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Resumo

O problema abordado nesta tese é: Como fornecer escalabilidade hor-

izontal totalmente automatizada para qualquer parte do processamento do

ETL e da data-warehouse, de modo a que o projectista da data-warehouse

apenas tenha de se preocupar com a parte lógica do sistema e fornecer/con-

figurar limites de tempo para todas as partes envolvidas na execução do ETL

e de pesquisas (ETL+Q). Em simultâneo, propõe-se uma forma de obter re-

sultados actualizados em qualquer momento. A abordagem deve garantir os

limites de tempo desejados e adaptar o sistema a qualquer momento para

assegurar esses limites, escalando para cima ou para baixo cada parte do

ETL e de pesquisas que tenham necessidade de mais eficiência.

Embora algumas aplicações tenham um grande volume de dados, req-

uisitos apertados de tempo de processamento, elevados ritmos de dados e

necessidade de respostas rápidas, a maioria das implementações de data-

warehouse atuais não estão preparadas para escalar automaticamente. A

solução passa pela utilização de arquitecturas e mecanismos paralelos para

acelerar a integração de dados e para processar os dados mais recentes de

forma eficiente. Estas abordagens paralelas devem escalar automaticamente.

Desejavelmente, o projectista das data-warehouses deve concentrar-se uni-

camente no modelo lógico (por exemplo, requisitos de negócio, esquemas

lógicos de armazenamento de dados), enquanto que os detalhes f́ısicos, in-

cluindo mecanismos de escalabilidade, actualização de dados e integração

de dados a elevado ritmo de chegada, podem ser deixados para ferramentas

automaticas.

Nesta tese investigamos como fornecer escalabilidade automatica para o pro-
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cesso de ETL e para processamento de pesquisas (ETL+Q), bem como a

forma de disponibilizar resultados que necessitam de dados mais recentes

do que os já integrados na data-warehouse. A proposta desta tese lida com

a paralelização e escalabilidade da data-warehouse quando necessário. Não

se limita a escalar para cima (scale-out), para aumentar a capacidade de

processamento, mas também se adapta quando os recursos deixam de ser

necessários (scale-in). Em geral, a actualização instantânea dos dados para

se refletirem nos resultados de pesquisas também não é garantida nestes con-

textos, uma vez que o carregamento de dados, transformação e integração

são tarefas computacionalmente pesadas que são feitas apenas periodica-

mente, durante periodos em que o sistema não tem movimento (o✏ine).

Mas a nossa proposta é desenhada para garantir que os dados extráıdos

mais recentemente possam ser integrados nas pesquisas, mesmo sem que

estes estejam na data-warehouse.

A proposta é uma solução universal de escalabilidade de data-warehouses

que apelidamos Auto-Scale. Isto significa que a escalabilidade e a actual-

ização de dados é automática para qualquer data-warehouse e processo de

ETL, desde que o projectista inclua um conjunto de interfaces que permita

ligar os seus diversos módulos à solução Auto-Scale (AScale) proposta.

No Caṕıtulo 1 introduzimos os problemas que a tese propõe resolver no

âmbito de escalabilidade automática de processos de ETL e processamento

de pesquisas. São ainda introduzidos os objectivos da tese, mecanismos pro-

postos e contribuições. Cada etapa do ETL é separada de modo a que possa

ser escalado/replicado de modo horizontal, conforme as necessidades.

O Capitulo 2 aborda o estado-da-arte em optimização do processa-

mento de ETL, escalabilidade e actualização das data-warehouses para fornecer

resultados actualizados, e processamento cont́ınuo.

O Caṕıtulo 3 resume cada um dos mecanismos propostos no resto da

tese.

O Caṕıtulo 4 explica como é que um projectista de data-warehouses



consegue integrar os módulos que desenvolve para o seu projecto, tendo em

conta o desenho conceptual da data-warehouse. O AutoScale fornece inter-

faces no formato de API para esse efeito.

Os Caṕıtulos 5, 6 e Caṕıtulo 7, descrevem em mais detalhe como e

gerida automaticamente a escalabilidade do ETL e das pesquisas, como são

assegurados os dados mais recentes nos resultados das pesquisas, e como é

feita a integração no processamento de dados que chegam continuamente.

O Caṕıtulo 8 é experimental. Nesse caṕıtulo são feitos testes às pro-

postas com a finalidade de provar que os mecanismos propostos permitem

escalar quando necessário, de modo a assegurar os limites de tempo definidos

para processar cada etapa do pipeline ETL+Q. Nos resultados experimen-

tais compara-se o impacto, sem e com a solução proposta. Criámos cenários

experimentais nos quais sem o AScale, o processo de ETL e as pesquisas

não cumprem tempos definidos. Usando o AScale mostramos que a data-

warehouse escala automaticamente e resolve os problemas de escalabilidade

inerentes.

O Caṕıtulo 9 apresenta um resumo das principais contribuições desta

tese, e aponta algumas questões interessantes, em aberto, que requerem

investigação adicional.
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Abstract

Most data-warehouse deployments are not prepared to scale automatically,

although some applications have large or increasing requirements concern-

ing data volume, processing times, data rates, freshness and need for fast

responses. The solution is to use parallel architectures and mechanisms to

speed-up data integration and to handle fresh data e�ciently. Those parallel

approaches should scale automatically.

Desirably, data-warehouse developers should concentrate solely on the con-

ceptual and logic design (e.g. business driven requirements, logical ware-

house schemas, workload analysis and ETL process), while physical details,

including mechanisms for scalability, freshness and integration of high-rate

data, could be left to automated tools.

In this thesis we investigate how to provide scalability and data freshness

automatically, and how to manage high-rate data e�ciently in very large

data-warehouses. The framework proposed in this thesis handles paraleliza-

tion and scales of the data-warehouse when necessary. It does not only

scale-out to increase the processing capacity, but it also scales-in when re-

sources are under used. In general, data freshness is also not guaranteed

in those contexts, because data loading, transformation and integration are

heavy tasks that are done only periodically, instead of row-by-row. The

framework we propose is designed to provide data freshness as well.

The proposal is a universal data-warehouse scalability solution. This means

that scalability and freshness become automatic for any data-warehouse and

ETL, as long as the developer includes a set of interfaces that are necessary

to plug and take advantages of scaling mechanisms of the proposed frame-

work.
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Chapter 1

Introduction

Data Warehouses (DW) and decision support systems in general are impor-

tant infrastructures in many organizations, allowing them to analyse and

learn from historical business data. They are most frequently organized

for ease of reporting and analysis. In some scenarios, such as telecommu-

nications, banking, energy and stock market, data warehouses are stressed

with heavy Extraction, Transformation and Load (ETL) operations [2], to

keep decision support and other front end systems updated with data that

is as recent as possible. ETL processes su↵er performance problems when

data from the sources that needs to be integrated into the decision support

systems has high volume and/or is produced at high-rates, especially when

fast data integration is desired so that new data is reflected into analysis

results quickly. In many scenarios, systems become unavailable to users to

perform the ETL operations at specific time instants. Moreover, traditional

data-warehouses do not incorporate the most recent data in query results,

since recent data was not yet integrated. We refer to this problem as data

freshness issue.

Query performance is also important. For instance, every time a user anal-

yses some data, the system should reply and display the results as fast as

possible. This issue raises many performance and scalability problems that

1
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ultimately also a↵ect the whole ETL and Querying (ETL+Q) pipeline.

Another need that was raised more recently concerning data warehouses

and data analysis is the need to also support continuous and realtime moni-

toring and operation in scenarios with high-rate streaming incoming data. In

such scenarios the traditional (one query submission-one answer) paradigm

is replaced by a (register query once-continuous evolving answer) alterna-

tive. This paradigm can be considered and used in complement to the more

traditional data warehouse analysis mechanisms, and is materialized in the

form of Complex Event Processing (CEP) systems [3]. Instead of storing

and then analyzing data, these systems shorten the analysis cycle for some

operators, using fast in-memory analysis of short windowed streams of in-

coming data.

Future generation systems should be able to handle all these time-related

requirements by automatically scaling out when needed, for instance, during

high-data-rates moments/days. When resources are no longer necessary,

they should also be able to scale-in automatically, and at the same time

have the information inside the data-warehouse available and updated (i.e.

fresh).

1.1 Scenarios

Consider developers designing data warehouse solutions oriented for a sin-

gle physical machine, without any provisioning regarding scalability. The

ETL process consists of collecting items from operational systems and stor-

ing them into a data-warehouse for analysis. As the business grows and

expands, the system becomes slower, until processing times of some ETL or

query module, are no longer acceptable. There are two solutions, vertical

scalability by upgrading the server hardware, or horizontal scalability, by
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adding more machines.

One frequent scenario where automated scalability is very useful is when it

is necessary to ensure that the entire extract-transform-load (ETL) process

takes more than a predefined limit of the data-warehouse o✏ine period. In

particular, the load can take a lot of time due to the need to refresh many

redundant structures and to rebuild huge indexes. This case happens both

when the ETL should take at most for instance 4 hours during the night and

is actually taking 9 hours, or when the designers want to minimize downtime

by specifying that ETL should take less than, for instance, 5 minutes.

Another scenario is when designers want to ensure near-real-time integration

of new data into the analysis, which we call data freshness. By minimiz-

ing the amount of time from when some relevant business-related event is

recorded in an operational system (e.g. some fraudulent bank transaction)

to when it is incorporated into the data-warehouse analysis (fraud detected),

we can design pro-active systems that are able to act quickly on changing

situations. In full data freshness, data that is not yet integrated into the

data-warehouse can be queried and inferred into the data-warehouse analy-

sis.

1.2 Problem statement

The problem statement of this thesis is therefore:

How to provide totally automated horizontal scalability with data freshness

to any part of any ETL plus data-warehouse analysis system, such that de-

velopers design only a logical view of the system and provide time bounds for

all intended parts? And how to provide a solution that can be used by any

data-warehouse developer?

From a logical view of the system, the approach must adapt at any time

to meet the stated time bounds, scaling-out or -in each part that may need

to adapt (ETL+Q). As a complement, it also has to support stream pro-
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cessing, in order to optimize continuous querying and monitoring using the

data-warehouse.

1.3 Objectives of the thesis

The objective of this thesis is to propose a new concept, named AScale,

for automatic scaling of ETL+Q processes, allowing the data-warehouse de-

veloper to focus in the logical models instead of concerning with ETL+Q

scalability details (e.g. how to scale, detection mechanisms, load balancing,

data distribution and replication, in-time query processing). The developer

only programs transformations, data-warehouse schema and queries (using

any language or tool), as well as interfacing with AScale. Based on config-

ured performance indicators, the proposed framework monitors performance

of the ETL+Q pipeline, deciding when to add more resources (scale-out) for

more performance, or when to decommission them (scale-in).

Besides providing automatic scalability to ETL+Q processes, the proposed

framework also supports data freshness. This means that the most recent

data that is not yet integrated in the data-warehouse can be included in

query results without performance impact for the ETL+Q process.

As an extension to the typical data-warehouse modules, we also propose

automatic scalability for time-bounded continuous query processing (CEP).

1.4 The ETL+Q pipeline

Data-warehouses (DW) are composed of the front stage, concerning end-

users who access the data-warehouse with decision support tools and au-

tomated data analysis systems, where automated processes populate the

data-warehouse with data obtained from several sources. The architecture

of a data-warehouse exhibits various layers in which data from one layer is
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Figure 1.1: Basic data-warehouse architecture

derived from data of the previous layer, as represented in Figure 1.1.

Data Sources build the first layer. They consist of data stored in On-

Line Transaction Processing (OLTP) databases, other legacy systems, or

files. The next layer comprises the back-stage part of a data-warehouse,

where the collection, integration, cleaning and transformation of data takes

place, in order to populate the warehouse. An auxiliary area of volatile

data, called Data Staging Area (DSA), is employed for the purpose of data

transformation and cleaning. The central layer of the architecture is data-

warehouse (DW). The data-warehouse keeps a historical record of data that

results from the transformation, integration, and aggregation of data found

in the data sources. Moreover, this layer involves client warehouses, which

contain highly aggregated data, directly derived from the data warehouse.

There are various kinds of client warehouses, such as Data Marts or On-Line

Analytical Processing (OLAP) tools, which may use relational database sys-

tems or specific multidimensional data structures.

The data-warehouse front-end level consists of applications and tech-
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niques that analysers and automated tools can use to interact with data

stored in the data-warehouse. Data mining techniques are used for discov-

ery of data patterns, for prediction analysis and for classification. OLAP

techniques are used for a specialized style of querying that explores the data-

warehouse. Reporting and data visualization tools are used to formulate and

show data.

Extraction-Transformation-Loading (ETL) tools are pieces of software

responsible for the data extraction from several sources, cleansing, cus-

tomization, transformation to fit analytic models, to be finally loaded into

the data-warehouse. All ETL processes (extraction and transportation,

transformation, cleaning and loading) present specific issues, making data-

warehouse refreshing a troublesome task. In order to clarify the complexity

of ETL processes, next we briefly discuss issues, problems, and constraints

in each phase.

Problems and constraints, [4] mentions that 90% of the problems in

data-warehouses arise from the nightly batch cycles that load the data. Dur-

ing this period, tools have to deal with problems such as (a) e�cient data

loading, (b) concurrent job mixture and dependencies. Moreover, ETL pro-

cesses have global time constraints, including the initiation time and comple-

tion deadlines. In fact, in most cases, there is a tight ”time window” in the

night that can be explored for the refreshment of the data-warehouse, since

the source system is o↵-line or not heavily used during this period. This

problem is highly magnified when near-real-time data integration and/or

minimal downtimes are required.

Extraction & transportation. During the ETL process, the first

tasks that must be performed is the extraction of the relevant information
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that has to be further propagated to the warehouse [5].

Transformation & cleaning. Typical tasks that take place during the

transformation and cleaning phase of an ETL process are: (a) look up and

validate the data from tables, files or memory; (b) Sorting; (c) Joining; (d)

Aggregation, (e) Generation, (f) Splitting.

Loading. The loading of the data-warehouse poses its own challenges.

The load process can be performed using several techniques such as row-by-

row, batch inserts and batch file loading. Loading is not just uploading data

from files into database tables. It is also concerned with refreshing multiple

tables indexes, materialized views and other auxiliary structures.

Feasible solutions for ETL performance problems should rely on model-

ing and tracking each ETL part separately. This allows us to identify per-

formance failure points and individually scale each part of the ETL pipeline

as necessary. However, scaling raises other issues related with performance

monitoring, data extraction and distribution algorithms, staging area repli-

cation, and load methods for distributed shared-nothing models.

Querying and analysis. Querying and analysis is a very demanding

part of the ETL+Q pipeline. It concerns providing analysis results to users

and automated tools as fast as possible, possibly within predefined or re-

quired time-bounds. Whether it is SQL-like query processing or heavy data

mining algorithms, analysis tools scan possible huge amounts of data in the

data-warehouse repeatedly, while users and automated pro-active systems

require short analysis processing times.
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Figure 1.2: AScale pipeline

1.5 Investigated mechanisms

In this thesis we propose a set of mechanisms and a framework to auto-

matically scale the ETL process and query execution (ETL+Q) according

to configured performance parameters. The proposed framework is called

”AScale”. We also propose an interface mechanism for data-warehouse de-

velopers to use AScale with their designs.

According to the specification of AScale, the developer should only worry

with the logical implementation of transformations, data-warehouse schema

and queries. AScale provides a runtime environment that scales automati-

cally to reach the required performance, based on configured parameters.

Figure 1.2 shows the AScale pipeline modules that independently and

automatically scale each part of the pipeline. It allows to scale any part

from (2) to (6), according to requirements and configuration parameters. In

AScale, each independent part is monitored using some mechanisms that we

will discuss later. Based on thresholds, the monitoring mechanism triggers

scaling out, based on the addition of nodes for the part that needs scaling,

and scaling in, when resources are underutilized. The addition of nodes en-

ables parallelism of individual parts.

The Data Sources (1) represent relational data-models and other kinds

of sources from where data is extracted. This part, being external to the

proposed framework, requires an extra module to be executed at the same

location to make data extraction possible. Extraction (2) extracts data

from sources. Transformations (3) are programmed by the developer, for

instance, to perform data cleansing and transform into a uniform schema
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Figure 1.3: AScale for freshness

for later loading and querying. The Data Bu↵er (4) holds transformed

data until the next data-warehouse load instant. A Data Switch (5) repli-

cates and distributes data across multiple data-warehouse nodes (6), when

the data warehouse is scaled to multiple nodes. Queries are submitted to

the data-warehouse query processor (7). When there are multiple nodes,

the query processor re-writes queries to execute in parallel over those data-

warehouse nodes.

Detecting performance bottlenecks and scaling each part of the AScale

framework is performed by monitoring maximum configured execution times

and data queues sizes at each stage of the proposed pipeline.

Freshness is achieved in our proposal by transforming the Data Bu↵er

that holds the transformed data prior to loading (4) into a fully query-

capable repository called dynamic-data-warehouse (D-DW), Figure 1.3. The

D-DW consists of a small data-warehouse, also scalable as necessary, that

only contains the most recently transformed data. Because it has a small

size (it only contains the most recent data) querying over the dynamic-data-

warehouse is fast. Queries can be submitted to the DW (7a), or to the D-DW

(7b) or to both (7c). Results are merged after collecting the parts from (7a)

and (7b).

We also study processing scalability and balancing for continuous re-
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Figure 1.4: AScale continuous results

sults, working as a complement to the existing ETL+Q pipeline. In order

to integrate a CEP engine into the previously defined ETL+Q pipeline, af-

ter transformation, Figure 1.4 (3), besides being loaded later into the data

warehouse, transformed data must also be loaded into a data bu↵er (4a)

that is connected to a CEP Data Switch (5a). The CEP data Switch (5a)

extracts data from the Data Bu↵er (4a) and sends the tuples to the CEP

nodes (8). Continuous queries can be registered and un-registered using a

CEP query scheduler (7d). This scheduler uses a set of performance rules

to select the best node to register each query. Additionally, each CEP node

(8) can also access the DW (6) or the D-DW (4) by submitting queries to

(7a, 7b or 7c).

In Figure 1.4, we also introduce Ready-Nodes (9). Ready-nodes represent

the extra resources available to scale any part of the AScale framework.

When additional resources are required to scale some part of the frame-

work, they are retrieved from the Ready-nodes area, and after a scale-in is

triggered, they are returned to the Ready-Nodes pool. A node can be either

a computer, a core or a virtual machine.
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1.6 Contributions

This thesis proposes AScale, a framework for automatically scaling and guar-

anteeing freshness for the ETL+Q process, allowing the developer to focus

only in the conceptual ETL+Q model.

The following contributions are made, as parts of the AScale framework:

1. An approach to automatically parallelize ETL and Query execution

(ETL+Q), able to modify individual components when they need to

scale out or in - starting from a logical single-server ETL and data-

warehouse, we define an approach for automatically parallelizing the

system with any data warehouse system and to o↵er freshness;

2. An approach and interfaces (API) for data-warehouse designers to

integrate the logic with AScale so that AScale can be applied auto-

matically with any data-warehouse.

3. Mechanisms to monitor each part of the ETL and query execution,

to detect where and when scaling is necessary, and mechanisms to

dynamically and automatically adapt the system by scaling;

4. Dynamic-data-warehouse (D-DW). We propose an in-memory dynamic

store and processing approach which, when added to AScale, provides

total freshness and real-time. In order to handle very high data ingress

rates and large query workloads, the (D-DW) can be parallelized (par-

allel dynamic-data-warehouse), providing total freshness scalability.

Querying over the DW is integrated with querying the D-DW, return-

ing both fresh and complete results (i.e. result including the most

recent data, older data and both);

5. Scalable stream data-warehouse - some current applications require

processing of continuous results as well as freshness. We propose an
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approach to continuously integrate data and provide results to reg-

istered queries while also balancing and scaling workloads that may

require access to both stream and database-stored data. The stream

data-warehouse also prevents overloading of the streams using admis-

sion control techniques;

6. Experimental evaluation of the proposals, showing that AScale is able

to scale-out when performance bottlenecks are detected, and that it is

also able to scale-in when resources are not needed. We implemented

an AScale prototype to test the approaches proposed in this thesis.

1.7 Structure of the document

Chapter 2 discuses the related work. Chapter 3, provides and overview of the

approaches proposed in the remaining chapters of the thesis. Chapter 4, de-

scribes the interfaces (API) that AScale provides and how data-warehouse

developers interface their systems with AScale. Chapter 5 proposes the

mechanisms for ETL and query processing scalability. Chapter 6 proposes

the mechanisms for total freshness. Chapter 7 describes how high-rate scal-

ability over continuous results is integrated in the ETL+Q pipeline. Chap-

ter 8 provides an experimental evaluation of the entire auto-scale ETL+Q

framework, showing how it scales-out and -in. Chapter 9, concludes the

thesis and discusses future work.



Chapter 2

State-of-the-Art

In this section we review related work on scalability and freshness. Section

2.1 reviews related work on ETL optimization and scalability. Section 2.2

reviews works on scalability of the data-warehouse. Section 2.3 reviews

related work on dealing with freshness of data/results. Finally, in Section

2.4 we review related work in the field of complex event processing (CEP),

since we also propose integrating CEP processing into AScale.

2.1 ETL optimization and scalability

AScale optimizes ETL by automatically scaling each part of the processing

pipeline. Next we review previous work related to optimizing and scaling

ETL.

To increase the e�ciency of the ETL process, [6], [7] propose searching

methods based on heuristic algorithms that minimize the ETL execution

cost, by modeling the problem as a space search graph to decide which

execution is more e�cient. Graphs are created by the decomposition of re-

lational algebra operators. Heuristics are created based on the number of

times each state is visited.

13
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Work [8] studies how to manage large ETL processes by implementing

a set of basic management operators, such as ”MATCH”, ”MERGE”, ”IN-

VERT”, ”SEARCH”, ”DEPLOY”. The framework is web-based. The user

creates the ETL flow using drag-and-drop with the available filters, then the

framework determines the best execution order for the ETL using a set of

optimization algorithms.

