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Abstract	
Purpose:	 This	 study	 aimed	 to	 propose	 Diagnostic	 Reference	 Levels	 (DRLs)	 in	
paediatric	 plain	 radiography	 and	 to	 optimise	 the	 most	 frequent	 paediatric	 plain	
radiography	 examinations	 in	 Portugal	 following	 an	 analysis	 and	 evaluation	 of	
current	practice.	

Methods	and	materials:	Anthropometric	data	(weight,	patient	height	and	thickness	
of	 the	 irradiated	 anatomy)	 was	 collected	 from	 9,935	 patients	 referred	 for	 a	
radiography	 procedure	 to	 one	 of	 the	 three	 dedicated	 paediatric	 hospitals	 in	
Portugal.	 National	 DRLs	 were	 calculated	 for	 the	 three	 most	 frequent	 X-ray	
procedures	at	the	three	hospitals:	chest	AP/PA	projection;	abdomen	AP	projection;	
pelvis	 AP	 projection.	 Exposure	 factors	 and	 patient	 dose	 were	 collected	
prospectively	 at	 the	 clinical	 sites.	 In	 order	 to	 analyse	 the	 relationship	 between	
exposure	 factors,	 the	use	of	 technical	 features	and	dose,	experimental	 tests	were	
made	using	two	anthropomorphic	phantoms:	a)	CIRSTM	ATOM	model	705®;	height:	
110cm,	weight:	19kg	and	b)	Kyoto	kagakuTM	model	PBU-60®;	height:	165cm,	weight:	
50kg.	After	phantom	data	collection,	an	objective	image	analysis	was	performed	by	
analysing	the	variation	of	the	mean	value	of	the	standard	deviation,	measured	with	
OsiriX®	 software	 (Pixmeo,	 Switzerland).	 After	 proposing	 new	 exposure	 criteria,	 a	
Visual	 Grading	 Characteristic	 image	 quality	 evaluation	 was	 performed	 blindly	 by	
four	 paediatric	 radiologists,	 each	 with	 a	 minimum	 of	 10	 years	 of	 professional	
experience,	using	anatomical	criteria	scoring.	

Results:	A	high	heterogeneity	of	practice	was	found	and	the	established	Portuguese	
DRL	values	(Kerma	Air	Product	percentile	75,	KAPP75	and	Entrance	Surface	Air	kerma	
percentile	 75,	 ESAKP75)	 were	 higher	 than	 the	 most	 recent	 published	 data.	 The	
national	DRLs	established	for	Portugal	are:	CHEST:	KAPP75,	13mGy.cm2,	19mGy.cm2,	
60mGy.cm2,	134mGy.cm2,	94mGy.cm2,	respectively	for	age	groups	<1,	1-<5,	5-<10,	
10-<16,	 16-≤18.	 ABDOMEN:	 KAPP75,	 25mGy.cm2,	 84mGy.cm2,	 140mGy.cm2,	
442mGy.cm2,	 1401	mGy.cm2,	 respectively	 for	 age	 groups	 <1,	 1-<5,	 5-<10,	 10-<16,	
16-≤18.	 PELVIS:	 KAPP75,	 29mGy.cm2,	 75mGy.cm2,	 143mGy.cm2,	 585mGy.cm2,	
839mGy.cm2,	respectively	for	age	groups	<1,	1-<5,	5-<10,	10-<16,	16-≤18.	

DRLs	 by	 patient	weight	 groups	have	been	established	 for	 the	 first	 time.	 The	post	
optimisation	 DRLs	 by	 patient	 weight	 groups	 are:	 CHEST:	 KAPP75,	 9mGy.cm2,	
10mGy.cm2,	 15mGy.cm2,	 32mGy.cm2,	 57mGy.cm2,	 respectively	 for	 weight	 groups	
<5kg;	 5-<15kg;	 15-<30kg;	 30-<50kg;	 ≥50kg.	 ABDOMEN:	 KAPP75,	 10mGy.cm2,	
20mGy.cm2,	61mGy.cm2,	203mGy.cm2,	225mGy.cm2,	respectively	for	weight	groups	
<5kg;	5-<15kg;	15-<30kg;	30-<50kg;	≥50kg.	PELVIS:	KAPP75,	15mGy.cm2,	18mGy.cm2,	
45mGy.cm2,	75mGy.cm2,	79mGy.cm2,	respectively	for	weight	groups	<5kg;	5-<15kg;	
15-<30kg;	30-<50kg;	≥50kg.	
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ESAKP75	DRLs	 for	 both	patient	 age	 and	weight	 groups	were	 also	obtained	 and	 are	
described	in	the	thesis.	

Significant	 dose	 reduction	 was	 achieved	 through	 the	 implementation	 of	 an	
optimisation	 programme:	 an	 average	 reduction	 of	 41%	 and	 18%	 on	 KAPP75	 and	
ESAKP75,	respectively	for	chest	plain	radiography;	an	average	reduction	of	58%	and	
53%	 on	 KAPP75	 and	 ESAKP75,	 respectively	 for	 abdomen	 plain	 radiography;	 and	 an	
average	 reduction	 of	 47%	 and	 48%	on	 KAPP75	 and	 ESAKP75,	 respectively	 for	 pelvis	
plain	radiography.	

Conclusion:	 Portuguese	 DRLs	 for	 plain	 radiography	 were	 obtained	 for	 paediatric	
plain	radiography	(chest	AP/PA,	abdomen	and	pelvis).	Experimental	phantom	tests	
identified	adequate	plain	radiography	exposure	criteria,	validated	by	objective	and	
subjective	image	quality	analysis.	The	new	exposure	criteria	were	put	into	practice	
in	one	of	the	paediatric	hospitals,	by	 introducing	an	optimisation	programme.	The	
implementation	 of	 the	 optimisation	 programme	 allowed	 a	 significant	 dose	
reduction	to	paediatric	patients,	without	compromising	image	quality.	

Keywords:	diagnostic	reference	levels;	paediatric	radiology;	radiation	protection;	
optimisation.	
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Resumo	
Objetivo:	 Este	 estudo	 teve	 como	 objetivo	 propor	 Níveis	 de	 Referência	 de	
Diagnóstico	 (NRD)	 para	 a	 radiologia	 convencional	 pediátrica	 e	 otimizar	 os	
procedimentos	radiológicos	mais	frequentes	em	Portugal,	partindo	de	uma	análise	
e	avaliação	das	práticas	atuais.	

Materiais	 e	 Métodos:	 Foram	 recolhidos	 dados	 antropométricos	 (peso,	 altura	 e	
espessura	 anatómica	 da	 estrutura	 radiografada)	 de	 9.935	 doentes,	 referenciados	
para	um	exame	 radiológico,	 para	um	dos	 três	hospitais	 pediátricos	 existentes	 em	
Portugal.	 Os	 NRDs	 nacionais	 foram	 calculados	 para	 os	 três	 procedimentos	
radiológicos	mais	 frequentes:	 radiografia	do	tórax	AP/PA;	radiografia	do	abdómen	
AP;	radiografia	da	bacia	AP.	Os	factores	de	exposição	associados	aos	procedimentos	
bem	como	os	valores	de	dose	no	doente	foram	recolhidos	de	forma	prospectiva	em	
cada	um	dos	hospitais.	

Por	 forma	 a	 analisar	 a	 relação	 entre	 os	 parâmetros	 de	 exposição	 e	 a	 respectiva	
dose,	foi	efetuado	um	estudo	experimental	usando	dois	fantomas	antropomórficos:	
a)	modelo	 CIRSTM	 ATOM	 705®;	 altura:	 110	 centímetros,	 peso:	 19	 kg	 e	 b)	modelo	
Kyoto	 kagakuTM	 PBU-60®;	 altura:	 165	 centímetros,	 peso:	 50	 kg.	 Na	 sequência	 do	
estudo	 experimental	 nos	 fantomas,	 foi	 efetuada	 uma	 avaliação	 objectiva	 das	
imagens,	através	da	análise	da	variação	do	valor	médio	do	desvio-padrão,	medidos	
com	 o	 software	 OsiriX®	 (Pixmeo,	 Suíça).	 Com	 base	 nos	 resultados	 obtidos	 foram	
propostos	 novos	 parâmetros	 de	 exposição,	 para	 cada	 um	 dos	 procedimentos	 em	
estudo.	Para	validar	os	novos	parâmetros	de	exposição	em	procedimentos	clínicos	
foi	efetuada	uma	avaliação	subjetiva	da	qualidade	das	imagens	radiológicas,	através	
do	método	 Visual	 Grading	 Charateristics	 (VGC),	 realizada	 de	 forma	 independente	
por	quatro	especialistas	em	radiologia	pediátrica,	cada	um	com	um	mínimo	de	10	
anos	 de	 experiência	 profissional	 utilizando,	 para	 tal,	 critérios	 de	 avaliação	
anatômica.	

Resultados:	 Foi	 identificada	uma	grande	heterogeneidade	na	 forma	de	efetuar	os	
procedimentos	radiológicos	em	estudo,	tendo	sido	calculados	os	NRD	para	Portugal,	
definidos	como	percentil	75	do	Produto	Dose-Área,	(KAPP75)	e	percentil	75	da	dose	
á	 entrada	da	 pele	 (ESAKP75)	 que	 se	 revelaram	mais	 elevados	 quando	 comparados	
com	os	dados	mais	 recentes	publicados	na	 literatura.	Os	NRDs	estabelecidos	para	
Portugal	 são:	 TÓRAX	 AP/PA:	 KAPP75,	 13mGy.cm2,	 19mGy.cm2,	 60mGy.cm2,	
134mGy.cm2,	94mGy.cm2,	respectivamente	para	os	grupos	etários	<1,	1-<5,	5-<10,	
10-<16,	 16-≤18.	 ABDOMEN:	 KAPP75,	 25mGy.cm2,	 84mGy.cm2,	 140mGy.cm2,	
442mGy.cm2,	 1401	mGy.cm2,	 respectivamente	para	os	 grupos	etários	<1,	 1-<5,	 5-	
<10,	 10-<16,	 16≤18.	 BACIA:	 KAPP75,	 29mGy.cm2,	 75mGy.cm2,	 143mGy.cm2,	
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585mGy.cm2,	 839mGy.cm2,	 respectivamente	 para	 os	 grupos	 etários	 <1,	 1-	 <5,	 5-	
<10,	10-	<16,	16-≤18.	

Foram	 também	estabelecidos	 pela	 primeira	 vez	 os	NRDs	 por	 grupos	 de	 peso	 dos	
doentes.	Os	NRDs	obtidos	após	o	processo	de	otimização	por	grupos	de	peso	dos	
doentes	 são:	 TORAX	 AP/PA:	 KAPP75,	 9mGy.cm2,	 10mGy.cm2,	 15mGy.cm2,	
32mGy.cm2,	 57mGy.cm2,	 respectivamente	 para	 os	 grupos	 de	 peso	 <5kg;	 5-<15kg;	
15-<30kg;	 30-	 <50kg;	 ≥50kg.	 ABDÓMEN:	 KAPP75,	 10mGy.cm2,	 20mGy.cm2,	
61mGy.cm2,	203mGy.cm2,	225mGy.cm2,	 respectivamente	para	os	grupos	de	peso,	
<5kg;	5-<15kg;	15-	<30kg;	30-<50kg;	≥50kg.	BACIA:	KAPP75,	15mGy.cm2,	18mGy.cm2,	
45mGy.cm2,	75mGy.cm2,	79mGy.cm2,	 respectivamente	para	os	grupos	de	peso	<5	
kg;	5-<15kg;	15-<30kg;	30-	<50kg;	≥50kg.	

Os	NRDs	relativos	à	ESAKP75	para	ambos	os	grupos	de	idade	e	de	peso	dos	doentes	
também	foram	obtidas	e	estão	descritos	na	tese.	

Foi	 conseguida	 uma	 redução	 significativa	 na	 dose	 nos	 doentes	 após	 a	
implementação	 do	 programa	 de	 otimização:	 uma	 redução	 média	 de	 41%	 e	 18%	
respectivamente	 nos	 valores	 de	 KAPP75	 e	 de	 ESAKP75	 para	 a	 radiografia	 do	 tórax	
AP/PA;	uma	redução	média	de	58%	e	53%	respectivamente	nos	valores	de	KAPP75	e	
de	 ESAKP75,	 para	 a	 radiografia	 do	 abdómen;	 uma	 redução	 média	 de	 47%	 e	 48%	
respectivamente	nos	valores	de	KAPP75	e	de	ESAKP75,	para	a	radiografia	da	bacia.	

Conclusão:	Foram	definidos	os	NRDs	nacionais	para	as	radiografias	do	Tórax	AP/PA,	
Abdómen	 e	 Bacia.	 O	 estudo	 experimental	 efetuado	 permitiu	 definir	 critérios	 de	
exposição	mais	adequados	e	devidamente	validados	através	da	avaliação	objectiva	
e	subjetiva	das	imagens	radiológicas.	A	implementação	do	programa	de	otimização	
permitiu	 uma	 significativa	 redução	 da	 dose	 nos	 doentes	 pediátricos	 sem	
comprometer	a	qualidade	da	imagem.	

Palavras	chave:	níveis	de	referência	de	diagnóstico;	radiologia	pediátrica;	proteção	
radiológica;	otimização.	
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Introduction	and	objectives		
According	 to	 97/43/EURATOM	 (Medical	 Exposure	 Directive	 -	 MED)	 Directive	 the	
promotion	 and	 establishment	 of	Diagnostic	 Reference	 Levels	 (DRLs)	 is	mandatory	
for	EU	member	states.	In	Portugal	the	Directive	was	transposed	into	national	law	by	
decree-law	 180/2002,	 8	 August.	 Evidence	 shows	 significant	 differences	 in	 daily	
radiological	practice	at	European,	national	and	hospital	levels,	with	obvious	impact	
on	the	collective	effective	dose	received	by	the	population.	

Data	from	European	countries	shows	a	wide	variation	in	common	DRLs,	which	may	
be	 due	 to	 differences	 in	 socio-economic	 conditions,	 regulatory	 regimes,	 level	 of	
activity	 of	 professional	 bodies	 and	 in	 the	 structure	 of	 health	 care	 systems	
(private/public	 mix).	 International	 radiation	 protection	 bodies	 such	 as	 the	
International	 Atomic	 Energy	 Agency	 (IAEA)	 and	 the	 International	 Commission	 on	
Radiological	 Protection	 (ICRP)	 recommend	 that	 each	 country	 should	 carry	 out	 its	
own	national	DRL	survey	(Edmonds,	2009).	

Researchers	 question	 whether	 there	 is	 any	 justification	 to	 explain	 the	 use	 of	 an	
exposure	 that	 is	 10,	 20	 or	 even	 126	 times	 higher	 than	 that	 used	 by	 another	
institution	to	obtain	similar	diagnostic	images	(Gray	et	al.,	2005).	Published	studies	
(Carroll	&	Brennan,	 2003;	 Johnston	&	Brennan,	 2000)	 reported	wide	 variations	 in	
patient	 doses	 for	 the	 same	 radiographic	 examinations	 among	 hospitals	 in	 the	
United	Kingdom.	These	variations	are	attributable	to	a	wide	range	of	factors	such	as	
type	 of	 image	 receptor,	 exposure	 factors,	 number	 of	 images,	 type	 of	 anti-scatter	
grid	and	level	of	quality	control.	

The	Portuguese	health	and/or	radiation	protection	authorities	have	never	taken	any	
kind	of	formal	action	to	define	DRLs,	neither	by	adopting	the	existing	ones	from	the	
European	 guidance	 documents,	 nor	 by	 defining	 DRLs	 through	 surveys	 at	 national	
level.	

In	 fact	 the	 DRL	 concept,	 the	 need	 for	 optimisation	 and	 radiation	 protection	 in	
Portugal	 has	 only	 started	 to	 be	 known	and	 to	 be	 discussed	 in	 the	 last	 five	 years,	
through	 research	 activities	 driven	 by	 higher	 education	 institutions	 in	 radiography	
and	research	centres	in	combination	with	radiology	departments.	

There	 are	 published	 Portuguese	 National	 DRLs	 for	 paediatric	 head	 and	 chest	 CT	
(Santos,	Foley,	Paulo,	McEntee,	&	Rainford,	2014),	however	there	is	a	need	for	the	
official	regulatory	authorities	to	adopt	and	implement	them.		

The	 first	 known	 study	 developed	 in	 Portugal	 in	 the	 field	 of	 paediatric	 radiology	
optimisation	resulted	in	a	70%	reduction	on	Entrance	Surface	Air	Kerma	(ESAK)	and	
exposure	time	for	paediatric	chest	X-ray,	after	a	transition	from	screen/film	(S/F)	to	
Computed	Radiography	(CR)	systems	(Paulo,	Santos,	Moreira,	&	Figueiredo,	2011).	
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The	findings	of	this	study	were	the	motivation	for	the	development	of	this	thesis,	as	
they	raised	several	research	questions:	

• What	type	of	practice	is	being	used	for	paediatric	plain	radiography?	
• How	 do	 the	 exposure	 parameters	 influence	 patient	 dose	 exposure	 and	

image	quality	in	paediatric	imaging?	
• What	 is	 the	 impact	 of	 an	 optimisation	 programme	 in	 paediatric	 patients’	

exposure?	

These	research	questions	will	be	addressed	within	the	framework	of	this	thesis.	

To	achieve	this,	a	major	and	several	specific	objectives	have	been	defined:	

Major	objective:	

Obtain	DRLs	for	paediatric	plain	radiography.	

Specific	objectives:	

• Measure	and	evaluate	KAP	and	ESAK	 in	 the	most	 frequent	paediatric	plain	
radiography	procedures	and	derive	numeric	values	of	DRLs;	

• Compare	 the	 obtained	 results	 with	 the	 “European	 guidelines	 on	 quality	
criteria	 for	 diagnostic	 radiographic	 images	 in	 paediatrics”	 and	 other	
published	results;	

• Optimise	exam	procedures	in	order	to	improve	radiographers’	best	practice;	
• Re-evaluate	 DRLs	 after	 optimisation	 actions	 and	 analyse	 the	 impact	 on	

patient	dose;	
• Develop	 a	methodology	 to	 decrease	 radiation	 exposure	 in	 children,	 when	

feasible.	
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Figure	1	shows	the	design	structure	of	the	study	developed	in	this	thesis	in	order	to	
accomplish	the	defined	objectives.	

	

Figure	1:	Schematic	map	of	research	activity	and	phases	of	the	overall	thesis	
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1 Background	
Technological	 evolution	 and	 new	 scientific	 developments	 have	 driven	 the	 health	
care	 sector	 towards	 an	 unprecedented	 increase	 of	 its	 organisational	 complexity.	
One	 of	 the	 major	 contributors	 to	 that	 increase	 was,	 without	 doubt,	 the	
development	of	medical	imaging	technology.	

After	 Roentgen	 presented	 his	 manuscript,	 “On	 a	 new	 kind	 of	 Ray,	 A	 preliminary	
Communication”,	 to	 the	Wurzburg	Physical	Medical	Society	 in	1895,	 radiology	has	
transformed	 itself	 from	a	 scientific	 curiosity	 to	one	of	 the	main	pillars	of	modern	
health	 care,	 becoming	 one	 of	 the	 scientific	 areas	 that	 contributed	 significantly	 to	
the	understanding	and	dealing	with	the	disease	(Gagliardi,	1996).	Since	that	special	
moment,	the	radiology	body	of	knowledge	has	been	constantly	developing,	driven	
by	a	permanent	technological	(r)evolution	and	is	now	integrated	in	a	large	spectrum	
of	medical	imaging	procedures	(Lança	&	Silva,	2013).	

It	 is	 interesting	 to	 observe	 that	 120	 years	 after	 the	 revolution	 triggered	 by	
Roentgen’s	discovery	of	medical	imaging,	there	are	still	persisting	problems,	similar	
to	 those	 described	 in	 1910	 by	 Eddy	 German,	 one	 of	 the	 pioneers	 of	 the	
Radiographer	profession	in	the	United	States:	“It	was	difficult	to	find	two	operators	
who	 were	 anywhere	 near	 in	 accord	 regarding	 technical	 procedure.	 Some	 would	
advise	certain	procedures	and	others	entirely	different	programs”	(Terrass,	1995).	

Despite	the	scientific	knowledge	and	the	technological	development	in	the	past	120	
years,	the	reality	described	by	Eddy	German	in	1910	still	applies	to	today’s	practice	
of	 medical	 imaging.	 The	 reasons	 are	 manifold:	 (a)	 the	 lack	 of	 harmonisation	 of	
professional	 practice	 at	 all	 levels;	 (b)	 a	 communication	 gap	 between	 science	 and	
professional	 practice;	 (c)	 a	 delay	 in	 integrating	 the	 new	 technology	 concepts	 of	
medical	 imaging	 into	 curricular	 programmes	 of	 health	 professions;	 (d)	 a	 barrier	
between	manufactures/equipment	developers	and	clinical	practice.	
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1.1 Portuguese	Healthcare	Context	

According	 to	 the	Portuguese	National	 Institute	of	Statistics	 (www.ine.pt),	Portugal	
has	10,427,301	 inhabitants,	of	which	19.8%	are	 less	 than	19	years	old	 (data	 from	
2013).	

The	Portuguese	population	has	access	to	a	healthcare	system	that	is	characterised	
by	 three	 coexisting,	 overlapping	 systems:	 the	 national	 health	 service	 (NHS),	 a	
universal,	 tax-financed	 system;	 public	 and	 private	 insurance	 schemes	 for	 certain	
professions	 (which	 are	 called	 health	 subsystems);	 and	 private	 voluntary	 health	
insurance.	Thus,	the	Portuguese	healthcare	system	has	a	mix	of	public	and	private	
funding.	 The	 NHS,	 which	 provides	 universal	 coverage,	 is	 predominantly	 funded	
through	 general	 taxation.	 The	 health	 subsystems,	 which	 provide	 healthcare	
coverage	 to	 between	 20	 and	 25	 per	 cent	 of	 the	 population,	 are	 funded	 mainly	
through	 employee	 and	 employer	 contributions	 (including	 contributions	 from	 the	
state	as	the	employer	of	public	servants).	Close	to	20%	of	the	population	is	covered	
by	 voluntary	 private	 health	 insurance.	 About	 30%	 of	 total	 expenditure	 on	
healthcare	 is	 private,	 mainly	 in	 the	 form	 of	 out-of-pocket	 payments	 (both	 co-
payments	and	direct	payments	by	the	patient),	and	to	a	lesser	extent,	in	the	form	of	
premiums	to	private	 insurance	schemes	and	mutual	 institutions	(Barros	&	Simões,	
2007).	

Portugal	has	a	health	expenditure	of	10.2%	of	its	Growth	Domestic	Product	(GDP),	
above	the	average	value	(9.3%)	of	the	Organisation	for	Economic	Co-operation	and	
Development	(OECD)	countries	(OECD,	2013).	However	this	indicator	represents	the	
effort	that	the	population	makes	to	have	access	to	the	healthcare	system.	

New	medical	technologies,	such	as	digital	radiography	(DR),	computed	tomography	
(CT)	and	magnetic	resonance	imaging	(MRI)	are	improving	diagnosis	and	treatment,	
but	are	also	increasing	health	expenditure	(OECD,	2013).	

Considering	 the	 decrease	 of	 the	 Portuguese	 GDP	 in	 the	 last	 5	 years,	 the	 health	
expenditure	 per	 inhabitant	 has	 obviously	 decreased.	 Nevertheless	 Portugal	
presents	better	health	 indicators	 than	 the	majority	of	 the	OECD	countries.	 It	 is	of	
interest	that	Portugal	has	one	of	the	lowest	infant	mortality	rates:	3.4	deaths/1000	
births	(OECD,	2015).	

According	 to	 article	 64	 of	 the	 Portuguese	 Constitution	 (Assembleia	 da	 República,	
2005),	the	NHS	is	public	and	provides	universal	coverage.	

The	 NHS,	 although	 centrally	 financed	 by	 the	 Ministry	 of	 Health,	 has	 a	 strong	
Regional	 Health	 Authority	 (RHA)	 structure	 since	 1993,	 comprising	 five	 health	
administrations	 (Administração	Regional	de	Saúde	–	ARS):	ARS	Norte,	ARS	Centro,	
ARS	Lisboa	e	Vale	do	Tejo,	ARS	Alentejo	and	the	ARS	Algarve.	
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In	each	RHA	a	health	administration	board,	accountable	to	the	Minister	of	Health,	
manages	 the	NHS.	 The	management	 responsibilities	 of	 these	boards	 are	 a	mix	 of	
strategic	management	 of	 population	 health,	 supervision	 and	 control	 of	 hospitals,	
and	 centralised	 direct	 management	 responsibilities	 for	 primary	 care/NHS	 health	
centres.	 The	 RHAs	 are	 responsible	 for	 the	 regional	 implementation	 of	 national	
health	policy	objectives	and	for	the	coordination	of	all	levels	of	healthcare	(Barros	&	
Simões,	 2007).	 This	 organisation	 structure	 does	 not	 include	Madeira	 and	 Azores,	
since	 they	 have	 a	 special	 autonomous	 statute,	 however	 with	 the	 obligation	 to	
follow	and	respect	the	Portuguese	Constitution.	

	

	
Figure	2:	Portuguese	map	indicating	the	Regional	Health	Authorities	(RHA).	
Number	of	patients	and	human	resources	(HR)	in	each	RHA	(ACSS,	2015).	

In	 Portugal	 a	 patient	 is	 classified	 as	 paediatric	 until	 18	 years	 of	 age	 (Alto	
Comissariado	da	Saúde,	2009).	Healthcare	services	to	the	paediatric	population	can	
be	provided	 in	any	healthcare	centre	throughout	the	country.	However,	 there	are	
three	dedicated	paediatric	hospitals	 in	Portugal:	Hospital	Maria	Pia	do	Porto	 (ARS	
Norte);	 Hospital	 Pediátrico	 de	 Coimbra	 (ARS	 Centro);	 Hospital	 de	 D.	 Estefânia	 de	
Lisboa	 (ARS	 Lisboa	 e	 Vale	 do	 Tejo).	 These	 dedicated	 paediatric	 hospitals	 have	
recently	 been	 integrated	 into	 major	 hospital	 centres,	 respectively:	 Centro	
Hospitalar	do	Porto	(CHP),	Centro	Hospitalar	e	Universitário	de	Coimbra	(CHUC)	and	
Centro	Hospitalar	de	Lisboa	Central	(CHLC).	

These	 three	major	 centres	 serve	 as	 reference	 hospitals	 for	 paediatric	 patients	 in	
Portugal,	 who	 need	 access	 to	 differentiated	 healthcare	 in	 all	 medical	 fields.	 The	
three	 centres	 have	 practitioners	 exclusively	 dedicated	 to	 paediatrics	 and	 are	 in	
general	equipped	with	up-to-date	technology.	
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1.2 European	and	Portuguese	legal	frameworks	on	ionising	radiation	

In	1957,	six	founding	States	(Belgium,	France,	Germany,	Italy,	Luxembourg	and	the	
Netherlands)	 joined	 together	 to	 form	 the	 European	 Atomic	 Energy	 Community	
(Euratom)	 and	 signed	 the	 Euratom	 Treaty	 in	 Rome.	 The	 main	 objective	 of	 the	
Euratom	 Treaty	 is	 to	 contribute	 to	 the	 formation	 and	 development	 of	 Europe's	
nuclear	industry	and	to	ensure	security	of	supply.	

Before	 the	 European	 Community	 was	 founded,	 there	 had	 been	 the	 Founding	
Treaties:	 European	 Coal	 and	 Steel	 Community	 (ECSC),	 European	 Economic	
Community	(EEC)	and	Euratom.	In	1967	they	were	all	merged	to	become	later	the	
European	 Union.	While	 the	 first	 two	 ended,	 Euratom	 is	 left	 unchanged	 and	 was	
added	as	a	protocol	only	to	the	new	EU	Lisbon	Treaty	(European	Union,	2007).	

The	current	version	of	the	Euratom	Treaty	(European	Commission,	2012)	comprises	
177	 articles,	 from	 which	 the	 articles	 quoted	 below	 are	 of	 relevance	 to	 medical	
imaging:	

• Article	2:	“…	the	Community	shall	…	establish	uniform	standards	to	protect	
the	 health	 of	 workers	 and	 of	 the	 general	 public	 and	 ensure	 that	 they	 are	
applied”;	

• Article	30:	“Basic	standards	shall	be	laid	down	within	the	Community	for	the	
protection	of	 the	health	of	workers	and	the	general	public	against	dangers	
arising	from	ionising	radiations”;	

• Article	31:	“The	basic	standards	shall	be	worked	out	by	the	Commission	after	
it	has	obtained	the	opinion	of	a	group	of	persons	appointed	by	the	Scientific	
and	 Technical	 Committee	 from	 among	 scientific	 experts,	 and	 in	 particular	
public	health	experts,	in	the	Member	States”.	

Based	 on	 the	 Euratom	 Treaty	 the	 European	 Commission	 has	 published	 several	
Directives	(binding	legislation	to	be	implemented	by	EU	Member	States):	Directives	
89/618/Euratom,	 90/641/Euratom,	 96/29/Euratom,	 97/43/Euratom	 and	
2003/122/Euratom.	

All	 these	 directives	 were	 repealed	 by	 the	 Council	 Directive	 2013/59/Euratom	
(European	Commission,	2013a),	with	the	main	objectives	to	consolidate	the	existing	
European	 radiation	 protection	 legislation	 into	 one	 document	 and	 to	 revise	 the	
requirements	of	the	Euratom	Basic	Safety	Standards.	

