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Abstract

Oncological diseases remain a worldwide leading cause of death, despite advances in treat-
ment techniques. In this context, treatment response is naturally a very attractive research
topic – the ultimate goal is set on finding, within patient and pathology characteristics, good
predictors of treatment response, so as to help deciding on the best treatment approach for
each patient.

PET/CT imaging is the basis for the evaluation of response-to-treatment of several on-
cological diseases. In practice, such evaluation is manually performed by specialists, which
is rather complex and time-consuming. As alternatives, evaluation measures of lesion malig-
nancy – such as the popular SUV – have been proposed, but present questionable reliability
– in the case of SUV, this is due to multiple sources of variability.

The aim of this project is to walk towards a reliable evaluation function of treatment
response, based on the before and after-treatment values of a set of clinical variables and
image features of the lesions (extracted from PET/CT images), and using evolutionary
approaches for regression. Clinical data used in this project was provided by IPO-Porto,
comprising a total of 63 patients and 2 distinct oncological pathologies – Hodgkyn lymphoma
and neuroendocrine tumors.

The preliminary results concerning the proposed approach are optimistic – an evaluation
function with class-wise accuracies of 80%, 75%, 85,71% and 88,89% (for a problem with 4
treatment response classes), was obtained.
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Resumo

As doenças oncológicas mantêm-se no top das maiores causas de morte a nível mundial,
apesar dos avanços a nível de técnicas de tratamento. Neste contexto, a resposta a trata-
mento é um tópico de estudo muito atractivo – o objectivo último está fixado em encontrar,
entre características do paciente e da patologia, bons preditores da resposta a tratamento,
para auxiliar na decisão sobre a melhor estratégia de tratamento para cada paciente.

A PET/CT é base para a avaliação da resposta a tratamento de uma grande quantitdade
de doenças oncológicas. Na prática, essa avaliação é efectuada manualmente por especialis-
tas, o que consiste numa tarefa complexa e morosa. Como alternativas, medidas de avaliação
da malignidade das lesões – como o SUV – foram propostas, mas apresentam uma confiança
questionável – no caso do SUV, isto deve-se a múltiplas fontes de variabilidade.

O objectivo deste projecto é caminhar na direcção de uma função de avaliação de resposta
a tratamento de confiança, baseada nos valores de antes e depois de tratamento de uma série
de variáveis clínicas e features de imagem das lesões (extraídas de PET/CT), e adoptando
abordagens evolucionárias para regressão. Os dados clínicos usados neste projecto foram
fornecidos pelo IPO-Porto, compreendendo 63 pacientes e 2 patologias oncológicas – linfoma
de Hodgkyn e tumores neuroendócrinos.

Os resultados preliminares são optimistas – uma função de avaliação com accuracies por
classe de 80%, 75%, 85,71% and 88,89% (para um problema com 4 classes de resposta a
tratamento), foi obtida.
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Chapter 1

Introduction

Oncological diseases remain a worldwide leading cause of death, despite advances in
treatment techniques [1]. As of 2012, they were responsible for 14.6% of all human deaths,
and about 14.1 million new cases occurred at a global scale [2]. Incidence rates are increasing,
as more people live to an old age and as lifestyle changes occur in the developing world [3].
In terms of financial burden, the costs of cancer have been estimated at over €1 trillion per
year as of 2010 [4]. In this context, treatment response is naturally a very attractive research
topic – the ultimate goal is set on finding predictive models of treatment response based on
patient and pathology features, in order to personalize treatment strategies aiming at the
best possible outcome for the patient.

1.1 Contextualization
Positron Emission Tomography – Computed Tomography (PET/CT) imaging is the ba-

sis for the diagnosis and staging of several oncological diseases. In PET, one takes advantage
of prior knowledge regarding functional properties of pathologies, namely the abnormal up-
take of certain substances by some tissues, and uses radioactively-labelled analogues of those
substances to visualize their distributions throughout the organism. In this project, two on-
cological diseases are used as case studies: Hodgkyn lymphoma and neuroendocrine tumors.
For both cases, all clinical data was provided by IPO-Porto. For a better contextualization,
a more detailded descripition of these two pathologies is given.

Hodgkin lymphoma has its origin in the lymphatic system. Lymphoid tissue can be
found in several organs, such as tonsils, thymus and spleen, as well as in lymph nodes all
over the body. Thus, in theory, Hodgkin disease can start almost anywhere in the body.
The most usual is starting in lymph nodes and spreading to other lymph nodes through
lymphatic vessels which connect them. Hodgkin lymphoma lesions are characterized by very
high metabolic activities. For that reason, the classical tracer used in PET is Fludeoxyglucose
(18F) (FDG), a glucose analogue which is retained by tissues of high metabolic activity. It
is important to be aware of the normal distribution of the tracer, i.e., in healthy patients,
so as to differentiate physiological from pathological uptakes – some tissues such as bladder,
lung, heart and brain tissue naturally uptake great glucose quantities.

1



2 CHAPTER 1. INTRODUCTION

(a) PET (b) CT (c) PET/CT

Figure 1.1: Examples of PET,CT and PET/CT coronal slices of a patient suffering from
paraganglioma, a neuroendocrine tumor that affects head and neck (head in this particular
case).

Neurondocrine tumors start in the endocrine and nervous systems. They are mostly
found in the pancreas, intestine and lungs, but can occur everywhere in the endocrine system.
Neuroendocrine tumors are associated with the overexpression of somatostine receptors. For
that reason, Gallium-68, an analogue of somatostine, was selected as tracer for PET. Once
again, one should be aware that there are regions of naturally high uptake (e.g. in exocrine
pancreas or adrenal glands) in order to be able to distinguish physiological from pathological
uptake.

The precise localization of the anomalies is difficult with only PET information. CT,
on the other hand, is an anatomical modality. It takes advantage of the relative x-ray
absorption by tissues to produce a density image - denser regions such as bone absorb more
x-rays and thus present higher intensities, and less dense regions such as lungs (due to air
percentage) appear as dark regions. PET/CT fusion is becoming a popular practice, as
it couples the benefits of the two modalities - functional analysis with precise anatomical
location. Examples of PET,CT and PET/CT coronal slices of a patient suffering from
paraganglioma, a neuroendocrine tumor that affects head and neck (head in this particular
case) are presented in Figures 1.1a – 1.1c.

In addition to diagnosis and staging, PET/CT is becoming important in the evaluation
of response to treatment – changes in tracer uptake by tumors have been shown to be useful
for assessing response to therapy. In practice, lesions are evaluated via visual inspection by
specialists, which is rather time-consuming. As tracer uptake is related to the malignancy
of lesions, some have proposed quantitative-driven measures of tracer uptake as a potential
alternative for faster assessment of lesion malignancy. The exact radioactivity concentration
within the lesion, provided by the PET scanner, would not be robust to patient size and
amount of injected tracer, i.e., for two patients with similar body tracer distributions:

1. if the amount of injected tracer is the same for both, activity concentration would be
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higher for a smaller-sized patient.

2. for same-size patients, activity concentration will be higher for a patient who was
injected a higher amount of tracer.

In fact, patient size and the amount of injected tracer are the two main sources of
concentration variation. To compensate for such variations, a normalization of the activity
concentration with respect to patient size and amount of injected tracer was proposed. Such
normalized measure is known as Standardized Uptake Value (SUV), and has been widely
adopted.

In the original formulation of SUV, patient weight is used as the patient size normaliza-
tion factor. However, since tracer is mainly uptaken by non-fat mass, lesion SUV is likely
overestimated in patients with higher body fat percentage. For that reason, some alternatives
to patient weight, namely lean body mass and body surface area have been suggested.

Theoretically, SUV is expected to provide a good evaluation of lesion malignancy, and
that is why it has been used in many studies with related purposes. However, there are other
(not so obvious, but still relevant) possible sources of SUV variability, aside from patient
size and amount of injected tracer [5]. These can be related to:

1. Imaging Physics – e.g. limited detector resolution leads to partial volume effects, i.e.,
the measured SUV is increasingly reduced for objects of decreasing size;

2. Patient Status – e.g. blood glucose levels as well as endogenous insulin levels can result
in lesion-SUV underestimation, as in such cases glucose is preferably stored in muscle
and less available for other tissues such as tumor tissue;

3. Scan Protocol – errors in several components of the scan protocol later reflect on the
measured lesion SUV, such as: 1) time interval between injection and image acquisition;
2) measurement of the residual activity in the syringe; 3) measurement of patient
weight; 4) synchronization of clocks used for dose assays and scanning; 5) patient
respiratory motion; 6) data entry;

4. Data Processing – errors can arise in the two main steps of the data processing stage: 1)
corrections for confounding effects like attenuation, scattered and random coincidences,
scanner deadtime, and detector efficiency variations; 2) image reconstruction, where
the raw scanner data is converted into standard units that are typically related to the
scanner, the reconstruction method and the reconstruction parameters;

5. Scanner Calibration – in order to obtain the image in SUV units, two steps are nec-
essary: 1) estimation of the scanner calibration factor, so as to convert from scanner
units to radioactivity concentration units; 2) conversion from radioactivity concen-
tration units to SUV units; An erroneous calibration factor can be reflected in the
measured SUV;

6. Analysis Methods – noise and limited resolution often make it difficult to draw a
boundary of the region of interest with certainty. On the other hand, average SUV
can be very dependent on the defined boundary. For that reason, it has become more
common to take the maximum SUV within boundaries as the lesion SUV, as this one
is invariant to small boundary shifts. However, some concerns arise from the fact that
we are basing the evaluation of our lesion in a sole pixel, regarding robustness to noise.
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Some of these errors have effects of only about 5% in the measured SUV, but others
range up to 50% or more. In such context, the need for searching for more reliable metrics
of lesion evaluation arises.

1.2 Objectives
In the lack of a reliable evaluation metric, the main objective of this project is to collect

relevant features and set up an accurate evaluation function for the automatic evaluation of
tumor treatment response. This main objective can be divided into a set of sub-objectives:

1. Identification of the candidate features, which comprehends:

a) Data collection – clinical data regarding 63 patients suffering from oncological
pathologies was collected and provided to us by a nuclear medicine team of IPO-
Porto. With the help of the medical team, a set of clinical variables were selected
to be incorporated in this study. Also, PET/CT images were provided.

b) Feature extraction – in addition to the clinical variables defined by the medical
team, image features of the lesions were extracted from the PET/CT.

c) Eventual dataset transformations (e.g. dimensionality reduction).

2. Validation of the feature set – before the application of evolutionary approaches for
obtaining the evaluation function, we aim to prove that our pool of features contains
good predictors for the treatment response class, through a classification experiment.

3. Obtaining the evaluation function – after the validation of our features, we aim to
obtain the evaluation function, adopting an evolutionary approach for regression.

1.3 Research Contributions
The work in this project has resulted in the development of three papers:

• Mariana A. Nogueira, Pedro Henriques Abreu, Pedro Martins, Penousal Machado,
Hugo Duarte, João Santos. An Artificial Neural Networks Approach for Automatic
Assessment of Treatment Response in Oncological Patients using PET/CT Images,
Special issue on Learning From Medical Imaging, Neurocomputing (IF: 2.083) (Ac-
cepted with major revision)

• Mariana A. Nogueira, Pedro Henriques Abreu, Pedro Martins, Penousal Machado,
Hugo Duarte, João Santos. Image Descriptors in Healthcare Contexts: A Systematic
Review, Journal of Biomedical Informatics (IF: 2.194) (Submitted on 26/4/2015)

• Mariana A. Nogueira, Pedro Henriques Abreu, Pedro Martins, Penousal Machado,
Hugo Duarte, João Santos. Creating Evaluation Functions for Oncological Diseases
based on PET/CT (To be Submitted)
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1.4 Document Structure
The remainder of the document is organized as follows: in Chapter 2, some useful back-

ground knowledge for a better understanding of the remainder of the document will be
provided; in Chapter 3, a literature review regarding the application of image descriptors in
the field of medical image analysis will be performed; in chapter 4, the adopted methodology
and parameterization for the data processing, classification and regression stages is reported;
in chapter 5, the results of the experiments are reported and discussed. Finally, chapter 6 is
dedicated to the main conclusions and future work.





Chapter 2

Background knowledge

In this chapter, some useful background knowledge is provided for a better understanding
of the remainder of the document.

2.1 Image Segmentation
Image segmentation corresponds to the act of extracting a region of interest out of an

entire image. In our project, the aim is to segment lesion regions, for further extraction of
descriptive image features of the lesions. A quality segmentation is of major importance,
as the values of the extracted features are very dependent on the segmented region, and
this can seriously compromise their discriminative ability and consequently the classification
results. The quality of manual segmentation by specialists has not yet been matched by
any proposed alternative; however we did not have access to annotated images. Thus, we
opted for an automatic segmentation algorithm. Segmentation was not the scope of this
project, and, as such, we decided to adopt a classical automated segmentation algorithm,
the region-growing algorithm. It basically consists of growing a list of pixel locations from
a single intensity maximum – seed point – by appending immediate neighboring pixels with
intensity levels above a certain threshold – which is a percentage of the maximum –, doing
the same for the newly added pixels, and so on.

2.2 Image Descriptors
The selection of the appropriate image descriptors is a rather decisive stage in our project.

In this section, we provide some theoretical background on the image descriptors selected
for our project, as well as some examples of features that are usually extracted from their
outputs. For reasons related to characteristics of our dataset (pointed out in 4.1), shape
features could not be used. We selected 6 texture descriptors with solid reputations in
medical image analysis applications, as can be confirmed in the literature review (chapter
3). These are:

Gray-level Histogram The gray-level histogram is a vector containing the absolute fre-
quency of each gray level in the segmented patch. A few descriptive features of the gray-
level distribution, such as mean, standard deviation, skewness and kurtosis are typically
computed.

