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ABSTRACT: Photodynamic therapy (PDT) is well-known cancer treatment modality that has been used with good results and 

is based on the combined use of photosensitizer, light and molecular oxygen to induce cell death. The relative in vitro efficacy 

of PDT with a fluorinated bacteriochlorin, that generates singlet oxygen, hydroxyl radical and superoxide ion, or with temo-

porfin, which only generates singlet oxygen, depends on the superoxide dismutase (SOD) activity levels of the cell lines and 

depends the inhibition of glycolysis. The addition of ascorbate further potentiates phototoxicity in A549 cells, presumably by 

electron transfer to the radical cation of the photosensitizer and consequent increase in the turnover of radicals. The inhibition 

of catalase and the depletion of the glutathione pool have similar effects in A549 and CT26 cells, although less impressive in 

CT26. CT26 cells have a higher SOD activity level and are less sensitive to Type I processes. The phototoxicity towards CT26 

cells seems to be mostly mediated through singlet oxygen and the inhibition of the cell antioxidant defence system is less effec-

tive in potentiating PDT phototoxicity. Inhibition of glycolysis leads to increased steady-state levels of ROS and enhanced cell 

killing by oxidative stress due to 2-Deoxy-D-glucose (2-DG) inhibit the formation of pyruvate and NADPH, which function in 

the detoxification pathways of H2O2.  

ABBREVIATIONS 

DMEM, Dulbeccos’s Modified Eagle’s medium; RPMi, Dul-

beccos’s Modified Eagle’s medium without phenol red; PDT, 

photodynamic therapy; F2BMet (or redaporfin), 5,10,15,20-

tetrakis(2,6-difluoro-3-N-

methylsulfamoylphenyl)bacteriochlorin; mTHPC, m-

tetra(hydroxyphenyl)chlorin; ROS, reactive oxygen species; 

superoxide (O2
•–); hydrogen peroxide (H2O2); hydroxyl radical 

(OH•); CAT, catalase; 3-AT, 3-amino-1,2,4-triazole; Mn-SOD, 

superoxide dismutase; 2-ME, 2-metoxyestradiol; GSH, reduced 

form of glutathione; GSSG, oxidized form of glutathione; BSO, 

buthionine sulfoximine; 2-DG, 2-Deoxy-D-Glucose. 

 

INTRODUCTION 

Cancer remains one of the leading causes of death world-

wide, with 10 million new cases detected every year. The 

management of cancer has an increasing impact in devel-

oped societies and in the world at large, as a result of tech-

nological and scientific progresses that are increasing the 

survival of cancer patients [1]. 

The normal growth and development of an organism is 

highly regulated, with a balance between signaling pathways 

that promote cell growth and pathways that promote the 

inhibition of growth and cell death. The disruption of this 

homeostasis produces pathological conditions [2]. Cancer is 

defined as a pathological process that occurs in several 

stages and involves dynamic changes of the genome. These 

changes provide advantages to growth and cell survival, and 

promote malignant transformation [3]. 

There has been an increase in the effectiveness of different 

forms of treatment and simultaneously an increase in the 

awareness of health professionals and the general public 

concerning oncologic diseases, which contribute to early 

diagnosis and successful treatments. The methods of treating 

cancer include surgery, chemotherapy, radiotherapy, immu-

notherapy and photodynamic therapy, among other modali-

ties of treatment [4,5]. 

Conventional therapies have in common the lack of selectiv-

ity, the limited number of times they can used and the im-

portant side effects due to high toxicity to non-tumor cells. 

On the other hand, photodynamic therapy is minimally 

invasive and clinically approved for the treatment of onco-

logical and non-oncological diseases, for example, acne, 

eczema, psoriasis, atherosclerosis and arthritis. It is a selec-

tive technique that depends on action of three essential 

components: a photosensitizer (PS), visible light and molec-

ular oxygen. The combination of these elements, alone 

innocuous, triggers the production of reactive oxygen spe-

cies responsible for the inactivation and destruction of tumor 
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cells. In most oncological applications, the photosensitizer is 

administered, accumulates in the tumor tissue and then the 

targeted tissue is irradiated with a light of a wavelength 

absorbed by photosensitizer. This wavelength lies typically 

between 650 and 850 nm (phototherapeutic window), which 

is the region with greater penetration into human tissue 

without causing damage to this because it is where tissues 

are the most transparent. When activated, the photosensitizer 

in an electronically excited state is capable of transferring an 

electron (Type I process) or electronic energy (Type II pro-

cess) to molecular oxygen, with the concomitant formation 

of superoxide ion and singlet oxygen, respectively, which 

react with vital cellular components, leading to cell death 

and culminating in the destruction of the tumor [6,7]. Reac-

tive oxygen species (ROS) such as superoxide ion and sin-

glet oxygen, mediate the killing of tumor cells by three 

different mechanisms: direct cytotoxicity on tumor cells, 

destruction of microvasculature of the tumors through the 

damage caused in the endothelial cell, and stimulation of an 

immune response against the tumor [8]. 

The distribution and accumulation of the photosensitizer in 

the target tissue, associated with the directionality of light to 

this tissue, allows PDT to minimize damage to healthy tis-

sue. PDT is a minimally invasive treatment, without side 

effects that may significantly affect the patients quality of 

life, and a single procedure may result in the necrosis of the 

target tissue. However, this treatment also has limitations, 

namely the slow clearance of some photosensitizers, the 

impossibility of treating non-solid tumors (e.g., leukemia), 

inefficient control of metastatic lesions and photosensitivity 

of the skin after the treatment [9,10]. Combination regimens, 

that include PDT and a partner treatment, should be aimed at 

increasing the therapeutic efficacy. In principle, this may be 

achieved either by counteracting the prosurvival signaling 

triggered in tumor cells that resisted PDT or, alternatively, 

by pre-weakening the tumor cells so that they become more 

sensitive to PDT [11]. The path followed in this thesis was 

to use the cellular antioxidant system and the necessity of a 

high level of glycolytic activity in tumor cells to enhance the 

efficacy of photodynamic therapy. 

ROS, notably superoxide (O2
•–), hydrogen peroxide (H2O2) 

and hydroxyl radical (OH•), can damage a variety of bio-

molecules, for example lipids, proteins, carbohydrates and 

nucleic acids. Endogenous ROS production occurs primarily 

as a ubiquitous byproduct of both oxidative phosphorylation 

and a myriad of oxidases necessary to support aerobic 

mechanisms [12,13]. While high ROS levels are lethal to the 

cell, a moderate increase in ROS can promote cell prolifera-

tion and differentiation [14,15]. It has been remarked that, 

compared with their normal counterparts, many types of 

cancer cells have increased levels of ROS [16,17], and the 

hypothesis that tumor cells could be more vulnerable to 

additional production of ROS was explored by therapeutic 

approaches [18]. 

