
João Maria Duarte Andrade

Tese de Doutoramento em Engenharia Electrotécnica e de Computadores, ramo de especialização em Telecomunicações, orientada
pelo Professor Doutor Vitor Manuel Mendes Silva e Professor Doutor Gabriel Falcão Paiva Fernandes, e apresentada ao Departamento
de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Setembro de 2015

VDD

-VNWL

GND

VDD

LDPC
Decoder

R

+

+

RLUT

+
+

+

=
=

=
=

=
=

=

0.5
1

1.5

ES/N0
(dB)

10
-1

10
-2

10
-3

10
-4

10
-5

BE
R

Design Space Exploration of LDPC Decoders
on Programmable and Reconfigurable Architectures

Background of cover image source: Earth Observatory, NASA.

UNIVERSIDADE DE COIMBRA
FACULDADE DE CIÊNCIAS E TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Design Space Exploration of LDPC Decoders on
Programmable and Reconfigurable Architectures

João Maria Duarte Andrade

(Mestre)

Dissertação para a obtenção do Grau de Doutor em
Engenharia Electrotécnica e de Computadores

Tese de Doutoramento em Engenharia Electrotécnica e de Computadores, ramo de especializa-
ção em Telecomunicações, orientada pelo Doutor Vitor Manuel Mendes da Silva e pelo Doutor
Gabriel Falcão Paiva Fernandes, e apresentada ao Departamento de Engenharia Electrotécnica e
de Computadores da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Coimbra

Setembro 2015

João Maria Duarte Andrade: Design Space Exploration of LDPC Decoders on Programmable
and Reconfigurable Architectures, Tese de Doutoramento em Engenharia Electrotécnica e
de Computadores, ramo de especialização em Telecomunicações, Faculdade de Ciências
e Tecnologia, Universidade de Coimbra c© Setembro 2015

This Thesis was supported by Instituto de Telecomunicações under the grants PEst-OE/
EEI/LA0008/2011, PEst-OE/EEI/LA0008/2013 and UID/EEA/50008/2013, and by Fun-
dação para a Ciência e Tecnologia doctoral scholarship grant SFRH/BD/78238/2011 un-
der the QREN - POPH - Type 4.1 - Advanced Formation programmes financed by the
Fundo Social Europeu (FSE) and the national funding of MEC.

Acknowledgments

Aos meus orientadores, Professor Vitor Silva e Professor Gabriel Falcão, tenho a agra-
decer toda a ajuda, apoio e discussões que melhoraram o meu trabalho. Tenho de lhes
reconhecer a disponibilidade em rever e melhorar as minhas contribuições científicas.
Graças ao Vitor pude contornar sempre mais uma parede quando nelas embatia e man-
ter em vista o caminho a percorrer. Devo ao encorajamento do Gabriel várias viagens
Mundo fora, e as estadias no EPFL e na Xilinx Research Labs.

Agradeço ao Professor Marco Gomes, bem como ao João Amaro, ao Sinédoque, e cole-
gas de laboratório, a ajuda prestada, procrastinação activa e sanidade proporcionadas.
Aos investigadores do INESC-ID, Frederico Pratas, Professor Pedro Tomás e Professor
Leonel Sousa, agradeço a hospitalidade demonstrada e colaborações realizadas. Ao Fil-
ipe Silva devo a disponibilidade do seu sofá no 16ème, ao João Nunes uma desculpa para
voltar a Verbier e ao Carlos Oliveira o regresso à minha alma mater desportiva.

I thank David Novo, Nithin George, Kimon Karras and Professor Joseph R. Cavallaro,
for their kindness, support, influence and academic collaboration. To Chantal Schnee-
berger I owe “mille mercis” for her effortless way to integrate people at LAP, making my
life much easier. I would like to acknowledge Professor Paolo Ienne and Michaela Blott
for hosting me at LAP, EPFL and at Xilinx Research Labs. Professor Shinichi Yamagiwa
has granted access to the GPU-cluster without which simulations would still be running
now.

Sem o apoio incondicional da minha família não seria possível ter chegado aqui. Aos
meus Pais, Dá e Jasa, agradeço o permanente incentivo para aprender mais e maximizar o
meu capital humano, bem como todo o apoio e incessante comunicação no meu ano fora.
À Nanã e ao JotaPê, tenho a agradecer os magníficos momentos que me proporcionaram
com o João Pequenino e a Maria Rita. Agradeço também à família Beldroega toda a ajuda
prestada e cuidados dispensados, em especial à Margarida na minha ausência.

Last, but not the least, estou eternamente endividado para com a Margarida, o meu
maior pilar de sanidade e amor. Dedicar-lhe estas poucas linhas é o mínimo, embora
parca recompensa, para alguém sem cuja presença teria sido impossível concluir o que
se iniciou há já longo tempo.

A todos, muito obrigado,

Aos meus Avós, Luísa e João, Inha e João Maria,
E, à Margarida,

Everyday life is like programming, I guess.
If you love something you can put beauty into it.

- Donald Knuth

Abstract

Low-density parity-check (LDPC) codes are capacity-approaching linear block codes
widely employed for digital communication systems and storage. However, the real-
ization of LDPC decoders is a very challenging process due to the numerical complexity
associated with binary, and especially, with non-binary LDPC codes. Whereas very large
scale integration (VLSI) technology provides the necessary means to allow the realization
of efficient LDPC decoders that meet both low latencies and high decoding through-
puts, the development process behind application-specific integrated circuit (ASIC) and field-
programmable gate array (FPGA) decoders is error-prone, protracted and is an endeavor
captured by low-level micro-architecture and silicon details that pose high non-recurring
engineering (NRE) costs.

In this Thesis, we explore efficient ways to overcome the challenges associated with
the development of binary and non-binary LDPC decoders on both programmable and
reconfigurable hardware. We propose methodologies that leverage on the immense com-
putational power of multicore graphics processing unit (GPU) architectures applied to bi-
nary and non-binary LDPC decoders, not only for achieving the very high data rates
required for nowadays communications, but also for very fast Monte Carlo bit error rate
(BER) simulation, essential for the study of new LDPC codes.

Having exploited the potential of parallel computing on programmable hardware
and identified its shortcomings, we extend our proposed methodology to reconfigurable
hardware. The developed FPGA-decoders explore different high-level synthesis (HLS) pro-
gramming models, based on dataflow, loop-annotated and wide-pipeline architectures.
From the performance analysis of these accelerators, we identify the key guidelines to the
design of efficient LDPC decoders under each approach. Finally, we propose algorithm-
and silicon-level procedures to boost the LDPC decoders energy efficiency. Namely, we
propose gear-shift techniques, and incorporation of unreliable memory storage along with
BER degradation mitigation strategies.

Keywords

LDPC codes, Galois field, Reconfigurable computing, Parallel computing, High-level
synthesis, Unreliable memory storage

ix

Resumo

Os códigos definidos por matrizes de teste de paridade esparsas (LDPC) são bastante po-
derosos em sistemas de comunicação digital e armazenamento de dados, por operarem
quase à capacidade do canal. No entanto, a realização de descodificadores LDPC é um
processo desafiante devido à complexidade associada aos códigos LDPC binários e, em
particular, aos não-binários. Apesar de a tecnologia de integração em larga escala (VLSI) ter
capacidade para a realização de descodificadores LDPC que cumpram a baixa latência e
o elevado ritmo de transmissão de dados, os processos de desenvolvimento em circuitos
integrados de aplicação específica (ASIC) ou em circuitos lógicos programáveis (FPGA) são mo-
rosos, conduzem facilmente a erros e são pautados por detalhes minuciosos ao nível do
silício e da micro-arquitectura que elevam os custos não recorrentes de engenharia (NRE).

Esta tese aborda estratégias para superar os desafios inerentes ao desenvolvimento
de descodificadores binários e não-binários em arquitecturas programáveis e reconfigu-
ráveis. Deste modo, são propostas metodologias que exploram a imensa capacidade
computacional de arquitecturas multicore, como processadores gráficos (GPUs), aplicadas
a descodificadores binários e não-binários, não só atingindo os elevados ritmos de dados
necessários aos sistemas de comunicação actuais, mas também permitindo rápida simu-
lação de Monte Carlo para a caracterização da taxa de erros (BER), essencial para o estudo
de novos códigos e algoritmos.

A metodologia proposta para arquitecturas programáveis é extendida a arquitecturas
reconfiguráveis. Os descodificadores FPGA desenvolvidos tiram partido de síntese de
alto-nível (HLS), baseada em modelos dataflow, loop-annotated e wide-pipeline. Através
da análise da performance obtida em cada abordagem, propõem-se linhas orientadoras
para o desenvolvimento de descodificadores de elevados desempenhos. Finalmente, são
propostos métodos ao nível algorítmico e do silício de melhoria da eficiência energética
dos descodificadores propostos. As técnicas desenvolvidos utilizam técnicas de gear-shift
e de armazenamento de dados em memórias não-fiáveis, para as quais são introduzidas
estratégias de diminuição da degradação de BER.

Palavras Chave

Códigos LDPC, Campos de Galois, Computação reconfigurável, Computação par-
alela, Síntese de alto-nível, Armazenamento em memória não-fiável

xi

Contents

Page

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 4
1.3 Main Contributions . 6
1.4 Outline . 8

2 LDPC Codes Fundamentals 11
2.1 Linear Block Codes . 12

2.1.1 Generator Matrix . 12
2.1.2 Parity-Check Matrix . 13
2.1.3 Coding Rate . 16
2.1.4 Syndrome and Error Detection . 16

2.2 LDPC Codes over GF(2) . 16
2.2.1 Tanner Graph . 17

2.3 LDPC Decoding Algorithms over GF(2) . 17
2.3.1 Sum-Product Algorithm . 18
2.3.2 Logarithmic Sum-Product Algorithm 18
2.3.3 Min-Sum Decoding Algorithm . 20

2.4 LDPC Codes over GF(q) . 22
2.4.1 Factor Graph . 23

2.5 LDPC Decoding Algorithms over GF(q) . 24
2.5.1 Sum-Product Algorithms . 25
2.5.2 Extended Min-Sum Algorithm . 33

2.6 Decoding Schedules . 37
2.6.1 Two-phased Message-passing . 37
2.6.2 Turbo-decoding Message-passing 37

2.7 Overview of the Complexity . 38
2.7.1 Binary Decoding Algorithms . 38
2.7.2 Non-binary Decoding Algorithms 39

2.8 Summary . 40

3 LDPC Decoder Architectures Overview 41
3.1 Decoding on Programmable Architectures 43

3.1.1 Programmable LDPC Decoder Mapping 44
3.1.2 Tanner Graph Indexing Schemes . 45
3.1.3 Programming Models . 48
3.1.4 Thread-parallelism . 50
3.1.5 Data-parallelism . 57

xiii

3.1.6 Decoding Algorithms . 59
3.1.7 Decoding Schedules . 60

3.2 Decoding on Reconfigurable Architectures 61
3.2.1 Programming Models . 62
3.2.2 Parallelism . 62

3.3 Summary . 63

4 Programmable LDPC Decoders 65
4.1 Parallel Programming Models and Platforms 66

4.1.1 Parallel Computing Principles . 67
4.1.2 General-purpose x86 multicore CPU 70
4.1.3 General-purpose Computing on CUDA and OpenCL GPUs 72
4.1.4 Distributed Computing on multicore Fermi Dual-GPU Clusters . . 76
4.1.5 CUDA Programming Model . 78
4.1.6 OpenCL Programming Model . 79
4.1.7 MPI Programming Model . 81

4.2 Programmed LDPC Decoder Accelerators 82
4.3 Single-GPU Decoders . 83

4.3.1 Data-parallelism . 84
4.3.2 Thread-parallelism . 87
4.3.3 Optimized Tanner Graph Indexing 88
4.3.4 Binary LDPC Decoding . 93
4.3.5 Non-binary LDPC Decoding . 103

4.4 GPU-cluster Decoders . 112
4.4.1 Fast BER Monte Carlo Simulation 112
4.4.2 GPU Cluster Execution . 116

4.5 Hybrid CPU/GPU Decoders . 122
4.5.1 Potential of the CPU Co-accelerator 123
4.5.2 Experimental Results . 123
4.5.3 Energy efficiency of the CPU/GPU decoder 126

4.6 Summary . 128

5 Reconfigurable LDPC Decoders 129
5.1 Reconfigurable Computing . 130

5.1.1 Reconfigurable Architectures . 130
5.1.2 High-level Synthesis Programming Models 134

5.2 Synthesized LDPC Decoder Accelerators 140
5.3 Dataflow LDPC Decoder . 141

5.3.1 M-modulo dataflow LDPC decoder 143
5.3.2 Pipelined FU Execution . 146
5.3.3 Experimental results . 149

5.4 Loop-annotated LDPC Decoder . 155
5.4.1 LDPC decoder isomorphic mapping to hardware 158
5.4.2 Loop-acceleration . 160
5.4.3 Memory mapping . 161
5.4.4 Experimental results . 164

5.5 Wide-pipeline LDPC Decoder . 176
5.5.1 Altera OpenCL LDPC Decoder . 177
5.5.2 Experimental results . 189

5.5.3 SOpenCL LDPC Decoder . 199
5.5.4 Experimental results . 203
5.5.5 Operational Transform FFT/FWHT 212
5.5.6 Experimental results . 217

5.6 Summary . 221

6 Power-aware LDPC Decoders 223
6.1 Gear-Shift LDPC Decoders . 225

6.1.1 Gear-shift strategies . 226
6.1.2 MSA-based gear-shift decoder . 228
6.1.3 Variable quantization bits and compact representation 230
6.1.4 Experimental Results . 232

6.2 LDPC Decoder under Unreliable Memory Storage 237
6.2.1 Unreliable arithmetic and control silicon 238
6.2.2 Unreliable Memory Storage . 239
6.2.3 Error Mitigation Strategies . 242
6.2.4 BER degradation mitigation strategies 243
6.2.5 Experimental Results . 248
6.2.6 Power savings for the eDRAM case 251

6.3 Summary . 256

7 Conclusions and Future Work 259
7.1 Future Work . 263

A Survey of the LDPC Decoders on Programmable Hardware 267

B Galois Field Arithmetic 278
B.1 Fields . 280

B.1.1 Primitive Polynomials . 282
B.1.2 Matrix-Representation of Fields . 284
B.1.3 Fourier Transform . 284

C List of Hardware Employed 287

List of Figures

1.1 Design space exploration methodology . 5
1.2 Thesis organization. 9

2.1 Digital transmission system with forward error correction. 12
2.2 LDPC code over GF(2) in matrix and Tanner graph representation. 17
2.3 Factor graph extension to the Tanner graph. 24
2.4 Mixed-domain message-passing. 33
2.5 TPMP decoding schedule . 37
2.6 TDMP decoding schedule . 38

3.1 Tanner graph isomorphic mapping on programmable architectures 44
3.2 Tanner graph indexing based on sparse matrix storage. 46
3.3 LDPC-IRA Tanner graph indexing based on sparse matrix storage. 47
3.4 QC-LDPC Tanner graph indexing based on sparse matrix storage. 48
3.5 Pixel-per-Edge LDPC decoder thread-parallelism. 51
3.6 Thread-per-Edge LDPC decoder thread-parallelism approach. 52
3.7 Thread-per-Node LDPC decoder thread-parallelism approach. 52
3.8 Block-per-Codeword LDPC decoder thread-parallelism. 54
3.9 Thread-per-Codeword LDPC decoder thread-parallelism approach. 56
3.10 Single codeword and codeword batch on a vector 58
3.11 Padded data-parallelism approach . 58
3.12 Interleaved data-parallelism approach . 59
3.13 Tanner graph isomorphic mapping . 62

4.1 Data-dependency graphs . 68
4.2 Ivy bridge CPU/GPU hybrid architecture 71
4.3 Fermi GPU overview . 73
4.4 SIMT GPU SM and CUDA core in detail . 73
4.5 SIMD GPU architecture in detail . 75
4.6 Dual-GPU cluster topology . 77
4.7 Execution grid . 78
4.8 GPU memory model . 79
4.9 OpenCL abstraction model . 80
4.10 MPI basic hierarchy running on the dual-GPU cluster 81
4.11 Memory access to packed LLRs . 86
4.12 Data-parallelism levels at the vector and execution grid granularities . . . 86
4.13 Memory layout of the DVB-S2 LDPC-IRA codes in a 1-D memory 91
4.14 MSA employment of the GPU memory hierarchy 94
4.15 Decoder performance vs. workgroup size 95
4.16 Single-GPU TpN and BpC decoders throughput (I) 96

xvii

4.17 Single-GPU TpN and BpC decoders throughput (II) 98
4.18 Single-GPU TpN and BpC decoders latency 99
4.19 Non-optimized SCMSA datapath compared to the MSA 100
4.20 Optimized SCMSA datapath compared to the MSA 101
4.21 BER performance comparison of LSPA and MSA-based algorithms 102
4.22 FFTSPA employment of the GPU memory hierarchy 104
4.23 Shared memory conflicts on the 8-point radix-2 FWHT 105
4.24 8-point radix-2 FWHT computation through the GPU memory 107
4.25 Speedup of the B=32 FWHT compared to B=16 vs. bank conflict probability109
4.26 BER simulation model . 113
4.27 Cluster BER simulator kernels relative occupancy 117
4.28 Cluster MPI execution overhead and computational unbalancing scalability 118
4.29 Cluster scalability compared to single- and dual-GPU execution 120
4.30 Cluster simulation time scenarios . 122
4.31 CPU/GPU decoding throughput vs. workload configuration 125
4.32 CPU/GPU decoding throughput vs. workload configuration 127

5.1 Arithmetic performance comparison of CPU, GPU and FPGA devices . . . 131
5.2 FPGA island style architecture . 132
5.3 CLB example: Altera ALM and Xilinx double-Slice 132
5.4 Stratix FPGA architecture . 133
5.5 Fully unrolled filter function dataflow graph (Figure 5.6) 135
5.6 RTL design flow for hardware development 136
5.7 From RTL to C-based HLS design flow for hardware development 137
5.8 MaxCompiler design flow for hardware development 142
5.9 Basic dataflow accelerator topology . 143
5.10 M-modulo dataflow architecture . 144
5.11 Memory layout for the M-modulo dataflow decoder 145
5.12 Dataflow pipelined MSA FU VN and CN datapaths 146
5.13 Roofline analysis of the dataflow M-modulo LDPC decoder 153
5.14 Energy efficiency of the dataflow M-modulo LDPC decoder 154
5.15 Vivado HLS design flow for hardware development 156
5.16 Template architecture for the loop-annotated LDPC decoder 157
5.17 Vivado HLS isomorphic mapping of the message-passing algorithms . . . 158
5.18 Dataflow regions within the LDPC decoder accelerator 159
5.19 Loop nest structure of LDPC decoding kernels 161
5.20 BRAM-array partitioning . 162
5.21 BRAM-array reshaping for improved bandwidth 163
5.22 LDPC decoder architecture base version (Solution I) 166
5.23 Expected behaviour of the FWHT kernel iteration scheduling 168
5.24 Loop-annotated decoding kernels latency and clock frequency of operation 172
5.25 Pareto plotting of the design space for the LDPC accelerator 175
5.26 Altera OpenCL design flow for hardware development 177
5.27 Altera OpenCL host application design flow 178
5.28 Parallelism in the vector addition wide-pipeline accelerator 180
5.29 Altera OpenCL memory model . 182
5.30 Altera OpenCL pipeline desired and obtained execution behaviors. 184
5.31 Altera OpenCL TpN execution and work-item scheduling 185
5.32 Altera OpenCL isomorphic mapping to a multi-kernel approach 187

5.33 Altera OpenCL roofline analysis of the LDPC decoder 194
5.34 Binary and non-binary LDPC wide-pipeline decoders logic utilization . . 197
5.35 Non-binary clock frequency and throughput tradeoff with data-parallelism 198
5.36 Sequence of SOpenCL backend code transformations and optimizations . 200
5.37 Instruction clustering of arithmetic operations 201
5.38 SOpenCL template architecture . 202
5.39 Impact of instruction clustering on the logic utilization (1/2) 207
5.40 Impact of instruction clustering on the logic utilization (2/2) 208
5.41 Instruction clustering effect on the lifetime of inputs 209
5.42 Block diagram of the SOpenCL-generated LDPC decoder 210
5.43 SOpenCL generated CN datapath . 210
5.44 OpenCL work-group execution flow of the wide-pipeline N-length FFT . 213
5.45 OpenCL FFT local memory buffer schemes 218

6.1 Power-aware optimizations introduced at the system-level. 224
6.2 ROI of the MSA-based gear-shift decoder. 230
6.3 MSA-based gear-shift decoder architecture datapath. 231
6.4 Datapath switching on transition of the accelerating gearbox 232
6.5 BER of the accelerating and decelerating gear-shift decoders. 233
6.6 BER of the MSA and SCMSA under different quantization levels 236
6.7 BER of the gear-shift decoders under variable quantization 237
6.8 Metrics of correctness for LDPC approximate computing. 238
6.9 Unreliable operation of bit-cells in SRAM and eDRAM memories 240
6.10 LDPC decoder operation under unreliable memory storage 240
6.11 Reliable and unreliable memory taxonomy 241
6.12 Memory storage following the stuck-at 0 channel 243
6.13 k-MSB protection . 247
6.14 Follow-up repair iterations strategy . 247
6.15 LDPC BER performance under unreliable memory 249
6.16 LDPC BER performance under unreliable memory w/ k-MSB protection . 250
6.17 LDPC BER with unreliable memory w/ repair iterations. 252
6.18 Typical DRT CDFs for eDRAM nodes . 254
6.19 Typical DRT CDFs for eDRAM nodes and refresh rate periods 255
6.20 Zoomed in DRT CDF decoder configurations under the Ps0=10−3 threshold 256

List of Tables

2.1 LDPC over GF(q) Decoding Algorithms Numerical Complexity Overview. 39

4.1 Overview of the performance of recent processors 67
4.2 Top500 and Green500 first tier systems . 76
4.3 Experimental dataset utilized for the programmable LDPC decoders . . . 83
4.4 Comparison of general compressed and DVB-S2 LDPC-IRA indexing meth-

ods . 93
4.5 Throughput and latency at 1% and 5% of the peak performance 98
4.6 FWHT factorizations employed . 106
4.7 Throughput and profiling of the 128- and 256-point FWHT kernels 108
4.8 Execution time and throughput of the FFT-SPA decoder 110
4.9 Relative execution time of kernels in the FFT-SPA for GF(28) 111
4.10 Cluster simulation time and speedup . 119
4.11 CPU/GPU top tier configurations . 125

5.1 Dataflow decoder rescheduling of nodes’ order of execution 148
5.2 Dataflow LDPC decoder hardware characteristics (MAX2336B FPGA) . . 150
5.3 Dataflow LDPC decoder hardware characteristics (MAX3412A FPGA) . . 151
5.4 Solutions tested and corresponding optimizations. 172
5.5 FPGA utilization for the standalone LDPC decoder IP core. 173
5.6 LDPC HLS IP Core decoder latency and clock frequency. 174
5.7 Comparison of non-binary LDPC decoders 176
5.8 Binary wide-pipeline hardware characteristics 190
5.9 Non-binary wide-pipeline hardware characteristics 196
5.10 SOpenCL CN pipeline for the considered scenario I LDPC 205
5.11 SOpenCL VN pipeline for the considered scenario I LDPC 206
5.12 Experimental results for N = {256, 1024} radix-4 fast Fourier transform (FFT) 217
5.13 OpenCL FFT accelerator throughput derate factors 220
5.14 FFTW and cuFFT libraries FFT performance 220

6.1 Message domain change under SPA, MSA and Gallager-B and -E decoding 227
6.2 accelerating convergence to the MSA and SCMSA 234
6.3 decelerating convergence to the MSA and SCMSA 235
6.4 accelerating and decelerating convergence difference 235
6.5 Carried out simulations for the LDPC decoder with unreliable memory . . 248
6.6 LDPC decoder simulation and memory parameters. 249
6.7 Decoding iterations overhead under unreliable memory 251

A.1 Summary of the Programmable LDPC Decoders. 268

xxi

B.1 Addition and multiplication table for the Z8 ring. 280
B.2 Multiplication table for non-zero elements in GF(5). 281
B.3 Multiplication table of the set {1, 2, 3, 4, 5}. 281
B.4 Order of each non-zero element in GF(5). 282
B.5 Defining GF(5) with primitive elements 2 and 3. 282
B.6 Constructing GF(23) using f (x) = x3 + x + 1 as the primitive polynomial. 283
B.7 Addition and multiplication table for the extension field GF(23). 284

C.1 List of utilized hardware . 288

List of Algorithms

2.1 Sum-product algorithm . 19
2.2 Logarithmic sum-product algorithm . 19
2.3 CN Processing for the LSPA using Gallager’s approach 20
2.4 CN Processing for the LSPA using the Jacobian approach 21
2.5 CN Processing for the MSA . 21
2.6 CN Processing for the normalized-MSA . 21
2.7 CN Processing for the offset-MSA . 22
2.8 VN Processing for the SCMSA . 22
2.9 SPA generalized to GF(q) . 26
2.10 CN Processing for the Davey and Mackay SPA 26
2.11 CN Processing for the Wymeersch LSPA . 27
2.12 CN Processing for the FFT-SPA . 28
2.13 Log-Fourier Sum-product Algorithm . 31
2.14 Tensorial SPA for GF(q) . 32
2.15 EMS for GF(q) . 35
4.16 Construction of the general compressed indexing 89
4.17 Accessing messages with the general compressed indexing 90
4.18 Accessing messages with the DVB 2 LDPC-IRA codes indexing 90
4.19 Construction of the QC-LDPC compressed indexing 92
4.20 Accessing messages with the QC-LDPC compressed indexing 92

xxiii

List of Symbols

Galois Field Notation

α Primitive element of GF(q), root of the primitive polynomial p(x)

p(x) Primitive polynomial of GF(q)

q Dimension of the Galois field

2m Dimension of the binary extension field

LDPC Code Notation

cj j-th element (bit or symbol) of codeword c

dc CN degree

dv VN degree

G LDPC code generator matrix

H LDPC code parity-check matrix

F LDPC code protograph matrix

IK K×K identity matrix

hij Element h (in H) in row i and column j

h fij Element h f (in Hf) in row i and column j

P Systematic LDPC code parity sub-matrix

I Systematic LDPC code information sub-matrix

K Number of information symbols in the LDPC code

M Number of parity-check restrictions in the LDPC code

M f Number of rows in the LDPC code protograph

N Number of symbols in the LDPC code

N f Number of columns in the LDPC code protograph

M(n) Set of CNs, with cardinality dc, connected to VNn (over GF(2))

N(m) Set of VNs, with cardinality dv, connected to CNm (over GF(2))

xxv

C(v) Set of CNs, with cardinality dc, connected to VNv (over GF(2m))

V(c) Set of VNs, with cardinality dv, connected to CNc (over GF(2m))

R LDPC code information rate

r f LDPC regularity factor

z f QC-LDPC expansion factor

Message-Passing Algorithm Notation

m CN index in GF(2)

n VN index in GF(2)

c CN index in GF(q)

v VN index in GF(q)

pn A-priori probability of symbol n

q(i)nm Probability message exchanged between VN n and CN m, at iteration i

r(i)mn Probability message exchanged between CN m and VN n, at iteration i

Q(i)
n A-posteriori probability of symbol n, at iteration i

αnm Sign of L(qnm)

βnm Magnitude of L(qnm)

mv(x) A-priori pmf of symbol v

m(i)
cv (x) Pmf exchanged between CN c and VN v, at iteration i

m(i)
cv (z) Fourier-domain pmf exchanged between CN c and VN v, at iteration i

m(i)
vc (x) Pmf exchanged between VN v and CN c, at iteration i

m(i)
vc (z) Fourier-domain pmf exchanged between VN v and CN c, at iteration i

m∗(i)v (x) A-posteriori pmf of symbol v, at iteration i

M(i)
cv (x) LLR vector exchanged between CN c and VN v, at iteration i

M(i)
vc (x) LLR vector exchanged between VN v and CN c, at iteration i

M∗(i)
v (x) A-posteriori LLR vector of symbol v, at iteration i

Mathematical Operators

p(·) Probability operator

L(·) Log-likelihood ratio operator

� Boxplus-sum operator

F(·) Fourier transform

F−1(·) Inverse Fourier transform

Wn
N Twiddle factors of the Fourier transform

W(·) Walsh-Hadamard transform

Transmission System Notation

en Error symbol n introduced by the communication channel

r Received codeword

s Syndrome vector

u An information containing message

v A codeword corresponding to message u

xn Modulated symbol n

yn Modulated symbol n transmitted over the communication channel

PFU Power of the LDPC decoder functional units

PMem Power of the LDPC decoder memory

Pc Power of the LDPC decoder channel memory

Pm Power of the LDPC decoder messages memory

Ps0 Probability of bit-cell failure under the stuck-at 0 channel model

e Error pattern introduced in the transmitted codeword

Qx.y Fixed-point representation with x− y sign and magnitude bits and y decimal bits

VDD Transistor supply voltage

List of Acronyms

10gigE 10 gigabit ethernet

2C Two’s complement data representation

AGU Address generation unit

ALM Adaptive logic module

ALU Arithmetic and logic unit

ALUT Adaptive LUT

API Application programming interface

APU AMD accelerated processing unit

ASIC Application-specific integrated circuit

AVX Advanced vector extensions

AWGN Additive white Gaussian noise

BCH Bose-Chaudhuri-Hocqueghem

BER Bit error rate

BP Belief propagation

BpC Block-per-codeword

BpN Block-per-node

BPSK Binary phase-shift keying

BRAM Block RAM

BSC Binary symmetric channel

CAD Computer-aided design

CCS Compressed column storage

CDF Cumulative distribution function

xxix

CLB Configurable logic block

CMMB China multimedia mobile broadcasting

CMOS Complementary metal–oxide–semiconductor

CN Check node

CpC Core-per-codeword

CPU Central processing unit

CRS Compressed row storage

CSC Compressed sparse column

CSR Compressed sparse row

CTM Close to the metal

CU Compute unit

CUDA Compute Unified Device Architecture

CUFFT CUDA FFT

cuRAND CuRAND library

DDG Data-dependency graph

DE Density evolution

DFE Dataflow engine

DFG Dataflow graph

DFT Discrete Fourier transform

DIT Decimation in time

DMA Direct memory access

DRAM Dynamic RAM

DRT Data retention time

DSL Domain-specific language

DSP Digital signal processor

DVB 2 2nd generation DVB

DVB-C2 DVB - cable 2nd gen.

DVB-RCS2 DVB - receive channel satellite 2nd gen.

DVB-S2 DVB - satellite 2nd gen.

DVB-T2 DVB - terrestrial 2nd gen.

DVFS Dynamic voltage and frequency scaling

ECC Error-correcting code

eDRAM Embedded dynamic RAM

EMS Extended min-sum

EXIT Extrinsic information transfer chart

FEC Forward error correction

FF Flip-flop

FFT Fast Fourier transform

FFT-SPA FFT sum-product algorithm

FFTW Fastest Fourier transform in the West

FIFO First-in first-out

FLOPs Floating-point operations per second (usually GFLOPs or TFLOPs)

FPGA Field-programmable gate array

FSM Finite-state machine

FU Functional unit

FWHT Fast Walsh-Hadamard transform

GF(2) Binary field

GF(2m) Binary extension field

GF(q) Galois field of dimension q

GPGPU General-purpose GPU

GPU Graphics processing unit

HARQ Hybrid automatic repeat request

HDL Hardware description language

HLS High-level synthesis

HPC High performance computing

HSPA High speed packet access

IB InfiniBand (computer-networking comm. standard)

IDB Improved differential binary algorithm

iFFT Inverse fast Fourier transform

II Initiation interval

i.i.d. Independent and identically distributed

ILP Instruction level parallelism

IN Information node

IP Intellectual property (used in the context of hardware cores)

IPC Iterative parity-check

IpC Instructions per clock

IR Intermediate representation

IRRWBF Impl.-efficient reliability ratio-based weighted bit-flipping alg.

ISA Instruction set architecture

LDPC Low-density parity-check

LDPC-IRA LDPC Irregular-Repeat-Accumulate

LE Logic element

LFSPA Log-Fourier SPA

LLC Last level cache

LLR Log-likelihood ratio

LLRV Log-likelihood ratio vector

LLVM LLVM compiler infrastructure

LPFSPA Log permutation FFT-SPA

LSPA Logarithmic sum-product algorithm

LTE Long term evolution

LUT Lookup-table

MDA Mixed-domain algorithm

MFU Macro-FU

MIG Memory interface generator

MIMD Multiple-instruction multiple-data

MIMO Multiple-input multiple-output

MPI Message-passing interface

MSA Min-sum algorithm

MSB Most significant bit

NMSA Normalized min-sum algorithm

NRE Non-recurring engineering

OpenACC Open Accelerators

OMSA Offset min-sum algorithm

OpenCL Open Computing Language

OpenMP Open Multi-Processing

OS Operating system

OTN Optical transport network

PAL Programmable array logic

PDF Probability density function

PG Progressive edge growth

PLB Processor local bus

PLC Power-line communication

PLRA Parity likelihood ratio algorithm

pmf Probability mass function

PN Parity node

PpE Pixel-per-edge

PRNG Parallel random number generator

PW Piecewise

PWM Pulse-width modulation

QC-LDPC Quasi-cyclic LDPC

QKD Quantum-key distribution

QoS Quality of service

RA Repeat-accumulate

RAM Random-access memory

RGU Request generator unit

ROI Region of interest

ROM Read-only memory

RS Reed-Solomon

RTL Register-transfer level

SAC Stuck-at channel

SAZC Stuck-at 0 channel

SCC Single-chip cloud computer

SCMSA Self-corrected min-sum algorithm

SDK Software development kit

sign-mag Sign-magnitude data representation

SIMD Single-instruction multiple-data

SIMT Single-instruction multiple-thread

SLiC Simple Live CPU

SM Stream multiprocessor

SMS Swing modulo scheduling

NMSA Normalized min-sum algorithm

SNR Signal-to-noise ratio

SoC System on a chip

SOpenCL Silicon-to-OpenCL

SP Scalar processors

SPA Sum-product algorithm

SPE Synergistic processing element

SPIR Standard Portable Intermediate Representation

SPMD Single-program multiple-data

SRAM Static RAM

SSE Streaming SIMD extensions

SYCL C++ programming model for OpenCL

TBB Thread building blocks

Tcl Tool command language

TDMP Turbo-decoding message-passing schedule

TDP Thermal dissipation power

TP Thread processor

TpC Thread-per-codeword

TpE Thread-per-edge

TPMP Two-phased message-passing schedule

TpN Thread-per-node

TpNpC Thread-per-node-per-codeword

VHDL VHSIC hardware description language

VLIW Very long instruction word

VLSI Very large scale integration

VN Variable node

WAR Write-after-read

WebCL Web computing language

WHT Walsh-Hadamard transform

Wi-Fi Wi-Fi

WiMAX Worldwide interoperability for microwave access

WPAN Wireless personal area network

List of Listings

4.1 MPI program execution flow . 82
4.2 Supported CUDA and OpenCL vector datatypes 84
4.3 Unpacking and packing LLRs from vector types 85
4.4 Shared memory strided access . 105
4.5 Indexing for the CUDA N=256-point FWHT 107

5.6 Nested loop structure of a filter function in C 135
5.7 Vivado HLS list of Tcl directives for hardware generation 164
5.8 Loop structures suitable and unsuitable for Vivado HLS optimizations. . . 165
5.9 Nested loop structure of vnUpdate and permute 167
5.10 Nested loop structure of fwht. 168
5.11 Pipeline and unroll optimizations Tcl directives for vnUpdate 170
5.12 Tcl directives that define and partitio an array on BRAMS 171
5.13 Code refactoring performed for the decoder design with fixed-point . . . 171
5.14 OpenCL kernel vector addition example . 179
5.15 OpenCL kernel containers for the TpN approaches 186
5.16 SOpenCL kernel source transformations . 200
5.17 SOpenCL CN and VN kernel containers. 204
5.18 Unpacking and bitwise operations in the SOpenCL kernels 204
5.19 OpenCL kernel for the N=1024-point FFT 214

xxxvii

1
Introduction

Contents
1.1 Motivation . 2
1.2 Objectives . 4
1.3 Main Contributions . 6
1.4 Outline . 8

1

1. Introduction

1.1 Motivation

Low-density parity-check (LDPC) codes are a class of very powerful error-correcting codes

(ECCs) codes. They were first introduced in the early sixties [20,21], but failed to capture

the attention of the scientific community. Despite some notable exceptions [22–24], this has

been mainly attributed to the lack of computational power available to realize a prac-

tical LDPC decoder. Resurfacing in the early nineties, they appeared as patent-expired

capacity-approaching codes [25–29] in direct competition with Turbo codes [30]. They have

enjoyed a high popularity ever since, as attested by the number of standards that have

adopted them in their forward error correction (FEC) systems: NASA deep space communi-

cation [31]; IEEE 802.3an (10gigE), 802.11n (Wi-Fi), 802.15 (WPAN), 802.16 (WiMAX) [32–35];

the ETSI 2nd generation digital video broadcasting (DVB 2) for satellite (DVB-S2), ter-

restrial (DVB-T2), cable (DVB-C2) and return channel via stellite (DVB-RCS2) [36–39]; the

ITU-T G.9960 for home network (G.hn) power-line communication (PLC), G.709 for the

optical transport network (OTN) [40,41]; and the 3GPP LTE (4G) [42]. Furthermore, ongoing

discussions regarding their use as a suitable coding scheme for 5G communication are in

place, such as in WirelessHD and Wireless Gigabit Alliance [43–45], both in their block code

construction, only now over Galois fields of dimension q (GF(q)) [46,47] or in their spatially-

coupled construction [48–50].

The resurfacing of LDPC codes is intricately connected with the tremendous improve-

ments of the computational power that, driven by the exponential growth in the number

of transistor per chip due to very large scale integration (VLSI) technology [51,52], allowed

practical LDPC decoder implementations to capacity-approaching performance at very

high decoding throughputs and moderately low latency. A vast majority of the former is

performed using application-specific integrated circuit (ASIC) technology, whose develop-

ment incurs in high non-recurring engineering (NRE) costs, largely due to protracted and

error-prone register-transfer level (RTL)-based design flows. Given that most progresses in

LDPC codes ultimately take into consideration a practical decoder implementation, we

have assisted to many advances in LDPC decoding techniques, code construction and

decoding architecture that help reduce the overbearing costs of ASIC-based decoders.

Nonetheless, as complexity of design continues to grow exponentially, alternative design

methods should be procured as alternative computing paradigms thrived in the very

time frame of LDPC codes advance.

Whereas the bulk of the growth in computational power up until the early noughties

has been performed riding the scaling of the clock frequency of operation [53], power dis-

sipation has effectively put an end to this trend. Thus, to overcome the power wall,

single-core processors turned multicore, with several cores integrated onto the same pro-

2

1.1 Motivation

cessor die—dual-core soon lead to quad- and six-core, with high performance computing

(HPC) cores going as far as 72-core—with multithreaded execution support and vec-

tor extensions providing single-instruction multiple-data (SIMD) execution model instruc-

tions to previously all-exclusive multiple-instruction multiple-data (MIMD) architectures.

These functionalities provided central processing unit (CPU) architectures with high par-

allel computing capabilities, as a mean to prolong the growth in computational power,

and also to address an ever growing gap between memory bandwidth and processing

capabilities, the so-called memory wall [54]. Almost simultaneously, graphics processing

units (GPUs) had grown into highly specialized graphics-oriented processors, with the

unification of the pixel shader with the texture shader, along with the definition of more

sophisticated instructions sets coupled data parallel programming models based on high-

level languages, introducing a new class of parallel processors to the general-purpose

realm [55]. In fact, current generations of x86 CPUs evolved to integrate a GPU core onto

the same die, leading the way into heterogeneity of the processors in general-purpose

computer systems.

Nonetheless, while this new breed of parallel architectures, providing TFLOPs of

arithmetic power either through the execution of vector extensions, or by spawning thou-

sands of concurrent computing threads, is able to compete for similar orders of magni-

tude of decoding throughput of ASIC technology, it neither addresses the low latency

required for most standards, as typical techniques trade low latency for high throughput,

nor the required low power for most devices that actually incorporate a FEC system. As a

consequence, and similar to this tradeoff in LDPC decoding, we have assisted to the rise

of field-programmable gate arrays (FPGAs) from reconfigurable substrates providing “glue-

logic” functionality, to a technology targeted for when high computing performance also

requires low power [56,57]. Furthermore, as high-level synthesis (HLS) progressed based on

data parallel programming models, in their turn based on C/C++, the NRE required to

develop an FPGA-based processor has greatly diminished. All in all, these architectures

provide distinct features to researchers and must be appropriately exploited for the role

that suits them best.

The development of LDPC decoders which are appropriately tuned to the constraints

of today’s digital communication systems follows a design flow where different types of

computer architectures are more suited to providing results at certain phases than oth-

ers. In particular, the best architecture for rapid validation of a new class of LDPC code

or LDPC decoding algorithm can have significantly different traits than those required

for the rapid empirical evaluation of the bit error rate (BER) behavior and coding gain.

Naturally, the final architecture for field deployment of the LDPC decoder will borrow

3

1. Introduction

traits from each computer architecture utilized through the design process, in a flow that

aims at gathering the pros from each phase while leaving out the cons.

1.2 Objectives

The work carried out in this Thesis aims at providing insight regarding a number

of key issues regarding the complex case of LDPC decoding on multiple, and disjoint,

computer architectures. For the one, not only do the LDPC code constraints, whether

driven by a standard or a service requirement, motivate a number of design decisions

when sweeping the possible design solutions of the decoder architecture, but also the

opposite is true. Certain decoding architectural parameter decisions are tightly coupled

to the LDPC decoding operation design space in the way they influence its sweep. For the

other, nowadays we are confronted with a multitude of programming models, computer

architectures and computing substrates and in the absence of a universal methodology

to narrow down the design space exploration to what are the solutions of interest, we

propose our own methodology to proceed within such a rich and variate design space

concentrating our efforts in the design features that pertain to the goal of maximizing the

performance and efficiency of the developed LDPC decoders.

Consequently, taking into account 1) LDPC code service- or standard-driven con-

straints, 2) programming model suitable or available for the underlying computing sub-

strate, 3) tradeoff between the attainable performance and NRE costs associated with a

given programming model/computing substrate, 4) flexibility constraints imposed by

each particular type of programming model/computing substrate, and 5) the feedback

between all these decoding and computing design decisions, we propose a methodology

to efficiently explore the design space of LDPC decoders on modern computing systems

(c.f Figure 1.1).

Thus, having identified the overall objective to provide an efficient and rapid way

to perform the required prototyping and validation of an LDPC decoder with particular

characteristics or for certain operation points, across the aforementioned design space,

we split this into a set of multiple objectives within this larger problem at hand. For

LDPC decoders on programmable hardware it follows that the objectives are

i) providing a conceptual framework for the rapid validation of algorithmic traits con-

cerning LDPC decoding, namely at the numerical level of the algorithm, both in

data representation and implementation of the arithmetic instructions, and at the

scheduling of the decoding itself;

ii) assessing how different computing systems within programmable architectures ac-

celerate the BER Monte Carlo simulations in order to harness sufficient computa-

4

1.2 Objectives

Binary
LDPC

Non-binary
LDPC

OpenCLCUDAMPI
Vivado
HLS Maxeler

Dedicated Hardware
Features/Advantages

- Advanced power reduction techniques

Pitfalls/Disadvantages

- Very high NRE costs

NRE costs development efforttime

programming flexibility retargeting flexibilitypower

Programmable Hardware
Features/Advantages

- Algorithmic validation
- HPC for simulation

Pitfalls/Disadvantages

- Fixed memory hierarchy
- Fixed instruction set
- Moderate to high power
- OS-dependent

Reconfigurable Hardware

Pitfalls/Disadvantages

- Template-architectures lack flexibility
- Stream-based models depend on a host
- Inefficiency of resource utilization

Features/Advantages

- High-level synthesis for low NRE
- Lower power
- Customizable memory hierarchy
- Bare instruction set

solution/publication

solution/publication

sol/publ.

complexity

[1] [2] [3]

[4] [10] [13]

[5] [6] [7] [8]

[9] [10] [11] [12]

[15] [16]

Figure 1.1: Design space exploration methodology followed for a multi-domain scenario composed of dif-
ferent computer architectures provided and mapped for distinct computing substrates.

5

1. Introduction

tional power to be to visualize with statistical significance regions yielding very low

BER, i.e. when operating for high signal-to-noise ratio (SNR) values;

iii) optimization of task- and data-parallelism levels to optimum levels within different

programmable architectures on both homogeneous and on distributed systems;

iv) development of LDPC decoders that are compliant to the specified input constraints

which are ready either for deployment or whose gained insights can be utilized for

the ongoing design space exploration on another computing substrate.

Thus, partially based on the effects observed from being constrained by instruction-set-

defined architectures, it follows that on reconfigurable hardware objectives can be sum-

marized as

i) defining what programming models are most appropriate for each decoding solu-

tion in particular, considering the cases of binary and non-binary LDPC decoding;

ii) evaluation of the LDPC decoder performance for each explored HLS-based model,

and how it influences/constrains the design space exploration;

iii) tuning of optimized memory hierarchies within the flexibility provided by the un-

derlying programming model;

iv) efficient maximization of the reconfigurable logic at hand so as to provide max-

imum parallelism of computation without incurring into routing bottlenecks or

clock frequency of operation reduction that impair the overall performance.

Finally, due to the evermore growing pressure with the realization of 100% reliable

silicon, we explore how unreliable memory storage can be incorporated onto LDPC de-

coding designs, backed by the fact that 90% of the area is devoted to data storage. Hence,

we highlight another objective as

i) study of gear-shift techniques applied to Min-sum-based decoders enabling power

reductions at negligible BER degradation by reducing the number of iterations re-

quired to successfully decode a codeword;

ii) the study of the inherent error resilience of LDPC decoders under unreliable mem-

ory storage and algorithmic- and silicon-level strategies that can be employed to

mitigate the BER degradation that comes with unreliable memory storage.

1.3 Main Contributions

The main contributions of this Thesis can be summarized in the following list.

6

1.3 Main Contributions

i) Acceleration of Monte Carlo LDPC BER characterization on distributed computing

systems, in particular, clusters of GPUs, exploring parallelism in single-instruction

multiple-thread (SIMT) and single-program multiple-data (SPMD) computation models

and incorporating scalability of the designed simulators; the developed simulators

have been extensively used as the computation backbone with which results were

obtained for numerous of the subsequent works herein detailed. In particular, this

work was communicated in:

[1] J. Andrade, G. Falcao, V. Silva, S. Yamagiwa, and L. Sousa, Encyclopedia of Computer Science
and Technology. Taylor & Francis, 2015, ch. Accelerating Conventional Processing Using GPU
Clusters: LDPC Decoders.

[2] G. Falcao, J. Andrade, V. Silva, S. Yamagiwa, and Sousa, “Stressing the BER simulation of LDPC
codes in the error floor region using GPU clusters,” in International Symposium on Wireless Com-
munication Systems (ISWCS 2013), Aug 2013, pp. 1–5.

ii) Empirically showing that the self-correction technique allows for coding gains that

are loosely independent of the SNR, as opposed to other correction methods ap-

plied to the min-sum algorithm (MSA). This work was communicated in:

[3] J. Andrade, G. Falcao, V. Silva, J. Barreto, N. Goncalves, and V. Savin, “Near-LSPA performance
at MSA complexity,” in Communications (ICC), 2013 IEEE International Conference on, June 2013,
pp. 3281–3285.

iii) Efficient GPU-based decoders for FFT sum-product algorithm (FFT-SPA) decoding of

high-order non-binary LDPC codes. This work was communicated in:

[4] J. Andrade, G. Falcao, V. Silva, and K. Kasai, “FFT-SPA Non-binary LDPC Decoding on GPU,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, May
2013, pp. 5099–5103.

iv) Efficient LDPC decoders design using HLS approaches that allow faster design cy-

cles than conventional RTL-based; however, as these approaches typically offer less

performance than RTL, we propose methodologies for closing in on this perfor-

mance gap. This work was communicated in:

[5] J. Andrade, G. Falcao, V. Silva, M. Owaida, N. Bellas, C.D. Antonopoulos, and P. Ienne, “To-
wards High-Throughput with Low-Effort Programming: From General-Purpose Manycores to
Dedicated Circuits,” in DATE’13: Workshop on Designing for Embedded Parallel Computing Plat-
forms: Architectures, Design Tools, and Applications (DEPCP), March 2013.

[6] J. Andrade, F. Pratas, G. Falcao, V. Silva, and L. Sousa, “Combining flexibility with low power:
Dataflow and wide-pipeline LDPC decoding engines in the Gbit/s era,” in Application-specific
Systems, Architectures and Processors (ASAP), 2014 IEEE 25th International Conference on, June
2014, pp. 264–269.

[7] J. Andrade, G. Falcao, and V. Silva, “Flexible design of wide-pipeline-based WiMAX QC-LDPC
decoder architectures on FPGAs using high-level synthesis,” Electronics Letters, vol. 50, no. 11,
pp. 839–840, 2014.

[8] J. Andrade, N. George, K. Karras, D. Novo, V. Silva, P. Ienne, and G. Falcao, “Fast Design Space
Exploration Using Vivado HLS: Non-binary LDPC Decoders,” in Field-Programmable Custom
Computing Machines (FCCM), 2015 IEEE 23rd Annual International Symposium on, May 2015, pp.
97–97.

7

1. Introduction

[9] J. Andrade, N. George, K. Karras, D. Novo, V. Silva, P. Ienne, and G. Falcao, “From low-architectural
expertise up to high-throughput non-binary ldpc decoders: Optimization guidelines using high-
level synthesis,” in Field Programmable Logic and Applications (FPL), 2015 25th International Con-
ference on, Sept 2015, pp. 1–8.

[10] F. Pratas, J. Andrade, G. Falcao, V. Silva, and L. Sousa, “Open the Gates: Using High-level Syn-
thesis towards programmable LDPC decoders on FPGAs,” in Global Conference on Signal and
Information Processing (GlobalSIP), 2013 IEEE, Dec 2013, pp. 1274–1277.

[11] J. Andrade, G. Falcao, V. Silva, and K. Kasai, “Flexible non-binary LDPC decoding on FPGAs,”
in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE,
May 2014, pp. 1936–1940.

[12] M. Owaida, G. Falcao, J. Andrade, C. Antonopoulos, N. Bellas, M. Purnaprajna, D. Novo,
G. Karakonstantis, A. Burg, and P. Ienne, “Enhancing Design Space Exploration by Extend-
ing CPU/GPU Specifications Onto FPGAs,” ACM Trans. Embed. Comput. Syst., vol. 14, no. 2, pp.
33:1–33:23, Feb. 2015.

v) Proposing scalable methods for the computation of the fast Fourier transform (FFT)

and fast Walsh-Hadamard transform (FWHT) on SIMT-based architectures and FPGA

wide-pipeline accelerators, which are critical to the decoding of non-binary LDPC

without explicit computation in the Galois Field;. This work was communicated in:

[13] J. Andrade, G. Falcao, and V. Silva, “Optimized Fast Walsh–Hadamard Transform on GPUs for
non-binary LDPC decoding,” Parallel Computing, vol. 40, no. 9, pp. 449 – 453, 2014.

[14] J. Andrade, V. Silva, and G. Falcao, “From OpenCL to gates: The FFT,” in Global Conference on
Signal and Information Processing (GlobalSIP), 2013 IEEE, Dec 2013, pp. 1238–1241.

vi) Power reduction of existing LDPC decoder designs by (1) leveraging Min-Sum-

based gear-shift decoders and (2) by incorporation of unreliable memory modules;

proposing of a methodology to provide error mitigation for unreliable memories

based on repair and most significant bit (MSB) protection. These works were com-

municated, respectively, in:

[15] J. Andrade, G. Falcao, and V. Silva, “Accelerating and Decelerating Min-Sum-based Gear-shift
LDPC Decoders,” in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International
Conference on, April 2015, pp. 5099–5103.

[16] J. Andrade, A. Vosoughi, G. Wang, G. Karakonstantis, A. Burg, G. Falcao, V. Silva, and J. Caval-
laro, “On the performance of LDPC and turbo decoder architectures with unreliable memories,”
in Signals, Systems and Computers, 2014 48th Asilomar Conference on, Nov 2014, pp. 542–547.

[17] J. Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, G. Fal-
cao, V. Silva, and J. Cavallaro, “The Impact of Faulty Memory Bit Cells on the Decoding of
Spatially-Coupled LDPC Codes,” in Signals, Systems and Computers, 2015 49th Asilomar Confer-
ence on, 2015.

1.4 Outline

The following parts of this Thesis are divided in six chapters. In Chapter 2, an overview

is given to LDPC codes both in their binary (GF(2)) and non-binary (GF(q) and GF(2m))

definition. Therein, the main message-passing decoding algorithms found in the litera-

ture are surveyed. This characterization has gathered the arguments for why we focus

8

1.4 Outline

Binary
LDPC

Non-binary
LDPC

OpenCLCUDAMPI
Vivado
HLS Maxeler

 Chapter 6 Dedicated Hardware

Carried out work

- Gear-shift min-sum-based decoders

- Unreliable memory storage
 - Mitigation of BER degradation
 - Self-correction protection

NRE costs development efforttime

programming flexibility retargeting flexibilitypower

Chapter 4 Programmable Hardware

Chapter 5 Reconfigurable Hardware

solution/publication

sol/publ.

complexity

Carried out work

- Wide-pipeline decoders for MSA
and FFT-SPA
 - Optimized parallelism-level

- Efficient FFT computation

- Dataflow decoders for MSA
 - Gbit/s multi-mode decoder

- Customized pipelined accelerators
for FFT-SPA

Carried out work

- Fast BER simulation on GPU-
cluster

- Self-correction for MSA

- Efficient FWHT computation

- Parallelism-granularity studies

solution/publication

[1] [2] [3]

[4] [10] [13]

[5] [6] [7] [8]

[9] [10] [11] [12]

[15] [16]

Figure 1.2: Thesis organization divided into three main chapters, for LDPC decoders on programmable and
reconfigurable hardware, and for improving the power efficiency of LDPC decoders on dedicated hardware.

9

1. Introduction

on certain algorithms for the realization of programmable and reconfigurable LDPC de-

coders. Chapter 3 surveys the state-of-the-art in programmable LDPC decoders, with

a special focus on multicore GPU architectures, while also covering CPU decoders and

the recently new field of HLS-based LDPC decoders for reconfigurable substrates. Fur-

thermore, algorithmic- and silicon-level techniques to reduce the power drawn by LDPC

decoders are also covered. Namely, an overview is given to gear-shifting techniques

and to unreliable memory systems. Chapters 4, 5 and 6 represent the bulk of the de-

veloped work in a design space exploration flow that moves from programmable hard-

ware LDPC decoders, to reconfigurable computing LDPC decoders and finally arrives at

energy-efficiency concepts available only for dedicated LDPC decoders (c.f. Figure 1.2).

Chapter 4 describes the work carried out for the design space exploration of LDPC de-

coders on programmable hardware using both vendor-specific and cross-platform data

parallel programming models. Chapter 5 describes the work carried out for the de-

sign space exploration of LDPC decoders on reconfigurable substrates. In particular,

the work within presented can be divided onto three different architectural approaches

i) Java-based dataflow accelerators, ii) C/C++-based loop-annotated accelerators and iii)

OpenCL-based wide-pipeline accelerators, assessing the performance of each approach

against the other and with the decoders in Chapter 4. Chapter 6 is dedicated to two

methodologies related with boosting the energy-efficiency of dedicated LDPC decoders,

gear-shifting at the algorithmic-level, and incorporation of unreliable memory storage

at the silicon-level along with BER degradation mitigation strategies proposed at the

algorithmic- and silicon-level. Finally, Chapter 7 draws conclusions and sets directions

for future work regarding the realization of efficient LDPC decoders.

10

2
LDPC Codes Fundamentals

Contents
2.1 Linear Block Codes . 12

2.1.1 Generator Matrix . 12
2.1.2 Parity-Check Matrix . 13
2.1.3 Coding Rate . 16
2.1.4 Syndrome and Error Detection . 16

2.2 LDPC Codes over GF(2) . 16
2.2.1 Tanner Graph . 17

2.3 LDPC Decoding Algorithms over GF(2) 17
2.3.1 Sum-Product Algorithm . 18
2.3.2 Logarithmic Sum-Product Algorithm 18
2.3.3 Min-Sum Decoding Algorithm . 20

2.4 LDPC Codes over GF(q) . 22
2.4.1 Factor Graph . 23

2.5 LDPC Decoding Algorithms over GF(q) 24
2.5.1 Sum-Product Algorithms . 25
2.5.2 Extended Min-Sum Algorithm . 33

2.6 Decoding Schedules . 37
2.6.1 Two-phased Message-passing . 37
2.6.2 Turbo-decoding Message-passing 37

2.7 Overview of the Complexity . 38
2.7.1 Binary Decoding Algorithms . 38
2.7.2 Non-binary Decoding Algorithms 39

2.8 Summary . 40

11

2. LDPC Codes Fundamentals

In this chapter, the concepts behind low-density parity-check (LDPC) codes are intro-

duced, with a special focus given to the message-passing algorithms involved in the de-

coding of LDPC codes, both in their binary field (GF(2)) and in their binary extension field

(GF(2m)) definition [20,47,58]. In 1948, Shannon lay the foundations for information theory

when proving that information could be reliably transmitted across a noisy channel if the

information transmission rate is lower than the capacity of said channel [29]. However,

the mathematical tools to devise “perfect” codes were not provided, thus giving birth to

the information theory field. Reliable transmission is achieved by employing forward error

correction (FEC), whereupon redundancy is added to the transmitted information in some

analytical form. Over the years, numerous coding schemes have been proposed—Reed-

Solomon (RS), Bose-Chaudhuri-Hocqueghem (BCH), Golay, Turbo- and LDPC codes, among

others—from which Turbo-codes and LDPC codes stand out due to enabling decoding

thresholds that are capacity-approaching [59].

2.1 Linear Block Codes

The topology of a transmission system can be simplified as seen in Figure 2.1, which

places a special focus on the FEC system within. In this scenarion, the transmitter Tx

Tx RxDemodulatorEncoder Modulator DecoderChannel

Noiseu0u1u2 v0v1v2v3v4v5v6 x0x1x2x3x4x5x6 y0y1y2y3y4y5y6

P(x0 = 0 | y0) P(x6 = 0 | y6)...

û0û1û2r0r1r2r3r4r5r6

Figure 2.1: Digital transmission system with forward error correction.

is bound to send a message u composed of K bits that is encoded by the encoder block

before transmission through the channel. There, the encoder produces a codeword v ac-

cording to some analytical method composed of N bits. u and v have a a one-to-one

correspondence, and thus, where there are 2K distinct messages there are also 2k code-

words. A block code C of length N and 2K codewords is a linear (N, K) code iff its

codewords form a K-dimensional subspace of the vector space of all the N-tuples over

GF(2). Moreover, any linear combination of codewords is also a codeword.

2.1.1 Generator Matrix

Since C defines a K-dimensional subspace of a N-dimensional space, it is possible

to find K linear independent codewords in C that define the remaining 2K − K code-

words as linear combinations of the former. Writing the K independent codewords as

12

2.1 Linear Block Codes

g0, g1, · · · , gK−1, and organizing them in the rows of a [K× N] matrix, we can build the

generator matrix G as

G =

g0

g1
...

gK−1

=

g0,0 g0,1 · · · g0,N−1

g1,0 g1,1 · · · g1,N−1
...

...
. . .

...
gK−1,0 gK−1,1 · · · gK−1,N−1

, (2.1)

and it can be readily seen that the message u has a correspondent codeword v given by

v = u ·G
= u0g0 + u1g1 + · · ·+ uK−1gK−1. (2.2)

The generator designation stands out in (2.2) as the rows of G generate any codeword.

For simplicity in the decoder at the receiver side, it is desirable that linear block codes

be systematic, i.e., u should be contained in v in plain format. This way, the message u can

be retrieved from slicing the codeword v at the correct bit positions. For instance, in (2.4),

the vK, vK+1, · · · , vN−1 bits correspond to u and the remaining N−K bits, v0, v1, · · · , vK−1

bits are designated as parity bits. Generator matrices of systematic linear block codes

have the form

G =

g0

g1

g2
...

gK−1

=
[
P IK

]
=

p0,0 p0,1 · · · p0,N−K−1 | 1 0 0 · · · 0
p1,0 p1,1 · · · p1,N−K−1 | 0 1 0 · · · 0
p2,0 p2,1 · · · p2,N−K−1 | 0 0 1 · · · 0

...
...

. . .
... | ...

...
...

. . .
...

pK−1,0 pK−1,1 · · · pK−1,N−K−1 | 0 0 0 · · · 1

.

(2.3)

Under the systematic generator matrix G we are able to write

vN−K+i = ui ⇐ 0 ≤ i < K

vj = u0 p0,j + u1 p1,j + · · ·+ uK−1 pK−1,j ⇐ 0 ≤ j < N − K, (2.4)

thus observing that the parity bits are obtained from the linear combination on which the

message bits participate according to the pi,j values.

2.1.2 Parity-Check Matrix

Knowing that for any [K× N] generator matrix G, in general all matrices with K

independent rows, there exists a [(N − K)× N] matrix H such that any vector in the row

space, i.e. the codeword set C, is orthogonal to the rows of H . Thus,

v×H> = 0, (2.5)

13

2. LDPC Codes Fundamentals

for all codewords v ∈ C. For a systematic generator matrix G the matrix H can be readily

found

H =
[
IN−K P>

]
. (2.6)

Using (2.5) yields

vj + u0 p0,j + u1 p1,j + · · ·+ uK−1 pK−1,j = 0⇐ 0 ≤ j < N − K, (2.7)

which is the same as (2.4). Thus, the parity-check matrix H completely defines a linear

block code.

Regularity The characteristics of the parity-check matrix H can be used to define the

code against its regularity or irregularity. In particular, by defining dc (2.8) and dv (2.9) as

the number of non-null elements per row and per column

dc(i) =
N−1

∑
j=0

hij, i∈{0, 1, · · · , M− 1} (2.8)

dv(j) =
M−1

∑
i=0

hij, j∈{0, 1, · · · , N − 1}, (2.9)

a (dv, dc)-code is said to be regular if dc(i)=X, X∈Z, ∀i and dv(j)=Y, Y∈Z, ∀j. If, how-

ever, dc(i) or dv(j) take different values across different rows or columns, the code is said

to be irregular. Usually, irregular codes combine multiple dv degrees while attempting

at keeping the dc degree constant [59]. While regular codes are simpler in parity-check

matrix structure than irregular ones, binary irregular codes usually possess better perfor-

mance, and are thus, the predominant choice for standards using LDPC codes for their

FEC systems. However, irregularity is employed in a structured fashion to keep the H

layout simple. A concept used in density evolution (DE) is the one of degree polynomials

which define the relative proportion of degrees in the Tanner graph, written as

pdv(x) =
1
N

N

∑
i=0

xdv(i)

pdc(x) =
1
M

M

∑
i=0

xdc(i), (2.10)

with pdv(x) the variable node (VN) degree polynomial and pdc(x) the check node (CN) one.

There are several LDPC code construction methods that commit different regularity and

structure to a code H [59].

Progressive Edge Growth Codes Progressive edge growth (PG) is a construction method

which balances the random distribution of the non-null elements in a regular (dv, dc)-

14

2.1 Linear Block Codes

code in order to maximize its decoding performance. Within the H structure there is no

evident pattern which can be exploited for a compact representation. These codes are

widely available in the Encyclopedia of Sparse Graph codes [60], henceforth designated as

Mackay codes.

LDPC-IRA Codes LDPC Irregular-Repeat-Accumulate (LDPC-IRA) codes, such as those

in use in the ETSI 2nd generation standards (2nd generation DVB (DVB 2)), are based on

two principles. The first is of repeat-accumulate (RA), whereupon codes have systematic

construction and the parity bits can be easily calculated given the double diagonal trian-

gular inferior parity sub-matrix P structure. This zig-zag resembling structure allows for

the following recursion to hold

cN−K =
N−K−1

∑
j=0

h0jcj

cN−K+i = cN−K+i−1 +
N−K−1

∑
j=0

hijcj, i ∈ 1, · · · , K− 1, (2.11)

keeping the encoder design as simple as possible. The parity sub-matrix is also easily

accounted using the RA principle. Finally, the information sub-matrix I is designed with

a shifting column rule throughout its construction [61], whereupon a set of independent

columns gets cyclically shifted downwards, with a shift value q, for a number of times

r f − 1 to generate r f number of columns of the matrix. This way, the only required infor-

mation to represent H is the set of independent columns, the shift value and the number

of times a column is shifted.

Quasi-Cyclic LDPC Codes Quasi-cyclic LDPC (QC-LDPC) codes are constructed from

a protograph matrix [62], also designated as base matrix. Essentially, a matrix F, with size
(

M f , N f
)
, with elements defined over R will be expanded by a factor z f , the expansion

factor, by replacing each element with sub-matrices of size
(
z f × z f

)
. When the element

in the protograph is finite a cyclically shifted identity matrix, with size
(
z f × z f

)
, is in-

serted. The number of positions shifted is given by fij mod z f . Infinity elements in the

protograph are replaced by null sub-matrices. For instance, matrix F in (2.12) is expanded

to matrix H1 (2.13) when an expansion factor of z f = 4 is applied.

F =
[
0 3 ∞

]
(2.12)

H1 =

1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0

(2.13)

15

2. LDPC Codes Fundamentals

The advantage of using protograph-based codes, as defined by some standards [34,35,63],

is that the code block length can be adjusted by changing z f , as it can be readily seen

that N = z f × N f , and independently of the code block length, the structure of H is

completely accounted for by F and z f , allowing simplicity of representation, more often

than not helped by the existence of a RA sub-matrix, or quasi-RA [64], in the protograph

for simple encoding.

2.1.3 Coding Rate

Linear block codes add a certain amount of redundancy to an information message of

a given length. The coding is defined as the ratio of information in the overall encoded

word. Thus, it can be defined as R = K/N. For the particular case of regular (dv, dc)-

LDPC codes, i.e. when dv and dc are constant across the whole graph, the coding rate can

be written as R = (dc− dv)/dc. Since R < 1, it stands out that dv < dc for all linear codes,

as dv = dc(1− R).

2.1.4 Syndrome and Error Detection

In Figure 2.1, the transmission channel input is a codeword v, and the output is a N-

length word r composed by the v and e quantifying the noise introduced by the channel,

thus

e = r + v =⇒ r = v + e, (2.14)

and replacing r in (2.5) produces

s = r×H>

s = v×H>︸ ︷︷ ︸
0

+e×H>

s = e×H>. (2.15)

The vector s is designated the syndrome vector, and s=0 iff r is a codeword and s 6=0

if r is not a codeword. It is also possible that a sustained error is not detected if e is a

codeword, i.e. an undetected error occurs. However, design of robust codes takes into

account this type of error and also aims at reducing such probability.

2.2 LDPC Codes over GF(2)

LDPC codes are a class of linear block code, characterized by their sparse parity-check

matrices, which possess capacity-approaching characteristics [28,65–67]. First proposed by

Gallager in the early 1960s [68,69], LDPC codes full potential was only realized thirty years

16

2.3 LDPC Decoding Algorithms over GF(2)

later, with the exceptions of Zyablov et al., Tanner and Wiberg [22,24,70–74], when in the

early nineties, LDPC codes resurfaced through the works of Mackay and Neal [60,75–77].

2.2.1 Tanner Graph

The parity-check matrix H is the adjacency matrix to a graph representation of any

linear block code that is designated as Tanner graph [72], a representation useful for graph

definition of codes, but also for the depiction of the message-passing decoding algorithms

employed in LDPC decoding. In their bipartite graph notation, there are two types of

nodes which are connected by edges, 1) VNs correspond to the codeword bits, and thus,

correspond also to columns of H , and 2) CNs correspond to the parity-check restrictions

of the code, i.e. to rows of H . Furthermore, in the case of systematic LDPC codes,

VNs can be further divided into information nodes (INs), those corresponding to the bits

of the u , and into parity nodes (PNs), those corresponding to the parity bits. There is

an edge connecting each type of node whenever the corresponding entry in H is a non-

null element. The cardinality of edges connected to a node is designated as degree or

weight, and the notation is dv and dc, respectively, for VNs and CNs. Also, the set M(n)

represents the CNs adjacent to VN n, while the set N(m) represents the VNs adjacent to

CN m.

VN
6

VN
3

VN
0

VN
5

VN
4

VN
1

VN
2

CN
1

CN
2

CN
0

(from transmission channel)

H =

2
4

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

3
5

Figure 2.2: LDPC code over GF(2) in matrix and Tanner graph representation. The message-passing proce-
dure used by LDPC decoding algorithms is also shown.

2.3 LDPC Decoding Algorithms over GF(2)

The most prominent decoding algorithms for LDPC codes defined over GF(2) are

overviewed herein. Among them, soft-decoding algorithms are the most prolific in the

field. For the one they provide better decoding performance, also designated as cod-

ing gain, and also they are numerically less complex than hard-decoding methods [47].

Soft-decoding algorithms are characterized by operating on likelihood domains, instead

of computing the most likely error vector through the bit state of the codeword bits, as

hard-decoding methods do, an a-posteriori likelihood estimate is inferred from the chan-

17

2. LDPC Codes Fundamentals

nel received likelihoods and the Tanner graph induced constraints. Soft-decoding algo-

rithms can be summarized as an organized series of steps.

i) Initialization: the demodulator computes the likelihood pn associated with VNn

and this information is broadcast to all VNs which initialize the messages qnm, ∀m;

ii) CN processing: the CNs receive the qnm messages from their adjacent VNs and

compute rmn messages according to the algorithm’s CN update rule;

iii) VN processing: the VNs receive the rmn messages from their adjacent CNs and

compute new qnm messages according to the VN update rule;

iv) Hard decoding: the VNs also compute Qn messages from the rmn messages re-

ceived and produce a bit state according to this estimate;

v) Repeat process: go back to i) until a maximum number of iterations is reached or a

valid codeword is produced.

2.3.1 Sum-Product Algorithm

The sum-product algorithm (SPA), also known as belief propagation (BP), was proposed

by Gallager in his seminal work on LDPC codes [68,69]. It is a message-passing algorithm,

in the sense that reliability messages are passed between VNs and CNs constrained by

the Tanner graph of the LDPC code. The SPA is formalized in Algorithm 2.1.

The SPA is characterized by its heavy numerical complexity, thus there is a strong

motivation to mitigate the effects of such complexity. Especially in the CN processing

step which is the most complex of all, in effect, requiring the calculation of a convolution

operation.

2.3.2 Logarithmic Sum-Product Algorithm

Due to the hardware realization of the SPA being complex, with the numerical nature

of the algorithm consisting mainly of multiplications, precautions are required to ensure

low-quantization errors. Moreover, as multiplication comes as an expensive operation to

implement, a suitable domain change to the log-likelihood ratio (LLR) domain will replace

all the multiplications with additions. By definition, the LLR operator, L(·), applied to a

random binary variable u performs the following operation

L(u) = log
(

p(u=0)
p(u=1)

)
. (2.21)

Rewriting the SPA to change its domain to LLR yields the logarithmic sum-product algo-

rithm (LSPA), formalized in Algorithm 2.2.

18

2.3 LDPC Decoding Algorithms over GF(2)

Algorithm 2.1 Sum-product algorithm

Initialization: q(0)mn(x=1) = pn = p(vn=1|yn)
while v ·H> 6= 0 or i < IterationsMAX do

CN Processing:

r(i+1)
mn (x=0) =

1
2
+

1
2 ∏

n′∈N(m)\n

(
1− 2q(i)

n′m
(x=0)

)
(2.16)

r(i+1)
mn (x=1) = 1− r(i+1)

mn (x=0) (2.17)

VN Processing:

q(i+1)
nm (x=0)=knm(1− pn) ∏

m′∈M(n)\m
r(i+1)

m′n
(x=0), knm⇐∑

x
q(i+1)

nm (x=0) = 1 (2.18)

q(i+1)
nm (x=1)=knm pn ∏

m′∈M(n)\m
r(i+1)

m′n
(x=1), knm⇐∑

x
q(i+1)

nm (x=1) = 1 (2.19)

a-posteriori decoding:

Q(i+1)
n (x=0) = Knm(1− pn) ∏

m∈M(n)
r(i+1)

mn (x=0), Kn⇐∑
x

Q(i+1)
n (x=0) = 1 (2.20)

Hard-decoding: ĉn=1⇐Qn(1) > Qn(0), ĉn=0⇐Qn(1) < Qn(0)
end while

Algorithm 2.2 Logarithmic sum-product algorithm

Initialization: L(vn) = q(0)mn = log
P (vn = 0|yn)

P (vn = 1|yn)
= log

1− pn

pn
while v ·H> 6= 0 or i < IterationsMAX do

CN Processing:

L(r(i)mn) =

 ∏

n′∈N(m)\n
α
(i−1)
n′m

 2tanh−1

 ∑

n′∈N(m)\n
tanh

β

(i−1)
n′m
2

 (2.22)

αnm = sgn (L (qnm)) , βnm = |L (qnm) |
VN Processing:

L(q(i)nm) = L(vn) + ∑
m′∈M(n)\m

L(r(i)
m′n

) (2.23)

a-posteriori decoding:

L(Q(i)
n) = L(vn) + ∑

m′∈M(n)

L(r(i)mn) (2.24)

Hard-decoding: ĉn =

{
1⇐ L(Qn) < 0
0⇐ L(Qn) > 0

end while

19

2. LDPC Codes Fundamentals

Simplifications to the LSPA have a powerful motivation, despite the majority of arith-

metic functions performed being additions, there is a dependency on the transcendental

functions tanh and tanh−1 that requires the use of complex instructions for any decoder

implementation. Thus, several authors have proposed different approximation strategies

allowing fast and simplex computation of the transcendental functions required. In [78],

piecewise (PW) linear and lookup-table (LUT) approximations to the tanh function were

proposed, which achieve a decoding performance close to the original LSPA [78,79], while

2-D LUT approximations have also been proposed [67].

Other approaches are based on the fact that tanh and tanh−1 are monotonically in-

creasing and have an odd symmetry, i.e. tanh(x)=− tanh(−x) and tanh−1(x)=− tanh−1(−x).

Hence, we can separate L(U�V) in signal and magnitude [68,80], thus writing

L(U�V) = 2tanh−1
(

tanh
(

L(U)

2

)
tanh

(
L(V)

2

))
(2.25)

= sgn (L(U)) sgn (L(V))× φ (φ (|L(U)|) + φ (|L(U)|)) (2.26)

= sgn (L(U))×sgn (L(V))×min (|L(U)|, |L(V)|) + log

(
1 + e−|L(U)+L(V)|

1 + e−|L(U)−L(V)|

)

(2.27)

where φ(x) = log
(

ex + 1
ex − 1

)
. The function φ(x) is an involution transform, i.e. φ(φ(x)) =

x, which allows the CN Processing expression to be expressed in terms of the function

φ(x) in Algorithm 2.3, using Gallager’s approach (2.26) resursively.

Algorithm 2.3 CN Processing for the LSPA using Gallager’s approach

L(r(i)mn) =

 ∏

n′∈N(m)\n
α
(i−1)
n′m

 φ

 ∑

n′∈N(m)\n
φ

β

(i−1)
n′m
2

 (2.28)

The “tanh rule” (2.25) can be expressed by applying the Jacobian logarithm twice (2.27).

The Jacobian approach can be successfully deployed on the LSPA algorithm in a recur-

sive fashion [81]. For such purpose two auxiliary sets need to be defined, fi and bi, and the

LSPA following the Jacobian approach is shown in Algorithm 2.4, with the underlying

term log(1 + e−|x|) approximated through a LUT search or a PW approximation [82].

2.3.3 Min-Sum Decoding Algorithm

The min-sum algorithm (MSA) is a widely used sub-optimal decoding algorithm for

LDPC codes [3,83–85]. It is sub-optimal in the sense that the MSA was derived through

a majorant approximation of the LSPA CN processing. Based on the fact that in (2.27)

20

2.3 LDPC Decoding Algorithms over GF(2)

Algorithm 2.4 CN Processing for the LSPA using the Jacobian approach

Suppose N(m) = (n1, n2, · · · , ndc) and the incoming messages
L(qn1), L(qn1), · · · , L(qndc

)

The auxiliar set fi is f1 = L(qn1), f2 = f1 ⊕ L(qn1), ..., fdc = fdc−1 ⊕ L(qndc
)

The auxiliar set bi is bdc = L(qndc
), bdc−1 = bdc ⊕ L(qndc−1), ..., bn1 = bn2 ⊕ L(qn1)

L(qnm) =

{
L(b2), i = 1
L(fi−1 ⊕ bi+1), i = 2, 3, ..., dc − 1
L(fdc−1), i = dc

(2.29)

|L(U�V)| ≤ min (|L(U)|, |L(V)|), the MSA relaxes on the log

(
1 + e−|L(U)+L(V)|

1 + e−|L(U)−L(V)|

)
term

in (2.27) to process the CN processing as summarized in Algorithm 2.5.

Algorithm 2.5 CN Processing for the MSA

L(r(i)mn) =

 ∏

n′∈N(m)\n
α
(i−1)
n′m

 min

n′∈N(m)\n

(
β
(i−1)
n′m

)
(2.30)

αnm = sgn (L (qnm)) , (2.31)
βnm = |L (qnm) |

The MSA is computationally less complex, since it requires no further numerical op-

eration than additions. However, for a given LDPC code, L(rmn) obtained through the

LSPA and ˆL(rmn) obtained by the MSA, the following inequality holds

| ˆL(rmn)| > |L(rmn)|, (2.32)

which has been dully noted in [85] and several corrections have been proposed to the MSA

formulation which address the overestimation of the β messages.

Scaled Min-Sum Algorithm The MSA CN approximation can be improved through a

normalizing factor γ, designated as normalized min-sum algorithm (NMSA) that is shown

in Algorithm 2.6, such that |γ| > 1.

Algorithm 2.6 CN Processing for the normalized-MSA

L(r(i)mn) =

 ∏

n′∈N(m)\n
α
(i−1)
n′m

min
n′∈N(m)\n

(
β
(i−1)
n′m

)

γ
(2.33)

21

2. LDPC Codes Fundamentals

Offset Min-Sum Algorithm In addition to a normalizing factor, the MSA can also ben-

efit from LLR scaling [86], designated as offset min-sum algorithm (OMSA) that is shown in

Algorithm 2.7, in one of two approaches. The value of constant c is estimated via DE [86,87]

and in the first approach, it is always subtracted from the qmn messages. In another ap-

proach [85], it quantizes the β messages below a given c towards 0 and subtracts c to the

remaining messages.

Algorithm 2.7 CN Processing for the offset-MSA

Approach 1 (2.34), approach 2 (2.35):

L(r(i)mn) =

 ∏

n′∈N(m)\n
α
(i−1)
n′m

 min

n′∈N(m)\n

(
β
(i−1)
n′m
− c
)

(2.34)

L(r(i)mn) =

 ∏

n′∈N(m)\n
α
(i−1)
n′m

max

(
min

n′∈N(m)\n

(
β
(i−1)
n′m
− c, 0

))
(2.35)

Self-Corrected Min-Sum Algorithm Another approach to address the overestimation

of the L(qnm) messages has been proposed that instead of introducing a correction to

every L(qnm) message in every iteration, the correction occurs only when a signal change

would happen in the L(qnm) messages under regular MSA decoding [3,83]. In this event,

the algorithm introduces an erasure to the L(qnm) message, setting the reliability of each

bit state to equiprobable (2.21). The formulation of the self-corrected min-sum algorithm

(SCMSA) is shown in Algorithm 2.8 and is .

Algorithm 2.8 VN Processing for the SCMSA

L∗
(

q(i)mn

)
= L (pn) + ∑

m′∈M(n)\m
L
(

r(i)
m′n

)

L(q(i)mn) =

0, L∗
(

q(i)mn

)
× L

(
q(i−1)

mn

)
< 0∧ L

(
q(i−1)

mn

)
6= 0

L∗
(

q(i)mn

)
, otherwise.

(2.36)

2.4 LDPC Codes over GF(q)

In this section, we overview LDPC codes extended to Galois field of dimension q (GF(q))

and corresponding decoding algorithms. Due to the FEC purposes served by LDPC

codes, special focus will be given to the GF(2m) case. The aforementioned decoding al-

gorithms are highly optimized for the particular case of codes defined over GF(2). In

reality, their generalized version over GF(q), which also includes the GF(2m) case, are

22

2.4 LDPC Codes over GF(q)

significantly more complex. In short, LDPC codes defined over GF(q) have parity-check

matrices whose elements hij are defined over GF(q) themselves. Furthermore, instead of

bits, message symbols defined over the Galois field are encoded into codeword symbols.

In the particular case of GF(2m), the symbols are m-tuples of bitsa).

2.4.1 Factor Graph

The Tanner graph in GF(q) (factor graph)is an incomplete tripartite factor graph com-

posed of permutation nodes and of VNs and CNs. The permutation nodes are included

between VNs and CNs, as seen in Figure 2.3. They are included due to the parity-check

restriction
 ∑

i∈M(j)
hij(x)cj(x) mod p(x)

 = 0, (2.37)

where p(x) is a m − 1 degree primitive polynomial to GF(2m). Each CNj evaluates the

parity-check restriction to each ij(x), x ∈ GF(2m) (2.38), which does not allow for a

straightforward evaluation. In order to do so, (2.38) must be normalized by h−1
j (x) (2.39),

which is similar to the binary parity-check equation (2.4).

∑
i′∈M(j)\i

hi′ j(x)cj(x) = hij(x)cj(x) mod p(x) (2.38)

h−1
ij (x)× ∑

i′∈M(j)\i
hi′ j(x)cj(x) = cj(x) mod p(x) (2.39)

The actual effect of the factor h−1
ij (x) in (2.39) is a permutation, due to the closure property

of GF(2m) [47]. Thus, if for instance the qnm(x) messages are grouped in a probability mass

function (pmf) vector we observe the following

mvc(x) =

mvc(0)
mvc(1)
mvc(α)

...
mvc(α2m−2)

, mvc(α · x) =

mvc(0)
mvc(α2m−2)

mvc(1)
mvc(α)

...

, mvc(α
2 · x) =

mvc(0)
mvc(α2m−3)

mvc(α2m−2)

mvc(1)
...

· · · ,

(2.40)

a)Arithmetic over GF(q) is defined in Appendix B.

23

2. LDPC Codes Fundamentals

and likewise

mvc(x) =

mvc(0)
mvc(1)
mvc(α)

...
mvc(α2m−2)

, mvc(α
−1 · x) =

mvc(0)
mvc(α)

...
mvc(α2m−2)

mvc(1)

, mvc(α
−2 · x) =

mvc(0)
mvc(α2)

...
mvc(1)
mvc(α)

· · · .

(2.41)

The introduction of the permutation nodes is depicted in Figure 2.3 and shows the in-

clusion of the latter in a portion of the Tanner graph accounting for a degree 3 parity-

check restriction. The permutations nodes account for the cyclic shift in (2.38) and (2.39),

HGF(22) =

α 1 0 α2 1 0 0
1 0 α 1 0 α2 0
0 α2 1 1 0 0 1

α

VN

6

VN

3

VN

0

VN

5

VN

4

VN

1

VN

2

CN

1

CN

2

mv(x)

mvc(x×α) = mvc

[
0,α,α2, 1

]

mvc(x) = mvc

[
0, 1,α,α2

]

mcv(x×1) = mcv

[
0, 1,α,α2

]

1

CN

0

mcv(x) = mcv

[
0, 1,α,α2

]

depermutepermute

(from transmission channel)

Figure 2.3: Factor graph extension to the Tanner graph with inclusion of the permutation nodes accounting
for the non-null elements of H . Also show is the general message-passing procedure used by the decoding
algorithms over GF(q).

where the permutation is executed for messages traveling from VN to CN and the de-

permutation are executed on messages traversing on the opposite direction, as seen in

Figure 2.3. Thus, the pmf s messages exchanged in the graph are no longer sorted in

ascending order. Instead, messages are permuted when they traverse the permutation

nodes in the direction VN-CN and depermuted when traversing in the direction CN-VN.

2.5 LDPC Decoding Algorithms over GF(q)

The numerical complexity associated with the decoding of non-binary LDPC codes is

higher than that of binary ones. This is not only due to the finite field dimension, but also

due to the higher number of symbol combinations that validate any given parity-check

restriction of the code. Likewise, the soft-decoding procedure can be divided into the

following steps.

24

2.5 LDPC Decoding Algorithms over GF(q)

i) Initialization: the demodulator computes all the probabilities in the pmf mv(x)

for x ∈ GF(2m) and this information is broadcast to all VNs which initialize the

messages mvc(x), ∀c;

ii) Permutation: the mvc(x) messages are permuted when traversing the edge towards

their adjacent CNs;

iii) CN processing: the CNs receive the mvc(x) messages from their adjacent VNs and

compute mcv(x) messages according to the algorithm’s CN update rule;

iv) Depermutation: the mcv(x) messages are depermuted when traversing towards

their adjacent VNs;

v) VN processing: the VNs receive the mcv(x) messages from their adjacent CNs and

compute new mvc(x) messages according to the VN update rule;

vi) Hard decoding: the VNs also compute m∗vc(x) messages from the mcv(x) messages

received and compute the most likely symbol state according to this estimate;

vii) Repeat process: go back to i) until a maximum number of iterations is reached or a

valid codeword is produced.

2.5.1 Sum-Product Algorithms

The SPA presented in Algorithm 2.1, is a formulation tuned to GF(2). A general for-

mulation of the SPA, which is able to work on all GF(q), is presented in Algorithm 2.9.

Due to the LDPC code parity-check restrictions over GF(q) (2.37), it is required to evalu-

ate the equation (2.42) for any combination of |V(c) \ v| elements taking q possible val-

ues. This constitutes the motivation to pursue decoding algorithms with lower numerical

complexities even if at the cost of sub-optimality. It should be noted that the numerical

complexity O(·) takes into account only the CN processing numerical complexity, as the

CN processing is typically much more intensive than the VN processing.

Davey and Mackay Sum-Product Algorithm Davey and Mackay propose an approach

on which the CN processing in Algorithm 2.9 is broken down into two parcels [46]. They

define the partial sums σck = ∑
v:v≤k

Hcvx
′
v and ρcv = ∑

v:v≥k
Hcvx

′
v. Then, by fixing a ∈ GF(q)

it is possible to compute p(σck = a) for each k ∈ V(c), and for c, v if they are successive

indexes in V(c) we may define

p(σck = x) = ∑
{s,t:Hcvt+s=x}

p(σcv = s)mcv(t), (2.45)

25

2. LDPC Codes Fundamentals

Algorithm 2.9 SPA generalized to GF(q)

Initialization: mv(x) = m(0)
vc (x) = p(vn = x|yn)

while v ·H> 6= 0 or i < IterationsMAX do
CN Processing:

m(i)
cv (x) = ∑

v:cv=x
p(zc = 0|v) ∏

v′∈V(c)\v
mv′ c(x) (2.42)

With p(zm = 0|c) being either 0 or 1 according to whether v satisfies parity-check m.
VN Processing:

m(i)
vc (x) = kvc pv(x) ∏

c∈C(v)\v′
mc′v(x), kvc ⇐∑ m(i)

vc (x) = 1 (2.43)

a-posteriori decoding:

m∗(i)v (x) = Kv pv(x) ∏
c∈C(v)

mvc(x), Kv ⇐∑ m∗(i)v (x) = 1 (2.44)

Hard-decoding: ĉn = arg max
x

m∗v(x)
end while

and ρmk

p(ρck = x) = ∑
{s,t:Hcvt+s=x}

p(ρc = s)mcv(t). (2.46)

Substitution of (2.45) and (2.46) in (2.42) yields Algorithm 2.10. This approach allows

Algorithm 2.10 CN Processing for the Davey and Mackay SPA

CN Processing:

mcv(x) = p
(
(σc(v−1) + ρc(v+1) = zc − Hcvx

)
(2.47)

= ∑
{s, t:s+t=zc−Hcva}

p(σc(v−1) = s)p(ρc(v+1) = s) (2.48)

for a recursive search and computation of the symbols which validate each parity-check

equation. However, simplicity is not the main characteristic of this algorithm, render-

ing a very high numerical complexity of O(M · dc · 22m
). Thus, it scales exponentially

with the binary extension field dimension, making fast decoding close to impossible. In

fact, due to this, only low order binary extension fields, up to GF(23), were considered

initially [46]. There are other factors that also detract the use of this as a formulation of

the SPA. Namely, the arithmetic nature of the algorithm, constituted mainly by multipli-

cations, which are expensive operations, the more expensive due to its GF(2m) domain,

and the need to normalize the probabilities at the VN processing, an even more costly

operation. Inevitably, further refinements were proposed.

26

2.5 LDPC Decoding Algorithms over GF(q)

Logarithmic Sum-Product Algorithm

Wymeersch et al. [88] proposed a redefinition of the decoding domain to the log-likelihood

domain in order to improve the numerical complexity and the nature of the arithmetic

operations executed. Due to its log-likelihood domain, this algorithm is referred as LSPA.

The LSPA in GF(q) requires the definition of log-likelihood ratio vectors (LLRVs), which

store q − 1 LLRs, with each element defined by L(v = x) = log[p(v = x)/p(v = 0)],

where VNs are initialized as follows

Lch(cv)c = ∑
v:ψ1(ac)v=+1

2vlc+v

σ
, (2.49)

with ψ1(ac)v the inversion of the mapping function from GF(2m) to {−1, 1} [88]. In the

log-likelihood domain, multiplications become additions and thus, the VN processing

and a-posteriori decoding phases formulated in Algorithm 2.9 can be rewritten to sums

of LLRVs. As in the binary case, the CN processing is not straightforward even in log-

domain, as the domain changes introduces a non-linear �-like dependency. This depen-

dency is dealt with by the extension of the � function to GF(2m) [89]

L(a1v1 + a2v2) = �(L1, L2, A1, A2)

= log

eL1(A−1

1 αi) + eL2(A−1
2 αi) + ∑

x∈GF0(2m)\αi A−1

eL1(x)+L2(A−1
2 (αi−xA1))

− log

(
1 + ∑

x∈GF
eL1(x)+L2(A−1

2 A1x)

)
. (2.50)

By using (2.50) the Wymeersch LSPA is formalized in Algorithm 2.11. The VN process-

Algorithm 2.11 CN Processing for the Wymeersch LSPA

L(σcj) = L(σc(j−1) + Hcjxj)

L(ρcj) = L(ρc(k+1) + Hcjxk)

L(rcv(x)) = L(H−1
cv σc(v−1) + H−1

cv ρc(v+1)), (2.51)

ing step becomes a simple sum of LLRVs similar to the binary LSPA. The logarithm of the

sum of exponents in (2.51) can be efficiently dealt with through the Jacobian logarithm

max∗(x, y) = log(ex + ey)

= max(x, y) + log(e−|x1−x2|). (2.52)

The predominant numerical nature of this algorithm is less expensive, as the majority of

multiplications are converted to additions. However, the CN processing introduces the

27

2. LDPC Codes Fundamentals

computation of the � function which requires the computation of logarithms of a sum

of exponents. Although it can be efficiently computed through the Jacobian logarithm

(2.52), the need of computing a logarithm term still prevails. Moreover, and despite a

lower numerical complexity O(M · dc(2m − 1)2) still scales with the square of the field

dimension.

FFT Sum-Product Algorithm

The FFT sum-product algorithm (FFT-SPA) results from preliminary works by Mackay

and Byers and further explored by Barnault and Declercq [77,90,91].

The fast Fourier transform (FFT) inclusion stems from the fact that the CN processing

in Algorithm 2.9 is as a convolution of probabilities. Since the convolution property of

the Fourier Transform F(·) yields

x ∗ y = F−1 {F(x) · F(y)} , (2.53)

where F−1(·) is the inverse Fourier transform, the Fourier transform of a convolution of

probabilities is the product of the probabilities’ tranforms.