According	to	article	106	of	Directive	2013/59/EURATOM,	the	Member	States	shall	
bring	 into	 force	 the	 laws,	 regulations	 and	 administrative	 provisions	 necessary	 to	
comply	with	the	Directive	by	6	February	2018.	Therefore	European	Member	States	
have	 three	 years	 to	 adapt	 their	 national	 legislation	 to	 the	 new	 European	
requirements.	
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This	thesis	is	mainly	focused	on	the	establishment	of	DRLs,	a	concept	introduced	by	
the	ICRP	(International	Commission	on	Radiological	Protection,	1996)	and	adopted	
for	 the	 first	 time	 by	 the	 European	 Commission	 through	 the	 97/43/EURATOM	
Directive	 (European	Commission,	1997)	as:	“dose	 levels	 in	medical	 radiodiagnostic	
or	interventional	radiology	practices,	or,	in	the	case	of	radio-pharmaceuticals,	levels	
of	 activity,	 for	 typical	 examinations	 for	 groups	 of	 standard-sized	 patients	 or	
standard	phantoms	for	broadly	defined	types	of	equipment”.	

With	 Directive	 2013/59/EURATOM	 (European	 Commission,	 2013a),	 the	 European	
Commission	made	a	clear	progress	and	strengthened	the	requirements	in	regard	to	
DRLs	 by	 changing	 the	 relevant	 text	 from:	 “Member	 States	 shall	 promote	 the	
establishment	 and	 the	 use	 of	 diagnostic	 reference	 levels	 for	 radiodiagnostic	
examinations”;	 to:	“Member	States	 shall	 ensure	 the	establishment,	 regular	 review	
and	 use	 of	 diagnostic	 reference	 levels	 for	 radiodiagnostic	 examinations”.	 The	
reference	 to	DRLs	 in	 the	 new	Directive	 is	 related	 to	 optimisation	 and	 included	 in	
article	56	(European	Commission,	2013a). 

Another	important	concept	included	in	the	EURATOM	Directives	from	the	beginning	
is	 Clinical	 Audit,	 described	 as:	 “a	 systematic	 examination	 or	 review	 of	 medical	
radiological	procedures	which	seeks	to	improve	the	quality	and	outcome	of	patient	
care	through	structured	review,	whereby	medical	radiological	practices,	procedures	
and	 results	 are	 examined	 against	 agreed	 standards	 for	 good	medical	 radiological	
procedures,	with	modification	of	practices,	where	appropriate,	and	the	application	
of	new	standards	if	necessary;”	(European	Commission,	1997,	2013a).	

The	European	Commission	realised	the	lack	of	understanding	of	how	to	implement	
such	an	important	concept	in	daily	practice	and	published	the	Guidelines	on	Clinical	
Audit	 for	Medical	Radiological	Practices	(European	Commission,	2009)	as	a	tool	to	
facilitate	the	achievement	of	its	general	objectives:	a)	improve	the	quality	of	patient	
care;	 b)	 promote	 the	 effective	 use	 of	 resources;	 c)	 enhance	 the	 provision	 and	
organisation	of	clinical	services;	d)	further	professional	education	and	training.	

Article	18	of	Directive	2013/59/EURATOM	is	related	to	education,	information	and	
training	in	the	field	of	medical	exposure.	According	to	this	article,	“Member	States	
shall	ensure	that	practitioners	and	the	individuals	involved	in	the	practical	aspects	of	
medical	 radiological	 procedures	 have	 adequate	 education,	 information	 and	
theoretical	and	practical	 training	for	the	purpose	of	medical	 radiological	practices,	
as	well	as	relevant	competence	in	radiation	protection”.	

To	 give	 guidance	 to	 Member	 States	 the	 European	 Commission	 published	 the	
Guidelines	on	radiation	protection	education	and	training	of	medical	professionals	
in	 the	 European	 Union	 (European	 Commission,	 2014a).	 These	 guidelines	 were	
developed	under	the	MEDRAPET	project	 following	the	European	Knowledge,	Skills	
and	 Competences	 (KSC)	 model	 (European	 Commission,	 2008a)	 and	 represent	 an	
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important	 tool	 for	 education	 institutions,	 health	 authorities	 and	 regulatory	
authorities	to	implement	and	audit	education	and	training	programmes	in	radiation	
protection.	

Portugal	 is	 a	 member	 of	 the	 European	 Atomic	 Energy	 Community	 (Euratom)	
(European	Commission,	2012),	the	IAEA	and	the	OECD	Nuclear	Energy	Agency.	

As	 member	 of	 the	 Euratom	 Community,	 Portugal	 has	 to	 comply	 with	 the	 EU	
Directives	 laying	 down	 basic	 safety	 standards	 for	 protection	 against	 the	 dangers	
arising	from	exposure	to	ionising	radiation.	

There	is	no	single	framework	act	governing	the	nuclear	sector	in	Portugal.	Instead,	
more	than	100	 laws,	regulations	and	decrees	set	out	provisions	governing	nuclear	
activities,	 frequently	 derogating	 each	 other	 implicitly,	 to	 the	 point	 where	 it	
becomes	 a	matter	 of	 doctrinal	 debate	 to	 identify	which	 provisions	 are	 applicable	
(OECD,	2011).		

The	main	legal	instruments	governing	the	use	of	ionising	radiation	in	healthcare	in	
Portugal	are:	

• Regulatory-Decree	Nº.	9/90,	of	19	April,	amended	by	Regulatory-Decree	Nº.	
3/92,	of	6	March,	regulating	the	rules	and	directives	concerning	protection	
from	ionising	radiation;	

• Decree-Law	 Nº.	 492/99,	 of	 17	 November,	 revised	 by	 Decree-Law	 No.	
240/2000,	of	26	September,	approving	the	legal	framework	for	the	licensing	
and	 control	 of	 activities	 carried	 out	 in	 private	 health	 units	 using	 ionising	
radiation,	 ultra-sound	 or	 magnetic	 fields	 for	 diagnostic,	 therapeutic	 or	
preventive;		

• Decree-Law	 Nº.	 165/2002,	 of	 17	 July,	 amended	 by	 Decree-Law	 No.	
215/2008,	 of	 10	 November,	 setting	 out	 the	 competencies	 of	 the	 bodies	
intervening	 in	 the	 field	 of	 protection	 against	 ionising	 radiation,	 as	 well	 as	
general	principles	of	such	protection;	

• Decree-Law	 Nº.	 167/2002,	 of	 18	 July,	 amended	 by	 Decree-Law	 No.	
215/2008,	of	10	November,	setting	out	the	legal	framework	for	the	licensing	
and	functioning	of	entities	active	in	the	field	of	radiological	protection;	

• Decree-Law	 Nº.	 180/2002,	 of	 8	 August,	 amended	 by	 Decree-Law	 No.	
215/2008,	 of	 10	 November,	 setting	 out	 the	 legal	 framework	 for	 the	
protection	 of	 people’s	 health	 against	 the	 dangers	 arising	 from	 ionising	
radiation	in	medical	radiological	exposures;		

• Decree-Law	 Nº.	 222/2008,	 of	 17	 November,	 setting	 out	 basic	 safety	 rules	
concerning	the	sanitary	protection	of	the	population	and	of	workers	against	
dangers	arising	from	ionising	radiation.		

Some	of	these	legal	instruments	were	implemented	after	the	European	Commission	
decided	 to	 send	 a	 reasoned	opinion	 to	 Portugal	 for	 failure	 to	 fulfil	 its	 obligations	
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related	to	basic	safety	standards	for	the	protection	of	the	health	of	workers	and	the	
general	public	from	ionising	radiation.	

Portugal	 has	 notified	 transposition	 measures,	 which	 are	 dispersed	 in	 various	
legislative	 texts,	 instead	 of	 a	 coherent	 and	 consolidated	 legal	 framework.	 The	
European	Commission	considers	Portuguese	legislation	on	radiation	protection	too	
complex,	 creating	uncertainty	 for	 the	citizens	 regarding	 the	 relevant	 transposition	
provisions	in	force	(European	Commission,	2007a).	

At	present,	Portugal	fulfils	all	legal	requirements	regarding	the	transposition	of	the	
Euratom	Directives.	However,	although	the	majority	and	most	important	aspects	of	
the	basic	safety	standards	for	protection	against	the	dangers	arising	from	exposure	
to	 ionising	 radiation	 are	 legally	 published,	 the	 requirements	 are	 not	 observed	 in	
daily	 practice.	 It	 is	 not	 even	 possible	 to	 clearly	 identify,	 in	 the	 complex	 and	
entangled	 Portuguese	 legislation,	 who	 acts	 as	 the	 national	 radiation	 protection	
authority	 responsible	 for	ensuring	 the	 implementation	of	 the	 radiation	protection	
standards.	

The	topic	of	 this	 thesis	 is	particularly	 focused	on	article	61,	nº	1,	paragraph	 (a)	of	
the	 Directive	 2013/59/EURATOM	 (European	 Commission,	 2013a):	 “Special	
practices:	 Member	 States	 shall	 ensure	 that	 appropriate	 medical	 radiological	
equipment,	 practical	 techniques	 and	 ancillary	 equipment	 is	 used	 in	 medical	
exposure:	of	children”.	
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1.3 The	shift	of	paradigm	in	medical	imaging	

The	advent,	consequent	development	and	integration	of	computer	technology	into	
health	 industry	were	 the	 trigger	 for	 the	 conception	 of	 digital	 imaging	 systems	 in	
radiology,	 significantly	 improving	 imaging	 performance.	 Through	 an	 exponential	
increase	in	the	number	of	procedures,	medical	imaging	departments	contributed	to	
an	 unprecedented	 change	 in	 patient	workflow	 as	well	 as	 to	 enhanced	 diagnostic	
capabilities.	 Throughout	 the	 world,	 and	 in	 particular	 in	 developed	 countries,	
conventional	 fluoroscopic	 and	 S/F	 radiography	 have	 been	 replaced	 by	 digital	
systems,	CR	or	DR	(Busch	&	Faulkner,	2006).	

Digital	radiography	brought	several	advantages	to	medical	imaging	procedures,	due	
to	its	wide	dynamic	range,	the	possibility	to	store	and	transfer	images	digitally	and	
most	 of	 all,	 due	 to	 the	 image	 post	 processing	 capabilities	 that	 the	 systems	 offer.	
However,	 despite	 all	 these	 technological	 features,	 with	 clear	 benefits	 for	 the	
workflow	 of	 medical	 imaging	 departments,	 patient	 overexposure	 to	 ionising	
radiation	might	occur	without	visible	impact	on	image	quality.	Radiographers	were	
used	to	S/F	systems	that	were	by	themselves	a	“self-control”	system,	since	low	or	
high	 exposures	 would	 deliver	 a	 “non	 diagnostic	 image”	 to	 the	 radiologists	
responsible	for	image	interpretation.	An	overexposed	image	was	too	black,	and	an	
underexposed	image	was	too	white.	

The	 image	 processing	 algorithms	 of	 digital	 systems	 are	 standardised	 for	 each	
imaging	 procedure.	 Therefore	 adequate	 gray-scale	 images	 are	 displayed	 correctly	
despite	underexposure	or	overexposure	(Don	et	al.,	2013).	In	digital	systems,	good	
images	 are	 obtained	 for	 a	 large	 range	 of	 doses	 (International	 Commission	 on	
Radiological	 Protection,	 2004).	 Due	 to	 the	 fact	 that	 in	 digital	 systems	 there	 is	 a	
separation	 between	 acquisition,	 processing	 and	 image	 display,	 a	 radiograph	 can	
have	 an	 acceptable	 diagnostic	 quality,	 but	 could	 be	 under	 or	 overexposed	
(Herrmann	et	al.,	2012).	

Another	 reason	 related	 to	 the	 increase	 of	 patient	 dose,	 together	 with	 the	 wide	
dynamic	 range	of	 digital	 imaging	 systems,	 is	 the	 lack	 of	 training	 and/or	 the	 short	
adaptation	period	to	the	novel	technology	installed.	Very	often	digital	systems	are	
used	 in	 the	 same	way	as	 S/F	 technology,	 including	 the	use	of	 the	 same	exposure	
factors,	submitting	patients	to	higher	doses	without	being	perceived	(International	
Atomic	Energy	Agency,	2011).	It	might	happen	that	non-optimised	exposure	factors	
produce	suboptimum	 image	processing,	hiding	 relevant	diagnostic	 information	 (C.	
Schaefer-Prokop,	Neitzel,	Venema,	Uffmann,	&	Prokop,	2008).	

All	 these	 aspects	 combined	 with	 the	 lack	 of	 well-established	 methods	 to	 audit	
patient	 doses	 in	 digital	 systems	 can	 increase	 the	 problem	 of	 patient	 radiation	
exposure	(Eliseo	Vaño	et	al.,	2007).		
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Therefore	 a	 special	 attention	 must	 be	 given	 to	 continuous	 professional	
development	(CPD)	of	radiographers,	radiologists	and	medical	physicists,	in	order	to	
ensure	 that	 adequate	 knowledge,	 skills	 and	 competences	 are	 acquired	 when	
making	 the	 transition	 from	 S/F	 radiography	 to	 digital	 systems	 (Nyathi,	 Chirwa,	 &	
Van	Der	Merwe,	2010).	

There	 is	 no	 doubt	 that	 the	 shift	 of	 paradigm	 in	medical	 imaging	 has	 significantly	
contributed	to	a	better	and	faster	healthcare	delivery.	However,	there	are	evident	
challenges	 for	 radiographers,	 radiologists,	 medical	 physicists,	 and	 other	 health	
professionals	directly	involved	in	the	use	of	ionising	radiation,	related	to	adapting	to	
this	new	digital	environment.	Education	and	training	are	definitely	among	the	major	
challenges	 (European	 Commission,	 2014a).	 This	 education	 and	 training	 process	 is	
even	more	important	in	paediatric	radiology,	where	maintaining	diagnostic	imaging	
quality	with	an	achievable	quality	dose	is	even	more	critical	(Moore	et	al.,	2012).	

Although	 recognising	 the	 potential	 of	 digital	 systems	 to	 improve	 the	 practice	 of	
medical	 imaging,	 the	 ICRP	 became	 aware	 of	 the	 risk	 of	 overuse	 of	 radiation.	 To	
manage	the	 identified	risks,	 the	 ICRP	published	several	specific	recommendations,	
including	 appropriate	 training,	 particularly	 as	 regards	 patient	 dose	 management,	
revision	of	the	DRLs,	and	frequent	patient	dose	audits	(International	Commission	on	
Radiological	Protection,	2004).	

As	 far	as	 the	situation	 in	Portugal	 is	 concerned,	 there	 is	no	official	data	 regarding	
the	number	and	type	of	radiography	equipment	installed.	However	according	to	the	
authors’	knowledge	and	information,	the	majority	(if	not	all)	Portuguese	public	and	
private	medical	imaging	departments	have	shifted	towards	CR	and/or	DR	systems.	
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1.4 Plain	Radiography	Detector	Systems		

A	traditional	X-ray	image	is	formed	by	different	shades	of	gray	(grayscale),	each	one	
representing	the	tissue	and	organs	X-ray	attenuation	properties.	For	a	given	X-ray	
energy,	the	attenuation	coefficient	rises	with	the	increase	of	the	atomic	number	of	
the	radiographed	anatomical	structure.	

There	 are	 several	 events	 that	 occur	 when	 photons	 and	 electrons	 interact	 with	
matter,	such	as	attenuation,	absorption	and	scattering,	transforming	the	energy	of	
the	original	primary	X-ray	beam.	An	X-ray	image	is	therefore	made	from	the	capture	
of	 the	 energy	 output	 after	 the	 interaction	 of	 X-ray	 with	 the	 matter.	 The	 energy	
capture	process	can	be	done	by	using	(1)	a	screen-film	or	(2)	a	digital	system.	

	

1.4.1 Screen-film	Systems		

For	decades	S/F	systems	in	combination	with	various	intensifying	screens	have	been	
the	standard	 for	medical	 imaging	because	of	 their	 functional	utility	and	perceived	
high-image	quality,	and	have	been	used	to	capture,	display,	store	and	communicate	
medical	imaging.	

A	S/F	system	(figure	3)	is	composed	of:	

1. Cassette:	 a	 flat,	 light-tight	 container	 in	 which	 X-ray	 films	 are	 placed	 for	
exposure	 to	 ionising	 radiation	and	usually	backed	by	 lead	 to	eliminate	 the	
effects	of	back	scatter	radiation;	

2. Intensifying	 screens:	 a	 plastic	 sheet	 coated	 with	 fluorescent	 material	
(phosphors),	which	converts	photon	energy	to	light.	

3. Film:	 consists	 of	 an	 emulsion-gelatin	 containing	 radiation	 sensitive	 silver	
halide	 crystals,	 such	 as	 silver	 bromide	 or	 silver	 chloride,	 and	 a	 flexible,	
transparent,	blue-tinted	base	

The	two	main	phosphors	used	in	the	intensifying	screens	are:	a)	calcium	tungstate	
(CaWO4),	also	known	as	slow	screens	due	to	their	lower	efficiency,	emitting	light	in	
the	 deep	 blue;	 b)	 rare	 earth	 phosphors,	 such	 as	 the	 terbium-doped	 gadolinium	
oxysulfide	 (Gd2O2S:Tb),	 emitting	 green	 light,	 or	 thulium–doped	 lanthanum	
oxybromide	 (LaOBr:Tm)	emitting	green	 light	 (International	Atomic	Energy	Agency,	
2014).	Rare	earth	phosphors	are	more	efficient	at	converting	X-rays	to	visible	light	
and	thus	further	reduce	the	radiation	to	the	patient.	
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Figure	3:	Screen-film	receptor	

(A)	Opened	cassette	showing	placement	of	film	and	position	of	screens,	and	(B)	cross-sectional	
view	through	a	dual	screen	system	used	in	general	purpose	radiography	with	the	film	sandwiched	

between	two	screens. 

 

The	use	of	intensifying	screens	decreases	the	absorbed	dose	received	by	the	patient	
compared	to	X-rays	directly	exposing	the	film.	Films	are	typically	exposed	by	95%	to	
99%	 light	 and	 to	 1%	 to	 5%	 of	 X-ray	 photons	 when	 intensifying	 screens	 are	 used	
(Bushong,	2012).		

The	emulsion	of	an	exposed	sheet	of	X-ray	film	contains	the	latent	image.	Although	
it	looks	the	same	as	that	of	the	unexposed,	the	exposed	emulsion	is	altered	by	the	
exposure	 to	 light.	 The	 latent	 image	 is	 recorded	 as	 altered	 chemical	 bonds	 in	 the	
emulsion,	 which	 are	 not	 visible.	 The	 latent	 image	 is	 rendered	 visible	 during	 film	
processing	by	chemical	 reduction	of	 the	silver	halide	 into	metallic	silver	grains,	by	
chemical	processing	in	a	film	processor	(Lima,	2009).	

Although	the	use	of	 the	screen-film	as	a	detector	system	is	becoming	obsolete	all	
around	 the	 world	 and	 even	 not	 existing	 any	 more	 in	 most	 European	 countries	
(Portugal	 has	 no	 public	 or	 private	medical	 imaging	 department	 using	 screen-film	
systems,	although	official	information	is	lacking),	it	is	important	to	analyse	some	of	
the	 main	 features	 of	 this	 system,	 especially	 the	 denominated	 film	 characteristic	
curve,	also	known	as	the	Hurter	and	Driffield	(H&D)	curve,	a	plot	of	a	film’s	optical	
density	(OD)	as	a	function	of	the	log	exposure.	
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Figure	4:	A	Hurther	and	Driffield	curve	

The	regions	of	the	H&D	curve	include	the	toe,	the	linear	region	and	the	shoulder.	The	base	+	fog	
density	corresponds	to	the	OD	of	the	unexposed	film;	adapted	from	(Sprawls,	2015)	

	

When	a	 film	 is	exposed	to	the	 light	 from	an	 intensifying	screen,	 its	 response,	as	a	
function	of	X-ray	exposure,	is	nonlinear	and	the	curve	has	a	sigmoid	(S)	shape.	The	
toe	 is	 the	 low-exposure	 region	 of	 the	 curve	 (meaning	 that	 less	 radiation	 and	
consequently	 light	 reached	 that	 area	 of	 the	 film	 e.g.:	 bone,	 mediastinum,	 etc.).	
Between	 the	 toe	 and	 the	 shoulder	 of	 the	 curve	 is	 where	 ideally	 most	 of	 the	
radiographic	image	should	be	exposed.	Beyond	the	shoulder	are	the	areas	of	over-
exposure	 (Lima,	2009).	 It	 is	easy	 to	understand	 that	with	a	 screen-film	model	 the	
response	of	the	system	is	limited	to	the	slope	between	the	toe	and	the	shoulder	of	
the	 curve,	 and	 therefore	 has	 a	 limited	 dynamic	 range,	 which	 leaves	 the	
radiographer	with	a	very	 low	margin	of	error	when	making	radiographic	exposure	
with	diagnostic	image	quality	(Haus,	1996).	
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1.4.2 Digital	Systems		

The	development	of	computer	 technology	 in	 the	third	quarter	of	 the	XXth	century	
led	to	a	dramatic	change	in	the	organisational	structures	of	our	society,	especially	in	
the	developed	countries.	Although	the	 impact	was	transversal	 in	all	sectors	of	the	
society,	 the	advancement	of	 computer	 technology	created	a	major	 (r)evolution	 in	
the	healthcare	sector,	particularly	in	medical	imaging.	

According	to	 literature	there	are	various	different	taxonomy	approaches	to	define	
plain	radiography	digital	systems	(Lança	&	Silva,	2013),	mainly	due	to	the	fact	that	
several	 technologies	 were	 introduced	 in	 the	market	 in	 a	 very	 short	 time	 period,	
which	did	not	allow	a	consolidation	of	concepts	and	definitions.	

Looking	 back	 in	 time	 and	 considering	 the	 technological	 features	 of	 plain	
radiography	 digital	 systems,	 the	 authors	 opted	 to	 use	 the	 taxonomy	 that	 splits	
digital	 systems	 in	CR	and	DR	 (Korner	et	al.,	2007;	C.	M.	Schaefer-Prokop,	De	Boo,	
Uffmann,	&	Prokop,	2009).	

	

Figure	5:	Taxonomy	for	plain	radiography	digital	systems	

(Korner	et	al.,	2007)	

The	 introduction	of	CR	systems	 in	medical	 imaging	departments	 in	1983	triggered	
the	 transition	 from	 screen-film	 to	 digital	 environments	 (Cowen,	 Davies,	 &	
Kengyelics,	2007)	and	heralded	the	end	of	the	traditional	X-ray	film.	

For	the	first	time	a	radiograph	could	be	displayed	and	viewed	at	several	places	by	
different	persons	at	the	same	time,	owing	to	the	development	and	implementation	
of	the	Picture	Archiving	and	Communication	System	(PACS)	in	daily	routine.	

CR	technology	is	still	the	most	widely	used	digital	acquisition	method,	mainly	due	to	
the	 fact	 that	 it	 allows	 the	 transition	 from	S/F	 to	digital	 systems	without	 replacing	
the	installed	radiography	equipment.	
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A	CR	system	is	composed	of	an	image	plate	(IP),	a	CR	reader	and	a	viewing	station.	
The	IP	is	made	of	a	thin	layer	of	phosphor	crystals	implanted	in	a	binder	and	fixed	
on	 a	 plastic	 substrate.	 The	 most	 frequently	 used	 phosphor	 material	 is	 barium	
fluorohalide	 activated	 with	 europium	 (BaFX:Eu2+:	 where	 X	 represents	 one	 of	 the	
halogens	used,	bromine	(Br),	iodine	(I)	or	chlorine	(Cl)	atoms)	(Cowen	et	al.,	2007).	
Although	 appearing	 quite	 similar	 to	 a	 regular	 intensifying	 screen,	 an	 IP	 functions	
quite	differently.	

Both	 intensifying	 screens	 and	 imaging	 plates	 rely	 on	 the	 principle	 of	 electron	
excitation.	 Intensifying	 screens	 use	 a	 rare	 earth	 phosphor,	which	 is	 a	 fluorescent	
material	 that	emits	 light	photons	after	being	 stimulated	by	X-rays.	These	photons	
are	converted	to	a	 latent	 image	on	the	film	using	silver	halide	crystal	centres	as	a	
storage	medium.	 The	 IP	 uses	 a	 phosphorescence	material	 (BaFX:Eu2+)	 that,	when	
exposed	to	X-rays,	forms	a	latent	image	directly	on	the	imaging	plate	itself,	because	
the	electrons	of	the	screen	are	excited	to	a	higher	energy	level	and	are	trapped	in	
halide	 vacancies.	 Holes	 created	 by	 the	 missing	 valence	 electrons	 cause	 Eu2+	 to	
become	Eu3+.	

This	trapped	energy	can	be	released	if	stimulated	by	additional	light	energy	of	the	
proper	 wavelength	 by	 the	 process	 of	 photostimulated	 luminescence	 (PSL)	
(American	 Association	 of	 Physicists	 in	 Medicine,	 2006).	 This	 latter	 process	 takes	
place	in	the	CR	reader.	

Once	the	plate	is	inside	the	reader,	the	phosphor	is	scanned	with	a	red	laser	beam,	
releasing	the	trapped	electrons	(at	a	high	energy	level),	that	emit	light	when	going	
back	 to	 their	 normal	 level	 of	 energy	 (Lança	 &	 Silva,	 2013).	 The	 emitted	 light	 is	
collected	 by	 a	 photodiode	 and	 converted	 into	 an	 electric	 signal	 to	 produce	 the	
digital	image	(figure	6).	

	
Figure	6:	Schematic	representation	of	a	CR	reader	system	

A	laser	beam	scans	the	CR	IP	and	releases	the	stored	energy	as	visible	light.	A	photomultiplier	tube	
converts	the	light	to	an	electric	signal.	A	converter	creates	the	digital	image,	which	is	then	sent	to	the	

computer	system.	Adapted	from	(International	Atomic	Energy	Agency,	2014)	
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After	the	plate	is	scanned	inside	the	reader,	it	is	exposed	to	an	intense	white	light	to	
erase	it.	This	ensures	that	any	residual	image	on	the	IPs	is	erased.	IP’s	can	be	reused	
at	least	10,000	times	before	they	need	to	be	replaced.	

Although	the	implementation	of	CR	systems	has	allowed	the	changeover	from	plain	
radiography	 to	 the	 new	 digital	 environment,	 the	 examination	 workflow	 has	 not	
changed	much.	Radiographers	still	have	to:	

• choose	the	size	of	the	IP	according	to	requested	procedure;	
• carry	 the	 IP	 to	 the	X-ray	equipment	and	put	 it	 in	 the	 right	position	on	 the	

potter-bucky;	
• remove	the	IP	after	exposure	and	transport	it	to	the	CR	reader.	

DR	 systems	 were	 introduced	 in	 the	 market	 in	 the	 late	 1980’s	 early	 1990’s	 and	
immediately	created	high	expectations,	since	the	introduction	of	the	new	flat-panel	
detectors	(FPD)	promised	to	significantly	improve	patient	workflow	by	dramatically	
decreasing	the	radiographic	procedure	time	and	the	radiographer	workload.	It	has	
been	shown	that	by	integrating	the	FPD	systems	into	daily	practice,	productivity	has	
been	 further	 enhanced,	 since	 the	 IP	 manipulation	 step	 has	 been	 eliminated	
(Dackiewicz,	Bergsneider,	&	Piraino,	2000).	

One	of	the	key	differences	between	FPD	and	CR	is	the	fact	that	FPD	have	a	direct	
readout	matrix	made	of	amorphous	silicon	(aSi)	 thin-film	transistors	 (TFT)	 (aSi-TFT	
elements).	This	TFT	layer	is	directly	attached	to	an	X-ray	absorption	medium	(C.	M.	
Schaefer-Prokop	et	 al.,	 2009)	 and	 therefore	 the	digital	 image	 is	 directly	 sent	 to	 a	
monitor	display	immediately	after	the	exposure.	

As	 shown	 in	 figure	 7	 there	 are	 two	 types	 of	 DR	 systems:	 a)	 those	 that	 use	 a	
scintillator	 (normally	 Cesium	 Iodide	 –	 CsI,	 doped	 with	 Thallium-Tl	 or	 Gadolinium	
Oxysulfide	-	Gd2O2S)	as	the	absorption	medium,	which	transforms	X-ray	into	visible	
light,	that	is	then	captured	by	a	photodiode	or	by	a	Couple	Charge	Device	(CCD)	or	a	
Complementary	 Metal	 Oxide	 Semiconductor	 (CMOS):	 indirect	 conversion;	 or	 b)	
those	 that	 use	 a	 condensator	 material	 (normally	 amorphous	 selenium	 –	 aSe)	
attached	 directly	 to	 the	 TFT	 array:	 direct	 conversion,	 where	 the	 absorbed	 X-ray	
energy	is	directly	converted	into	charge,	obviating	the	need	to	have	an	intermediate	
step	transforming	X-ray	into	light	(Korner	et	al.,	2007).	
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Figure	7:	Schematic	representation	of	DR	systems	

Adapted	from	(Chotas,	Dobbins,	&	Ravin,	1999)	

All	 the	 systems	 described	 are	 available	 in	 the	 market,	 with	 the	 Food	 and	 Drug	
Administration	(FDA,	United	States	of	America)	510(k)	clearance	approval	and	with	
the	 CE	 mark,	 according	 to	 the	 European	 Medical	 Device	 Directive	 (EMDD)	
(European	 Commission,	 2007b).	 It	 is	 important	 to	 note	 that	 both	 FDA	 (US	
Government,	 2007)	 and	 EMDD	 do	 not	 require	 clinical	 trials	 for	 the	 pre	 market	
authorization	of	medical	imaging	equipment.	The	requirements	taken	into	account	
are	mainly	related	to	quality	and	safety	specifications.	

