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Resumo

Os Algoritmos Evolucionários (AE) são métodos computacionais de procura estocástica inspira-
dos pelos conceitos da selecção natural e da genética. Este tipo de algoritmos tem sido usado
com sucesso para resolver problemas em dominios da aprendizagem, do design e da optimização.

Para utilizar um AE é necessário definir as suas componentes principais, como por exemplo
os operadores de variação, os operadores de selecção de pais, e os mecanismos de selecção
de sobreviventes. O desempenho de um AE pode ser altamente melhorado se cada uma destas
componentes for ajustada para o problema especifico que se pretende resolver. Normalmente
estas modificações são feitas manualmente e requerem um grau de conhecimento elevado. Para
tentar melhorar este processo, os investigadores têm vindo a propor algoritmos para automa-
ticamente criar AE. Estes novos métodos usam um (meta-) algoritmo que combina as diversas
componentes e parâmetros, de maneira a criar a estratégia que melhor se aplica ao problema
em questão. Neste contexto surge a área das Híper-Heurísticas (HH), cujo principal objectivo é
o desenvolvimento de meta-algoritmos que sejam eficientes.

A Programação Genética (PG), e em particular as variantes baseadas em representações gra-
maticais são habitualmente utilizadas como motor de pesquisa nas HH. Este trabalho prentende
estudar e analisar em que condições a eficácia dos métodos de pesquisa pode ser melhorada, no
contexto da evolução automática de AE.

As principais contribuições podem ser divididas em três aspectos. A primeira consiste na
construção de uma framework de HH baseada em Evolução Gramatical (EG). A framework está
dividida em duas fases complementares: Aprendizagem e Validação. Na aprendizagem, um mo-
tor de EG é usado para combinar as componentes de baixo nível que estão especificadas numa
Gramática Livre de Contexto. Na validação, os melhores algoritmos encontrados são aplicados
a cenários diferentes dos da aprendizagem, para analisar a sua capacidade de generalização.

A segunda contribuição está relacionada com a análise do impacto que as condições de apren-
dizagem têm na estrutura final dos algoritmos que estão a ser aprendidos e consequentemente
na sua capacidade de optimização. Além disso é feita uma análise da relação que existe entre
a qualidade dos algoritmos na fase de aprendizagem, e a qualidade dos algoritmos na fase de
validação. Em concreto, analisa-se se os melhores algoritmos da fase de aprendizagem mantêm
o seu bom desempenho na fase de validação.

Por fim, a última contribuição é uma proposta de uma nova representação para EG que
permite resolver alguns problemas relacionados com a exploração do espaço de procura.
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Abstract

Evolutionary Algorithms (EA) are stochastic computational methods loosely inspired by the prin-
ciples of natural selection and genetics. They have been successfully used to solve complex prob-
lems in the domains of learning, design and optimization.

When using an EA practitioners have to define its main components such as the variation
operators, the selection and replacement mechanisms. The performance of an EA can be greatly
enhanced if the components are tailored to the specific situation being addressed. These modifi-
cations are usually done manually and require a reasonable degree of expertise. In order to ease
the use of EAs some researchers have developed methods to automatically design this type of
algorithms. Usually, these methods rely on an (meta-) algorithm that combine components and
parameters, in order to learn the one that is most suited for the problem being addressed. The
area of Hyper-Heuristics (HH) emerges in this context focusing on the development of efficient
meta-algorithms.

Genetic Programming (GP), specifically the grammar based variants, are commonly used as
HH. In this work, we study and analyze the conditions in which Grammatical Evolution (GE) can
be enhanced to automatically design EAs.

The main contributions can be divided in three aspects. Firstly, we propose an HH framework
that relies on GE as the search algorithm. The proposed framework is divided in two comple-
mentary phases: Learning and Validation. In Learning the GE engine is used to combine low level
components that are specified in a Context Free Grammar. In the second phase, Validation, the
best algorithms learned are selected to be applied to scenarios different from the learning, in
order to evaluate their generalization capacity.

Secondly we study the impact that the learning conditions have in the final structure of the
algorithms that are being learned. Moreover, we analyze the relationship between the quality
exhibited by the algorithms during learning and their effective optimization ability when used in
unseen scenarios. In concrete we analyze if the best strategies discover in learning still have the
same good behavior in validation.

Our final contribution addresses some of the limitations exhibited by Grammatical Evolution.
The result is a novel representation with an enhanced performance.

Keywords

Automatic Design of Algorithms, Evolutionary Algorithms, Evolutionary Computation, Genetic
Programming, Grammatical Evolution, Hyper-Heuristics
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1
Introduction

”Computers are not the Thing. They

are the thing that gets us to the Thing.”

Joe, Halt and Catch Fire

Nature is a great designer and problem solver. Looking around us it is possible to see

endless forms most beautiful that resulted from years and years of constant evolution. Di-

versity and complexity are the words we use most to describe what has unfolded before

our eyes. Amazed by nature ingenious way of solving problems, man has always tried to

understand the way it works. Thanks to the natural selection theory posit by Darwin,

the discovery of the inheritance mechanisms by Mendel, and the comprehension of the

molecular basis of biological phenomena, we now understand better why we see what

we see and why we are what we are.

With the appearance of computers and the establishment of Computer Science as an

academic discipline it is natural that researchers try to imitate nature, proposing compu-

tational models that mimic those mechanisms and processes responsible for promoting

such diversity and complexity. The objectives are (at least) twofold: to understand even

better the inspirational natural counterpart systems, and to use the models as compu-

tational devices to solve complex problems. Most computer scientists are interested in

the latter aspect, that is, to develop computational models loosely inspired by the con-

cepts of natural selection and genetics to solve hard problems in the domains of learning,

design and optimization. By hard we mean those problems that either do not have an

1
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analytical solution or, even if they do, are computationally intractable. As a result of this

human endeavor a new scientific area called Evolutionary Computation (EC) was brought

to light.

Evolutionary Computation deals with the design, study and application of Evolution-

ary Algorithms (EAs), a family of stochastic search procedures that iteratively improve a

population of candidate solutions guided by an objective function. The improvement is

obtained by selecting the most promising ones (according to the objective function), and

promoting some stochastic variations using operators similar to mutations and recombi-

nations that take place in biological entities.

Since the debut of EAs in the 1960s, it triggered a series of research, looking for

new bio-inspired approaches. As a result, many alternative models were proposed and

added to the family. The main differences between them were mostly focused on the

representation used for the candidate solutions, on different mechanisms for selecting

the parents and/or the survivors, and on the variation operators used.

In the early 1990s Genetic Programming (GP), another variant of EAs, was popular-

ized by John Koza [Koza, 1992]. The aim of GP is to automatically evolve programs that

solve problems, i.e., without having to explicitly program those solutions. The solutions

are represented as tree expressions that can be executed to determine their quality. As

happened with the others variants, over the years alternative implementations were pro-

posed to GP. One remarkable example is Grammatical Evolution (GE), whose distinctive

feature is the existence of a clear separation between genotype and phenotype. Variation

operators are applied in the first level, whereas the final solution is evaluated in the phe-

notype level. This two-level architecture requires a mapping process to transform the

genotype into the phenotype. In the case of GE this transformation is based on a gram-

mar. More precisely, we start with a linear genotype that is used to guide a derivation of

the grammar from which we extract the executable expression tree.

1.1 Motivation

Evolutionary Algorithms are now mature, and have been intensively studied to better

understand their strengths and weaknesses. One of the most important results, known

as the No Free Lunch Theorem [Wolpert and Macready, 1997], states that there is not an

algorithm that, on average, performs better than any other, when all classes of problems
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are considered. This apparently negative result explains in part why EC researchers spend

so many efforts looking for good algorithms for a concrete problem. However, EAs have

many components and parameters and the task of hand-designing the best combination

of them (i.e., the one that gives the best performance) is far from trivial. It requires an

high degree of expertise and experimental fine-tuning.

Since the early days of EC, there have been proposals for self-adaptive algorithms

that are able to adjust online some of their parameters, at the same time they are try-

ing to solve a given problem. A remarkable example is the adaptation of the mutation

probability. Meta-adaptation is another perspective that is gaining relevance as a form of

offline adaptation. Concretely meta-adaptation relies on a (meta-) algorithm to explore

the space of possible strategies, thereby learning the best possible combination of com-

ponentes and parameters for a specific problem. This search process is akin to supervised

learning: the meta-algorithm creates/learns an algorithmic strategy, which is then applied

to an instance (or instances) of a problem. Meta-adaptation has attracted the attention

of many researchers, specially in the form of Hyper-Heuristics (HH).

Hyper-Heuristics is an emergent area of research and one key issue is the choice of

the meta-algorithms. In this disseration we advocate, as others researchers did, that EAs

are a natural choice to search the space of EAs [Oltean and Groşan, 2003, Tavares and

Pereira, 2012,Dioşan and Oltean, 2009,Poli et al., 2005b]. Our major goal in this work is

to show that, under certain conditions, Grammatical Evolution is a suitable meta-heuristic

to automate the design of complete EAs.

1.2 Contributions

This dissertation proposes novel contributions to the area of Hyper-Heuristics. More

specifically: (1) it specifies and implements a framework to create and validate bio-

inspired algorithms; (2) it analizes the impact of the learning conditions on the evolved

strategies; (3) it proposes an enhancement to the meta-algorithm itself, by devising a new

representation for the GE algorithm to address some of its known limitations.
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1.2.1 Framework

The first contribution corresponds to the development of a framework to automatically

design bio-inspired algorithms. We propose an architecture divided in two phases: Learn-

ing and Validation. In Learning a search methodology seeks for promising problem solving

techniques. In this work we rely on GE since it can automatically evolve variable length

algorithmic strategies (e.g., computer programs), and is thereby an appropriate search

method to handle the components used to create novel optimization strategies. In the

second phase, Validation, the evolved algorithmic strategies are applied to unseen sce-

narios to analyze their solving capabilities. We conducted a study to see whether the

framework was able to evolve algorithms to tackle a specific problem. [Lourenço et al.,

2012]

1.2.2 The Influence of the Learning Conditions

The second contribution addresses the conditions in which learning occurs. We rely

on the framework previously proposed to empirically analyze how the learning condi-

tions impact the structure of the evolved algorithms. Based on the insights obtained

with these experiments we provide some guidelines to aid in the construction of better

HH [Lourenço et al., 2013, Lourenço et al., 2014].

To keep the computational burden within a reasonable level, the evaluation of the

strategies being learned relies on simplified fitness criteria. However, it is not clear if

the limited evaluation step compromises the identification of the best algorithmic strate-

gies. We analyse if there is any correlation between the quality exhibited by strategies

during learning and their effective optimization ability when applied to unseen scenar-

ios [Lourenço et al., 2015b].

1.2.3 Improving Grammatical Evolution

The last contribution is related to the improvement of the GE search engine itself. GE

has some known issues related with locality and redundancy. We propose an alternative

representation, called Structured Grammatical Evolution (SGE), where we address these

issues. Specifically we analyze its effectiveness in a set of benchmark problems. Moreover,

an analysis of SGE properties (locality and redundancy) is conducted to understand why
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it has a good perfomance [Lourenço et al., 2015a].

1.3 Roadmap

The remainder of this document is organized as follows. In Chapter 2 we describe the

background concepts necessary to better understand our work. Additionally we present

the state of the art in automatic design of algorithms. In Chapter 3 we detail and validate

the GE based Hyper-Heuristic that is at the center of this work. In Chapter 4 we analyse

the impact that the learning conditions have in learning. In Chapter 5 we investigate if the

fitness criteria used in learning provide enough information to identify the most effective

and robust strategies. In Chapter 6 we address some of the GE’s limitations, and propose

a new genotypic representation. Finally Chapter 7 presents our main conclusions and

future work.





2
Background

This Chapter presents some background concepts, required for the research described

in the following chapters of this dissertation. It starts by presenting the main concepts of

Evolutionary Algorithms (EAs) in Section (2.1). Then Section 2.2 reviews recent research

related with the problem of automatic design of algorithms.

2.1 Evolutionary Algorithms

This Section introduces the core concepts of Evolutionary Algorithms (EAs). It does

not aim to exhaustively enumerate all the available approaches. Rather we focus our

attention on its main components and how they work. For a more in-depth review of

all EA variants the reader may refer to [Eiben and Smith, 2003, Floreano and Mattiussi,

2008].

Historically there are several variants of EA. These include Evolution Strategies (ES)

[Beyer and Schwefel, 2002], Evolutionary Programming (EP) [Fogel et al., 1966], Genetic

Algorithms (GA) [Holland, 1975] and Genetic Programming(GP) [Koza, 1992]. How-

ever, they share the same common underlying idea: the simulation of evolution by natu-

ral selection (proposed by Darwin) of a population of artificial individuals via application

of selection, variation operators, and reproduction. These components are guided by a

fitness function that evaluates each individual, measuring the quality of the solution it rep-

resents. The application of these components is repeated for several iterations, and over

time it is expected that the overall quality of the individuals in the population improves.

7
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Figure 2.1: Evolutionary Algorithm

The process stops when a predetermined termination criterion is met (e.g., when a max-

imum number of iterations is achieved). Each artificial individual in EAs encodes a single

candidate solution to a problem under consideration. The general structure of a simple

EA is depicted in Fig. 2.1.

Despite these simple processing rules, EAs are robust problem solving methods able

to quickly identify good quality solutions in hard problems. In the last years they have

been applied with success in many fields of research, from engineering to machine learn-

ing. Amongst the examples of such applications are software optimization [Langdon and

Harman, 2013], antenna design [Lohn et al., 2005], predictive modeling [Archetti et al.,

2007], and algorithm design [de Sá and Pappa, 2013], [Tavares and Pereira, 2012], [Burke

et al., 2010b].

2.1.1 Components

This section details the main components of EAs. The most important components are:

• Representation

• Evaluation

• Parent Selection

• Variation Operators
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• Survivor Selection

Alongside with these components, one has also to define a set of numeric parameters.

These parameters will be further detailed below.

Representation

While using an EA it is necessary to define how the solutions to the problem under con-

sideration should be codified. There are several possible representations in the literature,

such as: binary strings, real numbers, permutations, graphs, and trees.

Evaluation

Evaluation relies on a fitness function to estimate how good a solution is. This function

usually is a mathematical expression and it plays a critical role in the evolution process, as

it allows the comparison between problem solutions.

Parent Selection

Each individual in the population may be selected, probabilistically, to participate in the

breeding of a new population.

There are various different parent selections methods that can be used, such as

fitness-proportional selection, ranked-based selection or tournament-based selection. In

fitness proportional selection the individuals are selected based on their relative fitness. In

rank selection the individuals are selected with a probability in proportion to their ordinal

ranking by fitness.

In the tournament selection, a number of individuals TS is randomly selected from

the population. After they are compared with each other, and the best one is selected.

Usually, this process is repeated N times, were N is the population size. The advantage

of using tournament is that we can tune the selective pressure by changing the number

of individuals that compete with each other in the tournament. Less individuals in the

tournament implies a low selective pressure, whilst a large number of individuals results

in a large selective pressure. Although fitness and rank based selection are commonly

used, currently tournament is the most popular and most used form of selection.
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Variation Operators

The role of these operators is to create new individuals (the offspring) using the parents.

These operators are usually divided in two types: 1) recombination, and 2) mutation.

Recombination operators create variation in the population by taking two, or more

individuals, as input, and rearrange their information to create new solutions. Mutation

takes one individual as input and slightly modifies it.

Both of these operators are used in a stochastic manner.

Survivor Selection

Usually, the number of individuals in an EA is kept fixed. The survivor selection mecha-

nism determine the solutions that proceed to the next iteration of the EA. Generational

is the simplest survivor selection strategy. In this method the newly produced offspring

replace the entire old population of individuals. However, using this strategy good in-

dividuals discovered at a certain generation might be lost, preventing them from further

reproduction. The elitism strategy avoids this, by ensuring that the best individuals are

preserved.

Alternative survivor selection strategies allow the offspring to compete with their

parents for a place in the population of the next generation. The decision about which

individual should survive can be based on several criteria (e.g., age, fitness values, diversity

measures).

2.1.2 Parameters

When building an EA, one has to define a set of numeric parameters. These parameters

impact the EA’s behavior. Commonly used parameters are:

• Population size (N) - Represents the number of solutions in the EA;

• Number of Generations - Represents the duration of the evolutionary process

(evaluation, reproduction, and survivor selection);

• Variation Operators Rate - Defines how often the variation operators will be ap-

plied. Usually recombination operators have an high probability of being used,

whilst mutation has a small probability;
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• Tournament Size (TS) - Defines the number of individuals that are selected to par-

ticipate in tournament selection. Note that as the tournament size grows, the

selective pressure (i.e., the probability of selecting the best individual) also grows.

2.1.3 Genetic Programming

Genetic Programming (GP) is an EA where each individual is an algorithmic strategy, i.e.,

a computer program [Koza, 1992], [Banzhaf et al., 1998], [Poli et al., 2008]. GP is a

technique for getting computers to solve problems automatically.

The most common way to represent programs in GP are syntax-trees, where each

node represents a component of the program. However, there are other forms to repre-

sent programs in GP. Linear GP [Brameier and Banzhaf, 2007], Cartesian GP [Miller and

Thomson, 2000] and grammar-based GP [Whigham, 1995], [O’Neill and Ryan, 2003]

are remarkable examples of alternative representations for GP. In concrete, the repre-

sentations based on grammars are quite relevant for this dissertation.

The primitive set defines the components that can appear in a GP program. In turn

the primitive set can be divided in two non-overlapping sets: Terminals (T) and Functions

(F). The F set includes a number of functions with arity greater than 0, whereas the T set

contains 0-arity functions, constants and the program’s external inputs1. An example of

a Terminal set is T = {1, x, 0}, where 0 and 1 are two arbitrary constants, and x is the

input variable.

The function set is typically driven by the nature of the problem domain. For example

in the domain of numeric problems, the function set may be composed by the 4 arithmetic

functions: F = {∗,+,−, /}. Fig. 2.2 shows an example of a GP program built with the

described primitive set.

In order to understand how GP works, the next section shows a toy example.

An Example

Symbolic regression is perhaps the most well-known benchmark problems for GP. The

goal is to approximate a function given a set of known target points (Fig. 2.3).

Firstly we need to decide which are the T and F sets. Since our goal is to evolve a

polynomial with one variable, x, the terminal set must include it. We also define a set of

1They typically have the form of named variables such as x or y.
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1 x 1 0

Figure 2.2: Example of Genetic Programming program.

arbitrary constants that can be used: 1, 0. Since we are dealing with a numeric problem,

it is impossible to define the entire set of constants that exist. Hence, we provide a small

set of constantes that can create the others that are missing. For example, the expression
1

1+1 represents the 0.5 constant. In the end T is defined as:

T = {x, 0, 1} (2.1)

Since no restrictions are given about which functions should be used to evolve the

program, the function set is composed by the four arithmetic operations: addition (+),

subtraction (-), multiplication (*) and division (/). Note that the division employed here

is protected, that is, if the denominator is 0, it returns the value 1. Hence, F is defined as:

F = {+,−, ∗, /} (2.2)

The next step is to define a fitness measure that assigns quality to each individual. In

this type of problems the most commonly measure used is the sum of the absolute error

between the output of an individual and the desired output:

Error =
n∑

i=1

|g(xi)− f(xi)| (2.3)

where, n is the number of output cases, g(xi) is the output of the individual for the input

xi, and f(xi) is the known value for the input xi.

Now that we have defined the function and terminals sets, and how to evaluate indi-
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Figure 2.3: Target function. The table on the right shows the known points, and the plot
(on the left) shows a visual representation of the same points.
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viduals we can start the GP run. For the sake of simplicity, a population of 6 individuals

will be considered.

Initialization

The first step in a typical GP run is to create the population of possible solutions. There

are three main methods to build an initial population: full, grow, and ramped-half-and-half.

These methods generate individuals that do not exceed an user specified maximum depth.

The depth of a tree is the number of edges that need to be transversed to reach a leaf,

starting from the tree root. The tree root is assumed to be at depth 0.

The grow initialization select nodes from the whole primitive set (i.e., F ∪ T) until a

certain tree depth is reached. Once the depth limit is reached only terminals may be

chosen.

In the full initialization, only nodes from the F set are selected, until a certain tree

depth is reached. At the tree limit, only terminals may be chosen, just as in the grow

method.

The ramped-half-and-half method is a combination of the two methods described

above, in which half of the population is created by grow, and the other half is created

by the full method. This is done for each depth level (from minimum to maximum), to

ensure that trees of different sizes are generated.

Assuming that we define a maximum tree depth of 2, the six individuals that compose

our population were randomly created using the ramped-half-and-half and are present in

Fig. 2.4.

Evaluation

Each individual in the population is evaluated to measure its quality. Randomly created

individuals, such as the ones from Fig. 2.4, typically have very poor fitness values. To

calculate the fitness of an individual we use the Eq. 2.3. Table 2.1 shows how to compute

the error of the individual depicted in Fig. 2.4a).

Parent Selection

The next step corresponds to the probabilistic selection of the individuals, based on their

fitness. Better individuals should have higher chances of being selected to produce new
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Figure 2.4: GP initial population of six randomly generated individuals.
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Table 2.1: Example of how to evaluate the individual represent in Fig. 2.4a)

x f(x) g(x) |g(x)-f(x)|
0 0 1.0 1.0

0.1 0.11 0.9 0.79
0.2 0.24 0.8 0.56
0.3 0.39 0.7 0.31
0.4 0.56 0.6 0.04
0.5 0.75 0.5 0.25
0.6 0.96 0.4 0.56
0.7 1.19 0.3 0.89
0.8 1.44 0.2 1.24
0.9 1.71 0.1 1.61
1 2 0 2.0
Error (Eq. 2.3) 9.25

Table 2.2: Example of the application of the tournament selection with size 2

Tournament Individual 1 Tournament Individual 2 Winner
1 + (1 * x) 1 - x 1 + (1 * x)

1 + 1 x / 1 x / 1
(1 - x) * (1 + 0) 1 + 1 (1 - x) * (1 + 0)

1 - x x / 1 1 + (1 * x)
(1 - x) * (1 + 0) x / 1 x / 1

1 + (1 * x) 1 + 1 1 + (1 * x)

solutions. In this example we will rely on the tournament selection mechanism, with

TS = 2. However other methods can be used. Table 2.2 shows the application of the

tournament selection. The first two columns of the table represent the individuals that

were randomly selected from the population. The last column (Winner) represents the

individual that won the tournament.

Variation operators: Recombination and Mutation

Using the set of parents, the next step is the creation of new individuals via the variation

operators.

Recombination is usually a binary operator, that receives two parents, and combine

their trees to generate a two new individuals. In the standard recombination operator one
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Figure 2.5: Example of the crossover application. The arrow in each parent indicates the
crossover points, i.e., the root of the trees that will be exchanged.

subtree is randomly selected in each parent. If the subtrees are syntactically equivalent,

they are swapped. Fig. 2.5 shows a possible example of the application of crossover.

Mutation is an unary operator, that receives one individual, and modifies it by ran-

domly selecting a subtree and replacing it by a newly random generated tree within the

initial depth limits. Fig. 2.6 shows an example of how mutation works.

Termination

The evolutionary process ends when a predefined number of generations is achieved..

When this happens, the best-so-far individual is returned as the result of the GP execu-

tion.