The discrete-time Fourier Transform can be computed by the FFT algorithm, and for

codes defined over GF(2m) it further simplifies to the Walsh-Hadamard transform, which

can be efficiently computed by the fast Walsh-Hadamard transform (FWHT)—which can

be thought of the FFT with the twiddle coefficients defined over 0 and π. Thus, the CN

processing of FFT-SPA is simplified from its formulation in Algorithms 2.9 and 2.10 to the

one in Algorithm 2.12. Since the FFT-SPA exploits the Fourier domain properties in the

Algorithm 2.12 CN Processing for the FFT-SPA

All steps follow the SPA in Algorithm 2.9 except,

m(i)
cv (x) = F−1

 ∏

v′∈V(c)\v
F
(
mv′ c(x)

)

= W

 ∏

v′∈V(c)\v
W
(
mv′ c(x)

)

 (2.54)

convolution of the pmf s in the CN processing, the operations in GF(2m) previously nec-

essary in aforementioned approaches are no longer necessary. Naturally, prior and after

the CN processing, the pmf s must be changed accordingly to the appropriate domain by

applying the FWHT—the involution property can be explored herein as the inverse of the

transform is the transform itself. The numerical complexity is lowered to O(M · dc(2m)m),

which allows the decoding of higher order fields in a feasible timespan.

28

2.5 LDPC Decoding Algorithms over GF(q)

Log Permutation FFT Sum-Product Algorithm

Song and Cruz [92] proposed a variation of the FFT-SPA operating on the log-domain,

the log permutation FFT-SPA (LPFSPA). However, whereas in the LSPA messages were

expressed in LLR, under this approach messages are changed to its log representation,

i.e. p(x) → log (p(x)). The log-domain usage is to exploit multiplications becoming

additions, which can be directly replaced in the VN processing and a-posteriori processing

steps. However, as so happens with the former approaches, the problem lies in the CN

processing.

Rewriting (2.42) to accommodate the domain change easily leads to (2.54). However,

the domain change poses the non-trivial task of computing the FFT on the log-domain,

since the multiplicands are pmf which may possess negative values. This can be over-

come by defining a log-like function LG as follows

LG : R→ {−1, 1} ×R

u = (u
′
, u
′′
) = (sgn(v), log |v|), (2.55)

where R is the field of reals and the inverse LG−1 : {−1, 1} ×R→ R

v = u
′
eu
′′
, (2.56)

and the basic arithmetic operations +, −, ×, ÷ are defined, so that the CN processing of

LPFSPA can be defined as well [92].

This approach possesses the same numerical complexity as the FFT-SPA, which is

O(M · dc · m · 2m). Although there are also no operations over GF(2m), the dependency

on a logarithm of the sum of exponents remains, or else simplifying through the Jacobi

logarithm, a logarithmic dependency is inevitable.

Log Fourier Sum-Product Algorithm

The log-Fourier SPA (LFSPA) has been proposed by Kasai and Sakaniwa [93,94] and ad-

dresses the asymmetry in numerical complexity between the CN and the VN processing.

Since the bottleneck in decoding time will be caused by the most complex processing,

even fully parallel decoding cannot provide fast decoding times. Thus, the LFSPA focus

on balancing the numerical complexity of the CN and VN processing.

29

2. LDPC Codes Fundamentals

In order to do so, a logarithm-like function Γ(x) : [−1, 1]→ GF(2)× [−∞, 0] is defined

as

Γ(x) = (sgnGF(2)(x), log(|x|)) ∈ GF(2)× [−∞, 0]

sgnGF(2)(x) =

0 ∈ GF(2), x > 0
randomly choose 0 or 1, x = 0
1 ∈ GF(2), x < 0

, (2.57)

and for any non-zero x, y ∈ R, Γ(x · y) = Γ(x) + Γ(y), with Γ−1(·) well-defined. The

LFSPA formal outline is shown in Algorithm 2.13. Furthermore, increasing the numeri-

cal complexity of the VN processing is not as critical as increasing the CN processing. The

known best performing non-binary LDPC codes are (2, dc)-codes [95], which for a given

rate R gives a CN weight dc = 2/(1− R). Thus, for very high rate LDPC codes dc be-

comes high and the CN processing complexity also scales with it, which motivates the

transfer of complexity to the VN processing. Moreover, if the VN is fixed at 2, even a

complex VN poses no inconvenience due to the low number of nodes each VN is con-

nected to. The LFSPA increases the VN complexity to O(N · dv · 2m) while reducing the

CN processing to O(M · dc · 2m).

Tensorial Sum-Product Algorithm The SPA present in Algorithm 2.9 is applicable to

every finite field extension and non-extension fields. However, in the specific case of

GF(2m), we can rely on a tensorial likelihood representation [85,91,96]. This is possible due

to the extension field m-tuple definition

u(x) =
m

∑
k=1

uk · xK−1, uk ∈ {0, 1}, ∀k ∈ {1, ..., q}, (2.69)

which allows elements in GF(2m) to be written as m-size tensor with dimension 2. Hence,

instead of indexing the messages in the form mvc(x), x ∈ Gf(2m), for messages travelling

from VNs to CNs, messages can be indexed by (2.69) in the form m[u(x)] = m[u1, ..., um].

The SPA is essentially the same using one or the other representation. However, the

tensorial formulation not only allows for a more comprehensive description of the de-

coding algorithm, but also allows a structured indexing of the messages.

Moreover, under the tensorial representation the permutation and de-permutation

may be accomplished by a permutation of the m-tuple coefficients that index the mes-

sages. Thus, the permutation and depermutation in (2.70) is indexed by the m-tuple

coefficients similar to permuting and depermuting using the symbol representation in

(2.40) and (2.41),

α ·m[u1, u2, ..., u2m−2] = m[u2, ..., u2m−2, u1], (2.70)

30

2.5 LDPC Decoding Algorithms over GF(q)

Algorithm 2.13 Log-Fourier Sum-product Algorithm

Initialization:

m
′
v(x) = p(cv = x|yv), x ∈ GF(2m) (2.58)

M
′
v(z) = ∑

x∈GF(2m)
mv(z)(−1)z·x, z ∈ GF(2m) (2.59)

mv(z) = Γ(M
′
v(z)), z ∈ GF(2m) (2.60)

while v ·H> 6= 0 or i < IterationsMAX do
CN Processing:

m̃(i)
vc (z) = m(i)

vc (hcvz) (2.61)

m̃(i)
cv (z) = ∑

v′∈V(c)\v
m̃(i)

v′ c
(z) (2.62)

m(i)
cv (z) = m̃(i)

cv (h−1
cv z) (2.63)

BN Processing:

m(i)
vc (z) = pv(z)�v′∈C(v)\c c(i)

c′v
(z) (2.64)

where Λ1�Λ2 ∈ (GF(2)× [−∞, 0])2m
is defined as:

(λ1� λ2)(x) = Γ

(
∑

x1,x2∈GF(2m):x=x1+x2

Γ−1(λ1(x1) + λ2(x2))

)
(2.65)

a-posteriori decoding:

m∗(i)v (z) = mv(z)�c′∈C(v) m(i)
c′v
(z) (2.66)

Hard-decoding:

µv(x) = ∑
z∈GF(2m)

m∗(i)v (z)(−1)z·x (2.67)

cv = arg max
x

µ
(i)
v (x) (2.68)

end while

and the symmetric permutation occurs for α−1.

We are also able to define a configuration set as follows

Confit(x) =

{
{vc(x)}c 6=t : ∑

c∈C(v)
vc(x) = 0

}
, (2.71)

which provides an alternative definition to p(zv = 0|v) in (2.42) and also defines a par-

ticularly powerful tool for arriving at the extended min-sum (EMS) definition.

Under this new representation we may write the SPA in Algorithm 2.14. The nomen-

clature of the tensorial SPA is similar to the original SPA formulation, only that symbols

are indexed by their polynomial in GF(2) rather than their values in GF(2m) and now we

31

2. LDPC Codes Fundamentals

account for the permutation and de-permutation operations explicitly, due to the permu-

tation nodes inclusion in the Tanner graph. It is noteworthy that under the SPA definition

in Algorithm 2.9, the permutation and de-permutation were not explicitly included. This

is due to the p(zv = 0|v) term in the CN processing that conceals such operations, de-

spite being already implicit in such definition. This transformation in itself, does not

account for any simplification of the algorithm nor does it provide a means of reducing

its numerical complexity.

Algorithm 2.14 Tensorial SPA for GF(q)

while v ·H> 6= 0 or i < IterationsMAX do
CN Processing1:

m(i)
cv [hcv × (it1 , · · · , itv)] = ∑

{ic(x)}∈Confit(x)

dc

∏
c=1,m 6=t

m(i)
cv [hcv × (ic1 , · · · , icv)] (2.72)

BN Processing2:

m(i)
vp [i1, · · · , ip] = k(i)vp p[i1, · · · , ip]

dv

∏
v=1,n 6=t

r(i)pv [i1, · · · , ip] (2.73)

k(i)vp ⇐∑ m(i)
vp [i1, · · · , ip] = 1 (2.74)

a-posteriori decoding:

m∗(i)v [i1, · · · , ip] = Kv pv[i1, · · · , ip]
dv

∏
v=1

mcv[i1, · · · , ip] (2.75)

Kv ⇐∑ m∗(i)v [i1, · · · , ip] = 1 (2.76)

Hard-decoding:
ĉv = arg max

x
mv[i1, · · · , iz]

end while

Mixed Domain Algorithm

The mixed-domain algorithm (MDA) [97] combines the low-complexity of the FFT-SPA

with the log-domain approach of the LPFSPA. The rational is to benefit from the ad-

vantages presented by both the probability domain and the log domain. Thus, all the

operations regarding the FFT are executed in the linear domain and the VN and CN op-

erations in the log domain.

In order to do so, two domain changes must occur

p(x)→ log (p(x)) , (2.77)

32

2.5 LDPC Decoding Algorithms over GF(q)

and its inverse

log (p(u))→ p(u), (2.78)

the former from linear to log and the latter from log to linear. Albeit possessing the same

BN

CN

hij hij
-1

FFT IFFT

X

X Real to Log

Log to Real

Real to Log

Log to Real

Figure 2.4: Mixed-domain message-passing operations and domain transformations.

numerical complexity as the former two algorithms, the MDA improves in requiring only

the computation of logarithms and not of logarithms of sums of exponents.

The mvc messages, those leaving the VNs, are permuted before being transformed

into the linear domain. The FFT is applied to change the messages to the log domain

prior to the convolution being computed. The messages leaving the CNs, i.e. the mcv

messages, are re-changed to the linear domain prior to the inverse fast Fourier transform

(iFFT) computation and afterwards its output is reconverted to the log domain. The

messages leaving the CNs, i.e. mcv messages, are transformed to the real domain prior to

the computation of the iFFT and afterwards converted to the log domain. Normalization

is still required, but the log domain allows the normalization step to be defined in terms

of subtractions [97]. The process is depicted in Figure 2.4.

2.5.2 Extended Min-Sum Algorithm

This section presents the EMS, a generalization of the MSA for GF(q), and in particular

for GF(2m) by using the tensorial notation previously introduced. In order to arrive at the

definition of the MSA, a domain change was required from probability to LLR. However,

whereas in the binary case we had only to define L(u) = log (p(u = 1)/p(u = 0)), in the

q-ary case there are q− 1 LLR messages to account for. Under the tensorial representation

33

2. LDPC Codes Fundamentals

we define the LLR of u[i1, · · · , im] as L(u[i1, · · · , im])

L(u[i1, · · · , iz]) = log
p(u[i1, · · · , iz])

p(u[0, · · · , 0])
, ∀(i1, · · · , iz) ∈ {0, 1}p, (2.79)

and therefore L(u[0, · · · , 0]) = 0. It is crucial for the introduction of the configuration

concept that we observe that L(u) is a LLR vector sized q− 1.

The purpose of extending the MSA to its general EMS for GF(q) is to reduce the nu-

merical complexity of the CN processing of the SPA. Whereas the FFT-SPA is restricted

to GF(2m) fields, the EMS is no longer constrained to extension fields. The EMS aims at

assigning each message received a reliability measure not only by minimizing the num-

ber of operations required and avoiding complex operations, but also by utilizing only a

limited number of incoming messages.

Configuration Sets and Configurations In order to use only a limited number of the

available incoming messages, we need to introduce the configuration concept. In (2.71),

the elements belonging to the configuration set are the ones that verify a given parity-

check restriction. We can define in L(m̄kc
pm), kc = 1, · · · , nm the nm largest values in

L(mpm). The notation of the associated field elements α
(km)
c (x) is such that

L(m̄(km)
pm) = log

p(hm(x)im(x) = αkm
c)(x)

p(hm(x)im(x) = 0
= L(qpm[α

(km)
c1 , · · · , α

(km)
cz]) (2.80)

For simplicity, we will assume that nm values are selected per node regardless of the

LDPC graph characteristics. From those nm largest values a set of configurations can be

defined as

Conf(nm) =

{
ffk =

[
α
(k1)(x)
1 , · · · α(kdc−1)

dc−1 (x)
]>

: ∀k = [k1, · · · , kdc−1]
> ∈ {1, · · · , nm}dc−1

}
,

(2.81)

such that any vector of dc − 1 elements defines a configuration, and its cardinality is

|Conf(nm)| = ndc−1
m (2.82)

Conf(1) contains only one configuration, thus designated the order-0 configuration. For

large values of dc or nm, the number of configurations is also large, motivating the con-

sideration of only a subset of Conf(nm) for nc ≤ dc − 1 such that

Conf(nm, nc) = Conf(nm)
(0) ∪Conf(nm)

(1) ∪ · · · ∪Conf(nm)
(nc), (2.83)

where Conf(nm)(l) is the subset of configurations differing l entries from the order-0 con-

figuration. Hence, Conf(nm, nc) is the subset of configurations differing at most nc entries

34

2.5 LDPC Decoding Algorithms over GF(q)

from the order-0 configuration. The cardinality of Conf(nm, nc) is

|Conf(nm, nc)| =
nc

∑
k=0

(
dc − 1

k

)
(nm1− 1)k '

(
dc − 1

nc

)
nnc

m , (2.84)

and it can be easily seen that it is much smaller than (2.82) and built from configurations

with large probabilities. It is also noteworthy that Conf(nm) = Conf(nm, dc − 1).

Each configuration is assigned with a reliability value L(ffk) which is straightforward

to compute based on (2.80)

L(ffk) = ∑
m=1,...,dc−1

L(m̄(km)
pm). (2.85)

Let us also define the subset Confidc (x)(nm, nc) defined by the parity-check constraint

Confidm (x)(nm, nc) =

{
ffk ∈ Conf(nm, nc) : hdm(x)idm(x) +

dc−1

∑
m=1

αkm
c (x) = 0

}
. (2.86)

Not every choice of (nm, nc) is able to deliver non-empty configurations, which adds

Algorithm 2.15 EMS for GF(q)

Initialization:
mv[i(x)] = p(cv = x|yv) (2.87)

L(pn[i(x)]) = L(q(0)np [i(x)]) log
pn[i(x)|i(x) 6=0]

pn[i(x) = 0]
(2.88)

while v ·H> 6= 0 or i < IterationsMAX do
CN Processing1:

from dc − 1 incoming L(q(i)pm[ic1 , · · · , icp]) messages build sets:

Sidm (x)(x) = Confidm (x)(q, 1) ∪Confidm (x)(nm, nc) (2.89)

L(r(i)dc p[idc1
, · · · , idcm

]) = max
ffk∈Sdc (x)

{L(ffk)} (2.90)

L(r(i)mp[i1, · · · , ip]) = L(r(i)mp[idc1
, · · · , idcp

])− L(r(i)mp[0, · · · , 0]) (2.91)

BN Processing2:

L(q(i)np[i1, · · · , iz]) = L(p[i1, · · · , iz]) +
db

∑
n=1,n 6=t

L(r(i)pn[i1, · · · , iz]) (2.92)

a-posteriori decoding:

L(Q(i)
n [i1, · · · , iz]) = L(pn[i1, · · · , iz]) +

db

∑
n=1

L(r(i)pn[i1, · · · , iz]) (2.93)

end while

convergence issues to the EMS decoding. However, this problem may be overcome if

35

2. LDPC Codes Fundamentals

the set Confidm (x)(q, 1), a non-empty set for all idm(x) ∈ GF(q) is included along with the

remaining considered subsets.

Finally, we are able to present, in Algorithm 2.15, the formal outline of the EMS. The

second step in the CN processing (2.91) is a postprocessing step required to prevent the al-

gorithm from diverging. Unless applied, some messages may grow to the highest numer-

ical value. It can also be shown that the EMS converges to the MSA when applied to the

GF(2) case [96]. It is noteworthy that the under parameters (nm, nc) = (q, dc − 1), the EMS

converges to the LSPA proposed in [88] and thus the EMS follows O(M · dc · (2m − 1)2).

A binary tree representation allows for O(M · dc · (2m + (nm − 1)m)), while the recursion

proposed in [46] attains O(M · dc · nm · 2m). Exposing parallelism to finding the configura-

tions yields a complexity O(M · dc ·
(

dc − 1
nc

)
nnc

m) [96]. However, the authors final remark

on the CN processing complexity is that, under (nm, nc) parameters which approximate

the EMS to the SPA, the numerical complexity is bounded by O(M · m · dc · 2m), which

requires the same number of operations as the FFT-SPA formulation with a major im-

provement over the latter as the only numerical operation required is addition [96].

Corrected Extended Min-Sum Algorithm Similar to what is observed the binary case [24,98],

the EMS naturally benefits from numerical corrections to it, due to its suboptimal nature

caused by the messages overestimation. Simple techniques can be employed [85,96] to cor-

rect the sub-optimality shown by the EMS.

Factor EMS a factor γ > 1 is included in the VN processing.

L(m(i)
np[i1, · · · , iz]) = L(p[i1, · · · , iz]) +

1
γ

dv

∑
n=1,n 6=t

L(m(i)
pn[i1, · · · , iz]) (2.94)

Offset EMS a factor c > 0 is included in the VN processing.

L(m(i)
pn[i1, · · · , iz]) = max

(
L(m(i)

pn[i1, · · · , iz])− c, 0
)
⇐ L(m(i)

pn[i1, · · · , iz]) > 0 (2.95)

L(m(i)
pn[i1, · · · , iz]) = min

(
L(m(i)

pn[i1, · · · , iz])− c, 0
)
⇐ L(m(i)

pn[i1, · · · , iz]) < 0 (2.96)

L(m(i)
np[i1, · · · , iz]) = L(p[i1, · · · , iz]) +

dv

∑
n=1,n 6=t

L(m(i)
pn[i1, · · · , iz]) (2.97)

Both the correction factor and offset can be computed by minimization of a cost function

associated with the LDPC code under study. This may be achieved through DE stud-

ies [28,85,96,98].

36

2.6 Decoding Schedules

2.6 Decoding Schedules

The decoding schedule is absent from the formalization of the LDPC decoding algo-

rithms, or is at most implicit. The decoding success does not generally depend on how

the processing phases are computed within a decoding iteration [99,100].

2.6.1 Two-phased Message-passing

Two-phased message-passing (TPMP) applies an update rule at a time for all nodes in the

Tanner graph for the binary case, or factor graph in the non-binary case [60]. Essentially

all nodes within a node type in the graph are updated before proceeding to the next node

type. When all CNs and VNs have been updated, a decoding iteration has been executed.

This type of scheduling is appealing for its simplicity. Dependencies of operations are not

taken into consideration since the update of any given message will not interfere with the

update of another message.

CN

1

CN

2

CN

0

VN

6

VN

3

VN

0

VN

5

VN

4

VN

1

VN

2

(finish iteration)

Compute all
CN

1

CN

2

CN

0

VN

6

VN

3

VN

0

VN

5

VN

4

VN

1

VN

2

L(rnm), n ∈ M(n), ∀m L(qmn), m ∈ N(m), ∀n
Compute all

receive all L(qmn), m ∈ N(m), ∀n L(rnm), n ∈ M(n), ∀mreceive all

...

Figure 2.5: TPMP decoding schedule. Each type of node is updated in the same phase, i.e. all CNs are
updated before any subsequent update is made to VNs and vice-versa, allowing all nodes in the CN and VN
processing to be updated simultaneously.

2.6.2 Turbo-decoding Message-passing

Turbo-decoding message-passing (TDMP) is inspired in the Turbo-decoding algorithm [101],

whereupon a node is made active and the processing phases are computed for the sub-

graph composed of the active node and adjacent nodes. Decoding can be performed in

respect to either CNs or VNs. In Figure 2.6, the TDMP schedule is applied to CNs. At

each time a node is active both the VN and the CN processing are computed, as it occurs

in the TPMP case. However, there are advantages with the use of the TDMP scheduling

in the convergence rate of the decoder, roughly, each iteration of TDMP is as powerful as

two TPMP iterations [102]. Naturally, the TDMP exposes a limited level of parallelism as

37

2. LDPC Codes Fundamentals

CN

1

CN

2

CN

0

VN

6

VN

3

VN

0

VN

5

VN

4

VN

1

VN

2

receive all

CN

1

CN

2

CN

0

VN

6

VN

3

VN

0

VN

5

VN

4

VN

1

VN

2

send all

CN

1

CN

2

CN

0

VN

6

VN

3

VN

0

VN

5

VN

4

VN

1

VN

2

send all

Compute all Update all

L(qnm), n ∈ N(0)

L(qnm, m ∈ M(N(0)))

proceed to CN1

proceed to CN2

(finish iteration)

L(qn0), n ∈ N(0)
L(r0n), n ∈ N(0)

L(r0n), n ∈ N(0)

Figure 2.6: TDMP decoding schedule. Nodes are updated in a sequential fashion and also update their
adjacent nodes. As seen, the decoding is performed by sweeping all the CNs and sequentially applying 1)
first the CN processing to the active CN and 2) then the VN processing is calculated for the VNs adjacent to
the active CN.

dependences can arise between message updates if instead of a single CN being active,

two or more are. One way to schedule the maximum number of nodes to update simul-

taneously, while following the TDMP schedule is to find CNs such that the intersection

of their N(m) is an empty graph. In other words, so as long as the active CNs are not ad-

jacent to the same VNs, the TDMP allows also for simultaneous update, and not just for

the sequential update depicted in Figure 2.6. While finding such CNs can be a problem

for unstructured codes, LDPC-IRA and QC-LDPC have been designed for maximizing

the parallel potential of a TDMP schedule [61,103,104].

2.7 Overview of the Complexity

Based on the discussion written in this chapter, we are able to determine the suitability

of certain decoding algorithms for, the task laying ahead, developing efficient binary and

non-binary LDPC decoders.

2.7.1 Binary Decoding Algorithms

Among the binary LDPC decoding algorithms, the MSA is of particular interesting.

Despite its sub-optimal decoding capabilities, exhibiting at times a degradation of over

0.5 dB [3], it conveys the least complex LLR-based message-passing algorithm. This is of

use for both programmable and reconfigurable computing approaches. On the former,

we can guarantee through the use of the MSA algorithm that our proposed decoders will

not be instruction bound [105], and on the latter we ensure that reconfigurable computing

designs will not consume too many digital signal processors (DSPs), which are a scarce

commodity on the field-programmable gate array (FPGA) die. Furthermore, it has been

shown that the MSA can reach within the LSPA bit error rate (BER) performance at the cost

of corrections that are numerically less intensive such as the case of the self-correction [3].

38

2.7 Overview of the Complexity

2.7.2 Non-binary Decoding Algorithms

The decoding algorithms surveyed in this Chapter are summarized in Table 2.1. In

Table 2.1: LDPC over GF(q) Decoding Algorithms Numerical Complexity Overview.

Algorithm OCN(·) LUT Accessesa) Decoding Loss Special Requirements

SPA M · dc · (22m
) 1536M – GF(2m) arithmetic

LSPA M · dc · (2m − 1)2 490M ∼ 0dB GF(2m) arithmetic
FFT-SPA M · dc ·m · 2m 0 0dB FWHT
LPFSPA M · dc ·m · 2m 21N + 288M N/A FWHT and GF(2m) arithmetic
MDA M · dc ·m · 2m 96N ∼ 0dB FWHT, log-pmf change
LFSPAb) M · dc · 2m 0 0dB FWHT
EMSc) M · dc · nm · 2m 0 0.1 ∼ 0.2dB GF(2m) arithmetic
a) As reported for GF(23); b) Reported for a (2, dc)-LDPC code, but the VN complexity increases to OVN(M · dc · 2m).;
c) Best reported by Declercq [96].

the second column the asymptotic numerical complexity is presented for the CN pro-

cessing. The SPA and LSPA formulations exhibit the highest numerical complexities.

The recursive computation of the former leads to a complexity scaling with the power of

two of the field dimension, while the latter relaxes the numerical complexity scaling to

the square of the field dimension. Clearly, this is too demanding either for field-decoders

or for simulation purposes. The FFT-SPA, the LPFSPA and the MDA follow an equiva-

lent numerical complexity. However, the MDA is more intricate as it requires successive

domain changes to enjoy the benefits introduced by the FFT-SPA and the LPFSPA. The

linear scaling with the field dimension and the field order presents better opportunities

to capitalize in the development of decoders for simulation purposes.

Furthermore, the CN processing complexity can be further downsized. The LFSPA

does so by transferring part of such complexity to the VN processing. By doing so, the

linear dependency of the field order is discarded and thus it is the surveyed algorithm

presenting the lowest complexity. The EMS profits from the configuration set concept

by using only the most significant messages. This ensures that instead of the field or-

der dependency is effectively replaced by the configuration set parameter nm. This is

particularly helpful towards simplifying the decoding process, especially for high-order

fields [96]. These two latter algorithms present the best opportunity to not only develop

multicore decoders for simulation purposes, but also for the ultimate goal of developing

a software decoder for real-time usage. Unlike some of the binary decoding algorithms,

which trade decoding performance for lower numerical complexities, the EMS is the only

non-binary decoding algorithm doing so, at a reported negligible loss of 0.1 ∼ 0.2dB

when compared to the SPA.

39

2. LDPC Codes Fundamentals

2.8 Summary

Two class of decoding algorithms stand out in the analysis afore performed, MSA-

based decoders for binary LDPC decoding and the FFT-SPA for the non-binary case. In

the binary case, typical soft-decoding algorithms are based on a likelihood representation

whose domain allows for certain numerical approximations. The MSA is particularly

appealing due to its lower numerical complexity. As the LLR-domain is utilized, only

additions need to be performed, and to address the BER degradation arising from the

sub-optimal approximation of the CN processing (c.f. Algorithm 2.5), corrections can be

made that mitigate such degradation at negligible complexity increase

The non-binary case is a particular one, as the generalization of the decoding algo-

rithms to GF(q), and in the special case of GF(2m) that we assume, allows us to divide

non-binary algorithms into two categories. Those that require arithmetic operations over

the Galois field, and those that do not. The former introduce a very high overhead, as

arithmetic operations in GF(2m) come hand in hand with very high CN processing com-

plexity. The latter are, needless to say, of greater interest as we can dismiss Galois field

operations from adding overhead to the decoding algorithm. Whereas the generality

of SPA-based algorithms requires arithmetic operations over GF(2m) or attempts at re-

ducing the numerical complexity by changing the pmf -domain to a log-pmf -domain, the

algorithms that change the pmf domain to a Fourier benefit from two factors 1) all ex-

isting convolutions become multiplications and 2) explicit GF(2m) arithmetic operations

can be altogether relished in favor of simpler operations, such as the case of the FFT-SPA

decoding algorithm [47].

From the surveyed decoding algorithms it is clear that under binary LDPC decoding

the MSA conveys the algorithm of choice. Not only does it provide a good tradeoff be-

tween complexity and BER performance, but can be improved with regards to attained

BER by applying one of many corrections. Secondly, under non-binary LDPC decoding,

the FFT-SPA stands out due to the reduced complexity of its arithmetic operations, for-

going any calculations performed over GF(2m), and reducing the decoding procedure to

Hadamard products applied at the CN and VN update phases.

40

3
LDPC Decoder Architectures

Overview

Contents
3.1 Decoding on Programmable Architectures 43

3.1.1 Programmable LDPC Decoder Mapping 44
3.1.2 Tanner Graph Indexing Schemes 45
3.1.3 Programming Models . 48
3.1.4 Thread-parallelism . 50
3.1.5 Data-parallelism . 57
3.1.6 Decoding Algorithms . 59
3.1.7 Decoding Schedules . 60

3.2 Decoding on Reconfigurable Architectures 61
3.2.1 Programming Models . 62
3.2.2 Parallelism . 62

3.3 Summary . 63

41

3. LDPC Decoder Architectures Overview

In this chapter, the state-of-the-art of low-density parity-check (LDPC) decoders on pro-

grammable [166,167] and on reconfigurable computing architectures [56] is surveyed. While

we can only assume that central processing units (CPUs) are the first choice for code study

and bit error rate (BER) performance evaluation through Monte Carlo simulation, the ma-

jority of LDPC decoders found in the literature are not based on CPU architectures. With

the odd exception, CPUs are mostly the underlying platform conveying proof of LDPC

theory and concepts, but the decoder implementation is not the object of study, notwith-

standing the fact that the advent of cross-platform parallel programming models and

the growth in the register width of single-instruction multiple-data (SIMD)-vector units has

given CPUs a high level of computational power [165].

On the other hand, most references found in the literature deal with LDPC decoders

based on streaming architectures, namely, graphics processing units (GPUs) and other ac-

celerators such as ARM mobile systems on a chip (SoCs) [168], Intel single-chip cloud computer

(SCC), the Cell B.E. [169] or experimental stream processors—the latter examples are less

prevalent than GPU-based LDPC decoders. One of the reasons for the GPUs popularity

is due to the compromise between effort put into the development of a parallel algorithm

that conveniently exploits the GPU single-instruction multiple-thread (SIMT)-architecture,

and the corresponding attained performance. For the one, the development time between

testing and prototyping, and the final optimized decoder ready for deployment is not as

high and does not incur in too high non-recurring engineering (NRE) costs, as dedicated

solutions do. On the other hand, this flexibility usually means diminished returns in the

performance of the decoding solution, due to the fixed instruction set, memory hierarchy

and underlying architecture that are not custom-tailored to the developed decoder. Fur-

thermore, the introduction of data parallel programming models such as Compute Unified

Device Architecture (CUDA) [170] and Open Computing Language (OpenCL) [171], timed with

the unification of the graphics pipeline into a single programmable processor, meant that

high-level productivity scientific languages such as C/C++, Fortran, Python and Ruby

could be utilized, instead of protracted graphics languages. The drawback is that only

with sufficient knowledge of the underlying GPU architecture will the developed LDPC

decoders perform with high decoding throughputs.

Furthermore, as GPUs computing, due to their raw computational power (peaking

in the TFLOPs range) and performance-to-watt-ratios orders of magnitude above CPUs,

began to dip into the high performance computing (HPC) market [172], and to some extent

on the datacenter market too, field-programmable gate arrays (FPGAs) were evolving too.

From their primitive “glue logic” status [173], they have since given rise to the very ac-

tive field of reconfigurable computing [56,174–176]. They bring more throughput per silicon

area [175] and less energy is consumed in the process than conventional processors [174].

42

3.1 Decoding on Programmable Architectures

Furthermore, due to the chip area of FPGAs, they usually accompany Moore’s law tech-

nology nodes, while improvements on dedicated solutions, more often than not, fail to

upgrade to faster, more efficient and smaller nodes in the same time-frame. Thus, the

utilization of FPGAs as custom accelerators, usually designated as reconfigurable com-

puting, addresses some of the issues surrounding the development of application-specific

integrated circuit (ASIC) technology, but also set opened a whole new level of challenges

purported by the availability of gate-level optimizations. Of particular interest to the

work developed in this Thesis, is the use of high-level synthesis (HLS) models, which ex-

tend C/C++ and other programming languages [177–179], in a somewhat similar way that

CUDA and OpenCL did for GPUs, thereby avoiding the drawbacks of VHDL and Verilog

register-transfer level (RTL)-descriptions to generate circuits.

In the previous Chapter, the characteristics and complexity of the LDPC decoding

algorithms was surveyed for codes defined over binary and non-binary fields. The O(·)
numerical complexity presented does not capture the totality of transposing the LDPC

decoding algorithm into an efficient LDPC decoder operating on either programmable

or reconfigurable architectures. We can enumerate a list of the most important challenges

to overcome in the design of efficient and high-performance LDPC decoding solutions as

follows.

i) the need to transform the node connections imposed by the Tanner graph into a

suitable memory layout and efficient addressing problem, considering that in most

cases, irregular access patterns will be imposed by the Tanner graph structure;

ii) the weighing of suitable ratios of arithmetic-to-memory-instructions which maxi-

mize the efficiency of the LDPC decoding for the underlying computer architec-

tures;

iii) the selected scheduling variants of the algorithm—two-phased message-passing (TPMP)

or Turbo-decoding message-passing (TDMP)—influence on the aforementioned items;

iv) parallelism has to be explored at different levels of complexity depending on the

architecture being programmed;

v) the complex exploitation of the memory hierarchy of multicore systems, or the com-

plex problem of defining a suitable memory hierarchy for reconfigurable LDPC de-

coders.

3.1 Decoding on Programmable Architectures

In this section, the survey is focused on programmable architectures for LDPC de-

coder solutions. The most prevalent LDPC decoders found are GPU-based, then CPU-

43

3. LDPC Decoder Architectures Overview

based, and finally, those based on streaming accelerators. A comprehensive list of the

decoders found is tabulated in Table A.1 in Appendix A, highlighting key characteristics

of the LDPC decoders, 1) task- and data-parallelism, 2) data representation, 3) LDPC code

type and dimensions, 4) the indexing method of the messages circulating in the Tanner

graph; and figures of merit of the LDPC decoder performance with respect to computa-

tional power, i.e., 5) decoding latency, 6) decoding throughput, both at a fixed number of

iterations (when possible). Finally, the programmable platform is also identified. The fol-

lowing subsections are devoted to discussing the methodologies developed for defining

efficient programmable LDPC decoders in light of their characteristics and design space

constraints. A representation of the design space exploration characteristics and relations

is illustrated in Figure 3.1.

Processor

Graphics

Core Core

Shared L3 Cache

System

Agent,

Display

Engine &

Memory

Controller

Memory Controller I/O

CPU/GPU Processor

Stream processorStream processor

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Graphics Processor

External Memory

Memory Controller

decoding

schedule

decoding

algorithm

task-parallelism

Tanner graph indexing
programming

model

data-parallelism

simulation target

real-time target

.entry CN(
 .param .u64 __cudaparm_CN_Lq,
 .param .u64 __cudaparm_CN_Lr)
{
.reg .u32 %l_Lq<4>;
.reg .u32 %l_Lr<4>;

…
}

.void CN(
 int ªLq,
 int ªLr)
{
int l_Lq[4];
int l_Lr[4];

…
}

LDPC Code & Tanner Graph Specification

H =

h0,0 h0,1 h0,2 · · · h0,N−1

h1,0 h1,1 h1,2 · · · h1,N−1

...
...

. . .
...

hM−1,0 h7,M−1 hM−1,2 · · · hM−1,N−1

Figure 3.1: Tanner graph isomorphic mapping on programmable architectures. In the example above, the
CN and VN functionalities are ultimately mapped as assembly instructions and with some degree of control,
CNs and VNs can parallel process the decoding algorithm by utilizing distinct SPs or cores with a certain
granularity.

3.1.1 Programmable LDPC Decoder Mapping

Due to programmable nature of the underlying computer architectures, a prototype

isomorphic architecture [180] that is a direct mapping of the Tanner graph to check node

44

3.1 Decoding on Programmable Architectures

(CN) units, variable node (VN) units and the Tanner graph interconnection network is

not truly possible [181]. Instead a programming description is required taking into ac-

count that the fixed underlying architecture and instruction set will require the sharing

of computational resources. Only clever usage of the instruction set functionality and

exploitation of the different regions within the memory hierarchy is guaranteed to opti-

mize the LDPC decoders for performance and efficiency of computation [182]. While the

term occupancy usually refers to GPU computing, the concept also extends to CPU ar-

chitectures. Considering the limited but fixed number of logic arithmetic and memory

resources available in programmable architectures, only if occupancy of the resources is

high, will the performance of LDPC decoders peak. However, occupancy is a double-

edged sword in the sense that it does not take into account over-utilization of resources

leading to bottlenecks or deadlocks, that nevertheless keep occupancy high. Moreover, it

is difficult to assess how efficiently a hardware resource is being utilized, based solely on

the information provided by what authors have made available in their LDPC decoders

on programmable architectures publications. Thus, we are left with figures of merit con-

textualized for the LDPC decoding problem, decoding throughput and decoding latency.

3.1.2 Tanner Graph Indexing Schemes

The LDPC decoder structure plays an important role on how efficiently the Tanner

graph connections between nodes can be mapped. While regular codes might seem at

first simpler than irregular ones, in practice they are not. Since the majority of the LDPC

codes also keeps simplicity of encoding and simplicity of Tanner graph indexing in mind,

standardized codes make use of systematic coding schemes, exploring repeat-accumulate

(RA) parity sub-matrices, mainly for encoding purposes, and structured irregularity in

the remaining portion of the parity-check matrix concerning the connectivity of infor-

mation nodes (INs) [183]. As discussed in Chapter 2, each edge defines two messages,

traversing in opposite directions. When mapping the Tanner graph connections to a pro-

grammable processor, we must take into account that the messages have to be laid out

in memory and, thus, their location index must be known with respect to both the CN

and VN that define the edge. The memory index is usually not the same for messages

traversing the same edge but in different directions.

Since the LDPC code parity-check matrix is also the adjacency matrix of the Tanner

graph, any given LDPC code can be stored through matrix storage methods. Due to

its sparsity, sparse matrix storage methods have lower memory footprints and can be

employed for any type of code, and in fact they are (c.f. Tanner column in Table A.1).

Regular codes, typically those constructed through progressive edge growth (PG) methods

and made available in the Encyclopedia of Sparse Graph Codes [184] (Mackay codes), are

45

3. LDPC Decoder Architectures Overview

stored most of the times in compressed row storage (CRS)- and compressed column storage

(CCS)-like formats. This method of indexing the Tanner graph is shown in Figure 3.2.

It is readily seen that out of the four memory accesses to qnm and rmn messages, or mcv

C2V LUT

rmn

qnm

V2C LUT

rmn

...

...

Figure 3.2: Tanner graph indexing based on sparse matrix storage. Different colors represent messages
traversing edges connected to the same node.

and mvc, two can be contiguous, a feature most of the surveyed decoders implement, as

this exposes high bandwidth due to coalesced data accesses on GPUs and high cache hit

rates on CPUs. The depicted scenario in Figure 3.2 defines reading accesses to be con-

tiguous and writing accesses as non-contiguous. Thus, CNs require indexes relative to

their adjacent VNs, and read a memory location offset from a lookup-table (LUT) (CNidx),

and VNs, likewise, read a memory offset from the other LUT (VNidx). Essentially, CNidx

corresponds to the messages positions in memory for a reshaped column-wise parity-

check matrix, and the VNidx to its row-wise reshaped. As a consequence, the number of

elements required to store the connections of a binary LDPC code Tanner graph is

TGsparse = 2×
M

∑
i=0

N

∑
j=0

hi,j. (3.1)

This indexing method can also be employed for standardized codes [142], though the

memory footprint of the Tanner graph mapping can be reduced by orders of magni-

tude [131,185]. In the particular case of LDPC Irregular-Repeat-Accumulate (LDPC-IRA) codes,

such as those employed in the 2nd generation DVB (DVB 2) standards, shown in Figure 3.2,

the LDPC code Tanner graph is systematically constructed in a way that permits index-

ing using a barrel shifter approach [185]. For instance, the number of elements required to

index the DVB 2 Tanner graph codes is:

TGDVB2 = 2×d̂c×r f , r f�N, (3.2)

with r f a code construction regularity parameter [61,185], and d̂c the arithmetic mean of

dc(i). This allows an on-the-fly computation of the memory locations to where each mes-

sage reads and writes. In particular, qnm messages will read and write to a contiguously

46

3.1 Decoding on Programmable Architectures

increasing base offset, but writes will be shifted, and rmn messages are read from an in-

dexed base offset and written shifted while maintaining the offset. Hence, an address and

a shift LUT, with a much lower size than the CCS and CRS sparse matrix storage (3.2)

can be employed. The LDPC decoding methods exploring the Tanner graph structured

a
d

d
r

L
U

T

s
h

if
t

L
U

T

compute
connections

V2C C2V

Figure 3.3: LDPC-IRA Tanner graph indexing based on sparse matrix storage.

construction, i.e. using the aforementioned efficient sparse matrix storage methods, are

labeled as structured (Struct.) in Table A.1 and sparse (Sparse) if the first method is used.

Likewise, quasi-cyclic LDPC (QC-LDPC) codes can also be indexed by small-sized

LUTs, as shown in Figure 3.4, by performing an on-the-fly computation of the mem-

ory location to where a message is sent after computation. This method in particular [131],

defines contiguous reading of messages and indexed writing to memory, with a foot-

print that is independent of the LDPC code dimensions. In a way, the code protograph is

sparsely indexed using the first method, though extra computation of indexes is required.

The memory footprint of this method is

TGQC = 2×3×
(

M

∑
i=0

N

∑
j=0

fi,j 6= ∞

)
+ M f + N f , 0 ≤ i < M f , 0 ≤ j < N f , (3.3)

with M f and N f the dimensions of the protograph matrix that generates the QC-LDPC

code. The great advantage to this indexing scheme is that, regardless of the final code-

word length which depends on the expansion factor z f , the indexing LUTs size remain

the same [131].

The memory footprint is not the most pressing issue in programmable architectures,

as the memory addressing space size of modern CPU and GPU systems can be larger

than the Tanner graph indexing memory footprint (3.1) (3.2) (3.3). However, the index-

ing method becomes a source for memory contention if for every computed message a

memory index location requires loading, reducing the overall bandwidth to memory—it

contributes to poorer cache hit ratios on CPUs [165], and adds further pressure to GPU

memory engines [122]. As observed in Table A.1, the best performing LDPC decoders

47

3. LDPC Decoder Architectures Overview

...

...
C2V LUTs

rmn

qnm

V2C LUTs

rmn

Figure 3.4: QC-LDPC Tanner graph indexing based on sparse matrix storage.

are those exploring structure sparse storage that exploit the Tanner graph structure, as

opposed to a generic sparse matrix storage method. For instance, LDPC decoders imple-

menting the former methodology achieve much higher throughputs than those exploring

the latter.

Several parameters, other than the Tanner graph indexing, influence the decoding

throughput attained, however, a clear trend is observed in this case. For all thread-

parallelism techniques employed, only the thread-per-codeword (TpC) strategy overcomes

the overhead in the Tanner graph indexing scheme [141], since the imposed overhead is

negligible with regards to the amount of data moved in the GPU architecture. The re-

maining decoders see throughputs of a few to a dozen Mbit/s. Observing Table A.1, it

is clear that only structured indexing schemes consistently see decoding throughputs in

the hundreds of Mbit/s.

3.1.3 Programming Models

A prevalence of C/C++-based families can be observed throughout the surveyed

LDPC decoders, adding to the popularity language under an HPC challenge such as

the one concerning the development of LDPC decoders churning out very high decoding

throughputs.

In particular, parallelism in CPU-based decoders has been exploited using the Open

Multi-Processing (OpenMP) programming model in a number of decoders [110,111,138,145,146].

Therein, the strategy to extract parallelism is based on the automatic parallelization of

computation loops wherein the CN and the VN processing are defined. This is achieved

with appropriate OpenMP directives. A minority of LDPC decoders replace the func-

tionality provided by the OpenMP loop parallelization directives with explicit thread-

partitioning using POSIX threads [128]. Despite the usage of a lower-level application pro-

gramming interface (API) to perform multithreading, the opportunity to improve on the

decoding throughput is not fully captured by this approach. However, POSIX threads are

the basis of the Cell B.E. SDK, which is a C-extended programming model [106]. Other au-

48

3.1 Decoding on Programmable Architectures

thors choose to put upon the OpenCL cross-platform capabilities to use on CPU technol-

ogy [186] making minor adjustments from the GPU-optimized decoder onto a computing

substrate with lower parallel capabilities. Similar to the aforementioned OpenMP and

POSIX threads strategies, the delivered throughput is limited by a number of factors, the

most important of which is the OpenCL compiler ability to pack data elements within

wide registers over which SIMD computation is performed [182].

Under this light, explicit utilization of SIMD-instructions is pursued on both x86 and

ARM processors. The first have since evolved from their assembly-accessible 128 bit

MMX registers [120,124,151] to the richer extensions provided by streaming SIMD extensions

(SSE) and advanced vector extensions (AVX) at 128, 256 and 512 bits register width, though

LDPC decoders in the literature exploit only 256 bit AVX registers [165]. As the instruction-

set functionality of the SIMD extensions became richer, so did the abstraction concern-

ing its use. While MMX required explicit assembly coding early at their introduction

time, nowadays, MMX, SSE and AVX support high-level C/C++ intrinsics. On the ARM

processors, the NEON extensions provide 64 and 128 bit registers, exploited through a

set of C/C++ intrinsics [128]. SIMD computation also faces another challenge. The in-

dexing of the Tanner graph connections renders data element packing and unpacking

unavoidable [165]. This means that under MMX registers, a non-negligible overhead of

data management housekeeping tasks offsets the performance gains enjoyed from SIMD

computation. On the other hand, only the increased functionality and width of the SIMD

units can guarantee higher performances, on a par with GPUs, due to the increase levels

of data-parallelism purported by the data packing for SIMD execution [165].

On the GPU LDPC decoders side, apart from the seminal approaches utilizing stream-

ing models [187] based on graphics programming languages [118–120] and early streaming

computing models [187], the majority of LDPC decoders makes use of CUDA and a minor-

ity of OpenCL. While in certain aspects both programming models are alike, with many

language traits and constructs referring to the same hardware features of the GPU proces-

sor, only with different designations and handles [171,188], CUDA popularity overwhelms

that of OpenCL. On Nvidia platforms the reason is clear, as OpenCL is mapped on top

of CUDA, with the performance of the former only reaching that of the latter at best [189].

Also, despite the similar ways to explore arithmetic instructions, data types and memory

addressing spaces of both models, OpenCL is a cross-platform programming model, ren-

dering superfluous management instructions and too verbose coding requirements not

really necessary when cross-platform is not truly intended. Nevertheless, the surveyed

decoders see no clear performance gap between the use of CUDA or OpenCL LDPC (c.f.

Table A.1). CUDA-based LDPC decoders range from the inception of CUDA in 2007 to

the latest stable version. However, majority of the LDPC decoders based on it explore

49

3. LDPC Decoder Architectures Overview

only a limited subset of its features. In particular, more advanced features such as kernel

self-calling and reconfiguring the GPU execution grid without the host CPU intervention

(dynamic parallelism) [188] and advanced memory synchronization and fencing operations

available to the whole thread execution grid are not explored in the surveyed works,

though they address limitations identified in some of the works [112–114,149,164]. With this

regard, the OpenCL specification suffers from a lower evolution pace, with features sen-

sitive to GPU programming having to be ratified for inclusion in a cross-platform model

also supporting CPUs and FPGAs, thus, OpenCL-based decoders are somewhat more

limited to some features CUDA addresses [128,140,154,186]. Notwithstanding, as such fea-

tures are not explored, there is no evident loss in choosing one instead of the other.

With more or less control of the underlying hardware, all of utilized programming

models allow the development of parallel LDPC decoding algorithms. Parallelism is nat-

urally exposed in these [99,190], but other parallel features pertain only to a certain algo-

rithm expression, in its turn tightly coupled to an underlying architecture. This concerns

parallelism at the task-level and at the data-level that are discussed next.

3.1.4 Thread-parallelism

Several parallelism strategies have been proposed on multicore CPU and GPU archi-

tectures that divide LDPC decoding tasks between concurrent execution threads. These

strategies entail constraints to other important design features of the LDPC decoders,

especially with regards to data-parallelism and also to the decoding schedule of nodes,

which are on the following Subsection.

Taxonomy Due to the rich set of parameters explored by researchers in the develop-

ment of programmable LDPC decoders, an appropriate taxonomy for LDPC decoding

on programmable architectures will be introduced herein. First regarding parallelism,

whereupon the nodes functionality, as seen in Figure 3.1, is translated onto task- and

data-parallelism at certain granularity levels among physical or logical cores or between

execution threads. To keep a low simplicity of taxonomy, we define it in terms of thread-

parallelism, which is also in accord with the majority of the surveyed programmable

LDPC decoders that take in thread-based programs.

Pixel-per-edge (PpE) Decoding PpE is the oldest parallelism strategy dating from the

time when general-purpose GPU (GPGPU) was at its inception, with graphics languages

being the only way available to perform non-graphical computation on GPU processors.

Back then, data elements had to be mapped onto “graphical data elements” in order

50

3.1 Decoding on Programmable Architectures

to be processed by the pixel shaders, thereof stemming the designation of this thread-

parallelism strategy.

While results seemed highly promising at a time when the only prospective way to

achieve high-throughput would be to develop a dedicated hardware accelerator, they

were still lacking the performance seen for the LDPC decoders under CUDA and OpenCL,

once the graphics pipeline had been unified onto a single processor [170]. Approaches such

as those proposed by Falcão et al. allowed decoding throughputs of dozens to hundreds

of Mbit/s [118–120], combining a graphics language approach with Caravela streams [187].

N(0) M(0)

Vertices

Vertex
Shader

Pixel
Shader

…

Pixel-per-Edge

qnmrmn

Frame
buffer

Output

⌈√
dv×N

⌉

⌈ √
d
v
×
N

⌉

Figure 3.5: Pixel-per-Edge LDPC decoder thread-parallelism.

Thread-per-edge (TpE) Decoding TpE corresponds to the strategy with the finest gran-

ularity, which brings upon the LDPC decoder designer a granularity tradeoff. For the

one, if consecutive threads deal with the update of messages belonging to consecutive

nodes in the Tanner graph, then there is a high exposure of both spatial and temporal

data locality. For the other, most GPU-based LDPC decoders that exploit this granular-

ity have been developed for pre-Fermi or Fermi architectures that do not have a caching

mechanism available to threads for computation [170]—it exists only for off-chip memory

transaction. For instance, locality is automatically explored by the x86 cache system in

heavily SIMD-based LDPC decoders [165], leading to over 90% cache hit rates that max-

imize the LDPC decoder bandwidth. Alas, this is not the case in the multicore GPU-

based decoders utilizing this strategy. Under the methodology proposed by Chang et al.

throughputs peak lower than ∼2 Mbit/s for moderate length codes (816, 4000 and 8000

bits) [112–114]. This approach, implies one the most pressing use of threads within the GPU

engine. For a regular LDPC code, the VN processing sees N×dv threads spawned, and

likewise the CN processing spawns M×dc threads, implying the thread-parallelism gran-

51

3. LDPC Decoder Architectures Overview

ularity level putting the most pressure through the generation of thousands of threads,

even though computation within each thread is not as heavy as the following thread-

parallelism strategies.

Thread block 1Thread block 0

Thread block 1Thread block 0

qnm

rmn

Thread-per-Edge

…

…

Figure 3.6: Thread-per-Edge LDPC decoder thread-parallelism approach.

Thread-per-node (TpN) Decoding TpN is the most prevalent strategy, with a thread

being spawned per node in the LDPC code Tanner graph. While this strategy quickly de-

pletes the number of concurrent threads that can be active simultaneously on multicore

GPUs for moderate to long block lengths, this pressure is not as high as in the TpE strat-

egy case for short to moderate codes. One of the reason behind this strategy being by far

the most popular strategy is related to its elegance. Each node in the Tanner graph can

be assigned to an execution thread in the absence of a de facto isomorphic transformation

into a functional unit (FU) [191].

Thread block 1Thread block 0

qnm

rmn

Thread block 1Thread block 0

qnm

rmn

Thread-per-Node

…

…

Figure 3.7: Thread-per-Node LDPC decoder thread-parallelism approach.

The first LDPC observed to utilize this thread-granularity was proposed by Falcão

et al. for short to moderate length Mackay codes [184] (rate 1/2 1024, 4000 and 4896

bits) reaching up to ∼1.63 Mbit/s [123]. The decoder forcibly defined a 2-D texture map-

ping of the log-likelihood ratios (LLRs) messages that contributes to the poor performance

yielded [123]. Under a more general-purpose computing memory mapping, the authors

were able to elevate the decoding throughputs to ∼87 Mbit/s for the normal frame

52

3.1 Decoding on Programmable Architectures

DVB-S2 codes [122], and to ∼40 Mbit/s for rate 1/2 Mackay codes (1024 to 20000 bits) [124].

The difference in the attained performance shows how data-parallelism design decisions

and Tanner graph indexing methods are pivotal to elevating the decoding throughputs

attained by GPU-based LDPC decoders. This is also verified by the work by Grönroos et

al., elevating their initial decoding throughput assessment (< 1.80 Mbit/s) [129] to higher

levels (157∼192 Mbit/s) for higher data-parallelism levels. The limits to the scalability

of this approach were tested by Zaldivar et al., using a TpN-variant defined over a 3-

dimensional execution grid [142], for various dc and dv configurations. Chiu et al. report

high latency times 0.2∼1.8 s for a short length (672 bits) 802.15.3c code [152]. Wang et

al. propose a TpN decoder for 802.11n and 802.16e codes reaching 40∼52 Mbit/s [155].

However, other TpN approaches achieve only limited decoding throughputs [132,145,146],

without a clear pattern to what lead to such low levels of throughput performance. Even

more, when some had defined highly efficient Tanner graph indexing methods for cyclic

and quasi-cyclic codes [130,131].

While LDPC codes working as the error-correcting code (ECC) basis of forward error

correction (FEC) in communication systems imply an application agnostic operation, i.e.,

all bits being equally protected, their use for distributed video coding and quality of re-

sults is well-known [149]. On their application to video coding benchmarks (Hall Monitor,

Foreman, Coastguard and Soccer), excellent frame reconstruction is obtained, though for

offline video coding, i.e. it is not applied to real-time decoding [143,144,149]. Another ap-

plication of LDPC decoding worth mentioning is their use for quantum-key distribution

(QKD) reconciliation [192]. Mink et al. were able to reach high decoding throughputs,

though for this purpose a lower number of iterations is required [164].

Finally, non-binary LDPC decoders that implement the TpN strategy have also been

proposed [108,154]. Beerman et al. define a 3-dimensional grid of computation to properly

exploit parallelism exposed at the binary extension field (GF(2m)) dimension and by the

scheduling of operations within the processing of the Tanner graph nodes. Under the

proposed strategy, equivalent decoding throughput (∼2 Mbit/s) is obtained for GF(2m)

spanning the binary field (GF(2)) to GF(28).

Block-per-codeword (BpC) Decoding BpC is a strategy available to GPU execution as

it is based on the concept of a thread block [170], a CUDA concept that finds its equivalent as

workgroup in OpenCL [171]. The rationale stems from the execution grid composed of threads

and divided onto blocks that permit a suitable exploitation of the memory hierarchy in

multicore GPU architectures. Threads within the same block are allowed synchronization

and fencing mechanisms for tighter cooperative computation as they can access the shared

memory space, an addressing block physically unavailable to inter-block communication.

53

3. LDPC Decoder Architectures Overview

A strategy based on this granularity fails short of utilizing all the GPU stream multiproces-

sors (SMs), as the number of blocks required is independent of the code length. Hence,

this strategy is usually accompanied by data-parallelism levels that spawn more blocks

to decode more codewords in parallela) throughout the remaining SMs of the architec-

ture [106,133,159]. Notwithstanding, there is a constraint on how many threads can compose

a block, that is influenced not only by the capabilities of the underlying hardware—high-

end GPUs can execute blocks with a higher thread count than low-end ones—but also

by how the developed decoding algorithm consumes registers and shared memory [170].

For QC-LDPC codes, it might make sense to define z f threads per block as it matches

the protograph expansion factor. However, this might be too low of a value, leading to

poor resource utilization, or too high, preventing this strategy to be accommodated onto

lower-end GPUs [159]. Equivalent tradeoffs can be seen for LDPC-IRA, random LDPC

codes and non-binary regular ones [93]. This thread-granularity level is also the de facto

strategy able to efficiently implement TDMP and TPMP decoding schedules, as opposed

to the remaining strategies which are usually limited to the TPMP, as explained next.

First proposed by Abburi [106], this strategy has been applied to worldwide interoper-

ability for microwave access (WiMAX) (IEEE 802.16e) codes, and also to Wi-Fi (Wi-Fi) codes

(IEEE 802.11n) [159], for moderate to high decoding throughputs achieved (24.50∼160

Mbit/s), at relatively low latencies under 12 ms. This method has also been explored

for the quick evaluation of a QC-LDPC construction method [133].

Thread

block

Thread block

qnm

rmn

Block-per-Codeword

...

Thread block Thread block

Thread

block

Thread

block ...

Figure 3.8: Block-per-Codeword LDPC decoder thread-parallelism.

Block-per-node (BpN) Decoding BpN is, in a sense, a particular case of the BpC ap-

proach. Non-binary LDPC codes define another dimension exposing parallelism, the

GF(2m) dimension. This strategy is adopted for the particular case of non-binary LDPC

decoding, but instead of defining a block of threads depending on the LDPC Tanner

a)Note that we adopt the designation codeword in a broader sense. Codeword can be the set of codewords
that can fit onto the same data type, thus, it can be a single element or several ones packed into a vector data
type [182,188].

54

3.1 Decoding on Programmable Architectures

graph regular features, it depends of the GF(2m) dimension [147]. This approach is tested

for a GF(28) code, yielding throughputs in the Mbit/s range (< 6) under different levels

of data-parallelism for a pure sequential decoding schedule. Wang et al. also use this

approach for a non-binary LDPC decoder for both OpenCL-based execution on CPU and

GPU architectures. Though their approach has considerably low latencies (< 5 ms) it

achieves only 1.26 Mbit/s at best for GF(2m) dimensions of 22, 23 and 24.

Thread-per-codeword (TpC) Decoding TpC is in all similar to the former approach, ex-

cept that in the LDPC program description there is not the concept of a thread executing

a codeword. For instance core-per-codeword (CpC) in an x86 CPU implies that one thread,

corresponding to a logical core will execute the LDPC decoder in some of the physical

cores. However, the program can be explicitly defined in terms of an executing thread,

which decodes a codeword, hence, the distinction between two approaches would oth-

erwise be blurred. Also, typically multithreading is explored to elevate the parallelism

levels and improve the decoding throughput performances by exploiting a higher occu-

pancy of the hardware. Namely, Abburi et al. propose a Cell-based LDPC where a thread

per synergistic processing element (SPE) is assigned with the execution of the longest length

rate 1/2 802.16e codewords, peaking at 270 Mbit/s [107].

Furthermore, other authors propose this approach for the multicore GPU architec-

ture [137] and compare the performance of their approach to their previously presented

LDPC decoder [160], reducing by one order of magnitude the time required to perform

BER Monte Carlo simulation for a Mackay code [184]. Also, Lin et al. were able to achieve

decoding throughputs in the range 212∼550 Mbit/s, though for high latencies (53∼421

ms) using short to long length codes (204∼20000 bits) [141]. Finally, Wang et al., in order to

assess the performance of the construction of a QC-LDPC convolutional code developed

a TpC decoder peaking at 15 Mbit/s (using 768 to 1536 rates 1/2 and 2/3 codes) [161].

Core-per-codeword (CpC) Decoding CpC is a thread-parallelism granularity that has

no equivalent method in GPU computing, it is only available to CPU architectures. Herein,

we consider the logical core definition of “hyperthreaded” processors, which defines a

core as equivalent to an execution thread. Thus, a logical core will be responsible for

executing a codeword or batch of codewords. However, the scenario under consider-

ation is somewhat vaster here, as several approaches can be taken to implement this

task-parallelism strategy.

For the upcoming exascale computing platforms [193], Diavastos et al. studied the scal-

ability of LDPC decoders under 1) distributed and 2) shared memory model coopera-

tive execution, and 3) shared memory model but not cooperative [117]. Regarding scal-

55

3. LDPC Decoder Architectures Overview

Thread-per-Codeword

Thread block 0

…

Thread block 1

Figure 3.9: Thread-per-Codeword LDPC decoder thread-parallelism approach.

ability, 1) saw a reduction of the throughput to less than 1% of the single core baseline

reference when all cores were committed to the computation, mainly due to high com-

munication overheads caused by absence of caching mechanisms, 2) saw a sub-linear

scalability of up to 11× when 48 cores were committed to the computation, while 3),

saw 41× speedup when compared to the baseline [117]. Other approaches with regards

to distributed computing involve the use of streaming accelerators applied to Mackay

codes [184] and achieve moderate throughputs (< 79 Mbit/s) for low latencies between

0.69∼1.53 ms [121,124]. 802.16e standard codes can be decoded at throughputs of 72∼80

Mbit/s under this methodology on the Cell B.E. processor [194]. Furthermore, this ap-

proach is also explored under mobile SoC platforms, whereupon short and normal frame

DVB-T2 codes have been tested, reaching high latencies peaking in the 500∼2592 ms

range at throughputs of ∼3 Mbit/s [127].

While some of the aforementioned LDPC decoders do not make use of vector pro-

cessing [117,127], SIMD processing is a widely employed technique to improve high perfor-

mance and efficiency in CPU architectures. Namely, the LDPC decoders based on the Cell

B.E. make use of extensive SIMD-instructions by increasing the data parallelism within

each core [121,124]. The work proposed by Falcão et al. [124] for their x86-based decoder is a

particular type of CpC strategy. The OpenMP model was used to parallelize the compu-

tation inside the CN and the VN processing that were encapsulated by loops. Therefore,

their true approach was Processor-per-Codeword, which in a sense is a special case of

the CpC strategy [124]. Also, Intel CPU-based LDPC decoders are able to explore SSE and

AVX SIMD-extensions to improve the data throughput while keeping latency at bay. Le

56

3.1 Decoding on Programmable Architectures

Gal et al. [165] proposed a CpC approach where several multiple codewords are decoded

simultaneously by all logical cores in the processor, using the 128- SSE and the 256-bit

AVX registers of the CPU to set the decoding throughput within 250∼560 Mbit/s, for

CMMB, 802.11n, 802.16e and DVB-S2 codes. Furthermore, their approach is able to keep

latency at bay, by keeping it under 10 ms in the majority of the cases, with 802.11n and

802.16e codes in the hundreds of µs range [165].

3.1.5 Data-parallelism

Data-parallelism expresses how the same operations can be applied to different data

elements at the same time. Generally speaking, we can define it, with regards to LDPC

decoding, as the number of codewords that are decoded simultaneously. The motivation

for exploring data-parallelism is clear since short to moderate length codes cannot utilize

all the resources that multicore processor architectures possess. Thus, to avoid wast-

ing logic resources that would otherwise be sitting idle, several codewords are loaded

and decoded simultaneously to elevate the decoding throughput. However, herein lies a

tradeoff. Not only does the decoding throughput sees diminishing returns as the hard-

ware occupancy is elevated, but decoding latency, a figure of merit of the computational

performance that should be kept low, also increases. Therefore, only a handful of data-

parallelism strategies elevate the decoding throughput to the desired high levels without

sacrificing latency beyond admissible levels for real-time operation [154,165].

Taxonomy Similar to the thread-parallelism case, a proper taxonomy is due for data-

parallelism within LDPC decoders on programmable hardware. Moreover, regarding

data-parallelism the differences between methods that solely concern one type of proces-

sor but not the other do not exist. Each of the presented methods is exploited on both

CPUs and GPUs alike. Furthermore, because data representation is tightly coupled to

the design decisions regarding data-parallelism, it is herein discussed as well.

Codeword batch CPU and GPU memory engines are optimized for certain alignments.

Memory transactions bandwidth can be increased by moving increasingly larger data

types until the memory engine saturates at the maximum permitted alignment. Instead

of storing an LLR using a float data type, a float4 type can be utilized to store 4 LLR

contiguously. In fact, data-parallelism strategies go even further and apply bit slicing

operations, usually not natively supported by C/C++ languages, unless by SIMD intrin-

sics, to pack more data elements into a vector type. Considering the negligible BER per-

formance loss when data is no longer represented using floating-point, but instead low

bitwidths fixed-point types are used (typically between 4 and 8 bits [84]), an int data type

57

3. LDPC Decoder Architectures Overview

can be employed to store 4 data elements and an int4 128 bit vector type [188] can store 16

codewords [182]. Single codeword and codeword batch storage is depicted in Figure 3.10.

0

(codeword batch in a vector)

wyx z
95 63 31

codewords {x,y,z,w}

(float4)

0127 0

(single codeword)

31

(float)

qnm

rmn

(codeword batch in a vector)

wyx z
95 63 31

codewords {x0,x1,x2,x3}

(int4)

127

310 2
a)

b)

c)

Figure 3.10: Single codeword and codeword batch on a vector. Data elements are stored a) several elements
per vector type without resorting to bit slicing operations, b) several elements per vector type but bit slicing
enables the packing of more data elements, or c) a single element is stored per data type.

When data-parallelism levels cannot be raised by increasing the number of elements

in a data type, reducing each element bitwidth would hurt the BER performance, and

going as further as defining a custom data structure will fail short of improving the band-

width once the maximum alignment permitted is surpassed [182]. At this point, increasing

the number of codeword batches must see the replication of the memory layout of the

methodology pursued for a single data type, in one of two approaches possible.

Padded codeword batches Under this approach data the basic level of data-parallelism

within a batch is replicated as whole with a memory stride equal to the number of data

type elements in memory. Thus, codeword batches become padded in memory, as shown

in Figure 3.11, with the Tanner graph indexing method applied D times to D different

base offsets to memory. This method does not impose any relevant constraint to the BpC,

fedcba

1 batch of codewords

D
 b

a
tc

h
e
s

...

offset to batch 0

offset to batch 1

Figure 3.11: Padded data-parallelism approach. The Tanner graph indexing method is replicated for D
codeword batches by padding copies of layout consecutively in memory.

TpC or CpC approaches. In fact, throughput performance can only reach acceptable

levels once data-parallelism levels are raised [127,137]. Using a TpN approach this means

58

3.1 Decoding on Programmable Architectures

the spawning of more threads to deal with the extra batches of codewords in the TpN

approach [138–140,153,186].

One of the disadvantages behind this method is the inability to address unbalanced

memory transactions that may occur when thread-parallelism does not account for threads

having different memory access patterns. More data is accessed for higher CN and VN

degrees. Thus, for irregular codes, there can be certain threads computing and moving a

higher load of data than others. This problem is addressed by Kang et al. by evening out

the accesses among threads in the same thread block [134].

Interleaved codeword batches This methods defines D codeword batches as the data-

parallelism level and interleaves data elements from different batches at basic data type

granularity in memory. The advantage drawn here is that accesses are evened out to large

...
aaa

...
bbb

...
ccc

...
ddd

D messages

...
...

D batches of codewords

... ...

Figure 3.12: Interleaved data-parallelism approach. The Tanner graph indexing method is replicated for D
codeword batches by interleaving data elements in memory.

blocks of data moved to and from contiguous locations, regardless of the Tanner graph

indexing method. This method is highly suited for SIMD computation in x86 CPUs,

with cache hit rations for short to moderate length codes reaching 90% [165]. Furthermore,

this method is also highly efficient for GPU architectures, enabling real-time decoding

throughputs and simultaneously real-time decoding latencies [154].

3.1.6 Decoding Algorithms

Among the countless decoding algorithms, by far, the most popular ones are soft-

decoding message-passing ones. In particular, LLR-based algorithms are adopted in the

majority of decoders on programmable hardware. Floating-point types provide easiness

of implementation and better overall BER performance, which is why it has been amply

defined for the decoding algorithms discussed next. Even so, fixed-point datatypes are

emulated, since they are not natively supported on CPU and GPU instructions sets, in

most cases to improve the data-parallelism of the decoders. Exception must be made to

the impl.-efficient reliability ratio-based weighted bit-flipping alg. (IRRWBF), which performs

operations in the bit-state domain. The most favored choice for a decoding algorithm

is the MSA in its uncorrected version, offset-corrected OMSA or normalized-corrected

NMSA variations. SPA decoders in the probability domain, in the pmf Fourier domain

59

3. LDPC Decoder Architectures Overview

(FFT-SPA), in the LLR domain (LSPA), and in the signed-log Fourier domain (signed-log

FFT-SPA) can be found, and also the odd Min-Max and parity likelihood ratio algorithm

(PLRA) decoder, as tabulated in Table A.1.

The decoding algorithm choice can be tightly coupled to the data type representation

chosen for a particular decoding design. Probability domain decoders use floating-point

types, as they extensively rely on multiplication, with multiplication not supported na-

tively on programmable hardware in fixed-point types. As a consequence, opportunities

to improve the decoding throughput by increasing data-parallelism will be limited by

this design decision. GPU hardware, usually aligned for 128 bit data types can pack

only 4 floating-point words, while they can pack 16 fixed-point words with a bitwidth of

8 bits [106], and a similar trade-off is expected on CPUs, though they usually implement

more sophisticated integer arithmetic than GPUs. As a consequence, all the SPA decoders

explore single-precision floating-point (32 bits), though some MSA-based decoders also

do so, the majority of them rely on 6∼8 bit fixed-point data representations. This way,

parallelism can be raised by increasing the number of words inside a data type defined

by the programming model and language.

3.1.7 Decoding Schedules

As discussed in the previous chapter, the decoding of LDPC codes can be scheduled in

two approaches, mainly. First approach is the so-called flooding or TPMP schedule. In this

type of scheduling, the exposed parallelism lies at the complete dimension of the LDPC

code, since all nodes can be schedule for processing one type of node at a time. Thus,

all CNs can be updated at the same time, and all VNs can also be updated at the same

time, provided that the CN and the VN processing is not concurrent. As a consequence,

when developing a parallel programmable decoder, a memory fencing mechanism which

prevents the scheduling for execution of nodes that are consuming messages from nodes

which have not still updated their produced messages is required. Otherwise write-after-

reads (WARs) hazards unfold. Notwithstanding, this is not particularly challenging to

guarantee on either CPU, GPU or other accelerator devices, so as long as CN processing

and VN process is defined by different functions or kernels. This way, the function or

kernel call implicitly sets a synchronization routine preventing any WAR hazard. LDPC

decoders using this decoding schedule (c.f. Table A.1) are among those reaching the

highest decoding throughputs, since the TPMP schedule is usually accompanied by a

heavily multi-threaded approach, usually TpN.

The TDMP schedule seen in the LDPC decoders that implement it are CN-based,

i.e., CNs are scheduled for execution sequentially and after each CN is updated, their

adjacent VNs (N(m)) are updated on-the-fly as well [195]. As this decoding schedule is

60

3.2 Decoding on Reconfigurable Architectures

applied to LDPC codes designed for the TDMP, such as QC-LDPC codes, this allows the

execution of z f CNs and their adjacent VNs simultaneously as it does not unfold any

WAR hazard. The potential for high throughputs for this decoding schedule as been

shown for both CUDA-enabled GPUs [106,139,140], the Cell B.E. accelerator [107] and a con-

ventional Intel x86 CPU [165]—decoding throughputs range from 140 to 900 Mbit/s. Other

approaches [133,135,136] fail short of such high throughputs, but are still in the same range

as those obtained with the TPMP schedule. An interesting result is presented for a non-

binary LDPC code case, defined over GF(24). The authors [147] study both a sequential and

a TPMP schedule, based on the BpN approach. For equivalent BER levels achieved, the

authors report lower throughputs (3∼8.5 Mbit/s) for the TPMP than for the sequential

approach (5∼12.5) Mbit/s.

The TPMP, or flooding schedule, is the most widely implemented decoding sched-

ule. However, a certain misconception may lie in the heart of this design preference. This

type of decoding algorithm is the one permitting highest level of simultaneous schedul-

ing of operations. All CNs can be scheduled for execution at the same time, and the same

holds for the VNs, provided the execution of CNs and VNs does not overlap in time.

On the contrary the TDMP, despited converging faster and reducing the number fo re-

quired decoding iterations to reach the same BER by roughly half, can only schedule a

limited number of operations. If the LDPC code design has not been constructed with

this scheduling in mind, there can be as little as no opportunity to schedule more than a

single node at a time, though in practice this does not happen as the widely standardized

quasi-cyclic codes are designed with this in mind. However, the TPMP schedule implies

a data consumption/production pattern for each individual node where each message is

accessed once per decoding iteration and per processing phase—for instance, a qnm mes-

sage is produced by VNn and is consumed by CNm. This type of access pattern benefits

little from a cache system. On the other hand, under the TDMP schedule, where data

locality can be exploited temporally for short to moderate length codes [165]. For earlier

GPU generations this advantage meant little, as there was no caching system, on newer

models, L1 caches can exploit this feature of the TDMP schedule. In fact, among the

surveyed LDPC decoders, the highest decoding throughputs found for CPU and GPU

architecture is the TDMP [139,165].

3.2 Decoding on Reconfigurable Architectures

Efforts to survey the LDPC decoders developed for reconfigurable computing [56] would

span out of scope of the work carried out in this Thesis. In particular, we refrain from

dwelling into reconfigurable LDPC decoders that are not developed using HLS models,

61

3. LDPC Decoder Architectures Overview

with, by far and large, the great majority of decoders found in the literature for reconfig-

urable computing developed using traditional RTL approaches, and as a consequence, a

limited set of decoders fits in this requirement [196–199].

Tanner graph

specification

Solution X

VN
U

CN
U

CN
U

VN
U

inter.

network

resource

sharing
decoding

algorithm

iterative

decomposition
...

Tanner graph

mapping

decoding

schedule

memory

blocks

LDPC Code Specification

Figure 3.13: Tanner graph isomorphic mapping under a generalized reconfigurable computing approach.

3.2.1 Programming Models

OpenCL has recently become supported by the major FPGA manufacturers [177,200],

the OpenCL programming model used for the development of an LDPC decoder [186] is

the Silicon-to-OpenCL academic tool [201]. The tool takes in OpenCL kernel C descrip-

tions, though not fully compliant to the OpenCL specification [171], and generates a cus-

tom wide-pipeline accelerator.

Moreover, the Vivado HLS [179] defines a comprehensive support for the C/C++ pro-

gramming languages that get mapped onto circuits on the FPGA board based on a num-

ber of HLS directives that instruct how the tool should perform optimizations to different

traits of the language. It supports optimizations to 1) memory blocks, 2) arithmetic func-

tions, 3) dataflow directives for loops and functions, through pipeline or unrolling and

4) instantiation of certain IP cores in the C/C++ language for I/O interaction with other

logic blocks [200].

3.2.2 Parallelism

Notwithstanding the fact that the OpenCL programming model defines the concept

of work-items, a similar concept to execution threads, in the reconfigurable fabric, the

62

3.3 Summary

generated accelerator defines no such physical nor logical element that is an execution

thread. In fact, computation will be defined by the circuits configuration, thus while data-

parallelism concepts remain perfectly valid, there is not thread-parallelism equivalent

taxonomy to the reconfigurable LDPC decoders case.

Nevertheless, we are able to define the OpenCL LDPC decoder on FPGA, in its in-

ception a TpN decoder, as a wide-pipeline decoder [186], and the Vivado HLS decoder as

a wid-epipeline accelerator as well, though, this approach defined the TPMP node pro-

cessing phases in computation loops [148]. As a consequence, we prefer the designation

of loop-annotated decoder since it is through the optimization directives written as an-

notations (directives) to loops where computation occurs that the hardware generation is

guided. Both approaches see modest throughputs of dozens of Mbit/s achieved for short

to moderate length codes. The greatest advantage with this approach is the low latency,

ranging < 3 ms in the OpenCL decoder case and < 500 µs in the Vivado HLS case.

3.3 Summary

LDPC decoders on programmable hardware can mostly be applied to simulation pur-

poses, due to the methodology pursued in most of the literature be prone to increasing

the decoding latency. Notable exceptions to this tradeoff, are the works of Le Gal [165]

and Wang [156], which effectively keep latencies at low and real-time compliant levels.

Notwithstanding, surveying the decoders in the literature compiled in Table A.1, we ob-

serve that the better suited strategies for LDPC decoding are based on LLR-based decod-

ing algorithms, mostly defining fixed-point data representation. This allows for the pack-

ing of multiple messages with small bitwidths, usually in the 8 range, to be packed onto

wider words. Furthermore, data-parallelism levels are usually pushed beyond the wide

word, or vector datatype, granularity, often at the expense of spawning more threads in

the decoding underlying architecture. Task-parallelism employed in the literature is ex-

plored at all conceived levels, from coarse (CpC) to fine-granularity (TpE), although the

strategies attaining the highest performance are mostly fine-grained ones. In particular,

the TpN task-parallelism granularity has scored the most prevalent method to expose

parallelism for computation.

Regarding LDPC decoders in reconfigurable hardware, the surveyed LDPC decoders

on HLS programming models show that this field provides interesting prospects, but re-

mains a larger untapped field. In particular, it remains unclear how to best direct an

HLS compiler to generate efficient hardware [202]. The incipient maturity of the tools

used in the LDPC decoders [148,186] already attain competitive decoding throughput and

latency, as observed during the inception of LDPC decoding on programmable multi-

63

3. LDPC Decoder Architectures Overview

core architectures. Furthermore, other programming models such as the Altera OpenCL,

more recent versions of the Vivado infrastructure and the Maxeler dataflow decoders [178]

promise much lower NRE efforts to target LDPC decoders with high throughputs and

higher energy efficiency than programmable computer architectures [175].

64

4
Programmable LDPC Decoders

Contents
4.1 Parallel Programming Models and Platforms 66

4.1.1 Parallel Computing Principles . 67
4.1.2 General-purpose x86 multicore CPU 70
4.1.3 General-purpose Computing on CUDA and OpenCL GPUs . . . 72
4.1.4 Distributed Computing on multicore Fermi Dual-GPU Clusters . 76
4.1.5 CUDA Programming Model . 78
4.1.6 OpenCL Programming Model . 79
4.1.7 MPI Programming Model . 81

4.2 Programmed LDPC Decoder Accelerators 82
4.3 Single-GPU Decoders . 83

4.3.1 Data-parallelism . 84
4.3.2 Thread-parallelism . 87
4.3.3 Optimized Tanner Graph Indexing 88
4.3.4 Binary LDPC Decoding . 93
4.3.5 Non-binary LDPC Decoding . 103

4.4 GPU-cluster Decoders . 112
4.4.1 Fast BER Monte Carlo Simulation 112
4.4.2 GPU Cluster Execution . 116

4.5 Hybrid CPU/GPU Decoders . 122
4.5.1 Potential of the CPU Co-accelerator 123
4.5.2 Experimental Results . 123
4.5.3 Energy efficiency of the CPU/GPU decoder 126

4.6 Summary . 128

65

4. Programmable LDPC Decoders

In the previous chapters we analyzed the low-density parity-check (LDPC) decoding

message-passing algorithms most suitable for the LDPC decoding and surveyed the LDPC

decoding solutions found in the literature. In this chapter, we will discuss methodologies

for the realization of LDPC decoders on programmable hardware. To this end, we ex-

ploit the capabilities of multicore central processing unit (CPU) and graphics processing unit

(GPU) processors, provided by data parallel programming models which help to keep

the devised strategies under low non-recurring engineering (NRE) development costs.

4.1 Parallel Programming Models and Platforms

One of the reasons behind the slow adoption of LDPC codes had been the too low

computation power, at the time of their inception, to realize LDPC decoders on comput-

ing fabrics that could tackle the volume of processing required. It is, thus, no wonder,

that originally, programmable LDPC decoders have not been considered as viable, even

at the time when LDPC codes were rediscovered [203], since general-purpose processors

could not deliver more than a few Kbit/s [119], not nearly enough for the data rates then

required. Notwithstanding, as the cramming of more components of a chip continued

to follow the trend set by Moore’s law, a number of key factors lead to the forgoing

of the single-core processor in favor of multicore ones. For the one, frequency scaling

lead to unbearable power and thermal dissipation levels. Furthermore, instruction level

parallelism (ILP) and complex cache systems drove the design complexity upwards for

diminishing returns that compounded by the power and memory bandwidth walls dic-

tated the end of the single-core processor [204,205]. With it, came the multicore family of

processors, attaining more computational power and increased design flexibility—high

performance computing (HPC)-oriented processors are designed differently than embed-

ded multicore devices—at the cost of increased pressure on the compiler and software

development. Exploiting efficiently all the resources provided by multicore hardware

is a substantially more complex problem than previously had been attained for single-

core processors. multicore technology requires the exploitation of parallelism in order to

achieve high performance.

As illustrated in Table 4.1, multicore processors have evolved into systems with dozens

to thousands of cores. In addition to supporting multithreading, as a mean to hide mem-

ory latency, they also provide large single-instruction multiple-data (SIMD) units for vector

processing. These units have grown from its vectorized integer 128-bit registers available

only through its assembly instructions (MMX), to single- and double-precision floating-

point 128-, 256- and 512-bit registers available for manipulation through streaming SIMD

extensions (SSE) and advanced vector extensions (AVX) intrinsics. Also, compilers automat-

66

4.1 Parallel Programming Models and Platforms

Table 4.1: Overview of the performance of recent processors.

Processor Specificationsa) Performanceb) Mem. Band. Purpose Year

C
PU

s

Pentium 4E 1 core @ 2.4GHz 630 MFLOPs N/A PC 2002
Dual Xeon E5 2687v3 20 cores @ 3.1GHz AVX2 788 GFLOPs 68 GB/s Server 2014

Xeon Phi 3120A 57 cores @ 1.1GHz 512-bit SIMD 710 GFLOPs 240 GB/s HPC 2013
Core i7 5930K 6 cores @ 3.5GHz AVX2 289 GFLOPS 68 GB/s PC 2014

G
PU

s

Nvidia Tesla M2050 448 CUDA cores @ 1.15GHz 350 GFLOPs 144 GB/s HPC 2009
Tesla K20 2496 CUDA cores @ 806MHz 1125 GFLOPs 208 GB/s HPC 2012

Jetson TK1 192 CUDA/4 ARM cores @ 950/2300MHz 720 MFLOPs N/A Mobile 2014
Radeon R9 295X2 2×2816 cores @ 1.01GHz 11264 GFLOPs 640 GB/s Gaming 2014

a)Specifications can be procured on the manufacturers’ websites.
b)The performance is based on the Linpack benchmark and was accessed in benchmark-specialty websites.

ically try to take advantage of data parallel operations and pack them onto vectorized

units when available, but new parallel programming models have truly unleashed the

potential behind these computing architectures, and in particular, the GPU architecture.

In just over a decade, the performance of the Pentium 4E has been superseded by to-

day’s equivalent i7 5930K with a staggering leap from hundreds of MFLOPs performance

to hundreds of GFLOPs. Likewise, server and HPC-oriented CPUs such as the tabulated

Xeon E5 and the Xeon Phi have reached within the performance levels of late 2009 GPU

architectures. The latter, currently delivering ballpark levels of TFLOPs for both HPC-

and gaming-oriented purposes. Furthermore, the Jetson TK1 architecture is playing the

level of the Pentium 4E, for much lower power dissipation levels.

4.1.1 Parallel Computing Principles

The concept behind parallelism is not limited to computing solely, it is also part of our

daily routines, and simply deals with how to manage the execution of tasks concurrently.

Two fundamental types of parallelism can be defined [206]. 1) When multiple tasks apply

at the same time, different operations to the same or to distinct data elements, we speak of

task-parallelism, e.g., when a task is broken into multiple sub-tasks that can be performed

concurrently. 2) When the same operations are applied to distinct sets of data, we refer

to data-parallelism, e.g., the batch execution of K FFTs can be divided onto K parallel

sub-tasks concurrently executed.

It is critical that task dependency be respected to ensure coherence of computation

of the tasks. To this end, a task divided onto multiple sub-tasks and a data-dependency

graph (DDG) can be drawn, as illustrated in Figure 4.1. Therein, three distinct cases are

portrayed. In Figure 4.1a) 1, 2 and 3 are independent but functionally parallel, as well

as 5 and 6, but they are data-parallel; in Figure 4.1b) tasks 7, 8 and 9 are dependent, and

no dependencies of previous data elements exist, making them suitable for data-parallel

pipelined execution; and in Figure 4.1c) tasks 10 and 11 are strictly dependent, with task

67

4. Programmable LDPC Decoders

CBA

D

E

F

G

H

I

J

a) Types of task-parallelism b) Pipelinable tasks c) Strictly dependent tasks

E

1 2 3

4

5 6

7

8

9

10

11

Data I/O X

i
Task i w/

function X

Figure 4.1: Data-dependency graphs.

10 depending for the processing of a new element on task 11. Based on the dependency

analysis of the DDG, and on the ordering and function of the tasks, another critical aspect

to efficient parallel computing is the frequency of synchronization mechanisms and com-

munication between the different tasks. The communication pattern can define a task

classification method into fine-grained, coarse-grained and embarrassingly-parallel. The

latter represent the easier applications to parallelize since the workload can be divided

onto multiple tasks without the need to modify the algorithmic steering. On the other

hand, the true potential of parallel computing architectures lies in fined-grained algo-

rithmic expressions, albeit exposure to synchronization and communication overheads

arise with it, it is the most suitable approach to extract high efficiency out of modern

parallel computing architectures [207].

While CPUs continue to scale their performance with the purpose of continuing to

accelerate the performance of general-purpose systems, to some extent led by the per-

sonal computer field, and in the most recent years by the mobile industry field, the target

has remained the same. With each new generation, the existing software infrastructure

is expected to improve its performance. However, core performance is not significantly

improved from one generation to the other with multicore technology. As such, substan-

tial code refactoring and compiler reworking is expected to be made if one is to exploit

efficiently all the cores in the processor. GPUs on the other hand, have evolved driven

solely by the acceleration the performance of graphics-oriented tasks. Built with am-

ple memory bandwidth and given the parallel features of the great extension of graphics

primitives and algorithms, they evolved into highly parallel architectures, capable of pro-

cessing thousands of vertexes and pixels simultaneously. As researchers began to realize

the potential behind GPU acceleration, they soon realized that in order to tame it, more

advanced parallel programming models were required, if general-purpose GPU (GPGPU)

was to see the light of day.

68

4.1 Parallel Programming Models and Platforms

Prior to the unification of the graphics pipeline onto a single scalar core [208,209], re-

searchers exploited GPU programming through streaming models based on DirectX,

OpenGL and Cg [187]. Certain authors introduced compiler extensions to the C language

so as to better support GPU programming (Brook for GPUs) [210]. The downside of these

approaches is the extensive control code required to handle the GPU device as an accel-

erator for computation. To ameliorate this situation, providing better GPU support by

supporting a broadly used programming language with an appropriate application pro-

gramming interface (API) to handle GPU devices and to describe GPU kernels that are able

to efficiently exploit the raw performance of GPUs, data parallel programming models

such as Nvidia’s Compute Unified Device Architecture (CUDA) [170] and AMD’s close to the

metal (CTM) have been introduced. The latter has since been deprecated in favor of the

Open Computing Language (OpenCL) programming model, that despite its cross-platform

capabilities, shares many affinities to CUDA constructs and concepts at its inception,

as it was mainly driven by GPU manufacturers on board with CPU manufacturers [211].

Since, the OpenCL programming model has seen support growing towards mobile ar-

chitectures and field-programmable gate arrays (FPGAs) alike. After the dawn of CUDA,

and of the coming of age of the OpenCL [211], GPGPU acceleration through C/C++-based

models gained traction, while at the same time, showing that under compilers suitably

targeted for general-purpose programming languages, GPUs could unleash hundreds if

not thousands of GFLOPs (c.f. Table 4.1).

Moreover, besides the CUDA and the OpenCL programming models, other parallel

models exist, but for different purposes or targets. On multicore devices, parallelism,

and in particular, multithreading can be manipulated through 1) POSIX pthreads at a

very low level, explicitly manipulating mutexes and semaphores to guarantee coherent

execution of threads [212], 2) Intel thread building blocks (TBB) allowing a higher level ex-

pression of parallel kernels through API calls [213] or 3) Open Multi-Processing (OpenMP)

permitting a directive-based approach to exploiting parallelism with shared memory

CPUs [214]. Under similar principles to that of OpenMP, Open Accelerators (OpenACC)

provides a directive-based approach for GPU computing forgoing any API requirement.

Also, message-passing interface (MPI) permits exploring multithreaded execution of a par-

allel kernel by spawning multiple processes on a set of computation resources [215]. While

not particularly useful under single-processor machines, MPI, under one of its many

implementations (MPICH, CrayMPI or OpenMPI) is an underlying backbone to compu-

tation within a distributed environment [172]. Furthermore, the Khronos Group has not

remained with their hands tied to the OpenCL standard. Since its dawn, we have seen

the proposal of Standard Portable Intermediate Representation (SPIR) aiming at a standard-

ized language for the intermediate representation of parallel kernels and graphics [216],

69

4. Programmable LDPC Decoders

and also of SYCL, to go hand in hand with SPIR, providing a C++ interface to parallel

programming with the intent of object containing both host and device code [217]. Fi-

nally, Web computing language (WebCL) has also been put forward as a model to explore

parallel computing within the HTML5 capabilities of modern Internet browsers through

CPU/GPU direct access via Javascript [218].

Clearly, a challenge must be overcome a-priori any realization of efficient LDPC de-

coders. With the advantage of hindsight, and forgoing the fact that some of these models

have been launched during the execution of the work within this Thesis, we must make

an informed decision regarding which models are most suitable for exploring efficient

LDPC decoders on programmable hardware. Also, a remark must be made regarding

the time of launch of a new programming model or specification, its support by a manu-

facturer, when models are not developed by the programmable hardware manufacturers,

and the time to market of the products supporting it. Notwithstanding how promising

the capabilities of a new programming model may be, considering that programmable

architectures such as CPUs and GPUs have been around for quite some time, should

be targeted using sound methods provided by programming models with broad sup-

port and that have proven their worth into reaching high efficiency of computation [209].

Hence, CUDA stands out for Nvidia GPUs in particular, with OpenCL just as worthy al-

lowing also the targeting of AMD GPU devices, and also CPUs devices. Furthermore, to

allow computation to be performed in a distributed computing system environment, we

rely on the MPI standard. We discuss each architecture in conjunction with the program-

ming models explored next. Naturally, with Moore’s law incessant pace, and weighing

constraints such as the execution time of this Thesis and the hardware availability, certain

discussed architectures have since been superseded by newer generations.

4.1.2 General-purpose x86 multicore CPU

The current families of x86 multicore systems have begun to incorporate a graphics

processor in its die in order to replace entry-level discrete GPUs. The number of CPU

cores has been increasing from dual- to 10-core designs (from a mobile to a server envi-

ronment), with HPC-oriented server on a chip devices such as the Xeon Phi containing

up to 50 cores in a distributed system [193]. Additionally, several memory caching mecha-

nisms can be found to address the widening gap between memory bandwidth and com-

putational power [166]. In particular, at a certain level of the cache mechanism data can

be shared among all cores and also between the CPU and the GPU devices. The Intel

Ivy Bridge architecture illustrated in Figure 4.2 took this principle to a new levelb). As

a)Abbreviations in the graphics pipeline stand for: command streamer (CS); vertex fetcher (VF); vertex shader
(VS); hull shader (HS); domain shader (DS); geometry shader (GS); stream-out (SOL) [219].

70

4.1 Parallel Programming Models and Platforms

Shared L3 Cache

Core

Tex

CoreCoreCore

Processor Graphics

Mem.

Controller

(PCIe,

DMI)

Memory Controller I/O

VFE

HS

Tess.

VF

SOL

CS

VS

T
h

re
a

d
 D

is
p

a
tc

h

EUs

EUs

EUs

EUs

...L1 Tex
Media Sampler

3D Sampler

Data Port

Rasterizer/

Depth
L3

Pixel Ops

Media

Pixel Ops

Render

Depth

GS

Clip

DS

DisplayBlitterCODEC

R
in

g
 b

u
s
/L

L
C

/M
e

m
o

ry

a)

b)

Figure 4.2: Ivy bridge CPU/GPU hybrid architecture: a) hybrid CPU/GPU system level diagram showing
the shared access of the L3 cache by the CPU and the GPU; b) detailed GPU pipeline composed of multiple
graphics stagesa) which trigger the thread dispatch to enqueue every stream of computation on the EUs.

