


Automated Reliability

Prediction and Analysis from

Software Architectures

João Miguel Costa Sousa Franco

Thesis submitted to the University of Coimbra

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Information Science and Technology

September 2015

Department of Informatics Engineering

Faculty of Science and Technology

University of Coimbra

mailto:jmfranco@dei.uc.pt
http://www.uc.pt/fctuc
http://www.uc.pt/fctuc
http://www.uc.pt/


This research has been developed as part of the requirements of the Doctoral

Program in Information Science and Technology of the Faculty of Sciences and

Technology of the University of Coimbra. This work was carried out in the Soft-

ware and Systems Engineering Group of the Center for Informatics and Systems

of the University of Coimbra (CISUC).

This work has been supervised by Professor Mário Zenha Rela and Pro-

fessor Raul Barbosa at the Department of Informatics Engineering of the Fa-

culty of Sciences and Technology of the University of Coimbra.

Funding for this work was partially provided by the Portuguese Research

Agency Fundação para a Ciência e Tecnologia (FCT) through the scholarship

SFRH/BD/89702/2012.

iii



Abstract

The quality of a software is determined by how it meets non-functional

requirements such as performance, reliability, availability, maintaina-

bility and other ‘-ilities’. Depending on the application context, cer-

tain qualities are more critical to attain than others. As an example,

a web-server processing large amounts of data should present quali-

ties regarding to performance, while a software applied to a medical

context must assure that no human life is at risk and as such, should

comply to safety as a quality requirement.

In a software engineering perspective, quality requirements should

be assessed throughout the software development life-cycle. In an

early stage, quality assessment supports design decisions and promo-

tes analysis of possible alternatives. During the implementation or

testing stages, project managers may confirm that the developed pro-

duct complies with the design and assure that it will conform to the

stakeholder’s requirements. Regarding evolutionary stages, architects

can also compare different designs and decide for the most suitable

solution taking into account the desired quality attributes.

During the development of a software system, neglecting the asses-

sment of the quality requirements may lead, sooner or later, to the

developed product failing to achieve one or more non-functional at-

tributes desired by the stakeholder. Consequently, the development

process returns to a previous phase for re-designing, re-implement and

re-test a new solution to solve the problem. In short, it will involve

more time, effort and money, causing more costs to the whole software

project.



Software architecture plays an important role in the achievement of

non-functional attributes. Designers use architectures to reason about

non-functional properties and maintain their traceability through the

project lifespan. Software architectures allow to structure the system

in early stages of the development by describing implementation plans

and specify rules, properties and architectural styles to attain specific

quality attributes. For these reasons, the existing techniques to assess

quality attributes use software architectures to obtain information

about the system and provide accurate quantitative results.

The problem addressed by this thesis resides in the fact that most of

the methods currently used to assess quality attributes from a software

architecture are still performed manually. To quantitatively assess an

architecture’s quality attribute, designers have to build mathematical

models through manual tasks and rebuild them for every change per-

formed in the architecture. As any other manual task, building such

models is error-prone, time consuming and is unfeasible for large and

complex systems.

With this in mind, this thesis proposes to fill a gap in research by

investigating towards a method that automatically assesses the reli-

ability as a quality attribute from a software architecture. In par-

ticular, we exploit the formalisms of Architecture Description Lan-

guages (ADLs) to automatically generate mathematical models ex-

pressing the reliability behavior of a system. Then, we extended the

notion of ‘automated assessment’ to perform a thorough analysis to

identify architectural weak points that are affecting the system. This

analysis aims to provide information for architects about reliability

improvements and suggest alternatives.

With the goal of providing an assisting tool to aid architects in the

design process, we implemented a plugin integrated in a ADL design

tool. This plugin aims to make our automated approach available for

architects to test and analyze their designs regarding reliability. In

addition, we showed the different application contexts of our approach



by including it in the reasoning process of self-adaptive systems. The

results showed an improvement in the overall system quality when

comparing to the traditional planning approaches.

To conclude, we validated our method through a set of experiments

that put into comparison our method with others that used manual

approaches to assess reliability. In this work we pursue the motivation

of contributing with a set of methods to give support for practitioners

and researchers to avoid, prevent and detect undesired or unfeasible

architectural designs. Moreover, we intend to promote the develop-

ment of software with better quality and assure that it meets the

desired quality requirements during the development process.





Resumo

A qualidade do software é determinada a partir da forma como os

requisitos não-funcionais são alcançados, tais como o desempenho,

a fiabilidade, a disponibilidade, a manutenção, entre outros. Depen-

dendo do contexto aplicacional, certos atributos de qualidade são mais

cŕıticos de alcançar do que outros. Por exemplo, um servidor web

processa grandes quantidades de informação pelo que deve apresentar

atributos de qualidade que respondam ao desempenho requerido, já o

software aplicado a um contexto médico deve assegurar que nenhuma

vida humana é colocada em risco e garantir a integridade f́ısica dos

utilizadores.

Na perspectiva da engenharia de software, os requisitos de qualidade

devem ser avaliados e testados ao longo do processo de desenvolvi-

mento do software. Numa fase inicial, esta avaliação permite apoiar

as decisões de design e promover a análise de posśıveis alternativas.

Durante a implementação e a fase de testes, os gestores de projecto

poderão confirmar que o design inicial corresponde ao produto desen-

volvido e assegurar que cumpre os requisitos do cliente. Em relação à

fase evolutiva, poderão, ainda, comparar diferentes designs e decidir

sobre a melhor solução dispońıvel no que concerne aos objectivos de

qualidade.

Durante o desenvolvimento de um software, negligenciar a avaliação

dos atributos de qualidade pode, mais tarde ou mais cedo, levar a que o

produto falhe por não satisfazer os objectivos de qualidade requeridos

pelo cliente. Consequentemente, o processo de desenvolvimento terá

de voltar a um estado prévio de modo a conceber uma nova solução,

reimplementar um novo desenho e voltar a testar o produto final.



Este processo acabará por requerer mais tempo, esforço e dinheiro,

tornando, inevitavelmente, todo o projecto mais oneroso.

A arquitectura desempenha um papel importante na obtenção dos

atributos de qualidade, serve como base para os designers codificarem

propriedades não-funcionais e empregarem boas práticas de design.

Permite também manter um registo das alterações durante a vida do

software e pode ainda ser utilizada como meio de comunicação entre

clientes, programadores, designers e responsáveis pela manutenção do

sistema. A arquitectura pode ser considerada como um dos primeiros

documentos do projecto, já que permite estruturar o sistema, descre-

ver os planos de desenvolvimento e especificar regras, propriedades

e estilos arquitectónicos, de modo a alcançar atributos de qualidade

espećıficos. Por estas razões, as técnicas existentes para avaliar os

atributos de qualidade utilizam arquitecturas de software para ob-

ter informações acerca do sistema e fornecer resultados quantitativos

precisos.

Esta tese pretende abordar a problemática existente no facto de, no

mundo actual, grande parte dos métodos que avaliam os atributos

de qualidade das arquitecturas ainda serem realizados manualmente.

Para avaliar quantitativamente um atributo de qualidade, os designers

têm de construir modelos matemáticos através de tarefas manuais e

reformulá-los sempre que se registar uma mudança no sistema. Como

em qualquer outra tarefa manual, a construção dos ditos modelos é

suscept́ıvel a erros, morosa e pode mesmo ser inviável para sistemas

complexos e de larga-escala.

Assim, considerando, o supra referido, esta tese propõe-se preencher

uma lacuna nos métodos actuais de avaliação, investigando um método

automático que avalie a fiabilidade enquanto atributo de qualidade

de uma arquitectura de software. Pretendemos, em particular, explo-

rar os formalismos de Architectural Description Languages (ADLs) de

forma a gerar modelos matemáticos que expressem o comportamento

da fiabilidade de um sistema. Numa fase posterior, implementaremos



uma análise exaustiva no sistema que permita identificar pontos fra-

cos a ńıvel arquitectónico. Esta análise pretende, pois disponibilizar

informação sobre melhorias na fiabilidade e sugerir alternativas aos

arquitectos.

Com o objectivo de criar uma ferramenta que apoie os utilizadores

no processo de design, implementámos um plugin integrado numa

ferramenta de criação de ADLs. Esta abordagem pretende disponi-

bilizar um método automático que permita aos arquitectos testar e

analisar os seus designs relativamente à fiabilidade. Adicionalmente,

alargámos o contexto da aplicabilidade da nossa técnica de avaliação

automática, de modo a demonstrar a diversidade da sua utilização.

Com este intuito aplicámo-la ao processo de planeamento dos siste-

mas auto-adaptativos, o que resultou numa melhoria da qualidade do

sistema quando comparado às abordagens tradicionais.

Em conclusão, validámos a nossa linha de investigação através de um

conjunto de experiências que comparam o resultado do nosso método

automático com métodos manuais de avaliação da fiabilidade. Neste

trabalho pretendemos contribuir com um conjunto de métodos que

forneçam suporte aos utilizadores e investigadores de forma a evi-

tar, prevenir e detectar designs arquitectónicos indesejáveis ou im-

praticáveis. Além disso, pretendemos ainda promover o desenvolvi-

mento de software com maior qualidade e assegurar que este cumpre

os objectivos requeridos ao longo do processo de desenvolvimento.





To

Armando and Aurora

My dear family

My beloved Joana





Acknowledgements

I deeply appreciate my advisors and mentors Mário Rela and Raul Barbosa. Mário

for his patience, insight, encouragement, full support and inspiring daily smile.

Raul for his guidance, motivation, teach, mountain biking, two-hours-lunches,

sushi and fine taste of wine.

My gratitude to Francisco Correia for his commitment, hard-work and long discus-

sions about self-adaptive systems (sometimes until long hours in the night). Vitor

Silva for teaching me the pleasure of guiding and mentoring a young promising

individual and Frederico Cerveira for his effort and exchange of ideas on virtu-

alization of operating systems. My heartfelt thanks to David Garlan, Bradley

Schmerl and Paulo Casanova for the feedback, suggestions, criticisms and all the

hours spent on Skype and Hangout – an invaluable support.

Joana Pacheco

for her support, encouragement, great food, Timtim and her loving care!

“Grupo dos vossos amigos”

because a man cannot happily live without the companion, laughs, beers, 347

‘moscatéis’ and the tough ‘preferias’ challenges of his friends.

PhD colleagues

for distracting me and interrupt my work – always for a good cause

(thanks for the oranges)

Ex-Housemates

for beers, conversations, laughs, dinners and games!

Quartel (12oF)

for that crazy and amusing once a year dinner

Dognædis friends

for encouraging and supporting my PhD enrollment

SSE of CISUC

for the discussions, suggestions and inspiring developed works. Among these, a

special and comforting thanks to the members of

the Special Interest Group on Dependability (SIGDep)

Last, but certainly not least, my gratitude to all my sisters, Dona Teresa, my

gramps, aunt, uncle and whole family for shaping me in the early years and giving

the smile that ignited the required inspiration and motivation for this work. My

eternal grace to my father and my mother for absolutely everything!!!





Contents

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 What is Software Architecture? . . . . . . . . . . . . . . . . . . . 8

2.1.1 Architectural Constituents . . . . . . . . . . . . . . . . . . 9

2.1.2 Architectural Styles . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Architecture Description Languages . . . . . . . . . . . . . 14

2.1.4 Software Quality Attributes . . . . . . . . . . . . . . . . . 16

2.2 Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Reliability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Probabilistic Model Checking . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Discrete-Time Markov Chain (DTMC) . . . . . . . . . . . 26

2.4.2 Continuous-Time Markov Chain (CTMC) . . . . . . . . . 27

v



CONTENTS

2.4.3 Absorbing Markov chains . . . . . . . . . . . . . . . . . . 29

2.4.4 Markov Decision Process (MDP) . . . . . . . . . . . . . . 30

2.4.5 Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.6 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Automated Reliability Prediction 37

3.1 Architectural Identification and Specification . . . . . . . . . . . . 38

3.2 Failure Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Combining Architecture with the Failure Behavior . . . . . . . . . 42

3.4 Demonstration Example . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 The Translation Process . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Initial state . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.3 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Modeling Architectural Styles . . . . . . . . . . . . . . . . . . . . 51

3.6.1 Batch-sequential / Pipe-and-Filter . . . . . . . . . . . . . 51

3.6.2 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.3 Fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.4 Call-and-return . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Automated Prediction . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Threats for Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Automated Sensitivity Analysis 61

4.1 Variation in Component Reliability . . . . . . . . . . . . . . . . . 62

4.2 Analysis of the Usage Profile . . . . . . . . . . . . . . . . . . . . . 64

4.3 Analysis of ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Analysis of Reliability . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Usage Profile Analysis . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Making Structural Changes . . . . . . . . . . . . . . . . . 69

vi



CONTENTS

4.5 Automated Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Implementation and Validation 74

5.1 The Affidavit Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.2 GUI Example . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Automated Reliability Prediction Validation . . . . . . . . . . . . 83

5.3 Validating Architectural Styles . . . . . . . . . . . . . . . . . . . . 85

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Application to Self-Adaptive Systems 87

6.1 Self-Adaptive Systems . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Reliability Prediction within Self-Adaptation . . . . . . . . . . . . 90

6.3 Case-Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Adopted self-adaptive system . . . . . . . . . . . . . . . . 91

6.3.2 Target system . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.3 Experimental design . . . . . . . . . . . . . . . . . . . . . 94

6.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.5 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4.1 Control run . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.2 Fault injection . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.3 Effectiveness and scalability of impact prediction . . . . . 111

6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Modeling the Failure Pathology of a Software Component 119

7.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Case-study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.1 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



CONTENTS

7.2.2 Failure Classification . . . . . . . . . . . . . . . . . . . . . 126

7.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.1 Gathering Failure Data . . . . . . . . . . . . . . . . . . . . 127

7.3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3.3 Discussion of the Results . . . . . . . . . . . . . . . . . . . 135

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Conclusion 140

List of Publications 143

A Generated Prism Files 145

A.1 Generated Prism file for the Enlist Server strategy . . . . . . . . . 147

A.2 Generated Prism file for the Discharge the Least Reliable . . . . . 149

References 151

viii



List of Figures

2.1 Pipe-and-filter style . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Example of a Batch-sequential style . . . . . . . . . . . . . . . . . 11

2.3 Example of a Main-Program-and-Subroutine systems . . . . . . . 12

2.4 Example of a Parallel style . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Example of a Fault-tolerant style . . . . . . . . . . . . . . . . . . 14

2.6 Approaches to combine the architecture with the failure behaviour 22

2.7 Discrete-Time Markov Chain (DTMC) . . . . . . . . . . . . . . . 27

2.8 Continuous-Time Markov Chain (CTMC) . . . . . . . . . . . . . 29

2.9 Markov Decision Process (MDP) . . . . . . . . . . . . . . . . . . 31

3.1 Software architecture (a) and its model (b) . . . . . . . . . . . . . 45

3.2 Batch-sequential style state model . . . . . . . . . . . . . . . . . . 52

3.3 State model of the parallel style . . . . . . . . . . . . . . . . . . . 53

3.4 Fault-tolerance style state model . . . . . . . . . . . . . . . . . . . 54

3.5 Call-and-return style state model . . . . . . . . . . . . . . . . . . 55

3.6 Automated Reliability Prediction . . . . . . . . . . . . . . . . . . 57

4.1 Illustrative example of the usage profile variation in a system with

two connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Illustrative example of usage profile variation in a system with

more than two connections . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Derivative around where the variation is null . . . . . . . . . . . . 67

4.4 Sensitivity analysis with respect to reliability . . . . . . . . . . . . 68

4.5 Sensitivity analysis with respect to the usage profile . . . . . . . . 69

4.6 State model of the new architecture . . . . . . . . . . . . . . . . . 71

ix



LIST OF FIGURES

5.1 Affidavit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Overview of the Affidavit Tool . . . . . . . . . . . . . . . . . . . . 77

5.3 Scenario #1 – Diagram . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Scenario #1 – Software Architecture . . . . . . . . . . . . . . . . 79

5.5 Sensitivity Analysis of Scenario #1 . . . . . . . . . . . . . . . . . 80

5.6 Scenario #2 – Diagram . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Scenario #2 – Software Architecture . . . . . . . . . . . . . . . . 82

5.8 Sensitivity Analysis of Scenario #2 . . . . . . . . . . . . . . . . . 82

6.1 The IBM Autonomic MAPE reference model . . . . . . . . . . . . 89

6.2 A general overview . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 The Rainbow framework . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 The Znn.com diagram . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Demonstration of the Architectural Model . . . . . . . . . . . . . 99

6.6 Architectural changes for the Enlist Server strategy . . . . . . . . 102

6.7 Architectural changes for the Discharge of the Least Reliable strategy102

6.8 Request load of the Slashdot effect . . . . . . . . . . . . . . . . . 105

6.9 Graphic results for the Control Run . . . . . . . . . . . . . . . . . 106

6.10 Graph results for the Fault Injection experiment . . . . . . . . . . 108

6.11 Scalability of our approach regarding the number of Servers . . . 112

7.1 DTMC illustrating the failure behavior of a single software com-

ponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Diagram of the case-study . . . . . . . . . . . . . . . . . . . . . . 124

7.3 DTMC modeling the Dom0 Fault Injection scenario . . . . . . . . 135

x



List of Tables

2.1 Probabilistic Model Checking tools . . . . . . . . . . . . . . . . . 35

3.1 Component reliabilities . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Transition probabilities (i.e., usage profile) . . . . . . . . . . . . . 46

4.1 Results of the component reliability analysis . . . . . . . . . . . . 68

4.2 Results of the usage profile analysis . . . . . . . . . . . . . . . . . 70

4.3 Reliability values of the new architecture . . . . . . . . . . . . . . 70

5.1 Scenario #1 – Component reliabilities . . . . . . . . . . . . . . . . 79

5.2 Component reliabilities . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Validation of the reliability prediction method . . . . . . . . . . . 84

5.4 Validation of the architectural styles . . . . . . . . . . . . . . . . 85

6.1 Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Utility preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Static impacts on the quality dimensions for each strategy . . . . 98

6.4 Utility results from adaptation strategies . . . . . . . . . . . . . . 103

6.5 Control Run results . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Fault injection results . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 Time, in seconds, taken to predict the impact of each strategy . . 111

7.1 Hardware Virtual Machine (HVM) results . . . . . . . . . . . . . 129

7.2 Results of Paravirtualization (PV) . . . . . . . . . . . . . . . . . . 130

7.3 Fault Injection in the Dom0 in the Qemu extension . . . . . . . . 131

7.4 Fault Injection in the Dom0 in the XenWatchdogd extension . . . 132

xi



LIST OF TABLES

7.5 Modeling Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.6 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.7 Probability of entering in a failed state . . . . . . . . . . . . . . . 133

7.8 Probability of entering in each failure mode . . . . . . . . . . . . 134

7.9 Modeling Parameters for the Dom0 experiment . . . . . . . . . . 136

7.10 Dom0 Reliability as the probability of non-failure . . . . . . . . . 136

xii



List of Abbreviations

AADL Architecture Analysis and Design Language

ADL Architecture Description Language

AFR Annualized Failure Rate

AGREE Advisory Group on Reliability of Electronic Equipment

CMU Carnegie Mellon University

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CSL Continuous Stochastic Logic

CSP Communicating Sequential Processes

CTL Computation Tree Logic

CTMC Continuous-Time Markov Chain

DNS Domain Name System

DTMC Discrete-Time Markov Chain

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ID Identification

xiii



IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

LTL Linear Temporal Logic

MDP Markov Decision Process

MRMC Markov Reward Model Checker

MTBF Mean Time Between Failures

MTBM Meant Time Between Maintenance

MTTF Mean Time To Failure

MTTR Mean Time To Repair

PAT Process Analysis Toolkit

PCTL Probabilistic Computation Tree Logic

PC Personal Computer

RPC Remote Procedure Call

SEI Software Engineering Institute

TMR Triple Modular Redundancy

VDM Vienna Development Method

xiv



Chapter 1

Introduction

Users are becoming more dependent on software systems and expect them not

to only deliver functional attributes, (e.g., using smartphones to browse the in-

ternet, listen to music), but to also present quality properties like performance,

reliability, security and other ‘-ilities’. To achieve those, software systems must

be designed and planned with quality goals1 in mind, since early stages of the

software development life-cycle influence the quality of the software.

Assessing quality goals in such early phases, allows designers to reflect on the

system, test alternatives and compare new designs with the aim of finding one

that best suits the stakeholders’ needs. However, this creates major challenges for

the development, maintenance and evolution of software. Since, its professionals

struggle to master tools and methodologies that have not been designed to handle

these qualities and may determine the success or the failure of large, modern and

distributed systems. Moreover, one important quality attribute of such systems

is reliability, due to its intrinsic meaning of failure-free operation. In other words,

the systems are expected to behave correctly and deliver the expected services at

all times, otherwise the system enters in an erroneous state.

Reliability assessment from a system in an early stage, before any implementa-

tion, requires specifying the system under design and employing a mathematical

method to obtain a quantitative prediction of its reliability. The former, sys-

tem specification, can be detailed through an architecture using an Architecture

1The terms ‘quality goals’ and ‘non-functional attributes’ are used interchangeably through-

out this thesis.

1



Description Languages (ADLs). These ADLs allow designers to model, repre-

sent and describe a software architecture, thereby improving the artifacts used

for communication between designers, developers and stakeholders. The latter,

mathematical methods, vary greatly depending on the quality goal under assess-

ment. In architecture-based reliability, a commonly accepted method is the use

of stochastic processes to model the randomness caused by the failure process

and interactions between the architectural elements. The driving-force behind

the use of reliability prediction methods to assess a software description, includes

the following:

• An assurance early in the design phase that the product meets the stake-

holders’ requirements;

• An analysis of to what extent the system reliability depends on architectural

elements and interconnections;

• A comparison of the reliability of different architectural alternatives;

• A study of the sensitivity of the system reliability and suggestions for im-

provements;

• The adoption of approaches that will be applicable throughout the software

life-cycle.

During the design phase of a software, reliability assessment provides assur-

ances for architects about the design and whether it fulfills the requirements of

the stakeholders. In this early phase, this assessment can be undertaken by us-

ing failure data obtained from reusable and Commercial Off-The-Shelf (COTS)

components. If the architecture uses components that are developed in-house,

the architects can estimate the failure rate data by contacting experienced de-

velopers and although on the edge of the unknown, they can still investigate the

impact of the architectural elements and interconnections for a given architecture.

The information provided from this kind of analysis allows project managers to

redefine new designs and alternatives that can be readily compared or even test

‘what-if’ scenarios. What-if an architectural element is more or less reliable or a

2



connection is more or less frequently used? Architecture-based reliability employs

mathematical models that make it possible to study the sensitivity of the whole

system reliability to variations within each architectural element. This allows

the critical components or interconnections that affect the system reliability to

be identified and improvements to be made which might lead to a higher overall

system reliability.

Assessing reliability of a software architecture involves producing a mathe-

matical model with a complexity that varies in proportion to the size of the

system. In other words, large complex systems may yield large complex models.

In modern computer systems with an increase of computational power and mem-

ory, processing a large amount of data is not a difficult task. However, current

practice still relies on building these stochastic models by hand without any as-

sisting tool or method to help in the generation process. Thus, generating these

models manually is as prone to errors as any other manual task; in addition, it

requires modeling expertise and is time-consuming because of the overwhelmingly

complex designs. In view of this, an automated method to verify, validate and

test reliability of a software architecture is becoming essential.

Therefore, this dissertation addresses an important research question: how

can reliability be quantitatively assessed and analyzed from a software

description while avoiding time and effort consuming tasks?. Such ap-

proach opens up a new avenue for an in-depth analysis which is not possible

through manual means. Moreover, this analysis can be applied not only in the

design phase, but also in later stages where the evolution of the current system is

under consideration. In these phases, architects can plan modifications by draw-

ing on information from the deployed system to test, analyze and compare design

alternatives through an automated design assisting tool.

To address this research question, we developed a design assisting tool as

a plugin for an Integrated Development Environment (IDE) framework. This

framework allows software architectures to be described through ADL specifica-

tions and our tool provides architects with the means to test and analyze their

designs. We aim to equip design frameworks with testing abilities that can allow

architects to ensure the required quality goals are achieved and compare different

architectural alternatives.

3



1.1 Contributions

The research undertaken in this dissertation focuses on the automated assess-

ment of quality attributes with an emphasis on reliability. The achievements and

contributions made to the research community resulting from this dissertation

are outlined in the following section.

1.1 Contributions

In this thesis we intend to bridge the gap between research and practitioner

communities by providing the means for software designers and architects to

build more dependable systems. The following comprises a detailed of what has

been achieved in this area:

• The development of an automated method to generate stochastic models

from software architectures which allows the reliability of a system to be

predicted. The generation includes the use of different architectural styles

which may display known quality attributes in particular conditions (Chap-

ter 3);

• The description of a formal notation to simplify the translation process and

bring about the automated generation of stochastic models from software

architectures (Chapter 3).

• The application of a sensitivity analysis on the reliability of the system for

each component and connector to identify bottlenecks and possible archi-

tectural issues that require attention (Chapter 4);

• The development of a tool that automatically assesses, predicts and analysis

the reliability of a software architecture. This tool has been integrated

within an architecture design framework to provide feedback about the

quality of the designed artifact (Chapter 5);

• A validation of our approach by comparing the automated generation method

with the manual assessment of other studies that applied to the same sce-

narios (Chapter 5);

4



1.2 Structure of the Thesis

• Support for the planning phase of self-adaptive systems. To this end, we

predict the quality outcome for each adaptation strategy at runtime, by

allowing the system to make more informed decisions (Chapter 6).

• The adoption of an approach to model the failure pathology of a software

component by encompassing error masking, error propagation, multiple fail-

ure modes and failure recoveries (Chapter 7).

• Undertaking a case-study based on a widely used cloud infrastructure sys-

tem to validate our model of failure pathology. Furthermore, the obtained

failure rate data can be used in future studies as a basis to test, compare

and validate different assessment methods (Chapter 7).

1.2 Structure of the Thesis

The first chapter introduces the research problem and addresses the main sig-

nificant areas of this thesis.

Chapter 2 clarifies the main concepts of this thesis and answers questions

such as “What is software architecture?” or even “How should we define relia-

bility?”. In addition, we explore the mathematical methods that can be used for

assessing reliability from a software architecture.

Chapter 3 proposes an approach to predict the reliability of a software ar-

chitecture in an automated fashion. In addition, we propose a formal notation to

extend the proposed approach to other quantitative quality attributes, such as

performance.

Chapter 4 sets out a method to analyze system reliability in an automated

fashion. This method makes it possible to identify architectural bottlenecks and

prioritize the components and connections that need urgent improvement.

Chapter 5 describes the implementation of the Affidavit tool which provides

assessment and analysis capabilities for the architect, and is made accessible

from an architectural design tool. Following this, we validate our approach by

comparing the results of our automated method with those from the literature.

Chapter 6 examines in detail the application of the method outlined in

Chapter 3 that gives support to the planning phase of a self-adaptive system. To

5



1.2 Structure of the Thesis

this end, we employed our automated reliability prediction method to ensure the

desired non-functional goals could be achieved in every performed adaptation,

even in untested conditions.

Chapter 7 sets out a method to model reliability and proposes its automated

prediction by extending the formal notation described in Chapter 3. We imple-

mented a realistic experimentation scenario to validate this method and compare

the obtained experimental results with those modeled from our approach.

Chapter 8 concludes this thesis by summing up the results of the research

and recommending new avenues for future work.

List of Publications details the outcome of this thesis in terms of research

publications in Conferences and Journals.

6



Chapter 2

Background

The assessment of reliability from a software architecture has been studied since

the mid-1980s [Cheung, 1980] and since then, several new methods and techniques

have been explored [Goševa-Popstojanova & Trivedi, 2001]. These methods serve

as valuable research strategies with a great potential to support architects during

the design and evolutionary phases of the software development life-cycle. How-

ever, current state-of-the-art approaches reveal a gap between the theory and

practice due to the lack of tools and automated methods to assess reliability from

an architectural description.

These state-of-the-art methods assess reliability in the design phase by build-

ing state-space models through manual means. Whenever a change in the archi-

tecture occurs, these models have to be rebuild, involving a considerable amount

of effort and time. With this in mind, our work aims to provide the means for

architects to test and analyze their designs. The adopted approaches require little

effort and avoid the issues that often arise from manual activities: proneness to

error and time-consuming tasks.

In this chapter we begin by explaining what a software architecture (2.1) is, its

foundations, constituent features and their observable quality attributes. When

certain qualities are attained, dependability (2.2) can be achieved, which provides

more trustworthy systems for the users. Since our main quality attribute is reli-

ability (2.3), we sketch its background and discuss current modeling approaches.

At the end of the chapter, we outline the available mathematical formalism (2.4)

7



2.1 What is Software Architecture?

that allows the failure behavior of a system to be expressed and provides a quan-

titative prediction of its reliability from a software architecture.

2.1 What is Software Architecture?

An architecture is defined in the Oxford English Dictionary as a “complex or

carefully designed structure of something”. Instinctively when ‘architecture’ is

mentioned, most of us think of civil engineering, and in fact, both share common

characteristics [Perry & Wolf, 1992]. In the first place, they are the design part

of something bigger. This design encompasses the reasoning and decisions made

to achieve the requirements outlined by the clients. Secondly, they share the

same construction or development stages: requirements elicitation, designing the

system and finally constructing a building or developing a software in accordance

with the provided design. Thirdly, they also share additional features such as

the use of styles as solutions to commonly occurring problems, multiple views

to emphasize certain aspects of the architecture and the achievement of non-

functional goals (such as reliability, safety, and usability).