Antioxidant enzymes, such as superoxide dismutase and 

catalase, and the glutathione system are responsible for ROS 

homeostasis. Small molecules, such as ascorbate, comple-

ment the control of ROS by the antioxidant enzymes 

[17,19]. Several ROS generation agents are currently in 

clinical trials as single agents or as combination therapy 

[20]. An example is to treat tumor cells with pharmacologi-

cal agents that have pro-oxidant properties, which increase 

the production of reactive species or revocation of antioxi-

dant cellular systems. In preclinical models, agents that 

generate ROS showed selective toxicity in cells tumor with 

the increase of the ROS above the toxicity threshold that the 

antioxidant systems can manage [21]. 

Key metabolic steps for cell detoxification mechanisms are 

the catalysis of superoxide by superoxide dismutase (SOD) 

to hydrogen peroxide and oxygen, and the conversion of 

hydrogen peroxide to water by glutathione peroxidase 

(GSH-Px) or to oxygen and water by catalase (CAT). To 

avoid irreversible cell damage, the increased generation of 

ROS in cancer cells leads to positive adaptation of redox of 

antioxidants systems in response to oxidative stress with the 

purpose of restoring redox homeostasis, leading to an up-

regulation of CAT, GSH and SOD [17,21]. The increase in 

antioxidant capacity and high levels of enzymatic activity 

promotes cancer cell survival and resistance to certain anti-

cancer agents due to increased ability to remove ROS and 

stabilize surviving molecules through thiol modification. 

However, the increase of ROS makes cancer cells highly 

dependent on antioxidant systems, and therefore vulnerable 

to agents that suppress this antioxidant system. This offers a 

biochemical basis to selectively kill cancer cells using inhib-

itors of CAT, GSH and SOD. On the other hand, normal 

cells that have low ROS production levels and that are less 

dependent on antioxidant systems, can tolerate the suppres-

sion of enzymatic systems by the action of their inhibitors, 

such as, 3-amino-1,2,4-triazole (3-AT), buthionine sul-

foximine (BSO) and 2-methoxyestradiol (2-ME), respective-

ly [17]. 

Glutathione (Ȗ-glutamyl-L-cysteinylglycine) or GSH, pre-

sent in most of the cells, is the thiol (-SH) tripeptide most 

abundant intracellularly and is involved in cellular antioxi-

dant defense. It consists of glutamic acid, cysteine and gly-

cine and can be found in two forms: free or protein bound. 

The free form is found primarily in the reduced form (GSH), 

which can be converted to its oxidized form (GSSG) during 

oxidative stress, and can be converted back into its reduced 

form by the action of glutathione reductase (GR). In turn, 

the glutathione peroxidase (GSH-Px) catalyzes the reduction 

of hydrogen peroxide to water due to the conversion of GSH 

to GSSG [22,23]. The role of glutathione is complemented 

with the role of catalase, since catalase converts hydrogen 

peroxide to oxygen and water. Buthionine sulfoximine 

(BSO) is a specific inhibitor of GSH biosynthesis and does 

not affect other enzymes involved in the formation or re-

moval of reactive metabolites. It is structurally identical to 

an intermediate of the reaction catalyzed by GCS (Ȗ-

glutamylcysteine synthetase), causing thus a decrease in the 

concentration of GSH [24]. This has advantages over other 

agents GSH inhibitors when used to demonstrate the role of 

GSH in toxicities induced by xenobiotics, once this inhibitor 

has no known toxicity to mammals and has little intrinsic 

chemical reactivity because only acts by inhibiting biosyn-
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thesis GSH and therefore does not affect directly other cellu-

lar thiols [25]. The modulation of antioxidant redox system 

based on GSH, the principal determinant of the cellular 

redox state, may represent thus a promising therapeutic 

strategy for overcoming cancer progression [20]. 

Superoxide dismutase scavenges the reactive oxygen species 

(ROS), such as superoxide anion and hydroxyl radicals, and 

thus controls oxidative stress. Manganese superoxide dis-

mutase (Mn-SOD) is a member of the SOD family, which 

includes copper and zinc-containing superoxide dismutase 

and extracellular superoxide dismutase. The SOD family is 

known to have important functions in a broad range of 

stress-induced pathological conditions. Among the members 

of the SOD family, Mn-SOD is the only enzyme that is 

essential for the survival of life in the aerobic environment 

under physiological conditions [26]. This critical function 

may be due to the strategic location of Mn-SOD in the mito-

chondria. Understanding the connection between Mn-SOD 

and tumorigenesis, as well as when and how Mn-SOD is 

modulated during cancer development, will enhance our 

ability to develop novel measures to intervene in the disease 

process [27]. 2-Methoxyestradiol (2-ME) is a physiological 

metabolic byproduct of the endogenous estrogen, 17ȕ-

estradiol. Recent studies demonstrated that 2-ME exerts 

both in vitro and in vivo anti-tumor activity against a range 

of solid tumors. These include breast cancer, angiosarcoma, 

lung cancer, pancreatic cancer, hepatocellular carcinoma, 

neuroblastoma and gastric cancers [19]. The modulation of 

antioxidant redox system based on Mn-SOD and on its 

inhibition with 2-ME is now considered as a promising 

potential anticancer agent. 

Understanding the biological differences between normal 

and tumor cells is essential for the design and development 

of drugs with selective anticancer activity. Cancer cells 

reprogram their energy metabolism and produce energy 

necessary for their proliferation through glycolytic mecha-

nism - Warburg effect [28]. Although the biochemical and 

molecular mechanisms that lead to increased aerobic glycol-

ysis in tumor cells are quite complex and can be attributed to 

various factors, such as mitochondrial dysfunction, hypoxia 

and oncogenic signals, metabolic effects appear similar, so, 

the malignant cells need glycolysis and are dependent on 

this pathway to generate adenosine triphosphate (ATP). 

Since the generation of ATP through glycolysis is much less 

efficient (2 ATP per glucose) than through oxidative phos-

phorylation (32 ATP per glucose), the cancer cells consume 

much more glucose than normal cells to maintain sufficient 

ATP to their metabolism and active proliferation. Thus, the 

maintenance of a high level of glycolytic activity is essential 

for the survival and growth of tumor cells [21]. As this 

metabolic disorder is often seen in tumor cells of various 

tissue origins, and targeting the glycolytic pathway may 

preferentially kill malignant cells [27]. In normal cells, 

growth is regulated by external growth signals and nutrient 

support. Cancer cells, in contrast, have lost responsiveness 

to most external growth signal, and as a consequence, nutri-

ent supply in the form of glucose likely plays a unique role 

in maintaining cancer cell viability. When the glycolysis is 

inhibited, the mitochondria, intact in normal cells, allows 

them to use alternative energy sources, such as fatty acids 

and amino acids, for the production of metabolic intermedi-

ates channeled to the TCA (tricarboxylic acid) cycle and 

ATP production via respiration. Recent studies have shown 

that inhibition of glycolysis can exert preferential effect in 

cells with impaired mitochondrial function due especially to 

cells with deletion of mitochondrial DNA and defects in 

breathing, leading to cell death [28]. 