71

4. Programmable LDPC Decoders

observed, both CPU and GPU can access data through the last level cache (LLC) (L3 in this

case) allowing for joint execution of algorithms under appropriate programming models

that define and allow synchronization events between both devices, to allow the expres-

sion of the types of parallelism overviewed by the DDGs in Figure 4.1. While pthreads and

OpenMP can take advantage of the shared-memory architecture, they can only do so for

multithreaded execution performed by the CPU cores. General-purpose computation on

both devices, while not restricted to the use of OpenCL, since a separate programming

model could be employed for the computation on the GPU chip, maintains a unified

model to express the computation applied by the LDPC decoding kernels. Consequently,

it is the programming model of choice to explore parallelism using both devices on the

CPU/GPU hybrid die [219]. The literature overview in Chapter 3 reveals that the major-

ity of LDPC decoders considers CPUs for data management housekeeping tasks, such

as handling GPUs or other accelerators where computation occurs, or uses them as ac-

celerators, fundamentally, through the OpenMP programming model. No references are

made to cooperative execution using a CPU/GPU hybrid device.

4.1.3 General-purpose Computing on CUDA and OpenCL GPUs

The unifying of the graphics pipeline such that the pixel, vertex and geometry shaders

share common resources in the GPU engine in combination with the introduction of an

instruction set architecture (ISA) targeted also at general-purpose computation has made

GPGPU truly possible [209]. In particular, we propose a methodology set in this chapter

that is based on CUDA-enabled GPUs of the Fermi architecture generationa) as illustrated

in Figure 4.3. This GPU architecture is composed of up to 16 stream multiprocessors (SMs)

each with 32 scalar processorss (SPs), also designated as CUDA cores [188]. Each SM has

access to a register space composed of 32768 registers, to a shared memory space of 16 or

48 KB, depending on the L1 cache configuration of its polymorphic engine, to a 64 KB

L1-cached read-only memory, to the L2-cached texture memory space, and finally, to the

global memory space, typically ranging in the hundreds of MB to a few GBs. The detailed

composition of each SM can be seen in Figure 4.4a) and its CUDA core decomposition in

Figure 4.4b). Each of these SMs are equipped with their own warp dispatch units which

schedule threads for execution on the GPU. Essentially, data-parallel processing is ex-

ploited by the execution of multiple concurrent threads throughout the available CUDA

cores. The necessary control mechanisms for the correct and coherent execution of paral-

lel kernels are available by the different settings allowed for the execution grid, i.e., the

b)Since the introduction of the Ivy Bridge, Intel has released a tock (microarchitecture) upgrade to the
Haswell and a tick (technology node) to the Broadwell family [220].

a)Since Fermi, Nvidia has introduced the Kepler family (microarchitecture GK110) with its improved SMx,
and also the Maxwell family (microarchitecture GM204) with the updated SMM.

72

4.1 Parallel Programming Models and Platforms

GPU

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

Raster Engine

Raster Engine

Raster Engine

Raster Engine

Unified L2 cache

V
D

R
A

M
V

D
R

A
M

V
D

R
A

M
V

D
R

A
M

V
D

R
A

M
H

o
s

t
In

te
rf

a
c

e
G

ig
a

T
h

re
a

d
V

D
R

A
M

Figure 4.3: Fermi GPU overview

set of threads running a kernel, and through appropriate synchronization and fencing

routines. The former, is divided onto multiple blocks of threads, each block executing

independently of one another, thus allowing the scalability of kernels throughput the

successive generations of CUDA GPUs—the GPU dispatches blocks of threads for exe-

cution, in just-in-time fashion, for the available SM [170]. The Fermi architecture is limited

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

Core Core Core Core Core Core

LD/ST

LD/ST
SFU

LD/ST

LD/ST
SFU

LD/ST

LD/ST
SFU

LD/ST

LD/ST
SFU

LD/ST

LD/ST
SFU

LD/ST

LD/ST
SFU

LD/ST

LD/ST
SFU

LD/ST

LD/ST
SFU

Register File (32768 x 32-bit)

64 KB Shared Memory / L1 cache

Tex TexTexTexTexTexTexTex

Uniform Cache

Interconnect Network

Texture Cache

Dispatch Unit Dispatch UnitDispatch UnitDispatch Unit

Warp Scheduler Warp Scheduler

Instruction Cache

(a) Fermi Stream Multiprocessor

CUDA Core

Result Queue

Operand Collector

Dispatch Port Dispatch Port

FP Unit FP Unit

(b) CUDA core (Scalar Processor)

Figure 4.4: SIMT GPU SM and CUDA core in detail: a) Fermi SM and b) CUDA core or SP.

to a maximum of (1024, 1024, 64) threads per block across three dimensions (x, y, z), lim-

its that are dynamically adjusted to the logic resources consumed by each thread in a

certain kernel description [188]. Furthermore, the engine is restricted to spawning a max-

73

4. Programmable LDPC Decoders

imum number of (216, 216, 216) threads per execution grid. The concept of the execution

grid is standing above the physical scheduling of execution threads which is performed

on a warp basis. Inside the GPU SM, threads are not executed loose from one another, nor

are they subject to packing of data for the execution of SIMD instructions. Instead, they

are subject to single-instruction multiple-thread (SIMT) execution whereupon a group of 32

threads are grouped in a warp. The warp is scheduled for parallel execution, with threads

inside it completely synchronized. The downside to this approach is that divergent dat-

apaths inside the warp are unraveled by the serial execution of every divergent branch in

the datapath [188].

Furthermore, as illustrated in Figure 4.3, the CUDA-enable GPU device communi-

cates with the host through a PCIe interface. The host is entitled to access the GPU global

memory either through memory copies or by direct memory access (DMA) transactions if

permitted. It controls the execution of kernels and spins upon their completion in a syn-

chronous manner, or proceeds its execution flow if asynchronous calls are made. Thus,

the global memory (VDRAM) is the memory space to which and from the host writes

data, also to the read-only constant memory, and it requires meeting certain constraints

for maximum bandwidth delivered. This leads to the introduction of the coalesced mem-

ory access concept. Since several threads are being served simultaneously by the GPU

memory engine, when all the required data is packed onto the minimum number of

transactions, the memory request is said to be coalesced. To put it simply, consecutive

or strided accesses that are properly aligned allow for coalescing of memory requests,

an important challenge to be overcome, since non-coalesced accesses typically incur in

poor bandwidth due to the extra memory transactions needed to move the required data

and multiple requests had several times the access latency (400∼600 clock cycles). Since

general-purpose algorithms tend to have more complex memory access patterns than

graphics-oriented algorithms, some of which may experience dynamic access patterns,

the Fermi architecture is fitted with an L2 cache to improve the eligibility of memory ac-

cess patterns for coalesced transaction [188]. It is clear that the aforementioned hardware

details must be met by appropriate CUDA constructs that extend the C/C++ program-

ming language or by appropriate functions that compose the CUDA Runtime API [188].

While the majority of the surveyed LDPC decoders in Chapter 3 is based on CUDA de-

vices, the raw performance of AMD GPUs under OpenCL is similar to that of Nvidia

cards, and these devices are discussed next.

The AMD GPU architecture illustrated in Figure 4.5 shows the Cypress microarchitec-

ture of the Evergreen familya). In a way, the Cypress and the Fermi architecture share sim-

ilar ground for parallel processing, although, while the Nvidia is based on scalar proces-

a)The Evergreen family has been followed by the Graphics Core Next during the execution of the Thesis.

74

4.1 Parallel Programming Models and Platforms

T
e

x
tu

re
 U

n
it
s

T
e

x
tu

re
 U

n
it
s

L
o

c
a

l
D

a
ta

 S
h

a
re

s

D
a

ta
 R

e
q

u
e

s
t

B
u

s

Global
Data

Share

Crossbar

Memory Controller Memory ControllerMemory ControllerMemory Controller

S
IM

D
 E

N
G

IN
E

S

S
IM

D
 E

N
G

IN
E

S

L
o

c
a

l
D

a
ta

 S
h

a
re

s

L
1

 T
e

x
tu

re
 C

a
c

h
e

s

L
1

 T
e

x
tu

re
 C

a
c

h
e

s

L2 Cache L2 CacheL2 CacheL2 Cache

Constant CacheInstruction Cache

Ultra-Threaded Dispatch Processor

Constant CacheInstruction Cache

Ultra-Threaded Dispatch Processor

Command Processor

Graphics Engine

Shader Export

Figure 4.5: SIMD GPU architecture in detail: Cypress SIMD architecture with 4-way vectorized units.

sors, and thus implements a SIMT architecture, the Cypress architecture is SIMD-based.

Instead of CUDA cores, very long instruction word (VLIW) processors are available to per-

form computation in a vectorized fashion. Each n-VLIW processors offers n slots for up

to n data elements be issued with the same instruction concurrently (SIMD). Clearly,

the VLIW is capable of providing more computational power than its scalar counterpart

CUDA core. However, it will only do so if packing ratios close to 100% are achieved.

In essence, instead of just leading to serialization within the warp execution, divergence,

and also data dependencies, can lead to less than n slots filled at any given time. For an

average m instructions packed for a parallel kernel, the equivalent packing ratio is then

m/n, which reaches its sweet spot for optimal GPU efficiency nearing the 90% [221]. Each

thread processor (TP) is a 5-way VLIW, providing 4 arithmetic and logic units (ALUs) and

a single special function unit for more advanced operations. As a consequence, a 100%

packing ratio can only be met if 5 data-independent instructions are issued at every avail-

able cycle. The depicted Cypress GPU is composed of up to 20 SIMD computation engines,

each composed of 16 TPs and its own 32 KB shared memory and register space (omit-

ting from the system level representation). Also omitted is the PCIe and global memory

space, although they are present in a similar way as they are under the Fermi architec-

ture. The main difference being that instead of DDR3, the Cypress family comes with

DDR5 VDRAM for improved memory bandwidth [221]. Similar to the CPU/GPU hybrid

75

4. Programmable LDPC Decoders

processor case, the Cypress GPUs can target general-purpose computation through the

OpenCL programming model.

4.1.4 Distributed Computing on multicore Fermi Dual-GPU Clusters

The rise of GPUs has also produced notable changes to the HPC market, not only

did it inspire the development of architectures on the race to exascale computing [193], but

they have also seen wide adoption across HPC cluster systems. As written in Table 4.2,

Table 4.2: Top500 [172] and Green500 [222] first tier systems (June 2015).

Rank System Configuration No. Cores
RPeaka)

(TFLOPs)
Power
(KW)

Power Eff.
(MFLOPs/W)

To
p5

00 1 Tianhe-2 CPU: Xeon Phi 3,120,000 55,902.4 18,808
N/A2 Titan CPU: Opteron, GPU: K20x 560,640 27,115.5 8,209

3 Sequoia CPU: Power BQC 1,572,864 20,132.7 7,890

G
re

en
50

0 1 Shoubou
CPU: Xeon E5

787,968 843.0 50 7,031.58

2 Suiren Blue 263,168 384.8 28 6,842.31

4 ASUS ESC4000 CPU: Xeon E5, GPU: K80 10,976 593.6 57 5,271.81

a) Peak performance using the Linpack benchmark [223].

GPUs-based cluster systems not only lead to extremely high-performances, but also to

promising energy efficiencies, as attested both by the Titan and the ASUS ESC4000 sys-

tems [172,222].

Cluster systems are composed of multiple nodes, the majority of which devoted to

computation, designated as compute nodes, and control nodes that control, administrate

and perform data management housekeeping tasks. While each node can work indepen-

dently of others as it contains all the necessary hardware and runs an operating system

(OS), it is common that a single master node is used to submit execution jobs to the clus-

ter system. In essence, execution is then triggered by the master through an appropriate

interconnection network. Due to the HPC requirements, interconnection networks, e.g.

InfiniBand (IB) [224] or Gemini [225], provide low-latency, high-speed optical connections

to physically connect all nodes in the cluster. Then at the logical level an appropriate

communication standard must be employed that allows the master node to access the

compute resources at its disposal.

The MPI [215] standard defines a set of functions and directives for Fortran and C/C++

programming languages, that are available through appropriate MPI API calls in its mul-

tiple open-source and commercial implementations, e.g., OpenMPI, MPICH, CrayMPI.

Not only does it provide the ability to run processes across any distributed compute

resources that are connected, but it also provides synchronization and fencing instruc-

76

4.1 Parallel Programming Models and Platforms

GPU 0 GPU 1CPU

GPU 0 GPU 1CPU

Compute node 0

Compute node 1

IB Network

...

GPU 0 GPU 1CPU

GPU 0 GPU 1CPU

Compute node 14

Compute node 15

CPU

SDD

OS

CUDA

OpenCL

Master node

Figure 4.6: Dual-GPU cluster topology: a master node manages the 16 compute nodes, each composed of a
single-CPU dual-GPU configuration. All disk I/O emanates from the master node through and the nodes
are connected via an IB QDR network.

tions, in addition to common reduction, scatter and gather routines, commonly used in

a distributed computing environment [215]. Since MPI does not define how computation

is performed, it only provides a set of functions that allow advanced managing of dis-

tributed compute resources, the parallel kernels computation is expressed via other APIs,

or even programming languages, called from a Fortran or C/C++ program. That said,

considering an algorithm exposure to parallel computation many combinations of how

parallelism is expressed at the compute node level and at the cluster level can be defined.

For certain cases, a bottom-up approach is preferred, the parallel kernels are optimized

for execution at the compute nodes and then data-parallelism is scaled by using multiple

nodes in the cluster system.

The work performed using distributed computing systems in this Thesis was targeted

at dual-GPU (Fermi) cluster systems, using a combined approach of CUDA for express-

ing the computation at the GPU-level, then computation was defined in the compute

node for both GPUs, and finally wrapped in suitable MPI calls to perform computation

across the cluster nodes. The topology of this system is illustrated in Figure 4.6. It com-

prises a master node that performs all management housekeeping tasks. The compute

nodes are headless, thus the running OS is loaded from the master node. A considerable

data I/O is generated by the parallel execution of processes due to the data lying at the

master. Each compute node is equipped with a dual-Fermi GPU in addition to its own

CPU.

77

4. Programmable LDPC Decoders

4.1.5 CUDA Programming Model

Launched by Nvidia with the unification of the vertex, pixel and geometry shader

onto common logic resources [170], CUDA permits the developer to describe parallel ker-

nels that exploit fined-grained expression of algorithms using the GPU multithreaded

execution. As previously said, many of the physical spaces and logic resources in the

GPU engine see an equivalent logic element defined as an extension to the C/C++ pro-

gramming language, either via appropriate qualifiers or added syntax, or through the

CUDA Runtime API [188]. A kernel is defined using an extended version of C/C++ pro-

gramming language, with limited support on the latter, using the appropriate qualifiers

and is compiled offline, i.e., the CUDA executable will bundle the kernel binary with it.

CUDA defines three key abstractions exposed to the programmer for GPGPU computing:

1) a hierarchy of thread groups in the execution grid, 2) a hierarchy of shared memories,

and 3) mechanisms for synchronization.

Thread hierarchy In order to express parallelism, computation in a kernel is applied a

number of times by a certain number of CUDA threads, that form a block of threads with

a dimension defined by the programmer and a given number of blocks forms the execu-

tion grid, again, defined by the programmer. Hence, the block defines a coarse expression

of parallelism, defining a fined-grained expression within. Each block is scheduled for

execution inside a SM, and thus, threads in the same block have access to the shared

memory space in the SM and to synchronization functions to exploit it. Outside the

thread block level, inter-block cooperation is a feature not intended by the CUDA pro-

gramming model [188], since blocks execute independently in order to ensure scalability

across any CUDA device.

Block (0,N)Block (0,0) Block (0,1) Block (0,N)

Block (1,0) Block (1,1) Block (1,N)

Block (M,0) Block (M,1) Block (M,N)

...

...

...

...

...

...

Thread (0,0) Thread (0,L)

Thread (K,0) Thread (K,L)

...

...

...

Execution Grid Block

Figure 4.7: Execution grid: CUDA execution grid follows this nomenclature, OpenCL replaces thread with
work-item and block with workgroup.

78

4.1 Parallel Programming Models and Platforms

Memory Hierarchy A CUDA kernel has access to a number of memory spaces through-

out its execution. Not only do they vary in memory size, but also in availability of access

and allocated lifetime. They can lie off-chip: global memory, texture memory, constant

memory; or on-chip: shared memory and register space. As illustrated in Figure 4.8,

the threads in the execution grid can access the all the memory spaces with certain re-

strictions. Texture and constant memory are read-only memory spaces that are cached,

and thus, provide fast access. All threads in the execution grid have read-write access

to the global memory, as well as the host that can read and write data to the GPU via

the global memory space, and can write data to the texture and constant memory spaces.

The memory spaces lying within the SM at the physical level, which is to say the block

at the logical level, show higher restrictions. Only threads within the same block can

shared data through the shared memory space and the lifetime of the variables therein

allocated is the lifetime of a block. The register space has a similar lifetime, only this

space is private to each thread.

Host

Device

Block 0 Block 1

Constant Memory (Read-only)

Texture Memory (Read-only)

Global Memory (R/W)

Thread 1Thread 0

RegistersRegisters

Shared MemoryShared Memory

Registers Registers

Thread 0 Thread 1 Thread 0

Main
Memory

Figure 4.8: Execution grid: CUDA execution grid follows this nomenclature, OpenCL replaces block with
workgroup, shared memory with local memory.

Synchronization Mechanisms CUDA provides a number of synchronization mecha-

nisms at the thread-, block- and grid-level. Some of which are implicit, such as the afore-

mentioned scheduling of threads within a warp, or the implicit barrier at the host side

upon a synchronous kernel call. Others are explicitly defined by the programmer pertain-

ing to synchronization or memory fencing instructions within a block. While the newer

Kepler devices permit inter-block synchronization, the Fermi generation, employed in

this Thesis, does not, and thus, we do not consider it in the remaining discussion of GPU-

based LDPC decoders.

4.1.6 OpenCL Programming Model

Despite its cross-platform capabilities, the OpenCL data parallel programming model

shares many resemblances with that of CUDA, in particular of its memory hierarchy. Due

to its ability to target different types of devices, it provides an API that leads to much

79

4. Programmable LDPC Decoders

higher code verbosity due to the need to handle multiple kinds of devices. Furthermore,

since it does not provide a compiler, but rather a compiler is provided by different man-

ufacturers externally, compilation occurs online, during the host program execution. An

increased layer of abstraction is provided, defining platform, device, context models, in

addition to is memory, programming and execution models as shown in Figure 4.9.

Platform

Device Device

Context

Buffer Buffer

Command

Queue

Command

Queue

Figure 4.9: OpenCL abstraction model showing the logical dependencies and interaction between platform,
device, context, command queue and buffers.

Platform, Device and Context models A platform is defined as a host system where

multiple OpenCL devices lie. Although devices of different manufacturers are handled

by separate platforms, devices of the same can be handled through a single-platform.

Within the platform, devices are then handled by appropriate abstraction functions. The

combination of platform and device are then grouped within a computation context that

configures the OpenCL for the appropriate compiler call that generates the OpenCL ker-

nel binaries. The ability to load pre-compiled binaries ensures that devices such as FPGAs

kernels that undergo long synthesis, and placing and routing times can be loaded.

Memory Model The underlying OpenCL memory model is similar to that of CUDA,

seen in Figure 4.8. In fact, this model is exported to all the devices, regardless of a phys-

ical resemblance of the architecture with the logical memory hierarchy. Thus, GPUs are

closely matched, while CPUs see an elaborate translation of logical to physical spaces

and FPGAs follow a completely different philosophy, as detailed in Chapter 5. The same

restrictions previously described for CUDA apply, with the appropriate naming conven-

tion.

80

4.1 Parallel Programming Models and Platforms

Programming and Execution Models The parallel expression of kernels is performed

also using an execution grid that sees the issuing of a parallel kernel a given number of

times across a certain number of work-items. These work-items are grouped in workgroups

to compose the execution grid. Whereas in the GPU engine there is a one-to-one cor-

respondence of work-item to thread, on CPUs each workgroup is assigned to a thread,

again with a different philosophy for FPGA devices, as explained in Chapter 5. In addi-

tion, to the data-parallel expression allowed, it is also possible to define task-parallelism,

though this renders each task-parallel kernel to be solely executed by a single work-

item. Furthermore, the manipulation of the OpenCL device memory and execution is

performed by the appropriate allocation of buffers to which a command queue is necessary

to issue data transactions and to enqueue parallel OpenCL kernels.

4.1.7 MPI Programming Model

MPI defines a set of library and functions for use with Fortran and C/C++ program-

ming languages that allow proficient handling of compute resources across distributed

computation environments. As it often happens with general-purpose programming

models that offer a wide spectrum of functionality to handle all the corner cases, we use a

narrow segment of MPI functions. Thus, we can summarize the MPI model as illustrated

in Figure 4.10. Therein, the master node is responsible for data management housekeep-

MPI_COMM_WORLD

MPI_Init()

CPU

mpirun exec -np 32 -nolocal

Master Node

IB Network

GPU 0 GPU 1CPU

mpidaemon

exec (rank 0) exec (rank 1)

GPU 0 GPU 1CPU

mpidaemon

exec (rank 30) exec (rank 31)

MPI_Finalize()

Figure 4.10: MPI basic hierarchy running on the dual-GPU cluster: mpirun spawns the MPI job exec with 32
jobs through the interconnection network; in the compute nodes, the executable is launched by an mpidaemon
with a certain rank in the communicator MPI_COMM_WORLD.

ing tasks for the cluster that do not pertain with the acceleration of parallel algorithms.

Thus, the master does not perform computation, it only instructs and handles how many

MPI processes, or ranks exist in the MPI communicator MPI_COMM_WORLD that defines the

pool of MPI ranks launched. To this end, it issues an mpirun command with the appropri-

ate command-line arguments to spawn K processes across the cluster to specific compute

81

4. Programmable LDPC Decoders

int main(int argc, char** argv) {
int num_elements = atoi(argv[1]);
int num_trials = atoi(argv[2]);

MPI_Init(argc, argv);

int world_rank, world_rank_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_rank_size); //Query number of ranks
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank); //Query this rank ID
double total_my_bcast_time = 0.0;
double total_mpi_bcast_time = 0.0;
int *data;

if(world_rank == 0)
init_data(data); //Initialize data

//Broadcast data from rank 0 to all other ranks
MPI_Bcast(data, num_elements/world_rank_size, MPI_INT, 0, MPI_COMM_WORLD);

if(world_rank != 0)
process_data(world_rank,data); //SPMD execution

MPI_Finalize();
}

Listing 4.1: MPI program execution flow: the communicator MPI_COMM_WORLD is queried and, accordingly,
the data workload is partitioned and broadcast from rank 0 for execution among the other ranks (running
processes) [226].

nodes. In each compute node an mpidaemon that listens on the interconnection network

launches the MPI ranks locally.

The control-flow is handled by the programmer at the mpirun-level and at the compu-

tation performed by each rank in the communicator, similar to what happens in CUDA

and OpenCL. In this particular case, each two processes are given to a single compute

node and each rank in the same node controls a GPU exclusively (under the dual-Fermi

GPU cluster case). As previously discussed, the MPI controls the LDPC decoder at the

distributed environment level, while the inner kernels performed by each rank will be

the single-GPU decoders, that can be developed under any given programming model,

but in this particular case CUDA has been chosen, As a consequence, the GPU-cluster

is manipulated in such a way that single-program multiple-data (SPMD) computation is

performed across its compute resources. In fact, as discussed in the next section, its uti-

lization can be seen as a particular case of parameter sweep when Monte Carlo bit error

rate (BER) simulation is therein performed [1,2].

4.2 Programmed LDPC Decoder Accelerators

To assess the performance obtained with the programmable LDPC decoders we uti-

lize different LDPC codes and algorithms. The LDPC codes employed are characterized

by different features that stress certain design choices made in the development of the

82

4.3 Single-GPU Decoders

LDPC decoders 1) Tanner graph construction and 2) code length. They are tabulated in

Table 4.3. The main figure of merit used in the LDPC decoders discussion is the decoding

throughput that can be computed as

Tdec =
No.codewords × N

tmem + tkernel
, (4.1)

with tmem the time taken to transfer data to and from the device where computation oc-

curs, if applicable, and tkernel the execution time of the LDPC decoding kernels.

Table 4.3: Experimental dataset utilized for the programmable LDPC decoders.

LDPC Code

N (symbols) N (bits) Rate m d_c d_v z f Standard

D
at

as
et

/s
ce

na
ri

o

I-a) 64800 1/2 1 {6, 7} {2, 3, 8} N/A DVB-S2
I-b) 64800 1/3 1 {4, 5} {2, 3, 12} N/A DVB-S2

II 1944 1/2 1 {7, 8} {2, 3, 4, 11} 81 WiFI

III-a) 768

1/2 1 {6, 7} {2, 3, 6}

32

WiMAX
III-b) 1152 48
III-c) 1536 64
III-d) 1920 80

IV 8000 1/2 1 6 3 N/A Mackay [184]

V-a)

384

768

1/3

2

3 2 N/A Non-binary [192]

V-b) 1152 3
V-c) 1536 4
V-d) 1920 5
V-e) 2304 6
V-f) 2688 7
V-g) 3072 8

4.3 Single-GPU Decoders

The potential for single-GPU devices to excel under the task of LDPC decoding has

been identified in early 2008 [227], and has since, continued to bear fruits [4,124,156]. While

the target of the real-time decoding is still eluded in the majority of the LDPC decoder

realizations using a single processor [142,156,165], the GPU remains an extremely useful plat-

form for prototyping and validation of decoding algorithms and decoding schedules

through BER simulation. Due to the GPU highly multithreaded execution we need to

attend to expressing the LDPC decoding algorithms under the appropriate data- and

thread-parallelism levels. In order to do so efficiently, the memory hierarchy of the GPU

engine must be efficiently exploited so that high bandwidth of decoding is achieved. The

83

4. Programmable LDPC Decoders

following sections deal with the discussion concerning the many design features that

compose the LDPC decoder space exploration under single-GPU execution.

4.3.1 Data-parallelism

Among the different types of parallelism exploitable, data-parallelism is the most

straightforward to realize, but its potential is more limited than exploring thread-parallelism.

Moreover, efficiently exploring data-parallelism is not a mere matter of pushing a very

high workload onto the processor in order to try and maximize the occupancy of the logic

resources provided. We need to keep in mind that there constraints posed by the memory

hierarchy of the GPU engine. In particular, we should note that the memory hierarchy

is composed of multiple addressing spaces, lying both on- and off-chip, with data flow-

ing from off-chip regions to on-chip memory that is substantially faster. As previously

said, the model entailed by GPU programming is of hiding memory transfers behind

computation, and thus, increased data-parallelism should work towards this goal.

The first and foremost constraint of the LDPC decoder is to define a data-parallelism

level which is compatible with the maximum alignment provided by the global mem-

ory that lies off-chip. Since a high access latency is always introduced, the memory re-

quests should be maximally aligned so as to maximize the memory line access width.

For instance, CUDA GPU devices maximum alignment is set at 128 bits, while for AMD

devices this is set at 512-bit words. Under the CUDA and the OpenCL programming

models, there is no support for arbitrary precision variables, which means that these

large words are presented as vector types—essentially, they are aligned structures of

C/C++-supported datatypes. Hence, an appropriate bitwidth for the log-likelihood ra-

char2 vector_char; //A vector with 2 char words
short4 vector_short; //A vector with 4 short words
int3 vector_int; //A vector with 3 int words
floatn vector_float; //A vector with n float words

Listing 4.2: Supported CUDA and OpenCL vector datatypes: CUDA is limited to n ∈ {2, 3, 4}, while
OpenCL defines n ∈ {2, 3, 4, 8, 16}.

tio (LLR) messages must be found first. Then the messages need to be grouped into a

vector datatype that maximizes the extracted memory engine bandwidth. In this case,

this means pushing for the widest word that meets the maximum alignment criteria.

Considering that CUDA devices are limited to 128-bits and AMD to 512-bits, the only

supported vector datatypes that meet this width are intn and floatn (c.f. Listing 4.2).

Since the majority of LDPC decoders in application-specific integrated circuit (ASIC) [228,229]

and FPGA [185] are performed in fixed-point arithmetic at 5∼8-bit bitwidths, we define

the basic LLR element at 8 bits. Then, since the maximum vector element is 32-bit wide

84

4.3 Single-GPU Decoders

(it is an int or a float), we pack 4 LLRs into each vector element. This process is then

repeated for how many more LLRs are required to meet the alignment. Words can be

//A vector with 16 LLRs with int words {x,y,z,w}
int4 vector_llr;

//Fetch word x from vector_llr
int llr_x = vector_llr.x;

//Unpack LLRs cyclically from the word x
char llr_x_0 = llr_x >> 24 & 0x000000FF;

//Perform some manipulation with the data

//Pack LLRs cyclically to word x
llr_x = (llr_x << 8 & 0x000000FF) | llr_x_0;

Listing 4.3: Unpacking and packing LLRs from vector types. The strategy of packing and unpacking is of
cyclic removal and cyclic introduction to the vector datatype element.

packed and unpacked cyclically, as shown in Listing 4.3, in a scalable strategy. For in-

stance, it can be used for a single int type packing four 8-bit LLRs, or scaled to a int16

wide word packing 64 8-bit words [182].

Considering this method of storing low width LLR words onto wide words raises

the question whether or not it would be more suitable to pack LLRs messages from the

same dataset using this strategy. However, it is easily observed that this raises divergence

issues and redundancy of memory accesses. We should consider the limited inter-block

communication of the GPU execution model. This is particularly relevant when a two

threads in two distinct blocks need to access data elements packed inside the same wide

word. Since the memory engine deals with this redundant accesses in runtime it is not

clear if there is a broadcast to both threads, since there is no guarantee that both blocks are

active simultaneously. Thus, in the better case, when the memory engine is cached, there

will be a second access to the vector element that will entail a cache hit. In the worse case,

there will be two full accesses to the global memory. Naturally, there is also the question

of threads in the same block accessing the same vector element. But in this case the shared

memory addressing space can be used to save bandwidth. This propels us to exploit

this data representation method for data-parallelism instead of packing consecutive LLR

messages together. The aforementioned cases are illustrated in Figure 4.11.

In Figure 4.11 b), the data-parallelism level is raised to 8 codewords. Therefore, there

are 8 LLRs corresponding to 8 different codewords, as opposed to interleaving them

between multiple vector words. The advantage is clear, since accesses will always be

performed at the granularity of the vector words, which can be optimized to meet the

maximum alignment criteria, and prevent any redundant access of data, that would be

entailed by packing consecutive LLRs in vectors, as seen in Figure 4.11 a).

85

4. Programmable LDPC Decoders

word yword x

0 1 2 3 4 5 6 7

...

Block 0

...

Block 1

0 1 2 3 4 5 6 7

...

Block 2

vector

(a) Contiguous LLRs

11111 11 1

word yword x

0 0 0 0 0 0 0 0

...

Block 0

vector

...

(b) Contiguous codewords

Figure 4.11: Memory access to packed LLRs: a) different blocks need to access different vector words, lead-
ing to poor bandwidth and redundant memory accesses, due to individual LLR misalignment; while in b)
accesses are within the vector type alignment.

The lowest data-parallelism granularity is then defined by the number of the same

LLRs corresponding to different codewords that are packed in vector words. Indepen-

dently of the thread-parallelism level defined, the data-parallelism level can then be in-

creased by expanding the execution grid configuration in multiples of the minimum ex-

ecution grid configuration that performs the LDPC decoding for the data-parallelism set

at the vector granularity, e.g., with 8-bit LLRs packed into int16 vectors, 64 codewords

are defined as the minimum data-parallelism granularity and spawning a twice as large

execution grid configuration can be used to decode 128 codewords concurrently. This

ability to configure different data-parallelism levels is captured in Figure 4.12.

...

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 101112131415

0 1 2 3

0 1 2

0 1

0

1
 w

o
rd

2
 w

o
rd

s

3
 w

o
rd

s

4
 w

o
rd

s

8
 w

o
rd

s

1
6

 w
o

rd
s

8
-b

it

1
6

-b
it

3
2

-b
it

LLR LLR LLR LLR

...

Block 0

vector

...

...

z
d_c-1

lk
0 1

0

Figure 4.12: Data-parallelism levels at the vector and execution grid granularities.

86

4.3 Single-GPU Decoders

4.3.2 Thread-parallelism

The partitioning of the LDPC decoding algorithm among threads, or work-items, de-

fines how they cooperate towards the completion of the problem. As introduced in Chap-

ter 3, there are several partitioning methods, such as thread-per-node (TpN), thread-per-

codeword (TpC), thread-per-edge (TpE) and block-per-codeword (BpC), to name some, that

can be employed with certain success degrees under the LDPC decoding problem.

Thread-per-Node The closest isomorphic transformation of the Tanner graph onto pro-

cessing elements on the GPU device is the TpN strategy that applies one thread per vari-

able node (VN) and per check node (CN), and performs computation based on that logic.

The greatest benefit with this approach, is the ability to avoid redundant memory ac-

cesses, since threads load only the required messages. On the other hand, there is no

data reuse pattern that can be explored due to limitations to the decoding schedule that

are possible under this approach. Essentially, despite the fact that threads are not guar-

anteed to be active simultaneously, the limited support for inter-block synchronization

means that only but the two-phased message-passing (TPMP) schedule can be deployed.

Moreover, the TpN granularity allows for single-GPU LDPC decoders to peak their

performance faster than with coarser granularities. It is simple to observe that, the GPU

engine possessing only limited thread spawning capabilities, will have its resources fully

occupied faster than if a more limited number of threads is launched, as happens with

finer granularities (assuming a fixed LDPC code block length).

Thread-per-Edge The TpE thread-parallelism strategy was presented in one of the sem-

inal works in GPU programming [119]. At the time, the advantage behind this approach

was due to the computation having to be defined through the graphics pipeline. It pur-

ported greater flexibility to capture the LDPC decoding problem on a 2-D texture struc-

ture using a thread granularity based on the edge- than on the node-dimension. The

motivation to perform TpE decoding on modern GPU systems is not so strong. In fact,

for CUDA and OpenCL enabled devices, it leads to redundant memory accesses that for

memory engines without cache lead to full access to the global memory.

The TpE granularity is the most fine-grained strategy. While one can argue that it

makes little sense to use it on binary LDPC codes, for non-binary codes, those defined

over binary extension field (GF(2m)) in particular, the rationale behind it is to have a max-

imum number of threads active in the hardware, so as to keep the GPU logic resources

committed to the decoding of more complex decoding algorithms. Thus, it may not

be necessary to push the data-parallelism levels beyond the granularity of the vector

datatype to reach within the peak GPU performance.

87

4. Programmable LDPC Decoders

Block-per-Codeword The coarser BpC strategy developed commits a thread block, or

workgroup, to the decoding of a single codeword, or to a batch of codewords packed

onto a vector datatype. This type of thread-parallelism is inspired in the partial-parallel

decoders [185,230], which devote a fixed number of functional units (FUs) to the processing

of the LDPC code nodes, in a semi-parallel fashion, since the number of FUs is lower than

the number of nodes that are swept. Under the GPU hardware, the FU concept finds its

expression in a thread, or workgroup, and for simplicity of synchronization, a block, or

workgroup, is devoted to the decoding of the LDPC code. This way, higher flexibility

exists to synchronize and apply memory fencing operations.

The drawbacks concerning each approach are mostly related to how efficiently the

decoding algorithms are mapped to the GPU engine, but it is also important to notice

that two other drawbacks arise with the TpN and the TpE approaches which limit the

covering of the design space of LDPC decoders with them. In particular, only the TPMP

decoding schedule is guaranteed to execute properly with these approaches. The current

generation of CUDA and OpenCL GPUs provide global memory fencing instructions.

However, since threads cannot be switched off, if the GPU engine has threads waiting

to be executed, the latter will never start, since the former are waiting for the inactive

threads to reach the barrier instruction [207].

4.3.3 Optimized Tanner Graph Indexing

The Tanner graph connections define how nodes interact with one another. Under a

programming representation, since we are dealing with a software expression, there is no

physical entity in the form of a FU that can be hardwired to the other its adjacent nodes’

FUs [231], since there the closest isomorphic mapping possible is having a thread express-

ing a node [10,156]. As a consequence, exchange of messages between nodes must occur

through the memory, and in the particular case of the GPU engine, due to the properties

of the memory hierarchy, the bulk of exchanges must flow through the global memory.

Naturally, since the Tanner graph is sparsely connected, due to the sparse nature of the

parity-check matrix, full matrix storage schemes make little sense to apply. Therefore,

we discuss suitable methods for the efficient storing of the Tanner graph nodes’ adjacen-

cies. Considering the bulk of work found in the literature for progressive edge growth (PG)

codes, and the prevalence of LDPC Irregular-Repeat-Accumulate (LDPC-IRA) and quasi-

cyclic LDPC (QC-LDPC) codes on wireless communication standards, we discuss suitable

methods for each type of code next.

Compressed Sparse Storage Sparse matrix methods can be applied to any LDPC code.

However, for LDPC codes whose structure exposes limited to no regularity that can be

88

4.3 Single-GPU Decoders

exploited to devise finely tuned compressed storage methods, more generalist methods

need to be applied that are similar to compressed sparse row (CSR) and compressed sparse

column (CSC) [124]. Since the messages exchanged between nodes are accessed by CNs

during the CN processing and by VN in the VN processing, the optimized compressed

storage for any LDPC code is a combination of both CSR and CSC. Essentially, an ascend-

ing index is assigned to each edge, whenever there is a non-null element in the equivalent

parity-check matrix position. CNs assign this index looking at the parity-check matrix

from a column-wise perspective, while VN do the same, but from a row-wise perspec-

tive. The generation of memory indexes from the parity-check matrix is formalized in

Algorithm 4.17. Therein, the HCN and HVN refer to the parity-check matrix H rearranged

so that only the non-null elements are stored, the former in row-wise fashion and the

latter column-wise.

Algorithm 4.16 Construction of the general compressed indexing, suitable for any LDPC
code: a) CN indexing and b) VN indexing.

(a) CN indexing
k = 0
for m = 0 to M− 1 do

if m=0 then
cumCN(m) = 0

else
cumCN(m)←cumCN(m− 1)

end if
for j = 0 to edges− 1 do

if HVN [j] = m then
CNidx[j]← k
cumCN(m)←cumCN(m) + 1
k← k + 1

end if
end for

end for

(b) VN indexing
k = 0
for n = 0 to N − 1 do

if n=0 then
cumVN(n) = 0

else
cumVN(n)←cumVN(n− 1)

end if
for j = 0 to edges− 1 do

if HCN [j] = n then
VNidx[j]← k
cumVN(n)←cumVN(n) + 1
k← k + 1

end if
end for

end for

This indexing scheme can then be employed in a similar way to that described in

Chapter 3. Between the VN and the CN processing phases there are two load and two

store operations, and the method described assumes contiguous loading accesses, which

need not be indexed, and storing accesses to be indexed by the computed index lookup-

tables (LUTs), as defined in Algorithm 4.16. Notwithstanding, any other combination

could be employed, for instance contiguous storing and indexed loading can be em-

ployed just as well, although weighing in how contiguous and indexes accesses are con-

figured yields no significant differences, as determined by the literature survey (c.f. Ta-

ble A.1). However, indexing with a more efficient method, where efficiency is measured

by the number of index elements required is possible by exploring the regular features of

the Tanner graph whenever they exist.

89

4. Programmable LDPC Decoders

Algorithm 4.17 Accessing messages with the general compressed indexing: a) CN access
and b) VN access.

(a) CN access
for m = 0 to M− 1 do

for j = 0 to dcm − 1 do
loadidx ← cumCN(m) + j
storeidx ← CNidx(cumCN(m) + j)

end for
end for

(b) VN indexing
for n = 0 to N − 1 do

for j = 0 to dvn − 1 do
loadidx ← cumVN(n) + j
storeidx ← VNidx(cumVN(n) + j)

end for
end for

LDPC-IRA Optimized The generation of LDPC-IRA codes is made by consecutively

permuting independent column in the parity-check matrix to generate r f − 1 columns [61].

Since the standardized adoption of these types of codes sees long block lengths, at N =

16200 or N = 64800 bits in the ETSI standards for 2nd generation DVB (DVB 2), the general

compressed sparse storage would require LUTs with a very high number of elements.

Due to the construction methods of the Tanner graph, it contains structured properties

that can be exploited for regularity of memory accesses in multiples or sub-multiples of

r f
[185,228,232,233].

Algorithm 4.18 Accessing messages with the DVB 2 LDPC-IRA codes indexing:
a) CN access and b) VN access.

(a) CN access
for m = 0 to M− 1 do
{line, bank} ← { mod (m, q), m/q}
for j = 0 to dcm − 1 do

loadidx ← addridx(line×(dc − 2) + j)
pidx ← bank− shi f tidx(addridx(line×(dc − 2) + j)
if pidx > shi f tidx(addridx(line×(dc − 2) + j) then

pidx ← pidx + r f
end if
storeidx ← addridx(line×(dc − 2) + j) + pidx

end for
end for
(b) VN access
for n = 0 to N − 1 do
{line, bank} ← {n/r f , mod (n, r f)}
for j = 0 to dvn − 1 do

loadidx ← j×r f +
n−1
∑

i=0
dvi

storeidx ← loadidx + j×r f + mod
(

shiftidx

(
j +

line−1
∑

i=0
dvi

)
, r f

)

end for
end for

Given that consecutive information nodes (INs), that were generated from the same in-

dependent column, have their connections to CNs permuted by a value q, they connect to

90

4.3 Single-GPU Decoders

the same block of CNs in blocks with width r f with permuted q positions. This allows for

a memory layout in two-dimensions that is interpreted when accessed during the VN and

the CN processing phase. Since programmable architectures are logically organized into

a single dimension, the two-dimensions are linearized with a width of r f memory banks.

In its turn, this entails that VN accesses are contiguous in blocks of r f data elements,

while CN accesses are also contiguous in blocks of r f elements, although they do not ac-

cess the memory lines sequentially. The procedure for computing the indexes on-the-fly

is formalized in Algorithm 4.18. This indexing scheme is not limited to an organization of

the data elements into r f memory banks and can also be re-expressed into sub-multiples

and multiples of it [6,232]. The remapping of data elements in a 2-dimensional layout in a

1-dimension memory addressing space is shown in Figure 4.13.

0 1 2 3 4 359...

360 361 362 363 364 719...

720 721 722 723 724 1079...

...

...

19440 19441 19442 19443 19444 19799...

...

...

...

32040 32399...

0

1

2

3

4

5

6

7

0

1

2

0 90 180 270 360 32310...

1 91 181 271 361 32311...

2 92 182 272 362 32312...

...

...

54 144 234 324 414 19799...

...

...

...

89 179 269 359 449 32399...

0

1

2

3

4

CN update-modeVN update-mode

s
h

if
t

a
d

d
re

s
s

write order

...

write order

read order read order

0 1 2 3

0 1 2 3 4 5 6 7

19440 19441 19442 19443

0 1 2

... ... 32399

0 90 180 270

0 1 2 3 4

54 144 234 414... ... 32399

0 1 2 3 4

1-D memory

1-D memory

2-D

memory

Figure 4.13: Memory layout of the DVB-S2 LDPC-IRA codes in a 1-dimensional memory. As the SIMT
execution model will not necessarily guarantee coherence of memory accesses the 2-dimensional memory
which had two logical interpretations but was a single physical addressing space is split into two physically
allocated arrays that are linearized as shown. The indexes procured in the LUTs generate a valid index in
the new layout through on-the-fly index computation (Algorithm 4.18).

QC-LDPC Optimized Considering that QC-LDPC are generated by the expansion of

a base matrix Hf into the parity-check matrix H by the insertion of permuted identity

matrices with dimensions z f×z f , it is clear that the indexing of H generated by an arbi-

trary z f can be made from the same number of LUT index elements. The scheme devised

91

4. Programmable LDPC Decoders

for indexing QC-LDPC assigns a memory indexing space for messages traversing each

direction of the Tanner graph edges based on the maximum degree of VNs and CNs,

max(dv) and max(dc), respectively. Then each non-infinity element in Hf is assigned to

its corresponding position in a column- and a row-wise manner, respectively [131].

Algorithm 4.19 Construction of the QC-LDPC compressed indexing:
a) CN indexing and b) VN indexing.

(a) CN indexing
k = 0
for m = 0 to M f − 1 do

dcm ← 0
for n = 0 to N f − 1 do

if h f m,n 6= ∞ then
CNidx(k)← {m, n, h f m,n}
k← k + 1
dcm ← dcm + 1

end if
end for
cumCN(m) = dcm

end for

(b) VN indexing
k = 0
for n = 0 to N f − 1 do

dcm ← 0
for m = 0 to M f − 1 do

if h f m,n 6= ∞ then
VNidx(k)← {n, m, h f m,n}
k← k + 1
dvn ← dvn + 1

end if
end for
cumVN(m) = dcm

end for

While regular codes can be indexed with a uniform stride, irregular codes see also a

changing stride for their correct position. Thus,exclusive prefix-sums of the nodes degree

per row and column in Hf are calculated for using as base offset for each position in

Hf, also designated as layer. Then, the additional LUTs store the layer to which the

node is connected in its dimension and on the opposite one are retained, as well as the

corresponding h f m,n element, i.e., the permutation with which that particular expansion

was made to generate H. A method to generate the index triplets required to index all

the messages in the Tanner graph is shown in Algorithm 4.19. The procedure for CN and

VN is essentially the same, although the former cycles through the row dimension first,

while the latter cycles through the column.

Algorithm 4.20 Accessing messages with the QC-LDPC compressed indexing:
a) CN access and b) VN access.

(a) CN access
for m = 0 to M f − 1 do

for z = 0 to z f − 1 do
loadidx ← cumCN(m) + j
{l, n, p}idx←CNidx(cumCN(m) + z)

if pidx > z then
pidx ← z f + pidx

end if
storeidx = lidx × z f + nidx × N+pidx

end for
end for

(a) VN access
for n = 0 to N f − 1 do

for z = 0 to z f − 1 do
loadidx ← cumVN(m) + j
{l, m, p}idx←VNidx(cumVN(m) +
z)
if pidx > z then

pidx ← z f + pidx
end if
storeidx = lidx × z f + midx ×M+pidx

end for
end for

92

4.3 Single-GPU Decoders

We should note that the QC-LDPC access scheme is affected by the maximum VN

and CN degree. The messages are stored in blocks of z f contiguous indexes, permuted

by the corresponding Hf entry, and the stride of access between nodes of different layers

is related to the maximum VN and CN degrees dv and dc. The consequence for irregular

codes is different memory sizes required to index L(rmn) and L(qnm) messages. E.g.,

the Wi-Fi (Wi-Fi) rate 1/2 code for a code length of 1944 bits, to which it corresponds

an expansion factor of z f=81, exchanges 2×6966 messages through the Tanner graph.

However, because the maximum degree of VNs for this particular code is 11, but for CNs

it is 7, there are more memory elements that do not index any message in the L(qnm)

memory array than in the L(rmn) array.

The relative difference between employing the general compressed indexing for an

LDPC-IRA code, and its optimized indexing, has been established [122], where up to 18%

of the decoding throughput can be improved for shorter rate codes, as shown in Ta-

ble 4.4. The diminishing return observed with the higher DVB-S2 index codes is due to

the increasing coding rate, which greatly reduces the number of CNs, offsetting the gains

observed for the lower coding rate codes [234].

Table 4.4: Comparison of general compressed and DVB-S2 LDPC-IRA indexing methods: decoding through-
put, and relative speedup, is presented for 10 decoding iterations [122].

DVB-S2 Codes B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Compressed
indexing

79 69 61 55 41 55 47 40 35 36 35

LDPC-IRA
optimized

87 75 65 65 43 57 49 41 36 36 36

Speedup 1.10 1.09 1.07 1.18 1.05 1.04 1.07 1.03 1.03 1.00 1.00

4.3.4 Binary LDPC Decoding

Binary LDPC decoding on single GPU devices is discussed in this section. The de-

coders were developed using the CUDA and the OpenCL data-parallel programming

models. Binary LDPC decoding on the GPU has been performed in the past, as dis-

cussed in Chapter 3, with promising results to the obtaining of high decoding through-

puts, though low latency has been largely eluded in the proposed decoders with the few

odd exceptions [156,165]. To leverage the GPU device computational power, certain features

must be taken into account which are discussed next.

MSA Decoding on GPU Among the message-passing algorithms for binary LDPC

codes, the min-sum algorithm (MSA) stands out due to its lower numerical complexity.

Whereas this, in its turn is made at the cost of sub-optimality, thereby introducing an

93

4. Programmable LDPC Decoders

error performance degradation that can be corrected by scaling, offset or self-correction

methods. The uncorrected version, however, can serve as an upper bound to the perfor-

mance that can be attained by the more complex, and necessarily, slower corrected MSA

versions [99].

Device

SM

Shared Memory
SM

Registers

Global Memory (R/W)

Constant Memory (Read-only)

Texture Memory (Read-only)

Shared Memory

Registers

Min-Sum

CN

Proc

VN

Proc

Figure 4.14: MSA employment of the GPU memory hierarchy.

The MSA can be broken down into two distinct kernels, regardless of the decoding

schedule selected, corresponding to the CN processing and to the VN processing. The

proposed exploitation of the GPU memory hierarchy by the MSA decoder can be seen

in Figure 4.14. Therein, threads, or work-items, executing the decoding algorithm will

load data, streamed by the host to the global memory, to registers, perform the required

computation and proceed to store them back to global memory. The rationale was to

make the decoding of data independent of the thread block, or workgroup, dimension.

If, on the other hand, shared memory is employed, this introduces a restriction to the

maximum number of threads allowed per block, and also, to the number of threads that

can be active on the GPU cores. As a consequence, greater flexibility to find the opti-

mal number of threads per block exists under the proposed methodology. Naturally, this

poses an unsurmountable constraint to the realization of Turbo-decoding message-passing

(TDMP) scheduled decoders. However, considering the inability to fully exploit the par-

allelism, exposed by the Tanner graph under a TPMP expression, of the TDMP decoding

schedule, even when the number of decoding iterations is roughly halved, the decoding

throughput is as good in one approach as the other [107,156,165]. Consequently, and since

the GPU architecture cannot be trimmed down to remove excess silicon, we deemed rea-

sonable to explore the available computing cores to the computation of the same batch

of codewords, intra-codeword and then scale the procedure to several batches, i.e., inter-

codeword [182].

94

4.3 Single-GPU Decoders

Work Items per Workgroup

1 2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

T
h

ro
u

g
h

p
u

t
[M

b
it

/s
]

20

40

60

80

100

120

140

160

32 batches

64 batches

(a) Throughput vs. workgroup size

Work Items per Workgroup

1 2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

K
e
rn

e
l
T

im
e
 [

m
s
]

40

60

80

100

120

140

160

180

200

220

(b) Latency vs. workgroup size

Figure 4.15: Decoder performance vs. workgroup size: a)–b) dataset IV on the GPU architecture G1.

The performance of the GPU, for any given kernel, depends on the thread block di-

mension. The first limitation is the warp or wavefront dimension. If the block dimension

is not a multiple of it, then there will be warps or wavefronts with threads that have no

work to perform [170]. To a certain extent, it makes little sense to define execution grids that

define block dimensions under the warp size or the wavefront size. The illustration in

Figure 4.15 presents two cases, when blocks are smaller than those dimensions and when

it expands beyond it in powers of 2. In this particular case, the warp size is 32, but a

similar behavior would be observed for GPUs with wavefronts of 64 threads [221]. As ob-

served, the performance will steadily increase until one of two cases unfolds. Either the

performance will see its peak in a monotonic behavior, and thus, the performance will

not improve over a certain block size. At this stage, the GPU cannot provide more active

threads. On the other hand, for certain cases, the number of active threads in the GPU

engine sees a peak for a certain dimension of the thread block, after which the number of

active threads decreases and so does the computational performance.

Considering the decoder topology of Figure 4.14, there is no dependency of the un-

derlying kernels with the block dimension. Hence, with this methodology, the best block

size dimension can be known beforehand, using the CUDA occupancy calculator [235],

or by empirical evaluation of the best block dimension by performing a sweep of the

possible configurations.

Data-Parallelism, Layout and Representation Data-parallelism, as aforementioned, is

defined at the intra- and at the inter-codeword level. The data-parallelism level defined

by intra-codeword parallelism is constrained by the alignment allowed by the memory

engine of the GPU. Whereas CUDA-enabled GPUs allow a maximum alignment of 128

bits [170], OpenCL (AMD) GPUs allow for 512 bits [221]. This means that at the selected 8-

95

4. Programmable LDPC Decoders

bit LLR bitwidth, considered for its trade-off between being a power of 2 and, therefore,

being able to align with different memory engines, it allows for a negligible performance

loss when compared to single-precision floating-point representations [3,236]. At the inter-

codeword level, the execution grid is replicated so that consecutive words are accessed

consecutively at the intra-codeword level, and with a stride of the dimension of the mem-

ory size required to store all data elements [182].

Number of Codewords

0 250 500 750 1000 1250

T
h

ro
u

g
h

p
u

t
[M

b
it

/s
]

0

50

100

150

200

(a) Throughput vs. data-parallelism

Number of Codewords

0 250 500 750 1000 1250

K
e
rn

e
l
T

im
e
 [

m
s
]

0

50

100

150

200 OpenCL G8 uint4

OpenCL G8 uint8

OpenCL G2 uint4

CUDA G2 uint8

OpenCL G2 uint8

OpenCL C1 uint4

(b) Latency vs. data-parallelism

Figure 4.16: Single-GPU regular TpN decoders throughput: a)–b) dataset IV on GPU architectures G2, G8
and CPU C1 for comparison.

As observed in Figure 4.16, the decoding throughput increases with the number of

codewords that are given to the GPU to decode concurrently. This trend is largely inde-

pendent of the GPU device, of the vector datatype bitwidth, and also of the programming

model employed, with negligible performance differences observed between CUDA and

OpenCL. The throughputs obtained are able to improve with the more codewords that

are loaded, with diminishing returns, since the memory engine will eventually reach its

peak transaction rate for the LDPC decoding algorithm memory pattern, and also, the

number of active threads will not increase. Instead, portions of the execution grid are

sequentially executed as more thread blocks are awaiting execution [170]. This strategy,

however, comes with the cost of increased latency. For dataset IV, execution of a single

codeword batch, yields a third of the maximum attainable performance at twenty-fold

lower decoding latency, i.e., without considering memory transfers to the GPU. Clearly,

it is a high price to pay, that annihilates any possibility of deploying decoders pursued

with this methodology for field-deployment, even if the available power budget would

be high to accommodate the power drawn by a GPU accelerator.

Thread-parallelism The MSA LDPC decoder sees the utilization of two thread-parallelism

strategies, the TpN and the BpC granularities. The former can be applied without further

96

4.3 Single-GPU Decoders

considerations for the thread block size, i.e., the block dimensions are chosen so that they

meet the optimal GPU operating point for the resources consumed by the programmed

GPU kernels. On the other hand the BpC thread-granularity is set at the regularity fac-

tor of the underlying LDPC code. This strategy is not evaluated for regular LDPC codes

constructed with PG methods, since there is no underlying Tanner graph construction

regularity that can be exploited. On the other hand, LDPC-IRA and QC-LDPC codes

possess this regularity which we exploit. For the QC-LDPC codes, the expansion factor

z f is a good candidate for the block dimension. The same way, a sub-multiple of z f would

also be a good candidate, allowing a partitioned exploitation of the regular properties of

the Tanner graph. However, for the majority of QC-LDPC codes that are standardized,

z f is limited to max z f = 96 [35]. For the case of LDPC-IRA codes, the block size is chosen

as r f , although, sub-multiples of r f would also be possible [233].

The impact in the decoding throughput, and decoding latency, of these approaches

are illustrated in Figures 4.17 and 4.18. Since the TpN approach entails two-sized execu-

tions grids for CN and VN processing at M and N threads per block per codeword batch,

and the BpC approach z f or r f threads per block per batch [2], the two strategies must be

compared at GPU operation modes that are somewhat comparable. As a consequence,

we plot the decoding throughput and latency against a variable workload, to compare

both approaches with regards to their attainable peak performances. As observed, the

decoding throughputs are monotonically increasing the TpN approach. However, as re-

ferred previously, this entails a rising decoding latency. Again, for the TpN granularity,

similar levels of throughput to latency increase are observed to what reported before, e.g.,

dataset I-a) sees a 22% increase in decoding throughput from a single batch to its peak

paying a fifty-fold increase in decoding latency. Similar ratios are found for the datasets

III-a–e) and we can assume for any LDPC codes under a TpN or BpC decoder expression.

Relaxing the maximization of the decoding throughput to find an operating point,

defined by the data-parallelism level, within a certain margin of the peak throughputs

yields a better flexibility to our proposed decoding solutions. The tabulation of the de-

coding throughput and latency in Table 4.5 highlights the nature of the diminishing re-

turns paid by the rising data-parallelism levels. It is clear that the difference between the

TpN and the BpC will rank to almost negligible, especially for an operating throughput

at 1% of the peak performance. In fact, under these circumstances, it makes almost no

difference in decoding latency to chose one granularity approach instead of the other.

With regards to throughput, in general, the TpN approach yields a better option. How-

ever, 1% of the peak performance can still be seen as a corner case in the analysis since it

is still too close to the peak performance of the decoder, which is roughly equivalent to

load the GPU with as many words as we are able. We are motivated into finding a better

97

4. Programmable LDPC Decoders

Number of codeword batches

0 100 200 300

T
h

ro
u

g
h

p
u

t
[M

b
it

/s
]

0

50

100

150

200

BpC
TpN

(a) DVB-S2 code

Number of codeword batches

0 100 200 300
0

50

100

150

200

(b) z f = 32

Number of codeword batches

0 100 200 300
0

50

100

150

200

(c) z f = 48

Number of codeword batches

0 100 200 300

T
h

ro
u

g
h

p
u

t
[M

b
it

/s
]

0

50

100

150

200

(d) z f = 64

Number of codeword batches

0 100 200 300
0

50

100

150

200

(e) z f = 80

Number of codeword batches

0 100 200 300
0

50

100

150

200

(f) z f = 96

Figure 4.17: Single-GPU DVB-S2 and WiMAX TpN and BpC decoders throughput: a) dataset I-a); and b) to
f) datasets III-a)–e).

compromise to the throughput and latency that does not follow this heuristic. Setting the

analysis threshold to 5% of the peak decoding throughput shows that much lower laten-

cies can be attained, with operations points still close to full decoder potential. In this

case, we can see that relaxing this constraints can lower the latency eight and threefold

for the TpN approach for datasets I and III. In addition, almost a twofold reduction in

latency is observed for all datasets using the BpC approach. For all the considered cases,

the TpN granularity represents a better strategy as it is able to deliver higher throughputs

(Figure 4.17) at lower latencies (Figure 4.18).

Table 4.5: Throughput and latency at 1% and 5% of the peak performance for datasets I-a) and III-a–e).

1% to peak performance 5% to peak performance
Throughput (Mbit/s) Latency (ms) Workload Throughput (Mbit/s) Latency (ms) Workload

Approach TpN BpC TpN BpC TpN BpC TpN BpC TpN BpC TpN BpC

D
at

as
et

I-a) 183.9 190.9 158.1 135.2 28 20 176.5 183.2 23.5 77.0 4 14
III-a) 114.3 112.5 17.3 24.3 161 224 109.7 107.9 6.2 11.48 55 100
III-b) 140.7 134.9 23.3 29.5 177 217 136.5 130.9 8.8 15.22 65 109
III-c) 173.9 170.5 17.2 15.9 121 111 166.9 163.6 8.0 15.8 55 105
III-d) 169.9 158.7 26.8 23.2 148 210 163.0 152.3 8.1 13.8 43 69
III-e) 195.0 183.2 28.3 52.2 150 258 187.1 175.8 9.5 14.2 48 68

Asynchronous memory transfers could be defined which would hide the memory

transfers time completely behind computation [156] and would also work in favor of the

intended high throughput, low latency objective. Considering that the workload can be

broken down into distinct streams of computation, a number Ns of streams, each de-

98

4.3 Single-GPU Decoders

Number of codeword batches

0 100 200 300

L
a
te

n
c
y
 [

m
s
]

0

500

1000

1500

2000

BpC
TpN

(a) I-a)

Number of codeword batches

0 100 200 300
0

20

40

60

80

(b) III-a)

Number of codeword batches

0 100 200 300
0

20

40

60

80

(c) III-b)

Number of codeword batches

0 100 200 300

L
a

te
n

c
y

 [
m

s
]

0

20

40

60

80

(d) III-c)

Number of codeword batches

0 100 200 300
0

20

40

60

80

(e) III-d)

Number of codeword batches

0 100 200 300
0

20

40

60

80

(f) III-e)

Figure 4.18: Single-GPU DVB-S2 and WiMAX TpC and BpC decoders latency: a) dataset I-a); and b) to f)
datasets III-a)–e).

coding Nb codeword batches, in theory achieves the decoding throughput associated

with Ns×Nb codeword batches, with a decoding latency associated with the decoding

of Nb batches. Practice, however, states otherwise. In particular, one of the limitations

to the streamed approach is that is loosely absent from the OpenCL GPU implementa-

tions. Thus, it is limited to CUDA-enabled devices only. Additionally, the Fermi architec-

ture, the first architecture to implement the overlapping of execution between different

streams, could not cope well with the successive calling of multiple kernels belonging to

different streams [234]. It was the introduction of the Kepler family that permitted to reach

within a negligible margin to the theoretical bound mentioned. In particular, Wang et

al. [156] show that Ns=32 for Nb= ∈ {1, · · · , 8} reaches within a desired operation range

of under 2 ms latency for WiMAX and Wi-Fi decoders.

Self-correction Decoding Architecture The self-corrected min-sum algorithm (SCMSA)

has been formalized in Alg. 2.8. However, prototyping the SCMSA into a decoder sys-

tem requires further reasoning, thus, we are interested in defining guidelines to how this

algorithm can be efficiently realized on a massively parallel processor such as the GPU.

The nature of the self-correction is substantially different than the scaling or offset cor-

rections. First, there is no signal-to-noise ratio (SNR) dependency with which to deal, so

the correction is optimal in that sense. Secondly, it involves the knowledge of a pre-

viously produced message, L(q(i−1)
nm), to be compared against a new tentative L∗(q(i)nm).

99

4. Programmable LDPC Decoders

Furthermore, if in the previous iteration there had been a sign change, then an erasure

was introduced to the L(q(i)nm) message, and the self-correction technique is not to be in

effect for this particular LLR [3,83]. Clearly, the previous message L(q(i−1)
nm) and the incom-

ing message from the CN, at the same edge, L(r(i−1)
mn) must be both loaded for the VN

processing. The latter is a part of the standard MSA VN processing algorithm, although

the former is not (c.f. Algorithm 2.5).

Algorithm Validation For a software representation, this poses a less critical constraint

as memory available is sufficient to hold the value of L(qnm) and L(rmn) simultaneously.

Typically, ASIC and FPGA solutions save on the memory space by performing partial-

parallel configurations able to read and write LLRs consumed and produced by the nodes

in-place [185,229]. The major drawback is in this case, the extra memory bandwidth re-

quired involved in loading an extra message to perform the SCMSA additional steps,

since the data moved by the VN processing increases by a third if the unoptimized ap-

proach, illustrated in Figure 4.19 is taken.

X
s

 bits

X
s

 bits

X
s

 bits

L∗(qnm)(i)

X
s

 bits

L(qnm)(i)

X
s

 bits

(0)

s

Sign

comparator

L(r(i)mn)

L(q(i−1)
nm)

X
s

 bits

(a) VN datapath diagram.

X
s

 bits X
s

 bits

L(rmn)(i)

CN MSA

L(qnm)(i−1)

(b) CN datapath diagram.

Figure 4.19: Non-optimized SCMSA datapath compared to the MSA: a) VN processing; and b) CN process-
ing. The former sees twice the number of messages loaded, whereas the latter is the same as in the MSA.

Algorithm Optimization A closer inspection to Algorithm 2.8 shows that the knowl-

edge regarding an erasure introduced in the previous iteration can be quantified by a

single signaling bit erasure(i−1), instead of comparing the value of the L(q(i−1)
nm) message.

This also serves the purpose of turning the self-correction on or off. When set to 1, the

behavior of the SCMSA is formally that of the MSA, and when set to 0, it evaluates nu-

merically if the algorithm operates the self-correction or proceeds its message update

using a pure MSA approach. Also, in addition to the single bit erasure, the sign bit from

the previous iteration, sign{L(q(i−1)
nm)} can also be stored. A solution to this is depicted in

Figure 4.20. Therein, the bitwidth of the LLR messages exchanged is elevated from Xs to

X f = Xs + 2. The two most significant bits (MSBs) of the new word store the sign and the

100

4.3 Single-GPU Decoders

L(pn)(i)

X
f
 bits

X
s

 bits X
s

 bits

sig
n{

L
(q

n
m

)
(
i−

1
)}

X
s

 bits

sign{L∗(qnm)
(i)}

L∗(qnm)(i)

L∗(qnm)(i)

X
f
 bits

s

1 bit X bits

X
f
 bits

L(qnm)(i)

X
s

 bits

L(rmn)(i) (0)e

1 bit

si
g
n
{L

(q
n
m

)(
i−

1
)
}

er
a
su

re

erasu
re

s

L̂(rmn)(i)

L(r(i)mn)

(a) VN datapath diagram.

X
f
 bits CN MSA

X
s

 bitsX
s

 bits L̂(rmn)(i)
X

f
 bits

L(qnm)(i−1) L(rmn)(i)

sign{L(qnm)
(i−1)}

er
a
su

re

L(qnm)(i−1)

X
s

 b
its

L(q(i−1)
nm) == 0

(b) CN datapath diagram.

Figure 4.20: Optimized SCMSA datapath compared to the MSA: a) VN processing; and b) CN processing.
Both see two extra bits added to the LLR message bitwidth to represent the sign and erasure of the previous
iteration.

erasure bits, signaling the sign-bit of L(q(i−1)
nm) and whether an erasure was introduced

at iteration (i − 1). The increased bitwidth requires a number of new operations to be

performed. At the input, the LLR and the control bits must be sliced, with the former

proceeding to the MSA datapath. At the end, data is to be bundled again, after the new

control bits have been updated and the new LLR message after self-correction has been

updated. This leads to the forgoing of the comparator in Figure 4.19 and to the introduc-

tion of a simple XOR-OR chain of operations that control the introduction of an erasure.

While this describes the VN optimized processing, the CN algorithm remains mostly the

same, the only difference is that data must be sliced and bundled again, in order to up-

date the LLR and also to preserve the control bits that are merely forwarded by the CN

processing [3].

Self-correction Performance Evaluation of the BER performance of the SCMSA yields

very promising results. The correcting capabilities of the self-correction technique has

been tried for datasets I-a–b), since they represent the selected codes (in Table 4.3) with

the greatest error-correcting capabilities due to their code block length. Whereas in the

I-b) there is a small gap on the performance, close to 0.5dB between the performance

of the MSA and the SCMSA, for I-a) this gap is close to 0.7dB. The great advantage is

that the self-correction is not SNR dependent on the latter. Thus, there is a positive non-

diminishing gain from using it when compared to the plain MSA. Compared to the nor-

malized min-sum algorithm (NMSA) this is an advantage, since, as observed in Figure 4.21,

the BER performance diverges from its initial behavior and would meet the MSA at a

BER level higher than the error-floor, whereas the SCMSA BER will only meet that of the

MSA in the error-floor region. This is due to the NMSA optimization of the scaling factor

101

4. Programmable LDPC Decoders

had been performed for higher BER than those covered by our simulation, which shows

the potential caveats concerning the use of the NMSA and performing a BER evaluation

that is not error-floor deep [79].

SNR [dB]

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

B
E

R

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

I-a)

I-b)

LSPA

MSA

SMSA

SCMSA

Q5.2

Q6.2
Q5.2

FP

Q6.2

Q5.2/Q6.2

Q6.2

Q6.2

Figure 4.21: BER performance comparison of LSPA and MSA-based algorithms using datasets Ia–b) for the
LSPA, MSA, NMSA and SCMSA for different data representations marked by the label near each curve. It
should be noted the same BER performance obtained for the SCMSA for both Q5.2 and Q6.2.

To weigh in the overhead posed by the control bits, that add two bits to the LLRs

bitwidth, we defined a quantization of Q5.2 and Q6.2 for dataset I-a). As seen, there is

negligible BER between both representations, leading to a net overhead of just 1-bit to

the LLR bitwidth, when compared to the performance of MSA with an extra bit devoted

to the LLR quantization. E.g, a BER gain of 0.7dB is possible for I-a) using 9-bit extended

LLRs that devote 7 bits to data and the remaining 2 to the control bits [3,15]. The BER

simulation was able to achieved within the error floors of the LDPC codes of dataset I in

a feasible execution time because the GPU device has been exploited to the fullest of its

capabilities as a BER simulator device. The surrounding discussion of the BER simulator

is given on Section 4.4.

Summary The proposed binary LDPC decoders are able to reach within high decoding

throughputs at contained decoding latencies. The proposed thread-granularities show

that the attainable decoding throughputs is essentially equivalent between the TpN and

BpC approaches. The former allows for a faster exhaustion of the GPU resources with

the rising workload, whereas the latter requires more codeword batches to do so, leading

to much higher latencies. The introduced Monte Carlo BER simulator has the ability

to provide a tremendous speedup to the BER characterization of new LDPC codes and

decoding algorithms. In particular, we have shown the GPU architecture suitability for

simulation and prototyping in the case of the self-correction technique applied to the

102

4.3 Single-GPU Decoders

MSA (SCMSA), showing that the self-correction permits considerable BER gains not only

in the BER waterfall region, but also in deep BER error-floor ranges.

4.3.5 Non-binary LDPC Decoding

The “holy-grail” of non-binary LDPC decoding is to find a decoder whose complexity

grows with m and not with 2m [237]. Until then, the odds are that non-binary LDPC codes

will see a limited field of deployment, at least for very high data rate applications. Nev-

ertheless, this still leaves room for their application in lower throughput uses and given

the immense computational power at our disposal today, the possibility to reach within

reasonable decoding throughputs and latencies must not be discarded. Consequently,

we discuss in this section, a methodology to define GPU-based non-binary decoders that

could meet these objectives, using the CUDA data-parallel programming model on single

GPU devices.

FFT-SPA Decoding on GPU Among the different decoding algorithms proposed, the

FFT sum-product algorithm (FFT-SPA), as discussed in Chapter 3, is the most promising

algorithm as it yields no sub-optimality, the extended min-sum (EMS) trades an m fac-

tor in the complexity by a nm factor but with the cost of sub-optimality, and it does

not require computation in the Galois domain. Due to the different stages required by

the FFT-SPA (Algorithm 2.12), each phase will see a distinct kernel definition that ex-

ploits differently the GPU engine capabilities. Since both the CN and the VN processing

deal with Hadamard products, or pointwise multiplication of the probability mass func-

tion (pmf) elements, and the factor graph of the non-binary LDPC code introduces only

a simple permutation and depermutation of pmf s, the bulk of the algorithm is the fast

Walsh-Hadamard transform (FWHT). Due to this, the basic conception of the FFT-SPA into

GPU kernels is illustrated in Figure 4.22.

Therein, the basic assumption is having data flowing from the global memory space

to registers in all kernels, except of the FWHT. In the latter, the shared memory space

will be employed so that synchronization between each stage of computation [238] in the

decoder is faster than having to fence through the high latency global memory space.

Operational transform FWHT

The sum-product algorithm (SPA), used for decoding binary LDPC codes can be ex-

tended to deal with LDPC codes over GF(2m) [46]. Its numerical complexity, however,

grows non-linearly with the field’s order m which detracts its usage as a suitable decod-

ing algorithm over GF(2m), namely due to the CN processing step [46,91]. The complexity

of equation (2.42), follows O(M · dc · 2dc·m) and can be ameliorated by switching from the

103

4. Programmable LDPC Decoders

FFTSPA

Device
SM

Shared Memory
SM

Registers

Global Memory (R/W)

Constant Memory (Read-only)
Texture Memory (Read-only)

Shared Memory
Registers

CN
Proc

Per-
mute

Deper-
mute

VN
Proc FWHTFWHT

Figure 4.22: FFT-SPA employment of the GPU memory hierarchy. The most intensive FWHT kernel takes
full advantage of the memory hierarchy of the GPU.

pmf domain to the Fourier domain [47], which transforms the convolution in (2.54) into

a product (2.54), where the Walsh-Hadamard transform (WHT) is employed instead of the

discrete Fourier transform (DFT), since in the GF(2m) domain, the Fourier Transform con-

sists of the WHT, as dicussed in Chapter 3. The Walsh-Hadamard matrix is obtained by

following the Kroenecker product
⊗ [238]:

H2k=H2
⊗

H2k−1 , where H2 =

[
1 1
1 −1

]
. (4.2)

Since the numerical complexity associated with (2.54) is O(M · dc · m · 2m) and that of

the FWHT follows O(2m log2 2m), the FWHT is the highest computational burden of the

FFT-SPA. Hence, a primary challenge of the realization behind Fourier-domain decoders,

is the ability to efficiently compute the FWHT [4]. The LDPC decoding context favors the

execution of several WHTs concurrently, since each pmf sees its domain defined over the

probability and the Fourier domains depending on the processing phase in which they

are. As a consequence, we are able to exploit two levels of parallelism in the parallel

expression of the FWHT to a single-GPU implementation, 1) intra-FWHT where multiple

threads to concurrently compute each WHT are spawned, and 2) inter-FWHT with the

launching of several blocks per execution, each computing their own WHTs.

The transform sizes N={128, 256} are of particular interest, since over GF(2m) they

correspond to the dimensions of the WHT for the high-order fields GF(27) and GF(28).

We define kernels that utilize the low latency, high bandwidth register file and the on-

chip shared memory using two levels of parallelism, intra- and inter-FWHT, as shown

in Figure 4.24. In particular, we discuss the particularities of finding a suitable indexing

scheme for the shared memory storing of data of the inner computation produced at each

stage in the FWHT factorization.

104

4.3 Single-GPU Decoders

x0
x1
x2
x3
x4
x5
x6
x7

+

+

+

+

-

-

-

-

+

+

-

-

+

+

-

-

+

-

+

-

+

-

+

-

y0
y1
y2
y3
y4
y5
y6
y7

bank 0

bank 1

bank 2

bank 3

bank 0

bank 1

bank 2

bank 3

t0
t1
t2
t3

t0
t1

t2
t3

t0

t1

t2

t3

bank 0

bank 1

bank 2

bank 3

bank 0

bank 1

bank 2

bank 3

Figure 4.23: Shared memory conflicts on the 8-point radix-2 FWHT. The underlying shared memory ar-
chitecture is assumed to be a B=4-bank addressing space, with one thread ti per butterfly. The in-place
computation of the FWHT will be conflict free (shown in green) for bank 0 in the first stage, as only thread t0
accesses it, but will yield conflicts in the second and third ones (shown in red), since it is accessed by threads
t0 and t2. Similar patterns can be extrapolated for higher dimension FWHT and for wider shared memories,
with B∈{16, 32}.

Since it would be impossible to devise an indexing scheme that would unfold bank-

conflict free accesses for in-place computation, the different stages consume data and

produce data according to distinct strides. This way, several different strides can be em-

ployed to ensure minimal to no bank-conflicts, since they are optimized for a particular

stage. The naive implementation of the 8-point radix-2 FWHT illustrated in Figure 4.23

is shown in Figure 4.24 depicting how data traverses the different memory addressing

spaces. It is clear that too low factorizations would impair the number of threads that

can be spawned per FWHT and would also entail more stages to compute, thereby in-

creasing the shared memory utilization, in its turn, reducing the GPU ability to keep a

high number of active threads. On the other hand, computation split across different

warps or wavefronts, requires the enforcing of synchronization points at each stage com-

puted. Hence, the higher the number of threads, the greater the number of warps, and

the higher the overhead associated with synchronizing all the threads.

Moreover, the specificities of the CUDA GPU engine with regards to the shared mem-

ory are such that optimal strides for 0-bank-conflicts must validate the following con-

straint. Assuming the memory access is strided, as defined in Listing 4.4, the stride s

extern __shared__ int shared_data[];
int data = shared_data[BaseIndex + s * tid];

Listing 4.4: Shared memory strided access of the shared_data array with a stride s, by thread tid, starting at
an arbitrary BaseIndex offset position.

must conform to the following constraint to avoid memory bank conflicts when access-

ing data. For two arbitrary threads tid and tid + n, a bank conflict occurs whenever s×n

is a multiple of the number of banks B or, equivalently, when n is a multiple of 32/d, and

105

4. Programmable LDPC Decoders

d = gcd(32, s). Hence, there is no bank conflict only if the warp size is less than 32/d,

which happens for d=1 and s odd. The solutions finding the better compromise between

maintaining a high number of active threads intra-FWHT, but not too many so as to keep

synchronization overheads low, and that are able to finding odd strides that minimize or

eliminate all the shared memory bank conflicts are discussed next.

The breaking down of the transform size N into factors assumes that no factorization

higher than radix-8 occurs. Thus, the factorization of different N powers of two can be

written as seen in Table 4.6. Considering that thread block sizes equal to the warp size do

not maximize the occupancy of the GPU hardware, and the aforementioned limitations

a fixed size of 64 threads is employed. Given this constraint, for some transform lengths

2m, the number of WHT computed per thread block can be higher than one. Then, each

2m 2 4 8 16 32 64 128 256

Radix
Factorization

2 4 8 8×2 8×4 8×8 8×4×4 4×4×4×4

No. WHTs
per block

128 64 32 16 8 4 2 1

Table 4.6: FWHT factorizations employed.

of the 64 threads loads a number of data elements and proceeds to store these into reg-

isters. This is the prologue phase, illustrated in Figure 4.24. Then, radix-n computation

is applied and data is produced to shared memory, and from it consumed by the threads

when computing the next stage. Between each storing and loading from shared memory,

a __synchthreads(), or a barrier(CLK_LOCAL_MEM_FENCE), is called so that threads from

the two warps composing the block can correctly consume data that has been produced,

i.e, so that write-after-read (WAR) hazards do not occur [238,239]. The strategy pursued to

avoid any bank conflicts is to define a shared memory array with a dimension higher

than the transform size. Thus, there are empty elements at each stage being computed,

however, every array element at a certain point retains data, and the pattern with which

certain indexes are left without data is due to the adjusting to the stride s so that conflicts

are avoided. For the particular case of N=256-point WHT, the prologue and the indexing

at the first stage is exemplified in Listing 4.5. As shown, the 272 elements in the shared

memory array, allows for non-multiple of 32 strides to be employed, as s=68 will not

entail a d=1 for any threads in the warp.

Experimental results The proposed methodology is benchmarked for N∈{128, 256},
because these dimensions correspond high order GF(2m) that attain good BER perfor-

mance [192]. The scalability of the indexing is tested against B∈{16, 32} bank GPU archi-

tectures, in particular, using GPU devices G1, G2 and G6 (Table C.1), which have compute

106

4.3 Single-GPU Decoders

Global Memory
x0 x1 x2 x3 x4 x5 x6 x7 x0 x1 x2 x3 x4 x5 x6 x7 x0 x1 x7 x0 x1 x2 x3 x4 x5 x6 x7

batch 0 batch 1 …

…

batch K-1

Shared Memory
x0
x4

x1
x5

x2
x6

x3
x7

Stage 0

Stage 1

Stage 2

x’0

x’’0

prologue

epilogue

Thread block

x0
x1
x2
x3
x4
x5
x6
x7

+

+

+

+

-

-

-

-

+

+

-

-

+

+

-

-

+

-

+

-

+

-

+

-

t0
t1
t2
t3

t0
t1

t2
t3

t0

t1

t2

t3

x’’0

Stage 0 Stage 1

x’0

Stage 2

pr
ol

og
ue

ep
ilo

gu
e

Figure 4.24: 8-point radix-2 FWHT computation through the GPU memory. Data stored on the global mem-
ory is moved to the shared memory and out-of-place computation is performed on the data in the shared
memory. At the FWHT kernel epilogue data is moved back to the global space.

__shared__ float sMem[272];
float a[4];
offset = blockIdx.x * 256 + threadIdx.x;
//---------- ---------- prologue
a[0] = in[offset + 0];
a[1] = in[offset + 64];
a[2] = in[offset + 128];
a[3] = in[offset + 192];
radix4_kernel(a); //---------- compute first radix-4 stage
j = threadIdx.x & 3;
i = threadIdx.x >> 2;
sMem[threadIdx.x + 0] = a[0];
sMem[threadIdx.x + 68] = a[1];
sMem[threadIdx.x + 136] = a[2];
sMem[threadIdx.x + 204] = a[3];
__syncthreads(); //---------- synchronize threads
a[0] = lMemLoad[j * 68 + i) + 0];
a[1] = lMemLoad[j * 68 + i) + 16];
a[2] = lMemLoad[j * 68 + i) + 32];
a[3] = lMemLoad[j * 68 + i) + 48];
__syncthreads(); //---------- synchronize threads

Listing 4.5: Indexing for the CUDA N=256-point FWHT optimized for B=32 using a radix-4 factorization
and 64 threads per block. The indexing show is for the prologue and the first stage of computation.

107

4. Programmable LDPC Decoders

capabilities 1.3, 2.0 and 3.0, respectively. To highlight the importance of bank optimiza-

tion, we have profiled the bank optimized versions for all GPUs, thereby testing versions

not optimized for the particular number of banks in the shared memory.

Table 4.7: Throughput and profiling of the 128- and 256-point FWHT kernels.

Compute
Capability

N WHTs/ms IpC
Bank Conf.
Prob. (%)

O
pt

im
iz

ed
B
=

16 1.3
128 37434

N/A
0.00

256 18665 0.25

2.0
128 67766 0.678 0.51
256 18783 0.578 0.69

3.0
128 69521 0.731 0.44
256 17178 0.509 1.34

O
pt

im
iz

ed
B
=

32 1.3
128 38959

N/A
0.00

256 27303 0.07

2.0
128 75007 0.725 0.00
256 34035 0.938 0.00

3.0
128 72754 0.788 0.00
256 51699 1.424 0.00

B = 16 [240]
1.3

256
3531 N/A 2.01

2.0 4039 0.364 5.92
3.0 3138 0.278 4.85

As seen in Table 4.7, the memory engine is able to access data elements in the shared

memory whenever the indexing scheme has been optimized for the number of banks in

the architecture. In fact, optimizing for B=32 and deployment on the B=16 architecture

entailed a low percentage of conflict, and has actually lead to performance improvements

for that architecture. However, the reciprocate case, where the optimization has been

performed for a lower number of banks than what the GPU provides sees a high perfor-

mance degradation. Even though the relative number of bank conflicts is low, at most

1.34% of accesses incurs a conflict, the equivalent IpC degradation has tremendous im-

plications for the throughput of the FWHT kernels. For instance, dropping from 0.678 to

0.578 leads to a decrease in throughput from 67766 to 18783 WHT computed per millisec-

ond, with similar patterns observed seen for the other equivalent cases. It is interesting to

note the differences in the IpC and throughput are non-negligible even for extremely low

levels of bank conflicts, e.g., for the B=16 GPU, the FWHT optimized for B=32 yields

0.07% of bank conflicts, however, this translates into a 30% reduction in throughput.

The impact of the variation in bank conflict probability on the throughput can be as-

sessed by comparing the FWHT optimized for B = 32 with the one for B=16, since the

former always yields lower conflict probabilities than the latter. The speedup range for

108

4.3 Single-GPU Decoders

this comparison is represented in Figure 4.25, and spans from 1.04 to 3. As expected the

highest speedup occurs for point F at 3 which experienced a 1.34% conflict probability

reduction, whereas point A sees a negligible 1.04 speedup. As observed, speedups are

higher for the larger 256-point FWHT, regardless of experiencing a lower variation in

bank conflict probability as seen with setups B and D (B=32) and C and E (B=16), expe-

riencing speedups of 1.46, 1.81, 1.11 and 1.05, for variations of 0.18%, 0.69%, 0.51% and

0.44%, respectively. It is, thus, of extreme importance to optimize for the shared mem-

Bank conflict probability reduction (%)

0 0.18 0.44 0.52 0.69 1.34

S
p

e
e
d

u
p

0

0.5

1

1.5

2

2.5

3

A
B

E C

D

FA - N=128 B=32 vs. B=16 on G1 D - N=256 B=32 vs. B=16 on G2
B - N=256 B=32 vs. B=16 on G1 E - N=128 B=32 vs. B=16 on G6
C - N=128 B=32 vs. B=16 on G2 E - N=256 B=32 vs. B=16 on G6

Figure 4.25: Speedup of the B=32 FWHT compared to B=16 vs. bank conflict probability.

ory engine when utilizing it on the developed algorithms. Considering its pivotal role

n the non-binary FFT-SPA, the methodology herein described is critical to maximize the

decoding throughput [4].

Data-Parallelism, Layout and Representation The Tanner graph indexing methods

discussed in Section 4.3.3 can be extended to GF(2m) easily. The FFT-SPA requirement

to load 2m probabilities, organized in pmf s, introduces a non-unitary stride to the same

methods therein discussed [4]. This regularity works in favor of the GPU memory engine

since there is always 2m consecutive elements loaded per message. In particular fields of

higher dimension, such as GF(28), work best in favor of coalesced memory accesses. For

instance, an LDPC code defined GF(28) entails accesses to 28 consecutive elements. If the

underlying bitwidth is set at 128-bits, for CUDA devices, or at 512-bits, for AMD devices,

will saturate the memory engine alignment and a single pmf occupies a full transaction.

In other words, regardless of the memory layout, accesses are coalesced and maximize

the global memory bandwidth.

However, a limitation arises with the data representation of individual probabilities

in the pmf . Nor CUDA- nor OpenCL-devices address at the programming model level, or

have special ALUs, to deal with fixed-point computation. Whereas for LLR-based algo-

109

4. Programmable LDPC Decoders

rithms, that apply only additions, subtractions, with the odd-scaling of data made possi-

ble through a temporary conversion to floating-point representation, multiplications and

divisions require emulation through LUT-indexed computation, for instance. Since this

would mean a massive number of threads constantly accessing LUTs that for high orders

of GF(2m) would not fit into the constant memory. As a consequence float4 vector types

are devoted to storing 4 distinct pmf s belonging to different codewords. The codeword

batch size is then 4 as opposed to 16, as in the majority of the proposed binary decoders.

Thread-parallelism The granularity of the proposed FFT-SPA decoder follows the TpE

approach. The rationale behind this choice is mostly due to the complexity of the algo-

rithm which compels us to keep more threads active to deal with the extra data to be

processed per message. Furthermore, due the L2-cached memory engine the majority of

the transactions that are redundant between threads are actually merged onto a single

transaction. This allows the elimination of the asymmetry behind the TpN approach,

whereupon the CN processing had less threads spawned than the VN processing. In this

case, all the kernels launch one thread per pmf , except the FWHT which, as discussed,

launches one block per pmf [13].

Table 4.8: Execution time and throughput of the FFT-SPA single-GPU decoder for variable GF(q) and differ-
ent FWHT implementations.

Dataset V-d) V-e) V-f) V-g)

Iterations 5 10 15 5 10 15 5 10 15 5 10 15

Throughput [Mbit/s] 1.63 0.82 0.55 0.78 0.39 0.26
0.42 0.21 0.14

0.26 0.13 0.08
1.52* 0.77* 0.52*

3.34† 1.67† 1.11† 2.37† 1.20† 0.79†

Execution Time [ms] 7.51 14.93 22.38 15.80 31.55 47.41
29.01 58.02 86.88

48.27 96.43 145.16
8.07* 15.90* 23.81*

3.67† 7.36† 11.01† 5.20† 10.28† 15.51†

† Proposed bank-optimized FWHT; ∗ bank-optimized with greedy algorithm [240]; unmarked is a generic radix-2 factorization.

Throughput of the FFT-SPA LDPC Decoder on GPU The FFT-SPA decoder tested the

GF(2m) dimensions 2m ∈ {25, 26, 27, 28}, i.e., datasets V-d–f) [95]. Table 4.8 shows the de-

coding throughputs and latency obtained for the G1 GPU device (c.f. Table C.1). To

illustrate the impact of the FWHT on the overall performance we distinguish the follow-

ing cases, The FWHT kernel can be 1) a radix-2 factorization suitable for all GF(2m) orders

and withholds any optimization made to the correct usage of shared memory banks, 2)

a greedy approach to minimizing the number of bank conflicts is used for a B=16 bank

architecture, whose kernel is designated as FWHT∗, and 3) a shared memory optimized

for B∈{16, 32}, designated as FWHT†. Experimental results for the relative weight of the

developed GPU kernels are shown in Table 4.9. It can be seen that the radix-2 FWHT

110

4.3 Single-GPU Decoders

implementation consumed 94.3% of the kernels execution time for GF(28). A significant

improvement was achieved by using the greedy-optimized FWHT, which lowered the

FWHT weight to 65.1%. The proposed FWHT further lowered it to 45.4% of the total

execution time.

By using the greedy-optimized FWHT and the proposed FWHT, throughput is raised,

at 5 iterations, from 0.26 Mbit/s to 1.52 and 2.37 Mbit/s, respectively for GF(28). For the

GF(27) case, the throughput at 5 iterations was elevated from 0.42 Mbit/s to 3.34 Mbit/s.

This is equivalent to speedups of 9.11× and 7.95× when compared to the radix-2 FWHT

and the proposed bank-optimized FWHT.

Table 4.9: Relative execution time of kernels in the FFT-SPA for GF(28).

Kernels FWHT FWHT∗ FWHT†

FWHT 94.3 65.1 45.4
CNProc 1.7 10.6 16.3
VNProc 1.6 10.1 15.8
Permute 1.2 7.2 11.4
Depermute 1.2 7.0 11.1

Related Work Other authors have proposed non-binary LDPC decoders on the GPU

engine. Wang et al. [154] have developed a GPU-based Min-Max LDPC decoder for GF(2m)

using the OpenCL programming mode. However, due to the Min-Max algorithm dif-

ferent characteristics, some of the optimizations therein described are limited to algo-

rithms dealing with computation in GF(2m). In particular, forward-backward searching

of the configuration set for each particular CN pertains to these type of algorithms only.

Romero and Chang [147] have presented a non-binary LDPC decoder on GPU where a the

decoding schedule is purely sequential, since in high order fields, there is a high level

of parallelism exposed at the GF(2m) dimension. Comparison of these works with our

proposed non-binary decoders on the GPU engine highlights that equivalent decoding

throughputs and latencies can be obtained using distinct approaches on the GPU engine.

In other words, both their works and the one herein presented on non-binary LDPC de-

coding on GPU stress the complexity of the problem, exposing two sources of bottleneck.

The computation of configuration sets can be largely avoided by moving to the Fourier

domain. However, this introduces the computation of the FWHT, in its turn, the major

source of bottleneck in this domain, with over 45% of the decoding devoted to domain

crossing [4].

Summary The proposed FFT-SPA GPU decoder extends the methodology proposed for

the binary decoding case to the non-binary one. Due to the GF(2m) definition, the data

111

4. Programmable LDPC Decoders

structures and memory layouts are scaled to accommodate the introduced GF(2m) dimen-

sions. The decoding throughput and latency show that modest performance is possible,

nonetheless, sufficient to deal with lower data rate applications.

4.4 GPU-cluster Decoders

The tremendous boost that GPUs acceleration provides for Monte Carlo BER simu-

lation [241] can be stepped up by moving towards the acceleration on GPU clusters [1,2].

