducing the number of features, the models’ complexity is reduced as well. Thus,
it is expected a speed up in the model learning process and an increase in the model’s
generalization capability. Also, the interpretability of models is improved, so that the
visual inspection of models becomes possible.

6.4.2.2 Feature Selection Algorithm

We adopt the Linear Forward Selection (LFS) algorithm [Gutlein et al. 2009] for feature
selection. This algorithm is known to be fast and accurate for scoring subsets of fea-
tures according to their predictive ability. The LFS algorithm uses a wrapper method for
selection of metrics during the feature selection process. Wrapper methods use learn-
ing algorithms and resultant models — one model for each feature — to score features
according to their predictive ability. After ranking features by significance, the resul-
tant list R is used by LFS to include stepwisely each candidate feature r ∈ R, ordered
by its significance, into the subset of features ~M chosen for the model. This process



6.5 failure prediction in pure streaming 137

All Features
Rank

Features by
Relevance

Significant
Improvement

Yes

NO
Final
Subset

Evaluate
Revelance of
Each Feature

Building
Model

Performance
Evaluation

Add Next
Feature to
Final Subset

Building
Model

Performance
Evaluation

Wrapper Method Wrapper Method

Figure 50: The process followed by the Linear Forward Selection algorithm.

continues until none of remaining features of R reveal significant improvement when
added to the model, as described in Figure 50.

Despite the LFS algorithm suits most types of problems, there are other alternative
feature selection approaches that can be explored. The Principal Component Analy-
sis (PCA) procedure [Guyon and Elisseeff 2003] and the Mutual Information Criteria
[Peng et al. 2005] are two popular alternatives to LFS for feature selection.

6.4.3 Training, Evaluation and Exploitation of Models

The activities associated with training, evaluation and exploitation of models are spe-
cific to each class of algorithms and will be addressed in the next sections for the Pure
Streaming and HTTP Streaming infrastructures.

6.5 failure prediction in pure streaming

This section presents the research questions, the machine learning algorithms, the
model classification strategy and the results of the experimental evaluation of our
failure prediction approach for Pure Streaming services.

6.5.1 Research Questions

The evaluation of our failure prediction approach in Pure Streaming services is per-
formed to answer the following fundamental questions:

1. Are performance failures preceded by server states exposed in the form of recur-
rent and unambiguous pre-failure patterns to be captured by prediction models?
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2. Which type of classification algorithms shows the best failure prediction perfor-
mance in video-streaming servers?

3. What is the relationship between the prediction look-ahead time and the classi-
fiers’ performance?

4. What is the relationship between the failure severity and the classifiers’ perfor-
mance?

5. Does the inclusion of past data in the learning process increases the classifiers’
performance?

6. What is the performance difference between the prediction of workload-related
failures and performance anomalies?

The first research question is of the highest importance in our research. When pre-
failure patterns are exposed by metrics to be represented by models, the remaining
work resides in selecting algorithms and configurations able to create models with
the best prediction performance. The remaining questions focus on the breakdown of
results into several aspects of analysis.

6.5.2 Batch Learning Algorithms

Failure prediction focuses on training, evaluation and exploitation of prediction mod-
els, created using supervised learning algorithms [Hastie et al. 2001]. These algorithms
train models from a known set of input data and known responses to the data, with
the purpose of obtaining accurate predictive models that generate reasonable predic-
tions for the response to new data. Predictive models are trained using vectors of
feature values labelled with one of the following pattern types: normalcy patterns or
pre-failure patterns.

To obtain accurate models for classification of service states, it is mandatory to se-
lect appropriate learning algorithms. Our failure prediction infrastructure incorporates
several popular algorithms in the machine learning and data mining fields. It is unfea-
sible to evaluate our approach using all algorithms published in the literature. Instead,
we consider reasonable to choose one algorithm representative of each class of algo-
rithms encountered in the literature to ensure diversity of prediction models.

Learning algorithms can be grouped into decision trees, probabilistic models, discrimi-
nant functions and ensembles of models [Hastie et al. 2009]. To represent each of these
groups, we choose the following algorithms:

• C4.5 learning algorithm [Quinlan 1993] to build decision trees;

• Tree Augmented Naïve Bayesian Networks (TANs) [Friedman et al. 1997] to build
probabilistic classifiers;
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• Support Vector Machines (SVMs) [Hearst et al. 1998], with a polynomial kernel to
create discriminant functions;

• Bootstrap Aggregating (Bagging) [Breiman 1996a] to build ensembles of models.

We evaluate the algorithms integrated in our failure prediction approach in terms of
their prediction performance (using the metrics presented in Section 6.3), look-ahead
time provided by prediction and interpretability of models.

6.5.2.1 Look-ahead time

The look-ahead time provided by prediction limits the effectiveness of repair actions.
The execution time of proactive recovery actions should be smaller than the look-ahead
time provided by failure prediction, to avoid the occurrence of service failures. The
larger the look-ahead time provided by prediction, the wider the set of repair actions
eligible to recover the service before end-users start experiencing failures. However, the
experimental results of the application of container-based virtualization techniques to
recovery of video-streaming servers (Chapter 5) have shown that look-ahead times in
the order of a few seconds is sufficient to recover the service before the occurrence of
failures.

6.5.2.2 Interpretability

Interpretability is a desirable quality of any failure prediction approach, as it allows
human inspection of prediction models. Black box modeling approaches lack inter-
pretability, leading to obscure decisions taken from classification outcomes given by
models with structures invisible to human operators.

Interpretable models also help dealing with the automation irony [Russell et al. 2003],
a phenomenon where the reduction of reliance on human decisions leaves systems
vulnerable to wrong decisions made by systems automatically. Interpretability helps
turning on transparent the set of rules used by models to predict failures and their
relationship with the observed features values. Additionally, fault removal activities
carried out during software maintenance can be facilitated by the analysis of the model
structure, model classification outcomes and features values observed during faulty
periods.

From the list of algorithms considered for creating failure prediction models, only
C4.5 decision trees and Tree Augmented Naïve Bayesian Networks produce inter-
pretable models. The structure of these models is formed by a tree — also repre-
sentable by classification rules — that relates features in a way that permit human
inspection.
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6.5.2.3 C4.5 Trees

The C4.5 algorithm creates decision trees models that are are robust to noise, avoid
overfitting (perform feature selection intrinsically) and produce interpretable models.
C4.5 is an evolution of ID3, an algorithm to build decision trees using the concept
of information entropy. During the tree building process, the C4.5 algorithm selects,
for each node of the tree, the attribute that most effectively splits the training set of
samples (learning instances) into subsets enriched in one class or the other. It uses
Hill-Climbing Search [Hastie et al. 2001] based on the Normalized Information Gain
(difference in entropy) to search the space of decision trees.

The Hill-Climbing Search is an algorithm that iteratively attempts to find better solu-
tions for a given problem, by incrementally changing a single element of the solution.
If the change (a new node split) produces a better solution — determined in the C4.5
by the Normalized Information Gain — an incremental change is made to the new
solution. This process is repeated until no further improvements can be found.

The Normalized Information Gain is computed as described in (16), being S the
attribute space, E the entropy, values(A) the set of possible values of an attribute A
and Sv the subset of S when A has value v.

Gain(S,A) = E(S) −
∑

v∈values(A)

|Sv|

|S|
E(Sv) (16)

Decision tree models are representable by decision rules, formed through interpre-
tation of each tree path. One tree path represents the set of nodes, from the tree root
to the tree leaf, followed by one rule used to make a decision. To exemplify, Figure 51

shows one decision tree that determines when to play and when not to play a game of
golf. The decision tree was created by the C4.5 algorithm with 14 samples. Each tree
leaf shows the number of samples that incorporates the respective tree path.

6.5.2.4 Discriminant Functions

In the group of discriminant functions, we opt by Support Vector Machines (SVMs)
with a polynomial kernel, due to their good prediction performance when applied to
prediction in several domains [Sapankevych and Sankar 2009][Kim 2003][Thissen et al.
2003]. SVMs construct N-dimensional hyperplanes that optimally separate samples into
categories.

SVMs select a small number of critical boundary samples called support vectors from
each class (possible classification outcome) to create a linear discriminant function —
optionally extended to a non-linear function to form quadratic, cubic, and higher-order
decision boundaries — that separates classes as widely as possible. The maximum mar-
gin hyperplane that separates two classes is represented as in (17), where i reference
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Figure 51: Decision tree model created with the C4.5 algorithm.

each support vector, a the test instance, a(i) the support vectors, and finally b and αi
are parameters that determine the hyperplane that separates two classes.

x = b+
∑
i

αiYia(i) · a (17)

Figure 52 illustrates an example with three candidate hyperplanes H1, H2 and H3.
We can observe that H1 is unable to separate classes, H2 does so but with a small
margin and H3 separates them with the maximum margin. Thus, the H3 hyperplane
has the largest distance to the nearest training data point of any class. Samples in the
margins are called support vectors.

In failure prediction problems, samples are mapped into the model space and are
classified to belong to a class based on which side of the hyperplane they fall on. Larger
margins between support vectors will give higher confidence on the predictions, as
long as they represent lower generalization errors of the classifier.

6.5.2.5 Probabilistic Classifiers

Naïve Bayes is a popular probabilistic classifier that is known to be accurate. Naïve
Bayes classification is performed over the probability of each class value C — in failure
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Figure 52: Separation of hyperplanes using SVMs.

prediction, class values would be either normalcy pattern or pre-failure pattern —
conditional on several feature variables Fi, as formulated in (18).

p(C|F1, ..., Fn) =
p(C)p(F1, ..., Fn|C)
p(F1, ..., Fn)

(18)

Despite the good classification performance of Naïve Bayes, it has a fixed structure,
encoding the assumption that features are conditionally independent. The indepen-
dence assumption is unrealistic in several problems.

Tree Augmented Naïve Bayes (TANs) [Zheng and Webb 2010] improve Naïve Bayes
by weakening the feature independence assumption, through the approximation of
dependencies among features in a tree structure. The dependence between features is
illustrated in the network presented in Figure 53.

TANs comprise a subclass of Bayesian Networks [Pearl 1988] that create probabilis-
tic models which combine knowledge engineering and statistical induction. They are
characterized as networks of nodes with probabilistic semantics, where nodes rep-
resent features connected by annotated directed edges encoding a joint probability
distribution, in such a way that there are no cycles (Directed Acyclic Graph). The Max-
imum Weighted Spanning Tree [Friedman et al. 1997] that maximizes the likelihood of
the training data is used to perform classification.

TANs have been shown to outperform Naïve Bayes and other bayesian approaches
(e.g., Generalized Bayesian Networks) in both cost and accuracy for classification in
a variety of contexts [Friedman et al. 1997]. Additionally, they have been successfully
applied to performance diagnosis and management in three-tier web services [Cohen
et al. 2004] and other Internet services [Tan and Gu 2010].
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Figure 53: Example of a TAN structure for failure prediction, representing the dependencies
between features in a tree structure.

6.5.2.6 Ensembles

Ensembles group several models that are generated and combined to solve a particu-
lar computational intelligence problem. By using several models in the classification
process, it is expected an improvement over the performance provided by a single
model and a reduction of the likelihood of an unfortunate selection of a poor one.
The prediction performance of a single model can be improved by exploiting diversity
of models when making decisions, using outcomes of several models (e.g., through
Majority Voting [Ruta and Gabrys 2005]) built using different data or algorithms.

We choose the Bootstrap Aggregating (Bagging) algorithm [Breiman 1996a] as the
representative of ensemble learning algorithms. Bagging produces models with high
classification performance, even when using learning datasets with noise — within
some reasonable levels. This algorithm achieves resiliency to noise by exploiting it to
produce more diverse classifiers [Dietterich 2000].

Bagging is a robust meta-learning algorithm that operates with other algorithms
to create several classification models. It performs bootstrapping (random sampling)
on training data for model diversity. Classification is performed by amalgamating
the outputs of all models into a single prediction outcome using Majority Voting, as
illustrated in Figure 54. By randomly choosing samples for training models, Bagging
expects to improve the accuracy of models and reduce variance and overfitting.

Bagging generates m new training sets Si, by sampling with replacement 3 from the
standard training set S with size n, uniformly. Sampling with replacement ensures
that the samples can be repeated in different training sets. Si is known as a bootstrap
sample because, with a large enough n, each Si is expected to have ≈ 63.2% of the
unique samples of S, calculated as the fraction 1− 1/e, being the rest duplicates. Each

3 All samples are eligible to incorporate any Si.
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Figure 54: Majority voting in failure prediction.

training set Si is used to train one model Mi that will be included in the ensemble of
models.

6.5.2.7 Learning Algorithms Implementations

We use the Weka implementation of the algorithms [Hall et al. 2009] to build failure
prediction models. It includes the Sequential Minimal Optimization (SMO) — an al-
gorithm for solving the optimization problem that arises during the training of SVMs
— and the J48 open-source implementation of C4.5 decision trees. The Bagging meta-
learner is used with ensembles of C4.5 models.

6.5.3 Implementation of Failure Prediction

Learning datasets include log instances associated to periods of normalcy (normalcy
patterns), periods of pre-failure (pre-failure patterns) and periods of failure (failure
patterns). Figure 55 illustrates these three periods. Prediction models are created using
log instances gathered during periods of normalcy and periods of pre-failure. During
periods of pre-failure, there are two types of log instances: client-workload overloading
and performance anomalies.

Several model configurations can be explored for failure prediction. We start by ex-
ploring the model-pairing configuration (Figure 56) using distinct models for binary
classification of performance anomalies and client-workload overloading failures. A
failure is predicted in the model-pairing configuration when, at least one of the models,
predicts the corresponding failure. In another configuration of models, we explore the
use of a single-model configuration (Figure 57) to classify log instances into pre-failure
patterns and normalcy patterns, without distinguishing between client-workload over-
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Figure 55: Classification of log instances into the different types of patterns.

loading and performance anomalies. This configuration avoids separation of instances
associated to each fault type.

6.5.4 Experimental Design and Preliminary Analysis

This section presents the experimental methodology to evaluate the failure prediction
performance of our approach in Pure Streaming services. The experimental process
can be summarized as follows:

1. Run the mix+spike and mix+anomaly benchmarks, using a load generation tool.
Each benchmark runs for 90 hours, during which metrics measurements are col-
lected, at every second, for further analysis;

2. Integrate, clean and find relevant features on the logged data;

3. Build models to evaluate the impact that class unbalancing in the learning dataset
has on prediction performance;

4. Build models to evaluate the classification performance improvement resulting
from the inclusion of past data in the learning process — including metrics mea-
surements gathered at time t − i in the failure prediction process, being t the
time of the last measurement and i a positive value;

5. Build models for the model-pairing and single-model configurations;

6. Breakdown of failure prediction results per each learning algorithm, failure sever-
ity level, look-ahead time and failure type;

7. Determining the impact of derived metrics on the failure prediction performance.

The classification performance of failure prediction models is evaluated using stan-
dard ten-fold cross-validation (described in Section 6.3.2).



146 failure prediction

NA W
W

NA

NW A
A

NW

Class A Class B

Class A Class B

OR

Prediction

Prediction

Figure 56: Failure prediction in the model-pairing configuration, using two models. One of
these models separates pre-failure patterns associated to workload-related failures
(W) from the patterns (N) and (A). Similarly, the other model separates pre-failure
patterns associated to performance anomalies (A) from the patterns (N) and (W).
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Figure 57: Failure prediction in the single-model configuration. Pre-failure patterns are sepa-
rated from normalcy patterns, independently of their fault types.

6.5.4.1 Prediction Performance Metrics and Semantics

Section 6.3.1 presents several common metrics used to measure the classifiers’ per-
formance. From these, the recall and precision metrics are the most relevant, for the
reasons already described.