7
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Gray-level Co-occurrence Matrix (GLCM) Given a patch with gray-levels in the
range [a, b], the GLCM [6] is an a×bmatrix containing, in the element (i, j) – with i, j ∈ [a, b]
– the number of times a pixel of intensity i is at distance d from a pixel of intensity j, in
a pre-defined direction θ. Typically, a set of 14 texture features proposed by Haralick [6] –
known as Haralick features – is extracted from the GLCM. To achieve some kind of rotation
invariance, features are usually computed for different direction GLCMs (for instance 0º,
45º, 90º and 135º) and averaged over all directions.

Gray-level Run-length Matrix (GLRL) [7] A gray-level run is a sequence of consec-
utive pixels with the same gray-level, in a certain direction. The GLRL is a matrix that
contains, in the element (i, j), the number of j-length runs of pixels with the gray-level i,
in a pre-defined direction θ. A set of run length features proposed by Galloway [7] is usu-
ally extracted from this matrix. Usually, features are computed for different directions and
averaged over them, with the purpose of achieving rotation invariance.

Wavelets 2D discrete wavelet decomposition consists of two successive 1D wavelet decom-
positions, one in the horizontal direction and the other in the vertical direction of the patch
matrix. First, each row of the matrix goes through a lowpass and a highpass filter, and their
outputs are subsampled by a factor of 2 (as half the samples are sufficient to reconstruct the
signal, according to Nyquist’s theorem). Hence, each row will yield two vectors of half its
size. The ones that underwent lowpass filtering contain the low frequency information of the
corresponding row and thus represent a coarse approximation to the row itself. On the other
hand, the vectors that underwent highpass filtering contain the high frequency information,
such as edges. Assembling the lowpass vectors, one obtains a coarse approximation of the
initial patch matrix, with the same number of rows but only half the columns. Assembling
the highpass vectors, one gets a matrix with the high frequency components of the initial
image, such as edges, also with the same number of rows and half the columns of the orig-
inal one. Then, the columns of these matrices are decomposed as well. Following the same
logic, each of the two matrices will generate two matrices with half its number of rows. We
have then 4 matrices with half the resolution of the initial image matrix, each one with the
following characteristics:

1. The one which went through lowpass filtering in both directions is the approximation
matrix, and consists of a coarse approximation of the original image, with half the
resolution;

2. The one which went through lowpass filtering in the horizontal direction and highpass
filtering in the vertical direction consists of the vertical detail matrix;

3. The one which went through highpass filtering in the horizontal direction and lowpass
filtering in the vertical direction consists of the horizontal detail matrix;

4. The one which went through highpass filtering on both directions is the diagonal detail
matrix.

This is the result of a single level decomposition. Decompositions to further levels are
obtained by successively applying the same mechanism to the previous level’s approximation
matrix.
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A wavelet family must be chosen – it defines the morphology of the lowpass and highpass
filters. The most widely used in biomedical signal/image analysis applications are Haar and
Daubechies families. Usually, features as mean, standard deviation, energy and entropy are
extracted from each matrix at the different levels.

Gabor filters Gabor filters are linear filters which consist of Gaussian kernels modulated
by a sinusoidal plane wave, and are very popular in edge detection. Usually, several filters
with different frequencies and orientations are generated and convolved with the image of
interest, and features such as mean, standard deviation, energy and entropy are computed
from the response images.

Local Binary Patterns (LBP) The LBP [8] operator is characterized by a radius R and
a neighborhood P , which are correlated: the operator is centered on a pixel; if the radius is
1, the 8 immediate neighbors of the central pixel will be considered. If the radius is 2, the
16 pixels with one pixel of interval from the central pixel will be considered, and so on.

Usually, the patch is divided into blocks before LBP computation. Given a block, the
center of the LBP operator will travel through all pixels and, for each pixel, a binary string
of length P will be produced. Each of the P neighbors is responsible for a bit: 0 if the
neighbor’s gray level is inferior to the central pixel’s, and 1 otherwise. This binary string is
usually converted to its decimal form.

Then, for each block, a histogram is produced, with the count of the number of times
each decimal number is produced by pixels in the block.

This descriptor is intensity- and scale-invariant. In addition, it can also be rotation
invariant, if we only consider the so-called uniform patterns. These consist of patterns with
no more than 2 bit transitions in the binary number, and are the most occurring patterns
– for R=8, there are 58. A histogram is usually produced with the count of each of the 58
uniform patterns, and 1 histogram slot is reserved for the remaining patterns.

2.3 Dimensionality Reduction
The complexity of a classification process is said to exponentially increase with the prob-

lem’s dimensionality. As such, and since high-dimensional datasets often present some re-
dundant and even irrelevant information, some methods exist with the aim of reducing di-
mensionality by eliminating such information and preserving only the most relevant. In this
project, we selected a classic method, Principal Component Analysis (PCA). In PCA, data is
projected onto a new axes system, given by the directions of highest data variance, with the
hypothesis that, since data are more spread along these directions, they will facilitate class
separation. Such axes system consists of the eigenvectors of the data covariance matrix, with
the eigenvalue magnitude being a measure of the data variance encompassed in the direction
of the corresponding eigenvector – the eigenvector associated with the highest-magnitude
eigenvalue corresponds to the direction of highest data variance, and so on. The goal is to
discard directions of little contribution to overall data variance, reducing dimensionality but
at the same time preserving most of data variance. By projecting data onto these directions,
one loses the concept of features, and each dimension represents a component.

Several methods have been proposed for selecting the final number of components. One
of the most popular is the Scree plot, where one plots eigenvalues’ magnitudes versus the
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corresponding components and observes at what point it goes off, i.e., it drops down to a
level that can be visually interpreted as zero. Another popular criterion is assuring that we
preserve at least 95% of data variance.

2.4 Synthetic Data Generation
Data imbalancement, i.e., not having a balanced number of instances among classes,

may result in poor training regarding minority classes, and in a consequent tendency for bad
generalization with respect to minority-class samples. In order to minimize this effect, one
can oversample the minority class, undersample the majority class, or use more sophisticated
methods and generate synthetic data.

We decided to generate synthetic data – we chose a very popular technique, the Synthetic
Minority Over-sampling Technique (SMOTE) [9]. This algorithm generates a synthetic
sample of a class by randomly picking two samples of that class and adding to one of them a
percentage of the difference between the two. Graphically, the synthetic sample corresponds
to a random point in a line segment connecting the two randomly chosen samples. This
method allows us to obtain smoother decision regions than if simple over-sampling was
applied.

2.5 Classification
Classifiers are a class of algorithms which can be trained by examples in order to learn to

classify objects based on a set of features. Literature is vast on this subject: Fisher’s Linear
Discriminant, Naive Bayes, k Nearest Neighbors (kNN), Random Forests, Support Vector
Machines (SVM), Artificial Neural Networks (ANN), are just some examples of prominent
classifiers. The goal of the classification stage in the context of our project is to validate
our set of features – before the application of evolutionary approaches for obtaining the
evaluation function, we aim to evaluate if our pool of features contains good predictors for
the treatment response class. For that reason we used a few standard architectures of the
complex, but with solid reputation, ANNs, and a baseline classifier, kNN.

2.5.1 Artificial Neural Networks
A generic ANN is composed of one or more layers of neurons. Feature vectors are fed to

the first layer. Each feature of the vector is assigned a weight by each neuron of this layer,
which outputs a value based on the response of an activation function to the weighted sum
of all features (plus an optional bias). The selection of such activation function is dependent
on the specific problem we are facing. These outputs can already be the final outputs of
the network, or can be fed to another layer and be used as inputs to produce new outputs
through the same mechanism. Finally, the outputs of the last layer are the network outputs.
This layer is the output layer and other layers are referred to as hidden layers.

In classification tasks, one wants the ANN to learn to correctly classify an object based
on a set of its features. For such learning to be possible, a training process must occur,
in which ANN are fed input-output examples and the weights and bias of the neurons are
iteratively updated in the sense of minimizing the error between the obtained and expected
output.
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We selected four standard neural network architectures: the Multilayer Perceptron (MLP),
Learning Vector Quantization Neural Network (LVQNN), Radial Basis Function Neural Net-
work (RBFNN) and Probabilistic Neural Network (PNN).

The perceptron is the simplest neural network architecture, consisting of only one neuron
layer. It can only solve linearly separable problems. By adding neuron layers to the percep-
tron, the network starts being able to solve non-linearly separable problems – the MLP is
usually applied in scenarios where data is not linearly separable and, normally, the higher
the degree of data nonlinearity, the higher the number of necessary neurons and layers for
data separation. However, in many scenarios one-hidden-layer MLP with only a few neurons
in the hidden layer can achieve very high performances. The MLP is typically trained with
a backpropagation algorithm.

LVQNN, RBFNN and PNN, on the other hand, are one-hidden-layer networks with
distance-based training methods. These architectures are usually adopted in situations where
data is distributed in such way that we can divide it in several clusters – more clusters than
classes and non-linearly separable class-wise. In such context, we can see neurons from the
hidden layer as points in the feature space (the coordinates are the weights). Ideally, there
will be a neuron close to each cluster in order to be activated when presented to an input
vector closer to that cluster than to the others. If possible, one should a priori inspect the
most appropriate number of clusters to divide the data, since this is the number of neurons
that should be used in the hidden layer of these networks. The placement of the neurons
near the appropriate clusters is performed in different ways in different networks:

1. In LVQNN, a learning rule exists that, based on training samples, updates the weights
of the neurons in order to get closer or farther from them depending on whether the
desired output was produced or not. Training set imbalancement can highly affect
LVQNN, as minority-class training samples will not suffice to update weights properly;

2. In RBF-based neurons, clustering techniques such as k-means or subtractive clustering
are usually adopted for finding the optimal placement of the neurons. Then, a spread
value – which corresponds to the radius of the Gaussian kernel of a RBF neuron
– is associated with those neurons. An input vector will activate a neuron if it is
under its radius. That activation will be stronger the closer the input vector is to the
center of the neuron. Thus, the spread value should not be too small, in order not to
activate neurons only at their centers (overfitting), neither too big, for preventing the
simultaneous activation of neurons that should respond in different ways to an input
vector;

3. The PNN has a RBF-neuron centered in each training sample. Based on the distance
of the test sample to all training samples and their labels, the RBF layer will output a
vector of class probabilities, and a competitive layer will select the highest probability
class. PNN is usually more accurate than RBFNN, however it is impractical for large
training sets.

2.5.2 k Nearest Neighbors
The kNN is a distance-based majority-voting classification algorithm, composed of the

following steps:
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1. The training set is stored, i.e., all training samples and corresponding label;

2. Given a test sample, the distances between such sample and all training samples are
computed. This step is limiting for the application of kNN in the presence of large
datasets;

3. Finally, the test sample is assigned the most represented class in the k nearest training
samples.

2.6 Genetic Algorithms
In the final stage of our project, we will use symbolic regression for obtaining the evalua-

tion function. Symbolic regression is a particular derivation of Genetic Algorithm (GA). In
this section, we provide some basic knowledge on GAs in general, and symbolic regression
in particular.

2.6.1 Introduction to Genetic Algorithms
GAs are optimization algorithms inspired in the natural selection theory of evolution.

According to this theory, evolution towards fitter generations can be explained by the survival
and reproduction of the fittest individuals.

In an optimization process, we normally identify a set of parameters which can be tuned
in order to optimize results. A candidate solution is any set of values for those parame-
ters. In GAs, candidate solutions are encoded in bit-strings, consisting of concatenations
of parameter values in binary format. Such a bit-string is called a chromossome (each bit
representing a gene), and represents an individual. A GA usually starts with a pre-defined
number of randomly initialized individuals – the initial population. The latter must be
large and diverse enough to allow evolution towards fitter individuals. The fitness of each
individual is assessed through a fitness function – a function which somehow measures how
close the output is to the desired result. Then, chromossome selection for reproduction
takes place – it is imposed that fitter individuals are selected with much higher probability.
Three main genetic operators can actuate over each selected parent, so as to generate the
next-generation population – copy, crossover and mutation– with pre-defined probabilities
(mutation is normally a rare process). Copy refers to the simple placement of an identi-
cal individual in the next-generation population; crossover is the mutual exchange of genes
between two chromossomes, creating two different chromossomes; mutation is the punctual
alteration of a bit value in the bit-string of the chromossome. Until the optimal solution
is found or a stopping condition is verified (e.g. a maximum number of generations), the
population will evolve through this mechanism towards future generations.

2.6.2 Symbolic Regression
Symbolic regression is a particular application of GAs, where the goal is to evolve mathe-

matical expressions that best fit the relationship between a set of inputs and a set of outputs,
i.e., regression. In this type of problems, two fundamental elements are required:
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1. The terminal set – consists of the set of the input features and some constants. String
representations of the features are encoded in the chromossomes (e.g. X1, X2, ..., Xn,
for a dataset with n features).

2. The function set – consists of the operators that can be selected for the mathematical
expression (e.g. +,−, /, ∗). In our experiments, the function set consisted of +,−, ∗, /,
natural logarithm, sine, cosine, sigmoid function and if-then-else statement.