Taking	 that	 into	 consideration,	 vendors	 are	 free	 to	 offer	 any	 type	 of	 DR	 system	
approved	 for	 the	 market.	 Therefore	 it	 is	 important	 to	 understand	 the	 different	
characteristics	 of	 each	 system	 that,	 depending	 on	 the	material	 used,	will	 lead	 to	
different	physical	performance	of	the	detector.	

Detective	Quantum	Efficiency	(DQE)	is	currently	established	as	the	gold	standard	to	
measure	 the	 detector	 performance	 (Lança	 &	 Silva,	 2013).	 When	 assessing	 the	
physical	 efficiency	 of	 a	 radiological	 digital	 detector,	 the	 measurement	 of	 image	
quality	 (using	 Signal-to-Noise	Ratio	 -	 SNR)	must	be	 referred	 to	 the	 radiation	dose	
used	to	create	the	image.	In	general	terms,	effective	radiographic	imaging	demands	
the	maximisation	of	recorded	SNR,	while	minimising	the	radiation	dose	delivered	to	
the	detector	(Cowen	et	al.,	2007).	

A	good	imaging	detector	in	terms	of	its	noise	performance	is	one	that	produces	an	
output	signal	with	the	same	SNR	as	its	incoming	signal,	i.e.	does	not	alter	the	SNR.	It	
is	difficult,	if	not	impossible,	to	improve	SNR	without	degrading	some	other	aspect	
of	system	performance	(C.	M.	Schaefer-Prokop	et	al.,	2009).	

By	 definition,	 if	 a	 detector	 receives	 data	 with	 an	 SNR	 of	 SNRin,	 from	 which	 it	
produces	data	with	a	SNR	of	SNRout,	then	the	DQE	of	the	detector	is:	

	
Equation	1:	Detective	Quantum	Efficiency	
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An	ideal	(but	unrealistic)	detector	preserves	the	SNR,	recording	every	incident	X-ray	
quantum,	and	which	therefore	has	a	DQE	of	1.	DQEdetector	always	 lies	 in	 the	range	
0>DQEdetector<1.	However,	all	detectors	available	on	the	market	have	a	DQE	always	
lower	than	1	(Chotas	et	al.,	1999).	

No	 image	detector	can	absorb	all	 the	 incident	X-ray	photons	with	100%	efficiency	
(Cowen	 et	 al.,	 2007).	 Inevitably	 some	 X-ray	 photons	 pass	 through	 the	 detector,	
while	some	that	are	absorbed	may	be	re-emitted	and	exit	the	detector.	This	loss	in	
information	 carriers	 is	 compounded	 by	 secondary	 losses	 due	 to	 the	 presence	 of	
extraneous	noise	sources	in	the	image	detector	itself.	

For	radiography	applications	with	a	high	dose	delivered	to	the	detector,	both	direct	
and	indirect	conversion	flat-panel	detectors	have	a	higher	DQE	than	S/F	systems	or	
CR	systems	(Kotter	&	Langer,	2002).	

The	 International	 Electrotechnical	 Commission	 (IEC)	 published	a	 standard	method	
for	measurement	of	the	DQE	(International	Electrotechnical	Commission,	2015)	that	
also	included	specifications	for	the	measurement	of	two	associated	metrics	that	are	
important	to	characterise	a	detector:	the	Modulation	Transfer	Function	(MTF)	and	
the	Noise	Power	Spectrum	(NPS)	(McMullan,	Chen,	Henderson,	&	Faruqi,	2009).		

The	MTF	 is	 a	 measure	 of	 the	 ability	 of	 an	 imaging	 detector	 to	 reproduce	 image	
contrast	 from	 subject	 contrast	 at	 various	 spatial	 frequencies.	 At	 a	 given	 spatial	
frequency,	 the	 value	 of	 the	MTF	will	 lie	 between	 zero	 and	 one.	 An	MTF	 of	 zero	
means	that	no	signal	modulation	is	being	reproduced,	and	an	MTF	of	one	indicates	
a	 perfect	 transfer	 of	 the	 signal.	 Typically,	 a	 system's	 ability	 to	 represent	 a	 signal	
decreases	as	the	spatial	frequency	of	the	signal	increases	(James,	Davies,	Cowen,	&	
O’Connor,	2001).	

The	NPS,	 also	 known	as	Wiener	 Spectra	 (after	Norbert	Wiener	who	pioneered	 its	
use),	describes	the	noise	properties	of	an	 imaging	system	(Park,	Cho,	Jung,	Lee,	&	
Kim,	2009)	and	is	a	metric	of	image	quality,	providing	a	more	detailed	description	of	
the	overall	noise	in	an	image	(Lança	&	Silva,	2013).	

Knowledge	of	the	DQE,	NPS,	and	MTF	for	DR,	allows	objective	comparisons	that	can	
assist	 in	 the	 determination	 of	 appropriate	 and	 reasonable	 performance	 for	 a	
particular	 imaging	 application	 (American	 Association	 of	 Physicists	 in	 Medicine,	
2006).	

DR	 techniques	have	 the	potential	 to	 improve	 image	quality	 and,	 given	 the	higher	
sensitivity	of	their	 image	receptors	compared	with	S/F,	also	offer	the	potential	for	
dose	 reduction.	 However,	 in	 practice,	 since	 image	 receptors	 also	 have	 a	 broader	
dynamic	range	than	film,	higher	doses	may	also	occur	(International	Atomic	Energy	
Agency,	2007).	
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As	shown	in	Figure	4	(pag.	41),	the	dynamic	range	gradation	curve	of	S/F	systems	is	
“S”	 shaped,	 within	 a	 narrow	 exposure	 range	 for	 optimal	 film	 blackening.	
Radiographers	were	aware	 that	S/F	systems	had	a	 low	tolerance	 for	an	exposure,	
resulting	in	failed	exposures	or	insufficient	image	quality.	

With	the	shift	to	the	digital	technology	environment,	radiographers	started	to	use	
detectors	with	a	wider	and	linear	dynamic	range,	which	in	clinical	practice	virtually	
eliminates	 the	 risk	 of	 a	 failed	 exposure.	 Although	 the	 positive	 aspects	 of	 digital	
systems	clearly	prevail,	radiographers	need	to	understand,	that	special	care	has	to	
be	taken	not	to	overexpose	the	patient	by	applying	more	radiation	than	is	needed	
for	obtaining	a	diagnostic	quality	image,	because	the	detector	function	improves	as	
radiation	exposure	increases.	

This	 phenomenon,	 described	 in	 literature	 as	 “exposure	 creep”,	 is	 defined	 as	 an	
unintended	gradual	increase	in	X-ray	exposures	over	time	that	results	in	increased	
radiation	 dose	 to	 the	 patient	 when	 shifting	 from	 S/F	 to	 DR	 systems	 (Gibson	 &	
Davidson,	2012).	In	DR,	image	processing	can	compensate	by	up	to	100%	for	under	
exposure	and	up	to	500%	for	over	exposure,	and	still	produce	a	clinically	acceptable	
image	(Butler,	Rainford,	Last,	&	Brennan,	2010).	

The	 described	 phenomenon	 can	 be	 easily	 seen	 in	 figure	 8,	 (from	 Lança	 &	 Silva,	
2013)	in	which,	due	to	the	linear	signal	response	of	digital	systems,	it	is	possible	to	
have	 comparable	 quality	 images	 with	 an	 exponential	 difference	 in	 patient	 dose	
exposure.	

	

Figure	8:	Dynamic	range	in	digital	and	S/F	systems	
(Lança,	2013)	
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To	 better	 understand	 this	 phenomenon	 and	 to	 maximise	 the	 potential	 of	 the	
technological	 features	of	the	 imaging	equipment,	there	 is	a	need	for	a	permanent	
multidisciplinary	approach,	involving	medical	physicists,	radiographers	and	medical	
doctors,	 to	develop	harmonised	standards	of	practice	 towards	 the	best	diagnostic	
image	quality	at	the	lowest	dose	possible.	

DR	 systems	 have	 an	 enormous	 potential	 for	 high	 image	 quality	 at	 lower	 doses.	
However,	 overexposed	 images	 can	 easily	 go	 unnoticed,	 resulting	 in	 unnecessary	
overexposure	and	potential	harm	to	the	patient	(Seibert	&	Morin,	2011).	Therefore	
optimisation	 should	 be	 used	 as	 a	 permanent	 process	 to	 reduce	 patient	 dose	
(Neofotistou,	Tsapaki,	Kottou,	Schreiner-Karoussou,	&	Vano,	2005).	
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1.5 Dose	descriptors	in	radiography	

Patient	 dosimetry	 in	 diagnostic	 imaging	 is	 complex	 and	 involves	 several	
uncertainties	due	to	the	large	variation	of	technology	and	techniques.	

The	objective	of	dosimetry	in	radiological	imaging	is	the	quantification	of	radiation	
exposure	within	an	approach	 to	optimise	 the	 image	quality	 to	 the	absorbed	dose	
ratio.	 The	 image	 quality	 should	 be	 understood	 as	 the	 relevant	 information	
appropriate	to	the	clinical	situation	(International	Commission	on	Radiation	Units	&	
Measurements,	2005).	

There	are	several	terms	to	describe	radiation	dose	and	confusion	can	arise	through	
the	inappropriate	use	of	it	from	clinical	procedures	to	patients	(Nickoloff,	Lu,	Dutta,	
&	So,	2008).	

The	 key	 dosimetric	 quantities	 for	 use	 in	 general	 radiography	 and	 recommended	
(International	Atomic	Energy	Agency,	2013)	for	paediatric	patient	dose	are:	

• incident	air	kerma	Ka.i	(IAK);	
• entrance	surface	air	kerma,	Ka.e	(ESAK);	
• air	kerma	(or	dose)	area	product,	Pka	(KAP	or	DAP).	

These	 are	 the	 recommended	 application-specific	 dosimetric	 quantities	 for	 the	
implementation	 of	 DRLs	 (International	 Commission	 on	 Radiation	 Units	 &	
Measurements,	2005),	which	have	thus	been	used	for	this	thesis.	

IAK	 is	 measured	 for	 phantoms	 and	 is	 determined	 using	 recorded	 exposure	
parameters	for	patients.	For	patients,	ESAK	is	typically	determined	from	the	IAK	by	
applying	 the	 appropriate	 backscatter	 factor	 (BSF),	 but	 may	 also	 be	 measured	
directly	 with	 thermoluminescent	 dosimeters	 (TLD)	 or	 derived	 from	 the	 Pka	
measured	using	a	KAP	meter	(International	Atomic	Energy	Agency,	2013).	The	BSF	
for	radiography	range	from	1.25	to	1.60	for	typical	X-ray	spectra	and	field	sizes	used	
for	adults	(Petoussi-Henss,	Zankl,	Drexler,	Panzer,	&	Regulla,	1998).	The	backscatter	
factor	depends	on	 the	X-ray	spectrum,	 the	X-ray	 field	 size,	SID	and	 the	patient	or	
phantom	thickness.	

According	 to	 International	 Commission	 on	 Radiation	 Units	 (ICRU)	 report	 74	
(International	Commission	on	Radiation	Units	&	Measurements,	2005):	

• The	IAK	(Ka.i)	 is	the	kerma	to	air	from	an	incident	X-ray	beam	measured	on	
the	 central	 beam	 axis	 at	 the	 position	 of	 the	 patient	 or	 phantom	 surface	
(Figure	 9).	Only	 the	 radiation	 incident	 on	 the	 patient	 or	 phantom	and	not	
the	backscattered	radiation	is	included.	It	is	expressed	in	J/kg	and	the	unit	is	
Gray	(Gy);	

• The	ESAK	(Ka.e)	is	the	kerma	to	air	measured	on	the	central	beam	axis	at	the	
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position	of	the	patient	or	phantom	surface	(Figure	8).	The	radiation	incident	
on	the	patient	or	phantom	and	the	backscattered	radiation	are	included.	It	is	
expressed	in	J/kg	and	the	unit	is	Gray	(Gy).		

• The	KAP	or	KAP	(PKA)	is	the	integral	of	the	air	kerma	over	the	area	of	the	X-
ray	beam	in	a	plane	perpendicular	to	the	beam	axis	(Figure	9).	It	is	expressed	
in	J.kg-1.m2	and	the	unit	is	Gy.m2.	
	

	
Figure	9:	Schematic	representation	of	a	radiograph	with	some	dosimetric	and	geometric	quantities	for	

determination	of	patient	dose.	
(ICRU	report	74)	

	

There	 are	 also	 ionising	 radiation	 risk-related	 dose	 quantities	 (International	
Commission	 on	 Radiation	 Units	 &	 Measurements,	 2005)	 that	 have	 been	
recommended	by	ICRP,	such	as:	

• Exposure:	a	measure	of	radiation	based	on	its	ability	to	produce	ionisation	in	
air	under	 standard	 temperature	and	pressure.	The	 International	 System	of	
Units	(SI)	unit	for	exposure	is	Coulombs/kg	in	air.	

• Absorbed	 dose:	 the	 amount	 of	 energy	 absorbed	 per	 mass	 is	 known	 as	
radiation	dose	(DT).	Radiation	dose	is	the	energy	(Joules)	absorbed	per	unit	
mass	of	tissue	and	has	the	(SI)	units	of	Gray	(1	Gy	=	1	J/	kg).	

• Equivalent	 dose:	 the	 term	 ‘equivalent	 dose’	 is	 used	 to	 compare	 the	
biological	 effectiveness	 of	 different	 types	 of	 radiation	 to	 tissues.	 The	 (SI)	
dose	equivalent	(HT)	in	Sievert	(Sv)	is	the	product	of	the	absorbed	dose	(DT)	
in	the	tissue	multiplied	by	a	radiation-weighting	factor	(WR),	often	called	the	
quality	 factor	 (International	Commission	on	Radiological	 Protection,	 2012).	
Equivalent	 dose	 is	 expressed	 as	 a	 summation	 to	 include	 the	 effects	 of	
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irradiation	of	tissue	by	more	than	one	type	of	radiation.	
	

	
Equation	2:	Equivalent	Dose	

	

• Effective	dose:	Effective	Dose	(E)	is	used	to	estimate	the	risk	of	radiation	in	
humans.	 It	 is	 the	 sum	 of	 the	 products	 of	 equivalent	 doses	 to	 each	
organ/tissue	 (HT)	 and	 the	 tissue-weighting	 factor	 (WT)	 (International	
Commission	on	Radiological	Protection,	2012).	The	unit	of	effective	dose	 is	
the	Sievert	(Sv).	

	

	
Equation	3:	Effective	Dose	

	

• Collective	dose:	Collective	dose	is	defined	as	the	dose	received	per	person	in	
Sv	multiplied	by	 the	number	of	 persons	 exposed	per	 year	 i.e.	man-Sievert	
per	 year.	 This	 unit	 is	 generally	 used	 for	 protection	 purposes	 and	 in	
population	response	calculations.	

As	 one	 can	 see	 there	 are	 several	 dose	 quantities	 representing	 different	 concepts	
but	 yet	 using	 the	 same	 units.	 This	 can	 represent	 a	 problem	 amongst	 health	
professionals,	 especially	 between	 radiographers,	 radiologists	 and	 medical	
physicists,	creating	confusion	in	their	daily	practice.	Therefore	it	could	be	beneficial	
to	 develop	 a	 new	 system	 where	 each	 unit	 immediately	 brings	 to	 mind	 the	
corresponding	quantity	to	which	it	refers	(Rehani,	2015).	

Although	 the	exposure	 index	 (EI)	 it	 is	not	 considered	by	 ICRU	and	 ICRP	as	a	dose	
descriptor,	 it	 could	 be	 understood	 as	 an	 exposure	 concept	 related	 to	 the	 patient	
due	to	its	influence	on	image	quality	and	the	fact	that	it	is	related	to	the	delivered	
dose	required	for	any	radiological	image	(Lança	&	Silva,	2013).	

For	 some	 time	 DR	 systems	 have	 associated	 the	 EI	 to	 the	 concept	 of	 S/F	 “speed	
class”.	This	has	created	some	conceptual	misunderstanding	and	scientific	confusion	
amongst	users	(Huda,	2005).	

It	is	important	to	note	that	patient	radiation	dose	and	EI	are	not	the	same.	The	dose	
to	 the	 patient	 is	 determined	 by	 the	 radiograph	 exposure	 technique	 factors	 (kV,	
mAs,	grid,	source	to	image-receptor	distance	(SID),	filtration,	beam	collimation),	the	
X-ray	beam	penetrability	 and	quality,	 as	well	 as	by	 the	 size	 and	area	of	 the	body	
irradiated.	The	EI	on	the	detector	is	determined	by	the	remnant	radiation	(primary	
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radiation	transmitted	through	the	patient	and	scattered	radiation	transmitted	from	
the	patient)	that	is	absorbed,	converted	to	electronic	signals,	and	transformed	into	
a	digital	radiographic	image	(Seibert	&	Morin,	2011).	

Currently	 each	 manufacturer	 has	 its	 own	 definition	 and	 reference	 values	 for	 EI	
(table	 1).	 These	 EIs	 are	 entirely	 manufacturer-specific	 and	 vary	 greatly	 in	
terminology,	mathematical	formulas	and	calibration	conditions.	Moreover,	in	some	
systems,	 increasing	 EI	 values	 indicate	 increasing	 dose	 whereas	 for	 others	 the	
opposite	is	the	case.	This	 inconsistency	between	vendors	has	been	a	restriction	to	
an	effective	use	of	EI	and	confusion	is	patent	amongst	professionals	that	use	more	
than	one	system	in	daily	practice	(Mothiram,	Brennan,	Lewis,	Moran,	&	Robinson,	
2014).	

	

Table	1:	Manufacturer	exposure	index	name	and	indicator	of	digital	systems	

Manufacturer	 Name	 Symbol	 Exposure	Indicator	

Agfa	 Log	of	median	
of	histogram	

lgM	

Logarithmic	 value	 (lGm):	 the	median	 value	 of	 the	
ROI	histogram	defines	the	lGm	for	the	image.	 lGm	
is	 a	 deviation	 index	 as	 it	 compares	 the	 resultant	
lGm	value	to	a	reference	lGm	value.	

Canon	 Reached	
Exposure	Value	

REX	 REX	is	a	function	of	the	brightness	and	contrast	as	
selected	by	the	operator	

Philips	 Exposure	Index	 EI	
EI	 is	 inversely	 proportional	 to	 the	 air	 kerma	
incident	on	the	image	receptor.	It	is	derived	from	a	
characteristic	pixel	value	of	the	image.	

Carestream	 Exposure	Index	 EI	

EI	is	a	numerical	value	computed	from	the	average	
code	 value	 of	 those	 areas	 of	 the	 image	 data	 that	
are	 used	 by	 the	 image-processing	 algorithm	 to	
compute	 the	 original	 tone	 scale.	 It	 has	 a	
logarithmic	relationship	with	the	air	kerma	incident	
on	the	detector.	

Fujifilm	 S	value	 S	
S	is	related	to	the	amount	of	amplification	required	
by	 the	 photomultiplier	 tube	 to	 adjust	 the	 digital	
image.	S	is	inversely	proportional	to	exposure.	

General	
Electric	

Detector	
Exposure	Index	

DEI	 DEI	 compares	 the	 detector	 exposure	 to	 the	
expected	exposure	value		

Siemens	 Exposure	Index	 EXI	

The	exposed	field	is	divided	into	3X3	Matrix,	where	
the	central	segment	is	the	ROI.	EXI	is	calculated	as	
the	 average	 out	 the	 original	 pixel	 values	 in	 the	
central	 segment.	 EXI	 value	 is	 directly	proportional	
to	 dose.	 Doubling	 of	 EXI	 value	 represents	 a	
doubling	of	absorbed	dose	at	image	receptor.	
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The	IEC	and	the	American	Association	of	Physicists	in	Medicine	(AAPM)	have	been	
working	 separately	 on	 exposure	 value	 standardisation.	 Both	 efforts	 involve	
collaboration	 among	 physicists,	 manufacturers,	 and	 the	 Medical	 Imaging	 and	
Technology	 Alliance	 (MITA).	 IEC	 standard	 62494-1	 (International	 Electrotechnical	
Commission,	2008)	was	published	in	2008,	and	the	report	of	AAPM	Task	Group	116	
(AAPM	 Task	 Group	 116,	 2009)	 was	 published	 in	 2009.Even	 though	 the	
implementation	of	these	standards	is	not	a	legal	requirement,	some	manufacturers	
have	 already	 adopted	 them	 and	 others	 will	 likely	 follow	 (Don,	 Whiting,	 Rutz,	 &	
Apgar,	2012).	

In	digital	X-ray	imaging,	an	EI	is	used	to	describe	radiation	dose	to	the	detector.	The	
EI	is	a	valuable	tool	in	the	optimisation	process,	since	in	digital	imaging	it	is	possible	
that	the	patient	gets	an	inappropriately	high	radiation	dose	while	the	image	quality	
is	still	acceptable.		

According	to	the	IEC	standard	62494-1	(International	Electrotechnical	Commission,	
2008)	 there	 are	 three	 new	 concepts	 that	 will	 be	 introduced	 in	 radiology	
departments:	

1. EXPOSURE	 INDEX	 (EI):	 the	 EI	 is	 the	 measure	 of	 the	 detector	 response	 to	
radiation	in	the	relevant	image	region	(typically	the	region	for	which	the	
exposure	parameters	should	be	optimised)	and	is	defined	as:	

	

	
Equation	4:	IEC	Exposure	Index	

	

where	KCAL	 is	 the	detector	air	kerma	 in	µGy	under	beam	quality	RQA-5	calibration	
conditions	 (International	 Electrotechnical	 Commission,	 2005b).	 The	 physical	
characteristics	of	a	RQA-5	beam	quality	are:	

• added	filtration	of	23.5mmAl;	
• tube	voltage	of	70kV;	
• Half	Value	Layer	(HVL)	of	7.1mmAl	

EI	 is	 not	 a	 patient	 dose	 indicator	 representing	 only	 a	 relative	 exposure	measure	
according	to	the	type	of	the	examination	(Don	et	al.,	2012).	

2. TARGET	EXPOSURE	 INDEX	 (EIT):	 the	 EIt	 is	 an	 expected	 value	 of	 the	 EI	when	
exposing	 the	 image	 receptor	 properly	 and	 obtaining	 an	 optimal	
radiographic	image.	

3. DEVIATION	INDEX	(DI):	the	DI	quantifies	how	much	the	EI	varies	from	the	EIt	
and	is	defined	as:	
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Equation	5:	IEC	Deviation	Index	

	

Ideally,	 EI	 and	EIT	 should	be	 the	 same	and	 therefore	DI	would	be	0.	However,	 an	
acceptable	DI	value	is	expected	to	be	between	a	-0.5	to	0.5	range.	DI	values	of	1.0	
to	3.0	correspond	to	26%	and	100%	of	overexposure,	respectively,	while	DI	values	
of	-1.0	to	-3.0	correspond	to	20%	and	50%	of	underexposure,	respectively.	One	of	
the	major	advantages	of	the	DI	value	is	that	it	gives	an	immediate	feedback	to	the	
radiographer	about	the	appropriateness	of	the	exposure	(Don	et	al.,	2012).	

The	 IEC	 standard	 is	 a	 helpful	 tool	 to	 eliminate	 the	 various	 different	 terms	 and	
concepts	implemented	by	the	vendors	and	consequently	end	the	existing	confusion	
amongst	radiographers,	radiologists	and	medical	physicists.	

Since	 this	 is	 a	 new	 EI	 concept,	 there	 is	 a	 need	 to	 define	 proper	 EIt	 for	 the	most	
common	examinations,	taking	into	consideration	the	diagnostic	image	quality.	

It	 is	 expected	 that	 in	 the	 near	 future	 all	 vendors	 implement	 this	 new	 IEC	 index	
standard	 in	 their	 equipment.	 It	 will	 be	 a	 major	 challenge	 for	 radiologists,	
radiographers	 and	 medical	 physicists	 (as	 individuals	 or	 through	 their	 scientific	
bodies	representatives)	to	develop	together	with	 international	organizations	(such	
as	ICRP	and	IAEA)	EIt	reference	values	for	the	most	common	procedures,	taking	into	
account	the	patient	characteristics	and	the	clinical	indication	of	the	referral	for	the	
radiographic	exposure.	
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1.6 Risks	in	paediatric	imaging	

The	 risk	 of	 exposure	 to	 radiation	 is	 a	 permanent	 topic	 on	 the	 agenda	 of	 global	
organisations	like	the	ICRP	(www.icrp.org),	the	United	Nations	Scientific	Committee	
on	 the	 Effects	 of	 Atomic	 Radiation	 (UNSCEAR,	 www.unscear.org),	 the	 IAEA	
(www.iaea.org)	and	the	World	Health	Organization	(WHO,	www.who.int).	The	role	
of	 these	global	organisations	 is	 crucial,	 as	 they	continuously	evaluate	and	analyse	
the	 scientific	 literature	 about	 the	 effects	 of	 ionising	 radiation	 and	 also	 publish	
recommendations	and	guidelines	on	how	to	use	ionising	radiation	in	a	safe	way.	

The	 1990	 recommendations	 of	 the	 ICRP	 defined	 two	 different	 types	 of	 potential	
effects	 on	 tissues	 and	 organs	 exposed	 to	 ionising	 radiation.	 These	
recommendations	 were	 formally	 replaced	 in	 2007	 (International	 Commission	 on	
Radiological	Protection,	2007)	by	the	following:	

1. Deterministic	or	tissue	reaction	effects	are	characterised	by	a	threshold	dose	
below	 which	 they	 do	 not	 occur.	 Deterministic	 effects	 have	 a	 clear	
relationship	between	the	exposure	and	the	effect	and	the	level	of	the	effect	
is	 directly	 proportional	 to	 the	 amount	 of	 the	 dose	 received.	 These	 effects	
are	 often	 evident	 within	 hours	 or	 days.	 Examples	 of	 deterministic	 effects	
include	erythema	(skin	reddening),	skin	and	tissue	burns,	cataract	formation,	
sterility,	radiation	sickness	and	death.	

2. Stochastic	 effects	 are	 those	 that	 occur	 by	 chance	 and	 consist	 primarily	 of	
cancer	 and	 genetic	 effects.	 Stochastic	 effects	 often	 occur	 years	 after	
exposure.	 As	 the	 dose	 to	 an	 individual	 increases,	 the	 probability	 of	
developing	cancer	or	a	genetic	effect	also	 increases.	For	stochastic	effects,	
there	is	no	threshold	dose	below	which	it	is	relatively	certain	that	an	adverse	
effect	will	not	occur.	

Stochastic	risks	are	of	special	concern	in	paediatric	imaging,	since	children	are	more	
vulnerable	than	adults	and	have	a	longer	life-span	to	develop	long-term	radiation-
induced	health	effects	like	cancer.	

It	is	well	known	that	the	natural	background	is	by	far	the	highest	source	of	ionising	
radiation	 exposure	 for	 both	 children	 and	 adults	 and	 that	 there	 is	 significant	
geographical	 variation	 in	 the	 doses	 received.	 However,	 there	 are	 no	 differences	
between	 the	 doses	 received	 by	 children	 and	 adults	 in	 the	 same	 location.	 The	
average	 annual	 effective	 dose	 to	 an	 individual	 resulting	 from	natural	 background	
radiation	is	approximately	2.4	mSv	(UNSCEAR,	2013).	

There	 is	 an	 on-going	 controversy	 among	 the	 scientific	 community	 about	 the	
acceptance	 of	 the	 Linear	 No-Threshold	 (LNT)	 model.	 The	 LNT	 model	 hypothesis	
assumes	 that	 the	 long	 term,	 biological	 damage	 caused	 by	 ionising	 radiation	
(essentially	 the	 cancer	 risk)	 is	 directly	 proportional	 to	 the	 dose,	 and	 that	 any	
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increment	 of	 exposure	 above	 natural	 background	 levels	 will	 produce	 a	 linear	
increment	of	risk.	The	LNT	model	hypothesis	has	other	competing	theories:	a)	the	
Threshold	 Model:	 very	 small	 exposures	 are	 harmless;	 b)	 the	 Radiation	 Hormesis	
Model:	radiation	at	very	small	doses	can	be	beneficial	(Wall	et	al.,	2006).	

The	French	Academies	consider	that	the	LNT	model	for	assessing	carcinogenic	risks	
induced	by	low	doses,	such	as	those	delivered	by	diagnostic	radiology,	is	not	based	
on	 valid	 scientific	 data	 and	might	 create	 anxiety	 amongst	 patients,	 although	 they	
acknowledge	 that	 the	 model	 can	 be	 practical	 for	 the	 organisation	 of	 radiation	
protection	(Tubiana,	2005).	

A	 different	 opinion	 is	 supported	 by	 the	 ICRP	 and	 by	 the	 National	 Academy	 of	
Sciences	(Biological	Effects	of	lonizing	Radiation	-	BEIR	VII	report)	that	recommends	
the	use	of	the	LNT	model	(Tubiana,	Feinendegen,	Yang,	&	Kaminski,	2009).	

The	BEIR	VII	committee	concludes	that	current	scientific	evidence	is	consistent	with	
the	hypothesis	that	there	is	a	linear	dose-response	relationship	between	exposure	
to	 ionising	 radiation	 and	 the	 development	 of	 radiation-induced	 solid	 cancers	 in	
humans	(Committee	to	Assess	Health	Risks	from	Exposure	to	Low	Levels	of	Ionizing	
Radiation,	2006).	

As	 stated	above,	 radiation	 is	one	of	 the	most	extensively	 researched	carcinogens,	
but	 the	 effects	 of	 low	 doses	 are	 still	 somewhat	 unclear.	 The	 weight	 of	 evidence	
from	 experimental	 and	 epidemiological	 data	 does	 not	 suggest	 a	 threshold	 dose	
below	 which	 radiation	 exposure	 does	 not	 cause	 cancer.	 If	 there	 is	 no	 such	
threshold,	 then	 diagnostic	 X-rays	 are	 likely	 to	 induce	 some	 cancers	 (González	 &	
Darby,	2004).	