Work [9] discusses the problem of scheduling the execution of ETL activ-

ities (a.k.a. transformations, tasks, operations), with the goal of minimizing

ETL execution time and allocated memory. The paper investigates the ef-

fects of four scheduling policies (Round-Robin, Minimum Cost Prediction,

Minimum Memory Prediction, Mixed Policies) on di↵erent flow structures

and configurations. It shows that the use of di↵erent scheduling policies may

improve ETL performance in terms of memory consumption and execution

time.

In [10] the authors propose a distributed ETL engine architecture based

on Multi-Agent Systems (MAS) data partitioning technology. They also

investigate methods of partitioning the massive data streams in both hor-

izontal and vertical ways. The system partitions workflows into multiple

sub-workflows for parallel execution in agents, also adding a spliter node to

distribute work. Each sub-workflow is executed by an agent, so that multi-

ple agents could work together to complete the collaborative work. At the

end, another extra node, the merger, will merge all results.

In [11] the authors describe an Extract-Transform-Load programming

framework using Map-Reduce to achieve scalability. Data sources and tar-

get dimensions need to be configured and deployed. The framework has
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built-in support for star schemas and snowflakes. Users have to implement

the parallel ETL programs using the framework constructors. They use py-

grametl [12], a Python based framework for easy ETL programming. The

flow consists of two phases, dimension processing and fact processing. Data

is read from sources (files) on a Distributed File System (DFS), transformed

and processed into dimension values and facts by the framework instances,

which materialize the data into the DW. The framework requires users to

declare (code) target tables and transformation functions. Then, it uses a

master/worker architecture (one master, many workers), each worker run-

ning jobs in parallel. The master distributes data, schedules tasks, and

monitors the workers.

ETLMR [13] proposes a tool to build the ETL processes on top of

Map-Reduce to parallelize the ETL operation on commodity computers.

ETLMR contains a number of novel contributions. It supports high-level

ETL-specific dimensional constructs for processing both star-schemas and

snowflake-schemas, and data-intensive dimensions. Due to its use of Map-

Reduce, it can automatically scale to more nodes (without modifications

to the ETL flow) while at the same time also providing automatic data

synchronization across nodes (even for complex dimension structures like

snowflakes). Apart from scalability, Map-Reduce also gives ETLMR a high

degree of fault-tolerance. ETLMR does not have its own data storage (note

that the o✏ine dimension store is only for speedup purposes), but is an ETL

tool suitable for processing large scale data in parallel. ETLMR provides

a configuration file to declare dimensions, facts, User Defined Functions

(UDFs), and other run-time parameters.

In [14] the authors consider the problem of data flow partitioning for

achieving real-time ETL. The approach makes choices based on a variety
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of trade-o↵s, such as freshness, recoverability and fault-tolerance, by con-

sidering various techniques. In this approach partitioning can be based on

round-robin (RR), hash (HS), range (RG), random, modulus, copy, and oth-

ers [15].

Pentaho Data Integration (PDI) [16], is an ETL (graphical) design tool

and provides Hadoop support. It consists of a data integration (ETL) en-

gine, and GUI applications that allow the user to define data integration

jobs and transformations. It supports deployment on single node computers

as well as on a cloud, or cluster. Internally, it allows connection/integra-

tion with other systems using for instance sockets, web-services (e.g. SOAP,

XML).

Analysis:

The mentioned works focus optimization of each individual ETL process

by optimizing data access, reordering operators execution and managing

the available computational resources as well as possible. Some do not use

parallelism, which limits capability to scale. Such approaches can easily be

used together our proposed framework (AScale).

To guarantee adequate ETL and query processing services in demanding

environments, it is essential for the systems to scale automatically. A direct

scalability approach would be to use Map-Reduce to implement the entire

ETL process as same of the related works propose. However, the Map-

Reduce model does not o↵er:

• Automatic real-time performance monitoring and scaling mechanisms,

new nodes must be added manually;

• There is more network tra�c in consequence of using a distributed file

system and Map-Reduce paradigm (Appendix A, Section A.10);
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• The entire ETL process must be coded in Map-Reduce programming

model, adding more complexity and potential performance limitations;

• E�ciency depends on implementation method of used operators, spe-

cially when data exchange is required.

The proposed AScale framework o↵ers better usability and performance

by:

• Providing an automatic scaling mechanism based on monitoring;

• Allowing to scale each part of the ETL+Q process independently;

• Allowing to define the ETL using any programming language as long

as a connector for the AScale framework is provided;

• Data (dimension tables or all tables) can be replicated across the data-

warehouse nodes, avoiding high amounts of data exchanges over the

network to merge results.

2.2 Data-warehouse scalability

There is a vast literature on query processing and load balancing in par-

allel databases systems [17], [18] and distributed systems [19], using many

di↵erent technologies. In this section we focus on data-warehouse scalabil-

ity, resorting to di↵erent storage and processing approaches and paradigms,

with the main purpose of optimizing query execution.

The work [20] studies performance and availability of parallel data-

warehouses. In this work the author provides a series of solutions to im-

prove, performance models. This is done using hash indexes for e�cient

load-balancing, replication in di↵erent nodes for availability, and distribu-

tion of data using small data blocks and their indexation. The model uses
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indexation to place data blocks and respective replicas e�ciently. The au-

thor concludes that by using this approach to distribute data and replicas,

it is possible to improve flexibility, fault tolerance and data placement e�-

ciency.

In [21] the author proposes an architecture for data distribution and

speeding up query processing. Data is placed (and replicated) into the

nodes in such way that it can be related (join) without the need to transfer

information between nodes, and merging it. With this approach the author

is able to minimize random data access and network usage to transfer inter-

mediate results, making queries execute faster.

In the works [22] [23] [24] the authors present an incremental selection of

horizontal data partitioning techniques based on adapting the current frag-

mentation schema of the data-warehouse in order to deal with the workload.

To optimize data-warehouse performance they propose, the combination of

three major optimization techniques: optimization using indexes, views, ma-

terialized views; horizontal partitioning applied to dimension tables; decom-

posing a table based on the fragmentation schema of another table.

In [25], [26] the authors also propose an approach for distributing data

e�ciently in distributed data-warehouses. Dimension tables are replicated

by each node of the cluster and fact tables are distributed over available

nodes.

Parallel DBMS first appeared about three decades ago [27]. The main

di↵erence between parallel DBMSs and Map-Reduce is that parallel DBMSs

are designed to run long pipeline queries over nodes that hold partitioned

data, instead of small independent tasks over a distributed file system as
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in Map-Reduce. Parallel DBMS were recently compared with Map-Reduce

when processing analytic queries. Pavlo et al. [28] and Stonebraker et

al. [29] both conducted experiments to compare the open source Hadoop

Map-Reduce implementation with two parallel DBMSs (a row-based and a

column-based) in large scale data analysis. The results demonstrated that

parallel DBMSs are significantly faster than Hadoop when running analytic

tasks. But they diverge in the e↵ort needed to tune the two classes of sys-

tems. Dean et. al. [30] argue that there are mistaken assumptions about

Map-Reduce in the comparison papers and that Map-Reduce is highly ef-

fective and e�cient for large-scale fault-tolerant data analysis. They agree

that Map-Reduce allows some complex data analysis to be programmed that

would not be able to be written in SQL, while parallel DBMSs excel at e�-

cient querying on large data sets [29]. However, the Map-Reduce framework

has so far been optimized for one-pass batch processing of on-disk data,

which makes it slow for interactive data exploration [31].

Systems based on Map-Reduce [32] architectures (e.g. Hadoop, Hive,

Hbase) claim to solve all problems related to scalability and availability.

Despite the huge amount of research around this paradigm to improve per-

formance, scripting language, processing methods, or the addition of more

functionality, the fact that a distributed file system is used and Map Reduce

architecture is the basis of processing, compromises the overall performance

and flexibility in terms of performance and configuration of ETL processes.

Data warehousing tools using Map-Reduce include, Hive [33], [34], Pig [35]

and, among others Apache Spark [36], [31]:

• In Map-Reduce survey [32] the authors describe several research and

commercial projects. However, they do not fit into the performance

and flexibility necessary for high-rate ETL processing. The architec-

ture itself introduces too much overhead, for instance to activate the
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Map and Reduce functions for a large parallel data-warehouse with

very frequent data integration cycles. Many limitations related with

scripting languages and their speed are mentioned. High amounts of

data materialization and disk usage is also a problem, which influ-

ences performance. Though Map-Reduce is a framework well suited

for large-scale data processing on clustered computers, it has been crit-

icized for being too low-level, rigid, hard to maintain and reuse [35],

[33];

• Pig and Hive, both o↵er scripting languages for data stored on the

Hadoop Distributed File System (HDFS). Pig and Hive share large

similarities, such as using Hadoop Map-Reduce, HDFS as their data

storage, integrating a command line user interface, having a scripting

language, being able to do some ETL data analysis, and others. Hive

provides an SQL-like language (HiveQL) and a shell, Pig provides a

scripting language Pig Latin and a shell; both Hive and Pig require

users to write data processing scripts explicitly. Secondly, in Hive and

Pig, an external function or user customized code for a specific task

can be implemented as a user defined function, and integrated into

their own language, e.g., functions for data serialization/deserializa-

tion. Hive and Pig achieve the functionality of ETL constructs through

a sequence of user-written statements, which are later translated into

execution plans, and executed on Hadoop. Thirdly, although Hive and

Pig are both able to process star and snowflake schemas, technically,

implementing an ETL, even the simplest star schema, is not a trivial

task, as users have to dissect ETL, write the processing statements for

each ETL step, implement user defined functions, and do numerous

testing to make them correct. Moreover, Hive and Pig do not support

UPDATE operations.

Instead of requiring the person to code using these dialects and most
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probably to have to code some parts using the Map Reduce model,

we opt to give the programmer the freedom to use the programming

languages and frameworks he is used to, then using connecting APIs

for AScale. Then AScale parallelizes and scales automatically.

• Spark [36], [31] started from discussions with Hadoop users, where they

wanted to run rich applications that the single-pass, batch processing

model of Map-Reduce does not support e�ciently. Spark comes to

provide:

– More complex, multi-pass algorithms, such as the iterative algo-

rithms that are common in machine learning and graph process-

ing.

– More interactive ad-hoc queries to explore the data.

Although these applications may at first appear quite di↵erent, the

core problem is that both multi-pass and interactive applications need

to share data across multiple Map-Reduce steps (e.g. multiple queries

from the user, or multiple steps of and iterative computation). The

only way to share data between parallel operations in Map-Reduce is

to write it to a distributed file system, which adds substantial overhead

due to data replication and disk I/O. Spark overcomes this problem

by providing a new storage primitive called Resilient Distributed Data

sets (RDDs). RDDs let users store data in memory across queries,

and provide fault tolerance without requiring replication, by tracking

how to recompute lost data starting from base data on disk. This lets

RDDs be read and written up to 40x faster than typical distributed file

systems, which translates directly into faster applications [31]. Apart

from making cluster applications faster, Spark also seeks to make them

easier to write, through a concise language-integrated programming

interface in Scala, a popular functional language for the JVM;
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Analysis:

We have reviewed a set of systems that were designed to scale and improve

the performance of other tools and paradigms.

Our proposal, AScale, provides techniques to distribute and replicate data,

and automatic data-warehouse scaling-in/out when necessary. The auto-

scale is obtained by automatic scale need detection based on resources mon-

itoring (e.g. disk), ingress data load monitoring (i.e. using bu↵er queues to

monitor load speed) and query execution time monitoring. This auto-scale

capability of AScale framework can also be applied in other environments

such as Map-Reduce architectures, a possibility that we propose as future

work.

2.3 Freshness in data-warehouses

Typically, in large data-warehouses the load process is not done immediately

as data appears in sources, for performance reasons, instead it may be done

for instance every night or weekend. In this section we discuss data freshness

(a.k.a. near real-time) in data-warehouses. The idea is to add approaches

to the data-warehouse architecture that will allow it to be real-time.

The work [37] is focused on methods for real-time data-warehouse sup-

port. The work considers two main combinations of approaches: incremen-

tal batch refresh (based on time-stamp); and continuous refresh, where the

data-warehouse is always updated. The framework considers three aspects

to ascertain the level of update importance: impact from record measure/-

precision in results; number of a↵ected records; requests frequency. Based

on these aspects the framework decides if it should or not update the data-

warehouse in real-time.

To achieve near-real time ETL in [15] the authors suggest an architecture
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with mechanisms to ensure constant data refresh inside the data-warehouse.

This architecture has five layers: extract data from the sources; data pro-

cessing area, for data extraction and synchronization with previews data;

transformation area; synchronization between the data processing area and

the data-warehouse; storage layer. All the components together allow to

isolate and identify bottlenecks to scale-out.

In [15] the authors include a discussion on approaches for refreshing the

data-warehouse. They take the approach of designing an architecture with

multiple levels for data extraction, data processing, loading and query pro-

cessing. The authors discuss how those can be scaled and synchronized

to allow constant refreshing of the data-warehouse. Two important issues

are not discussed there: the existence of indexes and materialized views

that slowdown loading and refreshing, and the simultaneity between online

querying and continuous data loading is not considered or evaluated.

The authors of [38] and [39] propose a solution based on a Service Ori-

ented Architecture. The solution relies on mechanisms to collect data from

web-services which are hosted in other subsystems. The framework extracts

the data and stores it in memory caches organized hierarchically. These

caches have periodic update times. After the data passes though all caches,

it is stored inside the data-warehouse.

In [40] the authors use an extraction strategy di↵erent from the usual.

Instead of Extract Transform and Load, they use Extract Load and Trans-

form. Data is extracted from the sources and immediately loaded into the

staging area. The architecture also has many Materialized Views which are

used to answer user queries faster. These views are updated from the base

data on demand when receiving new queries.
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The work [41] shows an architecture that uses multiple partitions to

store information regarding a certain period of time, for instance an hour or

a day. Then, depending on the queries necessities, di↵erent partitions are

used. With this work not only queries are optimized but also indexing and

data integration speed.

The industry is also investing in this concept, solutions for real-time

data-warehouses of large enterprises can be found in the market. Oracle for

instance is using Oracle Data Integrator [42] and Oracle GoldenGate [43]

which claim to guarantee real-time data integration. More solutions can be

seen in Vertica [44] engine, where a hybrid architecture, memory and disk, is

suggested. Data in memory is accessed and stored very fast, the migration

to disk is done asynchronously. The data is stored in disk using traditional

architectures.

In [45], the goal is to exploit database management systems and emerg-

ing cloud technologies (e.g., virtualization and distributed cloud storage sys-

tems) to improve the deployment and usability of database systems in the

cloud. More specifically, it is intended to use cloud technologies and re-

lational database systems to build a highly available and elastic scalable

database service in the cloud, while providing strong consistency and sup-

porting a full SQL interface.

In [46] the authors describe Liquid, a data integration stack that pro-

vides low latency data access to support near real-time in addition to batch

applications. It supports incremental processing, and is cost-e�cient and

highly available. Liquid has two layers: a processing layer based on a stateful

stream processing model, and a messaging layer with a highly-available pub-
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lish/subscribe system. The processing layer (i) executes ETL-like jobs for

di↵erent back-end systems according to a stateful stream processing model

[47]; (ii) guarantees service levels through resource isolation; (iii) provides

low latency results; and (iv) enables incremental data processing. A messag-

ing layer supports the processing layer. It (i) stores high-volume data with

high availability; and (ii) o↵ers rewindability, i.e. the ability to access data

through meta-data annotations. The two layers communicate by writing

and reading data to and from two types of feeds, stored in the messaging

layer.

The work in [48] describes solutions for deploying data-warehouse sys-

tems for real-time, typically relying on a smaller repository holding the most

recent data. Since this repository is small, it allows faster loading and re-

freshing, without a↵ecting the performance of querying activity [49], [50].

In [51] and [52] the authors propose temporary-tables based approach

to deal with Real-Time. For instance, in [51] the authors add time-interval

granularity partitions, e.g. one for the last hour and one for the last day. In

those solutions there is not adequate decoupling between the data loading

and querying servers, since they are done in the same database instance in

the same machine, and with o✏ine refreshing. Those limitations and the

study of the limitations of data warehousing when dealing with near-real-

time data [50] led to the proposal in [53]. In that proposal queries and data

loading occur simultaneously with minimum performance degradation, since

they can happen in di↵erent database instances and in di↵erent machines.

In the work [54] using partition techniques, the architecture presented

relies on temporary tables to store the most recent data, allowing faster

data integration. This is possible by keeping small temporary tables and
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removing all indexes and auxiliary structures which require constant updat-

ing when adding new data.

Analysis:

Data freshness (near real-time results) is normally accomplished by separat-

ing the most recent data from the rest of the data of the data-warehouse.

This optimizes querying performance over new data which was not yet in-

tegrated into the main data-warehouse. Immediate integration of new data

can not only damage the data-warehouse current querying performance, as

it is a complex process that requires many resources to update in-place data-

warehouse structures (e.g. indexes, views).

In AScale, we include a dynamic-data-warehouse using in-memory tables.

The dynamic-data-warehouse holds only the most recent data until the next

data-warehouse load period. This allows us to integrate data much faster

into the dynamic-data-warehouse, because there are no indexes or any kind

of views being updated simultaneously, thus, querying most recent data is

faster. AScale, our auto scaling framework, adds performance monitoring

and automatic scalability (in OR out) to the dynamic-data-warehouse when

necessary.

2.4 High-rate data-warehouse with stream process-

ing scalability

Complex Event Processing (CEP) systems [55] are used in various scenarios,

processing several thousands of events per second with sub-milliseconds la-

tency [56]. CEP engines like ESPER [57], StreamBase [58], Oracle Complex

Event Processing (OCEP) [59], have the aim of e�cient stream process-

ing for data arriving at high-rates. In general, these types of applications

are dedicated to fields like (but not limited to): stock trading [60], stream



Chapter 2. State-of-the-Art 27

monitoring, information integration workflows [61]; exception management;

financial services; health care; IT monitoring; telecommunication; logistics;

sensor networks; fraud detection, finding patterns in data. Recently, these

topics have received significant attention in the research community [62],

[63], [64], [65]. The choice of such applications lies in the need to process

events in real-time. The main considerations for such applications are the

need for high-throughput, between 1000 and 100k messages per second, low-

latency processing for event streams (between milliseconds and seconds) and

the logical complexity.

CEP systems are able to process data at high-rates. Simultaneous accesses

to data-warehouses are usually not performed, because they tend to be slow.

However, it is useful to be able to correlate stream information with data-

warehouse information. We investigate how to make CEP automatically

scale and load balance the processing while at the same time querying the

main data-warehouse.

There are several commercial CEP systems, such as RuleCore CEP server

[66], Coral8 Engine [67] and Esper [57] (also with an opens source version),

several open research prototypes also exist [68]; Cayuga [69] with two ver-

sions, a single CEP engine designed to achieve high performance and a dis-

tributed version of the system, that merges events and algebra expressions.

Many academic prototypes have been developed to distribute operators,

Borealis [70], DCEP [71] and others [72], [73], [74]. One of the most cited

systems, Borealis [70], an extension to Aurora [72] and Medusa [75], focuses

on operator placement and other strategies across a set of Aurora Engines.

Other research groups started focusing on elastic streaming over Map-

reduce [76]. These approaches use distributed file systems, such as HDFS,

and large amounts of memory to attain elastic scalability with high-rate
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data processing, using a set of Map-Reduce nodes, focusing on CEP queries

and operator placement optimization.

Analysis:

Some of these systems include the capability to query databases, however

they become dependent of the database processing speed and this may

compromise the whole context that assumes periodic results. If the data-

warehouse process speed is slow, then the processing of events which also

query the data-warehouse will be a↵ected.

Neither academy nor industry have investigated algorithms for speeding up

the timely execution of queries in CEP and databases together. The investi-

gation work that we did provides monitoring, scaling and admission control

guarantees over high-rate CEP processing that includes analysis of DB data

as part of the queries. We also investigate the auto-scale mechanisms for

integration of data-warehouse and support of CEP queries with automatic

load balancing and scaling (out/in) when necessary.



Chapter 3

Overview of automatic

scalability and freshness

In this chapter we investigate how to provide (ETL+Q) automated scalabil-

ity and data freshness in data-warehouses. Moreover we provide an overview

of the solutions proposed in the thesis.

The main proposal is a (ETL+Q) auto-scale framework, named AScale. Ac-

cording to the approach, the developer designs a logical view of the ETL+Q

and data-warehouse (single server), writing only the transformations, with-

out worrying about scalability details. Additionally, the developer specifies

some parameters needed by the auto-scaling mechanisms.

To guarantee total scalability and freshness, AScale has to deal with both

ETL scalability, processing scalability and data freshness guarantees.

Section 3.1 describes how ETL+Q scalability is added to a data-warehouse.

Section 3.2 overviews the framework of AScale. Section 3.3 describes the

proposed scalability mechanisms. Sections 3.4 describes the approaches for

data freshness and how to scale for total data freshness. Section 3.5 de-

scribes how the system provides high-rate continuous results and scalability

when processing continuous results.

29
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Figure 3.1: Single server phases

3.1 Adding ETL+Q scalability to a data-warehouse

design

When building a data-warehouse, the main phases are shown in Figure 3.1.

The ”1st design phase” represents the parts to be accounted for before any

other system development happens. The related items include:

• ”Data sources” - includes the configuration of the data sources origin

and destination, data extraction format and frequency;

• ”data-warehouse schema(s)” - the schema must be defined according to

the data and queries to be performed. Generally star-schema models

are used for data-warehouses;

• ”Queries” - represent relevant processing load of the system. Queries

are also directly linked to the data-warehouse schema. If the schema

changes, the queries must be rewritten accordingly.
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The ”2nd design phase” regards the integration, implementation and

configuration. This phase a↵ects the global performance (e.g. queries exe-

cution time, transformation time, integration time, and so on). The related

items include:

• ”Extraction” - when extracting data from sources, a set of parameters

must be specified, such as: extraction frequency, maximum window

extraction size;

• ”Transformation” - after extracting the data from sources, it needs to

be transformed and cleaned before loading into the data-warehouse.

Transformation operations need to be defined and implemented. For

processing the transformation, the system also needs to know a set of

parameters, among them the input and output data formats;

• ”Load” - is the process of loading the data into the data-warehouse.

This process is crucial and involves the definition of loading scripts,

loading periods and duration, load mechanisms, load bu↵er size;

• ”Configurations” - includes all adjustments to the system to optimize

the available resources depending on the desired objectives. For in-

stance, one needs to configure extraction frequency, data-warehouse

integration methods, bu↵er sizes and so on.