2.1.4 Grammatical Evolution

In recent years Grammar-Based Genetic Programming (GBGP) has been used to aid the

automatic design of algorithms [Pappa and Freitas, 2009], [Burke et al., 2012], [Marshall
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Figure 2.6: Example of the subtree mutation application. The arrow in the parent indi-
cates the place were mutation will happen, i.e., which subtree will be replaced.

et al., 2014]. One remarkable example of GBGP is Grammatical Evolution. Other vari-

ants of GBGP exist and an in-depth review is presented in [McKay et al., 2010].

Grammatical Evolution (GE) was first proposed by Ryan et al. [Ryan et al., 1998].

As with standard GP, the goal of GE is to evolve executable algorithmic strategies. GE

is different from other non grammar-based GP variants, for there is a clear separation

between the genotype and the phenotype. The former is a linear sequence of integers,

each one called a codon2. The phenotype is the final executable program, usually in the

form of a tree expression, constructed using a grammar. The use of a grammar allow

us to construct programs in any language. For instance, GE has been used to generate

programs in Java, C, or Python.

Given the two distinct levels a mapping process is necessary to translate a genotype

into a final program. The mapping relies on the productions rules of a context-free gram-

mar (CFG). A CFG is a tuple G = (N, T, S, P), whereN is a non-empty set of non-terminal

symbols, T is a non-empty set of terminal symbols, S is an element of N called axiom, and

P is a set of production rules of the form A ::= α, with A ∈ N and α ∈ (N ∪ T)∗. N

and T are disjoint. We say that W ∈ (N ∪ T)∗ derives Z ∈ (N ∪ T)∗, i.e. W ⇒ Z, if and

only if W = uxv, Z = uyv and there is a production in the grammar of the form x ::= y.

The⇒ is a relation over the set of α ∈ (N ∪ T)∗. Its reflexive and transitive closure is

denoted by S ∗⇒. Each grammar G defines a language L(G), i.e., the set of all sequences

2The original proposal considered a binary sequence. The binary sequence would then be converted
to an integer one, where each group of 8 bits corresponded to a codon. Nowadays the binary sequence
is optional.
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of terminal symbols that can be derived from the axiom, also called words, denoted by

L(G) = {w :
∗⇒ w, w ∈ T∗}.

The translation of the genotype into the phenotype is done by simulating a leftmost

derivation from the axiom of the grammar guided by the genotype. The genotype is

scanned from left to right and each codon is used to determine the production rule that

should be selected to expand the leftmost non-terminal symbol of the current partial

derivation tree. Suppose that we have a genotype (8, 15, 33, 10, 27, 6) and the following

production rule:

< expr >::= < expr >< op >< expr > (0)

|(< expr >) (1)

| < pre− op > (< expr >) (2)

| < var > (3)

< op >::=+ (0)

|− (1)

< var >::=x (0)

|y (1)

and we want to rewrite the symbol < expr >.

To determine which alternative will be used, we take the first codon and divide it by

the number of options for < expr >. The remainder of that operation identifies the

selected option. In our example, 8%4 = 0 and the symbol is rewritten as < expr ><

op >< expr >. Then the second integer is read, and the same method is used for the

leftmost non-terminal of the derivation. In Fig. 2.7 we show the complete derivation

process. Sometimes the length of the genotype is insufficient to complete the translation

process. If this happens, the sequence is repeatedly reused in a process known as wrap-

ping. When a pre-determined maximum number of wrappings is exceeded, the process

stops and the worst possible fitness is assigned to that solution. For a detailed description

of the process, consult [O’Neill and Ryan, 2003].
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00001000 00001111 00100001 00001010 00011011 00000110

8 15 33 10 27 6

<expr>::= <expr> <op> <expr> (0) 

| (<expr> <op> <expr>) (1) 

            | <pre-op>(<expr>)                                        (2)

| <var>             (3)

<op> ::= + (0)

| * (1)

<var> ::= x (0)

| y (1)

Grammar

<exp>

<expr> <op> <expr>

<var> <op> <expr>

y <op> <expr>

8 % 4 = 0

15 % 4 = 3

33 % 2 = 1

y + <expr>

10 % 2 = 0

y + <var>

27 % 4 = 3

y + x

6 % 2 = 0

Derivation sequence 
(expansion by the left most non-

terminal)

Optional

Figure 2.7: Adapted from [McKay et al., 2010]: An illustration of the Grammatical Evo-
lution mapping from a binary chromosome. The integer values are used in the mapping
function to decide which production rule from the grammar to apply to the current non-
terminal symbol. This results in the generation of a derivation sequence.
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2.2 Automatic Design of Algorithms

When using Evolutionary Algorithms (EAs) practitioners are faced with several challenges

about their design. These challenges include decisions about devising the most adequate

representation for solutions, finding the set of variation operators, choosing the selection

mechanisms, or defining the numeric parameters for each of the algorithm components.

One possible approach is to use a trial-and-error tuning, where practitioners experiment

several combinations of the components before adopting the one that achieves reason-

able good results. Although this might seem a reasonable way of configuring an EA, there

are no clear design rules. Every time that one needs to use an EA in a new problem, the

whole process of decision/selection has to be done again. Moreover the trial-and-error

approach can prevent the reproducibility of results, since most of the times the choice of

the components is not properly explained and justified.

The necessity of removing this trial-and-error process from the human side, and the

necessity of creating more systematic methods of configuring EAs, motivated a growing

interest in the automatic design of algorithms. The aim of the automatic design of al-

gorithms is to delegate the task of searching for the best configuration to the algorithm

itself, or to other algorithms that could select and combine the components in the way

that seemed most beneficial. When the algorithm performs the modifications itself (i.e.,

changes its configuration) while running, it is said to have online adaptation. Evolution

Strategies (ES) were the first EA dialect to introduce the concept of online adaptation. ES

were equipped with mechanisms to modify the rate of the variation operators while solv-

ing a problem. Inspired by the concepts behind ES, researchers started to modify other

EAs to include adaptation mechanisms, in order to improve the algorithm’s performance

(Section 2.2.1).

Offline adaptation happens if the search for the best configurations is performed before

the algorithm execution. Meta-adaptation is an example of offline adaptation. In meta-

adaptation two algorithms are used: one for problem solving, and another one (the meta-

algorithm) to build a configuration for the first one, i.e., for the problem solver. The

configurations of the first algorithm are built by selecting and combining various low level

components.

The development of meta-adaptive frameworks has attracted the attention of many

researchers in recent years, specially in the form of Hyper-Heuristics (HH) (Section
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2.2.2). We focus our attention on meta-evolutionary algorithms, i.e., on approaches

that use EAs to search for the best configurations. Nevertheless there are alternatives

that rely on other algorithmic configurations methods like [Shan et al., 2006, Marmion

et al., 2013]. The iterated racing techniques proposed by [López-Ibánez et al., 2011]

have shown good results while configuring different types of algorithms.

2.2.1 Online Adaptation

Evolution Strategies (ES) were one of the first EAs to introduce the concept of online

adaptation (or self-adaptation). The mechanism of adaptation proposed consisted on

counting the successful and unsuccessful mutations for a certain number of generations. A

mutation is said to be successful if the fitness of the individual improves. If more than 1/5th

of the mutations are successful, then the mutation amplitude should be increased. Else, if

less than 1/5th of the mutations are successful, the mutation amplitude should decrease.

Finally, if exactly 1/5th of the mutations are successful, then mutation amplitude is kept

unchanged. Later Schwefel [Schwefel, 1981, Schwefel, 1993] introduced an improved

self-adaptation mechanism for changing the ES’s parameters. This method is based on

the adaptation of the covariance matrix of a normal distribution.

Following the same ideas behind ES, [Davis, 1989] applied them in the context of

a steady-state EA with two operators: recombination and mutation. In this work each

operator has a certain fitness, which is modulated by a function that makes a relation

between the total number of individuals created and the ones that are highly fit (i.e., are

promising solutions). This function works on generation windows, meaning that its value

is updated every certain number of generations. The update is based on the following:

an operator sees its fitness increased by either creating highly fit individuals, or by setting

the conditions for the appearance of such individuals. In his experiments, recombination

and mutation started with the same initial fitness. At each iteration of the algorithm,

an operator is selected using a probability that is based on the operator’s fitness. The

individual that was created by the application of the operator goes into the population

and replaces a low fitness individual. Each individual keeps a record of which operator

created it. If the new created individual is an improvement over the parent(s) used to

create it, the operator receives a credit for the creation of the individual. The credit

function is cumulative in such a way that it goes back to parents, grandparents, and so
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on back to a predefined level of ancestors. These dynamic adjustments of the operator

fitness are used to select the operators based on their usefulness for the evolution stage:

if the population is too similar the selection rate of mutation should be increased. On

the other hand, if the population is very diverse, the selection rate of mutation should

be decreased. The proposed work showed that the described method improved the

performance of the EA on some problems that were used as benchmarks.

[Spears, 1995] presented another EA with online adaptation, which evolved the type

of recombination operator that should be used. In this work each individual in the popula-

tion had an extra bit. This bit is then used to choose between two types of recombination

operators: 0 indicated that the recombination operator should be a uniform-crossover;

and 1 indicated that the recombination operator should be a two-point crossover. Hence

when two individuals were selected for reproduction, the algorithm examined the last

bit. If the two bits were 0’s, uniform-crossover is used. If the two bits were 1’s, then

two-point crossover is used. Finally, if the two bits were different one of the two recom-

bination operators was randomly chosen. The approach was tested on a set of problems,

and it appeared to obtain good performance results. However the author claims that the

performance improvements do not come from the method itself, but rather from the

fact the there were two recombination mechanisms at the EA’s disposal. Moreover he

says that the test problems used in the study could not benefit from the fact of having

self-adaptive mechanisms.

[Angeline, 1996] studied two new self-adaptive crossover operators for Genetic Pro-

gramming (GP) inspired by the self-adaptive mechanisms existing in ES. The first crossover

is Selective Self-Adaptive Crossover (SSAC), and adapts values that determine where a

crossover will occur in an individual. The second crossover, Self-Adaptive Multi-Crossover

(SAMC) adapts how crossovers are applied to the individuals. Both of the self-adaptive

crossovers were applied to three benchmark problems and compared to the standard

GP crossover, and the experiments showed that the self-adaptive methods performed

consistently as good or better than the standard one. Next [Edmonds, 2001] proposed

a method that allows the adaptation of GP operators along with the candidate solutions

to the problem being tackled. The operators are encoded using a tree representation,

and can perform the following operations:

1. Return the left side tree of random node;
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2. Return the right side tree of random node;

3. Return the root node of the left side tree;

4. Cut the tree that passes in a certain node.

Each operator receives two parent trees as arguments alongside with the points were

the crossover will occur. The operators’s population has its own fitness function, which

reflects the improvement that the usage of that operator brings to the population. The

approach is applied to the even-parity bit problem. The results achieved showed that

this approach was more effective than standard GP. However the author claims that the

technique tends to be sensitive to biases in the functions/rules that are used to build the

operators, which makes the approach brittle.

PushGP, is a programming language that supports auto constructive evolution [Spector

and Robinson, 2002]. Auto constructive evolution is a self-adaptive mechanism that al-

lows programs to construct their variation operators, their offspring, and ultimately their

evolutionary process. This means that each evolved program will contain code that is re-

sponsible for reproduction and diversification. PushGP was used in symbolic regression

problems, showing promising results.

More recently, [Kramer and Koch, 2007] proposed an EA that self-adapted its own

variation operators. In this work, the recombination operator has its parameters (e.g.

crossover points) inside the population’s solutions. This allows them to evolve together.

In [Kruisselbrink et al., 2011] the authors explored the self-adaptation mechanisms in EA

that were applied to problems that could be represented using a binary encoding.

2.2.2 Meta-Adaptation

This section reviews some of the approaches that use EA as meta-adaptation algorithms.

The first part corresponds to the approaches that adapt the components of a traditional

EA. The second part focuses on the approaches that adapt the components of Swarm

Intelligence algorithms [Eberhart et al., 2001]. The last part presents other approaches

that used EA as meta search strategies to construct novel problem solving techniques.
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Evolutionary Algorithms

In [Grefenstette, 1986], Grefenstette proposes a meta-EA to optimize the parameters

of another EA that is being used to solve a particular problem. The proposed meta-EA

is limited to a subclass of EA, which is characterized by the following 6 parameters:

• Population size (N)

• Crossover Rate (C)

• Mutation Rate (M)

• Generation Gap (G)

• Scaling Window (W)

• Survivor Selection Strategy (S)

The Scaling Window (W) is the minimum value that the fitness function can assume, which

is then used to perform some fitness scaling operations. The approach defines a set of

discrete intervals for each one of the parameters. The Generation Gap (G) represents

the percentage of individuals that are replaced in each generation.

The proposed method takes into account two types of performance: the online per-

formance (averaged of all tested structures over the course of the search), and the offline

performance (averaged of all tested structures using a simulation model). Two experi-

ments were made: one to assess the online performance and another to assess the offline

performance. These experiments resulted in two algorithms, that were compared, in a

set of test functions and in a real problem, with a standard EA with the following pa-

rameters: (N=50, C=0.6, M=0.001, G=1.0, W=7, S=E), where E represents an elitist

strategy. In both cases the optimized algorithms achieved a better performance than the

standard EA. Nevertheless, the author recognizes that the method has some drawbacks,

such as the fact it is necessary to choose a particular parameterized subclass of EA’s to

explore. Other components are neglected, such as the replacement strategy. Similar ap-

proaches were later proposed in [Bäck, 1994,Eiben et al., 1999, Smith and Eiben, 2009].

[Oltean and Groşan, 2003] propose an EA that is able to evolve an EA. The ap-

proach works at two levels: the first (the meta-level) consists of a steady-state EA with a
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fixed population size, fixed operator probabilities, fixed selection and replacement mech-

anisms. The second level consists in the solutions encoded in the chromosome of the

meta-EA. As such the operators’ probabilities can vary, as well as the population size,

replacement and selection mechanisms. The EA used in the meta-level is based on the

Multi Expression Programming (MEP) model [Oltean, 2002]. The MEP model uses a

fixed-encoding for the chromosomes. Each chromosome is composed by a set of genes,

where each gene can encode a terminal (from the set T of terminal symbols ) or a function

(from the set F of functions). When a gene encodes a function, it has pointers towards

its arguments. Thus, the first element in the chromosome must be a terminal symbol in

order to obtain syntactic valid programs. Alg. 1 presents an example of a MEP chromo-

some. In this example consider T = {a, b, c, d} and F = {+,−, ∗, /}. The numbers on

the left positions are labels/pointers, which are used as the function arguments.

Algorithm 1 Example of a MEP chromosome [Oltean, 2002]

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 2, 6

The chromosome translation is performed in a top-down manner, starting in the first

gene. The genes that correspond to terminal symbols are translated into simple expres-

sion, whilst the genes with functions correspond to more complex expressions. For in-

stance the number 7 gene is translated into the expression b ∗ (c+ d).

In order to evolve full-featured EA the authors had to define the primitive set. The

mechanisms that typically appear on EA:

• Initialize - Unary operator that generates a random solution;

• Select - Binary operator that selects one from two solutions;

• Crossover - Binary operator that recombines two solutions;

• Mutation - Unary operator that changes a solution.
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Taking these operators into account the only operator that is not dependent on already

existing solutions is the Initialize operator. Therefore it belongs to the terminal set T =

{Initialize}. All the others belong to the function set F = {Select, Crossover,Mutation}.
These sets are then used to build MEP chromosomes, which correspond to an EA (Alg.

2).

Algorithm 2 Example of an evolved EA using MEP [Oltean, 2002]

1: Initialize
2: Initialize
3: Mutate 1
4: Select 1, 3
5: Mutate 4
6: Crossover 2,5

In the evolution process, the meta-EA has to know the quality of each EA that is

encoded in the chromosomes. Therefore, each EA encoded in the meta-EA is executed

in a particular problem. The quality of the best solution found by the evolved EA is

returned as feedback to the meta-EA.

The proposed approach was tested in a function optimization scenario and the results

showed that the approach is effective. Nevertheless there are no comparisons with an

EA specially implemented for the problem, and the proposed approach only allows the

evolution of non-generational EA. This approach was further explored in [Oltean, 2007].

They compared the results of the evolved algorithms with a standard EA specially de-

signed for the problems being solved, and obtained equivalent results. In [Oltean, 2005],

the author extended the previous work in order to evolve a generational EA.

As before the approach works at two levels. The meta-EA is based on Linear Genetic

Programming (LGP). LGP uses a representation where programs are written in an imper-

ative language, like C, instead of tree-based GP expressions of a functional programming

language, like LISP. An individual in LGP is represented as a variable-length sequence of

C language instructions. These instructions operate on one or two variables, called regis-

ters, or in constants, from a predefined set. The result is stored in a third register, called

destination register. The inputs to a certain chromosome are given using the registers’

initialization. Alg. 3 (adapted from [Brameier and Banzhaf, 2001]) shows an example of

a LGP chromosome.
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Algorithm 3 LGP Example

r[0] = r[1] + 95
r[5] = r[3]− 10
r[2] = r[4] + r[5]
r[7] = r[6] ∗ r[2]
r[0] = r[1] + 9

To evolve an EA the meta-EA will apply a function, from the set of functions, to one

or two registers, and the result will be stored in a third register. The set of functions is

composed by three types of genetic operators that commonly appear in EA. Since the

objective of the work was to evolve a generational EA, each individual of the meta-EA has

a loop. Furthermore a mechanism to randomly initialize the population was also added to

each individual. Taking into account all of these considerations an example of an evolved

EA by the meta-EA using LGP is presented in Alg. 4.

Algorithm 4 EA evolved using LGP [Oltean, 2005]

Randomly_initialize_the_population();
for k = 1→ MaxGenerations do

Pop[0] = Mutate(Pop[5]);
Pop[7] = Select(Pop[3], Pop[6]);
Pop[4] = Mutate(Pop[2]);
Pop[2] = Crossover(Pop[0], Pop[2]);
Pop[6] = Mutate(Pop[1]);
Pop[2] = Select(Pop[4], Pop[3]);
Pop[1] = Mutate(Pop[6]);
Pop[3] = Crossover(Pop[5], Pop[1]);

end for

The assessment of the individual’s quality is similar to the previous approach. When

performing the experiments, the author used a training set and a test set. The former

corresponds to the problem instances that the meta-EA uses to evolve the algorithms.

The latter corresponds to the problem instances that are used to measure the algo-

rithm’s generalization ability. The experiments were conducted in three different sce-

narios: 1) Function optimization, 2) Traveling Salesman Problem, and 3) Quadratic As-

signment Problem. In each scenario a comparison with a standard EA was made. The

results showed that for every scenario the meta-EA was able to evolve EAs that per-
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formed similarly to the one used for comparison.

[Dioşan and Oltean, 2009] presented a new meta-EA to evolve EAs. The approach

is similar to the previous ones, and it was applied to function optimization benchmarks,

confirming the results previously obtained in [Oltean, 2002,Oltean, 2005,Oltean, 2007].

[Tavares et al., 2004] proposed the evolution of genotype-phenotype mapping func-

tions. In their work the authors propose a GP algorithm that evolves a population of

mapping functions, which are then used by an EA to solve a function optimization prob-

lem. Experimental results showed that the GP algorithm is able to find mapping functions

that can obtain results as good as the ones that are designed by hand.

In [Woodward and Swan, 2011], the authors propose a framework to evolve selec-

tion mechanisms to EAs using Register Machines (RM). RM are a computational repre-

sentation that consists of a list of instructions and a list of registers which act as memory

and are updated according to the program’s instructions. The results obtained showed

that there is a margin to increase the performance of the commonly used selection mech-

anism, since the framework was able to evolve strategies that outperform the standard

fitness proportional and rank selection. This work was later extended in [Woodward

and Swan, 2012] to automatically design mutation operators for EAs. They rely again on

RM to represent the list of instructions that compose the mutation operator. The results

confirm the viability of the approach, as the evolved mutation strategies were able to sta-

tistically outperform the human-design approaches. In spite of the good results obtained,

the use of RM as representation might be seen as a drawback. The programs created are

a black-box, and it is very difficult to look at the strategies and understand the way they

work.

[Smit and Eiben, 2010] introduced REVAC, which is a meta-EA to tune the param-

eters of another EA. In concrete they selected an EA that won the CEC-2005 Special

Session on Real-Parameter Optimization, and tried to improve its performance. The re-

sults obtained showed that the REVAC was able to improve the results of the EA. The

results obtained in the article reflect why automatic design of algorithms is important. By

selecting an EA that had won a competition, which must have been carefully tuned and

designed to achieve the best results possible, the room for further improvements were

small. However they were able to find a set of parameters that increased the EA’s per-

formance. Now, if we consider EAs that are being developed by practitioners that have

not been pushed to their limits, the margins for improvements are much bigger.
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[Martin and Tauritz, 2013] proposes a framework based on GP to evolve Black-Box

algorithms. In their work the GP is used to evolve parse trees that represent a single

iteration of an algorithm. The parse tree is composed by a set of operators commonly

used in EAs with a binary representation. They use a simple problem to validate the

approach, and show that the evolved algorithms can outperform hand-design approaches.

However, as the authors acknowledge, the evolved approaches have the tendency to

become overspecialized, i.e., they only perform well on the instances where they were

learned.

Swarm Intelligence

[Poli et al., 2005a, Poli et al., 2005b] developed a meta-EA based on GP that is able to

automatically create new Particle Swarm Optimization (PSO) algorithms for a certain set

of problems. The main objective of this work was to categorize PSO, and explore ex-

tensions to the traditional PSO. The meta-EA uses a set of simple elements considered

essential to create a PSO algorithm. To determine the quality of the PSO that is being

evolved, the authors selected two benchmark problems related to function optimiza-

tion. Thus, at each iteration every individual, that corresponds to a PSO is executed, and

the fitness of the meta-EA individual corresponds the fitness of the best solution found.

Experimental results showed that the evolved PSO can effectively solve the addressed

problems.

[Tavares and Pereira, 2010] proposed a meta-EA to evolve pheromone trail updates

for Ant Colony Algorithms (ACO) [Dorigo and Stützle, 2004]. This approach relies on

standard GP as meta-EA. As such, one key aspect is the definition of the terminal and

function sets. The authors selected a terminal/function set as simple as possible, yet

it allowed the construction of all known ACO algorithms. Similar to other approaches

already described, the fitness of each meta-EA individual corresponds to the best en-

coded solution found by the strategy encoded by that individual, while solving a certain

problem instance. Results obtained with the Traveling Salesman Problem (TSP) showed

that the proposed approach was able to evolve strategies to solve the instance for which

they were evolved. Moreover the strategies also showed good generalization abilities

for they were able to solve other instances different from the ones used in the training

process. [Tavares and Pereira, 2011a,Tavares and Pereira, 2011b] extended the previous
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work. In order to ensure that only valid strategies were evolved, they adopt a meta-EA

based on Strongly Typed GP (STGP) [Poli et al., 2008]. STGP is a GP variant that forces

data types on terminals, on function parameters and on function return values. These re-

strictions provide some advantages over standard GP, for instance, when one is working

with multiple data types. However it imposes extra caution while developing STGP op-

erators since they need to ensure that the relations between types are still valid. [Tavares

and Pereira, 2011a] uses the STGP approach to evolve strategies to the TSP problem,

and confirmed the results previously obtained. In [Tavares and Pereira, 2011b], they

used the same approach to evolve strategies to another problem: the Quadratic Assign-

ment Problem (QAP). They studied both generalization and scalability capacities of the

evolved strategies. Furthermore they also studied the inter-problem generalization, i.e. if

the updated rules evolved in a certain problem (e.g., TSP), had the same behavior when

applied to a different problem (e.g., QAP). The results showed that strategies evolved in

the TSP worked well on the QAP but the opposite was not true.