Each event accounted by recall and precision represents one period of the bench-
mark. Benchmarks are structured into periods of normalcy with a duration of 10 min-
utes, each followed by a period of failure with a duration of 1 minute. Hence, a true
positive is accounted the first time the failure is predicted before failure occurrence
within the same period. On the other hand, one false positive is accounted when,
within a period of normalcy, there is at least one erroneous prediction of failure.
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6.5.4.2 Preliminary Analysis of the Impact of Class Unbalancing

The number of learning instances gathered during normal server periods can exceed
several orders of magnitude the number of learning instances associated to failure peri-
ods, as most of the time the system is healthy. Learning datasets with this configuration
may interfere with performance of classifiers. The reason is that some algorithms un-
derperforms classification of the minority classes in class unbalanced datasets, giving
higher significance to majority classes, when they hold a significantly higher number
of learning instances compared with minority classes.

We evaluated the impact of compensation of class unbalancing on the failure pre-
diction performance, using a cost model that benefit learning instances associated to
pre-failure periods in the learning process. This is done by attributing them a weight
inversely proportional to the number of occurrences of its class in the dataset. However,
the experimental results obtained using the mix+spike and mix+anomaly benchmarks
have shown that compensation of class unbalancing is unable to improve the classifiers’
performance. Based on the results, we decide to perform experimental evaluation of
models without compensation of class unbalancing.

6.5.4.3 Preliminary Analysis of Prediction Using Past Data

The failure prediction approaches presented in this chapter infer the server state Ft
from patterns exposed by specific features values Mt, observed at the current time
t. We consider an alternative configuration that combines both Mt and the features
values observed in the past Mt−1,Mt−2, ...,Mt−n to infer the server state Ft.

The rationale for the use of the sequence of features values observed along the time
within the time window [t−n, t] is that they expose a tendency. This approach comes
at the cost of an increase in the number of features values equal to |Mt|× (n+ 1), re-
sulting from the multiplication of the number of features |Mt| by the number of past
periods n+ 1 considered for each feature. Consequently, the data volume and process-
ing costs would increase proportionally to the number of past events considered.

The experimental results obtained using the mix+spike and mix+anomaly bench-
marks for different values of n, have shown that past features values do not improve
the prediction performance of models. This observation can be explained by the redun-
dancy of past values with the derived metrics, which already provides the tendency of
metrics values along time. In face of the results, we avoid past features values in the
learning process.

6.5.5 Experimental Results in the Model-Pairing Configuration

This section presents the results of the application of binary classification to failure
prediction using the model-pairing configuration.
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Figure 58: Recall using different learning algorithms in the model-pairing configuration.

6.5.5.1 Breakdown of Results by Classification Algorithm

Figure 58 and Figure 59 present the classification recall and classification accuracy,
partitioned by learning algorithm. The results are presented for:

• Look-ahead times that range from 5 to 30 microseconds;

• Soft failures, defined as frustration times higher than 6 seconds, according to the
Keynote StreamQ grade metric (Chapter 4);

• All failures, comprising both hard failures (e.g., server crash leading to termina-
tion of connections) and soft failures.

Experimental results have shown that bayesian networks present the highest recall
for look-ahead times up to 25 seconds. Recall values reach approximately 93% in both
soft failures and all failures configurations, for look-ahead times of 5 seconds. Raising
the look-ahead time to 10 seconds, only the all failures configuration decreases to ap-
proximately 87%, contrasting with soft failures, which suffers a decrease below 1%.
Variations are small for larger look-ahead times, except for soft failures, which drops
approximately 5% after 20 seconds. The best performance achieved by bayesian net-
works is counterposed with the low precision values, which never surpasses 43% in
the entire range of look-ahead times.

The SVMs (SMO) results exhibit the opposite behavior of bayesian networks, show-
ing low recall but high precision values for small look-ahead times. Recall values
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Figure 59: Precision using different modeling algorithms in the model-pairing configuration.

start at 12%, approximately, for soft failures with look-ahead times of 5 seconds and
vary with time very irregularly, dropping to zero above 15 seconds. This behavior
shows that models created with this algorithm have limited performance capturing
pre-failure patterns.

Decision trees (J48) present the best balance between recall and precision. It starts
with a recall of 70% and a precision of approximately 78%, for soft failures with look-
ahead times of 5 seconds. Both metrics drop sharply for look-ahead times above 10
seconds. The precision of decision trees is slightly improved when combined with the
Bagging meta-learner (approximately 79% for soft failures). However, the recall of soft
failures is lower in Bagging (approximately 64%) than in decision trees.

Summing up, it is noticeable three global patterns from the analysis of look-ahead
times and failure types. Firstly, it is visible a global decrease of recall and precision
over look-ahead times varying from 5 to 20 seconds. Secondly, the prediction perfor-
mance is smaller in the all failures configuration than in the soft failures counterpart.
That means that models are less accurate in predicting hard failures. Finally, the al-
gorithm with best recall has lower precision and vice-versa. Due to the equilibrated
performance achieved by J48, we consider this algorithm in the further analysis.

6.5.5.2 Breakdown of Prediction Performance by Failure Severity

Failure severity is defined in terms of the frustration time associated to each Keynote
StreamQ grade for soft failures and observation of connection failures for hard failures.
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Figure 60: Recall values for different failure severity types and look-ahead times in the model-
pairing configuration.

Accordingly, the lower limit of the frustration time for the least severe failure is 6
seconds, increasing in intervals of 3 seconds above 6 seconds (i.e., above 9, 12, 15
and 18 seconds) along with the severities. Hard failures are more aggressive than soft
failures. They are manifested by client-server connection breaks occurring when users
are watching or waiting for watching videos.

Figure 60 shows recall values for different look-ahead times and failure severity
types. Recall is shown for failures classified at the failure time (without anticipation)
and look-ahead times ranging from 5 to 30 seconds. In the former case, the feature
values will determine whether the server is faulty or not, but after failure occurrence.
That means that the server is capturing failure patterns, instead of pre-failure patterns.

At the failure time, recall is approximately 100% for all severities of soft failures,
meaning that the model perfectly captures the pattern associated to a failure state,
when prediction is performed without anticipation. Recall is positioned around 70%
for soft failures with frustration times higher than 6 seconds and look-ahead times up
to 10 seconds. Plus, recall increases slightly with increasing failure severity for soft
failures, but falls significantly for hard failures (presented as connection failures).

Figure 61 presents the precision for different look-ahead times and failure severity
types. The precision of all soft failures with a look-ahead time of 5 seconds is stable
around 78%. For larger look-ahead times, the precision is stable along different failure
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Figure 61: Precision values for different failure severity types and look-ahead times in the
model-pairing configuration.

severity types, but falls roughly 10% per each additional 5 seconds of look-ahead time,
up to 25 seconds.

6.5.5.3 Impact of Derived Metrics on Failure Prediction Performance

Figure 62 and Figure 63 present the recall and precision values, respectively, obtained
by removing the derived metrics from the learning and classification processes. It is
observable that the failure prediction performance is higher when the derived metrics
are included. Recall values decay more than 10% when the derived metrics are re-
moved from the learning and classification processes, in several failure severities and
look-ahead times. The largest drop in precision is 3.9% and 6.5%, for look-ahead times
of 5 seconds and 10 seconds, respectively. For larger look-ahead times, the precision
drop is close to these values.

6.5.5.4 Breakdown of Prediction Performance by Cause of Failure

As described in Section 4.2.1, server overloading can occur as a result of workload type
changes that obfuscate load control mechanisms or other related problems responsi-
ble for server overloading. On the other hand, performance anomalies occur due to
server faults unrelated with server loads generated by client workloads. Figure 64 and
Figure 65 present the breakdown of predicted failures into workload-related failures
(presented as client-workload overloading) and performance anomalies, respectively.



152 failure prediction

	
  
	
  >6	
  seconds	
  

	
  
	
  >9	
  seconds	
  

	
  
>12	
  seconds	
  

	
  
>15	
  seconds	
  

	
  
>18	
  seconds	
  

	
  
Conn	
  Failure	
  

Failure	
  Time	
   1	
   1	
   0.998	
   1	
   1	
   0.928	
  
5	
  Seconds	
   0.624	
   0.618	
   0.619	
   0.633	
   0.633	
   0.324	
  
10	
  Seconds	
   0.616	
   0.625	
   0.655	
   0.657	
   0.657	
   0.164	
  
15	
  Seconds	
   0.538	
   0.597	
   0.607	
   0.619	
   0.619	
   0.128	
  
20	
  Seconds	
   0.409	
   0.365	
   0.35	
   0.384	
   0.384	
   0.128	
  
25	
  Seconds	
   0.289	
   0.283	
   0.348	
   0.283	
   0.283	
   0.1	
  
30	
  Seconds	
   0.293	
   0.323	
   0.274	
   0.285	
   0.285	
   0.108	
  

0	
  

0.1	
  

0.2	
  

0.3	
  

0.4	
  

0.5	
  

0.6	
  

0.7	
  

0.8	
  

0.9	
  

1	
  

Failure	
  Severity	
  

Figure 62: Recall values for different failure severity types and look-ahead times without de-
rived metrics.

Prediction of soft failures caused by workload-related failures has recall values of
73.5% and 71.6% for look-ahead times of 5 seconds and 10 seconds, respectively. Recall
drops significantly for larger look-ahead times. Plus, the precision is 82.2% for look-
ahead times of 5 seconds, dropping considerably for larger look-ahead times.

Prediction of performance anomalies exhibits lower performance than prediction of
workload-related failures. The recall of performance anomalies for soft failures is 66.5%
and 64.8% for look-ahead times of 5 seconds and 10 seconds, respectively, falling sig-
nificantly above 10 seconds. The precision is 74.4% for look-ahead times of 5 seconds,
falling significantly above 5 seconds.

6.5.6 Experimental Results in the Single-Model Configuration

We further present the experimental results obtained for the single-model configura-
tion. They are examined for different classification algorithms and failure severities.

6.5.6.1 Breakdown of Results by Classification Algorithms

Figure 66 shows the recall of each learning algorithm. All learning algorithms, except
the SMO, exhibit recall values above 95% for soft failures and look-ahead times of 5
seconds. J48 has the highest performance, with 98.6% of recall, followed by Bagging
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Figure 63: Precision values for different failure severity types and look-ahead times without
derived metrics.

and bayesian networks with 97.8% and 95.2%, respectively. SMO presents the worst
performance, with 13.1% of recall.

Figure 67 presents the precision of each learning algorithm. Bayesian networks
present the lowest precision (36.5%) of all algorithms in the soft failures configuration,
following the pattern of the model-pairing configuration. On the contrary, SMO shows
the highest precision (99.7%) of all algorithms. J48 achieved the second highest preci-
sion of all algorithms, with 99.1% in the soft failures configuration. It is followed by
Bagging, with 98.5% for the same configuration.

Following the same pattern of the model-pairing configuration, the recall and pre-
cision values decay with the increase of the look-ahead time. Also, both metrics have
lower values in all failures configuration than in the soft failures counterpart.

6.5.6.2 Breakdown of Prediction Performance by Failure Severity

In the model-pairing configuration, the J48 algorithm is used in the analysis of the
prediction performance for several failure severities. The reason behind this choice
is the highest prediction performance demonstrated by this algorithm in the experi-
mental evaluation. Likewise, we use the same algorithm, for the same reasons, in the
single-model configuration.



154 failure prediction

	
  
	
  5	
  Seconds	
  

	
  
10	
  Seconds	
  

	
  
15	
  Seconds	
  

	
  
20	
  Seconds	
  

	
  
25	
  Seconds	
  

	
  
30	
  Seconds	
  

Recall	
  So1	
  Failures	
   0.735	
   0.716	
   0.62	
   0.574	
   0.403	
   0.308	
  
Recall	
  All	
  Failures	
   0.592	
   0.566	
   0.525	
   0.426	
   0.423	
   0.352	
  
Precision	
  So1	
  Failures	
   0.822	
   0.702	
   0.591	
   0.508	
   0.444	
   0.456	
  
Precision	
  All	
  Failures	
   0.738	
   0.649	
   0.587	
   0.523	
   0.468	
   0.51	
  

0	
  

0.1	
  

0.2	
  

0.3	
  

0.4	
  

0.5	
  

0.6	
  

0.7	
  

0.8	
  

0.9	
  

1	
  

Figure 64: Recall and Precision of workload-related (client-workload overloading) failures.

The breakdown of recall and precision into failure severities is presented in Figure
68 and Figure 69, respectively. Similarly to the results observed for the model-pairing
configuration, both recall and precision are roughly stable on all severities of the soft
failure configuration. As well, these metrics have significantly lower values in the pre-
diction of hard failures than in the prediction of any other severities established for
soft failures.

Failure patterns obtained from feature values after failure occurrence are classified
with recall and precision of 100% or very close to 100%. These results are similar to
those obtained for the model-pairing configuration.

6.5.7 Discussion of Results

The experimental results presented before are summarized as follows:

• Failure prediction models created for the single-model configuration have signif-
icantly better performance than those created for the model-pairing configura-
tion;

• Bayesian networks (TANs) and Support Vector Machines have low performance,
exposed either in terms of recall or precision, making these algorithms less at-
tractive for creating failure prediction models;



6.5 failure prediction in pure streaming 155

	
  
	
  5	
  Seconds	
  

	
  
10	
  Seconds	
  

	
  
15	
  Seconds	
  

	
  
20	
  Seconds	
  

	
  
25	
  Seconds	
  

	
  
30	
  Seconds	
  

Recall	
  So1	
  Failures	
   0.665	
   0.648	
   0.561	
   0.52	
   0.175	
   0.278	
  
Recall	
  All	
  Failures	
   0.536	
   0.512	
   0.475	
   0.398	
   0.383	
   0.318	
  
Precision	
  So1	
  Failures	
   0.744	
   0.636	
   0.535	
   0.46	
   0.402	
   0.412	
  
Precision	
  All	
  Failures	
   0.668	
   0.587	
   0.531	
   0.473	
   0.424	
   0.465	
  

0	
  

0.1	
  

0.2	
  

0.3	
  

0.4	
  

0.5	
  

0.6	
  

0.7	
  

0.8	
  

0.9	
  

1	
  

Figure 65: Recall and Precision of performance anomalies.

• Decision trees (J48) present the best equilibrium between recall and precision,
achieving recall of 98.6% and precision of 99.1%, for look-ahead times of 5 sec-
onds;

• Ensembles of decision tree models are unable to improve the performance of
single decision tree models;

• Prediction of performance anomalies is less accurate than prediction of workload-
related failures;

• Generally, recall and precision values decrease with the increase of the look-
ahead time;

• The prediction performance is stable over failure severities for soft failures, but
drops considerably for hard failures;

• Derived metrics increase the failure prediction performance;

• When the server state is inferred from feature values after failure occurrence
(without anticipation), both recall and precision are 100% or close to 100%.

The discussion of results is conveyed by the following vectors of analysis:

• The impact of decisions made using inaccurate failure predictions on the service
performance;
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Figure 66: Recall using different learning algorithms in the single-model configuration.

• Breakdown of prediction performance into learning algorithms;

• Breakdown of prediction performance into failure severities;

• Comparison of the look-ahead time provided by prediction with that required
for proactive recovery;

• Breakdown of prediction performance into workload-related failures and perfor-
mance anomalies;

• Failure prediction efficiency.

6.5.7.1 Impact of Failure Prediction Errors on the Service Performance

Recall and precision have different service performance costs when prediction models
are employed to decide whether the system requires recovery or not. These costs de-
pend on the characteristics of the repair actions executed. Low-cost repair actions can
absorb the impact of false positives (exposed by precision), giving preference to mod-
els with high recall values, even though they sacrifice precision to some extent. On the
other hand, repair actions with significant performance costs demand predictors with
high precision levels to minimize the execution of unnecessary repair actions.

Despite the small percentage of false positives absorbed by the precision metric
for decision trees, the consequently unnecessary execution of repair actions can con-
tribute to significant performance penalties, if expensive repair techniques are em-
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Figure 67: Precision using different learning algorithms in the single-model configuration.

ployed. However, cheap repair techniques as those explored in Chapter 5 can avoid
user-visible failures caused by the downtimes resulting from their execution. These
techniques allow service recovery in approximately 3 seconds, in average, when the
server is migrated between hosts and roughly 2 seconds when the server is restarted
with a fresh state in the same or another host. Service downtimes of that order can
usually be tolerated by client-side buffering.