The ”3rd design phase”, concerns the scalability of the system or parts

of it (e.g. extraction, transformation, loading, storage nodes). When using

the proposed AScale framework, the referred ”3rd design phase”, scalability,

is automatically included and managed. Thus the user only needs to define

how the logical system works for a single server architecture (1st and 2nd

design phases), without concerns regarding scalability.
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Figure 3.2: AScale architecture for automatic scalability

3.2 Architecture for automatic scalability

In this section we describe the main components of the proposed framework,

AScale. Figure 3.2 shows its main components:

• Components (1) to (7), except (5) are the Extract, Transform, Load

and Query (ETL+Q) pipeline;

• The ”Automatic Scaler” (13), is the component responsible for perfor-

mance monitoring and scaling the system when necessary;

• The ”Configuration file” (12) represents the location where all user

configurations are saved;

• The ”universal data-warehouse manager” (11), uses the configurations

provided by the user and the available ”Configuration API” (10) to

set the system to perform according with the desired parameters and

selected algorithms. The ”Universal data-warehouse Manager” (11),

also sets the configuration parameters for automatic scalability at (13)

and the policies to be applied by the ”Scheduler” (14);
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• The ”Configuration API” (10), is an access interface which allows to

configure each part of the proposed data-warehouse framework, auto-

matically by (11) or manually by the user;

• The ”Scheduler” (14), is responsible for applying the data transfer

policies (least-work-remaining, round-robin, manual) between compo-

nents.

• The ”Ready nodes area” (9) represent nodes that are not being used.

These nodes can be added to parts (2) to (6) of the system to scale-out,

improving performance where needed, or removed to scale-in, saving

resources that can be used in other places.

All these components when set to interact together provide automatic

scalability to the ETL+Q and to the data-warehouse processes without the

need for the user to concern about its scalability or management.

Instead of programming the entire ETL pipeline, the user can focus only

in programming the transformations and data-warehouse schema (Figure

3.2, highlighted in grey color). The other scalability details are handled

automatically by AScale. Additionally, the developer can choose any data-

warehouse engine to store data (e.g. Relational data-warehouses, column

oriented, noSQL, Map-Reduce architectures) by configuring AScale to con-

nect them.

3.3 Scalability mechanisms

In this section we introduce how each part of AScale (ETL+Q auto-scale

framework) scales individually to obtain the necessary performance config-

ured by the developer.

Figure 3.3 depicts each part of the ETL scaling, including:

(1) Each data source (1) has an extraction frequency associated with it
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Figure 3.3: AScale, ETL+Q scalability

(e.g. every minute). The increase of data sources nodes (1), and data

source rates, implies the increase of data, leading to the need to scale

other parts of the proposed framework;

(2) The ”Extraction & Data Distributor” nodes forward and/or replicate

the extracted (raw data) into the transformer nodes. If the extraction

time is larger than a maximum configured limit, or if data extraction

is not complete until the next extraction instant (e.g. every minute),

more data distributor nodes (2) are required. Scaling needs in (2) are

detected by monitoring the extraction time;

(3) Transformation nodes process the data transformations programmed

by the user. These nodes include a bu↵er queue to monitor data

ingress. If the queue increases its size above a certain limit, the trans-

formation node is scaled by replicating the transformation code to

another node;

(4) The data bu↵er holds the transformed data, it can be in-memory

or/and disk. These nodes are scaled based on memory monitoring

parameters. If at any time the used memory reaches the maximum

configured usable memory, a new node must be added;
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(5) Data switches are responsible for data distribution (pop/extract) from

the ”Data Bu↵ers” and placing it in the correct nodes for loading

into the data-warehouse. Each data switch is configured to support a

maximum data-rate (e.g. 10000 rows/sec). When that limit is passed

or reached during a defined time window, more data switch nodes are

added;

(6) The data-warehouse can be in a single node, or parallelized over mul-

tiple nodes. Scalability of the data-warehouse is based in two parame-

ters: the loading time and query response time. If the data-warehouse

nodes take more time to load data than the maximum configured time,

more nodes are added and data is re-distributed [21]. If the average

execution time of queries is more than the desired response time, data-

warehouse nodes must also be added to guarantee more performance;

Finally, the last scalability mechanism introduced in AScale is the global

desired ETL processing time. A global time for the entire ETL process

can be defined. If that global time is exceeded, then the AScale pipeline

component that is nearest to its scaling limit is scaled-out.

3.4 Scaling total freshness

Data-warehouses typically only load data at specific time instants, with a

specific periodicity. This means that between loading periods fresh data

may not be available. By contrast, total freshness refers to query answers

incorporating the most recent data. We define that a query result is totally

fresh (freshness) if it incorporates all the data produced until submission

time.

Figure 3.4 depicts an in-line (non distributed) processing approach of the

designed system to support freshness. In Figure 3.4 we introduce a dynamic-

data-warehouse (4) (D-DW). This consists of a temporary data-warehouse
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Figure 3.4: Achieving total freshness using in-line approach

storage, mainly in in-memory, for the most recent data that was not yet

integrated into the data-warehouse (6) nodes. The purpose of this new

component is to include the most recent data into query results, even though

that data has not been loaded into the main data-warehouse yet. When

executing queries they can be submitted to the dynamic-data-warehouse (4)

or to the main data-warehouse (6). Modules, (7a), (7b) and (7c) manage the

queries submission and execution into each or both data-warehouse types,

(4) or (6).

Figure 3.5 shows the parallelization of the Dynamic-data-warehouse (4).

Data is transformed (3) and sent to the dynamic-data-warehouse (4). Data

Switches (5) load the data already transformed and stored in the Dynamic-

data-warehouses (4) into the data-warehouse (6) nodes according to a con-

figured period of time.

The Dynamic-data-warehouse (4) scaling decision is based on monitoring

data ingress queues sizes. If the queue size increases above a certain limit,

data is not being integrated into the D-DW (4) fast enough, thus there is

need to scale-out. Additionally, if D-DW queries response times take longer

than the desired response time, more nodes must be added.
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Figure 3.5: Achieving total freshness using parallel approach

Queries (7) can be executed against the data-warehouse (6) or against the

Dynamic-data-warehouse (4) or against both the Dynamic-data-warehouse

(4) and the data-warehouse (6) to include the most recent data. Assume a

query that includes the most recent data, and calculates a simple average. It

would be decomposed into three queries, one to run in each DW and D-DW,

other to merge the results of each data-warehouse node, and, finally one to

merge the results of the DW and D-DW.

3.5 Scaling high-rate continuous results

We introduce the model to support CEP processing together with the data-

warehouse.

In Figure 3.6, in grey color we highlight the relevant modules. Just after

Transformation, a new data path is added to a CEP-related Data Bu↵er

that holds transformed data for integration into the CEP module. Besides

also using the data that is output fro Transformation, the added CEP mod-

ule does not change anything in the normal ETL+Q processing pipeline.
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Figure 3.6: High-rate over continuous results

Note that some arrow connections are omitted for simplicity.

At the same level of a Data Switch (5) that distributes and replicates data

into the data-warehouse (6), we introduce a CEP Data Switch. It works in

the same fashion as the normal Data Switch, but replicates all data across

all CEP processing nodes (8).

The CEP Query Scheduler (7d), decides where to register CEP queries

(which CEP processing node (8) runs each query). CEP queries can also in-

teract with the data-warehouse (6) or dynamic-data-warehouse (4) or both.

Figure 3.7 depicts the main components that are added to provide scal-

ability over continuous results.

(5a) CEP Data Switch distributes and replicates the data by all CEP pro-

cessing nodes (8). Associated to (5a) there is a Data Bu↵er (4) to

collect and hold data from all transform (3) nodes;
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Figure 3.7: High-rate scalability over continuous results
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(7) Queries can be submitted to the data-warehouse (7a) and dynamic-

data-warehouse (7b). Continuous queries, on the other hand, need to

be registered/de-registered from the CEP nodes (7d). CEP Queries

can also include database sub-queries that will query the data-warehouse

(7a, 7b);

(8) CEP processing nodes are also managed by AScale scheduler module.

The nodes can be added and removed dynamically, to provide more

e�ciency, or to save resources, based on a ingress data rate queue

that is monitored for overload detection. Once an overload situation

is detected, CEP queries are re-scheduled or a ready-node is added;

(9) The ready-nodes are stand-by nodes that can be added to the process-

ing nodes if necessary (e.g. high-rate data spikes) or when nodes are

not being used to their full capacity they can be set on stand-by and

used for other processing tasks.

There is also an ”Automatic Scaler” (Figure 3.2) which is responsible for

maintaining the system working e�ciently; balancing CEP queries; manag-

ing the addition and removal of nodes; collecting performance information

of all parts of the system for better assessment of where more performance

is required; making decisions related with query re-balance and relocation.



Chapter 4

Integrating any

data-warehouse with AScale

In this chapter we describe how a data-warehouse developer can integrate

automatic scalability in a data-warehouse design and deployment process, to

avoid having to deal explicitly with scalability and real-time. The approach

we propose is embodied in the AScale framework. Therefore, our description

is based on that framework. AScale only requires the data-warehouse devel-

oper to design the data-warehouse schema and to code the transformations

for a single node, using any language or tool, then the setup is connected to

AScale via APIs. For each part of the AScale architecture, we present the

connection interfaces, to be used and configured by the developer.

All APIs mentioned in this chapter can be found in Appendix E in more

detail, and Appendix F shows an XML possible configuration file for AScale.

4.1 AScale modules and connections

In this section we describe AScale ETL+Q pipeline design.

In Figure 4.1, highlighted in grey are the modules which the developer needs

to develop himself, the connection modules that need to be configured are

41
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Figure 4.1: AScale pipeline modules and connections

represented with thick black lines, and the rectangles with white background

represent the ETL+Q remaining modules of AScale.

(1) and (a) Each data source can be in a remote location. For each data

source, the developer must configure a module named ”data loader”. The

interface between the data sources and the AScale extraction module (2) can

be seen as a producer/consumer pattern. The data sources are producers,

the ”data loader” is a the shared bu↵er, and the extraction nodes are the

consumers. The API of (a) needs to be configured to load/read data from

(1) and make it available for extraction (2). (a) reads into memory large

amounts of data from a set of sequential files. Extraction files are identified

by a sequential prefix used to extract in correct sequence.

(2) Performs the extraction from (1)(a) according to configured time bounds,

frequency (e.g. every day at 1am extract data for a maximum time of 5

hours) and data extraction sizes.

(3) and (b) the transformation code must be provided by the data-warehouse

developer or some tool that generates the transformation process. There are

two possible ways to program the connections with AScale: Importing an

AScale library implementing the interface API to get data, transform it and

submit it back (b); Other option is to connect to a web service and use the

API to get the data, perform the data transformations and submit the data
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Figure 4.2: Data Sources

back.

Data-warehouse designing tools can integrate with AScale by importing and

applying AScale API.

(6) and (c) The developer can choose to use any database engine. The

API (c) must be configured to connect to the database.

(7) and (d) Queries can be submitted though a web service or library API.

For testing purposes, it is also possible to submit queries to an AScale con-

sole.

In the next sections we detail how to connect to each AScale module,

and how to configure it for automatic scalability.

4.2 Data sources

In this section we explain how Data Sources interact with AScale Data

Loader. The Data Loader bridges Data Sources to AScale.
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Figure 4.2 highlights the data sources (1) and the AScale ”data loader”

(a). Each data source is expected to supply log files with the data to be

extracted. In order to avoid simultaneous reading and writing from log files,

the data source is expected to provide the data as consecutive log files (nu-

merated as 0, 1, ...). The ”data loader” (a), reads into memory data located

at the data sources (1) in log files, and makes that data available for extrac-

tion by (2). AScale requires configuration of log files name prefixes. After

module (a) is configured, data extraction (2) connects directly to the ”data

loader” (a) (i.e. using sockets) for extraction.

Data extraction is done by following the file sequence (e.g. stock-0, stock-1,

stock-2). A file n is only loaded into memory for extraction when n+1 is

created. After data extraction is complete, the file is deleted.

Listing 4.1: Data loader configuration

1 dataLoaderSetLog (

2 ” s tock ” , // log ID

3 ” . . / home/ , // log f i l e l o c a t i o n

4 ” stock ” , // log f i l e base name

5 ”�”); // l og f i l e name s e qu en t i a l s epa ra to r cha rac t e r

Listing 4.1 details the data loader configuration parameters. This config-

uration consists of: the parameter in line 2 (log ID) identifies the data, this

ID is concatenated as a prefix to each row of data; The input parameter in

line 3 (log file location) identifies the storage path of the respective log file;

The input parameter in line 4 (log file base name) identifies the file name;

Finally the input parameter in line 5, identifies in the log file name separator

that appears before the sequential numbering (e.g. stock-0, stock-1).
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Figure 4.3: Extraction from (1)(a) into (2)

4.3 Extraction

The developer needs to configure extraction parameters such as: extrac-

tion frequency, maximum extraction time, the format of extracted data,

and data distribution policy, which defines the strategy used to distribute

extracted rows into transformation nodes, when there are multiple transfor-

mation nodes.

Figure 4.3, highlights the extraction module(s) (2) used to extract data

from data sources (1)(a) and distribute it across transformation nodes (3)(b).

Data extraction size is configured by the developer as the maximum data

chunk size. This size is used to transfer data between (a) and (2), (2) and

(3), (4) and (5), (5) and (6).

The developer configures, for each log file, an extraction frequency and the

maximum load time window. Data extraction is controlled by a scheduler

process (mentioned before in Chapter 3 Figure 3.2(14)), and data is ex-

tracted using fixed data chunk sizes, configured by the developer. A data

chunk is a set of data rows that are extracted together.

At all moments extraction nodes (2) are connected to all Data Loaders

(1)(a). If the connection fails, it is automatically re-established. If re-
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Figure 4.4: Extraction method

connection is not possible, a warning is issued.

Figure 4.4 describes the default extraction method to get data from

(1)(a) into (2). At every data extraction instance (configured) of a log file,

the scheduler (14) asks each data source (a) the amount of data each log file

has to be extracted, Figure 4.4(step 1).

By default, for each data loader (1)(a) and log file, Figure 4.4(step 2), the

scheduler (14) chooses randomly an available Extraction node (2) to perform

the data extraction (using the default maximum data chunk size).

After data is extracted, it needs to be sent to the transformation nodes data

queues, Figure 4.3(3). By default, data is distributed using Least-Work-

Remaining (LWR) to load balance the amount of data to transform in each

transformation node. Transformation node data queues are used to detect

overload situations and to scale when necessary.

Listing 4.2: Extraction data source format

1 extractSetDataSourceFormat (
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2 ” source1 ” , // source ID

3 ” stock ” , // log ID

4 ” |” , //column separa t e cha rac t e r

5 ”\n ” ) ; //row separa te cha rac t e r

Listing 4.2 shows the configuration of the data sources data format spec-

ification. Line 2 identifies the data source ID. Line 3 identifies the log ID.

Line 4 and 5, identify column and row delimiter character, respectively.

The extraction process adds the log ID as prefix. This extra information is

meant to help the developer identifying the transformations to be applied,

since they depend on which data is to be transformed (e.g. which fact or

which dimension).

4.4 Transformation

Transformation code must be provided either directly by the developer, or by

a data warehouse design tool that generates the executable code or the trans-

formation operations. Either the developer or the tool must call functions

of the AScale API to interface with the automatic scalability framework.

In this section we explain how the developer can connect a transformation

module to AScale and include a sequence diagram to explain how AScale

modules interact with data transformation.

Figure 4.5 highlights the transformation nodes (3). Data from the ex-

traction process (2) is placed in data queues of transformation modules.

The queues detect scalability needs based on a configured maximum size.

Remember that each extracted row is concatenated with a prefix containing

identification data log, with the purpose of allowing the transformation to

identify which data must be transformed.

In order to apply transformations, the transformation code can be connected

using two alternative methods. First, by importing an AScale library API

to interface with the input transformation queues (b) and with the output
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Figure 4.5: Transformation

data bu↵er, second by connecting to a web Service API (b). Data retrieval

from the ”data queue” is done using the default data chunk size.

Listing 4.3: Transformation API get data

1 array [ ] = transformGetExtractData ( ) ;

The transformation module, which is implemented directly by the devel-

oper or generated automatically by some data warehouse ETL design tool,

is expected to call the function ”transformGetExtractData” of Listing 4.3 to

read input data from the queues. This is a blocking function, which means

that the transformation module will call this function repeatedly, each time

waiting until data is available to be read.

In the listing, the output parameter ”array” is a data chunk made of a set of

rows with extracted data in text format. Note that the header of the data

contains the identification of the source and log file.

Listing 4.4: Transformation API submit data

1 transformSetOutput (

2 ”112 |Pedro | 3 0 | Portugal \n” , \\ transformed data

3 ” |” , \\column separa t e cha rac t e r
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Figure 4.6: Sequence diagram, transformation

4 ”\n” , \\ l i n e s epara te cha rac t e r

5 ” u s e r s ” , \\data warehouse schema tab l e name

6 ) ;

The transformation module is also expected to call the function ”trans-

formSetOutput” of Listing 4.4 to submit output data. The output data

(line 2) can contain any number of transformed rows. Besides the rows

themselves, the call must specify field and row delimiter characters (line 3

and 4) and the data warehouse schema table name (line 5) which the data

corresponds to.

After transformation, data is placed inside the data bu↵er (4) nodes us-

ing the LWR distribution policy, by default. It is also possible to configure

manually the data distribution policy, Appendix E.
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Figure 4.6 shows the sequence diagram to get data from AScale to be

transformed, and to submit it back to AScale pipeline.

On top we depict:

(A) The transformation queues, which hold data to be transformed;

(B) The transformation API library or Web Service API;

(C) The transformation code, created by the developer/tool;

(D) The data bu↵er, which holds transformed data to be loaded into the

data warehouse;

The sequence of events to extract and transform data occurs as follows:

(1) The API library or web service is up and ready;

(2) The transformation code (C) connects to the API;

(3) Transformation code (3) requests data;

(4) The API (Ba) gets data from the transformation bu↵er (A); (5) The

transformation bu↵er returns and forwards the data to (Ba);

(6) The (Ba) forwards the data to (C); (7) Transformations are applied;

(8) Transformation code (C), submits the transformed data back to AScale

connection API (Bb);

(9) The connection API (Bb) sends the transformed data to be stored at

the data bu↵er (C) until the next load instant;

(10) represents the loop, which the developer transformation code must

perform to extract and transform data.

4.5 Data bu↵er and Data Switch modules

Figure 4.7 shows the data bu↵ers (4) used to store the transformed data

temporarily until the next data-warehouse load period.

As explained before transformed data is submitted into the data bu↵er nodes

using an LWR policy (by default). That data is later retrieved by the data

switches (5) using a scheduler-based method similar to the one used to ex-
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Figure 4.7: AScale data bu↵er and data switch nodes

tract data from the sources (1)(a).

The data bu↵er has four storage parameters: memory size to use; maximum

memory size before data starts being swapped into disk; disk size; and max-

imum disk size.

Data loading from the data bu↵ers (4) is managed by a scheduler. When

data switch nodes are free (5), the AScale scheduler selects the data bu↵er

holding more data to be extracted. The data switch node (5) retrieves a

data chunk size, processes the data according with distribution and replica-

tion configurations, and places it in data-warehouse nodes for loading.

The data bu↵er nodes (4) scale based on their I/O capacity to prevent the

memory from reaching the maximum configured size, or before the disk space

reaches the maximum size limit.

Data switch nodes (5) scale based on a configured maximum data-rate. If

that maximum data-rate is reached for a certain time window, then AScale

adds more data switch nodes.
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Figure 4.8: Data-warehouse nodes

4.6 Data-warehouse

This section describes how to interface the data-warehouse schema with

AScale, and the di↵erent ways data-warehouse nodes monitoring can trigger

scale-out and scale-in.

Figure 4.8 highlights the data warehouse (6) and the connection API (c).

To set the data-warehouse nodes schema and operations to perform before

and after the load instant, the developer needs to submit three files to AScale

framework: first, the data-warehouse schema creation script, including SQL

commands to create all tables, indexes and views; second and third, the

pre-load and post-load scripts, in SQL format. The pre-load and post-load

scripts are executed prior to the load instant and at the end of the load

instant respectively. Pre-load tasks include, for instance, drop of all indexes

and views. The post-load script includes, rebuilding of dropped structures,

such as indexes and views.

Listing 4.5: Data warehouse schema configuration

1 dataWarehouseSetSchema (

2 ” / . . . / s c r i p t ” ) ;
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Figure 4.9: AScale Querying

Listing 4.5 shows the call to the API to upload the data-warehouse

schema. The schema must be submitted in standard SQL format. The in-

dexes, views and key identifiers must be defined. All data-warehouse nodes

will have the same schema.

Listing 4.6: Data warehouse pre-load and pos-load configurations

1 dataWarehouseSetPreLoadTasks (

2 ” . . /⇤/ preLoad . s q l ” ) ;

3

4 dataWarehouseSetPosLoadTasks (

5 ” . . /⇤/ postLoad . s q l ” ) ;

Listing 4.6 shows the call to the API to upload the pre-load and post-

load configurations.

Data-warehouse scalability needs can be triggered by the load time limit

being overpassed. The developer configures the period or instant, and con-

figures the maximum load time (maximum duration of a load). If the max-

imum load time is reached, then the data-warehouse nodes are scaled-out

and data is re-balanced across all nodes.

Figure 4.9 highlights the query execution module (7)(d), including the

API to connect and submit queries.



Chapter 4. Integrating any data-warehouse with AScale 54

As mentioned before, queries can be submitted using the AScale terminal,

an API library or a Web Service. In all three modes, the interfaces for

querying are the same.

Queries can be executed against the main data-warehouse, and/or the dynamic-

data-warehouse. In all cases, after query execution, results from all nodes

are merged to obtain the final result.

Listing 4.7: Query execution

1 array [ ] = querieSetRun (

2 ”SELECT sum( p r i c e ) , product , c i t y FROM sa l e s , product , customer

3 WHERE s a l e s . prodid=product . prodid and s a l e s . cu s t i d=customer . cu s t i d

4 GROUP BY product , c i t y ” , // submitted query

5 ”DW” ) ; // data s to rage system to query

Listing 4.7 shows the API to perform querying to the data-warehouse.