An	 increased	 risk	 of	 acute	 lymphocytic	 leukaemia	 from	 plain	 radiography	 and	 of	
fatal	 breast	 cancer	 from	 scoliosis	 series	 in	 children	 has	 been	 demonstrated	 and	
reported	 by	 some	 authors	 (Willis	&	 Slovis,	 2005).	 The	 younger	 the	 patient	 at	 the	
time	of	exposure,	the	greater	the	risk	of	developing	a	fatal	cancer.	

Despite	 all	 the	 controversies	 found	 in	 the	 literature,	 the	 LNT	 model	 hypothesis	
remains	 a	 wise	 basis	 for	 radiation	 protection	 at	 low	 doses	 and	 low	 dose	 rates	
(International	 Commission	 on	 Radiological	 Protection,	 2005)	 and	 represents,	 until	
today,	the	best	means	for	radiation-protection	standards	(Breckow,	2006).	

The	biological	effects	of	ionising	radiation	in	children	are	based	on	a	very	important	
trilogy:	1)	radiosensitivity;	2)	life	expectancy;	3)	radiation	exposure.	Considering	this	
it	 is	 expected	 that	 for	 the	 same	effective	dose,	 the	biological	 effects	 and	 lifetime	
risks	 are	 higher	 in	 children	 than	 in	 adults	 (International	 Atomic	 Energy	 Agency,	
2012).	

An	 UNSCEAR	 report	 from	 2013	 reviewed	 23	 different	 cancer	 types.	 Broadly,	 for	
about	 25	 per	 cent	 of	 these	 cancer	 types,	 including	 leukaemia	 and	 thyroid,	 skin,	
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breast	and	brain	cancer,	children	were	found	to	be	clearly	more	radiosensitive.	For	
some	of	these	cancers,	depending	on	the	circumstances,	the	risks	were	found	to	be	
considerably	 higher	 for	 children	 than	 for	 adults.	 In	 diagnostic	 medical	 exposure,	
children	 may	 receive	 significantly	 higher	 doses	 than	 adults	 for	 the	 same	
examination,	if	the	technical	parameters	for	delivering	the	dose	are	not	specifically	
adapted.	Cancers	potentially	induced	by	exposure	to	ionising	radiation	at	young	age	
may	occur	within	a	 few	years,	but	also	decades	 later.	Estimates	of	 lifetime	cancer	
risk	 for	 persons	 exposed	 as	 children	were	 described	 as	 uncertain	 and	might	 be	 a	
factor	of	two	to	three	times	higher	than	estimates	for	a	population	exposed	at	all	
ages	(UNSCEAR,	2013).	

The	 size	and	weight	of	paediatric	patients	has	a	big	 impact	on	 the	 radiation	dose	
received.	Smaller	and	lighter	patients	have	lower	attenuation	of	the	primary	X-ray	
beam	and	are	therefore	exposed	to	a	higher	radiation	dose.	In	smaller	and	thinner	
paediatric	 patients	 the	 organs	 are	 closer	 and	 therefore	 more	 easily	 exposed	 to	
scattered	radiation	(Linet,	Kim,	&	Rajaraman,	2009).	

A	 basic	 knowledge	 of	 radiation	 risk	 is	 useful	 in	 counselling	 patients	 who	 express	
concern	about	this	 issue.	 In	most	cases,	 the	benefits	of	 indicated	medical	 imaging	
will	 outweigh	 the	 relatively	 small	 excess	 of	 cancer	 risk,	 and	 patient	management	
should	not	be	altered	on	the	basis	of	radiation	risk.	However,	for	certain	subsets	of	
patients,	radiation	risk	should	be	of	greater	concern	to	the	clinician	(Lin,	2010).	

Even	knowing	 that	 there	are	 several	 controversies	 regarding	 the	quantification	of	
risks	and	also	a	lack	of	agreement	on	how	to	present	it,	the	best	attitude	for	health	
professionals	 using	 ionising	 radiation	 in	 clinical	 practice	 is	 to	 perform	 a	 medical	
imaging	procedure	according	to	the	ALARA	principle,	according	to	which	radiation	
doses	should	be	kept	As	Low	As	Reasonably	Achievable,	 taking	 into	account	social	
and	economic	 factors	 (International	Commission	on	Radiological	Protection,	1977,	
2007).	

Sometimes	the	abbreviation	‘ALARA’	is	used	as	equivalent	to	the	term	‘optimisation	
of	protection’	or	 in	 replacement	 thereof.	However,	 it	 should	be	kept	 in	mind	that	
the	 expression	 ‘as	 low	 as	 reasonably	 achievable’	 is	 only	 part	 of	 the	 concept	 of	
optimisation.	The	entire	concept	implies,	more	precisely,	keeping	patient	exposure	
to	the	minimum	necessary	to	achieve	the	required	medical	objective	(diagnostic	or	
therapeutic).	 In	 diagnostic	 imaging	 and	 x-ray-guided	 interventions,	 it	 means	 that	
the	number	and	quality	of	 images	are	sufficient	to	obtain	the	 information	needed	
for	diagnosis	or	intervention	(International	Commission	on	Radiological	Protection,	
2013).	
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1.7 The	international	context	of	Diagnostic	Reference	Levels	

DRLs	 were	 introduced	 by	 ICRP	 as	 a	 practical	 tool	 for	 optimisation	 in	 diagnostic	
radiology	 and	 nuclear	 medicine	 (International	 Commission	 on	 Radiological	
Protection,	 1996).	 Achieving	 acceptable	 image	 quality	 or	 adequate	 diagnostic	
information,	 consistent	 with	 the	 medical	 imaging	 task,	 is	 the	 overriding	 clinical	
objective.	DRLs	are	used	to	help	manage	the	radiation	dose	delivered	to	patients	so	
that	the	dose	is	commensurate	with	the	clinical	purpose.	

DRLs	 should	 be	 used	 as	 a	 form	 of	 investigation	 level	 to	 identify	 unusually	 high	
levels.	If	DRLs	are	consistently	exceeded,	a	local	review	usually	takes	place.	DRLs	are	
not	intended	for	regulatory	or	commercial	purposes,	nor	do	they	represent	a	dose	
constraint,	nor	are	they	linked	to	limits	or	constraints	(International	Commission	on	
Radiological	Protection,	2001).	

The	 radiation	protection	scheme	used	across	Europe	 (and	worldwide)	 is	based	on	
the	 recommendations	 of	 the	 ICRP,	 which	 are	 founded	 on	 the	 dose	 descriptors	
defined	by	the	ICRU.	The	publication	ICRP	60	(ICRP	1991)	recommends	a	radiation	
protection	system	based	on	the	system	of	dose	limitation,	which	has	also	been	an	
essential	element	 in	earlier	 ICRP	documents	such	as	 ICRP	26	 (ICRP	1977).	 ICRP	60	
(ICRP,	1991)	was	substantially	revised	and	updated	in	2007	with	the	publication	of	
ICRP	103	(ICRP	2007).	

The	 ICRP	system	of	radiation	protection	 is	based	on	three	fundamental	principles:	
justification,	optimisation	and	dose	limitation.	

The	 principle	 of	 justification	 requires	 that	 any	 decision	 that	 alters	 the	 radiation	
exposure	 situation	 should	 do	 more	 good	 than	 harm;	 in	 other	 words,	 the	
introduction	 of	 a	 radiation	 source	 should	 result	 in	 sufficient	 individual	 or	 societal	
benefit	to	offset	the	detriment	it	causes.	

The	principle	of	optimisation	requires	that	the	likelihood	of	incurring	exposures,	the	
number	of	people	exposed	and	the	magnitude	of	their	 individual	exposure	should	
all	 be	 kept	 as	 low	 as	 reasonably	 achievable,	 taking	 into	 account	 economic	 and	
societal	 factors.	 In	 addition,	 as	 part	 of	 the	 optimisation	 procedure,	 the	 ICRP	
recommends	 that	 there	 should	 be	 restriction	 on	 the	 doses	 to	 individuals	 from	 a	
particular	source,	which	has	led	to	the	concept	of	dose	constraints.	

The	principle	of	dose	limitation	requires	that	the	dose	to	individuals	from	planned	
exposure	situations	other	than	medical	exposure	of	patients	should	not	exceed	the	
appropriate	limits	recommended	by	the	ICRP.	

Also	the	European	Commission	(EC)	has	strengthened	the	importance	of	DRLs	in	the	
recently	 published	 Council	 Directive	 2013/59/EURATOM	 (European	 Commission,	
2013a),	 laying	 down	 basic	 safety	 standards	 for	 protection	 against	 the	 dangers	
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arising	from	exposure	to	ionising	radiation.	The	EC	recognises	that	the	technological	
and	 scientific	developments	 in	 the	medical	 field	have	 led	 to	a	notable	 increase	 in	
the	 exposure	 of	 patients.	 Therefore	 the	 Directive	 should	 strengthen	 the	
requirements	concerning	information	to	be	provided	to	patients,	the	recording	and	
reporting	of	doses	from	medical	procedures,	the	use	of	DRLs	and	the	availability	of	
dose-indicating	devices.	

Article	 56	 of	 the	 Directive	 2013/59/EURATOM	 defines	 that	 Member	 States	 shall	
ensure	 the	 establishment,	 regular	 review	 and	 use	 of	 DRLs	 for	 radiodiagnostic	
examinations,	having	regard	to	the	recommended	European	DRLs	where	available.	

The	 use	 of	 DRLs	 generates	 complementary	 information	 and	 thus	 supports	
professional	 judgment.	 The	 use	 of	 DRLs	 is	 important	 to	 promote	 the	 review	 of	
practice	 in	 local	 sites.	 The	 establishment	 of	 DRLS	 at	 local	 level	 should	 be	
implemented	 with	 the	 involvement	 of	 radiologists,	 radiographers	 and	 medical	
physicists	and	should	be	regularly	reviewed	to	improve	best	practice	at	lower	doses	
(Santos,	2014).	

Since	ICRP	introduced	the	DRL	concept	to	the	scientific	and	professional	community	
in	 1996,	 several	 initiatives	 were	 taken	 to	 try	 and	 make	 its	 use	 effective	 in	 daily	
practice.	One	of	the	most	relevant	steps	was	the	inclusion	of	the	DRL	concept	in	the	
Euratom	97/43	Directive,	which	served	as	a	trigger	for	several	other	actions,	mainly	
national	radiation	protection	authorities.	

Aware	 of	 the	 importance	 of	 using	 the	 DRL	 concept	 as	 a	 tool	 to	 decrease	 dose	
exposure	 to	 the	 patients	 and	 the	 population,	 the	 EC	 published	 several	 guideline	
documents	 (European	 Commission,	 1996a,	 1996b)	 for	 both	 adult	 and	 paediatric	
plain	 radiography,	 with	 the	 main	 objective	 to	 achieve	 adequate	 image	 quality,	
comparable	throughout	Europe	at	reasonably	low	radiation	dose	per	radiograph.	

Another	important	guidance	on	DRLs	for	medical	exposure	was	published	by	the	EC	
in	1999	 (European	Commission,	1999),	highlighting	 the	 importance	of	establishing	
DRLs	 for	 high-dose	 medical	 examinations,	 in	 particular	 CT	 and	 interventional	
radiology	 (IR)	 procedures	 and	 for	 patient	 groups	 that	 are	 more	 sensitive	 to	
radiation,	especially	children.	

The	 RP	 109	 document	 recommends	 that	 DRLs	 for	 diagnostic	 radiology	 should	 be	
based	on	doses	measured	in	various	types	of	hospitals,	clinics	and	practices	and	not	
only	in	well-equipped	hospitals.	The	values	should	represent	the	75th	percentile	of	
the	 ESAK	 (mGy)	 and/or	 the	 KAP	 (Gy.cm2).	 According	 to	 the	 RP	 109	 guidance	
document,	the	KAP	is	a	more	practical	dose	descriptor,	since	the	entire	examination	
is	recorded	without	interfering	with	the	patient	and	the	exam	procedure.	
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Although	extremely	important,	this	guidance	document	(RP	109)	only	presents	DRLs	
for	 plain	 S/F	 systems,	 and	 is	 only	 of	 limited	 value	 regarding	 paediatric	 patients,	
since	 the	 DRLs	 are	 based	 on	 a	 standard	 sized	 five-year	 old	 patient.	 In	 fact	 this	
limitation	 is	major,	 since	 the	 ‘paediatric	 population’	 includes	 the	 age	 range	 from	
birth	until	18	years	(European	Commission,	2006),	which	implies	a	huge	variation	in	
patient	 weight,	 ranging	 from	 some	 grams	 to	 more	 than	 100	 kg.	 This	 enormous	
heterogeneity	 of	 patient	 characteristics,	 combined	 with	 the	 fact	 that	 pre-sets	
installed	 in	 radiological	 equipment	 are	 normally	 not	 adapted	 to	 them,	 makes	
defining	DRLs	and	optimisation	of	procedures	very	challenging	for	this	population.	

There	is	also	a	lack	of	consensus	in	the	literature	regarding	the	best	methodology	to	
group	 paediatric	 patients	 in	 order	 to	 define	 a	 DRL.	 Some	 authors	 group	 patients	
according	to:	a)	specific	ages	(0,	5,	10	and	15	years);	b)	division	between	new-borns	
and	 infants;	 c)	age	groups	 (<1,	1-<5,	5-<10,	10-<16,	≥16).	Other	authors	 (Kiljunen,	
Ja,	&	Savolainen,	2007)	 consider	 it	 a	more	practical	method	 to	present	DRLs	as	 a	
function	of	patient	projection	thickness.	When	paediatric	DRLs	are	presented	as	a	
curve,	hospitals	can	compare	their	patient	doses	directly	against	the	graph,	and	the	
need	 for	 a	 large	 number	 of	 patients	 is	 significantly	 reduced.	 Some	 authors	
considered	 this	 method	 more	 adequate	 than	 the	 one	 established	 by	 the	 UK	
National	 Radiological	 Protection	 Board	 (NRPB-UK,	 now	 Public	 Health	 England)	 for	
setting	paediatric	DRLs	(Hart,	Wall,	Shrimpton,	Bungay,	&	Dance,	2000).	

Attentive	to	the	change	of	paradigm	in	medical	imaging	brought	about	by	the	shift	
to	 DR	 systems,	 the	 EC	 became	 conscious	 of	 the	 need	 to	 revise	 the	 existing	
guidelines	 and	 published	 an	 invitation	 to	 tender	 for	 a	 service	 contract,	 regarding	
European	 Guidelines	 on	 Diagnostic	 Reference	 Levels	 for	 Paediatric	 Imaging	
(European	Commission,	2013b).	

The	27-month	project	entitled	European	Diagnostic	Reference	Levels	for	Paediatric	
Imaging	 (PiDRL)	was	awarded	 to	a	 consortium	 (ESR,	 EFRS,	 ESPR,	 EFOMP,	&	STUK,	
2013)	composed	by	the:	

• European	Society	of	Radiology	(ESR);	
• European	Federation	of	Radiographer	Societies	(EFRS);	
• European	Society	of	Paediatric	Radiology	(ESPR);	
• European	Federation	of	Organisations	for	Medical	Physics	(EFOMP);	
• Finnish	Radiation	and	Nuclear	Safety	Authority	(STUK).	

The	consortium	is	supported	by	an	Expert	Advisory	Panel	formed	by	representatives	
of	the	IAEA,	the	WHO,	the	Cardiovascular	and	Interventional	Radiological	Society	of	
Europe	(CIRSE),	the	ICRP,	the	Public	Health	England	(PHE,	formerly	HPA)	as	well	as	
by	an	expert	from	the	United	States	of	America.	

	



	
																Optimisation	and	establishment	of	Diagnostic	Reference	Levels	in	paediatric	plain	radiography	

	

Graciano	do	Nascimento	Nobre	Paulo	

 

64 

The	aims	of	the	PiDRL	project	Guidelines	are:	

• to	recommend	a	methodology	for	establishing	and	using	DRLs	for	paediatric	
radiodiagnostic	imaging	and	IR	practices;	

• to	 update	 and	 extend	 the	 European	 DRLs	 for	 these	 examinations	 where	
sufficient	experience	and	data	are	available	for	a	consensus	on	DRL	values;	

• to	promote	the	establishment	and	use	of	DRLs	in	paediatric	radiodiagnostic	
imaging	 and	 IR	 practices	 so	 as	 to	 advance	 optimisation	 of	 radiation	
protection	of	paediatric	patients.	

DRLs	are	a	good	 tool	 to	comply	with	 the	ALARA	principle	as	 they	can	provide	 the	
stimulus	to	monitor	and	promote	improvements	in	patient	protection,	by	increasing	
dose	awareness	and	focusing	paediatric	practice	on	achieving	the	required	imaging	
quality	that	patients	need.	

Despite	 this	 scientific	 and	 legally	 binding	 framework	 and	 the	 recommendations	
from	the	international	organisations,	the	use	of	paediatric	DRLs	 in	daily	practice	is	
far	from	being	a	reality	in	the	EU.	

A	recent	report	 from	the	DoseDataMed	2	 (DDM2)	project	 (European	Commission,	
2014b)	 shows	 that	most	 EU	 countries	 have	 never	 established	DRLs	 for	 paediatric	
imaging	 and	 that	 those	 few	 countries	 that	 have,	 just	 copied	 the	 recommended	
values	from	the	EU	guidance	documents	that,	as	already	mentioned,	entail	several	
limitations.	Only	about	one	fifth	of	the	countries	defined	their	DRLs	based	on	their	
own	national	patient	dose	surveys	(figure	10).	

	

Figure	10:	DRLs	for	paediatric	plain	radiography	in	European	countries	

From	DDM2	(European	Commission,	2014b)	

	

The	DDM2	 report	 clearly	 shows	 that	data	 collection	and	analysis	 is	 difficult	 at	 EU	
and	 even	 national	 levels,	 due	 to	 the	 lack	 of	 harmonisation	 of	 radiographic	
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procedures	 and	 patient	 categorisation.	 The	 review	 of	 current	 DRL	 systems	 has	
shown	 that	 there	 is	 an	 insufficient	 recording	 of	 the	 procedures	 used	 to	 establish	
DRLs	 and	 that	 the	 available	 information	 also	 reveals	 large	 differences	 in	
approaches.	There	 is	a	 lack	of	consistency	regarding	patient	grouping	(age,	weight	
or	other	groups	with	a	variety	of	options)	and	lack	of	clear	recommendations	on	the	
dose	quantities	to	be	used.	The	discrepancies	found	amongst	exam	frequencies	are	
also	suggestive	of	the	existence	of	limitations	on	the	data	infrastructure.	

There	 is	 an	 urgent	 need	 to	 develop	 a	 European	 coding	 system	 for	 radiological	
procedures,	both	for	adult	and	paediatric	patients,	to	be	used	by	all	member	states	
as	 a	 tool	 to	 easily	 fulfil	 the	 requirement	 of	 article	 64	 of	 Directive	
2013/59/EURATOM,	regarding	the	estimation	of	population	dose:	“Member	States	
shall	ensure	that	the	distribution	of	individual	dose	estimates	from	medical	exposure	
for	radiodiagnostic	and	interventional	radiology	purposes	is	determined,	taking	into	
consideration	 where	 appropriate	 the	 distribution	 by	 age	 and	 gender	 of	 the	
exposed.”	

This	 would	 be	 a	 fundamental	 tool	 for	 future	 population	 dose	 studies	 and	 would	
address	one	of	the	needs	identified	in	the	DDM2	report:	"in	order	to	compare	X-ray	
examination	frequency	data	between	countries,	and	to	assign	typical	effective	dose	
values	 to	 examinations,	 it	 is	 crucial	 that	 an	 “X-ray	 examination”	 is	 defined	 and	
counted	in	a	consistent	way”.		

A	European	coding	system	for	radiological	procedures	would	also	contribute	to	the	
harmonisation	of	 the	“language”	 for	medical	 imaging	 and	 therapy	 across	 Europe,	
giving	 healthcare	 providers	 a	 powerful	 tool	 for	 the	 future	 planning	 of	 health	
systems	at	local,	regional,	national	and	European	levels.	Such	a	project	should	also	
include	 the	 acquisition	 of	 data	 on	 the	 long-term	 consequences	 of	 radiation	
exposure.	
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1.8 The	Portuguese	context	of	Diagnostic	Reference	Levels	

The	 Portuguese	 health	 authorities	 have	 never	 promoted	 the	 establishment	 of	
clinical	 audit,	 education	 and	 training	 in	 radiation	 protection,	 the	 estimation	 of	
population	dose,	and	Diagnostic	Reference	Levels,	as	defined	in	the	97/43	Euratom	
Directive	(European	Commission,	1997).	

For	the	European	DOSE	DATAMED	II	project	(European	Commission,	2014b;	Teles	et	
al.,	 2013)	 a	 group	of	Portuguese	 researchers,	 scientific	 and	professional	 societies,	
with	the	support	of	some	regional	health	authorities,	under	the	coordination	of	the	
Nuclear	 Technological	 Institute	 (ITN),	 joined	 efforts	 in	 order	 to	 estimate	 the	
Portuguese	 population	 dose	 using	 an	 international	 methodology	 (European	
Commission,	2008b).	

It	 is	 important	 to	 point	 out	 that	 until	 today,	 Portuguese	 health	 authorities	 have	
never	defined	DRLs,	neither	for	paediatric	nor	for	adult	imaging.	

Nevertheless	 some	 researchers	 have	 conducted	 a	 national	 study	 to	 establish	
national	 computed	 tomography	 DRLs	 for	 adults	 and	 the	 paediatric	 population	
(Santos	 et	 al.,	 2014).	 The	 study	 (Santos	 et	 al.,	 2014)	 calculated	 and	 proposed	
Portuguese	 DRLs	 for	 adults	 and	 the	 paediatric	 population	 (Table	 2	 and	 3).	 Large	
variations	 in	 volume	 computed	 tomography	 dose	 index	 (CTDIvol)	 and	 dose-length	
product	(DLP)	values	were	found	between	clinical	sites.	

	
Table	2:	Proposed	Portuguese	CT	DRLs	for	adult	
MSCT	examinations	described	as	CTDIvol	and	DLP	

values.	

Table	3:	Proposed	age-categorised	national	
paediatric	CT	DRLs	described	as	CTDIvol	and	DLP	

values.	
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The	 results	 from	 this	 study	 indicate	 that	 the	most	 common	 adult	 Portuguese	 CT	
examinations	 are	 head,	 chest	 and	 abdomen,	 with	 DRLs	 of	 75,	 14	 and	 18	 mGy	
CTDIvol,	 respectively.	 These	 values	 are	 approximately	 30%	 higher	 than	 European	
recommendations.	Differences	in	protocols	to	image-specific	anatomical	regions	are	
non-standardised,	 and	 a	 20%	 dose	 variation	was	 found	 across	 centres	 nationally.	
DRLs	 have	 also	 been	 established	 for	 six	 other	 CT	 examinations.	 The	 majority	 of	
proposed	adult	DRLs	for	CT	examinations	are	higher	than	those	of	other	European	
CT	DRLs.	

For	 paediatric	 head	 and	 chest	 CT	 examinations,	 the	 proposed	 DRLs	 described	 as	
CTDIvol	are	48	and	43	mGy	cm	for	new-borns,	50	and	6	mGy	for	5-year	old	children,	
70	 and	 6	 mGy	 for	 10-year	 olds	 and	 72	 and	 7	 mGy	 for	 15-year	 old	 children,	
respectively.		

For	paediatric	head	and	chest	CT	examinations,	the	proposed	DRLs	described	as	DLP	
are	 630	 and	 43	 mGy.cm	 for	 new-borns,	 767	 and	 139	 mGy.cm	 for	 5-year	 old	
children,	1096	and	186	mGy.cm	for	10-year	olds	and	1120	and	195	mGy.cm	for	15-
year	old	children,	respectively.		

The	 proposed	 DRLs	 for	 paediatric	 head	 CT	 examinations	 are	 higher	 than	 the	
European	values,	whereas	 the	proposed	chest	CT	examination	DRLs	are	 similar	 to	
European	values	across	all	age	categories.	

Some	other	 studies	were	carried	out	 in	 interventional	 cardiology	 (Graciano	Paulo,	
Rocha,	Lavandeira,	Costa,	&	Marques,	2010;	Graciano	Paulo	&	Santos,	2012b)	as	a	
first	 attempt	 to	 analyse	 exposure	 to	 ionising	 radiation	 in	 adult	 patients	 and	 staff	
during	 interventional	 cardiac	 procedures.	 These	 studies	 have	 identified	 an	 urgent	
need	 to	 implement	optimisation	programmes	 in	 interventional	 cardiology.	Due	 to	
the	 importance	 of	 the	 results	 obtained	 and	 the	 optimisation	 programme	
implemented	at	 local	 level,	 the	studies	carried	out	since	2010	were	awarded	with	
the	 national	 prize	 (1st	 place,	 2012)	 of	 the	 Associação	 Portuguesa	 para	 o	
Desenvolvimento	Hospitalar	(APDH)	(Graciano	Paulo	&	Santos,	2012a).	

Considering	 the	 results	 of	 the	 referred	 studies	 and	 the	 lack	 of	 education	 and	
training	 in	 radiation	 protection,	 the	 Associação	 Portuguesa	 de	 Intervenção	 em	
Cardiologia	 (APIC),	 has	 implemented	 a	 continuous	 professional	 development	
programme	 in	 radiation	 protection	 and	 optimisation	 in	 interventional	 cardiology.	
The	programme	aims	 to	 raise	awareness	amongst	health	professionals	working	 in	
cath-labs	about	 the	dangers	arising	 from	 ionising	 radiation	and	 the	 importance	of	
optimising	procedures	according	to	the	ALARA	principle.	

Unfortunately	no	study	has	been	carried	out	 in	Portugal	 to	determine	national	or	
even	 local	 DRLs	 for	 interventional	 cardiology	 procedures	 in	 paediatric	 patients,	
considered	more	complex	than	in	adults	and	therefore	result	in	high	patient	doses	
(Ubeda,	 Vano,	Miranda,	 &	 Leyton,	 2012).	 The	 publications	 from	 literature	 in	 this	
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field	 are	 very	 scarce.	 The	most	 recently	 published	 study	with	 the	 highest	 sample	
establishing	 local	DRLs	 (Ubeda,	Miranda,	&	Vano,	2015)	 found	a	reasonable	 linear	
correlation	 between	 KAP	 and	 body	weight	 and	 proposed	 DRLs	 by	 patient	weight	
groups	(table	4).	The	results	from	this	study	are	a	good	basis	for	future	research	in	
this	area.	

Table	4:	KAPP75	values	(Gy.cm
2)	for	diagnostic	paediatric	interventional	cardiology	procedures	

Weight'group'
(kg)

KAPP75'
(Gy.cm2)

<10 0.82

10'('<20 2.45

20'(<30 4.08

30'(<40 5.71

40'(<50 7.34

50'(<60 8.97

60'(<70 10.6

70'(<80 12.2 	

It	 is	 essential	 that	 Portuguese	 health	 authorities	 and	 health	 professionals	
understand	 the	 importance	 of	 defining	 DRLs,	 not	 only	 because	 of	 the	 legal	
requirement,	 but	 because	 it	 is	 important	 for	 the	 quality	 of	 care	 delivered	 to	 the	
patients	as	well	as	for	the	protection	of	staff.	
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2 Establishment	of	DRLs	in	paediatric	plain	radiography	
Considering	 the	 absence	 of	 guidelines,	 actions	 and	 recommendations	 by	 the	
Portuguese	health	authorities	regarding	the	establishment	of	DRLs,	the	only	official	
reference	to	use	as	a	starting	point	for	this	study,	was	the	EU	guidance	document	
RP	109	(European	Commission,	1999)	which	recommends	that	DRLs	for	diagnostic	
radiology	should	be	based	on	doses	measured	in	various	types	of	hospitals,	clinics	
and	practices	and	not	only	in	well-equipped	hospitals.	

According	to	the	RP	109	guidance	document,	the	DRL	in	plain	radiography	should	be	
higher	than	the	median	or	mean	value	of	the	measured	patient	doses	or	doses	in	a	
phantom.	 Knowing	 that	 the	 curve	 giving	 the	 number	 of	 examinations	 and	 their	
doses	 is	 usually	 skewed	 with	 a	 long	 tail,	 it	 is	 recommended	 to	 use	 the	 75th	
percentile	(P75)	value	as	a	reference.	The	use	of	this	percentile	is	a	pragmatic	first	
approach	 to	 identifying	 those	 situations	 in	 most	 urgent	 need	 of	 investigation	
(European	Commission,	1999).	

Following	 those	 recommendations,	 the	 75th	 percentile	 of	 KAP	 and	 ESAK	 was	
calculated	 from	 the	 data	 collected	 prospectively	 in	 Hospitals	 A,	 B	 and	 C.	 As	
described	in	section	1.1,	these	three	health	care	institutions	are	the	only	reference	
hospitals	for	paediatric	patients	in	Portugal	and	are	therefore	representative	of	the	
paediatric	 population,	 with	 practitioners	 exclusively	 dedicated	 to	 paediatrics	
pathologies	and	equipped	with	up-to-date	technology.	
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2.1 Materials	 and	 methods	 to	 determine	 national	 DRLs	 for	 chest,	
abdomen	and	pelvis	plain	radiography	

During	 2012	 and	 2013,	 anthropometric	 data	 (weight,	 height	 of	 patient	 and	
thickness	of	the	irradiated	anatomy)	was	collected	from	9,935	patients,	referred	for	
a	 radiography	 procedure	 to	 one	 of	 the	 three	 dedicated	 hospitals	 for	 children	 in	
Portugal	(Hospitals	A,	B	and	C).	Exams	made	with	mobile	units	were	not	included	in	
this	study.	Institutional	Review	Board	and	ethical	committee	approval	was	obtained	
for	this	study.	