Due to the layered composition of the distributed compute resources of the GPU cluster,

discussed in Subection 4.1.4, a bottom-up approach to the Monte Carlo BER simulation

is feasible. Thus, the decoder realizations discussed in the previous section, can be fur-

ther composed into a BER simulator system. Then the single-GPU environment on which

they operate can be expanded onto the multi-GPU distributed environment. To the best

of our knowledge, it was the first time that a Monte Carlo BER on GPU has been scaled to

GPU-cluster execution [1,2]. Wang et al. drive a quad-GPU system using a multithreaded

CPU approach in order to realize a real-time LDPC decoder for WiMAX codes [156]. Even

though very high decoding throughputs can be achieved with this approach, tremendous

energy consumption refrains the use of a cluster as a replacement for dedicated ASIC or

FPGA hardware decoders.

4.4.1 Fast BER Monte Carlo Simulation

As mentioned, the development of BER has been performed in two-phases. First,

we define a methodology for the BER simulation operate efficiently in a single-GPU.

Then the single-GPU system is expanded for multi-GPU execution, through the use of

MPI, so that a SPMD execution model can be applied, as discussed next in Section 4.4.

The motivation for the fast computation of the BER curves of LDPC codes and decod-

ing algorithms combinations is obvious. There is a finite precision to the estimation of

code thresholds put forward by density evolution (DE) or extrinsic information transfer chart

(EXIT) charts. Thus, empirical evaluation is required, especially when the actual Tan-

ner graph structure, decoding algorithm and system-level design features, such as data

representation and numerical approximation of functions [79], are not taken into account

by such models. The empirical evaluation is typically performed under Monte Carlo

simulation. Often, instead of testing random codewords, the all-zero codeword, a valid

codeword for all linear block codes, is evaluated multiple times through a communica-

tion channel. The simulation ceases its evaluation of a specific SNR condition whenever

enough data has been found. Usually, as rule of thumb, 100∼200 invalid codewords and

1000∼2000 error bits must be found prior to stopping the simulation. For very low BER

112

4.4 GPU-cluster Decoders

levels, such as when LDPC codes fall into their error floor region, a cap is usually set so

that the simulation stops guaranteed that no errors exist at that threshold adjusted to the

selected precision.

Hence, a greater drive for deploying large computational power levels to this prob-

lem is motivated by error-floors, that on LDPC codes can become double-edge swords,

especially for long block lengths. They might lie further beyond what is required by

a wireless communication application, but the LDPC code performance might bottom

out just right after that level. In particular, while error-floors come at ∼10−8 for short

to moderate lengths (Wi-Fi or WiMAX codes), they can be found in under ∼10−12 for

long lengths (DVB 2 codes). E.g., for a block length of 64800 bits, a 10−12 BER level with

enough statistical significance requires that 1000 bits have been found at least, which

places the number of required simulated bits at ∼1019. Clearly, if the error floor prob-

ing is to see the light of day in an affordable execution time, superior computing power

must be deployed. To this end, some authors have deployed a distributed FPGA sys-

tem [196] to improve the BER simulation execution time. However, their attained FPGA

decoding throughputs are inline with those obtained with single-GPU that due to their

programmable processor are easier to target.

The system level diagram of the BER simulator is presented in Figure 4.26 it extends

the communication channel system diagram (c.f. Figure 2.1) with other blocks pertaining

the extraction of statistical data from the Monte Carlo BER simulation.

CPU

GPU

DecoderAWGN Demodulator

Statistical

BlockN encoded bits

N
 b

it
s

N
 L

L
R

s

N decoded bits

Number of error bits and codewords

iterate

Figure 4.26: BER simulation model: the AWGN introduces noise to the generated codeword; the modulated bits
are brought to the demodulator that computes LLRs for delivery to the decoder system; after its completion
the statistical block keep track of how many bits and words were wrongly decoded.

AWGN and Demodulator Modules The proposed system leaves room for the inclu-

sion of an encoder block that generates random codewords. However, to simplify the

codeword generation process, and to accelerate the simulation since encoding is a se-

quential task ill-suited for GPU acceleration and, while well-suited for CPU, the CPU is

in control of simulation system and is preferable to have it spin on GPU tasks, rather than

GPU tasks have to spin on CPU tasks. Thus, the system generates the all-zero codeword

(which can be generated by the appropriate memset() operation) already in its modu-

113

4. Programmable LDPC Decoders

lated stage, i.e. having seen the zero bits be assigned with the modulation corresponding

quadrature and in-phase components [242].

Then, at the additive white Gaussian noise (AWGN) channel, a parallel random number

generator (PRNG) with a very long period is employed to generate noise. To this end, the

PRNGs defined in the cuRAND library (cuRAND) API [243] can be deployed. The XOR-

WOW generator is particularly interesting, since it provides a tradeoff of smaller period

(290) with faster generation when compared to the more powerful Mersenne Twister (pe-

riod of 219937−1) [244]. The XORWOW PRNG has the ability to move ahead to the k-th

sample without requiring to draw all those samples. This ability brings high versatil-

ity to the PRNG to be utilized under SPMD execution model, since threads in different

devices can sample the same pseudo-random sequence in the Monte Carlo simulation.

LDPC Decoder Module The LDPC decoder has been defined in the previous section.

Since the decoder I/O interface comes in the form of GPU buffers that consume LLRs

and produce decoded bits, any decoder whose implemented algorithm is LLR-based and

sees the hard-decoding functions realized can replace this module. In addition, there is

no restriction to the thread-granularity introduced in this block, although the finer the

granularity, the quicker the performance will peak for a reduced number of codewords

set for the data-parallelism level. The opposite holds true, the coarser the granularity the

higher the number of codewords required to reach the peak throughput.

As a consequence, a tradeoff in thread-granularity is introduced by the decoder to the

statistical block. In the previous section, we have discussed that the higher the number of

codewords packed within an execution grid, the better the decoding throughput perfor-

mance, even though latency is driven upwards. For the simulation, there is no restriction

to how much latency can be tolerated and since the Fermi-GPU has a limited capability

to hold CUDA streams, we cannot define multiple streams to handle a sufficiently large

number of codewords that reach the peak decoder performance, that also keeps latency

low [156]. On the other hand, if too many codewords are packed onto the same execution

stream, the statistical block will have to perform batch evaluation of the errors produced

after each execution grid has been simulated.

Statistical Module The statistical module is responsible for the evaluation of how many

error bits, and codewords, have been sustained throughout the channel transmission af-

ter the forward error correction (FEC) system. In the particular case that the all-zero code-

word is being used, the statistical block only has to compute the sum of all bits to gather

how many were wrongly decoded. In addition, to find out if a word has been incorrectly

decoded, detecting a single bit set to 1 suffices. However, the GPU engine is better off

114

4.4 GPU-cluster Decoders

at performing an evaluation of the complete decoded words instead of early terminating

when a 1 is detected. Thus, we overload the reduction primitive with two distinct inner

kernels to find the number of error bits and words as follows

No. errors{bits, codewords} =
{

∑
n

Hw (ĉn), Hw

(
+
n

ĉn)

)}
∀n, (4.3)

with Hw the Hamming weight and + the bitwise OR operation (in this case, +
n

, employed

similarly to the summation operator, ∑
n

). The advantage of kernels is that they can be

applied vector-wise, e.g., p− 1 LLRs packed in a vector type corresponding to p− 1 dif-

ferent codewords, that are hard-decoded into a p− 1-bit word array allows for a compact

evaluation, provided ĉn ←
{

ĉn,0, ĉn,1, · · · , ĉn,p−1
}

, where ĉn,i is the n-th decoded bit of de-

coded word i. The Hamming weight Hw() is an intrinsic instruction, available through

the popcount() primitive that returns the number of set bits in a single clock cycle [188].

If an encoding system is introduced to the BER simulator, the reduction kernels are then

updated to

No. errors{bits, codewords} =
{

∑
n

Hw (cn × ĉn), Hw

(
+
n

cn × ĉn)

)}
, (4.4)

with × the bitwise exclusive-OR operation, and cn the state of encoded bit n.

While the vectorized statistical gathering of data is suitable for maintaining high-

levels of data-parallelism, there is a drawback in statistical biasing of the results, in par-

ticular, of the average number of executed iterations. Since the maximum number of

iterations is not usually required, a genie-aided early termination scheme can be em-

ployed to make the decoder cease the issuing of a new decoding iteration when all the

codewords that are in the data-parallelism level kept at the vectorized element have been

correctly decoded. To do so, we resort to the knowledge of the encoded word, and sim-

ply feedback the statistical module information onto the decoder decision to issue new

codewords. Whenever the statistical module finds that all codewords have been correctly

decoded, then the Monte Carlo simulation will proceed to a new iteration. The biasing

occurs because the worst decoding case packed within a vector is the one determining

the number of iterations issued for all the 16 codewords. However, separating the data

so that each codeword can be independently evaluated for errors and unpacking it from

the vector datatype and packing a new codeword adds too much overhead to the sim-

ulation. This is partially motivated by the poor bandwidth achieved by reduction of a

single bit array. The least bitwidth under which operations are efficiently performed is

8-bit integers, which by themselves, make the ALUs active using only a quarter of their

bitwidth [170]—leading to a 10× increase in the execution time of statistical module, let

alone the repacking procedures required. The greatest source of biasing occurs for when

115

4. Programmable LDPC Decoders

an error is detected on the error-floor regions, since the required decoding iterations is

at a low level, and overall, since only one error is detected per a very high number of

successfully decoded bits, this influence is not relevant, though it exists.

4.4.2 GPU Cluster Execution

As previously mentioned, the Monte Carlo BER simulation on the GPU cluster fol-

lows the SPMD execution model. First, for the binary case, the finest-granularity level set

is for TpN decoders executing 16 codewords at the time. Not only does this permit to ex-

plore the maximum alignment for which the GPU memory engine bandwidth peaks, but

also in conjunction with the TpN approach allows to keep the GPU thread engine fully

occupied. While under shorter codes the performance penalty can be non-negligible, this

difference is slighter for long length block codes, as seen in the throughputs obtained for

the short block length codes III and IV and for the longer code of dataset I-a) (c.f. Fig-

ure 4.18). As a consequence of this design decision, it makes little to no sense to have

GPUs communicate with one another in the simulation, since the communication via the

PCIe buses would incur in tremendous overheads. Hence, the SPMD model, whereupon

each GPU handles its own BER simulator that executes a static workload defined by the

MPI rank 0 process. A K number of codewords to be simulated in the cluster are divided

between all the P assigned GPUs and the PRNGs, independently operated by each com-

pute node, are configured so that they sample non-overlapping sequences of the same

pseudo-random number sequence [243].

One of the challenges to be overcome with the execution on a distributed system is

the ability to see the execution time scale linearly with the number of employed GPUs.

An advantage to the SPMD model employed is that we can contain communication to a

minimum. In fact, communication exists in the beginning of the simulation in the form

of the sending of the MPI initialization routine and the access of the MPI nodes to the

arguments that define the simulation. Then at the end, each MPI rank outputs its results

as soon as it finishes to an exclusive file stream that handles the compute node log, and

once completion of all ranks has been communicated to the master, the master merges all

the logs into a single one.

Experimental Results To showcase the tremendous performance boost we can accom-

plish for the Monte Carlo BER simulation of LDPC codes, we benchmark two distinct

LDPC decoders under cluster decoding and benchmark the performance and scalability

of the simulator for one of those cases. The employed GPU cluster is summarized in

116

4.4 GPU-cluster Decoders

Table C.1. It consists of a 1 master to 16 compute nodes dual-GPU cluster. The cluster

performance is profiled for dataset I-a) (c.f. Table 4.3)b).

LDPC Decoder Statistical

AWGN + Demodulator

4.20% 64.04% 30.76%

Figure 4.27: Cluster BER simulator kernels relative occupancy at SNR conditions of 3.0 dB (8.51 issued
iterations in average).

GPU-cluster BER Simulator Performance We have analysed the cluster simulator per-

formance regarding its scalability, throughput and distributed-aware execution. The

DVB-S2 rate 1/2 code BER performance was run on the GPU cluster for a SNR of 2.0

dB, which lies well within the error floor of the LDPC code, yielding 17.42 iterations is-

sued in average, for 2 to 32 GPUs. The data collection methods i-iii) suitability under the

SPMD model is discussed in face of the obtained results. In Figure 4.28a)), we measure

the asynchronous behaviour of the processes running in the MPI distributed environ-

ment. For profiling the developed BER simulator, the GPU-cluster ran exclusively the

simulation, implying a low contention level of the cluster system. Asymptotically, the

BER simulator will collect bit and codeword error levels that are uniformly distributed

across the MPI processes. However, if the simulation is to test a low number of code-

words across several GPUs, then the lower the number of codewords and the higher the

number of GPUs, the greater the computational unbalance. This is measured as amount

of time taken between the first process to finish, the one that encountered the least errors,

and the last process to process, the one that encountered the most. We make this assump-

tion without considering external interference from other computational tasks, although,

for difference reasons, this measure of the computational unbalance would still act as a

constraint to the final step of the BER simulator, gathering and computing each node BER,

involving communication across the cluster interconnection network. In fact, as seen in

Figure 4.28a)), the time difference between the first process to reach the MPI_Finalise()

function and the last one is lower when the number of MPI processes of the BER simula-

tor is low, which means that either overall data collection strategy i) or ii) are well-suited

to compute the final statistical results on the cluster system. Under higher contention we

could rely on strategy iii) to avoid spinning on the final MPI gather or reduce routines.

The BER simulator execution on the Kepler G4 GPU achieved a 3 times speedup when

compared to the Fermi G3 GPU, as seen in Figure 4.28b). The developed BER simulator is,

b)In addition to this dataset, the BER simulator herein described has permitted the evaluation of the BER
performance for datasets I-a) and I-b) under different decoding algorithms and memory systems for other
works with the works communicated in [3,15,16].

117

4. Programmable LDPC Decoders

low contention levels

high contention levels

(a) Scaling of the MPI processes finish offset.

1.296

0.648

0.324

0.972

S
im

u
la

ti
o

n
 T

h
ro

u
g

h
p

u
t

[G
b

it
/s

]

(b) BER simulator scalability across a variable number of GPUs.

Figure 4.28: MPI execution overhead and computational unbalancing scalability running 106 codewords at
a SNR of 2.0 dB: a) the MPI spawning overhead is hardly perceptible, unlike the computational unbalance
that increases with the number of processes spawned; b) throughput in codewords simulated per second,
the decoder running on a single Fermi(G3) and Kepler (G4) systems are shown for reference (S stands for
single-GPU).

118

4.4 GPU-cluster Decoders

Table 4.10: Cluster simulation time and speedup running 106 codewords at a SNR level of 2.0 dB.

No. of GPU 1 2 4 6 8 10 12 14
Speedup - 1.4 2.8 4.1 5.4 6.8 8.1 9.3

Simulation Time [s]
1145.8
348.8∗

816.16 411.7 277.0 210.89 168.4 141.0 123.4

GPUs 16 18 20 22 24 26 28 30
Speedup 10.7 11.7 12.7 13.9 14.6 15.9 16.7 18.2
Simulation time [s] 107.3 98.0 90.4 82.6 78.4 71.9 68.7 63.0
∗ stands for single Kepler G4 GPU execution.

thus, able to scale on newer architectures, allowing us to speculate that the BER simulator

execution time would be further reduced if a Kepler GPU cluster setup is utilized.

GPU-cluster Scalability The scalability exhibited by the cluster simulator scales sub-

linearly to the number of GPUs employed, as seen in Figures 4.29a)) and 4.29b)) and also

in Table 4.10. The sub-linear scalability is due to the cluster environment as the usage

of a dual-GPU node does not see a 2 times speedup but a 1.4 speedup. This is the re-

sult of the MPI environment and also of process interference in the same node. Figure

4.29a)) shows the measured simulator scalability with two distinct speedup scenarios.

The highest slope curve assumes a perfect scalability of the BER simulator extrapolated

from the single-GPU BER simulator performance, i.e. the BER simulator would operate

at k× Tc,1 when using k GPUs. The other curve assumes a perfect scalability of the BER

simulator extrapolated from the dual-GPU performance, which corresponds to the per-

formance of a single dual-GPU node. Hence, for this case we assume the BER simulator

would operated at k× Tc,2 with k the number of used dual-GPU nodes. In order to reach

a fair conclusion regarding the cluster efficiency, the scalability of interest is that of the

dual-GPU. Consequently, we can measure the relative efficiency of scaling the BER sim-

ulator on the cluster, which is shown in Figure 4.29b)). Under our experimental setup

and developed algorithms, we find that the execution of the BER simulator using the In-

finiband or the Ethernet card yields the same scalability, meaning that communications,

although critical for some distributed applications, do not pose any issue. The scalability

with the number of GPU cards involved, given the asynchronous execution flow, should

follow a close to linear speedup. However, assuming that the single-GPU performance

accounts to the full potential of a GPU engine, it was observed that ∼ 25% of the GPU

potential power was not extracted. In order to infer what caused such behaviour, we

ran the GPU locally on the node to compute the speedup values shown in Table 4.10,

and also on the master node through the mpirun command. As expected, no significant

overhead was imposed by the MPI routines. This leads us to a three-fold conclusion:

119

4. Programmable LDPC Decoders

inter-process interference in the same dual-GPU node is responsible for a share of the

sub-linear scalability, since only a 1.4 speedup is achieved with two GPUs; secondly, the

random nature of the AWGN channel is responsible for the remaining share, as some pro-

cesses faced with more unrecoverable errors will execute more decoding iterations than

processes with fewer unrecoverable errors, and thus, take longer to execute. However,

PCIe

Overhead

Cluster

Unbalance

No. of MPI Processes

(a) BER simulator relative scalability across a variable number of GPU nodes.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
80%

85%

90%

95%

100%

No. of MPI Processes

C
lu

s
te

r
E

ff
ic

ie
n

c
y
 (

%
)

Perfect Scaling

Infiniband QDR

1Gbit/s Ethernet

(b) GPU cluster scaling of the MPI BER simulator efficiency.

Figure 4.29: Cluster scalability compared to single- (non-MPI) and dual-GPU (MPI) execution: a) the
speedup achieved compared to a perfect scaling single-GPU decoder performance and also compared to
perfect scaling of the dual-GPU node performance; b) scalability defined as efficiency of resource utilization
with regards to dual-GPU execution.

as previously said, the asymptotic behaviour of the BER simulator, i.e. when the number

of simulated words is extremely large per GPU, will see a distributed load of unrecover-

able and recoverable simulator words per process, and along these lines, the asymptotic

computational unbalance is not a large contribution for the sub-linear scalability. In the

former conditions, and if the BER simulator executes concurrently with other computa-

tionally intensive tasks, the computational unbalance between MPI processes will be due

to the computational resource sharing between processes.

An important performance parameter of the BER simulator, and that of applications

which follow the SPMD execution model, is the scalability across nodes on the cluster.

120

4.4 GPU-cluster Decoders

We represent the scalability of the BER simulator, taking the single-GPU simulator as ref-

erence, in Figure 4.29a), and its efficiency regarding a perfect scalability in Figure 4.29b).

From it, we can discuss how the dual-GPU configuration influences the scalability. As

observed, even for dedicated PCIe buses, there is a considerable reduction in the simula-

tion throughput when using both GPUs simultaneously than when using a single GPU.

Therefore, the attainable theoretical peak is not bounded by the number of GPU devices,

but rather the number of devices weighed by this reduction. With regards to this new

theoretical peak, we can then estimate the efficiency of the GPU cluster using both the

1Gbit/s Ethernet and the Infiniband QDR interconnection networks. The lower latency

response and data rate of the Infiniband interconnection does not outweigh that of the

Ethernet for the Monte Carlo simulation. In fact, under both networks, the efficiency

attained drops to ∼84.3% using all the GPUs in the cluster [2].

With regard to a corresponding simulation time on a GPU-cluster for a variable num-

ber of tested codewords, we show on Figure 4.30 the feasibility of testing 10{14,15,16,17}

bits, using the case study DVB-S2 code at a AWGN channel SNR of 2.0 dB. From the

execution time shown in Figure 4.30, we are able to define dataset size limits to the rea-

sonable utilization of a GPU cluster. The impractically of simulating a very large data set,

such as 1017 tested bits, is well illustrated, as the time required to evaluate the BER for a

particular SNR would involve a colossal near-decade of computation. Assuming that 3

months of computation is reasonable enough to compute a single BER data point, then

we can define upper bounds to the utilization of GPU clusters in the context of the BER

simulation. Specifically, 1015 tested bits is feasible within these bounds. In fact, testing

5 × 1015 would take slightly longer than our assumed reasonable maximum execution

time. Such large datasets are necessary to the evaluation of error floors, while the BER

of a particular code in its waterfall SNR range, can be readily inferred in a much lower

number of simulated bits, bringing the execution time from a minutes to just a few sec-

onds. Hence, the utilized GPU cluster, is able to fully characterize the BER performance

of LDPC codes in waterfall SNR ranges and in error floor SNR ranges, up to close to

5× 1015 simulated bits.

As seen in Figure 4.30, migration of the Fermi to the Kepler generation of architectures

permits the bringing of a year-long computation workload in a single-GPU to just above

the week range in a similar equipped 32-GPU cluster with 16 compute nodes. As the

scaling down of devices technology nodes is foreseen to continue to elevate the compu-

tational performance of processors, it is expectable that the proposed methodology will

also continue to scale with it [1].

121

4. Programmable LDPC Decoders

No. of dual-GPU nodes

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

ti
o

n
 T

im
e
 [

d
a
y
s
]

10 0

10 1

10 2

10 3

10 4

10 5

10 14 bits 10 15 bits 10 16 bits 10 17 bits

weeks

months

years

decades

Figure 4.30: Cluster simulation time scenarios: time undertaken simulating 10{14,15,16,17} DVB-S2 code-
words. The execution times are presented for single GPU execution (S) and for 1 to 15 dual-GPU nodes
with the solid lines representing the Fermi nodes and the dashed lines the projected gains with an equivalent
Kepler configuration.

4.5 Hybrid CPU/GPU Decoders

Hybrid CPU/GPU architectures are particularly relevant to address one of the key

challenges with GPU computing. As GPU cards are discrete devices connected through a

PCIe interface on a host computer system, despite their high global memory bandwidth,

the device and the host memory space are physically separated by a lower bandwidth

bus (PCIe). As a consequence, cooperative computation can only boost performance for

as long as each device can execute their workload while the other is also executing their

share and, still, room has to be made for moving data from the host or the device mem-

ory space, depending on the DDG task dependencies. While the movement of data from

CPU to GPU has been addressed by using streams, provided under asynchronous exe-

cution in CUDA and OpenCL, there is no general streaming interface to support joint

CPU/GPU execution when devices are discrete. On the other hand, the Ivy bridge Intel

family and the introduction of AMD accelerated processing unit (APU) devices has lead to

the integration of a GPU device onto the CPU die. This creates better opportunities to

explore joint computation, since both devices are now physically on the same chip, and

therefore, share the same physical memory addressing space.

The most fit for purpose model to explore this type of devices is the OpenCL program-

ming model, as it is able to capture under the same platform the two different devices.

While there is still a logical distinction between the memory addressing space of the CPU

driven as an OpenCL device, of the GPU and the host system (which is the CPU), in re-

ality the physical addressing space is the same. The CPU OpenCL device can have its

buffers defined to reside in the host memory and so no data movement or replication of

122

4.5 Hybrid CPU/GPU Decoders

data ensues. Also, the GPU buffers can be allocated accordingly but then mapped to the

CPU memory space, or the other way around depending on the manufacturers’ OpenCL

implementation of this feature. The two-fold result is 1) the so-called zero-copy occurs

for the CPU OpenCL device which sees no data transfer on its memory space, and 2) the

GPU accesses the host memory as well. Under the Intel Ivy bridge architecture, utilized

in the proposed CPU/GPU LDPC decoder methodology, data is shared at the LLC, which

is the L3 as seen in Figure 4.2a).

Relation to CPU-based LDPC decoders Falcao et al. proposed OpenMP decoders for

regular LDPC codes attaining decoding throughputs low decoding throughputs for a

quad-core CPU architecture (∼2 Mbit/s) [124], while under the OpenCL model, the same

regular codes see an improvement to ∼7 Mbit/s [186]. Under the same programming

model, Grönroos et al. are able to push the decoding throughput to ∼40 Mbit/s, only

at the cost of increased data-parallelism and latency [128]. While Le Gal et al. using SSE

and AVX extensions were able to push a quad-core design onto a range between 168∼533

Mbit/s at relatively low latencies (0.46∼2.40 ms) for short to moderate length codes [165].

All these approaches use the TpN fine granularity, except for the latter which relies on the

core-per-codeword (CpC) parallel-expression. However, these approaches do not the case

where the CPU is used in conjunction with a GPU system for heterogeneous computing

of the LDPC decoding algorithms.

4.5.1 Potential of the CPU Co-accelerator

Having surveyed the state-of-the-art in LDPC decoding acceleration on programmable

architectures, with particular focus given to GPU computing, we can observe that a con-

servative approach is taken towards homogeneous computing as opposed to heteroge-

neous. While certain decoder realizations will not do so much for increasing the through-

put, since they present one or two orders of magnitude of throughput performance below

the GPU peak performance [124,186], other approaches highlight that we can be missing on

∼40 Mbit/s of decoding performance, which is well above the WiMAX required through-

put. Also, if we consider that certain LDPC decoder might be constrained by power such

that a power hungry top-notch GPU device is not used, then at the CPU/GPU-chip level

with a thermal dissipation power (TDP) of 70 W, such throughput value can be as high as

50% of the processing power.

4.5.2 Experimental Results

To illustrate our point, we have established a simple experimental apparatus. If a

known LDPC decoder design is taken and optimized for execution over the GPU, we can

123

4. Programmable LDPC Decoders

then use the remaining CPU cores that are spinning on the return of the GPU command

queue instructions to perform a workload which takes exactly the same time that the GPU

workload. Taking into account the lower logic resources that Intel and AMD CPU/GPU

chips have available for multithreading than what Nvidia and AMD discrete GPUs have,

the TpN approach is not as suitable as the BpC approach. For the one, on the CPU, each

workgroup will be allocated to a CPU hyperthread while on the GPU the TpN decoder

would see the serialization of numerous work-items. Also, since less work-items are

able to be concurrently active on the GPU the block-per-node (BpN) quickly depletes the

device capability to perform fully parallel execution at the defined data-parallelism. This

is equivalent to saying that the performance quickly peaks under this approach for this

device architecture.

The benchmarked code is the normal frame DVB-S2 LDPC code (tagged as dataset

I in Table 4.3) under the BpC approach under the Intel OpenCL programming model,

targeting the Ivy Bridge i7-3770k (C2 in Table C.1). Since the 128-bit alignment criteria

holds for this device, the minimum data-parallelism level is set at 16 8-bit codewords

packed onto int4 datatypes. The finest data-parallelism level is then set at 16 codewords

per codeword batch. To explore the data-parallelism design space, the CPU and the GPU

handled all configurations possible for workloads of up to 25 batches per accelerator.

The BpC approach benchmark emulates the M-factorizable architecture [232] assigning a

work-item as if it were a FU in a 360-work-item workgroup configuration [10].

The resulting decoding throughput design space surface is presented in Figure 4.31 a)

and its color map in Figure 4.31 b). As observed, in the color map, the most suitable

workload distribution occurs when the latencies of the GPU and the CPU match. The

top five-tier distributions are shown in Table 4.11 and show that a static workload dis-

tribution can be picked that allows for latency ratio to be close to 1. This ratio defines

the latency of the CPU device to that of the GPU device. These workload configurations

permit a 0.93∼1.04 ratio operation. However, to reach within these ratios, the GPU and

the CPU need to issue a moderate number of codeword batches (7∼8 for CPU and 16∼20

for GPU) which elevates the total latency to the 400 ms range, leaving out its potential for

real-time decoding. Notwithstanding, the optimal top-tier configuration showcase that

50% of the GPU performance is left untamed in the chip if the CPU is not employed for

cooperative heterogeneous computation.

A limitation to further performance boosts brought on by the CPU OpenCL are re-

lated to the compiler ability to vectorize the instructions issued by the OpenCL parallel

kernels onto SSE and AVX registers. Nevertheless, even when the compiler reports the

successful vectorization of the instructions, the decoding throughput and latencies are

much further than what is reported for an SSE-based LDPC decoder under the same

124

4.5 Hybrid CPU/GPU Decoders

302520

No. of codewords on the CPU

151050
0

5

N
o
. o

f c
o
d
e
w

o
rd

s
 o

n
 th

e
 G

P
U

10

0

10

20

30

40

50

60

15

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
)

(a) Throughput surface vs. workload distribution.

No. of codewords on the CPU

0 5 10 15 20 25

N
o

.
o

f
c

o
d

e
w

o
r
d

s
 o

n
 t

h
e

 G
P

U

0

5

10

15

20

25

0

10

20

30

40

50

60best workload distributions

(b) Color map of the throughput vs. workload distribution.

Figure 4.31: CPU/GPU decoding throughput (Mbit/s) vs. workload configuration (16-codeword batches
per device).

Table 4.11: CPU/GPU top tier configurations.

CPU/GPU
Decoder

No. of batches
Thr. (Mbit/s)

Latency (ms)
CPU GPU Ratioa) CPU GPU Total Ratiob)

C
on

fig
ur

at
io

ns 7 16 2.29 59.08 402.67 389.15 404.32 1.04
8 18 2.25 59.59 414.29 398.53 414.78 1.04
7 18 2.57 59.74 445.11 435.14 452.61 1.02
8 20 2.50 60.02 450.77 484.57 483.79 0.93
8 16 2.00 60.08 414.29 398.53 414.78 1.04

a) GPU to CPU workload ratio; b) CPU to GPU latency ratio

125

4. Programmable LDPC Decoders

LDPC code. In fact, the decoding throughput and performances are off by a ten-fold fac-

tor [165]. As a consequence, some computation power can be unlocked by expanding the

OpenCL LDPC decoder execution to the CPU with little code refactoring. However, to

fully extract the performance of the CPU engine, low-level intrinsics must be utilized.

4.5.3 Energy efficiency of the CPU/GPU decoder

One figure of merit of decoders on programmable architectures is their energy ef-

ficiency that yields a metric on how many bits is the decoder system able to decoder

under a fixed power budget. While the decoding throughputs achieved for the current

generation of CPU/GPU systems is shown to be behind to what a GPU is capable, and

also behind the full potential of the CPU computational power using a lower-level ap-

proach [165], to showcase the potential of including the CPU along with the GPU compu-

tation, we analyze this efficiency compared to other cases. Namely, against single discrete

GPU decoders and against the execution of the decoder using the CPU, the GPU and both

at the same time in the x86 hybrid die. This study is presented in Figure 4.32.

An interesting effect observed is that while the CPU and the GPU efficiency are one

order of magnitude apart, the unleashing of more performance to the decoder system

by activating the CPU to perform heterogeneous computation of a workload, the energy

efficiency drops down. The other key feature is that the pure-GPU driven decoder shares

the same order of magnitude of efficiency when compared to the discrete and more pow-

erful K20c and 560 Ti GPU devices. Considering that a power budget constraint might

apply in addition to a decoding throughput, forgoing the fact that latency is too high for

real-time decoding in any considered case, we see that the inclusion of the CPU decoder

elevates the power by almost 50%. Under a scenario where this would surpass the re-

quired budget, certain parts of the device must be untamed for computation. In other

words, it is visible the ability of the current generation of CPU/GPU devices to put cer-

tain parts of the chip in a deep sleep state. As turning on or off the CPU and the GPU

adds either ∼20 W or ∼40 W to the power drawn by the chip, this type of devices offers

a better opportunity at managing several decoding throughputs met and power drawn

levels.

We test the hybrid CPU/GPU decoder against a high-end scientific GPU (Tesla K20c,

G4 in Table C.1) and a lower end gaming device (a GeForce 560 Ti device, G9 in Table C.1).

The results have been found using the Power Sensor listed in Table C.1, and also querying

the appropriate registers in the CPU and GPU hardwarec).

c)The power registers in the Intel CPU confirm the measurement provided by the sensor.

126

4.5 Hybrid CPU/GPU Decoders

Platforms

CPU GPU CPU/GPU K20c 560 Ti

M
b

it
/J

1

10

100

(a) Energy efficiency of the decoders in Mbit/J (log scale).

Time

P
o

w
e

r
(W

)

0

20

40

60

80

100

120

140

i7 3770k CPU

i7 3770k GPU

i7 3770k CPU/GPU

GeForce 560 Ti

K20c

K20c (smi)

20

60

43

340

286

(b) Power profile of the decoders execution (the figure near each profile is the throughput in Mbit/s).

Figure 4.32: CPU/GPU decoding throughput (Mbit/s) vs. workload configuration (16-codeword batches
per device): a) CPU, GPU and CPU/GPU refer to the x86-based approach; b) shows the profile of the power
drawn by each decoder (time scale not normalized).

127

4. Programmable LDPC Decoders

4.6 Summary

In this chapterd), we have proposed methodologies to efficiently explore LDPC de-

coders on programmable architectures using data-parallel programming models. In par-

ticular, rapid prototyping of new decoding algorithms has been performed with the pro-

posal of a bitwidth optimized data representation of the SCMSA [3]. Using the CUDA

programming model we have shown the different tradeoffs regarding data-parallelism

in the form of multiple codeword batch decoding and thread-parallelism using the TpN

and the BpC granularity approaches [2,241]. The overall evaluation performed for GPU-

based LDPC decoders has shown that the great potential for LDPC GPU-based decoding

lies at fast Monte Carlo BER simulation for quick evaluation of deep error-floors [1,2]. Un-

der the BER simulation motto, a bottom-up approach for the composition of a simulator

under a distributed environment, in particular a GPU-cluster, was proposed. These meth-

ods are scalable across multiple GPU generations and allow the execution of estimated

year-long computation in under a week [1]. Moreover, we have studied the realization of

LDPC decoders for codes defined over GF(2m) and discuss its suitable representation in

GPU multithreaded execution under the TpE thread-parallel strategy. The importance of

the FWHT in the context of GF(2m) decoding was also established, to which high band-

width methods that explore all the addressing spaces within the memory hierarchy are

discussed [13].

Revisiting the initial questions posed at this chapter introduction, we find that i) the

high-level synthesis (HLS) tool generation of the final architecture can lead to decoding

throughputs and latencies on a par with dedicated register-transfer level (RTL), especially

for the approaches that are most suitable for the decoding algorithm expression, i.e. the

dataflow decoder. ii) The wide-pipeline decoder quality of results are not impaired by

the HLS tool nature per se, but rather by the underlying model of computation which

is less flexible than the dataflow and the loop-annotated one. We can, thus, state that

the decoding throughput and latencies obtained for the wide-pipeline decoders are due

to the way computation must be expressed which does not properly match the nature

of the LDPC decoding algorithms. Finally, iii) the scheduling of operations that favors

the decoding algorithms the most have turned out to be those where the designer had

the greater control. For the case where computation was deeply pipelined, as in the

wide-pipeline case, scheduling was properly performed, but when commuting from one

kernel to another there is inefficiency of computation brought on by reduced usage of the

pipeline stages on the trailing kernel and the starting one.

d)Portions of the work discussed in this chapter have been communicated as a book chapter and in inter-
national conferences [1–4,10,13].

128

5
Reconfigurable LDPC Decoders

Contents
5.1 Reconfigurable Computing . 130

5.1.1 Reconfigurable Architectures . 130
5.1.2 High-level Synthesis Programming Models 134

5.2 Synthesized LDPC Decoder Accelerators 140
5.3 Dataflow LDPC Decoder . 141

5.3.1 M-modulo dataflow LDPC decoder 143
5.3.2 Pipelined FU Execution . 146
5.3.3 Experimental results . 149

5.4 Loop-annotated LDPC Decoder . 155
5.4.1 LDPC decoder isomorphic mapping to hardware 158
5.4.2 Loop-acceleration . 160
5.4.3 Memory mapping . 161
5.4.4 Experimental results . 164

5.5 Wide-pipeline LDPC Decoder . 176
5.5.1 Altera OpenCL LDPC Decoder . 177
5.5.2 Experimental results . 189
5.5.3 SOpenCL LDPC Decoder . 199
5.5.4 Experimental results . 203
5.5.5 Operational Transform FFT/FWHT 212
5.5.6 Experimental results . 217

5.6 Summary . 221

129

5. Reconfigurable LDPC Decoders

In this Chapter, we discuss the importance of the reconfigurable computing field to

achieve efficient low-density parity-check (LDPC) decoder designs that are able to deliver

very high decoding throughputs and low decoding latencies, at lower power budgets

than programmable hardware [175]. In particular, we explore high-level synthesis (HLS)

approaches [245] that target certain types of template accelerators such as 1) dataflow-

driven accelerators whose computation is performed in space and whose description is

obtained from Java descriptions based on the MaxelerOS [178]; 2) loop-accelerated accel-

erators based on C/C++ languages using the Vivado HLS [179], the one allowing the most

flexibility of optimizations deployed; and 3) wide-pipeline accelerators whose descrip-

tion is obtained from Open Computing Language (OpenCL) kernels [12,177].

5.1 Reconfigurable Computing

Field-programmable gate arrays (FPGAs) introduced in the mid-eighties [173] presented a

larger capacity for “glue-logic” than their ancestor programmable array logic (PAL) devices.

Within a decade, their growth in capacity made them suitable for logic emulation and

prototyping [176], and soon their potential to customize a computer to a particular task

was perceived. This opened the field of reconfigurable computing, with FPGA devices

presenting a very promising alternative to low power digital signal processors (DSPs) [246].

Since its dawn, it has been a very active field of research [175], inheriting a wide body-of-

knowledge from disciplines such as custom hardware design, digital signal processing,

general-purpose computing and computer-aided design (CAD) [56].

Reconfigurable computing is of renewed interest to LDPC decoding, as it allows the

customization of an array device to the particular tasks required by an LDPC decoder.

Due to their silicon density, FPGAs are able to play on a par with application-specific in-

tegrated circuit (ASIC) devices, both in terms of decoding throughput and latency, while

offering at least a ten-fold lower power target than decoders on general-purpose archi-

tectures [56]. Their raw arithmetic performance has been steadily growing in the recent

past, recently surpassing that of the central processing units (CPUs) and graphics processing

units (GPUs), as observed in the adder and multiplier performance comparison shown in

Figure 5.1.

5.1.1 Reconfigurable Architectures

Hardware substrates for reconfigurable computing span from fine-grained to coarse-

grained arrays, with FPGA mostly composed of the former, while also integrated many

widely employed computing blocks, such as DSPs and multipliers. For this reason, they

provide very high flexibility of acceleration design, a highly appealing feature for both

130

5.1 Reconfigurable Computing

1

10

100

1000

10000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

D
o

ub
le

-p
re

ci
si

o
n

p
ea

k-
p

er
fo

rm
an

ce

ATI Intel AMD NVIDIA Virtex Stratix

(a) Double-precision adder performance

1

10

100

1000

10000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

D
o

ub
le

-p
re

ci
si

o
n

p
ea

k-
p

er
fo

rm
an

ce

ATI Intel AMD NVIDIA Virtex Stratix

(b) Double-precision multiplier performance

Figure 5.1: Arithmetic performance comparison of CPU, GPU and FPGA devices: a) adder and b) multiplier.

scientific and industrial segments. FPGAs devices can be put to good use in host systems,

providing a wide range of I/O connections (Internet in twisted pair or optical switches,

SATA ports, PCIe power and other data pins). While the FPGA chip is manufactured

standalone, it is also retailed integrated onto its own board package, or in some cases, it

can be directly integrated onto a CPU socket on a motherboard.

Fined-grained Logic Unlike the traditional control flow computer architectures, whose

general-purpose or specialized processors execute a group of instructions, FPGA are

dataflow by nature. They possess a set of digital blocks that are configured on a cir-

cuit that performs a certain function. Nowadays, most FPGA devices combine both fine-

grained and coarse-grained logic blocks—an overview of a typical island style FPGA

architecture is shown in Figure 5.2—with configurable logic blocks (CLBs), the finer ones,

based on numerous lookup-tables (LUTs) available in small random-access memorys (RAMs).

The CLBs, illustrated in Figure 5.3, perform combinational logic by storing a given truth

131

5. Reconfigurable LDPC Decoders

DSP

Multiplier

CLB

LUT

RAM

CLB

LUT

DSP

Multiplier
RAM

...

...

..
.

...

...

...

Logic Blocks DSP Blocks Memory Blocks

Figure 5.2: FPGA island style architecture. Functional blocks such as logic, DSPs and memory blocks are sur-
rounded by an interconnection mesh that is routed according to the configuration to which the implemented
algorithm is decomposed.

table and using the logic inputs as addresses to it. Sequential circuits are made possible

by the existence of flip-flops (FFs) at the output of the LUTs. Also, more complex func-

tions can be broken down into chains of LUT configurations. The FF and LUT resources

provided in the CLBs in conjunction with the DSP devices support massively parallel

circuits that can attain very high bandwidths.

Reg

Add

er

Add

er

Reg

Combina-

tional

Logic (LUT)

Altera ALM Xilinx Slice

Reg
L

U

T

L

U

T

L

U

T

L

U

T

MUX

Carry Logic

Reg

Reg

Reg

Reg
L

U

T

L

U

T

L

U

T

L

U

T

MUX

Carry Logic

Reg

Reg

Reg

CLB

Figure 5.3: CLB example: Altera ALM and Xilinx double-Slice. The former providing an eight-input LUT,
two adders, and registered outputs after a MUX chain, the latter providing a double-Slice design, each
composed of 4 LUTs and 4 FFs. Current generations have 4 LUTs and 8 FFs. The CLBs can be configured to
implement a certain combinational logic function, or a fraction of it in combination with other CLBs in the
fabric.

Coarser-grained Logic Other coarser-grained resources exist in the FPGA fabric adding

to its potential flexibility of design, namely, DSP units, usually in the form of multipliers.

Their introduction has been responsible for the elevation of their raw arithmetic perfor-

mance of FPGA devices [56]. Starting with 18×18 multipliers, the current generation of

FPGA incorporates also 27×27 multipliers, allowing for full IEEE 754-compliant single-

precision floating-point operation.

132

5.1 Reconfigurable Computing

Among the remaining coarser-grained blocks available in the FPGA fabric, on-chip

RAMs, usually in the form of block RAM (BRAM) elements are also available. Frequent

accesses to external memory or an external interface can be avoided and data can be

kept near the computation units. This way, a higher flexibility of design for a custom-

tailored memory hierarchy exists, allowing FPGAs to flexibly overcome one of the great

challenges of modern computer architectures, a widening gap between computational

power and external memory bandwidth [167,208]. In most FPGAs, BRAMs are available

throughout the FPGA islands in stacked columns that provide two physical access ports.

Both major manufacturers of FPGAs provide BRAMs that can be configured as a single

dual-port logical memory addressing spaces or as two single-port memories with half

the size—20 Kbit or 2×10 Kbit in the Altera case, and 36 Kbit or 2×18 Kbit in the Xilinx

case.

Logic BlocksDSPsM512 BRAMs M4K BRAMs

I/O elements

PLLs

Figure 5.4: Stratix FPGA architecture. Resources such as DSPs and BRAMs are column-wise interleaved
in the midst of logic elements for improved spatial proximity of resources. Other resources such as I/O
pins and PLLs for clock signals are on the outermost side of the chip, surrounding all the remaining logic
elements.

Furthermore, system on a chip (SoC) devices contain microprocessor cores, such as

an ARM processor. The rationale is that increasing the heterogeneity of the FPGA fab-

ric, each particular aspect of computation can be spread across the particular logic block

which performs better the underlying task. This way, no ill-suited computing blocks are

devoted to computation inside the dataflow accelerator [247]. The flexibility is maintained

by the “glue-logic” provided by the fine-grained logic resources, while high performance

133

5. Reconfigurable LDPC Decoders

is delivered from coarse-grained elements such as DSPs. In particular, the growing need

of including a processing on-chip has lead to the embedding of hard processors and also

of the availability of specialized microprocessor intellectual property (IP) cores to instanti-

ate one using the FPGA FFs and LUTs, such as the Microblaze embedded processor [200].

This way, the necessity to integrate the FPGA onto a host system can be reduced by the

mere necessity of powering up a board that already contains all the necessary memory,

power, logic and I/O resources. For improved flexibility, some FPGA boards also allow

PCIe integration onto a host system, in a similar fashion to how GPUs are integrated [177].

This model has been pursued for the FPGA boards that are used under the OpenCL pro-

gramming model as kernel accelerators [177,200].

Programmable Interconnection All these fine- to coarse-grained resources are connected

via a reconfigurable interconnection network that routes signals between the necessary

logic blocks. Typically, resources are scattered around the FPGA die in small sets or

groups, in column- or row- stacked fashion, interleaving the different logic blocks, so that

there is a somewhat uniform distribution across the chip area [248]. As seen in Figure 5.2,

each intersection of a row and column of logic blocks is provided with an interconnection

box routing signals traversing from a logic block source to its destination across the chip.

A commercial FPGA architecture is illustrated in Figure 5.4, showing the island-style dis-

tributed nature of the logic resources in the Altera Stratix FPGA family.

5.1.2 High-level Synthesis Programming Models

Traditional methods to design FPGA-based accelerators involve register-transfer level

(RTL) descriptions, based on hardware description languages (HDLs) such as VHSIC hard-

ware description language (VHDL), Verilog or SystemC, as a valid inputs to the underlying

synthesizing infrastructure that ultimately generates the bitstream with which the FPGA

device is configured in order to produce the desired computation from the data fed as

input. The discussion concerning the pitfalls and disadvantages of each language remain

partially out of the Thesis scope. Instead we consider that non-recurring engineering (NRE)

costs associated with RTL projects make plenty motivation to seek alternative models for

hardware description. For instance, if we consider the nested-loop structure in the filter

function in Listing 5.6, we can argue on the feasibility of making fast adjustments on the

micro-architecture design of the circuit generated. If a designer is willing to pipeline the

filter kernel, so that in each clock cycle the generated hardware outputs a new element,

explicit writing of the tree shown in Figure 5.5 would be required. This would entail

writing the description of the outer loop fully unrolled so that the resulting accelerator

would be pipelined into accepting a new loop iteration per clock cycle, thus computing

134

5.1 Reconfigurable Computing

#define SIZE 64
void filter(float a[], float b[], float c[]){

for(int i = 0; i < SIZE; i++){
c[i] = 0;
for(int j = 0; j < SIZE; j++)

c[i] += a[i+j]* b[j];
}

}

Listing 5.6: Nested loop structure of a filter function in C.

one iteration (one data element) per clock cycle. A change in the filter size would entail

code refactoring of the filter RTL description, as would changing the output rate from

one element per clock cycle to one every two cycles. This protracted design methodology

could be enhanced with regards to code writing productivity.

...

... ...

64 multipliers

Figure 5.5: Fully unrolled filter function dataflow graph (Listing 5.6). By unrolling the outer loop in
filter, each loop iteration can be computed per clock cycle.

RTL Design Flow What has been described earlier is a simplification of a formal chain

of design stages under RTL design flow. As illustrated in the left of Figure 5.6, this pro-

cess comprises numerous sub-design tasks, divided into various categories. The starting

point is a user-fed specification of the algorithm functionality. If the algorithm is based

on floating-point computation, such model is provided so that a fixed-point model is

derived from it in order to save logic resources and keep the synthesized circuits sim-

pler [186]. While Matlab is a popular choice for simulation, one can take a C, a Compute

Unified Device Architecture (CUDA) or OpenCL algorithm functional description to per-

form the tasks concerning the system designer. After this stage, we step into the hard-

ware design one, 1) where the accelerator micro-architecture must be elaborated, so that

2) its RTL design is performed using an HDL such as VHDL or Verilog, and finally, 3)

area constraints such as floor-planning and timing constraints concerning clock domains

and certain datapaths are defined. The project can, thus, be synthesized to gates, and to

135

5. Reconfigurable LDPC Decoders

Matlab,
CUDA, OpenCL

s
y
s
te

m
 d

e
s
ig

n
e
r

h
a
rd

w
a
re

 d
e
s
ig

n
e
r

v
e
n
d

o
r

Manual
methods

Precision
RTL

FPGA
Vendor

Logic
Analyzer

Algorithm Functional
Description

Floating-point
Model

Fixed-point
Model

Micro-architecture
Definition

RTL Design

RTL Area/Timing
Optimization

RTL Synthesis

Place & Route

Hardware
FPGA

Typical RTL Design Flow

Figure 5.6: RTL design flow for hardware development.

generate circuits for the algorithm acceleration on the FPGA substrate. Next, the project

steps into the vendor design stage, whereupon the synthesized circuits are placed and

the datapath is routed on the resources available in a certain FPGA chip, or floor-planned

chip area. While synthesis can be executed by a specific vendor tool, the process gen-

erates circuits from a hardware description, and thus, it cannot be included as tied to

any particular vendor and is not drawn at the vendor stage in the Figure. Design details

gathered from synthesis, placing and routing, are utilized, in conjunction with the fixed-

point algorithm functional description, to simulate the generated accelerator behavior.

This information can then be used to debug, improve or refactor the RTL design. By all

means, this represents a slow and protracted way of designing hardware, with many in-

puts to refine the system leading to greater opportunities of circuit optimization, but also

to error-prone decisions gathered from many design stage sources. Ideally, we would like

to proceed directly from the algorithm functional description to the FPGA accelerator.

HLS Design Flow The necessity to overcome the high NRE cost and effort put into

writing hardware accelerators via an RTL description has lead to the introduction of HLS

tools [202,245]. A high-level language is used, extended to support hardware functional-

ity not originally supported by the language through the introduction of hardware con-

structs or in the form of an application programming interface (API), so that code refactoring

can share the same productivity as observed in software development models [245]. For

136

5.1 Reconfigurable Computing

Matlab,
CUDA, OpenCL

s
y
s
te

m
 d

e
s
ig

n
e
r

h
a
rd

w
a
re

 d
e
s
ig

n
e
r

v
e
n
d

o
r

Manual
methods

Precision
RTL

FPGA
Vendor

Logic
Analyzer

Algorithm Functional
Description

Floating-point
Model

Fixed-point
Model

Micro-architecture
Definition

RTL Design

RTL Area/Timing
Optimization

RTL Synthesis

Place & Route

Hardware
FPGA

Logic
Analyzer

Algorithm Functional
Description

Floating-point
Model

Fixed-point
Model

Algorithmic C
Synthesis

RTL Synthesis

Place & Route

Hardware
FPGA

Typical RTL Design Flow C-based Design Flow

Constraints

Figure 5.7: From RTL to C-based HLS design flow for hardware development.

instance, for the particular class of C-based HLS, illustrated in Figure 5.7, we can observe

that the micro-architecture definition, RTL design and corresponding area and timing op-

timizations are replaced by a single algorithmic C-synthesis step. Naturally, there is no

“genie-aided” conversion of C to gates. Instead, C-synthesis usually refers to the genera-

tion of an algorithmically equivalent RTL description to that fed as an input. To this end,

most C-synthesizers use a number of RTL primitives for substitution of arithmetic func-

tions, redefinition of functions as hardware modules, among other required translations.

Although hardware accelerators can always be obtained from a mature and stable

HLS compiler, there are several functionally correct equivalents for each particular kernel

description with regards to different optimization figures of merit (memory bandwidth,

logic utilization or data throughput). However, without any designer guidance, a naïve

version is generated. Thus, the synthesizer accepts designer-fed constraints to allow the

generation of efficient hardware designs, based on it [202]. Usually this takes the form

of 1) an API with functions that directly translate to a hardware block, for instance a

FIFO, 2) through annotations in the code, typically in the form of directives, that guide

the HLS tool to apply a certain feature to a particular block of code, or even 3) knowing

beforehand that all code written within a function must expose parallelism through the

supported language constructs as it will be broken down into a certain loop structure, as

it happens with OpenCL.

137

5. Reconfigurable LDPC Decoders

Academia- and Industry-led HLS Tools According to the taxonomy introduced by

Martin [245], we are currently stepping from the 3rd into the 4th generation of HLS tools.

In the current generation, the prevalence of C-based tools is high, due to C popular-

ity among the scientific community. Not only is this effort pushed by academia, but

also by industry. BlueSpec is a toolset for both FPGA and ASIC design based on Sys-

temVerilog. Behavior is expressed via Guarded Atomic Actions, a SystemVerilog exten-

sion of finite-state machines (FSMs). The rationale behind BlueSpec is to improve pro-

ductivity at the hardware design stage, instead of lowering the entry barriers placed

by HDL via a familiar software language [249]. LegUp is an academia driven effort [250]

to provide a HLS tool that generates an accelerator system from a C-specification. The

C-synthesizer separates computation for circuits acceleration, while other data manage-

ment and control functions are dealt by a soft-MIPS processor. This way a host system

for the FPGA can be dismissed as its own system is included. The ROCCC tool, standing

for the Riverside optimizing compiler for configurable computing, is also an academia

driven effort providing a C to VHDL compilation tool [251]. Hence, it introduces a C-

synthesis compilation step (Figure 5.6) upstream of the hardware design stages, rather

than replacing them with a single C-synthesis stage as seen in the right-hand side of

Figure 5.7. C-to-silicon by Cadence Design systems [252] uses SystemC to raise the ab-

straction level and, as argued, to improve the productivity of design by introduction of

Transaction Level Models, and targets both FPGA and ASIC design. OpenCL models have

also been getting traction, as seen with multiple academia driven efforts such as Open-

RCL [253], a tool that generates MIPS-like cores to schedule fine-grained parallel threads;

Silicon-to-OpenCL (SOpenCL) [254] generates a wide-pipeline architecture where threads

become iterations in a deeply pipelined accelerator; and also industry-driven, with Al-

tera and Xilinx supporting an OpenCL compiler for their respective FPGA and SoC de-

vices [177,200]. The former, is the seminal industry-led OpenCL compiler, that alike the

SOpenCL tool, generates a wide-pipeline architecture from an OpenCL input specifica-

tion. Due to its cross-platform capabilities, the OpenCL standard is highly appealing, as

the same code can be reused across CPU, GPU and FPGA devices. The Xilinx OpenCL

compiler represents an addition to the Vivado design suite [179], which supported already

C/C++ and SystemC inputs by the Vivado HLS tool. Therein, a C/C++ specification

generates hardware exportable as an IP core for integration onto an RTL-based architec-

ture for bitstream generation. Furthermore, CUDA for FPGAs has also been a subject of

study, FCUDA allowed the generation of a custom FPGA accelerator from a CUDA ker-

nel specification [255], and FASTCUDA generated a custom architecture based on multiple

Microblaze processors [256]. Also, though not C-based, the MaxCompiler [178], by Maxeler

Technologies, generates a dataflow engine (DFE) from a JAVA-written algorithm specifica-

138

5.1 Reconfigurable Computing

tion (instead of the C-synthesizer one would have a JAVA synthesizer in Figure 5.7 the C

language is read, one would read JAVA for this case) that is pushed through all the HLS

design flow stages until a valid bitstream is generated [178].

HLS Design Decisions HLS tools can be characterized by their ability to generate ac-

celerators ready for execution or not. Some tools have a contained compilation flow,

i.e., their range of design is limited and will not generate an accelerator for the FPGA

instantiating all the required hardware blocks, such as clock and I/O interfaces and, con-

sequently, lacking FPGA pin mapping. Herein lies a considerable productivity gap, since

these tools require additional effort to be put into the design of the accelerator. After the

algorithm accelerators circuits have been generated, they require integration onto a host-

ing system on the FPGA chip. For instance, C-to-Silicon and Vivado HLS work under this

principle, the HLS mechanisms provided are targeted at augmenting the productivity of

designing certain tasks in a global architecture but are not intended to describe the whole

architecture. In the latter, the design can only be exported as an IP core for instantiation

elsewhere. Other tools, on the other hand, relieve the developer from the need to design

the full architecture. In these cases, such as the Altera OpenCL, LegUP and MaxCom-

piler, for instance, the output is a bitstream ready for execution. Requiring less effort but

having decreased flexibility to instruct how the final accelerator architecture should be

is one of the many tradeoffs concerning the use of a particular HLS model. In fact, care-

ful evaluation of the following design decisions must be made in order to achieve high

performance in the synthesized HLS accelerators. This takes into account that the more

flexibility the more inputs are asked from the designer. However, the less the required

inputs the more tied to the underlying HLS tool decision making heuristics will the ac-

celerator be. Thus, we pose three key questions that our proposed methodology attempts

to answer.

i) Should the final architecture be generated by the HLS tool, instead of hand-tuned

by an experienced hardware designer?

ii) Is the high-level programming model suitable for the algorithm candidate for circuits-

acceleration?

iii) Is the underlying accelerator architecture exploiting a scheduling of operations that

favors the algorithm?

In order to address the challenge of producing efficient accelerators for LDPC de-

coders on FPGA devices using HLS models, we discuss how different HLS tools allow

for certain characteristics to be better explored than others in the following sections of

this chapter. To this end we target distinct accelerator architectures based on different

139

5. Reconfigurable LDPC Decoders

HLS tools. In Section 5.3, we explore how a pure dataflow model can be employed on

binary LDPC decoders using the MaxCompiler. In Section 5.2, we discuss the employed

LDPC codes for which the decoders were generated. In Section 5.4, we discuss how to

proceed in the design space exploration towards a high performance LDPC decoders

using C with directive annotations with the Vivado HLS tool. In Section 5.5, we analyze

how wide-pipeline decoders can be developed for binary and non-binary LDPC decoders

using the OpenCL programming model as the algorithmic input to SOpenCL and to Al-

tera OpenCL tools. We also analyze how certain compiler optimizations work best in the

generation of wide-pipeline accelerators, using the SOpenCL tool [12].

5.2 Synthesized LDPC Decoder Accelerators

To assess the performance obtained with the HLS-based reconfigurable LDPC de-

coders we utilize different LDPC codes and algorithms (c.f. Table 4.3). We divide the

LDPC codes used to benchmark the proposed decoder designs onto many categories

based on their 1) Tanner graph construction, 2) code length and 3) code construction.

Considering that the methodologies discussed in the previous Sections for each decoder

type—wide-pipeline, dataflow and loop-annotated—impose a-priori restrictions to ob-

taining very high decoding throughputs and low latencies depending on the code length,

this criteria makes the most sense. Furthermore, the diversity of LDPC codes is not

limited to those found on the encyclopedia of sparse graphs [184], nor to LDPC Irregular-

Repeat-Accumulate (LDPC-IRA) of the 2nd generation DVB (DVB 2) standards, let alone the

quasi-cyclic LDPC (QC-LDPC) of the IEEE standards [33–35]. As a consequence it would

be hard to make a clear distinction between each type of LDPC code based on a single

feature alone, due to its large diversity.

Tanner Graph Indexing Indexing of the Tanner graph adjacency between nodes is found

on the literature to follow one of three distinct approaches. Under ASIC implementations,

hard-wired memory locations can be utilized, though they lead to non-scalable routing

complexity, driving up the chip manufacturing costs the longer the LDPC code [231,257].

Found under both ASIC and reconfigurable computing, barrel shifter approaches that ro-

tate the memory positions of data elements in fixed-line position can be found [103,185,258],

mostly for a kind of LDPC-IRA codes. Finally, QC-LDPC codes see an approach similar

to the former, tuned to the particular case of permutation sub-matrices [100,259].

Tanner Graph Regularity Irregularity within the Tanner graph is unavoidable due to

the underlying code capacity which closes in on the Shannon limit for shorter lengths

than regular codes. However, for simplicity of encoding, standardized LDPC codes are

140

5.3 Dataflow LDPC Decoder

systematic with parity nodes (PNs) interconnected by repeat-accumulate (RA) structures.

Furthermore, column or row swapping of the LDPC codes can be performed without

changing the code attainable bit error rate (BER) performance, and, thus, regularization of

its check node (CN) degree profile and variable node (VN) weight profile can be performed.

With regards to non-binary LDPC codes, the field dimension, usually binary extension

field (GF(2m)), performs a code expansion similar to what is performed by the expansion

factor z f in QC-LDPC codes, i.e., a factor of regulariry of 2m is present throughout the

code structure. Moreover, the complexity of non-binary LDPC codes is captured at the

arithmetic-level and not at the efficiency of memory access, and, thus, it takes a minor

role under non-binary decoding.

Code Length Although code length has been proved not to be the main driving force to

the Shannon limit [260], across the classes of LDPC deployed nowadays, their capacity is

still mainly driven by length. Furthermore, length also drives the number of operations

required to be performed in a reasonable amount of time, irregardless of the number of

bits exchanged [61], since the code length N and number of parity-check restrictions M

drives up the arithmetic complexity, along with dv and dc (c.f. Table 2.1).

We capture the aforementioned diversity onto the LDPC codes summarized in Ta-

ble 4.3. Regarding structured Tanner graph indexing, scenarios I, II and III allow on-the-

fly computation of indexes of data elements [6,7,12], while IV and V require sparse matrix

indexing methods [11,12]. Scenarios posed by II–IV represent short to moderate length

LDPC codes, while I is representative of long length codes. Finally, these two features

are mixed with the field where the code is represented with I–IV over GF(2) and V over

GF(2m).

5.3 Dataflow LDPC Decoder

In this Section, we consider the development of LDPC decoders under a dataflow-

driven approach based on DFEs [178,261]. The underlying programming model utilized to

pursue this type of accelerator architecture is based on the Maxeler’s MaxCompiler [261],

which targets the FPGA as an accelerator using a stream-based approach, hiding details

such as memory controllers for communication of the host computer system with the

FPGA, the interconnection of the different kernels that compose the accelerator, and other

controllers required for the FSM implementation. Instead, the designer focuses on the

dataflow expression of the algorithm as a kernel written in Java extended with dataflow

extensions supported by the MaxCompiler infrastructure (illustrated in Figure 5.8).

The dataflow Java extensions allow the implementation of the Maxeler system com-

prising kernels and a manager. A kernel is defined as a hardware datapath performing

141

5. Reconfigurable LDPC Decoders

MaxCompiler
DFE Generation

Hardware
FPGA

Constraints

Algorithm Functional
Description

Floating-point
Model

Fixed-point
Model

Micro-architecture
Definition

RTL Design

RTL Area/Timing
Optimization

RTL Synthesis

Place & Route

Hardware
FPGA

Typical RTL Design Flow Maxeler

MaxCompiler

Java Kernel
Description

Algorithm Functional
Description

kernel binary

(bitstream)

Host Binary

Standard C
Compiler

Host Code

Maxeler Host

Application

Maxeler RT

Library

a) b)

FPGA

K
e

rn
e

l
0

K
e

rn
e

l
1

K
e

rn
e

l
P

Manager

PCIe

...

b
it

s
tr

e
a

m

HOST
CPU

Maxeler
Application

c)

Figure 5.8: MaxCompiler design flow for hardware development: a) hardware design flow where all micro-
architecture RTL-related tasks are performed by the MaxCompiler DFE generation, b) host program devel-
opment flow linking the Maxeler RT library to a program using a standard C compiler, and c) system level
block diagram of the host, manager and kernel DFEs.

the arithmetic and logical computations that are the mapping result of the algorithm de-

scription. The data required for the kernels to operate is fed by the manager through off-

chip I/O in the form of streams, with the manager also orchestrating the kernel calls for

execution. The compiler exploits a streaming model for off-chip I/O to the PCIe, to im-

plemented DFEs via MaxRing [261], and to dynamic RAM (DRAM) memory. The objective

is to keep the utilization of the available bandwidth of off-chip communication channels

high, without the need to dig deeper onto low level FSMs that control the way data is

flowing. Under this philosophy, by keeping communication and computation separate

through the use of a manager and kernels, the latter can be as deeply pipelined without

encountering synchronization issues. Under this streaming model both communication

and computation occur concurrently.

In order to provide a control by a host application, Maxeler provides, in addition to

the Java extensions with which the kernels are described, a C API for integration within

a C program, much alike the CUDA and the OpenCL programming models. The Java

extensions provide an in-depth customization of the kernels up to the bit manipulation

level, a feature usually omitted by other HLS tools that are C-based, for instance [177,201].

Furthermore, it allows the definition of basic accelerator blocks that can then be instanti-

ated at the Java kernel description level as arrays of dataflow functional units (FUs) for im-

142

5.3 Dataflow LDPC Decoder

proved parallelism exploitation. This way, a fine-grained parallel expression is possible,

keeping the control of the actual parallelism level to the hardware designer. Furthermore,

the Maxeler RT API provides all functionality and interfacing required for handling the

FPGA accelerator composed of DFE.

5.3.1 M-modulo dataflow LDPC decoder

The working system of the dataflow decoder is discussed herein. We designated the

decoder system as M-modulo dataflow decoder due to its modular architecture com-

posed of a number M of FUs as detailed in the discussion that follows. Three separate

units compose the streaming datapath as seen in Figure 5.9, a front-end, a processing

block, and finally a back-end. The front-end loads all data from the input stream and

Front-end

Kernel

Input Stream

Processing Back-end

Output data
Output Stream

BRAM

BRAM

Figure 5.9: Basic dataflow accelerator topology implementing a double-buffering strategy at the input. This
allows for a maximum three streams of data to reside on the system 1) a data stream flowing from the host
to the accelerator, 2) another one being processed in the accelerator kernels and 3) a stream of output data
leaving the accelerator towards the host.

redistributes it to the BRAM units inside the FPGA, the processing stage performs LDPC

decoding over the incoming streams, and, finally, the back-end outputs the decoded data

back in the output stream. Double-buffering is performed so that the developed pipeline

is fully utilized at all times, with computation and data communication occurring simul-

taneously to keep the processing stage actively decoding data [207].

Due to the precise level of control allowed by the dataflow approach, we are able

to design LDPC decoders based on LDPC codes developed with certain hardware traits

in mind, retaining these traits for improved decoding performance [61,258]. In particular,

LDPC-IRA codes such as those developed for the DVB 2 standards allow highly cus-

tomizable decoding architectures based on the factorization of the construction factors

that provide regularity to the LDPC Tanner graph construction. In particular, this class

of codes allows for partially parallel accelerators, designated as M-modulo accelerators,

with M is a sub-multiple of the regularity factor r f with which the code protograph is

expanded [61,232,233]. This architecture provides a tradeoff between logic utilization and

throughput by adjusting the number of FUs devoted to the decoding of nodes, as illus-

trated in Figure 5.10. It is worth noting that this type of architecture can also be reworked

143

5. Reconfigurable LDPC Decoders

for LDPC codes outside of the LDPC-IRA type of the ETSI DVB 2 standards. While the

 KernelManager

partial code word (from PCIe)
FIFO

partial decoded data (to PCIe)
FIFO

FU N-1

C
o

n
tr

o
l

CNBN

Bank

Barrel Shifter

FU 0

BankBankBank

FU 1

BankBank

L
a

te
n

c
y

Figure 5.10: M-modulo dataflow architecture. Data is streamed from the manager onto the appropriate
BRAM memory banks and is decoded in successive partitions with the granularity of the M FUs defined.

M-modulo architecture in ASIC technology explores another tradeoff regarding complex-

ity of the memory system supporting each M- configuration, in FPGA this tradeoff is not

evident, since the required memory blocks (BRAMs) already exist distributed across the

FPGA logic resources. Furthermore, routing contention is not clearly anticipated since

a higher number M of FUs forcibly utilizes more logic resources, thus spatially covers

a broader area, which does not necessarily means poorer routing since computation is

well divided among memory banks. On the other hand, lower M levels lead to spatially

more contained accelerators, in their turn requiring less memory units, since less memory

banks are required. At a first glance, computation logic to memory logic requirements are

perceived to grow in a balanced way.

Moreover, if we consider that in hardware it is near-impossible achieving the par-

allelism levels of programmable architectures such as GPUs by assigning each thread

of computation to a physical execution instance on the FPGA logic, the M-factorizable

architecture serves yet another purpose. It can be adjusted to the amount of logic avail-

able in the target FPGA. Thus, a strategy equivalent to that pursued by thread-per-node

(TpN) parallel expression becomes serialized in M-chunks of nodes composing the Tan-

ner graph of the LDPC code. This way, taking into account the regularity inbuilt in most

standardized codes the scheduling of the nodes in the Tanner graph for update does not

become limited to the Turbo-decoding message-passing (TDMP) scheduling as it can also

support TDMP decoding.

144

5.3 Dataflow LDPC Decoder

0 1 2 3 4 359...

360 361 362 363 364 719...

720 721 722 723 724 1079...

...

...

19440 19441 19442 19443 19444 19799...

...

...

...

32040 32399...

0

1

2

3

4

5

6

7

0

1

2

0 90 180 270 360 32310...

1 91 181 271 361 32311...

2 92 182 272 362 32312...

...

...

54 144 234 324 414 19799...

...

...

...

89 179 269 359 449 32399...

0

1

2

3

4

CN update-modeVN update-mode

s
h
if
t

a
d

d
re

s
s

write order

...

write order

read order read order

Figure 5.11: Memory layout for the M-modulo dataflow decoder. Address and shift LUTs index the Tanner
graph corresponding to the INs. The access pattern is in-order line and bank-aligned reading, shifted-bank
writing for the VN update mode, and address-indexed shifted-bank reading and reverse shift-bank writing
for the CN update mode. The enumerated indexes correspond to the rate N=64800 bits 1/2 DVB-S2 code.

Tanner Graph Indexing The Tanner graph of the LDPC-IRA codes in use with DVB 2

standards is constructed from expanding a set of independent binary columns into the

final dimensions of the LDPC code [61], as discussed in Chapter 4. However, in this case,

using the dataflow approach, we have the flexibility to configure the memory on which

the messages are retained as a 2-dimension memory space. The number of elements

required to map the Tanner graph is given by

Nelements = 2×
(

f j × Kj + f3 × K3
)

, Kj + K3 = K, (5.1)

with f j=max (dv), f3=3 and Kj and K3 the number of VNs with weights f j and f3 respec-

tively.

The memory layout of the log-likelihood ratio (LLR) messages is illustrated in Fig-

ure 5.11. It divides VNs messages in row-major storage and CNs in column-major stor-

age [103,233]. When data is required for access by the VNs, all banks in a line are accessed

simultaneously, and, thus, the VNs that will be updated are consecutively distributed.

On the other hand, CNs are updated in non-consecutive fashion. The memory number

of banks can grow to a maximum width depending on the LDPC code. Also, due to be-

ing able to produce and consume data elements in-place [232], the memory size required

has M
′

banks and a number of lines that defines the total size to be Nelements/2. Since the

number of banks relates to the number of FUs in the design, and the number of stored

LLRs remains the same, for a given M
′

configuration, the number of memory lines is

given as

Nlines =
Nelements

2
× M

M′ =
M
M′
(

f j × Kj + f3 × K3
)

, (5.2)

and, thus, increases with the inverse of the number of FUs in the accelerator.

145

5. Reconfigurable LDPC Decoders

5.3.2 Pipelined FU Execution

Inside the FU expressing the finest-granularity within the dataflow decoder, i.e., at

the node level, computation can be performed in one of two ways. Data can be streamed

from the corresponding memory locations onto the FU and then computation applied to

all data elements in parallel, or in the presence of data dependencies, executed in parallel

for the majority of the arithmetic operations involved. However, this approach comes

-

Iterative

Min-Sum FU

Min-Sum

Min-Sum

RA BRAM

Min-Sum

FIFO

Min-Sum

FIFO

FIFO

FIFO

FIFO

L(qnm)(i) L(rmn)(i)

L(Qn)(i)

L(rmn)
(i)
RA

L(rmn)
(i)
RA

L(Qn)(i)

to next

adjacent FU

from previous

adjacent FU

+
+

FIFO

FIFO

L(Qn)(i−1)

L(rmn)(i−1)

L(qnm)(i)

L(Qn)(i)

R
E

G

R
E

G

VN datapath

CN datapath

max(dc)

max(dv)

+

+

+

max(dc)

Figure 5.12: Dataflow pipelined MSA FU VN and CN datapaths. Data is sequentially fed into the VN or
the CN datapaths which provide fully pipelined execution up to the maximum pace of 1 LLR entering the
pipeline per clock cycle.

with a major limitation. By requiring data elements to be made available for compu-

tation at once, this adds further pressure to the utilization of BRAM units which have

a high, albeit limited, available bandwidth. To prevent this, arithmetic units inside the

FUs would starve for data until all data requests would be served. Naturally, this ap-

proach is ill-suited to maximize the available bandwidth, both delivered by the BRAM

units and by the arithmetic units. Furthermore, parallel trees of computation introduce a

logic utilization overhead that can be prevented.

On the other hand, definition of a pure sequential approach, allows data to flow

through the datapath in FU implementing the decoding algorithm without incurring into

additional BRAM utilization for keeping the hardware in the FU fully active. Naturally,

the decoding architecture would not be able to withstand the latency of the FU for each

146

5.3 Dataflow LDPC Decoder

message flowing through it, and, thus, the FU is fully pipelined so that it can accommo-

date a message per stage of the FU datapath. This datapath definition is illustrated in

Figure 5.12 for the particular case of the min-sum algorithm (MSA), although any other al-

gorithm that is message-passing and LLR-based can be supported with no modification

of the architecture except for the primitive arithmetic instruction issued by each block

in the system level diagram [262]. In the illustrated MSA case, the Iterative Min-Sum FU

computes the CN update rule (2.30) and sequentially outputs after i cycles the update

corresponding to the i-th fed LLR message. In addition it also outputs the absolute min-

imum that is required to process data corresponding to the RA code sub-matrix, i.e., the

PNs. The Min-Sum system blocks compute the following expression

Min-Sum(a, b) = sign(a)× sign(a)×min(|a|, |b|). (5.3)

Fully Pipelined Execution The pipelined FU supports a dual-mode of operation. Both

the VN and the CN datapath are defined within the FU, as opposed to a separate FU

for VN and for CN datapaths. This helps to contain the logic overhead to a minimum.

Not requiring a control unit for two separate FUs, allows sharing the logic required to

implement the data-flow through the correct pipeline. As observed in Figure 5.12, a

certain number of FIFO elements needs to be inserted into the correct locations for a two-

fold purpose. To allow the pipelining of LLRs in the datapaths up to a maximum rate

of one LLR per clock cycle, and as computation occurs fully pipelined, the FIFOs can

hold simultaneously data from two different VNs or CNs. Correct execution in this case

depends on the resetting of the registers inside the VN and CN datapaths.

Considering that the pipeline feature of the FU introduces an additional latency to the

execution of the LDPC in both CN and VN operation mode, data produced by the trail-

ing executing nodes must be streamed to their correct locations prior to the commence of

the next decoding phase, i.e., prior to the nodes that will consume this data specifically

execute. This approach ensures coherent streaming of data in the consumer-producer re-

lationship between nodes in the Tanner graph. Thereby, the introduced coherence-proof

design guard allows for the safe commuting of the FU mode of operation, from CN to VN.

Looking into the particular data streams’ consumption and production patterns, compu-

tation of nodes can be rescheduled in such way that it still matches the M-factorizable

scheduling of nodes in M-chunks, only reordered to avoid memory hazards.

The systematic approach to the rescheduling of the nodes execution order involves

matching the order access of the memory bank lines by shifting the scheduled order tak-

ing into account the latency of the VN and the CN datapath. A-priori analysis of the

LDPC codes involved in the DVB-S2 standards, for instance, shows that all normal frame

codes, under sustained latencies of up to 18 clock cycles can be reordered as tabulated in

147

5. Reconfigurable LDPC Decoders

Table 5.1. The greater the M, the more pressure is put on the correct consumption of pro-

Table 5.1: Dataflow decoder rescheduling of nodes’ order of execution. The critical part is when CN and VN
computation overlaps for the duration of the datapath latency. In the example provided—DVB-S2 rate 1/2
normal frame LDPC code for M=360 FUs—there would be a stream of data consumed incoherently since it
had not been produced by the corresponding CNs (highlighted in red). By performing an appropriate rota-
tion, coherent consumption and production of streams is achieved for this case, and also for the remaining
codes and M-configurations.

In-order execution of DVB-S2 rate 1/2 code (M=360, CN/VN latency 18 clock cycles)

M
em

or
y

lin
es

si
m

ul
ta

ne
ou

s
ac

ce
ss

es

Trailing CNs 249 256 258 91 207 264 307 434 42 61 123 272 349 4 153 262 280 311
Starting VNs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Trailing VNs 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
Starting CNs 212 218 246 288 403 82 87 167 291 304 36 129 221 294 335 18 52 133

Out-of-order execution rotated by 16 positions on the VNs
Trailing CNs 249 256 258 91 207 264 307 434 42 61 123 272 349 4 153 262 280 311
Starting VNs 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Trailing VNs 448 449 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Starting CNs 212 218 246 288 403 82 87 167 291 304 36 129 221 294 335 18 52 133

duced data streams, although analysis shows that for a factorization level of M=360, only

the rate 1/2 code requires reordering of the VNs starting execution. Lower factorizations

of the decoder architecture do not entail a reordering of the nodes’ execution schedule.

Also, this principle would also hold for other standardized codes such as QC-LDPC de-

coders, even though there are slight differences to how mapping of messages in memory

is performed [135].

Finally, as soon as the final iteration data is being streamed back onto the host com-

puter, the double buffering mechanism is already streaming data to the memory lines no

longer in use in the decoder architecture and issuing the execution of the nodes in the

Tanner graph thereof corresponding.

Data-parallelism vs. Task-parallelism The ability to instantiate an accelerator com-

posed of several fine-grained FUs allows us to explore what the optimal tradeoff between

data- and task-parallelism might be. Under the M-factorizable decoding architecture, it

can be summarized in the following way. Taking a fixed number of M
′
FUs how can they

be divided onto K M-modulo LDPC decoders (K × M=M
′
) on the FPGA die such that

the decoding throughput is maximized and the decoding latency is kept at bay. Due to

the decoding architecture nature, a reduction of the number of FUs by a factor Kr leads

to an increase of the latency by the same factor. Thus, the decoding solutions with higher

number of FUs devoted to a single codeword are expected to achieve minimum latency.

However, there is a conceptual equivalence in terms of data throughput in having a 2M-

modulo decoder or two M-modulo decoders in the FPGA accelerator.

In the latter, the tradeoff nature is due to how the compiler generates the circuits and

how well can the placement and routing tool perform its task. Considering that data-

148

5.3 Dataflow LDPC Decoder

parallelism is driven upwards, further pressure is put onto the routing of data to the

correct BRAM locations, which increases in the proportion of the number of decoders

by which the M
′

FUs have been divided. In other words, while there is not pressure to

consuming more logic due to more FUs, memory resources are increasingly procured the

more decoders are included for a fixed number of FUs. As a consequence, we can antici-

pate that the quality of the routing solutions for the more decoders case will degrade, as

opposed to a lower number of decoders.

5.3.3 Experimental results

The methodology discussed for the M-modulo dataflow decoder discussed in Sec-

tion 5.3 has been benchmarked for dataset I in Table 4.3. The hardware has been gener-

ated for the MAX2336B and the MAX3412A boards, respectively architectures F2 and F3

in Table C.1, using the MaxCompiler, in its turn based on the 2012.2 Xilinx Suite [178]. The

decoders incorporate the Maxeler Simple Live CPU (SLiC) interface using its real-time API

to allow communication between the host computer system and the FPGA board through

a 2nd generation x8 PCIe interface (4 GB/s peak bandwidth). Certain decoders, using the

MAX2336B board, have been executed for profiling the power drawn by the board using

the Power Sensor described in Table C.1. This sensor apparatus estimates power based

on the measure of electrical current, through the Hall effect, circulating in the PCIe buses,

it allows a maximum range of ∼250W with quantization steps of 7W (±3.5W precision).

Next follows the discussion on the performance attained with the M-modulo binary

decoder methodology under the dataflow approach. In particular, we analyze the de-

coder system ability to capitalize on the instantiation of a great number of FUs that can

then be broken down into more or less sub-decoder systems. This capability is due to

the overall logic resources available in both the F2 and F3 architectures, with the former

providing the fewer resources than the latter (c.f. Table C.1).

Logic Utilization The M-modulo decoder that is based on designs optimized for LDPC-IRA

codes [185,232] allows for factorization levels that are related to the regularity factor with

which the LDPC code is constructed. In the dataset I case, the normal frame DVB-S2

codes are expanded by a factor of 360 allowing the factorization of the code structure by

any of its multiples. In particular its prime factorization yields 360=23·32·5, thus making

it straightforward, with regards to indexing of the Tanner graph, to instantiate a number

of FUs that is a sub-multiple of 360.

Available No. of FUs = 2i × 2j × 2k, 0 ≤ i ≤ 3, 0 ≤ j ≤ 2, 0 ≤ k ≤ 1 (5.4)

149

5. Reconfigurable LDPC Decoders

We explore the sub-multiples factorization that reduces the 360 value by powers of 2,

i.e., that reduce the number of available FUs of each decoder (5.4) to an admissible range

given by {45, 90, 180, 360}, since it is amenable to just require one more, or less, bit in

the control logic of the LDPC hardware due to the power of 2 difference factor. Fur-

thermore, considering that the properties of the Tanner graph cannot be exploited to the

fullest beyond the regularity factor with which the code is constructed, whenever the

logic resources permitted the instantiation of more than 360 FUs, such level defined the

maximum number of FUs assigned to each sub-decoder system.

The synthesis results for FPGAs F2 and F3 are shown in Tables 5.2 and 5.3, respec-

tively. As aforementioned, due the ample logic resources provided by each FPGA device,

we are able to elevate the number of decoder sub-systems p in the LDPC decoder ac-

celerator, with each sub-system responsible for decoding one codeword. Thus, we are

able to elevate the data-parallelism levels of the LDPC decoder without the need to re-

define computation within the arithmetic and logic units (ALUs), which unlike the GPU

approaches discussed in the previous chapter, or the wide-pipeline approaches in the fol-

lowing subsections, elevates the data-parallelism at the cost of vectorized instructions ap-

plied to words with wider bitwidths packing several data elements. In Tables 5.2 and 5.3,

Table 5.2: Dataflow LDPC decoder hardware characteristics (MAX2336B FPGA): FPGA logic resource uti-
lization, clock frequency and throughput at 10 decoding iterations for the benchmarked LDPC decoders. In
addition, the number of FUs and its configuration in decoders and FUs per decoder is read at the top rows.

MAX2336B (F2)
No. of FUs p×m 45 90 180 360
Config. (p, m)∗ (1,45) (2,45) (1,90) (4,45) (2,90) (1,180) (1,360)

R
es

ou
rc

e
U

ti
l.

(%
) LUTs 12 19 19 33 33 33 62

FFs 16 25 25 43 44 44 82

BRAMs
Total 27 41 29 71 47 35 49

Kernel 13 14 14 18 18 18 24

Pe
rf

. Clock (MHz) 300 250 260 180 150 200 175
Thr. (Mbit/s) 270 450 468 648 540 720 1260
Min. Dec. Iterations 0.76 1.27 1.32 1.82 1.52 2.03 3.54

(p, m) stand for the number of decoders instantiated in the accelerator and m for the

number of FUs instantiated per decoder, with p×m the total number of FUs instantiated

in the overall LDPC decoder design.

Under the MAX2336B FPGA, the LDPC decoder is limited to 360 FUs that push

the utilization of FFs to over 80%. Due to this, alternative configurations (p, m) with

p×m=360 were impossible to implement by the tools. As a consequence, we were lim-

ited to test all admissible configurations for up to 180 FUs. As observed in the through-

put obtained, the highest throughput is, naturally, obtained for (1, 360), but equivalent

designs show that the highest throughput is always achieved for the lowest number of

150

5.3 Dataflow LDPC Decoder

decoder sub-systems in the design. Thus, the highest throughput (1, 90) and (1, 180) are

the decoder systems which attained the best fitting performance, as expressed by the

clock frequency of operation of the designs. There is a clear tendency for the increasing

complexity brought upon by defining more FUs in the design lowering the clock fre-

quency of operation, in particular, for levels of p other than 1 an additional penalty is

added due to the overhead in logic control.

Furthermore, statically splitting the instantiated FUs through a different number of

decoders sub-systems comes with a variable utilization of BRAMs. For each increment in

p a complete set of memory banks is instantiated along with the corresponding logic that

emulates in the supported JAVA language the barrel shifter behavior [10,232]. Thus, the

utilization of BRAMs is the highest for (4, 45) which supports up to 4 distinct memory

systems for the indexing of the LLR messages of 4 codewords. Notwithstanding the

memory footprint doubling from the (2, 90) to the (4, 45) design, the BRAM utilization

level does not indicate it, since the tool is able to re-utilize any space available of BRAM

units whose space has been partially allocated. Furthermore, considering that we have

defined a rate of memory accesses that see a line read and a line write in the same cycle,

but the reading and writing of data never fall on the same memory line, the compiler

was able to reschedule the access to the BRAM so that processing is never stalled due to

insufficient memory ports.

Table 5.3: Dataflow LDPC decoder hardware characteristics (MAX3412A FPGA): FPGA logic resource uti-
lization, clock frequency and throughput at 10 decoding iterations for the benchmarked LDPC decoders. In
addition, the number of FUs and its configuration in decoders and FUs per decoder is read at the top rows.

MAX3412A (F3)
No. of FUs 45 90 180
Config. (p, m)∗ (1,45) (2,45) (1,90) (4,45) (2,90) (1,180)

R
es

ou
rc

e
U

ti
l.

(%
) LUTs 6 9 9 16 16 17

FFs 4 7 7 14 14 14

BRAMs
Total 6 10 6 19 12 8

Kernel 2 2 2 3 3 3

Pe
rf

. Clock (MHz) 260 250 260 200 150 200
Thr. (Mbit/s) 234 450 468 720 540 720
Min. Dec. Iterations 0.66 1.27 1.32 2.03 1.52 2.03

No. of FUs p×m 360 720
Config. (p, m)∗ (8,45) (4,90) (2,180) (1,360) (8,90) (2,360)

R
es

ou
rc

e
U

ti
l.

(%
) LUTs 32 31 32 32 63 64

FFs 26 27 27 27 52 53

BRAMs
Total 37 22 15 13 43 24

Kernel 5 5 5 5 10 10

Pe
rf

. Clock (MHz) 150 150 170 175 90 80
Thr. (Mbit/s) 1080 1080 1224 1260 1296 1152
Min. Dec. Iterations 3.04 3.04 3.44 3.54 3.65 3.24

151

5. Reconfigurable LDPC Decoders

The synthesis results obtained for the MAX3412A board are written in Table 5.3. Due

to the FPGA chip in the board be of a newer family than that of the MAX2336B board, it

provides more logic resources and the CLB within provides double the number of FFs, the

most pressed logic resource after BRAMs in the MAX2336B designs. In this case, we are

able to drive the number of FUs to 720, although we fall in the same situation as before.

On the one hand, we were able to synthesize the (2, 360) and the (8, 90) designs, but on

the other, the remaining admissible configurations could not complete even though the

logic utilization of all elements is kept at under 70%. Nevertheless, we must note that

the new generation of FPGA enables the design of increased parallelism, but does not

elevate the decoding throughput beyond the levels already witnessed for the MAX2336B

board. In part, this is due to the speed grade of the FPGA chip that quantifies how fast

can the logic elements in the chip commute. In other words, while more resources exist,

the clock frequency of operation will not scale.

As observed in the logic utilization levels, the overhead brought on by higher levels of

p is mostly observed at the BRAM utilization ratios and at the critical path of the LDPC

decoder system. The higher the p, the lower the clock frequency of operation, render-

ing the increase in data-parallelism mostly an unwanted operation. Exception must be

made on the (8, 90) design that instantiated more decoder sub-systems than the equiva-

lent (2, 360) design. However, in this case, the basis for comparison should be the (1, 720)

which is impossible to define under the assumed dataset I, as the regularity factor of the

Tanner graph is set at 360 [61].

Considering the tradeoff between data-parallelism levels, driven through the number

of decoder sub-systems p, and attained decoding throughputs, weighed by the clock

frequency of operation, it is clear that setting p=1 is the overall best strategy, in spite of

the decoding latency not having been considered yet. Since latency per decoder word

increases by a factor p for a fixed p×m, it becomes clear that the practical use of defining

more sub-decoder systems within the LDPC decoder accelerator is limited.

Roofline Analysis Considering that both the MAX2336B and the MAX3412A boards

have limited bandwidth provided by the external PCIe interface and by their DRAM

systems, we need to analyze under what conditions is the bandwidth enough to feed

data to the LDPC decoder accelerator without having the processing system starve for

data that is moving from the host system to accelerator, or that is being flushed from the

accelerator to the host system. The case of the LDPC decoding algorithm is particularly

interesting. Due to its iterative nature, so long as a sufficiently high number of decoding

iterations is executed, computation can mask the movement of data, in particular, if data

is flowing in streams in a pipelined fashion. This way, up to three streams of data can

152

5.3 Dataflow LDPC Decoder

occupy the accelerator system, since 1) a stream of data moving from the host to the

accelerator, 2) a stream of data being computed in the accelerator, and 3) another one

being moved from the system to the host can reside simultaneously on the system. This

has been the considered scenario, as illustrated in Figure 5.9, in anticipation of the limited

bandwidth provided the board interfaces.

In particular, we need not consider the movement of data through the DRAM banks,

since data is flowing directly from the host computer system via the PCIe interface and

is being written directly on the BRAM memory space. Thus, we need only to consider

the 4 GB/s peak memory bandwidth provided by the x8 2nd Generation PCIe interface.

Moreover, the analysis pertains to the LDPC decoding domain in the sense that we use

a figures of merit for the bandwidth that make sense under such domain. Thus, the

roofline analysis illustrated in Figure 5.13, expresses the decoder bandwidth as decoding

iterations executed per second and its relation to the number of decoding iterations is-

sued per codeword. The former can be interpreted as a proxy to the signal-to-noise ratio

(SNR) conditions on which the decoding system is operating. The worse the conditions,

the lower the SNR and the higher the number of executed iterations before a new data

stream is decoded, with the opposite relations also holding.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

x 10
5

Decoding Iterations/Codeword

D
e
c
o

d
in

g
 I
te

ra
ti

o
n

s
/s

P
C

Ie
 2

n
d
 G

e
n
 x

8

Max 3 (1,45) 234 Mbit/s

Max 2 (1,45) 270 Mbit/s

Max2, Max3 (1,360) 1260 Mbit/s
Max3 (2,180) 1224 Mbit/s
Max3 (2,360) 1152 Mbit/s
Max3 (8,45), Max 3(4,90) 1080 Mbit/s

Max2 (4,45) 648 Mbit/s

Max2, Max3 (2,90) 540 Mbit/s
Max 2, Max 3 (1,90) 468 Mbit/s

Max 2, Max 3 (2,45) 450 Mbit/s

Max3 (8,90) 1296 Mbit/s

Max3 (1,180), Max3 (4,45) 720 Mbit/s

High
SNR

Lower
SNR

Figure 5.13: Roofline analysis of the dataflow M-modulo LDPC decoder.

In Figure 5.13, the slope curve represents the number of decoding iterations that can

be executed per second for the LDPC code in dataset I bounded by the memory inter-

face of the FPGA board, in this case the PCIe bus. After a certain level of computation

executed, the accelerator is not longer bounded by memory, but rather limited by com-

putation. This turning point occurs when the curve bottoms up and saturates onto a null

slope which is the peak throughput of the decoder. Under our analysis, the turning point,

153

5. Reconfigurable LDPC Decoders

where computation meets memory, corresponds to an SNR operation point that triggers

a certain number of decoding iterations per codeword received for decoding. Naturally,

the lower the throughput the less constrained by the interface limited bandwidth will

the decoder be. On the other hand, very high throughputs, such as those sustained for

the 360 and 720 FUs instantiated that reach the Gbit/s range are limited to not be able to

deliver their peak decoding throughputs if the number of issued decoding iterations is

lower than ∼4 [6,10].

Energy Efficiency The LDPC decoder designs have been benchmarked using the Power

Sensor (c.f. Table C.1) for evaluation of their power efficiency with regards to equivalent

programmable decoders in order to provide a real insight into how much energy is saved

from pursuing reconfigurable computing designs.