[Tavares and Pereira, 2012] proposed a Grammatical Evolution (GE) framework to

evolve complete ACO algorithms. The adopted grammar allows the creation of a full

algorithmic structure and the selection of specific components for each optimization step.

The approach’s experimental analysis focuses on the capacity of the framework to evolve

well-known structures, and if it could evolve novel ACO algorithm structures that could

improve the algorithms effectiveness. This framework is particularly relevant because it

relies on a grammar to guide the creation of strategies. Several advantages emerge when

using a grammar-based system, the most important being related with understandability.

This means that we can look and the strategies that are being generated and see what

components are being used in each phase of the algorithm.

Hyper-Heuristics

The term Hyper-Heuristic (HH) was used for the first time by Dezinger et al. [Denzinger

et al., 1997] to describe a framework that combined several artificial intelligence methods

in the context of automatic theorem proving. Later, the term was used to describe a

”heuristic to search heuristics”, in the context of combinatorial optimization problems

[Cowling et al., 2001]. Recently the definition of HH was extended by [Burke et al.,

2010a] to ”an automated methodology for selecting or generating heuristics to solve
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hard computational search problems”.

The foundation of the current body of HH can be traced back to the early 1960s, to

a work in Operational Research by Fisher and Thompson [Fisher and Thompson, 1963].

In this work they showed that by combining scheduling rules in production scheduling,

they could obtain superior results to using any of the rules separately.

[Fang et al., 1993] proposed an EA to automatically evolve heuristics for a job-

scheduling problem. The approach consisted of combining simple heuristics usually used

in the job-scheduling problems. The experimental results showed that the approach was

effective and it could compete with more traditional methods used to solve the problem.

[Dorndorf and Pesch, 1995] tackled the problem of job shop scheduling. They pro-

posed a EA to optimize the sequence of decisions that should be made to obtain good

results in the problem. They used a set of simple priority heuristics that are commonly

applied to solve conflict problems in the scheduling. The representation of each indi-

vidual in the EA corresponds to the number of operations to schedule in the underlying

problem instance. The algorithm presented some good results when compared to other

algorithms used in the same problem.

[Wah et al., 1995] studied two important problems in designing efficient algorithms:

1) automated design of problem solving heuristics; 2) systematic search of heuristics that

can be applied to unseen problems. To study such problems, the authors used an EA

based learning system called TEACHER. This learning system has three phases of learning:

classification, learning, and generalization. The first phase partitions the test cases into

distinct subsets. In the learning phase, the goal is to find effective Heuristic Methods

(HM) for each of a limited set of subdomains. In the last phase, called generalization,

the goal is to find a HM from the set of learned HM and see if it has the same high level

of performance improvement on unlearned subdomains. Furthermore they proposed a

method to schedule the evaluation of the generated heuristics, since that can demand

large quantities of computational resources.

[Drechsler et al., 1996] presented an EA that combine heuristics for Ordered Binary

Decision Diagrams (OBDD) minimization, starting from a given set of basic operations.

The difference to other previous approaches to OBDD minimization is that the EA does

not solve the problem directly. Rather, it develops strategies for solving the problem. It

is assumed that the problem to be solved has the following property: there is a defined

a non empty set of optimization procedures that can be applied to a given (non-optimal)
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solution in order to further improve its quality. These procedures are called Basic Op-

timization Modules (BOM). These BOM are the basic modules that will be used. Each

heuristic is a sequence of BOM. The goal of the EA is to find a good (or even optimal) se-

quence of BOM such that the overall results obtained by the heuristics are improved. The

fitness function defined by the authors takes into account two aspects of the heuristics:

the cost and the quality. The cost is related with how efficient a heuristic can be, and the

quality is related with how good a solution to the problem being solved is. Furthermore,

the authors define two parameters, which can control the trade-off between efficiency

and quality.

[Pappa and Freitas, 2009] presented an approach to automate the design of data

mining algorithms. The main goal of data mining is to extract knowledge from data and

transform it into a human-understandable knowledge for further use. The proposed

approach uses GBGP to search for rule induction algorithms. A rule induction algorithm

tries to extract patterns from data and build some rules to make assertions about the the

data. The data discovered by the GBGP framework showed competitive results when

compared with state of art human-designed algorithms.

[Burke et al., 2012] presented an approach to evolve heuristics for the bin packing

problem. The approach uses GE to evolve the heuristics. The experimental results of the

work focuses on the quality, efficiency and consistency of the evolved heuristics. Taking

into account these aspects the proposed approach showed capacity to evolve heuris-

tics that satisfied all of them. Nevertheless the authors suggest that there is room for

improvements since the optimal solution was not obtained as often as they desired.





3
Automated Design by means of Grammatical

Evolution

The construction of Hyper-Heuristic (HH) frameworks can alleviate the task of deciding

the most appropriate EA’s components for a given problem. Additionally, these frame-

works may introduce some benefits in terms of performance improvement. The previous

Chapter reviewed recent works that aim to automatically design Evolutionary Algorithms

(EAs). Based on the works reviewed, we concluded that the frameworks that use on

grammars tend to be more appellative when compared to others.

This Chapter presents and details a computational framework that is able to evolve

EAs using Grammatical Evolution (GE) [Lourenço et al., 2012]. GE relies on grammar that

defines the space of possible algorithmic strategies. The benefits of using this approach is

an increased flexibility on defining the syntactic restrictions of the strategies being evolved.

Another advantage of using a grammar based approach is that it is possible to describe the

strategies in pseudo-code or any programming language ready to be compiled. Moreover

it is possible to look at the evolved algorithms and obtain knowledge about the way they

work. Given this, and its recent past of successful applications, we decided to build an

HH based on GE.

The framework establishes a two phase architecture (Section 3.1). In the first phase

GE searches for promising algorithmic strategies. The second phase analyses the best

learned algorithms and measures their generalization abilities.

To validate the framework, the Royal Road functions (RR) [Mitchell et al., 1991] were

selected as the benchmark problem to assess the ability of the proposed approach to

35
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evolve EAs (Section 3.2).

3.1 Framework

The goal of this section is to systematize and detail the HH framework proposed in this

dissertation. Fig. 3.1 provides a visual description of the framework. The first phase,

Learning, corresponds to the design and construction of algorithms. The second phase,

Validation, evaluates the best strategies in unseen scenarios.

Learning

This phase is divided in two levels. In the first level, Search, a GE-based HH is adopted

to search the space of possible algorithmic strategies for a given problem. This space is

defined by a grammar, where its production set specifies the components and the general

structure of the algorithms. Using a grammar to specify what we want to learn allows

us to build a generic framework, that can be used to learn algorithms with an arbitrary

structure. Practitioners are left with the task of choosing the algorithmic components and

the necessary rules to build valid strategies.

The second level, Problem Domain, evaluates the strategies that are being evolved by

GE, i.e., measures the solving capacity of the algorithm in the problem at hand. Fig. 3.2

gives further details on the entire evaluation process. The first part of this process is

to apply the algorithm to instances of the problem. Each algorithm (Algi) is evaluated in

a certain number of instances (I), which are selected beforehand. Another aspect that

should be taken into consideration is the type of instances used. On one hand they have

to accurately reflect the properties of the problem. On the other hand, the process

should not take to long, in order to avoid large computational overheads. These two

forces are usually contradictory, i.e., easy instances usually do not reflect accurately the

problem’s properties, and have to be carefully balanced.

Another decision that has to be made concerns the definition of the number of runs

(N), the number of iterations (K), and the maximum population size (M) of learning.

These parameters have a direct influence in the running time of the algorithm in each

instance.

Another important decision that has to be made is related to the initial set of solutions
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Figure 3.1: Architecture of the grammar-based Hyper-Heuristic developed
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Evaluation
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…Algi
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M SolutionsM Solutions
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Figure 3.2: Details of the Evaluation Step

of the algorithm being evaluated. In our case all the algorithms are provided with the same

set of initial solutions when they are evaluated. This means that all the algorithms start

from the same point in the search space. This allows a fair comparison between different

strategies and reduces the variance of the results. At every new iteration of GE the initial

set of solutions is modified.

The evaluation module returns a numerical value to the GE, estimating the optimiza-

tion capacity of that algorithm. The selection of an appropriate metric is important, be-

cause the information is used by the GE-HH to compare algorithms. Several metrics can

be considered such as the Mean Best Fitness, the number of times that the algorithm

successfully solves a given problem (Success Rate), or the time taken to reach a certain

solution. Additionally it is possible to consider a combination of these metrics.

The parameters described above define the learning conditions. They are a crucial

part of the overall learning process and might influence the structure and optimization

ability of the algorithms. Currently, there are no silver bullets on how to accurately define

the learning conditions, but the next few chapters provide some useful insights on these

issues.

Validation

The aim of Learning is to identify promising solutions to a certain problem. However, we

need to verify if the evolved strategies can solve tasks beyond the ones used in Learning.

The aim of Validation is to verify the optimization capacities on the evolved strategies

in different instances of the same problem, and/or instances of different problems. We
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start by selecting the best strategies evolved (BAlgi). The selection of the best strategies

is based on two criteria. The first is the quality obtained while solving learning problems.

When ties exist we use the second criterion: time taken to reach a solution.

Then each algorithm is executed to assess the degree to which they are accurate,

robust and consistent in scenarios beyond learning. We rely on statistical inference tools

[Field, 2009] to analyze and compare the results obtained. This analysis usually includes

comparisons with hand design approaches to the problems under consideration.

In this work the analysis is supported by the non-parametric Friedman’s ANOVA 1

test that checks for statistical differences in the means of the different algorithms being

compared. This test is used because the samples do not follow a normal distribution.

When differences are detected, the post-hocWilcoxon Signed Rank Test, with Bonferroni

correction, is applied to perform the pairwise comparisons. In both tests we consider

samples of size equal to 30.

After performing the pairwise comparisons, and when statistical differences were de-

tected, we measured their effect size, which indicates the magnitude of the difference.

The results are reported using the following graphical notation: A +++ sign indicates

that the algorithm in the row is statistically better than the one in the column, and that

the effect size is large (r ≥ 0.5). A ++ sign indicates that there are statistical differences,

and that the effect size is medium (0.3 ≤ r < 0.5), whereas a + identifies a significant dif-

ference with a small effect size (0.1 ≤ r < 0.3). A - signals scenarios where the algorithm

in the row is worst than the one in the column. Finally, a ∼ indicates that no statistical

differences between the algorithms were found.

3.2 Evolving Evolutionary Algorithms to the Royal

Road Functions

The Royal Road functions (RR) functions [Mitchell et al., 1991] define optimization scenar-

ios where population-based algorithms with crossover and mutation tend to outperform

methods that do not rely on a combination of these variation operators. Moreover, the

hardness of RR instances can be adjusted by changing the value of some parameters. It is

therefore an appropriate environment to study the ability of a computational framework

1With a significance level of α = 0.05
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B1 B2 B5 B6B3 B4 B7 B8Level 0

B1,B2 B5,B6B3,B4 B7,B8Level 1

B1,B2,B3,B4 B5,B6,B7,B8Level 2

B1,B2,B3,B4,B5,B6,B7,B8Level 3

Figure 3.3: Royal Road Function with 3 levels and 8 blocks

to automatically discover EA structures.

RR were introduced by Holland, Mitchell and Forrest aiming to provide insight into

the optimization behavior of EAs. These functions were designed in such a way that they

can be solved by a simple population-based algorithm with crossover and mutation, but

not by a hill-climber [Jones, 1994]. More precisely, the study was searching for answers

to the following questions [Mitchell et al., 1991]:

1. Which problems are more suitable for EA’s?

2. What is the effect of crossover on the EA’s performance on different landscapes?

3. How does crossover helps to find good quality solutions?

A RR function takes a binary string as input, and produces a real value. The problem

corresponds to a search task in which one wants to find strings with high fitness values.

The RR can be described as a mapping: F : {0, 1}n → R, where n is the size of the

binary string. Binary strings encoding solutions are composed by a sequence of 2k non-

overlapping contiguous regions, where k is a parameter that defines the instance of the

RR. Each region is divided in two sections: a section of b bits called block, followed by a

section of g bits called gap. Thus, a region is composed by (b + g) bits. A complete block

is defined when all bits of the block are set to 1.

Furthermore, the RR functions are composed by levels. Levels correspond to con-

tiguous sequences of 2l complete blocks, where 0 ≤ l ≤ k. Fig. 3.3 represents how the

levels are defined for a RR instance with k = 3.
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3.2.1 Evaluation of the Royal Roads

The evaluation of the RR functions is meant to capture one landscape feature of particular

relevance to EAs: the presence of fit low-order building blocks that recombine to pro-

duce fitter, higher-order building blocks. The evaluation proceeds in 2 steps: the PART

calculation and the BONUS calculation [Jones, 1994]. The parameters that are necessary

for the fitness assessment are:

m∗ Used in the PART fitness. It is the maximum number of 1’s that a block may contain

before being penalized. As an exception, if a block is complete it is not penalized;

v Used in the PART fitness. If the number of 1’s in the block is m∗ or less, it adds v,

otherwise it adds -v. If the block is complete v does not contribute to the fitness.

u∗ Value added to the BONUS part by the first completed blocks at each level;

u Value added to the BONUS part by the second or subsequent completed blocks.

PART

This step of the evaluation considers blocks individually. Each block receives a fitness

score and in the end the individual block fitnesses are all summed up to produce the

PART contribution to the overall fitness. The fitness of each block is based only on the

number of bits 1 that it contains. Every 1 up to a limit m∗ adds a value v to the block’s

fitness. However if a block contains more than m∗ 1s, but less than b, it receives −v for

each 1 over the limit. Finally, if a block has all bits set to 1 it receives nothing from the

PART calculation. Assuming m∗ = 4 and v = 0.02 (Table 3.1) the PART fitness of Fig. 3.4

is: PART = 0.00+ 0.08+ 0.00+ (−0.04) = 0.04.

BONUS

In the BONUS step, complete blocks and some combinations of complete blocks are

rewarded. In RR functions there are k+ 1 distinct levels. At all levels, the first sequence

of completed blocks receives fitness u∗, and additional sequences of completed blocks

receive u. Assuming u∗ = 1.0 and u = 0.2 the BONUS fitness of Fig. 3.4 is: BONUS =

1.0+ 0.2 = 1.2.
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11111111 1111011

block gap

Region 1

01010110 1111011 11111111 1111011 01111110 1111011

Region 2
2

Figure 3.4: Royal Road Binary String with k = 2, b = 8, g = 7

1’s in block 0 1 2 3 4 5 6 7 8
Block Fitness 0.00 0.02 0.04 0.06 0.08 -0.02 -0.04 -0.06 0.00

Table 3.1: PART block fitness for the RR default parameters with m∗ = 4 and v = 0.02

The total fitness corresponds to the sum of both PART and BONUS. Using the results

of the example used, the total fitness is: PART+ BONUS = 0.04+ 1.2 = 1.24.

3.2.2 Grammar Specification

This section specifies the Context Free Grammar to evolve EAs. It is composed by set of

components described in the literature for binary EAs ( Grammar 3.1). All algorithms that

can be evolved by this grammar are population-based. The < proportion > parameter

defines the population size of the population in terms of the maximum number of individ-

uals allowed in learning. The parent selection strategies are the ones commonly used by

practitioners: fitness-proportional (Roulette Wheel, and Stochastic Universal Sampling

(SUS)), rank-based, and tournament. The recombination operators are the commonly

used Single Point Crossover, Multi Point Crossover and Uniform Crossover. The mu-

tation operator is the bit flip. Note that the evolved strategies might involve zero or

more combinations of these operators. In terms of survivor selection, it is possible to

have generational strategies, and strategies with replacement by rank. Finally, the algo-

rithms checks if the bests individuals of the previous generation should pass along to the

new one. All the parameter settings needed by the components are also specified in the
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grammar.

The grammar allows the evolution of strategies similar to the ones that shown in Alg.

5 and Alg. 6.

Algorithm 5 Example of Genetic Algorithm evolved with Grammar 3.1

1: (lambda,0.5)
2: while not termination condition do
3: evaluate
4: RouleteWheel()
5: SinglePointCrossover(0.9)
6: PointMutation(0.05)
7: RankReplacement
8: Elitism(0.01)
9: end while

Algorithm 6 Example of (20, 5) Evolution Strategy evolved with Grammar 3.1

1: (lambda,0.5)
2: while not termination condition do
3: evaluate
4: RouleteWheel()
5: PointMutation(0.8)
6: Generational
7: end while

3.2.3 Experiments

This section studies the ability of the HH framework to evolve EAs to solve the RR prob-

lem, using the grammar already described. The first part of the study focuses on the

Learning phase. In the second part, we analyze the optimization ability by applying the

obtained algorithms to several different RR instances. The RR instances used are de-

scribed in Table 3.2.

3.2.4 Learning

The first phase of the experimental study was dedicated to analyze the capacity of the

GE framework to evolve EAs. The settings used in the framework are presented in Table
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N ={start, proportion, pop_parameter, EA, selection, t_size, integer_const,
variation, operator, recombination,mutation, replacement, e_size, prob, elitism, random_per}

T ={0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0,OnePoint,NPoint,Uniform,
PointMutation,Generational, RankReplacement, lambda,mu, evaluate,
random_integer, random_0_1,
RouleteWheel, SUS, RankBased, Tournament, (, )}

S ={start}

And the production set P is:

< start >::=(< pop_parameter >,< proportion >)(< EA >)

< proportion >::=0.25|0.5|0.75|1.0
< pop_parameter >::=lambda|mu

< EA >::=while(notterminationcondition)evaluate < selection >< variation >

< replacement >< elitism >

< selection >::=RouleteWheel|SUS|RankBased|Tournament(< t_size >)|λ
< t_size >::= < integer_const >

< integer_const >::=random_integer
< variation >::= < operator >< variation > |λ
< operator >::= < recombination > (< prob >)| < mutation > (< prob >)|λ

< recombination >::=OnePoint|NPoint(< integer_const >)|Uniform|λ
< mutation >::=PointMutation|λ

< replacement >::=Generational|RankReplacement|λ
< e_size >::=0.01|0.05|0.1
< prob >::=0.01|0.05|0.1|0.5|0.9|1.0| < random_per >

< elitism >::=Elitism(< e_size >)|λ
< random_per >::=random_0_1

Grammar 3.1: Grammar used to evolve EAs for the Royal Road Functions.
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Parameters
Instance k b g m∗ v u∗ u Optimum

1 3 6 5 3 0.02 1.0 0.3 7.3
2 4 8 7 4 0.02 1.0 0.2 12.8
3 4 8 7 2 0.02 1.0 0.2 12.8
4 5 8 7 2 0.02 1.0 0.2 23.1
5 5 8 7 4 0.02 1.0 0.2 23.1

Table 3.2: Royal Road functions used

Parameter Value
One Point Crossover Probability 0.9

Bit Flip Mutation 0.01
Codon Duplication Probability 0.01

Codon Pruning Probability 0.01
Population Size 100

Selection Tournament with size equal 5
Replacement Steady State
Codon Size 8

Number of Wraps 3
Generations 50

Number of Runs 30

Table 3.3: Grammatical Evolution Parameters

3.3.

The quality of each individual generated by the GE is assessed by solving instance

1 of Table 3.2. When solving one RR instance, the most effective algorithms are able

to accomplish three main tasks: 1) create complete blocks from scratch; 2) complete

nearly finished blocks; and 3) join complete blocks. Therefore, to assign fitness to a

solution generated by the GE, the GE framework performs three runs (one for each

task), of the aforementioned instance. In each different run the initial population is seeded

with solutions that allow an assessment of the ability of the EA to succeed in one of the

previously identified tasks (e.g., the ability to join complete blocks is tested by starting the

EA with an initial population containing solutions with some already completed blocks).

The EA ran for 2000 evaluations and the fitness value provided as feedback to the GE

corresponded to the mean of the best level achieved in each of the scenarios.
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The algorithms evolved by the GE were able to find the best solution for the selected

learning instance. The average fitness obtained by the 30 best algorithms (one from each

run) in the training phase was 7.099356 (± 0.530).

Another objective of this experiment is to analyze if the GE engine is able to discover

innovative EA structures. Clearly, the defined grammar imposes syntactic limitations in

the organization of evolved algorithms, thereby hindering the emergence of unusual struc-

tures. Moreover, it is well known that standard EA are effective in the optimization of RR

functions.

An inspection of the 30 best-evolved algorithms (i.e, the best evolved strategy in each

GE run) confirms that the computational framework tends to converge to solutions sim-

ilar to those regularly used to solve the RR functions. Most of the differences appear in

the selection and replacement methods. In table 3.4 we present the frequency of appear-

ance of the components in these best solutions (values are in percentage). The operators’

components are not exclusive, as they can appear together in the EA. In what concerns se-

lection, there is not a clear winner, although roulette wheel is the least adopted method.

As for replacement, the one based on rank clearly outperformed the generational ap-

proach. That is a more conservative strategy, maintaining in the population solutions that

are not outperformed by descendants (in terms of fitness). Results show that keeping

good solutions in the loop help to enhance the effectiveness of algorithms when seeking

good RR solutions. In terms of operators it is possible to see that NPointCrossover is

rarely adopted. On the other hand the Single Point Crossover and Point Mutation have

the same percentage of appearance, which is an indication that they tend to appear to-

gether.

3.2.5 Validation

This section analyzes how the evolved algorithms behave in instances that are different

from the one used in training. This will help verifying if the evolved EA are competitive

with the standard algorithm in RR optimization.

Firstly, we analyze if there was any evolution occurring during the learning. Thus we

selected the 30 best individuals of the initial population, 30 best individuals of the middle

population (i.e. after 25 generations), and 30 best individuals of the last population and

applied them to instance 2 of Table 3.2. Fig. 3.5 presents the results of this analysis. The
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Components

Replacement
Generational 16.7%
RankReplacement 80.0%

Selection

RouleteWheel 13.3%
Rank 30.0%
Stochastic Universal 26.7%
Tournament 26.7%

Operators

SinglePointCrossover 36.7%
NPointCrossover 16.7%
UniformCrossover 30.0%
PointMutation 36.7%

Table 3.4: Frequency of components appearance on the EA evolution phase
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Figure 3.5: Evolution Analysis of 30 best individuals selected from the initial, middle and
final populations

horizontal axis identifies the algorithms from best (algorithm with id 0) to worst (algorithm

with id 29). The vertical axis shows the quality obtained by each algorithm. The empirical

results show that evolution is occurring: looking at the fitness values of the individuals of

the initial population we see that they are clearly the worst ones. The individuals in the

middle population start to exhibit good capacities when good solutions are discovered,

whilst the ones on the last population have the capacity of discovering better solutions

than the other ones.

The next study is focus on the generalization capacity of the strategies. In this set of

experiments we selected the seven best evolved algorithms. This selection was based on
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Figure 3.6: Validation results

Table 3.5: Friedman’s ANOVA statistical test

χ2(7) p-value
124.7 < 2.2 * 10−16

fitness. Additionally we built a commonly used EA to optimize the RR: roulette wheel

selection, single point crossover with 0.9 probability, point mutation with 0.01 probability

and generational replacement without elitism. Each algorithm was applied to instance 2

of Table 3.2. Now, each algorithm is allowed to perform 256000 function evaluations

[Mitchell et al., 1991]. Optimization results are presented in Fig. 3.6. The results show

that the evolved algorithms have a similar behavior when compared to the standard one

(algorithm number 8 presented in the figure).