The chromossomes are composed of elements from the terminal and the function set, thus
mathematical expressions that are functions of the features. A tree representation is usually
adopted for individuals. The outputs of such expressions are computed for every input-
output example and later compared with the expected outputs. The fitness function is
usually the comparison measure, for instance an error measure between obtained and real
outputs, that we want to minimize. In this project, the error measure the sum of absolute
differences between obtained and real outputs.

2.7 Sampling Strategies
Cross-validation is the most common form of model validation – the dataset is divided

in two sets – one set is used for training the model (training set) and the other is used for
testing (test set). The fact that the test set is independent from the training set can be
a good indicator for the generalization ability of the model. As the results are always in
some way dependent on the training and testing sets, i.e., different results may outcome
for different dataset partitions, one usually assesses the model’s performance for several
different dataset partitions, and takes average performance as the true model performance.
Probably the most popular form of cross-validation is the so-called k-fold cross-validation:
in k-fold cross-validation data is divided into k subsets (folds), and each is fold is once used
as the test set while the remaining folds are used for training the model. Leave-One-Out
cross-validation is a special case of k-fold cross-validation, for k = N , i.e., the total number
of available examples. In this project, the Leave-One-Out approach was used, for reasons
related with the characteristics of our dataset, pointed out in 4.1.

2.8 Performance Measures
The performance evaluation of a classifier is normally based on a confusion matrix (Figure

2.1). This matrix the distribution of actual vs. predicted classes of the test samples.
Based on that matrix, several useful evaluation metrics can be derived. Precision shows

the proportion of correctly predicted positive cases relative to all the predicted positive ones
(equation 2.1).

Precision = TP

TP + FP
(2.1)

True Positive Rate (TPR) or Sensitivity represents how many positive examples the
classifier was able to correctly identify (equation 2.2).

TPR = TP

TP + FN
(2.2)
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True Negative Rate (TNR)1 or Specificity represents how accurately the classifier behaves
in terms of predicting the negative class (equation 6).

TNR = TN

TN + FP
(2.3)

False Positive Rate (FPR) corresponds to the percentage of misclassified samples of the
negative class (equation 2.4).

FPR = FP

FP + TN
(2.4)

Accuracy represents how many predictions of the classifier were in fact correct (equation
2.5 ).

Accuracy = TP + TN

TP + TN + FP + FN
(2.5)

Table 2.1: Typical confusion matrix.

Actual Class
Negative Positive

Predicted Class Negative True Negative (TN) False negative (FN)
Positive True positive (TP) False positive (FP)

The overall accuracy shall not be a good performance measure of the classifier in imbal-
anced data scenarios, as one can achieve high overall accuracies by classifying all samples
onto majority-class, which is not desired. In such scenarios, the F-measure can be adopted,
as it provides a balance between precision and sensitivity (equation 2.6).

F −measure = 2 ∗ precision ∗ sensitiviy
precision+ sensitivity

(2.6)

In this specific problem, we have 4 classes. Except for accuracy, all other enumerated met-
rics are defined for 2-class problems – at least in terms of overall performance evaluation,
i.e., they could be computed to assess the performance of the algorithm towards each class.
Given that our dataset is highly imbalanced, the overall accuracy shall not be a good per-
formance measure. We decided to compute the 4 class-wise accuracies and base comparison
on measures that take into account a balance among them.

2.9 Classifier Comparison
In this project, classifier comparison will be fundamentally based on Friedman’s non-

parametric test, followed by the Bonferri-Dunn test [10].
Friedman’s non-parametric test for comparison of k classifiers, based on their perfor-

mances in N experiences, can be summarized in the following steps:

1. The k classifiers are ranked for each of the N experiments, based on their scores. In
the presence of ties, the involved ranks are averaged.
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2. The Friedman statistic (T1) is computed based on such ranks, and is compared with
the F distribution for k−1 and (k−1)∗(N−1) degrees of freedom, so as to infer whether
there is or not a significant statistical difference among the scores of the classifiers – one
can reject the null hypothesis that there is no significant statistical difference among
the performances of the k classifiers if the T1 is superior to F (k− 1, (k− 1) ∗ (N − 1)).

Then, if the null hypothesis is to be rejected, a Bonferri-Dunn test can be performed so as
to determine which classifier(s) significantly outperform a baseline classifier (under a pre-
defined significance level) – a critical value (CD) for the difference of the average ranks
between the baseline and other classifiers is computed. Only those classifiers whose average
rank is better to that of the baseline classifier by more than the critical value are considered
to significantly outperform it.





Chapter 3

Literature Review

In this project, image features are based on image descriptors. The latter are algorithms
that process images and output information which can be used to extract descriptive features
of intensity, texture and shape, of objects in the image, for example. Given these properties,
image descriptors can be very useful in medical image analysis. In fact, they have already
been applied in several medical image analysis studies, for instance in the analysis of breast
lesions in mammographic images, oncological diseases in PET, lung pathologies in CT, and
brain pathologies in MR images. In this chapter, a brief literature review is performed,
featuring several studies that are illustrative of current applications of image descriptors in
medical image analysis, with the objective of finding the most suited descriptors for our
problem. For an easier reading, the text is organized in different sections regarding different
imaging modalities – mammography, PET, CT and Magnetic Resonance Images (MRI). We
decided to narrow down our choice to these image exams, as they are illustrative of the
diversity and relevance of works based on the use of image descriptors. Towards the end of
the chapter, two sections are reserved specifically for some examples of the application of
ANN and GAs, in medical image analysis.

On the specific problem of tumor treatment response analysis, little documentation exists.
In the PET section, we report an example, by Naqa et al. [21], where logistic regression is
used for obtaining a predictive model of treatment outcome based on pre-treatment image
features. In our project, before and after-treatment image features will be extracted, and an
evolutionary approach for regression (symbolic regression) will be performed for obtaining
an evaluation function of treatment response.

3.1 Mammographic Images
Mammographic images are generally used for the analysis of lesions related to breast

cancer, which usually correspond to masses and/or calcifications. These lesions stand out as
more intense regions due to their higher density (and thus higher x-ray absorption), when
compared to normal breast tissue. For this section, we selected three representative studies,
whose main features are summarized in Table 3.1.

Moura and Guevara-Lopez [11] performed a comparison of the suitability of a compre-
hensive set of image descriptors for the detection of breast lesions in general, and that of
masses or calcifications in particular. Moreover, they explored the hypothesis that com-
bining other forms of clinical data with the information extracted from image descriptors

17
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Table 3.1: Main features of the studies reviewed in section 3.1.

Authors Objectives Dataset(s) Descriptors Fami-
lies

Moura &
López [11]

A comparison of the suit-
ability of a very com-
prehensive set of image
descriptors for detecting
lesions in general and
masses or calcifications in
particular; improving per-
formance by combining
other clinical information
with the image descrip-
tors.

913 segmentations of
benign findings and 849
of malignant findings,
extracted from the digital
database for screening
mammography (DDSM)
[12].
187 benign findings and
175 malignant findings
from the BCDR-F01
dataset of the breast
cancer digital repository
(BCDR) [13].
Both databases are public
repositories.

Gray-level matrix
Gray-level his-
togram
Invariant moments
Zernike moments
GLCM
GLDM
GLRL
Gabor filters
Wavelets
Curvelets
HOG
HGD (novel)

Tahmasbi,
Saki &
Shokouhi
[14]

Extraction of shape
and margin properties
of breast lesions using
Zernike moments, for
discriminating between
benign and malignant
lesions.

209 normal breasts, 67 re-
gions of interest (ROIs)
with benign lesions and 54
ROIs with malignant le-
sions, extracted from dig-
ital mammograms from
the Mammographic Image
Analysis Society (MIAS)
database [15].

Zernike moments

Sharma &
Khanna [16]

Zernike moments for ma-
lignancy classification of
mammographic patches.

534 malignant and 266 be-
nign samples from IRMA
database. 407 benign and
857 malignant findings
from DDSM database.

Zernike moments
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can lead to improved performances. The patches of the lesions were manually segmented
from mammograms extracted from Digital Database for Screening Mammography (DDSM)
DDSM [12] and Breast Cancer Digital Repository (BCDR) [13]. Then, 12 image descriptors
were computed from the segmented patches: gray-level vector of intensities (IS), gray-level
histogram, Hu’s invariant moments [17], Zernike moments [18], GLCM, gray-level difference
matrix, GLRL, Gabor filter banks, wavelets, curvelets, Histogram of Oriented Gradients
(HOG) [19], and a novel descriptor named Histograms of Gradient Divergence (HGD). The
final features for each descriptor were sets of statistics computed from their outputs. For
classification, SVM, Random Forests, Logistic Model Trees, kNN and Naive Bayes classi-
fiers were used, and the highest Area Under the Curve (AUC) among them was the final
performance measure for each feature vector. The main results are presented in Tables
3.2-3.4.

Table 3.2: Performance of standalone clinical data for each scenario.

Dataset All lesions Masses Calcifications
DDSM 0.853 0.867 0.807
BCDR 0.712 0.829 0.725

Table 3.3: Group of standalone descriptors that significantly outperform the remainder, for
each scenario. Within each scenario, the highest performing standalone descriptor(s) is(are)
presented first, with the corresponding performance between brackets. Then, the names of
other descriptors with similar performances are enumerated.

Dataset All lesions Masses Calcifications

DDSM GLRL (0.743) GLRL (0.733) Wav. (0.733)
HGD HGD GLCM

BCDR HGD (0.825) HGD (0.860) GLCM (0.793)
HOG HOG Gabor, HGD, Wav., Curv.

Table 3.4: Group of clinical data + descriptor combinations that significantly outperform the
remainder, for each scenario. Within each scenario, the highest performing combination(s)
is(are) presented first, with the corresponding performance between brackets. Then, the
names of other combinations with similar performances are enumerated.

Dataset All lesions Masses Calcifications

DDSM IS (0.868) IS, Zer (0.89) Gab (0.803)
HGD

BCDR HGD (0.817) HGD (0.894) Gabor, GLCM (0.815)

A few conclusions can be drawn from the observation of the results:

1. In most scenarios, combining descriptors with other clinical information significantly
outperforms standalone clinical data and all standalone descriptors, with the highest
performing combination not being necessarily based on the highest performing stan-
dalone descriptor;



20 CHAPTER 3. LITERATURE REVIEW

2. The suitability of a descriptor depends on the type of lesion: when all lesions are
mixed and when only masses are present, texture and shape descriptors (e.g. GLRL,
HGD and HOG) lead to the highest performances, whereas regarding calcifications,
texture descriptors (e.g. wavelets, GLCM, Gabor filter banks and curvelets) clearly
outperform others;

3. The performance of the descriptors is dependent on the image database, for instance in
the masses subset GLRL is in the highest performing group of the DDSM database and
not in that of the BCDR database, and the contrary is observed with HOG. However,
some descriptors maintain their good performances transversely to the database, as
HGD in this situation.

Tahmasbi et al. [14] used Zernike moments for the extraction of shape and margin
properties of lesions, with the aim of discriminating between benign and malignant lesions.
Patches were manually segmented from mammograms extracted from the Mammographic
Image Analysis Society (MIAS) [15] database. These were then processed differently for the
computation of shape and margin features: for the computation of shape features, lesions
were binarized; for the enhancement of margin properties, histogram equalization was per-
formed, increasing the contrast of the patch. Then, low- and high-order Zernike moments
were computed from each processed version of the patch and the magnitudes (invariant to
rotation, as opposed to phases) were used as the feature vector. For classification, a multi-
layer perceptron was selected and TPR, TNR, AUC and accuracy, were used as performance
measures.

It was observed that the best performance belonged to the systems that used only shape
features, particularly those based on low-order Zernike moments (achieving FPR of 11.13 %,
FNR of 0.0%, Accuracy of 92.8% and AUC of 0.975) , and that, as the proportion of margin
features increased, the performance decreased. Hence,

1. The tuning of the parameters of a descriptor (if they exist), in this case the order of
the Zernike moments, can be determinant in the performance, as features based on
low-order Zernike moments outperformed those based on high-order ones;

2. The processing of the images to enhance certain properties can also be determinant,
as in this case the shape-enhancing processing led to higher descriptor performances
than the margin-enhancing processing.

Sharma and Khanna [16] also used Zernike moment magnitudes for the detection of
malignant lesions. The patches were manually segmented from mammograms of Image Re-
trieval in Medical Applications (IRMA) and DDSM databases. Besides Zernike moments,
two standard image descriptors, GLCM and Discrete Cosine Transform (DCT), were com-
puted from the patches. Then, statistics were extracted from the outputs of the descriptors
to build the feature vectors. For classification, kNN and SVM were selected, and sensitivity
and specificity were adopted as performance measures. With SVM, performance increased
up to order 20, and decreased for higher order moments, on both databases (sensitivity =
0.99 and specificity = 0.99 for IRMA database and sensitivity = 0.96 and specificity = 0.96
for the DDSM database, with order 20). kNN generally performed poorer than SVM, and
needed much higher moment order to achieve similar performances (at order 35, sensitivity
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= 0.97 and specificity = 0.92 for IRMA database and sensitivity = 0.94 and specificity =
0.93 for the DDSM database).

Compared to GLCM and DCT-based features, the Zernike-based descriptor outperformed
both (sensitivity values of 0.90, 0.78 and 0.99 and specificity values of 0.93, 0.78 and 0.99
for GLCM, DCT and Zernike-based features respectively, using SVM and IRMA database).