D
a
ta
fl
o
w

 E
n
g
in

e

(p
=
1
,m

=
4
5
)

D
a
ta
fl
o
w

 E
n
g
in

e

(p
=
2
,m

=
4
5
)

D
a
ta
fl
o
w

 E
n
g
in

e

(p
=
4
,m

=
4
5
)

D
a
ta
fl
o
w

 E
n
g
in

e

(p
=
2
,m

=
9
0
)

G
T
X

 T
it
a
n
**

Te
s
la

 K
2
0
c
*

M
b

it
/J

/i
te

ra
ti

o
n

Figure 5.14: Energy efficiency of the dataflow M-modulo LDPC decoder measured in Mbit/J/iteration com-
pared to two programmable designs: * from [10] and ** from [156].

As observed from the designs profiled, the energy efficiency obtained ranks close to

the∼1000 Mbit/J/iteration while equivalent GPU decoders will draw∼100 Mbit/J/iteration.

Given that there is a twofold difference in decoding throughput between the dataflow de-

coders on the FPGA and the programmable decoders on the GPU engines, the effective

power gap ranks close to fivefold [10,156].

Relation to RTL Approaches Some comments are due regarding the M-modulo LDPC

decoder designed through RTL project, instead of a HLS approach [185,232]. In particular, if

we consider the work of Gomes et al. [185], their decoder design achieved clock frequencies

of operation lower than those achieved by the dataflow design. Two factors should be

weighed in to help explain this difference. On the one hand, the Virtex II Pro FPGA chip

154

5.4 Loop-annotated LDPC Decoder

utilized is from an earlier FPGA family. As a consequence, it provides a lower number

of logic resources, making the instantiation of more than 360 FUs, or even the breaking

down of the instantiated FUs into several decoder sub-systems, not possible. On other

hand, the speed grade of that generation is much faster than the Virtex 5 and Virtex 6

families that the MAX boards provide. Thus, in principle, the fitting tool should be able

to provide a higher clock frequency of operation. However, re-synthesis of the RTL LDPC

decoder design shows that the clock frequency of operation obtained is not better when

using a more recent version of the Xilinx tool infrastructure, nor when using either the

same FPGA chip as the MAX2336B or the MAX3412A boards.

Reflecting on the fact that the critical path timing is met within a comfortable slack,

there should be room to improve on the clock frequency of operation. However, the syn-

thesizer and the fitter will not pursue this goal on its own. This requires the correct input

from the hardware designer at the appropriate design flow stage (see Figure 5.7), which

highlights that under the HLS appropriate approach, we are able to refrain from dwelling

into deep level optimizations such as defining timing constraints for the hardware gener-

ation tools. In this particular case, the LDPC decoder design was able to see its constraints

met while having been described at the HLS level and not at the RTL micro-architecture

level, as originally intended.

5.4 Loop-annotated LDPC Decoder

In this section, we consider the development of LDPC decoders under a method des-

ignated as loop-annotated decoder. In essence, this HLS approach relies on annotations of

the LDPC decoder source code, via C,/C++ directives or through SystemC descriptions,

to drive the hardware generation. The underlying compiler tool utilized for this case

is the Xilinx Vivado HLS [179]. The design flow of the Vivado HLS is illustrated in Fig-

ure 5.15. The hardware mapping performed generates circuits for a C function marked

as the top-level, similar to an RTL-based flow. All the functions, logic and arithmetic,

inside the top-level are mapped onto block primitives in hardware by the C-synthesis.

At this stage the behavior of the C-synthesized functions can be analyzed for functional

correctness at the clock cycle level prior to performing the circuits synthesis (c.f. C-Logic

Analyzer in Figure 5.15).

The hardware designer is able to drive the circuits mapping of the C code due to an-

notations performed in the form of Tcl directives fed into the C-synthesis process or as

inline directive annotations using the #pragma C language construct. Among the avail-

able directives, we enumerate the directives of interest to the generation of efficient LDPC

decoders.

155

5. Reconfigurable LDPC Decoders

Logic
Analyzer

Algorithm Functional
Description

Floating-point
Model

Fixed-point
Model

Micro-architecture
Definition

RTL Design

RTL Area/Timing
Optimization

RTL Synthesis

Place & Route

Hardware
FPGA

Logic
Analyzer

Algorithm Functional
Description

Floating-point
Model

Fixed-point
Model

RTL Synthesis

Place & Route

Hardware
FPGA

Typical RTL Design Flow Vivado HLS Design Flow

Constraints

Controllers Design

Algorithmic C
Synthesis

C-Logic
Analyzer

Figure 5.15: Vivado HLS design flow for hardware development. The majority of the RTL design is per-
formed at the C synthesis level, although the integration of the HLS-built blocks in RTL is still required,
namely for hooking pin locations for I/O and defining memory controllers.

i) Loop directives that affect the scheduling of iterations in the enclosing loop or struc-

ture of loops

a) unroll - allowing the parallel scheduling of iterations due to unrolling of in-

structions within the enclosing loop partially or completely;

b) pipeline - allowing the initiation of iterations aiming at certain target initiation

interval (II);

c) flatten - controlling how loops in multiple nested levels interact are flattened

to the containing loop structure;

d) merge - controlling if enclosed loops should be merged with their enclosing

ones.

ii) Memory directives that influence how memory is mapped

a) partition - defining how elements are distributed across arrays in order to ex-

pose higher bandwidth of access;

b) reshape - similar to partition only creating wider word arrays in the process.

iii) Resource directives that drive the instantiation of specific hardware units in the

C-synthesized code

156

5.4 Loop-annotated LDPC Decoder

a) memory units such as BRAMs configured for single- or dual-port access, read-

write or read-only access (ROM);

b) specific arithmetic units, such as multipliers, multiplexers or FIFOs;

c) port protocols such as AXI4 [263] for I/O integration purposes and top-level

port handling.

Template Architecture After the design cycle is complete at the C-synthesis level, the

generated RTL accelerator is exported as an IP-XACT core for integration in a system-

level architecture that instantiates as many cores as seen fit in addition to the required

clock and memory interface controllers. To accelerate the design cycle, we take into

consideration a template architecture that instantiates the required clock interfaces and

memory controllers for DRAM access. To this end, we consider the template architecture

illustrated in Figure 5.16.

FPGA Board

FPGA Chip

...b
it

s
tr

e
a

m

H
L

S
 I
P

c
o

re
 1

H
L

S
 I
P

c
o

re
 P

-1

H
L

S
 I
P

c
o

re
 0

AXI4
Interconnect

AXI4
Interconnect

Memory Interface

DRAM 0 DRAM 1

Figure 5.16: Template architecture for the loop-annotated LDPC decoder that hosts the HLS IP cores and in-
stantiates the clock and memory controllers. The memory interface is a MIG [264] core managing the physical
connection to the two DRAM banks which are split into two AXI4 [263] interconnection cores.

The architecture hosts the IP cores that are exported after C-synthesis up to a limit

of P=16 HLS IP cores, due to limitations on the supported number of ports for each

AXI4 interconnect. Furthermore, the rationale behind this topology is having data being

streamed from the DRAM via a double-buffering scheme that divides output and input

streams in two distinct physical DRAM banks. This way, data streamed for decoding

is never racing for bandwidth to DRAM with decoded data being streamed back to the

host. Furthermore, it is desirable that prior to computation, data streamed to the DRAM

banks is moved to BRAMs utilized by the HLS IP cores so as to keep data being computed

close to where the utilized logic performing computation lies. A drawback of this partic-

ular HLS tool is the inability to define the template architecture at the C-synthesis stage.

157

5. Reconfigurable LDPC Decoders

Instead an RTL-based project providing the template architecture without the LDPC de-

coding kernels instantiated as HLS IP cores is recycled through several decoder solutions.

This project is obtained with the Vivado memory interface generator (MIG) and the clocking

wizards and conforms to the correct configuration of the Virtex 709 FPGA board specific

pin locations and clock generators. It can be fully described in Verilog, VHDL or gener-

ated on-the-fly via the appropriate Tcl description of the template [179] to either HDL.

5.4.1 LDPC decoder isomorphic mapping to hardware

Under the HLS model pursued in this section, each C function is mapped onto its

specific hardware instance following a purely sequential approach. All operations per-

formed to data are translated sequentially to a dataflow graph (DFG). Naturally, some

optimizations are automatically applied by the C-synthesizer whenever parallelism is

detected, but for the majority of times, no optimizations are really performed. This also

applies to loops that perform the same computation pattern to data without dependen-

cies between iterations. In other words, the tool guarantees functionally correct behavior

of operation, but does not perform any additional effort of optimization unless instructed

in that direction via the available annotations [179]. To this end, we define a functional

division of the Tanner graph operations in order to better express computation for the

underlying HLS tool. This isomorphic mapping of the computation is illustrated in Fig-

ure 5.17. The represented operations in Tanner graph can be configured for the majority

H =

α 0 1 α 0 1
α2 α 0 1 1 0
0 α α2 0 α2 1

αα2 1 α2 α 1 1 α2 1 1

αc1

c6c5c4c3c2c1

α2c1 c6c6α2c5c4 c5αc4αc2 c3 α2c3αc2

F F F F F F F F F F F F

mv(x)

mvc(x) mcv(x)

mcv(z)mvc(z)

p
e
rm

u
te

d
e
p
e
rm

u
te

CN
1

CN
2

CN
3

VN
1

VN
3

VN
4

VN
5

VN
6

Walsh-Hadamard

Transform

m∗
v(x)

VN
2

α α

vnUpdate();

permute();

depermute();

fwht();

cnUpdate();

index_lut

Figure 5.17: Vivado HLS isomorphic mapping of the message-passing message-passing algorithms. Each
operation operation applied at the Tanner graph node-level or edge-level is mapped to a C-function defini-
tion shown on the right.

of the LDPC decoding algorithms covered in Chapter 2 and is not limited to the binary

or the non-binary case. In fact, the Tanner graph structure illustrated is for a non-binary

158

5.4 Loop-annotated LDPC Decoder

LDPC code, since it represents the most complex case. The binary case would see the

trimming of all the operations defined at the edge-level. At this level, permutation and

depermutation of the pmf s, and the fast Walsh-Hadamard transform (FWHT) applied are

mapped onto the permute, depermute and fwht C-functions. At the node level,which is

the only level of computation retained in the binary LDPC decoder case, the VN and the

CN computations are mapped onto the vnUpdate and cnUpdate. This division makes it

simple to expose parallelism at a fine-grained level, since cycling over the data that is

consumed and that is produced is performed, under a C description, is made via loop

structures that are not uniform across the different computation patterns applied. The

memory locations of messages passing through the Tanner graph are indexed by appro-

priate LUTs, designated in the Figure 5.17 as index_lut.

The application of this design methodology to LDPC decoding of both binary and

non-binary codes is simplified if nodes scheduled for execution follow the two-phased

message-passing (TPMP) instead of the TDMP scheduling [265]. This way, we can split com-

putation into three distinct dataflow regions 1) the cnDataflow, 2) the vnDataflow and 3)

the hdDataflow, as seen in Figure 5.18. Each dataflow region requires that all data con-

Kernel

Input
Stream

Front-end Processing Back-end

Output data
Output
Stream

BRAM

h
d

D
a

ta
fl
o

w

c
n

D
a

ta
fl
o

w

cnUpdate()

fwht()

depermute()

v
n

D
a

ta
fl
o

w

fwht()

permute()

vnUpdate() perform hard-
decoding

Figure 5.18: Vivado HLS dataflow regions within the LDPC decoder accelerator: cnDataflow, vnDataflow
and hdDataflow.

sumed by it is available at the time computation begins, but does not enforce this need

within the dataflow region boundaries. Data can flow through each stage in the region

without the need to synchronize or apply a memory fencing mechanism. On the other

hand, fencing is strictly requited between regions. Between the execution of the CN as-

sociated kernels and those of VNs, and the other way round, messages are passed on

the Tanner graph from one type of node to the other. However, the hdDataflow does not

require fencing, as it can consume messages for hard-decoding as soon as they are made

159

5. Reconfigurable LDPC Decoders

available. Nonetheless, a fencing mechanism would still be required between the VN to

CN dataflow regions, thus it is only a question of whether it is applied after or before the

hard-decoding stage.

Similar to the dataflow decoder streaming model, data to be decoded is streamed

on the FPGA accelerator and distributed to BRAMs that are spatially closer to where

computation occurs in the chip at the front-end stage. The processing stage issues the

computation defined in the kernel by the different dataflow regions. Finally, the back-

end streams the decoded data back to the main memory.

5.4.2 Loop-acceleration

Due to the C programming language utilized for the description of hardware ker-

nels, repetitive computation or computation that is applied to sets of data elements with

certain patterns is made through loop structures. The general case of LDPC decoding

is divided across multiple dimensions in the different node- and edge-level functions as

follows.

i) Node-level (vnUpdate and cnUpdate)

a) M CNs processed;

b) N VNs processed;

c) dc messages processed by the CNs;

d) dv + 1 messages processed by the VNs;

e) 2m or 2m − 1 likelihoods handled in pmf or LLR format.

ii) Edge-level (permute, depermute and fwht)

a) M× dc edges processed in CN to VN traversing;

b) N × dv edges processed in VN to CN traversing;

c) 2m or 2m − 1 likelihoods handled in pmf or LLR format.

This leads to a general prototype of the functionality as seen in Figure 5.19. The trip

count of each loop, and its relative position in the nested-loop structures, determines

what optimizations can be performed to it, under the Vivado HLS model. Pipelining

cannot be enforced on a loop without unrolling any inner loops therein contained. On the

other hand, unrolling of an outer loop causes unrolling of any enclosed loops, except if

an optimization directive exists for the pipelining of an enclosed loop. These constraints

affect how the optimizations process can be driven by the loop directives. The inner

loops in the cnUpdate or vnUpdate kernels have usually much lower trip counts than

160

5.4 Loop-annotated LDPC Decoder

cnUpdate/vnUpdate

M/N nodes

dc/dv messages

2
m

/2
m

-1 pmfs/LLRs

permute/depermute

M x dc/N x dv edges

 2
m

/2
m

-1 pmfs/LLRs

fwht

M x dc/N x dv edges

Figure 5.19: Vivado HLS loop nest structure of LDPC decoding kernels.

their enclosing loops. For the binary case using LLRs the innermost loops in the CN,

VN and permutation kernels are effectively removed, while dc and dv have relatively low

levels, leading to a manageable complexity level when optimizations such as pipelining

or unrolling directives are requested for the outer loop iterating over the nodes or the

edges in the Tanner graph. On the other hand, the greater the order of the GF(2m) the

greater the loop trip count in the innermost loop which in its turn puts pressure on the

bandwidth purported by the BRAMs in the FPGA accelerator.

A complete loop unroll annotation in the code is adhered to by the C-synthesis, which

effectively removes all loop control structure. However, the scheduling of all the opera-

tions in the loop by the different iterations will not necessarily be concurrent. Only if the

number of available memory ports are able to service all the iterations simultaneously

will a complete unroll map onto fully parallel execution. As a consequence, it does not

suffice to move data from the DRAM space onto BRAM blocks in the FPGA chip. We

need to address how data is stored across the BRAM banks so that enough memory ports

are able to serve all the instructions fetching data across multiple iterations.

Furthermore, not only is unroll affected by the lack of enough BRAM ports. Pipelining

of the outermost loops in the decoder design can only ensure the fastest II of one iteration

per clock cycle if enough ports are available to provide data to each loop stage in a single

clock cycle. Since the outermost loop is enclosing loops fetching, dc/dv messages and

then 2m or 2m − 1 data elements, there should be enough bandwidth to deliver at least

dc × 2m and dv × 2m, respectively from outermost to innermost loop.

5.4.3 Memory mapping

By streaming all data from the DRAM to BRAMs at the accelerator front-end, data

is pushed onto memory units spatially closer to where computation occurs. However,

BRAMs are physically two-port memories, which can be split onto two single-port half-

size BRAMs, and the C-synthesizer default behavior is to store arrays on the minimum

number of required BRAMs, with elements consecutively distributed. As illustrated in

161

5. Reconfigurable LDPC Decoders

01234...x...

default mapping

B

R

A

M

2

B

R

A

M

1

B

R

A

M

0

0

1

2

3

...

x-1

x

x+1

x+2

x+3

...

2x-1 3x-1

...

2x+3

2x+2

2x+1

2x B

R

A

M

k

B

R

A

M

1

B

R

A

M

0

0

k

2k

3k

...

x-1

1

k+1

2k+1

3k+1

...

2x-1 3x-1

...

4k-1

3k-1

2k-1

k-1

...

...

k-cyclic partition mapping

0k

1k+1

k-1
2k-

1

...

...

...

B

R

A

M

k

B

R

A

M

1

B

R

A

M

0

0

1

2

3

...

l-1

l

l+1

l+2

l+3

...

2l-1 3x-1

...

3x-k

...

...

k-block partition mapping

0123...

ll+1l+2l+3...

3x-

k
.....

...

...

...

time time time

a) b) c)

Figure 5.20: Vivado HLS BRAM-array partitioning: a) default behavior allocating a new BRAM whenever
needed; b) doing so by cyclically spreading data across k BRAM units; and c) block partitioning across k
BRAM units. In b) and c) the same number of BRAMs is allocated, only data elements are stored differently.

Figure 5.20, the default behavior reserves a port for writing and another for reading,

making in-order data accesses not to be able to occur concurrently since the port cannot

deliver more than a single element per clock cycle. The alternative, thus, is to divide

data using the meachanisms defined by the appropriate directives and more BRAMs are

utilized so that the extra ports can provide more bandwidth and allow for simultaneously

accesses of data elements. This is shown in Figure 5.20b–c) for, respectively, cyclic and

block partitioning by a factor k. For both cases, data is split across a number of BRAMs

such that at least a minimum of k ports can produce k elements per clock cycle with the

appropriate access order of data elements. In the cyclic partitioning case, this entails

access orders that make use of data elements having been stored across k banks with a

stride of k elements. Thus, each block of k consecutive elements (aligned to 0) can be

fetched in a single cycle. Likewise, the block partitioning divides elements consecutively

such that the minimum rate of k elements accessible per clock cycle is obtained if data is

accessed concurrently with a stride of k elements (again, aligned at 0) [179].

It is clear that if cyclic partitioning is instructured to be performed by a factor that

is a multiple of the LDPC code GF(2m) order, then the complete unrolling of the inner-

most loops in the decoding kernels will see iterations successfully scheduled in parallel.

Moreover, since the BRAMs technology offers a word access width of 36 or 72 bits, when

configured in single- or dual-port operation respectively, we can further improve the

bandwidth delivered by the BRAMs by reshaping the arrays from which, and to where,

data is streamed by each kernel. This process is shown in Figure 5.21. Cyclic and block

reshaping takes a form equivalent to the partitioning process, only that partition occurs

after data elements are reshaped onto wider words.

With his scheme, we can effectively provide more data access bandwidth from the

BRAM, as under an emulated perspective, if k words fit onto the wider word of the map-

ping, then each port becomes equivalent to k ports, with regards to the number of ele-

162

5.4 Loop-annotated LDPC Decoder

B

R

A

M

k

B

R

A

M

1

B

R

A

M

0

0

...

...

...

k-cyclic reshape mapping

0/1...

2/3...

...

...

...

...

1

...

2

...

3

...

2k-2

...

2k-1

...

36 bits

2k

2k-2

2k-1

Figure 5.21: Vivado HLS BRAM-array reshaping for improved bandwidth. Assuming data elements of
18 bits, under single-port configuration, each two elements are mapped into a 36-bit word. To this word
reorganization is applied the cyclic partitioning, thus making the of the reshape directive a combination of
mapping elements into words and partitioning of these wider words.

ments it can produce in a single clock cycle. Thus, pipelining of the outermost loops (c.f.

Figure 5.19) will not be as constrained by limited bandwidth as it is under HLS models

that do not allow the designer to explicitly optimize the data layout in the BRAM memory

space [177,261], as dicussed under the OpenCL programming model in Section 5.5.

One way to further improve the access bandwidth within the memory space provided

by BRAMs is to forgo of full-precision data elements and define fixed-point data types

appropriately. While under the C/C++ programming languages, there is no support for

arbitrary precision elements, as so happens with certain C extensions that add support

for hardware constructs but not data types [12,177,201], Vivado HLS effectively extends the

language so data arbitrary precision integers and fixed-point data types are available

through appropriate C types or C++ classes [179]. This allowed us to readily define the

fixed-point precision bitwidth required for the correct functioning of the LDPC decoder,

without the need to write supporting arithmetic functions, that replace the set of arith-

metic operations at C-synthesis stage. This way, coupled with the configuration of the

BRAM memories as two-port interfaces, we are able to push onto a memory transaction

with 72 bits nine data elements at an 8-bits bitwidth, for instance.

Code refactoring and Tcl directives The major problem arising from providing an al-

gorithm description in C/C++ for hardware generation, is the ability of the designer to

step from a software stance onto the hardware generation C-synthesis process and realize

that equivalence of expressions are not realized by the compiler. In other words, while

the functionality of the C program remains the same through two different approaches,

for instance when a pointer is incremented and then dereferenced for data access instead

of having the pointer be dereferenced at a certain address, the C-synthesis process pro-

duces better quality of hardware for one case and not the other. Solving this singularities

163

5. Reconfigurable LDPC Decoders

can prove to be a tricky process, more than defining an algorithm that is functionally

correct—under RTL simulation of the C-synthesized circuits netlist. Certain code refac-

toring details are discussed in the experimental data obtained for the loop-annotated

LDPC decoders.

On the other hand, once the kernels’ description is stable, with regards to code refac-

toring, applying optimizations at a micro-architecture level as deep as pipelining the out-

ermost kernel instead of unrolling it, or splitting data across BRAMs block-wise instead

of cyclically, which in HDL would entail a tremendous NRE refactoring of the kernels de-

scription, under the discussed model, we can as simply as rewrite the accompanying Tcl

directives that serve as C-synthesis design constraints, as seen below. In Listing 5.7, the

set_directive_resource -core RAM_T2P_BRAM "ldpcDecoder" Lq
set_directive_resource -core RAM_T2P_BRAM "ldpcDecoder" Lr
set_directive_resource -core RAM_T2P_BRAM "ldpcDecoder" LQ
set_directive_array_reshape -type cyclic -factor 16 -dim 1 "ldpcDecoder" Lq
set_directive_array_reshape -type cyclic -factor 16 -dim 1 "ldpcDecoder" Lr
set_directive_array_reshape -type cyclic -factor 16 -dim 1 "ldpcDecoder" LQ
set_directive_unroll -factor 16 "ldpcDecoder/cnUpdate/loop1"
set_directive_pipeline "ldpcDecoder/cnUpdate/loop2"
set_directive_unroll -factor 16 "ldpcDecoder/vnUpdate/loop1"
set_directive_pipeline "ldpcDecoder/vnUpdate/loop2"

Listing 5.7: Vivado HLS list of Tcl directives for hardware generation.

arrays Lq, Lr and LQ are defined to lay on BRAMs configured with two-port interfaces, to

which a cyclic reshaping by a factor 16 is applied at the ldpcDecoder kernel level. Fur-

thermore, loops loop1 and loop2 are unrolled by a factor of 16 and pipelined for a target

II of 1, respectively, for both the cnUpdate and vnUpdate kernels.

5.4.4 Experimental results

Herein, we discuss the loop-annotated decoder applied to the non-binary LDPC de-

coding case. To this end, we benchmark dataset V (Table 4.3) by applying the method-

ology discussed in Section 5.4. The decoding algorithm utilized is the FFT-SPA divided

onto two dataflow regions, as illustrated in Figure 5.20, and mapped to nested loop struc-

tures as shown in Figure 5.19. We discuss how the different optimizations carried out

through code annotations, generally speaking #pragmas, but also, code refactoring that

leads to better decoding throughput performances. The Xilinx 2014.2 infrastructure was

used to generate hardware for the VC709 FPGA board—F5 in Table C.1. The template

architecture was defined using the appropriate MIG [264] and clock wizard interfaces and

assembled in a Verilog project using Vivado, which also instantiated a number of LDPC

decoder sub-systems packaged through the Vivado HLS tool. The hardware utilization

levels reported are relative to the fitted design and the decoding latency was extracted

164

5.4 Loop-annotated LDPC Decoder

using the XSim simulator tool to infer the cycle accurate behavior of the LDPC accelera-

tor [8,9].

Mapping the FFT-SPA to HLS C From equations (2.43), (2.43) and (2.54), in Algo-

rithms 2.9 and 2.12, we can observe that each expression is applied to certain subsets

of data, C(v) or V(c) within larger sets mcv(x) or mvc(x) at the node level, and at the pmf

width when traversing an edge, i.e., at the edge-level. Essentially, all the enumerated

functions in the isomorphic mapping of the factor graph to hardware blocks (Figure 5.17)

will be instantiated in the FFT-SPA case. While under a single-instruction multiple-thread

(SIMT)-like architecture [170], expressing the non-binary LDPC code dimensions could be

efficiently performed by linearizing all dimensions to a one dimensional execution grid

of threads (or work-items), as performed under the non-binary wide-pipeline LDPC de-

coder [6] discussed in Subsection 5.5.2. Translation of all the dimensions onto a single

iterator would not be appropriate to finely control the level at which parallelism is ex-

posed. Thus, the tool is explicitly instructed to keep the double- and triple-nested loop

structures (Figure 5.19).

The main issue with defining a single-loop is the ability to apply optimizations at the

appropriate level—at the GF(2m) dimension, or node degree level, or even at the number

of nodes required to be covered. Thus, the first loop structure in the snippet in Figure 5.8

will generate a bit-true C synthesized accelerator under Vivado HLS. However, the tool

will not be able to pick up the optimizations targeted at each dimension level. Even if the

optimization is correctly picked up, the tool will incur in too long C-synthesis times that

can be overcome by refactoring of the C code to the second loop in Figure 5.8.

//flat loop unsuitable for Vivado HLS optimizations
for(int i = 0; i < edges*q; i++){

int e = i/(d_v*q); //get VN id
int g = i%q; //get GF(q) element
int t = (i/q)%d_v; //get d_v element

}

//nested loop suitable for Vivado HLS optimizations
for(int e = 0; e < edges; e++)

for(int g = 0; g < q; g++)
for(int t = 0; t < d_v; t++)

Listing 5.8: Loop structures suitable and unsuitable for Vivado HLS optimizations.

Hence, in order to allow the correct application of the optimizations discussed next,

we label the loop nests according to following nomenclature. 1) The outermost loop, iter-

ating over the total number of edges in the LDPC code is labeled as E, 2) the loop iterating

over the GF(2m) dimension q=2m is designated by GF and 3) by LOGGF the one iterating

over m, with 4,5) the one iterating over dv/dc designated as Dv/Dc. Under this nomen-

165

5. Reconfigurable LDPC Decoders

VN->CN CN->VN

E: edges

G: 2
m

v
n
_
p
ro
c

p
e
rm

u
te

E: edges

E: edges

LOGGF: m

fw
h
t

c
n
_
p
ro
c

d
e
p
e
rm

u
te

E:

G:

VN/CNW:

E:

G_read:

G_write:

E:

G_read:

G_write:

LOGGF:

G_compute:
fw

h
t

E: edges

G: 2
m

CNW: dc

E: edges

G_read: 2
m

G_write: 2
m

E: edges

G_read: 2
m

G_write: 2
m

LOGGF: m

G_compute:

2
m

DRAM:

mcv

 mvc

mv

iterate

p
ro

lo
g

u
e

e
p

ilo
g

u
e

iterate

l_m
vc

l_m
cv

l_m
v

G_read: 2
m

G_write: 2
m

VNW: dv

G_read: 2
m

G_compute:

2
m

G_write: 2
m

BRAM arra
ys

2 RW ports available

partitioned in Solutions IV-VI

Solution I

Figure 5.22: LDPC decoder architecture base version (Solution I). In each kernel, the loop label and trip
count sizes are shown. Also show in the datapath from the DRAM space to the BRAM spaces inside the
processing system.

clature, we can visualize the constructed hardware topology of the decoder as shown in

Figure 5.22, which is the base version for the non-binary loop-annotated LDPC decoder.

It is a naive version whose generated hardware is bit-true with regards to the C code

fed into the HLS tool as the decoder description, but will not see applied the necessary

optimizations to maximize the decoding throughput and minimize the decoding latency.

The base decoder provided by Solution I already applies the front-end, processing,

back-end division discussed in Section 5.4 (Figure 5.18). Data is streamed onto the VC709

FPGA board through the PCIe interface using direct memory access (DMA) transfers to the

memory space in the DRAM banks. To maximize the bandwidth obtained from the two

4GB banks in the board, we define data to be streamed onto the board through one mem-

ory bank and to flow out of it through another. Then, the streamed data is moved onto the

appropriate BRAM arrays which lie on-chip for improved bandwidth and closer spatial

166

5.4 Loop-annotated LDPC Decoder

proximity to the computation unitsa). Considering that the algorithm reads pmf s mv(x)(i)

and mcv(x)(i) and writes pmf s mvc(x)(i) in the VN processing (vnUpdate kernel)—likewise,

reads pmf s mvc(x)(i) and writes mcv(x)(i) under the CN processing (cnUpdate kernel)—

each of the pmf vectors are defined in the BRAM-allocated arrays l_mv, l_mvc, and l_mcv,

respectively for mv(x)(i), mvc(x)(i) and mcv(x)(i). The discussion concerning each kernel

optimization follows next.

VN and CN processing Under FFT-SPA decoding, the VN and the CN processing

kernels, vnUpdate and cnUpdate, perform Hadamard multiplications, or pointwise mul-

tiplications. In Solution I, seen in Figure 5.22, each kernel is composed of a triple-nested

loop structure E–GF–Dv/Dc. In the E loop it computes over different messages, with trip

count edges=N×dv. In the GF loop it operates over different probability values (pmf s)

and in Dv/Dc it uses data read from different arrays. Hence, the optimization for these

kernels will be to leverage the parallelism from all three loop bodies (Listing 5.9).

//nested loop loop structure of vnUpdate
E:for(int e = 0; e < edges; e++){

GF:for(int g = 0; g < q; g++){
Dv:for(int t = 0; t < d_v; t++){

//computation follows
}}}

//nested loop loop structure of permute
E:for(int e = 0; e < limit; e++){
GF_read:for(int g = 0; g < GF; g++)

//load data into temporary buffer
GF_write:for(int g = 0; g < GF; g++)
//permute and store back to memory

}

Listing 5.9: Nested loop structure of vnUpdate and permute (under the cnUpdate kernel a replacement is
made on the E trip count dv←dc).

Permutation and depermutation The permutation and depermutation kernels, permute

and depermute, apply the permutation of probabilities within the pmf dimension and are

a double-nested structure in the decoding system. In the GF_read loop, data is loaded,

shuffled according to the non-binary element in the parity-check matrix. defining the

permutation or depermutation into a local copy. Then, the second loop, GF_write, will

write data back contiguously to the correct BRAM location. Since the shuffling is per-

formed in-place, as shown in Listing 5.9, the available parallelization potential will be

limited by it, in spite of the memory saving of BRAM units.

a)While we have not included a module to stream data to the DRAM banks, a PCIe or 10G interface can
be included to perform DMA of data to the DRAM. This can be achieved in under 3000 LUTs, without
a foreseeable impact on the timing of the LDPC accelerator, as these interfaces would have different clock
domains.

167

5. Reconfigurable LDPC Decoders

E: edges

fw
h
t

E: edges

LOGGF: m

fw
h
t

G_read: 2
m

G_compute: 2
m

G_write: 2
m

E: edges

E: edges

fw
h
t

fw
h
t

2x2
m

 RW ports available2 RW ports available

…

…

E: edges

fw
h
t

…

…

(e)

not parallel

high II
parallel

low II

(a) (b) (c) (d)

Figure 5.23: Expected behaviour of the FWHT kernel iteration scheduling for Solutions: a) II, b) III, c) IV, d)
V and e) VI. Solutions II, III, V and VI (a),b), d) and e))) have all the inner loops of E unrolled, and loop E
pipelined, respectively. Solutions II–III (a) and b)) access BRAM arrays through a double Read/Write (RW)
port per array, while Solutions IV–VI (c) and e)) access them via 2m double RW ports. As a consequence, true
parallel execution of unrolled iterations and minimum IIs for pipelined execution is only achieved through
the higher bandwidth exposed by 2m double RW ports of Solutions V and VI (d) and e)). The former is
an example of how higher bandwith available without scheduling optimizations yields no improvement of
performance and contributes only to a lower efficiency of design.

FWHT processing The transform kernel, fwht, implements the FWHT, a special

case of the FFT where the twiddle factors Wn
N are always −1 or 1, thus only additions

and subtractions are executed in the butterfly computation. In the loop nest shown in

Figure 5.22, E iterates over all the pmf s whose transforms are computed. Since perform-

ing the radix-2 factorization of the FWHT in-place would entail tremendous pressure ac-

cessing BRAMs, we utilize a temporary array as a scratchpad to hold the working data,

even though the transform result is stored in-place. Loops GF_read and GF_write copy

the data to and from this scratchpad in a prologue and epilogue stage of the processing.

The LogGF loop cycles through the FWHT stages entailed by a radix-2 factorization, and

GF iterates over each transform element. Here, we achieve parallelism among the differ-

ent messages—transform batches—in E and also GF, among different message elements,

that can be exploited during optimizations.

E:for(int e = 0; e < edges; e++){
G_read:for(int g = 0; g < q; g++){

//load data into temporary array
}
LogGF:for(int c=0;c<m;c++){

GF:for(int g = 0; g < q; g++){
//perform Radix-2 computation

}}
G_write:for(int g = 0; g < q; g++){

//store data back to memory
}}

Listing 5.10: Nested loop structure of fwht.

Architecture Optimization Guidelines The unoptimized decoder in Solution I achieves

only a modest performance since the decoding operations are performed sequentially.

168

5.4 Loop-annotated LDPC Decoder

This is because the tool does not automatically apply necessary optimizations to leverage

the available parallelism. Hence, to achieve high performance, one needs to explicitly

direct the tool to apply the necessary optimizations. Moreover, one needs to carefully

consider the hardware implications of the specific optimization and often apply one or

more optimization together in order to achieve the intended result. The optimizations

carried out, and described next, can be visualized in Figure 5.23.

Loop unrolling tries to schedule multiple iterations in parallel to leverage parallelism

and improve processing throughput. In our unoptimized decoder, as aforementioned,

we have data-parallelism in the E, GF, Dv and Dc loops. Additionally, we can also unroll

the LogGF loop to remove the control flow overhead associated with the loop structure,

which can be useful when m is small. Solution II and V are generated by performing

unrolling on the loops GF, Dv, Dc and LogGF. In Solution II, however, since there is

insufficient memory ports available to BRAM, we anticipate the data accesses to limit

potential performance gains. In Solution V, with additional memory ports made avail-

able, we expect that iterations can be fully executed in parallel. Although E exposes

data-parallelism, we do not unroll this loop since it is the outermost loop and unrolling it

would in-turn unroll all the nested loop levels, creating a design that would not fit even

on the largest FPGAs available.

This is of particular interest for VN/Dc loops and for GF loops, since there are no data

dependencies between each probability elements in the same pmf for iterations on both

the former and latter. Thus, the unrolling level is a parameter whose ultimate perfor-

mance is driven by the number of available BRAM ports. The BRAM partitioning factor

can thus be used to realistically drive the unroll factor to the level where no more opera-

tions will be scheduled. Increase of the unroll factor will result in extra logic consumed

at little to no gain in latency of the unrolled loop due to port starvation.

Loop Pipelining Loop pipelining tries to improve loop execution performance by hav-

ing multiple loop iterations execute on the same hardware. Initiation interval (II) is a met-

ric that signifies how soon the loop structure can initiate the execution of a new iteration

after having begun the execution of the previous one, (II=1 in the optimal situation). In

our decoder, we utilize pipelining to exploit the parallelism that has remained untapped

in the E loop, when its innermost loops are unrolled, or to exploit parallelism of the in-

nermost loops. As with loop unrolling, the II resulting of pipelining the loops is limited

by the number of memory ports that serve the BRAM-allocated arrays from which data

is fetched. Unlike loop unrolling, pipelining in Vivado HLS is an optimization that con-

strains all inner loops to be unrolled prior to pipelining.

169

5. Reconfigurable LDPC Decoders

A question that remains is what is the most efficient way to combine unrolling and

pipelining. Given the nested-loop structure of the LDPC decoder, educated assump-

tions can be made regarding the best approach. For a decoder whose innermost loops

are pipelined, unrolling of the outermost loop will generate an accelerator composed of

small pipelined cores. In its turn, this creates extra overhead due to several units man-

aging their own pipelines. While this is not directly a limiting factor to the performance

obtained, higher utilization of resources by control units will reduce the slack for better

routing and higher clock frequencies. Whereas pipelining of the outermost loop, with the

innermost loops unrolled, will generate a single core per decoding kernel which aggre-

gates control logic in a single pipeline. This way, the FPGA logic resources are devoted

in a larger fraction to arithmetic and exploitation of parallel instructions and less to logic

control. This comes with increased slack in terms of routing and clock and gives mar-

gin to replicate more blocks of the LDPC decoder as explained next. Given that Vivado

HLS optimizations are directives and the decoding kernels loop-nested structures, test-

ing between both cases is a simple matter of interchanging the unroll and the pipeline

directives, as shown in Listing 5.11 for the vnUpdate.

#a) pipeline outermost and unroll innermost
set_directive_pipeline "vnUpdate/E" -II 1 -rewind
set_directive_unroll "vnUpdate/GG"
set_directive_unroll "vnUpdate/Dv"
#b) unroll outermost and pipeline innermost
set_directive_unroll "vnUpdate/E" -factor U
set_directive_pipeline "vnUpdate/GF" -II 1 -rewind

Listing 5.11: Pipeline and unroll optimizations Tcl directives for vnUpdate. In a), complete unrolling is
instructed and pipeline II is tentatively set at 1. In b), unrolling by a U factor is instructed, and pipeline II is
tentatively set at 1.

Array Partitioning In order to benefit from the unrolling and pipelining optimizations,

we must provide sufficient bandwidth to the design. However, the default strategy of

the tool is to sequentially allocate all the data elements into a BRAM unit until a new

one is needed. This implies that contiguous data accesses often need to be served by the

same BRAM which has only a limited bandwidth from the single or, sometimes, double

read-write (RW) port. To alleviate this issue, we instruct Vivado HLS to instantiate dual-

ported BRAM memories and, additionally, to partition each BRAM array with a 2m cyclic

factor to expose 2×2m ports per data array. It partitions each array into 2m new ones,

where contiguous elements of the original one, are spread across the multiple BRAMs

as discussed in Figures 5.20 and 5.21. The partitioning enables us to achieve an II=1 for

the most complex loops in the design. While array partitioning is useful, it comes with

the overhead of computing the indexes where an index i in the original array must be

170

5.4 Loop-annotated LDPC Decoder

mapped to a 2-D address (x, y)= (mod(i, 2m), bi/2mc), with x the BRAM bank and y the

index of i in x bank. Nevertheless, it is also a directive optimization that recomputes the

indexes automatically for the developer and breaks the array into several BRAM banks,

as seen in Listing 5.12.

#store l_mcv of top-level fftspa in 2-port BRAM
set_directive_resource -core RAM_T2P_BRAM

"ldpcDecoder" l_mcv
#partition array l_mcv cyclically by a factor of 4
set_directive_array_partition -type cyclic

-factor 4 -dim 1 "ldpcDecoder" l_mcv

Listing 5.12: Tcl directives that define and partitio an array on BRAMS: l_mcv is defined over BRAM units
with two R/W memory ports and cyclically partitioned across its first dimension by a factor of four.

Floating- vs Fixed-point In FPGA design, we are not constrained by micro-architecture

defined data types, such as single-precision floating-point, and can configure the data-

path to use the most convenient one given the application requirements. For our ap-

plication, we have found that Q8.7 fixed-point representation used for the messages ex-

changed in the FFT-SPA, with the intermediate operations performed in Q16.13, lead to

simpler synthesized circuits and reduced latency of fixed-point arithmetic—QX.Y stand-

ing for X−Y sign and magnitude bits, and Y for decimal bits. This is a design optimiza-

tion that must be done after carefully considering the characteristics of the specific appli-

cation, but whose code refactoring can be performed with the inclusion of the ap_cint.h

library and the typedef definition (Listing 5.13).

#include<ap_cint.h>
//data is stored in llr type variables
//computation is performed in llr_ type variables
//use floating-point
typedef float llr;
typedef float llr_;
//use Q8.7 fixed-point
typedef ap_fixed< 8, 1, AP_RND_INF, SC_SAT > llr;
typedef ap_fixed< 16, 3, AP_RND_INF, SC_SAT > llr_;

Listing 5.13: Code refactoring performed for the decoder design with fixed-point. The types llr and llr_
are redefined as Q8.7 and Q16.13 types.

Evaluation of the Decoder Solutions We evaluated the decoder at different design

points, Solutions I-VII, describe in Table 5.4, using the code defined in dataset Va–c).

During the decoder development, the C-synthesis provides preliminary results to drive

the design space exploration. The functional correctness of this synthesized design is

then ascertained through RTL co-simulation, which provides a fairly accurate estimate of

171

5. Reconfigurable LDPC Decoders

Table 5.4: Solutions tested and corresponding optimizations.

Solution Description of the solution architecture optimizations

I Base version without C-directives
II I + Full unrolling of inner loops LogGFand GF
III II + Pipelining of outer loops E to II=1
IV I + Cyclic partition of all BRAM arrays by a factor of 2m

V IV + Full unrolling of inner loops LogGF and GF
VI III + IV (Unrolling, pipelining and partitioning)

VII
IV + Pipelining of inner loops LogGF and GF to II=1
and unrolling of outer loop E by a factor U=2m

the overall decoding performance in clock cycles. Finally, before integrating the decoder

into the high-level system architecture, we place and route (P&R) the decoder design stan-

dalone to obtain more accurate values for the hardware utilization and clock frequency.

This enables us to estimate how many decoders can be instantiated in the high-level sys-

tem architecture. Now, after performing P&R on this complete system, we compute the

decoding throughput for 10 decoding iterations from the post-P&R clock frequency of

this system, the number of decoders instantiated and the decoding latency based on the

co-simulation.

Optimizations
I II III IV V VI VII

L
a
te

n
c

y
 [

c
y

c
le

s
]

10 3

10 4

10 5

10 6

0

50

100

150

200

250

(a) GF(22)

Optimizations
I II III IV V VI VII

L
a

te
n

c
y

 [
c

y
c

le
s

]

10 4

10 5

10 6

10 7

F
re

q
u

e
n

c
y

 [
M

H
z
]

0

50

100

150

200

250

(b) GF(23)

Optimizations
I II III IV V VI VII

L
a

te
n

c
y

 [
c

y
c

le
s

]

10 4

10 5

10 6

10 7

F
re

q
u

e
n

c
y

 [
M

H
z
]

0

50

100

150

200

250

(c) GF(24)

Figure 5.24: Loop-annotated decoding kernels latency (bars, left axis), and clock frequency of operation
(points, right axis) of each solution for a) GF(22), b) GF(23), and c) GF(24).

Base Version The LDPC decoder base version provided by Solution I exploits no par-

allelism and, therefore, has low resource utilization and achieves a very modest through-

put, well within the Kbit/s range. Moreover, the number of clock cycles taken by this

design roughly doubles for each increment of m. This version was used for algorithmic

validation and served as a baseline to evaluate the other design optimizations.

Loop Unrolling Solutions II, V, VI and VII are the cases that employ loop unrolling,

which leads to a reduction in the overall latency of the decoder design, independent of

any other optimizations carried out, as seen in Table 5.6. Naturally, unrolling is best

172

5.4 Loop-annotated LDPC Decoder

Table 5.5: FPGA utilization for the standalone LDPC decoder IP core.

FPGA GF
(
22) GF

(
23)

Util.[%] I II III IV V VI VII I II III IV V VI VII

LUTs 0.76 1.48 2.98 1.07 1.52 4.62 7.67 0.64 2.17 5.04 1.13 5.20 10.4 37.4
FF 0.34 0.71 1.42 0.48 0.81 1.89 2.73 0.28 1.16 2.48 0.53 2.52 3.94 7.69

DSP 0.06 0.44 0.44 0.14 0.44 0.44 0.33 0.06 0.89 0.89 0.06 0.89 0.89 0.66
BRAM 0.31 0.24 0.24 0.41 0.41 0.41 0.41 0.44 0.48 0.68 0.82 0.82 0.82 0.85

GF
(
24) GF

(
23) (floating-point)

LUTs 0.84 3.95 9.80 1.70 10.4 13.5 41.5 0.65 N/A N/A 1.48 11.7 17.3 N/A
FF 0.42 2.25 4.86 0.97 4.95 5.14 12.9 0.29 N/A N/A 0.51 3.30 7.56 N/A

DSP 0.44 1.78 1.78 0.22 2.00 1.11 1.33 0.06 N/A N/A 0.06 1.78 1.78 N/A
BRAM 1.36 0.85 1.09 1.36 1.36 1.36 2.78 0.78 N/A N/A 1.63 2.72 1.63 N/A

applied in conjunction with other optimizations. Both II and V have limited potential to

reduce the decoder latency, as these solutions only expose parallelism to the inner loops.

Solution II, counterintuitively, has lower decoding latency than V due to the fact that the

re-indexing caused by the cyclic partitioning interferes with the in-place permutations

carried out by the permute and depermute kernels.

Pipelining the computation produces designs that achieve the lowest latency—Solutions

III, VI—and also Solution VII. Naturally, pipelining also increases the resource utiliza-

tion of the FPGA. Among these two first design points utilizing pipelining, Solution

VI achieves better performance since the array-partitioning exposes additional memory

ports to serve the iterations inside loop E. After partitioning the arrays by a 2m-factor,

vnUpdate and cnUpdate can be optimized to 1 and 2 cycles of II and the fwht can achieve

an II of 1 cycle. The permute and depermute kernels have data dependencies that cause

its minimum II to grow with the field dimension. An interesting observation in Table 5.6

is that the clock frequency estimates for the most complex Solution after C-synthesis can

turn out to be, in some cases, grossly estimated, than that obtained after P&R, a potential

pitfall in relying on only C-synthesis estimates for evaluation.

Loop Pipelining Solutions VI and VII, that combine unrolling with pipelining, must

be analyzed separately. As the outermost loops E are prevented to be fully unrolled by

the tool, which imposes a limit to the trip count of loops to be unrolled, only low unroll

factors could be set (U=2m), in order for the tool to synthesize the decoder accelerator in

a reasonable timespan. Furthermore, as seen in Figure 5.25, Solution VII is a non-optimal

Pareto point, using a high number of LUTs for a low reduction in decoder latency.

173

5. Reconfigurable LDPC Decoders

Table 5.6: LDPC HLS IP Core decoder latency and clock frequency.

Sol.
C-Synth’d Design RTL Co-Sim. HLS IP core P&R’d

E Lat.
[Kcycles]

Clk
[MHz]

Lat.
[Kcycles]

Clk
[MHz]

GF
(
22)

I 540 266 607 263
II 121 266 129 253
III 20 266 28 248
IV 508 269 691 251
V 157 266 165 259
VI 8 117 16 264
VII 180 29 187 216

GF
(
23)

I 3096 266 1232 262
II 182 266 198 244
III 42 266 58 239
IV 3096 266 1581 263
V 284 266 226 242
VI 26 57 30 247
VII 299 19 315 26

GF
(
24)

I 4768 266 2651 265
II 285 266 315 215
III 83 266 114 192
IV 6512 266 3499 249
V 2268 266 1355 165
VI 34 25 50 244
VII 526 117 558 127

Array Partitioning Array partitioning increases the data bandwidth to the computation

units by exposing more data that can be consumed in parallel. However, it also comes

with a non-negligible cost of re-indexing that consumes resources and increases latency.

This effect is visible in Solutions I-IV, and a more pronounced effect in Solutions II-V

because of the unrolling that was previously applied, as seen in Figure 5.25. However,

when this is applied in conjunction with pipelining, we obtain a 42–75% reduction in

latency, as seen while moving from Solution III to VI, but not for the Solution VII.

Replication of Compute Units As seen in Table 5.5, our individual decoding units are

fairly small. Moreover, as previously discussed, our high-level system architecture fa-

cilitates using multiple decoders to achieve higher throughput. Therefore, in our final

design, we utilize multiple HLS IP cores to develop a design that targets an FPGA LUT

174

5.4 Loop-annotated LDPC Decoder

LUTs [%]
0 10 20 30 40 50 60 70 80 90

L
a

te
n

c
y

 [
7

s
]

10 0

10 1

10 2

10 3

10 4

10 5

GF(4) GF(8) GF(16)
Non-optimal points

Final decoder design w/ DRAM controllers
and several accelerators instantiated

Single accelerator
w/o DRAM controllers

Pareto
Optimal
Points

µ

Figure 5.25: Pareto plotting of the design space for the LDPC accelerator in latency (µs) vs. LUT utilization
(%). On the rightmost side, the design points correspond to the final decoder with replicated accelerators
(14, 5 and 3, respectively for GF(22, 23, 24)). Latency is per instantiated accelerator.

utilization of 80%. We depend on the resource utilization estimates produced from ap-

plying P&R on the standalone HLS IP core to guide this step. Using this approach, we

were able to instantiate K={14, 6, 3} decoders for m={2, 3, 4}. In this multi-decoder de-

sign, due to the large design size, we observed a drop in post-P&R clock frequency of

operation—dropping by {12.4%, 16.0%, 6.94%}—compared to the a single decoder de-

sign. But, this is well compensated by the improvement in decoding throughput due to

the multiple kernels.

Relation to RTL Approaches A handful of publications address the complex design

space exploration of LDPC decoder architectures on FPGAs. The use of HLS is equally

uncommon, not only for the case of LDPC codes in particular, but also for other signal

processing applications. An 802.11n LDPC decoder was designed using Vivado HLS

achieving 13.4 Mbit/s throughput for a Spartan 6 LX150T device, operating at 122 MHz

and for a frame length of 648 symbols [266].

Complex non-binary LDPC decoder architectures found in the literature for FPGA

devices are usually developed at RTL level. Sulek et al. have exploited the use of DSP

blocks of the FPGA to perform the multipliers used in the CNs and adders in the VNs

computation reporting 6 Mbit/s of throughput for code (480,240) with column weight

dv = 2 in GF(25) [267]. Spagnol et al. mixed-domain RTL-based decoder for the GF(23)

Mackay code obtains 4.7 Mbit/s on a Virtex 2 Pro FPGA [268]. Boutillon et al. developed a

decoder architecture for a GF(26)-LDPC decoder based on the EMS algorithm reporting

a decoding throughput of 2.95 Mbit/s for an occupied area of 20% of a Virtex 4 FPGA.

175

5. Reconfigurable LDPC Decoders

Although their architecture scales with minimal adaptation of the design to higher order

GF(q), with q ≥ 212, no throughputs are reported for q other than 26 [269].

Zhang et al. developed a layered partial-parallel architecture, achieving 9.3 Mbit/s

throughput at 15 iterations for a GF(25) (744, 653) length non-binary code of rate 0.88,

with a frequency of operation of 106 MHz on a Virtex-2 Pro [270]. Emden et al. study the

scalability of the non-binary decoder with a growing GF(2m) and evaluated their design

for a Virtex 5 FPGA, for m={2, 4, 8}. Their achieved throughputs range from 1.6 up to

33.1 Mbit/s which illustrate the complexity of the algorithm, as the decoder scales with

11×more area and a throughput 95% inferior [271].

Table 5.7: Comparison of non-binary LDPC decoders: decoding throughput, FPGA utilization and fre-
quency of operation∗.

Decoder m K
LUT FF BRAM DSP Thr. Clk
[%] [%] [%] [%] [Mbit/s] [MHz]

This work

2
1 14 7 0.5 0.5 1.17 250
14 80 35 6 6 14.54 219

3
1 21 9 0.9 0.9 0.95 250
6 81 34 5 5 4.81 210

4
1 30 13 2 2 0.66 216
3 73 32 5 5 1.85 201

Zhang et al. [270] 4

1

48 (Slices) 41 N/A 9.3 N/A

Emden et al. [271]
2 33.16

1004 N/A 13.22
8 1.56

Spagnol et al. [268] 3 13 3 1 N/A ≤4.7 99
Boutillon et al. [269] 6 19 6 1 N/A 2.95 61
Scheiber et al. [266] 1 14 (Slices) 21 N/A 13.4 122

∗ Note that differences in technology nodes, FPGA vendor and generation are not considered in this tabula-
tion.

5.5 Wide-pipeline LDPC Decoder

In this section, we discuss the targeting of LDPC decoders when the underlying ac-

celerator architecture generated using a HLS approach is a wide-pipeline accelerator. In

particular, our approach is modeled using the commercial Altera OpenCL compiler [177]

and also the academic SOpenCL tool [201,254]. Both tools generate FPGA accelerators fol-

lowing a wide-pipeline architecture that can be used as streaming accelerators under the

OpenCL context. Thus, this HLS tool is based on the OpenCL supported C programming

language, and, as a consequence, the ability to well describe the algorithms is limited

by the underlying implementation of the OpenCL programming model. The overview

176

5.5 Wide-pipeline LDPC Decoder

of each OpenCL HLS tool is given on the following subsections, along with the design

space exploration performed for each of the developed LDPC decoders.

5.5.1 Altera OpenCL LDPC Decoder

There are many challenges behind the generation of hardware taken as an OpenCL

description into an FPGA accelerator. Expressing parallelism at the granularity level of

the work-item is particularly useful, since all available parallelism can be exposed to

the HLS compiler tool [201,254]. Notwithstanding, mapping of the datapath of each work-

item under such fine-granularity is an unrealistic approach to generate hardware from

an OpenCL description. Synthesizing and maintaining a hardware accelerator per work-

item would lead to tremendous overheads in logic utilization. However, coarsening of

the computation from the work-item granularity leads to a better compromise where the

exposed parallelism can still be exploited, but at the same time, logic required to handle

the parallelism is kept at a minimum. In particular, FPGA designs in the literature have

shown that pipelined execution excel in the reconfigurable computing field. Thus, in gen-

eral, a wide-pipeline approach redefines the OpenCL execution grid as a loop structure

that is triple-nested.

Hardware
FPGA

Constraints

Algorithm Functional
Description

Floating-point
Model

Fixed-point
Model

Micro-architecture
Definition

RTL Design

RTL Area/Timing
Optimization

RTL Synthesis

Place & Route

Hardware
FPGA

Hardware
FPGA

Typical RTL Design Flow Altera OpenCL

Two-Step Design Flow

Altera OpenCL

One-Step Design Flow

Constraints

OpenCL Synthesis

Algorithm Functional
Description

OpenCL Kernel
Description

OpenCL Kernel
Description

Algorithm Functional
Description

OpenCL Pre-
synthesis Estimation

OpenCL Synthesis

Figure 5.26: Altera OpenCL design flow for hardware development: using one-step flow which reports an
accurate performance and utilization report after a bitstream is generated; and using a two-step flow which
reports a pre-synthesis report based on conservative estimates for throughput and logic utilization.

The Altera OpenCL compiler is a commercial HLS tool that generates a wide-pipeline

accelerator from an OpenCL kernel description [177]. The design flow of this tool modifies

the traditional RTL design flow as observed in Figure 5.26. A functional algorithm de-

177

5. Reconfigurable LDPC Decoders

scription provided in the OpenCL supported C language is given as input. After which

compilation ensues based on the one of two modes. The simplest and quickest method to

obtain a functionally correct wide-pipeline accelerator is to pursue the single-step flow,

where the OpenCL kernel is taken straight through until an accelerator bitstream is gen-

erated. At this stage, a report is generated, based on the placed and routed hardware

accelerator whose information can be used to iterate on the design cycle. Similar to the

RTL design flow (Figure 5.6), modifications can be brought to the algorithm functional

description. Likewise, optimizations can be made on the OpenCL kernel description and

on the set of optimization flags passed on to the OpenCL synthesis process. The two-step

flow allows a faster design cycle since a performance report is available before OpenCL

synthesis. Arguably will this report reflect the accuracy of a report based on placed and

routed circuits. One of the consequences is that this pre-synthesis report is grossly over-

estimated, leading to reports that can prevent the designer to instruct higher levels of

parallelism to be driven.

OpenCL Kernel
Description

OpenCL Pre-
synthesis Estimation

Hardware
FPGA

Altera OpenCL

Offline Compiler

OpenCL Synthesis

Host Code

Standard C
Compiler

Host Binary

OpenCL Host

Application

OpenCL
Application

kernel binary

(bitstream)

OpenCL
API

Figure 5.27: Altera OpenCL host application design flow. The OpenCL API links to a C program

Finally, the tool acts as an offline compiler under the OpenCL programming model,

as observed in Figure 5.27. Instead of calling the compiler for a given set of kernel inputs

at runtime, as is usually performed with GPUs and CPUs, as discussed in Chapter 4, the

compiler is called independently from the OpenCL application that loads a pre-compiled

binary, in this case a bitstream, with which the FPGA is configured for execution of the

kernels on hardware [177].

Parallelism in the Pipeline First, the 3-dimensional execution grid along dimensions

0, 1 and 2, will see its execution serialized. Work-items will no longer be scheduled us-

ing the SIMT execution model of GPU architectures, nor will they follow the coarsening

of granularity to the work-group level entailed with CPU execution [272]. To illustrate

178

5.5 Wide-pipeline LDPC Decoder

with a simple case the hardware generation that is followed by the Altera OpenCL com-

piler, we take the vector addition kernel vectorAdd defined in Listing 5.14 as an example.

Parallelism in the generated accelerator is explored inside the pipeline that defines the

// OpenCL kernel
__kernel void vectorAdd(__global int *A, // input/output vector A

__global int *B) // input vector B
{

int tx = get_global_id(0);

A[tx] = A[tx] + B[tx];

}

Listing 5.14: OpenCL kernel vector addition example.

work-items datapath. As observed in Figure 5.28 this takes the following form. Work-

items are initiated inside the kernel pipeline at a rate that is designated as the initiation

interval (II). Under the particular case of the Altera OpenCL tool, the hardware designer

has no parameter with which the tool can be adjusted for an intended II value. Instead,

the tool procures the minimization of the II to having one work-item initiated per clock

cycle in each kernel pipeline if no other parallelism directive is given. This case is seen

in Figure 5.28a), where there is a work-item in each pipeline stage of the vector addi-

tion datapath. On the other hand, while the designer cannot instruct the tool to attempt

a higher II, i.e., to have a slower pace of work-item dispatched for execution, one can

instruct the tool to effectively lower the II to less than a single clock cycle. This proce-

dure is shown in Figure 5.28b) and c) for two distinct cases. In b) two work-items are

initiated in the pipeline simultaneously because every arithmetic and logic control in-

struction synthesized has the ability to process two work-items in parallel. Effectively,

rework of operations to a 2-way single-instruction multiple-data (SIMD) level is applied to

the kernel pipeline. An equivalent rate of work-items initiation is obtained with the accel-

erator shown in c). In this case, the same work-item throughput is granted by duplication

of the compute units (CUs) that compose the kernel pipeline shown in Figure 5.28a).

Lowering the II through vector processing, through k-way SIMD techniques or through

the replication of CUs, achieves in different fashions the same objective of increasing

the accelerators throughput by elevating the number of work-items active in the kernel

pipeline. However, if the OpenCL kernel has divergent branches of computation in its

datapath, the former is inherently more complex. That way bandwidth within each SIMD

operation is lower since it may not be guaranteed that the vectorized work-items will be

follow similar datapaths. Nevertheless, while the latter method can overcome this issue,

since there is no limitation to whether work-items are required to follow the same data-

179

5. Reconfigurable LDPC Decoders

+

Load Load

Store

8 work-items

scheduled

0

1

2

3

4 5 6 7

+

Load Load

Store

0 1

2 3

4 5

6 7

+

Load Load

Store

+

Load Load

Store

0

2

4

6

1

3

5

7

w
o
rk
-
it
e
m
s

time

a) b) c)

w
o
rk
-
it
e
m
s

w
o
rk
-
it
e
m
s

time time

Figure 5.28: Parallelism in the vector addition wide-pipeline accelerators: a) initiates a single work-item at
a time; b) initiates two work-items at a time using 2-way SIMD processing; and c) duplicates the CU in a) to
achieve the initiation rate of b). The time chart shows the scheduling of work-items vs. the processing time.

path, it comes with a higher logic utilization overhead, since not only are the arithmetic

units replicated, but also is CU structure pertaining to control.

The throughput Twk expressed as work-items initiated in the pipeline per time unit

can be written in the following way

Twk =
f
I I
× dconnectivity × dcontrol f low × dglobal mem × dstalls (work-items/s), (5.5)

with f the clock frequency of operation and I I the initiation interval value (5.6). The re-

maining factors of the expression are designated as derate factors and account for the fact

that certain limitations are imposed to the work-items processing throughput brought on

by different factors. This can be modeled by routing issues that result in too high critical

paths, dconnectivity, the bandwidth provided by the external memory interface, dglobal mem,

the overhead that control flow can impose, dcontrol f low and finally the stalls endured by

the pipeline due to data dependencies, synchronization or fencing instructions, dstalls.

The initiation interval is computed as follows

I I =
1

kSIMD × kCU
(work-items/clock cycle), (5.6)

180

5.5 Wide-pipeline LDPC Decoder

where kSIMD and kCU are factors driving the throughput upwards, with the former the k-

way SIMD processing levels of the pipeline and the latter the number of CUs replicated in

the pipeline [177]. Naturally, the major limitation to kSIMD and kCU is the limited number

of logic resources in the FPGA. Notwithstanding, the HLS tool strictly enforces SIMD

processing to powers of two up to sixteen (kSIMD ∈ {1, 2, 4, 8, 16}), and no maximum

limit is imposed a-priori on kCU ∈ Z+, though in the reported works, kCU has been kept

at one order of magnitude [6,7].

Finally, we can write tgrid, the time taken to complete the computation of all work-

items in an OpenCL execution grid, as

tgrid = D + I I × Nwork−items (clock cycles), (5.7)

with D the kernel pipeline latency, also referred to as the pipeline depth, and Nwork−items

the total number of work-items scheduled for execution. Analysis of (5.7) shows two

corner cases. When the pipeline depth is much higher than the initiation interval factored

in by the number of scheduled work-items (D � I I × Nwork−items), tgrid becomes

tgrid ≈ D (clock cycles), (5.8)

and when the II factored in by the number of scheduled work-items is much higher than

the pipeline depth (I I × Nwork−items � D), tgrid can be re-expressed as

tgrid ≈ I I × Nwork−items (clock cycles). (5.9)

Considering that fine-grained algorithm descriptions are pursued for OpenCL-based ker-

nels, it is easily observed that the most likely corner case is when the number of work-

items greatly exceeds the pipeline depth. Under this light, is is clear that fine-grained

OpenCL descriptions, which expose parallelism at a very fine granularity, and are benefi-

cial to the tool mapping the computation onto circuits, are at odds with the maximization

of the obtainable throughput. The finer-grained the higher the number of work-items re-

quired to be initiated in the generated kernel pipeline. Furthermore, coarsening the level

to which parallelism is exposed can lead to a more complex circuit not able to guarantee

the fastest attainable IIs, nor the highest clock frequency of operation.

Memory Model and Template Architecture The OpenCL memory model is mapped to

the OpenCL-supported FPGA devices as illustrated in Figure 5.29. The global memory

space is mapped to the DRAM units available as external memory to the FPGA chip but

that lie in the FPGA board. Since supported FPGA boards come with dual-bank DRAMs,

memory accesses can be optimized by the utilization of two distinct physical memory

181

5. Reconfigurable LDPC Decoders

Kernel

Pipeline

Kernel

Pipeline

Kernel

Pipeline Kernel

Pipeline

Kernel

Pipeline

Kernel

Pipeline Kernel

Pipeline

Kernel

Pipeline

Kernel

PipelineKernel

Pipeline

On Chip Memory Interconnect

Off Chip Memory Interconnect

Kernel

Pipeline

Kernel

Pipeline

Memory

Blocks

Memory

Blocks

Memory

Blocks

Memory

Blocks

Memory

Blocks

A
rb

itra
tio

n
 N

e
tw

o
rk

PCIe Memory

Interface

Controller

Memory

Interface

Controller

External

DDR

Memory

External

DDR

Memory

global memory

local memory

private memory

Host

FPGA

FPGA Board

Figure 5.29: Altera OpenCL memory model: private memory is synthesized within the kernel pipeline logic;
local memory is assigned to BRAMs inside the FPGA, and so is constant memory; and global memory is
allocated on the DRAM memory that lies on the FPGA board.

addressing spaces, so as to simultaneously operate the two memory interface controllers.

The host system has access to this memory space, a feature required by the OpenCL spec-

ification. Constant and local memory spaces are allocated on the FPGA BRAMs, with the

former utilizing the BRAMs as ROM, and the latter providing read-write access to all

work-items within a work-group. While all the work-items are initiated continuously in

the wide-pipeline accelerator, the lifetime of variables in the local memory are still lim-

ited to the work-group span [177,273]. Finally, private memory is synthesized in the kernel

pipeline logic. Access to memory spaces lying on-chip, constant and local memory, are

made through an on chip memory interconnect and accesses made to off chip locations,

global memory, are made through an off chip memory interconnect. Absent from Fig-

ure 5.29 is a partial reconfiguration module which receives the bitstream with which the

FPGA area available for computation, the one corresponding to the kernel pipelines in

the figure, is reconfigured [177]. This module reduces the logic available for utilization by

the OpenCL kernels. Moreover, due to the partial reconfiguration of the FPGA chip, the

template architecture is not optimized to the fullest by the synthesis process. Needless

resources are not trimmed away in the generation of hardware. In fact, only the OpenCL

kernels are optimized and unnecessary signals are removed from the generated circuits,

182

5.5 Wide-pipeline LDPC Decoder

and certain controllers of the template architecture will lie on the FPGA chip regardless

of their underutilization.

Moreover, a disadvantage stands out clearly with regards to flexibility of the imposed

memory model. Assuming that all applications benefit from the defined streaming of

data from the global memory to computation units and back to global memory simplifies

the complexity of the HLS tool. However, it doest not particularly benefit applications,

such as the LDPC decoding, which need data to be streamed from the host computer

system for computation in the FPGA, and also require that data stays in the FPGA for the

duration of the decoding process. The inability to refine the memory model so as to move

data from the off-chip DRAM into the on-chip BRAMs adds undesired contention to the

external memory interface controllers, and yields a poorer design choice for maximizing

the available bandwidth.

Pipelined TpN LDPC Decoder Our design space exploration concerning the OpenCL

wide-pipeline architecture is limited to fine-grained parallel expressions, as imposed by

the Altera OpenCL compiler. Thus, our approach is the definition of LDPC decoders un-

der the fine-grained parallelism exposed by the TpN approach. As explained in Chapter

3, since the concept of a thread does not exist under the OpenCL programming model,

instead, a work-item should be read instead of thread in TpN [177].

Using this model, we can have as a design methodology goal the exploitation of the

OpenCL cross-platform capabilities and define two separate kernel instances for the CN

and the VN processing, as done in CPU and GPU representations [182]. However, the

hardware generation driven by multiple kernel definitions means that multiple pipelines

are generated and share the memory interconnect resources of the template architecture

illustrated in Figure 5.29. The execution flow for the TpN approach limits the decoding

schedule of the LDPC decoder to the TPMP and under this approach each processing

phase is executed exclusively. A higher overhead exists, naturally, since more than a

single kernel connect to the on-chip and off-chip memory interconnection networks, but

there will be no bandwidth contention. Since kernels within the accelerator do not exe-

cute simultaneously, the CN and the VN processing cannot overlap in time for coherent

decoding, only the CN or the VN request data transactions at a time.

The execution flow of the TpN approach entails other consequences. Each kernel

requires the initiation of M and N work-items, respectively for the CN and the VN pro-

cessing, and their pipelines never overlap in time. In other words, the wide-pipeline

accelerator pipelines the work-items of the CN processing and the ones of the VN pro-

cessing, but not the work-items of the two different processing phases. This behavior

is illustrated in Figure 5.30. Under this model, the desired behavior for a multi-kernel

183

5. Reconfigurable LDPC Decoders

N
o

.
o

f
w

o
rk

-i
te

m
s

in
 t

h
e
 p

ip
e
lin

e

time

D1
…

D2

desired behavior

obtained behavior

N
o

.
o

f
w

o
rk

-i
te

m
s

in
 t

h
e
 p

ip
e
lin

e

time

D1
…

D2

Pflush,1 Pflush,2

Figure 5.30: Altera OpenCL pipeline desired and obtained execution behaviors. The desired behavior
case sees the low throughput phases—the rising throughput prologue and the diminishing throughput
epilogue—only once in the OpenCL kernels execution. However, the obtained behavior is different, with
each pipeline fully flushed before the execution of the next kernel. Thus, the trailing work-items of the ter-
minating kernel never overlap with the first work-items in the initiating kernel. As a consequence a latency
term Pf lush is added to the execution time of multi-kernel designs.

design such as the TpN decoder, is that the prologue and epilogue of each pipeline are

diluted by the epilogue and prologue of adjacent kernels respectively. Naturally this can-

not be accomplished for the first and last kernel calls, but between consecutive kernels

calls, the overlapping of execution grids should occur, as seen in the top of Figure 5.30.

However, this is not the case, with additional latency being added to the decoding time

in the form of a flushing penalty Pf lush. As a consequence we modify the processing time

of an execution grid (5.7) to account for multiple grids and this penalty as

tdec = (D1 + D2 + I I × (N + M))× NIter + ∑
i

Pf lush,i (cycles), (5.10)

with M and N the number of work-items scheduled for execution by the TpN decoder

and Pf lush,i the flushing penalty between the flushing of kernel i and the initiation of

kernel i + 1, and Di the depth, or latency, of each pipeline.

Our discussion of the limitations brought on by the flushing of pipelines in a multi-

kernel scenario has thus far neglected the fact that the there is a near-zero potential for

node execution overlapping under the TPMP decoding schedule. Notwithstanding, the

majority of standardized LDPC codes possess RA structures that introduce a connection

between the PNs of the code with CNs with the same indexes [183]. Thus, the trailing

VNs (PNs) under execution are connected only to the bottommost CNs and CN exe-

cution starting on the topmost nodes should not see incoherent message-passing in the

Tanner graph. Herein, an opportunity exists for exploring overlapped processing of the

work-items involved in the VN and the CN kernel. Equivalently, there could be an over-

184

5.5 Wide-pipeline LDPC Decoder

lap in time of the processing of the CN and the VN kernels, if a proper rescheduling of

nodes is performed such that the trailing work-items in the CN processing never overlap

with the first work-items in the VN processing (pertaining to the execution of information

nodes (INs)). Hence, instead of assigning an identity function to mapping work-items

to nodes, we modify this mapping such that execution of the first VN does not coincide

with VNs with which the last CNs executing are connected. In other words, VNs to work-

items mapping maintains the identity function, while the CN to work-item mapping is

reworked.

Furthermore, to be able to extract overlapping execution of work-items in the CN

and VN processing phases in the wide-pipeline LDPC decoder, we need to part from

the multi-kernel scenario into a single kernel scenario. Due to the OpenCL program-

ming model this is easily accomplished by a mere refactoring of the previously separate

kernel instances into a single kernel definition along with appropriate work-item con-

trol flow. Additionally, in order to perform fully pipelined execution, instead of defining

how many decoding iterations are issued by how many execution grids are enqueued

for execution on the accelerator by the host, there will be a single kernel call, enqueue-

ing Niter × (M + N) work-items a-priori. Then, inside the kernel, work-items falling in

the first M + N work-items lie in the first decoding iteration span, of which the first M

work-items are responsible for the CN processing, the last N for the VN processing and

the next M + N work-items fall in the span of the second iteration. This deeply-pipelined

execution flow is depicted in Figure 5.31 By refactoring the multi-kernel TpN decoder

VN work-items

CN work-items

...

...
1
st

iteration

time

M+N work-items

...

2
nd

iteration
...

E
x
e
c
u
ti
o

n
 g

ri
d

 w
o

rk
-i

te
m

s

time

...

...

...

...

...

M+N work-items

1
st

iteration

2
nd

iteration

M+N work-items

a) b)

Figure 5.31: Altera OpenCL TpN execution and work-item scheduling: following a) a multi-kernel strategy,
where an execution grid per iteration per processing stage is issued, and thus, completely flushed, and
using b) a deep-pipeline approach where all work-items are scheduled at once and the single-kernel pipeline
is never flushed.

to a single-kernel deep-pipelined approach, as seen in Listing 5.15, we are able to fully

pipeline the execution of the TpN decoder. Furthermore, this way we are able to have a

185

5. Reconfigurable LDPC Decoders

// Multi-kernel TpN approach
__kernel void cnUpdate(__global int *Lq, // L(q) messages

__global int *Lr); // L(r) messages

__kernel void vnUpdate(__global int *Lq, // L(q) messages
__global int *Lr, // L(r) messages
__global int *LQ); // L(Q) messages

// Single-kernel deep-pipeline TpN approach
__kernel void deepTpN(__global int *Lq, // L(q) messages

__global int *Lr, // L(r) messages
__global int *LQ) // L(Q) messages

{
unsigned int tid = get_global_id(0);
unsigned int nodeID = tid % (N + M);
unsigned int iter = tid / (N + M);

if(iter<Niter){
if(nodeID < M)

cnUpdate(Lr,Lq,nodeID);
else

vnUpdate(Lq,Lr,LQ,nodeID);
}

}

Listing 5.15: OpenCL kernel containers for the TpN approaches. The core computation performed at the
CN and VN level (cnUpdate and vnUpdate) are kept the same, but their OpenCL kernel qualifier (__kernel)
is removed in favor of a C function, called by the deepTpN deep-pipeline single-kernel approach.

decoding latency given by

tdec = (D + I I × (N + M))× NIter (cycles), (5.11)

instead of the one obtained in the multi-kernel scenario (5.10).

The Non-binary Decoding Case The aforementioned discussion between the multi-

kernel and the deeply-pipelined single-kernel approach is to a certain extent limited to

the binary decoding case. On the one hand, this is due to the Tanner graph structure. Bi-

nary LDPC codes, especially the standardized ones, have structured Tanner graph prop-

erties, making it possible to organize the nodes execution schedule so as to not interfere

with the coherent consumption and production of data elements [7]. On the other hand,

since the same BER performance can be obtained with much shorter non-binary codes,

the pressure to structure the Tanner graph adjacencies are not so impending as in the

binary case. To a certain extent, in the non-binary case the field dimension works as an

expansion factor. The same code can be expanded or shortened in length by driving the

order of GF(2m) [192,274] without a higher overhead in nodes’ adjacencies mapping. Most

of the non-binary LDPC codes found in the literature are built with methods that leave

little slack for the decoder design to reshuffle the nodes execution order [275–277].

186

5.5 Wide-pipeline LDPC Decoder

H =

α 0 1 α 0 1
α2 α 0 1 1 0
0 α α2 0 α2 1

αα2 1 α2 α 1 1 α2 1 1

αc1

c6c5c4c3c2c1

α2c1 c6c6α2c5c4 c5αc4αc2 c3 α2c3αc2

F F F F F F F F F F F F

mv(x)

mvc(x) mcv(x)

mcv(z)mvc(z)

p
e
rm

u
te

d
e
p
e
rm

u
te

CN
1

CN
2

CN
3

VN
1

VN
3

VN
4

VN
5

VN
6

Walsh-Hadamard

Transform

m∗
v(x)

VN
2

α α

vnUpdate();

fwht();

cnUpdate();

index_lut

Figure 5.32: Altera OpenCL isomorphic mapping to a multi-kernel approach. Therein, permutation and
depermutation functions are moved to the node-level and the operational transform subsides at the edge-
level, allowing the incorporation of other edge-level functions. The multi-kernel approach then allows for
distinct execution grids for each kernel case (cnUpdate, vnUpdate and fwht).

As a consequence, we are limited to the multi-kernel design approach for the non-

binary LDPC decoding case. The same dataflow regions as those discussed for the loop-

annotated decoder in Section 5.4 apply, although the isomorphic mapping of the Tanner

graph onto hardware blocks differs (c.f Figure 5.17). However, explicitly defining the

node- and edge-level operations in a single dataflow kernel does not configure what we

foresee as the best approach to extract parallelism at a fine-level under an OpenCL envi-

ronment. For that matter, different execution grids are better for certain operations than

others, while some features of the edge traversing message can be fully absorbed into a

node-level kernel. For instance, permutation of messages that traverse the edges can be

merged onto the CN and VN kernels, or fully merged onto one of them exclusively [11].

However, we cannot forgo of the fact that, under the case that the FWHT is applied at

the edge-level, its performance peaks for a different execution grid than the work-item

configuration utilized for the CN and the VN update kernels [14]. The majority of times,

the most suitable dimensions of the execution grid depend on the factorization that work

best for a particular transform size, which for LDPC codes over GF(2m) is a 2m-point

transform [13,239].

Considering these limitations, we are able to isomorphically map the non-binary

LDPC decoding case as illustrated in Figure 5.32. Therein, the permutation and deper-

187

5. Reconfigurable LDPC Decoders

mutation operations are moved from the edge-level to the node-level kernels defined by

the CN and the VN update kernels vnUpdate and cnUpdate. Only the operational trans-

form is left as an edge-level function. Due to its particular properties under fine-grained

parallel OpenCL description, requiring an execution grid dimension loosely indepen-

dent of the grid dimensions deployed for CN and VN update, and also due to the fact

that the majority of non-binary Tanner graphs cannot support nodes reordering compat-

ible with the deeply-pipelined approach, the non-binary decoder accelerator is defined

over the multi-kernel approach. All surveyed algorithms in Chapter 2 can be supported

by it, other features such as domain conversions can be inbuilt in the FWHT kernel, or

replace it altogether, at the edge-level. The drawback of this approach, is that a pipeline

flushing penalty is introduced between each kernel execution, thus adding at most three

distinct pipeline flushes for each decoding iteration (5.10). Although, the upside of this

approach is that different configurations for (kSIMD, kCU) can be obtained for each kernel

singlehandedly.

Data-parallelism Knowing, beforehand, that the non-binary case on account of the

multi-kernel approach will incur in heavy penalties due to the flushing of the wide-

pipeline kernels on the accelerator, we try and mitigate the effect by increasing the data-

parallelism level. This can be performed in one of two ways, i) we can simply add more

codewords to the execution grid by initiating more work-items in the execution grids and

keep adding words to memory with a stride defined by a codeword. The benefit is not so

much in actual acceleration, since there are no more words actually being decoded in par-

allel but rather waiting to having their execution work-items initiated onto the pipeline

accelerator. The prologue and epilogue regions (when the pipeline is not fully occupied

by work-items), which are responsible for the flushing overhead (Figure 5.30), take a

smaller proportion of the execution time and thus, flushing penalties become lower in

magnitude when compared to the actual time taken by each kernel when the pipelines

are fully occupied. This strategy is equivalent to that discussed for GPU decoders in

Chapter 4 and comes with the downside of driving latency upwards. Since one of the

motivations we took to move onto hardware design was its potential to allow for real-

time decoding systems, driving latency for the sake of diluting the flushing penalties will

most likely render a decoder system inoperable in real-time conditions. On the other

hand, ii) we can increase the workload by packing more works onto a vector datatype so

that each work-item performs more computation.

However, a limitation arises when the LDPC decoding algorithms require fixed-point

computation. Despite the support of IEEE-compliant floating-point [177], in most occa-

sions floating-point can be deprecated in the design in favor of fixed-point arithmetic.

188

5.5 Wide-pipeline LDPC Decoder

The 1.1 OpenCL specification employed, does not define arbitrary precision datatypes,

making fixed-point representations dependent on explicit design of the multiplication

and division instructions, and making them limited to the bitwidths of the supported

datatypes, at least in the bitwidth of the container type. Thus, if we use the supported

datatypes with regards to the LDPC decoding algorithms arithmetic nature, floating-

point utilization is reserved to algorithms applying multiplication or division, and fixed-

point to the ones applying additions and subtractions only [11,182]. Under the supported

datatypes, this limits the number of floating-point codewords that can be packed in a vec-

tor type to 16 in a float16 and under 8-bit fixed-point representation to 64 codewords in

a int16 vector.

5.5.2 Experimental results

The aforementioned discussed methodology for the development of the wide-pipeline

decoder has been tested considering the scenarios II, IIIa–d) and Va–c) (c.f Table 4.3)

under different configurations that capture LDPC codes and decoding algorithms’ fea-

tures. The first, dealing with scenario II is a multi-kernel TpN approach where there is

a synchronization point between each phase of the LDPC decoding process [6]. Under

scenarios IIIa–d), we consider the case of the deeply-pipelined work-items where they

are instantiated by the same execution grid onto the LDPC decoder accelerator [7]. Fi-

nally, we consider the multi-kernel case when the decoder has had non-binary decoding

kernels instantiated, following a thread-per-edge (TpE) work-item granularity. The HLS

compiler tool utilized was the Altera OpenCL 13.0SP1 using the Nallatech 385 N FPGA

board with a Stratix V D5 chip (F4 in Table C.1). We make a distinction between the binary

LDPC decoding case (datasets II and III) and the non-binary case (dataset V), and thus we

discuss them separately in the following paragraphs, before drawing conclusions to the

wide-pipeline accelerator, after the discussion surrounding the wide-pipeline approach

conveyed by the SOpenCL tool (Subsection 5.5.4).

A note must be given regarding the logic utilization levels, based on the pre-synthesis

(c.f. Figure 5.26), placement and routing, and fitting reports [177]. If we were willing

to present equivalent logic utilization metrics, such as those reported for the dataflow

approach or the loop-annotated methodology, we would not be able to do so straight-

forwardly. Whereas we can report the relative utilization of BRAM and DSP resources,

the method used by the Altera tools to report the utilization level of resources within

the FPGA chip is different. For the one, we cannot refer to LUT utilization, but only to

adaptive LUT (ALUT). However, it is unknown how many ALUTs can be allocated by a

design, since each LUT provides for two ALUTs. On the other hand, the basic CLB mod-

ule of the FPGA is an adaptive logic module (ALM), yielding a combined metric of LUT

189

5. Reconfigurable LDPC Decoders

and FF utilization, although we can not explicitly state if the utilization of ALMs is being

driven by LUT or by FF consumption. Notwithstanding, the reports convey information

regarding the usage of logic elements (LEs) and FFs separately, even though the concept

of a LE has become increasingly blurred as the FPGA chip families evolved [177,278]. In the

metrics presented next, we use LE as a proxy to LUT and ALM as a metric for the overall

CLB utilization [278]. Furthermore, the discussed utilization levels omit the architecture

hardware blocks that do concern the kernel pipelines, i.e., the on- and off-chip intercon-

nections and the memory controllers to the external DRAM interfaces are not accounted

for (Figure 5.29).

Table 5.8: FPGA logic resource utilization, clock frequency, throughput and latency at 10 decoding iterations
for benchmarked LDPC decoders. Also, decoding throughput is measured relative to each core, and the
minimum decoding iterations allowed by the external interfaces are tabulated.

Scenario
II IIIa) IIIb) IIIc) IIId)

R
es

ou
rc

e
U

ti
l.

(%
)

Parallelism (kSIMD, kCU) (1,1) (1,2) (1,7) (1,7) (1,6) (1,6)
Logic Utilization 53.30 77.64 64.88 70.54 59.19 64.12
LEs 28.13 41.20 43.35 47.38 39.42 42.87
FFs 22.69 35.87 44.22 47.54 39.42 42.27
BRAMs 42.75 66.24 81.48 84.61 72.59 75.27
DSPs 1.82 3.65 2.20 4.40 1.89 3.77

Pe
rf

or
m

an
ce Clock (MHz) 240.00 157.00 212.00 223.0 204.00 203.00

Thr. (Mbit/s) 16.0.0 21.00 98.70 103.9 81.40 81.0
Thr./Core (Mbit/s/core) 16.0.0 10.50 14.10 14.80 13.60 13.50
Min. Dec. Iter. 0.02 0.03 3.00 2.10 1.20 0.90

Binary Multi-kernel and Single-kernel Deeply-pipelined Approach The accelerator

developed using the dataset II considers the following scenario. The MSA decoding al-

gorithm is employed and the granularity to which parallelism is exposed is defined at the

TpN level. This guarantees that there is no redundancy of memory operations and, also,

that data can be block fetched from memory since the QC-LDPC Wi-Fi code of dataset II

allows for coalesced memory accesses in blocks of z f LLR messages [1,131]. The place and

routed design characteristics of this decoder accelerator are summarized in the first two

columns in Table 5.8.

As observed, we have been able to drive the generation of more than a single CU,

but the utilization level lead to a maximum of 2 CUs instantiated only. Logic utilization

(expressed in utilized ALMs) does not double, nor does the utilization of FFs or BRAMs,

though there is a doubling of utilized LEs. DSPs utilization also doubles even when there

the applied arithmetic is mainly composed of additions and subtractions, although the

computation of the indexes of LLRs requires the multiplication and modulo division.

190

5.5 Wide-pipeline LDPC Decoder

While some of the effects of doubling the number of CUs in the design are not observed

in the same increase factor of utilization, some are directly related to it. The former is

due to the template architecture to which the kernels pipelines are hooked up. As seen

in Figure 5.29, the higher the number of kernels in the accelerator design, the higher the

logic overhead due to a higher number of ports required in the on-chip interconnection

network to feed all the required data to each kernel pipeline.

To improve the throughput achieved with the multi-kernel wide-pipeline accelerator,

the deeply-pipelined methodology allows the forgoing of the flushing of work-items in

each kernel pipeline. However, this is made at the expense of rescheduling of the nodes

execution such that data produced by certain nodes does not overlap with its consump-

tion by their adjacent nodes. To this end, we can perform a remapping of work-item

index to Tanner graph node index, as discussed next.

Node Rescheduling Considering that an in-order execution of the workgroups exists

under the Altera OpenCL implementation, we can guarantee the execution order of each

node in the Tanner graph. Unlike GPU engines, we are not, thus, limited to enforcing a

global synchronization only through the execution of two separate execution grids as so

happens in the multi-kernel approach just discussed. We can exploit the in-order execu-

tion to our benefit by merging the CN and the VN kernels and remapping the CNs and

the VNs order of execution so that a memory hazard does not happen. In particular, if

we assume an identity mapping of the work-item index to Tanner graph index, we must

focus our attention to connectivity of the first CNs/VNs to the last VNs/CNs. Under

the QC-LDPC codes class, this analysis is easier to perform, since the parity-check matrix

H is obtained from the expansion of the protograph F. We associate the nomenclature

CN
′
i/VN

′
i as the set of CNs/VNs with indexes in the range {i× z f , (i− 1)× z f − 1}.

Analysis of the base matrix for scenario II, Fwifi (5.12) shows that the dense columns

VN
′
0,8 make it impossible to reschedule the node execution order.

Fwifi =

VN
′
0 VN

′
1 VN

′
2 VN

′
3 VN

′
4 VN

′
5 VN

′
6 VN

′
7 VN

′
8 VN

′
9 VN

′
10 VN

′
11 VN

′
12 VN

′
13 VN

′
14 VN

′
15 VN

′
16 VN

′
17 VN

′
18 VN

′
19 VN

′
20 VN

′
21 VN

′
22 VN

′
23

CN
′
0 57 ∞ ∞ ∞ 50 ∞ 11 ∞ 50 ∞ 79 ∞ 1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

CN
′
1 3 ∞ 28 ∞ 0 ∞ ∞ ∞ 55 7 ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

CN
′
2 30 ∞ ∞ ∞ 24 37 ∞ ∞ 56 14 ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

CN
′
3 62 53 ∞ ∞ 53 ∞ ∞ 3 35 ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

CN
′
4 40 ∞ ∞ 20 66 ∞ ∞ 22 28 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞ ∞ ∞

CN
′
5 0 ∞ ∞ ∞ 8 ∞ 42 ∞ 50 ∞ ∞ 8 ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞ ∞

CN
′
6 69 79 79 ∞ ∞ ∞ 56 ∞ 52 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞

CN
′
7 65 ∞ ∞ ∞ 38 57 ∞ ∞ 72 ∞ 27 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞

CN
′
8 64 ∞ ∞ ∞ 14 52 ∞ ∞ 30 ∞ ∞ 32 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞

CN
′
9 ∞ 45 ∞ 70 0 ∞ ∞ ∞ 77 9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞

CN
′
10 2 56 ∞ 57 35 ∞ ∞ ∞ ∞ ∞ 12 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0

CN
′
11 24 ∞ 61 ∞ 60 ∞ ∞ 27 51 ∞ ∞ 16 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

(5.12)

For instance, the transition of the VN processing to the CN processing could be easily

dealt with by execution VN
′
0,8 first, and then proceeding with the remaining VN

′
i\{0,8}.

However, this would draw memory hazards to the other transition phase, when the last

191

5. Reconfigurable LDPC Decoders

CNs executing are doing so at the same time the first VNs commence execution. Con-

sequently, dataset II has been profiled using the multi-kernel approach [6], while datasets

III, which can also be benchmarked in the multi-kernel approach, were profiled under

the deeply-pipelined accelerator applying the remapping next discussed [7].

Fwimax =

VN
′
0 VN

′
1 VN

′
2 VN

′
3 VN

′
4 VN

′
5 VN

′
6 VN

′
7 VN

′
8 VN

′
9 VN

′
10 VN

′
11 VN

′
12 VN

′
13 VN

′
14 VN

′
15 VN

′
16 VN

′
17 VN

′
18 VN

′
19 VN

′
20 VN

′
21 VN

′
22 VN

′
23

CN
′
0 → CN

′
0 ∞ 94 73 ∞ ∞ ∞ ∞ ∞ 55 83 ∞ ∞ 7 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

CN
′
1 → CN

′
1 ∞ 27 ∞ ∞ ∞ 22 79 9 ∞ ∞ ∞ 12 ∞ 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

CN
′
2 → CN

′
2 ∞ ∞ ∞ 24 22 81 ∞ 33 ∞ ∞ ∞ 0 ∞ ∞ 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

CN
′
3 → CN

′
3 61 ∞ 47 ∞ ∞ ∞ ∞ ∞ 65 25 ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

CN
′
4 → CN

′
4 ∞ ∞ 39 ∞ ∞ ∞ 84 ∞ ∞ 41 72 ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞ ∞ ∞

CN
′
5 → CN

′
5 ∞ ∞ ∞ ∞ 46 40 ∞ 82 ∞ ∞ ∞ 79 0 ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞ ∞

CN
′
6 → CN

′
6 ∞ ∞ 95 53 ∞ ∞ ∞ ∞ ∞ 14 18 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞ ∞

CN
′
7 → CN

′
7 ∞ 11 73 ∞ ∞ ∞ 2 ∞ ∞ 47 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞

CN
′
8 → CN

′
8 12 ∞ ∞ ∞ 83 24 ∞ 43 ∞ ∞ ∞ 51 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞

CN
′
9 ↘ CN

′
11 ∞ ∞ ∞ ∞ ∞ 94 ∞ 59 ∞ ∞ 70 72 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞

CN
′
10 → CN

′
10 ∞ ∞ 7 65 ∞ ∞ ∞ ∞ 39 49 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0

CN
′
11 ↗ CN

′
9 43 ∞ ∞ ∞ ∞ 66 ∞ 41 ∞ ∞ ∞ 26 7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

(5.13)

A simple reordering of the protograph to nodes’ execution schedule can be performed

unraveling all out-of-order consumptions of data and, thus, eliminating all memory haz-

ards, for the remapping in the second column in Fwimax (5.13). Therein, CNs in the range

CN
′
9 are swapped with CN

′
11, enabling the deeply-pipelined approach for all z f in the

worldwide interoperability for microwave access (WiMAX) standard. This approach has been

empirically verified, with the identity mapping giving rise to memory hazards, and the

optimized mapping not.