The statistical results of Table 3.5 reveal that there are differences between the algo-

rithms. However, the pairwise comparisons presented in Table 3.6 reveal that there are

no statistical differences between the evolved algorithms and the standard EA. Although,

two of the algorithms are worse (Alg4 and Alg6) than the standard, and there is one that

is better (Alg2). An analysis of the components of the worst algorithms reveals that Alg6

relies on Uniform Crossover as the main variation operator, which is probably too dis-

ruptive for the RR optimization. The two typical variation operators, point mutation and

single point crossover, are presented in Alg4. However the crossover has low probability
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Pair Result
Alg1 - StandardEA ∼
Alg2 - StandardEA +
Alg3 - StandardEA ∼
Alg4 - StandardEA −
Alg5 - StandardEA ∼
Alg6 - StandardEA −
Alg7 - StandardEA ∼

Table 3.6: Results of the Wilcoxon Signed Rank test

rate, delaying the combination of blocks.

The structure of Alg2 is different from the usual (see below). It has 2 types of crossover

(NPoint crossover with 16 cut-points and single point crossover, both with a high prob-

ability rate), separated by the application of point mutation with a low probability rate.

Alg2
1: (lambda,0.5)
2: while not termination condition do
3: evaluate
4: RankSelection()
5: NPointCrossover(1.0, 16)
6: PointMutation(0.01)
7: SinglePointCrossover(1.0)
8: RankReplacement
9: end while

Since the algorithm is different from the usual architectures it was applied to three

additional instances of the RR (instances 3, 4, 5 of Table 3.2). Table 3.7 presents the re-

sults of the statistical comparison between Alg2 and the standard EA, using the Wilcoxon

Signed Rank test. The presented results show that the standard EA performs better in

the two harder instances (m∗ = 2), and that the Alg2 perform better in the other.

These results seem to indicate that Alg2 delays the creation of complete blocks, due

to the disruptive nature of a recombination operator with many points. Thus, and since

we use a small m∗, we start to penalize incomplete blocks earlier, which leads to higher

overall fitness penalizations. On the contrary, when we use an higher m∗, the behavior

of Alg2 improves, as this defines a situation where incomplete blocks are less penalized.
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Instance Result
Instance 3 −
Instance 4 −
Instance 5 +

Table 3.7: Statistical Results of the comparison Alg2-Standard EA

3.3 Summary

This Chapter introduced a two phase HH framework. In the first phase, Learning, a

Grammatical Evolution (GE) engine is used to combine low level components that are

specified using a Context Free Grammar. In the second phase, the best algorithms learned

are selected to be applied to unseen scenarios to evaluate their generalization capacity.

To demonstrate the viability of the approach, the framework was used to evolve

Evolutionary Algorithms to tackle the Royal Road functions benchmark. The grammar

used by GE is composed of a full set of commonly used EA components. The flexibility

of the grammar is limited, hindering the appearance of unusual architectures, yet it allows

some variations on number and order of operators that can appear.

To assess the capacity of the GE framework to evolve EAs, the RR functions were

used as the benchmark problem since they have one good algorithmic solution.

The experimental results revealed that the framework is able to evolve well known

algorithm architectures. Furthermore an architecture that is different from the traditional

ones was evolved. Additional experiments were conducted to assess the effectiveness

of this new architecture.

These initial experiments suggest that the automatic evolution of EA is possible. Fur-

thermore, it raises several important research questions such as: 1) How can we assess

the quality of an EA, and retain the important information, while reducing the computa-

tional effort? 2) How do the Learning conditions (e.g. number of generations conceded

for learning) influence the structure of the algorithms? 3) Which information should we

take from the evaluation of the evolved algorithms?



4
Learning Conditions

Building on the preliminary results discussed on the last Chapter, we aim to address the

impact of the learning conditions on the structure and effectiveness of the evolved algo-

rithms. While learning, one must decide on a set of conditions related to the evaluation

of the algorithms. The definition of such conditions might influence the structure of the

algorithms being learned and the final quality of the strategies. Gaining insight into these

situation is crucial to provide useful guidelines to define better HH.

In this Chapter we apply the framework previously described to learn EAs for a family

of Knapsack Problems (Section 4.1). The first set of experiments analyses how learning

is affected by the time that the algorithms have to run (Section 4.2). The length of the

evaluation is defined by two parameters: the population size and the number of genera-

tions.

The second set of experiments is concerned with the influence of different algorithmic

designs. The goal is to verify if the HH is able to build strategies for different types of

architectures. Specifically, we focus our attention on how different replacement methods

influence the creation of selection strategies (Section 4.3).

51
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4.1 Benchmark Problems

4.1.1 The 0/1 Knapsack Problem

The 0-1 Knapsack Problem (KP) is a combinatorial optimization problem often used as

benchmark. It can be described as follows. Given a set of n items, each of which with

some profit pj and some weight wj, how do we select a subset of items that maximizes

the profit while keeping the sum of the weights bounded to the maximum capacity C of

the knapsack. Formally this is stated as:

max
n∑

j=1

xjpj (4.1)

subject to
n∑

j=1

xjwj ≤ C (4.2)

where

xj =

1 if the item j is selected

0 otherwise
(4.3)

If condition 4.2 is not satisfied, the solution is considered invalid. When this happens,

the fitness is penalized. There are several penalty functions described in the literature

[Michalewicz, 1996]. We adopted the linear penalty. Based on this, the fitness function

is defined as:

max
n∑

j=1

xjpj − Penalty(x) (4.4)

where

Penalty(x) =

ρ(
∑n

j=1 xjwj − C) if
∑n

j=1 xjwj > C

0 otherwise
(4.5)

with ρ = maxj=1...n(
pj
wj
).

For the experiments conducted, 3 instances with different sizes were created, us-

ing the R script present in Appendix A.1. The general characteristics of these instances

(number of items, optimal solution) are summarized in Table 4.1.
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Table 4.1: Summary of Knapsack Instances used

Parameters
Instance Items (n) Best Solution

KP1 100 39087
KP2 1000 333460
KP3 3000 1011522

4.1.2 Multidimensional Knapsack Problem

The Multidimensional Knapsack Problem (MKP) is a combinatorial optimization problem,

with a wide range of applications, such as cargo loading, cutting stock problems, resource

allocation in computer systems, and economics. It can be described as follows: given two

sets of n items and m constraints, where each item j has an associated profit pj, j = 1..n,

and a set of weights wij (each weight is linked to a specific constraint i = 1...m), the goal is

to find a subset of items that maximizes the profit, without exceeding the given constraint

capacities Ci. Formally:

max
n∑

j=1

xjpj (4.6)

subject to
n∑

j=1

wijxj ≤ Ci, i = 1, ...,m (4.7)

where

xj =

1 if the item j is selected

0 otherwise
(4.8)

The problem described in Section 4.1.1 is a special case of the MKP, when m = 1.

The issue of invalid solutions is also present. To deal with this we follow the approach

of the previous section and penalize invalid solutions. Following the recommendations

of [Gottlieb, 2001], the fitness function is:

max
n∑

j=1

xjpj − Penalty(x) (4.9)
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where

Penalty(x) =
pmax + 1
wmin

∗max{CV(x, i) | i = 1...m} (4.10)

pmax = max{pi | i = 1...m} (4.11)

wmin = min{wij | i = 1...m, j = 1...n} (4.12)

CV(x, i) = max(0,
n∑

j=1

wijxj − Ci) (4.13)

where pmax is the largest profit available (Eq. 4.11), wmin is the minimum resource

consumption (Eq. 4.12) and CV is the maximum constraint violation for the ith constraint

Ci. Note that wmin ̸= 0 should be ensured, i.e., the resources have to consume something.

In the experiments were the MKP was used, one instance with n = 250 items and

m = 5 constraints was selected from the OR-Library1.

4.2 Duration

HH incurs a learning process with a high computational effort, as the quality of each gen-

erated strategy must be estimated by applying it to an optimization situation. This leads

to the appearance of two contradictory forces that must be balanced. On the one hand,

the off-line learning should not take too long, which implies relying on small instances and

adopting parameters (e.g., population size, number of iterations) that minimize the com-

putational overhead. On the other hand, the adoption of excessively simple conditions

might compromise results.

The experiments described in this section aim to contribute to a better understanding

of the impact that the number of generations and population size have in the learning

phase, and ultimately in the structure and quality of the algorithms. Our aim is to identify

useful guidelines that help to define better HH.

4.2.1 Grammar

This section defines a grammar whose words are EAs, i.e., the grammar must allow the

generation of a complete algorithm, defining both its main components and its settings.

1http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html
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The grammar is presented in Grammar 4.1, where < start > plays the role of the ax-

iom. The grammar enforces a sequential construction of components, thereby model-

ing the overall structure of the evolved algorithms. The grammar describes algorithmic

components, such as selection, variation operators and replacement strategy; likewise, it

also specifies parameters including the number of individuals in the initial population, the

number of offspring created at each generation and the probability of applying variation

operators. An inspection of the right hand side of the first production clarifies how we

constrain the general structure of the evolved solutions: first, parameters mu and lambda

are specified, corresponding to the number of individuals in the initial population and

number of offspring created at each generation, respectively. Both values are defined in

proportion to the maximum population size granted to the algorithm. Afterwards, a cycle

iterates over a predetermined sequence of typical EA operations: evaluation, selection,

variation and replacement. The grammar defines alternatives for each component, thus

allowing the GE to learn the most suitable combination for a given situation. It is worth

noting that the grammar allows the generation of solutions without some components

(option ϵ denotes the empty string). In addition, several recombination and mutation op-

erators can simultaneously appear in the same EA. Two examples of this grammar words,

i.e., EAs, are depicted in Algs. 8 and 9.

Algorithm 8 Example of an Evolutionary Algorithm evolved by Grammar 4.1

1: mu = 1
2: lambda = 1
3: while not termination condition do
4: evaluate
5: RouleteWheel()
6: SinglePointCrossover(0.9)
7: PointMutation(0.05)
8: Elitist(0.01)
9: end while

4.2.2 Learning

The settings of the GE HH are presented in Table 4.2. To estimate the quality of evolved

strategies: i) one single instance of moderate size is used to assign fitness; ii) only one

run is performed; iii) the number of evaluations is kept low. To investigate how these
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N ={start, proportion, selection, integer− const,
variation, operator, recombination,mutation, prob− recombination, prob− mutation,
replacement, random− per}

T ={0.5, 0.7, 0.9, 1.0, 2.0, 5.0, 10.0, SinglePointXover,NPointXover,UniformXover,
PointMutation, BinarySwapMutation,Generational, RankReplacement, RankReplacementNoDup,
lambda,mu, evaluate, integer− const, random01, Elitist
RouleteWheel, SUS, RankBased, Tournament, (, ), ϵ, /, n}

S ={start}

And the production set P is:

⟨start⟩ ::= mu = ⟨proportion⟩
lambda = ⟨proportion⟩
while (not termination condition) do
evaluate
⟨selection⟩
⟨variation⟩
⟨replacement⟩
end while

⟨proportion⟩ ::= 0.25 | 0.5 | 0.75 | 1.0

⟨selection⟩ ::= RouleteWheel() | SUS() | Rank() | Tournament(⟨integer-const⟩) | ϵ

⟨integer-const⟩ ::= randominteger()

⟨variation⟩ ::= ⟨operator⟩ | ⟨operator⟩ ⟨variation⟩
⟨operator⟩ ::= ⟨recombination⟩ | ⟨mutation⟩
⟨recombination⟩ ::= SinglePointXover(⟨prob-recombination⟩)

| NPointXover(⟨prob-recombination⟩,⟨integer-const⟩)
| UniformXover(⟨prob-recombination⟩)
| ϵ

⟨mutation⟩ ::= PointMutation(⟨prob-mutation⟩) | BinarySwapMutation(⟨prob-mutation⟩)
| ϵ

⟨prob-recombination⟩ ::= 0.5 | 0.7 | 0.9 | 1.0 | ⟨random-per⟩
⟨prob-mutation⟩ ::= 1.0 / n | 2.0 / n | 5.0 / n | 10.0 / n | ⟨random-per⟩
⟨random-per⟩ ::= random01()

⟨replacement⟩ ::= Generational() | RankReplacement() | RankReplacementNoDup()
| Elitist(⟨random-per⟩)
| ϵ

Grammar 4.1: Grammar used to Evolve EAs for Knapsack Problems
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Algorithm 9 Example of an Evolution Strategy evolved by Grammar 4.1

1: mu = 1
2: lambda = 0.25
3: while not termination condition do
4: evaluate
5: RouleteWheel()
6: PointMutation(0.8)
7: Generational()
8: end while

Table 4.2: Parameters of the GE Framework

Parameter Value
One Point Crossover Probability 0.9

Bit Flip Mutation 0.01
Codon Duplication Probability 0.01

Codon Pruning Probability 0.01
Population Size 100

Selection Tournament with size equal 3
Replacement Steady State
Codon Size 8

Number of Wraps 3
Generations 50

Runs 30

design options impact the quality and structure of the solutions learned by the GE, we

present the learning results obtained with different conditions. In concrete, we focus on

the length of the run used to assign fitness and also on how the number of evaluations

is split between generations and population size. We consider four settings, detailed in

Table 4.3. The settings aim to understand how the learning is affected by the following

conditions: a small population evolved for a small number of generations; a small popu-

lation evolved for a large number of generations; a large population evolved for a small

number of generations; a large population evolved for a large number of generations.
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Table 4.3: Evaluation Learning Settings

Setting Population size (M) Number of Generations (K) Evaluations
1 20 100 2000
2 20 250 5000
3 50 100 5000
4 50 250 12500

Table 4.4: Hyper Heuristic Framework Learning Results

Setting Mean Best Fitness (MBF) Best Hits
1 0.0047 (±0.0017) 0 / 30
2 0.0002 (±0.0004) 22 / 30
3 0.0003 (±0.0003) 20 / 30
4 0.0000 (±0.0000) 30 / 30

Results

The KP instance selected to evaluate the EAs that are generated by the GE is the KP1

(first instance of Table 4.1). All the results are presented in terms of the relative error:

error =
|ObtainedFitness− BestSolution|

BestSolution
(4.14)

Table 4.4 summarizes the results of the off-line learning step. For each setting, column

MBF displays the mean of the best strategies found in the 30 runs performed by the GE and

the corresponding standard deviation (in brackets). Last column (Best Hits) presents the

number of runs where the GE evolved strategies that were able to discover the optimal

solution of the selected instance. The chart from Fig. 4.1 displays the evolution of MBF,

for all settings, along the 50 GE generations. These results show that the framework

gradually learns better optimization strategies. Moreover, the outcomes in the Table 4.4

reveal that evolved EAs are able to discover the optimum or near-optimum solutions.

Results obtained with setting 1 are an exception to this general rule. The low number

of evaluations granted to each EA to solve the KP instance (between 16% and 40% of

the computational budget granted by the other settings) prevents the discovery of the

highest quality solutions. Note that this does not necessarily imply that the GE with

setting 1 is unable to find good optimization strategies. Learning is also occurring with

setting 1 (see the corresponding line in Fig. 4.1) and the optimization ability of the best



4.2. DURATION 59

strategies evolved in this scenario will be accessed in Section 4.2.3.

A detailed inspection reveals that different learning conditions (as defined by the 4

settings previously described) impact the structure of the evolved algorithms. For all set-

tings, we selected the best EA learned in each run and created charts that measure the

frequency of appearance of the main components (the numerical settings are not con-

sidered in this analysis). Fig. 4.2 contains 3 panels that group the components by type:

panels a), b) and c) display selection options, replacement options and variation oper-

ators, respectively. Unlike selection and replacement, components in panel c) are not

exclusive. Virtually all best learned strategies rely on RankReplacementNoDup, a re-

placement mechanism based on the rank of the solutions with elimination of duplicates.

This is true for all settings and is in accordance with the literature that states that this

mechanism outperforms all other considered replacement components [Raidl and Got-

tlieb, 1999]. In what concerns selection, there is not a clear winner, although roulette

wheel and rank mechanisms are slightly prevalent.

Interesting patterns arise in the selection of variation operators. For all settings, uni-

form crossover and binary swap mutation achieve the highest percentage, suggesting a

clear advantage over the other alternatives when exploring the search space of the KP

instance selected for learning. However, a close inspection of panel c) reveals that as the

number of generations increases, the frequency of appearance of binary swap mutation

tends to decrease, whereas the frequency of the point mutation increases. This may be

explained by the fact that as the number of generations increases, stagnation at local op-

tima may become a problem to the EA. Since the binary swap mutation does not allow

a full exploration of the search space (i.e., it cannot remove nor add new items to the

knapsack), point mutation starts to be more useful, since it can remove or add new items,

and thus escape local optima.

Additionally, panel c) reveals a remarkable difference between settings 2 and 3. In

spite of both having the same computational budget (5000 evaluations to estimate the

quality of each EA), the mutation operator is often disregarded in the best strategies

learned with setting 3. This can be explained by examining how the computational bud-

get is allocated. In setting 2, a low population size (20 individuals) is iterated for a consid-

erably high number of generations (250), which might lead to premature convergence.

In these conditions the mutation operator plays a crucial role in diversity maintenance,

thus avoiding premature convergence. On the contrary, setting 3 has a higher population
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size (50 individuals) coupled with a lower number of generations (100). Convergence is

hardly a problem and, given the moderate size of the KP instance, the EA can rely just on

uniform crossover to perform an appropriate sampling of the search space. Therefore,

it is not surprising that many EAs learned with setting 3 prefer to not include mutation.

To confirm this hypothesis, we ran an additional set of experiments, with a slightly

modified grammar, that only allows the appearance of a single variation operator in each

evolved structure. This way, the framework has to select the most suitable operator (ei-

ther crossover or mutation) to include in the optimization strategy, given specific learning

conditions. We repeated the experiments for all four settings presented in Table 4.3. Fig.

4.3 displays the frequency of appearance of the variation operators using the modified

grammar. An overview of the chart confirms our claims. Strategies evaluated with low

population size (settings 1 and 2) need to incorporate mutation operators to prevent pre-

mature convergence. When the population size is high and the number of generations is

low (setting 3), all the EA needs is crossover. Finally, setting 4 grants the EA a considerable

computational budget to run, hence it is natural that strategies relying only on mutation

appear. It is worth notice that, in the experiments performed with the modified gram-

mar, binary swap mutation is completely absent from the best learned solutions. This is

again related to the fact that this operator alone cannot modify the number of items in

the knapsack, thereby preventing a full exploration of the search space.

Results presented in Figs. 4.2 and 4.3 reveal that different EA architectures emerge

when different learning conditions are adopted. This a relevant contribution that sheds

light on the impact of learning conditions adopted by a hyper-heuristics framework. To

complete this section, we present the best evolved algorithm for each one of the set-

tings, labelled according to the scenario where they were discovered in Algorithms EAL1,

EAL2, EAL3 and EAL4. In agreement with the previous analysis, they share the same

replacement method and tend to rely on different selection strategies. In what concerns

the variation operators, EAL1, EAL2 and EAL4 include both crossover and mutation,

whereas EAL3 relies solely on crossover.

4.2.3 Validation

We present now a set of experiments to analyze how the 4 best evolved algorithms

(EAL1, EAL2, EAL3, EAL4) behave in KP instances that are different from the one used in
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Figure 4.1: Evolution of the Learning Mean Best Fitness across the 4 Learning Settings
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Figure 4.2: Frequency of components in the best evolved solutions: panels a), b) and c)
display selection, replacement and variation operators, respectively.
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Figure 4.3: Frequency of components in the best evolved solutions with just one variation
operator.

EAL1: Strategy Evolved using Setting 1

mu = 0.5
lambda = 1.0
while not termination condition do

evaluate
Tournament(2)
UniformCrossover(1.0)
BinarySwapMutation(2.0 / n)
RankReplacementNoDup()

end while

EAL2: Strategy Evolved using Setting 2

1: mu = 1.0
2: lambda = 1.0
3: while not termination condition do
4: evaluate
5: Tournament(10)
6: [1] UniformCrossover(0.1)
7: [1] BinarySwapMutation(2.0 / n)
8: [1] RankReplacementNoDup()
9: end while
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EAL3: Strategy Evolved using Setting 3

1: mu = 1.0
2: lambda = 1.0
3: while not termination condition do
4: evaluate
5: Rank()
6: UniformCrossover(1.0)
7: RankReplacementNoDup()
8: end while

EAL4: Strategy Evolved using Setting 4

1: mu = 1.0
2: lambda = 1.0
3: while not termination condition do
4: evaluate
5: RouleteWheel()
6: UniformCrossover(0.9)
7: PointMutation(1.0 / n)
8: RankReplacementNoDup()
9: end while

learning. Such study will help to gain insight into the optimization performance differences

that may eventually arise between strategies learned in different conditions. Also, we will

verify if the evolved EAs generalize well to unseen instances of the KP, and are competitive

with hand design approaches regularly applied to the KP. Three hand-designed algorithms

(HEA1, HEA2, HEA3), were considered in this study. The HEA1 and HEA2 are suited to

work on the 0-1 Knapsack problem, whilst HEA3 works well when applied to the MKP

problem [Chu and Beasley, 1998], [Raidl and Gottlieb, 2005]. All hand-designed methods

adopt the RankReplacementNoDup replacement mechanism and tournament selection

with tourney size 3. They differ in the variation operators and/or corresponding rate of

application, as detailed in Table 4.5. The EAs were applied to different KP instances, with

a number of items equal to 1000 and 3000 (instances 2 and 3 of Table 4.1).

To mimic the training conditions, we created four different validation scenarios in

which we varied the population size and number of generations. The settings are detailed

in Table 4.6. All EAs were applied to the two remaining KP instances (KP2, KP3) with each

one of these settings. In every optimization scenario, 30 runs were performed and the
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Table 4.5: Hand-designed EAs: Variation operators and rate of application.

ID Variation Operator Rate
HEA1 SinglePointCrossover 0.9

PointMutation 1 / n
HEA2 UniformCrossover 0.9

PointMutation 1 / n
HEA3 UniformCrossover 0.9

BinarySwapMutation 1 / n

Table 4.6: Validation settings.

Setting Population size Number of Generations Evaluations
1 50 100 5000
2 50 400 20000
3 100 200 20000
4 100 5000 500000

best solution found was recorded.

Figs. 4.4 and 4.5, contain the optimization results of the 7 EAs (both evolved and hand-

designed), obtained in each one of the validation instances. Four panels, corresponding

to each one of the validation scenarios, are displayed.

A brief perusal of the figures reveal that, in general, the learned EAs perform well

across the different scenarios (as determined by the combination of a given instance and

setting), suggesting that they are able to generalize, beyond the specific situation used for

learning. Results also show that the effectiveness of the learned EAs is comparable to the

hand-designed approaches, confirming that the GE framework was able to learn meaning-

ful combinations of components and settings. Additionally, and even though differences

are not always statistically significant, it is possible to say that EAL1 tend to achieve the

best MBF in setting 1, EAL2 is the best method in setting 2, EAL3 is good for setting 3,

and EAL4 is the best in setting 4. This confirms that evolved strategies contain specific

features that allow them to excel in situations similar to those found during learning. De-

spite the good general behavior of the evolved strategies, there are some differences in

performance that require a detailed analysis. The results from the Friedman’s ANOVA

test indicate that there are significant differences amongst the strategies in all the settings

(Table 4.7).

Tables 4.8 and 4.9 presents the pairwise comparisons. The results show that the
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Figure 4.4: Box plot distribution of the MBF obtained by different EAs in the validation
instance KP2. Each panel corresponds to a given scenario as described in Table 4.6.