National	DRLs	were	calculated	for	the	three	most	frequent	X-ray	procedures	made	
at	 hospitals	 A,	 B	 and	 C:	 chest	 Antero-Posterior	 (AP)/Postero-Anterior	 (PA)	
projection;	 abdomen	 AP	 projection;	 pelvis	 AP	 projection.	 Exposure	 factors	 and	
patient	 dose	 were	 collected	 prospectively	 at	 the	 clinical	 sites.	 All	 exams	 were	
validated	by	both	 the	 radiographer	and	the	radiologist	and	considered	acceptable	
for	the	clinical	task.	

Data	 collection	was	 carried	 out	without	 interfering	with	 the	 technical	 options	 for	
each	imaging	procedure	used	in	each	department.	

Patient	anthropometric	characteristics	 (weight,	height	and	Body	Mass	 Index	 -BMI)	
were	analysed	in	each	age	group	as	a	process	to	define	a	standard	patient	for	each	
of	the	groups	and	to	allow	future	comparisons.	

The	exposure	parameters	(tube	voltage	(kV);	tube	current-time	product	(mAs)	and	
exposure	 time	 (ExT-ms),	 Source	 Skin	 Distance	 (SSD-cm),	 as	 well	 as	 kerma-area	
product	 (KAP-mGy.cm2)	 and	 entrance	 surface	 air	 kerma,	 including	 backscatter	
(ESAK-µGy)	 were	 also	 recorded	 (International	 Commission	 on	 Radiation	 Units	 &	
Measurements,	2005).	

KAP	 and	 ESAK	 values	 were	 collected	 directly	 from	 the	 equipment	 console	 and	
manually	registered	in	a	table,	together	with	patient	data,	including	examination	ID	
number,	to	allow	future	analysis,	if	necessary.	

All	 devices	 measuring	 KAP	 (Diamentor	 M4-KDK,	 PTW®,	 Germany)	 had	 a	 valid	
manufacture	 calibration	 certificate,	 in	 accordance	 with	 IEC	 60580	 (International	
Electrotechnical	Commission,	2000),	with	an	accuracy	of	±5%	and	were	designed	to	
measure	 KAP	 according	 to	 IEC	 61267	 (International	 Electrotechnical	 Commission,	
2005a).	

Although	the	radiography	equipment	had	quality	control	maintenance	provided	by	
the	manufacturer,	 equipment	 constancy	using	 a	 calibrated	RaySafe®	 XI	 dosimetry	
system	(Sweden;	www.raysafe.com)	was	also	tested.	
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The	 measurements	 of	 weight,	 height	 and	 anatomical	 structure	 thickness	 of	 the	
patients	 were	made	 using	 the	 same	 devices.	 A	 paediatric	measurement	 rod	 was	
used	 to	 measure	 the	 anteroposterior	 thickness:	 from	 the	 dorsal	 region	 to	 the	
middle	of	the	sternum	(for	chest);	from	the	lumbar	region	to	the	umbilicus	(for	the	
abdomen);	from	the	sacrum	region	to	the	symphysis	pubis	(for	pelvis).	

Hospital	A	uses	a	S/F	system	and	is	equipped	with	a	Diagnost	floor	stand	standard	
(FS-S)	Bucky	 table	plus	 a	 vertical	 stand	 (VS)	 and	a	RO	1750	X-ray	 tube	assembled	
with	a	digital	generator	Optimus	50	kW	(Philips	Healthcare®,	The	Netherlands).	

Hospital	B	uses	a	DR	system	Essenta	DR	compact	with	a	 flat-panel-detector	based	
on	amorphous	silicon	with	a	gadolinium	oxysulfide	scintillator	and	a	RO	1750	X-ray	
tube	assembled	with	a	digital	 generator	Optimus	50	kW	 (Philips	Healthcare®,	The	
Netherlands).	

Hospital	C	uses	a	DR	system	Definium	6000	ceiling-suspended	DR	system	with	a	flat-
panel-detector	 based	on	 amorphous	 silicon	with	 a	 caesium-iodide	 scintillator	 and	
an	 overhead	 tube	 assembly,	 model	 5139720,	 with	 a	 digital	 generator	 of	 65	 kW	
(General	Electric®,	USA).	

Despite	 the	 fact	 that	 there	 are	 only	 three	 hospitals	 exclusively	 dedicated	 to	
paediatric	 patients	 at	 national	 level,	 there	 are	 no	 guidelines	 or	 standards	 of	
practice,	 with	 recommendations	 on	 what	 exposure	 parameters	 and	 technical	
features	to	use	for	plain	radiography.	
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2.2 Results	 of	 national	 DRLs	 for	 chest,	 abdomen	 and	 pelvis	 plain	
radiography	

The	 anthropometric	 characteristics	 of	 9,935	 paediatric	 patients	 referred	 to	 a	
radiography	 procedure	 to	 one	 of	 the	 three	 dedicated	 paediatric	 hospitals	 in	
Portugal	were	evaluated.	

Patient	age	varied	from	newborn	to	18	years.	50.4%	(n=5005)	of	patients	were	male	
and	49.6%	(n=4930)	female	(figure	11).	

	
Figure	11:	Patient	distribution	by	gender	

Table	5	summarises	the	anthropometric	characteristics	of	the	patients.	Taking	into	
consideration	that	data	distribution	is	not	symmetric,	the	median	value	was	used	as	
the	preferred	measure	of	central	tendency	to	provide	the	necessary	information	to	
define	a	standard	patient	for	each	age	group,	as	the	median	value	is	less	affected	by	
outliers	and	extreme	values.		

Table	5:	Paediatric	patients	weight	height	and	BMI	(by	age	groups)	

	

The	median	values	of	patient	weight,	height	and	BMI	in	each	age	category	are;	(<1):	
7kg,	66cm	and	16kg/m2;	(1	to	<5):	14kg,	93cm	and	16kg/m2;	(5	to	<10):	26kg,	125cm	
and	16kg/m2;	(10	to	<16):	48kg,	154cm	and	20kg/m2;	(16	to	18):	58kg,	166cm	and	
21kg/m2,	respectively.	
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Of	particular	note	is	the	high	diversity	of	weight,	height	and	BMI	values	within	each	
age	group,	especially	 in	age	group	10	to	<16	years,	with	a	high	number	of	outliers	
and	extreme	values	as	shown	in	figures	12,	13	and	14.	

 

Figure	12:	Weight	per	age	group	boxplot	

25%-75%;	-	median;	I - area	without	outliers;	o	–	outliers;	*	-	extreme	outliers	

	

Figure	13:	Height	per	age	group	boxplot	

25%-75%;	-	median;	I - area	without	outliers;	o	–	outliers;	*	-	extreme	outliers	
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Figure	14:	BMI	(kg/m2)	per	age	group	boxplot	

25%-75%;	-	median;	I - area	without	outliers;	o	–	outliers;	*	-	extreme	outliers	

This	high	data	dispersion	of	patient	anthropometric	characteristics	shown	in	figures	
12	 to	 14,	 evidences	 the	 challenges	 radiographers	 have	 to	 face	 in	 daily	 clinical	
practice	 when	 trying	 to	 choose	 the	 most	 adequate	 exposure	 parameters	 in	
paediatric	radiology	in	a	harmonised	and	optimised	way.	

Table	 6	 summarises	 another	 important	 patient	 characteristic	 to	 take	 into	
consideration	when	performing	a	plain	radiography:	the	thickness	of	the	anatomical	
structure	 at	 the	 central	 point	 of	 exposure.	 A	wide	 range	 of	 thickness	 values	was	
found	for	each	anatomical	structure	in	each	age	group.	

Table	6:	Chest,	abdomen	and	pelvis	thickness	per	age	group	

n median P75 (min-max) n median P75 (min-max) n median P75 (min-max)

<1 320 11 12 7-16 95 12 12 8-13 230 8 9 6-16

1-<5 673 13 14 10-24 120 14 15 10-18 259 10 12 7-17

5-<10 416 15 16 11-21 112 15 16 11-19 213 13 14 9-20

10-<16 326 18 19 13-33 105 17 19 12-25 214 16 18 10-27

16-≤18 254 20 21 15-24 98 20 27 15-27 194 19 20 15-28

age groups 
(years)

Chest (thickness, cm) Abdomen (thickness, cm) Pelvis (thickness, cm)

	

The	median	values	of	patient	chest,	abdomen	and	pelvis	thickness,	measured	in	our	
sample,	 are	 similar	 to	 those	 published	 in	 literature	 (Hart	 et	 al.,	 2000;	Wambani,	
Korir,	Korir,	&	Kilaha,	2013).	
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Table	 7,	 8	 and	 9	 shows	 the	 exposure	 parameters	 (kV,	 mAs,	 ExT),	 the	 use	 of	
Automatic	Exposure	Control	(AEC)	and	anti-scatter	grid,	in	each	hospital	practice,	to	
perform	 an	 AP/PA	 chest,	 an	 abdomen	 A/P	 and	 a	 pelvis	 A/P	 plain	 radiography,	
respectively.	 The	 percentage	 shown	 in	 AEC	 and	 grid	 column	 is	 related	 to	 the	
frequency	of	the	usage	(0%	never;	100%	always).	

Table	7:	Exposure	parameters	of	chest	AP/PA	projection	

	

With	regard	to	table	7	it	is	important	to	note	that	the	radiographers	from	Hospitals	
A	and	B	always	chose	to	use	an	anti-scatter	grid	and	never	used	AEC,	regardless	of	
the	patients’	age.	In	Hospital	A	the	mean	values	of	kV	used	to	perform	a	chest	plain	
radiography	 are	 significantly	 lower	 and	 the	mean	 values	 of	 mAs	 are	 significantly	
higher	in	all	age	groups	(p<0.05,	ANOVA	statistical	test	with	Post	Hoc	Test	Student-
Newman-Keuls	-	SNK).	Hospital	C	shows	significantly	higher	mean	values	of	ExT	in	all	
age	groups	 (p<0.05,	ANOVA	statistical	 test	with	Post	Hoc	Test	 -	 SNK).	 There	 is	no	
significant	difference	between	the	SSD	values	used	at	the	three	hospitals.	
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Table	8:	Exposure	parameters	of	abdomen	AP	projection	

	

As	shown	in	table	8,	the	radiographers	from	Hospitals	A	and	B	almost	always	used	
an	anti-scatter	grid	when	performing	an	abdomen	procedure,	independently	of	the	
patients’	age.	AEC	is	used	without	logic	criteria	in	the	three	hospitals.	In	Hospital	A	
the	 mean	 values	 of	 kV	 used	 to	 perform	 an	 abdomen	 plain	 radiography	 are	
significantly	 lower	 in	 all	 age	 groups	 and	 the	mean	 values	 of	mAs	 are	 significantly	
higher	in	age	group	5-<10	(p<0.05,	ANOVA	statistical	test	with	Post	Hoc	Test	-	SNK).	
Hospital	B	evidences	significantly	lower	mean	values	of	ExT	in	age	groups	5-<10	and	
10-<16	(p<0.05,	ANOVA	statistical	test	with	Post	Hoc	Test	-	SNK).	
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Table	9:	Exposure	parameters	of	pelvis	AP	projection	

	

As	shown	in	table	9,	the	radiographers	from	Hospital	A	always	used	an	anti-scatter	
grid	when	performing	a	pelvis	procedure,	 independently	of	 the	patients’	age.	AEC	
was	used	without	logic	criteria	in	the	three	hospitals.	In	Hospital	A	the	mean	values	
of	 kV	 used	 to	 perform	 a	 pelvis	 plain	 radiography	 are	 significantly	 lower	 and	 the	
mean	 values	 of	 mAs	 are	 significantly	 higher	 in	 all	 age	 groups	 (p<0.05,	 ANOVA	
statistical	 test	with	Post	Hoc	Test	SNK).	There	 is	no	significant	difference	between	
hospitals	regarding	the	SSD.	

As	can	be	seen	from	the	tables	7	to	9,	the	radiographers	chose	different	exposure	
parameters,	even	within	the	same	hospital	and	for	the	same	age	group	of	patients.	
This	 is	 clearly	demonstrated	by	 the	high	 range	of	 values	of	 kV,	mAs,	ExT	and	SSD	
used	for	the	same	plain	radiography	procedure.	Also	additional	technical	features,	
such	as	AEC	or	the	use	of	an	anti-scatter	grid	are	used	differently.	
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2.2.1 National	DRLs	by	age	groups	

DRLs	 will	 be	 proposed	 as	 the	 P75	 value,	 considering	 paediatric	 patient	
categorisation	by	age	groups	(<1,	1-<5,	5-<10,	10-<16,	16-≤18)	and	by	weight	groups	
(<5kg;	5-<15kg;	15-<30kg;	30-<50kg;	≥50kg)	as	suggested	in	the	preliminary	report	
of	the	PiDRL	project	(Damilakis,	2015).	

According	 to	 the	 methodology	 described	 in	 section	 2.1,	 the	 KAPP75	 and	 ESAKP75	
values	were	calculated	for	chest,	abdomen	and	pelvis	and	are	shown	in	tables	10,	
11	and	12	respectively.		

Table	10:	KAP	&	ESAK	values	for	chest	AP/PA	(by	age	groups)	

P75 min max median P75 min max median

<1 13 2 140 8 145 7 380 49

1-<5 19 2 352 11 181 5 489 52

5-<10 60 2 378 20 209 5 706 98

10-<16 134 3 525 51 234 4 771 69

16-≤18 94 3 770 49 88 4 873 55

ESAK	(µGy)KAP	(mGy.cm2)age	
groups	
(years)

	

A	wide	dispersion	of	KAP	and	ESAK	values	for	chest	plain	radiography	(table	10)	was	
observed	 in	each	age	group.	The	high	KAPP75	and	ESAKP75	values	of	age	group	10-
<16,	when	compared	to	the	other	age	groups,	are	due	to	a	high	variation	in	values,	
most	 likely	because	 in	 this	 age	group	 the	patients’	 anthropometric	 characteristics	
show	a	higher	disparity.	The	opposite	was	found	in	age	group	16-≤18.	

	

Table	11:	KAP	&	ESAK	values	for	abdomen	AP	(by	age	groups)	

P75 min max median P75 min max median

<1 25 4 31 23 70 10 83 63

1-<5 84 10 301 35 191 19 438 69

5-<10 140 12 2031 75 198 24 2751 101

10-<16 442 27 3051 153 583 53 2688 228

16-≤18 1401 72 3481 246 1258 96 3041 428

ESAK	(µGy)age	
groups	
(years)

KAP	(mGy.cm2)

	

A	wide	dispersion	of	KAP	and	ESAK	values	for	abdomen	plain	radiography	(table	11)	
was	observed	in	each	age	group,	with	higher	incidence	in	age	groups	5-<10,	10-<16	
and	16-≤18.	Considerably	higher	values	of	KAPP75	and	ESAKP75	were	observed	in	age	
group	 16-≤18,	 most	 likely	 because	 of	 a	 non-adequate	 exposure	 protocol	 for	 this	
procedure. 
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Table	12:	KAP	&	ESAK	values	for	pelvis	AP	(by	age	groups)	

P75 min max median P75 min max median

<1 29 2 271 14 125 4 686 80

1/<5 75 3 626 31 158 11 1272 97

5/<10 143 5 1025 69 232 10 1443 155

10/<16 585 12 3965 224 624 25 5416 244

16/≤18 839 48 2758 254 1204 79 2507 303

ESAK:(µGy)KAP:(mGy.cm2)age:
groups:
(years)

	

A	wide	dispersion	of	KAP	and	ESAK	values	for	pelvis	plain	radiography	(table	12)	was	
observed	in	each	age	group,	with	higher	incidence	in	age	groups	5-<10,	10-<16	and	
16-≤18.	 Considerably	 higher	 values	 of	 KAPP75	 and	 ESAKP75	 were	 observed	 in	 age	
group	 16-≤18,	 most	 likely	 because	 of	 a	 non-adequate	 exposure	 protocol	 for	 this	
procedure. 
For	the	purpose	of	this	thesis,	the	KAPP75	and	ESAKP75	values	presented	in	the	tables	
will	 be	 considered	 as	 the	 “1st	 National	 DRLs	 per	 age	 group”	 in	 order	 to	 permit	
further	analysis	of	the	impact	of	the	optimisation	programme	on	patient	doses.	
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2.2.2 National	DRLs	by	weight	groups	

As	already	mentioned,	the	most	frequent	patient	grouping	found	in	literature	is	by	
patient	age.	However,	some	authors	state	that	weight	is	generally	more	relevant	as	
a	 parameter	 for	 patient	 grouping	 for	 DRLs	 in	 body	 examinations	 (Järvinen	 et	 al.,	
2015;	 Watson	 &	 Coakley,	 2010).	 In	 our	 dataset,	 KAP	 was	 plotted	 against	 body	
weight.	 Both	 variables	 were	 found	 to	 have	 a	 statistically	 significant	 moderate	
positive	 correlation	 (p<0.005):	R2=0.366,	R=0.605	 for	 chest;	R2=0.335,	R=0.579	 for	
abdomen;	R2=0.436,	R=0.66	for	chest	(G.	Paulo,	Vaño,	&	Rodrigues,	2015).	

Since	 this	was	 a	 prospective	 study,	 patients	were	weighed	 at	 the	moment	 of	 the	
exam.	 Having	 collected	 each	 individual	 patient’s	 weight,	 the	 weight	 groups	 were	
defined	 following	 the	 recommendations	 of	 the	 preliminary	 report	 of	 the	 PiDRL	
project	(Damilakis,	2015):	<5kg;	5-<15kg;	15-<30kg;	30-<50kg;	≥50kg.	

The	 KAPP75	 and	 ESAKP75	 values	 were	 calculated	 for	 chest,	 abdomen	 and	 pelvis	
accordingly	and	are	shown	in	tables	13,	14	and	15	respectively.	As	observed	in	the	
age	groups,	a	wide	dispersion	of	KAP	and	ESAK	values	was	also	found	in	all	exams.	

Table	13:	KAP	&	ESAK	values	for	chest	AP/PA	(by	weight	groups)	

P75 min max median P75 min max median

<5 21 2 138 9 140 10 380 68

50<15 16 2 352 9 155 5 489 49

150<30 28 2 447 15 199 5 573 57

300<50 131 3 608 45 228 4 706 95

≥50 145 7 770 59 189 8 873 62

ESAK:(µGy)KAP:(mGy.cm2)weight:
groups:
(kg)

	

It	is	important	to	note	the	high	KAPP75	values	observed	for	chest	plain	radiography	
exams	 in	weight	groups	30-<50kg	and	≥50kg	when	compared	 to	 the	others	 (table	
13),	most	likely	due	to	an	inappropriate	exposure	protocol	for	this	procedure.	
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Table	14:	KAP	&	ESAK	values	for	abdomen	AP	(by	weight	groups)	

P75 min max median P75 min max median

<5 30 4 128 20 70 10 83 59

5.<15 35 10 249 25 82 19 345 63

15.<30 138 12 2031 71 199 24 2751 102

30.<50 248 24 3051 96 285 16 569 134

≥50 1445 62 3481 410 1322 79 3041 479

ESAK9(µGy)weight9

groups9

(kg)

KAP9(mGy.cm2)

	

The	 high	 KAPP75	 and	 ESAKP75	 values	 observed	 for	 abdomen	 plain	 radiography	 in	
weight	groups	15-<30kg,	30-<50kg	and	≥50kg	 (table	14)	are	most	 likely	due	 to	an	
inappropriate	exposure	protocol	for	this	procedure. 
	

Table	15:	KAP	&	ESAK	values	for	pelvis	AP	(by	weight	groups)	

P75 min max median P75 min max median

<5 239 5 241 9 480 28 480 71

52<15 37 2 436 21 125 4 746 84

152<30 120 3 944 68 216 10 1443 141

302<50 314 12 1540 132 327 25 2181 190

≥50 1164 31 3965 356 1217 50 5416 379

ESAK:(µGy)KAP:(mGy.cm2)weight:
groups:
(kg)

	

Unexpectedly,	an	abnormally	high	KAPP75	and	ESAKP75	value	was	 found	 in	patients	
with	less	than	5kg.	The	authors	consider	that	this	is	related	to	the	inadequate	usage	
of	 gonads	 protective	 shields,	 combined	with	 inappropriate	 use	 of	 AEC.	 Also	 high	
KAPP75	and	ESAKP75	values	were	 found	 in	weight	group	≥50,	most	 likely	due	 to	an	
inappropriate	exposure	protocol	for	this	procedure. 
For	 the	 purpose	 of	 this	 thesis,	 the	 KAPP75	 and	 ESAKP75	 values,	 presented	 in	 the	
tables	will	be	considered	as	 the	“1st	National	DRLs	per	weight	groups”	 in	order	 to	
permit	 further	 analysis	 of	 the	 impact	 of	 the	 optimisation	 programme	 on	 patient	
doses.	
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2.2.3 National	versus	local	DRLs	

	

The	data	collected	 from	the	 three	paediatric	hospitals	of	 this	 study	 (phase	1)	and	
presented	in	tables	10	to	12	gives	a	first	indication	of	what	could	be	considered	as	
the	“1st	National	DRLs”	for	chest,	abdomen	and	pelvis	plain	radiography	in	Portugal.	
However,	 looking	 at	 the	 high	 discrepancy	 in	 exposure	 parameters	 and	 in	 the	
technical	 features	used	for	each	examination	(table	7,	8	and	9)	and	given	the	fact	
that	 one	 of	 the	 hospitals	 used	 an	 S/F	 system,	 significant	 differences	 were	 found	
between	 KAP	 and	 ESAK	 values	 at	 each	 hospital,	 due	 to	 an	 obvious	 lack	 of	 a	
harmonisation	of	practice.	

The	discrepancy	between	KAP	and	ESAK	values	in	each	hospital	is	clearly	evidenced	
in	 figures	15	to	20.	 In	general,	 the	highest	KAP	and	ESAK	values	were	observed	 in	
hospital	A	 that	used	a	S/F	system.	The	high	KAP	and	ESAK	values	 from	Hospital	A	
had	a	negative	impact	on	the	“1st	National	DRLs”	and	were	3	to	4	times	higher	than	
the	DRL	 values	 found	 in	 literature	 (Billinger,	Nowotny,	&	Homolka,	 2010;	 Roch	&	
Aubert,	 2013;	 Kristien	 Smans	 et	 al.,	 2008;	 Sonawane,	 Sunil	 Kumar,	 Singh,	 &	
Pradhan,	2011;	Wambani	et	al.,	2013).	
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Figure	15:	Comparison	of	the	Hospitals’	KAPP75	value	with	the	“1
st	National	DRL”	for	chest	plain	

radiography	

The	KAP75	value	from	Hospital	A	for	chest	plain	radiography	is	higher	than	the	“1st	
National	DRL”	in	all	age	groups.	
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Figure	16:	Comparison	of	the	Hospitals’	ESAKP75	value	with	the	“1
st	National	DRL”	for	chest	plain	

radiography	

The	ESAK75	value	from	Hospital	A	for	chest	plain	radiography	is	higher	than	the	“1st	
National	DRL”	 in	all	age	groups.	The	same	 is	verified	 in	Hospital	B	 in	age	group	5-
<10.	
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Figure	17:	Comparison	of	the	Hospitals’	KAPP75	value	with	the	“1
st	National	DRL”	for	abdomen	plain	

radiography	

The	KAP75	value	from	Hospital	A	for	abdomen	plain	radiography	is	higher	than	the	
“1st	National	DRL”	in	all	age	groups	(where	data	is	available).	The	same	is	verified	in	
Hospital	C	in	age	group	10-<16.	
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Figure	18:	Comparison	of	the	Hospitals’	ESAKP75	value	with	the	“1
st	National	DRL”	for	abdomen	plain	

radiography	

The	ESAK75	value	from	Hospital	A	for	abdomen	plain	radiography	is	higher	than	the	
“1st	National	DRL”	in	all	age	groups	(where	data	is	available).	The	same	is	verified	in	
Hospital	C	in	age	group	10-<16.	
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Figure	19:	Comparison	of	the	Hospitals’	KAPP75	value	with	the	“1
st	National	DRL”	for	pelvis	plain	

radiography	

The	KAP75	value	from	Hospital	A	for	pelvis	plain	radiography	is	higher	than	the	“1st	
National	DRL”	in	all	age	groups.	The	same	is	verified	in	Hospital	C	in	age	group	16-
≤18.	
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Figure	20:	Comparison	of	the	Hospital	ESAKP75	value	with	the	“1
st	National	DRL”	for	pelvis	plain	

radiography	

The	ESAK75	value	from	Hospital	A	for	pelvis	plain	radiography	is	higher	than	the	“1st	
National	DRL”	in	all	the	age	groups.	The	same	is	verified	in	Hospital	B	in	age	group	
1-<5.	

The	heterogeneity	of	KAPP75	and	ESAKP75	values	shown	in	figures	15	to	20	for	chest,	
abdomen	and	pelvis	plain	radiography,	clearly	indicates	the	usage	of	a	high	variety	
of	protocols	for	the	same	procedure	by	different	radiographers	(x-axis).	To	evidence	
that	 variety	 an	 example	 is	 shown	 in	 figure	 21	 about	 the	 choice	 of	 kV	 (y-axis)	 for	
chest	plain	radiography	in	each	age	group.	

	 	 	

	

	
	
	
	

	

Figure	21:	Mean	kV	values	used	
by	each	radiographer	for	chest	

plain	radiography	in	each	patient	
age	group	
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The	 results	 shown	 in	 section	 2.2	 were	 presented	 to	 the	 radiographers	 and	
radiologists	at	each	hospital.	None	of	the	three	hospitals	has	ever	implemented	any	
kind	of	optimisation	process	or	has	analysed	the	protocols	and	pre-sets	configured	
in	 their	 equipment.	 All	 radiologists	 and	 radiographers	 were	 receptive	 to	
optimisation	procedures	with	the	objective	to	reduce	exposure	to	patients.	
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2.3 Limitations	of	section	2	

The	 paediatric	 DRLs	 were	 established	 from	 data	 collected	 at	 three	 dedicated	
regional	 public	 paediatric	 centres,	 each	 representing	 geographic	 regions	 of	
Portugal.	However,	it	is	important	to	take	into	consideration	that	a	large	proportion	
of	 paediatric	 plain	 radiography	 procedures	 is	 performed	 in	 general	 hospitals,	
potentially	without	 tailored	paediatric	protocols.	This	dose	data	was	not	analysed	
during	in	this	study.	

By	coincidence,	the	Portuguese	Health	Minister	and	the	regional	health	authorities	
decided	 to	 close	Hospital	 A	when	 the	 results	 of	 this	 survey	were	 presented.	 This	
hospital	had	the	last	radiology	department	in	Portugal	that	still	used	an	S/F	system.	
Due	 to	 the	 closure,	 no	 additional	 optimisation	 measures	 were	 possible	 for	 plain	
radiography	procedures	for	those	systems	that	presented	the	highest	dose	values	in	
this	study.	

Due	 to	 limited	human	and	 financial	 resources	 it	was	only	possible	 to	develop	 the	
optimisation	process	in	one	hospital.	Considering	the	results	from	section	2.2,	it	was	
considered	that	Hospital	C	would	benefit	most	from	an	optimisation	programme.	
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3 Plain	radiography	optimisation	phantom	tests		
The	 findings	of	 the	data	 collection	 in	phase	1	of	 this	 research	work	 indicated	 the	
need	 for	 further	 investigation	 with	 regard	 to	 optimisation	 of	 plain	 radiography	
protocols	 for	paediatric	examinations.	A	 literature	review	of	 relevant	optimisation	
tests	 in	 plain	 radiography	 examinations	 was	 undertaken	 and	 is	 presented	 in	 this	
chapter.	

The	next	stage	of	this	research	work	involved	experimental	testing	to	optimise	the	
three	most	frequent	procedures	in	plain	radiography.	This	research	activity	included	
the	use	of	quality	assurance	(QA)	and	anthropomorphic	phantoms.	The	findings	of	
this	phase	of	the	study	are	described	and	discussed	in	this	chapter.	

	

3.1 Optimisation	in	plain	radiography		

The	 European	 guidelines	 for	 paediatric	 imaging	 (European	 Commission,	 1996a)	
provide	 a	 baseline	 for	 optimisation	 in	 terms	 of	 minimum	 tube	 potential	 and	
maximum	ESAK.	Changes	 in	practice	 to	meet	 these	guidelines	must	be	performed	
cautiously,	as	increased	X-ray	penetration	may	reduce	image	contrast	and	reduced	
dose	can	cause	unacceptable	signal-to-noise	ratios	(Martin	et	al.,	2013).	

Radiation	doses	to	paediatric	patients	from	plain	radiography	are	relatively	low,	but	
because	of	the	high	frequency	of	these	procedures,	their	optimisation	is	important	
for	the	radiology	practice	(UNSCEAR,	2013).	

For	an	optimisation	strategy	to	be	effective,	all	health	professionals	involved	in	the	
use	 of	 X-ray	 equipment	 need	 to	 have	 knowledge	 and	 access	 to	 the	 results	 of	
performance	 tests	 and	 patient	 dose	 surveys.	 In	 addition	 there	 should	 be	 a	
continuing	 programme	 of	 assessment	 to	 track	 any	 changes	 in	 equipment	
performance.	 There	 should	 be	 close	 links	 between	 the	 radiographer,	 the	medical	
physicist	and	the	radiologist	to	provide	a	greater	opportunity	for	optimisation	(C.	J.	
Martin,	Le	Heron,	Borrás,	Sookpeng,	&	Ramirez,	2013).	