Input parameters: the SQL query; the data-warehouse to run the query

against (DW= data-warehouse, D-DW= dynamic-data-warehouse, D-DW+DW

= both). Output parameters: an array with the query results.

The data-warehouse nodes also scale based on the query execution time.

The developer configures a maximum desired query execution time, if queries

take more time than the maximum, the data-warehouse and/or dynamic-

data-warehouse nodes are set to scale and data is re-balanced.

The sequence diagram of Figure 4.10 shows the interaction between the

developer application (A), AScale query API (B), Query manager (C) (Fig-

ure 4.9 (7)) and the data-warehouse (D) (Figure 4.9 (6)(c)).

When a query is submitted by the developer application (A), the next

sequence of events occurs:

(1) The application (A) connects to the AScale query API (B);

(2) The application (A) submits a query to the data-warehouse via query
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Figure 4.10: Query execution sequence diagram

API (B);

(3) The query API forwards the request to the query manager (C);

(4) The query manager (C) re-writes the query to be executed in the dis-

tributed data-warehouse using the approach in [77], and submits it to the

data-warehouse nodes (D);

(5) Results from the data-warehouse (D) are returned;

(6) Query manager (C) merges all results;

(7) query manager (C) return the final result to the query API (B) which

forwards it (8) to the developer application (A).
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Chapter 5

Auto-scalability of ETL and

processing

In this chapter we explain the mechanisms and configuration parameters

that AScale uses to monitor, detect and scale each processing module. After

explaining some of the most relevant configuration parameters, we detail how

scaling decisions are made. In order to do that, we explain the implemented

algorithms and illustrate how they work. Finally, we specify, for each part of

AScale, the data distribution policies used to share and transfer data across

di↵erent AScale modules.

For more details regarding API configuration, we redirect to Appendix E.

5.1 Configuring AScale for automatic scalability

Each part of the ETL+Q process must scale in order to overcome perfor-

mance limitations. For instance if we have many Data Sources supplying

data, and at each stage of the processing a single computing node may not

be able to handle all data extraction, transformation or any other part of

the AScale pipeline.

In this section we describe the scalability configuration parameters used by

57
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Figure 5.1: AScale framework for scalability

AScale to scale each module, independently and as necessary.

Figure 5.1 shows each AScale module that may need to scale to o↵er

desired performance.

Listing 5.1: Extraction, scalability configuration

1 extractSetDataSourceLog (

2 ” source1 ” , // source ID

3 {” logA” , ” logB” } , // l o g ID

4 {”⇤/10 ⇤ ⇤ ⇤ ⇤ ⇤” , ”⇤/10 ⇤ ⇤ ⇤ ⇤ ⇤” } , // e x t r a c t i on frequency

5 {”5 s ” , ”5 s ” } ) ; //maximum ex t r a c t i on time

Extraction nodes (2) are monitored to determine scaling needs based

on extraction frequency, Listing 5.1 line 4 (Using Unix cronjob format), and

the maximum extraction time, line 5.

If the maximum extraction time is exceeded, then more extraction nodes are

added. If the maximum extraction time is not defined, then, if the extraction
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takes longer than the frequency cycle duration, more nodes (2) are added

from the ready-nodes area (9).

Listing 5.2: Transformation, scalability configuration

1 transformSetMaxSize (

2 ”16GB” , //maximum queue s i z e

3 ”5GB” ) ; //maximum l im i t s i z e f o r s c a l i n g d e t e c t i on

Transformation nodes (3) include a data queue with a maximum load

size. Listing 5.2 line 2, specifies the maximum queue size, and line 3 specifies

the maximum limit size for scaling detection.

Ingress data goes inside the queues, then the transformation nodes, (with the

transformation operations programmed by the data-warehouse developer),

extract and transform data. If at any point the queue starts filing up above a

certain configured limit, it indicates that the ingress data-rate is more than

the output transformation data-rate. Thus, more transformation nodes must

be added.

When scaling-up, a new node is added and the entire transformation process,

present in other nodes, is replicated to the new node.

Listing 5.3: Data bu↵er, scalability configuration

1 da taBu f f e rSe tS i z e (

2 ” dataBuf fe r1 ” ,

3 ”5GB” , //maximum bu f f e r memory s i z e

4 ”10GB” , // l im i t b u f f e r memory s i z e

5 ”500GB” , //maximum bu f f e r d i s k s i z e

6 ”250GB” , // l im i t b u f f e r d i s k s i z e

7 ”D: ” ) ; // data b u f f e r d i s k l o c a t i on

The Data Bu↵er nodes (4) hold transformed data until the next data-

warehouse load instant.

Scaling decisions are made based on a number of parameters: maximum
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allowed in-memory bu↵er size; maximum allowed data write speed; and

maximum allowed disk size. Listing 5.3 illustrates these parameters.

If the memory usage reaches the maximum configured data bu↵er memory

size, then data is swapped into disk. If even so the memory becomes com-

pletely full, reaching the maximum memory size, more data bu↵er nodes

must be added. Also, if the disk space reaches a configured limit, more data

bu↵er nodes must be added.

Listing 5.4: Data switch, scalability configuration

1 dataSwitchSetDataRate (

2 ”dataSwitch1 ” , // data swi t ch ID name

3 ”80000 l / s ” , //maximum supported data�ra t e

4 ”2m” ) ; //maximum time de lay to t r i g g e r sca l e�out

Data Switch nodes (5) distribute and replicate data across the data-

warehouse nodes. These nodes extract data from the data bu↵ers (4) using a

scheduler based extraction policy and load it into the data-warehouse nodes

(6). However, there are limitations regarding the amount of data each data

switch node can handle. The command line in Listing 5.4 line 3, is used

to specify the maximum supported data-rate in lines per second. Line 4,

represents the maximum time delay before triggering scale-out mechanisms.

If, for the configured time duration, the data switch is always working at the

maximum configured data-rate, that means that these nodes are working at

their maximum capacity (according to configuration) and must be scaled.

Listing 5.5: Data warehouse, scalability configuration

1 dataWarehouseSetLoad (

2 ”⇤ 30 1 ⇤ ⇤ ⇤” , // load f requency

3 ”5h” , //maximum load time

4 ”100MB” ) ; //maximum batch f i l e s i z e
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The data-warehouse nodes (6) load data during fixed instants for a

certain time window.

Listing 5.5, line 2, represents the load frequency using the Unix cronjob

time format, and Line 3, represents the maximum allowed load time. If the

maximum allowed load time is exceeded, then more data-warehouse nodes

need to be added.

Another data-warehouse scale scenario regards queries execution time. If

queries take more time than a maximum configured limit to output the

results, data-warehouse nodes (6) must scale to o↵er more performance.

Listing 5.6: Maximum query execution time configuration

1 querySetMaxDWQueryExecutionTime (

2 value ) ; //max execut ion time f o r DW que r i e s

3

4 querySetMaxD�DWQueryExecutionTime (

5 value ) ; //max execut ion time f o r D�DW que r i e s

Listing 5.6 shows the API to configure the maximum query execution

time. The input parameters include the maximum desired execution time

in seconds (s) or minutes (m).

5.2 Decision algorithms for scalability

This section defines scalability decision methods as well as algorithms which

allow AScale to automatically scale-out and scale-in each part of the pro-

posed pipeline.

5.2.1 Extraction & data distributors

Flowchart 5.2, describes the algorithm used to scale-out. Depending on the

number of existing sources and increasing data generation rate, eventually

extraction nodes have to scale.
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Figure 5.2: Extraction algorithm - scale-out

The addition of more ”extraction & data distributors” nodes (2) depends

on whether the current number of nodes is able to extract and process data

with the correct frequency, within the configured maximum extraction time

bound. For instance, if the extraction frequency is specified as every 5

minutes and extraction duration 10 seconds, then every 5 minutes, the ”Ex-

traction & Data distributor” nodes cannot spend more than 10 seconds

extracting all data. Otherwise a scale-out is needed. If the maximum ex-

traction duration is not configured, then the extraction process must finish

before the next extraction instant, as specified by the extraction frequency

parameter.

Flowchart 5.3, describes the algorithm used to scale-in.

To save resources and reuse them, data extraction nodes can scale-in. The

decision is made based on last execution times. If previous execution times

of at least two or more nodes are less than half of the maximum extraction

time, minus a configured variation parameter (X), one of the nodes is set on

standby (as ready-node) or removed and the other ones takes over.
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Figure 5.3: Extraction algorithm - scale-in
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Figure 5.4: Transformation - scale-out

5.2.2 Transform

If the transformation is running slow, data extraction at the current data-

rate may not be possible, therefore information will not be available for

loading and querying when necessary.

Transformation nodes have an input queue, as shown in Figure 5.4. In

the figure we show the transform queue, used to determine when to scale

the transformation phase. If this queue reaches a limit size (configured

by the developer) because the actual transformer node(s) is not being able

to process all data that is arriving (i.e. current ingress data-rate is larger

than transformation output data-rate), then it is necessary to scale-out.

Flowchart 5.4, describes the algorithm used to scale-out.

Flowchart 5.5, describes the algorithm used to scale-in. If queues size at

a specific moment are less than half of the limit size for at least two nodes,

then one of those nodes is set on standby (as ready node) or removed.
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Figure 5.5: Transformation - scale-in

5.2.3 Data bu↵er

The data bu↵er nodes scale-out based on the memory size, the data swap

capacity from memory into disk and the available storage space to hold

data. When the available memory becomes above a certain limit, data

starts being swapped into disk to reduce memory use under the limit size.

If even so the data bu↵er memory reaches the maximum memory limit size,

then the data bu↵er scales-out. This means that the incoming data-rate

(going into memory storage) is not being swapped to the disk storage fast

enough, therefore more nodes are necessary.

When the used disk space in a node is full above a configured limit, the data

bu↵ers are also set to scale-out.

Flowchart 5.6, describes the algorithm used to scale-out the data bu↵er

nodes.

Data bu↵ers can also scale-in. In this case the system will do so if the data

from any data bu↵er can fit inside the data bu↵er of any other node.
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Figure 5.6: Data Bu↵ers - scale-out

5.2.4 Data switch

The Data Switch nodes scale based on a configured maximum supported

data-rate. That data-rate cannot be reached or passed for more then a

configured time window. If the average data-rate rises above the configured

limit for a certain time window, data switch nodes are set to scale-out.

Flowchart 5.7, describes the algorithm used to scale the data switch nodes.

The data switches can also scale-in. In this case the system will allow it

if the data-rate for at least two nodes is half of the configured maximum,

minus a (Z) configured variation parameter.

5.2.5 Data-warehouse

Data-warehouse scalability needs are detected after each load process or af-

ter any query execution. The data-warehouse load process has a configured

limit time duration to be executed every time it starts. If that time is ex-

ceeded, then the data-warehouse must scale-out. Likewise, queries also have

a maximum execution time. If query execution time is exceeded, the data-

warehouse must scale-out. The number of nodes to scale-out is determined

assuming linear scalabilty based on previous number of nodes and execution
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Figure 5.7: Data switch - scale

time ( loadT ime

targetT ime

⇥ n). In this equation the ”loadtime” represents the last

recorded load time, ”targetTime” represents the desired target load time

and ”n” represents the current number of nodes. Flowchart 5.8, describes

the algorithm used to scale the data-warehouse when the maximum load

time is exceeded.

Data-warehouse scalability is not only based on the load & integration

speed requirements, but also on the maximum execution queries time. After

a query is executed, if the query time is more than the configured maximum,

then the data-warehouse is set to scale-out. Flowchart 5.9, describes the

algorithm used to scale-out the data-warehouse based on the query execution

time.

Data-warehouse nodes scale-in is performed i↵ the average query execu-

tion time and the average load time respect conditions 5.1 and 5.2 (where n

represents the number of nodes):
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Figure 5.8: Data warehouse - scale
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Figure 5.9: Data warehouse - scale based on query time
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(n� 1)⇥ avgQueryT ime

n

 desiredQueryT ime (5.1)

and

(n� 1)⇥ avgLoadT ime

n

 maxLoadT ime (5.2)

Every time the data-warehouse scales-out or scales-in, the data inside

the nodes needs to be re-balanced. The default re-balance process to scale-

out is based on the phases: extract and replicate data from data-warehouse

nodes; load the extracted information into the new nodes (data is extracted

and loaded across the available nodes as if it is new data).

5.2.6 Global ETL scalability

Besides defining partial limits for each part of the ETL+Q pipeline, it is also

useful to configure only a desired global ETL processing time. In this case,

AScale will choose to scale-out the part of the pipeline that is performing

slower.

Figure 5.10 explains the scaling of the ET and L based on an example.

Assume that the current execution time of ET and L are respectively 2 and

10 hours, and the desired execution time is 5 hours. Based on these times,

the target time for the ET is 0.83 hours and for the L is 4,17 hours. Then by

applying the following formula the necessary number of nodes is estimated

linearly, currentT ime

targetT ime

⇥n, where ”currentTime” is the current execution time,

”targetTime” is the desired execution time and ”n” represent the current

number of nodes. For the given example this results in: for the ET we

would need 2
0.83 ⇥ 1 = 2, 4nodes which corresponds to 3 nodes, and for the

L, 10
4.17⇥1 = 2, 39nodes, which corresponds to 3 nodes. Note that, in the ET

the extra nodes are added to the E process only, then the T process scales

based on ingress data queues monitoring to keep up with the extraction rate.
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Figure 5.10: Example, estimating the scaling proportion of the ET and L

Another option is to configure both types of time bound limits: a global

time bound for the entire ETL process and at the same time local bounds

for the parts. In this case AScale can use the local bounds to decide where

to scale.

5.3 Data distribution policies

This section discusses data distribution policies used at each AScale pipeline

stages. The next data distribution policies are considered: manual, round-

robin, least-work-remaining, and based on AScale scheduler decisions.

5.3.1 From the data sources to extraction & data distributor

nodes

Figure 5.11 represents the extraction process using the AScale scheduler

module to command the data extraction based on source (1) data size, and
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Figure 5.11: Data and load distribution, sources to extraction
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extraction node (2) availability. At each extraction instant, the scheduler

(14) requests to all data sources to report the corresponding data size avail-

able for extraction. As soon as an extraction node notifies the scheduler

that it is free for more work, the scheduler assigns to it the data source

holding more data and the log file to extract data from. The extraction size

is based on the chunk maximum size, configured by the developer for the

entire AScale.

AScale also supports manual data extraction configuration, in this case the

developer specifies, for each Extraction node (2), the Data Source (1) and

log file to extract data from.

5.3.2 Extraction & data distributor nodes to transform nodes

Regarding the data distribution for the ”Extraction & Data distributor”

nodes (2) to the ”Transform” nodes (3) , Figure 5.11, the default approach

to place data from the extraction nodes (2) into the transformation nodes

(3) is based on least-work-remaining (LWR) data distribution. Data is first

placed on the transformation nodes with smaller data queues. The default

maximum data chunk size is used to transfer the data.

Other possible distribution policies are: manual data distribution, where the

developer specifies, for each Extraction (2) node, the corresponding Trans-

formation (3) node; and also round-robin based.

5.3.3 From transform nodes to data bu↵er nodes

The modules involved in the temporary data storage from the Transforma-

tion nodes (3) into the Data Bu↵ers (4) follow by default a LWR based

data distribution policy. In this case we decided to not consider the use

of round-robin, because if all transformation nodes become synchronized,

the data bu↵ers would overload, and another data bu↵er would need to be

added (scale) without being needed.
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Figure 5.12: Loaders extraction from the Data Bu↵ers

Other possible distribution policies are: manual data distribution, where

the developer specifies, for each Transformation node (3), the corresponding

data bu↵er (4) node.

5.3.4 Data switch extraction from the data bu↵ers

Figure 5.12, highlights the ”Data Switch”, ”Data Bu↵ers” nodes and the

”Scheduler”. Data extraction from the ”Bu↵er nodes” (4) is done using a

scheduler based approach managed by the ”Scheduler” (14). This approach

is similar to the one used during data extraction from the data sources, (1)

to (2).

When the data-warehouse load instant starts, the Scheduler (14) asks to

all data bu↵er nodes (4) the storage data size for each stored transformed

data. Following the same extraction policy as in the extraction nodes, (1)

to (2), the Data Switches (5) are set to extract data from the Data Bu↵ers
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(4) using the configured maximum data chunk size.

Other possible extraction policy to extract data from (4) to (5) is manual

data extraction. To each Data Bu↵er (4), one or more data Data Switch (5)

nodes can be assigned to extract data.

5.3.5 Load data into the data-warehouse nodes

The developer configures replication and partitioning parameters for each

data-warehouse table (defined in the data-warehouse schema script). Data

switches (5) extract chunks of data from specific stored logs of transformed

data. Data is then distributed or replicated, acording with the developer

configurations for each data-warehouse table) across the data-warehouse

nodes (6) for loading (using configured size batch files) during defined peri-

ods.

Listing 5.7: Data Switch replication configuration

1 dataSwitchSetSchemaRepl icat ion (

2 ” nat ion ” , // t ab l e name

3 true ) ; // t rue or f a l s e f o r r e p l i c a t i o n

Listing 5.7 shows the schema replication configuration command line.

The developer must specify which tables, present in the data-warehouse

schema, should be replicated. Data that is not replicated is distributed by

the data-warehouse nodes using (by default) a round-robin algorithm.

Manual data distribution can also be applied to the data-warehouse

nodes, the developer can select manually which tables go to each data-

warehouse nodes.

Listing 5.8: Data Switch manual load policy configuration by table refer-

encing
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1 dataSwitchSetManualLoadPolicyByTable (

2 ” nat ion ” , \\ t ab l e name

3 ”DWnode1 , DWnode2” ) ; \\ de s t i n a t i on data�warehouse nodes ID

Listing 5.8 shows the data load policy configuration when sending data

into a specific data-warehouse nodes.
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Total freshness

In this chapter we concentrate on data freshness to allow querying the most

recent data, which is not yet integrated in the data-warehouse and we also

concentrate on freshness scalability.

Section 6.1 describes the mechanisms used for total freshness. Section 6.2

describes the algorithms used to scale-in and -out each part of the ETL

process. Section 6.3 describes how to achieve 24/7 availability.

6.1 Mechanisms to achieve total freshness, D-DW

Fast data integration for fresh results require additional storage mechanisms.

Figure 6.1: AScale without fast integration of fresh results

77
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Figure 6.2: Dynamic-data-warehouse for fast integration and fresh results

Considering the AScale model in Figure 6.1, it is not possible to query

(7) data that was just transformed (3) and stored in (4) until the next load

instant that integrates new data into the data-warehouse nodes (6) (e.g.

every night). This way, query results cannot include the most recent data,

from both the data-warehouse (6) and the data bu↵er nodes (6), and it is not

possible to query the most recent data (e.g. the data of a day or hour). The

proposed solution is to transform the Data Bu↵ers (4) into a fast storage

system, preferentially in-memory, that is scalable for performance and at

the same time allows to query the data that was not yet loaded into the

main data-warehouse.

In Figure 6.2 we show the necessary architectural changes to support

fast data integration and fresh results (highlighted with gray color).

A new module in column (4) is introduced. After the ”Data Bu↵ers”, we add

a ”Dynamic-data-warehouse” (D-DW), which loads the data from a bu↵er.

Note that, for performance monitoring, each ”Dynamic-data-warehouse” (D-

DW) requires a ”queue” to be associated with it.

The ”Dynamic-data-warehouse” is a fast storage mechanism, preferably in-

memory, dedicated to hold only the most recent data that has not been inte-

grated into the data-warehouse yet. Because the ”Dynamic-data-warehouse”
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Figure 6.3: Query submission

will hold small amounts of data and the storage mechanisms used are fast,

indexes and/or materialized views are removed or reduced to a minimum.

Figure 6.3 shows how queries are submitted to each module. Query

execution depends on the type of desired results. If results do not require the

most recent information, then queries are executed only against the ”data-

warehouse” (6), and final results are merged. If results require only the most

recent information, then queries are executed only against the ”Dynamic-

data-warehouse” (4), and final results are merged. When query results need

past data and the most recent on as well, then queries are ran against the

”DW + D-DW”, which executes the query in both ”data-warehouse nodes”

and ”dynamic-data-warehouse” nodes, merging the results from both. This

way, results will include not only ”data-warehouse” information, but also

the most recently transformed data that has not yet been integrated into
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Figure 6.4: Executing a query for freshness

the main ”data-warehouse” nodes.

Figure 6.4, shows the distributed data-warehouse modules (6) and the,

dynamic-data-warehouse (4). Queries Q1 to Q4 represent an example of

query decomposition to execute against the distributed schema. Q1 is the

query we want to execute, this query is being decomposed into: Q2 to

execute against the DW (7a) and D-DW (7b); Q3 to merge results from

each data-warehouse; Q4 to merge the merged results.

First Q1, is submitted to the module ”DW+D-DW queries” (7c). This

node decomposes the query and submits Q2 and Q3 to DW (7a) and D-

DW (7b). Each data-warehouse will execute Q2 and return the results from

each respective DW (7a) and D-DW (7b) to be merged (i.e. execute Q3).

The DW (7a) and D-DW (7b) return the merged results to the DW+D-DW
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module (7c) for the final result merging (i.e. to execute Q4).

For instance, if instead of an average we want a sum, the merge operation

will consist of the sum of sums.

6.2 Scaling out/in

In this section we describe how the new architecture for freshness detects

that it needs to scale-out/in. If the dynamic-data-warehouse is not able to

integrate the most recent data e�ciently, then a scale-out is required.

There are two cases that may require the dynamic-data-warehouse to

scale-out. The scale-out based on the queue size is performed as shown in

Figure 6.5, and the scale-out based on query execution time, as show in

Figure 6.6.

First, if the queues from where the dynamic-data-warehous loads data in-

crease their size above a certain configured threshold, this indicates that the

dynamic-data-warehouse is unable to load and integrate data fast enough

and more nodes are required. Second, if the queries submitted to the

dynamic-data-warehouse cannot execute within the desired maximum ex-

ecution time, more nodes are necessary, therefore data is split further into

more nodes.