However, the analogy between civil and software engineering contains some

conflicting points [Taylor et al., 2009]. For example, buildings are tangible arti-

facts, as one can discern the features of a building just by looking at it, unlike a

software system. Software is much more abstract which makes it more difficult

to measure and analyze, and as such, hard to evaluate and assess the stakeholder

requirements. Moreover, buildings are less malleable than software. We can mold

software in ways that are only imaginable in buildings. Thus, the analogy between

civil and software architecture inhibits the idea of dynamism and change.

As a means of overcoming the limitations of dealing with dynamism, some au-

thors have proposed an analogy with the wing of a bird [Garlan et al., 2010]. The

wing includes a wide range of dynamic properties which reflect constant change,

such as its retraction, flap and extension. It consists of a number of physical

features, such as feathers, nerves, bones, blood vessels or muscles. However, the

wing on its own is much more than the sum of its parts, in its beauty, perfor-

mance, reliability and lightweight, which as an ultimate goal provides a bird with

agility and speed. In this case, the analogy relates to the partitioning of a bigger

8



2.1 What is Software Architecture?

problem into smaller ones that can be solved independently and work together

to achieve the same goal.

Software architecture is a sub-discipline of software engineering since it is con-

cerned with how software systems are designed and built [ISO/IEC/IEEE, 2011].

In the software development process, architecture can be regarded as part of the

specification phase since it documents what the system should do and defines

its development constraints [Sommerville, 2000]. Moreover, software architecture

goes beyond algorithms and data structures, since it encompasses the design and

specification of the overall system structure, by comprising the relationships be-

tween software elements and their externally visible properties [Bass et al., 1998;

Garlan & Shaw, 1994].

2.1.1 Architectural Constituents

Software architecture is responsible for capturing design decisions by specifying

system elements, establishing communication between those elements and also

creating the synergies with the environment. Moreover, an architecture describes

the rationale of the system by encompassing interaction rules, relevant algorithms

or even codes.

The basic elements to describe an architecture consist of components, con-

nectors and configurations. In particular, a component represents a unit of com-

putation which can be a single operation, such as a function, a class or a set of

classes that share the same interfaces or functionality, or even a complex opera-

tion such as an entire system. Each component requires the specification of its

interfaces (which are usually called ports) to describe the type of services that

this component depends on and provides to other system components. Connec-

tors are responsible for the interactions between components and distributing

data among attached processing units. As a requirement, each connector must

include roles that specify how data is exchanged such as ordering properties or

communication format. like communication format or orders of interaction. An

architectural configuration describes the topology of the system by specifying as-

sociations between components and connectors, usually called attachments, and

their constraints as restrictions on how components and connectors are bound.

9



2.1 What is Software Architecture?

Components, connectors and the architectural configuration can be annotated

with properties that hold textual information. These annotations aim to further

document each architectural element with relevant information, such as design de-

cisions to be transmitted to other development stages, or even to extend them by

specifying non-functional properties, such as the response time or the throughput

of a particular processing unit.

2.1.2 Architectural Styles

In software engineering, both practitioner and researcher communities use widely

known and reusable architectural solutions to solve recurring problems. In the

same way, software architecture communities use architectural styles as a set of

design decisions that solve a particular problem in specific development contexts

and systems. To be more precise, a style encapsulates design decisions from sys-

tems that display a common behavior. As an example, filtering a log file in Unix

through the command “cat file.log | grep word” shows common characteristics of

a pipe-and-filter style. In the following sections, we introduce a subset of a wide

range of styles. For a more complete list and description of architectural styles,

the interested reader should consult [Taylor et al., 2009] or [Garlan & Shaw, 1994].

2.1.2.1 Pipe-and-Filter

This style is most applicable in applications that require a defined series of inde-

pendent computations to be performed on data. A component, filter, reads a data

stream as input, applies a set of transformations and produces a data stream as

output. Each filter computes data incrementally and normally starts outputting

the stream before all the input has been consumed. A real world example of a

pipe-filter architecture is an expression written in the Unix shell using the pipe

symbol ‘ | ’.
Figure 2.1 illustrates a pipe-and-filter style that reads a log file, parses lines

with the word “error” and stores them in another log file. In this example,

each component represents a filter which reads data streams in its inputs, parses

them and produces streams of data in its output. Data is transmitted among

components by pipes which are represented through connectors.

10



2.1 What is Software Architecture?

Reads 

Log File

Seeks

'Error'

Outputs

to error_log

Figure 2.1: Pipe-and-filter style

2.1.2.2 Batch-sequential

Batch-sequential design dates back to the old programming paradigm where dif-

ferent programs communicated through magnetic tapes. As such, each functional

step is a separate program which terminates before handling the data for another

program. Although it is an old style, it is currently in use, especially when a

program has to invoke external scripts or programs to complete its tasks.

To illustrate this style, Figure 2.2 shows the process of updating client ac-

counts through daily transactions. A magnetic tape holds the daily transactions

which are sorted by account numbers and then the transactions are processed

through the tape that holds every bank account.

Daily

Trans.
Process

Transactions

Sort by account 

number

Sorted

Trans.

Master

Tape

Master

Tape
update

Figure 2.2: Example of a Batch-sequential style

Pipe-and-filter and batch-sequential styles may look similar, but they differ in

so far as the former components can execute simultaneously and the latter have

to terminate before passing on the data.

11



2.1 What is Software Architecture?

2.1.2.3 Call-and-Return

Call-and-return architectural styles are characterized by passing the control to

other elements which process data and returning the control to the caller compo-

nent. This style originated sub-styles like main-program-and-subroutine, remote

procedure calls and even object oriented programming. The former is character-

ized by decomposing a program into smaller modules, as illustrated in Figure 2.3

where the main program invokes its sub-modules. Remote procedure calls behave

in a similar way to main-program-and-subroutine systems, but instead of invok-

ing internal modules, contact computers connected via a network. The latter,

object-oriented systems are a modern version of call-and-return and include a

bundle of services for other components, generally in the form of an interface.

main ( )

read_file ( )

process_data ( )

write_file ( )

Figure 2.3: Example of a Main-Program-and-Subroutine systems

2.1.2.4 Parallel

In a parallel style, a computational task is decomposed into smaller sub-tasks

that can be processed independently. These independent tasks can be computed

simultaneously by different processes, threads or even computers to improve per-

formance. At the end, the results are combined and form the outcome of the

original large task. The goal of this style is to obtain a higher performance and

12



2.1 What is Software Architecture?

process large amounts of data in a short period of time. Figure 2.4 illustrates the

parallel style by decomposing a task into sub-tasks which can be computed by

different sources simultaneously.

Problem Data Set

Task 0 Task 1 Task 2 Task 3

CPU 0 CPU 1 CPU 2 CPU 3

Result

Process Process Process Process

Figure 2.4: Example of a Parallel style

2.1.2.5 Fault-Tolerant

One typical measure to implement fault-tolerance involves the replication of com-

putational resources. If a component fails, the redundant one executes the as-

signed task and the system can continue to operate properly. Figure 2.5 illus-

trates an example of an everyday fault-tolerant mechanism. The domain names

of the Internet use fault-tolerance mechanisms by requiring the specification of

two Domain Name System (DNS) servers. Each server holds a copy of a DNS

13



2.1 What is Software Architecture?

zone consisting of all the registered domains and sub-domains for that particu-

lar DNS server. The primary server holds a master copy of the zone data and

the secondary server receives periodical updates, and acts as a redundant server.

Whenever the primary server fails, the secondary takes over its functions and

thus allows the system to be reachable by visitors.

Example.com

DNS

Primary

DNS

Secondary
Zone

Figure 2.5: Example of a Fault-tolerant style

Due to the technological advances and the adoption of new methods and

paradigms, new architectural styles are constantly being designed to deal with

modern problems. The architectural styles outlined in this section are a subset of

a long list of classical styles which are still commonly used in today’s programming

techniques. The next section explains how architectures can be formally described

by taking account of their elements and architectural styles.

2.1.3 Architecture Description Languages

Architecture Description Languages (ADLs) allows us to formally describe and

represent a system architecture by rigorously specifying its structure and behavior

through the use of specific notations [Issarny & Zarras, 2003]. The resulting

document of an ADL also serves as a means of communication between the people

involved in the project, such as designers, developers and stakeholders and even

as an important document for the maintenance team.

According to the ISO/IEC/IEEE 42010 Standard in 2011 entitled “Systems

and Software Engineering – Architecture Description” an ADL shall specify:

14



2.1 What is Software Architecture?

• Concerns about the system when applicable, such its purposes, development

and deployment feasibility, potential risks or even the maintainability;

• Involve stakeholders in the previously specified concerns together with de-

velopers, owners, users, maintainers;

• Any architectural viewpoint which includes information on the architecture

techniques that are used to create, interpret or analyze the system.

• The correspondence rules through which architectural elements must com-

ply, otherwise the architecture may not conform to the requirements.

In short, an ADL should provide explicit support for modelling components,

connectors, interfaces and configurations (in the form of properties or rules to

validate the system). Taylor et al. [2009] distinguish the current existing ADL

tools between those that are domain-specific and those that are extensible. The

former tools are used in specific contexts where ADLs are optimized to de-

scribe architectures belonging to a particular domain or style. For example,

RAPIDE [Luckham et al., 1995] is an ADL specifically designed to develop or

specify systems that communicate through events. Architecture Analysis and

Design Language (AADL) [Feiler et al., 2006] is another domain-specific ADL

that is more suitable for modeling embedded and real-time systems, such as au-

tomotive and medical systems. The latter type, extensible ADLs, provides a

basic set of constructs (e.g., components, connectors, interfaces, rules) to specify

an architecture. In addition, these constructs can be extended to support new

styles and user-defined constructs that can be applied to general-purpose systems.

Acme [Garlan et al., 1997] is an example of an extensible ADLs that makes it pos-

sible to specify and extend a set of basic constructs that can express the design

decisions of a system. In addition, Acme provides the Acme Tool Developer’s

Library (AcmeLib) [Garlan et al., 1997] which allows third-party applications to

read or modify an architectural model. In short, this library gives support to

analyze and validate a system described in Acme.

In this work we decided to use Acme since it is a general purpose ADL [Taylor

et al., 2009] that can be applied to more contexts and because it supports valida-

tion and assessment techniques through AcmeLib. Conducting an analysis and

15



2.1 What is Software Architecture?

validation in an architecture is important to assure its quality attributes; these

are outlined in detail in the following section.

2.1.4 Software Quality Attributes

One of the primary concerns when developing a software system is to meet func-

tional requirements. In other words, developers must ensure that the final prod-

uct conforms to the required functions and behavior defined by the stakeholder.

However, while the functional properties are essential in the software develop-

ment process, they are not sufficient. Software developers must also provide

non-functional properties1 as well. For example, a smartphone is a daily-use de-

vice that allows the user to carry out several functions to meet the functional

requirements, like listening to music, browsing the web or making phone calls.

However, from a non-functional perspective, if the interface performs poorly, the

user may become dissatisfied and lose faith in the equipment brand or operative

system, and as result cease to use the device or decide to buy another brand in

the future. In this case, this type of devices has a quality attribute related to

performance that is vital for the daily use of these systems.

Software architecture provides the foundations for the achievement of non-

functional properties. More specifically, the architectures provide designers with

means to codify non-functional properties, employ good design practices, assure

compliance with the requirements and maintain their traceability throughout the

software lifespan.

Quality attributes should be considered carefully by the stakeholders and the

architect, since none of them can be achieved in isolation and they have to be

combined. Additionally, the achievement of one quality attribute may have a pos-

itive or negative effect on another. One example of this trade-off between quality

attributes is the achievement of portability, which usually has a performance

drawback. Described in more detail, one of the techniques employed to achieve

portability involves isolating the system dependencies, which introduces overhead

into the execution of the system, and thus reduces its overall performance.

1The terms ‘quality’ and ‘non-functional property’ mean the same and are used interchange-

ably throughout this document

16



2.2 Dependability

In short, the non-functional property of a system imposes a constraint on

how the system delivers its services. This property can be measured quantita-

tively or qualitatively and it tends to be hard to measure precisely. There is no

strict number of non-functional properties, but they include reliability, security,

efficiency, availability and many other –ilities. One of the most important non-

functional properties is dependability [Taylor et al., 2009], which is discussed in

greater depth in the next section.

2.2 Dependability

Dependability is one of the quality attributes that cause major concern when

designing a system. [Taylor et al., 2009]. Dependability is closely related to trust

since it is a measure that determines how a system or user can justifiably place

trust in the services delivered by another system. For example, the dependence

of system A on B leads one to assume that the dependability of A is directly

influenced by the dependability of B [Avizienis et al., 2004; Lyu, 1996].

Dependability is a broad concept that can be split into three elements: at-

tributes, threats and means. Attributes is defined as a set of non-functional

properties to achieve, threats is described as the circumstances that have an ad-

verse effect on dependability, and means is characterized by the techniques used

to increase the trustworthiness of a system.

2.2.1 Attributes

Dependability is a broad concept that includes the following non-functional prop-

erties, defined by Avizienis et al. [2004]:

• Availability – readiness to provide a correct service;

• Reliability – continuity of correct service;

• Safety – absence of catastrophic consequences on the user or the environ-

ment;

• Integrity – absence of improper alterations to the system;

17



2.2 Dependability

• Maintainability – ability to undergo modifications and repairs.

The dependability requirements may vary depending on the designed system

and its environment. For instance, availability is a property that is transversal

to all systems, but an online server hosting a critical application may require a

greater degree of availability than other servers hosting a website. Thus, when

designing a system an important phase is to elicit its specific requirements and

ensure that quality trade-offs are minimal.

2.2.2 Threats

The research community regards threats to dependability as a categorization of

issues that can be faced by every computer system. Moreover, these issues may

have serious effects on the system or the user, but ultimately will lead to a decline

in the system’s trustworthiness. The classification of threats to dependability is

listed below:

• Fault – this is a defect in the system and informally also referred to as a

bug. A fault can be in either one of two states: dormant or active. A fault is

dormant if it is present in the system and only activated by an invocation.

• Error – this occurs at runtime when the system enters in an unexpected

state due to the activation of a fault. When an error has not been identified

as such, it is considered to be latent. Otherwise, it enters the detected

state. Moreover, an error may disappear before it has been detected and,

in a latent state, the error may be propagated to other components.

• Failure – this takes place when the error is noticeable externally. It is

caused when a service is delivered that deviates from the correct one or an

abnormal event occurs (e.g., crash, hang).

In practical terms, a dormant fault is a defect that is codified in the software

as a faulty instruction or data. Whenever the component in which the fault is

located is invoked and the faulty instruction is triggered through a code sequence,

data or an input pattern, the fault becomes active and produces an error. In its

18



2.3 Reliability Theory

turn, an error only leads to a failure if it crosses the boundary of the system, and

becomes visible to the outside. A failure is thus, a transition from the correct to

an incorrect service.

2.2.3 Means

A way to provide more dependable systems is to avoid service failures that are

more frequent or more serious than is acceptable. Following, we present a set of

means to attain a more dependable system:

• Fault prevention – preventing the occurrence or introduction of faults;

• Fault removal – reducing the number or severity of faults;

• Fault tolerance – avoiding service failures in the presence of faults;

• Fault forecast – estimating the present number, future occurrence and im-

plications of faults.

The previously specified quality attributes (i.e., availability, reliability, safety,

integrity and maintainability) should be attained to achieve a more dependable

system. With this in mind, the following section details one of these quality

attributes – reliability – by describing its concept and how it can be modeled in

an early phase.

2.3 Reliability Theory

Reliability was established as a field of study during the Second World War much

because of the problems experienced with military equipment that failed very

quickly. Many of the problems were related to electronic equipment that had

an operational lifetime of only a few hours. As a result, much of the military

equipment failed even before it went into service. To circumvent this problem,

the United States (US) government set up a number of research groups to improve

the reliability of electronic equipment. In 1950 the US Department of Defense

carried out a review of all the electronic equipment used by the army, navy and

19



2.3 Reliability Theory

air force. Afterwards, they brought together a group of representatives from

the electronics industry to form the Advisory Group on Reliability of Electronic

Equipment (AGREE). The final goal of this joint group was to produce a set

of documents establishing good working practices and ensuring the reliability of

electronic equipment. Today, the reliability of electronic equipment has increased

enormously as even be witnessed in household appliances. However, although

electronic reliability has been studied since the 1950s, software one is still in

its infancy and is becoming a major concern since it is being applied to critical

systems such as automobiles, planes or spacecrafts [Storey, 1996].

In the next section we examine in detail the concept of reliability and how it

can be calculated for individual elements as well for the whole system.

2.3.1 Concept

Reliability can be described as the continuous and correct delivery of a service

or an assurance of the probability of failure-free operations [Storey, 1996]. In

addition, it can be expressed through two different types of behavior: continuous

and discrete-time [Lyu, 1996]. The former involves the notion of time and its

distribution is expressed through the following formula where R(t) represents the

reliability over time, t denotes the time elapsed since the start of the execution

and λ expresses a constant failure rate.

R (t) = e−λt

The latter, discrete-time, leverages the notion of time by using the failure

probability to estimate reliability. It assumes that a failure may occur during the

process of an input or in the control transfer between two modules. Moreover,

reliability (denoted by R) expresses the probability of delivering a correct service

and is quantified as the number of correct delivered responses over the total

number of requests.

R = Pr {no system failure at output | no failure at input}

20



2.3 Reliability Theory

The formulas mentioned above express the reliability of individual compo-

nents. However, a system is usually composed of more than one component and

includes the notion of their interdependence. With this in mind, the next section

explores methods to calculate the reliability of a whole system by examining a

set of components and their connections.

2.3.2 Modeling

Usually dependable software components will, on average, result in more depend-

able systems. However, this should not be regarded as a law, since highly depend-

able systems may comprise unreliable components and dependable components

do not always result in dependable systems [Taylor et al., 2009]. This difference

illustrates the need to quantitatively predict reliability in an early phase of the

software development, but also requires an analysis and suggestions on where

improvements can be made in the architecture.

With this in mind, we examined a set of methods that allow reliability to be

modeled from a software architecture and they all involve stochastic modeling

approaches. Stochastic systems encompass the occurrence of random events,

aiming to calculate or analyze processes that cannot be determined precisely due

to the unpredictability involved. These systems are usually applied in contexts

that involve a source of randomness, such as natural events, economics, science

or engineering.

With regard to software and stochastic models, the European Space Agency

(ESA) in 1986 conducted a series of reliability studies and concluded that soft-

ware failures appear to be “random” to the observer. Moreover, they also state

that “the term ‘reliability’ is meaningful when applied to a system that includes

software and the process can be modeled as stochastic”[European Space Agency

(ESA), 1988].

With this in mind, several studies applied stochastic models to estimate re-

liability on the basis of a software architectural description [Brosch et al., 2011;

Cortellessa, 2002; Reussner & Heinz W., 2003; Yacoub et al., 2000]. Among the

first to propose architectural reliability modeling by using Markov chains, was

Cheung [Cheung, 1980] and several surveys have been conducted since then [Gokhale,

21



2.3 Reliability Theory

2007; Goševa-Popstojanova & Trivedi, 2001; Immonen & Niemelä, 2008; Pengoria

et al., 2009].

According to these surveys and as depicted in Figure 2.6, the reliability assess-

ment of software architectures can be performed through two different approaches

which combine the architecture with the failure behavior [Goševa-Popstojanova

& Trivedi, 2001]: path and state-based models.

Path-based
Model

State-based
Model

Composite Hierarchical

Architecture

+

Failure Behaviour

Figure 2.6: Approaches to combine the architecture with the failure behaviour

2.3.2.1 Path-Based Model

This class of models estimates reliability by combining software architecture with

the failure behavior. In other words, reliability is computed by traversing the pos-

sible execution paths of the program. The overall reliability is then calculated by

averaging all the computed reliability paths. Architecturally speaking, this model

assumes a knowledge of the different system paths and their frequencies. Al-

though this information may not be accessible at every development stage, it can

be obtained experimentally, by testing or algorithmically Goševa-Popstojanova

& Trivedi [2001].

For example, Shooman [Shooman, 1976] proposes a method to calculate the

reliability of modular programs that encompass the execution frequency for each

path. In detail, this model assumes the knowledge of all paths in the system,

denoted by m, and the execution frequencies fi of each path i. In addition, the

failure behavior is denoted by the failure probability qi of each execution path

22



2.3 Reliability Theory

i. Then, the total number of failures nf in N test runs is obtained through the

following formula:

nf =
m∑
i=1

N · fi · qi

The reliability of the system (q0) is given by:

q0 = lim
N→∞

nf
N

=
m∑
i=1

fi · qi

This model has some drawbacks which makes its applicability of limited value.

In detail, when a reliability problem arises, this method allows us to identify a

path of the architecture that requires urgent attention and improvement. How-

ever, identifying specific components within that particular path can be a hard

task. In addition, the path-based model cannot be applied to systems that con-

tain loops in the architecture, since it will only provide an approximate estimation

of the system reliability [Goševa-Popstojanova & Trivedi, 2001].

2.3.2.2 State-Based Models

State-based models assume that transitions comprehend a Markov property, mean-

ing that at any time the future behavior of components or transitions between

them is conditionally independent of the past behavior. These models require a

knowledge of the following features:

• Software architecture – this describes how the components are arranged in

the system and how they interact with each other. In addition, the flow of

information, like input or output data must be also specified.

• Usage (or operation) profile – this explains how the system is used and may

include the transition probabilities between modules or the execution time

for each module.

23



2.3 Reliability Theory

• Failure behavior – this provides a quantitative measure of the number of

failures for each component in the system. This number can be defined

in one of two ways: component reliabilities and failure rates (constant or

time-dependent). The first is defined by a probability expressing the correct

service delivery, while the second expresses a time frequency in which a

component fails.

• Interfaces – this specifies the interaction between components. Usually their

failure behavior is assumed to be perfect, but it can also be defined as the

failure behavior of the components.

Moreover, state-based models can be divided into composite [Cheung, 1980;

Reussner & Heinz W., 2003] and hierarchical [Gokhale & Trivedi, 2002] methods

which are outlined below:

Composite Method. The architecture of the system and the failure behavior

of its components are combined in a single model. In other words, the components

and connectors may be represented as states in the model. With regard to the

system failure behavior, it can be encoded by assigning probabilities between

state transitions. A failure may be represented as the transition from a correct

state to a faulty one.

Hierarchical Method. This method assumes that the architecture and the

failure behavior are detached; more specifically the architecture is solved first and

then the failure behavior is superimposed as a function to determine the overall

reliability. For example, an architecture can be modeled by a semi-Markov process

and the failure behavior can be modeled according to a Poisson process [Little-

wood, 1979] or by a time-dependent failure rate [Laprie & Kanoun, 1996].

The above methods (Composite and Hierarchical) are part of the state-based

models approach and both present accurate results when compared to the actual

reliability of a system [Goseva-Popstojanova et al., 2005]. With this in mind, one

may select a method over another, since they present close results. In this case,

we decided to use the composite method over the hierarchical, since it combines

24



2.4 Probabilistic Model Checking

the architecture with the failure behavior which facilitates the translation from

the ADL to the state-space based model.

The modeling approaches presented above allow reliability to be assessed

quantitatively from a software architecture. However, their application requires a

mathematical formalism to solve these models and obtain a reliability figure. For

this reason, the next section explores the mathematical formalisms and explains

how reliability can be determined.

2.4 Probabilistic Model Checking

A promising approach to detect and correct possible errors in the early stages

of software development is to model programs and systems by specifying their

behavior and checking their correctness, which is often referred to as the ‘formal

methods’ [Emerson, 2008].

According to Emerson [Emerson, 2008] the development of model checking

was motivated by the predominant manual activities to verify and prove the

theoretical reasoning, using axioms and inference rules. These manual activities

involve issues similar to any other task performed by a human: error proneness

and time-consuming activities. In view of this, Clarke and Emerson [Clarke &

Emerson, 1981] described model checking as:

“A method to establish that a given program meets a given spec-

ification, where:

- The program defines a finite state graph M .

- M is searched for elaborate patterns to determine if the specifi-

cation f holds.

- Pattern specification is flexible.

- The method is efficient in the sizes of M and, ideally, f .

- The method is algorithmic.

- The method is practical.”

25



2.4 Probabilistic Model Checking

Model checking employs formal verification techniques to guarantee whether a

particular property holds in the modeled software program. For example, model

checking can be used to verify if a software enters in a deadlock condition. If a

property can be quantitatively assessed, we use probabilistic model checking to

verify if that particular property holds. Probabilistic model checking involves the

same steps as the model checker: building the model, formal specification of a

desired property and checking the model for the satisfaction of that property.

The following subsections introduce different probabilistic models, temporal

logics used in these models and the currently used probabilistic model checking

tools, as well as, making comparisons based on a different number of properties.

2.4.1 Discrete-Time Markov Chain (DTMC)

The notion of what is currently called a Markov Chain was conceived by the

Russian mathematician Andrei Markov, who at the beginning of the 20th Cen-

tury was investigating the alternation of vowels and consonants in the Eugene

Onegin the famous poem by the Russian author Alexander Pushkin. Markov de-

vised a probability model in which the outcomes of each trial only depend on its

immediate predecessor. This model turned out to be an excellent description of

the problem which the mathematician was trying to solve, that give an accurate

estimation of their frequency of appearing [Tijms, 2003].

Discrete-Time Markov Chains (DTMCs) only consider state transitions that

occur at fixed time intervals and can be defined as follows [Kwiatkowska et al.,

2007]:

Definition 1 (DTMC) A discrete-time Markov Chain is a tuple M = (S, s,P ,L),

where:

• S is a finite, non-empty set of states;

• s ∈ S is the initial state;

• P : S×S → [0, 1] is the transition probability matrix where Σs′∈SP(s, s′) = 1

for all s ∈ S;

26



2.4 Probabilistic Model Checking

• L : S → 2AP is a labeling function which assigns to each state s ∈ S the set

L(s) of atomic propositions that are valid in the state.

S
0

S
3

0.01

0.98

S
2

S
1

0.01

1

1

1

[try]

[fail]

[succ]

Figure 2.7: Discrete-Time Markov Chain (DTMC)

Figure 7.1 adapted from [Kwiatkowska et al., 2007], illustrates an example of

a DTMC D1 = (S1, s1, P1,L1 ), where states are represented by circles and their

transitions are drawn as arrows, labeled with their associated probabilities. The

initial state is s = s0, the DTMC has four states, where S1 = {s0, s1, s2, s3} and

the associated transitional probability matrix P1 is given by Formula 2.1.

P1 =


s0 s1 s2 s3

s0 0 1 0 0
s1 0 0.01 0.01 0.98
s2 1 0 0 0
s3 0 0 0 1

 (2.1)

2.4.2 Continuous-Time Markov Chain (CTMC)

Continuous-Time Markov Chains (CTMCs) are very similar to DTMCs differing

only in the frequency of the state transitions. In CTMCs a transition can occur at

any time, while in DTMCs they correspond to a discrete time-step [Kwiatkowska

et al., 2007]. Thus, a CTMC is defined as follows:

Definition 2 (CTMC) A continuous-time Markov Chain is a tuple C = (S, s, R,L),

where:

27



2.4 Probabilistic Model Checking

• S is a finite, non-empty set of states;

• s ∈ S is the initial state;

• R : S × S → R≥0 is the transition rate matrix;

• L : S → 2AP is a labeling function which assigns to each state s ∈ S the set

L(s) of atomic propositions that are valid in the state.

The transition rate matrix R contains the rates of each pair of states in the

CTMC and the transition can only occur if the rate between states s and s′

is greater than 0 (i.e., R(s, s′) > 0). The probability of this transition being

triggered within t time-units equals to 1− e−R(s,s′)·t.

The time spent on each state s, before a transition occurs is defined by E(s),

known as the ‘exit rate of state s’:

E(s) =
∑
s′∈S

R(s, s′) (2.2)

It is also possible to determine what is the probability of each state s′ being

the next state to which a transition is made from s, regardless of the time at

which this occurs. This is defined by Pemb(C ) in Formula 2.3.

Pemb(C )(s, s′) =


R(s,s′)
E(s)

if E (s) 6= 0

1 if E (s) = 0
0 otherwise

(2.3)

To perform the analysis of a CTMC C1 = (S1, s1, R1, L1) an infinitesimal

generator matrix is needed which is given by Q : S × S → R in Formula 2.4.

Q(s, s′) =

{
R(s, s′) if s 6= s′

−Σs′′ 6=sR(s, s′′) otherwise
(2.4)

Figure 2.8 illustrates a CTMC example adapted from [Kwiatkowska et al.,

2007], which represents a queue of jobs. Each state si is a job and there are i jobs

in the queue. Initially the queue is empty (s = s0), each job arrives with a rate of

28



2.4 Probabilistic Model Checking

S
0

S
1

[empty]

S
2

S
3

[full]
3/2 3/2 3/2

3 3 3

Figure 2.8: Continuous-Time Markov Chain (CTMC)

3
2

and are removed from the queue with a rate of 3. The associated transition rate

matrix R1, transition probability P
emb(C1 )
1 and the infinitesimal generator matrix

are described below.

R1 =


s0 s1 s2 s3

s0 0 3
2

0 0
s1 3 0 3

2
0

s2 0 3 0 3
2

s3 0 0 3 0

 (2.5)

P
emb(C1 )
1 =



s0 s1 s2 s3
s0 0 3/2

3/2
0 0

s1
3

3+ 3
2

0
3
2

3+ 3
2

0

s2 0 3
3+ 3

2

0
3
2

3+ 3
2

s3 0 0 3
3

0

 =


s0 s1 s2 s3

s0 0 1 0 0
s1

2
3

0 1
3

0
s2 0 2

3
0 1

3

s3 0 0 1 0

 (2.6)

Q1 =


s0 s1 s2 s3

s0 −3
2

3
2

0 0
s1 3 −9

2
3
2

0
s2 0 3 −9

2
3
2

s3 0 0 3 −3

 (2.7)

2.4.3 Absorbing Markov chains

An absorbing Markov chain is a special type of Markov chains where every state

can reach one of the absorbing states.