Thus,

1. Zernike descriptors can outperform well-known descriptors as GLCM and DCT in
malignancy classification of mammographic patches, achieving very high performances;

2. An optimizing classifier should be selected – in this case SVM was clearly advantageous
compared to kNN, achieving higher performances with lower dimensionality feature
vectors.

3.2 PET images
The basics of PET have already been explained in section 1.1. Many studies have been

developed for the automated analysis of pathologies typically covered by PET. FDG-PET,
in particular, is the most studied, as it allows for the analysis of prominent pathologies char-
acterized by regions of abnormally high (e.g. tumors or infections/imflammations) or low
glucose metabolism (e.g. Alzheimer’s disease). For this section, we selected three represen-
tative studies, whose main features are summarized in Table 3.5.

Table 3.5: Main features of the studies reviewed in section 3.2.

Authors Objective Dataset Descriptors Fami-
lies

Wu, Khong
and Chan
[20]

Automatic detection
and classification of na-
sopharyngeal carcinoma,
combining image descrip-
tors with a priori clinical
knowledge.

25 PET/CT examinations
of patients suffering from
NPC from the PET/CT
Unit in the University of
Hong Kong.

Intensity
Texture (second-
order moments)
Shape (area, ec-
centricity, compact-
ness)

Naqa et al.
[21]

Predictive model of treat-
ment outcome based on
intensity, texture and
shape features of pre-
treatment PET images.

14 images of patients with
cervix tumor (7 with per-
sistent disease after treat-
ment) and 9 images of pa-
tients with head and neck
tumors (4 of them died af-
ter treatment)

Intensity (SUV-
based)
GLCM
Shape (compact-
ness, eccentricity,
extent, Euler’s
number).

Morgado [22] Comparison of feature ex-
traction and feature selec-
tion techniques for auto-
mated diagnosis of MCI
and AD using PET im-
ages.

59 PET images of each
class (healthy patients,
MCI patients, AD pa-
tients) retrieved from the
ADNI database [23].

Intensity
Local Variance
LBP

Wu et al. [20] designed a system for the detection of primary tumor and metastasis of
nasopharyngeal carcinoma in PET/CT images. The patches were segmented automatically
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using a region-growing algorithm. Then, texture (second-order texture moments) and shape
(compactness, area, eccentricity) features were extracted.

As a way to discard false positives, i.e., physiological high-uptake spots, extra features
were computed: the average intensity of CT values was used to differentiate tumor regions
from regions of physiological marrow uptake in bones and brown fat uptake in fatty tissues;
the intensity difference between the regional peak and its surroundings was used to differen-
tiate regions of true bone metastasis from regions of normal bone marrow uptake; anatomical
location information was also used, as the likelihood of a segmented candidate to be a part
of the primary tumor or its nodal metastasis differs according to its anatomic location (by
definition the primary tumor arises from the nasopharynx and a pattern of nodes spreads
in the neck); the symmetry of the segmented candidate about the medial plane was also
considered (symmetric organs as tonsils, salivary glands and thyroid, naturally show high
uptake). Different combinations of all features were input to a SVM.

With regard to the performance of the region-growing algorithm, all lesion segmentations
overlapped at least 80% of the corresponding volumes identified by radiologists. However,
five false positives were segmented as well.

Regarding classification, samples from 20 PET/CT volumes were used for training; the
image feature combination of relative position, average intensity, area, eccentricity and sym-
metry had the higher TPR (99.3 %) and the lowest FPR (4.8%), with the relative position
being the most important feature, since eliminating it from the feature vector clearly wors-
ened performance more than eliminating any other feature. Applying this model to the
samples from the remaining 5 PET/CT volumes, a TPR of 95.1 %, a FPR of 7.0 % and an
accuracyof 93.3 % were obtained.

In conclusion, the work by Wu et al. shows that combining image descriptors as area
and eccentricity with other clinical information as average CT values, symmetry measures
to the medial plane, and anatomical location can significantly improve the performance of
tumor detection on PET, helping to differentiate physiological from pathological uptakes.

Naqa et al. [21] used logistic regression to build a predictive model of treatment outcomes
of cervix and head and neck cancers, based on image features of the pre-treatment PET
images. Lesion volumes were segmented automatically using a region-growing algorithm in
the case of cervix tumors, and manually in head and neck cancer situations. SUV-volume
histograms, GLCM and shape features such as Euler’s number, eccentricity, extent and
solidity were computed from the segmented volumes. Features computed from descriptor
outputs were ranked according to Spearmann coefficient and AUC, regarding the feature-
label vector relation. The top two highest scoring features for each pathology were selected as
variables of the logistic regression model. Regarding the cervix tumor patients, the difference
between the fractional volumes above 90% and 10 % of the maximum SUV and energy
achieved the highest scores; regarding patients with head and neck tumors, the fractional
volume above 90% of maximum SUV and the shape extent were the most discriminative
features. For both tumor types, logistic regression analysis was used to obtain predictive
models of the outcomes based on the top two discriminative features. When compared
with the real outcomes, the cervix tumor model obtained a Spearman coefficient of 0.49
and an AUC value of 0.76, whereas the head and neck tumor treatment outcome predictive
model obtained a Spearman coefficient of 0.89 and an AUC value of 1.0. Hence, attractive
results were obtained with simple two-feature logistic regression-based predictive models of
treatment outcomes, particularly in the head and neck cancer. Texture, shape and SUV-
volume features turned out to be more important in discrimination than the usual SUV
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statistics.
Morgado [22] compared feature extraction and selection techniques for the automated

diagnosis of Alzheimer’s Disease (AD), using brain PET. PET volumes of patients with AD,
Mild Cognitive Impairment (MCI) – a syndrome that is proved to be related with the pre-
clinical stage of AD – and also from Cognitive Normal (CN) patients, were extracted from the
ADNI [23] database. Four descriptors were computed, from the entire brain volumes: voxel
intensities, local variances, 2D-LBP and 3D-LBP. As there was no segmentation, descrip-
tor outputs have very high dimensionalities. For that reason, feature selection algorithms
such as Point Biserial Correlation Coefficient (PBCC), Mutual Information Maximization
(MIM) and Minimal Redundancy Maximal Relevance (mRMR) were applied. A SVM was
selected for classification, and accuracy was used as performance measure. The best feature
– selection algorithm combination was:

1. 3D-LBP and PBCC for the AD vs. CN task (91.4 %);

2. Voxel intensities and MIM for the MCI vs. CN task (79.4 %);

3. Local variances and MIM for the MCI vs. AD task (73.4 %).

However, other combinations reached similar performances. From the results, one may
observe that the most accurate classification task was AD vs. CN, with a clear drop in
performance in the tasks that involve MCI. Over all the classification tasks, MIM was most
frequently the best selection algorithm, followed by PBCC with similar results and mRMR
with generally poorer results. Regarding feature types, it is not so easy to choose one that
consistently had the best performance over all tasks. In conclusion, all voxel intensities, local
variances, 2D-LBP and 3D-LBP, performed well in the diagnosis of MCI and AD, with the
PBCC and MIM feature selection algorithms allowing high performances after dimensionality
reduction.

3.3 CT images
CT is mostly used for the analysis of bone and lung pathologies. Bone regions stand out

as very intense regions when compared to the remaining tissues due to the higher density
and thus higher x-ray absorption. On the contrary, lungs stand out as especially dark regions
due to their particularly low density (high air percentage). CT is also used for analysis of
pathologies of other tissues, but is usually preferred over by MRI due to the high soft tissue
contrast the latter provides.

Most studies using CT images for automated diagnosis are related to lung diseases,
particularly lung nodules, although other pathologies such as liver pathology or polyps in
CT colonography are often addressed. Lung nodules are clearly seen in CT images, as
they are dense regions and contrast with the dark lung background. In fact, the high CT
resolution allows for the identification of very small nodules, which sometimes is not possible
using MRI. However, when one’s Computer-aided Diagnosis (CAD) system is sensitive to
very small nodules, it gets more susceptible to false positives, as noise or small artifacts can
be considered nodules. For this reason, there are several studies on false positive reduction
strategies. For this section, we selected three representative studies, whose main features
are summarized in Table 3.6.
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Table 3.6: Main features of the studies reviewed in section 3.3.

Authors Objectives Datasets Descriptors Fami-
lies

Depeursinge
et al.[24]

Texture descriptors for
classification of 4 different
pathologies of lung tissue.

77 samples of healthy tis-
sue, 72 of emphysema, 155
of miconodules, 64 of fi-
brosis and 113 of ground
glass nodules from an in-
ternal database.

Gray-level his-
togram
Wavelet

Boroczky
and Zhao
[25]

Finding the optimal fea-
ture subset, out of a pool
of texture, shape and in-
tensity features, for false
positive reduction of a
previous lung nodule de-
tection system.

52 true positives and 443
false positives output by a
previous CAD system.

Gray-level matrix
Gray-level his-
togram
Gradient matrix
Shape (spheric-
ity, enlongated
and flat shape,
compactness).

Dettori &
Semler [26]

Comparison of texture de-
scriptors for classification
of tissues of different or-
gans in CT scans.

2 healthy chest and ab-
domen CT studies from
Northwestern Memorial
Hospital.

Wavelet
Ridgelet
Curvelet
GLCM
GLRL

Depeursinge et al. [24] explored texture descriptors for the discrimination among 5
classes of lung tissue – healthy, emphysema, ground glass nodules, fibrosis and micronodules.
Patches were manually segmented from CT images and the gray-level histogram and wavelet
descriptors were computed. Three feature vectors were considered: histogram statistics,
wavelet statistics and a combination of the two. A kNN classifier was selected and the
leave-one out approach was used for validation. Accuracy was used as performance measure.

The following experiments were performed: 5 classification tasks of each tissue type
vs. the remainder, and a multiclass task. The combination feature vector systematically
outperformed the isolated ones, with accuracies in the range 95 % – 100 % with regard to
the each vs. the remainder tasks and, regarding the multiclass task, 92.2 % of the healthy
samples were correctly classified, all emphysemas, 86.7 % of the ground glass lesions, 92.9
% of the micronodules and 93.8 % of fibrosis.

In summary, a combination of gray-level histogram statistics and wavelet features can
achieve high performances in the detection and discrimination between lung pathologies.

Boroczky and Zhao [25] search for the optimal feature subset, out of a pool of texture,
shape and intensity features, for false positive reduction of a previous lung nodule detection
system. Lesion volumes were manually segmented. From each segmentation, the following
features were extracted: statistics computed directly from gray-level vector of intensities
and from the gray-level histogram, the difference between the mean values of the gray-
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levels within the nodule and in its vicinity, statistics computed from the gradient matrix,
and shape features such as spheric, flat, and enlongated shape, sphericity and compactness.
Then, GA were used for finding the optimal subset size and the optimal subset of features:
a hierarchical fitness function was used, with the first priority assigned to the sensitivity,
the second to the specificity and the third to the number of features in the subset. A first
GA run was performed to determine the optimal subset size, based on the occurrences of
chromosomes representing each subset size – those with 10 features were clearly the most
frequent. Subset size was then fixed to 10, and a second GA run was performed to determine
the optimal 10-feature group.

The fittest chromosome corresponded to the following subset: gray level minimum, com-
pactness, flat shape, elongated shape, sphericity, contrast, gradient maximum, gradient stan-
dard deviation, gradient skewness, and gradient small value ratio. Using this feature subset,
all the true positives were retained (sensitivity of 100%), and a 50% reduction of false posi-
tives was achieved.

Detori and Semler [26] compare the performance of wavelet, ridgelet, and curvelet texture
descriptors, as well as two standard texture descriptors – GLCM and GLRL – in the discrim-
ination between tissues of five different organs – spleen, backbone, heart, liver and kidney).
Patches were segmented from CT images using an Active Contour algorithm. Then, descrip-
tors were computed and statistics were extracted from their outputs. Different combinations
of such statistics were built for each descriptor and input to a decision tree.

In Table 3.7 are the performances of the best feature vector of each descriptor. Observing
the results, one can see that the best curvelet-based feature vector clearly outperforms the
best wavelet and ridgelet-based feature vectors. Regarding the comparison with standard
texture descriptors GLCM and GLRL, one can conclude that the the best wavelet and
ridgelet feature vectors are outperformed by GLCM and GLRL-based ones. On the other
hand, the best curvelet feature vector outperforms both. In conclusion, curvelet-based image
features can be very powerful in the discrimination of textures of different tissues on CT
images, outperforming in many scenarios other standard texture descriptors as GLCM and
GLRL and wavelet and ridgelet-based features.

Table 3.7: Average performances over all organs of the highest performing feature vectors
within the wavelet, ridgelet and curvelet groups and of the GLCM and GLRL.

Descriptor TPR (%) TNR (%) Prec. (%) Acc. (%)

Wavelet (Haar) 74.4 93.7 74.4 89.9
Ridgelet 83.8 96.0 85.0 93.6
Curvelet 94.6 98.7 94.7 97.9
GLCM 89.1 97.3 89.7 95.8
GLRL 84.3 96.1 84.7 93.9

3.4 MR images
Magnetic Resonance (MR) images are based on the different relaxation times of tissues

after being subjected to an electromagnetic stimulus, and provide excellent soft tissue con-
trast. The relaxation time of a tissue is related with its water content. Moreover, contrast
can be further enhanced through the injection of a contrast enhancement agent. For this
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reason, MRI is widely applied in the diagnosis and treatment of neurological, cardiovascular,
musculoskeletal, liver and gastrointestinal diseases.