To save resources, scale-in mechanisms are also in place. To automat-

ically scale-in the dynamic-data-warehouse, both data ”queue” sizes and

queries execution time must be considered, Figure 6.7. The system scales-in

if at least two nodes have less than the configured minimum size and the

average query execution time is half of the configured minimum time. When

those conditions are met, one node is removed, data is partitioned across

other available nodes, and the node is set on stand-by, as a ready node.
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Figure 6.5: Scale-out based on the queue size

Figure 6.6: Scale-out based on query execution time
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Figure 6.7: Scale-in based on queue size and query execution time

6.3 Mechanisms to achieve 24/7 availability

When full query answer availability is required for 24/7 operation, new mech-

anisms need to be introduced to the ”data-warehouse” nodes (6), ”loader(s)”

(5) and to the ”query” execution (7) (Figure 6.8).

Figure 6.8 shows the process used to guarantee 24/7 availability. The

data-warehouse nodes (6a) are all replicated (6b). When one data-warehouse

is being used to load data, the other is used to answer queries.

When using a 24/7 availability mechanism, scalability is also a↵ected. In

this situation, when scaling-out the data-warehouse (6a) the data-warehouse

clone (6b) must scale at the same time and in the same way. Previous

monitoring algorithms to scale-out the data-warehouse also apply to the

24/7 model. Scale-in implies to scale-in both data-warehouses in the exact

same way, so that one data-warehouse is always the replica of the other.

Figure 6.9 shows how data is loaded and replicated into the data-warehouse

nodes. In the dynamic-data-warehouse (4), data that is being loaded (D1)

is separated from new arriving data (D2). Once D1 is loaded into (6a) then
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Figure 6.8: Support for 24/7 query answering

Figure 6.9: Loading data for 24/7 availability
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Figure 6.10: Query execution for 24/7 availability, loading (6a)

the same process is repeated for (6b). Query execution is always performed

in the data-warehouse (6a) or (6b) that is not being used to load data.

When loading data and performing queries at the same time, synchro-

nization issues regarding data replication in query results must be accounted

for. First case, Figure 6.10, we show when both data-warehouses are not

updated with the most recent data. Once (6a) starts loading D1, queries

run only against the data inside data-warehouse (6b). Then, to incorpo-

rate the most recent data, queries must also execute against the D1 and D2

dynamic-data-warehouse data.

Second case, Figure 6.11 shows the case when (6a) is updated with D1

but not (6b). For this case, queries perform against the data-warehouse (6a),

already updated with D1, and on top of of the dynamic-data-warehouse D2

(4) to include the most recent data.
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Figure 6.11: Query execution for 24/7 availability, loading (6b)



Chapter 7

High-rate scalability over

continuous results

Complex Event Processing (CEP) or stream processing is a di↵erent model

from traditional database processing. In stream processing, queries are reg-

istered and run continuously over the most recent window of data, analyzing

it and producing alerts and other periodic results.

CEP systems can also require access to additional information that is present

in the data-warehouse (e.g. data analysis of telecommunications call detail

records; ATM card fraud detection; stock market). Some mixed queries may

need to query big data-warehouses, which need to be optimized for near-real-

time answering as well, raising performance and scalability problems.

We investigate the inclusion of a CEP engine in the proposed architecture,

providing support for e�cient continuous queries, load-(re)balancing, ad-

mission control and automated elasticity.

The proposed approach (re)schedules queries that are running on overloaded

nodes. If this is not enough, and there are stand-by ready nodes, it adds

them automatically and (re)schedules execution. Otherwise, it looks at data

shedding specifications to try to accommodate the data rate i↵ the user

agrees to some specified level of shedding. Finally, it alerts administrators

87
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Figure 7.1: CEP node

if no automated adaptation is possible.

Section 7.1 overviews CEP and its use. Section 7.2, describes the di↵er-

ent types of queries which our framework supports. Section 7.3, describes

the proposed architecture to support continuous results processing. Section

7.4, introduces methods to detect overload situations. Section 7.5, explains

how queries are distributed and relocated when overload situations are de-

tected. Section 7.6, discusses how we apply load shedding to data and

queries. Section 7.7, explains in more detail the algorithms to distribute

data and queries.

7.1 CEP Overview

Complex event processing systems can process high-rate ingress data e�-

ciently.

Typically CEP systems do not store data. They rely on a window of data

to keep results updated. Some systems register hundreds of queries which

periodically output results (e.g. every 15 seconds or n events). Queries are

registered and de-registered dynamically as they are needed.
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Figure 7.1 shows the basic structure of a CEP node. There is a window

(e.g. size 1 hour or 1 minute) which holds the data temporarily. Query

results are updated based on the data window and can have di↵erent outputs

(e.g. every second, every minute) and processing requirements (e.g. memory,

storage).

7.2 Query types

Queries are registered statements outputting results periodically, but may

simultaneously require heavy processing over the data-warehouse (we call

those stream-DB queries), or other heavy duty operations.

We consider two base query types:

• In-memory queries are queries that do not required any IO from disk,

and use mainly the CPU;

• Stream-DB queries are queries that require access to the data-warehouse

for querying, inserting, updating or deleting data;

• ”Killer” queries, are stream-DB queries that make the CEP node be-

come unresponsive. Consider for instance a CEP query that must

output results every minute but which accesses the data-warehouse

using a query that takes 5 minutes to run. Since every minute a new

5 minutes database query is launched, this will result in the node be-

coming unresponsive.

Queries are submitted to a scheduler, Figure 7.2 (7d), which balances

the query workload, by assigning submitted queries to nodes according to

a load balancing algorithm, and by preventing overload conditions. This

balancing is preferably based on a least-weight algorithm, which places the

new query in the node that is currently less loaded, as assessed by monitoring

performance variables (e.g. CPU, memory and disk utilization).
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Figure 7.2: Architecture for continuous queries results

7.3 Continuous results architecture

In this section we describe the modifications of the auto-scale framework to

support CEP and stream-DB scalable processing.

Figure 7.2 shows the architecture for continuous results. The architecture is

designed to process e�ciently streams of data and queries as well as stream-

DB workloads, with any underlying hardware and stream-processing soft-

ware.

The architecture shown in Figure 7.2, is a generic parallel processing

architecture that handles overloads even with very dynamic workloads by

adding processing nodes and by (re)scheduling queries for load balancing
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and load shedding. The new system components, highlighted in Figure in

7.2 are:

• ”CEP data switch” (5a), this node requires a ”Data Bu↵er” (4a) to

hold data coming from the transformation nodes (3). The ”CEP Data

Switch” (5a) replicates the incoming data by all processing nodes.

• Scheduler node ”CEP query scheduler” (7d), for distributing and (re)scheduling

queries by the nodes according to their load. The load assessment is

based on either round-robin, least-work-remaining based on the num-

ber of queries or least-weight based on collecting and analyzing mem-

ory, CPU, disk I/O and the queues sizes of all processing nodes.

• ”CEP processing nodes” (8), that run queries submitted by (7d). Each

node contains a data P/C queue for overload detection. When a node

queue reaches a configurable limit size, it is assumed that the node is

getting overloaded and queries should be relocated. Then the system

tries to (re)balance the queries.

• Ready-Nodes (9), represent one or more nodes that are in standby

mode, ready to accommodate query relocation. Those nodes are free

and without any processing load. When a new node is commissioned

from the pool of ready nodes and a query is registered into it, the

query is also left running in the node that was getting overloaded

until results are produced in the new node (fill window). Using this

strategy, scalability can be obtained without loss of results.

• Nodes that are lightly loaded can automatically become ready nodes.

• The data-warehouse (6) and the Dynamic-data-warehouse (4) are also

accessed by the stream-DB queries to compute mixed CEP-DB query

results.
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7.4 Overload detection and provisioning

Figure 7.2 shows the CEP data switch (5a) that replicates all data by all

nodes. Each node (8) has a certain number of CEP queries registered and

running (load), while the ready-nodes are free to be added when overload is

detected.

Overload detection is based on a data queue at place in each node. If the

queue reaches a limit configurable size, the system is getting overloaded, and

additional measures must be taken.

Each node queue is monitored by the auto scaler (13). When it reaches a

limit size, configurable by the admin, the node sends to the scheduler the

last submitted query for a new registration (this is an attempt to relocate

the query to another node), to attempt to free resources. Note that the

query is not immediately unregistered from the initial node. Instead, the

scheduler only un-registers it after the new node is already providing results.

Another mechanism is triggered when the queue reaches a maximum size.

This second mechanism tries to apply load shedding and alerts the admin-

istrator if it cannot solve the problem.

Elasticity and scalability is achieved by adding new nodes to the set of ready-

nodes (9). When new resources are necessary, they can be fetched and set

as processing-nodes (8).

7.5 Queries distribution and relocation

Query assignment decisions are based on a load balancing algorithm. The

simplest load balancing algorithm is round-robin (RR), whereby the sched-

uler assigns queries to nodes in a round-robin fashion, without looking at

the load of each node. The advantage of this alternative is that no load

information is required.

An improvement over Round-Robin is Least-Work based on the number
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of queries running (LWRn). This algorithm requires knowledge about the

number of queries running at each node, and chooses the node with fewer

queries at the assignment instant.

Finally, the Least-Weight (LW) algorithm needs to measure current load in

terms of parameters such as CPU, memory and IO in order to determine

the less loaded node, then it assigns the query to the less-loaded node.

When a new query arrives at the ”CEP query scheduler”, Figure 7.2 (7d),

it is set running into the node (8) with less load (if we assume least-weight

balancing). If the queue of the processing node increases and reaches a limit

size, then the query is removed from it, and put to run in the ready-node.

The ready-node becomes a processing-node. If the queue of the ready-node

reaches a limit size as well, then two actions can be taken: If allowed, data

load-shedding mechanisms are applied; otherwise the query is not admitted,

since it is assumed that it is a ”killer” query.

Another situation is when queries need to be relocated because the input

data rate increases so much that many P/C queues become overloaded. This

condition is detected by observing a rise in the input data rates, and if more

than a predefined fraction of P/C queues become overloaded in a predefined

interval of time.

Following actions are taken (to last inserted queries in node, by order of

arrival):

1. The query is sent back to the ”CEP queries scheduler” (7d) to be

relocated into another nodes according to balancing algorithm;

2. If no overload is detected in the new node, then, as soon as results

start being provided by the new node, the query is removed from the

overloaded node;

3. If overload is detected in the new node, activate a ready-node if avail-



Chapter 7. High-rate scalability over continuous results 94

able;

4. If overload is detected in the second relocation, then stop the query

in the processing node and keep it running in the ready-node. This

overload is no longer damaging the other nodes, since the query is

running only in the ready node;

5. Since it is still causing overload, a load shedding or admin alert mech-

anism deals with it.

7.6 Load shedding and admin alerts

Load shedding is a mechanism that selects data to be discarded [78], to re-

lieve processing load. In this case results are an approximation.

Every time a P/C queue reaches the maximum size (configurable parame-

ter), queries removal or load shedding decisions need to be made. Based on

the limit of load shedding specified upon the submission of each query, the

node will start discarding data gradually (load-shedding) as long as it still

complies with all shedding limits for all queries in that node.

If this action does not result, then the node will choose randomly a query

to be removed, from a set of removable queries (queries have a parameter

telling whether they can be removed). Every time a query is removed, then

the mechanism of load shedding is reset to allow the system to re-evaluate

and (re)balance itself.

If all the previous options are exhausted and the system is still overloaded,

it will alert the administrator, indicating the node and queries in overload

condition. The administrator can decide to add more ready-nodes, remove

more queries, change something in the data rate, or alter queries parame-

ters.

Two additional clauses are added to queries:
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ALLOW LOAD SHEDDING <value%>

CAN BE DROPPED <true / false>

The first clause stipulates the percentage of load shedding allowed for

the query, the default being no load shedding. The second clause indicates

whether the query can be removed from the system.

7.7 Overloading handling algorithm

In this section we describe how the most relevant parts of the overload-

handling algorithm that make the continuous results processing work.

7.7.1 CEP queries scheduler

Figure 7.3 describes how the (re)scheduling algorithm works.

• If the query was (re)scheduled zero times (meaning it is a new query),

then the scheduler will find the best node to register it, and the ”num-

ber of scheduled times” is set to 2 (2 because the query was placed in

the best fitting node, if it becomes overloaded it will go directly into

a ready-node);

• ... Then the ”number of scheduled times” of the previous last regis-

tered query is set to one. Because the ”CEP query scheduler” already

chooses the best node to register the query (i.e. the one with least

load) and it did not become overloaded;

• Now, if the auto-scale (13), Figure 7.2, detects an overload situation

in a CEP node, it sends the last submitted query in that node (by

order of registration) to the scheduler to be resubmitted into a better

node, and the parameter ”number of scheduled times” is increased to

2 (it was set to one after a new query was inserted, or already to 2);
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Figure 7.3: CEP query scheduling
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• At the third (”number of scheduled times” = 2) (re)schedule of a

query, it is put into a ready-node if available. If the ready node is not

available or it gets overloaded, then the load shedding and admin alert

algorithm will deal with the problem.

Every time a query is relocated because of an overload situation, that

query is not removed from the overloaded node until the new selected node

(the one with most available resources) is providing results from an equal

data window. Upon results provided, the scheduler decides in which node

to leave the query running. For that, the system scheduler analyses the

throughput of both nodes and removes the query from the node with less

throughput. This process avoids work loss due to relocation.

7.7.2 Load-Shedding and admin alert

Next we describe the algorithm for ”disaster” handling, when overload is

detected in many nodes (This condition is detected by observing a rise in

the input data rates, when more than a predefined fraction of P/C queues

become overloaded in a predefined interval of time), or it is detected in one

node but query relocation was unable to solve the problem.

First, the node assesses what is the maximum load-shedding allowed (it

corresponds to the minimum load shedding percentage allowed in the node).

Based on that value, it will increase the amount of discarded data gradually.

Data load shedding is performed by removing gradually x% of the input at

equally spaced positions. If this does not solve the problem, and there is still

too much load, then the node selects randomly a query that is marked as

”can be dropped” (CAN BE DROPPED parameter = true) to be removed.

Each time a query is removed, load shedding is set to 0%, so the system can

assess again what to do. Figure 7.4.
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Figure 7.4: Load Shedding mechanism

7.7.3 Resource de-provisioning

When a node has a small number of queries and load bellow pre-specified

bounds, the following resource-de-provisioning algorithm is run: the node

tries to free resources by submitting the queries to the scheduler. The sched-

uler resubmits the queries to other nodes. If the node becomes free, without

any node getting overloaded, it is set on standby as a ready-node.



Chapter 8

Experimental evaluation

In this section we describe the experiments made to evaluate the proposed

system, AScale.

Section 8.1 introduces the experimental setup. Section 8.2 explains the ob-

jective of each proposed test. Section 8.3 shows the performance limitation

problems of a single server approach, by stressing it with heavy data and

query workloads. Sections 8.4, 8.5, 8.6 and 8.7 test AScale in di↵erent sce-

narios, respectively considering o✏ine ETL with limited hardware resources,

o✏ine ETL using extreme high-data-rates, near-real-time without and with

data freshness and finally AScale with continuous queries (CEP). Section

8.8 shows conclusions from the experimental results.

8.1 Experimental setup

In this section we describe the testbed, hardware, software and ETL oper-

ations used in the setup. An experimental setup was built to simulate not

only the data-warehouse, but also, all ETL processes. The decision of using

TPC-H [79] data as source data logs, and SSB [80] as the data-warehouse

schema and queries, was taken to reuse related work from the research group,

for instance [53], which had already some parts of the framework pipeline de-

99
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Figure 8.1: TPC-H and Star Schema Benchmark (extracted from [1])

veloped. This option also allowed us to better control data transformations

and corresponding staging area volume and data synchronization, allowing

us to build it with less complexity, thus easier to test the proposed AScale

concepts.

Data sources logs for extraction: The structure of the simulated

logs is the same as the TPC-H generated data logs structure (Figure 8.1

(A)), consisting of logs representing each of the tables: part, supplier, na-

tion, region, partsupp. Regarding the tables ”lineitem” and ”orders”, they

were merged into a single log with the following structure: the log is a set

of ”order” rows and for each order the log contains the respective related

lineitem rows as subsequent rows of the order.

Data extraction is made considering the start and end of each order (includ-

ing the respective items), in order to keep data together and consistent.

Data transformation: After data is extracted from TPC-H log files, it



Chapter 8. Experimental evaluation 101

is set to be transformed. The TPC-H tables, part, supplier, nation, region,

partsupp are also keep in the transformation nodes (staging area) using a

Postgre SQL database. The stored data is transformed in order to recreate

the SSB schema (Figure 8.1 (B)).

Table ”Date” (Figure 8.1 (B)) was created with the SSB structure using a

Java programmed generator.

Additional transformations were applied:

• Names were split and concatenated into last name and given names.

The first letter of each name was set to upper-case and remaining

letters were set to lower case;

• Addresses were cleaned and transformed by converting keywords (e.g.

street) into abbreviated words, using a translation lookup table in

memory. Moreover, the first letter of each name was set to upper-

case and remaining letters to lower case. The postal code was added

(concatenated), using a translation table in memory to correlate each

city with a postal code;

• The phone numbers were converted into groups of three numbers,

adding the country and city code, depending on the postal address

code;

• Categories were converted/written into full text (no abbreviations);

• Dollar coin numbers were converted into Euros;

• Sizes and weights were converted into the normalized international

system;

The data output from these transformation operations is then stored and

ready to load.
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Data warehouse: The data-warehouse has the same base structure as

the SSB benchmark. Additional indexes and views are described in Ap-

pendix D.

8.1.1 Hardware & Software

The experimental tests were performed using 12 computers, denoted as

nodes, with the following characteristics: Intel Core i5-5300U Processor

(3M Cache, up to 3.40 GHz); Memory 16GB DDR3; Disk western digi-

tal 1TB 7500rpm; Ethernet connection 1Gbit/sec; Connection switch SMC

SMCOST16, 48 Ethernet ports, 1Gbit/sec.

Software installed/used. The 12 nodes were formatted before the experi-

mental evaluation and installed with: Windows 7 enterprise edition 64 bits;

Java JDK 8; Netbeans 8.0.2 Oracle Database 11g Release 1 for Microsoft

Windows (X64); MySQL 5.6.23 used in the dynamic-data-warehouses; Post-

greSQL 9.4 used for lookups during the transformation process; Esper 5.1.0

for Java as CEP process engine; TPC-H benchmark data set; SSB bench-

mark, representing the data-warehouse schema and queries.

For this experimental evaluation, we assume that a node corresponds to a

physical machine. However, due to limited available resources, some virtual

nodes were created, and other nodes resources redirected and reused, in such

way that AScale pipeline processing was not a↵ected.

8.2 Objectives and organization

To evaluate AScale e�ciency and limitations, we created fives scenarios.

The first scenario tests performance of a system without automatic scaling.

As the data-rate and volume increases, the system eventually fails to execute

parts of ETL+Q process within acceptable time.
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The second scenario evaluates AScale for use in a simulation of a typical

data-warehouse scenario, where the load process is slow and needs to scale.

The third scenario tests a case with huge data rates and huge amounts of

data in all parts of the pipeline. In this case automatic scalability is required

over all the pipeline.

The fourth case evaluates AScale in a near-real-time scenario, with high-

rate data and strict freshness requirements. These tests demonstrate AS-

cale scaling-out and -in when ETL is configured to take only 3 seconds and

incoming data-rate is increasing and decreasing. In this scenario we test

scalability of the dynamic-data-warehouse, which is the part added to pro-

vide real-time.

A fifth scenario evaluates the system in a situation in which downtime should

be minimized. This is the case, for instance, of a system that loads big

amounts of new data o✏ine, but the o✏ine period must be minimized (e.g.

less than 1 minute or 15 minutes).

A sixth scenario evaluates scalability of the continuous result processing

(CEP) add-on that was proposed in Chapter 7.

8.3 Performance limitations without automatic scal-

ability

In this Section we test both ETL and data-warehouse scalability needs when

the entire ETL process is deployed without automatic scalability options.

The system is stressed with increasing data-rates until it is unable to handle

the ETL or query processing or both in reasonable time. Automatic scal-

ability, which we evaluate in following sections, is designed to handle this

problem.

The following deployment is considered: One machine to extract, transform

data and store the data-warehouse; extraction frequency is set to perform
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Figure 8.2: Extract and transform without automatic scalability

every 120 seconds; desired maximum allowed extraction time was set to 20

seconds and data load is performed in o✏ine periods.

Based on this scenario, we show the limit situation in which performance

degrades significantly, justifying the need to scale the ETL (i.e. parts of it)

or/and the data-warehouse itself.

Extraction & transformation: Considering only extraction and trans-

formation, using a single node, Figure 8.2 shows: the left Y axis represents

average extraction and transformation time in seconds; the X axis shows

data-rate in rows per-second; white bars represent extraction time; grey

bars represent transformation time; the line represents the average number

of discarded rows (corresponding values in the right axes). For this experi-
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Figure 8.3: Loading data, one server vs two servers

ment we generated log data (data to be extracted) at a rate of � per second.

Increasing values of � were tested and the results are shown in Figure 8.2.

As can be seen in the figure, as the data-rate increases, a single node is

unable to handle so much data. At a data-rate of 20.000 rows per second,

bu↵er queues become full and data starts being discarded, because the ex-

traction time is too slow. Additionally, the transformation process is slower

than extraction. More resources would be needed for it to perform at the

same speed as extraction.

Loading the data-warehouse: Figure 8.3 shows the load time as the

size of the logs is increased. It also compares the time taken with single

single node versus two nodes.

Figure 8.3 shows: the Y axis represents average load time in seconds; the X

axis represents loaded data size in GB; the black line represents two servers;
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Figure 8.4: Average query time for di↵erent data sizes and number of ses-
sions

the grey line represents one server; all times were obtained with the follow-

ing load method: destroy all indexes and views, load data, create indexes,

update statistics and update views; data was distributed by replicating and

partitioning the tables.

From Figure 8.3, we can see that load times increase significantly with the

load volume. Di↵erences between the case with one node and the one with

two nodes are specially noticeable when loading more than 5GB. When

adding a second data-warehouse nodes, performance improves and the load

time becomes almost less than half.