The observation that cancer cells exhibit an increase in 

glycolysis and are more dependent on this pathway to gen-

erate ATP, led to the evaluation of glycolytic inhibitors as 

potential anticancer agents. There are several compounds 

that inhibit or suppress the glycolytic pathway [28,29]. 2-

Deoxy-D-glucose (2-DG) is a glucose analog and has long 

been known to act as a competitive inhibitor of glucose 

metabolism. Upon transport into the cells, 2-DG is phos-

phorylated by hexokinase to 2-deoxyglucose-P (2-DG-P). 2-

DG-P is trapped and accumulated in the cells, leading to 

inhibition of glycolysis mainly at the step of phosphoryla-

tion of glucose by hexokinase. Inhibition of this rate-

limiting step by 2-DG causes a depletion of cellular ATP, 

leading to blockage of cell cycle progression and cell death 

in vitro [30]. In vitro studies show that 2-DG exhibits cyto-

toxic effect in cancer cells, especially those with mitochon-

drial respiratory defects or cells in hypoxic environment 

[31]. 2-DG produced a four to five fold greater effect in 

anaerobically growing cells than in aerobically growing 

cells. The consequences of glycolysis blocking are different 

in aerobic and hypoxic cells. In the aerobic cell, upon inhibi-

tion of glycolysis is by 2-DG, ATP cannot be generated by 

this pathway. However, since O2 is available to the mito-

chondria, amino and/or fatty acids can act as energy-

providing carbon sources for oxidative phosphorylation 

(OxPhos) to take place, producing ATP. In contrast, when 

glycolysis is blocked in the hypoxic cells, the other carbon 

sources cannot be used by mitochondria because O2 is una-

vailable, and OxPhos cannot take place. Thus, when glycol-

ysis is blocked in the hypoxic cell, it has no alternative 

means for generating ATP and, therefore, will eventually 

succumb to this treatment [29]. Competition between 2-DG 

and glucose is thought to cause inhibition of glucose metab-

olism, thereby creating a chemically induced state of glu-

cose deprivation. It is proposed that the extent to which 

tumor cells increase their metabolism of glucose is predic-

tive of tumor susceptibility to glucose deprivation induced 

cytotoxicity and oxidative stress. Therefore, when deprived 

of glucose using 2-DG, tumor cells with high glucose utili-

zation will be more sensitive to cell death resulting from 

respiratory dependent metabolic oxidative stress than tumor 

cells with low glucose utilization and normal cells. It was 

hypothesized that the reason for this is because cancer cells 

with high glucose utilization generate more O2 and H2O2 

from their mitochondrial electron transport chains [32]. 2-

DG competitively inhibits metabolism of glucose and has 

been suggested to be selectively cytotoxic to fully trans-

formed cells, via a mechanism that involves hydroperoxide-

mediated oxidative stress. Since glucose is a major source of 
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electrons for hydroperoxide metabolism and tumor cells are 

believed to produce relatively high steady-state levels of 

hydroperoxides, the mechanism by which 2-DG enhances 

oxidative stress in cancer cells was suggested to involve 

limitation of hydroperoxide detoxification [33]. Glucose 

deprivation would be expected to cause metabolism to shift 

to oxidative phosphorylation in order meet the metabolic 

demand for ATP. This shift to mitochondrial respiration 

would be expected to increase one electron reduction of 

oxygen from electron transport chains, leading to increased 

superoxide (O2
•-) and hydrogen peroxide (H2O2) fluxes. 

Increases in O2
•- and H2O2 would then be occurring in a low 

glucose environment where less nicotinamide adenine dinu-

cleotide phosphate (NADPH) was being produced through 

the pentose phosphate cycle and less pyruvate would be 

produced from glycolysis. Both NADPH and pyruvate are 

integrally related to hydroperoxide metabolism and detoxifi-

cation. Therefore, we hypothesize that mitochondrial elec-

tron transport chain production of O2
•- and H2O2 as well as 

organic hydroperoxides derived from the oxidation of lipids 

would contribute to the oxidative stress seen during glucose 

deprivation [34]. Since 2-DG would be expected to inhibit 

the formation of pyruvate and NADPH, which function in 

the detoxification pathways of H2O2, we hypothesized that 

the inhibition of glycolysis would lead to increased steady-

state levels of ROS and enhanced cell killing by oxidative 

stress. The biochemical rationale for this combination to 

enhance cancer cell killing was based on previous results in 

other human cancer cells suggesting that 2-DG would inhib-

it glucose metabolism leading to a reduction in intracellular 

pyruvate and NADPH, limiting the capacity of the tumor 

cells to metabolize hydroperoxides and enhancing oxidative 

stress. 

The aim of this study is use photodynamic therapy with 5 

µM of a recently described fluorinated sulfonamide bacteri-

ochlorin photosensitizer (redaporfin) to increase in ROS in 

cells, and explore its combination with the inhibition of 

glutathione peroxidase (600 µM BSO), superoxide dis-

mutase (3 µM 2-ME) or glycolysis (2 mM 2-DG), in A549 

(human lung adenocarcinoma), CT26 (mouse colon adeno-

carcinoma) and NIH-3T3 fibroblast cell lines, by evaluation 

of the impact of the combination on the cellular survival. 

 

EXPERIMENTAL SECTION 

Reagents 

The culture medium (DMEM, Dubbelco's Modified Eagle's 

Medium) was obtained from Sigma Life Sciences. The fetal 

bovine serum and antibiotics (penicillin and streptomycin) 

were obtained from Invitrogen. The photosensitizers used, 

redaporfin is a halogenated bacteriochlorin (5,10,15,20-

Tetrakis (2,6-fluoro-3-N-methylsulphamoylphenyl) bacteri-

ochlorin) and it was kindly provided by Luzitin SA (Coim-

bra, Portugal) in sealed vials. Stock solutions of redaporfin 

were prepared in ethanol (≈ 1 mM) shortly before the addi-
tion to the cell cultures. BSO and 2-ME (SigmaAldrich) 

solutions were prepared in saline phosphate buffer (PBS) 

and 2-DG (SigmaAldrich) was prepared in DMEM. All 

incubations and washes prior to PDT were carried out under 

subdued light. Temoporfin (5,10,15,20-tetrakis(3-

hydroxyphenyl) chlorin) was purchased from Chembest 

(China). Stock solutions of temoporfin were also prepared in 

ethanol (≈ 1 mM) shortly before the addition to the cell 
cultures. 

 

Cell lines 

The cell lines used were A549, human lung adenocarcinoma 

cancer cell line, CT26, mouse colon adenocarcinoma cancer 

cell line and NHI-3T3, fibroblasts cell lines. The culture 

medium for the cell growth  used Dulbecco's Modified  

Eagle's  Medium  –  high glucose (DMEM), 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid buffer 

(HEPES) and  sodium bicarbonate purchased from Sig-

maAldrich. DMEM was supplemented with 100 units/ml of 

penicillin (PS) (1%), 100 g/ml streptomycin and 10% heat-

inactivated fetal bovine serum (FBS) were purchased from 

Gibco. Unless otherwise mentioned, all cell lines were 

maintained at 37°C in a humidified atmosphere containing 

5% CO2 while cultured. MilliQ water was deionized with a 

Millipore Milli-Q water purification system. 