There are limitations to the aforementioned remapping. First one is its ad hoc na-

ture with a limited methodology applied to solving any memory hazards arising from a

deeply-pipelined execution of nodes. While it is fairly easy to formalize the data depen-

dencies, we can only do so at a programming level that lies above the actual movement

of data in the kernel datapath. As a consequence, we can only empirically verify that the

decoder behaves well in the remapped case, but produces out-of-order memory accesses

that make for non-coherent data consumption, thus compromising the whole decoding

process, in the non-remapped case. Two approaches could solve this problem, but entail

increasing the decoding latency. The first, requiring an analysis of the generated circuits,

would require the introduction of stall cycles in the pipeline in the most critical cases so

that coherent consumption of data can occur. Another approach would entail raising the

number of words that are being decoded simultaneously, not necessarily by raising the

data-parallelism, but by initiating more work-items in the pipeline. This way, and by in-

terleaving execution of nodes so that consecutive work-items update consecutive nodes

of different codewords, an appropriate number of codewords to be simultaneously de-

coded can be put forward that ensures that no memory hazards occurs. As said, this

would increase latency, the latter most certainly beyond the point admissible for real-

time decoding. Furthermore, the last strategy deplets the FPGA ability to enqueue more

192

5.5 Wide-pipeline LDPC Decoder

work-items, since a new factor contributes to increasing their number, in addition to the

nodes and the iterations, several codewords.

Logic Utilization and Throughput Analysis As discussed previously in Subsection 5.5.1,

the logic utilization of the wide-pipeline accelerator is limited in the design flow process,

illustrated in Figure 5.26, by what is reported at the pre-synthesis report. Given that at

that stage, no synthesis of circuits has occurred, there is a tendency to overestimate the

consumed logic that then limits the number of CUs, or the SIMD level, that can be de-

fined on the wide-pipeline accelerator to further boost the initiation of work-items [177].

As a consequence, the accelerators designed for scenarios II and III, show logic utiliza-

tions levels that are fairly low after placement and routing, even though the pre-synthesis

reports utilizations close to 90% of LEs. This causes the maximum number of CUs of the

TpN multi-kernel approach to peak at only 2 and for the deeply-pipelined accelerator, we

are able to define 6 and 7 CUs. The reason for not defining an equivalent SIMD level, is

related to the single codeword approach taken for the decoders. Due to this, it is harder

for the compiler to automatically vectorize processing. In fact, carried out experiments

showed that a potential SIMD levels higher than 1 were definable, but the throughput of

work-items did not increase by the same factor due to the compiler inability to vectorize

processing. As a consequence, the accelerators incur in a higher overhead for instanti-

ating more CUs. We could argue that BRAMs utilization is what actually is limiting the

feasibility of the instantiation of more CUs. However, BRAM utilization is expected to in-

crease slightly with each CU and its utilization can be considered fairly independent from

it. Another interesting observation is the optimizations are more effective for powers of

2 dimensions. Scenario IIIc) sees a lower utilization of logic resources when compared

to b) and d). This is due to z f=64 being a power of 2, making any multiplications and

modulo divisions employed by the indexing of messages exchanged in the Tanner graph

be defined by simpler shift operations. The simplicity of the operations defined by the

MSA and the indexing of the Tanner graph is patent on the low level of DSPs utilization.

However, power of 2 expansion factors for QC-LDPC codes in use with the IEEE Wi-Fi

and WiMAX standards are the exception and not the rule. In any case, the enhanced

result of the optimizations under theses cases is not observed at the pre-synthesis report,

but it rather unfolds as a consequence of the synthesis of the generated circuits. Thus, we

have not been able to explore this feature for improved parallelism, as the number of CU

instantiated is in line with the remaining decoders tested.

An interesting result, highlighted by the clock frequency of operation obtained, is the

ability to capitalize on an increased number of CUs in order to improve the decoding

throughput. For scenario II, which defines a two-kernel accelerator, when multiple CUs

193

5. Reconfigurable LDPC Decoders

Decoding Iterations/Codeword

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20
x 10

5

High
SNR

Lower
SNRP

C
Ie

 3
rd

 G
e
n
 x

8

D
D

R
3

-S
D

R
A

M

Scenario II (1,2)

Scenario II (1,1)

Scenario III-c) (1,7)

Scenario III-d) (1,6)

Scenario III-b) (1,6)

Scenario III-a) (1,7)

Figure 5.33: Altera OpenCL roofline analysis of the LDPC decoder for the considered scenarios II and IIIa–
d). As observed throughput is at such low levels, when compared to the available memory bandwidth in
the DRAM interface that the data required to decode can be produce in under a tenth of a single decoding
iteration, while the PCIe bus can deliver data at most after 3 decoding iterations.

are instantiated leads to routing congestions shown in the form of a much lower clock

frequency of operation than the target 250 MHz. On the other hand, these routing issues

are not observed for the deeply-pipelined single-kernel approach. Therefore, we can

speculate on the ability of the wide-pipeline accelerator approach ability to place and

route a multi-kernel design without incurring heavy penalties when the complexity of

the design is driven up by multiple CUs. Compounded by the fact that the accelerator

has seen a penalty yield in the decoding latency due to flushing of each kernel pipeline

between the CN and the VN processing, and also between the VN and the CN, it is

clear that multi-kernel strategies should be left for accelerator architectures that do not

introduce an a-priori latency penalty, especially per kernel launch as it will impact on

iterative kernels case, such as LDPC decoding. Thus, a deeply pipelined single-kernel

strategy is the most suitable approach for the wide-pipeline accelerator, granting higher

clock frequencies of operation, non-stalling computation and the ability to improve the

number of CUs initiating work-items in the accelerator [7].

Roofline Analysis The roofline analysis of the developed LDPC decoders is useful in

order to determine how constrained by the bandwidth of the external interfaces they

are [105]. The utilized FPGA board, under the decoder architecture discussed in this sub-

section, poses bandwidth constraints at the PCIe bus in the interaction of host system

to FPGA accelerator, and inside the FPGA board due to the off-chip DRAM interfaces.

Those constraints are drawn in Figure 5.33 on the left-hand side [6].

194

5.5 Wide-pipeline LDPC Decoder

Bandwidth of the external interfaces and maximization of the throughput mean that

very high throughputs are, naturally, more limited by lack of bandwidth than lower

throughput decoders. In this particular case, we are able to obtain moderate through-

puts, the lowest for the considered scenario II using the TpN approach. In this case, we

can observe that both the DRAM and the PCIe interface can deliver data in under a sin-

gle decoding iteration. In a sense, not being constrained by the bandwidth of the external

interfaces is a positive feature of the LDPC decoder accelerator. However, in practice

this means that either the bandwidth of the DRAM and the PCIe interfaces are over en-

gineered for the accelerator, or being the former fixed and not adjustable or swappable

by other components, means that the accelerator is under performing for the board ca-

pabilities target. Hence, the decoder considered under scenario II is under performing

with regards to the board capabilities. On the other hand, for the deeply pipelined ap-

proach considered under scenarios III, the accelerator shows a higher level of constraints

induced by the bandwidth of the interfaces to external memory. In this case, operating at

the highest throughputs (measured as decoding iterations per second) can only be per-

formed after 3, 2.1, 1.2 and 0.9 decoding iterations, respectively for IIIa–d).

As discussed previously in the dataflow decoder case, this roofline analysis allows us

to draw insights regarding the utilization of the LDPC decoder accelerators under dif-

ferent SNR conditions. Whereas previous works found in the literature consider the BER

performance with regards to decoding throughput, decoding iterations or its dependence

to the SNR conditions, we draw a dependence of the SNR conditions with the through-

put achievable. If the operating SNR condition leads to a number of decoding iterations

lower than the identified turning points, the decoder will not be able to comply with the

peak decoding data rate for which it has been designed [6].

Non-binary Multi-kernel Approach The non-binary wide-pipeline accelerator must be

analyzed under a slightly different light than the binary decoders. In this case, we bench-

mark dataset V, for low orders of the binary extension field, respectively {22, 23, 24} for

the considered scenarios Va–c). The logic utilization of the LDPC decoder accelerator,

as a whole, is tabulated in Table 5.9, considering scenarios Va–c) using data-parallelism

level of 1 codeword∗ and 4 codewords†. Raising of the data-parallelism level took into

account not the expansion of the number of work-items in the execution along with an

increasing number of decoding words, but instead the packing of 4 codewords onto a vec-

tor type. Considering that under the OpenCL programming model there is only defined

support for integer and floating-point types, under the C canonical types, the FFT-SPA

benchmarked is defined over floating-point representation. Hence, the quad-codeword

approach sees the loading and storing of float4 types to DRAM. In a sense, we can

195

5. Reconfigurable LDPC Decoders

designate this as manually defining a SIMD-level of 4, since the decoding kernels apply

arithmetic operations at a bitwidth of 128 bits with a word bitwidth of 32 bits. In addi-

tion, the OpenCL compiler has been instructed to automatically find the best combination

of (kSIMD, kCU) for the three kernels complying to an early estimation of less than 85%

utilized resources.

Table 5.9: FPGA logic resource utilization, clock frequency, throughput and latency at 10 decoding iterations
for benchmarked LDPC decoders. Also, decoding throughput is measured relative to each core, and the
minimum decoding iterations allowed by the external interfaces are tabulated.

Scenario V*
a) m=2 b) m=3 c) m=2

Parallelism (kSIMD, kCU)

cnUpdate,FWHT,vnUpdate
{(2, 1), (2, 1), (2, 1)} {(4, 1), (2, 1), (2, 1)} {(2, 1), (2, 1), (2, 1)}

R
es

ou
rc

e
U

ti
l.

(%
)

Logic Utilization 72.09 78.31 74.02
LEs 46.22 43.47 41.70
FFs 39.01 40.39 38.32
BRAMs 62.26 66.34 62.96
DSPs 1.82 3.65 2.20

Pe
rf

. Clock (MHz) 163.07 188.96 193.16
Throughput (Mbit/s) 1.08 0.82 0.68

Scenario V†

R
es

ou
rc

e
U

ti
l.

(%
)

Parallelism (kSIMD, kCU)

cnUpdate,FWHT,vnUpdate
{(2, 1), (1, 1), (2, 1)} {(2, 1), (1, 1), (2, 1)} {(2, 1), (1, 1), (2, 1)}

Logic Utilization 60.92 65.61 68.83
LEs 37.54 39.70 41.38
FFs 31.69 33.66 35.76
BRAMs 51.84 54.92 57.70
DSPs 4.40 1.89 3.77

Pe
rf

. Clock (MHz) 206.52 216.07 203.5
Throughput (Mbit/s) 3.36 1.73 0.98
* - 1 codeword; †- 4 codewords

Counter-intuitively, the level of logic resource utilization lowers with an increasing

number of decoded words, with a consistent less than 10% resources drawn for the

float4 operations than for the float ones. The exception to this trend is the increased

number of DSP units which increases, but again with an exception for scenario Vb), see-

ing a lower DSP usage. Simultaneously, the clock frequency of operation increases with

the increase in data-parallelism. Since there is a replication of the applied operations by

a factor of 4, the fitting tool has a better opportunity at coming up with a better routing

solution than when the same set of instructions is applied to less data.

Comparison of the utilization of logic resources in the FPGA between the bench-

marked binary and non-binary cases show that utilization is similar levels for both ap-

proaches, as illustrated in Figure 5.34. Though binary decoders required almost an ex-

196

5.5 Wide-pipeline LDPC Decoder

tra 20% of BRAM in their accelerator design, the consumed ALM units lie in the same

[60%, 80%] utilization range. As a consequence, considering the overwhelming differ-

Scenarios

I I IIIa) IIIb) IIIc) IIId)

L
o

g
ic

 U
ti

li
z
a

ti
o

n
 (

%
)

0

20

40

60

80

100

Logic Utilization LEs FFs BRAMs DSPs

(a) Binary scenarios

Scenarios

Va) Vb) Vc) Va) Vb) Vc)

L
o

g
ic

 U
ti

li
z
a

ti
o

n
 (

%
)

0

20

40

60

80

100

Logic Utilization LEs FFs BRAMs DSPs

(b) Non-binary scenarios

Figure 5.34: Binary LDPC wide-pipeline decoder logic utilization: LEs+FFs; BRAMs; and DSPs in percent-
age.

ence in numerical complexity of the MSA and the FFT-SPA decoding algorithms, dis-

cussed in Chapter 2, the decoding throughput of the non-binary decoding case is much

lower than that obtained for the binary accelerators. In particular, the single codeword

accelerator sees a peak throughput of Va) 1.08 Mbit/s dropping to Vc)0.68 . However, the

quad-codeword approach, which would asymptotically yield a speedup of 4×, conveys

a throughput of Va) 3.98 Mbit/s dropping to Vc) 0.98. Visualization of the speedups in

clock and throughput is illustrated in Figure 5.35, and if we consider the following ex-

pression combining the speedups, and slowdowns, of the two data-parallelism levels as

T4 = T1×Sclock×Sdata×
1

Slatency
, (5.14)

where T4 is the throughput of the quad-codeword accelerator, T1 is the throughput of the

single-codeword decoder, Sclock is the clock increase factor from the quad- to the single-

codeword case, Sdata the increase in data-parallelism and 1
Slatency

the overall increase in la-

tency, we can evaluate how the tool is able to vectorize the processing of the codewords.

For overall increases in throughputs of {3.11, 2.11, 1.44}×, with data increasing by four-

fold and the clock frequencies improving by factors of {1.27, 1.14, 1.05}×, the equivalent

latencies have increased by factors of {1.63, 2.16, 2.92}. Clearly, while there is still a pos-

itive net gain when driving up the data-parallelism levels by packing more data onto

wider words, there are diminishing returns on the obtained throughput due to an overall

latency increase of the kernels pipeline. Naturally, some of this increase is the responsi-

bility of the lower levels of SIMD (kSIMD) obtained for the kernels’ pipeline. Considering

that each kernel is executed by an equivalent number of work-items we can look at the

multi-kernel approach as a single-accelerator with kSIMD equal to the harmonic mean of

the number of the different kSIMD levels in each kernel compounded by the number of

197

5. Reconfigurable LDPC Decoders

work-items executed by each kernel.

k
′
SIMD =

3×N×2m

N×2m

kSIMD,CN
+

N×2m

kSIMD,FWHT
+

N×2m

kSIMD,VN

(5.15)

In (5.15), k
′
SIMD is an equivalent SIMD level for the LDPC decoder as whole, the number

of executed work-items is N×2m and kSIMD,i is the kSIMD implemented by the tool for

kernel i. Replacing in (5.15) by the corresponding values from Table 5.9 for each scenario

in V, we can calculate the latency increase factors due to the decrease in parallelism levels

of the kernel pipelines (due to lower kSIMD) as {1.6, 1.3, 1.3}×. While for scenario Va) this

solely explains the latency increase, for Vb) and Vc) there is still an effective increase of

1.62× and 2.19× kernel pipeline latency increase.

GF(2 2) GF(2 3) GF(2 4)

C
lo

c
k
 f

re
q

u
e
n

c
y
 (

M
H

z
)

160

170

180

190

200

210

220

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
)

0.5

1

1.5

2

2.5

3

3.5
* 1 cword * 1 cword

1.27x

1.05x
1.14x

3.11x

2.11x

1.44x

Figure 5.35: Non-binary clock frequency and throughput tradeoff with data-parallelism. Solid lines stand
for clock frequency of operation (MHz) while the dash-dotted stands for achieved throughput (Mbit/s), also
shown the clock frequency (solid) and throughput (dash-dot) increase factors.

OpenCL Limitations One of the benefits of using OpenCL, which is not having to

worry with the accelerator micro-architecture components, such as the DRAM memory

interface, DMA blocks and clock configuration, is also one of its pitfalls. In particular,

the flexibility of design with an FPGA is greatly hindered by the logic division of the

OpenCL memory model and how data therein retained has a limited lifetime that makes

sense under CPU and GPU execution, but less so in a reconfigurable substrate. Whereas

in the previous section we discussed how the BRAMs could be configured so that data

would not have to flow through DRAM each time, the OpenCL programming model b)

is lacking this functionality. Considering that under the OpenCL programming model,

the local memory is mapped to BRAMs, instead of a fixed configuration that is observed

for the GPU engine, it could be fine-tuned to a particular kernel/application. However,

b)OpenCL 2.0 has begun to incorporate functionalities oriented towards FPGAs than those provided by
version 1.1, the version when OpenCL FPGA debut took place.

198

5.5 Wide-pipeline LDPC Decoder

this still does not address the fact the data therein has only the lifetime of the kernel

that called it. As a consequence data must necessarily flow through the DRAM-mapped

global memory space.

In addition to this, the wide-pipeline engine, although well-suited for a range of ap-

plications that require one time calling per computed workload. is not the best approach

for the LDPC decoder whose execution features are substantially different. The iterative

nature of the algorithm dealing with error-correction makes it impossible to know be-

forehand how many decoding iterations are required. Although an average value can

be estimated, even under high SNR operating conditions the decoder system will ex-

ecute the maximum number of iterations for codewords that contribute with errors to

the BER at the error-floor region. Thus, frequent calling between the host and the de-

vice is needed. Again, this is a legacy drawn from the way that computers are built and

to the strategy that FPGA manufacturers supporting OpenCL chose to introduce their

hardware. The majority of the FPGA supported models are included in boards that are

connected through the PCIe interface for power and data I/O, just like a GPU device.

5.5.3 SOpenCL LDPC Decoder

SOpenCL is an academia led-effort compiler tool, based on the LLVM compiler infras-

tructure (LLVM), that generates a synthesizable HDL accelerator from an OpenCL kernel

description [201,254]. The compiler applies a number of source code transformations to the

OpenCL kernel descriptions, in order to allow efficient Verilog generation. The source

code transformations are applied at the front-end level, while architectural transforma-

tion are applied at the back-end.

Front-end The front-end consists of a number of stages applying code transformations.

i) logical thread serialization, whereas OpenCL kernels perform computation by an up to

tri-dimensional execution grid composed of work-items divided onto workgroups, in the

absence of synchronization points in the code, computation in the wide-pipeline acceler-

ator will be serialized. Thus, code will be transformed so that the OpenCL kernel body

is expressed by a triple-nested loop. An example is illustrated in the oclKernel ker-

nel in Listing 5.16a) whose transformed code is re-expressed as shown in Figure 5.16b).

ii) barrier elimination where barriers and other synchronization points in the kernel de-

scription are allowed by OpenCL within the work-group granularity. Therefore, in its

triple-nested loop equivalent, all iterations prior to the barrier must complete execution

before the next iterations can be dispatched. Essentially, by performing loop fission, the

SOpenCL front-end guarantees that the whole computation body is performed prior to

iii) variable privatization. At his stage loop fission performed to re-express computation

199

5. Reconfigurable LDPC Decoders

in the triple-nested loop while respecting the enforced barriers brings about challenges

regarding the lifetime of variable that need to be kept before and after the barrier. In this

case, semantics dictates that such variables be overwritten by other iterations, leaving the

computation largely incoherent. As a consequence, such variables are privatized.

// SOpenCL function container
__kernel void oclKernel(/*...*/){

int tx = get_global_id(0);
int ty = get_global_id(1);
int tz = get_global_id(2);

oclKernel_stage1(tx,ty,tz,/*...*/);
barrier(CLK_LOCAL_MEM_FENCE);
oclKernel_stage2(tx,ty,tz,/*...*/);

}

a) SOpenCL kernel example.

// Transformed C function container
void cKernel(/*...*/){

for(int tx = 0; tx < Nx; tx++)
for(int ty = 0; ty < Ny; ty++)
for(int tz = 0; tz < Nz; tz++)
cKernel_stage1(/*...*/);

for(int tx = 0; tx < Nx; tx++)
for(int ty = 0; ty < Ny; ty++)
for(int tz = 0; tz < Nz; tz++)
cKernel_stage2(/*...*/);

}

b) SOpenCL kernel post-front-end transformations.

Listing 5.16: SOpenCL kernel source transformations: a) computation in the original oclKernel is
performed by work-items across an execution grid that synchronize between oclKernel_stage1 and
oclKernel_stage2; b) the resulting C function after the front-end transformations are applied replaced the
execution grid with triple-nested loops, and reworked the barrier through loop fission.

After these transformations have been performed, the re-expressed OpenCL kernel is

given to the back-end for generation of synthesizable HDL.

Back-end The output of the SOpenCL front-end is put through the LLVM and an LLVM

intermediate representation (IR) of it is generated so that standard compiler optimizations

can ensue. The process next described is the so called back-end of the compiler and is

composed of a series of steps, illustrated in Figure 5.36, that are described next. i) bitwidth

Verilog
Generation

Intruction
Clustering

Bitwidth
Optimizations

Predication
SMS Modulo
Scheduling

Figure 5.36: Sequence of SOpenCL backend code transformations and optimizations. Highlighted are the
optimization steps of particular interest to LDPC decoding.

optimization is an automated procedure aiming the minimization of the number of bits re-

quired to represent each operand [279]. In particular, it draws on code constructs such as

array bounds, loop iteration counts and type casts to trim any bitwidth that had been

defined as unnecessarily wide. The scope of this optimization is at the integer and fixed-

point arithmetic, boolean operations and bit manipulations, that can be found across the

instructions issued by the LDPC decoder. ii) predication allows for conditional execu-

tion of instructions. Typically, a 1-bit predicate dictates the execution based on certain

conditions, allowing the removal of the majority of branches in the code. This strategy

200

5.5 Wide-pipeline LDPC Decoder

greatly simplifies the task of efficient instruction scheduling and hardware generation,

as a branching functionality is replaced by select instructions managed by predicate vari-

ables. iii) code slicing will split each SOpenCL kernel onto three stages 1) input stream kernel

consisting of all load instructions or instructions participating in load address computa-

tion, 2) output stream kernel that is similar to the above, only for write instructions and

3) computation kernel defines the core of the accelerator. It comprises the instructions re-

ceived from the Input Stream Units and produce data to the output stream units. Since

the SOpenCL defines in-order datapaths, computation units just push or pop data, ac-

cording to their consumption/production patterns, without the need for a matching ad-

dress. iv) instruction clustering sweeps the DFG of the operations in the algorithm at hand

Clustering

Instruction

&

+ Z

Z

&

+

>>

+ &

+

>>

+ &

+

Z

Z

a) b)

Figure 5.37: Instruction clustering of arithmetic operations. The partial DFG in a) has a regular pattern of
instructions that is clustered to a macro-instruction Z, utilized in the redrawn DFG inb).

finding computation patterns, i.e., combinations of instructions that appear repetitively,

that can be replaced by a single macro-instruction encompassing all the computation in

the pattern. This process is illustrated by the DFG in Figure 5.37 and follows a grammar-

based approach [12]. The implementation is tuned to the underlying FPGA design so that

the macro-instruction can be implemented in a single LUT. If, however, computation en-

sues from one LUT to another, then there is a need to register the result passing between

LUTs. Finally, v) swing modulo scheduling provides instruction scheduling exploiting in-

struction level parallelism (ILP) in loops by overlapping execution of iterations [280]. This

leads to parallelism within a pipeline, as each SMS’d loops initiate iterations at a certain

rate, designated as II and quantifies the timing difference in clock cycles between the

initiation of each consecutive iteration. Minimization of the II delivers in the highest pos-

sible parallelism for any given loop, the most contributing factor to high throughputs.

This design feature is a property of the wide-pipeline accelerator, whose discussion is set

in the beginning of this section.

201

5. Reconfigurable LDPC Decoders

Template Architecture The generation of a synthesizable HDL accelerator is based on

a template HDL architecture, which is illustrated in Figure 5.38. This way, the compiler

is able to leverage on a working setup that is optimized and tuned to the underlying

OpenCL kernel at hand. The datapath is composed of a network of FUs that produce

and consume data elements using FIFO channels to the streaming units. To this end a

multiplexer tree and buffers is generated to allow the correct production-consumption

patterns to be realized. The required control logic to operate it is spatially located close

to their corresponding FUs and other logic. The rationale is avoid long critical paths on

the FPGA with the distributed control logic model.

Named Register

Named Register

Tunnel

Tunnel

FU FU FU

DataV

DataV

DataV

DataV

DataV

DataV

DataV

DataV

DataV

Multiplexer Tree

Memory Mapped Registers

Sin Align Unit

Sin AGU

Cache

Unit

Sin Requests

Generator Sout

AGU

Sout Align Unit

Bus Bridge

Arbiter

System Interconnect

Sin0 Sin1 Sin2 Sin3 Sout0

Sin addresses Address

Streaming Unit

Status

Request

Address

Data line Data outLocal request

Data in Ack in Ack address Address Ack Out Data out

Figure 5.38: SOpenCL template architecture.

The template architecture accommodates a system interconnect—in reality a Xilinx

processor local bus (PLB)—to handle all memory transactions from and to the main mem-

ory addressing space. Orchestration of data elements transactions is performed by the

address generation unit (AGU) that generates addresses to prefetch data and delivers them

to the address request module. The generation of the AGU is guided by identifying which

code part is responsible for data I/O, and thus, the AGU provides addresses to all the el-

ements within an input stream. The data requests generated then by the generator are

coalesced by the Sin AGU to the width of the underlying system interconnect. There is

202

5.5 Wide-pipeline LDPC Decoder

competition from other stream units for the system interconnect to provide the required

memory accesses. Thus, a cache unit allows to withhold using the system interconnect if

data is available in it, improving the overall accelerator bandwidth and contributing to

lowering the contention on the interconnect [201]. The caching system employed explores

both temporal and spatial locality to reduce the latency of memory accesses. Its dual-port

design allows the simultaneous serving of the arbiter and the Sin align unit. The align-

ment unit retrieves data either from the cache unit or incoming from the data channel,

eliminates any existing gaps in order to optimize bandwidth and keeps them ordered in

the datapath. As soon as enough data is ready to fully consume the bitwidth of the PLB

connection, a write request is given to the arbiter. At this point, the stream units access

to the PLB are regulated in round-robin scheduling.

5.5.4 Experimental results

The SOpenCL-based accelerator considers scenarios I and IV to evaluate how effi-

ciently the wide-pipeline accelerator is generated [12]. Furthermore, the SOpenCL-generated

Verilog project has been synthesized, and put through placement and routing on a Xilinx

Virtex-6 LX760 FPGA device, using the Xilinx ISE 12.4 toolset. We consider the LDPC

codes in scenarios I and IV (c.f Table 4.3) under SOpenCL accelerator generation.

In detail, the considered scenarios I and IV are expressed by OpenCL kernels defin-

ing one work-item per node in the Tanner graph, i.e., the CN_kernel and the VN_kernel,

whose kernel containers are coded in Figure 5.17, spawn M and N work-items. Due to

the front-end optimizations and the SMS back-end optimization carried out, the execu-

tion grid structure is replaced by a triple-nested loop structure, thus there will be M and

N iterations scheduled for execution in the synthesized CN and VN pipelines. Thus, ac-

cording to (5.6), the total latency taken by the wide-pipeline decoder in clock cycles as

tdec = DCN + M×I ICN + DVN + N×I IVN (cycles), (5.16)

with DCN and DVN the generated pipeline depths, and I ICN and I IVN the IIs achieved,

respectively, for the CN and VN pipelines. By combining the clock frequency of operation

f obtained by the placed and routed design we can write the total latency in seconds as

tdec =
DCN + M×I ICN + DVN + N×I IVN

f
(s), (5.17)

and finally, the obtained decoding throughput will come as

Tdec =
Words×N
Iter×tdec

=
Words× N × f

Iter×(DCN + M×I ICN + DVN + N×I IVN)
(bit/s), (5.18)

203

5. Reconfigurable LDPC Decoders

// SOpenCL CN kernel container
__kernel void CN_kernel(__global uint4 *Lq, // L(q) messages

__global uint4 *Lr, // L(r) messages
__global int *Lr_idx) // Indexes to write L(r)

{
int CN_id = get_global_id(0);

CN_update(Lq,Lr,Lr_idx,CN_id);

}

// SOpenCL VN kernel container
__kernel void VN_kernel(__global uint4 *LQ, // L(Q) messages

__global uint4 *Lq, // L(q) messages
__global uint4 *Lr, // L(r) messages
__global int *Lq_idx) // Indexes to write L(q)

{
int VN_id = get_global_id(0);

VN_update(Lq,Lr,Lr_idx,CN_id);

}

Listing 5.17: SOpenCL CN and VN kernel containers.

where Words are the number of codewords concurrently decoded by the accelerator and

Iter the number of issued decoding iterations.

Bitwidth and II Optimizations The bitwidth of operands that are mapped onto FPGA

logic resources dictates some of the pressure of procured resources to place and route the

synthesized LDPC decoder. To aid the SOpenCL tool perform this optimization better we

explicitly slice the most significant bits (MSBs) that are not utilized. Since OpenCL is based

on the C89 programming language standard, there are no custom types for arbitrary

integer or fixed-point precision. Instead, we have to rely on the conventional data types

and bitwise mask to the desired bitwith. To this end, a parameter b is introduced in the

kernel descriptions (illustrate in the code snippet in Figure 5.18) which sets the defined

bitwidth of the LLR messages in the kernel. Also, a generic version has been synthesized

which forgoes the bitwidth optimization step in the SOpenCL back-end.

int Lq; // Container for 4 LLRs
uint4 Lq4; //Container for 16 LLRs

// Bitwidth defined as b={1,2,3,4,5,6,7,8} bits
int Lq0 = (Lq >> 24) & (1 << b);
int Lq1 = (Lq >> 16) & (1 << b);
int Lq2 = (Lq >> 8) & (1 << b);
int Lq3 = (Lq >> 0) & (1 << b);

Listing 5.18: Unpacking and bitwise operations in the SOpenCL kernels. Parameter b defines the bitwidth
representing an individual LLR message that dictates how the bitwidth optimization is driven for the LLR
arithmetic operations.

204

5.5 Wide-pipeline LDPC Decoder

Table 5.10: SOpenCL CN pipeline for the considered scenario I LDPC kernel implementation and architec-
tures configurations I I = {1, 2, 8}, and varying bitwidth optimizations for {5, 6, 8} bits and a Generic bit
precision approach.

Bitwidth Slices Flip-flops LUTs Freq. Latency Exec. Time
(MHz) (cycles) (ms)

II
=1

8 (no BW opt.) 12061 42718 39594 100 102 0.481020
8 11600 41892 38759 101 102 0.476257
6 11647 35948 33914 103 106 0.467049
5 10369 33639 32861 107 106 0.449589

Generic 24108 101960 80115 91 106 0.528637

II
=2

8 (no BW opt.) 25453 64311 92096 88 103 0.546625
8 21424 54872 81526 97 103 0.495907
6 23632 61035 78884 95 110 0.506421
5 19374 61052 65192 88 110 0.546705

Generic 28432 67307 73212 63 110 0.763651

II
=8

8 (no BW opt.) 33213 54749 78266 50 210 1.284200
8 27556 57582 58788 53 210 1.211509
6 27008 56745 64104 50 231 1.284620
5 26894 54868 64083 51 231 1.259431

Generic 36954 58121 79682 51 231 1.259431

Furthermore, to assess how the performance of the generated LDPC decoder is af-

fected by varying the II and how efficiently are the FPGA logic elements utilized by

pipelines with different IIs, this parameter was set to I I={1, 2, 8} for optimization by

the SMS step. The obtained results for scenario I are tabulated in Tables 5.10 and 5.11.

The analysis of the obtained results for the scenario I under consideration allows some

insight into how hardware is generated and what are the most suitable combinations of

design parameters. First, we analyze how the II affects the clock frequency of operation

and the latency of the generated CN and VN pipeline datapaths.

Impact of II Optimizations Counter-intuitively, since a separate FU for each primitive

instruction in the datapath is required, the design choice that minimizes the number of

utilized logic resources is for I I=1. However, since the kernel code is punctuated by

simple arithmetic operations between a variable and a constant, the assignment of FU

inputs to constants makes room for copious opportunities for the synthesis tool to reduce

the number of utilized logic elements. On the other hand, as soon as a higher II is set

(I I>1), the FUs are driven by a multiplexer tree which prevents this optimization from

happening. Furthermore, the multiplexer tree adds routing congestion, and, thus, the

placer is not able to come up with a routing solution as good as the one available for

when I I=1. The clock frequency of operations are better for lower IIs, especially in the

205

5. Reconfigurable LDPC Decoders

Table 5.11: SOpenCL VN pipeline for the considered scenario I LDPC kernel implementation and architec-
tures configurations I I = {1, 2, 8}, and varying bitwidth optimizations for {5, 6, 8} bits and a Generic bit
precision approach.

Bitwidth Slices Flip-flops LUTs Freq. Latency Exec. Time
(MHz) (cycles) (ms)

II
=1

8 (no BW opt.) 7681 28026 25823 152 53 0.158243
8 6466 19584 18433 163 53 0.147564
6 5891 17746 17001 175 57 0.137469
5 5515 16132 16509 182 57 0.132181

Generic 10572 35865 37056 164 61 0.146713

II
=2

8 (no BW opt.) 7134 24332 23482 153 54 0.157216
8 6201 18246 17957 176 54 0.136670
6 5996 17663 17385 171 58 0.140690
5 5665 17269 17077 166 58 0.144928

Generic 8226 27190 27891 164 62 0.146720

II
=8

8 (no BW opt.) 8631 20592 22633 151 109 0.212642
8 6747 16791 17983 168 109 0.191125
6 7032 17524 18697 163 120 0.197055
5 6731 17227 18384 172 120 0.186744

Generic 9963 23946 26683 132 127 0.243386

CN datapath case, whereas in the VN there is no significant penalty incurred. Also,

another interesting effect observed for both the CN and the VN datapaths, is that when

I I > 2 the insertion of pipeline registers in the multiplexer tree as a way to reduce the

critical path delay and improve routing will lead to roughly a doubling of the pipeline

latency when the II is eight clock cycles. This behavior is not observed, however, when

I I=2, as there are no registers introduced to the pipeline.

Thus, the highest II case is negatively affected in a three-fold. Not only is their a-priori

performance worse than lower IIs due to lower rate of initiation of work-items in the

pipeline (5.16), but also because the latency is negatively affected as well, and, finally,

because the clock frequency of operation also degrades.

Impact of Bitwidth Optimizations Bitwidth optimization is a particularly subject in

the reconfigurable computing field which is not matched by the OpenCL standard capa-

bility to define arbitrary precision variables. In fact, the supported C89 standard defines

the conventional datatypes of the C programming language with the addition of several

vector data types that are suitable for maximizing the bandwidth of memory transfers in-

volving wide buses, as discussed in the previous chapter. In the considered scenario I, not

only is the bitwidth defined by the bitwise mask (c.f the code snippet in Figure 5.18), but

also several LLR messages, corresponding to several codewords, are loaded are required

206

5.5 Wide-pipeline LDPC Decoder

unpacking. The operations required to do so have an impact on the quality of the gener-

ated hardware. The packing and slicing operations are costly for II values greater than a

single clock cycle. Not only is the multiplexer tree density increased, but also, there could

be a need for more FUs, adding further multiplexer trees to the design. Again, counter-

intuitively, the logic utilization is higher for smaller bitwidths. As a consequence, it is

harder to efficiently place and route these design configurations.

Two other cases have been considered. When a generic bitwidth is applied, i.e., the

bitwidth is not a known a-priori but depends on a runtime parameter, all FUs are po-

larized to the greater bitwidth involved (8 bits). This configuration is the most area de-

manding, especially when the IIs are low. This is due to the fact that all compile-time

optimizations are not performed and that a tremendous number of masking operations

will need to be applied in the datapath. Secondly, to illustrate the importance of this type

of optimizations, they have been turned off for the best considered case which is the 8 bit

decoder. Whereas the performance difference may not be so significant with regards to

decoding latency, it is with regards to logic utilization, especially for higher values of the

IIs in the CN and VN datapaths.

Slices LUTs FFs Freq. Lat
-60%

-40%

-20%

0%

20%

40%

60%

6466
19584

18433

163

53

6201 18246

17957

176

546747
16791

17983

168

109
II = 1 II = 2 II = 8

(a) Scenario I VN w/ bitwidth opt

Slices LUTs FFs Freq. Lat
-60%

-40%

-20%

0%

20%

40%

60%

7681

28026

25823

152

53

7134

24332

23482

153

54

8631 20592

22633

151

109

(b) Scenario I VN wo/ bitwidth opt

Slices LUTs FFs Freq. Lat
-80%

-60%

-40%

-20%

0%

20%

40%

60%

11600

41892

38759

101

102

21424
54872

81526

97

103

27556 57582

58788

53 (135%)

210

(c) Scenario I CN w/ bitwidth opt

Slices LUTs FFs Freq. Lat
-60%

-40%

-20%

0%

20%

40%

60%

13027 47222 42824

122

68

13729
46077

44514

130

70

16348
50133

41393

126 (152%)

169

(d) Scenario I CN wo/ bitwidth opt

Figure 5.39: Impact of instruction clustering on the logic utilization for the considered Scenario I a)–d) (lower
is better for Slice, LUT and FF utilization, and Latency, higher is better for Frequency). The baseline compar-
ison is to the case where no clustering optimization is performed. The bar label stands for absolute number
of resources utilized by unoptimized decoder. On the left column the 8-bit decoder solutions are bitwidth
optimized while on the right-hand column they are not.

Impact of Instruction Clustering Clustering of instructions across the DFG of both the

CN and VN datapath is observed to be a powerful area utilization optimization tech-

207

5. Reconfigurable LDPC Decoders

Slices LUTs FFs Freq. Lat
-60%

-40%

-20%

0%

20%

40%

60%

32168 89420
99775

85

48
25640

80681

73079

97

52

(c) Scenario I VN w/ bitwidth opt

Slices LUTs FFs Freq. Lat
-60%

-40%

-20%

0%

20%

40%

60%

35881 108806 117143
67

48

30618 92160

86218
72

52

(d) Scenario I VN wo/ bitwidth opt

Slices LUTs FFs Freq. Lat
-60%

-40%

-20%

0%

20%

40%

60%

22044 67145 66074

100

104

23814
84289

72986

87

104

II = 1

II = 2

(e) Scenario I CN w/ bitwidth opt

Slices LUTs FFs Freq. Lat
-60%

-40%

-20%

0%

20%

40%

60%

35620

109046
112642

68

116

41801 131437

136255

65

116

(f) Scenario I CN wo/ bitwidth opt

Figure 5.40: Impact of instruction clustering on the logic utilization for the considered Scenario IV c)–f)
(same legend as in Figure 5.39, only I I={1, 2}).

nique. Herein, the scenarios assumed are I and II (c.f. Table 4.3) and the baseline version

for comparison is the decoder version not performing instruction clustering, as assumed

before. As seen in Figures 5.39 and 5.40, instruction clustering has a clear positive effect

on the clock frequency of operation. On Scenario I, the VN kernels are the ones ben-

efiting the most from this optimization, in particular for I I=8 clock cycles, unfolding

improvements of up to 152%. Furthermore, the computational performance of the gen-

erated pipeline is also improved by the fact that the latency is reduced by at least 40% for

all Scenario I cases. In this case, VN kernels are the ones improving the most, again for

I I=8. Naturally, if the number of loop iterations scheduled for execution, which match

the number of work-items in the OpenCL kernel description, is high, then latency im-

provement have a lower impact than higher clock frequency of operation of the pipeline.

For the considered Scenario IV case, a SOpenCL compiler limitation arises as the tool

was not able to converge to a solution when instruction clustering optimizations are

turned on. This is due to the irregular LDPC structure which adds further complexity

to the OpenCL kernel descriptions. Herein, we observed highest improvements come for

the VN kernels with regards to clock frequency of operation and not more than a 20%

reduction in pipeline latency is observed. As the design grew more complex, we can see

diminishing returns for instruction clustering optimizations measured in clock frequency

of operation and pipeline latency. Roughly speaking, we can see the clock frequency of

operation as a consequence of logic utilization, since lower levels of the latter typically

208

5.5 Wide-pipeline LDPC Decoder

imply less complex routing solutions, and, thus, the critical path is shorter allowing the

former to increase.

In this regard, the impact of instruction clustering on logic utilization is extremely

positive, with all solutions experiencing at least a 20% decrease in logic required to im-

plement the considered scenarios. While instruction clustering requires more FFs, this

does not lead to an overall greater utilization of slices. This stems from the fact that a sin-

gle slice is composed of four LUTs and eight FFs, which tells us that a greater utilization

of FFs within the utilized slices occurs. Because after placement and routing a greater

number of FFs within a smaller number of slices are being utilized, this means that com-

putation is spatially more contained within the FPGA, which in its turn leads to higher

clock frequencies of operation, due to shorter critical paths. After all, spatially, computa-

tion occurs in a lessen area of the FPGA chip. Instruction clustering is not very efficient

at reducing the logic utilization when the II is at its fastest rate because there are no mul-

tiplexers structures to optimize in this case. However, when the rate goes down, i.e. for

I I={2, 8}, plenty of opportunity exists to optimize these structures and, consequently,

optimize each variable lifetime.

The aforementioned increase in FF utilization rate can be explained by the effect that

instruction clustering has on chain patterns in the DFG it replaces by so-called macro-FUs

(MFUs). Instead of requiring a single register prior the instruction, each variable will

a)

*

+

*

+

& +- *

M
a
c
ro
-I
n
st
ru
c
ti
o
n

c)

T = 0

T = 1

T = 2

T = 3

T = 4

N4

N7

N6

N5

N1

N3

N0

N2

b)

T = 0

T = 1

T = 2

T = 3

T = 4

N4

N7

N6

N5

N1 N3N0 N2

Macro-FU

Figure 5.41: Instruction clustering effect on the lifetime of inputs. In a) a partial DFG is optimized taking
into account the highlighted macro-instruction. In b) the scheduler output and FU implementation with the
macro-instruction is shown. In c) the equivalent non-clustered version schedule is shown.

need as many registers as required to keep them and to retain the data from preceding

and proceeding loop iterations in the MFU. In Figure 5.41, we can observe that the result

of subtraction is required only at the final addition instructions. When no clustering is

applied, the result in N0 is registered and then fed in to N7, while in the MFU stemming

from the instruction clustering optimization, N0 whose output is available at T=0 will

need four registers to be kept alive until this result is consumed at T=4.

209

5. Reconfigurable LDPC Decoders

Generated Datapath and Memory System The SOpenCL generates a functional dat-

apath as wide-pipeline to each kernel given as an input, to which a memory system is

hooked that manages traffic between the FPGA and the host system via a PCIe inter-

face [201,254]. The generated memory system is illustrated in Figure 5.42, and can assume

one of two configurations. In detail, the memory system handles all data transfers be-

RGU0
6 Addr/Clk

RGU1
24 Addr/Clk

SOUT
24 Addr/Clk 6 L/Clk

6 L/Clk

2 L/Clk
1 L/Cy

1 L/Cy

1 L/Cy

BRAM
MEM.
BANK

P

C

Ie

4G bps

RGU0
6 Addr/Clk

RGU1
24 Addr/Clk

SOUT
24 Addr/Clk

6 L/Clk

6 L/Clk

2 L/Clk

BRAM
MEM.
BANK

P

C

Ie

4G bps
A
R
B
I
T
E
R

1
L/Cy

Data

Path

RGU0

RGU1

RGU2

SOUT

1 L/Clk

1 L/Clk

BRAM
MEM.
BANK

P

C

I

e

4G bps

Data

Path

SOUT

RGU1

RGU0
1 L/Clk

Lq_idx

Lr_idx

Lr

Lq

Lq

Lr

LQ

A
R
B

A
R
B

1 L/Clk

1 L/Clk

3 L/Clk

3 L/Clk

2 L/Clk

6 L/Clk

6 L/Clk

a)

b) c)

Pi

Lq_idx

Lr

Lq

Lr_idx

Data

Path

Data

Path

Figure 5.42: Block diagram of the SOpenCL-generated LDPC decoder showing the CN and VN kernels a)
connecting via a single BRAM port, b) via three ports, one per I/O stream, and c) both the CN and the VN
kernels are shown instantiated and interconnected.

tween the accelerator, resident in the FPGA fabric and the host computer via a PCIe in-

terface. The accesses to the host are directed to its RAM, while FPGA memory accesses

are directed to the FPGA BRAMs. The benchmarked system provides a PCIe v2.1 8x

interface, thus, it offers a bandwidth of 4000 MB/s in either host to FPGA or FPGA to

host directions. In the FPGA accelerator, the memory system should be able to deliver all

!"#$%&"'#$()*+$(

!"#$%&"

!,-.$%&"'#

/0$1

/0$(

!"#$%&"

2%.%$&"#3 4,5%&6

738-39.9

:48$";<=>

?;;7399
?;;73992%.%$,-.

@,A6B+
C-&DA&3<37

E 2%.%

B+

C-&DA&3<37

E 2%.%

B+

C+F

B+

C+F

B+

C+F

B+

C+F

B+

C+F

B+

C-&DA&3<37

E 2%.%

B+

C-&DA&3<37

E 2%.%

:47$";<=>

!"#$%&"'#$1)*+$1

2%.%$&"#3
4,5%&6

738-39.9

48=>

?;;7399

@,A6B+
C-&DA&3<37

E 2%.%

:48=> :47=(>
47=(>

B+

C-&DA&3<37

E 2%.%

B+

C-&DA&3<37

E 2%.%

!38-G

3#537

H;&3

!.%7.

H;&3

!.%7.

B+

C+F

B+

C+F

'()*+

,-)

./01(234+

,-)

Figure 5.43: SOpenCL generated CN datapath. A custom number of FUs can be instantiated, based on which
the generation of the Sin_align and the RGU units is driven to provide the correct servicing of data.

required bandwidth to the generated datapaths, otherwise, computation must be stalled

210

5.5 Wide-pipeline LDPC Decoder

so that the loading and storing of the required data elements completes. We limit the

analysis of the required bandwidth to the case where the II in the wide-pipeline is at the

fastest rate (I I=1) since it is the design producing and consuming data at the fastest pace,

it is the one where it is most pressing to keep with its bandwidth requirements. Further-

more, we can restrict our analysis to the kernel with the most complex datapath, in this

case the CN kernel datapath, seen in Figure 5.43. At this configuration, the CN datapath

pipeline, when fully occupied, keeps 106 loop iterations active whose computation is ac-

tive throughout 392 adders, 210 shifters, 369 logic units, 434 comparators, and 994 1-bit

predicate manipulation units. Such datapath consumes 120 bytes of data every clock cy-

cle and produces 96 clock cycles to the memory system. To try and meet this bandwidth

requirements, the SOpenCL tool provides two memory sub-systems types that connect

the generated datapaths to the accelerator memory space defined in the FPGA BRAMs.

The SOpenCL accelerator utilizes as many BRAMs units required to allocate the de-

sired memory space in a concatenated fashion. This space can then be accessed in one of

two ways. Illustrated in Figure 5.42a), a single-port to the BRAM memories is defined,

while in Figure 5.42b), the system is implemented as a distributed memory system. The

necessary memory access rate required by the CN accelerator is also illustrated in the

Figure and it requires for the I I=1 accelerator the following accesses in parallel. 6 ad-

dresses/cycle (A/Clk) for indexing of the Tanner graph (Lq_idx and Lr_idx), 24 A/Clk

for the L(q) LLR messages (Lq) and L(q) (Lr). The request generator unit (RGU) and Sout

Align blocks coalesce the addresses into 2 lines/cycle (L/Clk), 6 L/Clk and 6 L/Clk, re-

spectively, utilizing a 128-bit data bus. The bus width is a consequence of the packed

16 codewords scheme utilized, making each LLR datatype to contain 16 messages with

8-bits. Due to the 128-bit single bus, data is stalled for 14 cycles in teh pipeline for each

computation address generation cycle. However, in the distributed memory configura-

tion, one 128-bit bus is assigned to each RGU and Sout Align modules, making the stall

time to be shortened to 6∼14 cycles. Conditions for preventing the stalling in the pipeline

unfold a need for 768-bit bus for the handling LLR messages data requests and a 512-bit

bus for handling those of the indexing of the Tanner graph.

Clearly, the most suitable configuration is the distributed one as it provides more

bandwidth to fulfill the generated wide-pipeline datapath requirements. Another feature

is that due to the distributed nature of the FPGA BRAM units in the chip is more suitable

than the single-port memory bank which would restrict bandwidth and draw extra stall

cycles. The distributed memory system, interconnected via appropriate data arbiters to

the wide-pipeline datapaths, is shown connected to the CN and the VN pipeline datap-

aths in Figure 5.42.

211

5. Reconfigurable LDPC Decoders

5.5.5 Operational Transform FFT/FWHT

In Chapter 2 we have discussed the role of the FFT applied to non-binary LDPC and

in Chapter 4 we have discussed the constraints that need to be overcome for the real-

ization of fast and efficient FWHT computation in programmable GPU architectures [13].

Herein, we discuss the particular case of the FFT acceleration on reconfigurable devices

using a wide-pipeline approach. We do so based on the following assumptions. Of all

the supported compiler infrastructure, the wide-pipeline OpenCL tools available, allow

for the generation of a complete architecture, i.e., not only is the accelerator generated,

but the remaining modules, such as clock, PCIe interface and respective memory inter-

connects, are also instantiated, making it available for use in a similar fashion that a GPU

accelerated FFT would be. Secondly, a conservative throughput estimate for the FWHT,

which is of interest to the work developed in this Thesis for the Fourier-based non-binary

LDPC decoding, can be inferred from the FFT accelerator. Furthermore, literature covers

the FFT extensively [238] for programmable computer architectures such as CPUs [281] and

GPUs [282], and also in reconfigurable computing devices [283–285]. However, in the latter

case, majority of the surveyed approaches use RTL-based projects to realize the FFT accel-

erator or specialized, and often proprietary and closed-source, IP cores, whereas, in our

case, we are interested in exploring how an HLS-based model can be employed, namely

in what ways the challenges of devising an efficient accelerator can be overcome. To this

end, we explore the Altera OpenCL compiler to generate a wide-pipeline accelerator.

OpenCL FFT for Reconfigurable Devices The computation of the discrete Fourier trans-

form (DFT) through the FFT algorithm allows for a a numerical complexity initially scal-

ing with the transform length N of O(N2) to O(N log2(N)) while allowing for better

numerical accuracy [238]. Despite this less demanding complexity when compared to the

DFT case, the FFT still performs a high volume of memory and arithmetic operations, and

usually very high throughputs are required, as for instance, in the non-binary LDPC case

or other communication systems [13]. The need for high number of arithmetic resources

and high throughputs makes the development of the FFT particularly challenging. Fur-

thermore, due to the several radix combination or configurations available for imple-

mentation for each N-length transform FFT, further adds to the design space complexity.

Compounded by the fact that data elements in the intermediate stages of computation

will flow through memory locations available to each work-item within a work-group,

then our design must be able to overcome the fact that work-items have been initiated in

the wide-pipeline accelerator at a rate that may produce a considerable time lag to ele-

ments produced by the preceding and the trailing work-items, which are then consumed

in reversed order. In other words, efficient working out the required synchronization

212

5.5 Wide-pipeline LDPC Decoder

mechanism to share data among work-items will determine the efficiency of the devel-

oped accelerator. This challenge is illustrated in Figure 5.44.

!"#$%&'()*+

!"#$%&'()*,

!"#$%&'()*-./%0

!

!"#$%&'()*0

! !

"
"
#
$
%
&
#
'
(
)
*
*
+
,

! !

"
"
#
$
%
&
#
'
(
)
*
*
+
,

! !
a)

!!

!"#$%&'()*+

!"#$%&'()*,

!"#$%&'()*-./%0

!

"
"
#
$
%
&
#
'
(
)
*
*
+
,
-
.
/

!"#$%&'()*0

"
"
#
$
%
&
#
'
(
)
*
*
+
,
-

t [clock cycles]

"
"
#
$
%
&
#
'
(
)
*
*
+
,
-
0
/

1'233 1'233 1'233

b)

N
/n

 w
o

rk
-i
te

m
s

! ! ! ! !

clock cycles

between work-item 1

and N/n

!"##$%#&'()*(+',(*-.-*/.0'.1

1&2-3.4

56&7+'-./

1&2-3.4

56&7+'-

1&2-3.4

56&7+'-0/

1&2-3.4

56&7+'-./
1&2-3.4

56&7+'-
1&2-3.4

56&7+'-0/

Figure 5.44: OpenCL workgroup execution flow of the wide-pipeline N-length FFT assuming an arbitrary
radix-n implementation. a) compares the expected flow for a SIMT execution model. In that case, syn-
chronization mechanism issued by the barrier(CLK_LOCAL_MEM_FENCE) can be issued in parallel for all
work-items within a work-group. However, for the wide-pipeline in b) the work-item 0 lies at least N/n− 1
clock cycles ahead of the trailing work-item, and, thus, the synchronization mechanisms stalls the pipeline
completely throughput a number of cycles.

Mapping the Design Space to Circuits The instructed data granularity of the FFT is

towards the finest granularity possible for a particular radix-n implementation, which

in the past lead to significant performance boosts for programmable GPU devices [239].

Stretching the OpenCL cross-platform capabilities one step further, we take FFT OpenCL-

descriptions that based on the literature will yield high FFT throughputs. However, the

underlying SIMT execution model, whose features are well captured by the OpenCL pro-

gramming model, assumes in the best case scenario that all work-items are running in

parallel, as in Figure 5.44a). In this case, the data exchange happening between work-

items, after each radix-n stage of the FFT, can be performed concurrently, or at least con-

currently at the warp or wavefront granularity [188,221]. This is certainly not the case of the

OpenCL wide-pipeline accelerator seen in Figure 5.44b). In that case, as work-items are

initiated at a given rate in the wide-pipeline accelerator, their execution is offset in time

by the difference between their numerical identifier times the II. As a consequence, the

execution of several synchronization points in the design requires that the work-items

execution is stalled. In the naïve-most case, all work-items are stalled until the trailing

work-item reaches the synchronization point in the pipeline, after which work-items are

again re-initiated through the remaining stages of the pipeline. In essence, a procedure

213

5. Reconfigurable LDPC Decoders

much alike the loop fission defined in SOpenCL compiler [201,254]. However, a closer in-

spection of the memory access patterns between the several radix-n stages reveals that in

most cases, the worse case waiting time, where work-item 0 is stalled until the last work-

item has not reached the synchronization point, does not occur. Provided the compiler

tool has the ability to do so, then the penalty incurred by each synchronization operation

does not have to be necessarily the number of work-items involved in the computation

of the FFT factored in by the II rate.

The proposed FFT accelerator is not based on a particular combination of radix-n fac-

torization units which direct data between each other based on the transform length N to

be computed. Instead, because of the OpenCL description, we proposed several configu-

rations which are shown to perform well for SIMT-based architectures [13,239]. Under this

configuration a particular length N will see the initiation of N/n work-items onto its FFT

wide-pipeline accelerator. The rationale of the keeping of data granularity at fine lev-

els, where each work-item is responsible for serving the input to each radix factorization

block, prevents additional synchronization concerns with elements being fed as inputs to

the different radix stages.

__kernel
__attribute ((num_simd_work_items(SIMD_LEVEL)))
__attribute ((num_compute_units(NO_CUS)))
__attribute ((reqd_work_group_size(WORKGROUP_SIZE,1,1)))
void fft_1024(__global float2 *in, __global float2 *out,__constant *twiddle){
__local float lMem[1040], *lMemStore, *lMemLoad;
float2 buffer16[16];

loadData(in, buffer16); //load 16 elements to buffer

radix16(buffer16, twiddle); //execute stage 0 radix-16 computation

storeData(buffer16, lMemStore, stage00_idx); barrier(CLK_LOCAL_MEM_FENCE);
loadData(buffer16, lMemLoad, stage01_idx); barrier(CLK_LOCAL_MEM_FENCE);

radix16(buffer16+0, twiddle); //perform stage 1 radix-16 computation

storeData(buffer16, lMemStore, stage10_idx); //swap data
barrier(CLK_LOCAL_MEM_FENCE);
loadData(buffer16, lMemLoad, stage11_idx);
barrier(CLK_LOCAL_MEM_FENCE);

//perform stage 2 4x radix-4 computation
radix4(buffer16+0, twiddle); radix4(buffer16+4, twiddle);
radix4(buffer16+8, twiddle); radix4(buffer16+12, twiddle);

storeData(out, buffer16); //store data back to memory
}

Listing 5.19: OpenCL kernel for the N=1024-point FFT. The employed float2 stores the real part in
component x and the imaginary part in component y. The n-way SIMD level is controlled by the
num_simd_work_items directive, the number of CUs by num_compute_units, and the generated hardware
is optimized for workgroups with a certain size through the reqd_work_group_size.

214

5.5 Wide-pipeline LDPC Decoder

The employed method uses decimation in time (DIT) in order to divide two of the most

critical operations performed, data shuffled between work-items and multiplication of

data elements by their corresponding twiddle factors. Hence, first we assign data to

the correct work-item. During initialization and termination of the kernel, this is an in-

order procedure. Each work-item loads as many data elements as required by the first

stage of the radix factorization. In the intermediate stages, where data elements must

be coherently exchanged between work-items, a synchronization point issued by a bar-

rier instruction enforces this coherence and work-items proceed to compute the butterfly

stage ahead. Afterwards, due to DIT, the second-most complex operation is issued. Each

work-item computes the set of twiddle factors by which the produced data elements are

multiplied, or loads them from a ROM containing a set of precomputed twiddle factors.

Performing computation of twiddle factors on-the-fly allows the designer to prevent

routing issues ensuing from the utilization of memory blocks that are distributed across

the FPGA and are not necessarily close to the location where computation is defined on

the FPGA. However, on-the-fly computation entails wasted bandwidth as twiddle fac-

tors are repeatedly computed and are not re-utilized when several transform batches are

to be computed. Furthermore, since the twiddle factor is computed as Wn
N=e

−j2πn
N , its

hardware implementation for an unknown transform size N entails the computation of

sin(·) and cos(·) values, an operation most likely performed using DSP, a scarce resource

on the FPGA, whose high utilization may incur severe routing issues as it requires DSPs

potentially far from where computation spatially occurs. As a consequence, and consid-

ering the that acceleration via an OpenCL-based wide-pipeline requires integration of

the FPGA accelerator onto a host computer system, computation of the twiddle factors

can be performed offline by the host system, where sin and cos operations are virtually

free (with regards to its influence on the performance attained by the FPGA accelerator),

together with the remaining data management housekeeping tasks. As mentioned, the

downside is the utilization of ROMs blocks, for synthesis of the constant memory space,

that are not spatially close to logic units where computation occurs, leading to routing

problems. The OpenCL kernel container for the FFT accelerator is shown in Listing 5.19

for the N=1024-point FFT, and it exemplifies the execution flow taken for the developed

FFT flow.

In addition to the aforementioned decisions made regarding the design space explo-

ration of the FFT on a wide-pipeline accelerator, other hardware generation parameters

are explored.

i) number of CUs in the wide-pipeline accelerator;

ii) vectorized processing within each CU through {2, 4, 8, 16}-way SIMD;

215

5. Reconfigurable LDPC Decoders

iii) distinct DRAM bank to maximize global bandwidth for out-of-place computation;

iv) explicit BRAM usage is limited to local memory.

The combination of i) and ii) effectively lowers the II to less than a clock cycle per work-

item. On the one hand, inclusion of multiple CUs per wide-pipeline divides the work-

items schedule for execution between each CU. On the other, vectorized processing

makes each work-item to be initiated simultaneously with k others for a k-way SIMD

processing [177]. The main driving limitation of increasing the parallelism level through

the generation of several CUs per pipeline and defining SIMD processing is the overhead

in logic elements required. Also, if the FFT computation is performed out-of-place, i.e.,

the transform is stored in different memory location than the input signal, the input and

the output memory arrays can be divided into separate DRAM memory banks. For a low

number of FFT batches, the DRAM might not be accessing the input buffer at the same

time it accesses the output buffer, and thus DRAM bandwidth can be fully allocated to

each access. However, if a high number of batches are to be computed, both buffers will

be accessed at the same time, thus data requests will race for memory bandwidth. Given

the existence of only two buffers in the global memory region that are mapped to DRAM,

we can explicitly define that the input buffer be allocated in a separate physical memory

bank than the output buffer [177]. Naturally, for an in-place FFT wide-pipeline accelerator,

iii) is not feasible. Finally, we are limited by the mapping of the OpenCL memory model

to the physical FPGA resources. A more efficient usage of the FPGA BRAM is not possi-

ble because of the variables lifetime when they are defined as local memory, as opposed

to their lifetime when allocated as global memory. Due to granularity involved, assign-

ing the computation of one transform batch per work-group means that even if data is

moved ahead of computation to the local memory, its lifetime span under the OpenCL

programming model does not withstand the change of workgroup instantiated in the

wide-pipeline. In other words, all fetching of data inside the kernel is available within

the time and spatially boundaries of a workgroup.

Wide-pipeline FFT A driving design goal of the FFT accelerators herein presented was

to preserve a true cross-platform capability. To that end, the wide-pipeline FFT herein

described was optimized for FPGA execution based on a high speed GPU FFT kernel.

Despite the pipelined processing of work-items that compose the kernel execution

grid, there is no pipelined processing of distinct execution grids. As a consequence, in

order to keep the execution flow fully pipelined, all stages composing the radix-n DIT

factorization of the N-point DFT are packed into the same kernel [273]. However, this ob-

jective is unattainable as between stages data must be exchanged between the executing

216

5.5 Wide-pipeline LDPC Decoder

work-items through the local memory space, a process requiring barriers that stall the

work-items execution. This is shown in Figure 5.44b), for an II of one clock cycle. De-

pending on the DFT length N and on the stage computed, each work-item in the pipeline

is stalled so that it can consume data produced later by a trailing work-item. However,

this is preferable to the alternative of non-pipelined execution of OpenCL kernels for each

stage, constrained to the use of global memory only where the whole execution grid must

be flushed first so that the next stage may execute.

Moreover, whenever the same local buffer memory location is utilized in different

stages of the kernel, which in the FFT case means as many times as there are stages minus

one, there is a time growth of the wide-pipeline critical path. We have tested two ways to

avoid this are: the use of circular buffering so that the local memory buffer used prior to

a stage is always different from the one used after it (only two are necessary); or we can

define local memory buffers that are used only once. Both strategies are possible due to

the availability of a large number of BRAM blocks, whereas in multicores local memory

is typically limited to 48KB.

5.5.6 Experimental results

Herein, we discuss the performance of the synthesized FFT accelerators using the

wide-pipeline accelerator approach using the Altera OpenCL compiler in an identical

experimental apparatus as in Subsection 5.5.2. Due to the focus of this work in LDPC

decoding, the design space features tested, have been applied to the 256-point FFT, which

is of particular interest in the case of FFT-SPA decoding of non-binary LDPC codes, due

to its excelling performance [192]. The synthesized accelerators performance is tabuled in

Table 5.12.

Table 5.12: Experimental results for N = {256, 1024} radix-4 FFT algorithms run on FPGA, CPU and GPU.
The throughput is expressed in mega work-item/s and in mega FFTs/s (M/s).

Kernel N Radix
SIMD/
/CUS

Tot. Logic
(%)

Registers
(%)

BRAMs
(%)

DSPs
(%)

Op. Freq.
(MHz)

Mwork-item/s MFFTs/s

Single buffer

256 4
1/1

71 31 43 12 215.14 108.95 1.38
Circular buffer 71 31 43 12 193.38 141.12 1.27
Dedicated buffer 70 31 43 12 226.75 172.23 1.38
Dedicated buffer
pre-computed WN

60 26 43 3 193.34 172.23 1.28

Same as upper
w/ manual SIMD of 2 FFTs

85 36 53 5 160.90 136.87 2.13

Altera SDK [177] 256 4 76 41 35 6 212.13 190.00 3.99
1024 4 87 40 45 8 204.7 190.00 1.27

The first observation to be held is the inability of the OpenCL compiler to drive a num-

ber of CUs greater than one, or for that matter, to vectorize the work-items processing in

a SIMD execution. This is justified by an over-conservative policy of the compiler re-

217

5. Reconfigurable LDPC Decoders

garding utilized logic. The first estimate, obtained by the C-synthesis process is based on

the overall sum of logic elements that each primitive consumes, and thus overestimates

the logic resources actually need. After the synthesis process, the generated netlist sees

shared utilization of logic elements by the different primitives, and, thus, logic utilization

is actually lower than the first estimate. However, it is the overestimated utilization logic

levels that defines whether synthesis will go through or not. Under our considered de-

signs, we might have been able to drive the number of CUs or the SIMD levels to define

IIs greater than a single clock cycle, since for the 1 CU and 1-way SIMD we could get

utilization levels under 70%.

a)

!"#$%&'

()"*+,-

!"#$%&'

()"*+,.

!"#$%&'

()"*+,/

!"#$%&'

()"*+,0

b)

!"#$%&'

()"*+,-

!"#$%&'

()"*+,.

!"#$%&'

()"*+,/

!"#$%&'

()"*+,0

c)

!"#$%&'

()"*+,-

!"#$%&'

()"*+,.

!"#$%&'

()"*+,0

!"#$%&'

()"*+,/

non-overlapping

memory spaces

Figure 5.45: OpenCL FFT local memory buffer schemes employed: a) single buffer scheme where each stage
produces data to the same data locations; b) dedicated buffer scheme, where each stage produces data to
stage-exclusive data locations; and c) circular buffer scheme, where two buffers are used in rotation mode.

An interesting observation is the logic utilization of designs that utilize twice or three

times more local memory space than what is utilized by the single buffer scheme. There

is no variation on the logic utilization of the dedicated buffer scheme design when com-

pared to the single buffer scheme. The only noticeable difference is when twiddle factors

are offline computed by the host and are loaded from the constant memory space. In

this case, the total logic utilization is driven down from 70% to 60%, with a four-fold de-

crease in DSP utilization as the computation of the sin and cos operations are no longer

required. Given the slack obtained in utilized logic, we potentially define a SIMD level of

2-way, since each work-item in addition to its data elements is also given an extra batch

to compute. This strategy proved feasible, with logic driven up to 85% utilization levels.

Clock frequency of operation undergoes a variation process with the buffer scheme

employed, the need to compute twiddle factors and the SIMD level in the accelerator. The

218

5.5 Wide-pipeline LDPC Decoder

highest frequencies have been obtained for the single buffer and the dedicated buffer

schemes. However, this does not necessarily translate to a higher throughput, both in

work-items dispatched per second or in computed transforms per second, which is dis-

cussed below taking the derate factors into consideration (c.f. Table 5.13). For the offline

computation of the twiddle factors, the same work-item dispatch rate is obtained, even

for a clock frequency 33 MHz lower. Furthermore, clock frequency drops another 30 MHz

for the case where two batches are computed per work-group, further lowering the num-

ber of work-items dispatched. Notwithstanding, the latter has the greater throughput

measured in computed transforms per second, for the tested 1000 FFT batches work-

load, roughly 50% under the Altera OpenCL software development kit (SDK) version [177]

throughput.

Derate Driving Factors The other main factors driving down the obtained performance,

can be expressed in terms of derate factors, that lower the work-item initiation rate in the

pipeline. In other words, while the II stays the same, at 1 work-item per clock cycle in

the 1/1 (CU/SIMD level) configuration, the clock frequency of operation is lowered from

the targeted 250 MHz to one factoring in the derate factors. 1) Control flow overhead in

the FFT is limited, since there is not divergent branches in the datapath, and as such, it

does not pose any issue, since it is 1 across all the targeted designs, including the ones

provided in the Altera OpenCL SDK which we also benchmark. 2) Global memory band-

width does not seem to come to play for our designed out-of-place FFT computation,

since two different memory banks are assigned to each global memory array, i.e., input

and output sit in physically different memory banks. This is not the case for the com-

pared SDK versions, which are derated by a 0.92 factor. On the other hand, 3) the latter

show no performance penalty on account of routing, whereas our designs are derated

by 0.56∼0.68. As expected, when a single buffer scheme is employed, the tool has the

ability to utilize resources that are spatially close. On the other hand, when two or more

buffers need allocation routing issues arise given a not so spatially close location of the

employed BRAMs to produce the local memory. Naturally, this could be avoided by syn-

thesizing the local memory space onto LUTs. However, while this strategy is available

in other HLS tools, it is absent from the Altera OpenCL compiler [177]. Finally, 4) while

at a first glance the derate factor brought on by the stalling in the pipeline might be an

indication of how well the code describes the algorithm for OpenCL wide-pipeline ex-

ecution it must be interpreted taking other aspects in light. In the single buffer scheme

case, the derate by pipeline stalls is 0.44, lowering the initiation rate of work-items in the

pipeline to under half. To any degree are we able to determine whether this is due to

work-items starving for bandwidth to local memory, or because, indeed, work-items are

219

5. Reconfigurable LDPC Decoders

stalled in the synchronization points. Notwithstanding, the circular buffer and dedicated

buffer schemes shed some light into why there are not stalls in the pipeline (their der-

ate factors are 1 for pipeline stalling). Since connectivity issues prevent work-items from

faster operation, there is no longer the need to stall the wide-pipeline. The total derate

factors weigh 0.44∼0.68 in our designs.

Table 5.13: OpenCL FFT accelerator throughput derate factors: control flow overhead, lack of global memory
bandwidth, connectivity issues, and pipeline stalls.

Buffer Scheme N Radix
SIMD/ Derate factors
/#CUs Control Flow Global mem. bandwidth Connectivity (Routing) Pipeline stalls Total

Single buffer 256 4 1/1 1 1 1 0.44 0.44
Circular buffer 256 4 1/1 1 1 0.56 1 0.56
Dedicated buffer 256 4 1/1 1 1 0.68 1 0.68
Dedicated buffer
pre-comp. twiddle fact.

256 4 1/1 1 1 0.68 1 0.68

Altera [177] 256 4 1/1 1 0.92 1 0.81 0.75
1024 4 1/1 1 0.92 1 0.81 0.75

Comparison to CPU and GPU Libraries For the sake of comparison with CPU and

GPU architectures, the 256-point FFT has also been benchmarked using the fastest Fourier

transform in the West (FFTW) and the CUDA FFT (CUFFT) libraries, respectively. As ob-

served in Table 5.14, the throughputs observed for the FFTW and CUFFT benchmarks are

in line with the obtained FFT OpenCL accelerator on the FPGA. As a consequence, the

power efficiency of the proposed methodology yields higher gains than those obtained

by programmable architectures.

Table 5.14: FFTW and cuFFT libraries FFT performance for the 256-point FFT.

Kernel N Radix Architecture
Op. Freq.

(MHz)
MFFTs/s

CUFFT [282] 256 N/A
GPU 1.058

5.36
1024 N/A 2.75

FFTW [281] 256 N/A
CPU 3.07 0.31

1024 N/A

Summary The methodology behind the proposed FFT accelerator was based on a strat-

egy that is analogous to the one followed by the FWHT GPU kernel. While in the GPU

engine the shared memory, herein local memory, poses the key challenge to attaining

high throughput performance in the FPGA case it is not necessarily so. In fact, compar-

ison with the radix-2 factorization FFT included in the Altera OpenCL SDK we can ob-

serve that forgoing its use bears more fruits than using it. In its core, this symbolizes that

the potential of using OpenCL to drive the generation of hardware accelerators cannot be

220

5.6 Summary

argued, but improvements are still required to address ways that allow the designer to

configure a memory space without having the flexibility provided by the FPGA BRAMs

(local memory) withhold. Despite this constraint, competitive FFT hardware accelerators

can be generated based on the OpenCL programming model that achieve performances

close to other FPGA-based alternatives.

5.6 Summary

In this chapter we discussed the different methodologies that allow us to obtain ef-

ficient LDPC decoder designs using distinct architectures, through different HLS tools,

on reconfigurable computing devicesc) In particular, we have shown how the dataflow

approach is the most suitable one for obtaining very high decoding throughputs and low

latencies, although at the cost of an increased development effort, with the designer hav-

ing to focus on the balancing of the computation and data management through the ker-

nel and manager concepts [6,10]. Through the use of a directive-based (annotations) HLS

model, we proposed an isomorphic mapping of the Factor graph to hardware and how

to direct the optimization space within that type of model [8,9]. Moreover, we propose an

efficient deeply-pipelined method to extract high performance from the wide-pipeline

decoder architecture, by introducing a time dependency (the corresponding decoding

iteration) to the execution grid. By spawning work-items corresponding to different it-

erations, and by remapping the nodes of the Tanner graph appropriately, we have been

able to push fourfold improvements under this approach when compared to a multi-

kernel one [7,11]. Also, we have analyzed which contributions can be brought towards

HLS compiler tools, through the evaluation of instruction clustering and bitwidth op-

timizations under the SOpenCL model [12]. Finally, we discuss how to realize efficient

FFT accelerators for wide-pipeline approaches [14]. The pitfalls of an approach remotely

close to that pursued for programmable hardware reveals that under the allure of the

cross-platform capabilities of OpenCL lies a potentially for under-performing design.

The roofline analysis pursued has made a connection between SNR channel conditions

and with the bandwidth of the LDPC decoder, thus bounding it between memory and

computing boundaries [6].

c)The work presented in this Chapter was communicated in a journal paper and in international con-
ference [6–12,14]. In addition, the Altera OpenCL non-binary wide-pipeline decoder was submitted under
the project “ONOFF: OpenCL-based Non-Binary LDPC Decoding for FPGAs” to the Innovate Europe Con-
test 2012-2013 co-organized by Altera and the CNFM and was awarded the “Most commercially relevant
application of an FPGA” prize.

221

5. Reconfigurable LDPC Decoders

222

6
Power-aware LDPC Decoders

Contents
6.1 Gear-Shift LDPC Decoders . 225

6.1.1 Gear-shift strategies . 226
6.1.2 MSA-based gear-shift decoder . 228
6.1.3 Variable quantization bits and compact representation 230
6.1.4 Experimental Results . 232

6.2 LDPC Decoder under Unreliable Memory Storage 237
6.2.1 Unreliable arithmetic and control silicon 238
6.2.2 Unreliable Memory Storage . 239
6.2.3 Error Mitigation Strategies . 242
6.2.4 BER degradation mitigation strategies 243
6.2.5 Experimental Results . 248
6.2.6 Power savings for the eDRAM case 251

6.3 Summary . 256

223

6. Power-aware LDPC Decoders

The pursue of power and energy-efficient computer accelerators has been an ever

driving design goal with researchers tackling how to make the most out of as many sil-

icon devices could be crammed onto a chip. Naturally, challenges for energy-efficient

computation on a graphics processing unit (GPU) processor are substantially different than

those arising from a dedicated accelerator developed only for a particular task. With the

number of transistors on a chip reaching the billion count, the majority of them cannot be

active at the same time as it is impossible to dissipate all the heat produced [286]. Also, it

has become a requirement for several accelerators that they be powered by batteries and

operated in hand-held devices, thus greatly tightening the power budget available for a

wide range of accelerators.

Researchers have tackled these challenges using multiple techniques, generally desig-

nated as dark-silicon, involving the turning on and off of idle components, or by keeping

unused components in low-powered states, based on clock and voltage scaling, or approx-

imate computing designs [286], whereupon strictly reliable computation is relaxed in favor

of cheaper, and lower power components, but with a cost of introducing computation

errors. Furthermore, optimization strategies favoring fast computation on fixed instruc-

tion set architectures, usually also optimize power-efficiency as the same algorithm is

computed in less time, making the most out of the fixed set of logic resources available.

In this case, the challenge of developing energy efficient systems is tackled most at the

algorithmic level, whereas in the former methods, it is tackled at the system- or at the

silicon-level (c.f. Figure 6.1).

LDPC Decoder

FU FU
...

System-level power-aware optimizations

- Gear-shift decoding
 - Variable quantization
 - Low complexity algorithms

- Unreliable memory storage
 - BER degradation mitigation
 techniques

FU

Memory

C
o

n
tr

o
l

Figure 6.1: Power-aware optimizations introduced at the system-level. gear-shift decoding is an optimiza-
tion to the FU operation. Unreliable memory storage lowers the energy requirements of the memory block
while at the same time introducing errors that can be tackled at the FU- or memory-level accordingly.

If we consider that in digital circuits the switching power dissipation P is expressed

by

P = α · C ·V2
DD · f , (6.1)

with α the activity factor, C the effective capacitance, VDD the supply voltage and f the

clock frequency of operation, designers can tackle the switching power dissipated at sev-

224

6.1 Gear-Shift LDPC Decoders

eral levels. Algorithmic optimizations mainly target the number of arithmetic instruc-

tions per second or make use of data reuse, thereby reducing the activity due to memory

accesses, minimizing α and f [287]. On the other hand, the quadratic dependency of the

dissipated power with VDD makes it highly appealing to try and lower it. However, ag-

gressive voltage scaling will stumble upon the reliability wall, whereupon fully 100%

reliable operation can no longer be guaranteed as components become electronically un-

stable. For instance, static RAM (SRAM), the most widely employed memory technology

in dedicated accelerators, sees bit-cells no longer retaining data correctly. In addition, em-

bedded dynamic RAM (eDRAM) technology, based on its density and low power require-

ments, has been gaining traction [288], and although it operates under lower VDD levels,

the limited data retention time (DRT) of the bit-cells requires refresh procedures for 100%

reliable operation, in its turn increasing power consumption. Hence, the reliability wall

can be stumbled upon by minimizing f on the memory accesses for eDRAM technology,

such that refreshing not longer meets the minimum DRT of all bit-cells.

In this chapter we explore two approaches for the reduction of energy consumption

motivated by power efficiency optimization techniques applied at the system-level [289–291].

Thus, they are suitable for dedicated low-density parity-check (LDPC) decoders. The first

approach discusses gear-shift methods that can be introduced in the LDPC decoding

algorithm in order to reduce the amount of computation, largely by the introduction

of further sub-optimality, and therefore minimizing the energy required to successfully

decode. gear-shift decoders balance a tradeoff between numerical complexity and af-

fordable bit error rate (BER) losses [292,293]. The other method, weighs in on the fact that

dedicated decoders are essentially composed of memory units. Thus, aggressive voltage-

scaling techniques, including sub-threshold operation of the silicon, introduce unreliabil-

ity as data is stored but cannot be ensured that it will be correctly retrieved [181]. Due to

the errors introduced by the unreliable memory storage, suitable techniques are required

to mitigate the ensuing BER degradation, and can be applied at the algorithmic- [294],

system- [16] or at silicon-level [290].

6.1 Gear-Shift LDPC Decoders

Although the majority of the power budget of LDPC decoders is allocated to the mem-

ory block, and thus, alternative design techniques that minimize the energy consumed

by the memory have the highest impact—including the aforementioned unreliable mem-

ory storage—power savings are also procured in the FUs at the system-level. In fact,

this is one of the main motivations that lead to the introduction of the sub-optimal de-

coding algorithms described in Chapter 2. This includes algorithm modifications at the

225

6. Power-aware LDPC Decoders

analytical-level—the min-sum algorithm (MSA) check node (CN) processing equations ob-

tained from the logarithmic sum-product algorithm (LSPA), or the different formulations

of the LSPA algorithm [262]—and also at the system implementation and optimizations

therein—such as 1-D to 2-D indexed lookup-table (LUT)-based schemes [79,262].

With a design simplicity motivation in mind, most LDPC decoders perform the de-

coding of received words using a single algorithm. However, as observed by Gallager [21],

binary message-passing decoders benefit from changing the decision threshold during

the decoding process, with the performance and convergence threshold improving sig-

nificantly. This concept is explored in so-called Gallager-B algorithm [21]. In practice,

however, this principle of changing the decoding algorithm during the decoding pro-

cess, designated as gear-shift, is not expected to improve on a code’s threshold, but is

rather employed to lower the decoding complexity [292]. This makes sense in a purely

practical point of view, since an LDPC decoder will have to comply to a certain BER-

signal-to-noise ratio (SNR) operation point in communication standards [34] with the least

energy dispensed in the process.

Combining multiple decoding algorithms into obtaining a lower gear-shif decoding

complexity should adhere to the following guidelines

i) the execution of most complex, and powerful, decoding algorithm should be kept

to a minimum;

ii) the resulting overhead in decoding iterations should be well offset by the energy

savings from executing lower complexity algorithms;

iii) the energy overhead in control logic in a dedicated accelerator should not offset the

energy saved;

iv) minimization the BER degradation entailed by the application of lower complexity,

and most times sub-optimal, decoding algorithms.

6.1.1 Gear-shift strategies

gear-shift decoding algorithms found in the literature combine several both soft- and

hard-decoding algorithms for minimizing the decoding complexity. Some strategies deal

with the problem of ensure lower complexity at the algorithm-level, regardless of an ac-

tual decoder implementation, while others make use of particular system-level traits [293]

to pursue improved efficiency through gear-shift decoding.

Ardakani et al., propose a gear-shift decoder which combines the soft-decoding sum-

product algorithm (SPA) and MSA with the utilization of hard-decoding Gallager-B and -E

algorithms [21]. The first problem arising from this combination is the domain-crossing

226

6.1 Gear-Shift LDPC Decoders

when moving from the soft- to the hard-decoding domain. In particular, as observed in

Table 6.1, albeit soft- to hard-decoding domain changes are deemed possible, even if some

conversion steps depend on selected randomness (for instance, when the message mag-

nitude is 0), hard- to soft-decoding transitions are not of straightforward compatibility.

In hard-decoding algorithms there is no notion of how good is the estimate through the

message magnitude, thus, one way to overcome this is to assign a fixed K constant value

in the conversion [292]. By EXIT chart analysis, the authors prove that the decoding thresh-

old obtained with the combination of the decoding algorithms is the decoding threshold

of the best decoding algorithm, by consecutively moving from the most to the least com-

plex decoding algorithm. Furthermore, the number of decoding iterations required is

also reduced up to 30%, which is quite the opposite of an overhead, thus conveying a

twofold improvement—better threshold and lower number of iterations required. Other

Table 6.1: Message domain change under SPA, MSA and Gallager-B and -E decoding of the LDPC decoder
proposed by Ardakani et al. [292]. K is a selected constant value.

To SPA
MSA

Gallager-E
{−1, 0, 1}

Gallager-B
{0, 1}From

SPA
MSA

no change
|m| > 1, m→ sign(m)

|m| ≤ 1, m→ 0
|m| > 0, m→ 1− sign(m)

2
|m| = 0, m→ 0, 1 randomly

Gallager-E
not straightforward

m→ K · sign(m)
no change

|m| = 1, m→ 1−m
2

|m| = 0, m→ 0, 1 randomly

Gallager-B
not straightforward

m→ K · (2m− 1)
m = 0, m→ 1

m = 1, m→ −1
no change

authors, dealing with LDPC decoders that implement pulse-width modulation (PWM) in

the system also propose gear-shift decoding for their design. This type of decoders relin-

quishes the use of buses to transmit messages of a certain bitwidth Bm. Instead, each bus

is replaced by a single-wire, with the magnitude of the transmitted message given by the

width of the pulse in clock cycles [295]. Unlike the previous case [292], complexity of the

decoding algorithm is pursued with the minimum effort in mind, i.e., so long as the least

complex decoding algorithm works, there is no need to execute a single iteration of the

most complex one. Specifically, the improved differential binary (IDB) algorithm and the

offset min-sum algorithm (OMSA) are combined in order to improve the energy efficiency

of the decoder design while achieving the BER performance of the most powerful, and

thus, more complex algorithm. In particular, the use of IDB brings single-bit memory

requirements to store the variable node (VN) messages, thus with the appropriate clock-

gating techniques, most of the memory can be turned off when the decoder executes the

IDB algorithm. The overall results yield BER performances between that of the IDB and

the OMSA, with substantially lower energy required to decode [295].

227

6. Power-aware LDPC Decoders

Another decoding strategy, which is not gear-shift decoding per se consists of building

a decoder whose FUs implement different decoding algorithms for improved flexibility

in face of SNR variations. When the SNR degrades, executing a more complex algorithm

can be triggered by the degrading BER. Similarly, when SNR conditions improve a lower

complexity one can also be triggered [296]. However, this strategy is limited to obtain-

ing the BER performance and energy levels of each decoding algorithm, and not of the

combination of the 3 implemented algorithms in the decoder.

6.1.2 MSA-based gear-shift decoder

While the combination of hard- and soft-decoding algorithm may be appealing, it re-

quires domain conversions that consume resources that waste time and energy. Thus, we

are motivated into combining decoding algorithms of the same decoding domain. Due to

the MSA popularity, combining low decoding complexity, with the ability to be corrected

into improving its BER performance, and thus, providing numerous BER-complexity

tradeoffs in its normalized min-sum algorithm (NMSA), OMSA and self-corrected min-sum al-

gorithm (SCMSA) variations, we are interested in pursuing a MSA-based gear-shift LDPC

decoder.

Another reason to pursue this type of gear-shift technique is due to the waste of logic

resources that occur when the least complex algorithm is operating. Cushon et al. re-

port ∼90% hardware utilization for their gear-shift approach using the PWM OMSA

and the IDB algorithms [295]. Furthermore, in log-likelihood ratio (LLR)-based domains,

the message magnitudes begins the decoding process orders of magnitude below their

final value. Thus, by varying the bitwidth Bm of the messages in the decoding process

guarantees that only the required number of bits in the memory is being powered—for

instance with clock-gating [295].

Taxonomy gear-shift decoding is a simple concept to grasp that makes no distinction

to which complexity direction onto the decoder progresses when it commutes the decod-

ing algorithm, regardless of any complex under the hood mechanisms which trigger the

execution of the implemented algorithms. We introduce suitable designations for when

the decoding complexity is increasing and for the case where it is decreasing. We desig-

nate both cases with regards to “gear changes”, a “gear” a decoding algorithm, as in its

original proposal [292], and the “gearbox” as the LDPC decoder as a whole. Under these

designations we can then define two gearboxes.

Accelerating Gearbox This strategy sees the decoding complexity increasing over time,

i.e., only after a certain threshold is surpassed will the FUs commute from a lower com-

228

6.1 Gear-Shift LDPC Decoders

plexity algorithm to a higher one. The rationale is based on a minimum effort heuristic.

Decoding starts with the lowest complexity possible. If this algorithm fails to converge to

a valid codeword within its allowed iteration window of operation, then the decoder will

progress to attempt the decoding of the codeword under a higher complexity algorithm.

Decelerating Gearbox This strategy sees the opposite trend in complexity over time.

The motivation herein is to give the decoder a boost in its initial iterations. A higher

complexity algorithm should accelerate the convergence of the codeword when in the

initial iterations the LLRs have a low magnitude, and thus, reliability associated with

each bit state is lower than in a posterior stage of the decoding process when LLRs are

more reliable (higher magnitude).

It is worth noting, that under extrinsic information transfer chart (EXIT) chart analy-

sis [292], the combination of decoding algorithms will always yield the BER performance

of the best decoding algorithm case. However, such result can only be guaranteed for

a very high number of decoding iterations issued. For the standardized codes case, the

maximum number of allowed iterations is significantly lower (20 to 50). While accelerat-

ing and decelerating decoding would yield little to no difference for an infinite number

of iterations, we expect to observe differences in obtained BER performance when the

number of executed iterations is lower.

The MSA-based gear-shift LDPC decoder is based on the MSA and on the SCMSA.

Thus, the high complexity decoder only activates the self-correction functionality in ad-

dition to the permanently executing MSA. In that sense the high complexity is still low,

though the BER performance achieved is on a par with the LSPA [3]. The region of interest

(ROI) of the MSA-based gear-shift decoder lies between the BER curves of the SCMSA

and MSA, as shown in Figure 6.2. As aforementioned, our motivation is to run the min-

imum number of iterations in the SCMSA mode, while still reaching said BER perfor-

mance, i.e., it is desirable for energy efficiency to run as many iterations under plain

MSA mode. The SCMSA is a particular case. If the there is no sign change in a given

L(qnm) from the previous iteration (i− 1) to the current one (i), it behaves as the MSA,

but with more logic resources in the datapath turned on. However, analytically executing

the MSA while executing in SCMSA mode still means that the more complex datapath of

the SCMSA has active. On the other hand, this creates an asymmetry on the attainable

BER performance. While all the analysis in the literature assume that the performance

of the highest complexity algorithm is better than the lower complexity counterparts, in

this case, the SCMSA only sees higher complexity when sign changes occur in L(qnm).

Furthermore, as it violates the Gaussian approximation assumptions its behavior is not

well-captured by either EXIT chart or density evolution (DE) analysis [83]. Thus, we are

229

6. Power-aware LDPC Decoders

limited to an empirical analysis of the MSA-based gear-shift LDPC decoder BER perfor-

mance.

SNR [dB]

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

B
E

R

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

MSA Q6.2

SCMSA Q6.2

ROI

Figure 6.2: ROI of the MSA-based gear-shift decoder is located between the SCMSA BER curve and the MSA.
The BER curves were plotted for the DVB-S2 rate 1/3, N = 64800 bits for fixed-point quantization in Qx.y
format. Combining both algorithms in gear-shift decoding will result in a BER curve limited by the two.

6.1.3 Variable quantization bits and compact representation

Since only a limited number of bits in fixed-precision are required to reach within a

negligible offset to floating-point equivalent BER [3,297], we are able to exploit a varying

bitwidth, across the decoding procedure, in a two-fold approach. For the one, we know,

heuristically, that in the first iterations the LLRs will not scale fast enough to require

the maximum bitwidth Bmmax defined in the decoder. Thus, a decoding iteration thresh-

old can be fixed before which the LLRs magnitudes are clipped to a narrower bitwidth

Bm = Blow, and in the trailing decoding iterations, i.e., after which the bitwidth employed

expands to Bm = Bhigh.

Moreover, the usage of the SCMSA in most LDPC decoder architectures must be clev-

erly implemented, as the availability of messages from the previous iteration may not

be available, considering that the majority write L(qnm) and L(rmn) in-place, the erasure

bit and the sign must be preserved across iterations. Thus, as discussed in the efficient

SCMSA LDPC decoder architecture [3] in Chapter 3, for the two-phased message-passing

(TPMP) scheduling, the messages representation can be optimized as represented in Fig-

ure 6.3. By allowing L(qnm) and L(rmn) to have the following bit representation

230

6.1 Gear-Shift LDPC Decoders

L(qnm)(i−1)

sign{L(qnm)
(i−1)}

erasure(i−1)

CN MSA L̂(rmn)(i)L̂(qnm)(i−1)

CN MSABm+2
Bm Bm

Bm+2

1
1

Min-Sum and Self-Corrected Min-Sum data path

Self-Corrected Min-Sum exclusive data path

(a) CN simplified datapath

s

(0)L̂(rmn)(i)

erasure(i−1)

sign{L(qnm)(i)}

L∗(qnm)(i)
L(qnm)(i)

L∗(qnm)(i)

erasure(i)

L̂(qnm)(i)

s

(0)

Bm

Bm+2

1

1

1

Bm

Bm Bm

1
1

Bm+2

sign{L(qnm)
(i−1)}

(b) VN simplified datapath

Figure 6.3: MSA-based gear-shift decoder architecture datapath. In the upper row, the functionality is shown
with regards to the messages circulating on each bus/wire, and in the bottom row the bitwidths of the buses
are depicted.

L̂(qnm)
(i) = erasure(i−1) | sign{L(qnm)

(i−1)} | L(qnm)
(i)

L̂(rmn)
(i) = erasure(i−1) | sign{L(qnm)

(i−1)} | L(rmn)
(i),

erasure(i−1) =

{
0, L(qnm)(i−1) = 0
1, otherwise

(6.2)

where | is the bitwise concatenation of the elements representation, and erasure is a sig-

naling bit which is set to 1 whenever there has been an erasure in the previous iteration.

This way, as detailed in Figure 6.3a), we can observe that the CN datapath does not suffer

any changes in the datapath corresponding to computation as it will just slice, forward

and concatenate the 2 most significant bits (MSBs) in L̂(qnm) to L̂(rmn). In the VN datapath

shown in Figure 6.3b), the same slicing of the 2 MSBs occurs, but they will be utilized in

the datapath portion corresponding to the SCMSA to define whether or not an erasure is

to be introduced at this stage. This architecture is slightly different than the one proposed

previously in Chapter 2 [3], as it entails a symmetrical data representation for both L(qnm)

and L(rmn) messages. In this case, there is no need to evaluate in the CN functionality

whether or not an erasure has indeed occurred, as this information is readily available in

the AND gate in Figure 6.3b).