6.5.7.2 Breakdown of Prediction Performance into Learning Algorithms

The highest recall and precision are achieved using the single-model configuration
with the C4.5 decision trees and Bagging algorithms. TANs present high levels of recall
but poor precision, indicating a high number of false positives. The worst classification
performance is achieved by the SVM algorithm.

We attribute the low performance of SVMs to the sensitivity of this algorithm to out-
liers. Outliers are expected in the learning dataset due to the discrimination between
pre-failure patterns and normal patterns. Pre-failure patterns represent feature values
observed several seconds before failure occurrence. Thus, the time margin that sepa-
rates the normal patterns from pre-failure patterns can be blurred and indistinct. This
results in features values of pre-failure patterns misclassified as normal patterns and
vice-versa.

The good performance of the C4.5 algorithm is justified by its robustness to out-
liers [Sheng et al.], since it prunes subtrees from decision trees to prevent overfitting
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Figure 68: Recall values for different failure severity types and look-ahead times in the single-
model configuration.

to noise in the data. We consider this characteristic essential to attain high levels of
performance in our approach. The Bagging algorithm also creates classifiers robust to
noise, since it trains individual models with log instances randomly chosen. There-
fore, the likelihood for overfitting is reduced. However, it was unable to improve de
performance of individual decision trees models, indicating the efficacy of the C4.5
algorithm dealing with outliers.

6.5.7.3 Breakdown of Prediction Performance into Failure Severities

Two failure conditions were considered for experimental analysis: hard failures and
soft failures. Both failure conditions respect performance failures associated to a spe-
cific severity. Hard failures are more severe than soft failures. They represent fail-stop
failures usually preceded by soft failures. On the other hand, soft failures are classified
in several severity levels indexed by the Keynote StreamQ Grade metric (Chapter 4).

Experimental results demonstrated that the failure prediction performance is ho-
mogeneous on all soft failures severities. Yet, soft failures are significantly more pre-
dictable than hard failures. This is explained by the instability of the server behavior
before the occurrence of hard failures. Hard failures caused by performance problems
are usually preceded by degradation of service quality manifested as soft failures.
However, the timespan between the moment the service quality starts degrading until
the eminence of hard failures is often nondeterministic. Fault types and complex in-
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Figure 69: Precision values for different failure severity types and look-ahead times in the
single-model configuration.

teractions between system resources, operating system, applications and the network
explains the difficulty of modeling pre-failure patterns that could hint to hard failures.

We consider that the low prediction performance of hard failures is tolerated by
the high prediction performance of soft failures. As long as it is assumed that hard
failures caused by performance problems manifest early as soft failures, it is possible
to anticipate failure occurrences only by predicting soft failures.

6.5.7.4 Prediction Look-ahead Times Required for Proactive Recovery

The larger the look-ahead time provided by failure prediction, the broader the set of
repair techniques that can be employed to restore the service without end-users notic-
ing a performance failure. As previously shown, the look-ahead time of 5 seconds is
enough to execute the repair techniques addressed in this thesis. However, prediction
performance results are also presented for larger look-ahead times, for completeness.

6.5.7.5 Breakdown of Failure Prediction Performance into Failure Causes

The breakdown of failure prediction performance into failure causes has shown that
workload-related failures are more predictable than performance anomalies, even though
these differences are unsubstantial. This condition is explained by strong regularities
when the server is overloaded by client workloads. That means that the overloading
states have a regular reflection on the feature values used for classification. On the
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contrary, performance anomalies would likely generate more irregular server behav-
iors with lower repeatability than workload-related problems. That means that the
server states captured by performance metrics are less consistent between failure oc-
currences, generating variance that blurs the distinction between normalcy patterns
and pre-failure patterns. This makes identification of pre-failure patterns less obvious
for this type of failures.

The differences of performance between failure causes are specific to the model-
pairing configuration, where log instances are classified by independent models, each
bound to a failure cause. In the single-model configuration, these failure types are
classified together, avoiding the evaluation of failure types individually. However, the
high levels of the global recall and precision achieved for both failure causes are only
attainable when each failure cause individually exhibits similar values for the same
metrics.

6.5.7.6 Prediction Efficiency

In online failure prediction, it is mandatory to perform efficient classification of log
instances. Short classification delays avoid the reduction of the anticipation time pro-
vided by failure prediction, which is required to execute proactive recovery actions.

In our experiments, the classification of log instances is performed by prediction
models with latencies in the order of a few microseconds. So, the classification over-
head gives a negligible contribute to the total failure prediction delay, which sums
up the failure prediction latency to the monitoring latency (including data gathering,
data preparation and failure detection). Overheads in the order of microseconds are
unnoticeable for look-ahead times measured in the order of seconds.

6.6 failure prediction in http streaming

The idiosyncrasies of each video-streaming technique mold the server behavior dur-
ing normal and faulty periods. As explained in Section 2, Pure Streaming servers
implement a rigorous transmission rate control mechanism. Data transmission rates
are regulated by the server with the support of the RTP protocol, to ensure: (1) data
transmission at the same rate the data will be played out at the receiver; and (2) timely
delivery of video-streaming fragments for playback. By contrast, in HTTP Streaming,
the data are downloaded over HTTP by players similarly to typical web objects — at
the maximum speed allowed by the server and network conditions. Hence, the data
flow between the server and players is independent of the data received or played out
by players.

The differences between the logic behind HTTP Streaming and Pure Streaming sys-
tems will likely lead to different normalcy patterns and pre-failure patterns. This sec-
tion evaluates the failure prediction activity in the HTTP Streaming infrastructure. This
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activity implements learning, classification and evaluation of prediction models built
using several online learning algorithms [Witten et al. 2011].

6.6.1 Research Questions

The evaluation of our failure prediction approach in HTTP Streaming services is per-
formed to answer the following fundamental questions:

1. Do online learning models accurately classify pre-failure patterns in HTTP Stream-
ing services?

2. What is the performance overhead of the SHStream infrastructure?

3. How effective is the load control approach in avoiding server overloading?

4. Which online learning algorithms have the best prediction performance?

5. What is the breakdown of failure prediction performance by fault types?

6. How many learning instances are required until stabilization of the models’ clas-
sification performance?

Answering these questions will unveil the ability of SHStream to predict perfor-
mance failures.

6.6.2 Online Learning Algorithms

Online learning algorithms train models iteratively with the arrival of each log in-
stance. These algorithms allow prediction even when only a small number of log
instances are available to train models, allowing further incremental learning. Addi-
tionally, this learning scheme is also known to have low memory and CPU footprints.
Online learning counterposes with batch learning, which aggregates all log instances
and then train models at once, avoiding further updates.

By continuously training prediction models, it is possible to increase gradually
the coverage of patterns associated to each classification category. Therefore, models
evolve iteratively, without requiring an initial amount of training data enough to cover
all normalcy patterns and pre-failure patterns. This is an important characteristic, since
performance anomalies are usually rare events with low repeatability. Thus, the ability
of learning algorithms to enrich models with new pre-failure patterns associated to
performance anomalies is an important feature of the self-healing infrastructure.

Different online learning algorithms will likely produce models with different ac-
curacies. With the purpose of continuously improving the prediction performance,
SHStream is designed to accept new online learning algorithms dynamically to train
new models iteratively and thus, exploring different approaches to find better models.
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SHStream is evaluated in this chapter using data stream mining, a recent class of
data mining techniques that overcomes traditional batch learning limitations to fulfill
the online learning requirements of dynamic systems [Fayyad et al. 1996][Kuncheva
2004b][Bifet and Kirkby 2009], namely:

1. Incremental learning — learn models using a single block of data at the time;

2. Single pass through data — only one pass through the data is required for
learning;

3. Limited time and memory — instances are processed in a small and constant
time, using an approximately constant amount of memory;

4. Any-time learning — if stopped before its conclusion, the algorithm should
provide the best possible answer.

Learning algorithms with the above characteristics can accurately train models it-
eratively using large streams of data, concurrently with the classification activity. So,
enrichment of models using new learning instances can be performed anytime with-
out rebuilding models from scratch. We evaluate three types of online algorithms in
our framework: decision trees, probabilistic classifiers and ensemble algorithms.

6.6.2.1 Decision Trees

Decision trees are popular learners in both batch learning and online learning sce-
narios. They are powerful, interpretable and efficient classifiers — with n learning
instances and m attributes, the average cost of basic decision tree induction is O(m ·
n · logn).

Traditional decision trees algorithms are non-parametric (without assumptions about
the underlying data) and powerful learning approaches used for classification in batch
learning scenarios. C4.5 is one of the most popular methods for building decision trees
in batch learning (Section 6.5.2).

Hoeffding Trees promise performance levels similar to decision trees in batch learn-
ing scenarios, with the advantage of fulfilling the online learning requirements. The
performance of Hoeffding Trees has been shown comparable with traditional decision
trees, Naïve Bayes, k-NN, and ensemble algorithms [Bouckaert 2003][Babcock et al.
2002] but much faster and less memory consuming handling extremely large datasets
than these approaches.

Very Fast Decision Tree (VFDT) is a state of the art algorithm for creating Hoeffding
Trees proposed by Domingos and Hulten [Domingos and Hulten 2000]. VFDT builds a
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three iteratively, by splitting each node when the number of learning instances learned
satisfies the hoeffding bound formulated in (19).

ε =

√
R2 · ln(1δ)
2 ·n

(19)

The hoeffding bound defines the split confidence, by stating that with probability 1−
δ, the true mean of a random variable with range R does not differ from its estimated
mean by more than ε, after n independent observations.

Information gain is one splitting criteria commonly used to build tree models, which
is also used in Hoeffding Trees. It is defined as the difference between the weighted
average entropy of the splitted subsets and the entropy of the class distribution before
splitting, being the entropy defined as in (20). The entropy measures the purity of
subsets for a distribution of class labels, consisting of fractions p1, ...,pn, summing to
1.

entropy(p1,p2, ...,pn) =
n∑
i=1

−pi · log2pi (20)

Classification in Hoeffding Tree models can be performed using two strategies: Ma-
jority Class and Naïve Bayes. Majority Class is the classification strategy by default.
It filters down the tree from the root to a leaf and retrieves the most likely class la-
bel, which is the one that appears more times associated to the classified attribute
values. This strategy is improved by Naïve Bayes, which also accounts conditional
probabilities of attribute values in the tree, given each class. Counts are stored at leafs
to measure how many times the Naïve Bayes has outperformed the Majority Class
predicting the corresponding class. Therefore, the leaf only returns the Naïve Bayes
prediction when its accuracy is higher than the Majority Class. Otherwise it returns
the Majority Class prediction. Naïve Bayes has been shown superior to Majority Class
for certain types of problems [Holmes et al. 2005].

6.6.2.2 Probabilistic Classifiers

Naïve Bayes represents the class of probabilistic classifiers in SHStream. Naïve Bayes
is naturally incremental as it deals with heterogeneous data and missing values and is
a very competitive algorithm for small datasets [Agrawal et al. 1993]. A more detailed
explanation of this classifier is provided in Section 6.5.2.

6.6.2.3 Ensemble Algorithms

Ensemble models perform classification by means of voting, using outcomes given by
several models. That configuration has been proven to attain higher levels of accuracy
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than those obtained by single classifiers alone [Tumer and Ghosh 1996]. The diver-
sity of the representation of model concepts by ensemble models reduces overfitting,
providing robustness to noise in the log data.

SHStream implements four ensemble algorithms that use Hoeffding Trees as base
models:

weighted majority algorithm [Littlestone and Warmuth 1989] Learn
models by giving a positive weight α to each model in the pool that correctly
classifies one learning instance and discounting a given ratio β of the weight of
models that incorrectly classify the learning instance. The number of mistakes m
was proven to be bounded in a sequence of predictions from a pool of algorithms
A by O(log |A|+m), if one of the algorithms of A makes at most m mistakes.

ozaboost [Oza and Russell 2001] Learn several models in a sequence, increas-
ing weights of learning instances misclassified by former models disposed in
the sequence. This approach reinforces learning, in the subsequent models of
the sequence, of learning instances misclassified in the previous models, simi-
larly to Adaboost [Freund and Schapire 1995] for batch learning scenarios. This
algorithm divides the total weights into two halves, giving one half to correctly
classified learning instances and the other half to misclassified learning instances.
Misclassified learning instances are reinforced intrinsically during the learning
process at the next model of the sequence by the classifier’s accuracy — as the
classifier’s accuracy increases, the number of misclassified learning instances de-
creases. Consequently, by dividing the total weights by less learning instances,
they will receive more weight individually.

ozabag [Oza and Russell 2001] Learn models from a bootstrap replicate of learn-
ing instances drawn randomly from the training dataset according to a proba-
bility Poisson(1), similarly to Bagging [Breiman 1996b] for batch learning, pre-
sented in Section 6.5.2. Bootstrapping reduces variance errors caused by learning
instances with a small number of repetitions in the dataset, since they have low
probability of being used to train models.

hoeffding option trees [Pfahringer et al . 2007] Build Hoeffding Trees with
additional option nodes — equivalent to several Hoeffding Trees build upon the
same tree structure. By representing several decision trees in a single compact
structure, it is possible to reduce the space required to save independent tree
instances, as required for traditional ensembles. Additionally, contrasting with
other ensemble models, the model interpretability can be preserved if a small
number of option nodes are used [Kohavi and Kunz 1997].
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6.6.2.4 Concept Drift Algorithms

The models’ classification performance can drop significantly after software updates,
system configuration changes or hardware changes. This problem is known in machine
learning as concept drift. The high frequency of software updates and the populariza-
tion of virtualization in system infrastructures are important contributors of model
staleness.

Virtualization technologies allow dynamic changes of the system resources available
for the server application. Reallocation of server resources could change the server
behavior in several ways. As an example, by doubling the virtual machine’s memory
available, the server behavior will likely change for the same workloads.

In offline learning, an inaccurate model can be replaced by a new model trained with
more recent data. In online learning, there are approaches for dealing with the concept
drift problem without retraining models from scratch. Several learning algorithms
implement forgetting mechanisms using sliding windows and fading factors [Kuncheva
2004a][Gama et al. 2009]. These mechanisms allow abandonment of stale model com-
ponents during the learning process.

Fading factors and the sliding windows algorithms have shown similar performance
in online learning scenarios [Gama et al. 2009]. Fading factors are memory-less mech-
anisms that attribute less weights to older observations used to form models, forcing
the change detection algorithm to focus on the most recent data. On the other hand,
sliding window algorithms keep a variable-length window of recently seen observa-
tions, assuming that the window has the maximal length statistically consistent with
the hypothesis there has been no change in the average value inside the window. That
means that the window size varies to enclose only the later elements that together
maintain the error below a given threshold. Adaptive Sliding Window Algorithm (AD-
WIN) [Bifet et al. 2009] is the most popular algorithm of this class.

Adaptive Hoeffding Trees is a variant of Hoeffding Trees exploited in our failure
prediction approach that uses ADWIN to evolve trees with new server behaviors. AD-
WIN monitors the performance of branches in the tree and replace them with new
branches with higher accuracy. Similarly, ensembles can be extended with ADWIN to
handle the concept drift problem. We use ADWIN with OzaBoost and OzaBag in our
failure prediction approach.

6.6.3 Implementation of Failure Prediction

Learning algorithms train prediction models using log instances labeled in terms of the
patterns they represent: normalcy patterns or pre-failure patterns. These log instances
respect failure-free periods. Log instances respecting failure periods (failure patterns)
are recognized by the failure detector through analysis of service quality metrics and
are used for evaluation purposes.
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6.6.3.1 Delimitation of the Pre-failure Period

Pre-failure patterns are delimited by a time window that starts at one undetermined
moment before the failure and finishes immediately before the failure. Thus, the vari-
ability of the size of that time window could lead to pre-failure patterns being con-
founded with normalcy patterns and vice-versa, introducing errors in the learning
process.