Table 4.7: Friedman’s ANOVA statistical test results

Instance
KP2 KP3

Setting χ2(6) p-value χ2(6) p-value
1 108.4 < 2.2 * 10−16 144.0 < 2.2 * 10−16

2 153.6 < 2.2 * 10−16 155.9 < 2.2 * 10−16

3 155.1 < 2.2 * 10−16 154.6 < 2.2 * 10−16

4 145.9 < 2.2 * 10−16 173.4 < 2.2 * 10−16
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Figure 4.5: Box plot distribution of the MBF obtained by different EAs in the validation
instance with size KP3. Each panel corresponds to a given scenario as described in Table
4.6.
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Table 4.8: Statistical analysis between the learned architectures using the Wilcoxon Signed
Rank Test for the KP2 instance

Settings Alg. EAL1 Alg. EAL2 Alg. EAL3 Alg. EAL4 Alg. HEA1 Alg. HEA2 Alg. HEA3
Alg. EAL1 1 ∼ ∼ ∼ +++ +++ +++

2 - +++ ∼ ∼ ∼ -
3 - - - ∼ ∼ ∼
4 - +++ - +++ - -

Alg. EAL2 1 ∼ ∼ ∼ +++ +++ +++
2 +++ +++ +++ +++ +++ +++
3 +++ - ++ +++ +++ +++
4 +++ +++ - +++ ∼ ∼

Alg. EAL3 1 ∼ ∼ ∼ +++ +++ +++
2 - - - - - -
3 +++ ++ +++ +++ +++ +++
4 - - - - - -

Alg. EAL4 1 ∼ ∼ ∼ +++ ∼ -
2 ∼ - +++ +++ - -
3 +++ - - +++ +++ ∼
4 +++ +++ +++ +++ ++ +++

Table 4.9: Statistical analysis between the learned architectures using the Wilcoxon Signed
Rank Test for the KP3 instance

Settings Alg. EAL1 Alg. EAL2 Alg. EAL3 Alg. EAL4 Alg. HEA1 Alg. HEA2 Alg. HEA3
Alg. EAL1 1 +++ +++ +++ +++ +++ +++

2 - - +++ +++ - -
3 +++ +++ +++ +++ +++ +++
4 - - - +++ +++ +++

Alg. EAL2 1 - - ∼ +++ - -
2 +++ +++ +++ +++ +++ +++
3 - - +++ +++ - -
4 +++ +++ +++ +++ +++ +++

Alg. EAL3 1 - +++ +++ +++ - -
2 +++ - +++ +++ ∼ ∼
3 - +++ +++ +++ +++ +++
4 +++ - - +++ +++ +++

Alg. EAL4 1 - ∼ - ++ - -
2 - - - +++ - -
3 - - - +++ - -
4 +++ - +++ +++ +++ +++
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evolved algorithms maintain a reasonable effectiveness in unseen conditions. Specifically

EAL2 and EAL4 seem to have an increased robustness, which allows them to adapt to

different optimization scenarios. These outcomes allow us to conclude that the number

of generations used to assign fitness in the off-line learning step is more important than

the population size. The evolved strategies must be executed for a reasonable number of

generations, in order to obtain an accurate estimate of their optimization ability. Finally

it is worth noting that learning setting 2 is able to evolve effective and robust algorithms,

even though it only needs a modest computational budget (40% of the computational

budget to evaluate candidates when compared to setting 4).

Additionally, and comparing the evolved algorithms with the hand-design, it is possi-

ble to see that, in general, the evolved ones tend to outperform the hand-design. This

happens in both the instances used for validation. Considering that larger instances are

harder to solve, our framework is able to evolve strategies that are effective in finding

good quality solutions. These results confirm the benefits of using a framework like the

one presented in this work to learn algorithms to solve a specific task. It is important

to say that the hand-design algorithms were implemented as they were presented in the

literature. This means that we did not use any tuning mechanism in order to adjust the

parameters for the instances used in our experiments.

To verify how the evolved algorithms worked in an different problem from the one

used in learning, we applied the same algorithms (the 4 evolved, and the 3 hand-designed)

to the MKP problem. The MKP problem is more difficult than the traditional KP, due to

the number of constraints that have to be satisfied. This means that even a small instance

can be hard to solve.

The results show that the learned strategies have a better performance on every

setting, as can be seen in Fig. 4.6. The strategy EAL2 is exceptionally effective as it seems

to always perform significantly better than all the hand-design approach. Moreover, it

seems that algorithms with a low selective pressure, and with a slightly large mutation

rate, work better on this problem.

To corroborate our analysis, we performed a statistical analysis. The results of Table

4.10 confirm that there are statistical differences between the algorithms. In Table 4.11

we present the results for the pairwise comparisons between the learned and the hand

design algorithms. It confirms that EAL2 is very effective, as it is always better than the

hand design. Although they are not as good as EAL2 the other evolved approaches (EAL1,
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Figure 4.6: Box plot distribution of the MBF obtained by different EAs in the MKP. Each
panel corresponds to a given scenario as described in Table 4.6.

EAL2, EAL3) have a very good performance.

These results confirm the advantages of adopting a HH framework like the one de-

scribed in the previous chapter, since it can learn algorithms that can provide good results

in a reasonable number of problems.

4.3 Evolution of Selection Strategies

In this section, we will look how different design options influence the learning of a spe-

cific component. In concrete, the framework will be used to evolve selection strategies.

Our analysis will be focused on the capacity of the framework to evolve strategies with

different selective pressures. The selective pressure is the driving force that guides the

individuals to evolve in a certain direction. It establishes the individuals that will create
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Table 4.10: Friedman’s ANOVA statistical test results for the MKP

MKP
Setting χ2(6) p-value

1 112.0 < 2.2 * 10−16

2 142.4.6 < 2.2 * 10−16

3 136.7 < 2.2 * 10−16

4 137.6 < 2.2 * 10−16

Table 4.11: Statistical analysis using the Wilcoxon Signed Rank Test for the MKP.

Settings Alg. HEA1 Alg. HEA2 Alg. HEA3
Alg. EAL1 1 + +++ +++

2 +++ +++ +++
3 +++ +++ +++
4 +++ +++ +++

Alg. EAL2 1 +++ +++ +++
2 +++ +++ +++
3 +++ +++ +++
4 +++ +++ +++

Alg. EAL3 1 ++ +++ +++
2 +++ + +++
3 +++ +++ +++
4 +++ +++ +++

Alg. EAL4 1 +++ +++ ∼
2 +++ ++ +++
3 ++ +++ +++
4 +++ +++ +++
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offspring for the next generation. High selective pressure means that the best individuals

have more chances of being selected for reproduction.

4.3.1 Grammar

For these experiments the grammar words are selection strategies. The grammar en-

codes modifications that aim to overcome some limitations that the BNF imposes, namely

the lack of tools to allow non-terminal symbols repetition and ranges of alternative val-

ues. The first extension is the addition of the operator ∼ to signal the repetition of non-

terminals. The full syntax is as follows: ∼< a >< NT >, where < a > is an integer or

terminal value, indicating that the non-terminal < NT > should be repeated< a > times.

The second extension is the addition of valued range alternatives. A range of numeric al-

ternative values can be compactly specified, using the operator &. Thus < int >::= 0&5

is equivalent to < int >::= 0|1|2|3|4|5. Taking these extensions into account, the gram-

mar used in this work is described in Grammar 4.2. Assuming that POP_SIZE is equal to

50, an example of the grammar words is presented in Alg. 14. The POP_SIZE value was

selected based on previous the analysis.

N ={start, proportion, selectionStrategy, elements, rank, calculateParents}
T ={0, POP_SIZE, parents,=, numberOfParents, random01, (, ), ∗}
S ={start}

And the production set P is:

⟨start⟩ ::= ⟨calculateParents⟩ ⟨selectionStrategy⟩
⟨selectionStrategy⟩ ::= parents = { ∼ numberOfParents⟨elements⟩ }
⟨elements⟩ ::= getrank(⟨rank⟩)
⟨rank⟩ ::= 0 & POP_SIZE
⟨calculateParents⟩ ::= numberOfParents = (random01() * POP_SIZE)

Grammar 4.2: Grammar used to evolve selection strategies for Evolutionary Algorithms

The < start > symbol represents the grammar axiom. The grammar starts by calcu-

lating the number of parents that the strategy should select (numberOfParents), according

to a percentage of the total individuals available (POP_SIZE). Since evolved strategies are
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targeted for EAs with crossover, we enforce an even number of parents in the selection

pool. Afterwards, a selection strategy to choose which individuals will appear in the se-

lection pool is generated. The solutions from the current population are ranked by fitness

and a selection strategy emerges by defining which ranks should be chosen as parents.

Algorithm 14 Example of a Selection Strategy generated by the Grammar 4.2

1: numberOfParents = (0.2 * 50)
2: parents = getrank(35), getrank(3), getrank(45), getrank(2), getrank(43), ge-

trank(41), getrank(1),getrank(36),getrank(9),getrank(8)

4.3.2 Learning

The settings adopted by the GE for all the tests conducted are depicted in Table 4.12.

To estimate the relevance of the selection strategy being evolved, one must access how

they help an EA to solve a given problem. Therefore, each individual is implanted in a

standard EA, which in turn will solve an instance of the KP problem.

We report experiments using three different EA settings as surrogates for the se-

lection strategies. In all of them, the maximum population size (POP_SIZE) is set to 50

and the number of generations is set to 250. Three possible replacement strategies,

R1, R2, and R3, are considered (see Table 4.13). R1 corresponds to a standard gener-

ational EA, whereas the last two implement a steady-state architecture where descen-

dants compete with existing individuals for survival based on the fitness criterion. Both

R1 and R2 force the evolved selection strategies to select a number of parents that is

equal to POP_SIZE, thus the grammar production < calculateParents > simply becomes

< calculateParents >::= numberOfParents = POP_SIZE. On the contrary, R3 allows the

selection strategy to choose a number of parents that is lower than POP_SIZE. All three

replacement strategies consider uniform crossover with a rate of 0.9 and swap mutation

with rate 0.01 as variation operators.

Results

The KP instance selected to evaluate learned EAs is the KP1 (Table 4.1). Once again all

the results are presented in terms of the relative error (Eq 4.14). Table 4.14 summarizes

the results of the off-line learning process. Every cell contains two values: the number of
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Table 4.12: Parameter setting for the GE-based Hyper-Heuristic

Parameter Value
One Point Crossover Probability 0.9

Bit Flip Mutation 0.01
Codon Duplication Probability 0.01

Codon Pruning Probability 0.01
Population Size 100

Selection Tournament with size equal 3
Replacement Steady State
Codon Size 8

Number of Wraps 3
Generations 50

Runs 30

Table 4.13: Replacement strategies used in the surrogate EAs. The column Fixed indicates
whether the number of selected parents is fixed or not.

Setting Fixed Replacement Strategy
R1

Yes
Generational

R2 Steady State
R3 No Steady State
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Table 4.14: Selection Strategies learning results

Replacement strategies
R1 R2 R3

Best Hits 30 30 30
MBF 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000)

GE runs that discovered selection strategies that helped the EA to discover the optimum

(BestHits) and the Mean Best Fitness (MBF) together with the corresponding standard

deviation. The outcomes reveal that, for all training situations, the HH is able to learn

selection strategies that help the surrogate EA to effectively solve the problem at hand.

Looking at the evolved strategies, it is possible to see that the different replacement

strategies used in the surrogate EA lead to the appearance of selection methods with

different selective pressure. The three lines from Fig. 4.7 (one from each replacement

strategy) help to clarify this issue. For every setting we selected the best selection algo-

rithm evolved in each run and created charts displaying the distribution of the appearance

of the possible ranks (values displayed are averages of 30 runs). Note that rank 0 cor-

responds to the best individual and rank 49 to the worst. An inspection of the figure

shows that selection strategies evolved inside a generational surrogate (R1) have a higher

selective pressure than those that evolved in the steady state surrogates. In generational

EAs, the whole population is replaced at each generation. The HH acknowledges the

risk of losing good quality solutions and promotes the appearance of selection strategies

with a high selective pressure, thereby maximizing the likelihood of passing information

contained in good quality solutions to the next generations. On the other hand, in steady

state surrogate EAs, the ranks are distributed more or less evenly. This results is not

unexpected, since in this scenario, the greedy replacement mechanism already ensures

selective pressure: an offspring only enters the population if it is better than its parents.

Therefore the selection strategy in these EAs can act more like a diversity preservation

mechanism. Finally, in Fig. 4.8 we exemplify the rank distribution of one of the best

evolved strategies, using the R1 setting.

4.3.3 Validation

The experiments described in this section aim to study how the best strategies discov-

ered by the GE-based HH behave in KP instances that are different from the one used in
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learning. We selected three evolved strategies from each possible replacement strategy.

In the remainder of this section these selection strategies are identified as EAL1 for the

methods evolved with the R1 replacement strategy, EAL2 for R2 replacement strategy,

and EAL3 for R3 replacement strategy. This experimental study will help to gain insight

into the optimization performance of EAs that have the learned strategies as selection

methods. Also, we will verify if the strategies generalize well to unseen instances and

are competitive with standard hand-designed selection strategies. Three common selec-

tion options (Roulette Wheel, Tournament with size 2, and Tournament with size 3) are

considered. We report results obtained with a generational and a steady-state surrogate

EAs, both of them relying on uniform crossover with rate 0.9 and binary swap mutation

with rate 1/n as variation operators, and with a population size of 50 individuals running

for 5000 generations. The selection strategies were validated using different KP instances,

with a number of items equal to 1000 and 3000 (Table 4.1). Figs. 4.9, 4.10 present the

MBF box plot distribution of the 6 selected strategies (3 evolved and 3 hand-designed)

for each validation scenario: Panel a) displays the results for the generational surrogate,

whereas panel b) presents the results for the steady-state surrogate. Clearly, the perfor-

mance of the evolved strategies is related to the configuration where they are applied.

Strategies EAL1 was evolved with a generational EA surrogate and, as a consequence,

they promote a considerable selection pressure. Therefore it is not a surprise that this

strategy achives good results in a validation scenario where a generational surrogate is

adopted (see Panel a) from Figs. 4.9, 4.10). On the contrary, strategies EAL2 and EAL3

have a low selective pressure and are inadequate for a generational EA environment.

An opposite situation arises in the steady-state validation surrogate (Panel b) from

Figs. 4.9, 4.10). In this scenario, and given the fitness-based replacement strategy

adopted, selection methods evolved in a generational environment tend to converge pre-

maturely to sub-optimal regions of the search space. The remaining 2 evolved strategies

were obtained in a scenario similar to the one used in this validation phase. For that rea-

son, they contain features that help to maintain diversity and to effectively help the EA

to discover the regions of the search space containing the best solutions. The distinction

between these two sets of evolved selection methods confirms that the HH framework

is able to generate strategies that are suited to the specific features of the training envi-

ronment. To complement the results and confirm that the HH is able to evolve selection

methods competitive with the hand-designed approaches, Table 4.15 presents the Fried-
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Table 4.15: Friedman’s ANOVA statistical test results

Instance
KP2 KP3

Setting χ2(5) p-value χ2(5) p-value
Generational 141.5 < 2.2 * 10−16 141.8 < 2.2 * 10−16

Steady-State 94.3 < 2.2 * 10−16 95.8 < 2.2 * 10−16

Table 4.16: Statistical analysis between the learned strategies and the hand-designed using
the Wilcoxon Signed Rank Test for the KP2 instance

Generational Steady-State
Roulette Wheel Tournament(2) Tournament(3) Roulette Wheel Tournament(2) Tournament(3)

EAL1 +++ ++ +++ - - -
EAL2 - - - + ∼ ∼
EAL3 - - - ∼ - -

man’s ANOVA test. The information present in this table show that there are significant

differences between the strategies used in the comparison.

The information displayed in Tables 4.16, 4.17 help to further clarify the relative per-

formance of learned strategies. The pairwise comparison confirms that the evolved

strategies tend to perform better in situations resembling those found during learning.

When the steady-state EA surrogate is adopted, it is possible to see that strategies EAL2

and EAL3 have a reasonable degree of effectiveness. The performance of methods evolved

with the EAL2 setting is particularly impressive, as each one of them outperforms all hand-

designed selection mechanisms.

To complete our analysis we investigate if the evolved strategies generalize well to a

problem different from that used in the learning step. We keep our focus on the KP class,

but consider the Multiple Knapsack Problem (MKP) variant.

We maintain the 6 selection strategies adopted in the previous validation analysis and

keep all other optimization conditions, including the two same surrogate EAs. Fig. 4.11

depicts the MBF box plot distribution of the selection methods, both for the generational

Table 4.17: Statistical analysis between the learned strategies and the hand-designed using
the Wilcoxon Signed Rank Test (α = 0.05) for the KP3 instance

Generational Steady-State
Roulette Wheel Tournament(2) Tournament(3) Roulette Wheel Tournament(2) Tournament(3)

EAL1 +++ +++ +++ - - ∼
EAL2 - - - +++ +++ +++
EAL3 - - - ∼ +++ +++
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Figure 4.9: Optimization results of the 6 selection strategies chosen for the validation
instance n = 1000: panels (a), (b), present the results obtained with the generational and
steady state EAs, respectively.
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Figure 4.10: Optimization results of the 6 selection strategies chosen for the validation
instance n = 3000: panels (a), (b), present the results obtained with the generational and
steady state EAs, respectively.
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Figure 4.11: MKP optimization results of the 6 selection strategies chosen for the gen-
eralization study: panels (a), (b), present the results obtained with the generational and
steady state EAs, respectively.

Table 4.18: Statistical analysis between the learned strategies and the hand-designed using
the Wilcoxon Signed Rank Test for the MKP (see text for details on the notation).

Generational Steady-State
Roulette Wheel Tournament(2) Tournament(3) Roulette Wheel Tournament(2) Tournament(3)

EAL1 +++ +++ ∼ ∼ ∼ ∼
EAL2 - - - +++ +++ +++
EAL3 - - - ∼ ++ +++

(panel a)) and steady-state (panel b)) surrogates. In Table 4.18 we summarize the sta-

tistical comparison between the strategies considered in the generalization study. The

analysis of the results reveals the exact same trend that was identified in the previous val-

idation. Considering the performance of the evolved selection strategies, there is a clear

correlation between the conditions found in the off-line learning step and those of the

validation/generalization experiments. Additionally, optimization results are competitive

with those achieved by hand-designed approaches: the EAL1 method tends to outper-

form standard selection strategies in generational environments, whereas EAL2 and EAL3

excel in steady-state surrogates. These outcomes confirm that the framework was able

to learn strategies that generalize well to different KP variants.
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4.4 Summary

This Chapter presented a set of experiments to gain insight into the influence that learn-

ing conditions play in the effectiveness and robustness of evolved strategies, using the

framework previously described.

The first part was dedicated to the analysis of different off-line learning settings, in

what concerns the population size and the number of generations used to estimate the

fitness of solutions evolved by the GE. The HH framework was executed in the differ-

ent learning scenarios and the best evolved strategies were subsequently applied to un-

seen and larger KP instances. In the validation step, alternative optimization scenarios,

with similar features to those adopted in the learning step, were considered. As a rule,

evolved strategies obtained extremely good results in scenarios similar to those found

during learning, showing that they contain features that are particularly suited for a spe-

cific environment. However, learning settings that allow the execution of a higher number

of generations to estimate the fitness of solutions generated by the GE, allow the discov-

ery of strategies with enhanced robustness. Lastly, we investigated how the evolved

strategies worked in a problem different from that used in learning.

The second part of the chapter focused on the analysis of how different EA replace-

ment methods influence the learning of rank-based selection strategies. We demon-

strated the validity of the approach in the domain of different KP variants. Results ob-

tained show that the HH framework adapts the selective pressure of the evolved mech-

anism, taking into account the specific features of the adopted surrogate. Moreover we

showed that the framework was able to learn effective selection strategies, competitive

with standard hand-designed mechanisms regularly adopted in the literature. Addition-

ally, we devised a set of experiments to see if the evolved strategies were able to gener-

alize to different variants of the problem considered in our study.



5
Optimization Ability of Learned Strategies

To keep the computational effort at a reasonable level, the evaluation step of an HH

search engine relies on small instances and simplified fitness criteria. However, the previ-

ous chapter showed that the learning conditions impact the properties of the algorithms

being evolved. Taking this into account, it is not clear if the limited evaluation conditions

adopted by the HH frameworks compromise the accurate identification of the best op-

timization strategies, i.e., the best strategies discovered during learning might not be the

ones with the best generalization abilities.

In this Chapter we address this question by investigating if the fitness criteria used in

learning provide enough information to identify the most effective and robust strategies.

The study is performed with the framework presented in [Tavares and Pereira, 2012].

There are two reasons to select a different framework. First it is a different example

from the one used in the previous Chapter. Secondly, it has already been recognized by

the scientific community, winning the award for best paper in the renowned conference

EuroGP.

The computational model proposed in [Tavares and Pereira, 2012] is able to auto-

matically generate complete Ant Colony Optimization (ACO) algorithms to tackle the

traveling salesperson problem (TSP)(Section 5.1). A complete description of the gram-

mar used is provided in Section 5.2. In Section 5.3 we provide a study to assess the

optimization ability of the strategies learned by the HH.

81
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Table 5.1: Summary of TSP instances used

Instance Name Number of Cities Best Solution
1 pr76 76 108159
2 lin105 105 14379
3 pr136 136 96772
4 ts225 225 126643
5 pr226 226 80369
6 lin318 318 42029

5.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) aims to find the shortest possible trip connecting

a given set of customer cities. Note that the salesman starts and ends the trip in the

same place and visits each city once. More formally, The TSP can be represented as an

weighted graph G = (N, A), whereN is a set of nodes representing the cities, and A is a set

of arcs connecting the cities. Each arc has an assigned value dij, i, j ∈ N, representing the

distance between the cities i and j. The objective is to find the minimal length Hamiltonian

circuit of the graph G. An Hamiltonian circuit is a closed tour, where each node is visited

exactly once.

The TSP problem can be symmetric or asymmetric. In symmetric TSPs, the value of

the distance dij is independent of the direction of the transversing, i.e., dij = dji. On the

contrary, in asymmetric TSPs the distance might change with the direction of transversing,

i.e., dij ̸= dji.

In this chapter we will focus our attention on the symmetric TSP. We selected several

TSP instances from the TSPLIB1 for the experimental analysis. Table 5.1 summarizes the

general properties (number of cities, optimal solution) of the used instances.

5.2 Design of Ant Algorithms

The framework originally proposed by Tavares et al. [Tavares and Pereira, 2012] to evolve

fully-fledged ACO algorithms, will be used as the test case for our experiments. Ant

Colony Optimization (ACO) algorithms are a set of population-based methods, loosely

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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inspired by the behavior of ant foraging [Dorigo and Stützle, 2004]. Following the original

Ant System (AS) algorithm proposed by Marco Dorigo in 1992, many other variants and

extensions have been described in the literature. To help researchers and practitioners to

select and tailor the most appropriate variant to a given problem, several automatic ACO

design frameworks have been proposed in the last few years. The production set of the

above mentioned framework defines the general architecture of an ACO-like algorithm,

comprising an initialization step followed by an optimization cycle (See Grammar 5.1).