The	main	objective	of	optimisation	of	 radiological	procedures	 is	 to	adjust	 imaging	
parameters	 and	 implement	 measures	 in	 such	 a	 way	 that	 the	 required	 image	 is	
obtained	 with	 the	 lowest	 possible	 radiation	 dose	 and	 maximised	 benefit	
(International	Commission	on	Radiological	Protection,	2013).	

To	 achieve	 this	 goal,	 good	 practice	 in	 radiographic	 technique	 is	 needed	 and	
therefore	 special	 attention	must	 given,	 simultaneously,	 to	 several	 aspects	 of	 the	
procedure,	such	as:	a)	patient	positioning	and	immobilisation;	b)	accurate	field	size	
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and	 correct	 X-ray	 beam	 limitation;	 c)	 the	 use	 of	 protective	 shielding,	 when	
appropriate	and	d)	optimisation	of	radiographic	exposure	factors.	

Using	 a	 correct	 beam	 limitation	 is	 crucial	 to	 avoid	 unnecessary	 radiation	 dose	
outside	 the	 area	 of	 interest,	 and	 prejudice	 the	 image	 contrast	 and	 resolution	 by	
increasing	 the	 scattered	 radiation.	 Therefore	 proper	 collimation	 of	 the	 examined	
structure	is	necessary	and	preferred	over	the	use	of	post-processing	tools	in	CR	or	
DR	systems,	such	as	imaging	crop.	This	post-processing	tool	can	potentially	hide	an	
increase	 in	 patient	 dose	 due	 to	 an	 unnecessarily	 overexposed	 area	 (International	
Commission	on	Radiological	Protection,	2013;	Moore	et	al.,	2012).	

Choosing	the	most	adequate	exposure	factors	and	making	the	best	effective	use	of	
the	technological	features	available	in	the	X-ray	equipment,	is	crucial	for	obtaining	
the	best	diagnostic	quality	image	with	the	lowest	possible	dose.	

The	kV,	especially	when	using	digital	systems,	should	be	used	at	the	highest	value,	
within	 the	optimal	 range,	considering	the	position	and	anatomical	structure	being	
examined,	 allowing	 the	 lowest	 quantity	 of	 mAs	 needed	 to	 provide	 an	 adequate	
exposure	to	the	image	receptor	(Herrmann	et	al.,	2012).	

For	chest,	abdomen	and	pelvis	exposure,	the	principle	of	using	a	high	kV	technique	
should	be	followed,	since	it	would	result	in	lower	patient	attenuation,	and	therefore	
lower	dose	for	the	same	detector	exposure.	The	kV	should	also	be	increased	in	each	
ascending	 age/size	 group	due	 to	 the	 increases	 in	 tissue	 thickness,	which	 requires	
more	photon	penetration	(Knight,	2014).	

It	 is	 important	to	take	 into	consideration	that	whenever	using	higher	kV	values	or	
imaging	 thicker	 structures,	 an	 increase	 of	 scatter	 radiation	 is	 expected	 and	
therefore	 an	 antiscatter	 grid	 should	 be	 used.	 The	 Image	 Gently	 programme	
(www.imagegently.org)	 and	 the	 American	 Society	 of	 Radiologic	 Technologists	
(ASRT)	White	Paper	(Herrmann	et	al.,	2012)	recommend	the	use	of	anti-scatter	grid	
above	10-12	cm	thickness.	

Another	 important	 technological	 feature	 to	 take	 into	 consideration	 is	 the	 use	 of	
additional	 filtration,	 which	 removes	 the	 lower	 energies	 from	 the	 X-ray	 spectrum	
and	consequently	 raises	 the	average	beam	energy	 for	a	constant	kV.	By	removing	
the	 low	 energies	 from	 the	 spectrum,	 the	 ESAK	 to	 the	 patient	 is	 reduced	 (Brosi,	
Stuessi,	Verdun,	Vock,	&	Wolf,	2011).	

The	 commonly	 used	 filters	 are	 made	 of	 copper	 (Cu)	 or	 aluminium	 (Al)	 or	 a	
combination	of	both.	The	European	Guidelines	recommend	the	use	of	0.1	mm	Cu	+	
1	mm	Al	or	0.2mm	Cu	+	1mm	Al	additional	beam	filtration	 for	S/F	systems,	when	
considered	appropriate	(European	Commission,	1996a).	One	potential	consequence	
of	using	additional	filtration	is	the	reduction	of	image	quality	due	to	the	decreased	
image	contrast.	However	this	disadvantage	is	of	minor	importance	in	digital	systems	
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because	 image	 contrast	 may	 be	 selectively	 enhanced	 by	 using	 appropriate	 post	
processing	tools	(Brosi	et	al.,	2011).	

Once	 the	medical	examination	using	 ionising	 radiation	has	been	clinically	 justified	
and	decided,	the	procedure	must	be	optimised.	Therefore	the	radiation	dose	which	
is	 delivered	 to	 the	 patient	 must	 be	 ALARA,	 but	 high	 enough	 for	 obtaining	 the	
required	 diagnostic	 information,	 taking	 into	 account	 economic	 and	 social	 factors.	
The	 written	 protocols	 (guidelines)	 for	 every	 type	 of	 standard	 practice	 should	 be	
optimised	(European	Commission,	2009).	

An	optimisation	process	should	be	understood	as	a	dynamic	process	and	as	part	of	
the	 clinical	 audit	 programme	 of	 the	 radiology	 department.	 The	 optimisation	 of	
clinical	 protocols	 for	 paediatric	 patients	 (Kostova-Lefterova,	 Taseva,	 Hristova-
Popova,	&	Vassileva,	2015)	should	include	the	steps	described	in	figure	22.	

	

Figure	22:	Optimisation	of	clinical	protocols	for	paediatric	imaging	

By	 implementing	 this	 dynamic	 process,	 it	 is	 expected	 to	 reduce	 patient	 dose	
without	interfering	with	diagnostic	image	quality.	The	secret	for	the	success	of	this	
process	 is	 the	 continuous	 contribution	 of	 a	 multidisciplinary	 team	 involving	
radiographers,	 radiologists	 and	 medical	 physicists.	 This	 concept	 constitutes	 the	
pillars	 in	 the	 development	 and	 implementation	 of	 a	 patient	 safety	 culture	 in	 the	
medical	imaging	department.	
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3.2 Experimental	 tests	 with	 anthropomorphic	 phantoms	 (objective	
image	analysis)	

To	analyse	the	relationship	between	exposure	factors,	the	use	of	technical	features	
and	dose,	experimental	tests	were	made	using	two	anthropomorphic	phantoms:	A)	
CIRSTM	 ATOM	 model	 705®;	 110cm	 of	 height	 and	 19Kg	 of	 weight	 and	 B)	 Kyoto	
kagakuTM	model	PBU-60®;	165cm	of	height	and	50Kg	of	weight	(figure	23).	

	

A	

	

	

	

	

B	

Figure	23:	Anthropomorphic	phantoms	used	in	experimental	tests	
A	-	Phantom	CIRSTM	ATOM	model	705;	B-	Phantom	Kyoto	kagakuTM	model	PBU-60	

	

3.2.1 Methodology	of	experimental	tests	with	anthropomorphic	phantoms	

Phantom	 tests	 were	 performed	 at	 Hospital	 C,	 where	 the	 optimisation	 process	 of	
this	 study	 was	 carried	 out.	 Dose	 exposure	 data	 from	 the	 phantom	 tests	 was	
obtained	using	the	same	methodology	as	for	the	data	collection	of	patient	exposure	
data.	

After	data	collection,	an	objective	 image	analysis	was	performed	by	analysing	 the	
variation	of	the	mean	value	of	the	standard	deviation	(SD),	measured	in	four	(green	
circles)	 Regions	 of	 Interest	 (ROI)	 in	 each	 image	 (figure	 24).	 OsiriX®	 software	
(Pixmeo,	Switzerland)	was	used	to	perform	the	ROI	measurements.	

The	 analysis	 of	 the	 SD	 values	 is	well	 recognised	 as	 the	 standard	method	 used	 to	
reflect	the	degree	of	noise	when	imaging	parameters	are	changed	(Sun	et	al.,	2004;	
Sun,	 Lin,	Tyan,	&	Ng,	2012).	Higher	SD	values	are	 related	 to	an	 increase	of	 image	
noise	and	to	a	decrease	of	dose	values.	
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A	-	ATOM	705	chest	 B	-	ATOM	705	abdomen	 C	-	ATOM	705	pelvis	

	 	

	

D	-	PBU-60	chest	 E	-	PBU-60	chest	abdomen	 	

Figure	24:	Example	of	ROI	locations,	for	analyses	with	OsiriX®	software	(A	to	E)	

	

Several	 acquisitions	 were	 made	 with	 different	 exposure	 factors,	 different	
combinations	of	AEC	chamber	settings,	additional	filtration	and	the	use	of	an	anti-
scatter	grid	for	chest,	abdomen	and	pelvis	examinations	(tables	16	to	20).	KAP	and	
ESAK	values	were	also	registered	for	each	exposure.	
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3.2.2 Results	of	phantoms	experimental	tests	

	

Table	16	shows	the	results	of	the	tests	for	the	chest	examination	on	CIRSTM	ATOM	
model	705®.	All	exposures	were	made	with	a	SID	of	180	cm.	

Table	16:	Experimental	tests	for	chest	examination	using	CIRSTM	ATOM	model	705®	

Test%
ID

Tube%
voltage%(kV)

Tube%
current%
(mA)

Tube%current%
time%product%

(mAs)

Ext%
(ms)

ESAK%
(µGy)

KAP%
(mGy.cm2)

Grid Additional%
Filtration

AEC%
chamber

SD%Mean

1 90 339 2 7 18 5 no 0.3Cu right 425

2 90 339 2 6 21 5 no 0.2Cu right 442

3 90 323 2 5 29 7 no 0.1Cu right 447

4 90 324 3 11 26 7 yes 0.3Cu right 421

5 100 321 3 8 26 7 yes 0.3Cu right 412

6 90 324 3 9 29 7 yes 0.2Cu right 425

7 100 321 2 7 29 7 yes 0.2Cu right 418

8 90 338 4 12 31 8 no 0.3Cu central 412

9 100 323 2 6 35 9 yes 0.1Cu right 420

10 90 324 2 7 35 9 yes 0.1Cu right 424

11 90 323 4 11 35 9 no 0.2Cu central 414

12 90 337 2 5 39 10 no none right 464

13 90 324 3 9 43 11 no 0.1Cu central 427

14 90 326 2 6 53 14 yes none right 429

15 100 322 2 5 53 14 yes none right 425

16 90 319 7 23 55 14 yes 0.3Cu central 388

17 90 334 6 18 61 16 yes 0.2Cu central 390

18 90 326 3 8 65 17 no none central 443

19 90 320 5 17 78 20 yes 0.1Cu central 398

20 90 324 5 15 121 31 yes none central 408 	

	

The	test	identification	(ID)	number	18	corresponds	to	the	protocol	most	frequently	
used	at	Hospital	C.	Considering	the	recommendations	of	using	additional	 filtration	
and	 anti-scatter	 grid	 for	 high	 kV	 procedures,	 it	 was	 decided	 together	 with	
radiologists	 and	 radiographers	 from	 the	 radiology	 department	 to	 start	 using	 the	
exposure	 conditions	 of	 test	 ID	 number	 6:	 use	 additional	 filtration	 of	 0.2mm	 of	
Copper	and	select	the	right	AEC	(corresponding	to	the	right	lung)	chamber.	The	AEC	
chamber	related	to	the	right	lung	was	chosen	in	order	to	avoid	the	AEC	to	include	
the	density	of	the	spine,	mediastinum	and	sternum.	

The	exposure	conditions	as	per	test	ID	number	6	show	a	reduction	of	55%	and	56%	
on	ESAK	and	KAP	values,	 respectively,	while	not	 interfering	on	mAs	and	exposure	
time,	when	compared	with	the	ones	used	at	the	department.	
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Despite	 the	 significant	 dose	 reduction	 (one	 sample	 T-test,	 p<0.05),	 no	 difference	
was	found	between	the	variations	of	the	mean	of	SD	values	obtained	from	the	four	
ROIs	(one	sample	T-test,	p>0.05).	

Table	17	shows	the	results	of	the	tests	for	abdomen	examination	on	CIRSTM	ATOM	
model	705®.	All	exposures	were	made	with	a	SID	of	110	cm.	

	
Table	17:	Experimental	tests	for	abdomen	examination	using	CIRSTM	ATOM	model	705®	

Test%
ID

Tube%
voltage%(kV)

Tube%
current%
(mA)

Tube%current%
time%product%

(mAs)

Ext%
(ms)

ESAK%
(µGy)

KAP%
(mGy.cm2)

Grid
Additional%
Filtration

AEC%
chamber SD%Mean

1 75 253 2 9 66 16 yes 0.3Cu central 307

2 70 255 4 16 70 17 no 0.3Cu central 331

3 75 252 3 8 79 19 yes 0.2Cu central 314

4 70 255 3 13 87 21 no 0.2Cu central 323

5 75 253 2 7 106 25 yes 0.1Cu central 322

6 70 255 3 11 115 28 no 0.1Cu central 325

7 80 248 5 21 153 37 yes 0.3Cu central 400

8 80 253 1 6 164 39 no none central 318

9 80 249 5 19 183 44 yes 0.2Cu central 397

10 70 255 2 9 184 44 no none central 318

11 70 250 11 46 202 48 yes 0.3Cu central 405

12 70 250 9 37 239 57 yes 0.2Cu central 385

13 80 248 4 16 240 58 yes 0.1Cu central 392

14 70 250 8 30 314 75 yes 0.1Cu central 382

15 80 252 4 14 396 95 yes none central 383

16 70 251 6 24 516 124 yes none central 377 	

	

	

The	test	ID	number	16	corresponds	to	the	protocol	most	frequently	used	at	Hospital	
C.	Considering	 the	 recommendations	of	using	additional	 filtration	and	anti-scatter	
grid	 for	high	kV	procedures	or	 to	examine	anatomical	structures	with	high	atomic	
number,	 it	 was	 decided	 together	 with	 radiologists	 and	 radiographers	 from	 the	
radiology	department	 to	 start	using	 the	exposure	conditions	of	 test	 ID	number	3:	
use	additional	filtration	of	0.2mm	of	Copper	and	select	the	central	AEC	chamber.	

The	 exposure	 conditions,	 as	 per	 test	 ID	 number	 3,	 shows	 a	 reduction	 of	 85%	 on	
ESAK	and	KAP	values	and	a	reduction	of	67%	of	the	ExT,	when	compared	with	the	
ones	used	at	the	department.	

Despite	 the	 significant	 dose	 reduction	 (one	 sample	 T-test,	 p<0.05),	 no	 difference	
was	found	between	the	variations	of	the	mean	of	SD	values	obtained	from	the	four	
ROI’s	(one	sample	T-test,	p>0.05).	
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Table	 18	 shows	 the	 results	 of	 the	 tests	 for	 pelvis	 examination	 on	 CIRSTM	 ATOM	
model	705®.	All	exposures	were	made	with	a	SID	of	110	cm.	

	
Table	18:	Experimental	tests	for	pelvis	examination	using	CIRSTM	ATOM	model	705®	

Test%
ID

Tube%
voltage%
(kV)

Tube%
current%
(mA)

Tube%current%
time%product%

(mAs)

Ext%
(ms)

ESAK%
(µGy)

KAP%
(mGy.cm2)

Grid
Additional%
Filtration

AEC%
chamber

Gonads%
protection SD%Mean

1 75 200 4 21 129 24 yes 0.3Cu central no 386

2 75 200 5 23 138 25 yes 0.3Cu central yes 322

3 75 201 4 18 150 27 yes 0.2Cu central yes 299

4 75 205 4 18 150 27 yes 0.2Cu central no 376

5 75 204 3 14 182 33 yes 0.1Cu central yes 294

6 75 204 3 14 186 34 yes 0.1Cu central no 365

7 75 200 8 40 244 45 yes 0.3Cu central yes 262

8 75 204 2 12 283 52 yes none central yes 282

9 75 200 7 34 285 52 yes 0.2Cu central yes 253

10 75 204 2 12 293 54 yes none central no 355

11 75 200 5 27 342 62 yes 0.1Cu central yes 251

12 75 200 4 22 525 96 yes none central yes 252 	

	

	

The	test	ID	number	12	corresponds	to	the	protocol	most	frequently	used	at	Hospital	
C.	Considering	 the	 recommendations	of	using	additional	 filtration	and	anti-scatter	
grid	 for	high	kV	procedures	or	 to	examine	anatomical	structures	with	high	atomic	
number,	 it	 was	 decided	 together	 with	 radiologists	 and	 radiographers	 from	 the	
radiology	department	 to	 start	using	 the	exposure	conditions	of	 test	 ID	number	4:	
use	additional	filtration	of	0.2mm	of	Copper	and	select	the	central	AEC	chamber.	It	
is	 important	 to	 note	 that	 the	 use	 of	 gonads	 protection	 increases	 ESAK	 and	 KAP	
values	and	therefore	it	was	recommended	not	to	use	gonads	protection,	neither	in	
females,	 due	 to	 the	 variety	 of	 the	 location	 of	 ovaries,	 neither	 in	 males,	 if	 the	
protection	 falls	 in	 the	 exposure	 area.	 The	 same	 recommendation	 was	 found	 in	
literature	(Bardo,	Black,	Schenk,	&	Zaritzky,	2009;	Fawcett	&	Barter,	2009)	

The	exposure	conditions,	as	per	test	ID	number	4,	show	a	reduction	of	71%	on	ESAK	
and	KAP	values,	when	compared	with	the	ones	used	at	the	department.	

Despite	 the	 significant	 dose	 reduction	 (one	 sample	 T-test,	 p<0.05),	 no	 difference	
was	found	between	the	variations	of	the	mean	of	SD	values	obtained	from	the	four	
ROIs	(one	sample	T-test,	p>0.05).	

Table	 19	 shows	 the	 results	 of	 the	 tests	 for	 chest	 examination	on	Kyoto	 kagakuTM	
model	PBU-60.	All	exposures	were	made	with	a	SID	of	180	cm.	
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Table	19:	Experimental	tests	for	chest	examination	using	Kyoto	kagakuTM	model	PBU-60	

Test%
ID

Tube%
voltage%(kV)

Tube%
current%
(mA)

Tube%current%
time%product%

(mAs)

Ext%
(ms)

ESAK%
(µGy)

KAP%
(mGy.cm2)

Grid Additional%
Filtration

AEC%
chamber

SD%Mean

1 100 320 3 9 32 24 yes 0.3Cu right 529

2 110 317 2 7 33 24 yes 0.3Cu right 526

3 100 320 3 8 35 26 yes 0.2Cu right 533

4 110 317 2 6 37 27 yes 0.2Cu right 528

5 100 321 4 12 41 30 yes 0.3Cu left 529

6 100 322 1 4 42 31 no none right 542

7 100 321 2 7 43 32 yes 0.1Cu right 533

8 100 319 4 13 44 32 yes 0.3Cu all 528

9 110 317 2 6 45 33 yes 0.1Cu right 530

10 100 339 3 10 46 34 yes 0.2Cu left 526

11 100 320 4 11 48 36 yes 0.2Cu all 527

12 100 338 3 9 56 41 yes 0.1Cu left 532

13 100 322 3 9 59 44 yes 0.1Cu all 528

14 100 321 2 6 66 49 yes none right 530

15 110 316 2 5 66 49 yes none right 532

16 100 334 3 8 86 63 yes none left 528

17 100 320 3 9 90 66 yes none all 531

18 100 317 9 29 99 73 yes 0.3Cu central 518

19 100 315 8 25 109 80 yes 0.2Cu central 522

20 100 316 7 22 136 100 yes 0.1Cu central 524

21 100 315 6 21 211 156 yes none central 527 	

	

	

The	test	ID	number	21	corresponds	to	the	protocol	most	frequently	used	at	Hospital	
C.	Considering	 the	 recommendations	of	using	additional	 filtration	and	anti-scatter	
grid	 for	 high	 kV	 procedures,	 it	 was	 decided	 together	 with	 radiologists	 and	
radiographers	from	the	radiology	department	to	start	using	the	exposure	conditions	
of	 test	 ID	 number	 3:	 use	 additional	 filtration	 of	 0.2mm	of	 Copper	 and	 select	 the	
right	AEC	chamber	related	to	the	right	lung	was	chosen	in	order	to	avoid	the	AEC	to	
include	the	density	of	the	spine,	mediastinum	and	sternum.		

The	exposure	conditions,	as	per	test	ID	number	3,	show	a	reduction	of	83%	on	ESAK	
and	KAP	values,	when	compared	with	the	ones	used	at	the	department.	

Despite	 the	 significant	 dose	 reduction	 (one	 sample	 T-test,	 p<0.05),	 no	 difference	
was	found	between	the	variations	of	the	mean	of	SD	values	obtained	from	the	four	
ROIs	(one	sample	T-test,	p>0.05).	
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Table	 20	 shows	 the	 results	 of	 the	 tests	 for	 abdomen	 examination	 on	 Kyoto	
kagakuTM	model	PBU-60.	All	exposures	were	made	with	a	SID	of	110	cm.	

	

Table	20:	Experimental	tests	for	abdomen	examination	using	Kyoto	kagakuTM	model	PBU-60	

Test%
ID

Tube%
voltage%
(kV)

Tube%
current%
(mA)

Tube%current%
time%product%

(mAs)

Ext%
(ms)

ESAK%
(µGy)

KAP%
(mGy.cm2)

Grid Additional%
Filtration

AEC%
chamber

SD%Mean

1 80 252 9 36 310 165 yes 0.3Cu all 354

2 90 245 6 26 310 169 yes 0.3Cu central 343

3 80 249 7 29 330 179 yes 0.2Cu all 367

4 70 250 17 70 360 195 yes 0.3Cu all 345

5 90 248 4 15 360 196 yes 0.1Cu all 360

6 90 254 6 22 370 198 yes 0.2Cu central 343

7 80 249 12 47 390 211 yes 0.3Cu central 336

8 80 248 6 23 400 217 yes 0.1Cu all 350

9 70 250 14 57 420 230 yes 0.2Cu all 344

10 80 249 10 39 450 241 yes 0.2Cu central 331

11 90 245 5 20 460 248 yes 0.1Cu central 346

12 70 250 25 99 510 276 yes 0.3Cu central 340

13 70 250 11 44 530 286 yes 0.1Cu all 341

14 90 248 3 13 540 292 yes none all 359

15 80 248 8 32 540 294 yes 0.1Cu central 343

16 70 250 20 81 600 327 yes 0.2Cu central 340

17 80 248 5 19 630 339 yes none all 346

18 90 244 4 17 700 378 yes none central 342

19 70 251 16 64 780 419 yes 0.1Cu central 340

20 80 248 7 27 860 465 yes none central 345

21 70 250 9 35 870 468 yes none all 346

22 70 250 13 52 1270 687 yes none central 338 	

	

	

The	test	ID	number	21	corresponds	to	the	protocol	most	frequently	used	at	Hospital	
C.	Considering	 the	 recommendations	of	using	additional	 filtration	and	anti-scatter	
grid	 for	high	kV	procedures	or	 to	examine	anatomical	structures	with	high	atomic	
number,	 it	 was	 decided	 together	 with	 radiologists	 and	 radiographers	 from	 the	
radiology	department	 to	 start	using	 the	exposure	conditions	of	 test	 ID	number	3:	
use	additional	filtration	of	0.2mm	of	Copper	and	select	all	the	AEC	chambers.	

The	exposure	conditions,	as	per	test	ID	number	3,	show	a	reduction	of	63%	on	ESAK	
and	KAP	values	and	a	reduction	of	44%	of	the	ExT,	when	compared	with	the	ones	
used	at	the	department.	
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Despite	 the	 significant	 dose	 reduction	 (one	 sample	 T-test,	 p<0.05),	 no	 difference	
was	found	between	the	variations	of	the	mean	of	SD	values	obtained	from	the	four	
ROIs	(one	sample	T-test,	p>0.05).	

	

An	 example	 of	 the	 influence	 of	 the	 AEC	 chamber	 in	 plain	 radiography	 is	 given	 in	
figure	25.	Images	A	and	B	are	from	the	same	patient	and	were	obtained	at	Hospital	
C	(with	an	interval	of	2	months).	Chest	plain	radiography	A	was	made	with	AEC	and	
central	 chamber	 (exposure	 conditions	 used	 at	 the	 department).	 Chest	 plain	
radiography	 B	 was	 made	 with	 AEC	 and	 lateral	 right	 chamber.	 The	 exposure	
conditions	were	the	same	(90kV;	2mAs)	for	both	exposures	and	the	KAP	and	ESAK	
values	were	3	 and	4	 times	 lower	 respectively	 in	 chest	plain	 radiography	B.	When	
shown	blindly	to	four	radiologists,	all	of	them	defined	chest	plain	radiography	B	as	
the	one	with	the	better	diagnostic	image.	

	

	

A	

	

B	

Figure	25:	A:	Chest	plain	radiography	with	AEC	+	central	chamber;	B:	Chest	plain	radiography	with	AEC	+	
lateral	right	chamber	
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3.3 Optimised	exposure	criteria	for	chest,	abdomen	and	pelvis	plain	
radiography	

	

The	 results	 obtained	 from	 the	 anthropomorphic	 phantoms	 were	 discussed	 in	 a	
meeting	with	 the	 radiologists	and	 radiographers	 from	Hospital	C	and	a	 consensus	
was	obtained	to	harmonise	practice.	

The	new	exposure	criteria	for	abdomen	plain	radiography	were	defined	taking	into	
consideration	 the	 results	 of	 the	 anthropomorphic	 phantoms	 tests,	 the	
recommendations	 from	 literature	 and	 the	 outputs	 from	 the	 meetings	 with	
radiographers	and	radiologists	from	the	radiology	department.	

The	new	exposure	criteria	for	each	age	group	were	defined	according	to	the	results	
obtained	from	the	anthropomorphic	phantoms	tests	and	by	reviewing	the	exposure	
criteria	published	in	the	literature	(Amaral,	Matela,	Pereira,	&	Palha,	2008;	Cook	et	
al.,	2001;	Don	et	al.,	2013;	Doyle,	Gentle,	&	Martin,	2005;	Knight,	2014;	McCarty,	
Waugh,	McCallum,	Montgomery,	&	Aszkenasy,	2001;	Moore	et	al.,	2012;	Graciano	
Paulo	 et	 al.,	 2011;	 Rizzi	 et	 al.,	 2014;	 K	 Smans,	 Struelens,	 Smet,	 Bosmans,	 &	
Vanhavere,	 2010;	 Suliman	&	 Elawed,	 2013;	 Zhang,	 Liu,	 Niu,	&	 Liu,	 2013)	 and	 the	
outcome	 of	 several	 group	 meetings	 held	 with	 radiographers	 and	 radiologists	
working	at	the	radiology	department.	

The	new	exposure	criteria	 for	plain	radiography	of	chest,	abdomen	and	pelvis	per	
age	group	are	defined	in	tables	21	to	23.		

Table	21:	New	exposure	criteria	for	chest	plain	radiography	

Age$
groups$
(years)

Median$
weight$
(Kg)

Tube$
tension$
(kV)

Chamber Grid
Additional$
filtration

<1 7 70 central no 0.1mm/Cu

12<5 14 80 central no 0.1mm/Cu

52<10 26 90
Lateral/right/
(right/lung)

yes 0.2mm/Cu

102<16 46 100
Lateral/right/
(right/lung)

yes 0.2mm/Cu

162≤18 58 110
Lateral/right/
(right/lung)

yes 0.2mm/Cu

Chest
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For	 paediatric	 patients	 under	 5	 years,	 the	 most	 adequate	 option	 is	 to	 use	 the	
central	 ionisation	 chamber	 of	 the	AEC	 system	 (considering	 that	 the	 patient	 chest	
does	not	cover	lateral	chambers),	combined	with	an	additional	filtration	of	0.1mm	
of	copper,	without	the	anti-scatter	grid.		

For	 patients	 above	 5	 years,	 the	most	 adequate	 option	 is	 to	 use	 the	 lateral	 right	
ionisation	chamber	of	the	AEC	(corresponding	to	the	patient’s	right	lung),	to	avoid	
the	 influence	 of	 the	 spine,	 the	 mediastinum	 structures	 (mainly	 the	 heart)	 and	
sternum,	 combined	 with	 an	 additional	 filtration	 of	 0.2mm	 of	 copper,	 with	 anti-
scatter	grid.	

The	median	of	patient	weight	for	each	age	group	was	provided	as	an	indicator	for	
radiographers	to	adapt	the	exposure	conditions	accordingly	if	necessary.	

	

Table	22:	New	exposure	criteria	for	abdomen	plain	radiography	

Age$
groups$
(years)

Median$
weight$
(Kg)

Tube$
tension$
(kV)

Chamber Grid Additional$filtration

<1 7 65 central no 0.1mm1Cu

14<5 14 70 central no 0.1mm1Cu

54<10 26 75 central yes 0.2mm1Cu

104<16 46 80 All yes 0.2mm1Cu

164≤18 58 90 All yes 0.2mm1Cu

Abdomen

	

For	 paediatric	 patients	 under	 5	 years,	 the	 most	 adequate	 option	 is	 to	 use	 the	
central	 ionisation	 chamber	 of	 the	 AEC	 system	 (considering	 that	 the	 patient	
abdomen	does	not	cover	 lateral	chambers),	combined	with	an	additional	filtration	
of	0.1mm	of	copper,	without	the	anti-scatter	grid.		

For	patients	above	5	years,	the	most	adequate	option	is	to	use	all	three	chambers	
of	 the	AEC,	 combined	with	an	additional	 filtration	of	0.2mm	of	 copper,	with	anti-
scatter	grid.	