Instead of performing a sharp delimitation of the pre-failure window (including all
pre-failure patterns), we consider a short pre-failure window preceded by a window of
uncertainty, as illustrated in Figure 70. Any data within the window of uncertainty are
ignored in the learning process and only log instances within the pre-failure window
are trained as pre-failure patterns. This solution minimizes data segmentation errors
caused by incorrect separation of log instances pertaining to each pattern type.

Normal Pre-
failure Failure

Window
of 

Uncertainty

time

Figure 70: The window of uncertainty precedes the pre-failure window to avoid confounding
pre-failure patterns with normalcy patterns.

6.6.3.2 Methodology for Failure Prediction, Model Learning and Model Evaluation

Algorithm 2 presents the process followed for failure prediction and for learning and
evaluation of models. This process has the following steps:

1. One log instance is picked periodically, containing features values pertaining to
one log time interval. It aggregates application, system and network metrics into
one single row of data;

2. Derived metrics (Section 6.2) are calculated and added to the log instance;

3. In case the log instance belongs to a failure-free state4, it is classified by all predic-
tion models and the classification given by the model with higher performance
up to that moment — determined from the accuracy of previous predictions —
is chosen to decide if recovery is required;

4 The service state is provided by the failure detector.
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Algorithm 2 Algorithm for: (1) Online Learning and Evaluation of Models; and (2)
Online Failure Prediction.
Require: size(buffer) is WindowOfUncertainty

loop
I⇐ readNewInstance()
f⇐ isFailState(I) . Classification
if f is false then

for i = 1 to nModels do
pi⇐ classifyFailurePrediction(Modeli, I)

end for
end if
if productionMode and (pmostAccurate is Failure or f is true) then
launchRecovery(DiagnosedProblem)

end if . Learning
L⇐ buildLearningInstance(I, f,p)
addToEnd(buffer,L)
if not isBufferFull(buffer) then

jump to next loop iteration
end if
F⇐ removeFirst(buffer)
if distanceFail(buffer) ∈ [1,preFailWindow] then

for i = 1 to nModels do
learn(Modeli,F, Prefailure)
updateModelStatistics(Modeli,F, Prefailure)

end for
else if distanceFail(buffer,F) is ∞ then

if F.pmostAccurate = Normal or learningMode then
for i = 1 to nModels do
learn(Modeli,F, Normal)
updateModelStatistics(Modeli,F, Normal)

end for
end if

end if . Evaluation
mostAccurate⇐ evaluateBestModel(Model)

end loop

4. One learning instance is built by combining the log instance, classifications per-
formed by all algorithms and the current observable service state (Figure 71).

Each learning instance is stored at the end of a circular buffer (Figure 72) to defer the
assessment of predictions until the end of the period covered by prediction. At that
time, it is possible to determine whether the prediction result was accurately predicted.
In the meantime, after being stored in the circular buffer, each learning instance slides
over the buffer at every iteration — triggered by the arrival of a new learning instance
— until reaching the first position of the buffer. Then, in the next iteration, the learning
instance is removed from the queue to be assessed, according to the following rules:

• It is used to train models as a pre-failure pattern, if its distance to the next failure
instance in the buffer is lower or equal than the size of the pre-failure window;

• It is used to train models as a normalcy pattern, if the buffer only contains failure-
free instances;



168 failure prediction

V1 V2 Vn

F1 F2 Fn...
N/
PF

C1
N/
PF

C2
N/
PF

...
N/
PF

Cm

N|F

S

Figure 71: Structure of the learning instance with features values F, outcomes of classification
models C (Normal or Pre-failure) and the actual service state S (Normal or Failure).
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Figure 72: The three different learning scenarios.

• It is ignored otherwise, because it is outside the pre-failure window but within
the window of uncertainty.

The circular buffer size is dimensioned by the size of the window of uncertainty.
Thus, during the assessment phase — when the learning instance is removed from
the buffer — if the buffer has at least one learning instance labelled as failure, thus
any learning instance within the buffer but outside the pre-failure window is ignored
for learning, since it belongs to the window of uncertainty. Otherwise, one learning
instance is recognized as a pre-failure pattern in the learning process if its distance
to the next learning instance labelled as failure is less or equal than the pre-failure
window’s size. Finally, when all learning instances in the buffer are labelled as normal
by the failure detector, the learning instance under assessment is learned by models as
a normalcy pattern, since the window of uncertainty only contains normal instances.
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6.6.3.3 SHStream Running Modes

SHStream has two running modes: production mode and learning mode. In production
mode, SHStream handles real workloads generated by end-users and organic faults
activated during normal execution of the service. In learning mode, SHStream handles
synthetic workloads and fault loads, devised to train and evaluate prediction models.
The learning mode allows fast instantiation of prediction models and is also applied
to scenarios where the learning data are unobtainable automatically.

In most services, performance anomalies occur with low frequency. That means that,
prediction models can show low performance during long periods before sufficient
data become available for learning. Using synthetic workloads and fault loads to ini-
tialize prediction models will likely increase prediction performance when SHStream
has not gathered enough production data for learning. Also, in the production mode,
there is one scenario where data are unavailable for learning. This scenario is depicted
in Figure 73 and is described as follows. When failures are predicted and repaired,
and are not followed by any failure occurrence, two conditions may have occurred:

1. The failure was correctly predicted and the execution of the repair action over-
came the failure;

2. The failure was incorrectly predicted (false positive).

By reason of two different interpretations of the scenario where failures are pre-
dicted and not occurred, all log instances associated to that scenario cannot be rec-
ognized automatically as neither normalcy patterns nor pre-failure patterns. Conse-
quently, that scenario is only available for learning when SHStream is running in
learning mode, using synthetic workloads and fault loads with predetermined con-
figurations.

6.6.4 Experimental Design

This section presents the configuration of the experimental work undertaken to evalu-
ate the failure prediction activity in the SHStream framework. It presents the testbed
and the metrics used to evaluate the performance of failure prediction models.

6.6.4.1 Testbed

The experimental testbed is specified in Section 4.5.1. SHStream is installed outside
the virtual container to access global system metrics and is configured to gather perfor-
mance metrics with a sampling interval of 2 seconds. That means that one log instance
is generated every 2 seconds for classification and learning. SHStream requires that
two important parameters be set: the size of the pre-failure window and the minimum
look-ahead time of prediction.
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Figure 73: Scenarios where learning can and cannot be performed automatically in production
mode.

The pre-failure window is set to the size of 2 learning instances. Larger pre-failure
window sizes would theoretically gather a wider set of pre-failure patterns, but can
introduce larger errors. This parameter is set empirically set, but can be adjusted later
to exploit possible improvements of prediction performance.

The minimum look-ahead time of prediction is the second parameter to be set. Its
value should be sufficient to absorb the execution time of repair techniques, to antic-
ipate the occurrence of failures. Since server migration is the most lengthy technique
evaluated in this thesis, the minimum look-ahead time of prediction should be set
to allow the execution of this technique. As described in Chapter 5, server migration
is the most lengthy technique, with execution times less than 3 seconds, in average.
This value represents the time necessary to rescue the server checkpoint to a fallback
host and resume it there. As long as each log instance classified corresponds to a time
period of 2 seconds, we consider that one failure is predicted when the correspond-
ing pre-failure pattern is correctly classified with a look-ahead time of at least 2 log
instances (4 seconds) before the failure (Figure 74).

6.6.4.2 Evaluation of Prediction Performance

In batch learning, the performance of prediction models is evaluated once using the
entire dataset (e.g., through cross-validation). In online learning, the learning activity
rolls out continuously and simultaneously with the classification of log instances. Con-
sequently, the prediction performance requires a continuous evaluation, instead of a
one-time evaluation of the whole dataset.
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Figure 74: A failure is considered predicted when the respective pre-failure pattern is correctly
classified at least 4 seconds (2 learning instances) before the failure.

The models’ prediction performance is evaluated in terms of the:

• False positives and false negatives over the number of learning instances;

• Misclassifications of each fault type (CPU, memory, I/O);

• Recall, precision and f-measure of each learning algorithm over time;

• SHStream execution overhead during non-faulty periods.

Since SHStream performs load control (described in Section 4.4.4), we do not ex-
pect workload-related failures. In consequence, only failures caused by performance
anomalies are expected. However, we evaluate both the ability of: (1) SHStream in con-
trolling the server load; and (2) classifiers in predicting failures caused by performance
anomalies.

The metrics used for the evaluation of the classification performance of each model
are calculated by the SHStream application. These metrics are required to select the
classification outcome provided by the model with the best performance at the end of
each classification iteration — used to decide whether to repair the server or not.

6.6.5 Experimental Results

Experimental results are presented with the following order:

1. Effectiveness of the load control mechanism;

2. SHStream overheads during fault-free periods;

3. Failure prediction performance.

A discussion of the experimental results follows their presentation.
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Figure 75: Minimum value, lower quartile, median, upper quartile and maximum value of the
transition gap.

6.6.5.1 Load Control

The ability of the load control mechanism to avoid server overloading by controlling
the acceptance of new connections was evaluated using a safe margin a = 0.05 (de-
scribed in Section 4.4.4). During the entire run, we observed that:

• No workload-related failures were observed during the execution of the bench-
marks;

• The transition gap5 varies between 81ms in the first quartile and 410ms in the
third quartile (Figure 75);

• Only 2 unnecessary connection redirections were observed during the execution
of the benchmarks.

As expected, unnecessary redirections can occur if the server receives several simul-
taneous requests, when it is approaching the edge of its capacity.

5 Period during which the server rejects new requests due to the impact of recent requests, with no data
transmitted by the server, on the excess margin (metric that controls the acceptance of requests).
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6.6.5.2 SHStream Overheads

The SHStream overheads were measured by running the benchmarks twice. In the
first run, the benchmarks were run simultaneously with the execution of SHStream.
In the second run, the SHStream application was deactivated during the execution of
benchmarks and the number of requests was restrained to avoid server overloading.

We observed that the server capacity, measured by the maximum number of si-
multaneous connections handled by the server without service degradation, is the
same whether the SHStream application is running or not. The explanation for that
observation is that video-streaming services are resource intensive and the resources
consumed by SHStream are negligible when compared with those consumed by video-
streaming requests individually.

6.6.5.3 Failure Prediction Results

Figure 76 presents the models’ classification performance over the number of failure
scenarios of the benchmarks used for learning. Figure 76a relates the number of false
positives6 and false negatives7 with the number of failure scenarios. Each classification
outcome (normalcy pattern or pre-failure pattern) is obtained by selecting, at each
iteration, the classification outcome given by the model with best performance. It is
noticeable 5 false positives, which occur after a large number of failure scenarios. On
the other hand, the number of false negatives stabilizes at 8 occurrences after 15 failure
scenarios, occurring infrequently afterwards. Figure 76b shows that the best classifier
predicts consistently failures between fault types.

Figure 77a and Figure 77b present the recall and precision of each learning algorithm.
It is observed that all algorithms, except the ADWIN algorithms and the Naïve Bayes,
achieved high levels of recall and precision in the benchmark. The recall of these algo-
rithms approximates to 98%. On the other hand, the precision approximates to 99% in
the same algorithms except the Hoeffding Trees. Standard Hoeffding Trees achieved
98% of precision, a little below its ensemble variant. Ensemble algorithms achieved the
highest prediction performance, but with small differences when compared to other
algorithms.

Some algorithms exhibited low levels of recall and/or precision. The recall of Naïve
Bayes and the precision of the ADWIN variant of Ozaboost fall sharply after a signif-
icant number of learning instances. Also, the recall of the ADWIN variant of Ozabag
remains very low during the entire run.

6 Normalcy patterns classified as pre-failure patterns.
7 Pre-failure patterns classified as normalcy patterns.
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Figure 76: Relation of the number for failure scenarios with prediction performance. Slashed
lines represent zero values or small values not visible due to the scale of the plot.

6.6.6 Discussion of Results

This section discusses the experimental results obtained in the same order they are
presented in Section 6.6.5.

6.6.6.1 Load Control

SHStream implements a load control mechanism to ensure self-protection against over-
loading. Despite not incorporating the core of our research, ensuring self-protection
against workload-related failures will guarantee that all performance failures are caused
by performance anomalies.

Experimental results validated the efficacy of SHStream in redirecting connection
requests which, if accepted, would lead the server to an overloading state. The load
control approach has the limitation of occasional unnecessary redirections when the
server is close to its capacity limit, caused by the nature of the approach. Yet, we believe
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Figure 77: Failure prediction performance of each algorithm. Slashed lines represent zero val-
ues or small values not visible due to the scale of the plot.

that in a well-dimensioned distributed system with several video server instances, the
sporadic redirection of connection requests to other servers would have a negligible
impact on the overall service performance.
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6.6.6.2 Performance Overheads

The performance overhead induced by running the SHStream application is an impor-
tant issue of concern. Experimental analysis showed that SHStream builds accurate
models iteratively with the arrival of new learning data and simultaneously performs
classification of log instances without impacting the server nominal capacity.

6.6.6.3 Impact of the Number of Failure Scenarios on Classification Performance

Since models are trained iteratively, it is expected an increase of the prediction per-
formance aligned with the number of failure scenarios available for learning. Experi-
mental results showed that false negatives are consistent during the earlier stages of
learning (up to 15 failure scenarios), but rare afterwards. That means that models are
able to capture most of the pre-failure patterns, even when they are trained with a
small number of learning instances.

As in any failure prediction approach, false positives typically lead to unnecessary
execution of repair actions that waste system resources and can perturb the service
quality perceived by users. SHStream showed absence of false positives during the
earlier stages of learning. After stabilization of the prediction performance of models,
the number of false positives remains low relatively to the number of log instances
classified. On top of that, the low-cost repair actions proposed in this thesis can absorb
the effect of these false positives on performance without user-visible failures.

6.6.6.4 Breakdown of Prediction Performance into Fault Types

The prediction performance of models is homogeneous across fault types — the CPU,
memory and I/O faults showed equivalent prediction performance. This observation
is valid for any number of failure scenarios used to train models.

6.6.6.5 Breakdown of Prediction Performance into Learning Algorithms

Ensemble algorithms exhibited the best performance. That means that the use of sev-
eral Hoeffding Trees models provides a slight improvement over the prediction perfor-
mance of a single model — the latter has approximately 1% less precision. The lower
precision of single Hoeffding Trees models relatively to ensembles can be compensated
by the high levels of interpretability provided by the former. Thus, single Hoeffding
Trees models can be preferable when the analysis of models by human operators is a
desirable requirement.

Probabilistic classifiers represented in SHStream by Naïve Bayes showed poor per-
formance. This observation is coherent with the results obtained for TANs in the Pure
Streaming infrastructure. The coherence of results is not surprising, since TANs appear
as a natural extension to the Naïve Bayes that drops the conditional independence as-
sumption. However, the poor results of Naïve Bayes can also be attributed to the viola-
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tion of the conditional independence assumption demanded by this algorithm, which
states that the features should be independent. As an example, the CPU usage parame-
ters can be dependent on I/O activity parameters. Yet, notwithstanding this theoretical
assumption of feature independence is often violated in practice, practical experience
has shown that Naïve Bayes performs surprisingly well regardless [Rish 2001][Zhang
2004][Domingos and Pazzani 1997]. We believe that the resilience of decision trees and
ensemble models to outliers is the main reason behind their good performance rela-
tive to probabilistic models, in both batch learning and online learning scenarios. As
described before, outliers are noise patterns obtained in the delimitation of pre-failure
patterns for normalcy patterns that can compromise the classification performance of
models.

6.6.6.6 Performance of Algorithms Extended with ADWIN

Ensembles algorithms combined with ADWIN for change detection revealed poor clas-
sification performance. Surprisingly, the use of ADWIN in Adaptive Hoeffding Trees
has no impact on the performance of the classifiers. Through the analysis of this algo-
rithm, we noticed that the branches in the tree are only replaced when their accuracy
decreases and the new branches demonstrated to be more accurate. This contrasts with
the implementation of ADWIN in Ozaboost and Ozabag, which removes the worst
classifier of the ensemble and adds a new classifier to the ensemble when a change is
detected, even though the new classifier exhibits worse performance.