Most automated diagnosis studies using MR images are related to brain pathologies
as tumors, dementia, or lesions related to White Matter Hyperintensities (WMH) – these
have shown to be associated with several prominent pathologies, such as multiple sclerosis,
vascular disease and dementia, although other pathologies as breast or prostate cancer are
also frequently object of study [27] [28]. We selected three representative studies, whose
main features are presented in Table 3.8.

Table 3.8: Main features of the studies reviewed in section 3.4.

Authors Objectives Datasets Descriptors
Families

Unay, Ekin, Cetin,
Jasinschi & Ercil
[29]

To demonstrate robust-
ness of LBP texture de-
scriptors to bias field and
rotation degradations.

Dual (T2 and PD) MR
scans from 549 subjects
from Leiden University
Medical Center.

LBP

Reddy, Solmaz,
Yan, Avgeropoulos,
Rippe & Shah [30]

To prove that incorporat-
ing the information of a
confidence surface in seg-
mentation methods, built
over the output scores of a
brain tumor classifier, sig-
nificantly improves their
performance.

19 groups of MRI images
with brain tumor.

Intensity
HOG
LBP

Theocharakis et al.
[31]

Discrimination be-
tween two white matter
hyperintensities-related
lesions, multiple sclero-
sis (MS) and cerebral
microangiopathy (CM)

47 CM and 31 MS ROIs of
MR images of an internal
database.

Gray-level
histogram
GLCM
GLRL

Until recently, analysis of brain MR images was mostly exclusively based on intensity
features. Since soft tissue contrast is high, intensity features are naturally discriminative.
However, if our aim is brain lesion segmentation for accurate tumor volume measurement,
intensity-based analysis may not be enough: bias-fields (intensity inhomogheneity caused
by equipment interferences during acquisition) and inter- and intra- patient misalignment
significantly degrade the performance of automatic segmentation techniques. Moreover,
normal tissues may also be enhanced with contrast agent, resulting in the segmentation of
a larger region than the actual lesion; on the other hand, the presence of noise or non-
uniformity of the distribution of contrast agent in the lesion may result in an incomplete
extraction.

Unay et al. [29] suggested a LBP-based texture analysis as a potentially more robust
complement or alternative to intensity-based analysis. In order to test robustness of LBP
to bias fields and rotation degradations, original MR images were degraded using a set of
simulated bias fields (with larger or smaller intensity and spatial variations) and rotated by
several angles using three different interpolation methods. Then, some LBP variants were
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computed from the original and degraded images. The Bhattacharyya distance between each
descriptor computed in the original and the degraded image was used as the dissimilarity
measure.

It was observed that dissimilarity increased with the increase of intensity and spatial
variations of bias fields. In the case of rotation degradation, dissimilarity was higher for large
rotation angles and for lower-complexity interpolation methods. Despite these increases, all
dissimilarity values fell below 0.04% in the case of bias field degradation and bellow 4%
in the case of rotation degradation. Regarding the different variants of LBP, introducing
rotation invariance and uniformity in LBP increased performance.

In conclusion, the uniform and rotation invariant LBP variant is quite robust to bias-fields
and rotation degradation, and thus a promising complement to the usual intensity-based
analysis.

Reddy et al. [30] also believe that it is advantageous to add texture features to the usually
used intensity features on MRI, based on the fact that normal brain tissues differ also in
structure from lesions. They propose confidence-guided versions of known segmentation
methods and compare their performances with those of the original versions, in a brain
tumor segmentation problem.

To start, a mask for the enhanced region is generated with the difference between T1pre
and T1post images.

Then, mean intensity, LBP and HOG features are computed for each pixel within the
enhanced region mask from each of T1pre, T1post, T2 and FLAIR images, and concatenated
to form a single feature vector.

After that, the feature vectors of each pixel are input into two different classifiers, SVM
and AdaBoost, for tumor pixel classification. A confidence surface is then constructed based
on the classification output scores. The authors propose to use the generated confidence
surface to guide the segmentation process: two classical segmentation methods, level set and
region growing, are slightly modified to incorporate the confidence surface information in
the segmentation process.

Regarding classification results, Receiver Operating Characteristic (ROC) curves were
plotted and it was observed that AdaBoost outperformed SVM, with larger AUC values.
Checking the AdaBoost weights for the different features, the MI features from T1pre and
T1post had the larger weights, indicating that these features still play the most important
role in tumor detection. On the other hand, the HOG features from T1pre and T1post images
and the LBP feature from T1pre had larger weights than the mean intensity feature from T2
and FLAIR images, suggesting that these texture features are also useful for discrimination.

For assessing segmentation accuracy, the average Dice Similarity Score (DSS) was com-
puted. Using the original level set method, a DSS of 0.3 ± 0.27 was obtained, whereas for
original region growing DSS value was 0.29 ± 0.22. Using the confidence guided versions,
DSS significantly improved for both methods, with confidence guided region growing seg-
mentation outperforming confidence guided level set segmentation: DSS = 0.68 ± 0.13 for
level set and 0.69 ± 0.14 for region growing.

Thus, it can be concluded that intensity features are still probably the most important for
brain tumor analysis, but SVM and HOG features also contribute for discrimination. More-
over, incorporating confidence guiding in the segmentation methods significantly improved
their performances.

Theocharakis et. al [31] developed a system for discriminating between Multiple Sclerosis
(MS) and Cerebral Microangiopathies (CM), based on texture features.
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Patches were manually segmented and gray-level histogram, GLCM and GLRL descrip-
tors were computed. Statistics computed from descriptor outputs were extracted. For feature
selection and classification, four methods were compared: minimum distance classifier, linear
discriminant analysis, logistic regression and PNN. With a leave-one-out cross-validation ap-
proach, the best classification accuracy occurred with PNN (88.46 %), using the mean value,
sum of variance and run-length nonuniformity features. However, a cross-validation scheme
with 2

3 train – 1
3 test dataset partition led to an average accuracy of 72.96 % (over 10 random

partitions), with different features in the top 3 for each of the repetitions. The most frequent
features on the top 3 were mean, contrast, sum of average and sum of variance. A total of
15 of the 23 features were at least once in the top 3. A Mann-Whitney U-test was performed
to assess significant difference between both classes for each of these 15 features, and 13 of
them showed significant difference.

Thus, a combination of features computed from the gray-level histogram and the GLCM
and GLRL matrices can lead to relatively high performances in the discrimination between
MS and CM.

3.5 Artificial Neural Networks – Revised Works
ANNs have a rich history concerning medical image analysis applications, namely in

segmentation and classification tasks.
Regarding segmentation, unsupervised or clustering neural networks are normally pre-

ferred. As our goal is classification, we will not further explore such subject.
Verma and Zakos [32] used a MLP with one 10-unit hidden layer for discrimination

between benign and malignant breast microcalcifications. With only three inputs - two
gray-level features and the number of pixels -, computed from microcalcification regions in
mammograms, an accuracy of 88.9% was achieved.

Halkiotis et al. [33] aimed for the detection of clustered breast microcalcifications. Five
features were computed from the candidate Region of Interest (ROI)s, four of them being
moments computed from the gray-level histogram and the remaining being the number of
objects in a limited neighborhood. These features were input to a MLP with one 10-unit
hidden layer for classification as either clustered microcalcification or not. A sensitivity of
94.7% was obtained, with 0.27 false findings per image.

Papadopoulos et al. [34] developed a system also for the detection of microcalcification
clusters. From mammogram ROIs, 22 intensity, shape and texture cluster features were ex-
tracted. Features of candidates that passed a rule system aiming at false positive elimination
were subjected to principal component analysis for posterior dimensionality reduction. Di-
mensionality was reduced to 9, through the elimination of components that contributed with
less than 3% of the overall data variance. Then, the 9 features were fed to a two-hidden-layer
MLP, the first layer having 20 units and the second having 10. An AUC value of 0.91 and
0.92 were obtained for two different datasets.

Christoyianni et al. [35] used an RBFNN classifier, first for detecting abnormal breast
tissue and, secondly, to discriminate between benign and malignant breast lesions. Three
feature vectors were compared: one consisted of gray-level histogram moments, a second
one was composed of statistics computed from the co-occurrence matrix and the third was
composed of the principal components (5 in the case of abnormality detection and 8 in
the case of dicrimination between benign and malignant) of the coefficients resulting from
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Independent Component Analysis (ICA). The ICA-based feature vector was the highest
performing one in both classification tasks, with an accuracy of 88.23% in the abnormality
detection scenario and of 79.31% in the benign from malignant discrimination.

Chen et al.[36] used a PNN for discrimination between two types of liver tumors hema-
geoma and hepatoma, based on three image features computed from CT ROIs - correlation,
sum entropy and normalized fractional brownian shape. An 83 % accuracy was obtained.

Some network models are designed to operate directly on images. Examples are convo-
lutional neural networks - used, for instance by Sahiner et al. [37] for detection of abnormal
breast tissue in mammogram ROIs, achieving an AUC of 0.87 – and massive training artifi-
cial neural networks – applied by Susuki et al. [38] in lung nodule detection and false positive
reduction, maintaining a sensitivity of 96.4% and a achieving false positive rate reduction of
33% when compared to a previous system designed by the same authors.

Pruning algorithms can be used for the elimination of network connections considered
irrelevant - in the sense that their presence does not affect performance - during training
(e.g. input selection). Setiono [39] applied a pruning algorithm to a MLP in a breast cancer
diagnosis application.

ANN ensembles have also been explored, with the final output being a function of the
outputs of different ANNs. Zhou et al. [40] used an ANN ensemble for lung cancer detection.

3.6 Genetic Algorithms – Revised Works
GAs have already been used in a number of applications related with medical image

analysis, namely in the optimization of segmentation, feature selection and classification
methods.

The problem of medical image segmentation can often be expressed as one of optimization
of an objective function. For example, Active Contour Model or Snake segmentation [41] is a
popular segmentation method based on energy minimization of the so-called snakes. Snakes
are continuous splines under forces of three natures:

1. External constraint forces These forces place the snake near the wanted boundary.
Usually, this is done by manually tracing a spline near the boundary.

2. Internal forces These forces impose a piecewise smoothness constraint.

3. Image forces These forces push the snake toward salient image features such as lines
or edges.

Thus, a draft of a snake is first drawn near the boundary, then the internal and image forces
will reshape the snake so as to smoothly adapt to the boundary. This happens as a conse-
quence of a condition of energy minimization of the snake – Active Contour segmentation
is a problem of minimization of an energy objective function. Mathematically, it can be
expressed as:

min (Esnake)↔ min (Eexternal + Einternal + Eimage)

As powerful function optimization tools, GAs can be used for such task. For example,
they have been used in the segmentation of anatomical structures in ultrasound [42] and in
the segmentation of the foveal avascular zone in retinal images [43].
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Another popular segmentation method is the template-matching method. In this method,
the detection of an object is usually based on a correlation metric to a template object. GAs
have been introduced in such methods as a way to detect objects by maximizing a correlation-
based fitness function. For example, Lee et al. [44] use GAs in a template-matching technique
for the detection of pulmonary nodules in Helical CT images. As template nodules, they
used simple models that simulate real nodules – they observed that CT values in nodules
followed a gaussian distribution, and built 4 gaussian models with 4 different diameter values
– within the 5-30 mm interval (most nodules fall in this size range). Chromossomes of 25-
bit length were built – 23 bits containing the (X,Y,Z) coordinates of the candidates, and 2
bits for the selection of the reference image (i.e. 1 of the 4 gaussian models). The fitness
of a chromossome is the cross-correlation coefficient between the region centered at the
coordinates and the selected reference image. Chromossomes with fitnesses over a certain
value were considered nodule candidates. Then, some features were computed in order to
eliminate false positives: mean and standard deviation were used to discard false positives in
bone, skin and mediastinium, since these usually show higher CT values than lung nodules;
area, circularity and irregularity measures were also used to discard some false positives;
contrast, maxmean CT value and gradient direction were used to discard blood vessels
running vertically regarding the slice image. In the experiment, 20 clinical cases were used
– 15 abnormal and 5 normal cases. A total of 98 nodules were detected by radiologists
in the abnormal cases. The genetic algorithm template matching technique was able to
detect 55 of the 98 nodules with 3224 false positives; after the feature-based false positive
elimination stage, the number of false positives went down to 333 (a 88% reduction) and
also a true positive was mistaken for an artifact, lowering the true positives to 54. Thus, a
72% sensitivity was achieved.

Ye et al. [45] also use a Generic Algorithm Template Matching (GATM) algorithm for
lung nodule detection in CT images, but with phantom nodule images instead of gaussian
models.

Another common application of GAs is feature selection. Usually, chromossomes have
lengths equal to the total number of features – one bit per feature – and the bit is 0 or
1-valued depending on whether the corresponding feature is selected or not. The fitness
function of an individual is usually based on one or more performance measures of the
classifier (e.g. AUC, sensitivity, specificity) and sometimes a penalty term proportional to
the number of ’active’ features. Herein we present some examples:

Sun et al. [46] apply genetic algorithms for feature selection in the detection of breast
cancers in mammograms. The dataset consisted of 164 cancer regions and 296 normal regions
extracted from mammograms of the DDSM database. Descriptors such as GLCM, Gabor
filters, wavelets and curvilinear structure were computed from the patches , and 86 features
were extracted from their outputs. These 86 features were used to build 86-bit chromossomes
– 1 bit per feature – with 1 or 0 values depending on whether the corresponding feature is
selected or not. The fitness value of each chromossome was the area under the ROC curve
produced by a classifier based on linear discriminant analysis. Two genetic algorithm models
were used – a traditional genetic algorithm, and the CHC model – achieving AUC values of
0.903 and 0.932, respectively.