29



2.4 Probabilistic Model Checking

Definition 3 (Absorbing Markov chain) A state si is called absorbing if it

has a self-loop transition with rate of 1.0 meaning that after entering, it is im-

possible to leave. Other states than the absorbing ones are called transient. A

Markov chain is absorbing if it has at least one absorbing state and if from every

state it is possible to reach at least one absorbing state in a finite number of steps.

An absorbing Markov chain allows us to determine (a) the probability that the

process will end in a given absorbing state; (b) the number of steps, on average,

that are required for the process to be absorbed; and (c) the number of times, on

average, the process will be in a particular transient state.

The transition matrix of an absorbing Markov chain with r absorbing states

and t transient states has the following canonical form.

P =

[
Q R
0 I

]
In the transition matrix P , I is an r-by-r identity matrix, 0 is an r-by-t zero

matrix, R is a nonzero t-by-r matrix and Q is an t-by-t matrix. P accounts for

the fact that the first t states are transient and the last r states are absorbing.

2.4.4 Markov Decision Process (MDP)

Markov Decision Processs (MDPs) extend Markov chains by adding non-determinism,

which involves randomness in future state transitions and does not produce the

same output from a given starting-point or initial state. Hence, MDPs permits

both probabilistic and non-determinism choices. Probabilistic choices serve to

model and quantify the possible outcomes of randomized actions such as throw-

ing a dice, tossing a coin or sending a message through a lossy communication

channel. In addition, an example of the usage of probabilistic choices is, for in-

stance, a coffee vending machine which sells normal and decaffeinated coffees,

assigning probability 8
10

for the normal choice and 2
10

for the decaffeinated choice.

This example requires statistical experiments on the behavior of the environment

to obtain appropriate distributions that model the choices of sold coffee. How-

ever, if this information is not available or is required to guarantee the system

30



2.4 Probabilistic Model Checking

properties, the choice will be made by a non-deterministic model and, therefore,

use MDPs instead of Markov chains [Baier & Katoen, 2008; De Alfaro, 1998].

According to Baier & Katoen [Baier & Katoen, 2008], MDPs can be defined

by the following definition:

Definition 4 (MDPs) A MDP is a tuple M = (S,Act , P, sinit, AP,L), where:

• S is a countable set of states;

• Act is a set of Actions;

• P : S × Act × S → [0, 1] is the transition probability function such that for

all states s ∈ S and actions α ∈ Act:∑
s′∈S

P (s, Act, s′) ∈ {0, 1}

• sinit : S → [0, 1] is the initial distribution such that
∑

s∈S sinit(s) = 1;

• AP is a set of atomic propositions and L : S → 2AP a labeling function.

An example of a Markov Decision Process (MDP) is depicted in Figure 2.9,

adapted from [Baier & Katoen, 2008].

s

t

u

β,
1/
2

β,1/2

ϒ,1

ϒ,
1

α,1

{a}

{b}

Figure 2.9: Markov Decision Process (MDP)

It can be seen in the above example that State s is the initial state, so sinit(s) =

1. The initial state, s, can choose between two different actions {β, α} and the

31



2.4 Probabilistic Model Checking

other states can only choose one action {γ}. More precisely, below are specified

the sets of enabled actions for each of the states found in the example.

• Act(s) = {α, β} with P (s, α, t) = 1, P (s, β, u) = P (s, β, s) = 1
2

• Act(t) = Act(u) = {γ} with P (t, γ, s) = P (u, γ, s) = 1

2.4.5 Temporal Logic

According to Emerson [Emerson, 2008], a model checker comprises several steps

such as building the model, providing a formal specification of the desired prop-

erties that reveal the behavior of the system and checking the model for the

validation of those properties. The building stage of the model was addressed

in the previous subsections and in this subsection we focus on solving the issue

of how to provide formal specifications of the intended properties. In particular,

temporal logic is used to describe the behavior of the system through rules and

symbolic elements representing propositions.

Below we define different temporal logics, which can be applied to the proba-

bilistic model checkers described in the previous subsections. However, the spec-

ification of their syntax and semantics specification go beyond the scope of this

thesis, the interested reader can consult the following literature [Baier & Katoen,

2008; Emerson, 2008; Tijms, 2003].

Probabilistic Computation Tree Logic (PCTL) is a probabilistic extension

of the Computation Tree Logic (CTL) and is applied for DTMCs. This logic

is useful to state soft deadline properties such as “what is the maximum

probability of reaching an absorb correct state?”.

Linear Temporal Logic (LTL) is a modal temporal logic where each point in

time has a unique successor from an infinite sequence of states. LTL allows

to describe properties about the future of the paths, such as “a condition

will be true until another fact becomes true”.

Continuous Stochastic Logic (CSL) is a time-bounded property which in-

cludes an operator to reason about steady-state probabilities. This logic is

32



2.4 Probabilistic Model Checking

used to express properties over CTMCs which have a rational time bound,

for example: “the probability of a system producing an error within 4 time-

units is less than 10−2 expressed through P<0.01(∪64 error)”

2.4.6 Tools

Several tools are available to solve the probabilistic models described previously,

in this section we examine some contemporary tools and provide a comparison

between their properties.

Prism is a free and open-source tool for formal modeling and analysis of systems

which display a random or probabilistic behavior [Hinton et al., 2006]. In

addition, PRISM uses a high-level state-based language, the PRISM lan-

guage, to describe models and also supports three types of probabilistic

models: DTMCs, CTMCs and MDPs.

Rapture is a tool that performs verification of quantified reachability properties

over Markov Decision Processes (MDP). The originality of Rapture when

compared with Prism, is that Rapture provides two reduction techniques

that limit the state space explosion problem [Jeannet et al., 2002].

Although Rapture looks promising, it lacks documentation and has not been

publicly released, since there is no available site or information regarding

its properties. As a result, Rapture integrates the list of probabilistic model

checker tools, although it has not been possible to determine what are its

promising features.

Markov Reward Model Checker (MRMC) is a model-checker developed col-

laboratively by two European Universities: University of Twente in Nether-

lands and the RWTH Aachen University in Germany. This tool allows the

use of reward models and both discrete- and continuous-time Markov chains.

In addition, it also supports reward extensions of Probabilistic Computation

Tree Logic (PCTL) and Continuous Stochastic Logic (CSL), by enabling

automated checking of properties concerning long-run and instantaneous

rewards [Katoen et al., 2009].

33



2.5 Summary

Process Analysis Toolkit (PAT) implements several model checking techniques,

supports Linear Temporal Logic (LTL) properties, and carried out refine-

ment and probabilistic model checking. Moreover, it also allows the verifi-

cation of deadlock-freeness, reachability analysis and state or event linear

temporal logic checking.

According to [Sun et al., 2008], “PAT is capable of verifying systems with

a large number of states and outperforms the popular model checkers in

some cases”, which makes it very useful and has thus been included in the

comparison.

Tool Comparison. Table 2.1 displays the tools previously described, omitting

Rapture owing to a lack of information. In addition, there are more tools

available regarding model checking, but we decided a) only to examine the

ones that use probabilistic model checking, b) to order them in accordance

with their software license and c) only give preference to those that have a

free or open-source license.

Regarding the tool adopted in our work, we decided on the Prism model

checker tool due to its wealth of documentation and the fact that it is open

source. This last advantage allowed us to build a customized library which could

be employed in our solutions independently of the operating system and with a

low performance overhead.

2.5 Summary

This chapter has sketched the background of the questions and issues that un-

derpin this thesis. We began by defining software architecture and revealing its

importance to the software development life-cycle. Moreover, we showed how the

quality of a system can be expressed in the architecture and how more dependable

systems can be obtained from design. The main quality that is being investigated

in this thesis – reliability – was also introduced along with the methods for its

assessment by means of a software architecture. At the end of this chapter, we

34



2.5 Summary

Name Prism MRMC PAT

Modelling

language

Prism

Language, Plain

MC

Plain MC

CSP#, Timed

CSP,

Probabilistic

CSP

Language

Properties

CSL, PCTL,

PCTL*, LTL

CSL, CSRL,

PCTL, PRCTL
LTL, Assertions

Graphical

Interface
Yes No Yes

Software

License

Free and Open

Source

GNU Public

License
Free

Programming

Language
Java C C#

Operating

System

Windows, Unix,

Mac OS X

Unix, Windows,

Mac OS X

Windows and

other OSes with

mono

Table 2.1: Probabilistic Model Checking tools

35



2.5 Summary

listed the mathematical formalisms required to calculate reliability along with

some tools that simplify the process of probabilistic model checking.

Most of today’s guidelines to make software architectures more dependable,

are concerned with techniques to design the system to resist or recover from faults

by providing reflection capabilities, making use of exception handling and over-

seeing the external component interdependencies. However, automated methods

to assess a software architecture with regard to its dependability and analyze the

presence of architectural weak points (i.e., bottlenecks) are still in their infancy

and absent from ADL tools. With this in mind, in the next chapter we propose

novel techniques to accomplish these tasks – by predicting and analyzing reliabil-

ity early in the software development life-cycle through an automated approach.

36



Chapter 3

Automated Reliability Prediction

Along with software development, a need has arisen to assure if the product under

implementation meets the required quality goals. Otherwise, the final product

may not conform to the requirements which will set back the development pro-

cess to a previous phase, increase the project costs and delay product delivery.

This quality assessment can take place at more than one development stage. For

instance, in the design stage architects plan and describe the system in an early

phase even before any implementation or testing has been conducted. Thus, as-

sessment tools and methods should allow architects to identify possible issues

and assure them that the desired standards are being met. Moreover, during an

evolutionary stage, developers can make use of quality assessment methods to de-

termine which components should be upgraded or test if the evolved architecture

improves the system quality.

These quality assessment methods have been proposed in recent decades [Che-

ung, 1980], but they still rely on manual tasks to be built. Currently, very few of

the non-functional requirements are automatically checked. This manual checking

activity is prone to errors and is time-consuming due to the overwhelming com-

plexity of the designs. Current approaches lack the ability to set out automated

methods, translation techniques or apply theoretical methods to the industry or

practitioner community.

We seek to bridge the gap between both the research and practitioner com-

munities by adopting an approach that assesses the reliability of a software ar-

chitecture. More specifically, our approach takes as input an architecture that is

37



3.1 Architectural Identification and Specification

described through an Architecture Description Language (ADL) and generates a

stochastic model. This model makes it possible to predict the reliability of the

system quantitatively, by providing the means for architects to test and validate

their designs.

In this chapter we identify and formally specify the architectural elements

required by our approach (3.1). Following this, we define reliability (3.2), along

with an explanation of the applied mathematical formalism needed to build the

stochastic models (3.3). To exemplify the construction of these models, we take

an example from a demonstrative software architecture (3.4). The translation

from an ADL to the generated stochastic model is performed by a translation

process (3.5) which also encompasses different architectural styles that can be

applied to a system (3.6). We list the required techniques or tools (3.7) needed

to make the proposed method available for architects and allow them to au-

tomatically test and predict reliability from the designed architecture. Finally,

we outline the assumptions that we rely on and may threat the validity of the

proposed approach (3.8), before presenting the related work (3.9).

3.1 Architectural Identification and Specifica-

tion

Architecture Description Languages (ADLs), presented in Chapter 2.1.3, allow

to support annotations to specify key properties for analysis and the validation

of quality attributes. ADLs like Acme [Garlan et al., 1997], Wright [Allen &

Garlan, 1996] or AADL [Feiler et al., 2006], provide a semantically narrow, for-

mal and unambiguous specification of a system that embodies design decisions

with a high level of rigor. In our approach we adopted Acme as the input for

our reliability prediction method owing to its general purpose and extensible

ADL [Taylor et al., 2009]. The required elements, properties and annotations to

accurately predict reliability are specified in the Z notation [Potter et al., 1996;

Spivey, 1989]. We chose Z rather than other formal notations like Vienna Devel-

opment Method (VDM) [Bjørner & Jones, 1978] or Communicating Sequential

Processes (CSP) [Hoare, 1978] since its definition is close to set theory and it has

38



3.1 Architectural Identification and Specification

been successfully used in software engineering for over two decades [Potter et al.,

1996]. Formally annotating a system has more advantages than natural languages

by providing a rigorous demonstration through mathematical proof and a more

unambiguous and clear meaning than natural discourse. In a practical sense, Z

allows future researchers to implement their own reliability prediction techniques

and extend our notation to other quality attributes without ambiguity and in a

rigorous way.

An architecture comprises what is essential or fundamental to a system in re-

lation to its environment. Its description is a work product from the standpoint

of architects and may encompass system constituents (e.g., components, connec-

tors), about how they are organized, their design requirements and principles

regarding evolution [ISO/IEC/IEEE, 2011].

An architectural model is a tuple A = (C, Con, Att , Prop), where:

• C = {ci} is a finite set of Components. A component represents a unit of

computation which can be a single operation, such as a function, a class

or a set of classes that share the same interfaces or functionality, or even a

complex operation as an entire system. We refer to a component as a tuple

ci = (IP ,OP ,Prop,Rep) where:

IP =
{

ipj
}

is a finite set of input ports. Each input port represents

the incoming data to be processed by the component;

OP = {opk} is a finite set of output ports. Each output port repre-

sents the data sent from a component after being processed;

Prop is a set of properties annotating the component with data re-

garding its behavior. Each property is a tuple that holds information

about the name of the property, its type and its value. For example, a

component may hold a property representing its response time which

is a float and a value representing its current or average response time

39



3.1 Architectural Identification and Specification

value.

Enum = {String}

PropType ::= Float | Integer | String | Enum

Prop ={name, value : String ; type : PropType •

(name, type, value)}

Rep is a representation that specifies the internal behavior of a com-

ponent ci. This internal representation is optional in each component

and when it exists describes a sub-architecture model that specifies in

detail the functionality of that component and it is modeled as a an

architecture.

Rep = A′ | ∅⇔ Rep = (C ′, Con ′, Att ′, Prop ′) | ∅

• Con = {con i} is a finite set of Connectors. Connectors are the architectural

elements responsible for the interactions between components, distributing

data among attached components. Each connector is represented by the

tuple coni = (R,Prop):

R = {ri} is a finite set of Roles. Each Role is responsible for coordi-

nating the communication between the connector and a set of compo-

nents, by specifying the communication protocol, assurance properties

and the rules about interaction ordering or format. It is specified as a

tuple ri = (Prop) where it defines its own properties. The connector

role is bound as one-to-one with a component port and each connector

must have at least two roles.

Prop is a set of properties annotating the connector with data regard-

ing its behavior and defined as the same type specified above.

40



3.2 Failure Behavior

• Att is an Attachment showing how components and connectors are bound

together. In more detail, an Attachment is a tuple that specifies a compo-

nent and its port (either input or output) that are connected to a role of a

connector. As a result, one can understand how data traverses within the

architecture and its elements.

Att = {ci ∈ C ; p ∈ IP(ci) ∪OP(ci) ; con l ∈ Con ; rm ∈ R(conl) •

( (ci, p), (conl , rm) )}

• Prop is a set of properties that annotates the architecture with data regard-

ing requirements or design principles. Each property is defined as the same

Prop type previously specified.

This formal specification of the architecture in Z enables us to translate it

unambiguously to a stochastic model, allowing to automatically predict reliability

from an ADL. In the next section we formally define the failure behavior applied in

our approach and describe how it can be manually modeled from an architecture

without any computer-assisted task.

3.2 Failure Behavior

Reliability can be defined by either continuous or discrete-time events (as de-

scribed in Section 2.3.1). In short, continuous-time is characterized by a failure

rate in time units while discrete-time is given by a distribution of the number of

non-failed executions in particular operating conditions.

In our view, continuous-time events assume that the software is always being

utilized and a failure reflects a point in time when the system breaks down.

However, some software systems are not used so intensively and only receive a

few requests per day or during a period of time. The reliability of these systems

should be determined through the number of invocations and successful responses

instead of measuring the time that the system is idle waiting for requests.

With this in mind, our approach considers reliability to be a discrete-time

unit where a failure may occur while a component is processing the required ser-

vice or during the control transfer between two different components. Moreover,

41



3.3 Combining Architecture with the Failure Behavior

reliability is specified in terms of a percentage, denoting the number of success-

ful resolved requests over the total number of requests performed by that specific

module. For instance, if a module has eighty percent (80%) of reliability, it means

that eight (8) out of ten (10) requests are well performed and the other two (2) fail

for some reason, such as malformed input or another source of failure, including

hardware and software failures.

Although there are no formal standards to obtain information about reliability

data, there are some empirical means suggested by the literature [Gokhale, 2007;

Goševa-Popstojanova & Trivedi, 2001]. More specifically, during the design phase

an architect may consult the commercial entities that developed Commercial

Off-The-Shelf (COTS) components. If the architecture encompasses non-COTS

components, the failure data can be estimated from expert knowledge or through

historical data for components developed in house. Regarding the already devel-

oped or deployed systems, the probability of failure might be extracted from the

running system [Casanova et al., 2011].

3.3 Combining Architecture with the Failure Be-

havior

The literature on reliability prediction proposes different modeling techniques to

combine the architectural model with the failure behavior. Previously in Sec-

tion 2.3.2, we explained their differences and with this in mind, we opted for the

technique that offers the most accurate results: the composite approach of the

state-based model.

The composite approach [Cheung, 1980] encompasses the generation from an

architecture of an absorbing Discrete-Time Markov Chain (DTMC) with two final

states sC and sF , that represent the correct and the failure outcome, respectively.

Each state si represents a component of the software architecture and a directed

branch Ti,j represents a possible transfer of control from state si to sj. In ad-

dition, Ri denotes the reliability of the state si. Since, we assume that every

component can fail, each state si has a direct edge to the absorbing failure state

sF denoted by Ti,F . The transition probability to the sF state is given by (1−Ri)

42



3.3 Combining Architecture with the Failure Behavior

which represents the occurrence of an error in the execution of the component

represented by the state si. The original transition probability between states

si and sj is modified to accommodate reliability and it is calculated as Ri · Ti,j,
representing the probability that state si executes correctly and the control is

transferred to the component represented by the state sj. Let the transition ma-

trix be P where P (i, j) represents the probability of transition from state si to

state sj in the Markov process.

P =

[
I 0
C Q

]
The transition matrix P encompasses the identity matrix I, the zero matrix

0 and the matrices C and Q. The C matrix is the size of (n × 2) and holds the

transition probabilities for the failure states. On the other hand, Q is an (n× n)

matrix holding the transition probabilities among the states.

C =



sC sF

s1 0 T1,F

s2 0 T2,F
...

...
...

sn−1 0 Tn−1,F

sn Rn Tn,F



Q =



s1 s2 . . . sn

s1 R1 · T1,1 R1 · T1,2 . . . R1 · T1,n
s2 R2 · T2,1 R2 · T2,2 . . . R2 · T2,n
...

...
...

. . .
...

sn Rn · Tn,1 Rn · Tn,2 . . . Rn · Tn,n


The probability of starting in state i and entering in one of the absorbing states

j ∈ {sC , sF} is given by P (i, j). To calculate the reliability of the system Rsys

43



3.4 Demonstration Example

we first need to solve the fundamental matrix given by M to find the computed

value of the reliability after traversing the Markov chain.

M = (I −Q)−1

Rsys = M(i, j) ·Rj

The next section clarifies the previously outlined formulas through a demon-

strative example.

3.4 Demonstration Example

To illustrate the process of combining the architecture with the failure behavior we

demonstrate analytically how to solve the Discrete-Time Markov Chain (DTMC)

modeled from a software architecture adapted from different reliability stud-

ies [Cheung, 1980; Gokhale & Trivedi, 2002; Lo et al., 2005].

The software architecture shown in Figure 3.1(a) is combined with the failure

behavior to form an absorbing Markov chain depicting a state-based model as

illustrated in Figure 3.1(b).

Figure 3.1(b) shows two absorbing states, F denoting the failure behavior

receiving a direct edge from any other state in the system and C representing the

correct behavior from the starting state s1 until the last state is reached s10.

The reliability and transition probabilities used in this example are merely

illustrative. Table 5.2 shows the reliability values for each module and the tran-

sition probabilities, also known as usage profile, are given in Table 3.2.

To solve the DTMC we first need to determine the transition probability P .

44



3.4 Demonstration Example

(a) Software architecture described in Acme

S1

S2

S3

S4

S5 S6

S7

S9 S8

S10C

0.6
0.2

0.2

0.5

0.7

0.3
1

0.4 0.6

0.3

0.10.3

0.3

0.6

0.4

0.5
0.1

0.9
0.75

0.25

F

From any 
other state

(b) Markov reliability model

Figure 3.1: Software architecture (a) and its model (b)

45



3.4 Demonstration Example

Table 3.1: Component reliabilities

R1 = 0.99 R6 = 0.95

R2 = 0.98 R7 = 0.98

R3 = 0.99 R8 = 0.96

R4 = 0.96 R9 = 0.97

R5 = 0.98 R10 = 0.99

Table 3.2: Transition probabilities (i.e., usage profile)

T1,2 = 0.6 T3,5 = 1.0 T6,3 = 0.3 T7,9 = 0.5

T1,3 = 0.2 T4,5 = 0.4 T6,7 = 0.3 T8,4 = 0.25

T1,4 = 0.2 T4,6 = 0.6 T6,8 = 0.1 T8,10 = 0.75

T2,3 = 0.7 T5,7 = 0.4 T6,9 = 0.3 T9,8 = 0.1

T2,5 = 0.3 T5,8 = 0.6 T7,2 = 0.5 T9,10 = 0.9

P =



sC sF s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

sC 1 0 0 0 0 0 0 0 0 0 0 0

sF 0 1 0 0 0 0 0 0 0 0 0 0

s1 0 0.01 0 0.594 0.198 0.198 0 0 0 0 0 0

s2 0 0.02 0 0 0.686 0 0.294 0 0 0 0 0

s3 0 0.01 0 0 0 0 0.99 0 0 0 0 0

s4 0 0.04 0 0 0 0 0.384 0.576 0 0 0 0

s5 0 0.02 0 0 0 0 0 0 0.392 0.588 0 0

s6 0 0.05 0 0 0.285 0 0 0 0.285 0.095 0.285 0

s7 0 0.02 0 0.49 0 0 0 0 0 0 0.49 0

s8 0 0.04 0 0 0 0.24 0 0 0 0 0 0.72

s9 0 0.03 0 0 0 0 0 0 0 0.097 0 0.873

s10 0.99 0.01 0 0 0 0 0 0 0 0 0 0



46



3.4 Demonstration Example

To calculate the system reliability in an analytical fashion, it is necessary to
determine the Q matrix and compute the fundamental matrix as shown below.

Q =



s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 0 0.594 0.198 0.198 0 0 0 0 0 0

s2 0 0 0.686 0 0.294 0 0 0 0 0

s3 0 0 0 0 0.99 0 0 0 0 0

s4 0 0 0 0 0.384 0.576 0 0 0 0

s5 0 0 0 0 0 0 0.392 0.588 0 0

s6 0 0 0.285 0 0 0 0.285 0.095 0.285 0

s7 0 0.49 0 0 0 0 0 0 0.49 0

s8 0 0 0 0.24 0 0 0 0 0 0.72

s9 0 0 0 0 0 0 0 0.097 0 0.873

s10 0 0 0 0 0 0 0 0 0 0


M = (I −Q)−1 =

=



1 0.865 0.855 0.387 1.249 0.223 0.55 0.788 0.334 0.8598

0 1.275 0.907 0.2 1.35 0.115 0.562 0.835 0.308 0.87

0 0.28 1.225 0.203 1.374 0.117 0.572 0.849 0.313 0.885

0 0.262 0.368 1.15 0.883 0.662 0.535 0.626 0.451 0.844

0 0.283 0.228 0.205 1.388 0.118 0.577 0.858 0.317 0.894

0 0.266 0.488 0.123 0.609 1.071 0.544 0.515 0.571 0.87

0 0.628 0.449 0.111 0.672 0.064 1.281 0.463 0.646 0.898

0 0.062 0.088 0.276 0.212 0.159 0.128 1.15 0.108 0.922

0 0.006 0.008 0.026 0.02 0.015 0.012 0.111 1.01 0.962

0 0 0 0 0 0 0 0 0 1


To conclude, the system reliability is determined by solving the Markov model

and also by taking into account the reliability of the last state, as shown in

the following formula. Moreover, the prediction from the shown example yields

approximate 85% (eighty five percent) of overall reliability.

Rsys = M(1, 10) ·R10 = 0.8598 · 0.99 ≈ 0.8512 = 85.12%

The purpose of this demonstration was to show the analytic prediction of relia-

bility and how stochastic modeling can be used to evaluate quality attributes from

a software architecture. Although our main goal is to propose automated meth-

ods to predict these quality attributes, we believe it is important, as a starting

47



3.5 The Translation Process

point, to understand where these formalisms and techniques came from and how

they are applied. The next section formally specifies the translation procedure

between a software architecture and a Discrete-Time Markov Chain (DTMC).

3.5 The Translation Process

An automated process to predict reliability from a software architecture requires

a translation from the architectural model to the corresponding mathematical

formalism. To this end, we propose a formal translation process in which the

architectural model (A) is related to the generation of the Discrete-Time Markov

Chain (M). This relation is specified in Z by linking each member of the archi-

tecture to exactly one member of the DTMC as A → M . Specifically we define

a mapping from each architectural element of an Architectural Description Lan-

guage (ADL) (e.g., components, connectors, properties and their relations) to the

respective states of the Deterministic-Time Markov Chain (DTMC). This map-

ping aims to achieve an automated generation of a DTMC from an architectural

description.

Following this, we describe the translation process along with its required

properties.

3.5.1 Initial state

The stochastic model requires the specification of the initial state where the

control flow begins. This involves annotating the architectural model with a

mandatory property called ‘EntryPoint’ which states the starting component ci ∈
C and will be mapped as the initial state in the DTMC.

Prop = (EntryPoint , String ,Name(ci)) 7→ s

3.5.2 Components

The translation of each component is performed in accordance with the following

guidelines:

48



3.5 The Translation Process

• Each component maps to a state

ci ∈ C 7→ si ∈ S

• The reliability of a component is defined as the probability that component

ci will carry out a task successfully with no failures. A non-failed task

occurs when the component processes data received by an input port and

sends a response over the output port.

Rc(ci) = Pr{ci ∈ C ; ipj ∈IP(ci) ; opk ∈ OP(ci) : opk produces

a correct output | ipj received an input} ∈ [0, 1]

Rc is expressed in the architectural model through a component property,

by mapping to the probability of successfully transiting (PR) from state si

to si+1 and also to the probability of transition to a failure absorbing state

sF :

Prop = (reliability ,float ,Rc) 7→ PR(si, si+1) = Rc ∧
Prop = (reliability ,float ,Rc) 7→ P (si, sF ) = 1− Rc

• When specified, a representation expresses the internal behavior of a com-

ponent by providing a new sub-system:

Rep = (C ′, Con ′, Att ′, Prop ′) 7→ si = (S ′, s′, P ′, L′)

3.5.3 Connectors

Each connector coni ∈ Con is responsible for the communication between differ-

ent components and plays an important role in the system reliability and hence,

its translation is performed as follows:

• The probability of transiting between two components is specified as an

attachment that sends data knowing that another attachment has already

received data from a component.

T (coni) = Pr{att, att′ ∈ Att ; c, c′ ∈ C : att ′ communicates data to c′ | att

receives data from c } ∈ [0, 1]

49



3.5 The Translation Process

The transition probability (PT ) is expressed through the property

Prop = (transitionP ,float ,T ) 7→ PT (si, si+1) = T

To calculate the probability of transiting from state si to si+1 we use the

following formula:

P (si, si+1) = PT (si, si+1) ∗ PR(si, si+1)

3.5.4 Constraints

Before the generated model can be considered valid, it must conform to the

following constraints specified in the Z notation:

No dangling ports or roles Every input or output port of a component must

be attached to a connector role and the same applies conversely. The system is

not valid if there are any dangling ports or roles.

∀ ip ∈ IP(c) | ∃ c ∈ C; r ∈ R(con); con ∈ Con • ((c, ip) , (con, r)) ∈ Att

∧ ∀ op ∈ OP(c) | ∃ c ∈ C; r ∈ R(con); con ∈ Con • ((c, op) , (con, r)) ∈ Att

∧ ∀ r ∈ R(con) | ∃ con ∈ Con; c ∈ C; ip ∈ IP(c); op ∈ OP(c) •
((c, ip ∨ op) , (con, r)) ∈ Att

Output transitions sum to 1.0 For every output port, there exists a set with

at least one connection to a target component. For all the elements within that

set, their transition probabilities must add up to 1.

∀ op ∈ OP | ∃ coni ∈ Con;T ∈ Props (coni) •
∑
i

Tconi
= 1.0

This section describes the mapping from an architectural description to a

mathematical model. We specified this mapping formally to allow an unambigu-

ous translation from an ADL to a DTMC and support its future extension to

other quality attributes.

50



3.6 Modeling Architectural Styles

Software applications use complex interactions to share data among compo-

nents, sometimes expressing common behaviors or patterns. Bearing this in mind,

the next section proposes the integration of different architectural styles within

our approach.

3.6 Modeling Architectural Styles

Architectural styles, also known as architectural patterns, are well-documented

solutions to frequently recurring problems which may display known quality at-

tributes [Bass et al., 1998; Garlan & Shaw, 1994]. Modeling these styles in an

early phase allow architects to make decisions that achieve particular quality goals

and assess if certain architectural choices are made to the detriment of others. In

this section, we outline the method that can be employed to model these styles

by specifying the required modifications to the original Discrete-Time Markov

Chain (DTMC).