Query execution: Figure 8.4, shows the average query execution time

for a set of tested workloads (using the SSB benchmark queries): workload

1 has, 10 sessions and 5 Queries (Q1.1, Q1.2, Q2.1, Q3.1, Q4.1); workload

2 has 50 sessions and 5 Queries (Q1.1, Q1.2, Q2.1, Q3.1, Q4.1); workload

3 has 10 sessions and 13 Queries (All); workload 4 has 50 sessions and 13
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Queries (All); for all workloads, queries were executed in a random order;

the desired maximum query execution time was set to 60 seconds.

The Y axis shows the average execution time in seconds. The X axis shows

the data size in GB. Each bar represents the average execution time per

query from each workload. Note that the Y axis scale is logarithmic.

Depending on the data size, number of queries and number of simultaneous

sessions (e.g. number of simultaneous users), execution time can vary from

a few seconds to a very significant number of hours or days, especially when

considering large data sizes and simultaneous sessions or both. In these re-

sults, and referring to 10GB and 50GB, we see that an increase of 5x of the

data size resulted in an increase of approximately 20x in response time. An

increase in the number of queries of 5x resulted in an increase of approxi-

mately 2x in query response time.

Conclusions: In this section we stressed the ETL+Q pipeline lim-

itations and scalability needs of a system without automated scalability

features. By increasing the input data-rate, a single node could not handle

the desired processing times and data could not be processed within the

desired time window. Extraction, transformation, load and queries perfor-

mance were tested by increasing the data set size (GB) and the number of

simultaneous sessions. In all tested situations we noticed the need for scaling

as the data set increased and query response times became larger.

8.4 Typical data-warehouse scenario

In this section we evaluate AScale in a scenario where, due to log sizes and

limited resources, data load takes too long to perform if scalability is not

applied.

We start with only two nodes (two physical machines), one for han-

dling extraction and transformation, the other to hold the data-warehouse
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Figure 8.5: AScale for simple scenarios

as shown in Figure 8.5. AScale is setup to monitor the system and scale

when needed.

Data is extracted from sources, transformed and loaded only during a pre-

defined period (e.g. night), to be available for analysis the next day. The

maximum extraction, transformation and load time, all together cannot take

longer than 9 hours (e.g. from 0am until 9am). AScale was configured with

an extraction frequency of every 24 hours and a maximum extraction du-

ration of 4 hours, a transformation queue with a limit size of 10GB and

data-warehouse loads were configured for every 24 hours, with a maximum

duration of 9 hours.

Experimental results in Figure 8.6 show the total AScale ETL time using

two nodes (two physical machines), one for extraction, transformation, data

bu↵er and data switch (Figure 8.6 (A)), the other for the data-warehouse

(Figure 8.6). Up to 10GB of log size, the ETL process can be handled within

the desired time windows. However, when increasing to 50GB, 9 hours are

no longer enough to perform the full ETL process. In this situation the

data-warehouse load process (load, update indexes, update views) using one

node (average load time 873 minutes) and two nodes (average load time

483 minutes) exceed the desired time window. When scaled to 3 nodes,
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Figure 8.6: AScale, 9 hours limit for ETL

by adding another data-warehouse node (Figure 8.6 (B)), the ETL process

returns to the desired time bound.

8.5 ETL with huge data rates and sizes

In this section we create an experimental setup to stress AScale under ex-

treme data-rate conditions. The objective is to test scaling each part of the

pipeline.

For this experiment we did the following configuration: E (extraction) was

set to perform every 60 minutes with 30 minutes maximum extraction time,

T (transformation) queue maximum size was configured to 500MB, and L

(load) frequency to every 24 hours with a maximum duration of 5 hours.

Extraction: Figure 8.7 shows the AScale extraction process when us-
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Figure 8.7: Extraction (60 minutes frequency and 30 minutes maximum
extraction time)

ing an extraction frequency of 60 seconds and 30 seconds for the maximum

extraction time. The figure is divided into two sections: first we use a data

rate of 700.000 rows/sec and scale the extraction until all rows are extracted

successfully; second we increase the data rate to 1.400.000 rows/sec and

automatically scale until all rows are extracted within the configured time

bound.

In Figure 8.7 we show: in the left Y axis, the number of rows to extract;

in the X axis, the time in minutes; black line represents the total number

or rows left to be extracted at each extraction period; and with labels the

number of necessary nodes.

By analyzing results from Figure 8.7 we conclude that the extraction process

is able to scale e�ciently until all data can be extracted within the desired

maximum extraction time. However, if the data-rate increases very fast (e.g.

into the double) in a small time window, AScale requires additional extrac-
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Figure 8.8: Transformation scale-out

tion cycles to restore the normal extraction frequency.

Transformation: In Figure 8.8 we test the transformation scale-out.

The scale-out decision is based on monitoring the data queue size in each

node. Every time a queue exceeds the maximum configured size, AScale

scales that part automatically. The monitoring process allows to scale-out

very fast, even if the data rate increases suddenly.

Figure 8.8 is divided in three parts, each one with a di↵erent data-rate. The

data-rate is increased in each part in order to show AScale scaling-out the

transformation nodes every time a queue reaches above the limit size, by

adding one and two extra nodes.

For each scale-out it was necessary less than 1 minute until the node is pro-

cessing data. The time delay refers to the copy and replication of the staging
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Figure 8.9: Data warehouse load and re-balance scale-out time

area.

Load: AScale load needs to be scaled at the end of a load cycle if the last

load cycle did not respect the maximum load time. The number of nodes

to add is calculated linearly based on previous load times. For instance, if

the load time using 10 nodes was 9 hours, in order to be able to load in 5

hours, we need X nodes, Equation 8.1.

loadT ime

targetT ime

⇥ n (8.1)

Where ”loadTime” represents the last load time, ”targetTime”, repre-

sents the desired load time and ”n” represents the current number of nodes.

Figure 8.9 shows the data-warehouse nodes load time for di↵erent data-rates

over 24 hours generation, on top of each bar is represented the total loaded
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data size and the number of nodes used. White bars represent load time and

black bars represent the data re-balance time when more nodes were added.

Every time the maximum load time was exceeded, more data-warehouse

nodes were added and the data-warehouse was re-balanced.

We conclude that the data-warehouse nodes can be scaled e�ciently in a

relatively short period of time, given the large amounts of data being con-

sidered.

8.6 Near-Real-time and minimal downtime scenar-

ios

In this section we assess the scale-out and scale-in abilities of the proposed

framework in near-real-time scenarios, as well as scenarios where downtime

should be minimized. Near-real-time scenarios require data to be always up

to date and available to be queried (i.e. data freshness). In order to guaran-

tee this, it is necessary to integrate new data in a predefined and very small

time window.

The scenario was set-up as follows: E (extraction) and L (load) were set to

perform every 2 seconds; T (transformation) was configured with a maxi-

mum queue size of 500MB; the load process was made in batches of 100MB

maximum size. The ETL process is allowed to take 3 seconds at most.

Figure 8.10 and 8.11 show AScale scaling-out and scaling-in automati-

cally, to deliver the configured near-real-time ETL time bounds while the

data rate increases or decreases respectively. The X axis represents the

data-rate, from 10.000 to 500.000 rows per second; the Y axis is the ETL

time expressed in seconds; the system objective was set to deliver the ETL

process in 3 seconds; the charts show the scale-out and scale-in of each part

of AScale, obtained by adding and removing nodes when necessary; A total

of 7 data sources were used/removed gradually, each one delivering a maxi-
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Figure 8.10: Near-real-time, full ETL system scale-out

Figure 8.11: Near-real-time, full ETL system scale-in
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mum average of 70.000 rows/sec; AScale used a total of 12 nodes to deliver

the configured time bounds.

Scale-out results in Figure 8.10 show that, as the data-rate increases

and parts of the ETL pipeline become overloaded, by using all proposed

monitoring mechanisms in each part of the AScale framework, each individ-

ual module scales to o↵er more performance where and when necessary.

Scale-in results in Figure 8.11 show the instants when the current num-

ber of nodes is no longer necessary to ensure the desired performance, leading

to removal of some nodes (i.e. set as ready nodes in stand-by, to be used in

other parts).

The next (sub)sections detail how each part of the ETL and queries

scale-out in the near-real-time scenario.

8.6.1 Scalability of data extraction

Considering data-sources generating high-rate data and extraction-nodes to

extract the generated data, when the data flow is too high, a single data

node cannot handle all ingress data. In this section we study how the extrac-

tion nodes scale to handle di↵erent data-rates, using the data setup similar

to the one used in the previous section. The maximum allowed extrac-

tion time was set to 1 second (max
extractionT ime

< max
desiredExtractionT ime

);

and extraction frequency was set to every 3 seconds (max
extractionT ime

<

ExtractionFrequency).

Figure 8.12 shows the extraction nodes automatic sacalbility in near-

real-time. The left Y axis represents average extraction time in seconds,

the right Y axis represents the number of nodes used; the X axis represents

data-rate; the black line represents extraction time; the grey line represents
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Figure 8.12: Extraction scalability

the number of nodes as they scale-out. Every time the extraction time is

above the configured threshold limit of 1 second, a new node is automatically

added (from the pool of ready-nodes). After the new node is added, more

nodes are being used to extract data from the same number of sources,

improving the extraction performance.

8.6.2 Transformation scalability

During the ETL process, after data is extracted, it is set for transformation.

Because this process can be computationally heavy, it is necessary to scale

the transformation nodes to ensure that all data is processed without de-

lays. Data ingress transformation queues are monitored. Once it is detected

that a queue is full above a certain configured threshold AScale scales the

transformation process.

The transformation nodes scale-out mechanisms were set to limit the

queue memory size to a maximum of 5GB before swapping data into disk,
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Figure 8.13: Automatic transformation scalability
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and 500MB as the limit to trigger the scaling mechanism (corresponding to

100.000 rows. Figure 8.13 shows the addition of new transformation nodes,

as queue sizes increase above the configured limit. The Y axis represents av-

erage queue size in number of rows, the X axis shows the data rate expressed

in rows per second. Each plotted bar represents the average transformation

queue size (up to 4 nodes). As can be seen in the figure, as soon as the data

rate reaches 80.000 rows/sec, AScale detects overload in the queue (queue

size above 100.000 rows) and triggers addition of a new node. The new

node can be seen in the 120.000 rows/sec bar, where two queues allow the

system to handle the data rate satisfactorily. After that, as the data rate

reaches 200.000 rows/sec the maximum queue size is reached again trigger-

ing addition of one more node. The scale-out can be seen in the 240.000

rows/sec bar, where three queues are again able to handle the increased

load. A fourth and fifth node are added again to scale at 320.000 rows/sec

and 440.000 rows/sec respectively, as can be seen in the figure.

in the Figure 8.13, ”Zoom Box A” shows the detail of what happens when

the queue sizes of transformation nodes increase above the configured limit.

As overload is detected a new transformation node is added. The new node

takes approximately 1 minute to be ready (see zoom box A), the delay

corresponds to the necessary time to replicate/synchronize the node and

respective staging area. After the node is fully working, data is distributed

using a least renaming work (LWR) algorithm, which makes the queue of

the new node balance balance the sizes of all nodes.

8.6.3 Data Bu↵er nodes

Data bu↵er nodes hold the transformed data until it is loaded into the data-

warehouse. For this experiment the data bu↵ers were configured as follows:

we consider only the data generation/producer, there is no data ”consumer”,

so the bu↵er must hold all ingress data; the generation data-rate speed was
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Figure 8.14: Data bu↵er swap into disk and scaling

set to 1.500.000 rows per second (i.e. transformation output data rate) in

such way that the disk speed cannot swap all data fast enough, leading the

memory to increase until its maximum; available memory storage was set

to 10GB; memory storage limit before data swap into disk was set to 5GB;

available disk storage was 1TB.

When the limit memory size is reached (5GB), data starts being swapped

into disk. However, because the disk speed cannot handle all ingress data-

rate, the memory reaches the maximum limit size (10GB). At that moment

a new data bu↵er node is added. After the new node is added, data is

distributed, using LWR, making the queue of the newly added node increase

faster. After a while, the data volume in each data bu↵er returns to normal.

Figure 8.14 shows an extreme scenario where the data bu↵er write speed

from memory into disk (swap) is not fast enough. This scenario leads to

a scale-out of the data bu↵er node. The figure shows the data queue size

increasing until the ”limit memory size” (5GB), at that moment data starts

being swap into disk in an attempt to release memory space. However,
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because the data rate is too high the memory continues increasing until the

”maximum memory size”. Once the memory is at the ”maximum memory

size” another node is added and data is distributed by both nodes. In the

figure we also show the data memory queue of the second node increasing

and the swap process occurring again. Although, because now there are

two nodes handling the ingress data rate, the data swap speed can free the

memory.

8.6.4 Data-warehouse load and query scalability

In this section we test the data-warehouse scalability, which can be triggered

either by the load process (because it is taking too long), or because query

execution is taking more time than the configured response time bounds.

To test the load scalability we create the setup: loads are from batch files,

each approximately size 100MB each; the maximum allowed load time is set

to 60 seconds; each time a data-warehouse node is added we show the data

size that was moved into the new node and the required time in seconds

to re-balance data; all load and re-balance times include the execution of

pre-load tasks (i.e. drop all indexes and views) and pos-load tasks (i.e. build

all indexes and views).

Load scalability: Experimental results in Figure 8.15 show the data-

warehouse scaling when the data size to be loaded increases and as conse-

quence the load time also increases above the predefined bound: the left

Y axis represents average load time in seconds; the right Y axis shows the

number of data-warehouse nodes; the X axis represents the data batch size

in MB; the horizontal bar at Y = 60 seconds represents the maximum config-

ured load time; at each scale-out moment there are notes specifying the data

re-balanced size and time to perform it; the black plotted line represents av-

erage load time; the grey plotted line represents number of data-warehouse
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Figure 8.15: Data warehouse load scalability

nodes.

Results in Figure 8.15 show how load performance degrades as the data size

increases and how it improves when a new node is added. After a new node

is added, performance improves to meet the maximum configured load limit.

Query scalability: When running queries, if the maximum desired

query execution time is exceeded, the data-warehouse is set to scale-out in

order to o↵er better query execution performance. The following workloads

were considered to test AScale query scalability:

• Workload 1 (WL 1);

– 50GB total size;

– Execute Q1.1, Q2.1, Q3.1, Q4.1 randomly chosen;

– Desired execution time per query: 1 minute (60 seconds).

• Workload 2 (WL 2)- as workload 1 but, 1 to 8 simultaneous sessions
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Figure 8.16: Data warehouse scalability, workload 1, 50GB data set

used;

Workload 1 studies how the proposed mechanisms scales-out the data-

warehouse when running many queries. Workload 2 studies AScale scala-

bility running simultaneous sessions (e.g. number of simultaneous users).

Both workloads were set with the objective of guaranteeing the maximum

execution time per query of 60 seconds.

Query based scalability, WL 1: Figure 8.16 shows the experimental

results for workload 1, where: the Y axis represents the average execution

time in seconds; X axis represents the data size per node and the current

number of nodes; the horizontal line over 60 seconds represents the desired

query execution time; white bars identify the total workload time and grey

bars the re-balance time (i.e. extract data, load into nodes, rebuild indexes

and views).Results shows that every time a query is executed and the aver-

age query time is not inferior to the maximum configured query execution
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Figure 8.17: Data warehouse scalability, workload 2, 50GB data set

time, one extra node is added (scale-out). In each scale-out the re-balance

time represents the necessary time to extract data from existing nodes, re-

distribute it and rebuild indexes and views. Once the average query time

becomes lower than the configured desired execution time, the framework

stops scaling the data-warehouse nodes.

Simultaneous Session query scalability, WL 1: Figure 8.17 shows

how the data-warehouse scales when simultaneous sessions are executing.

The figure shows: the left Y axis represents average query execution time

in seconds; X axis shows the number of sessions, the data size per node and

the number of nodes; grey bars represent the data re-balance average time

in seconds (i.e. extract from nodes, load into new node, rebuild indexes and

views); white bars show average query execution time. Results in Figure

8.17 show that, the number of simultaneous sessions increases, the system

scales the number of nodes in order to provide more performance. Thus,

average query execution time follows the configured parameters.
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Note that since both loads and query execution are performed against

the data-warehouse and the data-warehouse is scaled, AScale query execu-

tion performance improves at the same time the data-warehouse load per-

formance improves and vice versa.

8.6.5 Freshness and dynamic-data-warehouse scalability

In this section we evaluate the capability of the dynamic-data-warehouse

(D-DW) component to scale. The D-DW is responsible to provide always

fresh data and instant integration of new data into results.

Figure 8.18 shows the dynamic-data-warehouse nodes scaling to o↵er

faster data integration while the data-rate increases in time. Data integra-

tion requires inserts of arrival data into the D-DW component, after ET

(extraction and transformation). The ingress data queue holds the data

while it is waiting for its time to be inserted. If this queue exceeds a certain

size a new D-DW node is added to scale. In the left Y axis we represent the

queue size expressed in number of rows. In the X axis is represented the data

rate increasing over time (every 5 seconds). Each plotted line represents a

node queue. The horizontal line on 1000 rows represents the configured limit

number of unprocessed rows before scaling-out.

Results in Figure 8.18 show the overload detection moment and the addi-

tion of new nodes. D-DW nodes scale every time a data queue reaches the

configured limit size. When a new node is added, data starts immediately

being (re)distributed across all available nodes using a LWR policy.

Dynamic-data-warehouse query scalability: We tested the dynamic-

data-warehouse query scalability considering two factors. When executing

queries and with simultaneous sessions. Workload 1, tests the scalability

based on queries execution. Workload 2, tests the scalability based on the
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Figure 8.18: Automatic freshness scalability
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Figure 8.19: Automatic freshness scalability, workload 1, 5GB

number of sessions (e.g. simultaneous users):

• Workload 1;

– 5GB total size, and growing (online load - new data is being

inserted while executing queries);

– Execute Q1.1, Q2.1, Q3.1, Q4.1 randomly chosen;

– Desired execution time per query, 5 seconds.

• Workload 2 - as workload 1 - but 1 to 4 simultaneous sessions;

Figure 8.19 shows experimental results using workload 1. In the chart,

the Y axis represents average query execution time in seconds; the X axis

represents the data size per node and the number of nodes; the horizontal

line over 5 seconds represents the desired query execution time; plotted bars

represent the average execution time per query.
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Figure 8.20: Automatic freshness scalability, workload 2

Figure 8.20 shows the experimental results using workload 2 based on

simultaneous sessions. The chart shows: in the Y axis the average query

execution time in seconds; the X axis represents the number of simultaneous

sessions; line over 5 seconds represents the desired query execution time;

plotted bars represent the query average execution time.

At each scale-out instant data is re-balanced (extracted from existent nodes

and submitted to the new node, all in near-real-time) each scale-out took

an average of 20 to 40 seconds.

8.7 Continuous results

AScale is also capable to analyze streams of continuous results in almost

real-time (e.g. to issue alarms, detect frauds), and at the same time allow-

ing CEP queries to access the data-warehouse and dynamic-data-warehouse

to validate and record events.
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In this section, the data set and query workloads, regarding the ”Com-

plex Event Processing” nodes concern a telecommunications scenario, where

call-detail-records are constantly being fed to the P/C queue from dis-

tributed data sources. The used call detail records were from Asterisk [81].

An example of a call detail record can be found in Appendix B.

Queries output results periodically. They are assumed to be ad-hoc, in

the sense that their processing weight is not known prior to running, and

simple parameters such as output periodicity or selection conditions can

result in very di↵erent query weights. These alternatives are considered in

the query workload which includes:

• Light Queries (Ql), ”light” per-tuple filters;

• Heavy in memory queries (Qh-m), time-consuming in-memory (e.g.

scans of data);

• Heavy queries with database (Qh-db), stream processing queries with

database sub-queries;

• Heavy queries with memory look-ups and updates (Qh-mlu);

• Killer queries (Qdb-2), stream processing queries that include database

sub-queries and ”kills” the node. Qdb-2 database query and CEP re-

sults output window are too demanding, resulting in too heavy pro-

cessing.

Queries are frequently registered and de-registered dynamically and in a

random fashion. Queries are described in more detail in Appendix B.
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Figure 8.21: Base line comparison of performance architecture.

8.7.1 Gold run

This experiment evaluated throughput of a single node when running each

type of query (alone). These results provided a baseline for comparison

purposes.

The results shown in this section are measured in throughput, as Events-

Per-Second (EPS). Figure 8.21 shows per-node throughput results obtained

in the gold run. From those we can see that it was able to process about

80K events per second (EPS) without any query registered into it. A light

query reduced the throughput to 45K EPS, while a heavy query reduced the

throughput much further (e.g. the stream-DB query Qdb tested in this run

achieved a throughput of less than 4K EPS).

8.7.2 Degradation run

In this experiment we overloaded a single node by submitting high-rate

data and registering a heavy hybrid stream-DB query with small output

time window, Qdb-2. It shows that the node dies, i.e. becomes overloaded
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Figure 8.22: Overall performance degradation due to heavy queries (Qdb-2).

and incapable of producing results – after some rounds of heavy querying

and processing. This motivates the need for data admission control and for

adequate query balancing.

The results in Figure 8.22, which concerns execution of the stream-DB

query Qdb-2, show that the throughput degrades severely over time, up to

a situation in which the node is unable to accept new data (dead node).

Besides processing the stream, this query aggregates over a 500MB data

table for computing outputs, and must return the outputs every 10 seconds.

Figure 8.23 illustrate an example why this happens. The query time

exceeds the output time period that was defined in the CEP query, thus the

system fills-up (queue increases, memory and swap overload happens), to a

point when the engine stops being able to consume input data. This behav-

ior is as expected, since conceptually a system cannot serve at a smaller
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Figure 8.23: Query overlapping and estimated overheads in time.

rate than the data arrival rate indefinitely without reaching a point at

which it needs to discard data. AScale mechanisms are able to identify

these situations and prevent them from happening (e.g. bu↵er queues get-

ting overloaded, scheduling queries for other nodes, using ready-nodes, load

shedding).

In Figures 8.24 and 8.25 we show the system behavior (10 processing

nodes) when systematically adding more in-memory light queries, Figure

8.24, and more in-memory heavy queries, Figure 8.25, with AScale. At each

3 queries added, a Qdb-2 was also added. As shown in the charts, when

using AScale the performance decreases almost linearly when adding more

processing tasks, and the system avoids dead nodes by rejecting the addition

of the Qdb-2, which is achieved by relocation and admission control. With-

out AScale, some overloaded nodes stop answering because of overloading

(dead nodes).