Sahiner et al. [47] use genetic algorithms for feature selection in the detection of masses
in mammograms. The dataset included 168 mammograms, 85 of which containing benign
masses and 83 containing malignant masses. From each mammogram, 4 ROIs were extracted,
one containing the mass, and 3 others containing normal breast tissue. Of the 3 normal tissue
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ROIs, one should contain dense tissue which could mimic a mass lesion, another would be
a mixture of dense and fat tissue and another mainly showing fat tissue. From each ROI,
GLCM and wavelet-based features were computed. For ROI segmentation, they used a
pixel-by-pixel clustering algorithm followed by binary object detection. After detecting a
single suspicious object within each ROI, shape and margin features were extracted from
it – e.g. perimeter, area, circularity, rectangularity, contrast, perimeter-to-area ratio, and
radial length features. Chromossomes were built with a bit per feature – 1 if the feature
was selected and 0 otherwise. The fitness function was made of a main component – the
area under the ROC curve of a Fisher’s linear discriminant classifier – and a penalty term –
proportional the number of features. An average AUC of 0.90 for 20 features was obtained
with GA-based feature selection, outperforming random and stepwise Linear Discriminant
Analysis (LDA) selection techniques.

Sometimes GAs are used to find the operating parameters of classifiers that optimize
their performances. Usually, the parameters to tune are encoded in the chromossomes and
the fitness function is based on one or more performance measures of the classifier (e.g.
sensitivity, specificity). Herein we show examples regarding simple threshold-based classifiers
and more complex ANN classifiers.

Anastasio et al. [48] use genetic algorithms for the optimization of the detection of
clustered microcalcifications in mammograms. 89 mammograms were used, 82 of which con-
taining clusters of microcalcifications. First, the original mammogram was pre-processed by
linear filtering in order to increase the signal-to-noise ratio of the microcalcifications. Then,
the potential microcalcifications were identified by gray-level thresholding and morphological
filtering. After that, a set of features was extracted in order to eliminate false positives. The
elimination was based on 10 thresholds of intensity, power spectrum, contrast, linearity and
area. The genetic algorithm was used for finding the optimizing values for those thresholds
– a chromossome was made of 10 values. The cost function was based on a sensitivity-
specificity tradeoff – higher costs were assigned to less desirable sensitivity-specificity pairs
and vice-versa. Bilinear interpolation was used for obtaining the cost associated with the
non-tabulated values of sensitivity/specificity. An 87% sensitivity was obtained at 1.0 false
positives per image.

GAs have also been used for determining the optimizing parameters of classifiers. For
instance, Neuroevolution is a field of machine learning that uses GAs to evolve ANNs – one
does not need to propose the network parameters because a method called NeuroEvolution of
Augmenting Topologies (NEAT) [49] automatically discovers the best network topology and
weights that best fit the complexity of the task. Tan et al. proposed a feature (de)selective
version of NEAT – FD-NEAT [50] –, where an additional mutation operator enables dis-
carding irrelevant or redundant inputs. Tan et al. have been applying FD-NEAT in works
related to CT lung nodule detection [51],[52].





Chapter 4

Experimental Setup

In this chapter, the adopted methodology and parameterization for the data processing,
classification and regression stages is reported.

4.1 Data
We were provided clinical data regarding 63 patients suffering from two oncological dis-

eases of distinct natures, with 29 of them suffering from Hodgkin Lymphoma and the re-
maining 34 suffering from neuroendocrine tumors. Clinical data of each patient was collected
by a nuclear medicine team of IPO-Porto, and includes:

1. PET/CT exams of the patient before and after radiotherapy treatment;

2. Patient age and tumor stage by the time of the first PET/CT exam;

3. Patient weight before and after treatment;

4. Maximum SUV within the main lesion and maximum SUV of a reference organ, before
and after treatment (the reference organ is useful for monitoring any procedural mis-
take that would lead to the wrong SUV estimation – if the SUV of this organ shows
unrealistic values, then the lesion’s SUV must not be trusted either).

The development of multiple lesions is quite common in patients suffering from both
pathologies. However, we only have access to maximum SUV information of the main lesion,
i.e., the lesion of highest uptake. Thus, we will only follow one lesion per patient, the main
lesion. Four types of lesion response-to-treatment are observed in our dataset, each with the
following number of instances:

1. Negative – the lesion has become more malignant – 2 instances. The leave-one-out
cross-validation approach was selected with the aim of assuring that, in the experiments
with the original dataset, there would always be at least one sample of the negative
response class in the training set;

2. Neutral – the lesion did not respond to treatment – 6 instances;

3. Positive (partial) – the lesion has decreased the malignancy degree after treatment –
27 instances;
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4. Positive (complete) – the lesion disappeared after treatment – 28 instances. Because
some lesions disappear, it does not make sense to compute shape features from the
patches, such as area, perimeter, and so on.

4.2 Segmentation
The PET/CT information provided to us consisted of the axial slices of whole-body

scans. We found the visual detection of lesions in coronal context more intuitive; hence,
for segmentation, we grouped the slices into volumes and extracted the coronal slices. The
segmentation process of a lesion required three main steps:

1. Identifying the main lesion – many patients present multiple lesions. Our interest is to
keep track of the main lesion, i.e., the one that shows the highest malignancy degree. In
order to identify the lesion of higher malignancy we summed all slices into a maximum
intensity projection image, and, in the latter, we could visualize which lesion had the
highest overall uptake;

2. After identifying the anatomical location of the lesion to segment, we had to detect
the slice where it showed highest uptake;

3. After identifying such slice, we proceeded to the segmentation itself. Three different
segmentation processes were adopted according to the characteristics of the slice:

a) If the intensity maximum of the slice was within the lesion, automatic segmenta-
tion was performed by applying the region-growing algorithm to the whole image.

b) If it were on other organs, we performed semi-automatic segmentation – we drew
a rectangle that enclosed the lesion, leaving out higher intensity regions, and
applied region growing within that rectangle;

c) If there were no lesion (in the cases of complete positive response), we performed
manual segmentation, drawing a rectangular patch enclosing the region where the
lesion used to be.

For reasons that lie with their own definitions 2.2 some of our image descriptors require
rectangular patches. Thus, in cases where region growing was applied, we used the small-
est rectangle to enclose the output region of the region growing algorithm, for descriptor
computation.

4.3 Descriptor Computation and Feature Extraction
After a lesion was segmented, the descriptors were computed from the patch and features

were extracted from their outputs, as described in Table 4.1;
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Table 4.1: Parameters used for descriptor computation and features extracted from their
outputs.

Descriptor Parameters Extracted features Dimension

gray-level histogram (no parameters) mean 4
standard deviation

skweness
kurtosis

GLCM θ = 0, 45, 90, 135 degrees GLCM features 22
d = 1

GLRL θ = 0, 45, 90, 135 degrees Run Length features 11

Wavelets 2 levels of resolution mean 28
Daubechies family standard deviation

energy
entropy

(for each of the 7 resulting matrices)

Gabor filters 3 frequencies mean 48
4 orientations standard deviation
(12 filters) energy

entropy
(for each of the 12 output images)

LBP R = 8 histogram of uniform patterns 58
block-size equal to smallest

side of the patch
TOTAL= 171

Thus, we have 171 image features characterizing each lesion.

4.4 Final Datasets
After computing the image features of the main lesions of each patient from before and

after treatment, we built a 350-dimensional feature vector for each patient, containing:

1. Before and after image features – which account for 171 ∗ 2 = 342 of the 350 features

2. 8 other (already mentioned) features provided by IPO-Porto:

a) Patient age and tumor stage by the time of the first PET/CT exam;
b) Patient weight before and after treatment;
c) Maximum SUV within the main lesion and maximum SUV of a reference organ,

before and after treatment.

To each of these feature vectors, we assigned the corresponding treatment-response class
label. Thus, our dataset is composed of 63 instances of 350 features.

One is fast to notice two potentially problematic aspects of our dataset:
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Figure 4.1: Scree plot of the first 10 principal components.

1. High dimensionality – complexity of the classification process is said to increase expo-
nentially with dimensionality;

2. High imbalancement – not having a balanced number of instances among classes may
result in poor training regarding minority classes, and a consequent tendency of bad
generalization with respect to minority-class samples.

In order to assess the effect of these characteristics in the final results, we also ran our
experiments after

1. Dimensionality reduction using PCA – looking at the Scree plot of our data (Figure
4.1), we would select the first two components. Moreover, as we can see on Table 4.2,
the two first principal components comprehend more than 99,9% of the overall data
variance. As such, we kept only two principal components;

Table 4.2: Percentage of overall variance comprised in the first three components. Percentage
keeps decreasing for further components.

Principal component Data variance percentage

1 89,92
2 10,02
3 0,040

2. Synthetic data generation using SMOTE – we generated 6 samples for each of the two
minority classes (negative and neutral responses), so as to enable some more training
regarding these classes.
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In summary, 4 datasets will be used in the experiments, so as to analize the effect of data
dimensionality and balancement in the results.

1. The original dataset;

2. The original dataset after SMOTE;

3. The original dataset after PCA;

4. The original dataset after SMOTE and PCA.

4.5 Methodology and Parameterization of the
Experiments

In this section, the methodology and parameterization of the classification and regression
experiments is approached.

For the classification experiments, the classifier configurations in Table 4.3 were explored,
in order to find the ones which optimized performance. The selected sampling strategy was
leave-one-out and the classification accuracies regarding the 4 classes were computed.

Table 4.3: Explored classifier architectures.

Classifier Parameters Values

MLPI number of hidden layers 1
number of neurons in the hidden layer: even numbers in [6,28]

MLPII number of hidden layers 2
number of neurons:
– first hidden layer even numbers in [6,28]

– second hidden layer half the number of neurons of the first layer
LVQNN number of neurons in the hidden layer even numbers in [6,28]
RBFNN spread value powers of two with integer exponents in [-1,15]
PNN spread value powers of two with integer exponents in [-1,15]
kNN number of neighbors integers in [1,30]
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As for the symbolic regression experiments:

1. At first, the input dataset is partitioned in training and testing sets – 70% for training
and 30% for testing.

2. Then, symbolic regression is run with the configuration parameters in Table 4.4.

3. Steps 1. and 2. are repeated 30 times, with different random seeds.

Table 4.4: Main parameters of the symbolic regression simulations.

Parameter Value

Population size 100
Maximum number of generations 1000

Terminal set features and random constants
Function set +, –, /, *, ln, sin, cos, if-then-else, sigmoid
Operators mutation, crossover, copy (with variable probabilities)

Fitness function sum of absolute differences between expected and obtained outputs

We implemented an elitist algorithm, where the best individual of both parents and
children is given the highest priority to enter the new population; in non-elitist algorithms,
children receive highest priorities, even if they are less fit. Introducing elitism will assure
that training fitness cannot decrease over the generations.



Chapter 5

Results and Discussion

In this chapter, the results of the classification and symbolic regression experiments are
reported and discussed.

5.1 Classification Experiment
In order to determine the appropriate settings of each classifier, for each experiment, we

ranked the tested configurations by performance for each class, and the one with the best
average rank (over the 4 classes) would be the one selected. The results are exposed in
Appendix A. The next step was to determine which classifiers were the best for each ex-
periment and the respective performance. For classifier comparison, we adopted Friedman’s
non-parametric test, followed by the Bonferri-Dunn test.

Following the same notation of section 2.9, in our specific problem N = 4 (classes) and
k = 6 (classifiers), with kNN being the baseline classifier. By looking at F distribution
tables, F (5, 15) = 2, 90. Table 5.1 show the main results for Friedman and Bonferri-Dunn
tests for each experiment.
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Table 5.1: Classifier accuracies (ranks) for each class, the Friedman statistic (T1) and average
classifier rank, for the experiments with the 4 datasets.

Dataset Classifier Negative Neutral Positive (partial) Positive (complete) Average rank

kNN 0 (4,5) 0,167 (5,5) 0,741 (4) 0,893 (4) –
LVQNN 0 (4,5) 1,0 (1) 1,0 (1) 0,929 (2) –

Original MLPI 1,0 (1) 0,667 (2) 0,778 (3) 0,893 (4) –
T1 = 1, 956 MLPII 0,5 () 0,5 (3) 0,889 (2) 0,893 (4) –

RBFNN 0 (4,5) 0,167 (5,5) 0,444 (6) 0,964 (1) –
PNN 0 (4,5) 0,333 (4) 0,704 (5) 0,750 (6) –

kNN 0,125 (6) 0,417 (6) 0,630 (4,5) 0,893 (4) 5,125
LVQNN 1,0 (1,5) 1,0 (1) 1,0 (1) 1,0 (1) 1,125

SMOTE MLPI 0,5 (3) 0,5 (5) 0,778 (3) 0,930 (2,5) 3,375
T1 = 12 MLPII 1,0 (1,5) 0,917 (2) 0,852 (2) 0,930 (2,5) 2

RBFNN 0,25 (5) 0,667 (4) 0,444 (6) 0,393 (6) 5,25
PNN 0,375 (4) 0,889 (3) 0,630 (4,5) 0,679 (5) 4,125

kNN 0 (4,5) 0,167 (5,5) 0,741 (5) 0,893 (3,5) 4,625
LVQNN 0 (4,5) 1,0 (1) 1,0 (1) 0,929 (1,5) 2

PCA MLPI 0,5 (1,5) 0,5 (2,5) 0,778 (3,5) 0,929 (1,5) 2,25
T1 = 4, 241 MLPII 0,5 (1,5) 0,5 (2,5) 0,889 (2) 0,893 (3,5) 2,375

RBFNN 0 (4,5) 0,333 (4) 0,667 (6) 0,464 (6) 5,125
PNN 0 (4,5) 0,167(5,5) 0,778 (3,5) 0,821 (5) 4,625

KNN 0,5 (3,5) 0,67 (4) 0,630 (5) 0,893 (4) 4,125
LVQNN 1,0 (1) 1,0 (1) 0,963 (1) 1,0 (1) 1,0

SMOTE+PCA MLP 0,125 (6) 0,833 (2,5) 0,704 (4) 0,964 (2,5) 3,75
T1 = 4, 602 MLPII 0,5 (3,5) 0,833 (2,5) 0,815 (2) 0,964 (2,5) 2,625

RBFNN 0,375 (5) 0,417 (6) 0,741 (3) 0,714 (5) 4,75
PNN 0,625 (2) 0,583 (5) 0,556 (6) 0,679 (6) 4,75

We can observe that, in the experiment with the original dataset, T1 < F (5, 15) so the
null hypothesis cannot not be rejected, i.e., one cannot state that there is a significant sta-
tistical difference among the performances of the k classifiers. In the remaining experiments,
T1 > F (5, 15) – we can state that a significant statistical difference exists among the perfor-
mances of the k classifiers. For these experiments, CD was computed for a 5% significance
level – CD = 1, 92. The average ranks of the classifiers were also computed. Only those
with an average rank better than that of the baseline classifier by more than the CD value,
can be considered to significantly outperform the baseline classifier.