3.6.1 Batch-sequential / Pipe-and-Filter

The batch-sequential and pipe-and-filter style share the same ideology in which

the components in the architecture are executed in a sequential order. Their

difference resides in the fact that in the batch-sequential style only one component

executes at any instance of time, while in the pipe-and-filter an output may be

produced before its inputs are fully consumed. To clarify this difference, an

example of a batch-sequential style is for instance the extraction of a ZIP file

that will be processed only after its extraction has been concluded, otherwise it

could lead to a corrupted file. On the other hand, an example of the pipe-and-

filter style is a UNIX command that allows data to be filtered while a file is being

read (e.g., cat file.txt | grep word). From the provided example, the grep program

executes by reading the output of the cat command without requiring it to be

completed.

Batch-sequential and pipe-and-filter styles differ in the control flow of data,

but they share the same mathematical model. Their modeling approach is illus-

trated in Figure 3.2 where they display a sequential order of execution between the

components. Note that T1, 2 must equal 1 to respect constraints in Section 3.5.4

51



3.6 Modeling Architectural Styles

while at the same time keeping coherence with matrix Q in Section 3.3.

S1 S2

S3

S4R2 * T2,4

R2 * T2,3

R1 * T1,2

R3 * T3,4

F

C

1 - R1 1 - R2

1 - R3

1 - R4

R4

Figure 3.2: Batch-sequential style state model

3.6.2 Parallel

The parallel style is commonly used to model systems that carry out concurrent

executions, usually aiming to improve performance. In this style, the work is

partitioned and each component works on a small sub-task to complete a larger

task.

This style can be modeled, as shown in Figure 3.3, where architectural com-

ponents that represent a single execution are mapped to States s1 and s3, in the

same way as the batch-sequential style. The inherent concurrent executions in the

parallel style are mapped to different states, as shown by states s21, s22, ... , s2k.

These states are wrapped in the s2 state, which is responsible for the synchroniza-

tion process of when a transition to these states occurs and when the concurrent

executions of all the parallel states are completed.

In case of failure by one of the concurrent states, the computation of the sub-

task will not be completed and the system will go into a failed state. As a result,

the execution of the state s2 will only be correct if all the sub-tasks are equally

correct. This leads to the following formula to calculate the reliability of the state

responsible for the coordination of the concurrent executions.

Ri =
k∏
j=1

Rij

52



3.6 Modeling Architectural Styles

S1
S3

S21

S22

.

.

.

S2k

R1 * T1,2 R2 * T2,3

S2

F

CR3

1 - R1

1 - R2

1 - R3

Figure 3.3: State model of the parallel style

3.6.3 Fault-tolerance

A fault-tolerance style can be applied to a system to obtain higher reliability

or fewer failures in a specified time period. This style is composed of a set

of components that seek to compensate for the failures of each other. More

specifically, only one component performs computation – the active component.

When it fails, one of the redundant components takes over and becomes the active

one. The system only enters in a failed state, when all the components in the

fault-tolerant set fail. Our approach supports different reliability values for each

of the components in the set, as they may involve different data structures or

algorithms to improve the system reliability.

The state model of this style is illustrated by Figure 3.4, where the fault-

tolerant set is shown wrapped in the state s2 is shown. The active state is

depicted with a gray background and the redundant states with a white one.

The execution of this type of model only fails when all the active and re-

53



3.6 Modeling Architectural Styles

S1 S3

S21

S22

.

.

.

S2k

R1 * T1,2 R2 * T2,3

S2

F

CR3

1 - R3

1 - R2

1 - R1

Figure 3.4: Fault-tolerance style state model

dundant components fail. The following formula is proposed to calculate the

reliability of this style and is supported by Figure 3.4.

Ri = 1−
k∏
j=1

(1−Rij)

3.6.4 Call-and-return

In the call-and-return style, a caller component may request services provided by

other called components. When the services are requested, the caller component

holds its execution, until the called one has fulfilled the request. After that, the

caller component resumes its execution where it left off. This style is often used

for remote procedure calls and it can be translated to the state space model as

follows: a state represents an execution of a component and a transition takes

place when the execution in each state has been completed or the execution

encounters a service request that temporarily transfers the control to the called

54



3.7 Automated Prediction

component.

Figure 3.5 depicts a call-and-return style, where state s1 is the caller and s2

is the called component. After calling state s2, the caller state will transfer the

control to state s3, which, if everything went as expected, means the control will

be transferred to the absorbing component sC . As can be seen in Figure 3.5, the

transition T1,2 does not take account of the reliability of the caller component,

because s1 will be visited only once before transferring the control to state s3

regardless of the number of times the state s2 is called [Wang et al., 2006].

S1 S2

T1,2

F

C

1 - R1

1 - R2

S3

R1 * T1,3

R2 * T2,1
1 - R3

R3

Figure 3.5: Call-and-return style state model

In summary, this section has described how to incorporate architectural styles

in our modeling approach. As a result, architects can model software with het-

erogeneous styles and make use of different execution orders beside the sequential

one. The process of translating architectural styles to the model can be accom-

plished by annotating components and connectors with relevant properties.

The next section outlines the process that makes possible the automated reli-

ability prediction from an ADL description by examining the required tools and

methods.

3.7 Automated Prediction

Predicting reliability from a software architecture is a process that encompasses

several steps, such as the identification of the software architecture and its con-

55



3.7 Automated Prediction

stituents, notations holding non-functional properties and their translation to a

stochastic model. This model includes the failure behavior encoded in the archi-

tecture that makes it possible to determine whether the quality requirements are

being met by the proposed architecture.

Several research surveys have found shortcomings in the current approaches

to reliability prediction, such as the lack of support for tools and for variabil-

ity [Gokhale, 2007; Immonen & Niemelä, 2008; Pengoria et al., 2009]. One of

the main reasons is that current approaches rely on manual activities which are

usually error-prone and time-consuming tasks. With this in mind, Martens et al.

[2010] adopted an approach that quantitatively predicted performance, reliability

and costs from a software architecture specifically described in Palladio [Martens

et al., 2010], a custom specific language designed by Martens et al. to describe

a system. However, their work did not take into account different architectural

styles, nor the kinds of formalisms required to extend the translation procedure

to other quality attributes or Architecture Description Languages (ADLs).

As a result of the shortcomings highlighted by current surveys and from the

lack of methods or techniques proposed in the research community, our approach

addresses the question of reliability prediction from a software architecture that

operates in an automated fashion. For this purpose, we formally annotate the

translation procedure by making it possible to parse and analyze an ADL by

complying with the ISO/IEC/IEEE 42010 Standard [ISO/IEC/IEEE, 2011]. Fur-

thermore, we test the effectiveness of our approach by applying it to the Acme

ADL [Garlan et al., 1997]. The reason for this choice rather than the other ADLs

examined in Section 2.1.3 is due to the fact that Acme is a general purpose lan-

guage and not domain-specific like the others [Taylor et al., 2009]. In addition, the

development team of Acme, the Software Engineering Institute (SEI) in Carnegie

Mellon University (CMU), have set up a software library, AcmeLib, that allows

Acme models to be manipulated by third-party applications.

After parsing the architectural models, we generated a Discrete-Time Markov

Chain (DTMC) in the Prism language [Kwiatkowska et al., 2009]. The generated

formalism is then resolved by the Prism Model Checker tool [Kwiatkowska et al.,

2011] which provides a quantitative result for the system reliability. Although

other probabilistic model checking tools could be applied, we selected Prism since

it is a free, open-source tool with a vast documentation and support for discrete-

56



3.8 Threats for Validity

time Markov chains. A comparison between Prism and other tools is provided in

Section 2.3.2.

TranslatorInput Prism
FileGenerate

ADL File

Annotations

Architectural
Constituents

Loaded into

Prism 
Tool

Reliability
(%)Solve

Figure 3.6: Automated Reliability Prediction

The automated prediction process outlined above is illustrated in Figure 3.6.

We parsed the ADL file responsible for holding information about the topology

of the system, its architectural constituents and annotations which describe non-

functional properties. Following this, we combined the architectural model with

the failure behavior into a Discrete-Time Markov Chain (DTMC), which is de-

scribed as a high-level language in the Prism File. Finally, Prism tool solved

the stochastic model by taking into account the PCTL rules and providing a

quantitative result about the reliability of the overall system.

3.8 Threats for Validity

The approach proposed in this chapter acts accordingly to the following assump-

tions:

Every software component can fail. Each module that is mapped from the

architecture to the mathematical model has a direct edge to the absorbing

state sF , which is weighted by its probability of failing (i.e., one minus the

reliability assigned to the component).

57



3.9 Related Work

The failures are independent of the software components. Components in

a software system can be viewed as logically independent modules, which

can be developed and tested independently from each other [Gokhale &

Trivedi, 2002; Lo et al., 2005].

The transfer of control among the modules follows a Markov Process.

The transition probability from one component to another is determined

through the product of the reliability of that component with the esti-

mated usage profile of the system. This means that the control transition is

independent of the past history of the system and only depends on the cur-

rent state, following the memoryless property of a Markov chain [Grinstead,

Charles M. and Snell, 2006].

System reliability is the probability of reaching the state C. The compu-

tation of the system reliability is performed through the probability of tran-

sit between all the components in the system and reaching the absorbing

state sC , by displaying the correct behavior of the system or the probability

of every component in the system being failure-free.

These assumptions are due to the stochastic model used and may vary if

other modeling approach is applied. The next section outlines other studies and

research contributions that are related or serve as a basis to this work.

3.9 Related Work

Several studies address the reliability assessment from a software architecture

description [Brosch et al., 2011; Cortellessa, 2002; Reussner & Heinz W., 2003;

Yacoub et al., 2000], among the firsts to propose architecture reliability modelling

using Markov chains was Cheung [Cheung, 1980] and several surveys were pre-

sented since then [Gokhale, 2007; Goševa-Popstojanova & Trivedi, 2001; Immonen

& Niemelä, 2008; Pengoria et al., 2009].

Above methods are theoretical mathematical models to assess the reliability

in an early software development stage that are accurate enough to be applied to

real case studies. Popstojanova et al. [Goseva-Popstojanova et al., 2005] studied

and tested the test suite of the C compiler to prove the adequacy, applicability and

58



3.10 Summary

accuracy of software reliability models. The results obtained show that the actual

reliability differs only by less than 3% from the theoretical methods, proving that

both the composite and hierarchical models are very accurate and applicable for

real case studies.

Over the years, common patterns of structural organization of components and

connectors have been identified and documented [Garlan & Shaw, 1994]. The so-

called architectural styles are commonly used in any architecture, but they impose

constraints in reliability assessment: each architectural style maps to a different

state-space model and it must be extended to reflect some architectural choices,

such as concurrency or fault-tolerance. Abd-allah [Abd-Allah, 1997] identified

the issues of reliability assessment of architectural styles using reliability block

diagrams and Wang et al. [Wang et al., 2006] described the process of mapping a

limited number of architectural styles to state space models for reliability analysis.

Only few research studies address the reliability analysis on architectural styles.

More interest is needed on this topic to analyze the reliability on important styles

that were not considered before, such as event-based or black-board repository.

Martens et al. [Martens et al., 2010] present an approach to quantitatively

predict the performance, reliability and cost of a software architecture. Their

approach supports a multi-criteria genetic algorithm to find the best trade-off be-

tween those quality attributes. Regarding reliability analysis, they performed two

types of analysis: transform the software architecture into an absorbing discrete-

time Markov chain and a reliability simulation to derive the probability of failure

on demand. Their work differs from ours in the following aspects: 1) they use

a custom specific language while we use a general purpose ADL; 2) they do not

take into consideration the different architectural styles that may be used; and

3) we include a formal notation to extend the current approach to other quality

attributes.

3.10 Summary

The process of automating the prediction of reliability from a software archi-

tecture is only possible on account of the wide range of techniques available to

describe an architecture and the methods employed to calculate reliability as a

quality attribute. Our approach performs a reliability prediction by leveraging

59



3.10 Summary

the implicit formalisms in ADLs to extract the required information.

The proposed approach encompasses a modeling approach that is time-agnostic,

and relies on the probability of a component correctly delivering a request. In

addition, our method envisages a formal description of the translation procedure

to the stochastic model of choice (i.e., a Discrete-Time Markov Chain (DTMC))

which can be extended to encompass different modeling approaches, as well as

other quality attributes.

This approach can be applied within the software development life-cycle. In

particular in the design stage, architects can perform reliability predictions to as-

sure that the designed artifact conforms to the quality requirements outlined by

the stakeholders. Moreover, this approach can also be applied in an evolutionary

stage to identify reliability bottlenecks, test different architectural alternatives

and assure the achievement of the desired quality attributes. Although in an

evolutionary stage, it can be assumed that there is a deployed system that can be

instrumented to obtain data about the usage profile and components’ reliability,

the same does not apply in an early phase such as design. In this phase, infor-

mation is scarce about implementation details and even more about failure rates

and usage profiles. Thus, to obtain failure data in the design phase, architects

can use Hidden Markov Chains [Cheung et al., 2008], consult COTS commercial

entities, estimate failure data from expert knowledge or through historical data

for components developed in house. Although a reliability figure in such an early

phase may not be certain, this type of analysis helps architects to understand

issues in the architecture and identify modules and interconnections that deserve

attention when making future improvements.

In short, the automated generation of a mathematical model from an ADL

saves software architects the effort of having to build it manually by provid-

ing a correct and error-free formal model. In addition, this approach provides

the means for architects to test, assure and experiment with different architec-

tural alternatives. More specifically, an architect can vary the number of com-

ponents, their arrangement and their interconnections, as well as changing styles

and modifying system reliability and usage profile values. As a result, our ap-

proach provides assurances for architects on whether the designed artifact meets

the requirements established by the stakeholders.

60



Chapter 4

Automated Sensitivity Analysis

Software architecture is a fundamental activity of software development, in which

designers are able to reason about a system’s structure and properties at a high

level of abstraction, before any design and implementation is carried out. This

means that software architecture facilitates early decisions on systemic properties

such as reliability, maintainability, and performance. Although it is very useful in

the early stages of development, a software architecture also provides value as the

software evolves and new versions are planned and developed. The redesigning

and modifications can be put into effect at the architectural level so that different

architectural alternatives and what-if testing scenarios can be compared. At this

level of abstraction, architects can analyze the system, test alternatives and avoid

the costs involved in the implementation and deployment stages.

There have been a number of techniques to analyze the outcome of the design

phase, either in the form of a software architecture or a set of textual documents,

employed by the software engineering community in the last few years [Gokhale

& Trivedi, 2002; Lo et al., 2005]. These techniques give architects the ability to

quantitatively or qualitatively assess their designs and identify architectural ele-

ments that require improvement. However, most of the suggested methods entail

manual activities which might make sense while dealing with textual documents,

but formally described architectures in a digital format open up the opportunity

to use automated methods. In light of this, we have outlined an automated ap-

proach that performs a thorough reliability analysis for an architectural design.

Our analysis is capable of identifying weak architectural features and intercon-

61



4.1 Variation in Component Reliability

nections that are not operating well. Finally, we established a ranking system to

order architectural elements according to their effect on the system reliability.

Our goal is to provide architects with the means to analyze their architectural

designs and find alternatives to increase the overall system reliability. With this

end in view, our analysis investigates which components affect the system the

most (4.1). Following this, we analyze the interconnections between the software

components to evaluate how the system is used and which architectural paths

should be improved (4.2). The proposed approach also includes a ranking system

to sort out architectural elements in terms of their reliability (4.3). To show the

applicability of our method, we employ the proposed analysis method through

an example architecture (4.4). Then, we examine the required techniques that

automate the proposed approach and allow architects to analyze their own designs

without the need for manual assessment (4.5). Finally, we present the related

work to the one outlined in this chapter (4.6).

4.1 Variation in Component Reliability

System reliability depends to a great extent on the individual component reliabil-

ity but also on how the system is used and organized; i.e., a system can be highly

dependable, although it consists of unreliable components. The reason for this

is that these unreliable components may not be used so often and hence do not

affect the overall system reliability. Moreover, they may be structured in such

a way that unreliable components “check” each other for errors, such as when-

ever replication is used (e.g. TMR). The identification and correction of these

unreliable components is an important task that must be carried out early in

the development cycle, since improvements and corrections made at later stages

involve high costs and delays.

The identification of components that act as reliability bottlenecks is not a

task of simply picking the components with the lowest reliability. On the contrary,

the bottleneck may be a component that has a high reliability value, but owning

to the high rate of usage increases the chance of triggering a software defect and

leading to a failure. Thus, our approach involves conducting a sensitivity analysis

on the reliability of every component to obtain data about their influence on the

overall system reliability. On the basis of this information, the architect can

62



4.1 Variation in Component Reliability

concentrate on improving a particular component by inducting more testing and

code inspections or even, by correcting bugs.

Reliability can be described as a “probability of failure-free operation” or

the continuous delivery of a correct service belonging to the interval R ∈ [0, 1].

Generally, a sensitivity analysis applies a linear variation on reliability, which

may be a shortcoming for the following reasons:

• The variation of reliability through a linear approach may exceed the range

of the reliability interval. This is illustrated by the example in Equation 4.1,

where Ri represents the reliability of component i. We carried out a linear

variation on the reliability value, which showed that the result falls outside

the interval of possible values for the reliability.

Ri = 0.99± 10% = {0.891, 1.089} /∈ [0,1] (4.1)

• A linear variation requires an increased effort from developers to improve

the same percentage in systems that present higher reliability values than

lower ones. More specifically, when two systems have 50% and 90% of

overall reliability, their linear variation of 10% requires an improvement of

5% and 9%, respectively. However, in systems with 90% reliability it is

much harder to identify and correct software defects than in a system with

a lower reliability value. Thus, we consider that the linear variation does

not reflect the actual improving effort, since increasing 10 % of reliability

in a system is different from 10% on another.

To overcome these problems, we apply a logarithmic variation to the reliabil-

ity of individual components. In short, this logarithmic variation makes system

improvements more expensive as we approach 100% reliability. Its formula is

outlined in Equation 4.2.

R = 1− 10−x ⇔ x = − log10(1−R) (4.2)

To show the applicability of the logarithmic variation, we varied by 10% a

system presenting an overall reliability of 99%. Equation 4.3 exemplifies this

variation, where R is the reliability and U represents the unreliability.

63



4.2 Analysis of the Usage Profile

Ri = 0.99

Ui = 1−Ri = 0.01

x = − log10(Ui) = − log10(0.01) = 2 (4.3)

x± 10% = {1.8, 2.2}

Ri = 1− 10−x =

{
Ri min = 1− 10−1.8 = 0.9841

Ri max = 1− 10−2.2 = 0.9936

The above example shows that a component with 99% of reliability would

vary within the range of 98.41% and 99.36%. However, the prediction method

for reliability outlined in Chapter 3 also adopts the usage profile as a modeling

attribute. The following section discusses the process of analyzing the system

usage profile.

4.2 Analysis of the Usage Profile

Each user carries out different tasks in the system, which leads to distinct invoca-

tions of different methods or functions. The system usage profile can be defined as

an estimation of how the system will be used and refers to the inter-components

transition probability.

To analyze the system usage profile we propose to vary the usage of each path

and observe its impact on the system reliability. After probing all the system

paths, we were able to identify those that affect the system the most and suggest

how they could be improved. The variation of usage profile must comply with a

constraint: the sum of all the output transitions from a component must equal

1.0. In other words, if we vary an output connection from a component, then the

other connections must also vary in the same order of magnitude. In view of this,

Figure 4.1 shows an example of this variation in a system where component C1

mapped as state S1 has two output connections. In more detail, we increased the

usage profile of the connection T1,2 by 10% and inversely, we reduced the same

amount in the connection T1,3 as shown in Figure 4.1(b).

Although this constraint looks rather simple for systems having at most two

connections, it becomes complex in systems where there are three or more in-

64



4.2 Analysis of the Usage Profile

S
1

S
2

S
3

0.6

0.4

(a) Original usage pro-

file

S
1

S
2

S
3

0.66

0.34

(b) After varying T1,2

usage by 10%

Figure 4.1: Illustrative example of the usage profile variation in a system with

two connections

terconnections between the components. In other words, the variation in each

connection will depend on its relative usage or weight for the other ones.

To address this issue, Equation 4.4 was used to vary a specific output connec-

tion Ti,j by obtaining the new transition probability T ′i,j. In more detail, if we

increase the usage profile of a particular connection, we have to proportionally

decrease the other output connections, denoted by Ti,k. Hence, after calculating

the new transition probability T ′i,j of the connection we want to vary, we have to

calculate the new transitions for the other connections denoted by T ′i,k.

T ′ij = Tij + variation%

∆t = Tij · variation% (4.4)

T ′ik = Tik −
∆t ∗ Tik∑n
k 6=j Tik

As an illustrative example, Figure 4.2(a) depicts a system with three output

connections from the same component. To demonstrate the applicability of our

method, we made a variation of 10% in the usage profile in the transition T1,2.

The other transition probabilities were obtained by means of Equation 4.4 and

the result is given in Figure 4.2(b).

After proposing methods to study the variation of sensitivity in different kinds

of reliability and usage profiles, the next section proposes a technique to identify

65



4.3 Analysis of ranking

S
1

S
2

S
3

0.5

0.3

S
4

0.2

(a) Original usage pro-

file

S
1

S
2

S
3

0.55

0.27

S
4

0.18

(b) After varying its us-

age by 10%

Figure 4.2: Illustrative example of usage profile variation in a system with more

than two connections

weak architectural points which involves ranking their effects on the overall system

reliability.

4.3 Analysis of ranking

The analysis of the usage profile and reliability are important to identify archi-

tectural problems as well as to find alternatives to the proposed design. For this

reason, we employ a method to rank components and connectors in order to find

out which ones influence the system the most.

The rank is obtained by calculating the derivative of each curve around the

point where the variation is null (i.e., variation = 0%), as shown by Figure 4.3.

This derivative represents the slope of the curve between the imposed variation

and its impact on the overall system reliability. As a result, if the slope presents

values close to zero (0), it means that the impact of the variation is almost

imperceptible in the overall system reliability. On the other hand, how higher the

slope is, the higher is the impact of the variation on the overall system reliability.

At the end, we sort the derivatives of each curve to identify which ones have

the highest impact and should be improved. This ranking can be performed for

both reliability and usage profile analysis.

66



4.4 Demonstration

Variation

S
y
s
te

m
 R

e
lia

b
ili

ty

0%

Figure 4.3: Derivative around where the variation is null

To clarify the proposed methods to analyze an architecture, we used the fol-

lowing demonstration to show their effectiveness and applicability.

4.4 Demonstration

An analysis of an architecture to determine its reliability includes varying the non-

functional properties and seeks to identify problems and find possible solutions.

In this section we aim to demonstrate the effectiveness by employing our method

when applied to the example of architecture described in Chapter 3.4.

4.4.1 Analysis of Reliability

A sensitivity analysis examines key issues and determines which components are

reliability bottlenecks. In more detail, we vary the reliability of each component

and rank in accordance with their influence on the overall system. To demonstrate

this procedure, we used the same architecture provided in Figure 3.1 as well as

the same reliability and usage profile values.

Figure 4.4 depicts the variation of 10% of the reliability for each component

in the system. The reliability variation is shown in the x-axis where the middle

point corresponds to the null variation (i.e., 0.0) and the y-axis represents the

overall system reliability. We made a variation in each component to identify

which elements have more effect on the system reliability.

67



4.4 Demonstration

Figure 4.4: Sensitivity analysis with respect to reliability

After this, the components are ranked according to their variation slope to find

out which influence the system the most, as shown in Table 4.1. More specifically,

Table 4.1: Results of the component reliability analysis

Ci Ri Partial Derivative

C8 0.96 0.096

C5 0.98 0.088

C2 0.98 0.059

C4 0.96 0.043

C10 0.99 0.039

C1 0.99 0.039

C7 0.98 0.039

C3 0.99 0.034

C9 0.97 0.034

C6 0.95 0.030

components C8 and C5 are on the top of the list, which shows that they have

a greater effect on the overall system reliability and the architect must make

improvements to these components to increase the overall system reliability.

68



4.4 Demonstration

4.4.2 Usage Profile Analysis

The analysis of the system usage profile is shown in Figure 4.5, with the three

best and worst usage profile variations from the total of nineteen inter-component

transitions. To support Figure 4.5, Table 4.2 lists the sorted ranks obtained from

Figure 4.5: Sensitivity analysis with respect to the usage profile

the analysis. It can be concluded from the information that is presented that the

inter-component transition from C8 to C10 is the one that has a greater impact

on the overall system reliability. On the other hand, increasing the usage of the

connection between component C8 to C4 will have a negative effect. This can

be explained by the fact that the more we raise the usage profile of C8−C4, the

more the system will be used, increasing the chance of failing requests.

4.4.3 Making Structural Changes

The results of the sensitivity analysis carried out in the above sections reveal how

possible architectural improvements can be made. On the basis of this informa-

tion, we made some changes at the architectural level with the aim of improving

the overall reliability. In particular, the components that act as reliability bottle-

necks were identified as C8 and C5. The analysis of the usage profile suggested

there could be an improvement in reliability through modifying the transitions

in the C8 component by lowering the usage of C8− C4 and increasing the load

of the C8− C10.

69



4.4 Demonstration

Table 4.2: Results of the usage profile analysis

Ci-Cj Partial Derivative

C8-C10 0.087

C8-C4 0.029

C7-C9 0.024

C2-C5 0.002

C6-C7 0.001

C6-C8 1.5E-4

Thus, we propose an evolution of the architecture by making the following

architectural changes:

• Reliability improvement of 10% on components C5 and C8.

• Usage profile variation of 10% on C8− C4 and C8− C10.

• Changes to the topology by adding one extra component (C11). This com-

ponent replicates the functionality of C8 in order to reduce the connection

from C5− C8.

Figure 4.6 illustrates the new architecture that encompasses the above modifi-

cations and Table 4.3 shows the reliability values that are used for each component

in the system.

Table 4.3: Reliability values of the new architecture

R1 = 0.99 R6 = 0.95

R2 = 0.98 R7 = 0.98

R3 = 0.99 R8 = 0.971

R4 = 0.96 R9 = 0.97

R5 = 0.986 R10 = 0.99

R11 = 0.99

70



4.5 Automated Analysis

S1

S2

S3

S4

S5 S6

S7

S9 S8

S10C

0.6
0.2

0.2

0.5

0.7

0.3

1

0.4 0.6

0.3

0.10.3

0.3

0.6

0.4

0.5

0.1

0.9

0.825

0.175

F

From any 
other state

S11

1

Figure 4.6: State model of the new architecture

The estimated system reliability before the changes was of 85.12% and after

making the structural changes, the estimated system reliability rises to 90.23%,

leading to a reduction in unreliability of about one third.

As a result, we showed that our approach contributes to the improvement of

the overall system reliability by providing important insights into architectural

modification and evolution. The following section discusses how to automate the

analysis procedure to reduce the manual effort.

4.5 Automated Analysis

Just as in Chapter 3 we employed an automated method to predict the reliability

from a software architecture, in this chapter we also intend to perform a relia-

71



4.6 Related Work

bility analysis from a system in an automated fashion. This was undertaken by

employing the methods proposed in above sub-sections to vary the usage profile

and the reliability of the software constituents. Our main goal was to provide

the means for architects to test their system with a minimum effort and identify

bottlenecks and constituents elements that required improvements.

To automate the reliability analysis, we generated a stochastic model from

the software architecture and conducted a sensitivity analysis on its reliability

and usage profile parameters. Our approach varies these values directly in the

stochastic model and determines how the results change as the inputs are varied.

This makes it possible to decide which components or interconnections are having

a negative influence on the system and should be improved.

4.6 Related Work

Barais et al. [Barais et al., 2008] studied diverse state-of-the-art approaches to

evolve software architectures. They conclude that even though there are several

ADLs that enable architects to specify their software systems, most of them do

not provide means to evolve the architecture. Our approach adds value to these

ADLs by assessing the reliability at the software architecture level. In addition,

our approach is detached from the architecture, allowing it to be applied to any

available ADL that complies with the ISO/IEC/IEEE 42010 [ISO/IEC/IEEE,

2011] standard.

Gokhale et al. [Gokhale & Trivedi, 2002] and Lo et al. [Lo et al., 2005] perform

a sensitivity analysis on the reliability of a software architecture by varying the

expected usage profile and the reliability of each component. It allows to find

existent bottlenecks that are affecting negatively the overall reliability, such as

components that are overused or connectors that need to redistribute the system

load. Our approach differs from these by applying a non-linear variation on

component reliabilities, addressing the issue of exceeding the range of possible

values. In addition, our work is applied directly from an ADL specification,

making it possible to automatically build a suitable stochastic model to perform

reliability prediction, discarding the issues carried by manual activities (time-

consuming and prone to errors).

Our work tries to address some shortcomings identified by research surveys [Barais

72



4.7 Summary

et al., 2008; Goseva-Popstojanova et al., 2005; Immonen & Niemelä, 2008], such

as the lack of automated processes for reliability analysis and poor method vali-

dation. Thus, in this chapter we address these shortcomings by encompassing a

thorough analysis on reliability that allows to evolve a system and, at the same

time, providing support for the architect on paramount decisions and insightful

architectural trade-offs.

4.7 Summary

A sensitivity analysis of a specific non-functional property determines which ar-

chitectural elements require attention to improve the quality of the system. For

this reason, our approach varies the reliability of the components and usage pro-

file to allow architects to examine about the system quality, identify key issues

and support architectural evolution.