The first stage initializes the pheromone matrix and other settings of the algorithm. The

main loop consists of the building of the solutions, pheromone trail update and daemon

actions. Each component contains several alternatives to implement a specific task. As an

example, the decision policy adopted by the ants to build a trail can be either the random

proportional rule used by AS methods or the q-selection pseudorandom proportional

rule introduced by the Ant Colony System (ACS) variant. If the last option is selected, the

GE engine also defines a specific value for the q-value parameter. The grammar allows the

replication of all main ACO algorithms, such as AS, ACS, Elitist Ant System (EAS), Rank-

based Ant System (RAS), and Max-Min Ant System (MMAS). Additionally, it can generate

novel combinations of blocks and settings that define alternative ACO algorithms. Results

presented in [Tavares and Pereira, 2012] show that the GE-HH framework is able to

learn original ACO architectures, different from standard strategies. Moreover, results

obtained in validation instances reveal that the evolved strategies generalize well and are

competitive with human-designed variants (consult the aforementioned reference for a

detailed analysis of the results).

5.3 Optimization Ability

Experiments described in this section aim to gain insight into the capacity of the GE-

based HH to identify the most promising solutions during the learning step. In concrete,

we determine the relation between the quality of strategies as estimated by the GE and

their optimization ability when applied to unseen and harder scenarios. Such study will

provide valuable information about the capacity of the GE to identify strategies that are

robust.

In practical terms, we take all strategies belonging to the last generation of the GE and

rank them by the fitness obtained in the learning evaluation instance. Since the GE relies
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⟨aco⟩ ::= (aco ⟨param-init⟩ ⟨optim-cycle⟩)
⟨param-init⟩ ::= (init ⟨trail-amount⟩ ⟨weights-init⟩)
⟨trail-amount⟩ ::= (uniform ⟨trail-min⟩ ⟨trail-max⟩) | (tas) | (teas ⟨rate⟩) | (tras ⟨rate⟩

⟨weight⟩) | (tacs) | (tmmas ⟨rate⟩)
⟨weights-init⟩ ::= (init-info ⟨alpha⟩ ⟨beta⟩)
⟨optim-cycle⟩ ::= (repeat-until ⟨loop-ants⟩ ⟨update-trails⟩ ⟨daemon-actions⟩)
⟨loop-ants⟩ ::= (foreach-ant make-solution-with ⟨decision-policy⟩ (if ⟨bool⟩ (local-

update-trails ⟨decay⟩)))
⟨decision-policy⟩ ::= (roulette-select) | (q-select ⟨q-value⟩)
⟨update-trails⟩ ::= (progn ⟨evaporate⟩ ⟨reinforce⟩)
⟨evaporate⟩ ::= (do-evaporation

(if ⟨bool⟩ (full-evaporate ⟨rate⟩))
(if ⟨bool⟩ (partial-evaporate ⟨rate⟩ ⟨ants-subset⟩)))

⟨reinforce⟩ ::= (do-reinforce
(if ⟨bool⟩ (full-reinforce))
(if ⟨bool⟩ (partial-reinforce ⟨ants-subset⟩))
(if ⟨bool⟩ (rank-reinforce ⟨many-ants⟩))
(if ⟨bool⟩ (elitist-reinforce ⟨weight⟩))

⟨daemon-actions⟩ ::= (do-daemon-actions
(if ⟨bool⟩ (mmas-update-pheromone-limits)))

⟨ants-subset⟩ ::= ⟨single-ant⟩ | ⟨many-ants⟩
⟨single-ant⟩ ::= (all-time-best) | (current-best) | (random-ant) | (all-or-current-best

⟨probability⟩)
⟨many-ants⟩ ::= (all-ants) | (rank-ant ⟨rank⟩)
⟨weight⟩ ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | (n-ants)

⟨trail-min⟩ ::= 0.000001

⟨trail-max⟩ ::= 1.0

⟨alpha⟩ ::= 1 | 2 | 3

⟨beta⟩ ::= 1 | 2 | 3

⟨q-value⟩ ::= 0.7 | 0.75 | 0.8| 0.85 | 0.9 | 0.95 | 0.98 | 0.99

⟨decay⟩ ::= 0.01 | 0.025 | 0.05 | 0.075 | 0.1 | 0.2

⟨rate⟩ ::= 0.01 | 0.02 | 0.1 | 0.25 | 0.5 | 0.75 | 0.9

⟨probability⟩ ::= 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9

⟨rank⟩ ::= 5 | 10 | 25 | 50 |75

⟨bool⟩ ::= t | nil

Grammar 5.1: Grammar used to evolve ACO algorithms [Tavares and Pereira, 2012]
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Table 5.2: GE Learning Parameters: adapted from [Tavares and Pereira, 2012]

Runs 30
Population Size 64
Generations 40
Individual Size 25

Wrapping No
Crossover Operator One-Point with a 0.7 rate
Mutation Operator Integer-Flip with a 0.05 rate

Selection Tournament with size 3
Replacement Steady State

Learning Instances pr76, ts225

on a steady-state replacement method, the last generation contains the best optimization

strategies identified during the learning phase. Then, these strategies are applied to un-

seen instances and ranked again based on the new results achieved. The comparison of

the ranks obtained in different phases will provide relevant information in what concerns

the generalization ability of the evolved strategies.

The GE settings used in the experiments are adapted from the original work of [Tavares

and Pereira, 2012], and are outlined in Table 5.2. The population size is set to 64 individ-

uals, each one composed by 25 integer codons, which is an upper bound on the number

of production rules needed to generate an ACO strategy using the grammar adopted in

this work. As this grammar does not contain recursive production rules, it is possible

to determine the maximum number of values needed to create a complete phenotype.

Also, wrapping is not necessary since the mapping process never goes beyond the end

of the integer string.

Two different instances from Table 5.1 were selected to learn the ACO strategies:

pr76 and ts225. Each ACO algorithm encoded in a GE solution is executed once during

K = 100 iterations. The fitness assigned to this strategy corresponds to the best solution

found. The strategies encode all the required settings to run the ACO algorithm, with the

exception of the colony size (M), which is set to 10% of the number of cities (truncated

to the closest integer).

In what concerns the validation step, the best ACO strategies are applied to four

different TSP instances: lin105, pr136, pr226, lin318. In this phase, all ACO algorithms

are run for 30 times and the number of iterations is increased to 5000. The size of the
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Table 5.3: ACO Validation Parameters

Runs 30
Iterations 5000

Colony Size 10% of the Instance Size
Instances lin105, pr136, pr226, lin318

colony is the same (10% of the size of the instance being optimized). Table 5.3 summarises

the parameters used. In both phases, the results are expressed as a normalized distance

to the optimum.

Results

Fig. 5.1 displays the ranking distributions of the best ACO strategies learned with the pr76

instance. The 4 panels correspond to the 4 different validation instances. Each solution

from the last GE generation is identified using an integer from 1 to 64, displayed in the

horizontal axis. These solutions are ranked by the fitness obtained in training (solution 1

is the best strategy from the last generation, whilst solution 64 is the worst). The vertical

axis corresponds to the position in the rank. Small circles highlight the learning rank and,

given the ordering of the solutions from the GE last generation, we see a perfect diagonal

in all panels. The small triangles identify the ranking of the solutions achieved in the 4

validation tasks (one on each panel). Ideally, these rankings should be identical to the

ones obtained in training, i.e., the most promising solutions identified by the GE would

be those that generalize better to unseen instances.

An inspection of the results reveals an evident correlation between the behavior of

the strategies in both phases. An almost perfect line of triangles is visible in the 4 panels,

confirming that the best strategies from training keep the good performance in valida-

tion. This trend is visible across all the validation instances and shows that, with the pr76

instance, training is accurately identifying the more robust and effective ACO strategies.

Fig. 5.2 displays the ranking distributions of the best ACO strategies learned with the

ts225 instance. Although the general trend is maintained, a close inspection of the results

reveals some interesting disagreements. The best ACO strategies learned with ts225

tend to have a modest performance when applied to small validation instances, such as

lin105 and pr136. On the contrary, they behave well on larger instances (see, e.g., the

results obtained with the validation instance from panel d)). This outcome confirms that
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Figure 5.1: Ranking distribution of the best ACO strategies discovered with the pr76
learning instance.
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Figure 5.2: Ranking distribution of the best ACO strategies discovered with the ts225
learning instance.
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the training conditions impact the structure of the evolved algorithmic strategies, which

reinforces the results obtained in the previous Chapter. The ts225 instance is considered

a hard TSP instance [Merz and Freisleben, 2001] and, given the results displayed in Fig. 5.2,

it promotes the evolution of ACO strategies particularly suited for TSP problems with

a higher number of cities. In the remainder of this section we present some additional

results that help gain insight into these findings.

To authenticate the correlation between learning and validation we computed the

Pearson correlation coefficient between the rankings obtained in each phase. This coeffi-

cient ranges between -1 and 1, where -1 identifies a completely negative correlation and

1 highlights a total correlation (the best strategies in learning are the best in validation).

The results obtained are presented in Table 5.4. Columns contain instances used in learn-

ing, whilst rows correspond to validation instances. The values from the table confirm

that there is always a clearly positive correlation between the two phases, i.e., the quality

obtained by a solution in learning is an accurate estimator if its optimization ability. The

lowest values of the Pearson coefficient are obtained by strategies learned with the ts225

instance and validated in small TSP problems, confirming the visual inspection of Fig. 5.2.

In this correlation analysis we adopted a significance level of α = 0.05. All the p-values

obtained were smaller than α, thus confirming the statistical significance of the study.

To complement the analysis, we present in Fig. 5.3 the absolute performance of the

best learned ACO strategies in the 4 selected validation instances. Each panel comprises

one of the validation scenarios and contains a comparison between the optimization per-

formance of strategies evolved with different learning instances (black mean and error

bars are from ACO strategies trained with the pr76 instances, whilst the grey are from

algorithms evolved with the ts225 instance). In general, for all panels and for strate-

gies evolved with the two training instances, the deviation from the optimum increases

with the training ranking, confirming that the best algorithms from phase 1 are those that

exhibit a better optimization ability. However, the results reveal an interesting pattern

in what concerns the absolute behavior of the algorithms. For the smaller validation

instances (lin 105 and pr136 in panels a) and b)), the ACO strategies evolved by the

smaller learning instances achieve a better performance. On the contrary, ACO algo-

rithms learned with the ts225 instance are better equipped to handle the largest valida-

tion problem (lin318 in panel d)). This is another piece of evidence that confirms the

impact of the training conditions on the structure of the evolved solutions. A detailed
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analysis of the algorithmic structure reveals that the pr76 training instance promotes the

appearance of extremely greedy ACO algorithms (e.g., they tend to have very low evap-

oration levels), particularly suited for the quick optimization of simple instances. On the

contrary, strategies evolved with the ts225 training instance strongly rely on full evap-

oration, thus promoting the appearance of methods with increased exploration ability,

particularly suited for larger and harder TSP problems.

5.3.1 Measuring Overfitting

To complete our analysis we investigate the evolution of overfitting while learning ACO

strategies. To estimate the occurrence of overfitting we selected one additional instance

for each training scenario, with the same size of the instance used in training (eil76 and

tsp225, respectively). In each GE generation, the current best ACO strategy is applied

to this new test instance and the quality of the obtained solution is recorded (this value

is never used for training).

Fig. 5.4 and 5.5 present the evolution of the Mean Best Fitness (MBF) during the

learning phase, respectively for the pr76 and ts225 instances. Both figures contain two

panels: panel a) exhibits the evolution of the MBF measured by the learning instance,

which corresponds to the value used to guide the GE exploration; panel b) displays the

MBF obtained with the testing instance and it is only used to detect overfitting.

The results depicted in panels 5.4a and panel 5.5a show that the HH framework

gradually learns better strategies. A brief perusal of the MBF evolution reveals a rapid

decrease in the first generations, followed by a slower convergence. This is explained

by the fact that in the beginning of the evolutionary process the GE combines different

components provided by the grammar to build a robust strategy, whilst at the end it

tries to fine-tune the numeric parameters. The search for a meaningful combination of

components has a stronger impact on fitness than modifying numeric values.

Overfitting occurs when the fitness of the learning strategies keeps improving, whilst

it deteriorates in testing. Panels 5.4b and 5.5b show the MBF for the testing step. An

inspection of the results shows that it tends to decrease throughout the evolutionary

run. This shows that the strategies being evolved are not becoming overspecialized, i.e.,

they maintain the ability to solve instances different from the ones used in training.
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Figure 5.3: MBF of the best evolved ACO strategies in the 4 validation instances. Black
symbols identify results from strategies learned with the pr76 instance and grey symbols
correspond to results from strategies obtained with the ts225 instance.



92 CHAPTER 5. OPTIMIZATION ABILITY OF LEARNED STRATEGIES

5 10 15 20 25 30 35
generations

0.00

0.02

0.04

0.06

0.08

0.10

e
rr
o
r

MBF

(a) Learning Fitness

5 10 15 20 25 30 35
generations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

e
rr
o
r

MBF

(b) Testing Fitness

Figure 5.4: Evolution of the MBF for the pr76 learning instance and the corresponding
eil76 testing instance

Table 5.4: Pearson correlation coefficients

pr76 ts225
lin105 0.98 0.81
pr136 0.90 0.90
pr226 0.97 0.95
lin318 0.95 0.98
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Figure 5.5: Evolution of the MBF for the ts225 learning instance and the corresponding
tsp225 testing instance
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5.4 Summary

In this Chapter we studied the correlation between the quality exhibited by strategies

during learning and their effective optimization ability when applied to unseen scenar-

ios. We relied on an existing GE-based HH to evolve full-fledged ACO algorithms to

perform the analysis. Results revealed a clear correlation between the quality exhibited

by the strategies in both phases. As a rule, the most promising algorithms identified in

learning generalize better to unseen validation instances. This study provides valuable

guidelines for HH practitioners, as it suggests that, in this case, the limited training condi-

tions do not seriously compromise the identification of the algorithmic strategies with the

best optimization ability. The outcomes also confirmed the impact of the training condi-

tions on the structure of the evolved solutions. Training with small instances promotes

the appearance of greedy optimization strategies particularly suited for simple problems,

whereas larger (and harder) training cases favor algorithmic solutions that excel in more

complicated scenarios. Finally, a preliminary investigation revealed that training seems to

be overfitting free, i.e., the strategies being learned are not becoming overspecialized to

the specific instance used in the evaluation.



6
Structured Grammatical Evolution

In this Chapter we focus our attention on the HH search engine. Although Grammati-

cal Evolution is flexible and allows the evolution of variable length programs, it has some

known issues. These issues are issues related with locality and redundancy [Keijzer et al.,

2002, Rothlauf and Oetzel, 2006, Thorhauer and Rothlauf, 2014]. A representation is

said redundant when several different genotypes correspond to one phenotype. The

original proposal of GE contains several experimental results corroborating the bene-

fits of redundancy [O’Neill and Ryan, 2003]. In any case, this is a highly debated topic

among researchers, and, clearly, excessive redundancy levels slow down evolution, thus

decreasing the performance of EAs [Rothlauf, 2006].

Locality studies how variations performed in the genotype reflect on the phenotype.

An EA has high locality if small modifications on the genotype result in small modifications

in the phenotype, thus creating conditions for an effective sampling of the search space.

If this condition is not satisfied, the exploration performed by an EA tends to resemble

random search [Gottlieb and Eckert, 2000,Gottlieb and Raidl, 2000, Raidl and Gottlieb,

2005,Rothlauf, 2003]. In section 6.1 we provide further details on recent developments

to improve GE in order to minimize its issues.

Structured Grammatical Evolution (SGE) is our proposal to address the limitations

of GE. Its distinctive feature is having a one-to-one correspondence between genes and

non-terminals of the grammar being used (see Section 6.2). The effectiveness of SGE

is tested on a set of benchmarks problems, and results were encouraging, as the new

representation was able to obtain better optimization results (Section 6.3).

95
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Moreover, we present an in-depth analysis that helps to gain insight into the distinctive

features of SGE and to understand why it outperforms the standard GE representation

in most of the considered optimization scenarios. We rely on a set of static measures

to characterize the interactions between the representation and variation operators and

assess how they influence the interplay between the genotype-phenotype spaces (Section

6.4). Finally we study the impact of the choices that we made while designing the SGE

(Section 6.5).

6.1 Background

There are many reports in the literature addressing the extension/improvement of the

original GE framework (see, e.g., [Keijzer et al., 2002,O’Neill and Brabazon, 2006,O’Neill

and Brabazon, 2006, O’Neill et al., 2004]). Additionally there are several studies that

aim to gain insight on how GE explores the search space [Rothlauf and Oetzel, 2006,

Thorhauer and Rothlauf, 2014]. The contributions directly related with the current work

are briefly reviewed in the next sections.

Mapping

The work of Keijzer et al. [Keijzer et al., 2002] is one of the first attempts to improve the

mapping of standard GE by removing the bias that may exist when many rules from the

grammar have the same number of production choices. Consider the following produc-

tion set:

< bitstring >::= < bit > | < bit >< bitstring >

< bit >::=0|1
In this example there are two possible choices for each rule. The modulo operation will

always select the first option (< bit > or 0) when an even codon is considered, whereas

it will choose the second option (< bit >< bitstring > or 1) when odd codons are used.

This creates a linkage bias between different productions, which may decrease the GE ef-

fectiveness. To remove this effect they propose the bucket rule, a new mapping strategy

that allows the same codon to select for different production choices.

Chorus [Azad, 2003,Ryan et al., 2002] pioneered the proposal of a position indepen-

dent GE, whose representation is loosely inspired on protein production to regulate the
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metabolic pathways of the cell. In this system the genotype is composed by 8-bit integers

that represent the rules of the associated BNF grammar. The key difference from GE

is that each gene value corresponds to a specific production rule. The modulo opera-

tion considers the total number of production rules in the grammar, so a specific allele

always maps to the same rule, regardless of its position in the genotype. The analysis pre-

sented in the above mentioned reference reveals that Chorus obtains results comparable

to standard GE in a set of selected optimization problems.

In [O’Neill et al., 2004], O’Neill et al. proposed πGE, another position independent

alternative to GE. The standard GE mapping creates a positional dependency, as the

derivation is always performed by expanding the leftmost non-terminal. πGE removes

this bias by creating codons with two values: nont and rule. In this case, nont helps to select

the next non-terminal NT to be expanded: NT = nont%count, where nont is the value

present in the genotype, and count is the number of non-terminals still in the derivation

tree. The rule value of the codon pair, as in standard GE, selects which production rule

should be applied from the selected non-terminal NT.

Fagan and coworkers [Fagan, 2013, Fagan et al., 2010] compared the performance

of several mapping mechanisms. Besides the aforementioned πGE and the traditional

depth-first expansion, they also considered breadth-first and a random expansion mech-

anism. Results revealed that πGE outperforms standard GE, confirming the relevance of

investigating new, alternative, genotypic representations, and the corresponding mapping

processes.

Representation and Search Operators

In 2002 Sullivan et al. [O’Sullivan and Ryan, 2002] compared the performance of GE-

based systems, while using different search strategies. In concrete, they separately con-

sidered hill-climbing, simulated annealing, random search, and genetic algorithms as the

GE search engine. Results obtained in several benchmark problems revealed that the ge-

netic algorithm is the best option for achieving an enhanced performance. Additionally,

the authors analysed the impact of different search operators and verified that crossover

is critical for the success of the optimization.

Later, Rothlauf et al. [Rothlauf and Oetzel, 2006] pioneered the analysis of locality

and redundancy in GE. Their research revealed that, in approximately 90% of the cases,
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a genotypic mutation does not change the phenotype. This result shows that GE suffers

from extremely high levels of redundancy, which is mostly a consequence of the many-

to-one mapping that allows multiple codons to correspond to the same production rule.

Another important result of this work is related with the remaining 10% of mutations.

Specifically, when the genotype suffers one mutation, changes of one or more units oc-

cur at the phenotypic level. Units of change in this level are estimated by the tree edit

distance [Zhang and Shasha, 1989], that considers the minimal deletions, insertions, or

replacements needed to transform one phenotype into the other. Empirical results ob-

tained in two optimization problems reveal that the locality of the genotype-phenotype

mapping is low, as many genotypic neighbors originate highly dissimilar phenotypes. Re-

cently Thorhauer et al. [Thorhauer and Rothlauf, 2014] extended the previous work and

compared the locality of the standard GE operators with standard GP. They analyzed

the locality on problems that rely on binary trees, by performing random walks through

the search space and measuring the distance between parents and offspring. This re-

search confirms the low locality of GE, reinforcing the relevance of developing alternative

representations and associated operators that increase locality.

Byrne et al. [Byrne et al., 2009,Byrne et al., 2010] proposed two distinct GE mutation

operators, with complementary effects on the locality level: nodal mutation is a high-

locality operator that changes a single node labelling in the derivation tree; structural

mutation is a low-locality operator that modifies the structure of the derivation tree. An

experimental study confirms the complementary effect of the two operators, as structural

mutation promotes the exploration of the search space, whereas nodal mutation focuses

on the exploitation of the neighborhood of current solutions.

In [Castle and Johnson, 2010], the authors present an experimental study that iden-

tifies a positive correlation between the locus where variation operators are applied and

their ability to change the phenotype. In concrete, results show that the application of

crossover and mutation to the beginning of the genotype promotes low-locality, as it may

alter the interpretation of all the remaining codons.

Hugosson et al. [Hugosson et al., 2010] analyze the impact of three different geno-

typic representations on GE effectiveness: binary, gray coding, and integer. Experimental

results are inconclusive, as no representation clearly outperforms the others. According

to the authors, this outcome suggests that the relevance of a given GE representation

cannot be decoupled from the mapping process embedded in the grammar.
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< start >::=< expr >< op >< expr > | < expr >
< expr >::=< term >< op >< term > |(< term >< op >< term >)

< term >::= x|0.5
< op >::= +| − | ∗ |/

Figure 6.1: Example of a production set to create polynomial expressions

6.2 Structured Grammatical Evolution

Structured Grammatical Evolution (SGE) is a novel genotypic representation for Gram-

matical Evolution. In SGE each gene is linked to a specific non-terminal, and it comprises

a list of integers used to select an expansion option. The length of each list is deter-

mined by computing the maximum possible number of expansions of the corresponding

non-terminal (see details in section 6.2.1). This structure ensures that the modification

of a gene does not affect the derivation options of other non-terminals, thus limiting the

number of changes that can occur at the phenotypic level. The values inside each list

are bounded by the number of possible expansion options of the corresponding non-

terminal. Therefore, mapping does not rely on the modulo rule, thus reducing the re-

dundancy associated with it.

As an example, consider the grammar depicted in Fig. 6.1. The set of non-terminals

is {< start >,< expr >,< term >,< op >}. Then, the SGE genotype is composed

by four genes, each one linked to a specific non-terminal. To determine the length of

the gene’s lists we compute the maximum number of expansions of a non-terminal. The

< start > symbol is expanded only once, as it is the grammar axiom. The < expr >

symbol is expanded, at most, twice, because of the rule < expr >< op >< expr >. The

computation of the list size for < term > establishes a direct dependence between this

non-terminal and < expr >: each time < expr > is expanded, < term > is expanded

twice (in the two possible expansion options). As the grammar allows a maximum of two

< expr > expansions, it immediately follows that the list size for the < term > gene is

four. Following the same line of reasoning, the list size for the < op > gene is 3. Thus,

the list sizes for each gene are: < start >: 1, < expr >: 2, < term >: 4, < op >: 3.