8.7.3 Workload experiments

These experiments evaluate balancing algorithms and admission control

against di↵erent query workloads. We run: AScale with least-weight (LW)

balancing; AScale with the balancing algorithm changed to be round-robin

(RR); AScale with the balancing algorithm changed to be LW based in the

number of remaining queries (LWRn); No queries admission control, RR
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Figure 8.24: AScale admission control vs no admission control, with light
queries, Ql.
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Figure 8.25: AScale admission control vs no admission control, with heavy
queries, Qh-m.



Chapter 8. Experimental evaluation 134

Figure 8.26: Workloads 1, 2 and 3

processing without admission control. The experiments were ran in a setup

using a total of AScale 3 CEP nodes.

Figure 8.26 show the results obtained from running workloads WK1 (27

Qh-m, 54 Ql), WK2 (15 Qh-db, 30 Ql) and WK3 (45 Qh-mu, 90 Ql), where

(-m) means in-memory and (-mu) means in-memory and updates (for each

output, an in-memory list was scanned and values were update values).

For the comparison between balancing algorithms, we define a metric

called GAT – Guaranteed Achievable Throughput. Data may be arriving at

any rate (high, low or not arriving at all). The GAT is defined as the maxi-

mum data input rate that the algorithm or systems are able to guarantee as

the input data rate is stressed. It corresponds to processing the data with

the worst balancing case for that algorithm.

The results will show that admission control avoids node overloading and

that least weight balancing is able to constantly maintain a higher through-

put than the alternative algorithms.
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The first bar group (No AScale) from left to right in each group concerns

a run without admission control of queries. It shows that the throughput

drops to zero when admission control is not applied. The main reason is due

to degradation of performance because of very heavy queries (Qdb-2) being

allowed to enter the processing system.

Comparing the observed throughput’s of AScale with RR, LWRn and

AScale with least weight, we can conclude that AScale with least weight

supports a much higher throughput. We also conclude that without AScale

admission control and no (re)balancing the system dies.

For reference purposes, the last bar shows the throughput that is achieved

by a single node running 1/3 of the queries, but when all those queries are

light. This throughput cannot happen in practice when considering the

whole system with a mix of light and heavy queries (WK1, WK2 or WK3),

since if a node runs only light queries, the remaining nodes will be over-

loaded with heavy queries, resulting in a small system throughput or nodes

death.

8.8 Conclusions

This chapter presented an experimental evaluation of AScale. First by

demonstrating ETL+Q scalability importance and how a single server is

incapable of ETL+Q processing when the data-rate increases.

The second experiment evaluates AScale for use in typical data-warehouse

scenarios, where the load process is slow and needs to scale. Results show

how the pipeline parts (extraction, transformation and load) scale-out when

necessary for performance reasons.

The third scenario tested a case with huge amounts of data. In this scenario
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the extraction and transformation process occurs every hour and the load

process starts every 24 hours. To avoid several lengthy cycles of scaling one

node at a time, we applied a proportional scale-out formula to estimate the

necessary number of nodes, in order to optimize performance.

The fourth experiment evaluated AScale scaling for two alternative scenar-

ios: near-real-time, with high-rate data and strict freshness requirements,

and minimal downtime. These tests demonstrated AScale scaling-out and

-in when ETL was configured to take only 3 seconds. We show that AS-

cale monitoring can scale each individual ETL pipeline module, assuring the

necessary resources to keep performance within bounds.

A fifth experiment evaluated scalability of the continuous result processing

CEP add-on, from which we conclude that AScale with CEP integration

performs e�ciently to deliver not only the configured performance, but also

to (re)balance and avoid overloaded CEP nodes.

Overall, AScale was able to scale all parts in the ETL+Q pipeline.
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Conclusions and future work

In this thesis we proposed an Automated Scalability Framework for Data

Warehouses, named AScale.

Using the proposed approach, data warehouse designers focus in the con-

ceptual design of the data warehouse schema, transformation operations

and queries. Then, based on integration primitives and configurations, and

on performance configurations, AScale monitors and scales any part of the

ETL+Q pipeline that might need more or less parallel resources. We present

the first proof of concept, with the purpose to describe how connection and

integration with other tools can be made.

We extended AScale in three directions. First, to support automatic ETL

and query processing scalability, the concept assumes that the developer

only focuses on data transformations and the data warehouse schema, then

AScale automatically scales the ETL process by replicating and adding more

resources. The second concept is data freshness. The concept is to automat-

ically include into data analysis (i.e. queries) the most recent transformed

data that was not yet integrated into the main data-warehouse. For that

we introduce the Dynamic-data-warehouse, to hold only the most recent

data, and we also show how to scale that part. Third, AScale also support

continuous results processing (CEP) involving a di↵erent nature of queries.

137
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Data is stored temporally in a data window (e.g. 1 minute) and results of

registered queries are kept updated.

The AScale pipeline model was designed to support scalability of all mod-

ules independently. On top, we added support for data freshness and later

support for CEP. For each module, we defined scalability mechanisms, based

on queues/bu↵ers monitoring and time performance. Also, alternate data

transfer policies between modules were defined, such as, least work remain-

ing, round-robin, manual and scheduled based.

Finally the chapter ”Experimental evaluation” proves AScale concept and

e�ciency though a series of experimental results and analysis.

9.1 Future Work

There are a number of interesting directions for future work.

The AScale framework can be compared, both in terms of approach, usabil-

ity and performance, with an implementation using Map-Reduce modules.

We plan to not only test performance, but also the learning curve of using

both approaches, implementation costs and required hardware to o↵er com-

parable performance.

Implementation of proactive and predictive scalability mechanisms are other

future work direction.

Another future work direction would be to provide extended support for

more features, visual tools (drag-and-drop), tools to build schemas and to

configure ETL processes.

During our tests we assumed a node as a physical machine instead of a

process with a�nity to a core. This derives from AScale limitations regard-

ing machines resources monitoring. Future work will also explore resources

monitoring of physical machines (i.e. nodes) for automatic process based

scalability.

Each AScale module communicates based on an IP:PORT, future work in-
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cludes the exploration and applicability to the cloud for elastic scalability.

Full availability, ”24/7”, should be explored in detail. Future work includes

a comprehensive analysis of the scalability approaches, load methods, data

balance and querying in a 24/7 always on case.

Another interesting research topic would be to include some of the scalabil-

ity mechanisms inside a database engine. For instance, the Dynamic-DW

and Stream-DW can reside in the same hybrid database engine. Such sys-

tem was already projected and development started, we named it ”VarDB”

[82]. This approach would support a column oriented storage for more data

flexibility, supporting hybrid in-memory and disk based storage, the schema

flexibility of no-SQL, column data partitioning (i.e. by size, in-memory, in-

disk, etc), and standard SQL script language support.

More future work directions would be to add transformation properties/op-

erators to the hybrid database engine or to AScale itself. At the end, the

whole AScale framework could reside in a single storage system.
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Appendix A

Background work

In this section we provide a global overview to the main topics associated

with the work of this thesis for achieving ETL, data warehousing and query

execution performance and scalability. Data warehousing (DW) is a tech-

nology that helps data analysis for decision making in large organizations.

Data warehouse parallelization and partitioning is already a well-known

technique, explored by many works for parallel queries processing and data

distribution for support of e�cient parallel and distributed processing [83],

[27], [84].

In the following sections, we give a global overview of the database process-

ing approaches and related concepts that we explore in this thesis. In Section

A.1 we introduce the concept of High Availability, followed by Section A.2

where we introduce how databases can be replicated for performance and

availability at the same time. Section A.3, introduces the concepts of scale-

out and scale-up. In Section A.4, we explain the concept of Elastic Scalabil-

ity and parallelization. Section A.7 we introduce the ETL process and query

processing. Section A.5 introduces the most common distributed architec-

tures and Section A.6 explains the concept of Parallel databases with some

examples. Because virtualization of processors, cores, disks and full comput-

ers is widely used to take advantage of computers resources, in Section A.8

141
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we introduce the concept of Virtualization. And also since Map-Reduce is a

very recent paradigm to scale systems, in SectionA.9 we introduce the Map-

Reduce paradigm. Afterwards in Section A.10 we present some limitations

of Map-Reduce paradigm. Because storage models and data access require-

ments change, in Section A.11 we describe the no-sql paradigm. Section

A.12 compares the main di↵erences between parallel database systems and

Map-Reduce. Finally in Section A.13 we focus on industry and academic

database engines.

A.1 High Availability

High availability refers to the ability of a system to remain accessible for

users permanently in the presence of high intensive activity, software main-

tenance, or hardware failures (e.g. an application may crash or a network

card may go down or an entire physical machine can fail). Various studies

have been shown that downtime (e.g. for updates) is a ”revenue killer”.

Small to medium sized businesses lose 1% of revenue per year to system

downtime, while 40% to 50% of businesses never fully recover after a major

system outage [85].

The requirements to provide high availability is no longer limited to mis-

sion critical applications. Even the most simple applications require high

availability, meaning that high availability is no longer an option but rather

a requirement. Indeed, most businesses now implement some form of high

availability for their IT infrastructure. Database systems also need to pro-

vide high availability, where the database remains accessible and consistent

in the presence of failures or intensive load periods, with little or no down-

time.
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A.2 Database Replication

Replication is a technique where a database is fully or partially replicated

locally or at a remote site to improve performance and data availability

[86]. The original copy of the data is referred to as the primary (or master)

replica while the replicated copy is called a secondary replica. If the pri-

mary replica becomes unavailable, the data still remains accessible through

the secondary replica. We can also have N-way replication where a primary

replica is copied to N-1 other replicas. However, this additional replication

comes at a higher cost. Replication may be implemented within a single

database system or between database systems across machines possibly dis-

tributed across geographical boundaries. Changes from the primary replica

are periodically propagated to the secondary replica.

Synchronous or asynchronous replication are the two options for keeping the

secondary replica up-to-date with the primary replica.

Synchronous replication [87] [88] is usually implemented through a read

any, write all mechanism. Where a read transaction can read data from any

replica but a write transaction must update all replicas. For this type of

replication, the updating transaction must acquire exclusive access to all the

replicas which might involve lock requests across remote sites. Also, in order

to update transaction for successfully commit, all the replicas must remain

accessible during the transaction. If the replicas are distributed among re-

mote and local sites, a two-phase commit protocol is required to ensure that

each transaction either commits at all replicas or is aborted. Synchronous

replication o↵ers the advantage of keeping all the replicas strongly consis-

tent. However, due to the high operational costs associated with acquiring

locks, and excessive message passing for two-phase commit, it is rarely used

in practice [87].

On the other hand, asynchronous replication [87], [89], [90], [91], propagates

the changes from the primary to the secondary through transaction log ship-
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ping or snapshots. The changes in the log records or a snapshot are then

applied to the secondary copy.

Asynchronous replication o↵ers a trade-o↵ in terms of minimizing overhead

of normal operation and data consistency. With asynchronous replication,

it is possible for a transaction to get slightly di↵erent results when accessing

di↵erent replicas since they are updated periodically. In a typical setting,

asynchronous replication is run with two servers, a primary (master), and a

secondary. with the secondary server’s database state being transactionally

consistent to that of primary server with some replication lag. Moreover,

typically, only the primary server can update the replicated data (e.g., in

primary site asynchronous replication). When the primary server fails, the

secondary server takes over execution losing some work, for example, in-

flight transactions are aborted and restarted on the secondary server. Also,

the secondary server needs to be brought up-to-date after a failure, i.e., the

transaction log of committed operations performed on the primary server

that were not yet propagated to the secondary server needs to be replayed

at the secondary. After a failure, the primary server can be recovered while

the backup server acts as the primary. Later, the roles of the two serves can

be switched again, or the backup server can remain as the primary, and vice

versa.

A.3 Scale-out and scale-up

There are two distinct methods of scaling a system, horizontal (scale-out)

or vertical (scale-in).

• Scale-out, means to add more computer nodes to a system for the dis-

tributed software take advantage of the new resources. The greatest

advantage is that computers prices are lowering down while perfor-
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mance increases. However, larger number of computers means in-

creased management complexity, as well as a more complex program-

ming model.

• Scale-up, means to add more hardware, more memory, more disk, more

CPUs. In radical cases completely replace the old hardware by new

and more powerful.

A.4 Elastic scalability and data warehouse paral-

lelization

A software system is said to be scalable if it is able to handle increasing load

by using more computing resources. A system can be scaled up by adding

more computing resources to the physical running machine for example,

by adding more hardware (i.e. memory, CPU, disk, graphics). Scale-out

permits a system to handle even larger workloads by adding more physical

machines, like a cluster. Systems that are elastically scalable are able to re-

spond to changes in load by growing and shrinking their processing capacity

on the fly. In Elastic scalability, ideally at any given time, an application

deployed should be using exactly the amount of required resources to handle

its load, even as this load fluctuates [92]. Such elastic scalability results in

significant cost savings for the applications. This way resources can be set

o✏ine to save energy or redirected to process other tasks.

Database systems are di�cult to scale since they are stateful – they manage

a large database. It is important when scaling to multiple server machines,

provide mechanisms so that these servers can collaboratively manage the

database and maintain its consistency. Database partitioning is often used

to solve this problem, by making each server responsible for one or more

partitions.

Parallel DBMSs (column-wise or row-wise) capable of running over shared-
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nothing clusters exist since the eighties. These types of systems support

common relational tables and SQL script language. Although the data is

stored in multiple machines, the data is accessed by the user through SQL

language transparently. The two key aspects that make parallel execution

possible are:

• Tables may be partitioned though the nodes of the cluster, allowing;

• . . . The system to use an optimizer that is capable to translate the

SQL queries to an execution plan of queries that is divided by multiples

nodes.

Thus programmers only need to specify their objectives in a high-level

language, not having to bother with details of how data is stored, indexing

options, or strategies for joining and processing the data (whereas Map-

Reduce [93] systems do need to specify all those details).

Consider a SQL statement that filters the records of a table T1 based on a

predicate, and that makes a join with a second table T2 with an aggregate

result after the join. A very simple sketch of how this type of command

would be processed in a parallel DBMS would consist of three phases [94].

1. T1 is stored and distributed by some nodes and partitioned by some

attribute, the filter of the sub query runs first in parallel. Some-

how, similar to what is done on a Map function of the Map-Reduce

paradigm;

2. Afterwards a join algorithm is applied, based on the size of the data

tables. For example if the number of records in the table T2 is smaller,

then the DBMS can replicate it on all nodes when the data is read for

the first time. Therfore it is possible that the join is executed in

parallel on all nodes;
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Figure A.1: Example of how to distribute data in a start schema.

3. Then, each node makes the computation of each aggregation using

its piece of the intermediate result. A final step is necessary to put

everything together and give the final answer.

The process of redistribution of data from tables T2 and/or T1 is similar

to the process that occurs between the Map and Reduce tasks in architec-

tures such as Hadoop Map-Reduce.

Figure A.1 shows how a simple start schema can be partitioned in such

a way that it becomes highly scalable. While the dimension tables are repli-

cated (because they have small size), the fact table(s) is distributed by the

available nodes following known partitioning and placement strategies [95],

[96], [97], [98], [99], [26], [15], [100]. Horizontal partitioning of data is also

often used for scalability [101]. When scaling, tables are replicated or par-

titioned across all nodes. Other alternatives, available in previously cited

works, can be considered to partition data. For instance all tables can be

fully replicated by the data warehouse nodes, or partitioned using round-

robin, or manually distributed. Queries must be decomposed, to run in the
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partitioned model and the results from each partition needs to be merged

into the final result [77], [102], [103], [104], [96], [105], [106], [107], [108],[26].

Other approaches for scaling are such as based on complete de-normalization,

hash-partitioning, range-partitioning or distributed file systems.

A.5 Common distributed architectures

Due to the large storage requirements and performance, big data warehouses

(DW) find e�ciency by parallelizing their systems.

There is a wide ranges of parallelizing architectures, including: share-nothing,

share-disk, share-memory and hybrid models, which are used by state-of-

the-art servers that contain many processors [27]. There are three large

taxonomies of models as described in [105].

1. Shared-Memory : the architecture of shared memory or the ”Shared-

everything” is a system where all existing processes are shared between

global memory addresses as well as other devices;

2. Shared-Nothing : the architecture in which nothing is shared is com-

posed of multiple autonomous processing units, each with their storage

units and carry copies of the DBMS. Communication between the pro-

cessing nodes is done through messages passed over the network. Each

of processing nodes can be composed of one or more processors and

storage units;

3. Share-Disk : the architecture of shared-disk is characterized by having

multiple processing units like the share-nothing architecture. However,

in this case the architecture has a global storage unit that can be

accessed by all nodes in the DBMS.

All architectures mentioned here have their advantages and disadvan-

tages. The main advantage/disadvantage of greater importance is the scala-
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bility of the system vs. cost, fault tolerance and availability. Share-nothing

and hybrid architectures can scale at a low cost (by simply adding more

machines), and fault tolerance is achieved through replication.

A.6 Parallel Database Systems

Parallel database systems typically running on clusters of physical machines,

are a popular choice for implementing high availability for database systems.

A parallel (or clustered) database system executes database operations (e.g.,

queries) in parallel across a collection of physical machines or nodes (where

a node can be either a computer, a core or a virtual machine). Each node

runs a copy of the database management system. The data is either parti-

tioned among the nodes where each partition is owned by a particular node

or is shared by all nodes. Failure of individual nodes in the cluster can be

tolerated and the data can remain accessible. Such high availability and

fault-tolerance is a primary reason for deploying a parallel database system,

in addition to improved performance. Nowadays, Parallel database archi-

tectures are mainly divided into shared nothing and data sharing.

In a shared nothing system, data is partitioned among nodes where each

node hosts one or more partitions on its locally attached storage. Access to

these partitions is restricted to the node that hosts the data and therefore,

only the owner of a data partition can cache it in memory. This results in a

simple implementation because data ownership is clearly defined and there

is no need for access coordination.

Shared nothing database systems have been a huge commercial success be-

cause they are easier to build and are highly scalable [109]. Examples of

shared nothing database systems include IBM DB2 [110], Microsoft SQL

Server [111], and MySQL Cluster [112].

In a data storage sharing system nodes share access to all the data. Data

is usually hosted on shared storage (e.g., by using Storage Area Networks).
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Since any node in the cluster can access and cache any piece of data in

its memory, access coordination is needed in order to synchronize access to

common data for updates. This requires distributed locking, cache coher-

ence, and recovery protocols which add to the complexity of a data sharing

system. However, data sharing systems do not require a database to be

partitioned and thus have more flexibility in doing load balancing.

A.7 ETL parallelism

Data produced by sources is extracted by external data sources an integrated

into a common staging areas for transformation and cleansing before being

loaded into the data warehouse. This process known as the ETL.

A vast number of commercial ETL tools available: IBM with InfoSphere

server [113]; Oracle builder [114]. Nevertheless, in-house ETL development is

preferred in many projects regarding data warehouse, because of the involved

costs of purchasing and maintain such ETL systems. According with [115]

when using such tools, ETL development time takes up to 70% or 80% of

the development time in a data warehouse project.

Data warehouses are typically assembled from a variety of data sources with

di↵erent formats and purposes. As such, ETL is a key process to bring all

the data together in a standard, homogeneous environment.

Some ETL systems have to scale to process terabytes of data to update

data warehouses with tens of terabytes of data. Increasing volumes of data

may require designs that can scale from daily batch to multiple-day micro

batch for integration with message queues or real-time changing data for

continuous transformation and update.

ETL applications can implement di↵erent types of parallelism such like:

• Data: By splitting a single sequential file into smaller data files to

provide parallel access.
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• Pipeline: Allowing the simultaneous running of several components on

the same data stream. For example: looking up a value on record 1

at the same time as adding two fields on record 2.

• Component: The simultaneous running of multiple processes on dif-

ferent data streams in the same job, for example, sorting one input file

while removing duplicates on another file.

A.8 Virtualization

Machine virtualization is a technique that allows the resources of a physical

machine to be shared among multiple partitions known as virtual machines

(VMs). Each virtual machine runs an independent operating system and the

associated set of applications. A virtual machine monitor manages the phys-

ical resources and provides a mapping between the physical resources and

the abstractions known as virtual devices. A virtual device corresponding to

each physical resource (e.g., CPU, disk, memory, and network) is exported

to every virtual machine. Since a virtual machine is nearly an exact replica

of the underlying hardware, this makes it possible to run applications un-

modified inside a virtual machine. Xen [116] and VMware [117] are popular

examples of virtual machine monitors.

Some benefits of virtualization include:

• Performance isolation – each virtual machine will use only its allocated

share of resources, thus will not a↵ect the performance of other virtual

machines running on the same physical machine.

• Fault isolation – a software bug or a security flaw in one virtual ma-

chine does not a↵ect other virtual machines.

• Dynamic resource allocation – the share of physical resources allocated

to each virtual machine can be adjusted on the fly.
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• Live migration – a virtual machine running on one physical host can

be migrated to another physical host with minimum downtime.

A.9 Map-Reduce paradigm

Map-Reduce is Google’s and Yahoo’s distributed solution for web-scale data

processing [93]. The major purpose is to automatically run parallel jobs in

a cluster.

Programs are written as map functions that read individual items in the

original data set and produce an intermediate tuple, then a reduce function

merges these intermediate tuples into the final output. All map operations

can run in parallel, after the map phase completed.

Map Reduce employs basic strategies for load balancing and fault tolerance,

respectively:

1. Workers are assigned by map and reduce tasks as quickly as they

complete them using a ”greedy” strategy, leading to dynamic load

balancing. Therefore, slow machines will be assigned with less work

as they complete their tasks more slowly and also faster machines will

be assigned with more work.

2. Map-Reduce uses the file system (e.g. Google file system (GFS),

Hadoop file system (HFS)) to distribute the original data and interme-

diate results among the cluster machines. By doing that it is assured

that, in case of a node failure the data is still available for other worker

to resume the task.

Map function reads data from an input file and makes the desired fil-

tering and/or processing of data. Then a function ”split” partitions the

records into R disjoint groups, separating them by applying a key function

to each record. This function is typically a hash function. Each group of
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data generated by the Map ends with the production of R output files, one

for each data group.