Looking at Table 5.1 one can conclude that:

1. In the experiment with the original dataset after SMOTE, LVQNN and MLPII signif-
icantly outperform kNN;

2. In the experiment with the original dataset after PCA, LVQNN, MLPI and MLPII
significantly outperform kNN;

3. In the experiment with the original dataset after SMOTE+PCA, LVQNN is the only
classifier to significantly outperform kNN.
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Thus, in 3 out of 4 scenarios it was verified that the selection of a more complex classifier
than kNN, such as LVQNN, MLPI or MLPII, pays off in terms of performance. In the
experiment with the original dataset, such selection seems to be unjustified.

Taking a closer look at performance itself, one can draw a few relevant conclusions:

1. Our set of features allows for very high classification performances, when data is prop-
erly balanced. That is not true for all the classifiers, but the aim of this stage was
to prove that the feature set allowed for high performances, the classifiers themselves
not being the scope. This was, in fact, the reason why a few classifiers were used
as opposed to only one, i.e., to avoid that a bad classifier choice would dictate our
conclusions.

2. In data imbalancement scenarios, performance is clearly poorer – the introduction of
SMOTE markedly improves performance;

3. Dimensionality reduction to two components using PCA does not seem to have signifi-
cant effects on performance. As such, dimensionality reduction is advantageous for us,
as it allows for a serious reduction of computational load while preserving performance.

As for time complexity, although it is not critical in this project (as real-time is not
required) an idea of its order with respect to each of the adopted classifiers can be provided:
the average kNN ran in 57 seconds, RBFNN and PNN in the 1 hour order (1,4 h and 0,7
h), LVQNN, MLPI and MLPII (the highest performing classifiers) ran for 14, 14 and 20
hour respectively. Naturally, in the PCA experiments, these times were largely reduced for
seconds and minutes orders, for all the algorithms.

5.2 Symbolic Regression Experiment
For each of the 30 runs, of each of the four experiments, we computed the evolution of

the train and test fitness, as well as of the fraction of train and test hits (accuracies), of the
best individual over the generations. The average evolution (over the 30 runs) of such values
is shown in Figure 5.1, for each experiment.

In the final generation, we are averaging the overall best individuals of each run (in terms
of training, since testing performance does not influence the evolutionary algorithm), as a
consequence of elitism. This means that at this point, every run is at its minimum training
error so far. It could decrease even more if we extended the number of generations. However,
minimizing training error does not always imply minimizing the testing error. If the training
is exaggerated, overfitting may occur.

One may observe that neither of the four experiments stands out from the others in
average performance terms, all with not very optimistic average testing performances (all
fall in the 50-60% hits range). However, that may not be true in individual terms: we looked
for the best performing individual out of the 30 best of each experiment. For comparing
individual performances, the accuracies of the four classes were computed and averaged,
so as to give equal importance to minority and majority class accuracies. This way, if the
individual is very accurate for the majority classes, the performance measure will be pulled
down if the same is not true for the minority classes. If overall accuracy was used, results
could be deceivingly optimistic. Table 5.2 shows the accuracy information of the individuals
with highest average accuracy (over the 4 classes) of each experiment. Experiments without
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SMOTE are naturally harmed in the negative class, as only two samples exist. Of the four
individuals, the one from the SMOTE experiment is clearly the most balanced in terms of
class-wise accuracy, with reasonably high accuracies within each class – (80%, 75%, 85,71%,
88,89%). The function represented by this individual is represented in Figure 5.2. If we were
to select a function at this stage, that would be the one.
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Figure 5.1: Average evolution of performance for each experiment.
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Table 5.2: Class-wise accuracies and their average, for the best individual of each experiment.

Original SMOTE PCA SMOTE+PCA

Average 0,60 0,82 0,42 0,62
Negative 0 0,80 0 0
Neutral 0,50 0,75 0,20 0,80

Positive (partial) 0,90 0,86 0,71 0,80
Positive (complete) 1,0 0,89 0,75 0,89

Figure 5.2: Tree representation of the best individual, i.e., best obtained evaluation function.
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As a way to conclude on which are the most useful features for discrimination, an anal-
ysis of the feature selection process by the evolutionary algorithm can be performed. We
estimated the percentage of individuals (out of the 30) that selected each of the 350 features
of the dataset. It was observed that some features appear in several (maximum of 9) of the
best individuals. The top 8 most frequently selected features are listed in Table 5.3. Just in
this top, all used descriptors are represented, mixing before and after-treatment features.

Table 5.3: Top 8 most frequently selected features and the percentage of individuals which
use them.

Feature Index Related Descriptor Before/After Treatment Percentage

123 LBP Before 30
250 Gabor After 30
19 GLCM Before 26,67
104 Gabor After 26,67
182 Histogram After 26,67
214 GLRL After 23,33
31 GLCM Before 23,33
60 Wavelets Before 23,33



Chapter 6

Conclusions and Future Work

In this project, evolutionary approaches are explored for building an evaluation function
of tumor response to treatment, based on the before and after-treatment values of a set of
clinical variables and image features of the lesions (extracted from PET/CT images). The
need for such function is justified by two main facts: 1) manual analysis by specialists is a
complex and time-consuming task, 2) some metrics for faster analysis have been proposed
(e.g SUV), but with questionable reliability.

The image features were extracted from the outputs of a collection of state-of-the-art
image descriptors, computed from patches of the lesions.

The whole feature set was validated in a classification experiment – it was observed that
our set of features allows for very high classification performances. After that, symbolic
regression, a particular application of GAs, was adopted to obtain the evaluation functions.

The preliminary results regarding the proposed approach are optimistic – an evaluation
function with class-wise accuracies of 80%, 75%, 85,71% and 88,89% was obtained. However,
more experiments need to be carried out regarding methods and parameters of the symbolic
regression runs, so as to find the ones which optimize performance.

In addition, for generalization to be an hypothesis, the approach must be tested on larger
and more balanced datasets.

Finally, we intend to extend this approach to other oncological pathologies.
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Appendix A

Table A.1: LVQNN - Original.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 6,5 12 4 8,5 7,75
8 6,5 6 4 2,5 4,75
10 6,5 6 4 8,5 6,25
12 6,5 6 10 8,5 7,75
14 6,5 6 10 2,5 6,25
16 6,5 6 10 8,5 7,75
18 6,5 6 4 8,5 6,25
20 6,5 6 10 8,5 7,75
22 6,5 6 4 8,5 6,25
24 6,5 6 10 2,5 6,25
26 6,5 6 4 8,5 6,25
28 6,5 6 4 2,5 4,75

Table A.2: LVQNN – SMOTE.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 11,5 6 6,5 6,5 7,625
8 11,5 6 6,5 6,5 7,625
10 5,5 6 6,5 6,5 6,125
12 5,5 6 6,5 6,5 6,125
14 5,5 6 6,5 6,5 6,125
16 5,5 6 6,5 6,5 6,125
18 5,5 6 6,5 6,5 6,125
20 5,5 6 6,5 6,5 6,125
22 5,5 6 6,5 6,5 6,125
24 5,5 12 6,5 6,5 7,625
26 5,5 6 6,5 6,5 6,125
28 5,5 6 6,5 6,5 6,125
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Table A.3: LVQNN – PCA.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 6,5 12 3,5 6,5 7,125
8 6,5 6 3,5 6,5 5,625
10 6,5 6 12 11 8,875
12 6,5 6 9 6,5 7
14 6,5 6 3,5 2 4,5
16 6,5 6 3,5 11 6,75
18 6,5 6 3,5 6,5 5,625
20 6,5 6 9 6,5 7
22 6,5 6 9 2 5,875
24 6,5 6 9 11 8,125
26 6,5 6 3,5 6,5 5,625
28 6,5 6 9 2 5,875

Table A.4: LVQNN – SMOTE+PCA.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 11,5 6,5 1,5 6 6,375
8 11,5 6,5 1,5 6 6,375
10 5,5 6,5 5,5 6 5,875
12 5,5 6,5 10,5 6 7,125
14 5,5 6,5 5,5 6 5,875
16 5,5 6,5 10,5 6 7,125
18 5,5 6,5 5,5 6 5,875
20 5,5 6,5 10,5 6 7,125
22 5,5 6,5 5,5 6 5,875
24 5,5 6,5 5,5 6 5,875
26 5,5 6,5 10,5 6 7,125
28 5,5 6,5 5,5 12 7,375
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Table A.5: MLPI - Original.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 1,5 9 1 9 5,125
8 1,5 1,5 2 2 1,75
10 4,5 1,5 4 9 4,75
12 9,5 9 3 2 5,875
14 9,5 12 7,5 12 10,25
16 4,5 5,5 9,5 9 7,125
18 9,5 9 5 5 7,125
20 4,5 3,5 6 9 5,75
22 9,5 9 9,5 5 8,25
24 4,5 5,5 7,5 2 4,875
26 9,5 3,5 11,5 5 7,375
28 9,5 9 11,5 9 9,75

Table A.6: MLPI – SMOTE.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 1 1,5 6,5 1,5 2,625
8 7 11,5 1 3,5 5,75
10 7 5 10,5 1,5 6
12 7 9 3 3,5 5,625
14 7 5 10,5 7,5 7,5
16 7 5 10,5 7,5 7,5
18 7 5 6,5 5 5,875
20 7 9 3 7,5 6,625
22 7 11,5 6,5 11 9
24 7 5 3 11 6,5
26 7 9 10,5 11 9,375
28 7 1,5 6,5 7,5 5,625
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Table A.7: MLPI – PCA.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 1 1,5 6,5 1,5 2,625
8 7 11,5 1 3,5 5,75
10 7 5 10,5 1,5 6
12 7 9 3 3,5 5,625
14 7 5 10,5 7,5 7,5
16 7 5 10,5 7,5 7,5
18 7 5 6,5 5 5,875
20 7 9 3 7,5 6,625
22 7 11,5 6,5 11 9
24 7 5 3 11 6,5
26 7 9 10,5 11 9,375
28 7 1,5 6,5 7,5 5,625

Table A.8: MLPI – SMOTE + PCA.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 8,5 11 1 3,5 6
8 8,5 3 10 1,5 5,75
10 11,5 8,5 2,5 1,5 6
12 11,5 3 2,5 3,5 5,125
14 5,5 6,5 6 5 5,75
16 8,5 11 6 6 7,875
18 2 3 10 8 5,75
20 8,5 11 12 8 9,875
22 3 6,5 10 10,5 7,5
24 5,5 8,5 6 12 8
26 4 3 6 8 5,25
28 1 3 6 10,5 5,125
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Table A.9: MLPII – Original.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 2 5 3 5,5 3,875
8 8 9,5 3 1 5,375
10 8 12 10,5 2 8,125
12 8 1,5 8 10 6,875
14 2 9,5 1 10 5,625
16 8 5 8 5,5 6,625
18 8 9,5 5,5 5,5 7,125
20 8 1,5 10,5 5,5 6,375
22 8 9,5 12 5,5 8,75
24 8 5 8 10 7,75
26 2 5 3 5,5 3,875
28 8 5 5,5 12 7,625

Table A.10: MLPII -SMOTE.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 5 11,5 7 4,5 7
8 11 7 3,5 6,5 7
10 5 11,5 3,5 2 5,5
12 5 7 7 4,5 5,875
14 11 7 1 6,5 6,375
16 5 2 7 9 5,75
18 5 2 3,5 11,5 5,5
20 5 7 9 11,5 8,125
22 5 7 11 2 6,25
24 5 2 3,5 2 3,125
26 11 7 10 9 9,25
28 5 7 12 9 8,25
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Table A.11: MLPII – PCA.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 2 5 3 5,5 3,875
8 8 9,5 3 1 5,375
10 8 12 10,5 2 8,125
12 8 1,5 8 10 6,875
14 2 9,5 1 10 5,625
16 8 5 8 5,5 6,625
18 8 9,5 5,5 5,5 7,125
20 8 1,5 10,5 5,5 6,375
22 8 9,5 12 5,5 8,75
24 8 5 8 10 7,75
26 2 5 3 5,5 3,875
28 8 5 5,5 12 7,625

Table A.12: MLPII – SMOTE+PCA.