To complete the list inside each gene we take the number of derivation options cN of

the corresponding non-terminal, and assign a random value from the interval [0, cN − 1]
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Genotype

<start> <expr>

[0] [0,1]

<term> <op>

[0,1,0,1] [0,2,1,3]

(a) SGE Genotype 1

Genotype

<start> <expr>

[0] [1,1]

<term> <op>

[0,1,0,1] [1,3,1,1]

(b) SGE Genotype 2

<start>

<expr> <op> <expr>

<term> <op> <term> <term> <op> <term>( )

x + 0.5

*

x - 0.5

(c) Derivation Tree for Genotype 1

<start>

<expr> <op> <expr>

<term> <op> <term> <term> <op> <term>( )

x - 0.5

/

x - 0.5

( )

(d) Derivation Tree for Genotype 2

Figure 6.2: Panels (a) and (b) exemplify two possible genotypes for the production set of
Fig. 6.1. Panels (c) and (d) display the corresponding derivation trees.

to every position. The < start >, < expr > and < term > symbols have cN = 2,

whereas < op > has cN = 4. In Fig. 6.2 we exemplify two possible SGE genotypes for

this example.

The translation process of the genotype from Fig. 6.2a is illustrated in Fig. 6.3. The

operation starts at the < start > axiom and it proceeds in the standard way by expanding

non-terminals in a left-first approach. The first unused integer of the < start > gene list is

0, which replaces the axiom with< expr >< op >< expr >. Given the 0 value in the first

position of the < expr > non-terminal, the expression is transformed into < term ><

op >< term >< op >< expr >. Next, < term > is replaced by x and the process

continues until there are no more symbols to derive. The final expression that results

from the mapping of the genotype displayed in Fig. 6.2a is “x+0.5*(x-0.5)”. Following an

identical approach, the genotype from Fig. 6.2b is translated into the phenotype “(x-0.5)

* (x-0.5)”.

6.2.1 Genotypic Structure

To establish the structure of the genotype for a given grammar, one must compute an

upper bound for the number of non-terminal expansions, as this defines the list size for

each gene. This is accomplished in a two-step process. Initially, Alg. 15 iterates through

the grammar productions and records the maximum number of non-terminal references
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<start>::= <expr> <op> <expr> 

<expr> ::= <term> <op> <term> | (<term> <op> <term>)

<term> ::= x | 0.5

<op> ::= + | - | * | /

Derivation Sequence
(Expansion of the left-most non-terminal)

<start>

<expr> <op> <expr>

<term><op><term> <op> <expr>

0

Genotype

<start> <expr>

[0] [0,1]

<term> <op>

[0,1,0,1] [0,2,1,3]

0

0

x<op><term> <op> <expr>

0

x+<term> <op> <expr>

1

x+0.5 <op> <expr>

2

x+0.5 * <expr>

1

x+0.5 *( <term><op><term>)

0

x+0.5 * (x<op><term>)

1

x+0.5 * (x-<term>)

1

x+0.5 * (x-0.5)

Figure 6.3: Translation of the genotype from Fig. 6.2a: Derivation sequence.
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that occur in each choice. At the same time, a set establishing a relation between non-

terminals is built. In step 2, Alg. 16 iterates the set of non-terminals and recursively

determines an upper bound for the number of expansions of each non-terminal. This

algorithm takes into account the dependences between the non-terminals (e.g., the de-

pendence between < expr > and < term > in the production set of Fig. 6.1)

Algorithm 15 Calculation of the non-terminal references.
countReferences← {}
isReferencedBy← {}
for nt in nonTerminalsSet do

for production in grammar[nt] do
for option in production do

if option ∈ nonTerminalsSet then
isReferencedBy[option]← nt
count[option]← count[option] + 1

end if
end for

end for
for key in count do

countReferences[key][nt]← max(countReferences[key][nt], count[key])
end for

end for

6.2.2 Recursive Grammars

The pre-processing described in the previous section does not consider recursive gram-

mars. Standard GE deals with recursion by always trying to perform the translation into

an executable program. If it runs out of integers, GE assigns the worst possible fitness

value to the individual.

SGE deals with recursion in a different way, as it contains a parameter that establishes

the maximum level of recursion. This value is selected prior to the application of the

algorithm to a specific problem and, given this approach, a set of intermediate symbols

that mimic the levels of the recursion tree must be inserted in the grammar. The following

example is an excerpt of a grammar for symbolic regression problems:
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Algorithm 16 Calculation of the upper bound for non-terminals expansion.
function findReferences(nt, isReferencedBy, countReferencesByProd)

references← getTotalReferencesOfCurrentProduction(countReferencesByProd, nt)
results← []
if nt = startSymbol then

return 1
end if
for ref in isReferencedBy[nt] do

result.append(findReferences(ref,isReferencedBy,countReferencesByProd))
end for
references← references ∗ max(result)

return references
end function

< start >::= < expr >

< expr >::= < expr >< op >< expr > | < var >

< op >::= + | − | ∗ |/

< var >::=x

As the < expr > production is recursive, it needs to be rewritten before the SGE

structure is determined. Assuming that 2 levels of recursion were established it becomes:

< start >:= < expr >

< expr >::= < expr_lvl_0 >< op >< expr_lvl_0 >

| < var >

< expr_lvl_0 >::= < expr_lvl_1 >< op >< expr_lvl_1 >

| < var >

< expr_lvl_1 >::= < var >< op >< var > | < var >

< op >::= + | − | ∗ |/

< var >::=x

The grammar transformation satisfies two conditions: first, there will be no invalid

solutions, as the mapping process always ends; also, the grammar symbols maintain their
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selection probability, since they are always replicated to each new added level.

All GP variants impose a constraint in the maximum program size, a mandatory step

to prevent solutions from growing excessively and becoming computationally intractable.

The constraint might be imposed in terms of tree depth, number of available nodes [Koza,

1992], or by imposing limits on the number of wrappings as performed in GE [Dempsey

et al., 2009]. Following a similar line of procedure, SGE limits the maximum program size

by imposing a limit on the number of recursive calls.

6.2.3 Genetic Operators

GE relies on standard operators to explore the search space, looking for promising solu-

tions to the problem at hand. Two existing variation operators are adapted to work with

SGE.

Recombination

SGE recombination is based on the uniform crossover for binary representations. It gen-

erates a random binary mask and the offspring are created by selecting the parents genes’

based on the mask values. Recombination does not modify the lists inside the genes. Fig.

6.4 illustrates an application of this operator.

Mutation

This operator has the ability to modify the lists inside the SGE genes. When applied to

a specific list value, it changes it to a new random value from [0, cN − 1], where cN is the

number of derivations options of the non-terminal linked this gene. Fig. 6.5 illustrates an

application of mutation.

6.3 Experimental Results

This section presents a set of experimental results to assess the optimization performance

of SGE and to compare it with standard GE. We selected several benchmark problems

according to the guidelines proposed by White et al. [White et al., 2013]. These problems
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Figure 6.4: Application of the recombination operator. Panel (a) shows how to combi-
nation two parents two produce offspring. Panels (b) and (c) show the derivation trees of
the two parents, and panels (d) and (e) show the derivation trees for the two generated
offspring.
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Mutation
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(a) Mutation Application
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(b) Derivation Tree of Offspring 1 before mutation
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(c) Derivation Tree of Offspring 1 after mutation

Figure 6.5: Application of the mutation operator. Panel (a) exemplifies how mutation
changes the values inside each list. Panel (b) shows the derivation tree before the mu-
tation, whilst panel (c) shows the derivation tree resulting from the application of the
mutation.
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Table 6.1: Settings for the Experimental Analysis

Parameter GEVA SGE

Initial Population 500
Recombination rate 0.9

Mutation rate 0.02
Replacement Steady-State with a generation gap of 0.9

Selection Tournament with size 3
Generations 50

Recombination Operator Single Point Crossover SGE Crossover
Mutation Operator Integer Flip Mutation SGE Mutation

Genotype Size 128 (Ramped Half and Half Initialization) -
Wraps 3 -

Maximum Level of Recursion - 6

are classified in three categories: symbolic regression, predictive modelling, and path

finding.

The GEVA implementation of GE is adopted [O’Neill et al., 2008] in the experiments.

As SGE does not have invalid individuals, GE sensible initialization is used to create equiva-

lent initial populations. The complete experimental settings of both approaches are sum-

marized in Table 6.1. The sum of the errors is the fitness functions adopted for all tests

and 30 independent runs are performed in each optimization scenario. Results presented

are always averages of the 30 runs.

6.3.1 Symbolic Regression

In this work we consider two instances: the harmonic curve and the pagie polynomial.

The main objective of the harmonic curve regression is to approximate the polyno-

mial
∑x

i
1
i in the interval x ∈ [1, 50]. In addition to the standard optimization task, this

problem also considers a generalization step that extrapolates the fitting to the interval

x ∈ [51, 120]. The grammar for the harmonic curve regression is defined in Grammar

6.1. Note that the terminal inverse is 1/x.

In the pagie polynomial, the goal is to approximate the function defined by 1
1+x−4 +

1
1+y−4 , where x, y are sampled in the interval [−5, 5], with a step s = 0.4. Even though it

defines a smooth search space, the pagie polynomial has the reputation for being difficult
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N ={start, expr, op, pre_op, var}
T ={+,−, inverse, sqrt, x}
S ={start}

And the production set P is:

⟨start⟩ ::= ⟨expr⟩
⟨expr⟩ ::= ⟨expr⟩⟨op⟩⟨expr⟩ | ( ⟨expr⟩ ) | ⟨pre_op⟩(⟨expr⟩) | ⟨var⟩
⟨op⟩ ::= + | *

⟨pre_op⟩ ::= + | - | inverse | sqrt

⟨var⟩ ::= x

Grammar 6.1: Grammar used in the Harmonic Curve Regression

[White et al., 2013, Harper, 2012]. Like in the first task, this problem also considers a

generalization step. Here, a compact grid of points, in which x, y are obtained from the

same interval with a smaller step of s = 0.1, is defined. The grammar for this problem is

defined in Grammar 6.2.

The optimization results obtained by SGE and GE in the two regression problems are

displayed in Fig. 6.6. The evolution of the Mean Best Fitness (MBF) confirms that both ap-

proaches gradually discover better approximations for the polynomials under considera-

tion. There are, however, important differences between GE and SGE. In both problems,

the results obtained by SGE are consistently better than those of GE throughout the opti-

mization run, revealing that the new representation is more effective in building models to

accurately approximate the target polynomial in the given interval. Additionally, SGE can

deliver good quality solutions faster than standard GE, revealing an enhanced efficiency.

To complement the analysis we verified how some evolved models generalize to the

extended intervals. For each representation, we selected the best solutions from the

initial population (GE1, SGE1), from the population of the 25th generation (G25, SGE25)

and from the last population (G50, SGE50). The results of the application of these models

to the generalization step are presented in the boxplots of Fig. 6.7. For the harmonic

curve, the general trend is for an enhanced performance of models discovered in the

last generations. This is a relevant outcome, as it reveals that, in the harmonic curve,
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N ={start, expr, op, pre_op, var}
T ={+,−, /, sin, cos, exp, log, x, y}
S ={start}

And the production set P is:

⟨start⟩ ::= ⟨expr⟩
⟨expr⟩ ::= ⟨expr⟩⟨op⟩⟨expr⟩ | ( ⟨expr⟩ ) | ⟨pre_op⟩(⟨expr⟩) | ⟨var⟩
⟨op⟩ ::= + | - | * | /

⟨pre_op⟩ ::= sin | cos | exp | log

⟨var⟩ ::= x | y

Grammar 6.2: Grammar used in the Pagie Polynomial
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Figure 6.6: Evolution of the MBF in the two regression problems: (a) Harmonic Curve;
(b) Pagie.
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Figure 6.7: Results obtained by selected evolved models in the generalization step of the
regression problems: (a) Harmonic Curve; (b) Regression.

neither GE or SGE are overfitting. A closer inspection reveals that both GE variants

obtain comparable results, and there are never statistically significant differences between

pairs of models taken from the same generation. This outcome suggests that, in this

particular problem, SGE and GE have similar generalization ability. The scenario on the

Pagie polynomial generalization task is different. In this problem, SGE is able to clearly

find strategies that generalize better than standard GE. Also, SGE variance is smaller,

revealing a higher reliability. A direct comparison of the GE boxes in the generalization

task discloses an overfitting situation, since the errors increase as we consider models

obtained in later generations.

6.3.2 Path Finding

The Santa Fe Ant Trail is the selected path finding problem. It consists in defining a strategy

that allows an artificial ant to collect 89 food pellets from a 32x32 toroidal grid in a limited

number of steps.

The ant starts in the top-left corner of the grid and can turn left, right, move one

square forward, and check if the square ahead contains food. Grammar 6.3 shows the

grammar used in this problem.

The result obtained in this problem are visible in Fig 6.8. As the data reflects SGE is

more effective than GE, since it can build programs that allow the ant to eat all the pieces

of food in the grid. Also, we see again that SGE is more efficient since it finds good quality
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N ={start, code, line, op}
T ={ant.sense_food, ant.turn_left, ant.turn_right, ant.move_forward, (, )}
S ={start}

And the production set P is:

⟨start⟩ ::= ⟨code⟩
⟨code⟩ ::= ⟨line⟩ |

⟨code⟩
⟨line⟩

⟨line⟩ ::= if ant.sense_food():
⟨line⟩
else:
⟨line⟩
| ⟨op⟩

⟨op⟩ ::= ant.turn_left() | ant.turn_right() | ant.move_forward()

Grammar 6.3: Grammar used in the Santa Fe Ant Trail

solutions faster.

6.3.3 Predictive Modelling

Predictive modelling considers sets of previously labelled data to create models that cor-

rectly predict the label of unseen data. For our experiments we selected Bio, PPB and

LD50, three high-dimensional datasets from the pharmacokinetics domain. In the Bio

dataset the goal is to predict the human oral bioavailability (represented as %F). %F is

the parameter that measures the percentage of the initial orally submitted drug dose that

effectively reaches the systemic blood circulation after passing through the liver. This

dataset consists of 359 instances of 242 elements (241 descriptors that identify a drug,

followed by the %F value for that drug). The aim of the PPB dataset is to predict the

protein-plasma binding level (%PPB), i.e., to quantify the initial dose of a drug that reaches

the blood circulation and binds to the plasma proteins. PPB is composed by 131 instances

of 627 descriptors (626 features that identify a drug, followed by the known %PPB value

for that drug). Lastly, the goal LD50 is to build a model that predicts the median lethal
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Figure 6.8: Santa Fe Ant Trail.

dose of a set of drug compounds. This dataset is composed by 234 instances where each

is a vector of of 627 elements (626 features that identify a drug, followed by the known

LD50 value for that drug). For a more detailed description of the datasets please refer

to [Archetti et al., 2007,Gonçalves and Silva, 2013].

The experiments described in this section correspond to a typical machine learning

task and the datasets are divided in two equal parts. 50% of the instances are used in

training, which is when the GE variants try to evolve promising models. Afterwards,

the remaining 50% are used to assess the generalization of the best evolved models.

Following the guidelines of the aforementioned references, the number of generations of

the evolutionary process is increased to 200 generations. The grammar for the predictive

modeling is presented in Grammar 6.4.

Figs. 6.9a), 6.10a), 6.11a) present the evolution of the MBF during the training period,

both for GE and SGE. The outcomes are in line with the optimization results obtained in

previous problems and confirm SGE effectiveness and efficiency: the new representation

is able to discover better solutions in a lower number of generations.

Once again we selected three models evolved with each GE variant to estimate the

generalization ability: one from the beginning, one halfway and another at the final gen-

eration. The testing results are depicted in the boxplots from Figs. 6.9b), 6.10b),6.11b).

An inspection of the results reveals two different scenarios: overfitting does not occur

for the Bio and PPB datasets, as models from the final training stages generalize better.

Furthermore, a direct comparison between GE200 and SGE200 demonstrates a clear

advantage of the solutions evolved with SGE. In both datasets, the new representation
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N ={start, expr, op, var}
T ={+,−, /, xi}
S ={start}

And the production set P is:

⟨start⟩ ::= ⟨expr⟩
⟨expr⟩ ::= ⟨expr⟩⟨op⟩⟨expr>⟩ | ( ⟨expr⟩ ) | ⟨var⟩
⟨op⟩ ::= +|-|*|/

⟨var⟩ ::= x_i|-1.0|-0.5|0.0|0.5|1.0

Grammar 6.4: Grammar used in the Predictive Modeling

promotes the discovery of models with increased reliability for labelling unseen data.

The situation for the LD50 dataset (Fig. 6.11b)) is different. The generalization be-

havior of models evolved with the two representations is similar, as the boxplots are

leveled. Also, the solutions obtained in the last training stages are not clearly better than

those discovered in the beginning, suggesting that the GE variants are not able to evolve

reliable and general models. The LD50 dataset is considered as particularly challenging

and standard GP-based approaches are unable to evolve models with good generaliza-

tion ability [Gonçalves and Silva, 2013]. The solution to overcome difficulties is to rely

on specific training strategies that help to control overfitting. Since our experiments did

not consider such methods, it is not surprising that both GE variants have difficulties in

evolving effective models and obtain comparable generalization results.

6.3.4 Statistical Validation

A statistical analysis was applied to confirm the relevance of the results and to assess if

there are differences in the means and, if that is the case, how significant they are. Since

the samples do not follow a normal distribution, the analysis is performed using non-

parametric tests. Moreover, and since the two groups are unrelated, the Mann-Whitney

test, at a α = 0.05 level of significance, is the most appropriate. When significant differ-

ences exist, the effect size r estimates its magnitude [Field, 2009]: a +++ sign indicates
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Figure 6.9: Results obtained with the Bio dataset: (a) Evolution of BMF during training;
(b) Generalization ability of selected models.
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Figure 6.10: Results obtained with the PPB dataset: (a) Evolution of BMF during training;
(b) Generalization ability of selected models.
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Figure 6.11: Results obtained with the LD50 dataset: (a) Evolution of BMF during training;
(b) Generalization ability of selected models.

that the effect size is large (r >= 0.5), a ++ sign indicates that the effect size is medium

(0.3 <= r < 0.5), whereas a + identifies a small effect size (0.1 <= r < 0.3). Addition-

ally, ∼ is used to identify situations where no statistical differences exist.

Table 6.2 reports the statistical analysis for the optimization/training stages of the 6

selected problems. Columns GE and SGE display, respectively, the MFB and standard

deviation of the solutions from the final generation. The last column (StatisticalValidation)

shows the p-values obtained in the comparison, and the corresponding effect size. Table

6.3 compares the generalization ability of the best models obtained in the last generation

of training. The Santa Fe ant trail is not included, as it does not have a generalization

step. The results contained in both tables confirm the effectiveness of SGE. In the op-

timization/training stage, the new representation always finds solutions that significantly

outperform standard GE. Even more important is the analysis summarized in Table 6.3,

as it shows that the optimization effectiveness does not compromise the generalization

ability. In three of the problems, SGE is able to evolve models that outperform standard

GE, whereas in the remaining two the behavior of boths representation is equivalent.

6.4 Representation Analysis

There are several empirical tools that help to gain insight into the locality and redundancy

of EAs. One of the first proposals was the Fitness Distance Correlation (FDC) [Jones
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Table 6.2: Statistical analysis of Optimization/Training results: MBF, standard deviation,
and statistical validation. Results are averages of 30 runs.

Statistical Validation
Problem GE SGE p-value Effect Size

Harmonic 0.20 (±0.11) 0.13(±0.05) 7.21 ∗ 10−03 ++
Pagie 0.50 (±0.26) 0.29 (±0.09) 2.20 ∗ 10−06 +++
BIO 42.97 (±4.95) 34.43 (±3.57) 4.03 ∗ 10−09 +++
PPB 34.06 (±5.06) 26.61 (±2.70) 8.02 ∗ 10−10 +++

LD50 2115.70 (±143.97) 1841.69 (±160.33) 1.37 ∗ 10−08 +++
Santa Fe Ant Trail 21.40 (±12.40) 0.00 (±0.00) 9.21 ∗ 10−14 +++

Table 6.3: Statistical analysis of Generalization/Testing results: MBF, standard deviation,
and statistical validation. Results are averages of 30 runs.

Statistical Validation
Problem GE SGE p-value Effect Size

Harmonic 0.45 (±0.36) 0.56(±0.24) 0.05 ∼
Pagie 0.90 (±6.58) 0.4352 (±0.13) 3.02 ∗ 10−09 +++
BIO 45.05 (±3.04) 40.67 (±3.84) 2.44 ∗ 10−06 +++
PPB 36.87 (±5.33) 32.35 (±3.70) 1.96 ∗ 10−04 +++

LD50 2148.00 (±202.17) 2162 (±352.49 ) 0.69 ∼

and Forrest, 1995]. FDC estimates the relation between fitness values and the distance

to the optimum. If the quality increases as the distance to the optimum decreases, then

EAs are expected to have a good performance. However, FDC has some limitations,

such as the requirement to know the global optima before hand, which is impossible for

many situations.

In this work we adopt another framework, originally proposed by Raidl et al. [Raidl

and Gottlieb, 2005]. This empirical model allows for an easy and accurate analysis of

the interplay between representation and genetic operators and provides a reliable ba-

sis for assessing the performance of the search algorithm. Studies performed with this

framework are based on distance measures applied to pairs of solutions linked by the ap-

plication of variation operators. The distribution of the distance values helps to estimate

the redundancy of the representation and to establish a relation between the exploration

of genotypic space and how it reflects in the phenotypic space. In concrete, the frame-

work relies on Mutation Innovation (MI) and Crossover Innovation (CI) measures. MI

estimates how the mutation operator modifies the phenotype of an individual, whilst the

CI approximates the novelty introduced by the recombination operator.
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6.4.1 Basic Concepts

Spaces

SGE relies on a mapping between genotypes and phenotypes, thus requiring the explicit

definition of the two spaces: the genotype space ϕg, and the phenotype space ϕp. The

genetic operators are applied to solutions x, on ϕg. Each x is mapped to a program X, in

the phenotype space, via a mapping function fg, such that fg(x) → X. Finally, the quality

of each program X is measured by a fitness function f, on ϕp: f(X) : ϕp → R.

Distances

The genotypic distance, dg, is the Hamming distance for integer representations, i.e., the

distance between two arbitrary solutions x, y ∈ ϕg is defined as the total number of

positions in which they differ.

In GE the phenotypes are derivation trees, allowing the application of the edit dis-

tance to measure the phenotypic distance, dp, between two programs. The edit distance

calculates the minimum number of elemental operations required to transform one tree

into the other. There are three elemental operations:

1. Deletion: A node is removed from the tree;

2. Insertion: A node is added;

3. Replacement: The label of a node is modified.

All operations have unitary cost. The tree edit measure has been widely used to estimate

the similarity between trees in GP [Brameier and Banzhaf, 2002,Keller and Banzhaf, 1996,

O’Reilly, 1997,Rothlauf and Oetzel, 2006].

Mutation Innovation

Let x be a solution in the genotype space and xm the solution that results from the ap-

plication of one mutation to x. Let X,Xm ∈ ϕp be the programs mapped by x and xm,

respectively. MI is the phenotypic distance between programs X and Xm:

MI = dp(X,Xm) (6.1)
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The distribution of the MI variable discloses several important features concerning

locality and redundancy. The application of a locally strong operator implies that a small

modification in the genotype (such as the one originated by one mutation), should result

in a limited phenotypic change, i.e., the edit distance between the two involved programs

should be small. On the contrary, mutation operators with weak locality induce large

phenotypic jumps, compromising search space exploitation.

When MI = 0, the mutation was not able to modify the phenotype of an individ-

ual. The frequency of these events helps to gain insight into the redundancy level of the

representation.