Hence, our method supports an analysis of the reliability and usage profile to

find its sensitive architectural constituents. This was achieved by employing a

novel technique to vary reliability and a ranking system that orders components

with respect to their influence on the overall system reliability. Moreover, we

demonstrated the applicability of our approach by analyzing the reliability of the

architecture provided. The information gathered in the analysis resulted in an

improved system which reduced the unreliability by one third.

Finally, we automated the analysis procedure by varying the architectural

parameters in the stochastic model. In this way, our approach provides the means

for performing a thorough analysis without requiring any effort or specialized

knowledge on the part of the architects to improve or evolve the designed artifact.

We believe this study has the potential to encourage the widespread adoption of

what-if simulations by practitioners without the complexity and error-inducing

potential of manual approaches.

73



Chapter 5

Implementation and Validation

Automated methods to estimate reliability early in the software development are

a great asset to architects since they enable them to test and analyze their own

products. These methods, allow them to improve their own designs without the

need to manually construct stochastic models and reconstruct them whenever a

change is made to the architecture. With this in mind, we implemented a tool –

Affidavit (5.1) – for the assessment of reliability which has analysis capabilities

accessible from current design tools and frameworks. Our approach was validated

by comparing our results with those of other approaches. In particular, we apply

the same scenarios and failure data as other studies (5.2) to validate our reliability

prediction method with and without reference to architectural styles (5.3).

5.1 The Affidavit Tool

The assessment of quality attributes in an early phase of the development serves

as a guidance for architects to reflect on software design as well as to identify key

issues. However, current practice lacks on processes, methods or techniques to

automatically estimate several quality attributes, namely reliability.

To overcome these limitations, we propose Affidavit as a tool that automati-

cally makes assessments and performs a thorough analysis of the reliability of a

software architecture. This is described using the Acme Architectural Descrip-

tion Language (ADL) [Garlan et al., 1997] and was developed as a plugin for

AcmeStudio [Schmerl & Garlan, 2004], designed to provide automated reliabil-

74



5.1 The Affidavit Tool

ity prediction [Franco et al., 2012] and analysis [Franco et al., 2013] within a

graphical Integrated Development Environment (IDE).

5.1.1 Implementation

The aim of Affidavit is to offer testing and analysis capabilities within design tools

and frameworks used by architects. In short, this work intends to be closer to

architects and ready for use by a simple plugin installation. Affidavit is available

as a plugin in the AcmeStudio framework and is depicted in the diagram in

Figure 5.1.

Figure 5.1: Affidavit diagram

The diagram of Affidavit depicts the use of the Acme Architectural Descrip-

tion Language (ADL) as input to generate a stochastic model that displays the

failure behavior of the system. This is possible with the aid of the Acme Tool

Developer’s Library (AcmeLib)[Garlan et al., 1997] developed by Software Engi-

neering Institute (SEI) at the Carnegie Mellon University (CMU). This library

allows third-party applications to parse the content of a Acme file and manage

the architectural model.

Thus, our approach provides two alternatives for the architect: (i) predict the

reliability or (ii) perform an analysis of the architecture under design.

75



5.1 The Affidavit Tool

The former implements the method outlined in Section 3.7 in which we trans-

late the ADL into a Discrete-Time Markov Chain (DTMC). The resulting DTMC

is solved by the Prism Model Checker Tool that provides a quantitative reliabil-

ity prediction of the architecture under design. The result allows architects to

investigate the proposed design and make changes and comparisons as well as

applying different styles to improve the predicted system reliability.

The latter applies the method discussed in Section 4.5 by performing a re-

liability or usage profile analysis on the designed architecture. Our approach

automatically generates a DTMC for each variation performed in the system and

ranks components and interconnections, in terms of their impact on the system

reliability.

The results of both the prediction and analysis can be observed in the “His-

tory View” depicted in Figure 5.1. This view serves as a log of the modifications

performed to the system and provides a description of the experiment along with

its ‘reliability outcome’. This view enables architects to find a previous arrange-

ment and compare architectural alternatives through the result of their reliability.

When a sensitivity analysis is performed, Affidavit shows a graphical representa-

tion of the obtained results, illustrated by the “Sensitivity View”.

The next section gives an example of the information provided in the Affidavit

Graphical User Interface (GUI).

5.1.2 GUI Example

The procedure of analyzing an architecture by the Affidavit tool is exemplified in

Figure 5.2.

As can be seen, the “History View” depicts the tasks carried out for the

designed architecture: reliability prediction or sensitivity analysis. Reliability

prediction is shown as a percentage value and is useful for comparing differ-

ent architectures, and giving user guidance on what are the differences between

one architecture and another. As regards the sensitivity analysis, this is shown

through a graph that relates the variations performed (x-axis) with the overall

system reliability (y-axis) where each line corresponds to a component. This

type of analysis assists the architects in deciding which components should be

improved, by identifying their impact on the overall quality of the system.

76



5.1 The Affidavit Tool

Figure 5.2: Overview of the Affidavit Tool

5.1.3 Experiments

The main goal of Affidavit is to assess and analyze system reliability from an

architectural perspective. We modeled two different scenarios to demonstrate

the usefulness and validity of our tool. The used architectures and reliability

values specified in this demonstration were not extracted from a real system and

do not represent a real scenario. Their purpose is only to support our method

and show the applicability of our tool. The two used scenarios have the same

architectural elements and reliability values, but they differ in the arrangement of

the components and in the applied architectural styles. A reliability value output

is obtained for each scenario from this arrangement and we conducted a detailed

analysis to establish which components or connections are affecting the overall

system reliability.

77



5.1 The Affidavit Tool

5.1.3.1 Scenario #1

The system used in this scenario, illustrated in Figure 5.3, is composed by a

fault-tolerant architecture with two equivalent systems. Each fault-tolerant sys-

Act.

12

Sensor

12

Act.

22

Sensor

22

Act.

21

Sensor

21

PM1 PM2

IOM2IOM1

Parallel Bus

Sensor

11

Serial Bus

Act.

11

Figure 5.3: Scenario #1 – Diagram

tem entails a reactive system that monitors the environment through sensors,

processes the information and acts with a predefined plan. In detail, the system

embodies the following elements:

• A Processing Module (PM);

• A Parallel Bus (PB);

• Serial Bus (SB);

• An Input/Output Module (IOM);

• Two Sensors (Sensor 1 and 2);

• Two Actuators (Act. 1 and 2).

78



5.1 The Affidavit Tool

Each sensor monitors a different function in the system and will invoke its

own actuator (i.e., Sensor1 invokes Actuator1, but not Actuator2). With regard

to the total number of requests performed by the system, we specify the usage

profile as follows: 40% of the requests are resolved by Sensor1 and the other 60%

are resolved by Sensor2.

Figure 5.4: Scenario #1 – Software Architecture

Thus, we modeled this scenario in AcmeStudio, as illustrated by Figure 5.4,

and specified the reliability values in accordance with what is shown in Table 5.1.

Table 5.1: Scenario #1 – Component reliabilities

Component PM1 PB1 IOM1 SB1 Sens11 Sens12 Act11 Act12

Reliability 0.95 0.98 0.85 0.80 0.99 0.92 0.99 0.95

Component PM2 PB2 IOM2 SB2 Sens21 Sens22 Act21 Act22

Reliability 0.95 0.98 0.85 0.80 0.94 0.91 0.98 0.93

Affidavit performed an analysis in the system that determined that the relia-

bility of the modeled system is of 80.3%. This means that from the total number

of requests performed to the system, 19.7% fail for some reason and cannot be

successfully resolved.

79



5.1 The Affidavit Tool

(a) Variation of the reliability of compo-

nents
(b) Variation in the system usage profile

Figure 5.5: Sensitivity Analysis of Scenario #1

A thorough sensitivity analysis to identify architectural bottlenecks was con-

ducted in accordance with the method outlined in Chapter 4 and the obtained

results are given in Figure 5.5. In detail, Graph 5.5(a) depicts the variation of

10% of the reliabilities of the different components in the system. In this graph

only the three best and worst reliability variations are illustrated from a total

of sixteen components. We rank the variations by calculating the derivative of

the reliability around the point where the variation is null (i.e., variation of 0%).

This ranking is shown through the graphic caption, where, from the left to the

right, the components are ordered in terms of a lower to a higher increase of the

impact on the overall system reliability.

In this scenario, components Act11, Act21 and Sens21 are those in which their

variation has less impact on the overall reliability, and can be considered to be

the diminishing returns in the system. On the other hand, components SB1, SB2

and IOM1 are those where their variation has the highest impact.

Regarding usage profile, Graphic 5.5(b) shows a variation of 50% in the load

of requests that are performed from the SB component to the Sensors. The

connection from SB1 to Sens11 shows that it is an already diminishing return,

but the increase in the usage profile from SB2 to Sens21 leads to an improvement

in the overall system reliability. In addition, Graphic 5.5(b) informs architects

that the load in the connection SB2 to Sens22 and Sens21 is not suitably balanced

and should be subject to change to obtain the maximum benefit from the system

reliability.

80



5.1 The Affidavit Tool

5.1.3.2 Scenario #2

In this scenario we applied the same architectural elements, reliability values and

usage profile as in Scenario #1. However, as can be seen from Diagram 5.6, it

differs in the applied styles and in the architectural structure. Specifically, we

Actuator 1

Act.

12

Act.

11

Actuator 2

Act.

22

Act.

21

Sensor 2

Sens

22

Sens

21

PM1 PM2

IOM2IOM1

Parallel Bus

Sensor 1

Sens.

12

Sens.

11

Serial Bus

Figure 5.6: Scenario #2 – Diagram

put together the two Serial Buses in parallel so that they could act as a backup

for each other, this acts as fault-tolerant communication channel. In addition, we

joined the Sensors and Actuators from the previous scenario and we setup them

in a fault-tolerant redundant arrangement.

Figure 5.7 illustrates the system representation in AcmeStudio, which was

used for predicting and analyzing system reliability.

In this scenario the predicted reliability was 91.1%, which represents an in-

crease of 10.8% to the previous scenario. It must be stressed that the components

are the same, but have simply been arranged differently.

Figure 5.8 depicts the sensitivity analysis performed on the system.

The variation in the reliability of the system components is illustrated in

Graph 5.8(a) and since we used the same reliability values as in Scenario#2,

the results are identical. The only difference is that the component Sens21 in

81



5.1 The Affidavit Tool

Figure 5.7: Scenario #2 – Software Architecture

(a) Variation in the reliability of compo-

nents
(b) Variation in system usage profile

Figure 5.8: Sensitivity Analysis of Scenario #2

the previous scenario is replaced by Act22 as one of the diminishing returns.

With regard to the usage profile, Graph 5.8(b) shows that increasing the load of

requests on the connection SB-Sens2 would increase the system reliability.

82



5.2 Automated Reliability Prediction Validation

5.1.3.3 Conclusion

The examples provided show that the Affidavit tool is able to assess different

architectures while taking account of the distinct styles applied. In addition, it

provides the means for architects to compare, test and validate different architec-

tural alternatives that would fulfill the quality requirements established by the

stakeholder. Finally, the sensitivity analysis recommends architects about what

should be the future direction to improve the system.

As an example of the valuable information obtained from a thorough analysis,

in Scenario#2 we increased by 10% the reliability of components SB1, SB2 and

IOM1, as well as, increasing the load of requests sent to the component Sens2

by 20%. this resulted in an increased reliability of 92.7% which represents an

improvement of 12.4% and 1.6%, when compared with Scenario #1 and #2, re-

spectively.

5.2 Automated Reliability Prediction Validation

To validate the accuracy of our reliability prediction method, we compared the

results of our approach with the values obtained from the studies of Cheung

[1980], Lo et al. [2005] and Gokhale & Trivedi [2002].

All the compared publications use the same architecture, as illustrated in

Figure 3.1(b), and assign a set of different reliability values for components, as

depicted in Table 5.2.

The same software architecture, usage profile and reliability values were ap-

plied from each of the publications to compare and validate our results. With

regard to other approaches, Cheung [1980] used a composite method through

an absorbing DTMC to predict the reliability of an architecture. Lo et al. [2005]

made use of a hierarchical method to predict the reliability and Gokhale & Trivedi

[2002] showed the results obtained from using both methods of the state-based

approach, the composite and hierarchical methods.

Table 5.3 shows the obtained reliability results between the different ap-

proaches.

83



5.2 Automated Reliability Prediction Validation

Table 5.2: Component reliabilities

Ri Cheung [1980] Gokhale & Trivedi [2002] Lo et al. [2005]

1 0.999 0.999 0.99

2 0.980 0.980 0.98

3 0.990 0.990 0.99

4 0.970 0.970 0.96

5 0.950 0.950 0.98

6 0.995 0.995 0.95

7 0.985 0.985 0.98

8 0.950 0.950 0.96

9 0.975 0.975 0.97

10 0.985 0.985 0.99

Table 5.3: Validation of the reliability prediction method

Literature Our Approach Difference

Cheung [1980] 0.8299 0.8299 0.0

Lo et al. [2005] 0.8482 0.8512 0.003

Gokhale [2002]
Composite 0.8299

0.8299
0.00

Hierarchical 0.8280 0.0019

Viewed in detail, our method provides similar results when both composite

and hierarchical methods are compared. In the former, our method has no dif-

ference, and in the latter - hierarchical methods - it has a maximum of 0.003

difference. It can be concluded from these results that our approach shows iden-

tical values which validate the correctness of our reliability prediction method.

84



5.3 Validating Architectural Styles

5.3 Validating Architectural Styles

In the second part of our validation procedure, we confirmed that our approach

generates a correct mathematical model and provides an accurate reliability value

when an architectural style is applied.

The input architectures used to test the validity of our approach are those

shown in Section 3.6. They were modeled on Acme ADL and our approach was

adopted to generate the mathematical model. Finally, they were loaded into the

Prism model checker tool, to check and simulate the architecture. We tested

the fault-tolerant style with one active and two redundant components and the

parallel style with three parallel components.

The comparison between the results obtained from our approach and the ones

achieved through the methods employed by Wang et al. [2006], are depicted in

Table 5.4.

Table 5.4: Validation of the architectural styles

Style Wang et al. [2006] Our Approach Difference

Batch-Sequential 0.9248722 0.9248722 0.00

Parallel 0.8945088 0.8945088 0.00

Fault-tolerance 0.9503923 0.9503923 0.00

Call-and-return 0.9317644 0.9317631 ≈ 0.00

With regard to the values provided by previous research studies, our results

are identical, which shows that our approach generates accurate and correct math-

ematical models when using architectural styles.

5.4 Summary

As a means of supporting the design phase of the software development, we im-

plemented a plugin that could be integrated in a current architectural framework

tool. Our goal is to provide the actual means by which practitioning architects

can test and analyze their products with a minimum effort. The provided plugin

85



5.4 Summary

performs a reliability assessment and a thorough analysis of the architecture to

find weak points in the architecture that could be improved.

To test the validity of our reliability prediction method, we applied the same

case-studies used by other research approaches to compare the obtained results.

The comparison process shows that when employing the composite method, our

automated approach had exactly the same result and differed at most by 0.003%

from the hierarchical one. Moreover, we tested our approach when dealing with

different architectural styles and the results showed identical reliability outcomes.

In light of the obtained data, it can be concluded that our approach has validity

when compared with classical and state-of-the-art reliability methods.

86



Chapter 6

Application to Self-Adaptive

Systems

In the modern world, systems are becoming more autonomous and independent

in an attempt to relieve humans of having to carry out routine actions such as

driving or doing housework, by introducing self-driving cars, RoombaTM vacuum

cleaners or automated cooking robots. These self-ruling autonomous machines

are today’s future, some inspired by sci-fi movies of Hollywood, others originating

from the mind of creative people. However, these systems share a common-base

in which they are able to modify their structure or behavior during runtime in

order to meet specified goals, such as a clean house or driving from point A to B.

These systems are monitored to obtain runtime properties which are analyzed

to identify conditions where the system may be deviating from the desired quality

goals. In these situations, adaptation courses are planned and executed to get

the system into the right track. However, in view of the critical nature of the sys-

tem, adaptations should be planned with care and take account of every possible

scenario. For example, self-driving cars have strict safety requirements and when-

ever an adaptation is planned, it must ensure that no human lives (passengers or

pedestrians) are put at risk.

The area of self-adaptive systems addresses the issue of autonomous software

and hardware through sensory feedback mechanisms. Current adaptation ap-

proaches vary from simple algorithms that are condition-action based to other,

more complex approaches that involve Markov Decision Processes (MDPs) or

87



6.1 Self-Adaptive Systems

utility-theory [Cheng, 2008]. Generally, these decision-making algorithms act ac-

cording to a predefined set of operators considered to be static [Fredericks et al.,

2013; Maćıas-Escrivá et al., 2013]. These static operators defined by humans are

only effective in the specific domains or expected contexts in which they have

been configured [Salehie & Tahvildari, 2009]. In systems with a high number of

runtime and environment variables, the possible adaptation scenarios and con-

sequences may rise exponentially, and become almost unfeasible for humans to

reflect on in every possible combination. As a result, under unexpected conditions

a system may fail to select the best strategy which may lead to a degradation of

the provided services.

To overcome the limitation that occurs with static operators responsible for

triggering adaptations, we propose a method that automatically predicts whether

an adaptation strategy fulfills the desired non-functional goals, even in unex-

pected conditions. This involves adopting the approach outlined in Chapter 3

to generate stochastic models at runtime. In this way, we are able to generate a

model for each strategy to evaluate their impact on the failure behavior of the

system. The result allows the system to select a proper adaptation that has a

positive impact on the desired quality attributes.

In short, our proposal seeks to improve the planning phase of self-adaptive

systems, by automatically anticipating the effect of each adaptation impact on

non-functional properties. In view of this, this chapter sketches the background

of self-adaptive systems (6.1) and examines how the automated generation of

stochastic models can be integrated with those systems (6.2). Thus, an experi-

ment (6.3) was carried out to validate the effectiveness of our approach in predict-

ing the outcome of an adaptation strategy, and finally, we examine the obtained

results (6.4). Finally, we describe the related work to our approach (6.5) before

summarizing the contributions of the proposed method (6.6).

6.1 Self-Adaptive Systems

The interest in self-adaptation by the research community can be noted by the

number of published research articles. In particular, it is worth recording that

the number of articles with the term self-adaptive in its title was 6.690 in 2008

and in 2012 this number rose to 10.800, an average increase of 1.027 submitted

88



6.1 Self-Adaptive Systems

articles every year1. With the rise in interest in this topic, the number of proposed

self-adaptive solutions also increased.

In short, a system is considered to be self-adaptive when it modifies its own

behavior in response to changes in its operating environment [Oreizy et al., 1999].

A widely adopted self-adaptive approach is the MAPE-K model developed by the

IBM Autonomic Computing Initiative [IBM Corp., 2004]. Its conceptual model is

depicted in Figure 6.1, and entails a separation of the adaptive phases. In specific

Controller

Monitor Execute

PlanAnalyze

Knowledge

Managed System

Figure 6.1: The IBM Autonomic MAPE reference model

terms, this model illustrates a closed-loop process, and distinguishes between the

controller, an entity responsible for handling the adaptation process, and the

managed system, the entity subject to adaptation (i.e., target system). The

MAPE-K includes a knowledge-base which abstracts the system, contains data,

and models decisions and behavior, by enabling the separation of adaptation

responsibilities and allowing the different MAPE phases to be coordinated. It

has the following functions:

• Monitoring – it collects data about relevant properties from the managed

system through probes;

1Values extracted from the Google Scholar engine.

89



6.2 Reliability Prediction within Self-Adaptation

• Analyzing – it detects if the system is in a condition to be adapted. This

occurs when a property value is outside an expected range or quality goals

become degraded;

• Planning – this determines a course of action based on quality goals, differ-

ent strategies and a system model;

• Execution – this carries out the course of action planned in the previous

phase to adapt to its behavior.

6.2 Reliability Prediction within Self-Adaptation

To solve the problem of planning an adaptation through static operators we

propose a quantitative prediction method to ensure the desired goals are achieved.

We focus on failure avoidance goals and as such, we propose employing a method

to predict the failure behavior of a system. In detail, the proposed method from

Chapter 3 is employed to support the planning phase of a self-adaptive system.

Figure 7.2 provides an overview of our approach and its integration into the

different phases of the MAPE-K loop.

In concrete terms, our approach begins by collecting runtime metrics from a

running system to update its architectural description. This process ensures that

at each recurring analysis phase, the model of the system is updated to the current

environment and system conditions. In the Analyze phase, our approach makes a

copy of the software architecture by following each possible adaptation strategy

and applies its changing operators. These operators are defined as the changes

that each strategy would perform in the managed system if they were selected.

Thus, our method generates a model that represents the system behavior for

each adaptation strategy. To solve the generated model, our approach relies on a

model checking tool to predict the quality of the impact. In the final stage, our

approach supports the planning phase by updating constant weights or impact

vectors which can be used for comparative purposes and helps decide what is the

best strategy to achieve the desire quality goals.

90



6.3 Case-Study

Controller

Knowledge

Managed System

M
on

ito
r Execute

Analyze Plan

Model

3. Generate

Collect
Runtime
Metrics

Software
Architecture

1. Update SwA

Impact
vectors

Model 
Checking

Tool2. Copy SwA and
apply the operators

 of each strategy

4. Solve

Software 
Architecture

5. Update

Figure 6.2: A general overview

6.3 Case-Study

To test the effectiveness of our approach, we adopted a “de facto” standard

case-study from the self-adaptive community, the Znn.com [Cheng, 2008]. In this

section, we outline the experimental setup along with an example of our approach

by generating stochastic models for each adaptation strategy.

6.3.1 Adopted self-adaptive system

In response to the recent rise of interest in the self-adaptive topic, Villegas et al.

in 2011 established a framework to evaluate self-adaptive solutions by classifying

them through a set of dimensions and introducing a set of metrics to assess how

adaptations are performed. Examples of the metrics used to evaluate different

adaptive systems include the following: accuracy (i.e., whether adaptation goals

are met), overshoot (i.e., the amount of computational resources used) or even,

settling-time (i.e., the time the system needs after an adaptation to achieve the

91



6.3 Case-Study

desired state).

On the basis of the study carried out by Villegas et al. [2011], we chose the

Rainbow self-adaptive system [Cheng & Garlan, 2012; Cheng et al., 2009; Gar-

lan et al., 2004] which supports quality-driven goals and quantitative metrics.

Moreover, the selected solution is based on the MAPE-K approach from IBM

Autonomic Computing Initiative and makes use of the Acme as the basis Ar-

chitecture Description Language (ADL) as does our proposed method which is

outlined in Chapter 3. Rainbow is an architecture-based self-adaptive system

designed by the Carnegie Mellon University and its framework is depicted in Fig-

ure 6.3 which shows that it consists of two main subsystems: the controller and

target.

Controller

Model 
Manager

Target System

ProbesEffectors

Adapt Monitor

Gauges

Architecture
Evaluator

Adaptation
Manager

Strategy
Executor

Figure 6.3: The Rainbow framework

The controller monitors the target system through probes and gauges which

update properties in the architectural model managed by the Model Manager.

92



6.3 Case-Study

The Architecture Evaluator evaluates the model to determine if the system is

operating within an acceptable range of quality goals. If the evaluation finds that

the system is not operating under normal conditions, it invokes the Adaptation

Manager which is responsible for selecting a more suitable adaptation strategy.

Each strategy involves a bundle of simple courses of action denoted as adaptation

tactics. After a strategy has been selected, the Strategy Executor is responsible

for applying a sequence of actions to the target system, so that the selected

strategy is instantiated in the system.

The target system is defined as the resource that will be monitored and

adapted to meet the self-adaptation goals. The environment consists of the ex-

ternal world that interacts with the target system. It is considered to be non-

controllable and at the same time, capable of influencing the runtime properties

(e.g., hardware, physical context or network).

6.3.2 Target system

We defined the target system as being the Znn.com, a typical infrastructure for a

news website and its diagram is depicted in Figure 6.4. It has a tiered architecture

Client 1

Client 2

WebServer

1

WebServer

2

WebServer

n

Load-

Balancer
DataBase

.

.

.

Figure 6.4: The Znn.com diagram

with a set of web-servers that serve content, both textual and graphical, from

back-end databases to clients through a front-end presentation logic. In addition,

it uses a load-balancer to reroute the requests from the client to a pool of servers.

93



6.3 Case-Study

The number of active servers will depend on the selected adaptations required to

fulfill the system goals. It must be stressed that Znn.com is an actual platform

running in actual servers using a standard Apache distribution. Znn.com is not

a simulation model.

6.3.3 Experimental design

Self-adaptive systems are designed with a set of operators, weights, preferences

or values to support their decision-making and drive adaptations to meet desired

quality goals. In this section, we define the static operators that are usually

configured by the human operator in the Znn-like system, and that must be

updated automatically by the self-adaptive middleware in accordance with the

quality predictions provided by our approach.

6.3.3.1 Adaptation goals

As with a typical news provider, Znn.com focuses on providing news content to

its customers in a reliable way while keeping the operating costs to a minimum.

In short, we identify three quality objectives for self-adaptation:

• Availability – this expresses the probability that the system is operating

properly when it is requested for use. In specific terms, it is a long-run

measure that takes into consideration the reliability of each time-frame and

the ‘repair actions’ as adaptations executed in the target system. The goal

of this quality attribute is to maximize its potential, even if it has to incur

a higher operational cost;

• Operational Cost – this measures the number of computational resources

that need to be available during the experiment. Each server in the pool

of servers is deployed through a Virtual Machine (VM) and the goal is to

reduce the number of VMs that are being kept to a minimum. For example,

the system switches off virtual machines when processing a low number of

requests;

94



6.3 Case-Study

• Utilization – this defines the amount of work received by the system in

terms of the maximum load that is supported by all the available servers.

For example, if the current work that is being processed reaches the maxi-

mum capacity that all the servers are able to process, the system may have

to adapt by enlisting a new server to increase the total load that can be

handled.

6.3.3.2 Adaptation metrics

We monitored the target system to collect data for each ten second time-frame —

the period between adaptations — and obtained the following runtime properties:

• Active resources: the number of webservers that are active and responding

to requests;

• Reliability: defined as ”functioning correctly” [Storey, 1996] and in this

case-study it refers to the number of non-failed requests between recovery

actions (i.e., adaptations). Hence, we define the failure behavior as a request

that takes an unreasonable time to receive a response (i.e., > 2000 ms) or

when the returning code is not successful (i.e., HTTP status code 6= 200);

• Load: indicates the number of requests that have been responded to within

the time-frame over the total maximum capacity the system can hold.

6.3.3.3 Adaptation strategies

The selected adaptations of this particular case-study focus on the server pool.

Hence, depending on the current state of the runtime properties of the system,

the controller may select one of the following strategies:

• Enlist server – Enables a server, if there is a spare one ready to be activated;

95



6.3 Case-Study

• Discharge the slowest server – If there are at least two active servers and

no failure has occurred, our approach will discharge the slowest one (i.e.,

the one with the highest value of mean response time);

• Discharge the least reliable server – If there are at least two active servers

and at least one failure has occurred, the system will discharge the less re-

liable (i.e., the server with the highest failure rate).

6.3.3.4 Static adaptation operators

The self-adaptive solution used in this study, Rainbow, uses utility-theory as its

decision-making algorithm. This type of algorithm relies on utility functions, pref-

erences and impact vectors to ensure that adaptations fulfill the defined quality

goals which are listed below.

Utility functions The utility-theory measures the monitored system proper-

ties according to a utility function. It provides a score which reflects how proper-

ties are behaving when seeking to achieve the proposed goals. These values and

functions are defined in the design phase of the self-adaptive system. An illus-

trative example is given in Table 6.1. The values that fall in intermediate points

are linearly extrapolated. From Table 6.1 it can be inferred that the utility is

higher for reliability values close to 100% and lower values are heavily punished

because of their utility function. In addition, the defined values lead to a low

consumption of computational resources by designating one active web-server as

the best utility outcome of the system. With regard to the experienced load, the

system favors a low utilization capacity which makes it possible to decide, when

the number of requests increases, and whether it is better to activate one more

active resource or allow the load to increase.

Utility preferences The preferences define the relative importance of the qual-

ity dimensions and serve as an example to prioritize quality attributes. They are

shown in Table 6.2 and it can be noticed that availability is twice as important

as the cost or utilization of the system.

96



6.3 Case-Study

Table 6.1: Utility Functions

Reliability Active Resources Load

Value (%) Utility Value Utility Value (%) Utility

100 1.0 0 0.0 100 0.0

99 0.88 1 1.0 90 0.05

95 0.54 2 0.85 80 0.1

90 0.3 3 0.55 70 0.4

85 0.16 4 0.3 60 0.5

80 0.09 50 0.6

75 0.05 40 0.7

50 0.002 30 0.8

0 0 20 0.9

10 0.95

Table 6.2: Utility preferences

Percentage

Availability 50%

Cost 25%

Utilization 25%

Total 100%

Although they may not be achieved optimally, these preferences can be used

to solve resource constraints (e.g., on a server discharge, the remaining servers

97



6.3 Case-Study

may not be able to process the current demand of requests) or trade-offs between

certain quality attributes.

Impact Vectors The impact of a strategy on each of the quality dimensions

is represented as a vector of cost-benefit values between the strategy and each

quality dimension. Table 6.3 shows the adopted values in our case-study and it

should be noted that our Enlist Server strategy increases both availability and

the used computational resources, at the same time that it reduces the system

utilization, since it has more machines to process the same demand of requests.

Conversely, both Discharging Server strategies will reduce costs and increase the

use of the system. When deciding to discharge an unreliable server, the system

will increase availability, but it will be kept the same when discharging the slowest

server from the pool.