Neurons Negative Neutral Positive (partial) Positive (complete) Average rank
6 5 6 3 1 3,75
8 9 1 1 4 3,75
10 7,5 6 6,5 4 6
12 11 2,5 10,5 10,5 8,625
14 11 6 3 4 6
16 5 6 6,5 4 5,375
18 11 9 6,5 4 7,625
20 2 11,5 6,5 7,5 6,875
22 7,5 6 10,5 10,5 8,625
24 2 10 3 7,5 5,625
26 5 2,5 10,5 10,5 7,125
28 2 11,5 10,5 10,5 8,625
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Table A.13: PNN – Original.

Spread Negative Neutral Positive (partial) Positive (complete) Average rank
0,5 2,5 13,5 15,5 15,5 11,75
1 2,5 13,5 15,5 15,5 11,75
2 2,5 13,5 15,5 15,5 11,75
4 2,5 13,5 15,5 15,5 11,75
8 5 13,5 13 12,5 11
16 11,5 6 12 12,5 10,5
32 11,5 6 11 11 9,875
64 11,5 3 8 10 8,125
128 11,5 3 8 8 7,625
256 11,5 1 8 8 7,125
512 11,5 3 8 8 7,625
1024 11,5 6 4,5 6 7
2048 11,5 8,5 4,5 5 7,375
4096 11,5 8,5 2 3,5 6,375
8192 11,5 13,5 2 1 7
16384 11,5 13,5 2 2 7,25
32768 11,5 13,5 8 3,5 9,125

Table A.14: PNN – SMOTE.

Spread Negative Neutral Positive (partial) Positive (complete) Average rank
0,5 2,5 14 15,5 15,5 11,875
1 2,5 14 15,5 15,5 11,875
2 2,5 14 15,5 15,5 11,875
4 2,5 14 15,5 15,5 11,875
8 5 9 13 12,5 9,875
16 6 8 12 12,5 9,625
32 8 5 11 11 8,75
64 8 3,5 7,5 10 7,25
128 8 3,5 7,5 8 6,75
256 10 1,5 7,5 8 6,75
512 14 1,5 7,5 8 7,75
1024 14 6 7,5 6 8,375
2048 14 7 7,5 5 8,375
4096 14 10 2 3,5 7,375
8192 14 14 2 1 7,75
16384 14 14 2 2 8
32768 14 14 4 3,5 8,875
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Table A.15: PNN – PCA

Spread Negative Neutral Positive (partial) Positive (complete) Average rank
0,5 2,5 13,5 17 15,5 12,125
1 2,5 13,5 15,5 15,5 11,75
2 2,5 13,5 15,5 15,5 11,75
4 2,5 13,5 14 15,5 11,375
8 11 13,5 13 12,5 12,5
16 11 6 12 12,5 10,375
32 11 6 11 11 9,75
64 11 3 10 10 8,5
128 11 3 7 8 7,25
256 11 1 7 8 6,75
512 11 3 7 8 7,25
1024 11 6 7 6 7,5
2048 11 8,5 4 5 7,125
4096 11 8,5 2 3,5 6,25
8192 11 13,5 2 1 6,875
16384 11 13,5 2 2 7,125
32768 11 13,5 7 3,5 8,75

Table A.16: PNN – SMOTE+PCA.

Spread Negative Neutral Positive (partial) Positive (complete) Average rank
0,5 1,5 14,5 17 15,5 12,125
1 1,5 14,5 15,5 15,5 11,75
2 3 14,5 15,5 15,5 12,125
4 6 10,5 14 15,5 11,5
8 8 8,5 13 12,5 10,5
16 10 8,5 11,5 12,5 10,625
32 10 3 11,5 11 8,875
64 10 3 10 10 8,25
128 6 1 9 8 6
256 6 3 8 8 6,25
512 4 5,5 6,5 8 6
1024 12 5,5 6,5 6 7,5
2048 15 7 4,5 5 7,875
4096 15 10,5 2 3,5 7,75
8192 15 14,5 2 1 8,125
16384 15 14,5 2 2 8,375
32768 15 14,5 4,5 3,5 9,375
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Table A.17: RBFNN – Original

Spread Negative Neutral Positive (partial) Positive (complete) Average rank
0,5 9 12,5 14,5 5,5 10,375
0,5 9 12,5 14,5 5,5 10,375
1 9 12,5 14,5 5,5 10,375
2 9 12,5 14,5 5,5 10,375
4 9 12,5 14,5 5,5 10,375
8 9 12,5 14,5 5,5 10,375
16 9 12,5 14,5 5,5 10,375
32 9 12,5 2 16 9,875
64 9 12,5 2 16 9,875
128 9 12,5 2 16 9,875
256 9 12,5 5 2 7,125
512 9 6,5 6 1 5,625
1024 9 1,5 7,5 12 7,5
2048 9 4 4 13,5 7,625
4096 9 1,5 7,5 9,5 6,875
8192 9 4 10 11 8,5
16384 9 4 10 13,5 9,125
32768 9 6,5 10 9,5 8,75
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Table A.18: RBFNN – SMOTE.

Spread Negative Neutral Positive (partial) Positive (complete) Average rank
0,5 12 13 14,5 11,5 12,75
s 1 12 13 14,5 11,5 12,75
2 12 13 14,5 11,5 12,75
4 12 13 14,5 11,5 12,75
8 12 13 14,5 11,5 12,75
16 12 13 14,5 11,5 12,75
32 12 13 1,5 16 10,625
64 12 13 1,5 16 10,625
128 12 13 3 16 11
256 12 6 4 2 6
512 12 6 8 1 6,75
1024 1 3 8 6 4,5
2048 3,5 8 5,5 8 6,25
4096 3,5 1 5,5 3 3,25
8192 3,5 3 8 4,5 4,75
16384 3,5 3 10,5 7 6
32768 6 6 10,5 4,5 6,75

Table A.19: RBFNN – PCA

Spread Negative Neutral Positive (partial) Positive (complete) Average rank
0,5 9 12 8,5 3 8,125
1 9 12 1 15 9,25
2 9 2,5 17 3 7,875
4 9 5 13,5 15 10,625
8 9 1 15 15 10
16 9 12 16 3 10
32 9 12 2,5 15 9,625
64 9 12 2,5 15 9,625
128 9 12 13,5 3 9,375
256 9 12 12 3 9
512 9 12 4,5 12 9,375
1024 9 12 8,5 10,5 10
2048 9 12 11 7 9,75
4096 9 12 10 10,5 10,375
8192 9 5 4,5 9 6,875
16384 9 2,5 6,5 8 6,5
32768 9 5 6,5 6 6,625
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Table A.20: RBFNN – SMOTE+PCA.

Spread Negative Neutral Positive (partial) Positive (complete) Average rank
0,5 11,5 11 11 10 10,875
1 11,5 11 10 6 9,625
2 11,5 11 1 14 9,375
4 11,5 11 2,5 14 9,75
8 11,5 11 15 2,5 10
16 11,5 11 17 2,5 10,5
32 11,5 11 4 14 10,125
64 11,5 11 2,5 14 9,75
128 11,5 11 16 2,5 10,25
256 11,5 11 14 2,5 9,75
512 11,5 11 13 5 10,125
1024 11,5 11 6,5 9 9,5
2048 5 11 12 14 10,5
4096 1 1,5 9 14 6,375
8192 2,5 1,5 8 14 6,5
16384 2,5 4 6,5 8 5,25
32768 4 3 5 7 4,75
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Table A.21: kNN – Original.

k Negative Neutral Positive (partial) Positive (complete) Average rank
1 15,5 1,5 26 29,5 18,125
2 15,5 1,5 26 29,5 18,125
3 15,5 3,5 28 27 18,5
4 15,5 6,5 29,5 27 19,625
5 15,5 3,5 29,5 13 15,375
6 15,5 19,5 26 13 18,5
7 15,5 6,5 11,5 13 11,625
8 15,5 6,5 5,5 27 13,625
9 15,5 6,5 18,5 13 13,375
10 15,5 19,5 18,5 13 16,625
11 15,5 19,5 18,5 13 16,625
12 15,5 19,5 11,5 13 14,875
13 15,5 19,5 18,5 13 16,625
14 15,5 19,5 18,5 13 16,625
15 15,5 19,5 18,5 13 16,625
16 15,5 19,5 18,5 13 16,625
17 15,5 19,5 18,5 13 16,625
18 15,5 19,5 18,5 13 16,625
19 15,5 19,5 18,5 13 16,625
20 15,5 19,5 18,5 13 16,625
21 15,5 19,5 18,5 13 16,625
22 15,5 19,5 5,5 13 13,375
23 15,5 19,5 5,5 13 13,375
24 15,5 19,5 5,5 13 13,375
25 15,5 19,5 5,5 13 13,375
26 15,5 19,5 5,5 13 13,375
27 15,5 19,5 5,5 13 13,375
28 15,5 19,5 5,5 13 13,375
29 15,5 19,5 5,5 13 13,375
30 15,5 19,5 5,5 13 13,375
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Table A.22: kNN – SMOTE.

k Negative Neutral Positive (partial) Positive (complete) Average rank
1 11,5 1,5 16 29,5 14,625
2 11,5 1,5 16 29,5 14,625
3 11,5 3 28 27 17,375
4 11,5 7,5 29,5 27 18,875
5 3,5 7,5 29,5 13 13,375
6 11,5 7,5 16 13 12
7 11,5 13,5 9 13 11,75
8 11,5 7,5 16 27 15,5
9 3,5 13,5 24 13 13,5
10 11,5 16,5 16 13 14,25
11 11,5 16,5 16 13 14,25
12 11,5 23,5 9 13 14,25
13 11,5 23,5 24 13 18
14 3,5 23,5 16 13 14
15 1 23,5 24 13 15,375
16 3,5 30 24 13 17,625
17 11,5 23,5 24 13 18
18 24 7,5 24 13 17,125
19 24 7,5 24 13 17,125
20 24 7,5 16 13 15,125
21 24 7,5 9 13 13,375
22 24 13,5 9 13 14,875
23 24 13,5 16 13 16,625
24 24 23,5 9 13 17,375
25 24 23,5 4,5 13 16,25
26 24 23,5 4,5 13 16,25
27 24 23,5 4,5 13 16,25
28 24 23,5 4,5 13 16,25
29 24 23,5 1,5 13 15,5
30 24 23,5 1,5 13 15,5
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Table A.23: kNN – PCA.

k Negative Neutral Positive (partial) Positive (complete) Average rank
1 15,5 1,5 26,5 29,5 18,25
2 15,5 1,5 26,5 29,5 18,25
3 15,5 3 29,5 27 18,75
4 15,5 6 29,5 27 19,5
5 15,5 6 28 13 15,625
6 15,5 19,5 25 13 18,25
7 15,5 6 11,5 13 11,5
8 15,5 6 5,5 27 13,5
9 15,5 6 18,5 13 13,25
10 15,5 19,5 18,5 13 16,625
11 15,5 19,5 18,5 13 16,625
12 15,5 19,5 11,5 13 14,875
13 15,5 19,5 18,5 13 16,625
14 15,5 19,5 18,5 13 16,625
15 15,5 19,5 18,5 13 16,625
16 15,5 19,5 18,5 13 16,625
17 15,5 19,5 18,5 13 16,625
18 15,5 19,5 18,5 13 16,625
19 15,5 19,5 18,5 13 16,625
20 15,5 19,5 18,5 13 16,625
21 15,5 19,5 18,5 13 16,625
22 15,5 19,5 5,5 13 13,375
23 15,5 19,5 5,5 13 13,375
24 15,5 19,5 5,5 13 13,375
25 15,5 19,5 5,5 13 13,375
26 15,5 19,5 5,5 13 13,375
27 15,5 19,5 5,5 13 13,375
28 15,5 19,5 5,5 13 13,375
29 15,5 19,5 5,5 13 13,375
30 15,5 19,5 5,5 13 13,375
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Table A.24: kNN – SMOTE + PCA.

k Negative Neutral Positive (partial) Positive (complete) Average rank
1 14,5 2 13,5 29,5 14,875
2 14,5 2 13,5 29,5 14,875
3 10 2 30 27 17,25
4 10 4,5 23,5 27 16,25
5 12 4,5 23,5 13 13,25
6 10 6 13,5 13 10,625
7 5,5 23,5 13,5 13 13,875
8 5,5 11 13,5 27 14,25
9 5,5 11 18,5 13 12
10 5,5 11 13,5 13 10,75
11 5,5 11 23,5 13 13,25
12 5,5 11 18,5 13 12
13 1,5 11 23,5 13 12,25
14 1,5 11 23,5 13 12,25
15 14,5 11 23,5 13 15,5
16 14,5 11 23,5 13 15,5
17 23,5 18,5 28,5 13 20,875
18 23,5 18,5 28,5 13 20,875
19 23,5 18,5 23,5 13 19,625
20 23,5 18,5 13,5 13 17,125
21 23,5 18,5 9 13 16
22 23,5 23,5 13,5 13 18,375
23 23,5 18,5 5 13 15
24 23,5 23,5 5 13 16,25
25 23,5 23,5 5 13 16,25
26 23,5 28 5 13 17,375
27 23,5 28 5 13 17,375
28 23,5 28 5 13 17,375
29 23,5 28 5 13 17,375
30 23,5 28 1 13 16,375
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