In the gear-shift decoder the hybrid representation in L̂(·) of the erasure, sign and

message L(·) means that all the datapath components dealing not only with the decod-

ing algorithm functionality, but also with the blocks dealing with managing this over-

head must be turned off for the decelerating gearbox, or are that are turned on for the

accelerating gearbox.

accelerating and decelerating Transitions When accelerating the decoder starts in MSA

operation, thus all the grayed out components shown in Figure 6.4 are turned off, and be-

come active once the acceleration threshold ta is reached. Afterwards, there is a bitwidth

231

6. Power-aware LDPC Decoders

increase of 2 bits, regardless of the current bitwidth Bm of the words. In other words,

although there is an increase of 2 bits per word, there is no improved precision due to

more bits committed to the quantization of the LLRs. Furthermore, considering that if set

to 1 the erasure bit forces the SCMSA datapath to produce the same results as the MSA

would, and the fact that the sign bit is lagging behind one iteration, we can exploit the

former to allow the sign bit to be correctly stored, but only one iteration after the SCMSA

datapath has actually been activated.

tk

turned on datapath turned off datapath

turned on (but neutral) datapathss

ss

ss

set to 0

tk − 1

Maxiter

0

prepare to
accelerate

tk − 1

acceleratetk

...

tk + 1

ta

Figure 6.4: Datapath switching on transition of the accelerating gearbox. A latency of one decoding iteration is
hidden by turning on of the SCMSA datapath one iteration in advance, though by setting the erasure bit to
1, the decoding algorithm is guaranteed to be the MSA and not the SCMSA. At the (tk − 1)-th iteration the
SCMSA is switch on, operates solely as MSA through the tk-th iteration, in order to see sign{L(qnm)(i−1)}
initialized to its correct value a the (tk + 1)-th (ta-th) iteration.

Hence, for an arbitrary tk, the SCMSA will only become active at the tk + 1-th iteration,

even though its datapath has been activated two iterations in advance, i.e., at the (tk −
1) = ta-th iteration. In the ta-th iteration, the algorithm is forced to execute the MSA

by the erasure bit being set to 1. However, we refer to ta as the algorithmic threshold,

as under the hood, the decoder has switched on the full datapath an iteration earlier.

Computationally, this means that if each individual operation in the SCMSA that come

after the MSA datapath could be executed in a single clock cycle, the VN would see two

clock cycles overhead. The accelerating transition is illustrated in Figure 6.4.

6.1.4 Experimental Results

The experimental validation of this architecture was performed for the DVB-S2 N =

64800 bits rate 1/3 LDPC code, running a maximum of 50 decoding iterations [61,241]. Fur-

thermore, with the aforementioned modifications, in terms of FU and data representa-

tion and storage, the architecture is loosely based on the bit-parallel TPMP M-modulo

232

6.1 Gear-Shift LDPC Decoders

decoder architecture [232]. We have set a gear-shift threshold of ta ∈ {10, 15, 20}, for either

the accelerating and decelerating approaches, and also, a bitwidth threshold tb = 20 to

commute between bl ∈ {Q4.2, Q5.2} and bh ∈ {Q5.2, Q6.2}.

SNR [dB]

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

B
E

R

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

MSA Q6.2

SCMSA Q6.2

A: t
a

=10 b
l
=b

h
=Q5.2

A: t
a

=15 b
l
=b

h
=Q5.2

A: t
a

=20 b
l
=b

h
=Q5.2

A: t
a

=10 b
l
=b

h
=Q6.2

A: t
a

=15 b
l
=b

h
=Q6.2

A: t
a

=20 b
l
=b

h
=Q6.2

2) High SNR

1) Low SNR

(a) accelerating gear-shift decoder

SNR [dB]

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4
B

E
R

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

MSA Q6.2

SCMSA Q6.2

D: t
a

=10 b
l
=b

h
=Q5.2

D: t
a

=15 b
l
=b

h
=Q5.2

D: t
a

=20 b
l
=b

h
=Q5.2

D: t
a

=10 b
l
=b

h
=Q6.2

D: t
a

=15 b
l
=b

h
=Q6.2

D: t
a

=20 b
l
=b

h
=Q6.2

2) High SNR

1) Low SNR

(b) decelerating gear-shift decoder

Figure 6.5: BER of the a) accelerating and b) decelerating gear-shift decoders for a fixed bitwidth bl=bh ∈
Q{5.2, 6.2}: 1) low SNR region and 2) high SNR region.

Accelerating Gearbox Performance The BER performance of the accelerating gear-shift

decoder is shown in Figure 6.5a) for fixed-point representations of Q5.2 and Q6.2. Two re-

gions are identified, 1) low SNR and 2) high SNR, since the BER performance of the gear-

shift LDPC decoder shows clear convergence trends in those regions. In 1), the attained

BER is that of the decoding algorithm executing in the trailing iterations. Naturally, this

is due to the low SNR operation of decoder, which sees the number of decoding iterations

required to converge close to the maximum number of iterations allowed. Thus, being

the SCMSA the last executed algorithm, the BER curve enters the waterfall region, i.e.,

that between 1) and 2), closer to the SCMSA performance than to the MSA. As the SNR

improves, the BER curves for ta ∈ {10, 15, 20} are spread between the SCMSA and the

MSA curves. The better BER is achieved by ta = 10, naturally, since this accelerating con-

figuration executes more iterations of the most powerful algorithm. When the error-floor

region is reached in 2), there is a non-distinguishable BER performance between both

the SCMSA, MSA and accelerating gear-shift curves. In the accelerating decoder, for SNR

operation between 1) and 2), then there is a BER performance tradeoff to be made.

Comparing the convergence speed of the accelerating decoder to the MSA and the

SCMSA algorithms through the difference in average number of iterations required at

each SNR simulated to successfully decode a codeword is made on Table 6.2. As observed

in Table 6.2, the accelerating decoder, with certain exceptions around−0.90 dB for the A3

and A5 cases, always require less iterations than the MSA execution. Thus, not only is

233

6. Power-aware LDPC Decoders

Table 6.2: accelerating convergence to the MSA and SCMSA expressed in iterations (%). The tabulated
entries in gray correspond to SNR operation points where the accelerating decoder requires more iterations
to converge than the MSA or the SCMSA decoder.

MSA SCMSA
SNR (dB) A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

−1.30 ∼0.00 -3.04
−1.20 3.99 3.99 0.00 0.00 0.00 0.00 3.20 3.20 -0.76 -0.76 -0.76 -0.76
−1.10 1.13 1.13 3.74 3.74 6.74 6.74 -1.44 -1.44 1.20 1.20 4.41 4.41
−1.00 1.03 1.03 1.05 1.05 3.15 3.15 -10.08 -10.10 -10.06 -10.08 -8.13 -8.15
−0.90 7.09 10.08 -0.51 2.49 -2.27 0.70 -10.57 -10.59 -16.88 -16.90 -18.22 -18.26
−0.80 18.66 18.32 12.92 12.58 8.94 8.60 -8.57 -8.57 -13.53 -13.54 -16.67 -16.67
−0.70 12.02 11.97 8.82 8.80 6.89 6.86 -6.46 -6.46 -9.36 -9.34 -11.03 -11.01
−0.60 8.19 8.13 6.34 6.25 4.96 4.90 -4.58 -4.58 -6.31 -6.34 -7.56 -7.56
−0.50 6.09 6.06 4.85 4.76 3.68 3.65 -3.20 -3.21 -4.39 -4.45 -5.48 -5.48

the BER obtained better than that obtained with the MSA (c.f Figure 6.5a)), but also, the

convergence speed can be as 18.66% faster. Naturally, when the SNR progresses to higher

levels, this convergence speed is lost, as the number of required iterations decreases.

Comparison of the accelerating decoder with the SCMSA case yields a much different

scenario. In this case, the decoder convergence speed can only aspire to be as slow as the

MSA is to it. Herein, the outliers are SNR operation points for which a lower number of

iterations is required under gear-shift decoding. The remaining of which see a gap of up

to 18.22% for the A5 decoder, with a similar profile to the convergence speed difference

with regards to the MSA, i.e., in the SNR regions 1) and 2) the difference is low and grows

in the waterfall region reaching its peak at 0.90 dB.

Decelerating Gearbox Performance The BER performance of the decelerating gear-shift

decoder is shown in Figure 6.5b) for fixed-point representations of Q5.2 and Q6.2. Sim-

ilar to the previous case, there is convergence in the SNR region 1) to the MSA BER

performance and in 2) to the BER of the SCMSA. It is clear that the performance in 1)

is polarized once again by the algorithm run in the trailing decoding iterations and oth-

erwise in 2). Due to such behavior, in this case, given the difference of the SCMSA and

MSA BER gradients in the waterfall region, the BER performance of the decelerating de-

coder converges faster to the SCMSA performance. In this case, superior BER is achieved

by running the SCMSA more iterations, thus the better performing configuration is for

ta = 20.

The convergence speed of the decelerating decoder to the MSA and the SCMSA al-

gorithms is compared in Table 6.3. It stands out from Table 6.3, that the decelerating

decoder is much faster than the MSA decoder. The aforementioned intuition that the

most powerful LDPC decoding algorithm is more valuable for when LLRs are still low in

magnitude proves correct. In this case, speed of convergence can grow to almost 30% at

234

6.1 Gear-Shift LDPC Decoders

Table 6.3: decelerating convergence to the MSA and SCMSA expressed in iterations (%). The tabulated
entries in gray correspond to SNR operation points where the decelerating decoder requires more iterations
to converge than the MSA or the SCMSA decoder.

MSA SCMSA
SNR (dB) D1 D2 D3 D4 D5 D6 D1 D2 D3 D4 D5 D6

−1.30 0.00 0.00 0.00 0.00 6.66 6.66 -3.04 -3.04 -3.04 -3.04 3.41 3.41
−1.20 6.25 6.25 3.46 3.46 2.17 2.17 5.44 5.44 2.67 2.67 1.39 1.39
−1.10 1.54 1.54 0.64 0.64 0.81 0.83 -1.04 -1.04 -1.91 -1.91 -1.75 -1.73
−1.00 2.56 2.56 6.63 6.68 9.27 9.31 -8.72 -8.74 -5.10 -5.08 -2.75 -2.73
−0.90 12.59 15.79 16.22 19.50 18.17 21.51 -5.97 -5.95 -2.94 -2.94 -1.31 -1.31
−0.80 25.07 24.75 27.77 27.47 29.19 28.86 -3.63 -3.61 -1.55 -1.50 -0.45 -0.43
−0.70 17.22 17.24 18.97 18.95 19.79 19.80 -2.11 -2.06 -0.66 -0.63 0.03 0.09
−0.60 12.20 12.21 13.31 13.28 13.73 13.70 -1.03 -0.97 -0.06 -0.03 0.31 0.34
−0.50 9.31 9.29 10.00 9.97 10.14 10.08 -0.26 -0.26 0.36 0.36 0.49 0.46

0.80 dB for decoders D3, D4, and D5. However, this promising behavior does not stand

up to the test when compared to the SCMSA convergence speed. In almost every SNR

simulated, there is a need to execute more decoding iterations, a maximum of 8% more,

but this difference quickly grows to negligible as the decoder progresses to the error-floor

region.

Accelerating vs. Decelerating Gearboxes Finnaly, the accelerating and decelerating gear-

shift strategies show that, indeed, there are non-negligible BER differences and conver-

gence speeds when the maximum number of iterations is moderate [3]. As shown in Ta-

ble 6.7, the difference in convergence speed is as much as 15% faster for the decelerating

decoder than the accelerating one. As a consequence, and taking into account the BER

curve profile, we unequivocally conclude the better suitability of the decelerating ap-

proach.

Table 6.4: accelerating and decelerating convergence difference expressed in iterations (%). The tabulated
entries in gray correspond to SNR operation points where the accelerating decoder outperforms the decel-
erating decoder in executed decoding iterations.

SNR (dB) A1−D1 A2−D2 A3−D3 A4−D4 A5−D5 A6−D6

-1.30 0.00 0.00 0.00 0.00 6.24 6.24
-1.20 2.12 2.12 3.47 3.47 2.20 2.20
-1.10 0.40 0.40 -3.09 -3.09 -5.93 -5.91
-1.00 1.50 1.50 5.23 5.27 5.42 5.46
-0.90 4.89 4.93 15.45 15.47 18.73 18.78
-0.80 5.13 5.15 12.87 12.92 17.88 17.90
-0.70 4.44 4.49 9.04 9.04 11.62 11.65
-0.60 3.58 3.64 6.37 6.43 8.10 8.13
-0.50 2.95 2.95 4.79 4.85 6.09 6.06

235

6. Power-aware LDPC Decoders

Variable Quantization Shifting Varying the Bm of the represented LLRs has an impact

on the BER performance [236]. In the waterfall region, the more decimal bits, the better

the performance, but to little gain, since LLRs will soon benefit from more integer bits

as the BER progresses to the error-floor and LLR scale quickly. A good compromise is

to define y=2 decimal bits and adjust the integer part x accordingly to the chosen Bm
[3].

The BER obtained for the SCMSA and MSA decoders for Q{2.2, 3.2, 4.2, 5.2, 6.2} is shown

in Figure 6.6. It is clear that the highest impact of varying the number of bits in the LLR

representation is on the obtained error-floor, with distinct levels of error-floor achieved,

regardless of the decoding algorithm, for Q{2.2, 3.2, 4.2}, and we can safely assume that

for Q{5.2, 6.2} the behavior is the same.

The introduction of a two-step variable LLR quantization, commuting at iteration

tb from Bm = bl to Bm = bh, should work in a way that does not interfere with the

obtained error-floor, even though the decoder is clipping the LLR messages before the

tb iteration threshold to Bm=bl . Knowing that in the error floor region the SCMSA and

the MSA decoders still execute a number of iterations in excess of 15 iterations, we can

set tb= 15 to evaluate the BER performance of the decoding algorithm under accelerating

and decelerating decoding for ta=20.

SNR [dB]

-2 -1.5 -1 -0.5 0

B
E

R

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

MSA Q2.2

MSA Q3.2

MSA Q4.2

MSA Q5.2

MSA Q6.2

SCMSA Q2.2

SCMSA Q3.2

SCMSA Q4.2

SCMSA Q5.2

SCMSA Q6.2

4 bit floor

5 bit floor

6 bit floor

7/8 bit floor

Figure 6.6: BER performance of the MSA and SCMSA decoders under different quantization levels.

The obtained results, shown in Figure 6.7, clearly show that even for a tb=15, the

obtained error-floor is the one obtained for the bl bitwidth and not for the bh bitwidth.

Thus, while there was a strong motivation to reduce the energy consumption due to

the switching of certain memory areas when operating in reduced bitwidth bl , the BER

performance proves otherwise. In addition to the degrading BER performance beyond

236

6.2 LDPC Decoder under Unreliable Memory Storage

SNR [dB]

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

B
E

R

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

MSA Q6.2

SCMSA Q6.2
A

1
: t

a
=20, t

b
=15 b

l
=Q4.2, b

h
=Q5.2

A
2
: t

a
=20, t

b
=15 b

l
=Q4.2, b

h
=Q6.2

A
3
: t

a
=20, t

b
=15 b

l
=Q5.2, b

h
=Q6.2

(a) accelerating gear-shift decoder

SNR [dB]

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

B
E

R

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

MSA Q6.2

SCMSA Q6.2

D
1

: t
a
=20, t

b
=15, b

l
=Q4.2, b

h
=Q5.2

D
2

: t
a
=20, t

b
=15, b

l
=Q4.2, b

h
=Q6.2

D
3

: t
a
=20, t

b
=15, b

l
=Q5.2, b

h
=Q6.2

(b) decelerating gear-shift decoder

Figure 6.7: BER of the gear-shift decoders under variable quantization bl ∈ Q{4.2, Q5.2} and bh ∈
Q{5.2, 6.2} \ bl .

the MSA BER, there is also an increase of at least ∼11% in decoding iterations, when

compared to the best fixed bitwidth configurations previously discussed.

6.2 LDPC Decoder under Unreliable Memory Storage

Fully reliable computing has been de facto paradigm for computer architectures ever

since, as this ensures reliability of operation with reproducible results regardless of the

underlying gate-level or instruction set characteristics. However, ensuring 100% reliable

operation entails the inclusion of design guard-bands, desived for the worst case sce-

nario, which can be bring tremendous penalty yields, as the exacerbation of process vari-

ations have been the norm when scaling down with Moore’s law [246,298,299,299]. Precau-

tions enabling 100% reliable operation under these high variations in the manufactured

silicon have costly overheads in terms of power and area, adding to the challenge of de-

veloping efficient accelerators. In addition, this makes the window of opportunity for

low-power techniques, such as aggressive voltage-scaling, to narrow down as systems

become extremely sensitive to process variations, reducing its potential gains [300,301]. As

a consequence, researchers have given their attention to alternative computation meth-

ods, such as approximate computing, whereupon the constraint of 100% reliable operation

is relaxed in order to achieve lower power designs [286,290,291,300,302–304,304–306]. These archi-

tectures perform particularly well for as long as errors introduced at the system level do

not go beyond a certain threshold at the quality or the performance of the application at

hand [304]. It is particularly relevant to study the impact of memory unreliability on the

communications systems performance, and in particular of LDPC decoders that see up to

90% of their area devoted to memory, so that designers can find operation points which

237

6. Power-aware LDPC Decoders

System

Application
Quality Performance

Error

Memory Model
 - Fault nature
 - Fault rate

System Error Metrics
 - BER degradation
 - SNR offset

Figure 6.8: Metrics of correctness for LDPC approximate computing performance and system-level “correct-
ness” parameters.

combine the BER performance negligibly close to that of reliable systems with the power

savings of unreliable schemes [303,306,307].

While approximate computing, in its broader sense, deals with unreliability introduced

at the system level, usually it refers to errors ensued by unreliable arithmetic logic. How-

ever, errors introduced by unreliable memory storage can be interpreted as a special case

of approximate computing, as faulty bit-cells fail to retain data that is computed by func-

tionally correct arithmetic logic. To assess how this impacts on the performance of the

LDPC decoding system, metrics of “correctness” must be derived. Namely, at the system

level, we can study and model how many faulty bit-cells are introduced into the decoder

design, while at the application level what we interested in measuring is the resulting

decoding degradation measured, seen as an equivalent degradation of the channel con-

ditions (SNR) which expresses itself in degraded BER behavior (c.f. Figure 6.8).

6.2.1 Unreliable arithmetic and control silicon

Due to the extensive variation introduced during the fabrication of silicon devices

with the scaling down of technology nodes, accelerators should be protected against en-

suing hard- and soft-errors. Unreliability at the FU and control unit operation has been

addressed by May et al. [308]. Therein, votation schemes and duplication of silicon re-

sources is performed to ensure 100% reliable operation of all components and to ensure

that no data corruption will sacrifice the performance, i.e. the decoder design was made

so that it would tolerate errors induced by the manufacturing variations in the silicon,

and the developed strategies prevent those errors from propagating mostly due to re-

dundancy of hardware resources. On the other hand, other researchers address these

fabrication variations by allowing errors to propagate in the hardware. As desirable as

it would be to ensure 100% reliable operation at the system-level, since this would en-

tail correctness of the design at the application-level, the expression of errors allowed

238

6.2 LDPC Decoder under Unreliable Memory Storage

at the system-level can be contained at the application-level and their effect made to be

negligible based on the forward error correction (FEC) properties of decoding system [290].

Error Mitigation at the Algorithm-level Ngassa et al. study the introduction of these

errors at the FU-level alone, in particular for MSA-based decoders, whereupon they an-

alyze what are the most critical arithmetic units for the BER performance. Studying the

DE model, they show that the error propagation can be contained, though BER perfor-

mance will still degrade [309]. Having determined the critical influence of the min unit in

the MSA LDPC decoder they propose the utilization of the SCMSA as a way to contain

the propagation of errors introduced by the faulty min operator [310]. The self-correction

proves its capability of limiting the propagation of errors to the magnitude of LLRs. In

its inception, the rationale behind the self-correction had been the containment of sign

changes in the L(qnm) message introduced by relaxing the log term in (2.27) [3]. However,

the errors introduced by the min operator can be seen as an additional source of over-

estimation, as instead of the minimum the operator will yield the maximum, and BER

degradation is therefore contained [309,310].

6.2.2 Unreliable Memory Storage

There are two sources that explain the presence of faulty-bit cells in an accelerator

memory system, and therefore the accelerator operates under unreliable memory, that

are related to the memory technology. 1) Aggressive voltage-scaling in traditional SRAM

or 2) replacement of SRAM modules with eDRAM which must be operated with refresh

rates that cannot guarantee 100% reliable operation [288]. The most common use of mem-

ory technology for special-purpose accelerators is SRAM. In the former, bit cells fail to

retain the correct stored value due to sub-threshold operation of the silicon. Essentially,

the quadratic voltage dependency of power makes it highly appealing to lower the oper-

ation voltage VDD applied. However, the lower the VDD, the higher the raw BER, i.e., low

VDD result in lower probability that the bit-cells will retain the written value correctly, as

seen in Figure 6.9a).

In the latter, incorporation of the eDRAM modules explore the fact that no refresh

procedure required on the memory will see a considerable power reduction. The ratio-

nale is to operate the memory in such a way that the system writing access pattern will

see each bit-cell updated before the retained value is corrupted. For sub-45 nm processes,

however, there is a high variation of the bit-cells DRT, as shown in Figure 6.9b). Hence,

in most cases, the majority of the bit-cells can be operated reliably, but some bit-cells will

be operated unreliably [246,307]

239

6. Power-aware LDPC Decoders
F

a
il
u

re
 P

ro
b

a
b

il
it

y

Supply Voltage (mV)
600 600 800 900 1000

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

6T bit-cell

Upsized 6T

8T bit-cell

(a) SRAM bit-cell BER vs. operating voltage VDD

10
-4

10
-5

10
-6

10
-7

Retention Time (ms)

P
ro

b
a

b
il
it

y
 D

e
n

s
it

y
 F

u
n

c
ti

o
n

0.01

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0

(b) eDRAM bit-cell DRT PDF

Figure 6.9: Unreliable operation of bit-cells in SRAM and eDRAM memories. The SRAM in a) failure proba-
bility corresponds to a 65 nm process [287,300]. The eDRAM DRT PDF in b) is for a 28 nm FD-SOI process [288].

The aforementioned methods that introduce unreliable storage to system designs,

have wide and rich design spaces at the gate-level, a subject that lies out of the scope

of this Thesis. However, at the system-level, the unreliable memory storage can be mod-

eled in a way that is somewhat agnostic of the underlying gate-level details. In particular,

we are interested in analyzing the BER degradation following the integration of unreli-

able memory modules into LDPC decoding designs as in Figure 6.10a), The remaining

reliable memory

unreliable mem 1

unreliable mem 2

unreliable mem 3

SNR

B
E
R

∆SNR2

∆SNR1

BER2

BER1

(a) Raw BER performance

reliable memory

unreliable mem 1 w/ mitigation A

unreliable mem 2 w/ mitigation A

unreliable mem 3 w/ mitigation A

SNR

B
E
R

∆SNR2

∆SNR1

BER2

BER1

reliable memory

unreliable mem 1 w/ mitigation A

unreliable mem 1 w/ mitigation B

unreliable mem 1 w/ mitigation C

SNR

B
E
R

∆SNR2

∆SNR1

BER2

BER1

(b) BER degradation mitigated performance

Figure 6.10: LDPC decoder operation under unreliable memory storage: a) BER degrades as a consequence
of the unreliability introduced by the faulty memory; and b) BER improves by applying appropriate miti-
gation techniques.

question becomes, how to make use of the inner error resilience of the LDPC code in a

way that mitigates the observed BER degradation in combination with other mitigation

techniques. There are additional strategies, designated as BER mitigation degradation

240

6.2 LDPC Decoder under Unreliable Memory Storage

techniques (c.f. Figure 6.10b), which further boost the error resilience of error-correcting

applications to the system errors introduced by unreliable memories.

Unreliable memory modules are subject to probabilistic errors that can be modeled as

a communication channel. This way, we can formalize “how much” unreliability is intro-

duced, i.e., what is the probability of a bit-cell failure, the nature of the introduced fault,

thus allowing a formal approach to propagate the errors introduced at the system-level

through the LDPC decoder and assess their impact at the application-level. For simplicity

Reliable memory

Unreliable memory
s s̄

s s̄ = s
Data Mapper Data Demapper

d

Data Mapper Data Demapper
d d̄

d̄ = d

Figure 6.11: Reliable and unreliable memory taxonomy.

of the analysis, we do not take into account the mapping of data elements d into their cor-

responding binary-valued entries sk (typically performed using two’s complement (2C) or

sign-magnitude (sign-mag)). We assume that a binary-value entry, with k bits, sk is written

to the memory unit, which according to the writing address and bit-cell failure pattern

can introduce errors to the stored sk. Hence, instead of recovering sk when reading at the

same address, s̄k is recovered, with bits stored in faulty bit-cells corrupted by the nature

of the channel model’s.

Binary Symmetric Channel A simple model for individual bit-cell failure is the binary

symmetric channel (BSC) [311,312]. Herein, the channel sk → s̄k, is formalized by k parallel

and independent BSCs, i.e., one for each bit-cell, with bit-flip probability ε. However,

the BSC is not the most appropriate model to physically capture the silicon behavior on

unreliable memory storage systems.

Stuck-at Channel To account for the deficiencies of the BSC into correctly modeling

the physical phenomena which introduce faults to bit-cells in embedded very large scale

integration (VLSI) processes with high variation, a better channel is required. Similarly

to the BSC, the bit-cells fail independently with probability ε, however, they do so by

becoming stuck-at 0 or stuck-at 1. Physically, this corresponds to the bit-cell circuit being

shortened to power or to ground or to the transistor inability to commute [181].

241

6. Power-aware LDPC Decoders

6.2.3 Error Mitigation Strategies

Presence of faulty bit-cells in high density memories can be accommodated by a num-

ber of strategies that mitigate the impact of the faults on the application and performance

correctness. Traditional ones include design safeguards or utilization of error-correcting

codes (ECCs) in the memory that can elevate the memory area overhead to more than

30% [302,313]. However, other methods, such as data remapping aim at finding an appro-

priate data recoding that minimizes the level of disturbance introduced by the unreliable

memory. Other methods are applicable at the system-level, with the intention not to be

the preventing of the unreliability per se, but the mitigation of the performance degrada-

tion that it entails.

Application-level techniques Minimizing the performance loss of a system when mem-

ories are unreliable is an optimization problem for which objective functions that mini-

mize the errors introduced by the faulty bit-cells in unreliable memory modules can be

constructed, and tuned to each application so that the resulting performance of the sys-

tem is improved. This has been studied for a number of problems concerning multiple-

input multiple-output (MIMO) communication systems, such as, 1) achievable rate of the

binary phase-shift keying (BPSK) modulation scheme, 2) repetition coding and 3) convolu-

tional coding, when unreliable LLR memories are introduced [181]. Statistical correction

has also been studied [294], whereupon a binary-valued entry sk corresponding to an LLR

is replaced by a statistical measure, such as the mean of not corrupted LLRs in the system.

Moreover, the degrading performance has also been studied for MSA-based LDPC

decoders, whereupon the code threshold degradation is studied through a revised DE

model that incorporates the stuck-at channel (SAC) [314]. This is based on the principle that

the faults introduced by the corrupted bit-cells have a similar effect to an SNR degrada-

tion. In fact, under DE, the LDPC code threshold degrades to greater SNRs. Furthermore,

DE permits obtaining another degradation measure relative to the overhead in decoding

iterations between equivalent BER levels. However, DE models do not take system-level

design parameters as input, and thus, leave out a number of design space options which

determine the BER performance of the LDPC decoder.

System-level techniques While the aforementioned works concern the use of tech-

niques applied at the application-level to mitigate the degradation of the system oper-

ation correctness, mitigation strategies can be applied at the system-level. In particular,

by manufacturing hybrid memories, i.e., those incorporating different T cell designs, re-

searchers have been able to construct a high speed packet access (HSPA) decoding system

combining unreliable (6T) and reliable (8T) bit-cells. This way, the most sensitive part of

242

6.2 LDPC Decoder under Unreliable Memory Storage

the stored data can be protected by reliable cells while low cost unreliable ones still exist

to lower the energy requirements [290].

The motivation behind the incorporation of unreliable memory storage systems onto

communication systems has a broader rationale. Considering the aforementioned sys-

tems implement FEC, their underlying ECC already possess a certain error resilience. In

fact, these systems deal with the correction of errors themselves, and thus, in a sense, the

unreliability introduced by faulty bit-cells in unreliable memories may be expressed as a

further degradation of the SNR [290].

All in all, incorporation of unreliable memory promises a prospect of tremendous

power savings (up to 30% in the HSPA case) for manageable BER performance loss, thus,

there is a strong motivation to assess how unreliability can be managed at the system-

and application-level in order to exploit power reduction techniques based on unreliable

memory storage incorporation onto LDPC decoders.

6.2.4 BER degradation mitigation strategies

The followed methodology to assess the performance of the LDPC decoder under

unreliable memory storage is herein discussed. The aforementioned unreliable memory

storage methods were discussed how to introduced cheap memory modules based on

SRAM and eDRAM technology, the underlying setup does not take the memory technol-

ogy into account. Instead, the level of errors introduced are modeled by the appropriate

memory model, the SAC [181]. In this Chapter, the main figure of merit for our LDPC de-

coder becomes the BER performance and the decoding iterations overhead. BER Monte

Carlo simulations must be performed beforehand the introduction of an unreliable mem-

ory module, based on a certain technology node and memory type, so that there is a

guiding yield, above which the decoding success sees a too high degradation.

Stuck-at 0 channel

b
7
b
6
b
5
b
4
b
3
b
2
b
1
b
0 0b

1
b
20b

4
b
50 b

6 0b
6
b
5
b
4
0b

2
b
1

0

sk s̄k

Figure 6.12: Memory storage following the stuck-at 0 channel. Bits b7, b3, b0 will see their retained values
stuck at the logical 0. However, a crossover in s̄k only happens when bits set to logical 1 in sk are stored in
faulty bit-cells.

Considered Stuck-at 0 Channel Model The assumed channel model, the stuck-at 0

channel (SAZC) show in Figure 6.12, is a variation of the SAC where bits stored in faulty

bit-cells become stuck at 0 only—faulty bit-cells are shorted always to the same voltage

level, in this case, the one corresponding to a logical 0. Thus, the crossover probability

becomes to half of the SAC case [181].

243

6. Power-aware LDPC Decoders

In addition, we will henceforth designate the failure probability of each individual

memory bit-cell as PS,SAZC. It is worth mentioning that in post-production testing, mem-

ories exceeding a given failure rate PS,SAZC≥P of failing bit-cells are discarded. Fully

reliable computation requires P=0, leading to yield penalties, and also, for a failing rate

threshold P, the failure rate can be in the range of [0, P], with failing rates around P

having higher impacts on the error propagation to the application-level than an obtained

PS,SAZC≈0. To ensure that the LDPC decoder under unreliable memory will perform well

under unreliable memory storage that passed the a given post-production discard thresh-

old of PS,SAZC≤P, we consider the worst case scenario, i.e., the one where the maximum

failure rate occurs.

As a consequence, we are able to make further considerations for a memory block

m that stores Wm words, each with a bitwidth of Bm, and thus, possesses Sm=Wm×Bm

bit-cells. Its number of stuck-at faults, under the considered scenario, is then fixed and

given by Em= bSm×PS,SAZCc. In order to simulate this memory channel model, the bit-

cell failure locations, i.e. the faulty bit-cell indexes, are modeled as a random variable

that are independent and identically distributed (i.i.d.) and follow a discrete uniform distri-

bution. Also, in order to assess in a computationally feasible time the BER performance

of the LDPC decoder under unreliable storage, for each tested codeword there is a new

bit-cell failure pattern in the memory. The motivation behind this is due to the following

considerations. It would become a difficult problem to tackle analytically what would

the worse error pattern in memory be like. Thus, we consider that the logical to physical

bit-cell location is updated for each new iteration. This is a strategy not pursued for ded-

icated LDPC decoders, which is not necessary under 100% reliability, the same message

is stored to the same bit-cell locations. When 100% reliable operation is no longer guar-

anteed, shuffling the failure locations ensures that whatever the worst error pattern is, it

will only occur ever so often in time.

In order to assess the performance degradation ensuing from the unreliability intro-

duced by faulty bit-cells, different setups must be considered. For the one, with loss of

generality, LDPC decoders are divided onto two distinct memories spaces 1) the chan-

nel memory storing the likelihoods received from the channel demodulator, and 2) the

messages memory, storing all intermediate data that is required in the computation of

the LDPC decoding algorithm. Thus, the evaluation of the sensitivity of the decoding

procedures to errors introduced onto each memory should be made. Usually, the chan-

nel memory is one or more orders of magnitude smaller than the messages memory,

and will influence the decoding procedure since the initialization step, although at lat-

ter iterations its recurrent injection of errors will become negligible as the magnitude of

the LLR messages increases, i.e. assuming that the LDPC decoder is operating in the

244

6.2 LDPC Decoder under Unreliable Memory Storage

LLR-domain. The opportunity to greatly diminish the energy consumed by the channel

memory is lower than on the messages memory due to the size difference. On the other

hand, the tolerable fault injection rate, while still guaranteeing the correct decoding of

codewords, is surely a more critical problem on the latter memory space, not only due to

its much larger size, but also due to its recurrent injection of errors, not limited to only

one type of messages, but both L(qnm) and L(rmn).

The SAZC is a special case of the SAC considering that physically bit-cells fail biased

towards a logical value, in this case 0, corresponding to one of the voltage levels within

the memory hardware. Naturally, the general SAC can be obtained from a memory fol-

lowing the SAZC, if consecutive writes interleave assertions to 0 and to 1. This is not

considered, as it would add some overhead to the decoder design. Again, we are inter-

ested in modeling the worst case scenario for a particular set of memory characteristics.

Two’s Complement vs. Sign-magnitude Data representation influences how the hard-

ware errors propagate to the represented data. It is clear that there is no averaging of the

introduced errors as only stuck-at 0 faults occur. Thus, a 2C representation sees errors

differently than the sign-mag representation. Considering sk and s̄k in 2C representation,

its value d2C is given by

d2C = −sk,Bm−12Bm−1 +
Bm−2

∑
i=0

sk,i2i, (6.3)

with with sk,i the i-th bit of the word sk. It is readily observed that when a stuck-at 0

bit-cell exists at position j,d becomes

d̄2C =

−sk,Bm−12Bm−1 +
j−1
∑

i=0
sk,i2i +

Bm−2
∑

i=j+1
sk,i2i, j ∈ {0, Bm − 2}

Bm−2
∑

i=0
sk,i2i, j = Bm − 1.

(6.4)

Thus, there is a difference d2C − d̄2C = 2j, but not at all times, only if a 1 is written to

a stuck-at 0 bit-cell. Considering, for simplicity, that either logical values get written in

the same frequency to all bit-cells, then the average error introduced is a negative offset

of 2j−1, in modulo arithmetic, i.e., even when the sign bit flips when sk maps a nega-

tive value d, the corrupted word s̄k sees the same offset difference. This representation

suffers from a biased 2j negative offset, in modulo arithmetic. In (6.4), two cases are dis-

tinguished, when the stuck-at bit position j affects all bits except the sign, and when the

sign is affected.

245

6. Power-aware LDPC Decoders

Faulty bit-cells affect the sign-mag representation differently, as dsm is obtained accord-

ing to

dsm = (−1)sk,Bm−1 ×
Bm−2

∑
i=0

sk,i2i, (6.5)

with d and −d mapped to the same sk word, except for the MSB, i.e., the sign bit. When a

stuck-at 0 bit-cell exists at position j, the retrieved word is

d̄sm =

(−1)sk,Bm−1 ×
(

j−1
∑

i=0
sk,i2i +

Bm−2
∑

i=j+1
sk,i2i

)
, j ∈ {0, Bm − 2}

Bm−2
∑

i=0
sk,i2i, j = Bm − 1.

(6.6)

When the faulty bit-cell affects the MSB bit (the sign bit), the demapped value d̄sm is

the same as the one demapped in the 2C data representation case. However, the error

difference is in this case dsm − d̄sm = −sk,Bm−1 × 2j, and thus the stuck-at 0 bit-cell, if

not affecting the MSB, does not bias the offset to being always positive. It can also be

negative, depending on the sign of the dsm.

As a consequence of the introduced faulty bit-cells, the decoding algorithm will per-

form poorer than in the reliable memory case, thus seeing the yielded BER performance

degrade [290]. In order to mitigate the impact that the faulty bit-cells possess on the de-

coder BER performance, mitigation strategies developed at the system-level can be fol-

lowed in order to lower the impact of the errors introduced by the faulty bit-cells.

Unequal Bit Protection—k-MSB Protection This strategy is motivated by the fact that

the errors introduced by faulty bit-cells that store MSBs have the highest impact under

2C and sign-mag representations. Especially, decoders operating in the LLR domain, see

the greatest error when the sign bit is corrupted, and then the next highest magnitude

error occurs for the next MSB. Considering that the LLR attributes to a positive value

a higher probability of the represented bit state to be 0 (2.21), and to a negative value a

higher probability of it being 1. However, for stuck-at 0 MSBs, the LLR is corrupted to

represent the incorrect bit state. Hence, this strategy is based on the correct storage of

the LLRs MSBs in reliable memories, or in reliable bit-cells, while the remaining of the

word sk continues to be stored in unreliable bit-cells (c.f. Figure 6.13). From the error

magnitude introduced by a faulty bit-cell (6.6), (6.4), it is clear that while the first MSB

can introduce a catastrophic error, due to representing the incorrect bit state, the remain-

ing bit-cells also have a non-negligible effect. The higher their position in the MSB, the

higher the error they may introduce. Hence, k-MSB protection works by not relaxing on

the reliability assumption for the bit-cells retaining the k MSB in memory, as illustrated

in in Figure 6.13. From (6.6), (6.4), we can also observe that the more bits are protected,

246

6.2 LDPC Decoder under Unreliable Memory Storage

the lower the magnitude of the introduced error by the faulty bit-cells. However, this is

at odds with the power savings goal that relaxes on the 100% reliable operation require-

ment. The optimal tradeoff lies in the point where a significant fraction of the memory

bit-cells is operated under lower power, and thus unreliably, permitting power savings

in the memory system, though a sufficient number of MSBs is protected to ensure a de-

coding BER performance converging to the one obtained if the LDPC decoder would be

under reliable memory operation. In SRAM technology, this mitigation technique has

Stuck-at 0 channel

b7b6b5b4b3b2b1b0 0b1b20b4b5b6 b7b6b5b40b2b10

protected bit-cell
(always reliable)

b7

unprotected bit-cells
(might not be reliable)

sk s̄k

Figure 6.13: k-MSB protection. MSB bit-cells b7 and b6 will be always operated under reliable conditions in
this case, while the remaining ones might have stuck-at failures such as b3 and b0, but not b5, b4, b2, and b1.

been proved feasible with a hybrid memory system combining 8T unreliable bit-cells for

storing the sign bit (the MSB), while the remaining bits are stored in 6T bit-cells [290]. On

the other hand, for eDRAM technology, this would involve the application of a refresh

procedure with a rate ensuring the reliable storage of the MSBs, or the storing of these

bits onto bit-cells with very high DRT [181,288].

Follow-up Repair Iterations Another BER degradation mitigation strategy consists of

introducing fault-free repair iterations at the end of the decoding procedure. This is mo-

tivated by the insight that errors in the decoder are harder to mitigate when the decoding

process is in itself faulty—since the memory storing the LLRs is unreliable—and thus, a

small number of fault-free decoding iterations may have the capability to remove such

“residual errors”. This procedure is depicted in Figure 6.14. Essentially, the LDPC de-

Stuck-at 0 channel

Stuck-at 0 channel

b7b6b5b4b3b2b1b0 0b1b20b4b50 b6 0b6b5b40b2b10

b7b6b5b4b3b2b1b0 b0b1b2b3b4b5b7 b6 0b6b5b40b2b10

protected bit-cells
(always reliable)

commute to reliable after X
th

iterations

sk s̄k

sk s̄k

Figure 6.14: Follow-up repair iterations strategy. After a X iterations, the unreliable memories begin to be
operated in a way that they become reliable again, thus not introducing errors henceforth.

247

6. Power-aware LDPC Decoders

coder will run a maximum of MAXiter decoding iterations or finish early as soon as a

valid codeword is decoded. Nevertheless, this does not influence the follow-up repair

iterations scheme, it only affects how many iterations a received word has been decoded

when the memory is operated unreliably and then reliably. The decoding procedure then

becomes

a) the first X iterations (0 ≤ X ≤ MAXiter) see errors present in all the memories in

the LDPC decoder;

b) the following MAXiter − X − 1 decoding iterations are run for a reliable message

memory but the channel memory remains unreliable.

Physically, this would correspond to elevating the operation voltage VDD in SRAM tech-

nology or increasing the refresh rate of eDRAM. Thus, the memories commute to a reli-

able operation point where data is not corrupted by the SAZC. Instead, as soon as a write

operation is issued, there is no longer data corruption. However, the channel memory,

being read-only, does not benefit from this, as it is written only once per decoding word.

On the eDRAM case, one could think on the application of a faster refresh rate during

the decoding phase b) guaranteeing that data will be retained correctly by the bit-cells.

Characteristic of both SRAM and eDRAM repair strategies is the power overhead thus

required.

6.2.5 Experimental Results

Table 6.5: Carried out simulations for the LDPC decoder with unreliable memory and applied BER degra-
dation mitigation strategies.

Details Unreliable Memories MSB Protection Repair Iterations

Ex
pe

ri
m

en
ts

I 100% reliable N/A
II

Channel
Nonea) None

III 1-bit MSB None
IV

Channel and Messages

None None
Va) 1-bit MSB

None
Vb) 2-bit MSB

VIa)

No

Yes X= 0, 100% iterations repairedb)

VIb) Yes X= 9, 80% iterations repairedc)

VIc) Yes X=14, 70% iterations repaired
VId) Yes X=19, 60% iterations repaired
VIe) Yes X=24, 50% iterations repaired
VIf) Yes X=29, 40% iterations repaired

a) equivalent to VI w/ X=50; b) equivalent to VI; c) it represents the maximum percentage repaired.

To evaluate the performance of the LDPC when unreliable memories are introduced

in the decoders we perform Monte Carlo simulations, summarized in Table 6.5, for the

248

6.2 LDPC Decoder under Unreliable Memory Storage

DVB-S2 LDPC normal frame (N = 64800 bits) 1/3 codes, with block length N as defined

in Table 6.6. The bit-cell failures follow a uniform distribution for a fixed number of fail-

ing cells, computed as Em=bSm×Ps0c for each memory block shown in Table 6.6, with

Ps0 the faulty inject-rate of bit-cells stuck-at 0, with Ps0 ∈ {10−5, 10−4, 10−3, 10−2}. Our

simulations rely on a genie-aided early termination method, thus decoding only stops

early whenever the decoded word matches the transmitted codeword or when reaching

the maximum number of iterations. The BER simulation performance of the decoders is

shown in Fig. 6.15 for no-protection and for k-MSB protection and in Fig. 6.16 for decod-

ing with repair iterations.

Table 6.6: LDPC decoder and BER simulation parameters, memory block designation, type and dimensions.

N Rate Modulation Decoding Algorithm Memory Wm Bm Sm

LDPC 64800
QPSK MSA

Channel 64K 8 518K
Decoder 1/3 LLR 216K 8 1.7M

The maximum number of decoding iterations executed is 50, and the follow-up repair

iterations experiment is run for X ∈ {0, 9, 14, 19, 24, 29}. Furthermore, in Table 6.7 we

analyze the number of decoding iterations executed in all scenarios for a data point in

the error-floor region. We analyze this in terms of the absolute value and additional

number of iterations required for unreliable memories (experiments II, III, IV, V, and VI)

compared to the fully reliable case (experiment I) using 2C data representation. In this

SNR [dB]
-1.2 -1 -0.8 -0.6 -0.4

B
E

R

10
-10

10
-5

10
0

P
s0

 = 10
-3

P
s0

 = 10
-4

P
s0

 = 10
-5

Reliable Mem

(a) LDPC exp. I and II

SNR [dB]
-1.2 -1 -0.8 -0.6 -0.4

B
E

R

10
-10

10
-5

10
0

P
s0

 = 10
-3

P
s0

 = 10
-4

P
s0

 = 10
-5

Reliable Mem

(b) LDPC exp. I and IV

Figure 6.15: LDPC BER performance under unreliable memory with stuck-at-0 probabilities Ps0 ∈
{10−5, 10−4, 10−3, 10−2} for a) experiments I and II; and b) I and IV.

regard, a note must be given to the actual number of repair iterations executed. Since we

are using early-termination in the BER simulation, we know that the maximum number

of repair iterations run is MAXiter−X, the actual number of required repair iterations will

differ for each simulated codeword.

In Fig. 6.15a) we can observe the effects of introducing faults to the channel memory

only. While the BER degradation is graceful on the waterfall region for Ps0=10−5, only

249

6. Power-aware LDPC Decoders

SNR [dB]
-1.2 -1 -0.8 -0.6 -0.4

B
E

R

10
-10

10
-5

10
0

P
s0,1-bit MSB

 = 10
-3

P
s0,1-bit MSB

 = 10
-4

P
s0,1-bit MSB

 = 10
-5

Reliable Mem

(a) LDPC exp. I, IIIa) and IIIb)

SNR [dB]

-1.2 -1 -0.8 -0.6 -0.4

B
E

R

10
-10

10
-5

10
0

P
s0,1-bit MSB

 = 10
-3

P
s0,2-bits MSB

 = 10
-3

P
s0,1-bit MSB

 = 10
-4

P
s0,2-bits MSB

 = 10
-4

P
s0,1-bit MSB

 = 10
-5

P
s0,2-bits MSB

 = 10
-5

Reliable Mem

(b) LDPC exp. I, Va) and Vb)

Figure 6.16: LDPC BER performance under unreliable memory w/ k-MSB protection with stuck-at-0 proba-
bilities Ps0 ∈ {10−5, 10−4, 10−3, 10−2}, and k ∈ {1, 2} for experiments I, IIIa) and IIIb).

to see the error floor be raised from 10−12, under reliable memory storage, to 10−10, this

degradation is not so graceful for Ps0=10−4 and Ps0 = 10−3. In the former, the error floor

region starts 0.2 dB earlier than in the reliable memory case, with a degradation in terms

of BER performance of six orders of magnitude, while in the latter, decoding performance

is catastrophic since BER hovers around 10−1 for the tested SNR range. Considering that

the channel memory takes up roughly a tenth of the bit-cells of the message memories,

this degradation will only worsen considerably when faults are injected in both memo-

ries, as observed in Figure 6.15b). In fact, BER curves for the tested memory fault injection

rates of Ps0 ∈ {10−5, 10−4, 10−3} converge to higher BER levels and for higher SNRs. The

Ps0=10−3 is particularly daunting with no effect of the LDPC code decoding capacity at

all. In a sense, what is observed for the higher SNR points is the noise introduced solely

by the faulty memory, whose magnitude is too high for the underlying decoding perfor-

mance. Graceful degradation of the BER is still observed for the Ps0=10−5 case, but in a

tightly contained SNR region as the trajectory of the BER curve converging to the reliable

memory case is cut short on the waterfall region at BER levels of ∼10−7 and the error

floor finally bottoms out at 10−8. Clearly, the smooth degradation observed for other

wireless coding schemes, such as hybrid automatic repeat request (HARQ) and Turbo of the

HSPA+ standard [16,290].

Clearly, without a BER degradation mitigation strategy of some sort, the yielded BER

performance of the decoder will not be able to comply to the standard requirements.

Especially for the cases where the fault injection rate is high, where the opportunity to

save on the memory power is higher. As previously discussed, the motivation for the

mitigation strategies is to find one with low overhead capable to tolerating high fault

injection rates [288,290]. In Figure 6.16a) the BER performance of the k-MSB protection is

shown when only the channel memory is unreliable. As observed, 1-MSB brings the BER

performance of the LDPC decoder to converge with the BER performance of the reliable

250

6.2 LDPC Decoder under Unreliable Memory Storage

memory case. Exception is made on the Ps0=10−3 which, nevertheless, sees its BER with

a profile close to the latter. When faults are injected also in the messages memory, illus-

trated in Figure 6.16b), clearly, there is a performance gap between the Ps0=10−3 and the

Ps0=10−4, whereupon the BER performance in the former sees an irrecoverable shift of

roughly 0.4 dB, though for the tested range of SNR values the error floor behavior is not

observed, and thus, we cannot infer the behavior of the BER beyond the 10−7 level. For

the latter case, and lower fault injection rates, the BER converges to the reliable memory

case. If we step up the MSB protection to 2 bits (2-MSB protection) we observe that not

only does the BER of fault injection rates of Ps0 ∈ {10−4, 10−5} have negligible degrada-

tion, but also the degradation ensuing for Ps0 = 10−3 is affordable when compared to

the 1-MSB protection case. Also, as read in Table 6.7, the overhead in decoding iterations

for at −0.5 dB is only relevant for Ps0 = 10−3 where it dropped from a staggering 50%

to 13%, when increasing the one protected bit to two bits. There is a positive net gain

here if we consider 8-bit words. The iteration overhead drops by almost fivefold, while

the memory fraction that can be operated under lower power is reduced by a factor of
7/8
6/8 ≈ 1.17.

Table 6.7: Decoding iterations overhead under unreliable memory measured relative to the reliable memory
scenario, for SNR = −0.5dB.

Exp. I II III IV Va) Vb)

(−0.5dB)
Avg.
Iter.

∆ iter.
(%)

Avg.
Iter.

∆ iter.
(%)

Avg.
Iter.

∆ iter.
(%)

Avg.
Iter.

∆ iter.
(%)

Avg.
Iter.

∆ iter.
(%)

Avg.
Iter.

∆ iter.
(%)

P s
0

10−3

33.04 N/A
50.00 51 38.09 15 50.00 51 49.50 50 37.41 13

10−4 50.00 51 33.62 2 50.00 51 34.72 5 33.44 1
10−5 38.16 16 33.18 0.4 38.16 16 33.10 0.2 33.09 ∼0

Exp.
(−0.5dB)

VI
Ps0 = 10−4 Ps0 = 10−5

Avg.
Iter.

∆ iter.
(%)

Avg.
Iter.

∆ iter.
(%)

X

b) 9 43.04 30 35.18 6
c) 14 43.93 33 35.28 7
d) 19 45.05 36 35.42 7
e) 24 46.86 42 35.94 8
f) 29 49.05 48 37.17 13

6.2.6 Power savings for the eDRAM case

Due to the iterative nature of the LDPC decoding algorithms, sub-optimality, SNR

degradation and errors introduced by unreliable memory storage can be accommodated

to a certain extent by an overhead in the number of issued decoding iterations. Naturally,

BER degradation is usually entailed as the average number of decoding iterations require

to successfully decode are related to it. Notwithstanding, considering the SNR operation

251

6. Power-aware LDPC Decoders

SNR [dB]

-1.2 -1 -0.8 -0.6 -0.4

B
E

R

10
-10

10
-5

10
0

X=0

X=9

X=14

X=19

X=24

X=29

X=50 (No repair)

Reliable Mem

(a) LDPC exp. I and VI with Ps0 = 10−4

SNR [dB]

-1.2 -1 -0.8 -0.6 -0.4

B
E

R

10
-10

10
-5

10
0

X=0

X=9

X=14

X=19

X=24

X=29

X=50 (No repair)

Reliable Mem

(b) LDPC exp. I and VI with Ps0 = 10−5

Figure 6.17: LDPC decoder BER behavior for experiments I and VI, starting the repair at iteration X ∈
{0, 9, 14, 19, 24, 29}.

for which the LDPC is expected to operate, and setting a limit to the maximum BER at

such operation point, we are able to determine what are the limits to power and energy

savings ensued by the utilization of unreliable memory storage.

In Table 6.7, we analyze the overhead, ∆Iter, in decoding iterations for each of the

considered scenarios. Considering the decoder power

Pd = PFU + PMem, (6.7)

with PFU the power drawn by the decoder FUs, and PMem the power drawn by the mem-

ory. It is clear that to an overhead in decoding iterations corresponds an equivalent power

overhead. Thus, the overall power overhead ∆Pd breaks down into

Pd + ∆Pd = (PFU + ∆PFU) + (PMem + ∆PMem) . (6.8)

Observing (6.8), it is clear that both overheads depend on the number of iterations, but

PMem and ∆PMem also depend on the BER degradation mitigation strategy implemented.

No BER Degradation Mitigation Strategy In this case, PMem ∝ Iterations and, thus, ac-

cepting the unlikely scenario that the BER is acceptable for the tested Ps0 ∈ {10−3, 10−4, 10−5},
only the latter fault injection rate sees a reasonable decoding overhead of 16% more de-

coding iterations issued. This means that the following condition must hold

PFU + PMem ≥ (1 + ∆Iter)
(

PFU + P
′
Mem

)

P
′
Mem ≤

PMem − ∆Iter× PFU

1 + ∆Iter
(6.9)

with P
′
Mem the power drawn by the unreliable memory.

252

6.2 LDPC Decoder under Unreliable Memory Storage

Unequal Bit Protection—k-MSB Protection Under this approach, the limits to the power

savings also follow (6.9), since the MSB protection scheme applied is constantly in use.

A closer analysis to Table 6.7 reveals that under this mitigation strategy, < X% of more

decoding iterations are issued under a Ps0 = 10−3 for 2-MSB protection and < 5% more

decoding iterations are issued for Ps0 = 10−4 under 1-MSB protection. In the memory

operation, the higher the number of bit-cells operated unreliably, the more the power

savings. On the other hand, this entails a step up in the number of MSBs protected.

Thus, fault-injection rates of 10−3 required 2 bits per word as opposed to a single bit

for 10−4. Notwithstanding, this tradeoff depends on particular memory technology and

technology node considerations to be unraveled.

Follow-up Repair Iterations This strategy represents the most complex case. For the

one, the BER will only converge to the performance of the scenario where errors are

injected only in the channel memory. For the other, there are power savings at all times

in the channel memory, but the message memory reverts to a reliable operation, thus

drawing as much power as in the fully reliable decoder for as many follow-up repair

iterations required. Thus, we can write the power saving condition as

PFU + PMem ≥ (1 + ∆Iter)
(

PFU + P
′
Mem

)
and PMem = Pc + Pm

PFU + PMem ≥ (1 + ∆Iter)
(

PFU + P
′
c + ρ×P

′
m + (1− ρ)×Pm

)

P
′
m ≤

∆Iter (PFU + Pc) + ρ×Pm

ρ
, (6.10)

with Pc and Pm the power drawn by the channel and the messages memories, respectively

and ρ is the fraction of follow-up repair iterations, i.e., ρ=(MAXIter − X)/MAXIter.

While it is fairly easy to find the operating conditions under which there are actual

energy savings, their feasibility is a whole different subject. The hardest challenge in

this regard is due to the assumed paradigm of operation, as the majority of hardware

computer-aided design (CAD) tools assume 100% reliable operation. It is challenging to

guide a memory compiler into synthesizing an unreliable memory block that is incor-

porated on a certain chip design. Similarly, field-programmable gate arrays (FPGAs) or

programmable hardware the memory interface required to either lower the operation

voltages or to slow down the refresh rates beyond the point of reliability. All in all, the

number of silicon-level design problems that arise from producing an unreliable memory

system are such, that it would entail a tremendous effort well past the scope of this The-

sis, though the work herein produced with regards to power savings through unreliable

memory systems point in a promising direction not only for LDPC decoders in particular,

but also to other ECC for wireless systems [16,290] and approximate computing in general.

253

6. Power-aware LDPC Decoders

Power Savings with eDRAM Technology To consolidate our argument behind the po-

tential of power savings in the memory system of LDPC decoders by exploring the low-

ering of the refresh rate of eDRAM technology beyond the 100% reliability threshold, we

attempt at producing an estimate on the power savings for a set of technology nodes ap-

plied to the LDPC decoder architecture simulated [232]. Moreover, we consider its possible

configurations, some of which benchmarked in Chapter 5 under the dataflow decoder

model, which range from 360/L-factorizable setups, with L = {1, 2, 4, 8}, with clock fre-

quencies set to f ∈ {100, 200, 400}MHz.

Data Retention Time (s)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
v

e
 F

u
n

c
ti

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

28nm Median

Node

65nm 180nm

Figure 6.18: Typical DRT CDFs for eDRAM nodes on {28, 65, 180} nm and in an estimated median node.

A caveat exists on the proposed methodology when applied to eDRAM technology.

The underlying assumption behind the operation of this type of memory is that lowering

the refresh rate, bit-cells commence to fail due to the refresh period extending these cells

DRT. However, two factors must be weighed in on the discussion. The first is that the re-

fresh procedure can render a memory completely inoperable for some technology nodes

to be under 100% reliable operation. Essentially, the refresh procedure extends through

the whole of the refresh period, hence, memory is never available for reading nor writing

as it is constantly being refreshed. Thus, in this case the frequencies of refreshing applied

must be relaxed and unreliable memory operation is a requirement for increasing the

memory availability [288]. Secondly, if the average time between consecutive writes in the

LDPC decoder system is faster than the minimum DRT for which a certain Ps0 is ensured,

then we can dismiss the refresh procedure altogether, although to do so, we need to eval-

uate the DRT probabilistic distribution for all nodes and configurations of the decoding

system. The typical cumulative distribution functions (CDFs) for the deeply-scaled 28 nm,

scaled 65 nm, 65 nm complementary metal–oxide–semiconductor (CMOS) (median node), and

254

6.2 LDPC Decoder under Unreliable Memory Storage

mature 180 nm eDRAM technology nodes are plotted in Figure 6.18 and in Figure 6.19

with respect to their required refresh rate.

Data Retention Time (s)

10 -10 10 -8 10 -6 10 -4 10 -2 10 0

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

v
e

 F
u

n
c

ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DRT CDF

Refresh Rates

2000
MHz

1500
MHz

1000
MHz

500
MHz

Refresh rates for 100%
reliable operation

28nm Median
Node

65nm 180nm

Figure 6.19: Typical DRT CDFs for eDRAM nodes and refresh rate periods on {28, 65, 180} nm and in an
estimated median node.

Under the refresh rates portrayed, the 28 nm node has no memory availability, 65 nm

shows ∼80%, and the 180 nm has insignificant unavailability, leaving the median node

at around ∼40% availability. In other words, this means that the 28 nm must forgo the

refresh rate completely. Combining this information with the average time between con-

secutive writes of the same bit-cell, which can be approximated by the half the latency of

a single decoding iteration we can project the operation points of the decoders onto each

CDF as shown in Figure 6.20. As observed, the LDPC decoder configurations lie in the

bottom tail of the distribution of the median node and on the upper tail of the 28 nm CDF.

This entails that for the former, no refresh rate suffices to adhere to a probability under

the required 10−3 fault injection-rate, which using a 2-MSB protection scheme leads to

supportable BER degradation. According to Ganapathy et al. this unfolds at least a 45%

power savings on the median node memory operation when the refresh rate is relaxed to

that level [288]. Naturally better savings occur when the refresh rate is forgo. On the 28

nm case, it is not safe to assume that the relaxing of the refresh rate to allow for 50%

availability at Ps0 = 10−3 will allow the decoder to read and write with the pace required

for the decoding throughputs attained [232]. Regardless, the median node sees close to half

the power saved, which accounting for the decoding iterations overhead and 1-MSB to

2-MSB protection leaves such saving at 38%, which is still a considerable feat for the pro-

posed k-MSB protection scheme. Moreover, if we consider the 180 nm technology node

discussed by Teman et al. [315], a reduction in memory power of ∼55% is experienced,

255

6. Power-aware LDPC Decoders

Data Retention Time (s)

10 -8 10 -7 10 -6 10 -5 10 -4 10 -3

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
v
e
 F

u
n

c
ti

o
n

×10 -3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L=1 f=100MHz

L=1 f=200MHz

L=1 f=400MHz

L=2 f=100MHz

L=2 f=200MHz

L=2 f=400MHz

L=4 f=200MHz

L=4 f=400MHz

L=8 f=200MHz

L=8 f=400MHz

Error Mitigation Threshold

28nm Median
Node

65nm

Figure 6.20: Zoomed in DRT CDF decoder configurations under the Ps0=10−3 threshold for L ∈ {1, 2, 4, 8}
and f ∈ {100, 200, 400}MHz.

which compounded by the 2-MSB protection yields a gain of around 47% which is close

to half the power required for the same eDRAM technology under 100% reliable opera-

tion.

6.3 Summary

In this chapter, we analyzed how to introduce algorithm and system-level modifi-

cations to LDPC decoders in order to bring the energy consumed down. The observed

tradeoff involves the co-optimization of BER performance—both with regards to the BER

level achieved and to the overhead number of decoding iterations required to reach that

level—and energy saved at the system-level.

Gear-shift Decoding Whereas an energy saving optimization targeted at the decoding

algorithm implemented by the FU will necessarily impact on the BER performance, it will

save power at the FU-level per decoding iteration, but may not save energy over time due

to the decoding iterations overhead [15]. In particular, we introduced the concept of accel-

erating and decelerating gear-shift decoding in order to study the behavior of the LDPC

decoder when the most powerful decoding algorithm is applied first and then followed

by the least powerful algorithm, and otherwise, respectively. Despite having been unable

to reproduce the findings of Ardakani et al. [292], where the performance attained con-

vergences to the best decoding algorithm, our MSA-based methodology for gear-shifting

attains BER levels in the ROI with less decoding iterations required when compared to

the least complex algorithm [15]. Considering under this methodology a dedicated de-

256

6.3 Summary

coder design implementation has not been performed yet, we withhold from advancing

with an estimate to the power saved by the gear-shift FU, although a positive net gain is

expected for the decelerating decoder when compared to the pure SCMSA approach [15].

Unreliable Memory Storage Due to the amount of logic devoted to memory, this frac-

tion of the system represents where the highest power gains can be achieved. However,

aggressive voltage- or clock-gating will eventually hit the 100% reliability wall. In order

to improve the gains of these techniques, the 100% reliability requirement is dropped in

favor of contained levels of unreliability introduced by faulty bit-cells. Under the pro-

posed methodology, we characterize the fault-injection rates at which bit-cells fail, us-

ing the stuck-at model [16,181,290], in order to estimate the BER degradation entailed. To

contain this degradation, we propose BER degradation mitigation strategies based on

system-level techniques, 1) k-msb protection and 2) trailing repair iterations. The smart

utilization of 1) allows that fault-injection rates that lead to catastrophic BER degradation

to gracefully degrade for at least 2-MSB protected, as well as 2) that enables a graceful

degradation towards the best possible scenario possible.

Considering that the methodology proposed modifies only the memory blocks at the

system-level, it can be applied to existing decoder designs. To this end, we quantify

the gains attainable with the methodology proposed for the incorporation of unreliable

memory on LDPC decoders. For the partial-parallel decoder benchmarked [232], we show

that 38% to 47% power savings are possible within negligible BER degradation, for the

eDRAM technology at 65 nm CMOS (median node) and 180 nm. a)

a)The work herein described has been presented in [15–17].

257

6. Power-aware LDPC Decoders

258

7
Conclusions and Future Work

Contents
7.1 Future Work . 263

259

7. Conclusions and Future Work

One of the main objectives of this Thesis was the proposal of methodologies for the

development of efficient parallel LDPC decoders on both programmable and reconfig-

urable architectures. To this end, we have covered a selected design space area of the

binary and non-binary LDPC decoding algorithms and codes. The proposed parallel

kernels target single-GPU systems, distributed GPU cluster systems and modern het-

erogeneous CPU/GPU processors, using the data-parallel programming models CUDA

and OpenCL. Parallelism is explored at different levels according to the underlying pro-

cessor architecture and decoding algorithm employed. Namely, we have formalized a

taxonomy for the thread-granularity of the different LDPC decoders found in the liter-

ature and discuss the suitability of the thread-per-edge (TpE), thread-per-node (TpN) and

block-per-codeword (BpC) for the decoding role.

The objectives set forth have been reached by overcoming numerous challenges. The

obtained results highlight that very high decoding throughputs are possible, and are es-

pecially important for the task of fast Monte Carlo BER simulation where analysis of

the error-floor region down to 10−12 was made possible in hours of computation. This

has enabled of the study of a two-phased message-passing (TPMP) decoding architecture

for the self-corrected min-sum algorithm (SCMSA), whose BER performance was studied,

evidencing a non-degrading behavior as opposed to other correction techniques such as

scaling. Furthermore, the challenges overcome in the development of the Monte Carlo

simulator for the GPU cluster entailed the proposal and optimization of auxiliary kernels

for fast parallel execution. To this end, optimization of task- and data-parallelism levels

were leverage such that the decoding throughput was maximized. These works were

communication in the following publications:

[1] J. Andrade, G. Falcao, V. Silva, S. Yamagiwa, and L. Sousa, Encyclopedia of Computer

Science and Technology. Taylor & Francis, 2015, ch. Accelerating Conventional Pro-

cessing Using GPU Clusters: LDPC Decoders.

[2] G. Falcao, J. Andrade, V. Silva, S. Yamagiwa, and Sousa, “Stressing the BER simu-

lation of LDPC codes in the error floor region using GPU clusters,” in International

Symposium on Wireless Communication Systems (ISWCS 2013), Aug 2013, pp. 1–5.

[3] J. Andrade, G. Falcao, V. Silva, J. Barreto, N. Goncalves, and V. Savin, “Near-LSPA

performance at MSA complexity,” in Communications (ICC), 2013 IEEE International

Conference on, June 2013, pp. 3281–3285.

In addition, the non-binary decoding case was studied on the GPU architecture. The pro-

posed decoder solutions combine the insights gathered from the binary LDPC decoding

case with the parallel fast Walsh-Hadamard transform (FWHT). These works have led to

the publications:

260

[4] J. Andrade, G. Falcao, V. Silva, and K. Kasai, “FFT-SPA Non-binary LDPC Decoding

on GPU,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on, May 2013, pp. 5099–5103.

[13] J. Andrade, G. Falcao, and V. Silva, “Optimized Fast Walsh–Hadamard Transform

on GPUs for non-binary LDPC decoding,” Parallel Computing, vol. 40, no. 9, pp. 449

– 453, 2014.

With the task-parallelism expression of the decoding algorithms performed on pro-

grammable architectures serving as a body of knowledge, we targeted reconfigurable

devices in order to further improve the power efficiency of the LDPC decoders, while

allowing fast execution. By taking advantage of high-level synthesis (HLS) tools we pre-

sented strategies for attaining high performances using distinct HLS approaches. Each

approach was based on a different underlying generated architecture: MaxCompiler is

based on a pure dataflow description written in Java; OpenCL (Altera) is based on an ac-

celerator system composed of wide-pipeline kernels; and Vivado HLS is loosely defined

by its C-based source code annotated with with directives for guiding the hardware gen-

eration, so-called loop-annotated. Under each model, we carried out optimizations with

regards to data-parallelism and granularity of execution such that the characteristics of

the LDPC decoder that attain the highest performance are identified. Namely, we have

established the better overall nature of the dataflow approach followed by the MaxCom-

piler tool with regards to the quality of the decoder solutions obtained. Whereas the

loop-annotated offers a compromise between a high flexibility of code writing but re-

quires moderate to extensive annotation in order to reach good performances, the wide-

pipeline approach was the most constrained design flow. Not only in respect to the nature

of how logical to physical memory space mapping is handled, but also due to the com-

position of multi-kernel decoders which incur in high overheads. Hence, while moderate

decoding throughputs can be obtained for dataflow and loop-annotated decoder designs,

wide-pipeline decoders still have room to benefit if, for instance, the OpenCL compliance

adherence was dropped in favor of better usage of the physical memory spaces within

the FPGA logic. The following publications have been made concerning this work:

[5] J. Andrade, G. Falcao, V. Silva, M. Owaida, N. Bellas, C.D. Antonopoulos, and P.

Ienne, “Towards High-Throughput with Low-Effort Programming: From General-

Purpose Manycores to Dedicated Circuits,” in DATE’13: Workshop on Designing for

Embedded Parallel Computing Platforms: Architectures, Design Tools, and Applications

(DEPCP), March 2013.

[6] J. Andrade, F. Pratas, G. Falcao, V. Silva, and L. Sousa, “Combining flexibility with

low power: Dataflow and wide-pipeline LDPC decoding engines in the Gbit/s era,”

261

7. Conclusions and Future Work

in Application-specific Systems, Architectures and Processors (ASAP), 2014 IEEE 25th

International Conference on, June 2014, pp. 264–269.

[7] J. Andrade, G. Falcao, and V. Silva, “Flexible design of wide-pipeline-based WiMAX

QC-LDPC decoder architectures on FPGAs using high-level synthesis,” Electronics

Letters, vol. 50, no. 11, pp. 839–840, 2014.

[8] J. Andrade, N. George, K. Karras, D. Novo, V. Silva, P. Ienne, and G. Falcao, “Fast

Design Space Exploration Using Vivado HLS: Non-binary LDPC Decoders,” in

Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual In-

ternational Symposium on, May 2015, pp. 97–97.

[9] J. Andrade, N. George, K. Karras, D. Novo, V. Silva, P. Ienne, and G. Falcao, “From

low-architectural expertise up to high-throughput non-binary ldpc decoders: Op-

timization guidelines using high-level synthesis,” in Field Programmable Logic and

Applications (FPL), 2015 25th International Conference on, Sept 2015, pp. 1–8.

[10] F. Pratas, J. Andrade, G. Falcao, V. Silva, and L. Sousa, “Open the Gates: Using

High-level Synthesis towards programmable LDPC decoders on FPGAs,” in Global

Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE, Dec 2013, pp.

1274–1277.

[11] J. Andrade, G. Falcao, V. Silva, and K. Kasai, “Flexible non-binary LDPC decoding

on FPGAs,” in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Interna-

tional Conference on. IEEE, May 2014, pp. 1936–1940.

Furthermore, we also identified certain key features of the Silicon-to-OpenCL (SOpenCL)

compiler whose optimization leads to overall better quality of the generated hardware:

[12] M. Owaida, G. Falcao, J. Andrade, C. Antonopoulos, N. Bellas, M. Purnaprajna,

D. Novo, G. Karakonstantis, A. Burg, and P. Ienne, “Enhancing Design Space Ex-

ploration by Extending CPU/GPU Specifications Onto FPGAs,” ACM Trans. Embed.

Comput. Syst., vol. 14, no. 2, pp. 33:1–33:23, Feb. 2015.

Finally, certain techniques for improving the decoders power efficiency are proposed.

They target algorithm modifications, in particular, through gear-shift decoding techniques

based on the min-sum algorithm (MSA), and, also, the introduction of unreliable memory

storage to the decoder architectures. The proposed methodologies for the former allow a

seamless commuting from the MSA to the SCMSA based on a functional description of

the architecture. In the latter, we have introduced methods which allow the relaxation of

the 100% reliable memory operation to permit memory energy efficiency gains close to

38∼47%. These works were published in:

262

7.1 Future Work

[15] J. Andrade, G. Falcao, and V. Silva, “Accelerating and Decelerating Min-Sum-based

Gear-shift LDPC Decoders,” in Acoustics, Speech and Signal Processing (ICASSP),

2015 IEEE International Conference on, April 2015, pp. 5099–5103.

[16] J. Andrade, A. Vosoughi, G. Wang, G. Karakonstantis, A. Burg, G. Falcao, V. Silva,

and J. Cavallaro, “On the performance of LDPC and turbo decoder architectures

with unreliable memories,” in Signals, Systems and Computers, 2014 48th Asilomar

Conference on, Nov 2014, pp. 542–547.

[17] J. Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg,

G. Falcao, V. Silva, and J. Cavallaro, “The Impact of Faulty Memory Bit Cells on the

Decoding of Spatially-Coupled LDPC Codes,” in Signals, Systems and Computers,

2015 49th Asilomar Conference on, 2015.

7.1 Future Work

The work presented in this Thesis permits the continuing of research in fast and ef-

ficient forward error correction (FEC) using LDPC codes on programmable and reconfig-

urable architectures, and also on dedicated hardware.

Programmable LDPC Decoders on CPUs and GPUs A direction for the research of

LDPC decoders on GPUs is to find design methodologies that do not set the maximiza-

tion of the decoding throughput at odds with the latency minimization. The results ob-

tained by Wang et al. are difficult to replicate on the GPU engine [156]. This evidences how

limited the support for HyperQ and CUDA streams is nowadays, still. Notwithstanding,

the theoretical bounds to this approach are extremely promising. So long as the overhead

of managing a number of CUDA streams is kept low, the decoding throughputs pro-

jected are in the range of our proposed ones, with the latency reducing by a factor that

is the inverse of the number of streams. A two-fold effect is conveyed, memory transfers

are hidden behind computation completely and, thus, do not contribute to the decoding

throughput, and a large data transfer is broken down into several smaller ones.

Moreover, whereas data-parallel programming models such as OpenCL can take ad-

vantage of both the CPU and the GPU cores on the same CPU/GPU chip, it does not

convey a programming model where the performance in the CPU can exploit the high

bandwidth purported by the memory cache and the computational power of wide single-

instruction multiple-data (SIMD)-registers (AVX and SSE). However, dealing with intrin-

sics for vector processing incurs in higher development costs than compared to OpenCL

kernel development. Since the OpenCL compiler tries to vectorize the instructions onto

the SSE and AVX registers at its disposal on the CPU, there is still room to find what is

263

7. Conclusions and Future Work

the best OpenCL description, or way to write code, that can lead to a better packing of

instructions—the comparison between the presented methodology and the work of Le

Gal [165] shows that a high performance gap still exists.

Embedded and mobile processors for low power or battery-operated devices have

not been considered in this Thesis. However, this breed of programmable architectures

has pushed the envelope of power-saving techniques to the actual programming itself.

Not only do they allow higher performance-to-watt ratios than conventional x86 and

GPU devices natively, but also provide intrinsics to control how an algorithm runs across

the different computational resources. For instance, big.LITTLE architectures [316], pro-

vide cores specifically optimized for low power and for high capability bounds, the latter

within the thermal limits. This way, improved ways of dynamic voltage and frequency scal-

ing (DVFS) across different cores are available to the designer to meet required compu-

tational performances within a limited power budge. With the increasing concerns with

energy consumption, green and efficient LDPC decoder solutions will sooner or later

exploit the use of mobile processors.

Reconfigurable LDPC Decoders using High-Level Synthesis The greatest challenge

of the current generation of HLS is to overcome the quality of the provided solutions

and balancing what knowledge is required of the designer. For the one hand, models

built on C-based languages permit the targeting of FPGAs systems without recoding the

code base. In some cases, a solution that is able to run on the FPGA can be generated,

such as the case of OpenCL, while others require the integration of an IP core onto a host

platform, such as Vivado HLS. On the other hand, approaches such as those provided

by the MaxCompiler, which use the JAVA programming language for defining dataflow

computation explicitly on hardware, make the development of hardware accelerators to

incur higher non-recurring engineering (NRE) costs. The quality of the generated LDPC

decoders was found to improve considerably when decoder architecture knowledge is

introduced. The key tradeoff can be summarized by the lower the need to introduce

hardware constraints to the compiler, the worse the flexibility of design and the poorer

the quality of the obtained FPGA solutions. With this respect, we find that two key issues

are loosely addressed in OpenCL. The platform that hosts the OpenCL kernel must be

optimized for different kernel requirements, preferably at the OpenCL kernel level. In

addition, the memory hierarchy must not be imposed by the compiler but, instead, the

programmer should be allowed to define how key FPGA resources are consumed by the

defined kernels.

264

7.1 Future Work

Platform-agnostic Programming Addressing the on-going issues with data-parallel pro-

gramming models on programmable architectures or with reconfigurable architectures

using HLS is a challenge that can be overcome with different approaches. More often

than not, the intended general approach to problem may be captured by the underly-

ing programming model or architecture minutiae. In order to refrain from doing so, the

optimization at the LDPC decoder architecture level should be made agnostic of the pro-

gramming language and model utilized. By performing the decoder optimization at the

LDPC domain and having code for that particular configuration be generated from an

intermediate representation (IR) to any intended platform using, virtually, any program-

ming model supported as a back-end, is a strategy that has bore fruits in other fields.

For instance Delite is one such compiler infrastructure [317] and others can be constructed

through LMS [318]. On the front-end, a domain-specific language (DSL) defined for the sole

purpose of LDPC decoding can be defined using the Scala language [319]. This method-

ology has proved to be extremely effective in dealing with machine learning, data query

and transformation, graph analysis (Opti{ML,QL,Graph}) [320,321]. It is still unanswered

whether the targeting of LDPC decoders to different computing architectures can benefit

from this approach.

Unreliable Memory on FEC Systems The rationale behind approximate computing stems

from the fact that a large percentage of power is wasted on the 100% reliability require-

ment. While this allows reproducible results across computing systems, certain appli-

cations can relax this requirement with little to graceful performance degradation, not

necessarily perceived in the quality of service (QoS) metrics. The majority of the effort has,

thus far, been placed upon the contained propagation of errors throughout unreliable

logic, usually dealing only with the arithmetic component [291,322]. However, for the par-

ticular case of FEC systems we observe two amenable characteristics for the introduction

of unreliability at the memory-system level. For the one, memory takes up the largest

fraction of the decoding system. For the other, errors introduced by the incorrect retain-

ment of data by the memory bit-cells is analogous to introducing a non-linear degrada-

tion to the communication channel. Due to their FEC functions, these systems come with

inner resilience that can be exploited to more easily allow graceful degradation of the

performance, in this case, usually measured as BER performance.

The initial effort has characterized the effects of memory unreliability for multiple

FEC systems, high speed packet access (HSPA)+Turbo [16,290], block-LDPC [16] and spatially-

coupled LDPC [17]. With it system-level mitigation strategies and statistical correction

techniques have been proposed [294]. Furthermore, several memory systems have been

characterized for the exploitation of unreliable memory operation [288,315]. However, it is

265

7. Conclusions and Future Work

still largely missing from the literature the actual system-whole design of FEC system

incorporating unreliable memories. In particular, the potential body of knowledge gath-

ered from designing dedicated systems that explore unreliable memory systems, and

accompanying mitigation strategies, are not necessarily limited to the role of LDPC de-

coding.

266

A
Survey of the LDPC Decoders on

Programmable Hardware

267

A
.Survey

of
the

LD
PC

D
ecoders

on
Program

m
able

H
ardw

are
Table A.1: Summary of the Programmable LDPC Decoders.

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Throughput

(Mbit/s)
Iter. Name

[106] BpC
512

6–8 802.16e 2

768

1/2 Struct. TDMP MSA

2.62 150

10 GeForce 9800 GTX+
1152 3.88 152
1536 4.91 160

384 1920 5.27 140
256 2304 3.69 160

[107] CpC 128 8 802.16e 2 2304 1/2 Struct. TDMP MSA 1.09 270 10 Cell B.E.

[108] TpN N/A N/A
Regular

[323]

2

2304 1/2 Sparse TPMP
signed-log
FFT-SPA

N/A

2.00

N/A1) GeForce GTX 650Ti

4 2.20
8 2.50

16 2.50
32 2.40
64 2.00

128 1.50
256 1.00

[109] N/A N/A N/A DVB-RCS 2 4800
2/3

N/A N/A MSA N/A
2.0

N/A2) Tesla C2070
1/2 1.9

N/A N/A N/A Convolutional 2

2532

5/6 N/A N/A

MSA 60.50 0.04

103) GeForce GTX 460

SPA 60.14 0.04
[110]

4608
MSA 90.96 0.05

[111] SPA 90.26 0.05

6144
MSA 111.00 0.06
SPA 110.29 0.06

[112]

TpE N/A 32 N/A 2
816

1/2 Sparse TPMP LSPA
0.63 1.29

10 Tesla C2050[113] 4000 1.64 2.44
[114] 8000 1.81 4.42
[115] N/A use case of GPU-accelerated LDPC decoders for video coding on cloud computing

Continued on next page

268

Table A.1 Continued from previous page

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Thr.

(Mbit/s)
Iter. Name

[116] BpN
1

32 Regular 256 6000 1/3 Sparse TPMP FFT-SPA
33.80 1.42

15
GeForce GTX 280

4 33.70 5.69 2×GeForce GTX 295

[117] CpC 48 N/A Regular 2
8000

1/2 Sparse TPMP SPA N/A4) N/A4) N/A4) Intel SCC
20000

PpE 1 32 2

999 9/10

Sparse
2-D Text.

TPMP SPA

15.50 0.06

25 GeForce 8800 GTX

[118] 816 1/2 31.30 0.03
[119] Regular 1908 8/9 47.00 0.04
[120] (Mackay) 4896

1/2
39.00 0.13

4000 47.00 0.09

[121] CpC 96 8 2

576 1/6

Sparse TPMP MSA

0.69 79.3

10 Cell B.E.

672 1/6 0.82 78.5
960 1/2 1.16 79.6

Regular 960 1/6 1.18 78.4
(Mackay) 1152 1/2 1.39 79.6

1152 1/6 1.41 78.4
1248 1/2 1.51 79.6
1248 1/6 1.53 78.4

[122] TpN 16 8 DVB-S2 2 64800

1/4

Struct. TPMP MSA N/A

79/87

10 Tesla C2050

1/3 69∼74
2/5 61∼65
1/2 55∼65
3/5 41∼43
2/3 55∼57
3/4 47∼49
4/5 40∼41
5/6 35∼36
8/9 36∼36

Continued on next page

269

A
.Survey

of
the

LD
PC

D
ecoders

on
Program

m
able

H
ardw

are
Table A.1 Continued from previous page

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Thr.

(Mbit/s)
Iter. Name

9/10 36∼36

[123] TpN 1 32 2
1024

1/2
Sparse

2-D Text.
TPMP SPA

2.00 0.51
10 GeForce 8800 GTXRegular 4896 3.00 1.63

(Mackay) 4000 3.00 1.33

[124]

CpC 24 8

2

256

1/2 Sparse TPMP SPA N/A

68.5

10

Cell B.E.504 69.1
1024 69.5

N/A 1 8
1024 2.08

Xeon Nehalem 2x-Quad
8000 2.55

TpN 1

8 Regular
1024

14.60

GeForce 8800 GTX

32 (Mackay) 10.00
8

4896
31.90

32 17.90
8

8000
40.40

32 18.30
8

20000
40.10

32 11.30

[125] TpN 1 8 2

1024

1/2 Sparse TPMP MSA

2.00 4.00

10

Radeon HD 5870
8000 2.00 22.00

Regular 1024 6.00 2.00
Phenom II X4-940

(Mackay) 8000 15.00 7.00
1024 1.00 17.00

Virtex6 LX760
8000 3.00 17.00

[126] CpC 96 8 802.16e 2

576
5/6

Struct. TPMP MSA N/A

77.7

10 Cell B.E.

3/4 72.6
1/2 80.0

1248
5/6 78.2

Continued on next page

270

Table A.1 Continued from previous page

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Thr.

(Mbit/s)
Iter. Name

3/4 72.9
1/2 80.0

[127] CpC 128 8 DVB-T2 2

16200
1/2

Struct. TPMP MSA

2592.00 3.5

20 Samsung Exynos 4412 SoC

3/4 2764.80 3.5
5/6 2962.29 3.3

64800
1/2 592.46 3.2
3/4 592.46 3.0
5/6 628.36 2.8

[128] TpN 128 8 DVB-T2 2

16200
1/2

Struct. TPMP MSA

11.14 186.10

20

GeForce GTX 570

3/4 10.78 192.40
5/6 10.94 189.60

64800
1/2 50.76 163.40
3/4 50.54 164.10
5/6 52.76 157.20

16200
1/2 43.75 47.4

i7-950

3/4 43.65 47.5
5/6 45.28 45.8

64800
1/2 186.39 44.5
3/4 197.02 42.1
5/6 206.84 40.1

[129] TpN 1 32 DVB-T2 2
16200

N/A Struct. N/A MSA N/A
1.80

N/A GeForce GTX 570
64800 0.90

[130] TpN 1 32 Cyclic (PG) 2
1057 244/1057

Struct. TPMP

LSPA

N/A

0.63
3.0 dB

GeForce GTX 285
MSA 0.51

4161 10/57
LSPA 0.63

4.0 dB
MSA 0.27

[131] TpN 1 32
Cyclic (PG)

2

237 46/237

Struct. TPMP LSPA N/A

0.46
3.0 dB

GeForce GTX 285
Continued on next page

271

A
.Survey

of
the

LD
PC

D
ecoders

on
Program

m
able

H
ardw

are
Table A.1 Continued from previous page

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Thr.

(Mbit/s)
Iter. Name

1057 244/1057 0.39
4161 10/57 0.14 3.5 dB

802.11n 1944
1/2

0.5 1.5 dB
802.16e 2304 0.85 1.5 dB (∼ 15)

[132] TpN N/A N/A
QC-LDPC

[324] 2
5120 1/5

Struct. TPMP LSPA
∼1.60

N/A N/A GeForce 9600 GT6144
1/6

∼1.60
10704 ∼3.80

[133] BpC N/A 32
QC code
candidates

2 N/A N/A Sparse TDMP OMSA N/A 24.505) N/A GeForce GTX 260

[134] N/A N/A 32 802.3an 2 2048 21/25 Sparse TPMP SPA N/A
24.5

106) GeForce GTX 480
146.6

[135] N/A N/A 8
LDPC-IRA

[195] 2 2432 1/2 N/A TDMP OMSA N/A
28.00

107)

Storm-1

29.90

[136] N/A 64 8 802.16e 2 1536 1/2 N/A TDMP OMSA N/A

32.9 10a)

32.6 10b)

31.1 10c)

21.7 10d)

[137] TpC

32

N/A

Regular

2

1008

1/2 N/A TPMP SPA N/A S [160] N/A

GeForce GTX 450
64

128
1024
8000
128

802.16e 2304 GeForce GTX 295
1024
3000
6400

[138] TpN 32 N/A Convolutional 2

2532

5/6 Struct. TPMP N/A

6000 1.20

30 GeForce GTX 460Continued on next page

272

Table A.1 Continued from previous page

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Thr.

(Mbit/s)
Iter. Name

3792 37000 1.31
4608 74000 1.35
6144 371000 1.37

[139] TpN 4 32 Regular 2

4000

1/2 Sparse TDMP MSA N/A

965.60

10 GeForce GTX 660
4896 961.90
8000 951.90

20000 943.90

[140] TpN

3072

8

802.16e

2

768

1/2 Struct. TDMP MSA N/A

704.00

5

GeForce GTX 580
2048 1152 689.00
1536 1536 712.00
1024 1920 695.00

1024 2304
235.60 GeForce 9800 GTX+
618.30 Tesla C2050
710.00

GeForce GTX 580
3584

802.11n
648 633.00

1536 1296 691.00
1024 1944 685.00

[141] TpC

143360

8 Regular 2

204

1/2 Sparse TPMP PLRA

53.10 550.40

10 GeForce GTX 660Ti

71680 816 108.50 539.00
25088 4000 194.60 515.60
12544 8000 198.00 506.70

4480 20000 183.40 488.60
8960 9972 421.50 212.00

[142] TpN 16 8 N/A 2

1000

1/2 N/A TPMP SPA N/A
Speedup

Sequential CPU
N/A Tesla C1060

3000
6000

10000

Continued on next page

273

A
.Survey

of
the

LD
PC

D
ecoders

on
Program

m
able

H
ardw

are
Table A.1 Continued from previous page

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Thr.

(Mbit/s)
Iter. Name

20000

N/A N/A N/A LDPCA 2 1584 53/66 N/A N/A SPA

173.00s (Fm)

N/A Tesla C1060
[143] 174.00s (Sc)
[144] 157.00s (Cg)

128.00s (HL)
[145] TpN N/A N/A

CMMB
2

9216
1/2

Struct. N/A N/A
18.00 5.12 10.3

GeForce 8800 GT[146] TpN N/A N/A 2
1/2 18.00 5.12 10.3
3/4 15.20 6.06 10.1

[147] BpN N/A N/A N/A 16 6048

1/4

N/A
Seq.

FFT-SPA N/A

5.00

N/A GeForce GTX 580
1/2 12.50
1/4

TPMP
3.00

1/2 8.50
[148] N/A 1 7 802.11n 2 648 1/2 Struct. TPMP MSA 0.05 13.4 3 Spartan6 LX150T

[149] TpN 1 N/A LDPCA 2 N/A N/A Sparse TPMP LSPA

0.15 (HL)

N/A GeForce 9800 GTX+
0.44 (Fm)
0.48 (Sc)

0.46 (Cg)
[150] N/A N/A N/A N/A 32 651 1/8 N/A N/A Min-Max 43.07 0.48 15 GeForce GTX 650Ti

[151] N/A N/A N/A
QC

2
160

N/A Sparse TPMP IRRWBF
0.13 1.24 5

PXA3201280 1.13 1.13 5
π-rot 2000 1.92 1.04 5

[152] TpN
1

N/A 802.15.3c 2 672 1/2 Sparse TPMP MSA
18000.05

N/A 5 Tesla C2050
16 2000.39

[153] TpN

252

N/A

802.11n

2

1944

1/2 Sparse TPMP LSPA

12.56 39.01

10 GeForce GTX 470

224 802.16e 2304 10.59 48.74
168

Regular

3072 10.54 48.96
84 6144 10.92 47.27

Continued on next page

274

Table A.1 Continued from previous page

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Thr.

(Mbit/s)
Iter. Name

42 12288 10.46 49.35
14 24756 7.14 48.21

[154] BpN 1 N/A
Regular

[325] 32 620 1/2 Sparse TPMP Min-Max N/A
0.02

10
i7-640LM

0.04 Phenom II X4-945
1.26 GeForce GTX 470

[155] TpN 300 N/A
802.11n

2
1944

1/2 Struct. TPMP NMSA N/A
39.82

10 GeForce GTX 470
802.16e 2304 52.31

[156] TpN

1280

32

802.11n

2

1944

1/2 Struct. TPMP NMSA

N/A
316.07

10 4×GeForce GTX Titan
802.16e 2304

236.70
6 0.21 62.50

12 0.24 110.25
80 0.27 155.43

224 0.34 201.39
320 0.43 253.36

1600 1.27 304.16

[157] TpN N/A 32 Regular 2
2048

1/2 N/A N/A SPA
< 1.00

N/A N/A GeForce 8800 GT
4096 < 1.00

[158] TpN N/A N/A Regular 2 10240 101/320 Sparse TPMP SPA < 5.00 N/A 30 GeForce 8800 GT

[159] BpC 1 16
802.11n

2
1944

1/2 Struct. TDMP MSA
11.92 83.50

10 GeForce GTX 480
802.16e 2304 10.29 114.60

[160] TpN 1 N/A
Regular

2

10008
1/2 Sparse

TPMP SPA

0.06
N/A

1 N/A
100000 0.17

QC
[325]

15000
5/6 Struct.

0.21 2.38
18000 0.22 2.81

[161] TpC N/A N/A
QC-CC

Proposed
2 768–1536 1/2–2/3 Struct. TPMP NMSA N/A 15 20 GeForce GTX 260

[162] TpN N/A N/A RA 2 20000 1/2 Sparse TPMP LSPA N/A 29.3 1.45 dB GeForce GTX 280

Continued on next page

275

A
.Survey

of
the

LD
PC

D
ecoders

on
Program

m
able

H
ardw

are
Table A.1 Continued from previous page

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Thr.

(Mbit/s)
Iter. Name

[163] TpN N/A 32 QC 2

10128

5/6
Struct. TPMP LSPA

3.80

N/A
3.2 dB

GeForce GTX 460
15168 5.00
18630 5.30
24576 7.90
18000 1/2 3.20 2.3 dB

[164] TpN 1 8–10

DVB-S2

2

64800

5/6

Sparse TPMP SPA N/A

77.06 5.9

GeForce GTX Titan

16200 117.81 7.4
802.11n 1944 92.78 3.5
802.16e 2304 102.07 3.6

DVB-S2
64800

3/4
135.05 3.6

16200 191.06 3.0
802.11n 1944 138.14 2.2

802.16e 2304
3/4A 164.75 2.2
3/4B 161.00 2.2

DVB-S2
64800

2/3
162.66 3.0

16200 178.09 2.5
802.11n 1944 163.09 1.8

802.16e 2304
2/3A 96.36 1.8
2/3B 196.67 1.8

DVB-S2
64800

3/5
121.96 2.3

16200 116.61 2.1

[165] CpC

64

8

802.16e

2

576 1/2

Struct. TDMP

OMSA 0.12 310

10 i7 4960 HQ

128 NMSA 0.13 560
64

1248 1/2
OMSA 0.26 310

128 NMSA 0.28 564
64

802.11n
1944 5/6

OMSA 0.42 294
128 NMSA 0.53 473

Continued on next page

276

Table A.1 Continued from previous page

Work
Parallelism Data LDPC Code Decoding Perf. Platform

Thread- Data- Width Code q N Rate Tanner Sched. Alg.
Latency

(ms)
Thr.