Table 6.3: Static impacts on the quality dimensions for each strategy

Availability Cost Utilization

Enlist a

Server
+10% +1.0 -20%

Discharge

Unreliable

Server

+1% -1.0 +20%

Discharge

Slowest

Server

0.0% -1.0 +20%

98



6.3 Case-Study

Utility rate calculations Adaptation strategies are ranked through the utility

metrics shown above and illustrated in the following formula:

Utility =(reliability + Impact (e.g., +10%))× Availability Preference (50%)

+ (active resources + Impact (e.g., +1%))× Cost Preference (25%)

+ (load + Impact (e.g., -20%))× Utilization Preference (25%)

To calculate the utility for each strategy we rank the current monitored prop-

erties together with their impact on the quality goals when applying the proposed

adaptation strategy. The controller performs this assessment to plan an adap-

tation that best achieves the non-functional requirements of the system. As a

result, the controller chooses the strategy that has the highest utility value.

6.3.4 Example

To show the effectiveness of applying quantitative verification methods at run-

time, we provide a demonstrative example that provides details of the generation

of the stochastic model and utility calculations. Figure 6.5 illustrates the archi-

tectural model of the Znn.com taken from a snapshot of an actual run of the

system.

R
web0

 = 1.0

R
web1

 = 1.0

R
web2

 = 0.9

R
LB0

 = 1.0

T
0

 = 0.33

T
1

 = 0.33

T
2

 = 0.33

R
DB

 = 1.0

Figure 6.5: Demonstration of the Architectural Model

The runtime metrics obtained from this time-frame are as follows:

• Reliability: 95.7%;

• Active Resources: 3 active web-servers;

99



6.3 Case-Study

• Load: 40%.

This demonstration shows three active web-servers one of which is failing to re-

spond to client requests (i.e., Web2). In these circumstances, only three adapta-

tion strategies are eligible: non-adaptation, enlist server and ‘discharge the least

reliable’. The strategy of ‘discharging the slowest server’ is not eligible, because

failures have occurred in the system (explained in Section 6.3.3.3). To cope with

the failure and conduct the system to achieve the desired goals, an adaptation

strategy must be selected and executed to alter the current behavior. An adap-

tation plan is determined through assessing the utility outcome from the possible

strategies and selecting one that has the best utility outcome. In the following

sub-sections, we outline the calculation process of the two scenarios under assess-

ment: constant weights and their dynamic update. The former entails adopting

traditional self-adaptive approaches with constant weights and static adaptation

operators. The latter describes our approach by predicting the behavior of each

strategy and dynamically updating these static operators.

6.3.4.1 Constant weights

This test shows the utility calculations for the traditional self-adaptive approach

which rely on constant weights or impact vectors. In this particular time-frame,

the static approach will pick the strategy with the highest utility, the Enlist

Server, as will be demonstrated.

No adaptation

UtilityNA = 0.6 (95.7% reliability)× 50% +

+ 0.55 (3 active resources)× 25% +

+ 0.7 (40% load)× 25%

= 0.6125

100



6.3 Case-Study

Enlist Server

UtilityES = 1.0 (95.7% + 10% = 100% reliability)× 50% +

+ 0.3 (3 + 1 = 4 active resources)× 25% +

+ 0.9 (40%− 20% = 20% load)× 25%

= 0.80

Discharge the Least Reliable

UtilityDLR = 0.68 (95.7% + 1% = 96.7% reliability)× 50% +

+ 0.85 (3− 1 = 2 active resources)× 25% +

+ 0.5 (40% + 20% = 60% load)× 25%

= 0.6775

6.3.4.2 Dynamic update of weights

Our approach predicts the behavior of each strategy by applying its changing

operators to the architectural model. In other words, we apply to the stochastic

model the same changes that a strategy would perform if it was selected. For

example, if a strategy encompasses the discharge of a web-server as the chang-

ing operator, the system is modeled accordingly and the respective web-server

is removed. Following this, we illustrate the modified models used to predict

reliability and examine the utility calculations used to select the best strategy.

No adaptation

UtilityNA = 0.6 (95.7% reliability)× 50% +

+ 0.55 (3 active resources)× 25% +

+ 0.7 (40% load)× 25%

= 0.6125

Enlist Server The modified architecture is illustrated in Figure 6.6, its gener-

ated Prism file is shown in Appendix A.1 and the utility calculations are shown

afterwards.

101



6.3 Case-Study

T
3

 = 0.25

R
web1

 = 1.0

R
web0

 = 1.0

R
web3

 = 1.0

R
web2

 = 0.9

R
LB0

 = 1.0

T
0

 = 0.25

T
1

 = 0.25

T
2

 = 0.25

R
DB

 = 1.0

Figure 6.6: Architectural changes for the Enlist Server strategy

UtilityES = 0.75 (97.5% reliability)× 50% +

+ 0.3 (3 + 1 = 4 active resources)× 25% +

+ 0.9 (40%− 20% = 20% load)× 25%

= 0.675

Discharge the Least Reliable The modified architecture that is based on this

strategy, is illustrated in Figure 6.7, its generated Prism file is in Appendix A.2

and the utility calculations are following shown.

R
web0

 = 1.0

R
web1

 = 1.0

R
LB0

 = 1.0

T
0

 = 0.5

T
1

 = 0.5

R
DB

 = 1.0

Figure 6.7: Architectural changes for the Discharge of the Least Reliable strategy

102



6.3 Case-Study

UtilityDLR = 1.0 (100% reliability)× 50% +

+ 0.85 (2 active resources)× 25% +

+ 0.5 (40% + 20% = 60% load)× 25%

= 0.8375

The results of the utility calculated by both static and dynamic approaches

are summarized in Table 6.4 and discussed in the following sub-section.

Table 6.4: Utility results from adaptation strategies

No Adaptation Enlist Server
Discharge Least

Reliable

Constant Weights 0.6125 0.80 0.6775

Dynamic Update 0.6125 0.675% 0.8375

6.3.4.3 Discussion of Results

The obtained results from the above demonstration show that when a server

is failing, the traditional self-adaptive approach based on static impact vectors,

gives preference to enlisting a new server rather than discharging the failed one.

This measure would add a new web-server, but not correct the failure.

On the other hand, our method performs reliability prediction to anticipate

the impact of each strategy. This automated method allows architects to abstract

from defining static vectors where it is hard achieve a precise impact and also to

go beyond the static approach in unexpected or untested conditions, such as the

above demonstration suggests.

One may argue that static impact vectors could be tuned or rearranged to

account for this situation; however, another untested or unexpected condition

may arise from this. These conditions are caused by the large state space of

possibilities, which in this example one should account with three adaptation

strategies, three runtime metrics and their utility values as well as preferences

and impact vectors. Furthermore, our method relies on quantitative verification

103



6.4 Evaluation

of reliability at runtime to predict the impact vectors and reduce the uncertainty

at design time of estimating them. In conclusion, our approach makes better

decisions by avoiding the constant weights required in the traditional self-adaptive

approach.

6.3.5 Workload

We tested our approach with a realistic workload which can trigger different

adaptations. More precisely, our workload is based on an Internet phenomenon,

known as Slashdot effect or flash crowd. This phenomenon is characterized by a

low-traffic website which may suddenly be inundated by visitors for a period of

time due to, for example, a dramatic news announcement or alternatively, it may

be redirected from a highly-visited website.

Our workload is depicted in Figure 6.8 and was patterned after the collection

of realistic traffic from the event. The collected data of the event lasted twenty-

four hours which we scaled down to one hour, keeping a similarity to the ‘visit

traffic pattern’ as follows:

1. 1 minute of low activity;

2. 5 minutes of a sharp rise in incoming traffic;

3. 18 minutes of high peak requests;

4. 36 minutes of a linear decline in requests, also known as the ramp-down

period.

6.4 Evaluation

For validation purposes, we compared three different approaches: no-adaptation,

traditional decision-making and our dynamic update of adaptation weights. In

more specific terms, the first approach entails a non-adaptive solution in which all

the four servers are active and ready to respond to client requests (i.e., 4 Servers).

This approach aims to show the benefits of using adaptive solutions rather than

a non-adaptive one. The second approach consists of human configured values

104



6.4 Evaluation

Figure 6.8: Request load of the Slashdot effect

(i.e., Human Optimized) to drive adaptations and shows the traditional decision-

making algorithm. The third and last approach under comparison, includes the

approach proposed in this paper and uses the runtime prediction of reliability to

estimate the impact of each possible adaptation strategy (i.e., Impact Prediction).

The experimental procedure consists of two testing scenarios: Control run

and Fault-injection. In the former, we compare the approaches under normal

conditions while, in the latter we inject faults to trigger adaptations.

6.4.1 Control run

In this test, the system is in normal conditions without any injected fault or

crash to ensure that both self-adaptive methods achieve their quality goals. The

results are depicted in Figure 6.9 and as can be seen, there is a comparison

between non-adaptive (4 servers), traditional self-adaptive (human optimized)

and our self-adaptive proposal (impact prediction).

Figure 6.9(a) shows the throughput in number of processed requests (success-

ful and unsuccessful requests) during each 10 second time-frame. As can be seen,

the results show consistency between the tested scenarios and there is only a dif-

ference between them during the high-peak period of requests, when the scenario

with more active servers will respond to more requests. Table 6.5 supports this

claim by including a higher number of processed requests for the scenario with

no adaptation and four active servers.

105



6.4 Evaluation

(a) Throughput (b) Response Time

(c) Reliability (d) Active Resources

Figure 6.9: Graphic results for the Control Run

Figure 6.9(b) shows the response time for each scenario in milliseconds with

a granularity of ten seconds. An average response time is calculated for each ten

second time-frame. An increase in the response time occurs during the high-peak

period of requests, and returns to normal values in the ramp-down. Moreover, all

the graph series have similar results, although between 6 and 24 minutes (the high

peak period) both self-adaptive approaches have unstable results. This instability

is due to the enlisting and discharging servers, although the results still remain

within the threshold of acceptable response times (i.e., below 2000 milliseconds).

Figure 6.9(c) shows the reliability through the rate of successful requests for

each time-frame. The non-adaptive approach has a constant 100% of reliability

throughout the test while the self-adaptive ones show some low peaks. These

low peaks represent a very low number of failures (7 in the human optimized

106



6.4 Evaluation

Table 6.5: Control Run results

N. Requests Availability (%) VMs Hour

4 Servers 1532989 100.0 4.0

Human optimized 1425479 99.999 1.9

Impact prediction 1437780 99.999 1.8

and 13 in the impact prediction) and are due to lost requests between switching

servers on and off. Table 6.5 supports these statements by providing the long-run

availability values and it can be seen that both self-adaptive approaches have five

nines, while the non-adaptive does not register any failure.

The number of active servers during the experimentation is shown in Fig-

ure 6.9(d). The non-adaptive approach has a constant number of active servers,

although self-adaptive ones have variations especially when there is a high de-

mand for requests.

In conclusion, Figure 6.9 and Table 6.5 show that both self-adaptive ap-

proaches achieve similar results when compared with the most expensive non-

adaptive solution. During this test, there are no significant advantages in apply-

ing our method for predicting the impact for each strategy and this was hardly

the purpose of this experimentation. The set test is designed to show that both

self-adaptive solutions achieve their adaptation goals, and result in similar and

comparable results to the most expensive and available non-adaptive solution.

However, the results for both the self-adaptive approaches are similar and thus

it can concluded that runtime modeling and prediction of a quality attribute do

not have an adverse effect on the performance of the system or the achievement

of quality goals.

6.4.2 Fault injection

Human operators are often considered the weak link and the proportion of errors

that can be attributed to people ranges from 0.1% to 30%, depending on whether

the operator is handling simple routine operations or undergoing a high level of

stress [Kirwan, 1994]. In view of this, we set up an experiment that injects a fault

107



6.4 Evaluation

in a PHP file that corresponds to a mistake introduced by the developer. The fault

consists of a delay introduced in each request that leads to service degradation

by increasing the time each request is resolved by between 1.5 and 2.5 seconds,

following an uniform distribution. The rationale behind the specified values is

that a request is regarded as unsuccessful if it takes more than two seconds to be

resolved. Thus, the introduced delay allow some requests to be resolved within

the time regarded as successful and others to exceed the requisite amount of time

leading to failures.

(a) Throughput (b) Response Time

(c) Reliability (d) Active Resources

Figure 6.10: Graph results for the Fault Injection experiment

The injected fault only affects one server and is introduced 10 minutes after

the start of the experiment. Figure 6.10 shows the results for this experiment in

which we compared the best of non-adaptive (4 servers); these include both self-

adaptive approaches and a run that we consider to be the optimal adaptation.

108



6.4 Evaluation

This optimal adaptation assumes that the system knows when and where the

failure will occur, so it proceeds by disabling the failing server and enlisting a

spare one. This ’ideal’ adaptation is considered to be unrealistic in the real

world, since it assumes knowing a priori when and where to apply a recovery

action. The goal of this test is to keep a record of the best possible adaptations

and identify how close other adaptation methods get to this ideal adaptation.

Table 6.6 includes a complete list of the performed tests.

Table 6.6: Fault injection results

N. Requests Availability (%) VMs Hour

4 Servers 1110584 95.752 4.0

Human optimized 1096751 95.682 3.6

Impact prediction 1417786 99.981 1.9

Optimal adaptation 1523411 99.999 1.6

The throughput results are given in Figure 6.10(a) and show an abrupt fall

in the number of processed requests at 10 minutes due to the introduction of a

delay. It can be seen that the non-adaptive (4 Servers) approach cannot recover

from the ‘failing behavior’, and leads to an increase of response time and a decline

in reliability as shown in Figures 6.10(b) and 6.10(c), respectively.

In both 4 servers and in human optimized approaches, the number of pro-

cessed requests shown in Figure 6.10(a) falls sharply. The reason for this is that

the load-balancing policy distributes the same amount of work among the various

active servers. To keep equality among the servers, the load-balancer waits for

all the responses before distributing a new set of requests. For this reason, if the

failing server remains in the pool, the load-balancer has to wait for its response

which causes a delay and, thus, reduces the number of processed requests.

With regard to the human optimized run, Figures 6.10(a) and 6.10(c) show

an abrupt fall in the number of processed requests as well as in reliability. Fig-

ure 6.10(d) illustrates its adaptation process which consists of increasing the num-

ber of resources to cope with the introduced delay. However, since it just enables

more servers and keeps the failing server active, the reliability and performance

109



6.4 Evaluation

will always be affected, since the failing server has to respond to requests and the

others will have to wait for it.

On the other hand, in the impact prediction there is clearly also a fall in

reliability and throughput. However, by predicting the impact of each adapta-

tion strategy, it first decides to discharge the failing server and then adds more

resources to cope with the demand for requests, as seen in Figure 6.10(d) and

demonstrated by the utility calculations set out in Section 6.3.4.2. As a result,

our method quickly triggers proper adaptations to cope with this kind of erratic

behavior, by providing a high number of processed requests and a low number of

failures throughout the rest of the experiment.

These results confirm that unexpected or untested conditions may have a

negative effect on the achievement of quality goals when using constant weights

are used to trigger adaptations. Moreover, Table 6.6 suggests that the impact

prediction has good overall results with lower cost and better availability than the

other approaches. Moreover, it can also be confirmed that runtime modeling and

prediction of quality attributes positively influence decision-making in unexpected

or untested conditions.

The consequences of injecting a fault are only undetectable in the optimal

adaptation. This is because the presence of the fault is known beforehand, and

thus appropriate measures are taken to repair the fault before it can lead to

a failure. This means we can achieve an optimal result for the self-adaptive

system under fault injection. However, this scenario might be unrealistic, since

we assume that the system knows when and where the fault will be injected. In

Table 6.6 it can be observed that our approach obtains excellent values regarding

availability and costs which are close to the ideal and unrealistic results of the

optimal adaptation.

In short, both human optimized and impact prediction solutions can be recov-

ered from the erratic behavior, although the chosen adaptation strategies differ.

More precisely, both adaptive approaches have configured the enlisting server

strategy to improve availability (as outlined in Section 6.3.3.4). Although this

assumption may have a positive effect in most cases, it is not always true as

shown by this experiment. Hence, when the failure occurs, the human optimized

solution selects the enlisting server strategy to increase availability, as shown in

Figure 6.10(d), until it reaches the maximum size of the server pool. If our setup

110



6.4 Evaluation

scenario had more available servers, the human optimized approach would have

reached the maximum pool size too. However, our approach predicts the impact

of choosing each strategy and when the failure occurs, it decides to discharge the

failing server. As a result, it can be concluded from this experimental procedure

that by predicting the impact of each strategy, the self-adaptive system is able

to make informed decisions and achieve the desired adaptation goals.

6.4.3 Effectiveness and scalability of impact prediction

Formal approaches that require an analysis of large state spaces may often be

time-consuming, and may lead to considerable overheads. To address this issue,

we optimized our approach to complete the execution within the ten-second time

window. This requirement ensures that there is never a different overlapping

analysis. Table 6.7 shows the time that each prediction takes to complete. It can

Table 6.7: Time, in seconds, taken to predict the impact of each strategy

Number of

Servers
Mean Std. Dev. 95th Percentile

4 Servers 0.15 0.14 0.27

25 Servers 0.22 0.25 0.44

50 Servers 0.40 0.26 0.50

75 Servers 0.55 0.39 0.79

100 Servers 0.79 0.59 1.15

be observed that in the case-study with four active servers, each analysis takes,

on average, 0.15 s and the 95th percentile takes 0.27 s. Our approach generates

111



6.4 Evaluation

and solves a stochastic model for each strategy, so the total time in the analysis

is obtained through Num. Strategies × Time spent on prediction. In our case-

study, there are three strategies, which means analysis usually executes in less

than one second (0.27s× 3 = 0.81s), well below the ten-second requirement.

In an attempt to evaluate scalability, we tested our implementation for an

increasing number of servers, and the results are illustrated in Figure 6.11. We

Figure 6.11: Scalability of our approach regarding the number of Servers

ran each experiment 30 times and collected the mean and the standard deviation

which are shown in the diagram. We can observe an increase in the time spent

in each prediction, but the analysis scales well for a system with up to 100 active

servers. If there is a scenario with 100 servers, our approach would take less than

10 seconds to execute, given the prediction of the three adaptation strategies

(1.15s× 3 = 3.45s). This would be the case not only for the 95th percentile but

also for the maximum time observed.

6.4.4 Discussion

In the control run experiment, we tested the two self-adaptive solutions against a

non-adaptive one. The goal was to determine whether both self-adaptive systems

achieve the non-functional requirements, and maintain high availability while

reducing the usage of computational resources. The results show that both self-

adaptive solutions achieve similar results with the most expensive and highly

112



6.5 Related Work

available non-adaptive solution. However, self-adaptive approaches outperform

the non-adaptive one by using 50% less computational resources.

When failures occur, the experimental results show that the two self-adaptive

approaches adopt different strategies. In particular, the human optimized ap-

proach uses static weights while the impact prediction approach uses stochastic

models to predict the failure behavior of each adaptation strategy. As a result,

our method selects the best strategy to recover from failures, and achieves an in-

creased performance and availability, while reducing the usage of computational

resources.

6.5 Related Work

Self-adaptive systems are able to adjust their behavior in response to their per-

ception of the environment and the system itself [Lemos et al., 2013]. These

systems are usually implemented through the MAPE-K approach defined by the

International Business Machines (IBM) Corporation in 2004 [IBM Corp., 2004].

The MAPE-K is a short name for Monitor, Analysis, Plan and Execute tasks,

all with a shared Knowledge-base. To be more specific, a self-adaptive system

monitors the environment and the system itself to analyze whether an adapta-

tion is required or not to achieve the desired goals. In case of being necessary,

a course of action is planned and executed in the target system to change the

current behavior and achieve the desired quality goals. Communication between

different adaptation phases is conducted through a shared knowledge-base that

abstracts the system, containing data, models, decisions and behavior, enabling

separation of adaptation responsibilities and allowing their coordination.

Self-adaptive systems have been an interesting focus of research study due to

their ability to adapt and modify the behavior leading to a multitude of practi-

cal applications, like self-driving cars, self-maintainable software and self-ruling

systems. Salehie et al. [Salehie & Tahvildari, 2009] present a survey article about

the landscape of research, taxonomies, gaps, and future challenges in self-adaptive

systems. They consider the adaptation process as a concept that deserves atten-

tion in future research challenges. One of the most important challenges they

highlighted is the assurance that an adaptation is going to have a predictable

impact on the functional and non-functional aspects of the system. To this end,

113



6.5 Related Work

we following describe the approaches that perform quantitative prediction of non-

functional attributes or verification of correctness in self-adaptive systems.

Quantitative verification is a technique to calculate the likelihood of the oc-

currence of certain events during the execution of the system. The benefits of

having this verification at runtime to support software adaptation are discussed

by Calinescu et al. [Calinescu et al., 2012]. They state that by employing mod-

eling techniques at runtime (e.g., predict requirements violation, plan recovery

from such violations and verify correctness in the adaptation steps employed in

recovery) we may obtain more dependable self-adaptive systems.

The work of Gallotti et al. [Gallotti et al., 2008] proposes an approach to

generate stochastic models to assess reliability and performance from Activity

Diagrams described in Unified Modeling Language (UML). In short, their ap-

proach takes as input a formal representation of service composition drawn as a

UML Activity Diagram along with a specification of quality properties, such as

response time or failure rate. The approach interprets the draw and creates an

intermediate representation before generating a stochastic model to be solved by

Prism [Kwiatkowska et al., 2009], a model checking tool. The interpretation of the

draw cannot be standardized for every UML Activity Diagram tool, since their

representations differ in small details. This work differs from ours, since we focus

on Architectural Description Languages (ADLs) than UML and we also propose

a formal notation to standardize the translation from an architectural model

complying with the ISO/IEC/IEEE 42010 Standard [ISO/IEC/IEEE, 2011] to

a stochastic model. In addition, we perform reliability prediction at runtime

and show its effectiveness by conducting a performance assessment, while Gal-

lotti et al. address these as future work.

Cámara et al. [Camara & de Lemos, 2012] propose an approach that models

the behavior of a self-adaptive system with regard to trustworthy service delivery.

In more detail, the authors model the adaptation behavior of the system to obtain

levels of confidence regarding the resilience of each adaptation. The effectiveness

of their approach is outlined through an experimentation similar to ours, using

Rainbow and Znn.com as self-adaptive solution, respectively. The results show

that both outcomes from the proposed modeling approach and from the running

system are close validating their work. The work of Cámara et al. [Camara &

de Lemos, 2012] differs from ours in the aspect that we automatically generate

114



6.5 Related Work

and solve stochastic models at runtime to support the adaptation manager by

deciding which is the best strategy to attain the desired quality goals.

Zheng et al. [Zheng et al., 2008] applied Kalman Filters to model and track

performance that can be used to evaluate end-to-end response times, utilization

of resources and also to estimate performance parameters. Their work has been

applied to autonomic computing to empower decision-making capabilities. The

approach was tested in a scenario of a cluster of servers and the results show that

it efficiently maintain service level and avoid system overload. In more detail, it

takes into consideration disturbance changes such as the number of users, software

aging or requests with modified resource demands.

Filieri et al. [Filieri et al., 2011] explore models and system adaptations to

meet a particular target reliability through a control theoretical approach. In

more detail, they keep alive a model of the application at runtime which expresses

reliability concerns through a DTMC. This model is continuously updated at run-

time and, in a control-theory viewpoint, is viewed as the input variables to the

controlled system. They consider self-adaptation at the model level, where possi-

ble variant behaviors are evaluated and the selected changes are then transferred

into the running implementation. Their approach bypasses the decision-making

process of the self-adaptive system and rely upon only one adaptation goal: Re-

liability.

Any of the aforementioned studies that address quantitative prediction or ver-

ification at runtime are likely applicable to a self-adaptive system to enrich its

decision-making process. This enrichment is made by replacing constant adapta-

tion operators by predictions on the quality outcome or by assuring correctness

for each adaptation. We argue that the resulting system will be able to make

informed decisions about the impact on the quality dimensions in unexpected

and unanticipated situations. These studies address uncertainty by keeping a

model alive which is constantly updated with runtime properties. However, the

construction of the model is the responsibility of the designer or the engineer, in-

creasing development effort, time to deliver and cost. This is where our work aug-

ments the current research field by automatically generating probabilistic models

at runtime reducing effort and modeling time, at the same time that accounts

with structural changes in the architecture such as changing architectural styles

or the addition of new components.

115



6.5 Related Work

The work that closely relates to ours is QoSMOS (Quality of Service Manage-

ment and Optimization of Service-based systems) proposed by Calinescu et al. [Ca-

linescu et al., 2011]. QoSMOS assures that QoS is delivered by adaptive systems

in an equally adaptive and predictable way. QoSMOS support self-adaptation of

service-based systems by choosing an optimal strategy through prediction of QoS

at runtime. In short, they combine several existing techniques, such as the for-

mal specification of QoS by using temporal logic, generation of stochastic models

to evaluate reliability and performance, Bayesian-based parameter adaptation by

exploiting KAMI [Epifani et al., 2009] and a tool to support the planning and

execution phases of the system adaptation. Our work closely relates to QoS-

MOS since both works assure quality of the system adaptation, perform quality

prediction at runtime and evaluate the approach scalability and performance.

Regarding the difference of both works, QoSMOS takes as input BPEL (Business

Process Execution Language) models of service orchestration focusing on only

service based systems, while our work uses Architectural Description Languages

(ADLs). ADLs allow to specify a wider range of systems, reveal the topology

or structure of the whole system and define architectural styles. In addition, we

propose a formal notation to translate from the ADL to the stochastic model

providing a generic solution that can be applied to other quality attributes or

ADLs. Regarding QoSMOS scalability and evaluation efficiency, it cannot be

applied to large scenarios due to the exhaustive quantitative model checking in

the Analysis phase. In more detail, QoSMOS evaluates six different PCTL rules

(4 for reliability and 2 for performance) while our approach assesses one rule that

expresses the reliability of the system. This limits QoSMOS application to only

systems in which time efficiency is not a problem, while our approach can be ap-

plied to those which have strict time requirements. The evaluation of QoSMOS is

obtained through a theoretical case-study of a TeleAssistance scenario while our

approach has been implemented and running on an actual case-study of a news

infrastructure system. This case-study allows to validate our approach with an

application example, as well as to compare results from traditional approaches

with ours.

116



6.6 Summary

6.6 Summary

Self-adaptive systems are becoming more common in our daily tasks, although

this is sometimes unnoticed, until a failure occurs. When these systems affect

human lives, like self-driving cars, they only need to make one wrong decision to

fail and become discredited by their users and cease to be dependable, especially

when human lives are at risk. Bearing this in mind, we applied our automated

method to predict reliability from a software architecture to enhance the planning

phase of self-adaptive systems. Our goal was to show the applicability of our

approach and its effectiveness in improving real world issues.

Evidence of the limitations of current decision-making approaches and the

validity of our method was obtained by conducting a realistic experiment based

on a news infrastructure hosted in a cloud environment. The experiment which is

discussed in Section 6.4.2, confirms that traditional decision-making approaches

(i.e., human optimized) fail to select the best strategy in unexpected or untested

conditions and this leads to the degradation of the delivered service. In addi-

tion, the same experiment enabled us to conclude that our approach (i.e., impact

prediction) can recover from erroneous behavior, by validating the use of quanti-

tative prediction methods at runtime. This method improves the ability to reach

quality goals in unforeseen circumstances, while maintaining a similar ability in

known ones.

Our approach entails the generation of stochastic models and the means of

solving them, which are tasks usually seen as time-consuming and inefficient. It

can be concluded from the experiment in Section 6.4.2 that our approach (i.e.,

impact prediction) performs as well as other approaches by providing similar

values of resolved requests, throughput and resource consumption. Furthermore,

we conducted an experiment to assess the performance and scalability of our

approach. The obtained data shows that our method performs under one second

and if the system could scale to one hundred web-servers, our approach would

still fulfill the performance requirements.

To conclude, the experimental work covered in this chapter can be of value

to the self-adaptive community by employing a method that allows a correct and

context-sensitive strategy to be adopted to achieve the specified quality goals.

Given that self-adaptive systems are recognized as a solution for dealing with

117



6.6 Summary

highly complex environments, we expect our approach to further improve the

current solutions in unforeseen circumstances.

118



Chapter 7

Modeling the Failure Pathology

of a Software Component

The methods and techniques to predict, estimate and analyze reliability used by

classical reliability studies [Cheung, 1980; Goševa-Popstojanova & Trivedi, 2001;

Reussner & Heinz W., 2003; Wang et al., 2006] have immediately attracted the

attention of the software research community owning to their potential applica-

bility to software architecture. If system properties can be assessed in the early

stages of the development cycle and weak architectural points identified, these

can be corrected and thus reduce the number of late-detected problems.

The potential benefits both in delivery time and budgeting have been strong

research drivers in this area. However, classical reliability prediction methods

pose their own intrinsic difficulties [Gokhale, 2007], namely the assignment of

realistic reliability values for components before they have actually been built.

Moreover, these methods assume that when an error arises it manifests itself as

an application failure or that the error propagates to the application output [Fil-

ieri et al., 2010]. This assumption means that if an error occurs in one of the

components, the whole application fails without taking into account the likely

possibility of masking, recovery, or tolerance of that error.

There are also methodological issues arising from the newness of this research

area as realistic case-studies with actual failure data have not yet been dissem-

inated. The software architecture reliability research community would greatly

benefit if convincing architectures and associated failure data were made public,

119



7.1 Modeling

since this would allow the comparison of results and validation/benchmarking of

different approaches.

To address the above problems we propose an approach that models reliability

by taking account of the failure mode discussed by Avizienis et al. [Avizienis et al.,

2004]. Our model is extracted from an actual software architecture and includes

error masking, error propagation, failure recoveries and multiple-failure modes.