The	median	of	patient	weight	for	each	age	group	was	provided	as	an	indicator	for	
radiographers	to	adapt	the	exposure	conditions	accordingly	if	necessary.	
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Table	23:	New	exposure	criteria	for	pelvis	plain	radiography	

Age$
groups$
(years)

Median$
weight$
(Kg)

Tube$
tension$
(kV)

Chamber Grid Additional$filtration gonads$protection

<1 7 65 central no 0.1mm1Cu

14<5 14 70 central no 0.1mm1Cu

54<10 26 75 central yes 0.2mm1Cu

104<16 46 80 central yes 0.2mm1Cu

164≤18 58 90 central yes 0.2mm1Cu

only$in$males$if$
protection$is$out$of$
exposure$field

Pelvis

	

	

The	 new	 exposure	 criteria	 for	 pelvis	 plain	 radiography	 were	 defined	 taking	 into	
consideration	 the	 results	 of	 the	 anthropomorphic	 phantom	 tests,	 the	
recommendations	 from	 literature	 and	 the	 outcome	 of	 the	 meetings	 held	 with	
radiographers	and	radiologists	working	at	the	radiology	department.	

For	 paediatric	 patients	 under	 5	 years,	 the	 most	 adequate	 option	 is	 to	 use	 the	
central	ionisation	chamber	of	the	AEC	system	(considering	that	the	patient’s	pelvis	
does	not	cover	lateral	chambers),	combined	with	an	additional	filtration	of	0.1mm	
of	copper,	without	the	anti-scatter	grid.		

For	 patients	 above	 5	 years,	 the	 most	 adequate	 option	 is	 to	 use	 the	 central	
ionisation	chamber	of	the	AEC,	combined	with	an	additional	filtration	of	0.2mm	of	
copper,	with	anti-scatter	grid.	

As	 indicated	above,	 the	use	of	 gonads	protection	 increases	ESAK	and	KAP	values.	
Therefore	 it	was	 recommended	not	 to	use	gonads,	neither	 in	 females,	due	 to	 the	
variety	of	the	location	of	ovaries,	nor	in	males,	if	the	protection	falls	in	the	exposure	
area.	

The	median	of	patient	weight	for	each	age	group	was	provided	as	an	indicator	for	
radiographers	to	adapt	the	exposure	conditions	accordingly	if	necessary.	
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3.4 Subjective	analysis	of	image	quality	(methodology	and	results)	

Data	for	chest,	abdomen	and	pelvis	examinations	(n=24	for	each)	pre/post	the	new	
exposure	 criteria	 were	 organised	 in	 Digital	 Imaging	 and	 Communications	 in	
Medicine	(DICOM)	format	for	the	four	age	categories	(<1;	1-<5;	5-<10;	10-<16)	and	
presented	 for	 image	 quality	 review.	 In	 total	 72	 cases	 were	 prepared	 for	 image	
evaluation.	Patient	images	were	presented	in	Viewer	for	Digital	Evaluation	of	X-ray	
images	(ViewDEX	2.0)	software	(Hakansson	et	al.,	2010).	

Visual	Grading	Characteristic	(VGC)	image	quality	evaluation	was	performed	blindly	
by	 four	 paediatric	 radiologists,	 each	with	 a	minimum	 of	 10	 years	 of	 professional	
experience,	 using	 anatomical	 criteria	 scoring.	 The	 anatomical	 criteria	 considered	
most	 important	 for	each	examination	were	chosen	on	a	consensus	basis	between	
the	four	radiologists	from	the	European	Guidelines	on	Quality	Criteria	for	Diagnostic	
Radiographic	Images	in	Paediatrics	(European	Commission,	1996a),	(table	24).	

	

Table	24:	Image	analyses	using	anatomical	criteria	scoring	and	the	five	point	scale	

	

Images	were	analysed	on	a	diagnostic	workstation	and	the	ambient	luminance	was	
measured	with	 a	 RaysafeTM	 Xi	 Light	 detector	 (Unfors	 RaySafe,	 Sweden)	 to	 ensure	
consistent	ambient	lighting	conditions	of	less	than	40	lux	(Brennan	et	al.,	2007).	

Through	VGC	analysis,	 the	observer	 uses	multiple	 scale	 steps	 to	 state	his	 opinion	
about	 the	 image	 quality	 (M	 Båth	&	Månsson,	 2007).	 The	 observers	 of	 this	 study	
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gave	their	opinion	by	using	a	scale	from	1	to	5	to	classify	the	fulfilment	of	a	specific	
criterion.	Two	data	sets	were	therefore	obtained	before	and	after	the	new	exposure	
criteria.	 The	 data	 from	 the	 two	 data	 sets	 were	 used	 to	 calculate	 the	 VGC	 data	
points.	The	referred	points	represent	the	VGC	curve	coordinates	of	a	plot.	The	area	
under	the	curve	(AUCVGC)	can	be	taken	as	a	measure	of	the	difference	in	the	image	
quality	 between	 the	 pre	 and	 post	 settings.	 A	 curve	 equivalent	 to	 an	 AUCVGC	 of	
around	 0.5	 indicates	 equality	 between	 both	 settings	 (Ludewig,	 Richter,	 &	 Frame,	
2010).	 Values	 lower	 than	 0.5	 indicate	 better	 image	 quality	 of	 the	 “pre”	 settings.	
Values	higher	than	0.5	indicate	better	image	quality	of	the	“post”	settings.	

To	 perform	 VGC	 analyses,	 a	 web-based	 calculator	 for	 Receiver	 Operating	
Characteristic	 (ROC)	 Curves	 (John	 Eng.,	 Maryland,	 USA)	 was	 used	 to	 analyse	 the	
AUCVGC	per	criterion	and	radiologist	 (Eng,	2013).	VGC	analysis	 reviews	 the	data	as	
ordinal	with	no	assumptions	on	the	AUCVGC	distribution.	A	0.5	AUCVGC	indicates	no	
difference	in	the	radiologists’	rating	before	and	after	the	new	exposure	criteria	(the	
new	 exposure	 conditions	 were	 considered	 the	 true	 positive	 fraction	 for	 all	 the	
analysis)	(M	Båth	&	Månsson,	2007).	

The	 Student’s	 T-test	 (for	 Independent	 samples)	was	 also	 used	 to	 compare	 image	
evaluation	 findings	 emanating	 from	 chest,	 abdomen	 and	 pelvis	 examinations	 pre	
and	post	the	new	exposure	criteria	and	Cohen’s	Kappa	testing	to	analyse	the	inter	
observer	agreement	 (p<0.05)	between	radiologist	evaluations,	across	data	sets,	 in	
each	of	the	four	age	categories.	VGC	analyses	for	each	examination	and	across	the	
age	categories	are	summarised	in	figures	26	to	28.	

	

(TPF-	true	positive	fraction;	Lower	-	Lower	VGC	curve;	Upper	-	Upper	VGC	curve)	

Figure	26:	Chest	VGC	analysis	per	age	group	
A	-	<1	year;	B	-	1<5	years	old;	C	-	5<10	years	old;	D	-	10>16	years	old	

As	 observed	 in	 Figure	 26,	 the	 image	 quality	 of	 chest	 examination	 with	 the	 new	
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“post”	 exposure	 conditions	 obtained	 AUCVGC	 values	 higher	 than	 0.5	 in	 all	 age	
groups.	The	age	group	with	the	highest	AUCVGC	value	(0.69)	was	<1	year.	

	

(TPF-	true	positive	fraction;	Lower	-	Lower	VGC	curve;	Upper	-	Upper	VGC	curve)	

Figure	27:	Abdomen	VGC	analysis	per	age	group	
A	-	<1	year;	B	-	1<5	years	old;	C	-	5<10	years	old;	D	-	10>16	years	old	

As	observed	in	Figure	27,	the	image	quality	of	abdomen	examination	with	the	new	
“post”	exposure	conditions	obtained	AUCVGC	values	equal	or	higher	 than	0.5	 in	all	
age	groups.	The	age	group	with	the	highest	AUCVGC	value	(0.62)	was	1-<5	years.	

	

(TPF-	true	positive	fraction;	Lower	-	Lower	VGC	curve;	Upper	-	Upper	VGC	curve)	

Figure	28:	Pelvis	VGC	analysis	per	age	group	
A	-	<1	year;	B	-	1<5	years	old;	C	-	5<10	years	old;	D	-	10>16	years	old	

As	 observed	 in	 Figure	 28,	 the	 image	 quality	 of	 pelvis	 examination	 with	 the	 new	
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“post”	exposure	conditions	obtained	AUCVGC	values	equal	or	higher	 than	0.5	 in	all	
age	groups.	The	age	group	with	the	highest	AUCVGC	value	(0.62)	was	1-<5	years.	

Looking	 at	 the	 VGC	 analysis	 (considering	 all	 anatomical	 image	 criteria),	 all	 the	
radiographic	 images	 acquired	 by	 using	 the	 new	 exposure	 parameters	 for	 chest,	
abdomen	 and	 pelvis	 examinations	 obtained	 an	 AUCVGC	 value	 higher	 than	 0.5	 and	
therefore,	 the	 four	 radiologists	 considered	 the	 image	quality	at	 least	equal	 to	 the	
examinations	performed	with	the	“pre”	exposure	parameters.	

The	same	VGC	analysis	was	performed	for	each	of	the	anatomical	criteria	chosen	by	
the	 radiologists	 according	 to	 the	 European	 Guidelines	 on	 Quality	 Criteria	 for	
Diagnostic	 Radiographic	 Images	 in	 Paediatrics	 (table	 25)	 for	 chest,	 abdomen	 and	
pelvis	examinations	and	for	each	age	group.	

Table	25:	VGC	analysis	by	anatomical	criterion	

	

Image	quality	scores	for	chest	examinations	scored	higher	in	all	four	image	criteria	
and	 in	 all	 age	 groups.	 Age	 group	 <1	 showed	 the	 highest	 scores	 for	 the	 criteria	
“visually	 sharp	 reproduction	 of	 the	 diaphragm	 and	 costo-phrenic	 angles”	 and	
“reproduction	 of	 the	 spine	 and	 paraspinal	 structures	 and	 visualisation	 of	 the	
retrocardiac	lung	and	the	mediastinum”	(AUCVGC	=	0.69).	

Image	 quality	 scores	 for	 abdomen	 examinations	 scored	 higher	 in	 all	 four	 image	
criteria	 and	 in	 all	 age	 groups.	 Age	 group	 1-<5	 showed	 the	 highest	 scores	 for	 the	
criteria	 “Visualisation	 of	 the	 psoas	 outline	 consistent	 with	 age	 and	 depending	 on	
bowel	content”	(AUCVGC	=	0.71).	

Image	quality	scores	for	pelvis	examinations	scored	higher	in	all	three	image	criteria	
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and	 in	 all	 age	 groups.	 Age	 group	 1-<5	 showed	 the	 highest	 scores	 for	 the	 criteria	
“Reproduction	 of	 the	 necks	 of	 the	 femora	 which	 should	 not	 be	 distorted	 by	
foreshortening	or	external	rotation”	(AUCVGC	=	0.67).	

Based	on	the	objective	and	subjective	 image	analysis	 it	can	be	concluded	that	the	
image	quality	obtained	with	the	new	exposure	factors	generally	improved.	

The	results	 from	both	 the	objective	and	subjective	 image	assessment	validate	 the	
new	exposure	factors	proposed	to	the	radiology	department	of	Hospital	C.	

The	new	exposure	factors	significantly	reduced	both	ESAK	and	KAP	values,	without	
affecting	image	quality	(in	general	image	quality	even	improved).	
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3.5 Assessing	the	use	of	electronic	cropping	in	plain	imaging	

As	explained,	proper	collimation	should	be	made	before	the	exposure	rather	than	
using	 electronic	 cropping	 of	 the	 image	 after	 the	 exposure	 to	 avoid	 exposure	 of	
extraneous	body	parts	(Moore	et	al.,	2012).	The	ASRT	White	Paper	(Herrmann	et	al.,	
2012)	 recommends	 that	 cropping	 should	 not	 be	 used	 as	 replacement	 for	 beam	
restriction	that	can	be	achieved	through	physical	collimation	of	the	X-ray	field	size.	

It	 is	 considered	bad	 radiography	practice	 to	digitally	 crop	 images	 instead	of	using	
proper	 collimation	 of	 the	 beam,	 as	 this	 leads	 to	 unnecessary	 radiation	 dose	
exposure	 to	 the	 patient.	 In	 addition,	 proper	 collimation	 of	 the	 examinations	 will	
also	contribute	to	noise	reduction	on	images	(Nyathi	et	al.,	2010).	

To	evaluate	the	use	of	the	post-processing	crop	tool	in	daily	practice,	the	irradiated	
and	cropped	areas,	available	in	DICOM	headers	on	the	PACS	system	from	100	chest,	
79	 abdomen	 and	 66	 pelvis	 examinations	 were	 retrospectively	 analysed	 and	
compared	(table	26).	

	

Table	26:	irradiated	versus	post	processed	image	area	

examination age*group*
(years)

mean*
irradiated*

area*
(cm2)

mean*post*
processed*
area*(cm2)

%*cropped*
area

<1 260 210 19%

18<5 419 365 13%

58<10 650 575 12%

108<16 1038 921 11%

168<18 1296 1156 11%

<1 270 223 17%

18<5 592 500 15%

58<10 894 753 16%

108<16 1265 1067 16%

168<18 1385 1192 14%

<1 193 150 22%

18<5 314 237 24%

58<10 707 530 25%

108<16 1148 889 23%

168<18 1317 1030 22%

Chest

Abdomen

Pelvis

	



	
																Optimisation	and	establishment	of	Diagnostic	Reference	Levels	in	paediatric	plain	radiography	

	

Graciano	do	Nascimento	Nobre	Paulo	

 

116 

According	 to	 the	data	collected,	 the	 irradiated	area	 is	 significantly	higher	 (p<0.05,	
paired	 samples	 T-test)	 than	 the	 area	 needed	 to	 perform	 the	 analysed	 X-ray	
examinations.	

The	overexposed	area	was	also	verified	in	all	patient	age	groups.	This	indicates	that	
the	cropping	tool	is	being	used	on	a	regular	basis	and	therefore	contributes	to	the	
increase	of	patient	dose	and	scattered	radiation.	

For	chest	examinations,	the	average	percentage	of	cropped	area	ranged	from	11	to	
19%.	The	cropping	was	highest	in	patient	age	group	<1	year.	

For	abdomen	examinations,	 the	average	percentage	of	cropped	area	ranged	 from	
14	to	17%.	The	cropping	was	highest	in	patient	age	group	<1	year.		

For	pelvis	examinations,	the	average	percentage	of	cropped	area	ranged	from	22	to	
25%,	with	the	highest	cropping	in	patient	age	group	5-<10	years.	

Results	 demonstrate	 that	 the	 use	 of	 post	 processing	 tools,	 such	 as	 electronic	
collimation,	hides	an	unnecessary	overexposure	that	could	be	substantially	reduced	
if	a	bigger	emphasis	were	given	to	an	appropriate	collimation	before	exposure.	

These	results	were	shown	and	discussed	with	the	radiographers	and	radiologists	of	
the	radiology	department	of	Hospital	C.	After	the	discussions	with	the	department	
team,	 radiographers	 showed	 a	 strong	 commitment	 to	 use	 patient	 anatomical	
landmarks	more	effectively	to	ensure	proper	and	adequate	beam	collimation.	
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3.6 Limitations	of	section	3	

It	 is	 important	 to	 highlight	 that	 this	 study	 would	 benefit	 from	 using	 additional	
anthropomorphic	paediatric	phantoms	(especially	for	new-born	and	10	years).	This	
would	have	given	the	possibility	to	provide	more	objective	exposure	criteria	for	all	
age	 groups.	 However,	 the	 model	 used,	 group	 discussion	 with	 radiologists	 and	
radiographers,	combined	with	a	thorough	literature	review,	allowed	to	develop	new	
exposure	conditions	that	were	considered	adequate.	
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4 Impact	of	the	optimisation	programme	on	patient	doses	
Following	the	model	described	in	figure	22	and	after	optimisation	of	the	exposure	
criteria	 for	 chest,	 abdomen	 and	 pelvis	 plain	 radiography,	 a	 final	 round	 of	 patient	
dose	exposure	collection	was	carried	out	with	the	objective	to	measure	the	impact	
of	the	optimisation	programme	on	patient	doses.	

	

4.1 Material	 and	methods	 to	 assess	 the	 impact	 of	 optimisation	 on	
patient	doses	

In	November	2014,	the	radiology	department	of	Hospital	C	started	to	use	the	new	
exposure	 criteria	 for	 chest,	 abdomen	 and	 pelvis	 plain	 radiography.	 To	 determine	
the	post	optimisation	DRLSs,	data	has	been	collected	using	the	same	methodology	
as	defined	 in	phase	1	of	 this	study	as	well	as	the	same	equipment.	Exposure	data	
and	patient	weight	were	collected	from	30	patients	for	each	age	group	and	for	each	
exam	(chest,	abdomen	and	pelvis).	

It	 is	 important	 to	 note	 that	 all	 the	 data	 collected	 was	 from	 properly	 referred,	
clinically	 justified	 exams	 and	 none	 of	 them	 was	 repeated	 due	 to	 inadequate	
exposure	 conditions	 and	 therefore	 all	 considered	 clinically	 valid	 by	 the	
radiographer,	the	radiologist	and	the	medical	referrer.	

Considering	 the	use	of	 the	new	exposure	criteria	 that	have	been	proposed	 to	 the	
radiology	department	for	chest,	abdomen	and	pelvis	plain	radiography,	two	major	
benefits	were	expected:	a)	a	harmonisation	of	practice;	b)	a	significant	reduction	of	
ExT,	KAP	and	ESAK	values	between	phase	1	and	the	post	optimisation	(post)	results	
for	chest,	abdomen	and	pelvis.	

As	 for	 the	harmonisation	of	 practice,	 all	 radiographers	of	Hospital	 C	 followed	 the	
new	exposure	criteria	and	considered	a	common	guidance	for	the	procedures	very	
positive	and	beneficial.	
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4.2 Results	of	the	impact	of	optimisation	on	patient	doses	

Figure	29	shows	the	comparison	between	phase	1	and	post	optimisation	ExT	mean	
values	for	chest	plain	radiography.	
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Figure	29:	Exposure	Time	(ms)	values	for	chest	plain	radiography:	phase	1	vs	post	optimisation	

Using	the	post	optimisation	exposure	criteria	led	to	a	significant	reduction	(p<0.05,	
independent	 sample	 T-student	 test)	 of	 ExT	 in	 all	 age	 groups.	 The	 reduction	 was	
76%,	62%,	78%,	78%,	70%,	respectively	for	age	groups	<1,	1-<5,	5-<10,	10-<16,	16-
≤18.	

Figure	30	shows	the	comparison	between	phase	1	and	post	optimisation	ExT	mean	
values	for	abdomen	plain	radiography.	
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Figure	30:	Exposure	Time	(ms)	values	for	abdomen	plain	radiography:	phase	1	vs	post	optimisation	
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Using	the	post	optimisation	exposure	criteria,	led	to	a	significant	reduction	(p<0.05,	
independent	sample	T-student	test)	of	ExT.	The	reduction	was	80%,	23%,	54%,	75%,	
respectively	for	age	groups	<1,	1-<5,	5-<10,	10-<16.	

Figure	31	shows	the	comparison	between	phase	1	and	post	optimisation	ExT	mean	
values	for	pelvis	plain	radiography.	
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Figure	31:	Exposure	Time	(ms)	values	for	pelvis	plain	radiography:	phase	1	vs	post	optimisation	

	

Using	the	post	optimisation	exposure	criteria	led	to	a	significant	reduction	(p<0.05,	
independent	sample	T-student	test)	of	ExT.	The	reduction	was	24%,	10%,	14%,	45%,	
71%,	respectively	for	age	groups	<1,	1-<5,	5-<10,	10-<16,	16-≤18.	
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The	 KAP	 and	 ESAK	 values	 measured	 with	 the	 new	 proposed	 exposure	 criteria	
followed,	as	expected,	the	same	reduction	tendency	as	observed	with	the	ExT.	

Tables	27	 to	28	 show	the	KAPP75,	ESAKP75	and	P75	variation	of	phase	1	compared	
with	the	post	optimisation	values	for	chest,	abdomen	and	pelvis	plain	radiography	
in	each	age	group.	

The	 KAPP75	 and	 ESAKP75	 values	 of	 the	 post	 optimisation	 phase	 are	 lower	 than	 in	
phase	1	for	all	three	plain	radiography	procedures	and	in	all	age	groups,	indicating	a	
lower	patient	dose	exposure.	

	

Table	27:	KAPP75,	ESAKP75	and	P75	variation	values	for	chest	plain	radiography:	phase	1	vs	post	
optimisation	(age	groups)	

P75
P75$

variation P75
P75$

variation

phase)1 13 49

post 9 34

phase)1 22 52

post 10 40

phase)1 35 57

post 14 52

phase)1 68 73

post 41 60

phase)1 73 67

post 57 62

exposure)
criteria

age)
groups)
(years)

!29%

!55%

!60%

16=≤18

<1

1=<5

5=<10

10=<16

ESAK)(µGy)KAP)(mGy.cm2)

!9%

!18%

!7%

!40%

!22%

!31%

!23%

	

Using	 the	post	optimisation	exposure	 criteria	 for	 chest	plain	 radiography	 reduced	
the	KAPP75	values	by	22	to	60%.	The	KAPP75	reduction	was	highest	 in	age	group	5-
<10.	The	ESAKP75	 values	were	 reduced	by	7	 to	31%,	with	 the	highest	 reduction	 in	
age	group	<1	(table	27).	
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Table	28:	KAPP75,	ESAKP75	and	P75	variation	values	for	abdomen	plain	radiography:	phase	1	vs	post	
optimisation	(age	groups)	

P75
P75$

variation P75
P75$

variation

phase)1 34 77

post 20 64

phase)1 72 110

post 47 77

phase)1 250 415

post 76 101

phase)1 1267 992

post 170 126

phase)1 n.a. n.a.

post 237 177

$35%

$70%

KAP)(mGy.cm2) ESAK)(µGy)

$16>≤18

<1

1><5

5><10

10><16 $87%

$

$17%

$30%

$76%

$87%

exposure)
criteria

age)
groups)
(years)

$41%

	

Using	 the	 post	 optimisation	 exposure	 criteria	 for	 abdomen	 plain	 radiography	
reduced	 the	KAPP75	values	by	35	 to	87%.	The	KAPP75	 reduction	was	highest	 in	age	
group	 10-<16.	 The	 ESAKP75	 values	 were	 reduced	 by	 17	 to	 87%,	 with	 the	 highest	
reduction	in	age	group	10-<16	(table	28).	

	

Table	29:	KAPP75,	ESAKP75	and	P75	variation	values	for	pelvis	plain	radiography:	phase	1	vs	post	
optimisation	(age	groups)	

P75
P75$

variation P75
P75$

variation

phase)1 19 100

post 14 76

phase)1 30 113

post 28 99

phase)1 84 192

post 51 110

phase)1 267 379

post 55 120

phase)1 876 1204

post 93 164

exposure)
criteria

age)
groups)
(years)

!26%

!7%

!39%

16=≤18

<1

1=<5

5=<10

10=<16

ESAK)(µGy)KAP)(mGy.cm2)

!43%

!68%

!86%

!79%

!89%

!24%

!12%
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Using	 the	post	optimisation	exposure	criteria	 for	pelvis	plain	 radiography	 reduced	
the	KAPP75	values	by	7	to	89%.	The	KAPP75	reduction	was	highest	 in	age	group	16-
≤18.	The	ESAKP75	values	were	reduced	by	12	to	86%,	with	the	highest	reduction	in	
age	group	16-≤18	(table	29).	

Tables	30	 to	32	 show	the	KAPP75,	ESAKP75	and	P75	variation	of	phase	1	compared	
with	the	post	optimisation	values	for	chest,	abdomen	and	pelvis	plain	radiography	
in	each	weight	group.	

The	 KAPP75	 and	 ESAKP75	 values	 of	 the	 post	 optimisation	 phase	 are	 lower	 than	 in	
phase	1	for	all	the	three	plain	radiography	procedures	and	in	all	weight	groups.	

	
Table	30:	KAPP75,	ESAKP75	and	P75	variation	values	for	chest	plain	radiography:	phase	1	vs	post	

optimisation	(weight	groups)	

P75
P75$

variation P75
P75$

variation

phase)1 21 140

post 9 26

phase)1 16 155

post 10 35

phase)1 28 199

post 15 46

phase)1 131 228

post 32 58

phase)1 145 189

post 57 67

ESAK)(µGy)KAP)(mGy.cm2)

!77%

!75%

!65%

!76%

!61%

!81%

!77%

≥50

<5

5A<15

15A<30

30A<50

exposure)
criteria

weight)
groups)
(kg)

!57%

!38%

!46%

	

Using	 the	post	optimisation	exposure	 criteria	 for	 chest	plain	 radiography	 reduced	
the	KAPP75	values	by	38	to	76%.	The	KAPP75	reduction	was	highest	in	weight	group	
30-<50.	The	ESAKP75	values	were	reduced	by	65	to	81%,	with	the	highest	reduction	
in	weight	group	<5	(table	30).	
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Table	31:	KAPP75,	ESAKP75	and	P75	variation	values	for	abdomen	plain	radiography:	phase	1	vs	post	

optimisation	(weight	groups)	

P75
P75$

variation P75
P75$

variation

phase)1 30 70

post 10 56

phase)1 35 82

post 20 65

phase)1 138 199

post 61 81

phase)1 248 285

post 203 113

phase)1 1445 1332

post 225 160

exposure)
criteria

weight)
groups)
(kg)

!67%

≥50

<5

5@<15

15@<30

30@<50

!43%

!56%

KAP)(mGy.cm2) ESAK)(µGy)

!88%

!18%

!84%

!20%

!21%

!59%

!60%

	

Using	 the	 post	 optimisation	 exposure	 criteria	 for	 abdomen	 plain	 radiography	
reduced	the	KAPP75	values	by	18	to	84%.	The	KAPP75	reduction	was	highest	in	weight	
group	 ≥50.	 The	 ESAKP75	 values	 were	 reduced	 by	 20	 to	 88%,	 with	 the	 highest	
reduction	in	weight	group	≥50	(table	31).	
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Table	32:	KAPP75,	ESAKP75	and	P75	variation	values	for	pelvis	plain	radiography:	phase	1	vs	post	

optimisation	(weight	groups)	

P75
P75$

variation P75
P75$

variation

phase)1 239 480

post 15 34

phase)1 37 125

post 18 85

phase)1 120 216

post 45 110

phase)1 314 327

post 75 152

phase)1 1164 1217

post 79 156

ESAK)(µGy)KAP)(mGy.cm2)

!49%

!54%

!87%

!76%

!93%

!93%

!32%

≥50

<5

5A<15

15A<30

30A<50

exposure)
criteria

weight)
groups)
(kg)

!94%

!51%

!63%

	

Using	 the	post	optimisation	exposure	criteria	 for	pelvis	plain	 radiography	 reduced	
the	KAPP75	values	by	51	to	94%.	The	KAPP75	reduction	was	highest	in	weight	group	
<5.	The	ESAKP75	 values	were	 reduced	by	32	 to	93%,	with	 the	highest	 reduction	 in	
weight	group	<5	(table	32).	

	

Considering	 the	 post	 optimisation	 data	 analysis	 one	 can	 conclude	 that	 the	 two	
major	benefits	that	were	expected:	a)	a	harmonisation	of	practice;	b)	a	significant	
reduction	of	ExT,	KAP	and	ESAK	values	between	phase	1	and	the	post	optimisation	
(post)	results	for	chest,	abdomen	and	pelvis	were	achieved.	It	is	important	to	note	
that	 the	 quality	 of	 the	 images	 made	 with	 the	 new	 exposure	 criteria	 has	 been	
evaluated	by	paediatric	radiologists	and	considered	clinically	acceptable.	
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5 Post	optimisation	DRLs	
After	the	optimisation	process	carried	out	at	Hospital	C,	new	DRL	values	by	age	and	
weight	groups	were	defined.	It	is	important	to	highlight	that	since	November	2014	
all	 radiographers	of	Hospital	C	have	been	using	the	new	exposure	criteria	defined	
during	the	development	of	this	thesis.	

5.1 New	DRLs	by	age	group	

Table	 33	 shows	 the	 new	 optimised	 KAP	 and	 ESAK	 DRLs	 for	 chest	 PA/AP	 plain	
radiography	for	each	age	group,	considered	as	the	P75	value.	

Table	33:	New	KAP	&	ESAK	values	for	chest	AP/PA	(by	age	groups)	

P75 min max median P75 min max median

<1 9 3 15 8 34 20 40 30

10<5 10 5 18 9 40 25 50 35

50<10 14 10 24 13 52 26 60 44

100<16 41 20 56 35 60 27 68 51

160≤18 57 29 59 49 62 32 85 57

age7
groups7
(years)

KAP7(mGy.cm2) ESAK7(µGy)

	

	

Table	 34	 shows	 the	 new	 optimised	 KAP	 and	 ESAK	 DRLs	 for	 abdomen	 plain	
radiography	for	each	age	group,	considered	as	the	P75	value.	

Table	34:	New	KAP	&	ESAK	values	for	abdomen	AP	(by	age	groups)	

P75 min max median P75 min max median

<1 20 8 21 10 64 15 66 60

11<5 47 10 48 27 77 19 85 70

51<10 76 50 85 68 101 70 103 85

101<16 170 89 188 129 126 90 165 117

161≤18 237 198 265 217 177 98 185 139

age6
groups6
(years)

KAP6(mGy.cm2) ESAK6(µGy)
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Table	35	shows	the	new	optimised	KAP	and	ESAK	DRLs	for	pelvis	plain	radiography	
for	each	age	group,	considered	as	the	P75	value.	