(Mbit/s)
Iter. Name

64
1944 1/2

OMSA 0.46 270
128 NMSA 0.55 456

64
802.11an 2048 13/16

OMSA 0.78 168
128 NMSA 1.14 230

64
802.16e 2304

1/2

OMSA 0.47 314
128 NMSA 0.55 533

64

Mackay
4000

OMSA 0.77 334
128 NMSA 0.99 519

64
8000

OMSA 1.58 323
128 NMSA 2.30 445

64

CMMB
9216

OMSA 1.78 332
128 NMSA 2.35 503

64
9216

3/4

OMSA .175 337
128 NMSA 2.40 493

64
DVB-S2 16200

1/2

OMSA 4.89 212
128 NMSA 8.36 248

64
Mackay 20000

OMSA 5.09 251
128 NMSA 7.57 338

64
DVB-S2 64800

OMSA 19.02 218
128 NMSA 34.74 242

1) obtained at 5dB for an undetermined number of decoding iterations; 2) obtained at 3.39 dB and -0.58 dB for an undetermined number of decoding iterations;
3) - AWGN and BER simulation modules included; 4) - absolute throughput not known, authors study the scalability of the Intel SCC system for LDPC decoding
5) - when used for the QC-LDPC 2304 1/2 for reference; 6) - maximum of 10 iterations but early termination is employed;
7) - best is for reordered scheduling for minimization of the pipeline stalling; LDPCA: Coastguard (Cg); Foreman (Fm); Hall Monitor (HM); and Soccer (Sc)
{a,b,c,d}) - a) naive iterative parity-check (IPC); b) IPC with stability check; c) IPC with confirmation; d) standard schedule;
The resulting order of references is the one that minimizes the table size and prevents too many page breaks.

277

B
Galois Field Arithmetic

Contents
B.1 Fields . 280

B.1.1 Primitive Polynomials . 282
B.1.2 Matrix-Representation of Fields . 284
B.1.3 Fourier Transform . 284

278

Herein, the concepts regarding finite field algebra are covered, briefly for groups and

rings and special focus is given to Galois fields, since they provide the underlying con-

cepts upon which the construction of non-binary codes are based [47,58,326,327].

Groups A set contains any number of elements or objects. It has no conditions imposed

on it and its dimension can be finite or infinite. The number of elements in a set is defined

as its cardinality. We can apply two binary operations to elements of a set: multiplica-

tion “·"; and addition “+". Conditions can then be applied to the set under such binary

operations

• Commutatity: For two elements a and b, a · b = b · a under multiplication or a + b =

b + a under addition.

• Identity: For any element a in the set there is an element b such that a · b = a under

multiplication and a + b = a under addition.

• Inverse: For any element a in the set its inverse a−1 must also be in the set, where-

upon a · a−1 = a−1 · a = b, the identity element.

• Associativity: For the elements a, b and c in the set, (a · b) · c = a · (b · c).

• Distributivity: For the elements a, b and c in the set, a · (b + c) = a · b + a · c.

A group is defined as a set with the multiplication operation. In groups with clo-

sure, the result of the multiplication of any two elements in the set must result in a third

element belonging also to the set. A group is defined by the following properties

• associativity under multiplication,

• identity under multiplication

• inverse.

Groups that also possess commutativity under multiplication are designated commuta-

tive or abelian groups.

Rings If the binary operations addition and multiplication are allowed, we may define

a ring that follows the conditions

• associativity,

• distributivity,

• commutativity under addition.

279

B. Galois Field Arithmetic

Commutative rings also possess commutativity under multiplication. If it possesses a

multiplicative identity 1 then it is designated a ring with identity. An example of a ring is

the ring of integers Zq, under modulo-q addition and multiplication, where q is the ring

cardinality. The following tables present the addition and multiplication tables for the

ring Z8.

Table B.1: Addition and multiplication table for the Z8 ring.

+ 0 1 2 3 4 5 6 7 · 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 - 0 0 0 0 0 0 0 0
1 1 2 3 4 5 6 7 0 - 0 1 2 3 4 5 6 7
2 2 3 4 5 6 7 0 1 - 0 2 4 6 0 2 4 6
3 3 4 5 6 7 0 1 2 - 0 3 6 1 4 7 2 5
4 4 5 6 7 0 1 2 3 - 0 4 0 4 0 4 0 4
5 5 6 7 0 1 2 3 4 - 0 5 2 7 4 1 6 3
6 6 7 0 1 2 3 4 5 - 0 6 4 2 0 6 4 2
7 7 0 1 2 3 4 5 6 - 0 7 6 5 4 3 2 1

It can be easily seen that the elements in Z8 obey the three properties of a ring. In

addition, all the elements commute under multiplication and the multiplicative identity

1 is present, thus Z8 is a commutative ring with identity.

B.1 Fields

A field is similar to a ring, as it uses both binary operations. However, its definition

has the following extended conditions

• commutativity under addition,

• distributivity,

• commutativity under multiplication when the additive identity element 0 is re-

moved,

• identity,

• inverse.

An example of a field is the set of the real number R. The set of all integers Z is not a

field because not all integers have a multiplicative inverse.

280

B.1 Fields

In the case that the field has a finite number of elements it is designated by Galois

Field and denoted by GF(q) where q is the cardinality of the field and is either a prime

number or a power of a prime number greater than 1. A field requires that the set of

elements in the field {1, 2, 3, · · · q− 1} form a group under multiplication modulo-q. For

instance, GF(5)={0, 1, 2, 3, 4} is a finite field because the elements {1, 2, 3, 4} are a group

under modulo-q multiplication. The group also has closure since any two elements mul-

tiplied together produce an element inside the group, as seen in Table B.2.

Table B.2: Multiplication table for non-zero elements in GF(5).

· 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

If we consider GF(6)={0, 1, 2, 3, 4, 5} as an hypothetical field, the set {1, 2, 3, 4, 5}must

form a group, which is not the case as seen in Table B.3.

Table B.3: Multiplication table of the set {1, 2, 3, 4, 5}.

· 1 2 3 4 5

1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

By not complying to the group condition, we discard GF(6) as a finite field.

Another property noteworthy is the order of an element, which defines the number of

times an element has to be multiplied by itself before it produces the identity 1, formally

the order m is such that the m-th power of the element β is 1, βm = 1. Moreover, in finite

fields the order of an element divides q− 1. Table B.4 portrays the order of each of the

non-zero elements in GF(5).

281

B. Galois Field Arithmetic

Table B.4: Order of each non-zero element in GF(5).

Element in GF(5) Order

1 1
2 4
3 4
4 2

Every element in GF(5) has an order which is dividable by q− 1 = 4, and elements

whose order matches q− 1 are called primitive elements, because every element in the

field may be produced by powers of such elements. In the GF(5) case, the field may be

constructed resorting to the primitive element 2 or to the primitive element 3. The result-

ing field is depicted in Table B.5. Finite fields can also be of the form GF(pm). In this case,

Table B.5: Defining GF(5) with primitive elements 2 and 3.

Powers of 2 Element in GF(5) Powers of 3 Element in GF(5)

21 2 31 3
22 4 32 4
23 3 33 2
24 1 34 1

they are designated extension fields, and contain the elements {0, 1, α, α2, α3, · · · , αpm−2},
where α is the primitive element with order pm − 1. This means all elements in the fi-

nite field may be represented as powers of α. Each element in GF(pm) can be expressed

as a m-tuple vector with elements from GF(p) and addition between elements is done

modulo-p.

B.1.1 Primitive Polynomials

Extension fields can be defined through a class of polynomials designated primi-

tive polynomials. An irreducible polynomial f (x) with degree m defined over GF(p)

is primitive if the smallest positive integer n for which f (x) divides xn − 1 is n = pm −
1 [47,58,326,327].

For instance, the irreducible polynomial

f (x) = x4 + x + 1, (B.1)

282

B.1 Fields

with p = 2, is primitive if it divides x24−1 + 1 = x16−1 + 1 = x15 + 1, since −1 = 1

in modulo-2. It can be shown [47], that the polynomial in (B.1) indeed divides x15 + 1,

and thus f (x) = x4 + x + 1 is a primitive polynomial to GF(24) since it also does not

divide any xn + 1 with 0 ≤ n < 15. Thus, we can define a primitive element α as the

root of f (x), and express higher powers of α as the sum of lower powers of α, derived

from f (x). Namely, if α is the root of f (x), then α4 = α + 1, α5 = α2 + α, α6 = α3 + α2,

α7 = α4 + α3 = α3 + α + 1 and so on. Table B.6 depicts the construction of GF(23) built

over the primitive polynomial f (x) = x3 + x + 1, whose primitive element is α, the root

of f (x).

Table B.6: Constructing GF(23) using f (x) = x3 + x + 1 as the primitive polynomial.

Element in GF(23) Combination of lower powers of α Element as 3-tuple vector over GF(2)

0 0 000
1 1 001
α α 010
α2 α2 100
α3 α + 1 011
α4 α2 + α 110
α5 α3 + α2 = α + 1 + α2 111
α6 α4 + α3 = α2 + α + α + 1 = α2 + 1 101

The m-tuple representation is defined by sum of the powers of α, up to the m-th power,

generating the field’s element. For instance, α6 = α2 + 1 so its tuple representation is 101.

The closure property can be proved by writing

α7 = α6 · α = (α2 + 1) · α
= α3 + α = α + 1 + α

= 1, (B.2)

from which it can be generalized that αc(q−1) = 1 whenever c is a non-negative integer.

Addition in the extension field can be accomplished through the modulo-p sum of the

m-tuple representation of the elements. Multiplication is accomplished by modulo-p ad-

dition of the powers of the multiplying elements. For this field in particular, GF(23) the

addition and multiplication tables are shown in Table B.7.

283

B. Galois Field Arithmetic

Table B.7: Addition and multiplication table for the extension field GF(23).

+ 0 1 α α2 α3 α4 α5 α6 · 0 1 α α2 α3 α4 α5 α6

0 0 1 α α2 α3 α4 α5 α6 0 0 0 0 0 0 0 0
1 1 0 α3 α6 α α5 α4 α2 0 1 α α2 α3 α4 α5 α6

α α α3 0 α4 1 α2 α6 α4 0 α α2 α3 α4 α5 α6 1
α2 α2 α6 α4 0 α5 α α3 1 0 α2 α3 α4 α5 α6 1 α

α3 α3 α 1 α5 0 α6 α2 α4 0 α3 α4 α5 α6 1 α α2

α4 α4 α5 α2 α α6 0 1 α3 0 α4 α5 α6 1 α α2 α3

α5 α5 α4 α6 α3 α2 1 0 α 0 α5 α6 1 α α2 α3 α4

α6 α6 α2 α5 1 α4 α3 α 0 0 α6 1 α α2 α3 α4 α5

B.1.2 Matrix-Representation of Fields

For the polynomial a(x) = a0 + a1x + a2x2 + · · ·+ ar−1xr−1 + xr corresponds a r× r

matrix M, designated the companion matrix whose characteristic polynomial, i.e. det(M−
λI) = a(λ).

M =

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −ar−1

(B.3)

The properties drawn regarding the generation of finite field elements as the powers of a

primitive element can be proven likewise for the companion matrix representation.

Thus, Mi = I if i = pm − 1, and Mi 6= I for 1 ≤ i < qm − 1. Under the latter set of

powers, Mi defines the elements of the finite field GF(pm). For instance, the elements in

GF(23), generated by the primitive polynomial f (x) = x3 + x + 1 can be represented as

0︷ ︸︸ ︷

000
000
000

M︷ ︸︸ ︷

010
001
110

M2
︷ ︸︸ ︷

001
110
011

M3
︷ ︸︸ ︷

110
011
111

M4
︷ ︸︸ ︷

011
111
101

M5
︷ ︸︸ ︷

111
101
100

M6
︷ ︸︸ ︷

101
100
010

M7
︷ ︸︸ ︷

100
010
001

 (B.4)

B.1.3 Fourier Transform

In the particular case of binary extension field (GF(2m)), the discrete Fourier transform

(DFT) is not 2m point but a m-dimension two-point DFT [28,47] in GF(2m). In fact, the DFT

of x, F(x) = W · x, where W is the Hadamard matrix. Hadamard matrices [328,329] may be

284

B.1 Fields

defined as

WnW
ᵀ
n = nIn, (B.5)

or alternatively through the recursion

W1 =
[
1
]

W2 =

[
W1 W1

W1 −W1

]

Wm =

[
Wm−1 Wm−1

Wm−1 −Wm−1

]
, (B.6)

where m is the order of the binary extension field GF(2m). Yet another alternative to

efficiently compute the Hadamard matrix is to generate its elements on the fly, based

solely on their positions within the matrix

wij = (−1)î·j, (B.7)

where ·̂ denotes the Hamming weight and · the binary multiplication operand.

An interesting property, later on of value to the decoding algorithms of non-binary

low-density parity-check (LDPC) codes, is that we may write Aiαj = αiαj = αi+j = Ai+j.

Thus, for x ∈ GF(2m), Ai × x = ai × x, where Ai and ai are elements in GF(2m).

Definition 1. Let p̃(x) = p(a−1x) and P̃(x) = P(A−1x) and P(·) the companion matrix of

p(·). The Fourier transform of p̃(x) yields the Fourier transform of P̃(x): F (p̃(x)) = F
(

P̃(x)
)
.

Proof. By using the Fourier Transform definition

F(p̃(x)) = p̃(z) = ∑
x∈GF(2m)

p̃(x)(−1)z·x = ∑
x∈GF(2m)

p(a−1x)(−1)z·x

= ∑
x∈GF(2m)

p(x)(−1)z·(Ax) = ∑
x∈GF(2m)

p(x)(−1)(Aᵀz)·x

= P(Aᵀz) = F(P̃(x)).

285

B. Galois Field Arithmetic

286

C
List of Hardware Employed

287

C. List of Hardware Employed

Table C.1: List of utilized hardware—CPU, GPU, FPGA and power sensor apparatus—throughout the exe-
cution of the Thesis. Keywords with which each architecture is referred, henceforth in the text, are annotated
in the leftmost column.

Utilized Hardware

GPU Name
Stream

Processors
SM/SMX

Compute
Capability

Memory
(MB)

Clock
(MHz)

G1 Tesla C1060 240 30 1.3 4096 1296
G2 Tesla C2050

448 14 2.0 3071 1147
G3 Tesla M2050
G4 Tesla K20c 2496 13 3.5 5120 706
G5 Tesla K40c 2880 15 3.5 11520 745
G6 GeForce GTX 680 1536 8 3.0 2048 1006
G7 GeForce GTX Titan 2688 14 3.5 6143 837
G8 Radeon HD 5870 1600 N/A N/A 2048 850
G9 GeForce GTX 560 Ti 384 8 2.1 1019 1660

CPU Name
Logical
Cores

L1
(KB)

L2
(KB)

L3
(KB)

Clock
(MHz)

C1 Phenom II X4 945 4 128 512 6144 3000
C2 i7 3770K 8 128 1024 8192 3500
C3 Xeon E5645 12 192 1536 12288 2400

FPGA Name
Gen. Logic

Element
Logic

Elements
BRAM
Blocks

DSP
Blocks

DRAM
(MB)

F1 Virtex 6 LX760 a) 118560 7201) 8643) N/A

F2
Virtex 5 LX330T

MAX2336B
b) 51840 3241) 1923) 6×2048

F3
Virtex 6 SX475T

MAX3XXXB
a) 74400 10641) 20163) 6×2048

F4
Stratix V D5

Nallatech 385 N
c) 172600 20142) 31804) 2×4096

F5
Virtex 7 VX690T

VC 709
d) 693120 14701) 36003) 2×4096

GPU Cluster Type CPU GPU Memory MPI Interconnection

Master
Node

N/A Intel i7 920 Tesla M2050
12 GB OpenMPI 1.4.2

1 GBit/s Ethernet
40 Gbit/s IB QDRCompute

Nodes
8× NEC LX 113Rc-1G Xeon E5645 Tesla M2050
8× NEC LX 116Rc-1G Xeon E5645

Power
Sensor

Allegro ACS712 Hall effect current sensor; PIC18F4550

a) - Slice with four LUTs and eight flip-flops.; b) - Slice with four LUTs and four flip-flops.

c) - adaptive logic modules (ALMs) with six LUTs and two flip-flops; d) - CLB with eight LUTs and sixteen flip-flops.
1) - 36Kb BRAM block; 2) - 20Kb M20K BRAM block; 3) - DSP48E, 25x18 multiplier; 4) - 18x18 multiplier.

288

Bibliography

[1] J. Andrade, G. Falcao, V. Silva, S. Yamagiwa, and L. Sousa, Encyclopedia of Computer Science and Tech-
nology. Taylor & Francis, 2015, ch. Accelerating Conventional Processing Using GPU Clusters: LDPC
Decoders.

[2] G. Falcao, J. Andrade, V. Silva, S. Yamagiwa, and Sousa, “Stressing the BER simulation of LDPC codes
in the error floor region using GPU clusters,” in International Symposium on Wireless Communication
Systems (ISWCS 2013), Aug 2013, pp. 1–5.

[3] J. Andrade, G. Falcao, V. Silva, J. Barreto, N. Goncalves, and V. Savin, “Near-LSPA performance at
MSA complexity,” in Communications (ICC), 2013 IEEE International Conference on, June 2013, pp. 3281–
3285.

[4] J. Andrade, G. Falcao, V. Silva, and K. Kasai, “FFT-SPA Non-binary LDPC Decoding on GPU,” in
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, May 2013, pp.
5099–5103.

[5] J. Andrade, G. Falcao, V. Silva, M. Owaida, N. Bellas, C.D. Antonopoulos, and P. Ienne, “Towards
High-Throughput with Low-Effort Programming: From General-Purpose Manycores to Dedicated
Circuits,” in DATE’13: Workshop on Designing for Embedded Parallel Computing Platforms: Architectures,
Design Tools, and Applications (DEPCP), March 2013.

[6] J. Andrade, F. Pratas, G. Falcao, V. Silva, and L. Sousa, “Combining flexibility with low power:
Dataflow and wide-pipeline LDPC decoding engines in the Gbit/s era,” in Application-specific Systems,
Architectures and Processors (ASAP), 2014 IEEE 25th International Conference on, June 2014, pp. 264–269.

[7] J. Andrade, G. Falcao, and V. Silva, “Flexible design of wide-pipeline-based WiMAX QC-LDPC de-
coder architectures on FPGAs using high-level synthesis,” Electronics Letters, vol. 50, no. 11, pp. 839–
840, 2014.

[8] J. Andrade, N. George, K. Karras, D. Novo, V. Silva, P. Ienne, and G. Falcao, “Fast Design Space Ex-
ploration Using Vivado HLS: Non-binary LDPC Decoders,” in Field-Programmable Custom Computing
Machines (FCCM), 2015 IEEE 23rd Annual International Symposium on, May 2015, pp. 97–97.

[9] J. Andrade, N. George, K. Karras, D. Novo, V. Silva, P. Ienne, and G. Falcao, “From low-architectural
expertise up to high-throughput non-binary ldpc decoders: Optimization guidelines using high-level
synthesis,” in Field Programmable Logic and Applications (FPL), 2015 25th International Conference on, Sept
2015, pp. 1–8.

[10] F. Pratas, J. Andrade, G. Falcao, V. Silva, and L. Sousa, “Open the Gates: Using High-level Synthe-
sis towards programmable LDPC decoders on FPGAs,” in Global Conference on Signal and Information
Processing (GlobalSIP), 2013 IEEE, Dec 2013, pp. 1274–1277.

[11] J. Andrade, G. Falcao, V. Silva, and K. Kasai, “Flexible non-binary LDPC decoding on FPGAs,” in
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, May
2014, pp. 1936–1940.

[12] M. Owaida, G. Falcao, J. Andrade, C. Antonopoulos, N. Bellas, M. Purnaprajna, D. Novo, G. Karakon-
stantis, A. Burg, and P. Ienne, “Enhancing Design Space Exploration by Extending CPU/GPU Specifi-
cations Onto FPGAs,” ACM Trans. Embed. Comput. Syst., vol. 14, no. 2, pp. 33:1–33:23, Feb. 2015.

289

Bibliography

[13] J. Andrade, G. Falcao, and V. Silva, “Optimized Fast Walsh–Hadamard Transform on GPUs for non-
binary LDPC decoding,” Parallel Computing, vol. 40, no. 9, pp. 449 – 453, 2014.

[14] J. Andrade, V. Silva, and G. Falcao, “From OpenCL to gates: The FFT,” in Global Conference on Signal
and Information Processing (GlobalSIP), 2013 IEEE, Dec 2013, pp. 1238–1241.

[15] J. Andrade, G. Falcao, and V. Silva, “Accelerating and Decelerating Min-Sum-based Gear-shift LDPC
Decoders,” in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on,
April 2015, pp. 5099–5103.

[16] J. Andrade, A. Vosoughi, G. Wang, G. Karakonstantis, A. Burg, G. Falcao, V. Silva, and J. Cavallaro,
“On the performance of LDPC and turbo decoder architectures with unreliable memories,” in Signals,
Systems and Computers, 2014 48th Asilomar Conference on, Nov 2014, pp. 542–547.

[17] J. Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, G. Falcao,
V. Silva, and J. Cavallaro, “The Impact of Faulty Memory Bit Cells on the Decoding of Spatially-
Coupled LDPC Codes,” in Signals, Systems and Computers, 2015 49th Asilomar Conference on, 2015.

[18] A. A. Santos and J. Andrade, “Stochastic Volatility Estimation with GPU Computing,” in Proc Conf. on
Indirect Estimation Methods in Finance and Economics, May 2014.

[19] R. Ralha, G. Falcao, J. Andrade, M. Antunes, J. Barreto, and U. Nunes, “Distributed Dense Stereo
Matching for 3D Reconstruction using Parallel-based Processing Advantages,” in ICASSP’15: Proceed-
ings of the 40th IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, April
2015.

[20] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions on Information Theory, vol. 8, no. 1,
pp. 21–28, jan 1962.

[21] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1962.

[22] V. V. Zyablov, “An Estimation of the Complexity of Constructing Binary Linear Cascading Codes,”
Problems Inf. Theory, vol. 7, pp. 3–10, 1971.

[23] M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Transactions on Information The-
ory, 1981.

[24] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, University of Liköping, 1996.

[25] B. Sklar and F. Harris, “The ABCs of Linear Block Codes,” IEEE Signal Processing Magazine, vol. 21,
no. 4, pp. 14–35, 2004.

[26] J. Chen and M. Fossorier, “Near optimum universal belief propagation based decoding of low-density
parity check codes,” Communications, IEEE Transactions on, vol. 50, no. 3, pp. 406 – 414, 2003.

[27] M. A. S. T.J. Richardson and R. L. Urbanke, “Design of Capacity-Approaching Low-Density Parity
Check Codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619–637, Feb. 2001.

[28] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-
passing decoding,” Information Theory, IEEE Transactions on, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[29] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp.
379–423, 1948.

[30] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding and
Decoding: Turbo-Codes,” in IEEE International Conference on Communication, May 1993.

[31] The Consultative Committee for Space Data Systems, “Low Density Parity Check Codes for Use in
Near-Earth and Deep Space Applications,” Orange Book, Issue 2, Consulative Committee for Space Data
Systems (CCSDS) Experimental Specification 131.1-O-2, 2007.

[32] “IEEE Standard for Information Technology - Telecommunications and Information Exchange Be-
tween Systems - Local and Metropolitan Area Networks - Specific Requirements Part 3: Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications- Corrigendum 2: IEEE Std 802.3an-2006 10GBASE-T Correction,” IEEE Std 802.3-
2005/Cor 2-2007 (Corrigendum to IEEE Std 802.3-2005), pp. 1–2, Aug 2007.

290

Bibliography

[33] “IEEE Standard for Information technology– Local and metropolitan area networks– Specific
requirements– Part 11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Spec-
ifications Amendment 5: Enhancements for Higher Throughput,” IEEE Std 802.11n-2009 (Amendment
to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-
2008, and IEEE Std 802.11w-2009), pp. 1–565, Oct 2009.

[34] “IEEE Standard for Information technology - Telecommunications and information exchange between
systems - Local and metropolitan area networks - Specific requirements. Part 15.3: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area
Networks (WPANs) Amendment 2: Millimeter-wave-based Alternative Physical Layer Extension,”
IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003), Oct 2009.

[35] “IEEE Standard for Air Interface for Broadband Wireless Access Systems,” IEEE Std 802.16-2012, Aug
2012.

[36] EN 302 307 V1.1.1, European Telecommunications Standards Institute (ETSI), “Second generation
framing structure, channel coding and modulation systems for broadcasting, interactive services,
news gathering and other broad-band satellite applications,” Digital Video Broadcasting (DVB); , 2005.

[37] EN 302 755 V1.1.1, European Telecommunications Standards Institute (ETSI), “ Frame structure chan-
nel coding and modulation for a second generation digital terrestrial television broadcasting system
(DVB-T2),” Digital Video Broadcasting (DVB);, 2009.

[38] EN 302 769 V1.1.1, European Telecommunications Standards Institute (ETSI), “Frame structure chan-
nel coding and modulation for a second generation digital transmission system for cable systems
(DVB-C2),” Digital Video Broadcasting (DVB); , 2010.

[39] EN 301 545-2 V1.1.1, European Telecommunications Standards Institute (ETSI), “ Part 2: Lower Layers
for Satellite standard,” Digital Video Broadcasting (DVB); Second Generation DVB Interactive Satellite
System (DVB-RCS2);, 2011.

[40] ITU-T G.9960, Telecommunication Standardization Sector of ITU, “Unified high-speed wireline-based
home networking transceivers – System architecture and physical layer specification,” Series G: Trans-
mission Systems and Media, Digital Systems and Networks, 2012.

[41] ITU-T G.709, Telecommunication Standardization Sector of ITU, “Interfaces for the optical transport
network,” Series G: Transmission Systems and Media, Digital Systems and Networks, 2012.

[42] The 3rd Generation Partnership Project (3GPP), “Evolved universal terrestrial radio access (E-UTRA);
multiplexing and channel coding, Tech. Spec. 36.212 Release-11,” Dec 2012.

[43] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and J. Zhang, “What Will 5G Be?”
Selected Areas in Communications, IEEE Journal on, vol. 32, no. 6, pp. 1065–1082, June 2014.

[44] J. Sayir, “Advances in Coding Algorithms for 5G,” 2015. [Online]. Available: http://montecristo.co.it.
pt/ja_thesis/Newcom.pdf

[45] J. Kliewer, “Advances in Error Control Strategies for 5G.” [Online]. Available: http://montecristo.co.
it.pt/ja_thesis/Joerg_Kliewer.pdf

[46] M. C. Davey and D. MacKay, “Low-density parity check codes over GF(q),” Communications Letters,
IEEE, vol. 2, no. 6, pp. 165–167, Jun. 1998.

[47] R. A. Carrasco and M. Johnston, Non-Binary Error Control Coding for Wireless Communication and Data
Storage. Wiley, Chichester, 2008.

[48] M. Lentmaier, M. Prenda, and G. Fettweis, “Efficient message passing scheduling for terminated
LDPC convolutional codes,” in Information Theory Proceedings (ISIT), 2011 IEEE International Sympo-
sium on, July 2011, pp. 1826–1830.

[49] S. Abu-Surra, E. Pisek, and R. Taori, “Spatially-coupled low-density parity check codes: Zigzag-
window decoding and code-family design considerations,” in 2015 Information Theory and Applications
Workshop, 2015.

291

http://montecristo.co.it.pt/ja_thesis/Newcom.pdf
http://montecristo.co.it.pt/ja_thesis/Newcom.pdf
http://montecristo.co.it.pt/ja_thesis/Joerg_Kliewer.pdf
http://montecristo.co.it.pt/ja_thesis/Joerg_Kliewer.pdf

Bibliography

[50] D. J. Costello, L. Dolecek, T. Fuja, J. Kliewer, D. Mitchell, and R. Smarandache, “Spatially coupled
sparse codes on graphs: theory and practice,” Communications Magazine, IEEE, vol. 52, no. 7, pp. 168–
176, July 2014.

[51] G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, 1965.
[Online]. Available: http://www.cs.utexas.edu/users/fussell/courses/cs352h/papers/moore.pdf

[52] G. Moore, “Progress In Digital Integrated Electronics,” 2015, IEEE Text Speech. [Online]. Available:
http://montecristo.co.it.pt/ja_thesis/Gordon_Moore_1975_Speech.pdf

[53] R. Dennard, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-implanted MOSFET’s with very
small physical dimensions,” Solid-State Circuits, IEEE Journal of, vol. 9, no. 5, pp. 256–268, Oct 1974.

[54] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach. Morgan Kaufmann,
2006.

[55] J. Nickolls and W. Dally, “The gpu computing era,” Micro, IEEE, vol. 30, no. 2, pp. 56–69, March 2010.

[56] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable Computing Architectures,” Proceedings of the
IEEE, vol. 103, no. 3, pp. 332–354, March 2015.

[57] M. Maxfield, “Google’s project ARA smartphones to use lattice ECP5 FPGAs,” EE Times, April 2014.

[58] S. Lin and D. Costello, Error control coding. Prentice-Hall Englewood Cliffs, NJ, 1983.

[59] T. Richardson and F. Technologies, “The renaissance of Gallager’s low-density parity-check codes,”
Communications Magazine, IEEE, no. August, pp. 126–131, 2003.

[60] D. MacKay, “Good error-correcting codes based on very sparse matrices,” in Information Theory. 1997.
Proceedings., 1997 IEEE International Symposium on, jun-4 jul 1997, p. 113.

[61] A. Morello and V. Mignone, “DVB-S2: The Second Generation Standard for Satellite Broad-Band Ser-
vices,” Proceedings of the IEEE, vol. 94, no. 1, 2006.

[62] J. Thorpe, “Design of LDPC graphs for hardware implementation,” in Information Theory, 2002. Pro-
ceedings. 2002 IEEE International Symposium on, 2002, p. 483.

[63] IEEE 802.11 Wireless LANsWWiSE Proposal: High Throughput extension to the 802.11 Standard, IEEE 11-
04-0886-00-000n.

[64] IEEE 802.11n Wireless LAN Medium Access Control MAC and Physical Layer PHY specifications, IEEE
802.11n-D1.0, 2006.

[65] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density
parity-check codes,” Information Theory, IEEE Transactions on, vol. 47, no. 2, pp. 619 –637, feb 2001.

[66] S.-Y. Chung, J. Forney G.D., T. J. Richardson, and R. Urbanke, “On the design of low-density parity-
check codes within 0.0045 dB of the Shannon limit,” Communications Letters, IEEE, vol. 5, no. 2, pp.
58–60, Feb. 2001.

[67] S.-Y. Chung, “On the construction of some capacity-approaching coding schemes,” MIT, Tech. Rep.,
2000.

[68] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions on Information Theory, vol. 8, no. 1,
pp. 21–28, jan 1962.

[69] R. G. Gallager, Low-Density Parity-Check Codes. MIT Press, Cambridge, 1963.

[70] V. V. Zyablov and M. S. Pinkser, “Estimation of the error-correction complexity for Gallager low-
density codes,” Problems Inf. Theory, vol. 11, no. 18-28, 1976.

[71] G. A. Margulis, “Explicit Construction of Graphs Without Short Cycles,” Combinatorica, vol. 2, pp.
71–78, 1982.

292

http://www.cs.utexas.edu/users/fussell/courses/cs352h/papers/moore.pdf
http://montecristo.co.it.pt/ja_thesis/Gordon_Moore_1975_Speech.pdf

Bibliography

[72] M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Transactions on Information The-
ory, 1981.

[73] N. Wiberg, “Codes and iterative decoding on general graphs,” European Transactions on Telecommuni-
cations and Related Technologies, pp. 512–525, 1995.

[74] N. Wiberg, H.-a. Loeliger, and R. Kotter, “Codes and iterative decoding on general graphs,” Proceedings
of 1995 IEEE International Symposium on Information Theory, p. 468, 1995.

[75] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,”
Electronics Letters, vol. 32, no. 18, p. 1645, Aug. 1996.

[76] D. MacKay and R. Neal, “Near shannon limit performance of low density parity check codes,” Elec-
tronics Letters (Reprint), vol. 33, pp. 457–458, mar 1997.

[77] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Transactions on Infor-
mation Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[78] S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and
G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,”
Communications, IET, vol. 1, no. 3, pp. 294–300, Jun. 2007.

[79] S. Papaharalabos, M. Papaleo, P. T. Mathiopoulos, M. Neri, A. Vanelli-Coralli, and G. E. Corazza,
“DVB-S2 LDPC Decoding Using Robust Check Node Update Approximations,” Broadcasting, IEEE
Transactions on, vol. 54, no. 1, pp. 120–126, Mar. 2008.

[80] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient Implementations of the Sum-
Product Algorithm for Decoding LDPC Codes,” in Proceedings of the IEEE Global Telecommunications
Conf. (GLOBECOM’01), November 2001, pp. 1036–1036E.

[81] J. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors with parallel structure
for ISI channels,” Communications, IEEE Transactions on, vol. 42, no. 234, pp. 1661–1671, 1994.

[82] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-
product algorithm for decoding LDPC codes,” in Global Telecommunications Conference, 2001. GLOBE-
COM ’01. IEEE, vol. 2, 2001, pp. 1036 –1036E vol.2.

[83] V. Savin, “Self-corrected Min-Sum decoding of LDPC codes,” in Information Theory. ISIT 2008, IEEE
International Symposium on, july 2008, pp. 146 –150.

[84] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density
parity check codes based on belief propagation,” Communications, IEEE Transactions on, vol. 47, no. 5,
pp. 673–680, May 1999.

[85] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu, “Reduced-Complexity Decoding
of LDPC Codes,” Communications, IEEE Transactions on, vol. 53, no. 8, pp. 1288–1299, 2005.

[86] M. R. Yazdani, S. Hemati, and A. H. Banihashemi, “Improving belief propagation on graphs with
cycles,” Communications Letters, IEEE, vol. 8, no. 1, pp. 57–59, 2004.

[87] A. Anastasopoulos, “A comparison between the sum-product and the min-sum iterative detection
algorithms based on density evolution,” in Global Telecommunications Conference, 2001. GLOBECOM
’01. IEEE, vol. 2, 2001, pp. 1021 –1025 vol.2.

[88] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-Domain decoding of LDPC codes over
GF(q),” in IEEE International Conference on Communications, 2004, pp. 772–776.

[89] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,”
IEEE Transactions on Information Theory, vol. 42, no. 2, pp. 429–445, Mar. 1996.

[90] G. Byers and F. Takawira, “Fourier transform decoding of non-binary LDPC codes,” in Southern African
Telecommunication Networks and Applications Conference (SATNAC) 2004, no. 2, 2004.

[91] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),” in Information Theory
Workshop, 2003. Proceedings. 2003 IEEE, 2003, pp. 70–73.

293

Bibliography

[92] H. S. Cruz and J. R., “Reduced-Complexity Decoding of Q-ary LDPC Codes for Magnetic Recording,”
IEEE Transactions on Magnetics, vol. 39, no. 2, pp. 1081–1087, 2003.

[93] K. Kasai and K. Skaniwa, “Fourier Domain Decoding Algorithm of Non-Binary LDPC Codes For Par-
allel Implementation,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E93-A, no. 1, pp. 1–2, 2010.

[94] K. Kasai and K. Sakaniwa, “Fourier Domain Decoding Algorithm of Non-Binary LDPC Codes for
Parallel Implementation,” in IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2011, Prague, Czech Republic, 2011, pp. 3128–3131.

[95] C. Poulliat, M. Fossorier, and D. Declercq, “Design of Regular (2 , d c) -LDPC Codes over GF (q)
Using Their Binary Images,” IEEE Transactions on Communications, vol. 56, no. 10, pp. 1626–1635, 2008.

[96] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary LDPC Codes Over GF,” Commu-
nications, IEEE Transactions on, vol. 55, no. 4, pp. 633–643, Apr. 2007.

[97] Christian Spagnol, E. M. Popovici, and W. P. Marnane, “Hardware Implementation of GF(2m) LDPC
Decoders,” Hardware Implementation of GF(2m) LDPC Decoders, vol. 56-I, no. 12, pp. 2609–2620, 2009.

[98] J. Chen, S. Member, M. P. C. Fossorier, and S. Member, “Density Evolution for Two Improved BP-
Based Decoding Algorithms of LDPC Codes,” IEEE Transactions on Communications, vol. 6, no. 5, pp.
208–210, 2002.

[99] D. J. Costello and G. D. Forney, “Channel Coding: The Road to Channel Capacity,” Proceedings of the
IEEE, vol. 95, no. 6, pp. 1150–1177, Jun. 2007.

[100] K. Gunnam, G. Choi, W. Wang, E. Kim, and M. Yeary, “Decoding of Quasi-cyclic LDPC Codes Using
an On-the-Fly Computation,” in Signals, Systems and Computers, 2006. ACSSC ’06. Fortieth Asilomar
Conference on, 2006, pp. 1192–1199.

[101] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting coding and de-
coding: Turbo-codes. 1,” in Communications, 1993. ICC ’93 Geneva. Technical Program, Conference Record,
IEEE International Conference on, vol. 2, 1993, pp. 1064–1070 vol.2.

[102] E. Sharon, S. Litsyn, and J. Goldberger, “An efficient message-passing schedule for LDPC decoding,”
in 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, September 2004, pp. 223 – 226.

[103] G. Falcao, M. Gomes, V. Silva, L. Sousa, and J. Cacheira, “Configurable M-factor VLSI DVB-S2 LDPC
Decoder Architecture with Optimized Memory Tiling Design,” EURASIP Journal on Wireless Commu-
nications and Networking, vol. 2012, no. 1, pp. 1–16, 2012.

[104] M.P.C. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation matrices,”
Information Theory, IEEE Transactions on, vol. 50, no. 8, pp. 1788 – 1793, 2004.

[105] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrading the loft,” IEEE Computer
Architecture Letters, vol. 99, no. RapidPosts, p. 1, 2013.

[106] K. K. Abburi, “A Scalable LDPC Decoder on GPU,” in VLSI Design (VLSI Design), 2011 24th Interna-
tional Conference on, 2011, pp. 183–188.

[107] K. Abburi, “Cell processor based ldpc encoder/decoder for wimax applications,” in Proceedings of
the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011,
ser. Advances in Intelligent and Soft Computing, K. Deep, A. Nagar, M. Pant, and J. C. Bansal, Eds.
Springer India, 2012, vol. 131, pp. 781–790.

[108] M. Beermann, E. Monzó, L. Schmalen, and P. Varyx, “High Speed Decoding of Non-Binary Irregular
LDPC Codes Using GPUs,” in Proc. IEEE SiPS, 2013.

[109] F. L. Blasco, “Implementation of a Multi-User Detector for satellite return links on a GPU platform,”
in 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Com-
munications Workshop (ASMS/SPSC). IEEE, Sep. 2014, pp. 66–72.

[110] C. H. Chan and F. C. M. Lau, “Parallel decoding of LDPC convolutional codes using OpenMP and
GPU,” 2012 IEEE Symposium on Computers and Communications (ISCC), no. c, pp. 225–227, Jul. 2012.

294

Bibliography

[111] C. H. Chan and F. C. M. Lau, “Simulation of LDPC convolutional decoders with CPU and GPU,”
in 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet).
IEEE, Apr. 2012, pp. 2854–2857.

[112] C.-C. Chang, Y.-L. Chang, M.-Y. Huang, and B. Huang, “Accelerating Regular LDPC Code Decoders
on GPUs,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 4, no. 3,
pp. 653–659, Sep. 2011.

[113] C.-C. Chang, M.-Y. Huang, and Y.-L. Chang, “Design of GPU-based platform for LDPC decoder,” in
2011 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Jul. 2011, pp. 3429–3432.

[114] Y.-L. Chang, C.-C. Chang, M.-Y. Huang, and B. Huang, “High-throughput GPU-based LDPC decod-
ing,” in Proc. SPIE 7810, Satellite Data Compression, Communications, and Processing VI, B. Huang, A. J.
Plaza, J. Serra-Sagristà, C. Lee, Y. Li, and S.-E. Qian, Eds. International Society for Optics and Pho-
tonics, Aug. 2010, pp. 781 008–781 008–8.

[115] H.-P. Cheng, Y.-C. Shen, J.-L. Wu, and K. Aizawa, “High efficient distributed video coding with paral-
lelized design for cloud computing,” in Proceedings of the 19th ACM International Conference on Multi-
media - MM ’11. New York, New York, USA: ACM Press, Nov. 2011, p. 1257.

[116] A. D. Copeland, N. B. Chang, and S. Leung, “GPU Accelerated Decoding of High Performance Error
Correcting Codes,” in 13th Workshop in High Performance Embedded Computing, 2009.

[117] A. Diavastos, P. Petrides, G. Falcao, and P. Trancoso, “LDPC Decoding on the Intel SCC,” 2012 20th
Euromicro International Conference on Parallel, Distributed and Network-based Processing, pp. 57–65, Feb.
2012.

[118] G. Falcao, S. Yamagiwa, V. Silva, and L. Sousa, “Stream-Based LDPC Decoding on GPUs,” in First
Workshop on General Purpose Processing on Graphics Processing Units (GPGPU), 2007, pp. 1–7.

[119] G Falcao, V. Silva, M. Gomes, and L. Sousa, “Edge Stream Oriented LDPC Decoding,” in 16th Euromi-
cro Conference on Parallel, Distributed and Network-Based Processing (PDP 2008). IEEE, Feb. 2008, pp.
237–244.

[120] G. Falcao, S. Yamagiwa, V. Silva, and L. Sousa, “Parallel LDPC Decoding on GPUs Using a Stream-
Based Computing Approach,” Journal of Computer Science and Technology, vol. 24, no. 5, pp. 913–924,
Sep. 2009.

[121] G Falcao, L. Sousa, and V. Silva, “Embedded multicore architectures for LDPC decoding,” in 2010
International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation. IEEE,
Jul. 2010, pp. 349–356.

[122] G. Falcao, J. Andrade, V. Silva, and L. Sousa, “Real-time DVB-S2 LDPC decoding on many-core GPU
accelerators,” in Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2011, pp. 1685–1688.

[123] G. Falcão, L. Sousa, and V. Silva, “Massive parallel LDPC decoding on GPU,” in PPoPP ’08: Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, February
2008, pp. 83–90.

[124] G. Falcao, L. Sousa, and V. Silva, “Massively LDPC Decoding on Multicore Architectures,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 22, no. 2, pp. 309–322, 2011.

[125] G. Falcao, M. Owaida, D. Novo, M. Purnaprajna, N. Bellas, C.D. Antonopoulos, G. Karakonstantis,
A. Burg, and P. Ienne, “Shortening Design Time through Multiplatform Simulations with a Portable
OpenCL Golden-model: The LDPC Decoder Case,” in IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines (FCCM’12), May 2012, pp. 224–231.

[126] G. Falcao, V. Silva, L. Sousa, and J. Marinho, “High coded data rate and multicodeword WiMAX LDPC
decoding on the Cell/BE,” Electronics Letters, vol. 44, no. 24, pp. 1415–1417, November 2008.

[127] S. Grönroos and J. Bjorkqvist, “Performance evaluation of LDPC decoding on a general purpose mo-
bile CPU,” in 2013 IEEE Global Conference on Signal and Information Processing. IEEE, Dec. 2013, pp.
1278–1281.

295

Bibliography

[128] S. Grönroos, K. Nybom, and J. Björkqvist, “Efficient GPU and CPU-based LDPC decoders for long
codewords,” Analog Integrated Circuits and Signal Processing, Jun. 2012.

[129] S. Grönroos, K. Nybom, and J. Björkqvist, “Complexity analysis of software defined dvb-t2 physical
layer,” Analog Integrated Circuits and Signal Processing, vol. 69, no. 2-3, pp. 131–142, 2011.

[130] H. Ji, J. Cho, and W. Sung, “Massively parallel implementation of cyclic ldpc codes on a general pur-
pose graphics processing unit,” in Signal Processing Systems, 2009. SiPS 2009. IEEE Workshop on, 2009,
pp. 285–290.

[131] H. Ji, J. Cho, and W. Sung, “Memory Access Optimized Implementation of Cyclic and Quasi-Cyclic
LDPC Codes on a GPGPU,” Journal of Signal Processing Systems, vol. 64, no. 1, pp. 149–159, 2011.

[132] B. Jiang, J. Bao, and X. Xu, “Efficient simulation of QC LDPC decoding on GPU platform by CUDA,”
in 2012 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, Oct.
2012, pp. 1–5.

[133] Jing Cui, Y. Wang, and H. Yu, “Systematic Construction and Verification Methodology for LDPC
Codes,” in Wireless Algorithms, Systems, and Applications Lecture Notes, ser. Lecture Notes in Computer
Science, Y. Cheng, D. Y. Eun, Z. Qin, M. Song, and K. Xing, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, vol. 6843.

[134] S. Kang and J. Moon, “Parallel ldpc decoder implementation on gpu based on unbalanced memory
coalescing,” in Communications (ICC), 2012 IEEE International Conference on, 2012, pp. 3692–3697.

[135] J. A. Kennedy and D. L. Noneaker, “Decoding of a quasi-cyclic LDPC code on a stream processor,” in
2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE. IEEE, Oct. 2010, pp. 2062–
2067.

[136] J. Kennedy and D. Noneaker, “Scheduling parity checks for increased throughput in early-
termination, layered decoding of qc-ldpc codes on a stream processor,” EURASIP Journal on Wireless
Communications and Networking, vol. 2012, no. 1, pp. 1–10, 2012.

[137] F. Lau and L. Shi, “Programming graphics processing units for the decoding of low-density parity-
check codes,” in Advanced Communication Technology (ICACT), 2012 14th International Conference on,
2012, pp. 1002–1005.

[138] F. C. M. Lau, “Implementation of Decoders for LDPC Block Codes and LDPC Convolutional Codes
Based on GPUs,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 3, pp. 663–672, Mar.
2014.

[139] B. Le Gal, C. Jego, and J. Crenne, “A High Throughput Efficient Approach for Decoding LDPC Codes
onto GPU Devices,” IEEE Embedded Systems Letters, vol. 6, no. 2, pp. 29–32, Jun. 2014.

[140] R. Li, J. Zhou, Y. Dou, S. Guo, D. Zou, and S. Wang, “A multi-standard efficient column-layered LDPC
decoder for Software Defined Radio on GPUs,” in 2013 IEEE 14th Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC). IEEE, Jun. 2013, pp. 724–728.

[141] Y. Lin and W. Niu, “High Throughput LDPC Decoder on GPU,” IEEE Communications Letters, vol. 18,
no. 2, pp. 344–347, Feb. 2014.

[142] F. J. Martínez-Zaldívar, a. M. Vidal-Maciá, A. Gonzalez, and V. Almenar, “Tridimensional block multi-
word LDPC decoding on GPUs,” The Journal of Supercomputing, vol. 58, no. 3, pp. 314–322, Mar. 2011.

[143] Y.-S. Pai, H.-P. Cheng, Y.-C. Shen, and J.-L. Wu, “Fast decoding for ldpc based distributed video cod-
ing,” in Proceedings of the international conference on Multimedia, ser. MM ’10. New York, NY, USA:
ACM, 2010, pp. 1211–1214.

[144] Y.-S. Pai, Y.-C. Shen, and J.-L. Wu, “High efficient distributed video coding with parallelized design for
LDPCA decoding on CUDA based GPGPU,” Journal of Visual Communication and Image Representation,
vol. 23, no. 1, pp. 63 – 74, 2012.

[145] J.-y. Park, “LDPC decoding for CMMB utilizing OpenMP and CUDA parallelization,” in 2011 17th
Asia-Pacific Conference on Communications (APCC), no. October, 2011, pp. 910–914.

296

Bibliography

[146] J.-Y. Park and K.-S. Chung, “Parallel ldpc decoding using cuda and openmp,” EURASIP Journal on
Wireless Communications and Networking, vol. 2011, no. 1, pp. 1–8, 2011.

[147] D. Romero and N. Chang, “Sequential Decoding of Non-binary LDPC Codes on Graphics Processing
Units,” in IEEE ASILOMAR 2012, Nov 2012, pp. 1267–1271.

[148] E. Scheiber, G. H. Bruck, and P. Jung, “Implementation of an LDPC decoder for IEEE 802 . 11n us-
ing Vivado TM High-Level Synthesis,” in International Conference on Electronics, Signal Processing and
Communication Systems, no. 4, 2013.

[149] T.-C. Su, Y.-C. Shen, and J.-L. Wu, “Real-time decoding for LDPC based distributed video coding,” in
Proceedings of the 19th ACM international conference on Multimedia - MM ’11. New York, New York,
USA: ACM Press, Nov. 2011, p. 1261.

[150] H. P. Thi, S. Ajaz, and H. Lee, “Efficient Min-Max Nonbinary LDPC Decoding on GPU,” in SoC Design
Conference, 2014. ISOCC ’14. International, 2014, pp. 266—-267.

[151] H. Tiwari, H. N. Bao, and Y. B. Cho, “A parallel irrwbf ldpc decoder based on stream-based processor,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 23, no. 12, pp. 2198–2204, 2012.

[152] Tsou-Han Chiu, Hsien-Kai Kuo, and B. Lai, “A highly parallel design for irregular LDPC decoding
on GPGPUs,” in Signal Information Processing Association Annual Summit and Conference (APSIPA ASC),
2012 Asia-Pacific, 2012, pp. 1–5.

[153] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, “GPU Accelerated Scalable Parallel Decoding of LDPC
Codes,” in ASILOMAR ’11: Proceedings of the Asilomar Conference on Signals, Systems, and Computers,
2011.

[154] G. Wang, H. Shen, B. Yin, M. Wu, Y. Sun, and J. Cavallaro, “Parallel Nonbinary LDPC Decoding on
GPU,” in IEEE ASILOMAR 2012, Nov 2012, pp. 1277–1281.

[155] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, “A massively parallel implementation of QC-LDPC
decoder on GPU,” in Proc. IEEE Symp. on Application Specific Processors, ser. SASP ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 82–85.

[156] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High throughput low latency ldpc decoding on gpu for
sdr systems,” in Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE, Dec 2013,
pp. 1258–1261.

[157] S. Wang, S. Cheng, and Q. Wu, “A parallel decoding algorithm of ldpc codes using cuda,” in Signals,
Systems and Computers, 2008 42nd Asilomar Conference on, 2008, pp. 171–175.

[158] S. Wang, L. Cui, S. Cheng, and R. C. Huck, “GPU Acceleration for Particle Filter based LDPC Decod-
ing,” in nVidia Research Summit GPU Technology Conference (GTC), San Jose, CA, 2009.

[159] X. Wen, J. Xianjun, P. Jaaskelainen, H. Kultala, C. Canfeng, H. Berg, and B. Zhisong, “A high through-
put LDPC decoder using a mid-range GPU,” in 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, May 2014, pp. 7515–7519.

[160] S. F. Yau, T. L. Wong, and F. C. M. Lau, “Extremely fast simulator for decoding LDPC codes,” in
Advanced Communication Technology (ICACT), 2011 13th International Conference on, 2011, pp. 635–639.

[161] Yixiang Wang, Hui Yu, and Youyun Xu, “Quasi-cyclic low-density parity-check convolutional code,”
in 2011 IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communica-
tions (WiMob). IEEE, Oct. 2011, pp. 351–356.

[162] L. Yuan, Z. Xing, Y. Zhang, and X. Chen, “An Optimizing Strategy Research of LDPC Decoding Based
on GPGPU,” in 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications. IEEE, Jul. 2013, pp. 1901–1906.

[163] Y. Zhao, X. Chen, C.-W. Sham, W. M. Tam, and F. C. M. Lau, “Efficient Decoding of QC-LDPC Codes
Using GPUs,” in Algorithms and Architectures for Parallel Processing, ser. Lecture Notes in Computer
Science, Y. Xiang, A. Cuzzocrea, M. Hobbs, and W. Zhou, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, vol. 7016, pp. 294—-305.

297

Bibliography

[164] A. Mink and A. Nakassis, “LDPC error correction for Gbit/s QKD,” in SPIE Sensing Technology +
Applications, E. Donkor, A. R. Pirich, H. E. Brandt, M. R. Frey, S. J. Lomonaco, and J. M. Myers, Eds.
International Society for Optics and Photonics, May 2014, p. 912304.

[165] B. Le Gal and C. Jego, “High-throughput multi-core LDPC decoders based on x86 processor,” Parallel
and Distributed Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[166] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fourth Edition, Fourth Edition: The
Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and Design), 4th ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[167] G. Blake, R. G. Dreslinski, and T. Mudge, “A Survey of Multicore Processors,” Signal Processing Maga-
zine, vol. 26, pp. 26–37, 2009.

[168] S. Furber, ARM System-on-Chip Architecture, 2nd ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2000.

[169] G. Falcão, V. Silva, L. Sousa, and J. Marinho, “High coded data rate and multicodeword WiMAX LDPC
decoding on Cell/BE,” Electronics Letters, vol. 44, no. 24, pp. 1415–1416, 2008.

[170] D. B. Kirk and W. H. Wen-mei, Programming massively parallel processors: a hands-on approach. NVIDIA,
Morgan Kaufman, 2012.

[171] Khronos Group, OpenCL 2.0 Specification. Khronos Group, 2014.

[172] “TOP500 The List.” [Online]. Available: http://www.top500.org

[173] W. S. Carter, K. Duong, R. H. Freeman, H.-C. Hsieh, J. Y. Ja, J. E. Mahoney, L. T. Ngo, and S. L. Sze, “A
User Programmable Reconfigurable Logic Array,” in Proceedings of the IEEE Custom Integrated Circuits
Conference. IEEE, May 1986, pp. 233–235, first peer-review, public description of a commercial FPGA.

[174] A. DeHon, “The Density Advantage of Configurable Computing,” Computer, vol. 33, no. 4, pp. 41–49,
Apr 2000.

[175] J. Rabaey, “Reconfigurable processing: the solution to low-power programmable DSP,” in Acoustics,
Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on, vol. 1, Apr 1997,
pp. 275–278 vol.1.

[176] J. Varghese, M. Butts, and J. Batcheller, “An efficient logic emulation system,” Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, vol. 1, no. 2, pp. 171–174, 1993.

[177] Altera Corp., “Altera SDK for OpenCL Optimization Guide,” 2013. [Online]. Available: http://www.
altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf

[178] O. Pell and V. Averbukh, “Maximum performance computing with dataflow engines,” Computing in
Science and Engineering, vol. 14, no. 4, pp. 98–103, 2012.

[179] Xilinx, “Vivado Design Suite User Guide; High-Level Synthesis,” 2015. [Online].
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/
ug902-vivado-high-level-synthesis.pdf

[180] H. Kaeslin, Digital integrated circuit design: from VLSI architectures to CMOS fabrication. Cambridge
University Press, 2008.

[181] C. Roth, C. Benkeser, C. Studer, G. Karakonstantis, and A. Burg, “Data mapping for unreliable memo-
ries,” in Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on, Oct
2012, pp. 679–685.

[182] G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable LDPC Decoding on Multicores Using OpenCL,”
Signal Processing Magazine, vol. 29, no. 4, pp. 81–109, 2012.

[183] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” in Proc. 2nd Int. Symp.
Turbo codes and related topics, 2000, pp. 1–8.

298

http://www.top500.org
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/ug902-vivado-high-level-synthesis.pdf

Bibliography

[184] “Encyclopedia of Sparse Graph Codes.” [Online]. Available: http://www.inference.phy.cam.ac.uk/
mackay/codes/data.html

[185] M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao, “Flexible parallel architecture for
DVB-S2 LDPC decoders,” in IEEE Global Telecommunications Conference, 2007. GLOBECOM’07, 2007,
pp. 3265–3269.

[186] G. Falcao, M. Owaida, D. Novo, M. Purnaprajna, N. Bellas, C. Antonopoulos, G. Karakonstantis,
A. Burg, and P. Ienne, “Shortening Design Time through Multiplatform Simulations with a Portable
OpenCL Golden-model: The LDPC Decoder Case,” in Field-Programmable Custom Computing Machines
(FCCM), 2012 IEEE 20th Annual International Symposium on, 2012, pp. 224–231.

[187] S. Yamagiwa and L. Sousa, “Caravela: A Novel Stream-Based Distributed Computing Environment,”
Computer, vol. 40, no. 5, pp. 70–77, May 2007.

[188] NVIDIA, CUDA C Programming Guide 6.5. NVIDIA, 2011.

[189] J. Fang, A. Varbanescu, and H. Sips, “A Comprehensive Performance Comparison of CUDA and
OpenCL,” in Parallel Processing (ICPP), 2011 International Conference on, Sept 2011, pp. 216–225.

[190] T. Richardson and F. Technologies, “The renaissance of Gallager’s low-density parity-check codes,”
Communications Magazine, IEEE, no. August, pp. 126–131, 2003.

[191] C. Roth, a. Cevrero, C. Studer, Y. Leblebici, and a. Burg, “Area, throughput, and energy-efficiency
trade-offs in the VLSI implementation of LDPC decoders,” 2011 IEEE International Symposium of Cir-
cuits and Systems (ISCAS), pp. 1772–1775, May 2011.

[192] K. Kasai, R. Matsumoto, and K. Sakaniwa, “Information reconciliation for QKD with rate-compatible
non-binary LDPC codes,” in IEEE Symp. on Inf. Theory, 2010, pp. 922–927.

[193] Intel, “The Explosion of Petascale in the Race to Exascale,” in International Supercomputing Conference,
Hamburg, Berlin, 2012.

[194] G. Falcao, V. Silva, L. Sousa, and J. Marinho, “High coded data rate and multicodeword WiMAX LDPC
decoding on Cell/BE,” Electronics Letters, vol. 44, no. 24, pp. 1415–1416, 2008.

[195] M. Mansour, “A Turbo-Decoding Message-Passing Algorithm for Sparse Parity-Check Matrix Codes,”
Signal Processing, IEEE Transactions on, vol. 54, no. 11, pp. 4376–4392, Nov 2006.

[196] Y. Cai, S. Jeon, K. Mai, and B. Kumar, “Highly parallel fpga emulation for ldpc error floor characteri-
zation in perpendicular magnetic recording channel,” Magnetics, IEEE Transactions on, vol. 45, no. 10,
pp. 3761–3764, 2009.

[197] J. Ding and M. Yang, “eIRA LDPC Codes on FPGA,” Communications Letters, IEEE, vol. 15, no. 6, pp.
665–667, June 2011.

[198] F. Verdier and D. Declercq, “A low-cost parallel scalable fpga architecture for regular and irregular
ldpc decoding,” Communications, IEEE Transactions on, vol. 54, no. 7, pp. 1215–1223, 2006.

[199] Y. Dai, Z. Yan, and N. Chen, “Optimal Overlapped Message Passing Decoding of Quasi-Cyclic LDPC
Codes,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 16, no. 5, pp. 565–578,
May 2008.

[200] Xilinx Inc., “The Xilinx SDAccel Development Environment,” available from http://www.xilinx.com/
publications/prod_mktg/sdnet/sdaccel-backgrounder.pdf.

[201] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos, “Synthesis of platform architectures from
opencl programs,” in Field-Programmable Custom Computing Machines (FCCM), 2011 IEEE 19th Annual
International Symposium on. IEEE, 2011, pp. 186–193.

[202] P. Coussy and A. Morawiec, Eds., High-Level Synthesis: from Algorithm to Digital Circuit, 1st ed.
Springer Netherlands, 2008.

[203] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,”
Electronics Letters, vol. 33, no. 6, pp. 457–458, 1997.

299

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
http://www.xilinx.com/publications/prod_mktg/sdnet/sdaccel-backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/sdnet/sdaccel-backgrounder.pdf

Bibliography

[204] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The Landscape of Parallel Computing Research:
A View from Berkeley,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2006-183, Dec 2006.

[205] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin, “Scaling the Bandwidth Wall:
Challenges in and Avenues for CMP Scaling,” in Proceedings of the 36th Annual International Symposium
on Computer Architecture, ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 371–382.

[206] C. Lin and L. Snyder, Principles of Parallel Programming, 1st ed. USA: Addison-Wesley Publishing
Company, 2008.

[207] F. Pratas, “Stream-based computing and fine-grained parallelism: From algorithms to reconfigurable
hardware,” Ph.D. dissertation, IST - Technical University of Lisbon, December 2012.

[208] J. Owens and D. Luebke, “A Survey of General-Purpose Computation on Graphics Hardware,” Com-
puter graphics . . . , vol. 26, no. 1, pp. 80–113, 2007.

[209] R. Vuduc and K. Czechowski, “What gpu computing means for high-end systems,” Micro, IEEE,
vol. 31, no. 4, pp. 74–78, July 2011.

[210] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan, “Brook for GPUs:
Stream Computing on Graphics Hardware,” ACM Trans. Graph., vol. 23, no. 3, pp. 777–786, Aug. 2004.

[211] A. Munshi, “The OpenCL Specification,” Khronos OpenCL Working Group, 2009.

[212] The Linux Documentation Project, “Linux Programmer’s Manual, PThreads.”

[213] “Threading Building Blocks (Intel c© TBB) 4.4.” [Online]. Available: https://www.
threadingbuildingblocks.org

[214] B. Chapman, G. Jost, and R. Van der Pas, Using OpenMP: portable shared memory parallel programming.
The MIT Press, 2007.

[215] Pacheco, P. S., Parallel Programming with MPI. Morgan Kaufman Publishers, Inc., San Francisco, CA.,
1997.

[216] “SPIRTM The first open standard intermediate language for parallel compute and graphics.” [Online].
Available: https://www.khronos.org/spir

[217] “SYCLTM for OpenCLTM .” [Online]. Available: https://www.khronos.org/assets/uploads/
developers/library/2014-gdc/SYCL-for-OpenCL-GDC-Mar14.pdf

[218] “WebCLTM Heterogeneous parallel computing in HTML5 web browsers.” [Online]. Available: https:
//www.khronos.org/webcl

[219] “Threading Building Blocks (Intel c© TBB) 4.4.” [Online]. Available: http://ark.intel.com/products/
codename/29902/Ivy-Bridge

[220] “Intel Tick-Tock Model.” [Online]. Available: http://www.intel.com/content/www/us/en/
silicon-innovations/intel-tick-tock-model-general.html

[221] AMD, “GPU Computing: Past, Present and Future with ATI Stream Technology,” 2010.
[Online]. Available: http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/
GPUComputing-PastPresentandFuturewithATIStreamTechnology.pdf

[222] “The GREEN 500.” [Online]. Available: http://www.green500.org/

[223] J. Dongarra and P. Luszczek, “LINPACK Benchmark,” in Encyclopedia of Parallel Computing,
D. Padua, Ed. Springer US, 2011, pp. 1033–1036. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-09766-4_155

[224] InfiniBand Trade Association, “InfiniBand c© Roadmap.” [Online]. Available: http://www.
infinibandta.org/content/pages.php?pg=technology_overview

300

https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org
https://www.khronos.org/spir
https://www.khronos.org/assets/uploads/developers/library/2014-gdc/SYCL-for-OpenCL-GDC-Mar14.pdf
https://www.khronos.org/assets/uploads/developers/library/2014-gdc/SYCL-for-OpenCL-GDC-Mar14.pdf
https://www.khronos.org/webcl
https://www.khronos.org/webcl
http://ark.intel.com/products/codename/29902/Ivy-Bridge
http://ark.intel.com/products/codename/29902/Ivy-Bridge
http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GPU Computing - Past Present and Future with ATI Stream Technology.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GPU Computing - Past Present and Future with ATI Stream Technology.pdf
http://www.green500.org/
http://dx.doi.org/10.1007/978-0-387-09766-4_155
http://dx.doi.org/10.1007/978-0-387-09766-4_155
http://www.infinibandta.org/content/pages.php?pg=technology_overview
http://www.infinibandta.org/content/pages.php?pg=technology_overview

Bibliography

[225] Cray Inc., “The Gemini Network.” [Online]. Available: http://wiki.ci.uchicago.edu/pub/Beagle/
SystemSpecs/Gemini_whitepaper.pdf

[226] Wes Kendall, “A Comprehensive MPI Tutorial Resource.” [Online]. Available: http://mpitutorial.
com/

[227] G. Falcao, “Parallel algorithms and architectures for ldpc decoding,” Ph.D. dissertation, Universidade
de Coimbra, 2010.

[228] S. Muller, M. Schreger, and M. Kabutz, “A novel LDPC decoder for DVB-S2 IP,” Design, Automation &
Test in Europe Conference & Exhibition, 2009. DATE ’09, pp. 1308–1313, 2009.

[229] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of a highly-parallel 3GPP LTE/LTE-
advance turbo decoder,” INTEGRATION, the VLSI journal, vol. 44, no. 4, pp. 305–315, Sept. 2011.

[230] K. Shimizu, T. Ishikawa, T. Ikenaga, S. Goto, and N. Togawa, “Partially-parallel LDPC decoder based
on high-efficiency message-passing algorithm,” in Computer Design, 2005. Proceedings. 2005 Interna-
tional Conference on, Oct. 2005.

[231] A.J. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code
decoder,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 404 – 412, 2002.

[232] G. Falcao, M. Gomes, V. Silva, L. Sousa, and J. Cacheira, “Configurable M-factor VLSI DVB-S2 LDPC
decoder architecture with optimized memory tiling design,” EURASIP Journal on Wireless Communica-
tions and Networking, no. 98, March 2012.

[233] F. Kienle, T. Brack, and N. Wehn, “A Synthesizable IP Core for DVB-S2 LDPC Code Decoding,” in
DATE ’05: Proceedings of the conference on Design, Automation and Test in Europe. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 100–105.

[234] J. Andrade, “Dvb-s2 ldpc codes decoding on gpus,” MSc, University of Coimbra, July 2010.

[235] “CUDA Occupancy Calculator.” [Online]. Available: http://developer.download.nvidia.com/
compute/cuda/CUDA_Occupancy_calculator.xls

[236] C.-H. Chung, Y.-L. Ueng, M.-C. Lu, and M.-C. Lin, “Adaptive quantization for low-density-parity-
check decoders,” in IEEE Symp. on Inf. Theory and its Applications, 2010, pp. 13–18.

[237] David Declercq, “Status of Knowledge on Non-Binary LDPC Decoders, Part II: Reduced Complexity
Non-Binary Decoders.” [Online]. Available: http://sites.ieee.org/scv-sscs/files/2010/08/Tutorial_
GFqDecoding_Part2.pdf

[238] Charles Van Loan, Computational Frameworks for the Fast Fourier Transform. Society for Industrial and
Applied Mathematics, Philadelphia, 1992.

[239] V. Volkov and B. Kazian, “Fitting FFT onto the G80 Architectures,” University of California, Berkeley,
2008.

[240] M. Onsjo, K. Kasai, and O. Watanabe, “CUDA Implementation of Iterative Updating: the Radix-2
Algorithm and Discrete Fourier Transforms,” Research Reports on Mathematical and Computing Sciences,
Feb. 2010.

[241] G. Falcao, J. Andrade, V. Silva, and L. Sousa, “GPU-based DVB-S2 LDPC decoder with high through-
put and fast error floor detection,” Electronics Letters, vol. 47, no. 9, pp. 542–543, April 2011.

[242] A. B. Carlson and P. Crilly, Communication Systems. McGraw Hill Education, 2009.

[243] NVIDIA, CUDA Toolkit 7.0 CURAND Guide. NVIDIA, 2015.

[244] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally Equidistributed Uniform
Pseudo-random Number Generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan.
1998.

[245] G. Martin and G. Smith, “High-Level Synthesis: Past, Present, and Future,” IEEE Des. Test, vol. 26,
no. 4, pp. 18–25, Jul. 2009.

301

http://wiki.ci.uchicago.edu/pub/Beagle/SystemSpecs/Gemini_whitepaper.pdf
http://wiki.ci.uchicago.edu/pub/Beagle/SystemSpecs/Gemini_whitepaper.pdf
http://mpitutorial.com/
http://mpitutorial.com/
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://sites.ieee.org/scv-sscs/files/2010/08/Tutorial_GFqDecoding_Part2.pdf
http://sites.ieee.org/scv-sscs/files/2010/08/Tutorial_GFqDecoding_Part2.pdf

Bibliography

[246] V. Gutnik and A. Chandrakasan, “Embedded power supply for low-power DSP,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 5, no. 4, pp. 425–435, Dec 1997.

[247] A. Lukefahr, S. Padmanabha, R. Das, R. Dreslinski Jr, T. F. Wenisch, and S. Mahlke, “Heterogeneous
microarchitectures trump voltage scaling for low-power cores,” in Proceedings of the 23rd international
conference on Parallel architectures and compilation. ACM, 2014, pp. 237–250.

[248] G. Stitt, “Are Field-Programmable Gate Arrays Ready for the Mainstream?” Micro, IEEE, vol. 31, no. 6,
pp. 58–63, Nov 2011.

[249] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high level specifications,” in Formal
Methods and Models for Co-Design, 2004. MEMOCODE ’04. Proceedings. Second ACM and IEEE Interna-
tional Conference on, June 2004, pp. 69–70.

[250] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown, and T. Czajkowski,
“LegUp: high-level synthesis for FPGA-based processor/accelerator systems,” in Proc. ACM/IEEE
FPGA, 2011, pp. 33–36.

[251] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing Modular Hardware Accelerators in C
with ROCCC 2.0,” in Field-Programmable Custom Computing Machines (FCCM), 2010 18th IEEE Annual
International Symposium on, May 2010, pp. 127–134.

[252] Cadence, “C-to-Silicon Compiler High-Level Synthesis Automated high-level synthesis for design
and verification,” White Paper, 2011. [Online]. Available: http://www.cadence.com/rl/Resources/
datasheets/C2Silicon_ds.pdf

[253] M. Lin, I. Lebedev, and J. Wawrzynek, “OpenRCL: Low-Power High-Performance Computing with
Reconfigurable Devices,” 2010 International Conference on Field Programmable Logic and Applications, pp.
458–463, Aug. 2010.

[254] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos, “Massively Parallel Programming Mod-
els Used as Hardware Description Language: The OpenCL Case,” in IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), November 2011.

[255] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and W.-m. Hwu, “Fcuda: Enabling
efficient compilation of cuda kernels onto fpgas,” in Proceedings of the 7th IEEE Symposium on Applica-
tion Specific Processors, 2009, pp. 35–42.

[256] I. Mavroidis, I. Mavroidis, I. Papaefstathiou, L. Lavagno, M. Lazarescu, E. de la Torre, and F. Schafer,
“FASTCUDA: Open Source FPGA Accelerator & Hardware-Software Codesign Toolset for CUDA Ker-
nels,” in Digital System Design (DSD), 2012 15th Euromicro Conference on, Sept 2012, pp. 343–348.

[257] A. J. Blanksby and C. J. Howland, “Parity-Check Code Decoder,” IEEE Journal of Solid-State Circuits,
vol. 37, no. 3, pp. 404–412, 2002.

[258] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC decoders,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 11, pp. 976–996, Dec. 2003.

[259] Z. Cui and Z. Wang, “A 170 Mbps (8176, 7156) quasi-cyclic LDPC decoder implementation with
FPGA,” in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on,
2006, pp. 5095–5098.

[260] X. Zhang and P. H. Siegel, “Will the real error floor please stand up?” 2012 International Conference on
Signal Processing and Communications (SPCOM), pp. 1–5, Jul. 2012.

[261] M. Technologies, “MaxCompiler,” 2011. [Online]. Available: http://www.maxeler.com/media/
documents/MaxelerWhitePaperMaxCompiler.pdf

[262] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, “Reduced-complexity decoding of
ldpc codes,” IEEE Transactions on Communications, vol. 53, no. 8, pp. 1288 – 1299, aug. 2005.

[263] Xilinx, “Vivado Design Suite: AXI Reference Guide,” 2015. [Online]. Available: http:
//www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/
ug1037-vivado-axi-reference-guide.pdf

302

http://www.cadence.com/rl/Resources/datasheets/C2Silicon_ds.pdf
http://www.cadence.com/rl/Resources/datasheets/C2Silicon_ds.pdf
http://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
http://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf

Bibliography

[264] Xilinx, “Zynq-7000 All Programmable SoC and 7 Series Devices Memory Interface Solutions
v2.3 User Guide,” 2015. [Online]. Available: http://www.xilinx.com/support/documentation/ip_
documentation/mig_7series/v2_3/ug586_7Series_MIS.pdf

[265] Y. Sun, G. Wang, and J. Cavallaro, “Multi-layer parallel decoding algorithm and vlsi architecture for
quasi-cyclic ldpc codes,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), 2011, pp. 1776–1779.

[266] E. Scheiber, G. Bruck, and P. Jung, “Implementation of an LDPC decoder for IEEE 802.11n using Vi-
vado High-Level Synthesis,” in Proc. IEEE ICECS, 2013.

[267] W. Sulek, M. Kucharczyk, and G. Dziwoki, “GF(q) LDPC decoder design for FPGA Implementation,”
in Proc. IEEE CCNC, 2013.

[268] C. Spagnol, W. Marnane, and E. Popovici, “FPGA Implementations of LDPC over GF(2m) Decoders,”
in Proc. IEEE SiPS, Oct 2007, pp. 273–278.

[269] E. Boutillon, L. Conde-Canencia, and A. Ghouwayel, “Design of a GF(64)-LDPC Decoder based on the
EMS Algorithm,” IEEE TCS—I, vol. 60, no. 10, pp. 2644–2656, 2013.

[270] X. Zhang and F. Cai, “Efficient Partial-Parallel Decoder Architecture for Quasi-Cyclic Nonbinary
LDPC Codes,” IEEE TCS–I, vol. 58, no. 2, pp. 402–414, 2011.

[271] T. Lehnigk-Emden and N. Wehn, “Complexity Evaluation of Non-binary Galois Field LDPC Code
Decoders,” in Proc. IEEE Symp. on Turbo Codes & Iter. Inf. Processing, 2010.

[272] Intel, “Microprocessor Quick Reference,” 2012. [Online]. Available: http://www.intel.com/
pressroom/kits/quickreffam.htm

[273] Khronos Group, OpenCL 1.2 Specification. Khronos Group, 2011.

[274] F. Zhang, Xinmiao and Cai, “Reduced-Complexity Check Node Processing For Non-Binary LDPC
Decoding,” in IEEE Workshop on Signal Processing Systems, 2010, pp. 70–75.

[275] P. U. Adrian Voicila, David Declercq, François Verdier, Marc Fossorier, “Low-complexity, Low-
memory EMS algorithm for non-binary LDPC codes,” in ICC, 2007, pp. 671–676.

[276] G. G. Alban Goupil, Maxime Colas and D. Declercq, “FFT-based BP Decoding of General LDPC Codes
over Abelian Groups,” IEEE Transactions on Communications, vol. 55, no. 4, pp. 644–649, 2007.

[277] Adrian Voicila, David Declercq, François Verdier, Marc Fossorier, and Pascal Urard, “Low-Complexity
Decoding for Non-Binary LDPC Codes in High Order Fields,” IEEE Transactions on Communications,
vol. 58, no. 5, pp. 1365–1375, 2010.

[278] “How do I interpret the Logic Utilization number reported in the Quartus II Fitter report?” solu-
tion ID: rd05172012_146. [Online]. Available: https://www.altera.com/support/support-resources/
knowledge-base/solutions/rd05172012_146.html

[279] M. Stephenson, J. Babb, and A. Amarasinghe, “Bitwidth Analysis with Application to Silicon Compi-
lation,” in ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), June
2000.

[280] J. Llosa, A. González, E. Ayguadé, and M. Valero, “Swing Modulo Scheduling: A Lifetime-Sensitive
Approach,” in In IFIP WG10.3 Working Conference on Parallel Architectures and Compilation Techniques
(PACT’96, 1996, pp. 80–86.

[281] M. Frigo, Steven, and G. Johnson, “The design and implementation of fftw3,” Proceedings of the IEEE,
pp. 216–231, 2005.

[282] Nvidia, “Nvidia cuda fast fourier transform library (cufft),” 2015. [Online]. Available: https://
developer.nvidia.com/cufft

[283] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,” in Signals,
Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium on, 1998, pp. 257–262.

303

http://www.xilinx.com/support/documentation/ip_documentation/mig_7series/v2_3/ug586_7Series_MIS.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mig_7series/v2_3/ug586_7Series_MIS.pdf
http://www.intel.com/pressroom/kits/quickreffam.htm
http://www.intel.com/pressroom/kits/quickreffam.htm
https://www.altera.com/support/support-resources/knowledge-base/solutions/rd05172012_146.html
https://www.altera.com/support/support-resources/knowledge-base/solutions/rd05172012_146.html
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft

Bibliography

[284] E. H. Wold and A. M. Despain, “Pipeline and parallel-pipeline FFT processors for VLSI implementa-
tion,” IEEE Transactions on Computers, vol. C-33(5), pp. 414–231, 1984.

[285] M. Hasan, T. Arslan, and J. Thompson, “A novel coefficient ordering based low power pipelined radix-
4 FFT processor for wireless LAN applications,” Consumer Electronics, IEEE Transactions on, vol. 49,
no. 1, pp. 128–134, 2003.

[286] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark Silicon and the End
of Multicore Scaling,” in Proceedings of the 38th Annual International Symposium on Computer Architec-
ture, ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 365–376.

[287] I. J. Chang, D. Mohapatra, and K. Roy, “A Priority-Based 6T/8T Hybrid SRAM Architecture for Ag-
gressive Voltage Scaling in Video Applications,” Circuits and Systems for Video Technology, IEEE Trans-
actions on, vol. 21, no. 2, pp. 101–112, Feb 2011.

[288] S. Ganapathy, A. Teman, R. Giterman, A. Burg, and G. Karakonstantis, “Approximate Computing with
Unreliable Dynamic Memories,” in NEWCAS Conference (NEWCAS), 2015 13th IEEE International, June
2015.

[289] Ngassa, C. Kameni and Savin, V. and Declercq, D., “Unconventional behavior of the noisy min-sum
decoder over the binary symmetric channel,” in ITA workshop, 2013.

[290] G. Karakonstantis, C. Roth, C. Benkeser, and A. Burg, “On the exploitation of the inherent error re-
silience of wireless systems under unreliable silicon,” in Design Automation Conference (DAC), 2012
49th ACM/EDAC/IEEE, June 2012, pp. 510–515.

[291] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture Support for Disciplined Approx-
imate Programming,” in Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS XVII. New York, NY, USA: ACM,
2012, pp. 301–312.

[292] M. Ardakani and F. R. Kschischang, “Gear-shift Decoding,” IEEE Trans. Commun., vol. 54, no. 7, pp.
1235–1242, 2006.

[293] K. Cushon, S. Hemati, C. Leroux, S. Mannor, and W. J. Gross, “High-Throughput Energy-Efficient
LDPC Decoders Using Differential Binary Message Passing,” IEEE Trans. Signal Processing, vol. 62,
no. 3, pp. 619–631, 2014.

[294] C. Roth, C. Studer, G. Karakonstantis, and A. Burgi, “Statistical Data Correction for Unreliable Mem-
ories,” in Signals, Systems and Computers, 2014 48th Asilomar Conference on, Nov 2014, pp. 1890–1894.

[295] K. Cushon, S. Hemati, S. Mannor, and W. J. Gross, “Energy-efficient gear-shift LDPC decoders,” in
Proc. IEEE Int. Conf. on Application-specific Systems, Architectures and Processors. IEEE, 2014, pp. 219–
223.

[296] X. Chen, Q. Huang, S. Lin, and V. Akella, “FPGA-based Low-complexity High-throughput Tri-mode
Decoder for Quasi-cyclic LDPC Codes,” in Annual Allterton Conf. on Communication, Control and Com-
puting, 2009, pp. 600–606.

[297] T. Mohsenin, H. Shirani-mehr, and B. M. Baas, “LDPC Decoder with an Adaptive Wordwidth Datap-
ath for Energy and BER Co-Optimization,” Hindawi Journal of VLSI Design, vol. 2013, no. 1, pp. 1–14,
2013.

[298] C. Kirsch and H. Payer, “Incorrect systems: It’s not the problem, It’s the solution,” in Design Automation
Conference (DAC), 2012 49th ACM/EDAC/IEEE, June 2012, pp. 913–917.

[299] S. Bhunia and S. Mukhopadhyay, Low-power variation-tolerant design in nanometer silicon. Springer,
2011.

[300] Z. Chishti, A. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu, “Improving cache lifetime reliabil-
ity at ultra-low voltages,” in Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, Dec 2009, pp. 89–99.

304

Bibliography

[301] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu, “Trading off Cache Ca-
pacity for Reliability to Enable Low Voltage Operation,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture, ser. ISCA ’08. Washington, DC, USA: IEEE Computer Society,
2008, pp. 203–214.

[302] S.-T. Zhou, S. Katariya, H. Ghasemi, S. Draper, and N. S. Kim, “Minimizing total area of low-voltage
SRAM arrays through joint optimization of cell size, redundancy, and ECC,” in Computer Design
(ICCD), 2010 IEEE International Conference on, Oct 2010, pp. 112–117.

[303] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto, “SRAM for Error-Tolerant Appli-
cations With Dynamic Energy-Quality Management in 28 nm CMOS,” Solid-State Circuits, IEEE Journal
of, vol. 50, no. 5, pp. 1310–1323, May 2015.

[304] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and Characterization of In-
herent Application Resilience for Approximate Computing,” in Proceedings of the 50th Annual Design
Automation Conference, ser. DAC ’13. New York, NY, USA: ACM, 2013, pp. 113:1–113:9.

[305] M. K. Qureshi, D. H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-Retention-Time
(VRT) Aware Refresh for DRAM Systems,” in Dependable Systems and Networks (DSN), 2015 45th Annual
IEEE/IFIP International Conference on, June 2015.

[306] M. Shoushtari, A. BanaiyanMofrad, and N. Dutt, “Exploiting Partially-Forgetful Memories for Ap-
proximate Computing,” Embedded Systems Letters, IEEE, vol. 7, no. 1, pp. 19–22, March 2015.

[307] Y. S. Park, D. Blaauw, D. Sylvester, and Z. Zhang, “Low-Power High-Throughput LDPC Decoder
Using Non-Refresh Embedded DRAM,” IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 783–794,
March 2014.

[308] M. May, M. Alles, and N. Wehn, “A Case Study in Reliability-aware Design: a Resilient LDPC Code
Decoder,” in Proceedings of the conference on Design, Automation and Test in Europe. ACM, 2008, pp.
456–461.

[309] Ngassa, C. Kameni and Savin, V. and Declercq, D., “Analysis of Min-Sum based Decoders Imple-
mented on Noisy Hardware,” in IEEE Asilomar, 2013.

[310] Ngassa, C. Kameni and Savin, V. and Declercq, D., “Min-sum-based decoders running on noisy hard-
ware,” in IEEE GLOBECOM, 2013.

[311] C. Novak, C. Studer, A. Burg, and G. Matz, “The effect of unreliable LLR storage on the performance
of MIMO-BICM,” in Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty
Fourth Asilomar Conference on, Nov 2010, pp. 736–740.

[312] A. Hussien, M. Khairy, A. Khajeh, K. Amiri, A. Eltawil, and F. Kurdahi, “A combined channel and
hardware noise resilient Viterbi decoder,” in Signals, Systems and Computers (ASILOMAR), 2010 Con-
ference Record of the Forty Fourth Asilomar Conference on, Nov 2010, pp. 395–399.

[313] Y. Emre and C. Chakrabarti, “Memory error compensation techniques for JPEG2000,” in Signal Pro-
cessing Systems (SIPS), 2010 IEEE Workshop on, Oct 2010, pp. 36–41.

[314] A. Balatsoukas-Stimming and A. Burg, “Density Evolution for Min-Sum Decoding of LDPC Codes
Under Unreliable Message Storage,” Ieee Communications Letters, vol. 18, no. 5, pp. 849–852, 2014.

[315] A. Teman, G. Karakonstantis, R. Giterman, P. Meinerzhagen, and A. Burg, “Energy versus data in-
tegrity trade-offs in embedded high-density logic compatible dynamic memories,” in Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2015, March 2015, pp. 489–494.

[316] ARM, “big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7; Improving Energy Efficiency in
High-Performance Mobile Platforms,” 2013. [Online]. Available: https://www.arm.com/files/pdf/
big_LITTLE_Technology_the_Futue_of_Mobile.pdf

[317] A. Moors, T. Rompf, P. Haller, and M. Odersky, “Scala-virtualized,” in Proceedings of the ACM SIGPLAN
2012 Workshop on Partial Evaluation and Program Manipulation, ser. PEPM ’12. New York, NY, USA:
ACM, 2012, pp. 117–120.

305

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

Bibliography

[318] T. Rompf and M. Odersky, “Lightweight Modular Staging: A Pragmatic Approach to Runtime Code
Generation and Compiled DSLs,” Commun. ACM, vol. 55, no. 6, pp. 121–130, Jun. 2012.

[319] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: A Comprehensive Step-by-step Guide, 1st ed.
USA: Artima Incorporation, 2008.

[320] Pervasive Parallelism Laboratory, “Delite.” [Online]. Available: http://stanford-ppl.github.io/
Delite/index.html

[321] N. George, H. Lee, D. Novo, T. Rompf, K. Brown, A. Sujeeth, M. Odersky, K. Olukotun, and P. Ienne,
“Hardware system synthesis from Domain-Specific Languages,” in Field Programmable Logic and Ap-
plications (FPL), 2014 24th International Conference on, Sept 2014, pp. 1–8.

[322] M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman, “Monitoring and debugging
the quality of results in approximate programs,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS XX. ACM,
2015, pp. 399–411.

[323] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-growth tanner
graphs,” Information Theory, IEEE Transactions on, vol. 51, no. 1, pp. 386–398, Jan 2005.

[324] J. Bao, Y. Zhan, J. Wu, and J. Lu, “Design of efficient low rate QCARA GLDPC codes,” in Wireless
Mobile and Computing (CCWMC 2009), IET International Communication Conference on, Dec 2009, pp.
213–216.

[325] J. Lin, J. Sha, Z. Wang, and L. Li, “Efficient Decoder Design for Nonbinary Quasicyclic LDPC Codes,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 57, no. 5, pp. 1071–1082, May 2010.

[326] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. North-Holland Mathemat-
ical Library, 1978.

[327] V. Pless, Introduction to the Theory of Error-Correcting Codes. Wiley-Interscience Series in Discrete
Mathematics, 1982.

[328] J. J. Sylvester, “Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessel-
lated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work,
and the theory of numbers,” Philosophical Magazine, vol. 34, pp. 461–475, 1867.

[329] J. Hadamard, “Résolution d’une question relative aux déterminants,” Bulletin des Sciences Mathéma-
tiques, vol. 17, pp. 240–246, 1893.

306

http://stanford-ppl.github.io/Delite/index.html
http://stanford-ppl.github.io/Delite/index.html

	Cover
	Titlepage
	Acknowledgments
	Dedication
	Abstract
	Keywords

	Resumo
	Palavras Chave

	Index
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	List of Acronyms
	List of Listings

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Main Contributions
	1.4 Outline

	2 LDPC Codes Fundamentals
	2.1 Linear Block Codes
	2.1.1 Generator Matrix
	2.1.2 Parity-Check Matrix
	2.1.3 Coding Rate
	2.1.4 Syndrome and Error Detection

	2.2 LDPC Codes over GF(2)
	2.2.1 Tanner Graph

	2.3 LDPC Decoding Algorithms over GF(2)
	2.3.1 Sum-Product Algorithm
	2.3.2 Logarithmic Sum-Product Algorithm
	2.3.3 Min-Sum Decoding Algorithm

	2.4 LDPC Codes over GF(q)
	2.4.1 Factor Graph

	2.5 LDPC Decoding Algorithms over GF(q)
	2.5.1 Sum-Product Algorithms
	2.5.2 Extended Min-Sum Algorithm

	2.6 Decoding Schedules
	2.6.1 Two-phased Message-passing
	2.6.2 Turbo-decoding Message-passing

	2.7 Overview of the Complexity
	2.7.1 Binary Decoding Algorithms
	2.7.2 Non-binary Decoding Algorithms

	2.8 Summary

	3 LDPC Decoder Architectures Overview
	3.1 Decoding on Programmable Architectures
	3.1.1 Programmable LDPC Decoder Mapping
	3.1.2 Tanner Graph Indexing Schemes
	3.1.3 Programming Models
	3.1.4 Thread-parallelism
	3.1.5 Data-parallelism
	3.1.6 Decoding Algorithms
	3.1.7 Decoding Schedules

	3.2 Decoding on Reconfigurable Architectures
	3.2.1 Programming Models
	3.2.2 Parallelism

	3.3 Summary

	4 Programmable LDPC Decoders
	4.1 Parallel Programming Models and Platforms
	4.1.1 Parallel Computing Principles
	4.1.2 General-purpose x86 multicore CPU
	4.1.3 General-purpose Computing on CUDA and OpenCL GPUs
	4.1.4 Distributed Computing on multicore Fermi Dual-GPU Clusters
	4.1.5 CUDA Programming Model
	4.1.6 OpenCL Programming Model
	4.1.7 MPI Programming Model

	4.2 Programmed LDPC Decoder Accelerators
	4.3 Single-GPU Decoders
	4.3.1 Data-parallelism
	4.3.2 Thread-parallelism
	4.3.3 Optimized Tanner Graph Indexing
	4.3.4 Binary LDPC Decoding
	4.3.5 Non-binary LDPC Decoding

	4.4 GPU-cluster Decoders
	4.4.1 Fast BER Monte Carlo Simulation
	4.4.2 GPU Cluster Execution

	4.5 Hybrid CPU/GPU Decoders
	4.5.1 Potential of the CPU Co-accelerator
	4.5.2 Experimental Results
	4.5.3 Energy efficiency of the CPU/GPU decoder

	4.6 Summary

	5 Reconfigurable LDPC Decoders
	5.1 Reconfigurable Computing
	5.1.1 Reconfigurable Architectures
	5.1.2 High-level Synthesis Programming Models

	5.2 Synthesized LDPC Decoder Accelerators
	5.3 Dataflow LDPC Decoder
	5.3.1 M-modulo dataflow LDPC decoder
	5.3.2 Pipelined FU Execution
	5.3.3 Experimental results

	5.4 Loop-annotated LDPC Decoder
	5.4.1 LDPC decoder isomorphic mapping to hardware
	5.4.2 Loop-acceleration
	5.4.3 Memory mapping
	5.4.4 Experimental results

	5.5 Wide-pipeline LDPC Decoder
	5.5.1 Altera OpenCL LDPC Decoder
	5.5.2 Experimental results
	5.5.3 SOpenCL LDPC Decoder
	5.5.4 Experimental results
	5.5.5 Operational Transform FFT/FWHT
	5.5.6 Experimental results

	5.6 Summary

	6 Power-aware LDPC Decoders
	6.1 Gear-Shift LDPC Decoders
	6.1.1 Gear-shift strategies
	6.1.2 MSA-based gear-shift decoder
	6.1.3 Variable quantization bits and compact representation
	6.1.4 Experimental Results

	6.2 LDPC Decoder under Unreliable Memory Storage
	6.2.1 Unreliable arithmetic and control silicon
	6.2.2 Unreliable Memory Storage
	6.2.3 Error Mitigation Strategies
	6.2.4 BER degradation mitigation strategies
	6.2.5 Experimental Results
	6.2.6 Power savings for the eDRAM case

	6.3 Summary

	7 Conclusions and Future Work
	7.1 Future Work

	A Survey of the LDPC Decoders on Programmable Hardware
	B Galois Field Arithmetic
	B.1 Fields
	B.1.1 Primitive Polynomials
	B.1.2 Matrix-Representation of Fields
	B.1.3 Fourier Transform

	C List of Hardware Employed
	Bibliography