The goal is to express the failure pathology of a software component in order to

obtain more realistic and accurate stochastic models.

To overcome the lack of actual case-studies and failure data, we performed

an experiment that not only serves to validate our approach, but also makes a

contribution to the research community. The experimental results were obtained

by injecting faults into a running system comprising a freely available, widely used

virtualization system for cloud-based services(Xen). This experimental testbed

and its actual failure data can thus be used by other research studies to test,

validate and benchmark different reliability methods.

In summary, this chapter encompasses the following contributions:

1. A stochastic model expressing the failure pathology of a software component

accounting for errors, failure recoveries, propagation, error masking and

different failure modes.

2. An actual case-study encompassing realistic failure data.

To achieve the proposed approach and implement the case-study for testing

and validation purposes, this chapter is structured as follows. Section 7.1 outlines

our approach to model the failure pathology of a software component. Our case-

study is discussed in Section 7.2 and tried out in Section 7.3 where we test the

validity of our approach. The related work is outlined in Section 7.4, before

Section 7.5 concludes this chapter by summarizing the proposed approach, its

contributions and validation.

7.1 Modeling

Reliability prediction from the perspective of a software architecture description,

has been extensively studied and several methods have been employed [Gokhale,

120



7.1 Modeling

2006; Goševa-Popstojanova & Trivedi, 2001]. Our approach extends the reliabil-

ity methods by including the failure pathology of a software component. More

precisely, our approach encompasses error masking, error propagation, failure re-

coveries and multiple-failure modes. We propose to model the system behavior

through a Discrete-Time Markov Chain (DTMC) as described in Section 2.4.1

and illustrated in Figure 7.1.

Componenti

s=0 s=2

s=3

s=4

s=5

s=6

M
s=7

Fc

Ft

Fe

Rt

E

EP(i,j)

{OK} {Error} {Halt}

{Cont. Fail}

{Time Fail}

{Hang Fail}

{Erratic Fail}

s=1

1 - (M+Ep)

1- Rc

1- Rt

1- Rh

1- Re

Rc

Fh

Re

Rh

{Fail}

Figure 7.1: DTMC illustrating the failure behavior of a single software component

A software component represents a unit of computation and can be in either

one of the seven states depicted in the modeled DTMC:

• OK – the component is not in the presence of an error and executes as ex-

pected. When an error occurs with probability E the control of execution

exits the OK state (s = 0) and enters in the error state (s = 1).

• Error – represents when a fault is activated and this leads the component to

enter in an error state. When an error occurs, one of the following outcomes

can occur:

121



7.1 Modeling

– the error is masked with probability M and returns to the OK state

(s = 0). An error can be masked through fault tolerance mechanisms,

including error detection or recovery techniques which bring the system

to a correct state;

– it can enter a failed state (s = 2);

– the error can be propagated to component j with rate Ep(i,j).

• Fail – this state (s = 2) denotes when an error is activated, leading to a

failure. When a component fails, it can be categorized as content, timing,

hang or erratic [Avizienis et al., 2004] with rate probability Fc, Ft, Fh, Fe,

respectively.

• Content, Timing, Hang and Erratic Failure states – describe the multiple

failure modes that follow the categories of the failures proposed by Avizie-

nis et al. [Avizienis et al., 2004]. After entering in one of these failure modes,

the system can recover due to, for example, the implementation of failure

handling techniques. The recovering rates from the failure states content

(s = 3), timing (s = 4), hang (s = 5) and erratic (s = 6) to the state OK

(s = 0) are given by Rc, Rt, Rh, Re, respectively.

• Halt – this state (s = 7) illustrates the complete stop of the system and

emulates a failure that leads the system to a crash without the possibility

of being recovered without human intervention.

To model the failure mode of a system, we use an absorbing DTMC which

encompasses two final states with self-loop transitions defining the successful

(Sc) and failure states (sf ). The rationale behind this approach is that each

task is processed through the various states in the model and reaches one of two

conditions: a successful (sc) or a failure state (sf ).

To obtain a probabilistic quantification of the modeled system reliability we

specify a property in the Probabilistic Computation Tree Logic (PCTL) [Kwiatkowska

122



7.2 Case-study

et al., 2007]. This property computes the probabilities from the initial state s

until the successful absorbing state (state = sc) has been reached.

To model the interactions of different software components, several studies

adopt a user-oriented approach [Cheung, 1980] [Goševa-Popstojanova & Trivedi,

2001] which assumes a sequential order in the execution. However, a system may

encompass different architectural patterns in which components may execute in

parallel or concurrently. To model these kinds of behavior, Wang et al. [Wang

et al., 2006] proposes a method to solve a DTMC according to each applied

pattern.

This model is novel approach since it represents the failure pathology of a

component. It extends the work of Cheung [Cheung, 1980] and has similarities

with the study of Filieri et al. [Filieri et al., 2011] by including error propagation

and multiple failure modes, but differing in the comprehensiveness of the model.

Our proposal is a reliability model that supports the comprehensive failure mode

specified by [Avizienis et al., 2004] comprising error, masking and propagation to

other components, multiple failure modes and possible recoveries.

In the following section we provide a detailed examination of the case-study

used to validate the method described above.

7.2 Case-study

To validate the accuracy of the model proposed in the previous section, we im-

plemented a realistic case-study to compare the predicted reliability results with

those obtained from real-world experiments. The case-study is based on an actual

cloud infrastructure (not a simulation model) and deploys a set of HTTP servers

responding to client requests. To ensure that our experiments were reproducible,

we adopted a widely known, freely available virtualization solution, the Xen hy-

pervisor [Barham et al., 2003], which is used in services like the Amazon Elastic

Compute Cloud (EC2), RackSpace Mosso or the CloudEx [Qian et al., 2009].

Figure 7.2 illustrates our tested scenario where Xen is depicted above the

hardware layer and under the instanced virtual machines (VMs). The Dom0 is a

privileged VM responsible for managing the virtualization environment and has

direct access to the hardware.

In this case-study, we used two guest virtual machines (VM1 and VM2) re-

123



7.2 Case-study

Hardware
(CPU, Physical Memory, Ethernet)

XEN Hypervisor

Dom 0

VM 1 VM 2

Apache
webserver

Client

Jmeter

HTTP

Apache
webserver

Figure 7.2: Diagram of the case-study

sponsible for responding to client HTTP requests. Both VMs have the same

system image and the same workload. Our goal is to inject faults into one of the

VMs and check whether the errors are propagated to the other one, i.e. if the

isolation between both VMs has been compromised.

The edge depicted in Figure 7.2 from the Client to the VMs that passes

through the different components, illustrates the connection used for communi-

cation between the client and servers. In addition, this edge also illustrates the

system dependencies among the architectural elements. The client sends a request

to a physically separated machine, where the case-study resides. This machine

receives the request through its ethernet card (hardware), and is interpreted by

the Xen hypervisor which is responsible for redirecting the requests to the appro-

priate VM. Through the whole process, Dom0 is able to access the hardware and

possibly monitor or modify this interconnection.

In this case-study, the client is an external independent computation resource

which performs HTTP requests concurrently to each VM through a Jmeter appli-

cation. Each request is processed by the Apache webserver by calculating a SHA1

hash using as input a generated file with a fixed size and content, which always

results in the same hash unless an error occurs. This hash is then reported in the

HTML response which can be assessed by the client whether it is the expected

one or to conclude that a failure has occurred. In this experiment we defined

124



7.2 Case-study

the size of the generated file to be 1024 MB. The reason for this figure is that

small file sizes would result in a short life span for processing the response which

might limit the effectiveness of an introduced error. In light of this, we opted for

a large file size to increase the processing time to exercise CPU and memory, thus

allowing the introduced error to be propagated and become noticeable.

This experiment includes a workload to simulate several HTTP clients per-

forming requests to the available webservers. Thus, we configured Jmeter to use

10 clients that start by making requests during a 30 second ramp-up period and

then perform a request at each 600 milliseconds with a 100 millisecond deviation

pause between them. As a result, each experiment run lasts approximately 420

seconds (7 min) of which 330 seconds (5.5 min) comprise the time when the work-

load is executed, and the remaining 110 seconds are divided between the setup

period before the experiment (i.e., to launch probes and prepare the fault injec-

tion tool) and the clean-up period at the end (i.e., extract logs, clean temporary

files and restart machines).

7.2.1 Fault Injection

Estimating error propagation and failure occurrence probabilities can be quite a

difficult task due to the number of factors involved and to the inherent random-

ness of operational profiles, inputs, failure types, etc. Thus we performed fault

injection to artificially generate errors in the system. The goal was to collect

relevant failure data and identify elements that are more prone to failure due to

error propagation.

A fault is injected during the execution of the workload in an interval between

30 seconds and 4 minutes, which is randomly chosen following a uniform distribu-

tion. This interval guarantees that the fault is injected after the ramp-up period

and that the target system is working at its nominal throughput. It also provides

enough time before the end of the experiments for the fault to be propagated.

The faults injected emulate transient hardware faults, by flipping bits in one

of the available registers. Both the bit to flip and the register to target are chosen

randomly following a uniform distribution.

For this case-study, we injected faults in the Dom0 and in one of the VMs.

125



7.2 Case-study

The goal of the former injection is to assess the faulty behavior of the Xen and

the VMs when a fault is introduced in the hypervisor. The latter enables us to

determine if the isolation between VMs will be compromised if an error occurs in

one of the Virtual Machines.

In summary, the fault injection experiment is performed at the client side by

first sending a HTTP request to one of the Virtual Machines. The webserver in

the target VM is responsible for processing the request by creating a file with

a fixed size and content. After creating the file, the server calculates its SHA1

hash and sends the computed hash as the response to the client. While the server

is processing the request, we inject a fault by flipping a bit in one of the CPU

registers. If the error is activated, the content of the file or the response may

change, leading to a failure. For this reason, the client is expecting a particular

hash, since it knows the size and content of the file; thus the hash should be the

same unless an error has occurred. As a result, the client can determine if the

injected fault has led to a failure or the internal faulty behavior has been masked.

7.2.2 Failure Classification

When modeling multiple failure modes, we require a classification of the different

type of failures that an error can lead to. With this in mind, we adapted the

failure classification from Avizienis et al. [Avizienis et al., 2004] to our case-study

as follows:

• Content – a failure occurs when the content of the received information

deviates from what is expected and correct. Since in our case-study, we

generate a file for each request with always the same size and content, its

hash will invariably be the same. Thus, whenever we receive a response with

a different hash, it can be concluded that a content failure has occurred.

• Timing – occurs when the amount of time between sending a request and

waiting for a response falls outside of a reasonable interval, leading to an

early or late service failure. In this case-study, we assume that if a request is

126



7.3 Experimentation

not answered between 2 and 15.78 seconds, it is considered to be a timing-

failure. These values have been extracted from the actual testbed after a

large number of runs without fault injections. The maximum and minimum

recorded response times were defined to be the upper and lower bounds of

the acceptable time interval.

• Halt – this failure mode arises when there is an unexpected absence of sys-

tem activity. In our experiment, we account for a halt-type failure when a

connection is dropped, suddenly closed or the server stops responding.

• Erratic – when the service is not halted but suffers a disruption in the de-

livered service, such as an arbitrary correct or incorrect response. In our

case-study, we assume that a failure is erratic if both the response content

and timing deviates from what is expected or the connection is still alive,

but experiencing anomalies.

To validate the reliability of the assessment method proposed in Section 7.1,

we conducted a set of experiments which are outlined in the following section.

7.3 Experimentation

To prove the validity of the model proposed in Section 7.1, we conducted a real-

istic experiment to compare both the predicted reliability and what was actually

obtained. In this section we set out the gathered results, examine the validity of

our approach and discuss the results of the experimentation.

7.3.1 Gathering Failure Data

To validate our approach, we collected failure data by injecting faults into the sys-

tem. In particular, two means were employed: directly into the VM1 and in the

Dom0. The goal of the former is to obtain relevant failure information about the

impact of a transient hardware fault into the virtualized system. The injected

127



7.3 Experimentation

fault only targeted one of the VMs (i.e., VM1), leaving the other intact (i.e.,

VM2). The purpose of this is to detect whether there has been any breach in the

isolation between both VMs which is usually assumed as guaranteed. The aim

of the latter is to study the effect of introducing faults directly into the hypervisor.

7.3.1.1 Injection in VM1

The Xen hypervisor supports two types of virtualization: Paravirtualization (PV)

where guest OSes run efficiently without requiring virtual emulated hardware and

Hardware Virtual Machine (HVM) (also known as Full virtualization) in which

guest OSes require the complete hardware emulation to run, such as BIOS, USB

controllers or graphical adapters. The fault injection experiment in VM1 takes

account of these types of virtualization by specifically making separate runs.

Table 7.1 shows the results of the experiment with the HVM virtualization

type where we performed 1028 runs and injected a fault in each one. In these

runs we observed 876 injected errors that had been masked and 152 that had led

to failure. Of those 152 failures, 4 manifested as content, 1 as timing, 147 as

hang and 0 as erratic failures. Moreover, recovery was possible in every content

and timing failure. However, in 22 runs that were hang failures that could not

be recovered, which left the system in a completely inoperative state.

Furthermore, the results show that of the 1028 faults injected in VM1, none

affected VM2. Thus, the experiment shows that the integrity of the isolation

layer between virtual machines is preserved by flipping bits in CPU registers for

the HVM virtualization type.

With regard to the results of Paravirtualization (PV), Table 7.2 depicts the

failure rate obtained after 968 fault-injections. In those 968 runs, we observed

876 errors that had been masked and 92 injections that had led to failure. More

specifically, 7 failures were assigned as content type, 0 as timing, 85 as hang and

0 as erratic. The results show that all the content failures had been successfully

recovered, while 6 hang failures led the system to become unresponsive.

The results also show that the injected faults in this virtualization type did

not affect the isolation layer between the Virtual Machines (VMs). This allows us

to conclude that Xen is capable of confining error propagation between different

guest VMs even when one VM is subject to fault-injection, in both virtualization

128



7.3 Experimentation

Table 7.1: Hardware Virtual Machine (HVM) results

HVM

VM 1 VM2

Failure Recovery Failure Recovery

Content 4 4 0 0

Timing 1 1 0 0

Hang 147 125 0 0

Erratic 0 0 0 0

Total 152 130 0 0

Total Non-Failures 876 1028

Total Halts 22 0

Total Injections 1028

types (PV and HVM)

7.3.1.2 Injection in Dom0

The privileged virtual machine Dom0 is responsible for managing the virtual-

ization environment and has direct access to the hardware. Thus, we injected

faults in this privileged VM with the aim of analyzing the system behavior and

identifying error propagation in the hosted VMs. To this end, we injected faults

into the following kernel extensions:

• Qemu-system-i386: used by Xen to enable the dom0 to access a virtual

disk;

• Xenwatchdogd: allows actions to be triggered when certain guest VMs are

detected as having crashed.

129



7.3 Experimentation

Table 7.2: Results of Paravirtualization (PV)

PV

VM 1 VM2

Failure Recovery Failure Recovery

Content 7 7 0 0

Timing 0 0 0 0

Hang 85 79 0 0

Erratic 0 0 0 0

Total 92 86 0 0

Total Non-Failures 876 968

Total Halts 6 0

Total Injections 968

Table 7.3 shows the results of injecting faults into the Qemu kernel extension.

We flipped bits in 101 runs in which both guest VMs had been affected. In those

101 runs, VM1 and VM2 masked 94 errors while 7 led to failures that brought

the system to a halt. Only one type of failure was registered (hang) and the guest

VMs were affected in the same way.

Table 7.4 displays the failure rate data in the XenWatchdog extension. It

should be noted that after the 73 injection runs, 56 were masked errors in both

VMs. After the 17 triggered failures, none could be recovered. As in the previous

experiment with the Qemu extension, only one type of failure was manifested,

the hang-type failure, and again the injected faults affected both guest VMs in

an equal way.

In short, the results show that errors can be propagated from Dom0 to guest

Virtual Machines, leading to a failure of a single type – the hang failure. It was

also observed that when a failure occurs it cannot recover and this puts the system

130



7.3 Experimentation

Table 7.3: Fault Injection in the Dom0 in the Qemu extension

Qemu

VM 1 VM 2

Failure Recovery Failure Recovery

Content 0 0 0 0

Timing 0 0 0 0

Hang 7 0 7 0

Erratic 0 0 0 0

Total 7 0 7 0

Total Non-Failures 94 94

Total Halts 7 7

Total Injections 101

in a completely inoperative state. The observation that both guest VMs always

display equal behavior can be explained by the fact that they share the same

resources, system image, workload and are thus subject to the same fault-load.

7.3.2 Validation

Two methods are put forward to validate the reliability model: validating the

model for each software component and then, confirming its accuracy regarding

error propagation.

7.3.2.1 Single component validation

In this experiment, we applied the values collected from the fault injection to the

VM1 while taking account of both virtualization types. Our goal is to validate

131



7.3 Experimentation

Table 7.4: Fault Injection in the Dom0 in the XenWatchdogd extension

XenWatchdogd

VM 1 VM 2

Failure Recovery Failure Recovery

Content 0 0 0 0

Timing 0 0 0 0

Hang 17 0 17 0

Erratic 0 0 0 0

Total 17 0 17 0

Total Non-Failures 56 56

Total Halts 17 17

Total Injections 73

the proposed model and determine which virtualization type is more reliable.

Table 7.5 depicts the failure data collected from the experimental results shown

in Tables 7.1 and 7.2.

Table 7.5: Modeling Parameters

M Fc Ft Fh Fe Rc Rt Rh Re

HVM VM1 0.8522 0.0263 0.0065 0.9671 0.0 1.0 1.0 0.8503 0.0

PV VM1 0.9050 0.0761 0.0 0.9239 0.0 1.0 0.0 0.9294 0.0

M - Masking Fc - Content Failure Ft - Timing Failure

Fh - Hang Failure Fe - Erratic Failure Rc - Recovery Content

Rt - Recovery Timing Rh - Recovery Hang Re -Recovery Erratic

132



7.3 Experimentation

To confirm the accuracy of the proposed model we compared its quantitative

prediction with the real obtained values by taking into account the following

metrics: reliability, probability of entering in a failed state and the probability of

each failure type.

The reliability results are given in Table 7.6. These results show similar values

between the real and the modeled one, bound by a 0.04% error margin. It should

also be pointed out that Paravirtualization (PV) presents a higher reliability value

than the Hardware Virtual Machine (HVM). This can be explained by the fact

that HVM emulates the full-hardware stack incurring in a performance overhead

due to the emulation layer. This overhead makes client requests being processed

less efficiently, resulting in a higher number of queued requests and a higher

likelihood of dropping them, making the system less reliable.

Table 7.6: Reliability

Real Modeled Diff

HVM 97.86% 97.90% 0.04%

PV 99.38% 99.38% 0.0%

The probability of entering in a failed state is defined as an error being since

it is activated and can lead to a failure. Table 7.7 shows the reliability figures ob-

tained from actual execution and values that resulted from modeling the system.

The results depicted show a difference between both approaches of less than two

percent. With regard to the virtualization types, the PV achieves better results

since it has a lower probability of entering in a failed state.

Table 7.7: Probability of entering in a failed state

Real Modeled Diff

HVM 14.78% 12.88% 1.9%

PV 9.50% 8.67% 0.83%

The last metric to validate our proposed model is the ‘probability of occur-

133



7.3 Experimentation

rence’ of each failure type. Table 7.8 illustrates the outcomes from the actual

experimentation and from our model by considering the two virtualization types,

HVM and PV. The results differ from 0.1% to 1.78% between the real and the

modeled values, but overall they achieve similar probabilities. As in the previous

experiments, the PV virtualization type achieves better results than the HVM.

Table 7.8: Probability of entering in each failure mode

Real Modeled Diff

HVM

Content 3.89% 3.79% 0.10%

Timing 0.09% 0.09% 0.00%

Hang 14.29% 12.51% 1.78%

Erratic 0% 0% 0%

PV

Content 0.72% 0.71% 0.01%

Timing 0% 0% 0%

Hang 8.78% 8.07% 0.71%

Erratic 0% 0% 0%

7.3.2.2 Error propagation validation

In this section we examine the validation of the proposed modeling approach

by taking into account error propagation. Figure 7.3 illustrates a Discrete-Time

Markov Chain (DTMC) which was simplified to highlight the relevant states and

omit the ones that do not have any transition, such as the content failure state

(Fc). Our approach models the client performing requests to the VM1. These

requests pass through the Dom0 which may propagate an error to other VMs.

When this error propagation occurs, it leads to only one type of failure, the hang.

Since the occurrence of a hang failure brings the whole system to an inoperative

state, we modeled the transition from the halt state from the VMs to the complete

failure state. Moreover, the interaction between components Dom0 and VM1 is

134



7.3 Experimentation

Dom0

s=0
M

E

{OK} {Error}

s=1

VM 1

s'=0 s'=2 s'=5
M'

s'=7
E'

{OK} {Error} {Halt}{Hang Fail}

s'=1

1 - M'
1- R'hF'h

{Fail}

1 - E EP(dom0,vm1)

S c

1 - E'

S f

VM 2

s''=0 s'=2 s'=5
M''

s''=7
E''

{OK} {Error} {Halt}{Hang Fail}

s''=1

1 - M''
1- R''hF''h

{Fail}

1 - E''

EP(dom0,vm2)

Figure 7.3: DTMC modeling the Dom0 Fault Injection scenario

modeled through a sequential order, which means that Dom0 executes and then

passes the control to VM1.

Table 7.9 depicts the failure data collected from Tables 7.3 and 7.4.

The results of this experiment and the estimations of our model are illustrated

in Table 7.10. The reliability figures are almost identical in both approaches,

with WatchDogD having the higher deviation between real and modeled results,

a difference below 4%.

7.3.3 Discussion of the Results

It can be concluded from the failure rate data that were gathered that the Paravir-

tualization (PV) type achieves better results than the Hardware Virtual Machine

(HVM). In addition, the HVM experienced timing failures while PV did not. We

135



7.3 Experimentation

Table 7.9: Modeling Parameters for the Dom0 experiment

Qemu Xenwatchdogd

VM 1 VM 2 Dom0 VM 1 VM 2 Dom0

M 0.0 0.0 0.93 0.0 0.0 0.76

Fc 0.0 0.0 0.0 0.0 0.0 0.0

Ft 0.0 0.0 0.0 0.0 0.0 0.0

Fh 1.0 1.0 0.0 1.0 1.0 0.0

Fc 0.0 0.0 0.0 0.0 0.0 0.0

Rc 0.0 0.0 0.0 0.0 0.0 0.0

Rt 0.0 0.0 0.0 0.0 0.0 0.0

Rh 0.0 0.0 0.0 0.0 0.0 0.0

Re 0.0 0.0 0.0 0.0 0.0 0.0

Ep(dom0, VM1) - - 0.035 - - 0.12

Ep(dom0, VM2) - - 0.035 - - 0.12

Table 7.10: Dom0 Reliability as the probability of non-failure

Real Modeled Diff

Qemu 93.06% 93.51% 0.45%

WatchDogD 76.71% 80.64% 3.93%

assume that this difference is related to the nature of the virtualization type.

HVM implements a full emulation of the hardware which results in a slower per-

formance than the Paravirtualization (PV) type, and this explains the occurrence

of timing failures in the HVM.

Furthermore, our experimental results show that the isolation layer between

136



7.4 Related Work

VMs is effective when a fault is injected in one of the VMs. However, when an

error is injected in a kernel extension, the error is not only propagated to the

guest VMs, but can also cause the system to fail and ultimately, lead it to a

completely inoperative state.

With regard to the validity of our approach, both the estimations from our

model and the values obtained from the actual Xen system are similar. The dif-

ference between both approaches falls in the interval [0.0%, 3.9%], where there is,

on average, a difference of 0.69% and a median of 0.07%. These figures support

the validity our proposed modeling approach.

7.4 Related Work

Surveys on reliability prediction from a software architecture [Gokhale, 2007;

Goševa-Popstojanova & Trivedi, 2001; Immonen & Niemelä, 2008] overview the

state-of-the-art pointing out venues for future work and current limitations. From

the outlined limitations, Gokhale [Gokhale, 2007] reminds the importance of

defining component failure models and identifies the area of parameter estimation

techniques as being in the infancy at that time (2007). Immonen and Niemelä [Im-

monen & Niemelä, 2008] point out the lack of support for tools, weak reliability

analysis of software components, and weak validation of the methods and their

results. The work outlined in this chapter addresses the above limitations by

proposing a reliability prediction model that defines component failures models

as suggested by Gokhale. In addition, we propose a practical experiment which

addresses the lack of parameter estimation techniques and also serves as a vali-

dation of our modeling method addressing the limitation raised by Immonen and

Niemelä.

Goseva-Popstojanova et al. [Goseva-Popstojanova et al., 2005] presented a

comparison between different architecture-based reliability prediction methods

based on an empirical, large scale and real case-study. Their work reveals that

the literature assumes a too simplistic relationship between faults and failures,

leading to errors in the analysis. This seminal paper concludes that more work

should be conducted by the software testing and reliability research communities

in order to explore more realistic relationships between faults and failures. This

137



7.4 Related Work

was a strong motivator for the work of this chapter.

Cortellessa and Grassi [Cortellessa & Grassi, 2007] proposed a method to

predict the system reliability by encompassing error propagation. In their work,

authors recognize that they faced the same difficulties as other studies, namely

the absence of reference values and a lack of parameter estimation techniques to

obtain meaningful probabilities of actual internal failures and error propagation.

Filieri et al. [Filieri et al., 2010] present a novel approach that deals with mul-

tiple failure modes and error propagation among components. Their approach

supports the specification of individual components’ attitude to produce, prop-

agate, transform and mask different failure modes. Again, as pointed out by

the authors in the concluding remarks, they are unable to assess their approach

effectiveness due to the lack of real case-studies and actual values of reliability.

The proposed reliability model also accounts for error propagation which con-

sists of an error occurring somewhere in the system. This error can be propagated

to other components or to the application output. Hiller et al. [Hiller et al., 2001]

introduced the concept of error permeability and presented a framework to ana-

lyze the propagation and severity of data errors in a software system.

To assess the error propagation between components, Abdelmoez et al. [Abdel-

moez et al., 2004] proposed an analytical method using fault-injection techniques

to estimate the probability of error propagation in a software architecture. Jo-

hansson and Suri [Johansson & Suri, 2005] also used fault-injection techniques to

assess error propagation in an Operating System (OS). The OS is assumed to be

a black-box and it is profiled through a fault injection technique and data error

propagation analysis. The results showed that many errors do not propagate or

propagate in a robust manner.

In common with some of the above error propagation studies, our approach

relies on fault injection techniques to estimate the system failure data. However,

it differs in the fact that we use the collected data to study the reliability impact

and validate the proposed modeling approach. Thus, our goal is not only the

estimation of the failure data of a system, but also provide a realistic, freely-

accessible case-study, and actual failure data which can be used by researchers

and practitioners to compare and validate different reliability prediction methods.

In short, this paper proposes a novel modeling approach to estimate relia-

bility from a software architecture. It addresses the shortcomings highlighted by

138



7.5 Summary

research surveys by proposing a more detailed failure behavior including masking,

error propagation, multiple failure modes and recoveries. As a result, we validate

our approach through a realistic case-study by collecting actual failure data and

by asserting the adequacy of the proposed stochastic model.

7.5 Summary

In this chapter we proposed a novel approach to model the failure pathology

of a software component. The proposed model extends the already accepted

reliability modeling methods, and also addresses their limitations. Moreover, our

model encompasses error masking, error propagation and multiple failure modes

and thus addresses the modeling shortcomings of reliability prediction methods.

Additionally, we addressed the lack of realistic case-studies available in the

research community to compare and validate newly proposed reliability prediction

methods. In view of this, we implemented a case-study based on a freely accessible

and widely used cloud infrastructure platform, the Xen Hypervisor.

To validate our proposal, we conducted a set of experiments by using this

testbed, including a comprehensive series of fault injection runs to emulate the

presence of erroneous states in the system when employed to collect its failure rate

data. The results show that the figures obtained from our estimation approach

are identical with the actual values obtained from the experiment, with an error

margin below 4%. Moreover, we have been able to show that a cloud system may

propagate errors from the hypervisor to the guest VMs, which will ultimately lead

to their complete disruption. As a result, our approach was also able to accurately

predict this behavior, and thus validate our error propagation modeling.

139



Chapter 8

Conclusion

This thesis was prompted by the following research question raised in Chapter 1:

how can reliability be quantitatively assessed and analyzed from a soft-

ware description while still avoiding time and effort consuming tasks?

Today’s architectural evaluation is a manual and expensive task, which is also

prone to errors. The verification of quality conformance in software architecture

is not an easy process, especially in large-scale software systems where it is practi-

cally impossible to manually verify the whole system against the required quality

attributes and ensure that are no conflicts between them.

With this in mind, in Chapter 3 we attempted to address one of the short-

comings of today’s reliability prediction methods: the lack of automated methods

to test the quality of an architecture. The word ‘automated’ refers to the process

of assessing reliability by avoiding the use of manual activities, since it is less

error-prone and requires less effort from designers. In light of this, we proposed

an approach that automatically generates mathematical models from a software

architecture that avoids the need for manual effort and provides correct and error-

free formal models. These models enable architects to test, provide and try out

different architectural alternatives.

In the same chapter, we described a formal notation to generate stochastic

models from software architectures. The aim of this formal notation is that it can

be interpreted universally with rigor and unequivocally by other researchers. Our

formal notation can be applied in other research works, and extended to other

quality attributes as well as reliability, so that it can comprise different ADLs or

140



support different stochastic models.