The most likely explanation for the poor performance of ADWIN is the heterogene-
ity of pre-failure patterns. Performance anomalies lead the server to unstable condi-
tions, generating nonuniform combination of features values with low repeatability.
The non-stationarity of data can force important data to be discarded.

Since performance anomalies are rare events that may have to be learned during
long periods of time, care must be taken to avoid losing important knowledge useful
for failure prediction. Adaptive Hoeffding Trees seem to be adequate to the character-
istics of our problem, since the branches in the tree are only replaced by branches that
improve the model performance. Another intuitive approach to handle the concept
drift problem without losing important data is to segment the learning activity into
periods delimited by external events manually set by human operators or captured
automatically from the system — e.g., hardware changes and major software updates.
Therefore, in case the classification performance drops below a specified level after the
occurrence of a new event, a new model is trained from scratch.

In actual computer systems, the frequency of software updates and changes in the
infrastructure is high. This constitutes a challenge to the maintenance of classification
models. The reason is that they can take long periods of time to be trained from scratch.
Benchmarks are solutions with high potential for rapid creation of models. They can
be an effective solution to train models and rapidly exploit them for classification of



178 failure prediction

log instances. We believe that benchmarks similar to those used in our experimental
work (presented in Chapter 4) constitute a relevant contribution to that purpose.

6.7 global analysis of failure prediction

Experimental results testify the viability of our approach for prediction of performance
failures, in both HTTP Streaming and Pure Streaming infrastructures. Decision trees
provide a superior performance over the other algorithms evaluated in both video-
streaming infrastructures. Their performance is only surpassed by ensembles of mod-
els. We believe that the resilience to noise of these algorithms is the main reason behind
their good results.

Notwithstanding online learning schemes allow continuous learning, both batch
learning and online learning models have to been trained with a sufficient number of
instances to provide a minimum level of accuracy. Benchmarks can give a fundamental
contribute to train models from scratch the first time they are used and when the server
application or infrastructure is changed or updated.

The failure prediction and failure repair activities have to be integrated. The look-
ahead time provided by failure prediction allows the rescue of the server checkpoint
in the server migration technique and the execution of any of the repair techniques
before the occurrence of user visible failures. Also, there are negligible server down-
times associated to the execution of repair techniques (server migration and reboot), as
shown in Chapter 5. Yet, the absence of QoE degradation depends on the assumption
that the server can be warmed-up appropriately.

QoE degradation during the server warm-up period is avoided when the reduction
of the load in the primary server (faulty server), by reason of their transference to the
secondary server (rebooted server) being warmed-up — alleviating the load pressure
in the primary server — is sufficient to avoid failures until the end of the server warm-
up period. Otherwise, the secondary server may has to replace the primary server and
assume all load. In such circumstances, for high server load levels, some end-users
may experience QoE degradation until the end of the server warm-up period.

False positives are an important issue in any failure prediction approach. Although
the frequency of false positives is low in our infrastructure, it is important to consider
their impact on the service quality. In our approach, false positives offer less risk of
QoE degradation than true positives. The reason is that, the server warm-up process
can be completed when the repair action is triggered by a false positive, since failures
are unexpected in the meantime.

6.8 chapter summary

This chapter presented and evaluated experimentally our failure prediction approach
in the Pure Streaming and HTTP Streaming infrastructures. Pre-failure patterns are
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in the core of this approach. They are formed not only by generic system metrics
values, but also by process, network and application-level metrics values obtained
before failure occurrence. Also, derived metrics are included to expose the tendencies
of all metrics at each time interval.

We presented a failure prediction solution for Pure Streaming using batch learning
algorithms and another for HTTP Streaming using online learning algorithms. The lat-
ter includes a segmentation method for separating normalcy patterns from pre-failure
patterns during the learning process with small errors. Also, it includes a methodol-
ogy to employ all learning algorithms available for training several models and for
classification of log instances. Then, it selects, at each iteration, the model with the
best performance until the current time, for deciding whether repair is needed or not.

The experimental results showed that, in both infrastructures, the performance fail-
ures can be predicted with small errors and with enough anticipation to execute the
repair actions. Plus, it was observed that false positives are rare and their performance
cost can be tolerated using cheap repair techniques, such as server migration and re-
boot techniques (Chapter 5).

The success of proactive recovery depends not only on the look-ahead time provided
by failure prediction but also on the selection of appropriate repair techniques. The
repair techniques should be selected according to the fault type diagnosed. Chapter
7 addresses the problem of diagnosing failures in video-streaming systems, through
classification of failure patterns according to the respective type.





7
FA I L U R E D I A G N O S I S

Diagnosis strategies are classified in terms of time constraints as: online diagnosis and of-
fline diagnosis. The diagnosis strategy adopted dictates the recovery strategy, as schema-
tized in Figure 78.

In online diagnosis strategies, the failure diagnosis activity is performed within lim-
ited time bounds to minimize the recovery time. The diagnosis activity is triggered by
the indication of failure given by the failure prediction or failure detection activities.
Proactive diagnosis is performed online, after prediction of failures. Thus, the failure
diagnosis process relies on data collected at the prediction time to classify forthcom-
ing failures. Reactive diagnosis is also performed online, but after detection of failures.
This diagnosis strategy is similar to proactive diagnosis, but relies on classification of
failure patterns using data gathered after failure occurrence. Thus, differences in the
accuracy of both diagnosis strategies are expected, since the log data collected at the
time the failures are predicted are associated to system behaviors different from those
expected after failure occurrence.

Figure 79 illustrates the workflow of proactive and reactive strategies executed dur-
ing failure recovery, involving the failure prediction, failure diagnosis and repair activi-
ties. Failure prediction is followed by proactive diagnosis, for classification of predicted
failures. Yet, reactive diagnosis is still required in case of failure misdiagnosis — lead-
ing to a repair action that is ineffective to mitigate the error — or unpredicted failures.
In case the reactive diagnosis also presents errors, it is required manual intervention
to recover the system.

The autonomic abilities of self-healing systems permit overcoming failures without
or with minimum human intervention. However, self-healing techniques circumvent
the failures but do not remove the faults in the origin of the failures. In other words,
the errors are cleaned by repair actions but the faults remain dormant until their next
activation. Offline diagnosis can support the maintenance of software to remove these
faults.

Notwithstanding the fault removal process requires human intervention, it will ben-
efit from automatic failure classification. Examples of classification outcomes are the
separation of workload-related failures from performance anomalies, the identification
of the fault location or the indication of the resource directly affected by the fault. Rec-
ognizing these failure patterns through human inspection of logged data is awkward
and time consuming, in particular because they are specific to the system.

This chapter addresses the diagnosis of failures in video-streaming services. This
self-healing activity complements the monitoring, repair and failure prediction activ-
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ities with classification of failures detected or predicted into their respective types.
Diagnosis outcomes enable the selection of the most appropriate corrective actions for
the failures identified. The failure diagnosis methodology, algorithms and experimen-
tal results are presented in this chapter for the Pure Streaming and HTTP Streaming
infrastructures.

7.1 failure diagnosis approach

Failure diagnosis in Pure Streaming is performed under the assumption of a tradi-
tional server infrastructure composed by a video-streaming server and one probing
agent running in an independent machine. The Pure Streaming server has complex
behaviors, due to the strict control of the RTP protocol over the data streamed within
each session. The dynamic control of client-server data flows leads to variability of
server behaviors and resources required during the lifespan of each session. Such com-
plexity is propitious to error-prone load control mechanisms external to the server
system, since the server resources consumed by client workloads are difficult to esti-
mate. Hence, classification of failures into workload-related failures and performance
anomalies is valuable for failure diagnosis, since both types of failures can occur.

The classification approach adopted for Pure Streaming services is less valuable in
the HTTP Streaming infrastructure, since the simplicity of HTTP server behaviors en-
ables the implementation of effective load control mechanisms, such as that proposed
in Chapter 4 and evaluated in Chapter 6. Therefore, assuming that the mechanism for
self-protection against workload-related failures implemented by the HTTP Stream-
ing infrastructure is effective, all failures diagnosed are performance anomalies. Thus,
only localization patterns are addressed in the diagnosis process.
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Contrasting with the Pure Streaming infrastructure, the HTTP Streaming infrastruc-
ture (SHStream) uses virtualization to isolate the video-streaming application from
its runtime environment, for improved recoverability. Thus, in the HTTP Streaming
infrastructure, the information about the origin of failures is valuable for selecting ap-
propriate repair actions. It allows determining whether the errors are located in the
virtual container where the server is running — requiring only intervention at the VC
level — or otherwise, the problem is located in the system or network environment
where the virtual container runs.

Failure prediction is presented in Chapter 6 as a pre-failure pattern detection prob-
lem. Pre-failure patterns represent system behaviors preceding failures, gathered in
the form of system, application and network metrics/parameters values. Just as in the
failure prediction approach, our failure diagnosis approach identifies error patterns in-
terpreted as symptoms of failure being experienced (reactive diagnosis) or that might
occur in the near future (proactive diagnosis). Error patterns are pre-failure patterns
in reactive diagnosis and failure patterns in proactive diagnosis, which are interpreted
for each possible classification outcome.
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Classification of error patterns in the diagnosis activity is based on the breakdown
of performance problems presented in Figure 17 (Chapter 4). However, we adapt that
failure classification structure to be aligned with the repair actions designed for our
self-healing infrastructures, as presented in Figure 80. Both pre-failure patterns and
failure patterns are divided primarily into two main groups: failure-type patterns and
localization patterns.

7.1.1 Failure-Type Patterns

The self-healing infrastructure for Pure Streaming services is not self-aware of the
actual server load, avoiding any type of load control. For this reason, workload-related
failures are likely to occur. Classification of failure-type patterns into workload-related
failures — referenced as client-workload overloading — and performance anomalies
is thus required.

Localization 
Patterns

Virtual Container

System

Network

CPU

MEM

I/O

Failure Type 
Patterns

Client-workload Overloading

Performance Anomalies

Server-side

Client-side

Server
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Figure 80: Classification structure of localization patterns and failure-type patterns.

In online recovery scenarios, the failure type determines the appropriate repair ac-
tion. Workload-related failures are overcome by reducing the server load or readjusting
allocated resources. On the other hand, performance anomalies may require restarting
the server application or rebooting the operating system. In offline fault repair activi-
ties, the diagnosis outcome for failure-type patterns allows filtering log data regarding
the: (1) software faults associated to performance anomalies; and (2) workload-related
failures associated to an underprovisioned infrastructure or to a weak load control.
These data will support corrective software maintenance.
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One intuitive approach for discriminating performance anomalies from workload-
related occurrences resides in determining whether the server performance is expected
for the workload generated by client requests, using an approach similar to that pre-
sented in [Cherkasova and Staley 2003]. In that way, we would deduce that failures
are caused by performance anomalies when the client workloads are insufficient to
push the server load above the server capacity. Otherwise, the failures are caused by
workload-related failures. However, despite the simplicity of this approach, it presents
two problems:

1. Specification and measurement of client workloads — workload changes would
perturb the evaluation of the impact of client requests in the server behavior, due
to the impact of the temporal locality. For example, the server could handle n
connections when 90% of them request the same video, but it could overload if
the same percentage of connections request one video exclusively;

2. Complex server behaviors — Pure Streaming servers adapt dynamically the
flow of data sent to end-users, according to the control information and statis-
tics reported by clients regularly. That means that the consumption of resources
varies according to several conditions. Network bandwidth variability, client
buffer states and the users’ interactions with the player (e.g., Play, Pause and
Time Seeking) interfere with the server resources consumed during the lifecycle
of the video-streaming request.

We adopt a failure classification approach based on identification of patterns in the
log data. Thus, failure diagnosis is implemented by identifying recurrent pre-failure
patterns — in proactive diagnosis — and failure patterns — in reactive diagnosis —
specific to each failure type. This approach is independent of the workload type and
can be used to model complex server behaviors.

7.1.2 Localization Patterns

The self-healing infrastructure for HTTP Streaming controls the system workload to
avoid overloading scenarios. Thus, performance anomalies are considered the unique
cause of failures. Anyway, the repair techniques executed should be specific to the
failure location.

The problem of classification of localization patterns is akin to the problem of clas-
sification of failure-type patterns, despite the former has more possible classification
outcomes. Figure 81 presents the workflow for diagnosis of performance anomalies
through classification of localization patterns. Firstly, each log instance is classified in
terms of the resource directly affected by the fault: CPU, memory, I/O or network.
Then, when the classification outcome is not the network, it is classified by another
classifier in terms of its location within the server’s host.
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7.1.2.1 Server Failures

The location of failures classified as CPU, memory or I/O is classified again as follows:

• Virtual container failure — when the server application process running in the
virtual container is responsible for the failure;

• System failure — occurring at the operating system level, outside the virtual
container.

Process-level metrics/parameters (e.g., CPU usage of the server application’s pro-
cess) are important features for creation of classification models. This is because lo-
calization patterns can consider not only application performance and global system
features, but also process-level features that scrutinize the impact of the server appli-
cation on the system performance. Therefore, it is possible to discriminate patterns
inherent to errors in the video application process from patterns inherent to operating
system errors.

7.1.2.2 Failure Classification for Fault Removal Activities

Although the main focus of this chapter is on online diagnosis, our failure classifi-
cation scheme provides valuable information for software maintenance activities. All
failure classes except those associated to system resources (CPU, memory, I/O) have
a corresponding repair action in the self-healing lifecycle. However, the classification
of system resources can provide the identification of faults through their reflection on
resources, such as:

• Infinite loop faults (e.g., unterminated CPU intensive threads) — manifests as
CPU exhaustion, when computation is performed inside the loop; manifests as
I/O exhaustion, when there are disk accesses inside de loop;
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• Memory leaks — memory allocated dynamically is not deallocated appropri-
ately, leading to memory exhaustion;

• Any other faults causing disequilibrium between client workloads and system
behavior or leading to other anomalous system behaviors.

Since the classification of system resources provides information about the resource
directly prejudiced by the error, it could help pinpointing the root cause of the failure
during fault removal activities. Yet, the development of this research topic is out of the
scope of this thesis.

7.1.2.3 Network Failures

When the failure is classified as a network problem, it is necessary to determine
whether it is located server-side or client-side. We use a simple approach to determine
the localization of the network problem based on the analysis of coherence of failures
between requests. When the service degradation is uniformly observed among all re-
quests handled by the server, the failure will likely be localized server-side. On the
other hand, when a small subset of requests is experiencing service quality degrada-
tion, the network failures will likely be localized client-side.

The threshold over the number of faulty requests used for separation of client-side
network failures from server-side network failures has to be specified — empirically
by an expert or through analysis of historical data for each service.

7.1.3 Mapping Failure Classes to Repair Actions

The classification of failure-type patterns and localization patterns will decide the re-
pair action to apply. The correspondence between the classification outcomes and their
repair actions is illustrated in Figure 17 (Chapter 4).

Systems that implement load control mechanisms can anticipate the acceptance of
new requests by the server and refuse or redirect them to other server instances. Oth-
erwise, in case of server overloading, workload-related failures can be overcome by:

• Migrating the server to a host better provided with resources;

• Renegotiating more server resources;

• Reducing the server load (e.g., terminating part of the requests being handled).

Performance anomalies lead the server application or the underlying operating sys-
tem to a nondeterministic condition. The recovery from these anomalous conditions is
attempted using the techniques presented in Chapter 5, by restoring the faulty context
(server application or the operating system) to normality, using one of the following
techniques:
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• Reboot the server’s machine (the host) — when the fault originates outside the
virtual container where the video server application is running. This repair action
is preceded by the migration of the server application to another host;

• Reboot the virtual container — when the fault originates inside the virtual con-
tainer where the video server application is running;

• Migrate the virtual container to another host — when the fault originates out-
side the virtual container or in the server-side network.

The selection of appropriate repair actions involves the diagnosis of localization pat-
terns to determine whether errors are located inside the virtual container, outside the
virtual container or otherwise, has originated in the network. When the errors are lo-
cated outside the virtual container or in the server-side network, the virtual container
is free of errors and thus, can be rescued to another host. Therefore, the server applica-
tion state and client-server connections are maintained intact after recovery. Otherwise,
when errors originate within the virtual container, it has to be restarted — in the same
or in another host.