 

Dark toxicity 

For each experiment, cells were grown in triplicate at a 

density of 10.000 cells/well (A549) and 7.000 cells (CT26 

and NHI-3T3) per well in 200 µl growth medium in 96-well 

tissue culture plates, and allowed to reach at least 80% of 

confluence. The cytotoxicity in the dark was independently 

measured after incubation of A549 and CT26 cells with 

BSO (100-600 µM), 2-ME (1-5 µM) and 2-DG (500 µM-

100 mM) for 24 hours at 37 °C. Approximately 18 hours 

after incubation with drug photosensitizer, cells were 

washed with PBS and then incubated with a 10% solution of 

Resazurin and analyzed using a multi-mode micro plate 

reader Synergy HT™ from BioTek®. Resazurin fluores-
cence was measured in the following day at the emission 

wavelength of 590 nm. Cells were always assayed for via-

bility 24 h after the end of the incubation periods. 

 

In vitro generation of cell death 

PDT employed as light source a LED from Marubeni (mod-

el L740-66-60-550), with an output power of 410 μW, emis-
sion maximum at 740 nm with FWHM = 25 nm. For each 

experiment, cells were grown in triplicate at a density of 

10.000 cells/well (A549) and 7.000 cells (CT26 and NHI-

3T3) per well in 200 µl growth medium in 96-well tissue 

culture plates, and allowed to reach at least 80% of conflu-

ence.  In a standard PDT experiment, the cell lines were first 

incubated for 20 h with 5 µM redaporfin from an ethanol 

stock solution, incubated for 1 h with the BSO and 2-ME or 

1, 3, 6, 12 h with 2-DG; or cell lines were first incubated 

with 500 µM-2 µM 2-DG and after 24 h cell lines were 

incubated with 5 µM redaporfin. Before exposure to the 

light source, the cells were rinsed with PBS and fresh medi-
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um was added. A549 cell were exposed to a light dose of 40 

mJ/cm2, CT26 to a light dose of 100 mJ/cm2 and NHI-3T3 

to a light dose 50 mJ/cm2. These light doses were selected 

on the basis of exploratory studies to find the light doses that 

killed 40-60% of the cells incubated with 5 µM redaporfin. 

Cells were always assayed for viability 24 h after PDT. 

Statistical analyses were performed with Student’s t-test for 

unpaired data with unequal variance, and used no less than 

three independent measurements. 

 

Comparison between redaporfin and temoporfin  

The comparison between redaporfin and temoporfin was 

made under irradiation with a homemade device using LEDs 

from Avago Technologies model HLMP-CE13-35CDD 

LED with an output power of 50 µW and emission maxi-

mum at 505 nm and FWHM = 30 nm. The light doses were 

calibrated to produce 40-60% of cell death in both cell lines 

after incubation for 20 h with 5 µM redaporfin or 500 nM 

temoporfin. 

The light devices output powers were measured with power 

meter LaserCheck from Coherent. 

 

RESULTS 

Different cell lines exhibit different enzymatic activities of 

antioxidant systems. The path followed in this thesis was, 

based on previous results from our group, to inhibit the 

cellular antioxidant system, notably glutathione pool and 

superoxide dismutase, and enhance the efficacy of photody-

namic therapy. 

Previous results of the group showed that ascorbic acid 

plays a special role in cancer treatment, once it behaves in 

two different ways. It acts as a pro-oxidant in combination 

with redaporfin-PDT of A549 cells increasing the effective-

ness of PDT but acts as an antioxidant in redaporfin-PDT of 

CT26 cells protecting them from ROS. The resistance of 

A549 cells to ascorbate suggests a better management of 

hydrogen peroxide. The oxidative stress of H2O2, produced 

either through Type I processes and/or by ascorbate, and its 

detoxification by catalase were evaluated in the presence of 

its inhibitor 3-AT in a range of 50–500 µM. The inhibition 

of catalase potentiates the phototoxicity of redaporfin to-

wards A549 cells but not towards CT26 cells. The effect of 

adding ascorbate to redaporfin-PDT incubated with 3-AT is 

the same for A549 cells as that described for the addition of 

ascorbate to redaporfin-PDT with or without ascorbate: the 

survival of A549 decreases. On the other hand, it is neces-

sary to increase the concentration of 3-AT to counter the 

protective effect of ascorbate in CT26 cells. The role of 

ascorbate as a pro-oxidant in A549 cells and an antioxidant 

in CT26 cells is apparent even when catalase is inhibited. 

The differential effect of ascorbate and 3-AT in A549 and 

CT26 cells motivated the assessment of the catalase activity 

in these cell lines. The higher toxicity of ascorbate towards 

CT26 cells is consistent with the lower catalase activity 

level in these cells. Interestingly, the more 3-AT-sensitive 

A549 cells have a higher catalase activity than the CT26 

cells [29,35] , showing that the behavior of these cell lines to 

the imposed oxidative stress could not be totally explained 

by the catalase activity. 

 

Depletion of intracellular glutathione with buthi-
onine sulfoximine (BSO) 

The role of the glutathione pool in the detoxification of ROS 

was investigated using BSO, a specific inhibitor of glutathi-

one synthesis that is not cytotoxic (see Figure 5 Supplemen-

tary Information) in the 100-600 µM concentration range 

employed in this study. Figure 1 shows that the inhibition of 

Ȗ-glutamylcysteine synthetase has a similar impact on the 

phototoxicity of redaporfin as the inhibition of catalase. 

 

 

Figure 1. Dark toxicity BSO and phototoxicity of 

redaporfin (5 µ M) alone and in combination with 

BSO (300 µ M or 600 µ M).  Statistically significant  

difference * refer to p<0.05.  

 

Figure 2 shows comparable levels of oxidized (GSSG) and 

reduced (GSH) forms of glutathione in A549 and CT26 

cells. The ratio between the reduced and oxidized forms of 

glutathione is usually presented to indicate the susceptibility 

of the cell line or tissue to resist to oxidative stress [36]. The 

GSSG/GSH ratios were (7.1±0.8)x102 for A549 and 

(7.5±0.6)x102 for CT26 cell lines, which indicate similar 

glutathione activity [29]. 
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Figure 2. Pool of oxidized (GSSG) and reduced (GSH) forms of 

glutathione.  

 

Inhibition of Mn-SOD with 2-metoxyestradiol (2-
ME) 

The role of superoxide ions in phototoxicity was investigat-

ed with the inhibition of Mn-SOD with 3 µM 2-ME. Figure 

3 shows that 2-ME potentiates the effect of redaporfin-PDT 

in A549 cells but not in CT26 cells. 

 

 
Figure 3. Dark toxicity of 2-ME and phototoxicity of redaporfin 

(5 µM) alone and in combination with 2-ME (3 µM). Statisti-

cally significant difference * refer to p<0.05 and *** to 

p<0.001. 