Crossover Innovation

Crossover plays an important role in mixing up relevant blocks of solutions, thereby fos-

tering the appearance of novel strategies. When using crossover, an offspring xc is cre-

ated from two parent solutions xp1, xp2 (without loss of generality, in our analysis we

disregard the second solution that results from the application of crossover). Let Xc,Xp1

and Xp2 ∈ ϕp be the corresponding phenotypes. CI measures the phenotypic distance

between an offspring and its phenotypically closer parent:

CI = min(dp(Xc,Xp1), dp(Xc,Xp2)) (6.2)

If CI = 0, then Xc = Xp1 or Xc = Xp2, indicating that crossover was not able to create

a phenotypically different solution. Moreover, it is expected that CI is directly related

to the distance dg(xp1, xp2) between parents, i.e., dissimilar parents should increase the

likelihood of generating innovative solutions.

6.4.2 Results

This section presents a comparative study between SGE and standard GE, to better un-

derstand why SGE exhibits an enhanced performance. We rely on the previously defined

MI and CI measures to estimate the locality and redundancy levels of both representa-

tions and consider a recursive grammar regularly used for symbolic regression problems

(Grammar 6.5). To compute the phenotypic distances, we adopt the dynamic program-

ming approach proposed by Zhang et al. [Zhang and Shasha, 1989].
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N ={expr, op, pre_op, var}
T ={sin, cos, exp, log,+,−, ∗, /, x, 1.0, (, )}
S ={start}

And the production set P is:

⟨start⟩ ::= ⟨expr⟩
⟨expr⟩ ::= ⟨expr⟩⟨op⟩⟨expr⟩ | ( ⟨expr⟩ ) | ⟨pre_op⟩(⟨expr⟩) | ⟨var⟩
⟨op⟩ ::= + | - | * | /

⟨pre_op⟩ ::= sin | cos | exp | log

⟨var⟩ ::= x | 1.0

Grammar 6.5: Grammar used in the locality analysis.

A few settings must be defined for each representation: standard GE requires 128

codons and the maximum number of wraps is set to 3, whereas the maximum recursion

level of SGE is 6. These are the same settings that were adopted in the experimental

analysis reviewed in Section 6.3.

Redundancy

To estimate redundancy we count how many genotypic variations result inMI = 0 or CI =

0, i.e., do not lead to phenotypic modifications. The first set of experiments considers

the application of one mutation to a randomly generated solution. This process was

repeated 10000 times. Results reveal that, for GE, approximately 90.3% of the mutations

do not lead to a phenotypic change, whereas in SGE this percentage drops to about 40%.

The GE redundancy is in line with the values presented in [Rothlauf and Oetzel, 2006]

and the disparity between the two representations is explained by the different mapping

strategies: SGE eliminates all redundancy that results from the modulo rule, as there is

a direct relation between the values inside the genes’ lists and the alternative derivation

options of the corresponding non-terminal.

To complement the analysis, we also measured the redundancy level after a sequence

of mutations is applied to a solution. In concrete, we consider a random walk where we

depart from a random solution and iteratively apply a mutation event. At each step, the
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phenotypic distance between the original solution and the current mutant is calculated.

Results presented are averages of 10000 random walks with k = 20 steps. To simplify

the analysis, the phenotypic distances between the original solution and the successive

mutants are grouped in different sets. Given a dp distance between two solutions, the set

Di to which it is assigned, is determined in the following way: {D0 : dp = 0;D1 : dp =

1;D2 : 1 < dp ≤ 5;D3 : 5 < dp ≤ 10;D4 : 10 < dp ≤ 20;D5 : 20 < dp ≤ 30;D6 :

30 < dp ≤ 40;D7 : 40 < dp ≤ 50;D8 : 50 < dp ≤ 60;D9 : 60 < dp ≤ 70;D10 : 70 <

dp ≤ 80;D11 : 80 < dp ≤ 90;D12 : 90 < dp ≤ 100;D13 : dp ≥ 100; }.
The boundaries selected for the intervals were adjusted in such a way that they help

to emphasize the distribution of distances. The two panels of Fig. 6.12 contain the distri-

bution of distances (vertical axis) over the 20 steps of the random walk (horizontal axis):

panel (a) displays results obtained with standard GE, while panel (b) shows the outcomes

of SGE. For each mutation step k, the gray shaded square represents the percentage of

k-mutated individuals, whose phenotypic distance to the original solutions falls in that

specific distance set. The darker the squares, the higher the percentage of individuals in

that situation.

For GE, the application of a single mutation leads to a situation where about 90.3%

of the individuals belong to the set D0, 4.5% belong to D1, 2.6% belong D2, and 1.1%

belongs to D3, and so on. Results from panel (a) reveal that GE redundancy decreases,

as mutations gradually start to accumulate. Nevertheless, nearly half of the random walks

end in solutions whose phenotypic distance to the starting point is still 0, i.e., 20 mutations

were not enough to obtain a different derivation tree. It is obvious that the absolute values

are dependent on several design options (e.g., the number of codons in the genotype).

However, these results confirm that standard GE is vulnerable to extremely high level of

redundancy, which clearly compromises search efficiency.

The evolution of the SGE redundancy levels is displayed in panel (b) of Fig. 6.12. The

general trend is more in accordance to what is expected when mutations start to accu-

mulate. After one step, around 40% of mutants remain identical to the original solutions,

but redundancy gradually drops as successive mutations are applied and, when k = 20,

the percentage is less then 10%. Moreover, the plot shows that the phenotypic distances

are scattered across the defined sets, suggesting that mutation allows SGE to perform a

meaningful exploration of the search space.

The CI measure helps to estimate how crossover impacts redundancy. In this exper-
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Figure 6.12: Distribution of the phenotypic distances between an original solution and
mutants iteratively generated over a random walk with 20 steps: (a): GE; (b): SGE.
Results are averages of 10000 runs.

iment, one parent xp1 is randomly generated and kept unchanged throughout all the test.

The second parent xp2 is obtained from the first by the application of k > 0 successive

mutations. At each step, crossover is performed, one of the offspring is randomly cho-

sen, and the corresponding CI is measured. The process ends after 20 steps. All results

presented are averages of 10000 runs. Fig. 6.13 displays the probability of creating a

phenotypically identical offspring (CI = 0), as the genotypic distance between parents

increases (horizontal axis). For both representations, P(CIk = 0) naturally decreases

with increasing k. However, for all k values, SGE clearly achieves higher innovation lev-

els, thus fostering the discovery of novel solutions. Besides the existence of the modulo

rule, another plausible explanation for the lower innovation of standard GE is related to

the, possibly large, non-expressed area of its genotype. When the cut point falls in this

area, the expressed phenotype will not change and the crossover operation will have no

immediate impact in the discovery of novel solutions.

Locality

We will now focus in the subset of situations where dp > 0, i.e., where the applica-

tion of variation operators originates a different phenotype. In Fig. 6.14 we present the

phenotypic distances between an original random solution and mutants iteratively gener-

ated. Results are averages of 10000 random walks composed just by effective mutations

(MI > 0). To support the analysis, the horizontal line in the chart displays an estimate
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Figure 6.13: Evolution of P(CI = 0), as the genotypic distance between parents increases.
Results are averages of 10000 runs.

of the phenotypic distance between two random solutions (averaged over 10000 ran-

dom pairs of individuals). Generically, as mutations accumulate, the resulting phenotypes

gradually diverge from the derivation tree of the original solution. There are, however,

important differences in what concerns the locality of the two representations. SGE pro-

motes a gradual differentiation along the random walk, as every effective mutation slightly

modifies the resulting phenotype. This behavior is illustrative of a representation with high

locality and it supports an effective exploitation of neighbor solutions. When k > 15, the

MI of SGE tends to stabilize. At this point, many individuals have reached the maximum

possible size (given the predetermined recursion limit). Thus, most of the new trees are

obtained by modifying leaf nodes labels and do not result from structural changes.

By contrast, effective mutations in GE immediately lead to the appearance of highly

dissimilar derivation trees. The locality is clearly lower than that of SGE and, a small

number of mutations obliterates the connection between solutions. Just after k = 10

mutation steps, the phenotypic distance is equivalent to the distance between two ran-

dom solutions. The combined analysis of this result and the outcome of the previous

section reveals that, while most mutations in GE are redundant, the few that are imme-

diately effective compromise a meaningful exploration of the search space. The higher

locality of SGE is a direct consequence of the genotype organization. By relying on a one-

to-one correspondence between genes and non-terminals, one ensures that a mutation

only modifies the derivation options of the mutated non-terminal, leaving the others un-

changed. On the contrary, mutations in GE can modify the derivation options of several

non-terminals, which may result in a substantially different tree.

To estimate how crossover impacts locality we repeated the experiment where we
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Figure 6.14: Evolution of MI over a random walk with 20 steps, composed just by effective
mutations. Results are averages of 10000 runs.
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Figure 6.15: Evolution of CI, as the genotypic distance between parents increases. The
study considers only situations where P(CI > 0) and results are averages of 10000 runs.

fixed one of the parents and obtained the other by applying successive mutations k =

1, 2, 3, 4, ...20, allowing the generation of increasing distant pairs. In this section we ig-

nore the applications of crossover that results in CI = 0. Results presented are averages

of 10000 repetitions. Fig. 6.15 presents the evolution of CI, as the genotypic distance

between parents increases. As expected, for both representations there is a direct cor-

relation between the dissimilarity of parents and the offspring innovation level. In accor-

dance with the results obtained with mutation, SGE promotes a gradual and sustained CI

growth, whereas standard GE is unable to avoid an abrupt rise since the first steps of the

random walk.
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6.5 Design Choices

The analysis from last section helps to unveil why SGE has an increased performance,

when compared to the standard GE representation. On the one hand, SGE is able to

reduce the extremely high redundancy levels of GE, thus promoting search efficiency.

Additionally, it exhibits a balanced locality, which fosters an appropriate sampling of the

search space. There are several novel design options that differentiate SGE from the

standard GE representation and, to complement the analysis, it is important to fully un-

derstand how these different components and settings impact SGE behavior.

The maximum recursion level is a key parameter to define when dealing with recur-

sive grammars, as it determines the maximum tree size. If the limit is too low, then it

might be impossible to find the optimal solution. This way the usual option is to define a

safe value that allows for some redundancy, at the expense of having a larger search space

to explore. Clearly, the definition of this setting is comparable to the specification of the

maximum tree size in tree-based GP. To study the influence of this limit, we repeated the

MI experiments detailed in section 6.4 with alternative levels of recursion: {4, 8, 10}. In

what concerns redundancy, the percentage of mutations that do not lead to an imme-

diate phenotypic change ranges between 33% for 4 recursion levels and approximately

50% for 10 recursion levels. As expected, redundancy slightly increases as more recur-

sive productions are added to the grammar, but the values are still clearly below those

achieved by standard GE. Fig. 6.16 summarizes the MI evolution for effective mutations,

i.e., mutations that immediately change the phenotype. A brief perusal of the results con-

firms that the recursion level is directly correlated to locality. The general trend is the

same for all lines displayed in the chart, but there is a clear hierarchy in what concerns the

level of recursion: higher values allow for a more pronounced departure from the starting

solution. This is an expected outcome, as higher recursion levels enable the appearance

of larger derivation trees, thus creating room for higher degrees of innovation.

Given the MI disparity seen in Fig. 6.16, a question that immediately arises is how

the variation in the recursion level, and as a direct consequence, in redundancy and local-

ity, impacts SGE search effectiveness. To estimate this effect, we repeated all optimiza-

tion experiments described in Section 6.3 with the additional recursion levels. Fig. 6.17

presents the results for the harmonic curve regression problem. The outcomes obtained

by SGE with different recursion levels are similar and the small variations are never sta-
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Figure 6.16: Evolution of MI over a random walk with 20 steps, composed just by effective
mutations. Different levels of recursion are considered for SGE: {4, 6, 8, 10}. Results are
averages of 10000 runs.
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Figure 6.17: Optimization results for the harmonic curve regression problem. Different
levels of recursion are considered for SGE. Results are averages of 30 runs.

tistically significant. Results obtained in the other optimization problems selected for this

study follow the same trend, suggesting that SGE is robust to moderate variations in the

recursion level without compromising effectiveness.

SGE new representation has a dual effect, as it minimizes redundancy while, at the

same time, increases locality. We performed an additional test to analyze if any of these

features is more important than the other in determining SGE behavior. Redundancy in

standard GE is the result of non-expressed codons and of the application of the modulo

rule to determine which option to use when expanding a non-terminal. SGE eliminates

the last source of redundancy, while it keeps the first (it can also have non-expressed val-

ues in its genotype). We can easily create a redundant SGE variant (SGERed): when filling
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Figure 6.18: Optimization results for the harmonic curve regression problem. A redun-
dant version of SGE is also considered (SGERed). Results are averages of 30 runs.

the lists belonging to the genes, integer values randomly drawn from [0,255] are selected

and the number of options of the corresponding non-terminal are not considered. This

way, SGERed also relies on the modulo rule to select the expansion alternative. Consid-

ering 6 recursion levels, SGERed redundancy after the application of one mutation raises

to approximately 60%, above the 40% of SGE. The difference between the redundancy

exhibited by SGERed and standard GE is now only a consequence of the genome size (for

GE) and the recursion level (SGERed). The application of SGERed to an optimization task

reveals an interesting feature. Fig. 6.18 displays the outcomes obtained in the harmonic

curve regression problem. Results reveal that SGE and SGERed have an identical behav-

ior, suggesting that locality is the main strength of SGE and is the key feature that allows

the new representation to have an enhanced performance. The same trend is visible in

other optimization problems.

It might be argued that standard GE is unfairly penalized in the analysis, since it does

not have an explicit way to perform a meaningful definition of the genome size. If the

genotype has too many codons, then redundancy is extremely high. On the contrary,

small genotypes heavily rely in wrapping, thus compromising locality. A final set of results

reveals that, although this limitation exists, the main weakness of standard GE is its low

locality.

We selected the grammar used by SGE for the harmonic curve regression problem

after applying the pre-processing step (considering 6 levels of recursion). Given this gram-

mar we can easily define a fixed size for the GE genotype, as there are no recursive
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Figure 6.19: Optimisation results for the harmonic curve regression problem. A fixed
variant of GE is also considered (GEFixed). Results are averages of 30 runs.

productions. Also, wrapping is not needed, since mapping never goes beyond the final

codon. This GE variant, which we identify as GEFixed, differs from SGE on two issues:

the selection of an option when expanding a non-terminal and the non-existence of a

direct correspondence between genes and non-terminals. We recall that these are the

two key novel issues addressed in the definition of SGE.

Fig. 6.19 presents the results obtained by SGE and GEFixed in the optimization of

the harmonic curve regression. The behavior of GEFixed is slightly better than that of

standard GE. However, it is still outperformed by SGE in the training phase (differences

are statistically significant). On the testing step, the behaviors are equivalent (just like

in Section 6.3). These final results reinforce that the key factor for SGE success is its

structured genotypic definition that allows for an increased locality of the representation

and for a sustained reduction of redundancy.

6.6 Summary

SGE is a new genotypic representation for GE that explicitly considers the features of the

grammar being used. The definition of the genotype requires two pre-processing steps:

first, recursive productions are rewritten in a non-recursive format, which requires the

addition of several new non-terminals; then, an upper bound for the maximum number

of non-terminals expansion is computed. After pre-processing is over, the structured

genotype is defined. Each gene links to a specific non-terminal and it encodes a list of
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integers that help to determine the derivation options during mapping.

The effectiveness of the new representation was tested on a set of benchmarks and

results were encouraging, as SGE was able to outperform standard GE in all selected

problems. Moreover, it proved to be efficient, as it needed a lower number of evaluations

to discover good quality solutions.

SGE was defined aiming to increase the locality and also at reducing the extremely

high redundancy levels that are usually observed in standard GE representations. We

considered the framework proposed by Raidl et al. [Raidl and Gottlieb, 2005] that relies

on a set of static measures to determine the innovation of variation operators, and thus,

estimate the redundancy and locality of a given representation. Empirical results con-

firm that SGE clearly reduces the redundancy level of standard GE, thus fostering search

efficiency. When dealing with recursive grammars, SGE redundancy is directly corre-

lated with the recursion level. However, since SGE does not rely on the modulo rule

to perform mapping, redundancy is always clearly lower than the extremely high values

exhibited by standard GE.

The locality of SGE was studied by considering the impact of effective genotypic vari-

ations in the phenotype. Results show that the new representation exhibits a balanced

locality, as the genotypic changes that are iteratively accumulated, promote a gradual

modification in the phenotypes. This behavior is in contrast with standard GE, where

small changes in the genotype tend to create abrupt modifications in the derivation tree.

SGE high locality fosters a meaningful exploration of the search space, providing an expla-

nation for the increased optimization effectiveness. In Section 6.5 we defined several GE

and SGE variants and provided a set of complementary results revealing that, although

redundancy is useful to enhance search efficiency, the key feature that justifies the SGE

optimization behavior is its ability to increase locality.
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Conclusion and Future Work

”It is good to have an end to journey

toward; but it is the journey that

matters, in the end”

Ernest Hemingway

In this dissertation we show that it is possible to use an Evolutionary Algorithm as

a meta-heuristic to achieve the automatic design of complete Evolutionary Algorithms.

We provided evidence that this challenge is not only feasible, but also, under certain

conditions, beneficial when compared with human designs. Due to the very nature of

the problem, i.e., the fact that the meta-heuristic algorithm has to search the space of

all possible evolutionary algorithms looking for promising candidates, we had to solve

two major issues. First, we had to study the influence of the learning conditions on the

performance of the final outcome, to overcome the tradeoff of overfitting/generaliza-

tion with an acceptable computational cost. Second, we had to design an appropriate

meta-heuristic algorithm to harness the complexity of the search space, proposing an

empowered version of the standard Grammatical Evolution algorithm based on a novel

representation.

129



130 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Main Achievements

Learning is a critical step for the successful design of algorithms, as performed by the

framework proposed in this work. Specific conditions are adopted to determine how

learning occurs and they are regulated by two contradictory forces that must be care-

fully balanced: i) They must allow a clear/accurate identification of the most promising

optimization strategies; ii) They should be computationally efficient. Learning efficiency

was achieved by relying on an inexpensive evaluation of candidate solutions: a single run

optimization of a modest size instance, coupled with limited settings for the definition of

the population size and number of iterations.

As a rule, results obtained in different scenarios confirm that restricted learning con-

ditions do not compromise the discovery of effective and robust optimization strategies.

This is true, both for the evolution of complete algorithms, as well as for the design of

specific components.

A detailed analysis of the results from Chapter 4 reveals that the structure of the

evolved algorithms is influenced by the conditions found during learning: settings that con-

tribute to premature convergence naturally foster the design of optimization strategies

encompassing mechanisms for diversity maintenance. In turn, learning scenarios where

convergence is hardly a problem, promote the appearance of agressive search methods

that can quickly perform an effective sampling of the search space.

It should be emphasized that the number of iterations granted to the evaluation of

the solutions generated by GE is the key parameter when defining specific learning con-

ditions. Results analysed in Chapter 4 clearly reveal that a higher number of generations

performed in the offline evaluation promote an accurate discovery of optimization strate-

gies with enhanced robustness and effectiveness.

The two-stage framework has a potential drawback, as strategies learned offline might

reveal its brittleness when later applied to unseen situations. The limited computational

resources granted to learning might further compromise an effective identification of

strategies with better generalization potential. The study presented in Chapter 5 re-

veals that this is not happening. Despite the simple conditions adopted, there is a strong

correlation between learning and validation, as strategies that perform well in learning are

also those that exhibit better robustness and generalization ability. These results provide

valuable guidelines for HH practitioners, as they confirm the impact of the learning condi-
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tions on the structure and behavior of the evolved solutions. Moreover, they reveal that

simple learning conditions do not seriously compromise the identification of the algorith-

mic strategies with the best optimization ability. It is also worth noticing that the learning

process seems to be overfitting free. The results presented are still preliminary, but they

suggest that the strategies being learned are not becoming overspecialized to the specific

conditions found in learning.

Grammatical Evolution is a powerful search engine for HH and promotes the au-

tomatic discovery of optimization strategies, competitive with state-of-art hand design

approaches. Still, there are reports in the literature describing serious limitations of GE

in what concerns its ability to perform a meaningful exploration of the search space (e.g.,

the works from [Rothlauf and Oetzel, 2006] and the recent work from [Whigham et al.,

2015]). By taking this into account we present SGE, a new genetic encoding for GE. The

structured organization of this novel representation promotes a higher locality and lower

redundancy, thus creating conditions for an enhanced exploration of the space. Results

obtained with several well-known GP benchmarks confirm the effectiveness of SGE and

the advantages provided over the standard representation and create room for future

improvement of GE-based HH.

7.2 Future Work

Even though the work presented in this dissertation sheds some light on how to build

better HH frameworks, there is plenty to be done. One way to expand this work is to

extend the analysis of the impact of the learning conditions to other parameters, such as

the adoption of a single or several training instances with different properties.

When we hand design an EA we can greatly improve its performance by including

knowledge about the problem itself in the design (e.g., in the representation and in the

variation operators). We may extend our work along the same lines. One possible road

to explore is the incorporation of semantic information in the grammar used.

The fact that we rely on a grammar is a positive aspect, for we can constrain the

way the search space is explored. Nevertheless, in the context of HH, this can also have

the negative effect of limiting the set of possible solutions. So, it will be interesting to

explore some form of novelty search, including the possibility of introducing some degree

of stochasticity into the grammar.
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Another interesting path to follow it the application of SGE to the HH domain as the

structured organization of the new representation might further enhance the ability of

the framework to discover effective optimization strategies.

Alan Turing believed that by the end of the 20th century there would be machines able

to think by themselves. Even though this completely autonomous AI, able to surpass the

human intelligence is still fiction, we are making progress towards fully autonomous sys-

tems. But there is still plenty of work to be done.

To infinity and beyond

Buzz Lightyear, Toy Story
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A
Knapsack Problem Data

Listing A.1: Script used to generate the Knapsack instances used in the experiments.

1 # R --slave --no-restore --file=GenerateInstances.R --args 0.8 2 8 0 output.txt
2 args <- commandArgs(TRUE)
3 # correlation between table contributions
4 rho <- as.numeric(args[1])
5 # number of objectve functions
6 M <- as.numeric(args[2])
7 # size of the bit string
8 N <- as.numeric(args[3])
9 # cardinality

10 K <- as.numeric(args[4])
11 # seed number
12 s <- as.numeric(args[5])
13 # file name
14 fileName <- args[6]
15 # bound
16 bound <- 1000 - 100
17 library(MASS)
18 # seed the random generator number
19 set.seed(s)
20 # generation of matrix correlation
21 C <- matrix(rep(rho,M), M, M)
22 diag(C) <- rep(1, M)
23 R <- 2 * sin(pi / 6 * C)
24 # pdf of multivariate normal law

149
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25 fim <- pnorm(mvrnorm(n= N, mu = rep(0, M), Sigma = R))
26 # output
27 f <- file(fileName , open = "w")
28 cat(N, "\n", file = f)
29 cat(K, "\n", file = f)
30 for(i in seq(1, N)) {
31 for(m in seq(1,M)) {
32 #val = fim[i,m]*(bound -1)+1
33 val = 100 + fim[i,m]*(bound -1)+1
34 val2 = formatC(val, format = "f", digits = 0)
35 cat(val2, "", file = f)
36 }
37 cat("\n", file = f)
38 }
39 close(f)
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