7.2 classification of failure patterns in pure streaming

We use the following methodology for training models and classifying log instances
in proactive failure diagnosis:

1. Create regression models to forecast feature values from prediction time to fail-
ure time;

2. Create classification models using batch learning algorithms, for classification of
failure patterns (feature values observed after failure occurrence);

3. For each predicted failure, it is initiated a two-step classification process of the
respective log instance. Firstly, the feature values captured at the prediction time
are used to forecast the feature values to the failure time, using the regression
models. Secondly, the feature values forecasted are used by the classification
models to diagnose the failure.

We explore a classification approach for failure diagnosis based on forecasted failure
patterns. Instead of classifying pre-failure patterns to diagnose predicted failures, the
feature values are forecasted from the failure prediction time to the failure occurrence
time before being classified.
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7.2.1 Research Questions

This chapter addresses the following research questions relative to the diagnosis activ-
ity in the Pure Streaming infrastructure:

1. What is the diagnosis performance obtained for classification of failure patterns
into workload-related failures and performance anomalies?

2. What is the error introduced by the forecasting of failure patterns from the time
each failure is predicted to the time it is detected?

3. What is the performance difference between proactive diagnosis and reactive
diagnosis?

4. Are the classification performance resilient to workload changes?

The failure diagnosis approach presented in this chapter is evaluated experimentally
to answer these research questions.

7.2.2 Formalization of the Failure Diagnosis Problem

The core of our diagnosis approach is based on the hypothesis that each failure cause
has specific signatures (failure patterns), represented by specific combinations of fea-
ture values. So, the identification of failure types is based on the discrimination of
failure patterns associated to workload-related failures from failure patterns associ-
ated to performance anomalies.

In reactive diagnosis, the forecasting of feature values is unnecessary because fail-
ures are detected after their occurrence. Thus, the failure diagnosis problem is formal-
ized as follows. Being Ft one of the failure states F = {overloading, anomaly} at time
t and Mt the vector of values for n relevant features at time t, the problem resumes
in learning a classifier that maps the space of possible values of M to failure states
F. Models are trained using logs in the form < Mt, Ft > collected from the system
during failure periods.

In proactive diagnosis, the feature values are unknown at prediction time. Hence,
each feature value mt+i, with m ∈M, is forecasted individually through linear regres-
sion [Han et al. 2006] from a set of values Sm,t. Sm is a subset of all features gathered
by logs considered relevant for forecasting the value of each feature m, t is the time
when the feature value is forecasted and i the look-ahead time of prediction. Sm 6=M
is expected, since Sm contains the features used by the models to forecast the value of
each feature value m used for classification, while M contains the features relevant for
classification.

Linear regression can be single-variate or multi-variate. Figure 82 illustrates the fore-
casting of the CPU parameter using single-variate linear regression. This technique
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Figure 82: Prediction of the CPU usage parameter to the failure time.

uses a single independent variable (|S| = 1) to determine the value of the dependent
variable. In this example, the number of requests is the independent variable used to
forecast the CPU parameter. Contrasting with single-variate regression, multi-variate
regression uses several independent variables to predict the value of the dependent
variable. That means that each regression model Rm forecasts the value of each fea-
ture mt+i from Sm,t, being |S| > 1.

We use multi-variate regression for prediction of individual feature values. This
approach requires a feature selection approach for selection of the relevant features
that will be used to forecast each feature value.

7.2.3 Algorithms

Failure diagnosis relies on two types of algorithms for creation of models: classification
algorithms and regression algorithms.

7.2.3.1 Classification Algorithms

Both proactive diagnosis and reactive diagnosis approaches use batch learning algo-
rithms — similar to those used for failure prediction — to create diagnosis models.
We use two classes of learning algorithms to build classification models: probabilistic
algorithms and decision trees algorithms.

The Naïve Bayes and the C4.5 algorithms are applied to creation of probabilistic
models and decision trees, respectively. These two traditional algorithms have been
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proven effective in modeling patterns for a broad type of problems. The C4.5 algorithm,
in particular, also exhibited the best performance of all algorithms explored in failure
prediction (Chapter 6). The Naïve Bayes and C4.5 algorithms are presented in Section
6.5.2.

7.2.3.2 Regression Algorithms

The multivariate regression models used to forecast feature values have the form of
(21), being Y the data matrix containing the response variables (forecasted features), X
the matrix of feature values, β the matrix of factor coefficients (model parameters) and
ε the matrix of noise terms.

Y = Xβ+ ε (21)

Statistical estimation and inference in linear regression focuses on β, the matrix
of regression coefficients. This parameter is obtained by the least-squares fit method
[Björck 1996]. This method finds the model parameters best fitting the data. It finds its
optimum when the sum of the squared residuals U, calculated as in (22), is a minimum.

U =

n∑
i=1

r2i (22)

Each residual ri represents the difference between the value observed for the depen-
dent variable yi and the value forecasted by the regression model, as formulated in
(23).

ri = yi −Xiβ (23)

The forecasting of feature values using regression models introduces errors that will
sum up to the classification errors generated by diagnosis models. Thus, quantification
of regression errors is necessary for error analysis, with the purpose of determining
the impact that the forecasting of features has on the global diagnosis performance.

7.2.4 Evaluation of Diagnosis Models

Errors observed in the diagnosis process can be broken down into the errors resulting
from: (1) failure prediction; (2) the forecast of feature values; and (3) the classification
of failure patterns.

False positives in failure prediction result in arbitrary and useless diagnosis, since
the failure classification is performed for log data associated to non-faulty system con-
ditions. For that reason, we remove all scenarios containing failure prediction errors
from the evaluation of the diagnosis performance.
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7.2.4.1 Errors Resulting from the Forecasting of Feature Values

Forecasting errors are quantified by measuring the difference between the feature val-
ues forecasted through regression and the feature values observed after failure occur-
rence.

The Root-Mean Square Error (RMSE) presented in (24) determines the average mag-
nitude of the regression error. It is calculated by the difference between the values
forecasted by the model pi and the values observed from measurements ai.

Root Mean-Squared Error =

√∑n
i=1(pi − ai)

2

n
(24)

The RMSE metric provides a diagnosis error with limited interpretation. That means
that there is no basis for separating acceptable from unacceptable RMSE values. Yet, as
usually the RMSE has the same unit as the dependent variable, it could be empirically
evaluated with respect to that unit. As an example, for a datum which ranges from
0 to 100 (e.g., CPU usage in percentage), a RMSE of 5 can be considered small but a
RMSE of 50 is undoubtedly large.

RMSE is tied to single variate analysis, because it is scaled to the variable being
analyzed. When the error analysis involves several variables, the RMSE value of each
variable should be normalized to allow comparison of the RMSE values of variables
with different scales. The Normalized Root-Mean Square Error (NRMSE) (25) is used
for that purpose. It divides the RMSE by the range of the values observed for the
forecast variable.

NRMSE =
RMSE

xmax − xmin
(25)

Since the values of the NRMSE are normalized, the global error resulting from the
average of the NRMSE of all variables can be calculated.

7.2.4.2 Classification Errors

Performance evaluation of classification models relies on metrics presented in Section
6.3.1: precision, recall and f-measure. These metrics quantify the ability of classification
models to discriminate failure patterns.

In failure diagnosis, the performance metrics are calculated for each classification
outcome: workload-related failure or performance anomaly. This requirement con-
trasts with the classification performance evaluation in failure prediction. In failure
prediction problems, the normality condition is a neutral state and consequently, the
failure condition is the unique class that deserves attention. To exemplify, the number
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Figure 83: Area under a ROC curve. The classification performance improves as the AUC ap-
proaches to 1 and worsen towards 0.

of true positives represent the number of failures classified as such. In failure diagno-
sis, the same metric is interpreted according to the class being considered — the true
positives of workload-related failures or the true positives of performance anomalies.

Failure classification pursues the largest number of true positives with the smaller
number of false positives, for each class. This is usually subject to a tradeoff between
true positives and false positives, as usually the increase of one of these metrics leads
to the decrease of the other. The Receiver Operating Characteristic (ROC) curve, illus-
trated in Figure 83, allows an analysis of the tradeoff between the true positive rate and
the false positive rate. The Area Under Curve (AUC) of the ROC resumes into a single
value the relationship between both rates, which is representative of the classification
performance of models. The classification performance improves as AUC approaches
the 1 and worsen towards 0. Perfect performance is achieved when the AUC equals 1
because it represents the maximum area, attained when the number of false positives
and false negatives, for each class, is zero.

We use the AUC as a complementary metric for the classification performance. This
metric is more adequate to balanced datasets [Davis and Goadrich 2006], such as those
used for failure diagnosis — the number of log instances is similar in both failure
classes.
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7.2.5 Generalization of Models Between Workload Types

Popularity of videos is one workload factor difficult to specify and measure, but im-
pacts the server behavior significantly, since it interferes with the temporal locality of
data, as explained in Section 4.5.2.1. Thus, the server would exhibit multimodal behav-
ior for a specific combination of the number and type of videos requested, when the
workload type changes in the vector of popularity. Thus, it is important to evaluate the
resilience of the classification performance when the popularity of videos changes.

In addition to the ten-fold cross validation, we evaluate the models’ classification
performance when the models are trained with a workload of reference and are eval-
uated with workloads that drift the popularity of videos into two opposite popularity
directions: pure popular and pure unpopular. This evaluation scheme is denoted in
this Chapter as inter-benchmark validation. The results of the inter-benchmark valida-
tion reflect the generalization ability of models in terms of popularity of videos.

7.2.6 Experimental Results

This section presents the results of the experimental evaluation of our approach in
reactive diagnosis and proactive diagnosis scenarios.

7.2.6.1 Feature Selection

Feature selection is an important activity for improving the classification performance
of models created using algorithms that do not select relevant features intrinsically
— Naïve Bayes benefits from feature selection but C4.5 trees select relevant features
intrinsically. This topic is developed in Section 6.4.2. Each relevant feature identified
will be further subjected to forecasting by regression models, to obtain the input values
of the failure classifiers.

We present the results of feature selection in two phases:

1. Analysis of the discriminative power of each feature;

2. Selection of relevant combination of metrics using the Linear Forward Selection
algorithm.

Figure 84 presents the f-measure calculated for a subset of metrics, used individually
to create decision trees models with the C4.5 algorithm. It shows that the memory
parameter (memory usage) presents the highest discriminatory power for performance
anomalies, reaching 98%, followed by the Mem PID (the memory consumed by the
server application’s process) with 50%, the Resident Set Size (the non-swapped physical
memory used by application process) with 50%, and the VM PID (virtual memory used
by the application process) with 49%.
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Figure 84: Classification performance of diagnosis using each feature. Features not shown have
a f-measure of zero for performance anomalies.

By running the Linear Forward Selection algorithm, the combination of the Session
Establishment Time and the Time Between Two Setups were also chosen to complement the
aforementioned list of metrics. That means that these two features have low discrimi-
native power alone, but can improve the model discriminative power when combined
with other features.

Even though the analysis of the discriminatory power of features is valuable to un-
derstand the experimental results, the feature selection activity is performed for each
system configuration dynamically. Thus, the list of features identified is not generaliz-
able to other system configurations.

7.2.6.2 Experimental Results for Reactive Diagnosis

This section presents the results of the experimental work undertaken to evaluate the
models’ classification performance in reactive diagnosis scenarios. The experimental
process has the following steps:

1. Run the mix+spike and mix+anomaly benchmarks (described in Section 4.5.3)
to collect log data;

2. Perform feature selection to select metrics with discriminative power to create
classification models (required only for the Naïve Bayes classifier);

3. Build models and evaluate their classification performance using ten-fold vali-
dation;

4. Run the popular+spike, unpopular+spike, popular+anomaly and unpopular+a-
nomaly benchmarks to collect log data;
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5. Evaluate the models’ performance with the log data previously collected, using
inter-benchmark validation.

Figure 85a and Table 5a present the evaluation results of the Naïve Bayes classifier,
obtained through ten-fold validation and inter-benchmark validation. Similarly, Fig-
ure 85b and Table 5b present equivalent results for the J48 implementation of the C4.5
algorithm. The results of ten-fold cross validation are represented in the bar graph
labeled as 10-Fold Workload and 10-Fold Anomaly, for workload-related failures (client-
workload overloading) and performance anomalies, respectively. The remaining labels
show equivalent results for inter-benchmark validation, obtained from the classifica-
tion of failure patterns when the client workload drifts to pure popular and pure
unpopular.

From the analysis of results we observe that, notwithstanding both models have
high classification performance, C4.5 models outperform the Naïve Bayes models coun-
terparts in all configurations. Using ten-fold validation, the C4.5 reaches 100% of re-
call and precision for both workload-related failures and performance anomalies. For
the same validation scheme, Naïve Bayes has lower values, with 99.7% of recall for
workload-related failures and 95.3% of precision for performance anomalies.

The recall and precision of C4.5 are 100% when the workload drifts to pure unpopu-
lar, for all failure causes. These values decrease to 93.6% of recall for workload-related
failures and 83.7% of precision for failures caused by performance anomalies, when the
workload drifts to pure popular. Accordingly, the ROC area (AUC) and the NRMSE
are 96.8% and 0.22, respectively, for pure popular workloads.

The Naïve Bayes has lower classification performance than C4.5 trees in both pure
popular and pure unpopular configurations. In the pure popular configuration, the re-
call of workload-related failures is 90.4% and the precision of performance anomalies
observed is 77.4%. In the pure unpopular configuration, the recall of workload-related
failures is 98.2% and the precision of performance anomalies is 97.6%. All other metrics
values of Naïve Bayes in pure popular and pure unpopular configurations are 100%.
Additionally, the ROC area (AUC) is 99.4% and 96.8% in the pure popular configura-
tion for workload-related failures and performance anomalies, respectively. The same
metrics achieved 100% in the pure popular configuration. Additionally, the NRMSE is
0.269 and 0.092 in the pure popular and pure unpopular configurations, respectively.

7.2.6.3 Experimental Results for Proactive Diagnosis

Proactive diagnosis faces an additional challenge when compared with reactive diag-
nosis of failures. It should deal with the problem of forecasting feature values from
the prediction time to the failure time, without increasing the global diagnosis error
significantly.

This section presents the results of the experimental work undertaken to evaluate
the models’ classification performance in proactive diagnosis scenarios. The experi-
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(a) Per-class results of the Naïve Bayes

0.000	
  
0.100	
  
0.200	
  
0.300	
  
0.400	
  
0.500	
  
0.600	
  
0.700	
  
0.800	
  
0.900	
  
1.000	
  

TP	
  Rate	
   FP	
  Rate	
   Precision	
   Recall	
   F-­‐Measure	
  
Classifica(on	
  Performance	
  Metric	
  

C4.5	
  Trees	
  

10-­‐Fold	
  Workload	
   10-­‐Fold	
  Anomaly	
   Popular	
  Workload	
   Popular	
  Anomaly	
   Unpopular	
  Workload	
   Unpopular	
  Anomaly	
  

(b) Per-class results of C4.5 Trees

Figure 85: Classification performance of Naïve Bayes and C4.5 Trees using ten-fold validation
and inter-benchmark validation. Inter-benchmark validation evaluates the classifica-
tion performance when the workload changes to pure popular and pure unpopular.

mental process followed to obtain the evaluation results extends the equivalent process
presented for reactive diagnosis, by adding the step of forecasting the feature values
used for classification of predicted failures. The results are presented only for C4.5
Trees, due to their superior performance in reactive diagnosis. Also, the experimental
results discard failure prediction errors (addressed in Chapter 6). To that end, all log
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Anomalies 1.000 0.003 0.953 1.000 0.976 1.000

0.997 0.000 0.997 0.997 0.997 1.000
Workload 0.904 0.000 1.000 0.904 0.950 0.994
Anomalies 1.000 0.096 0.774 1.000 0.872 0.968

0.928 0.024 0.944 0.928 0.931 0.987
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TP	
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Squared	
  
Error

Workload 1.000 0.000 1.000 1.000 1.000 1.000
Anomalies 1.000 0.000 1.000 1.000 1.000 1.000

1.000 0.000 1.000 1.000 1.000 1.000
Workload 0.936 0.000 1.000 0.936 0.967 0.968
Anomalies 1.000 0.064 0.837 1.000 0.911 0.968

0.952 0.016 0.960 0.952 0.953 0.968
Workload 1.000 0.000 1.000 1.000 1.000 1.000
Anomalies 1.000 0.000 1.000 1.000 1.000 1.000

1.000 0.000 1.000 1.000 1.000 1.000

Popular	
  
Workload	
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Class

Weighted	
  Avg.
Unpopular	
  
Workload	
  
(Validation)

Class
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  Avg.