 

The remarkable ability of 2-ME to potentiate PDT with 

A549 cells but not with CT26 cells should be interpreted in 

terms of the SOD activity levels of these cell lines (see 

Figure 4). The lower SOD activity of A549 cells leaves 

these cells vulnerable to superoxide ion when Mn-SOD is 

inhibited by 2-ME and even more in presence of both SOD 

inhibitor and ascorbate. 

 

Figure 4. SOD activity. Statistically significant difference * 

refer to p<0.05. 

 

 

Phototoxicities of redaporfin and temoporfin 
alone 

For a comparison between two photosensitizers used in 

PDT, the redaporfin and temoporfin, in order to study the 

resistance of the A549 and CT26 cell lines to the superoxide 

ion. 

Incubation with 5 µM redaporfin does not lead to measura-

ble cytotoxicity. Figure 5 shows that the relative photoxici-

ties of redaporfin and temoporfin towards A549 and CT26 

cells are different. Whereas 0.5 µM of temoporfin need 20 

mJ/cm2 at 505 nm to kill 50% of A549 cells, only 5 mJ/cm2 

kill the same percentage CT26 cells, and precisely the oppo-

site of the trend observed with 5 µM of redaporfin: 250 

mJ/cm2 kill 50% of A549 cells, but 500 mJ/cm2 are needed 

to kill 50% of CT26 cells. This is consistent with the differ-

ence in phototoxicities previously found for HT-29 and 

CT26 cells [20]. Considering that the photoxicity of temo-

porfin is assigned to singlet oxygen [37], these results sug-

gest that A549 cells are more sensitive to free radicals gen-

erated in Type I processes. 

 

 

Figure 5. Photoxicity of 0.5 µM temoporfin (a) and 5 µM 

redaporfin (b) towards A549 (brown) and CT-26WT (orange) 

cells as a function of the light dose at 505 nm. 

 

Inhibition of glycolysis with 2-Deoxy-D-glucose 
(2-DG) 

The strategy of targeting the energy of the tumor metabo-

lism was studied focusing on the role of the glycolysis activ-

ity in both cancer and normal cell lines. 2-DG, a specific 

inhibitor of glycolysis was employed in combination with 

a) 

b) 
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PDT, investigating a possible synergistic effect of the com-

bination, and an increased selectivity in the therapy between 

normal and cancer cells.  This required assessing the range 

of 2-DG concentrations that do not present cytotoxicity for 

the desired incubation times. 

Figure 6 shows a protective effect in these cell lines when 

the cells were first incubated with 5 µM redaporfin and after 

24 h incubation time were incubated with 5 mM 2-DG in the 

A549 and NHI-3T3 cell lines and 10 mM 2-DG in the CT26 

cell line for 1, 3, 6 and 12 h before PDT.  

 

 

Figure 6. Dark toxicity of 2-DG during 24 h and phototoxicity 

of redaporfin (5 µM) alone and in combination with 2-DG (5 

and 10 mM) during 1, 3, 6 and 12 h before PDT.  

The toxicity of 5 µM redaporfin with 5 and 10 mM 2-DG 

for 48 h was assessed and proved to be significant toxic (see 

Figure 6 supplementary information). The toxicity of 5 µM 

redaporfin with 500 µM-2 mM 2-DG during 48 h was tested 

and proved to be not cytotoxic (see Figure 7) in concentra-

tion range employed in this study. 

 

Figure 7. Dark toxicity of 5 µM redaporfin with 500 µM–2 mM 

2-DG during 48 h. 

 

The phototoxicity of 5 µM redaporfin with 500 µM-2 mM 

2-DG during 48 h was tested and was found significant 

toxicity in this concentration range. 

Therefore, the study was focused on the inhibition of gly-

colysis for 48 h with 2-DG in this concentration range. 

Figure 8 shows an increased effect in PDT-induced cytotox-

icity concentration dependent of inhibitor in cancer cells 

when glycolysis was inhibited for 48 h before PDT. The 

premise that tumor cells are more susceptible to glycolysis 

inhibition than fibroblasts remains questionable. For inhibi-

tor concentrations of 1 mM but the selectivity was not found 

but for higher amounts of inhibitor it seems that is possible 

to promote a differential treatment. 

 

 

 

 

Figure 8. Phototoxicity of 5 µM redaporfin (incubated 20 h) 

alone and in combination with 500 µM–2 mM 2-DG (incubated 

48 h before PDT). Statistically significant difference * refer to 

p<0.05 and *** to p<0.001. 

 

DISCUSSION 

Redaporfin is characterized by a strong light absorption at 

749 nm in CrEL:ethanol:NaCl 0.9 % (0.2:1:98.8, v:v:v) 

solution, 48=1.25x105 M–1 cm–1 [16] and has the ability to 
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transfer an electron to molecular oxygen and generate su-

peroxide ions and hydroxyl radicals in aqueous solutions. It 

is a promising photosensitizer for PDT and a useful tool to 

explore the roles of Type I and Type II processes in photo-

toxicity. The fluorescence intensities of redaporfin in A549 

and CT26 cells after 24 h of incubation were not significant-

ly different. The phototoxicity differences between these 

cell lines are probably not related to the uptake of 

redaporfin. 

A very important observation is that ascorbate acts as a pro-

oxidant in combination with redaporfin-PDT of A549 cells 

but acts as an antioxidant in redaporfin-PDT of CT26 cells. 

Ascorbate changes from a pro-oxidant in the dark to an 

antioxidant when redaporfin is irradiated in CT26 cells [35]. 

Redaporfin, (F2BMet in equations), is nearly insoluble in 

water and localizes preferentially in the endoplasmic reticu-

lum (ER). Molecular oxygen is also much more soluble in 

organic solvents than in water. Thus, triplet redaporfin un-

dergoes diffusion-controlled energy and electron transfer 

reactions with molecular oxygen mostly in the ER 

3F2BMet + O2 → F2BMet + 1O2  (1) 
3F2BMet + O2 → F2BMet•+ + O2

•–  (2) 

Type I reactions with biomolecules are also possible but will 

not be considered here for simplicity. The radical cation 

F2BMet•+ should then move to a more polar environment 

where it can be reduced by water-soluble ascorbate 

F2BMet•+ + AH– → F2BMet + AH  (3) 

The rapid regeneration of F2BMet can prevent the decompo-

sition of its radical cation. The increase in photostability 

with reaction 3 allows for additional cycles of reactions 1 

and 2. This mechanism explains the pro-oxidant effect of 

ascorbate in combination with F2BMet-PDT observed with 

A549 cells. The superoxide ion is in equilibrium with the 

perhydroxyl radical ( , pK=4.8) in 

aqueous solution and both react with ascorbic acid/ascorbate 

HOO•/O2
•– + AH2/AH– → H2O2 + A•–  (4) 

with a rate constant k4=3x105 M–1 s–1 [38]. The dismutation 

of the superoxide ion by superoxide dismutase 

Mn3+-SOD + O2
•– → Mn2+-SOD + O2  (5a) 

Mn2+-SOD + O2
•– + 2H+ → Mn3+-SOD + H2O2 (5b) 

is much faster, ≈109 M–1 s–1 [38], but for high local concen-

trations of ascorbate reaction 4 could explain part of the 

antioxidant effect of ascorbate in combination with F2BMet-

PDT observed with CT26 cells. 