In Chapter 4 we proposed an automated approach that performs a sensitiv-

ity analysis of the system reliability to identify weak architectural elements and

interconnections that are performing poorly. In addition, the approach suggests

how architectural improvements can be made through a ranking system which

orders architectural elements according to their impact on the system reliability.

In short, the proposed method provides the means for architects to improve or

evolve the designed artifact by performing a thorough systemic analysis without

requiring any manual effort or specialized knowledge.

To show the effectiveness of the these methods, in Chapter 5 we validated

our automated reliability assessment and analysis methods. The validation was

confirmed by comparing our results with those from widely accepted research

methods using the same case-studies and the same architectural styles.

In the same chapter, we extended a tool used for designing ADLS as a means

of effectively encouraging the adoption of early assessment of reliability from

software architectures. We implemented a plugin within an architectural frame-

work tool which was aimed at assisting designers to achieve more quality on their

artifacts with a minimum effort.

In Chapter 6 we showed the applicability of our proposed automated assess-

ment and analysis methods to other application domains. This involved applying

our method to self-adaptive systems which usually tend to be reactive and trig-

ger adaptations without testing whether they fulfill the desired non-functional

goals. In view of this, we applied our automated method of reliability assessment

to their reasoning process. The results show that traditional self-adaptive ap-

proaches fail to select the best adaptation strategy in unforeseen circumstances,

while our approach recovers from the erroneous behavior and improves the ability

to reach the desired quality goals. In short, this work reveals the application of

our automated methods to different domains and their effectiveness in improving

real global issues.

Chapter 7 proposes a new reliability prediction method that aims to include

the failure pathology of a software component. Our proposed approach avoids

the assumption that when an error occurs it manifests readily as a failure that

propagates to the application output. For example, classical reliability assessment

methods assumed that when an error occurs in one of the components the whole

141



application fail without taking into account the possibility of it being masked,

recovered or even tolerated by the system. Hence, our approach extends classical

reliability assessment methods by proposing a method that encompasses error

occurrence, error propagation, multiple failure modes and recoveries.

To conclude, the research question that was the driving-force behind this

work can now be answered. Reliability can be quantitatively assessed from a

software architectural description through the method set out in Chapter 3 and

analyzed from the approach adopted in Chapter 4. We avoided time and effort

consuming tasks by removing the need for manual activities, as shown in the

implementation of the plugin discussed in Chapter 5 and in the application to self-

adaptive systems in Chapter 6. Finally, we proposed a new reliability assessment

method which in future can be automated by extending the formal notation

outlined in Chapter 3.

The recommendations for future work involve applying our automated assess-

ment method to other quality attributes, like performance or maintainability. The

goal is to support more non-functional properties from the architecture and assist

designers in evaluating trade-offs between different required quality attributes. In

addition, we seek to apply our approach to an industrial partner that is interested

in developing quality software through the adoption of assessment and analysis

techniques from a software architecture. As we progress, new suggestions for fu-

ture work keep appearing and our goal will only be completed when architects are

assisted by assessment and analytical methods that do not involve any manual

activities which when combined result in more quality software.

142



List of Publications

João M. Franco, Raul Barbosa, and Mário Zenha-Rela. Automated Reli-

ability Prediction from Formal Architectural Descriptions. In 2012

Joint Working IEEE/IFIP Conference on Software Architecture (WICSA)

and European Conference on Software Architecture (ECSA), pages 302–309,

Helsinki, Finland, August 2012. IEEE computer society.

João M. Franco, Raul Barbosa, and Mário Zenha-Rela. Reliability anal-

ysis of software architecture evolution. In Sixth Latin-American Sym-

posium on Dependable Computing (LADC), pages 11–20, Rio de Janeiro,

Brazil, April 2013.

João M. Franco. Self-adaptive system case-study of architecture-

based software reliability. In Latin-American Symposium on Depend-

able Computing (LADC), Rio de Janeiro, Brazil, April 2013.

João M. Franco, Francisco Correia, Raul Barbosa, and Mário Zenha-Rela.

Affidavit: Automated reliability prediction and analysis of soft-

ware architectures. In INForum 2013, pages 54–65. 5th Portuguese

Symposium on Informatics, September 2013.

João M. Franco, Raul Barbosa, and Mário Zenha-Rela. Availability eval-

uation of software architectures through formal methods. In QUATIC

SEDES, pages 54–65. Conference on the Quality of Information and Com-

munications Technology (QUATIC), September 2014.

Vitor Silva, João M. Franco, Francisco Correia, Raul Barbosa, and Mário

Zenha-Rela. Assessing the performance overhead of a self-adaptive

143



system. In INForum 2014, pages 54–65. 6th Portuguese Symposium on

Informatics, September 2014.

João M. Franco, Francisco Correia, Raul Barbosa, Bradley Schmerl, Mário

Zenha-Rela and David Garlan. Improving Self-Adaptation Planning

through Software Architecture-based Stochastic Modeling. In Jour-

nal of Systems and Software (JSS) 115: 42-60. January 2016.

João M. Franco, Frederico Cerveira, Raul Barbosa, and Mário Zenha-Rela.

Modeling the Failure Pathology of Software Components In 2016

Joint Conference on the Quality of Software Architectures (QoSA) and

Working IEEE/IFIP Conference on Software Architecture (WICSA). Venice,

Italy, April 2016.

144



Appendix A

Generated Prism Files

145





A.1 Generated Prism file for the Enlist Server strategy

A.1 Generated Prism file for the Enlist Server

strategy

This section sets out the generated Prism code which includes the DTMC for the

Discharge Server Strategy illustrated in Figure 6.6.

dtmc

// Number of components: 6 + 2 Absorbing states

global s : [1..8] init 1;

const double p_Web0 = 1.0;

const double p_Web2 = 0.9;

const double p_DB = 1.0;

const double p_Web3 = 1.0;

const double p_LB0 = 1.0;

const double p_Web1 = 1.0;

// Component name - LB0

module LB0

[] s=1 -> p_LB0 *0.25:(s’=2) + p_LB0 *0.25:(s’=3) +

p_LB0 *0.25:(s’=4) + p_LB0 *0.25:(s’=5) +

(1-p_LB0):(s’=8);

endmodule

// Component name - Web2

module Web2

[] s=2 -> p_Web2 *1.0:(s’=6) + (1-p_Web2):(s’=8);

endmodule

147



A.1 Generated Prism file for the Enlist Server strategy

// Component name - Web3

module Web3

[] s=3 -> p_Web3 *1.0:(s’=6) + (1-p_Web3):(s’=8);

endmodule

// Component name - Web1

module Web1

[] s=4 -> p_Web1 *1.0:(s’=6) + (1-p_Web1):(s’=8);

endmodule

// Component name - Web0

module Web0

[] s=5 -> p_Web0 *1.0:(s’=6) + (1-p_Web0):(s’=8);

endmodule

// Component name - DB

module DB

[] s=6 -> p_DB:(s’=7) + (1-p_DB):(s’=8);

endmodule

// Absorbing states

module absorbingStates

// Final states

[] s=7 -> (s’=7);

[] s=8 -> (s’=8);

endmodule

label "available" = (s=7);

label "unavailable" = (s=8);

148



A.2 Generated Prism file for the Discharge the Least Reliable

A.2 Generated Prism file for the Discharge the

Least Reliable

This section sets out the generated Prism code which includes the DTMC for the

Discharge Server Strategy illustrated in Figure 6.7.

dtmc

// Number of components: 4 + 2 Absorbing states

global s : [1..6] init 1;

const double p_DB = 1.0;

const double p_Web0 = 1.0;

const double p_LB0 = 1.0;

const double p_Web1 = 1.0;

// Component name - LB0

module LB0

[] s=1 -> p_LB0 *0.5:(s’=2) + p_LB0 *0.5:(s’=3) +

(1-p_LB0):(s’=6);

endmodule

// Component name - Web0

module Web0

[] s=2 -> p_Web0 *1.0:(s’=4) + (1-p_Web0):(s’=6);

endmodule

149



A.2 Generated Prism file for the Discharge the Least Reliable

// Component name - Web1

module Web1

[] s=3 -> p_Web1 *1.0:(s’=4) + (1-p_Web1):(s’=6);

endmodule

// Component name - DB

module DB

[] s=4 -> p_DB:(s’=5) + (1-p_DB):(s’=6);

endmodule

// Absorbing states

module absorbingStates

// Final states

[] s=5 -> (s’=5);

[] s=6 -> (s’=6);

endmodule

label "available" = (s=5);

label "unavailable" = (s=6);

150



References

Abd-Allah, A. (1997). Extending reliability block diagrams to software architectures.

Tech. Rep. Technical Report USC-CSE-97-501, Dept. of Computer Science, Univ.

Southern California. 59

Abdelmoez, W., Nassar, D., Shereshevsky, M., Gradetsky, N., Gunnalan,

R., Ammar, H., Yu, B. & Mili, A. (2004). Error propagation in software archi-

tectures. In Software Metrics, 2004. Proceedings. 10th International Symposium on,

384–393. 138

Allen, R. & Garlan, D. (1996). A case study in architectural modelling: The aegis

system. In Proceedings of the Eighth International Workshop on Software Specifica-

tion and Design (IWSSD-8), 6–15, Paderborn, Germany. 38

Avizienis, A., Laprie, J.C., Randell, B. & Landwehr, C. (2004). Basic con-

cepts and taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing , 1, 11–33. 17, 120, 122, 123, 126

Baier, C. & Katoen, J.P. (2008). Principles of Model Checking (Representation and

Mind Series). The MIT Press. 31, 32

Barais, O., Meur, A.L. & Duchien, L. (2008). Software Evolution. Springer Berlin

Heidelberg, Berlin, Heidelberg. 72

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neuge-

bauer, R., Pratt, I. & Warfield, A. (2003). Xen and the art of virtualization.

SIGOPS Oper. Syst. Rev., 37, 164–177. 123

Bass, L., Clements, P. & Kazman, R. (1998). Software Architecture in Practice.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. 9, 51

151



REFERENCES

Bjørner, D. & Jones, C.B., eds. (1978). The Vienna Development Method: The

Meta-Language, Springer-Verlag, London, UK, UK. 38

Brosch, F., Buhnova, B., Koziolek, H. & Reussner, R. (2011). Reliability pre-

diction for fault-tolerant software architectures. In Proceedings of the joint ACM

SIGSOFT conference–QoSA and ACM SIGSOFT symposium–ISARCS on Quality

of software architectures–QoSA and architecting critical systems–ISARCS , 75–84,

ACM. 21, 58

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R. & Tambur-

relli, G. (2011). Dynamic qos management and optimization in service-based sys-

tems. Software Engineering, IEEE Transactions on, 37, 387–409. 116

Calinescu, R., Ghezzi, C., Kwiatkowska, M. & Mirandola, R. (2012). Self-

adaptive software needs quantitative verification at runtime. Communications of the

ACM , 55, 69. 114

Camara, J. & de Lemos, R. (2012). Evaluation of resilience in self-adaptive systems

using probabilistic model-checking. In Software Engineering for Adaptive and Self-

Managing Systems (SEAMS), 2012 ICSE Workshop on, 53–62. 114

Casanova, P., Schmerl, B., Garlan, D. & Abreu, R. (2011). Architecture-based

run-time fault diagnosis. In Proceedings of the 5th European Conference on Software

Architecture, ECSA’11, 261–277, Springer-Verlag, Berlin, Heidelberg. 42

Cheng, S.W. (2008). Rainbow: Cost-effective Software Architecture-based Self-

adaptation. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA. 88,

91

Cheng, S.W. & Garlan, D. (2012). Stitch: A language for architecture-based self-

adaptation. J. Syst. Softw., 85, 2860–2875. 92

Cheng, S.W., Garlan, D. & Schmerl, B. (2009). Evaluating the effectiveness of

the rainbow self-adaptive system. In Proceedings of the 2009 ICSE Workshop on

Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’09, 132–

141, IEEE Computer Society, Washington, DC, USA. 92

Cheung, L., Roshandel, R., Medvidovic, N. & Golubchik, L. (2008). Early

prediction of software component reliability. In Proceedings of the 30th international

conference on Software engineering , 111–120, ACM, New York, New York, USA. 60

152



REFERENCES

Cheung, R. (1980). A user-oriented software reliability model. IEEE Transactions on

Software Engineering , 6, 118–125. 7, 21, 24, 37, 42, 44, 58, 83, 84, 119, 123

Clarke, E.M. & Emerson, E.A. (1981). Design and synthesis of synchronization

skeletons using branching-time temporal logic. In D. Kozen, ed., Proceedings of the

Workshop on Logic of Programs, LNCS 131, 52–71, Springer-Verlag. 25

Cortellessa, V. (2002). Early reliability assessment of UML based software models.

Electrical Engineering , 302–309. 21, 58

Cortellessa, V. & Grassi, V. (2007). A modeling approach to analyze the impact of

error propagation on reliability of component-based systems. In Component-Based

Software Engineering , vol. 4608 of Lecture Notes in Computer Science, 140–156,

Springer Berlin Heidelberg. 138

De Alfaro, L. (1998). Formal verification of probabilistic systems. Ph.D. thesis, Stan-

ford, CA, USA, aAI9837082. 31

Emerson, E.A. (2008). The beginning of model checking: A personal perspective. In

SPIN , 27–45. 25, 32

Epifani, I., Ghezzi, C., Mirandola, R. & Tamburrelli, G. (2009). Model evo-

lution by run-time parameter adaptation. In Proceedings of the 31st International

Conference on Software Engineering , ICSE ’09, 111–121, IEEE Computer Society,

Washington, DC, USA. 116

European Space Agency (ESA) (1988). Software reliability modeling study. Invi-

tation to tender AO/l-2039/87/NL/IW. 21

Feiler, P.H., Gluch, D.P. & Hudak, J.J. (2006). The architecture analysis & de-

sign language (AADL): An introduction. Tech. rep., Software Engineering Institute.

15, 38

Filieri, A., Ghezzi, C., Grassi, V. & Mirandola, R. (2010). Reliability analysis of

component-based systems with multiple failure modes. In Component-Based Software

Engineering, 13th International Symposium, CBSE 2010, Prague, Czech Republic,

June 23-25, 2010. Proceedings, 1–20. 119, 138

Filieri, A., Ghezzi, C., Leva, A. & Maggio, M. (2011). Self-adaptive software

meets control theory: A preliminary approach supporting reliability requirements.

153



REFERENCES

2011 26th IEEE/ACM International Conference on Automated Software Engineering

(ASE 2011), 0, 283–292. 115, 123

Franco, J.M., Barbosa, R. & Zenha-Rela, M. (2012). Automated reliability pre-

diction from formal architectural descriptions. In 2012 Joint Working IEEE/IFIP

Conference on Software Architecture and European Conference on Software Archi-

tecture, 302–309, IEEE computer society, Helsinki, Finland. 75

Franco, J.M., Barbosa, R. & Zenha-Rela, M. (2013). Reliability analysis of

software architecture evolution. In Sixth Latin-American Symposium on Dependable

Computing (LADC), 11–20, Rio de Janeiro, Brazil. 75

Fredericks, E.M., Ramirez, A.J. & Cheng, B.H.C. (2013). Towards run-time

testing of dynamic adaptive systems. In Proceedings of the 8th International Sym-

posium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS

’13, 169–174, IEEE Press, Piscataway, NJ, USA. 88

Gallotti, S., Ghezzi, C., Mirandola, R. & Tamburrelli, G. (2008). Quality

prediction of service compositions through probabilistic model checking. In Proceed-

ings of the 4th International Conference on Quality of Software-Architectures: Models

and Architectures, QoSA ’08, 119–134, Springer-Verlag, Berlin, Heidelberg. 114

Garlan, D. & Shaw, M. (1994). An Introduction to Software Architecture. Knowl-

edge Creation Diffusion Utilization. 9, 10, 51, 59

Garlan, D., Monroe, R. & Wile, D. (1997). Acme: An architecture description

interchange language. In Proceedings of the 1997 Conference of the Centre for Ad-

vanced Studies on Collaborative Research, CASCON ’97, 7–, IBM Press, Toronto,

Ontario, Canada. 15, 38, 56, 74, 75

Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B. & Steenkiste, P. (2004).

Rainbow: architecture-based self-adaptation with reusable infrastructure. Computer ,

37, 46–54. 92

Garlan, D., Bachmann, F., Ivers, J., Stafford, J., Bass, L., Clements, P.

& Merson, P. (2010). Documenting Software Architectures: Views and Beyond .

Addison-Wesley Professional, 2nd edn. 8

Gokhale, S. (2006). Analytical models for architecture-based software reliability pre-

diction: A unification framework. Reliability, IEEE Transactions on, 55, 578–590.

120

154



REFERENCES

Gokhale, S.S. (2007). Architecture-Based Software Reliability Analysis : Overview

and Limitations. IEEE Transactions On Dependable And Secure Computing , 4, 32–

40. 21, 42, 56, 58, 119, 137

Gokhale, S.S. & Trivedi, K.S. (2002). Reliability Prediction and Sensitivity Anal-

ysis Based on Software Architecture. Reliability Engineering . 24, 44, 58, 61, 72, 83,

84

Goseva-Popstojanova, K., Hamill, M. & Perugupalli, R. (2005). Large Em-

pirical Case Study of Architecture-Based Software Reliability. In 16th IEEE Inter-

national Symposium on Software Reliability Engineering (ISSRE’05), 43–52, IEEE.

24, 58, 73, 137

Goševa-Popstojanova, K. & Trivedi, K. (2001). Architecture-based approach to

reliability assessment of software systems. Performance Evaluation, 45, 179–204. 7,

22, 23, 42, 58, 119, 121, 123, 137

Grinstead, Charles M. and Snell, L.J. (2006). Grinstead and Snell’s Introduction

to Probability . July, American Mathematical Society, version da edn. 58

Hiller, M., Jhumka, A. & Suri, N. (2001). An approach for analysing the propaga-

tion of data errors in software. Proceedings International Conference on Dependable

Systems and Networks, 161–170. 138

Hinton, A., Kwiatkowska, M., Norman, G. & Parker, D. (2006). Prism: A

tool for automatic verification of probabilistic systems. In Proc. 12th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’06), volume 3920 of LNCS , 441–444, Springer. 33

Hoare, C.A.R. (1978). Communicating sequential processes. Commun. ACM , 21,

666–677. 38

IBM Corp. (2004). An architectural blueprint for autonomic computing . IBM Corp.,

USA. 89, 113

Immonen, A. & Niemelä, E. (2008). Survey of reliability and availability prediction

methods from the viewpoint of software architecture. Software and Systems Model-

ing , 7, 49–65. 22, 56, 58, 73, 137

155



REFERENCES

ISO/IEC/IEEE (2011). ISO/IEC/IEEE systems and software engineering – architec-

ture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007

and IEEE Std 1471-2000), 1–46. 9, 14, 39, 56, 72, 114

Issarny, V. & Zarras, A. (2003). Software architecture and dependability. In

M. Bernardo & P. Inverardi, eds., SFM , vol. 2804 of Lecture Notes in Computer

Science, 259–286, Springer. 14

Jeannet, B., D’Argenio, P. & Larsen, K. (2002). Rapture: A tool for verify-

ing Markov decision processes. In I. Cerna, ed., Proc. Tools Day, affiliated to 13th

Int. Conf. Concurrency Theory (CONCUR’02), Technical Report FIMU-RS-2002-

05, Faculty of Informatics, Masaryk University, 84–98. 33

Johansson, A. & Suri, N. (2005). Error propagation profiling of operating systems.

In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. International

Conference on, 86–95. 138

Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H. & Jansen, D.N.

(2009). The Ins and Outs of The Probabilistic Model Checker MRMC. In Quan-

titative Evaluation of Systems (QEST), 167–176, IEEE Computer Society, www.

mrmc-tool.org. 33

Kirwan, B. (1994). A Guide to Practical Human Reliability Assessment . London:

Taylor & Francis Ltd. 107

Kwiatkowska, M., Norman, G. & Parker, D. (2007). Stochastic model checking.

In M. Bernardo & J. Hillston, eds., Formal Methods for the Design of Computer,

Communication and Software Systems: Performance Evaluation (SFM’07), vol. 4486

of LNCS (Tutorial Volume), 220–270, Springer. 26, 27, 28, 122

Kwiatkowska, M., Norman, G. & Parker, D. (2009). Prism: Probabilistic model

checking for performance and reliability analysis. ACM SIGMETRICS Performance

Evaluation Review , 36, 40–45. 56, 114

Kwiatkowska, M., Norman, G. & Parker, D. (2011). PRISM 4.0: Verification

of probabilistic real-time systems. In G. Gopalakrishnan & S. Qadeer, eds., Proc.

23rd International Conference on Computer Aided Verification (CAV’11), vol. 6806

of LNCS , 585–591, Springer. 56

156

www.mrmc-tool.org
www.mrmc-tool.org


REFERENCES

Laprie, J. & Kanoun, K. (1996). Software reliability and system reliability. Handbook

of software reliability engineering , 27–69. 24

Lemos, R., Giese, H., Muller, H.A., Shaw, M., Andersson, J., Baresi, L.,

Becker, B., Bencomo, N., Brun, Y., Cukic, B., Desmarais, R., Dustdar,

S., Engels, G., Geihs, K., M. Goeschka, K., Gorla, A., Grassi, V., In-

verardi, P., Karsai, G., Kramer, J., Litoiu, M., Lopes, A., Magee, J.,

Malek, S., Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz,

O., Pezze, M., Prehofe, C., Schäfer, W., Schlichting, R., Schmerl, B.,

B. Smith, D., P. Sousa, J., Tamura, G., Tahvildari, L., M. Villegas, N.,

Vogel, T., Weyns, D., Wong, K. & Wuttke, J. (2013). Software Engineering

for Self-Adaptive Systems: A Second Research Roadmap. In R. de Lemos, H. Giese,

H. Müller & M. Shaw, eds., Software Engineering for Self-Adaptive Systems, vol.

7475 of Dagstuhl Seminar Proceedings, 1–26, Springer. 113

Littlewood, B. (1979). Software Reliability Model for Modular Program Structure.

IEEE Transactions on Reliability , R-28, 241–246. 24

Lo, J.H., Huang, C.Y., Chen, I.Y., Kuo, S.Y. & Lyu, M.R. (2005). Reliability

assessment and sensitivity analysis of software reliability growth modeling based on

software module structure. Journal of Systems and Software, 76, 3–13. 44, 58, 61,

72, 83, 84

Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D. & Mann,

W. (1995). Specification and analysis of system architecture using rapide. IEEE

Trans. Softw. Eng., 21, 336–355. 15

Lyu, M.R., ed. (1996). Handbook of software reliability engineering . McGraw-Hill, Inc.,

Hightstown, NJ, USA. 17, 20

Maćıas-Escrivá, F.D., Haber, R., del Toro, R. & Hernandez, V. (2013).

Self-adaptive systems: A survey of current approaches, research challenges and ap-

plications. Expert Systems with Applications, 40, 7267–7279. 88

Martens, A., Koziolek, H., Becker, S. & Reussner, R. (2010). Automatically

Improve Software Architecture Models for Performance , Reliability , and Cost Using

Evolutionary Algorithms. Population (English Edition). 56, 59

Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G.,

Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L. & Wolf, E.L.

157



REFERENCES

(1999). An architecture-based approach to self-adaptive software. IEEE Intelligent

Systems, 14, 54–62. 89

Pengoria, D., Kumar, S. & Se, M.S. (2009). A Study on Software Reliability

Engineering Present Paradigms and its Future Considerations. Computing . 22, 56,

58

Perry, D.E. & Wolf, A.L. (1992). Foundations for the study of software architec-

ture. ACM SIGSOFT Software Engineering Notes, 17, 40–52. 8

Potter, B., Till, D. & Sinclair, J. (1996). An Introduction to Formal Specification

and Z . Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edn. 38, 39

Qian, L., Luo, Z., Du, Y. & Guo, L. (2009). Cloud computing: An overview. In

M. Jaatun, G. Zhao & C. Rong, eds., Cloud Computing , vol. 5931 of Lecture Notes

in Computer Science, 626–631, Springer Berlin Heidelberg. 123

Reussner, R. & Heinz W. (2003). Reliability prediction for component-based soft-

ware architectures. Journal of Systems and Software, 66, 241–252. 21, 24, 58, 119

Salehie, M. & Tahvildari, L. (2009). Self-adaptive software. ACM Transactions on

Autonomous and Adaptive Systems, 4, 1–42. 88, 113

Schmerl, B. & Garlan, D. (2004). AcmeStudio: supporting style-centered archi-

tecture development. In Software Engineering, 2004. ICSE 2004. Proceedings. 26th

International Conference on, 704 – 705. 74

Shooman, M.L. (1976). Structural models for software reliability prediction. In Pro-

ceedings of the 2Nd International Conference on Software Engineering , ICSE ’76,

268–280, IEEE Computer Society Press, Los Alamitos, CA, USA. 22

Sommerville, I. (2000). Software engineering, 6th Edition (Slides). Software Engi-

neering, IEEE Transactions on. 9

Spivey, J.M. (1989). The Z Notation: A Reference Manual . Prentice-Hall, Inc., Upper

Saddle River, NJ, USA. 38

Storey, N.R. (1996). Safety Critical Computer Systems. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA. 20, 95

Sun, J., Liu, Y. & Dong, J.S. (2008). Model checking csp revisited: Introducing a

process analysis toolkit. In In ISoLA 2008 , 307–322, Springer. 34

158



REFERENCES

Taylor, R.N., Medvidovic, N. & Dashofy, E.M. (2009). Software Architecture:

Foundations, Theory, and Practice. Wiley Publishing. 8, 10, 15, 17, 21, 38, 56

Tijms, H.C. (2003). A First Course in Stochastic Models. Wiley. 26, 32

Villegas, N.M., Müller, H.a., Tamura, G., Duchien, L. & Casallas, R.

(2011). A framework for evaluating quality-driven self-adaptive software systems.

Proceeding of the 6th international symposium on Software engineering for adaptive

and self-managing systems - SEAMS ’11 , 1, 80. 91, 92

Wang, W.l., Pan, D. & Chen, M.H. (2006). Architecture-based software reliability

modeling. Journal of Systems and Software, 79, 132–146. 55, 59, 85, 119, 123

Yacoub, S., Cukic, B. & Ammar, H. (2000). Scenario-based reliability analysis of

component-based software. Proceedings 10th International Symposium on Software

Reliability Engineering (Cat. No.PR00443), 22–31. 21, 58

Zheng, T., Woodside, M. & Litoiu, M. (2008). Performance model estimation

and tracking using optimal filters. Software Engineering, IEEE Transactions on, 34,

391–406. 115

159


	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Contributions
	1.2 Structure of the Thesis

	2 Background
	2.1 What is Software Architecture?
	2.1.1 Architectural Constituents
	2.1.2 Architectural Styles
	2.1.3 Architecture Description Languages
	2.1.4 Software Quality Attributes

	2.2 Dependability
	2.2.1 Attributes
	2.2.2 Threats
	2.2.3 Means

	2.3 Reliability Theory
	2.3.1 Concept
	2.3.2 Modeling

	2.4 Probabilistic Model Checking
	2.4.1 Discrete-Time Markov Chain (DTMC)
	2.4.2 Continuous-Time Markov Chain (CTMC)
	2.4.3 Absorbing Markov chains
	2.4.4 Markov Decision Process (MDP)
	2.4.5 Temporal Logic
	2.4.6 Tools

	2.5 Summary

	3 Automated Reliability Prediction
	3.1 Architectural Identification and Specification
	3.2 Failure Behavior
	3.3 Combining Architecture with the Failure Behavior
	3.4 Demonstration Example
	3.5 The Translation Process
	3.5.1 Initial state
	3.5.2 Components
	3.5.3 Connectors
	3.5.4 Constraints

	3.6 Modeling Architectural Styles
	3.6.1 Batch-sequential / Pipe-and-Filter
	3.6.2 Parallel
	3.6.3 Fault-tolerance
	3.6.4 Call-and-return

	3.7 Automated Prediction
	3.8 Threats for Validity
	3.9 Related Work
	3.10 Summary

	4 Automated Sensitivity Analysis
	4.1 Variation in Component Reliability
	4.2 Analysis of the Usage Profile
	4.3 Analysis of ranking
	4.4 Demonstration
	4.4.1 Analysis of Reliability
	4.4.2 Usage Profile Analysis
	4.4.3 Making Structural Changes

	4.5 Automated Analysis
	4.6 Related Work
	4.7 Summary

	5 Implementation and Validation
	5.1 The Affidavit Tool
	5.1.1 Implementation
	5.1.2 GUI Example
	5.1.3 Experiments

	5.2 Automated Reliability Prediction Validation
	5.3 Validating Architectural Styles
	5.4 Summary

	6 Application to Self-Adaptive Systems
	6.1 Self-Adaptive Systems
	6.2 Reliability Prediction within Self-Adaptation
	6.3 Case-Study
	6.3.1 Adopted self-adaptive system
	6.3.2 Target system
	6.3.3 Experimental design
	6.3.4 Example
	6.3.5 Workload

	6.4 Evaluation
	6.4.1 Control run
	6.4.2 Fault injection
	6.4.3 Effectiveness and scalability of impact prediction
	6.4.4 Discussion

	6.5 Related Work
	6.6 Summary

	7 Modeling the Failure Pathology of a Software Component
	7.1 Modeling
	7.2 Case-study
	7.2.1 Fault Injection
	7.2.2 Failure Classification

	7.3 Experimentation
	7.3.1 Gathering Failure Data
	7.3.2 Validation
	7.3.3 Discussion of the Results

	7.4 Related Work
	7.5 Summary

	8 Conclusion
	List of Publications
	A Generated Prism Files
	A.1 Generated Prism file for the Enlist Server strategy
	A.2 Generated Prism file for the Discharge the Least Reliable

	References