0.220

0.000

Class
0.002

Weighted	
  Avg.

J48

10-­‐Fold	
  
Cross-­‐

validation

(b) C4.5 (J48)

Table 5: Tables with the classification performance of Naïve Bayes and C4.5 Trees, using ten-
fold validation and inter-benchmark validation. Inter-benchmark validation evaluates
the classification performance when the workload changes to pure popular and pure
unpopular.

instances mispredicted by the failure prediction activity are removed from the datasets
previously to the failure classification.

The forecasting errors introduced by multivariate linear regression are measured by
NRMSE. This metric is calculated for each forecasted feature, and the resultant values
are further averaged. Figure 86 shows that the average NRMSE is small. NRMSE is
below 6% (the values presented are absolute, but normalized to 100), in average, even
for anticipation times of 20 seconds. Results for larger look-ahead times are ignored,
since the failure prediction performance for larger anticipation times is small, as shown
in Chapter 6.
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Figure 86: Average NRMSE of regression, calculated for all metrics. RMSE values are normal-
ized to 100, according to the range of observed values, for each variable considered.

Even though the NRMSE is an important metric to evaluate the forecasting error, it
is unable to measure the error’s impact on the classification performance. This latter
can be calculated through comparison of the classification errors obtained for reactive
diagnosis with the classification errors obtained for proactive diagnosis.

Figure 87 presents the precision, recall and f-measure metrics values obtained for
proactive diagnosis. These results respect the ten-fold validation of C4.5 models, con-
sidering look-ahead times ranging from 5 to 20 seconds. It is noticeable a small de-
crease of the recall and precision values within the entire look-ahead time interval.
The recall maintains at 100% for workload-related failures, similarly to precision val-
ues for performance anomalies. The recall values range from 97.5% to 92.5% for per-
formance anomalies within the look-ahead time interval. The precision is stable for
workload-related failures within the look-ahead time interval, ranging from 99.8% to
99.5%.

Figure 88 presents the classification performance loss of proactive diagnosis when
compared with reactive diagnosis. For performance anomalies, the recall drops be-
tween 2.5% — for look-ahead times of 5 seconds — and 7.5% — for look-ahead times
above 10 seconds. For workload-related failures, the precision suffers a loss between
0.2% — for look-ahead times of 5 seconds — and 0.5% — for look-ahead times above
10 seconds.

7.2.7 Discussion of Results

The experimental results previously presented provide answers to the research ques-
tions stated early in Section 7.2.1. They cover the classification performance of algo-
rithms, the resilience of the models’ performance to workload changes and the perfor-
mance difference between proactive diagnosis and reactive diagnosis.

The experimental results show that C4.5 trees and Naïve Bayes models provide high
classification performance in our failure diagnosis approach. In reactive diagnosis, the
C4.5 tree models achieved perfect recall and precision using the workload of reference,
outperforming the Naïve Bayes classifier. The higher performance of decision trees
relatively to other algorithms is coherent with the failure prediction results.
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Figure 87: Failure classification performance for workload-related failures and performance
anomalies in proactive diagnosis.

The classification models were firstly evaluated with the training dataset. After-
wards, the same models were evaluated with log data obtained using benchmarks
that bring the workload popularity to its extremes, to evaluate the resilience of classi-
fication models to workload changes.

Experimental results show that the classification performance loss due to workload
changes is noticeable only when the workload of reference drifts to the pure popu-
lar workload (all requests target the same video). In these scenarios, the precision of
performance anomalies fall significantly, leading to the inadequate execution of the
repair actions required to performance anomalies, in replacement of those required
for workload-related failures. Fortunately, this is an extreme workload corresponding
to a worst-case scenario unexpected in production systems. Even in cache servers (e.g.,
proxy caches), where the distribution of requests between video files is more compact
than in backend streaming servers [Wang et al. 2002][Zink et al. 2008], it is expected
the distribution of client requests over several video files. Thus, the classification per-
formance losses caused by workload changes are expected lower than those presented.

Our proactive diagnosis approach performs failure classification of feature values
forecasted from the failure prediction time to the failure occurrence time. The result-
ing forecasting errors are responsible for the performance difference between proactive
diagnosis and reactive diagnosis. Experimental results show that the forecasting errors
measured both over feature values and classification performance are small. The pre-
cision, in particular, is similar in both diagnosis strategies.
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Figure 88: Performance loss in proactive diagnosis relatively to reactive diagnosis.

An overall analysis of the experimental results obtained for diagnosis of perfor-
mance failures in the Pure Streaming infrastructure reveals an extremely high classifi-
cation performance of failure types. These results are maintained even when the client
workloads change significantly. The classification performance provided by machine
learning algorithms is higher in the failure diagnosis than in failure prediction. This
is expected, due to the lack of segmentation errors in the log data used for failure
diagnosis problems. That means that all log instances classified correspond to effec-
tive failures. By contrast, in failure prediction problems the pre-failure patterns can be
confounded with normalcy patterns, introducing additional errors.

7.3 classification of failure patterns in http streaming

We use the following methodology for learning and classifying log instances in failure
diagnosis of HTTP Streaming systems:

1. Each log instance predicted or detected is used to train and evaluate resource di-
agnosis models, simultaneously with its classification into: network failures, CPU,
memory or I/O;

2. Each log instance previously classified either as CPU, memory or I/O, is used to
train and evaluate intra-server diagnosis models, simultaneously with its classi-
fication into: virtual container or system;
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3. Each log instance previously classified as network failure is classified into: client-
side or server-side.

The former two classification problems require complex models of the system, ap-
plication and network states, demanding experimental evaluation. Conversely, classi-
fication of network failures relies on a threshold value for the percentage of failing
requests, with the purpose of delimiting client-side failures from server-side failures.
Since this classification approach depends on a simple threshold set specifically for
each service, its experimental evaluation is unnecessary.

7.3.1 Research Questions

This section addresses the following research questions relative to the diagnosis activ-
ity in the HTTP Streaming infrastructure:

1. What is the performance of classification models, trained with online learning
algorithms, in discriminating failure patterns into each of the localization classes?

2. What is the performance difference between classification of failure patterns and
classification of pre-failure patterns exposed by log instances indicated by the
failure prediction activity?

3. Which online learning algorithms exhibit the best diagnosis performance?

4. How many learning instances are required until the stabilization of the classifi-
cation performance, using online learning algorithms?

The failure diagnosis approach presented in this chapter is evaluated experimentally
for HTTP Streaming, to answer these research questions.

7.3.2 Formalization of Diagnosis of Localization Patterns

The Pure Streaming infrastructure approaches proactive diagnosis as a classification
problem over feature values forecasted from prediction time to failure time. By con-
trast, proactive diagnosis in the HTTP Streaming infrastructure is implemented through
classification of pre-failure patterns. This approach is rooted in the hypothesis of the
existence of singularities inherent to each resource and intra-server location in the log
data gathered at the prediction time.

The insight for using feature values respecting the failure prediction time for failure
diagnosis is described as follows. One failure is predicted due to singularities in the
log data arising after fault activation. Singularities are captured in the form of patterns
more likely to observe in the course of a pre-failure period than during error-free
periods. Hence, it is also reasonable to consider the hypothesis that the singularities
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used for failure prediction are different for each resource and intra-server location and
thus, can be exploited to classify failures in the diagnosis process. This hypothesis is
formalized as:

Being M the vector of feature values relative to application, system (global
and process) and network parameters/metrics, the resource directly af-
fected by the failure (CPU, memory, I/O or network) and the location of the
failure within the server machine (inside or outside the virtual container)
can be determined from patterns represented by the combination of values
attributed to relevant features

−→
M ⊆M.

The formalization of the diagnosis problem for localization patterns includes both
the resource patterns and the intra-server location patterns.

The problem of diagnosing resources can be formalized as follows. Being R = {CPU,
memory, I/O, network} the list of resources admissible for classification and Mt the
vector of values for n relevant metrics of a given log instance at time t, the resource
classification problem is defined as the mapping of Mt to one resource r ∈ R. Since t
represents the prediction time, Mt represents feature values at prediction time, which
indicates a failure at time t+ i in the future.

When the resource r is not the network, the classification outcome l gives the failure
location within the server, being l ∈ L and L = {virtual container, system}. The outcome
l is determined from Mt, similarly to r.

7.3.3 Implementation of Failure Diagnosis

The online learning algorithms presented in Section 6.6.2 for failure prediction are also
used for building classification models for failure diagnosis.

Similarly to the failure prediction activity, the diagnosis activity performs classifica-
tion, learning and evaluation of models, but always with log data gathered by exercis-
ing the server with synthetic workloads and fault loads. The reason is that in failure
diagnosis, the log data cannot be labeled automatically with the corresponding class
before being used to train classification models. Figure 89 illustrates that problem.

When one recovery action is executed as a consequence of a predicted failure, the
occurrence or the absence of a posterior failure is unable to evidence the diagnosis
correctness. There are several motives associated to the success or failure of a recovery
intervention. False positives observed in failure prediction, ineffective repair actions
and other conditions leading to errors on any stage of the recovery process, avoids
the analysis of the diagnosis correctness based on the effectiveness of the whole re-
covery cycle. Hence, log instances have to be labelled with the respective diagnosis
types manually, which is time consuming in offline learning and unfeasible in online
learning.
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Figure 89: Learning data for training diagnosis models are incomplete in production systems,
because the failure type occurred cannot be determined automatically.

The SHStream running modes presented for failure prediction (production mode
and learning mode) are also applied to failure diagnosis. In production mode, SHStream
performs failure classification but deactivates online learning. On the other hand,
SHStream switches to the learning mode when running the benchmarks designed for
online learning of models. During that period, the SHStream application is notified
about the failure being injected through a flag file created by the script that runs the
benchmarks. When the file is present, the SHStream application reads from the file the
fault type injected. Thereafter, all log instances are labelled with the fault type read.

The Algorithm 3 redesigns the Algorithm 2 developed in Chapter 6, by combining
the diagnosis activity with the failure prediction activity. It includes the classification
of the faulty resource and the fault location, using two distinct groups of models:
ModelDiagRes and ModelDiagLoc. For each group of models, the classification outcome
given by the model with best classification performance up to the current time, is
chosen as the diagnosis outcome for that group. This diagnosis process is similar to
that followed for failure prediction.

7.3.4 Experimental Work

This section presents the experimental results of the:

1. Impact of the number of learning instances on the performance of classification
of resources;

2. Breakdown of the performance of classification of resources by learning algo-
rithm;
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Algorithm 3 Algorithm for: (1) Online Learning and Evaluation of Models for Failure
Prediction and Failure Diagnosis; and (2) Failure Prediction and Diagnosis of Log
Data.
Require: size(buffer) is WindowOfUncertainty

loop
I⇐ readNewInstance()
f⇐ isFailState(I) . Classification
if f is false then

for i = 1 to nModels do
pi⇐ classifyFailurePrediction(Modeli, I)

end for
end if
if pmostAccurate is Failure or f is true then

[res, loc]⇐ diagnosis([ModelDiagResmostAccurateRes,
ModelDiagLocmostAccurateLoc], I)

launchRecovery(res, loc)
end if . Learning
L⇐ buildLearningInstance(I, f,p, res, loc)
if not isBufferFull(buffer) then

jump to next loop iteration
end if
addToEnd(buffer,L)
F⇐ removeFirst(buffer)
if distanceFail(buffer) ∈ [1,preFailWindow] then

for i = 1 to nModels do
learn(Modeli,F, Prefailure)
updateModelStatistics(Modeli,F, Prefailure)
if learningMode then
learn([ModelDiagResi,ModelDiagLoci],

F,FaultTypeInjected)
updateModelStatistics([ModelDiagResi,ModelDiagLoci],

F,FaultTypeInjected)
end if

end for
else if distanceFail(buffer,F) is ∞ then

if F.pmostAccurate = Normal or learningMode then
for i = 1 to nModels do
learn(Modeli,F, Normal)
updateModelStatistics(Modeli,F, Normal)

end for
end if

end if . Evaluation
mostAccurate⇐ evaluateBestModel(Model)
mostAccurateRes⇐ evaluateBestModel(ModelDiagRes)
mostAccurateLoc⇐ evaluateBestModel(ModelDiagLoc)
logForOfflineAnalysis(F)

end loop

3. Classification performance difference between reactive diagnosis and proactive
diagnosis;

4. Breakdown of the performance of classification of error locations by learning
algorithm.



206 failure diagnosis

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"

0"
45
48
"

90
96
"

13
64
4"

18
19
2"

22
74
0"

27
28
8"

31
83
6"

36
38
4"

40
93
2"

45
48
0"

50
02
8"

54
57
6"

59
12
4"

63
67
2"

68
22
0"

72
76
8"

77
31
6"

81
86
4"

86
41
2"

90
96
0"

95
50
8"

10
00
56
"

10
46
04
"

10
91
52
"

11
37
00
"

11
82
48
"

12
27
96
"

12
73
44
"

13
18
92
"

13
64
40
"

14
09
88
"

14
55
36
"

15
00
84
"

15
46
32
"

15
91
80
"

16
37
28
"

16
82
76
"

17
28
24
"

17
73
72
"

18
19
20
"

18
64
68
"

19
10
16
"

19
55
64
"

20
01
12
"

20
46
60
"

20
92
08
"

21
37
56
"

21
83
04
"

22
28
52
"

22
74
00
"

23
19
48
"

23
64
96
"

24
10
44
"

24
55
92
"

25
01
40
"

25
46
88
"

25
92
36
"

26
37
84
"

26
83
32
"

27
28
80
"

27
74
28
"

28
19
76
"

28
65
24
"

29
10
72
"

Fa
ilu

re
(C
la
ss
ifi
ca
-o

ns
(

Seconds(

CPU(Correct( Memory(Correct( I/O(Correct( Incorrect(Classifica-on( Network(Correct(

Figure 90: Number of log instances of each fault type correctly classified and number of log
instances incorrectly classified.
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Figure 91: Breakdown of the number of misclassified log instances by algorithm.

In our experimental work, we use the mix+anomalyNet benchmark presented in
Section 4.5.3.3. This benchmark extends the mix+anomaly benchmark by including
network faults that manifest as packet losses and large packet delay variance.

7.3.4.1 Impact of the Number of Learning Instances on the Performance of Classification of
Resources

Figure 90 presents the number of failure scenarios correctly diagnosed for each re-
source directly impacted by the fault injected and also, the sum of all incorrect classi-
fications. It is noticeable that the diagnosis error stabilizes at 9 incorrect classifications,
after training models with a number of instances varying between 40 and 60 for each
resource type, using the model with best performance at each classification iteration.
After stabilization, the number of misclassifications remains unchanged.

7.3.4.2 Breakdown of the Performance of Classification of Resources by Learning Algorithm

Figure 91 breaks down the number of misclassifications by each algorithm, during the
execution of the benchmark. The Naïve Bayes performance takes longer to stabilize
(after 14 misclassifications) than the other algorithms. After completing approximately
two thirds of the learning process, all algorithms except Naïve Bayes stabilizes at 9
misclassifications.
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Figure 92: Misclassifications of resources using data gathered at prediction time (proactive di-
agnosis) and at failure time (reactive diagnosis).