We propose that singlet oxygen is the pivotal ROS in photo-

toxicity towards CT26 cells for the following reasons (i) the 

phototoxicity of temoporfin is mediated by singlet oxygen 

and the phototoxicity of temoporfin is higher towards CT26 

cells than A549 cells, (ii) redaporfin generates both superox-

ide ions and singlet oxygen and is less phototoxic towards 

CT26 cells than A549 cells, (iii) the inhibition of Ȗ-

glutamylcysteine synthetase depletes the glutathione pool 

that protects cells against free radicals but has little effect on 

the phototoxicity of redaporfin towards CT26 cells, and (iv) 

the inhibition of Mn-SOD increases intracellular superoxide 

ions but has little effect in the phototoxicity of redaporfin 

towards CT26 cells. The resistance of CT26 cells to Type I 

processes is certainly related with their high level of SOD 

activity. CT26 cells can efficiently manage the oxidative 

stress caused by superoxide ions by converting them to 

H2O2 with SOD. Next, these cells upregulate catalase to 

detoxify H2O2 and maintain their resistance against Type I 

reactions. 

A549 cells have a higher sensitivity to Type I processes. 

This is assigned to a low SOD activity level that makes 

these cells especially sensitive to elevated levels of superox-

ide ion. The inhibition of Mn-SOD increases the oxidative 

stress by radical species and is accompanied by a strong 

increase in the phototoxicity of redaporfin towards A549 

cells. The depletion of the glutathione pool also leads to 

some potentiation of redaporfin-PDT towards A549 cells. 

The most striking result of the combinations of redaporfin-

PDT with the various inhibitors is that a very strong potenti-

ation of PDT is possible when Type I processes determine 

phototoxicity. It is more difficult to potentiate PDT when 

Type II processes control phototoxicity. 

The ability of singlet oxygen to explore the whole cell re-

flects a cytotoxicity that is weakly dependent on the regula-

tion of oxidative stress by the cells. On the other hand, the 

cascade of radical reactions initiated by electron transfer 

from the photosensitizer to molecular oxygen leads to su-

peroxide ions and hydrogen peroxide that are managed by 

specific cellular defense mechanisms. When these ROS 

escape such defenses, they can lead to hydroxyl radicals that 

have a 1 ns lifetime in cells and can produce damage over a 

range of 1 nm [39]. Very reactive radicals produce cellular 

damage within the organelles where they are formed and 

only a large glutathione pool can offer some protection.  

In general, cancer cells exhibit increased glycolysis and 

pentose-phosphate cycle activity, while demonstrating only 

slightly reduced rates of respiration. These metabolic differ-

ences were initially thought to arise as a result of “damage” 
to the respiratory mechanism, and tumor cells were thought 

to compensate for this defect by increasing glycolysis. How-

ever, if cancer cells increase glucose metabolism to form 

pyruvate and nicotinamide adenine dinucleotide phosphate 

(NADPH) as a compensatory mechanism, in response to 

ROS formed as byproducts of oxidative energy metabolism, 

then inhibition of glucose metabolism would be expected to 

sensitize cancer cells to agents that increase levels of hy-

droperoxides (i.e., ionizing radiation and chemotherapy 

agents). Studies have shown that glucose deprivation can 

induce cytotoxicity in transformed human cell types via 

metabolic oxidative stress. Glucose analogues, such as 2-

DG, have been found to profoundly inhibit glucose metabo-

lism in cancer cells in vitro and in vivo [33]. 

2-DG has been proven to be an effective inhibitor of cell 

metabolism and ATP production. 2-DG is a structural ana-

logue of glucose differing at the second carbon atom by the 

HO2  ¬¾¾
¾®¾  O2

-  + H+



9 

 

substitution of hydrogen for a hydroxyl group (see Figure 2 

Supplementary Information) and appears to selectively 

accumulate in cancer cells by metabolic trapping because of 

increased uptake, high intracellular levels of hexokinase or 

phosphorylating activity, and low intracellular levels of 

phosphatase (see Figure 3 Supplementary Information) 

[32,33]. Two properties of 2-DG, namely, the inhibition of 

glycolysis and the preferential accumulation in cancer cells, 

have formed the basis for further investigating the mecha-

nism of 2-DG for its use as an antitumor agent. It has been 

speculated that cancer cells initially treated with 2-DG ex-

hibit a stress response caused by a depletion of intracellular 

energy. The stress response results in increased levels of 

glucose transporter expression and increased glucose uptake, 

which allow more 2-DG to enter the cell. As a consequence 

of high intracellular 2-DG concentrations, hexokinase and 

hexose phosphate isomerase are inhibited, energy stores 

such as ATP are further depleted and, finally, the cell acti-

vates the cell death pathway [40]. In addition, increased pro-

oxidant production and profound disruptions in thiol metab-

olism consistent with metabolic oxidative stress were also 

noted in cancer cells during glucose deprivation or when 

treated with the glucose analogue 2-DG [41]. Studies have 

shown that the cytotoxic effect of 2-DG is heterogeneous 

among different tumor cell lines. While profound growth 

inhibition and cell death have been found in some cells, a 

marginal effect on growth and clonogenicity have also been 

reported in a few. A number of factors contribute to these 

two diversified responses, which includes the extent of 

glucose dependence and glycolysis, energy deprivation in 

the form of ATP depletion and imbalance in the oxidative 

stress (mitochondrial metabolism). Cell death, induced by 2-

DG, could be either apoptotic or necrotic depending on the 

cell type and environmental factors. The relationship be-

tween enhanced glycolysis and apoptotic cell death due to 

glucose deprivation induced by 2-DG remains to be eluci-

dated, although alteration in the redox state due to a de-

crease in the regeneration of NADH and lactate by inhibi-

tion of glycolysis has been proposed to trigger the final 

apoptotic pathway [42]. 

We saw that 2-DG was initially protective against PDT 

when applied for 1 – 12 h, presumably because 2-DG can 

acts as anti-oxidant or a quencher of redaporfin. For long 2-

DG incubation time (> 48h), there is evidence that cancer 

cells become more sensitive to PDT, however 2-DG do not 

show significant selectivity between tumor cells and fibro-

blasts in the conditions explored in this work. 

 

CONCLUSION 

The phototoxicity of photosensitizers capable of transferring 

an electron to molecular oxygen is higher towards cell lines 

with low SOD activity levels. Moreover, in this combination 

of photosensitizer-cell line it is possible to potentiate photo-

toxicity with the inhibition of Mn-SOD. This potentiation 

may improve the outcome of PDT with redaporfin and spare 

healthy tissues. 