Table	35:	New	KAP	&	ESAK	values	for	pelvis	AP	(by	age	groups)	

P75 min max median P75 min max median

<1 14 8 15 10 76 22 80 75

1/<5 28 12 35 22 99 75 107 97

5/<10 51 28 58 50 110 90 112 105

10/<16 55 32 65 54 120 95 130 112

16/≤18 93 60 101 83 164 145 169 156

age7
groups7
(years)

KAP7(mGy.cm2) ESAK7(µGy)

	

	
These	new	DRLs	were	presented	to	the	radiographers	and	radiologists	and	will	be	
used	by	the	radiology	department	of	Hospital	C	as	future	reference	for	dose	audit	
programmes.	
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5.2 New	DRLs	by	weight	group	

Table	 36	 shows	 the	 new	 optimised	 KAP	 and	 ESAK	 DRLs	 for	 chest	 PA/AP	 plain	
radiography	for	each	weight	group,	considered	as	the	P75	value.	

Table	36:	New	KAP	&	ESAK	values	for	chest	AP/PA	(by	weight	groups)	

P75 min max median P75 min max median

<5 9 4 11 7 26 20 30 22

5/<15 10 3 15 8 35 24 40 32

15/<30 15 8 24 11 46 26 50 40

30/<50 32 10 56 21 58 27 60 48

≥50 57 30 59 48 67 32 85 55

weight:
groups:
(kg)

KAP:(mGy.cm2) ESAK:(µGy)

	

	

Table	 37	 shows	 the	 new	 optimised	 KAP	 and	 ESAK	 DRLs	 for	 abdomen	 plain	
radiography	for	each	weight	group,	considered	as	the	P75	value.	

Table	37:	New	KAP	&	ESAK	values	for	abdomen	AP	(by	weight	groups)	

P75 min max median P75 min max median

<5 10 8 10 9 56 15 63 30

5/<15 20 8 21 18 65 19 85 60

15/<30 61 18 70 48 81 57 102 74

30/<50 203 60 265 92 113 82 185 102

≥50 225 125 245 193 160 98 182 132

weight8
groups8
(kg)

KAP8(mGy.cm2) ESAK8(µGy)
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Table	38	shows	the	new	optimised	KAP	and	ESAK	DRLs	for	pelvis	plain	radiography	
for	each	weight	group,	considered	as	the	P75	value.	

Table	38:	New	KAP	&	ESAK	values	for	pelvis	AP	(by	weight	groups)	

P75 min max median P75 min max median

<5 15 8 15 12 34 22 35 28

5/<15 18 10 29 13 85 75 107 76

15/<30 45 18 50 28 110 81 110 99

30/<50 75 32 95 55 152 90 163 115

≥50 79 50 101 60 156 95 169 133

weight:
groups:
(kg)

KAP:(mGy.cm2) ESAK:(µGy)

	

	
These	new	DRLs	were	presented	to	the	radiographers	and	radiologists	and	will	be	
used	by	the	radiology	department	of	Hospital	C	as	future	reference	for	dose	audit	
programmes.	
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6 Discussion	
Several	 research	 questions,	major	 and	 specific	 objectives	were	 formulated	 at	 the	
beginning	of	this	thesis	(page	26).	A	design	structure	for	the	study	was	developed	in	
order	to	accomplish	the	desideratum	conceived	for	this	thesis	(figure	22,	page	95).	
This	section	discusses	the	main	results	achieved.	

6.1 About	patient	characteristics	

In	the	last	two	years,	anthropometric	and	dose	data	from	9,935	paediatric	patients	
was	 obtained	 in	 three	 dedicated	 paediatric	 hospitals	 of	 Portugal.	 To	 the	 best	
knowledge	of	the	authors,	 this	study	has	the	 largest	sample	of	paediatric	patients	
submitted	to	a	plain	radiography	procedure	that	was	prospectively	analysed.	

The	patients	were	measured	in	terms	of	weight,	height	and	anatomical	thickness	of	
the	 exposed	 structure,	 which	 allowed	 to	 propose	 values	 to	 define	 a	 “standard	
patient”	in	each	age	group,	more	frequently	used	in	literature	(table	6),	as	a	tool	to	
harmonise	data	collection	 for	 future	 studies	and	 to	decrease	uncertainties	due	 to	
the	 wide	 variation	 in	 patient	 characteristics,	 also	 identified	 by	 other	 authors	
(Gfirtner,	 Kaplanis,	 Moores,	 Schneider,	 &	 Vassileva,	 2010):	 The	 lack	 of	
harmonisation	 makes	 the	 attempts	 of	 comparing	 findings	 a	 very	 difficult,	 if	 not	
impossible	task.	

Median	 values	 of	 patient	 chest,	 abdomen	 and	 pelvis	 thickness,	 measured	 in	 our	
sample	 (table	6,	page	77),	 are	 similar	 to	 those	published	 in	 literature	 (Hart	et	al.,	
2000;	Wambani	et	al.,	2013).	The	results	 from	this	 thesis	will	 contribute	to	 future	
studies,	 such	 as	 the	 development	 of	 a	 DRL	 curve	 as	 a	 function	 of	 the	 patient	
anatomical	 projection	 thickness	 and	 or	 weight,	 as	 proposed	 by	 some	 authors	
(Kiljunen	 et	 al.,	 2007)	 or	 for	 the	 development	 of	 new	 radiographic	 pre-set	
parameters,	based	on	patient’s	 thickness,	as	proposed	by	other	authors	 (Zhang	et	
al.,	2013).	

	

6.2 About	exposure	parameters	of	phase	1	

Results	of	 this	 thesis	have	shown	a	 large	spread	 in	 the	exposure	parameters	used	
for	 the	 same	 exam	 and	 age	 group,	 due	 to	 different	 choices	made	 at	 the	 time	 of	
exposure	(tables	7	to	9,	pages	78-80).	The	same	results	were	found	in	other	studies	
(Kristien	 Smans	 et	 al.,	 2008;	 Sonawane	 et	 al.,	 2011),	 illustrating	 a	 clear	 need	 for	
standardisation	in	this	domain.	
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The	 values	 of	 kV,	 mAs,	 ExT	 and	 SSD	 found	 in	 our	 results,	 combined	 with	 an	
inconsistent	 choice	 regarding	 the	 use	 of	 grid,	 AEC,	 protective	 shielding	 and	 X-ray	
beam	 limitation,	 are	 not	 according	 to	 International	 Guidelines	 (European	
Commission,	 1996a;	 Herrmann	 et	 al.,	 2012;	 International	 Atomic	 Energy	 Agency,	
2012;	International	Commission	on	Radiological	Protection,	2013).	

The	 authors	 corroborate	 the	 statement	 from	 Smans	 et	 al,	 that,	 if	 the	 exposure	
settings	are	not	used	according	to	the	guidelines,	there	will	be	a	large	influence	on	
patient	dosimetry	(Kristien	Smans	et	al.,	2008).	This	influence	was	identified	in	our	
results,	 showing	 an	 increase	 in	 patient	 doses	 due	 to	 inadequate	 use	 of	 exposure	
settings.	Part	of	this	problem	is	related	to	the	fact	that	pre-sets	in	the	radiographic	
equipment	installed	by	the	vendor	are	not	adapted	to	paediatric	patients	as	well	as	
to	 a	 clear	 lack	 of	 education	 and	 training	 regarding	 the	use	of	 digital	 systems	 and	
how	to	maximise	their	use	to	the	benefit	of	the	patient.	

Regarding	the	use	of	protective	shielding,	specifically	the	protection	of	gonads	with	
lead,	 the	 recommendations	 given	 to	 the	 department	 took	 into	 consideration	 the	
recommendations	 from	 literature	 (Bardo	 et	 al.,	 2009;	 Fawcett	 &	 Barter,	 2009;	
Herrmann	et	al.,	2012).	
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6.3 About	national	DRLs	

This	is	the	first	Portuguese	study	that	prospectively	analysed	patient	exposure	data	
and	anthropometric	characteristics	 in	a	 large	scale	and	with	data	collected	during	
each	individual	procedure.	

As	already	mentioned,	 the	heterogeneity	of	methodologies	 found	 in	 literature	 for	
data	collection	to	establish	DRLs	makes	the	comparison	of	results	a	very	challenging	
task.	 This	 challenge	 is	 even	 bigger	 when	 related	 to	 paediatric	 DRLs,	 due	 to	 the	
limited	 number	 of	 studies	 available	 associated	 with	 the	 huge	 variety	 of	 patient	
characteristics.	

Another	 important	 challenge	 is	 the	 potential	 confusion	 caused	 by	 the	 units	 and	
subunits	 used	 in	 literature	 by	 different	 authors	 to	 report	 dose	 quantities.	 For	
example,	to	define	ESAK	values	authors	may	use:	mGy,	mGy	or	Gy.	To	define	KAP	
values,	authors	may	present	the	values	in	mGy.m2,	dGy.cm2	Gy.m2	or	mGy.cm2.	It	is	
easy	for	the	reader	to	compare	ESAK	values,	however	for	KAP	it	can	be	difficult	and	
create	confusion,	especially	when	the	data	collection	is	made	through	surveys.	

To	facilitate	the	work	of	radiographers	and	radiologists,	a	conversion	table	for	KAP	
units	 and	 subunits	 as	 the	 one	 presented	 in	 table	 39	 should	 be	 available	 in	 the	
radiology	departments.	

Table	39:	Conversion	factors	for	KAP	units	

1	cGy.cm2	=	1	µGy.m2	

1	µGy.m2	=	10	mGy.cm2	

1	Gy.m2	=	10000000	mGy.cm2	

1	dGy.cm2	=	100	mGy.cm2	

It	is	important	to	note	that	the	units	displayed	at	the	X-ray	equipment	monitor	are	
not	always	the	same	as	the	ones	sent	to	the	PACS.	For	example,	at	Hospitals	B	and	
C,	the	equipment	console	displays	KAP	values	in	dGy.cm2,	however	the	value	sent	to	
the	PACS	through	the	DICOM	header	is	in	mGy.cm2,	which	is	100	times	smaller	than	
the	unit	displayed	on	 the	monitor.	This	 is	obviously	 something	 to	be	corrected	 to	
avoid	a	confounding	element	for	radiographers,	radiologists	and	medical	physicists.	

For	paediatric	plain	 radiography	 the	authors	 recommend	 the	use	of	 the	 following	
subunits	with	 the	 aim	 to	 harmonise	 the	 presentation	 of	 results	 in	 future	 studies:	
µGy	 for	ESAK	and	mGy.cm2	 for	KAP.	Using	 these	subunits	will	avoid	 large	decimal	
numbers	 of	 exposure	 quantities	 with	 several	 zeros	 (e.g.	 0.0001)	 and	 will	 thus	
facilitate	comparison	of	results.	
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The	 heterogeneity	 of	 patient	 grouping	 found	 in	 literature	 is	 also	 a	 considerable	
limitation	when	 it	comes	to	data	comparison.	Also,	most	studies	do	not	allow	the	
reader	 to	 identify	and	characterise	 the	whole	spectrum	of	exposure	conditions	as	
described	in	section	6.2.	

In	 the	 following	 tables	 the	 results	 of	 the	 DRLs	 obtained	 in	 this	 study	 will	 be	
compared	with	different	published	reference	values	for	chest,	abdomen	and	pelvis	
projections.	

	
Table	40:	Comparison	of	values	for	chest	AP/PA	plain	radiography	ESAKP75	(µGy)	with	other	published	

data	

age$groups$
(years)

present$
study

Kostova$et$al$
(2015)

Billinger$et$al$
(2010)

EUR$16261$
(1999)

Irish$DRL$
(2004)

Hart$et$al$
(2000)

Wambani$et$al$
(2013)

Roch$et$al$
(2013)

Vaño$et$al$
(2008)

<1 145 30 52 80 57 50 50 80 51

1N<5 181 40 62 53 70 60 100 56

5N<10 209 70 82 100 66 120 70 200 91

10N<16 234 70 85 88 90 122

16N≤18 88 	

The	ESAKP75	values	for	chest	plain	radiography	obtained	in	our	study	are	higher	than	
the	 ones	 published	 in	 the	 literature	 and	 in	 the	 “European	 guidelines	 on	 quality	
criteria	 for	 diagnostic	 images	 in	 paediatrics”	 (Billinger	 et	 al.,	 2010;	 European	
Commission,	 1996a;	 Hart	 et	 al.,	 2000;	 Kostova-Lefterova	 et	 al.,	 2015;	 Medical	
Council	 Ireland,	 2004;	Roch	&	Aubert,	 2013;	 E	Vaño	et	 al.,	 2008;	Wambani	 et	 al.,	
2013).	
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Table	41:	Comparison	of	values	for	abdomen	plain	radiography	ESAKP75	(µGy)	with	other	published	data	

age$groups$
(years)

present$
study

Billinger$et$al$
(2010)

EUR$16261$
(1999)

Irish$DRL$
(2004)

Hart$et$al$
(2000)

Wambani$
et$al$
(2013)

Vaño$et$al$
(2008)

Roch$et$al$
(2013)

<1 70 130 700 330 400 80 210

1K<5 191 387 752 500 130 401 1000

5K<10 198 1000 800 170 947 1500

10K<16 583 1200 200 2288

16K≤18 1258 	

Regarding	the	ESAKP75	values	for	abdomen	plain	radiography,	our	study	shows	the	
lowest	values	when	compared	with	other	published	results	besides	the	study	from	
Wambani	et	all	(2013).	

	

Table	42:	Comparison	of	values	for	pelvis	plain	radiography	ESAKP75	(µGy)	with	other	published	data	

age$groups$
(years)

present$
study

EUR$16261$
(1999)

Irish$DRL$
(2004)

Hart$et$al$
(2000)

Wambani$
et$al$(2013)

Vaño$et$al$
(2008)

Roch$et$al$
(2013)

<1 125 200 265 500 100 191 200

1J<5 158 475 600 120 673 900

5J<10 232 900 807 700 250 998 1500

10J<16 624 892 2000 360 2815

16J≤18 1204 	

As	 regards	 the	 ESAKP75	 values	 for	 pelvis	 plain	 radiography,	 our	 study	 shows	 the	
lowest	values	when	compared	with	other	published	results	besides	the	study	from	
Wambani	et	all	(2013).	

	

Table	43:	Comparison	of	values	for	chest	plain	radiography	KAPP75	(mGy.cm2)	with	other	published	data	

age$groups$
(years)

present$
study

Smans$et$al$
(2008)

Billinger$et$al$
(2010)

Kiljunen$et$al$
(2007)

Roch$et$al$
(2013)

<1 13 88 23 22 30

1A<5 19 189 26 26 50

5A<10 60 233 37 28 70

10A<16 134 395 73 47

16A≤18 94 	

The	 KAPP75	 values	 for	 chest	 plain	 radiography	 of	 our	 study	 are	 the	 lowest	 in	 age	
group	 <1	 and	 1-<5.	 In	 age	 groups	 5-<10	 and	 10-<16	 the	 KAPP75	 values	 are	
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approximately	 2	 to	 3	 times	 higher	 than	 the	 study	 presented	 by	 Kiljunen	 et	 al	
(Kiljunen	et	al.,	2007).	

	

Table	44:	Comparison	of	values	for	abdomen	plain	radiography	KAPP75	(mGy.cm2)	with	other	published	
data	

age$groups$
(years)

present$
study

Smans$et$al$
(2008)

Billinger$et$al$
(2010)

Roch$et$al$
(2013)

<1 25 21

1?<5 84 49 110 350

5?<10 140 102 700

10?<16 442 237

16?≤18 1401 	

The	KAPP75	values	for	abdomen	plain	radiography	of	our	study	are	higher	in	all	age	
groups	 when	 compared	 with	 the	 study	 showing	 the	 lowest	 values:	 Smans	 et	 al	
(Kristien	Smans	et	al.,	2008).	

	

Table	45:	Comparison	of	values	for	pelvis	plain	radiography	KAPP75	(mGy.cm2)	with	other	published	data	

age$groups$
(years)

present$
study

Smans$et$al$
(2008)

Roch$et$al$
(2013)

<1 29 19 40

1><5 75 174 200

5><10 143 174 400

10><16 585 687

16>≤18 839 	

Looking	 at	 the	 KAPP75	 values	 for	 pelvis	 plain	 radiography,	 our	 study	 shows	 the	
lowest	values	when	compared	with	other	published	results,	except	age	group	<1.	

Although	DRL	 results	 are	 presented	 by	 patient	weight	 group,	 it	 is	 not	 possible	 to	
compare	 the	 results,	 since	 there	 are	 no	 studies	 published	 with	 patient	 weight	
grouping,	as	recommended	by	the	PiDRL	project	(Damilakis,	2015).	

It	 is	 important	 to	 highlight	 that	 in	 terms	 of	 dosimetry,	 patient	weight	 groups	 are	
more	 appropriate	 (Kristien	 Smans	 et	 al.,	 2008),	 but	 in	 practice,	 the	 age	 of	 the	
patient	 is	more	easily	 obtainable.	 To	weigh	paediatric	 patients	 at	 the	 time	of	 the	
radiological	procedure	is	not	only	time	consuming	for	the	procedure	workflow,	but	
requires	 the	 radiology	 department	 to	 have	 different	 types	 of	 scales	 available,	 as	
patient	 age	 ranges	 from	 new	 born	 to	 18	 years	 old.	 One	 option	 to	 surpass	 this	
bottleneck	would	be	to	recommend	the	integration	of	the	weight	data	at	the	time	
of	referral.	
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As	outlined	above,	published	results	for	paediatric	examinations	are	scarce	and	vary	
widely	 as	 regards	 the	 methodology	 of	 collection	 and	 data	 presentation.	 This	
demonstrates	 an	 urgent	 need	 to	 harmonise	 practices	 and	 to	 implement	
optimisation	programmes,	especially	now	that	the	great	majority	of	hospitals	have	
digital	 systems	 and	 therefore	 the	 possibility	 to	 decrease	 patient	 dose	 exposure	
without	 interfering	 with	 image	 quality.	 Professional	 societies	 and	 regulatory	
authorities	should	raise	awareness	on	a	regular	basis	among	radiology	departments	
and	health	professionals	about	 the	 importance	of	DRL	data	collection	 for	a	better	
implementation	of	dose	optimisation.	

	

6.4 About	the	optimisation	tests	
	

This	 study	 is,	 to	 the	knowledge	of	 the	authors,	 the	 first	 to	combine	objective	and	
subjective	 analysis	 of	 radiological	 images	 and	 was	 based	 partly	 on	 a	 conceptual	
framework	 presented	 by	 some	 authors	 (Magnus	 Båth,	 Håkansson,	 Hansson,	 &	
Månsson,	2005).	

The	 objective	 analysis	 using	 anthropomorphic	 phantoms	 allowed	 comparing	 the	
impact	on	image	quality	of	the	exposure	criteria	used	at	the	hospital	site	for	chest,	
abdomen	 and	 pelvis	 procedures,	 by	 using	 several	 images	 produced	 with	 varying	
exposure	criteria.	With	the	phantom	test	results	from	section	3.2.2	(page	99)	it	has	
been	 demonstrated	 that	 the	 new	 proposed	 exposure	 criteria	 did	 not	 affect	 the	
objective	image	quality	and	allowed	significant	dose	reduction	in	each	exam.	

To	 validate	 the	 new	 proposed	 exposure	 criteria,	 a	 subjective	 analysis	 of	 clinical	
images	was	made	by	four	paediatric	radiologists,	using	the	European	Guidelines	on	
Quality	 Criteria	 for	 Diagnostic	 Radiographic	 Images	 in	 Paediatrics	 (European	
Commission,	 1996a).	 Data	 was	 analysed	 using	 the	 VGC	 curves.	 Several	 authors	
consider	 this	method	 as	 appropriate	 to	measure	 image	 quality,	 because	 it	 offers	
high	 validity,	 as	 it	 is	 based	 on	 assessment	 of	 clinically	 relevant	 structures	
(International	Atomic	Energy	Agency,	2014;	Ludewig	et	al.,	2010).	

The	 results	 (section	 3.4,	 page	 109)	 demonstrated	 that	 the	 new	 recommended	
exposure	 conditions,	 produced	 even	 better	 image	 quality	 with	 a	 significant	 dose	
reduction	 for	most	 age	bands	 and	diagnostic	 image	quality	was	 confirmed.	Other	
authors	have	shown	the	same	results	(L.	Martin	et	al.,	2013).	

In	 addition,	 all	 staff	 involved,	 including	 radiographers	 and	 radiologists,	welcomed	
the	 opportunity	 to	 collaborate	 and	 were	 proactive	 in	 implementing	 the	 new	
optimised	 protocols.	 The	 authors	 consider	 that	 it	 is	 necessary	 and	 of	 utmost	
importance	to	include	medical	physicists	 in	this	process,	not	only	to	fulfil	the	legal	
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requirements,	 but	 because	 their	 knowledge	 and	 expertise	 improves	 the	
optimisation	process.	

During	the	optimisation	phase	of	this	study,	the	use	of	electronic	cropping	in	plain	
imaging	has	been	analysed	and	a	significant	overexposed	area	was	found	(from	11	
to	 25%	 -	 table	 26,	 page	 115)	 in	 all	 exams,	 resulting	 in	 unnecessary	 radiation	
exposure	 to	 the	 patient.	 Some	 authors	 identified	 the	 same	 problem	 (Soboleski,	
Theriault,	Acker,	Dagnone,	&	Manson,	2006;	Tschauner	et	al.,	2015),	which	can	only	
be	surpassed	by	 raising	awareness	amongst	 radiographers	and	by	 identifying	new	
anatomical	landmarks	for	collimation.	
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6.5 About	 the	 impact	 of	 the	 optimisation	 programme	 on	 patient	
dose	

	

Regarding	the	impact	of	the	optimisation	programme	presented	in	section	4.2	(page	
121),	 the	 results	 of	 this	 study	 show	 a	 clear	 reduction	 of	 patient	 dose	 without	
affecting	 the	 image	 quality	 for	 chest,	 abdomen	 and	 pelvis	 plain	 radiography	
procedures.	

To	the	knowledge	of	the	authors	the	studies	on	the	optimisation	process	and	their	
impact	 found	 in	 literature	 are	 only	 related	 to	 paediatric	 chest	 plain	 radiography.	
Some	 authors	 report	 the	 same	 reduction	 impact	 on	 patient	 dose	 for	 chest	 plain	
radiography	 after	 implementation	 of	 an	 optimisation	 programme	 (Carlander,	
Hansson,	Söderberg,	Steneryd,	&	Båth,	2010;	Dabin,	Struelens,	&	Vanhavere,	2014;	
Frayre	 et	 al.,	 2012;	 L.	Martin	 et	 al.,	 2013;	 Rizzi	 et	 al.,	 2014;	 Sanchez	 Jacob	 et	 al.,	
2009),	 suggesting	 that	 such	 optimisation	 programmes	 should	 be	 carried	 out	 on	 a	
regular	 basis,	 especially	 when	 new	 X-ray	 equipment	 or	 post-processing	 tools	 are	
installed.	

It	is	important	to	highlight	that	this	study	as	well	as	those	cited	were	developed	in	
dedicated	 paediatric	 centres	 where	 it	 is	 expected	 that	 health	 professionals	 are	
more	 attentive	 to	 the	 needs	 of	 the	 paediatric	 population.	 As	 shown	 by	 some	
authors	 (Suliman	 &	 Elawed,	 2013)	 it	 would	 be	 of	 major	 benefit	 if	 optimisation	
programmes	for	paediatric	patients	were	also	implemented	in	general	hospitals.	
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Conclusions	
1. Portuguese	DRLs	 for	 paediatric	 plain	 radiography	 (chest	 PA/AP,	 abdomen	 and	

pelvis)	 were	 established	 and	 compared	 with	 European	 guidelines	 and	 other	
studies	published	in	the	literature.	

2. The	DRLs	(described	as	KAPP75	and	ESAKP75)	were	established	by	patient	age	and	
weight	 groups,	 following	 international	 recommendations	 and	 were	 obtained	
before	and	after	an	optimisation	programme.	

3. The	 optimisation	 programme	 showed	 a	 significant	 patient	 dose	 reduction	
impact	in	all	age	groups	(<1,	1-<5,	5-<10,	10-<16,	16-≤18).	Dose	was	reduced:	

a. by	22	to	60%	and	by	7	to	31%,	respectively	for	KAPP75	and	ESAKP75	for	
chest	plain	radiography	(table	27,	page	123);	

b. by	35	to	87%	and	by	17	to	87%,	respectively	for	KAPP75	and	ESAKP75	
for	abdomen	plain	radiography	(table	28,	page	124);	

c. by	7	to	89%	and	by	12	to	86%,	respectively	for	KAPP75	and	ESAKP75	for	
pelvis	plain	radiography	(table	29,	page	124);	

4. The	 optimisation	 programme	 showed	 a	 significant	 an	 expressive	 patient	 dose	
reduction	 impact	 in	 all	 weight	 groups	 (<5kg;	 5-<15kg;	 15-<30kg;	 30-<50kg;	
≥50kg).	Dose	was	reduced:	

a. 	by	38	to	76%	and	by	65	to	81%,	respectively	for	KAPP75	and	ESAKP75	
for	chest	plain	radiography	(table	30,	page	125);	

b. by	18	to	84%	and	by	20	to	88%,	respectively	for	KAPP75	and	ESAKP75	
for	abdomen	plain	radiography	(table	31,	page	126);	

c. by	51	to	94%	and	by	32	to	93%,	respectively	for	KAPP75	and	ESAKP75	
for	pelvis	plain	radiography	(table	32,	page	127);	

5. Due	to	the	sample	size	of	this	study	(9,935)	and	the	fact	that	all	patients	were	
weighed	and	measured,	it	was	possible	to	recommend	DRLs	by	weight	groups.	

6. This	work	allowed	proposing	new	and	harmonised	exposure	parameters	(tables	
21	 to	 23,	 pages	 105-107)	 for	 chest,	 abdomen	 and	 pelvis	 plain	 radiography,	
facilitating	 dose	 reduction	 by	 up	 to	 94%	with	 image	 quality	 being	maintained	
after	a	subjective	image	quality	analysis	using	the	Visual	Grading	Characteristics	
method.	

7. Several	 corrections	 were	 made	 regarding	 the	 way	 the	 dose	 reduction	
technological	 features,	 available	 on	 the	 X-ray	 equipment,	 were	 used.	
Improvements	were	introduced	especially	about	guidance	regarding	the	use	of	
automatic	 exposure	 control	 and	 the	 ionisation	 chambers,	 the	 antiscatter	 grid	
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and	 the	use	of	 additional	 filtration,	 leading	 to	patient	 dose	 reduction	without	
compromising	image	quality;	

8. After	 the	 implementation	 of	 the	 optimisation	 programme,	 the	 following	 local	
DRLs	were	established	for	Hospital	C:	

a. CHEST:		

age$
groups$
(years)

KAPP75$
(mGy.cm2)

ESAKP75$
(µGy)

<1 9 34

1><5 10 40

5><10 14 52

10><16 41 60

16>≤18 57 62
	

weight'
groups'
(kg)

KAPP75'
(mGy.cm2)

ESAKP75'
(µGy)

<5 9 26

5@<15 10 35

15@<30 15 46

30@<50 32 58

≥50 57 67
	

An	average	reduction	of	41%	and	
18%	was	achieved	for	KAPP75	and	
ESAKP75	respectively	(age	groups)	

An	average	reduction	of	55%	and	
75%	was	achieved	for	KAPP75	and	
ESAKP75	respectively	(weight	groups)	

	

b. ABDOMEN:	

age$
groups$
(years)

KAPP75$
(mGy.cm2)

ESAKP75$
(µGy)

<1 20 64

1><5 47 77

5><10 76 101

10><16 170 126

16>≤18 237 177
	

weight'
groups'
(kg)

KAPP75'
(mGy.cm2)

ESAKP75'
(µGy)

<5 10 56

5A<15 20 65

15A<30 61 81

30A<50 203 113

≥50 225 160
	

An	average	reduction	of	58%	and	
53%	was	achieved	for	KAPP75	and	
ESAKP75	respectively	(age	groups).	

An	average	reduction	of	54%	and	
50%	was	achieved	for	KAPP75	and	
ESAKP75	respectively	(weight	groups).	
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c. PELVIS:	

age$
groups$
(years)

KAPP75$
(mGy.cm2)

ESAKP75$
(µGy)

<1 14 76

1=<5 28 99

5=<10 51 110

10=<16 55 120

16=≤18 93 164
	

weight'
groups'
(kg)

KAPP75'
(mGy.cm2)

ESAKP75'
(µGy)

<5 15 34

5A<15 18 85

15A<30 45 110

30A<50 75 152

≥50 79 156
	

An	average	reduction	of	48%	and	
47%	was	achieved	for	KAPP75	and	
ESAKP75	respectively	(age	groups).	

An	average	reduction	of	75%	and	
63%	was	achieved	for	KAPP75	and	
ESAKP75	respectively	(weight	groups).	

	

9. The	 optimisation	 programme	 presented	 in	 this	 thesis	 has	 led	 to	 an	 increased	
awareness	of	radiation	protection	amongst	health	professionals.	Paediatric	plain	
radiography	 doses	 have	 been	 reduced,	 however	 additional	 optimisation	 is	
necessary	for	other	procedures,	following	the	same	methodology	carried	out	by	
a	 multidisciplinary	 skilled	 and	 well-trained	 team,	 including	 a	 medical	 physics	
expert.	Good	practice	is	recommended	by	European	guidelines	and	is	a	matter	
requiring	further	research.	
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