7.3.4.3 Classification Performance Difference Between Reactive Diagnosis and Proactive Di-
agnosis

The evaluation of the reactive diagnosis approach requires changing the implemen-
tation of Algorithm 3 to train models with data gathered at the failure time (failure
patterns), in replacement of data gathered at the prediction time (pre-failure patterns).

Figure 92 shows the number of misclassifications using models trained with pre-
failure patterns (proactive diagnosis) and failure patterns (reactive diagnosis). It is no-
ticeable the better performance of models trained with pre-failure patterns (9 misclas-
sifications) compared with those created with failure patterns (20 misclassifications).
Another important observation is that the number of misclassifications stabilizes af-
ter approximately 50 learning instances of each failure type, in average, for models
trained with pre-failure patterns (Figure 90). By contrast, models created with failure
patterns continue to misclassify log instances until the end of the experimental period.

7.3.4.4 Breakdown of the Performance of Classification of Error Locations by Learning Algo-
rithm

In failure diagnosis, the classification of the faulty resource precedes the classification
of the failure location. That means that when the resource diagnosed is any but the
network, the log instance is classified again to determine whether the fault is located
within the virtual container or outside it.

Figure 93 presents the number of correct classifications of each location and the
total number of misclassifications. It is noticeable that the classification error stabilizes
after 7misclassifications, corresponding to approximately 60 learning instances of each
location being used to train models.

7.3.5 Discussion of Results

The experimental results obtained testify the ability of online learning models to per-
form proactive diagnosis — using pre-failure patterns — and reactive diagnosis — us-
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Figure 93: Number of correct classifications of failures localized inside and outside the virtual
container, and the total number of misclassifications performed.

ing failure patterns — through classification of resources and locations of performance
failures. The diagnosis outcomes are valuable information for selection of appropriate
repair actions in the self-healing lifecycle (as described in Section 7.1.3) and also for
supporting further fault removal activities.

7.3.5.1 Diagnosis Performance of Online Learning Algorithms

Online learning algorithms perform better in failure diagnosis than in failure pre-
diction (Chapter 6), not only in terms of the best classifier, but also in terms of the
performance homogeneity between classifiers. This observation is consistent with the
results obtained for diagnosis in the Pure Streaming infrastructure. This is justified
by the less noisier training datasets used for diagnosis, compared with those used for
failure prediction. In failure diagnosis, the training data respects only faulty periods.
This contrasts with the failure prediction approach, which permits mislabelled learn-
ing instances, due to the blurred boundary between the normal and the pre-failure
periods, already discussed in Chapter 6.

Dynamic selection of models introduces diversity of learning algorithms in the fail-
ure prediction and diagnosis activities. Notwithstanding the multi-model diagnosis
approach exhibited no performance improvement over a single-model diagnosis ap-
proach — in case the learning algorithm with the best performance is always used —
the diversity of algorithms can provide robustness to the self-healing framework when
the classification performance decays for any reason. Also, a multi-model infrastruc-
ture enables automatic model training and evaluation with new algorithms adopted
by the infrastructure in the future. Therefore, we consider advantageous the implemen-
tation of a multi-model diagnosis approach, even because the lack of any performance
penalty introduced by the online learning algorithms considered.

7.3.5.2 Diagnosis Performance with the Number of Learning Instances

The number of misclassifications of the resources associated to the failures is low until
the stabilization of the classification error, even when a small number of learning in-
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stances is available. Hoeffding Trees and ensemble algorithms revealed to be the fastest
learning algorithms — measured by the number of learning instances required to
avoid further misclassifications. On the other hand, Naïve Bayes required more learn-
ing instances until reaching the stabilization point. Yet, all models exhibited equivalent
performance after some point during the execution of the benchmark.

7.3.5.3 Performance Comparison Between Proactive Diagnosis and Reactive Diagnosis

Pre-failure patterns proved to be powerful discriminators in failure diagnosis scenarios.
When the diagnosis models are trained with data associated to pre-failure patterns, the
number of misclassifications stabilizes before the end of the benchmark. Conversely,
the classification models trained with failure patterns (data gathered at the failure
time) misclassify log instances during the entire execution of the benchmark.

The better performance of models trained with pre-failure patterns relatively to
models trained with failure patterns is explained by the use of learning data associ-
ated to server conditions where errors are in a early stage of propagation. Pre-failure
patterns are captured in a stage where errors start to impact other components and
resources, before they finally manifest into failures. Immediately after fault activation,
the error is encountered with none or small ramifications. This is the best moment to
perform diagnosis. Thus, the sooner the feature values are gathered, the closer they
are to the fault activation during the propagation process. Consequently, the server
states captured by features are simpler and will likely capture the first resource or
resources affected by the fault, which are that or these directly impacted by it. With
simpler patterns, the resultant models have less complexity and consequently, produce
less classification errors.

7.4 chapter summary

This chapter addressed the problem of diagnosing performance failures predicted or
detected in video-streaming systems. Failure diagnosis was undertaken differently for
the Pure Streaming and HTTP Streaming infrastructures presented in Chapter 4.

The Pure Streaming infrastructure is incorporated in a traditional non-virtualized
environment. It includes a Pure Streaming server, which typically has complex client-
server flows that difficult the control of the server load — based on the specification
of client workloads being handled — making it prone to workload-related failures.
Hence, failure diagnosis is defined for this infrastructure as the process of separat-
ing workload-related failures from failures caused by software faults (performance
anomalies). The classification of these failures would allow applying countermeasures
to reduce the server load, for workload-related failures, and triggering repair actions,
for performance anomalies. The experimental results showed that decision tree models
achieve perfect classification performance in the diagnosis activity implemented by the
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Pure Streaming infrastructure. Plus, they demonstrated the resilience of classification
models to workload changes in terms of popularity.

The HTTP Streaming infrastructure demands a diagnosis classification structure dif-
ferent from that considered for the Pure Streaming infrastructure. This is justified by
two particularities of the former infrastructure: (1) it implements the concept of Auto-
nomic Element using container-based virtualization technologies; and (2) it includes
a self-protection mechanism against server overloading. Due to (1), the classification
of performance anomalies into the resource directly affected by the fault (network or
other server resource), combined with the classification of the localization of the as-
sociated errors (inside or outside the virtual container), would support the selection
of repair techniques implemented by the infrastructure: server migration, system re-
boot or virtual container reboot. Collaterally, the classification of server resources can
also support further fault removal activities. Due to (2), the implementation of self-
protection mechanisms against server overloading in HTTP Streaming is facilitated by
the simplicity of the HTTP flows. That means that only performance anomalies are ex-
pected to occur. The results obtained using the HTTP Streaming infrastructure showed
that, using a sufficient number of learning instances — achieved using our benchmark
— all models were able to discriminate without errors the resource responsible for each
failure predicted and the location of the error.

Experimental results taken for HTTP Streaming expose the higher performance of
proactive diagnosis over reactive diagnosis. The explanation for that phenomenon is
the temporal proximity of the data gathered at the prediction time from the fault
activation. The farthest the data gathered for analysis are from the fault activation, the
higher the probability of error propagation throughout the application or the system,
making system behavior patterns more complex. Intuitively, the simpler the failure
patterns identified from log data, the easier to capture them by models and the smaller
the number of learning instances required to stabilize the classification performance.
Pre-failure patterns are thus identified as important contributors for failure diagnosis
activities.



8
C O N C L U S I O N S

The main idea of Autonomic Computing resides in the development of self-aware
systems, able to manage themselves without (or with minimum) human intervention.
This thesis explores the self-healing aspect of Autonomic Computing, whose concern is
to take measures for overcoming performance failures using self-knowledge about the
system behavior. As any other Autonomic Computing aspect, the self-healing aspect
implements the MAPE-K control loop, constituted mainly by five parts: monitoring,
analyzing, planning, executing and knowledge base. These parts form a circulatory
system.

Self-healing is applied to autonomous proactive and reactive recovery of perfor-
mance failures in video-streaming systems. It covers the monitoring, failure predic-
tion, failure diagnosis and repair activities that instantiate the MAPE-K concept in our
self-healing infrastructures. Self-healing systems perform monitoring using sensors to
collect measurements from the environment. The resulting data are analyzed accord-
ing to a knowledge base that supports the detection and analysis of anomalous system
states, triggering the planning and execution of repair actions. One self-healing infras-
tructure is presented for each of the video-streaming technologies addressed in this
thesis: Pure Streaming and HTTP Streaming.

Pure Streaming is a traditional video-streaming technology less popular nowadays.
This technology uses the RTP protocol for transmitting data at the same pace they
are processed by video players. This protocol is accompanied by the RTCP protocol,
which provides control functions, such as synchronization, reporting and data recep-
tion statistics.

Pure Streaming has been replaced by HTTP Streaming in the recent years. The latter
benefits from its protocol-level simplicity, permeability of HTTP traffic through fire-
walls and the widespread availability of the infrastructure that supports the HTTP
ecosystem in the Internet. HTTP Streaming techniques include Progressive Download
and Adaptive Bitrate. In Progressive Download services, the request-responses are
transmitted by the server similarly to any other web static resource. On the other hand,
Adaptive Bitrate streaming allows video files to be decomposed into small download-
able segments, each encoded with different qualities. Each segment is requested by
the video player with a specific encoding determined from the analysis of several pa-
rameters. This guarantees dynamic adaption to client-side, network and server-side
conditions during the video playback.
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The self-healing lifecycle for the Pure Streaming infrastructure is defined as the
sequence of monitoring1, failure prediction and failure diagnosis. That sequence is
extended with the repair activity in the HTTP Streaming infrastructure.

The monitoring activity is implemented similarly in both self-healing infrastructures,
except in terms of the application-level metrics adopted. Failure prediction uses batch
learning algorithms in the Pure Streaming infrastructure and online learning algo-
rithms in the HTTP Streaming infrastructure. Also, the classification structure adopted
for the diagnosis activity is different in both infrastructures. In the Pure Streaming in-
frastructure, failures are classified into system overloading failures — caused by client
workloads — and performance anomalies — caused by software faults. This is an ap-
propriate classification scheme, since the complex behaviors of this video-streaming
approach — mainly due to complex client-server flows — makes the control of the
server load based on the specification of client workloads being handled, a difficult
and error prone task. Diagnosis in HTTP Streaming is implemented as the classifica-
tion of the failure resource (network or one of the server internal resources) and the
failure location (inside or outside the virtual container where the server is running).

The HTTP Streaming infrastructure implements container-based virtualization to en-
sure performance isolation between the self-healing functionality and the main server
functionality within the Autonomic Element, and also to support server repair inter-
ventions. For repair interventions, container-based virtualization provides a structure
for efficient server failover between machines, reboot and server (re)instantiation in
any machine, independently of the operating system or any other processes running
outside the server’s virtual container. Since container-based virtualization runs on top
of the operating system, the basic unit of rebooting, checkpointing and migration is
delimited by the management structures of the virtual container and the in-memory
structures attached to the video-streaming server’s process. The self-healing infrastruc-
ture combines the facilities provided by virtualization with a methodology to warm-up
the server after reboot, without degradation of the quality of experience of end-users
under certain assumptions.

8.1 main contributions of this thesis

This thesis presents the design, technologies, methodologies and experimental evalu-
ation results of two self-healing infrastructures for video-streaming systems. The nov-
elty of our work is present at all these levels.

Our HTTP Streaming infrastructure is adequate for recent video-streaming services,
since HTTP Streaming is nowadays the de facto streaming technology for delivering
video-streaming content in the Internet. This infrastructure relies on container-based
virtualization for building an Autonomic Element that instantiate the MAPE-K concept
through self-monitoring, self-prediction, self-diagnosis and self-repair capabilities. So,

1 Including data gathering and failure detection.
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any virtual machine or physical machine running a video server can be converted into
an Autonomic Element using our approach. To that purpose, container-based virtual-
ization is adopted to isolate the performance of the self-healing functionality (Auto-
nomic Manager) from the performance of the server application (Managed Element),
collocated in the same host. To our knowledge there has been no previous attempt to
build Autonomic Elements from server applications in a generic way.

The major contributions of this thesis are provided by the failure prediction and
failure diagnosis activities. These activities create the opportunity for recovering fail-
ures without QoE penalties, an important requirement of time sensitive services as
video-streaming. Both failure prediction and failure diagnosis activities use either
batch learning algorithms or online learning algorithms for building models iteratively
from log data. The self-healing infrastructure implements the functionality required to
build and evaluate models for failure prediction and diagnosis. It includes feature
selection — implicitly by some learning algorithms or using independent feature se-
lection algorithms — multi-algorithm model building, dynamic evaluation of models
and dynamic selection of models.

Failure prediction models reflect pre-failure patterns that are able of characteriz-
ing anomalous system conditions before they translate into user-visible failures in the
short-term. In addition to the benefits of failure anticipation, prediction models also
recognize unhealthy system conditions that otherwise would be confounded with tran-
sient service failures (e.g., network variations). Pre-failure patterns were shown also
to be powerful discriminators for diagnosis of predicted failures, since they represent
errors in an early stage of propagation. As shown through experimental evaluation,
classification of pre-failure patterns is more accurate than classification of failure pat-
terns identified on log data after failure occurrence.

Despite relying on generic virtualization techniques to repair the system, our work
provides important insights for selection of the most effective and efficient virtualiza-
tion techniques and their expected impact on the service quality. The use of container-
based virtualization for supporting efficient server migration and reboot techniques
is also innovative and a relevant contribution for repairing systems with the video-
streaming characteristics. These techniques create small downtimes that could be ab-
sorbed by client-side buffering. This assumption enables service continuity when re-
pair is triggered either by true positives or false positives in the failure prediction ac-
tivity. Despite the small percentage of false positives, its impact on the service quality
is nullified by the low cost repair actions proposed.

The server warm-up approach is another important contribution. It allows the repair
of the system while avoiding failures caused by the reduced server capacity during the
warm-up period. This approach can be applied to both operating system and virtual
container reboots.
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8.2 future work

This thesis presents several contributions to the area of self-healing of video-streaming
systems. However, there are much work to be done in this area, mainly in the failure
prediction, failure diagnosis and repair activities.

We believe that an important part of the work to be done in self-healing systems
is related with the development of benchmarks to train models capable of represent-
ing comprehensively the system normal and faulty behaviors. The high frequency of
updates and the dynamic allocation of system resources provided by modern virtual-
ization infrastructures make system models obsolete in the short-term. Consequently,
these models have to be retrained frequently.

Online learning algorithms could train models when the systems are being used in
production environments. However, the automatic segmentation of log data relative to
normal, pre-failure and failure periods cannot be always performed, in particular for
diagnosis problems, as explained in Chapter 6 and Chapter 7. Therefore, benchmarks
are a promising approach for training system models automatically in short periods of
time. The efficiency of these benchmarks is an important concern, due to the frequency
of system changes demanding new models.

Our research work in repair techniques for video-streaming systems can be evolved
in two different ways:

1. Develop an approach to provide completion guarantees for the warm-up process
after a server reboot, without QoE degradation;

2. Develop a mechanism for selection of hosts to receive virtual containers, when
employing the: (1) server migration technique; or (2) restoration of a rebooted
virtual container in another host.

This thesis presents a server warm-up approach for reboot actions, but without com-
pletion guarantees. Recovery guarantees are provided only for the restoration of the
server. Devising a server warm-up approach using the workload types being handled
by the server before its recovery is a research issue that deserves further investigation.
This issue is not confined to the Autonomic Element context, since it is required the
intervention of other servers and/or external services. One potential strategy for the
server warm-up problem is to replace the faulty virtual container by a replica of a
healthy virtual container that is currently handling a similar workload type (e.g., a
server node behind the same load balancer). Yet, this solution presents several chal-
lenges, because not only the virtual container should be warmed-up, but also the host
where it is running. Hence, the restored virtual container would also be hosted in one
of the hosts that have been handling a similar workload.

The repair techniques proposed in this thesis depends on an orthogonal solution
to select the host that will receive the virtual container when the server is migrated
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or when the rebooted virtual container is restored in another host. A host selection
methodology based on the resources being used by each virtual container (e.g., using
the beancounters described in Chapter 5) and the hosts that have been warmed-up with
a similar workload, can be investigated in future work.
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