Singlet oxygen causes oxidative stress in the whole cell and 

reacts selectively, while the hydroxyl radicals resulting from 

the chain of Type I processes have spatial specificity. Photo-

sensitizers that combine Type I and Type II processes offer 

better opportunities to potentiate their PDT efficacy, espe-

cially through the inhibition of the enzymes of the cell anti-

oxidant defense system. 

Understanding the biological differences between normal 

and cancer cells is essential for the design and development 

of drugs with selective anticancer activity. The maintenance 

of a high level of glycolytic activity is essential for tumor 

cells to survive and grow. As this metabolic disorder is often 

seen in tumor cells of various tissue origins, targeting the 

glycolytic pathway may preferentially kill malignant cells 

and, probably, have general therapeutic implications. We 

have shown that the inhibition of glycolysis can enhance 

PDT but selectivity between tumor cells and fibroblasts has 

yet to be found. In the future we want to study the inhibition 

of glycolysis in epithelial cells, perform in vivo studies and, 

possibly, consider other inhibitors of glycolysis [29] to 

maximize the impact of the therapy in cancer cells without 

damage healthy cells.  
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SUPPLEMENTARY INFORMATION 

 

   a)                                                                                        b) 

 
 

Figure 1. Molecular structure of: a)5,10,15,20 -tetrakis(2,6-difluoro-3-N-methylsulfamoylphenyl) 

bacteriochlorin (F 2BMet or redaporfin) and b) temoporfin (m-tetra(hydroxyphenyl)chlorin, mTHPC). 

 

 

a)                                                                                      b) 

                                
 
Figure 2. Molecular structure of: a) glucose and b) 2-deoxy-D-glucose (2-DG). 
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Figure 3. The inhibition of glycolysis and the preferential accumulation in cancer cells, are the basis for use 2-DG as 

an antitumor agent. Once inside the cell, the inhibitor will stop the glycolysis pathway and therefore alter the energy 

metabolism of the tumor. Adapted from Aghaee, F.; Islamian, J. P.; Baradaran, B. Journal of Breast Cancer. 15(2): 

141-147; 2012. 

 

 

Preparation of culture medium 

For 1 L of DMEM medium, 13.4 g of DMEM, 5.96 g of HEPES and 3.7 g (44.04 mmol) of 

sodium bicarbonate were added to 890 mL of milli-Q water, 100 mL of FBS, and 10 mL of PS. 

The mixture was stirred until a homogeneous solution was obtained.  Solution was filtered, 

inside the laminar hood, through a filter with a porosity of 0.2 μm. 
 

 

Measurement of the glutathione pool activity  

The glutathione pool activity were measured using commercial kit from BioVision. The lysed of 

cells were collected and tested with commercial Glutathione (GSH/GSSG/Total) Fluorometric 

Assay kit from Biovision. O-Phthalaldehyde (OPA) reacts with GSH (but not with the oxidized 

glutathione – GSSG), generating fluorescence, and GSH can be specifically quantified. Adding 

a reducing agent converts GSSG to GSH, and the total GSH+GSSG pool can be determined. To 

measure GSSG specifically, a GSH quencher is added to remove GSH, preventing reaction with 

OPA (while GSSG is unaffected). The reducing agent is then added to destroy excess quencher 

and convert GSSG to GSH, and GSSG can be specifically quantified. 

 

 

Measurement of SOD activity  

For SOD, the lysed of cells were collected and tested with commercial Superoxide Dismutase 

Assay kit from Biovision. The assay utilizes WST-1 that produces a water-soluble formazan dye 

upon reduction with superoxide anion. The rate of the reduction with a superoxide anion is 

linearly related to the xanthine oxidase (XO) activity, and is inhibited by SOD. Therefore, the 

inhibition activity of SOD can be determined by a colorimetric method (450nm). 

 

 

Measurement of absorbance 

Absorbance spectra of redaporfin and temoporfin were recorded in UV-visible Recording 

Spectrophotometer (Shimadzu). Stock solutions of redaporfin and temoporfin were prepared in 

ethanol (≈ 1 mM). The samples diluted 300 times from stock solutions were measured in quartz 

cuvettes with an optical path of 1 cm. All measurements were performed at room temperature. 

Concentration of redaporfin and temoporfin solution used for all experiments was calculated 

using Beer-Lambert Law: A = ε l c. 
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Figure 4. Absorbance normalized spectra of redaporfin and temoporfin in RPMi (black), ethanol (red) and PBS 

(blue). 



 

4 

 

 

Figure 5. Cytotoxicities in the dark of BSO. 

 

 

Figure 6. Dark toxicity of 5 µM redaporfin (incubated 20 h) with 5 mM and 10 mM 2-DG (incubated 48 h). 
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A549  Exp 1 Exp 2 Exp 3 average stdev 

redaporfin + light 41.06 46.79 43.36 43.73 2.89 

redaporfin + 300 

µM BSO  

93.26 95.01 96.23 94.83 1.49 

redaporfin + 300 

µM BSO + light 

42.17 46.06 43.78 44.00 1.96 

redaporfin + 600 

µM BSO  

87.16 87.42 89.13 87.90 1.07 

redaporfin + 600 

µM BSO + light 

30.03 34.66 32.84 32.51 2.34 

 

Table 1. Data of dark toxicity BSO and phototoxicity of redaporfin (5 µM) alone and in combination with BSO (300 

µM or 600 µM) A549 cell line. 

 

 

 

 

CT26 Exp 1 Exp 2 Exp 3 average stdev 

redaporfin + 

light 

40.57 45.20 39.72 41.83 2.95 

redaporfin + 

300 µM BSO  

90.48 88.30 92.57 90.45 2.14 

redaporfin + 

300 µM BSO 

+ light 

39.75 39.067 37.16 38.66 1.34 

redaporfin + 

600 µM BSO  

86.13 86.23 87.23 86.53 0.61 

redaporfin + 

600 µM BSO 

+ light 

36.53 34.23 36.23 35.66 1.25 

 

Table 2. Data of dark toxicity BSO and phototoxicity of redaporfin (5 µM) alone and in combination with BSO (300 

µM or 600 µM) CT26 cell line. 
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A549 GSH average desvpad GT average desvpad GSSG average desvpad 

Exp 1 1.69x102 1.89x102 2.38x101 2.36x103 2.06x103 2.70x102 1.42x103 1.34x103 0.14x103 

Exp 2 1.82x102   1.98x103   1.42x103   

Exp 3 2.15x102   1.83x103   1.17x103   

 

Table 3. Data of pool of oxidized (GSSG) and reduced (GSH) forms of glutathione and glutathione total (GT) A549 

cell line. 

 

 

 

 

CT26 GSH average desvpad GT average desvpad GSSG average desvpad 

Exp 1 1.69x102 1.44x102 2.15x101 1.74x103 1.79x103 6.10x101 9.43x102 9.66x102 1.15x102 

Exp 2 1.35x102 - - 1.86x103 - - 1.09x103   

Exp 3 1.29x102 - - 1.78x103 - - 8.64x102   

 

Table 4. Data of pool of oxidized (GSSG) and reduced (GSH) forms of glutathione and glutathione total (GT) CT26 

cell line. 

 

 

 

 

% SOD 

activity 

Exp 1 Exp 2 average stdev 

A549 10.94 10.33 10.64 0.43 

CT26 25.65 27.03 26.34 0.97 

 

Table 5. Data of SOD activity. 

 

 

 

 

 

Light 

dose 

mJ/cm2 

CT26 

temoporfin 

stdev A549 

temoporfin 

stdev CT26 

redaporfin 

stdev A549 

redaporfin 

stdev 

1 83.65 2.30 100.20 1.27 -- -- -- -- 

5 44.10 7.07 79.65 0.53 -- -- -- -- 

20 30.35 1.59 54.40 1.91 -- -- -- -- 

50 10.70 1.20 31.50 1.84 -- -- -- -- 

100 0.00 0.00 2.75 0.11 99.40 1.13 91.60 0.49 

250 -- -- -- -- 82.80 0.07 53.65 1.94 

500 -- -- -- -- 56.00 1.48 15.25 1.80 

750 -- -- -- -- 18.25 1.80 1.70 1.20 

 

Table 8. Data of phototoxicity of 0.5 µM temoporfin and 5 µM redaporfin towards A549 and CT26 cells as a 

function of the light dose at 505 nm. 
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A549 Exp 1 Exp 2 Exp 3 average stdev 

redaporfin + 3 

µM 2-ME 

85.32 88.85 89.52 87.90 0.02 

redaporfin + 

light 

46.52 42.96 44.10 44.52 0.02 

redaporfin + 3 

µM 2-ME + light 

20.02 20.98 19.06 20.02 0.10 

redaporfin + 3 

µM 2-ME + 50 

µM Asc 

86.32 84.40 - 85.36 0.01 

redaporfin + 3 

µM 2-ME + 

50µM Asc + light 

9.34 7.36 - 8.35 0.01 

redaporfin + 50 

µM asc + light 

24.36 35.28 29.01 29.55 0.05 

 

 

Table 6. Data of dark toxicity of 2-ME and phototoxicity of redaporfin (5 µM) alone and in combination with 2-ME 

(3 µM) A549 cell line. 

 

 

 

 

CT26 Exp 1 Exp 2 Exp 3 average stdev 

redaporfin + 3 

µM 2-ME 

87.62 88.94 88.46 88.34 0.10 

redaporfin + 

light 

39.75 43.05 42.32 41.70 0.02 

redaporfin + 3 

µM 2-ME + light 

46.44 46.44 45.22 46.04 0.10 

redaporfin + 3 

µM 2-ME + 50 

µM Asc 

86.64 85.67 - 86.15 0.10 

redaporfin + 3 

µM 2-ME + 50 

µM Asc + light 

53.17 54.10 - 53.63 0.10 

redaporfin + 50 

µM asc + light 

56.93 55.86 56.02 56.27 0.10 

 

 

Table 7. Data of dark toxicity of 2-ME and phototoxicity of redaporfin (5 µM) alone and in combination with 2-ME 

(3 µM) CT26 cell line. 
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 A549 stdev CT26 stdev NHI-3T3 stdev 

1 mM 78.41 7.78 99.46 5.66 94.44 0.71 

5 mM 82.90 6.36 98.08 4.95 68.20 0.71 

10 mM 86.26 3.54 85.96 4.24 63.21 0.71 

20 mM 79.46 3.54 66.56 3.06 53.95 2.12 

40 mM 67.21 7.78 46.31 4.95 51.04 4.93 

80 mM 58.33 2.12 45.09 10.61 45.73 2.12 

100 mM 50.41 1.00 37.86 1.41 40.90 2.83 

 

Table 9. Data of dark toxicity of 1 mM–100 mM 2-DG during 24 h. 

 

 A549 stdev CT26 stdev NHI-3T3 stdev 

5 µM redaporfin 5 

mM 2-DG 

64.29 0.71 46.33 4.24 74.36 4.24 

5 µM redaporfin 

10 mM 2-DG 

- - 36.46 14.85 - - 

 

Table 10. Data of dark toxicity of 5 µM redaporfin with 5 mM and 10 mM 2-DG during 48 h. 

 

 

 A549 stdev CT26 stdev NHI-3T3 stdev 

redaporfin + 500 

µM 2DG 

98.99 4.95 104.46 2.8 99.06 3.54 

redaporfin + 1 

mM 2DG 

94.05 14.14 106.20 7.78 100.79 2.83 

redaporfin + 2 

mM 2DG 

81.40 4.95 100.39 12.73 91.68 17.68 

redaporfin 103.18 3.79 109.24 3.54 104.69 4.24 

500 µM 2-DG 102.53 7.07 101.13 8.49 101.99 4.93 

1 mM 2-DG 90.46 4.51 108.79 8.49 101.64 7.55 

2 mM 2-DG 80.86 7.78 99.89 3.54 93.87 6.03 

 

Table 11. Data of dark toxicity of dark toxicity of 5 µM redaporfin with 500 µM–2 mM 2-DG during 48 h. 
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 A549 5 

mM 2-

DG 80 

mJ/cm2 

stdev CT26 10 

mM 2-

DG 130 

mJ/cm2 

stdev NHI-3T3 

5 mM 

2-DG 25 

mJ/cm2 

stdev 

redaporfin + light 51.28 6.36 38.51 14.14 79.52 10.60 

redaporfin + 2-DG 

1h + light 

64.69 4.16 48.86 7.09 88.45 4.04 

redaporfin + 2-DG 

3h + light 

72.33 5.00 68.68 2.08 90.29 1.41 

redaporfin + 2-DG 

6h + light 

47.80 3.53 91.40 8.08 101.61 4.24 

redaporfin + 2-DG 

12h + light 

65.70 3.53 57.25 3.21 91.72 4.72 

Dark toxicity 2-

DG 

95.10 6.36 85.95 6.50 68.20 0.70 

 

Table 12. Data of dark toxicity of 2-DG during 24 h and phototoxicity of redaporfin (5 µM) alone and in combination 

with 2-DG (5 and 10 mM) during 1, 3, 6 and 12 h before PDT.  

 

 

 

 

 A549 40 

mJ/cm2 

stdev CT26 

100 

mJ/cm2 

stdev NHI-3T3 

50 

mJ/cm2 

stdev 

redaporfin 63.29 1.69 46.11 2.76 34.82 0.42 

redaporfin + 500 

µM 2DG 

61.75 2.61 40.82 4.57 30.71 2.02 

redaporfin + 1 mM 

2DG 

56.31 4.81 42.04 0.71 39.86 2.04 

redaporfin + 2 mM 

2DG 

46.89 0.01 37.06 2.59 23.99 1.34 

 

Table 13. Data of phototoxicity of 5 µM redaporfin (incubated 20 h) alone and in combination with 500 µM–2 mM 

2-DG (incubated 48 h before PDT). 

 

 