In general, there are multiple instances of map function to run on di↵erent

nodes in a cluster. The term instance is used to refer to a single invocation

of the function or the Map-Reduce. Each instance of Map is allocated to an

input portion by the scheduler MR for processing. If there are M di↵erent

parts of the input file, then there will be R files stored on disk for each of

the M instances of map, thus creating a total of M x R files. Note that all

functions map must use the same hash function, so all output records have

the same hash value in the same location of the input.

In the second phase of implementation of the MR there are R, reduce in-

stances, where R is typically the number of nodes. The files at this stage are

transferred through the network from the nodes that have done the Map.

Note that once again all records of the Map output stage with the same hash

value are consumed by the same instance, regardless of which one produced

the Map. Each Reduce process will combine the data assigned to somehow,

and then write them to an output file (in the Distributed File System),

which will be a part of the final output.

The input data exist as a collection of one or more partitions in the dis-

tributed file system. It is the MR scheduler responsibility to decide how

many instances of the map function should run and how they allocate the

available nodes. Similarly, the scheduler must also decide on the number

and location of nodes that will run the reduce functions. The central con-

troller of the MR is thus responsible for coordinating the activities of each

map and reduces functions.

A.10 Map-Reduce limitations

When it comes to processes large amounts of data, MR model is well suited

for development environments with a small number of programmers and lim-
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ited field of applications. The absence of restrictions can make this paradigm

inappropriate for large-scale and long term projects, since like everything has

to be programmed and there is a high flexibility, which leads to great di�-

culties to reuse code.

Other di�culty is related with the transfer of data between Map and Reduce

functions. Recall that N instances of map functions produce M output files,

each one destined to a reduce instance. These files are written locally on

disk for each node that runs the Map function. If N is 1000 and M is 500, the

operation produces 500.000 map local files. When the Reduce stage starts,

each one of the 500 Reduce instances need to read 1000 input files, and

have to get them from the Map nodes that created them. With hundreds of

reduce instances running simultaneously, it is inevitable two or more reduce

functions try to read the same file from the same node, generating large

amounts of I/O on disk (disk seek) and thus increasing the transfer time.

Another issue is related with the widespread use of network, because beyond

normal information flux, and network spikes related to when reduce func-

tions start. Also the redundancy copies must be taken into account to assure

the fault tolerance, which will contribute in increasing network tra�c.

The limitations of Map-Reduce architecture is leading many researches to

study better the optimization in this architecture [118]. In [119] the authors

focus on optimization to the HDFS and fault tolerance replicas, for faster

upload and access to data, improving this way the execution of queries and

indexation creation with third part middlewares.

A.11 No-Sql paradigm

NoSQL is a term for database management systems where it is not required

a fixed schema to storage data. Usually NoSQL avoids operations like joins

and transactions, and therefore it is able to scale horizontally. Thus by

avoiding transactions there are no locks, by forbidding joins data will easily
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distribute and by many nodes all data is stored and indexed based in a key

value, making it easy to distribute the keys and data across many nodes.

Researchers usually refer to these databases as structured storage [120] [121].

While traditional database systems are designed for generic workloads and

support large (and growing) features sets, NoSQL is designed to solve specific

problems, and trade features (e.g. joins, transactions) for performance. No

joins will mean that the need for complex indexes is reduced. The chances of

index/query mismatches are lower. Disk I/O is less complex and therefore

much faster.

NoSQL is a very oriented system, designed to serve heavy workloads like,

indexing documents; serving pages; high-tra�c websites; deliver streaming

media [122]. In real-world NoSQL deployments include Digg’s 3TB, Face-

book’s 50TB for inbox search and eBay 2PB for overall data.

The provided architecture has weak consistency guarantees such as eventual

consistency, or transactions restricted to single data items. Some systems

however provide full ACID guarantees in most cases by adding supplemen-

tary middleware layers (e.g. CloudTPS). Several NoSQL systems use dis-

tributed architectures with the data replicated on di↵erent servers, by using

distributed hash tables, so the system can scale out by adding more servers

and the failure of a server can be tolerated [123] [120].

Although NoSQL is very scalable and fast, the secret of NoSQL is not about

eliminating SQL from the databases systems.To be precise , systems like

Bigtable, HBase, Hypertable, Cassandra, Dynamo, SimpleDB and others

based on key-value store, are mostly concerned with scalability. However,

it turns out to be di�cult to scale traditional ACID compliant relational

database systems on shared-nothing architectures. Thus these systems de-

cide to drop some of the ACID guarantees in order to be able to achieve

shared-nothing scalability giving the option to the application developer the

responsibility and complexity of programming a non-ACID system. So in
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this way, NoSQL really means NoACID.

In order to NoSQL achieve scalability and high availability ACID charac-

teristics were weakened in two ways:

• Systems like Bigtable, SQL Azure, and key-value stores support atom-

icity and isolation only when each transaction accesses data within a

subset of the database (a single tuple in Bigtabel, or a single parti-

tion in SQL Azure). This removes the need for expensive distributed

protocols at the cost of losing atomicity and isolation in transactions.

• Weak replication schemas contribute in the sacrifice of consistency.

The main objective is to reduce data write and increase network per-

formance.

In the end the programmer must implement any additional ACID func-

tionality at the application level.

A.12 DBMSs Vs. Map-Reduce

Parallel DBMSs require data to be entered into a structure consisting of

a relational model of rows and columns. In contrast, the MR data model

does not require data (files) to comply with a fixed relational model. Thus

the programmer using an MR model is free to use (program) structure as

desired, or even not having a data structure. The absence of a rigid data

model automatically makes the MR a preferable option. For example, in

SQL the programmer has to specify the data schema. Moreover in MR the

programmer writes his own parser, which is at least equivalent to a working

definition of the data schema. But there are other potential problems of not

using a data schema for large amounts of information.

Whatever the structure that exists in the MR and independent of the imple-

mentations provided for controlling keys and values, the programmer has to
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explicitly write support for more complex data structures such as indexes,

composite keys, and constraints. If there is a second developer sharing the

application, he will have to first decode the code that was written by the

previous programmer. Therefore the approach taken by the DBMSs using

SQL and separating the schema is clearly more advantageous.

Even taking into account that for instance in the MR the schema of data

is separate from the application, like in SQL based DBs, developers would

have to agree on a single model schema. Obviously this requires a commit-

ment to some kind of data model. In a way this is happening. Slowly, some

languages begun to appear for the MR in the style of SQL, to optimize the

processes of implementation, as is the case of Yahoo’s Pig Latin [124] or

Hive [33]. Yet, because they do not require fixed structures, there is the

issue of violation of restrictions (constraints), which can be easily violated

due to the freedom of defining structures (e.g. employees salaries cannot be

negative). Thus in order for the DBMSs to separate the application of such

restrictions, they allow automatically definition of data integrity rules in the

schema without taking on additional programming work.

Typically, the MR tool is more sophisticated than parallel DBMSs with re-

gard to fault tolerance. Although both systems use a particular type of

replicas to handle failures, the MR is more e�cient dealing with those fail-

ures. In an MR system, if a work unit fails, then the MR scheduler can

automatically restart the task in an alternative node. Part of this flexibility

arises from the fact that the output files from the Map phase are always

materialized locally instead of being transferred to the reduce task. This

flexibility of the MR is possible due to the creation (typically by default) of

three replicas for each file, supported mainly by the distributed file system.

This process of fault tolerance is quite di↵erent from that used in parallel

DBMSs, which have large amounts of work (e.g. transactions) which take

time to run, and in the event of any failure have to be restarted. Part of the
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reason for this approach is because DBMSs avoid saving intermediate re-

sults to disk whenever possible (avoid intermediate materialization). Thus,

if one node fails during a long query, all queries related must be completely

restarted.

A.13 Current related industry and academic tech-

nology focus

There have been many e↵orts at the present time of many companies (e.g.

Google, Yahoo, Vertica, ExaSol, Teradata, IBM DB2, Oracle, VoltDB) in

order to find solutions for processing large-scale data. So there are emerg-

ing approaches such as Map-Reduce (MR) [93], vertical data models (e.g.

Vertica) [125], memory based databases (e.g. VoltDB), with optimiza-

tion strategies, such as multiple redundancy and general specializations of

DBMSs parameters for analytic or transactional processing, in order to al-

low better performance optimization.

Current trends point to five major groups of models for processing data in

parallel:

• Row-wise, traditional [126], where data is stored in the form of rows

(e.g., Oracle, PostgreSQL, MySQL).

• Column-wise, where the data are all stored in the form of columns

(e.g. Vertica, ParAccel, MonetDB, SadasDB).

• Map-Reduce, using on two simple functions over the MR sructure: one

maps the data, the other gathers information and joins it [28], [127],

[31], [93] (e.g. BigTable, Hadoop, Apache Spark).

• Main-memory based systems, which operate and depend mainly on

memory rather than disk. The disk is then, in some cases, only used
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to maintain consistency of ACID transactions and data durability (e.g.,

Oracle TimesTen, ExaSol, RAIMA, VoltDB).

• NoSQL, next generation of databases, mostly addressing some of the

following points: being non-relational, distributed, open-source, hor-

izontal scalable, schema-free, easy replication support, simple API,

eventually consistent (not ACID), supporting huge data amounts, (e.g.

Google’s BigTable, Amazon’s Dynamo, Apache Cassandra, Hyper-

table, HBase).

In addition to these models, usually there are combinations of two mod-

els named hybrids. The aim is to combine all the advantages of the best of

each approach. Two examples of these models are HadoopDB, which is the

junction of the MR and PostgreSQL, and also the new version of Vertica,

which consists on Vertica with a MR layer on top. There are even hybrid

models that arise from systems based solely on memory, and make use of

the hard-drive to get better performance with large amounts of data, such

as Altibase, which is widely used in the telecommunications industry.

Several commercial database systems have emerged that include Map-Reduce

functionality into existing database systems, Greenplum transforms Map-

Reduce code into a query plan that its proprietary distributed SQL engine

can execute on existing SQL tables. AsterData implements something sim-

ilar, where Map-Reduce functions can be loaded into the database and in-

voked from standard SQL queries in Aster’s distributed engine.

There is also HadoopDB, which is not commercial that uses a middleware

approach, simultaneously using PostgreSQL server in their database layer,

but uses Hive and Hadoop for query transformation, job scheduling and

replication [127].

Teradata, IBM DB2, MySQL Cluster, Oracle Real Application Cluster, Or-

acle Exadata, Teradata, generally use the traditional approaches to paral-

lelization and clustering. In these systems there are several nodes connected
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together, which are most often ”share nothing”, ”share memory”, or ”share

disk”. Di↵erent nodes are in charge of managing di↵erent components and

functions of the DB. The attributes that stand out are the use and existence

of front-end managers, load balancers and optimizers, which together man-

age the way information is distributed through the nodes, accessed, handled

and processed. This type of system is commonly used in large businesses,

but new technologies tend to change this. New models of data storage and

new processing methods are emerging, and promise to bring great advan-

tages in terms of performance and scalability.

Recent DBMSs such as BigTable and Hadoop raised interest in the Map-

Reduce paradigm due to its flexibility in processing data in a distributed and

parallel mode (with replicas of data) across multiple nodes. However, as is

shown in studies of the area [28], the MR has performance problems when

compared with column-oriented DBMSs such as Vertica, and even with row

oriented DBMSs.

There is also the question of better programming model, MR vs. SQL.

Some [28] argue that the MR is more flexible (everything is implemented

by the programmer) and more failure tolerant. While in DBMSs, there

are schemas for structuring data, and SQL is used, which generates easy

implementation, code sharing (e.g. portability), optimization and organiza-

tion/changes in data models (schema).

Parallel columnar DBMSs, such as Vertica or ParAccel, have performed ex-

tremely well when compared both with MR and with row oriented DBMS

[28] [127]. In order to bridge the gap between the MR and the DBMS,

emerging studies in the field involve the use of hybrid models, which make

use of the best technologies of each model, such as HadoopDB, AsterData,

HyperTable, Hyrise. Thus it is possible, for example, to have the fault

tolerance of MR, among other advantages, and simultaneously to use SQL

language and schemas.
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In the case of a HadoopDB, studies show that the use of PostegreSQL with

Hadoop, although in general not performing better than vertical or row

models, improves results when compared with Hadoop Map-Reduce [127].

With the emergence of hybrid models and prototypes of academic success

(e.g. HadoopDB, MonetDB, Hyrise), Vertica announced it is preparing a

new version of their DBMS (Vertica Analytic Database 3.5 broadens reach

with added FlexStore architecture) that, among other technologies, also in-

tegrates a layer of MR, o↵ering the flexibility to process large amounts of

data at high speeds, and o↵ering support for SQL and data models. Also,

Oracle has already prepared a version (Oracle 11gR2) of a DBMS that sup-

ports column-orientation, which promises to greatly improve performance.

Oracle’s future plans involve a slow and transparent replacement of ”old”

row-wise by the new column-wise engines. Researchers in the field point out

that the old DBMSs are obsolete and that the column-oriented DBMSs may

replace the row-oriented DBMSs [128].

ExaSol, VoltDB, and others are engines based on memory and oriented to

columns, obtaining these way performance improvements over DBs such as

Oracle, Microsoft, ParAccel, at a lower or similar cost. Some of these types

of systems use special customized hardware; the data processing is done

in clusters primarily using memory, in which case the disk is only used to

ensure data persistence (ACID).
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Appendix B

Continuous results queries

and data schema

This appendix explains the data set used to process Call Detailed Records

(CDRs) used for continuous query results processing.

B.1 Data set

The data set is composed of CDRs containing the following information

regarding clients: towerID, accountCode, timestamp, callerNumber, called-

Number, callerID, duration, billSec, progressSec, progressMedSec, flowBillSec,

mDuration, billmsec, progressMsec, progressMedMsec, flowBillMsec, uDu-

ration, cellCompany, planType, roaming, relativeDistance, callStatus, sms,

mms, dataMB, dataGB, timestamp, typeOfData, deviceModelID, comuni-

cationType, comSize, GPS.

The data set also contains the following information regarding location:

country, city, county, towerID, timestamp, hour, min, sec, msec, day, month,

year, GMT.

163
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In what regards towers, the data set contains the following informa-

tion: towerID, country, city, county, address, GPS, timestamp, GMT, tem-

perature, workTime, avgLoad, freeLoad, usedLoad, maxLoad, minLoad,

dataUsage, smsUsage, clientsConnected, networks, frequency, energy, pow-

erStatus, maintenaceHour, avgConnectionTime.

Regarding the data warehouse, it is designed as a star schema, which

includes: all clients information, accounts information, cell phones models,

bills, detailed invoices, cell phone plan types, statistical clients info, clients

usage logs, and past statistical data.

B.2 CEP queries

Light queries (Ql) consist of queries that make arithmetic calculus, all in

memory, regarding global key parameters of the CDRs (i.e. calls duration,

average duration, total minutes on use, average incoming, so on). No join

filters are included. No specific orders of output and no grouping of data is

considered. The considered data window was 300 sec, and each output was

set to be done in periods of 10 seconds.

Listing B.1: Light queries

1 //Average durat ion o f a l l c a l l s

2 select sum( durat ion ) , avg ( durat ion )

3 from CDR. win : l ength (300)

4 output last every 10 second

5

6 //Average durat ion o f c a l l s by user and order by user name

7 select ca l l e r ID , sum( durat ion ) , avg ( durat ion )

8 from CDR. win : l ength (300)

9 group by c a l l e r ID

10 output last every 10 second

11 order by c a l l e r ID desc
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12

13 //Average durat ion grouped by c e l l plan (50\% of c a l l s )

14 select avg ( durat ion ) , sum( durat ion )

15 from CDR. win : l ength (300)

16 where planType = 0

17 output last every 10 second

18 order by avg ( durat ion ) desc

19

20 //Average durat ion grouped by c e l l plan (25\% of c a l l s )

21 select avg ( durat ion ) , sum( durat ion )

22 from CDR. win : l ength (300)

23 where planType = 1

24 output last every 10 second

25 order by avg ( durat ion ) desc

26

27 //Average durat ion grouped by c e l l plan (25\% of c a l l s )

28 select avg ( durat ion ) , sum( durat ion ) ”

29 from CDR. win : l ength (300)

30 where planType = 2

31 output l a s t every 10 second

32 order by avg ( durat ion ) desc

33

34 //Towers average load

35 s e l e c t towerID , count ( c a l l e r ID )

36 from CDR. win : l ength (300)

37 group by towerID

38 output l a s t every 10 second

39

40 // Status o f c a l l s by prov ider , c a l l s r e j e c t e d

41 s e l e c t ca l l e r ID , count ( c a l l S t a t u s )

42 from CDR. win : l ength (300)

43 where c a l l S t a t u s = 0

44 group by c a l l e r ID

45 output l a s t every 10 second ,

46

47 // Status o f c a l l s by prov ider , c a l l s accepted

48 s e l e c t ca l l e r ID , count ( c a l l S t a t u s )

49 from CDR. win : l ength (300)

50 where c a l l S t a t u s = 1

51 group by c a l l e r ID

52 output l a s t every 10 second ,

53
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54 //SMS’ s by prov ide r

55 s e l e c t ca l l e r ID , timestamp , sum( sms ) , sum( b i l l S e c )

56 from CDR. win : l ength (300)

57 where sms = 1 AND cellCompany = 0

58 group by c a l l e r ID

59 output l a s t every 10 second

60 order by timestamp ,

61

62 //SMS’ s by prov ide r

63 s e l e c t ca l l e r ID , timestamp , sum( sms ) , sum( b i l l S e c )

64 from CDR. win : l ength (300)

65 where sms = 1 AND cellCompany = 1

66 group by c a l l e r ID

67 output l a s t every 10 second ,

68

69 //SMS’ s by prov ide r

70 s e l e c t ca l l e r ID , timestamp , sum( sms ) , sum( b i l l S e c )

71 from CDR. win : l ength (300)

72 where sms = 1 AND cellCompany = 2

73 group by c a l l e r ID

74 output l a s t every 10 second ,

Heavy in-memory queries (Qh-m), process information regarding clients

(i.e. total call duration, average calls duration, total to pay, number of mes-

sages, data usage, maximums and minimums). The results are grouped by

client, ordered by name, plan type and phone number. The considered data

window was 300 sec, and each output was set to be done in periods of 10

seconds. To achieve high cardinality of queries, we changed randomly the

clients age interval range of each query. Results were kept on memory for

comparison.

Listing B.2: Heavy in-memory queries

1 //Count number o f sms ’ s and average o f sms by c l i e n t

2 s e l e c t ca l l e r ID , sum( sms )

3 from CDR. win : l ength (300)

4 where sms = 1
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5 group by c a l l e r ID

6 output l a s t every 10 second

7

8 //Count t o t a l o f sms group by tower

9 s e l e c t towerID , sum( sms )

10 from CDR. win : l ength (300)

11 where sms = 1

12 group by towerID

13 output l a s t every 10 second

14

15 //Count t o t a l o f sms group by planType

16 s e l e c t planType , sum( sms )

17 from CDR. win : l ength (100)

18 where sms = 1

19 group by planType

20 output l a s t every 10 second

21

22 // C l i en t spending f o r c a l l s

23 s e l e c t ca l l e r ID , sum( durat ion ) ⇤ 0 .20

24 from CDR. win : l ength (60)

25 where sms = 0 AND ca l l S t a t u s = 1

26 group by c a l l e r ID

27 output l a s t every 10 second

28

29 // C l i en t f o r sms

30 s e l e c t ca l l e r ID , count (⇤ ) ⇤ 0 .10

31 from CDR. win : l ength (60)

32 where sms = 1

33 group by c a l l e r ID

34 output l a s t every 10 second

35

36 // C l i en t with max minutes

37 s e l e c t ca l l e r ID , towerID , planType , MAX( durat ion )

38 from CDR. win : l ength (200)

39 group by c a l l e r ID

40 output l a s t every 10 second

41 order by c a l l e r ID desc , towerID ,

Heavy queries with access to database (Qh-db). These queries are ori-

ented to manage the clients billing for update of current recorded informa-
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tion (i.e. complete report on communications expenditure, data pack used,

recommended plan type, most called numbers, maximums and minimum

times). The database is used along side with the CEP processing to obtain

extra information regarding, plan type, calls cost depending on the time and

day, calls and data usage limits. Then, based on the processed information,

further information inside the database is updated. This query also includes

filters to group the output, filter and order the output results.

Listing B.3: Heavy queries with access to database

1 //SIM cards fraud based on d i s t anc e between towers

2 //Alarms are l ogged into memory

3 select ca l l e r ID , max( r e l a t i v eD i s t a n c e ) , min( r e l a t i v eD i s t a n c e )

4 from CDR. win : l ength (500)

5 group by c a l l e r ID

6 having (max( r e l a t i v eD i s t a n c e ) � min( r e l a t i v eD i s t a n c e ) ) > 5

7 output last every 10 second

8 order by c a l l e r ID asc

9

10 // Insert c a l l s into the Dynamic Data warehouse

11 //All c a l l s are r e g i s t e r e d into the Dynamic Data Warehouse

12 select accountCode , avg ( durat ion )

13 from CDR. win : l ength (180)

14 group by accountCode

15 output last every 1 second

16 order by accountCode desc ,

17

18 //Get c a l l e r in fo rmat ion from the data warehouse and

19 //dynamic data warehouse to check the a v a i l a b l e balance

20 select ca l l e r ID , count (⇤ ) ⇤ 0 .10

21 from CDR. win : l ength (180)

22 where sms = 1

23 group by c a l l e r ID

24 output last every 10 second

25 order by c a l l e r ID desc

26

27 //compare durat ion with last month durat ion

28 //data from the last month i s r e t r i e v e d from the data
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29 //warehouse .

30 select ca l l e r ID , sum( durat ion ) , avg ( durat ion )

31 from CDR. win : l ength (200)

32 group by c a l l e r ID

33 output last every 1 second

34 order by sum( durat ion ) desc ,

35

36 //get best recommended plan

37 //get c l i e n t in fo rmat ion form data warehouse

38 // to compare sugg e s t i on s with cur rent plan

39 select ca l l e r ID , towerID , planType , max( durat ion ) , avg ( durat ion )

40 from CDR. win : l ength (300)

41 where planType = 1 OR planType = 2

42 group by ca l l e r ID , planType

43 having max( durat ion ) <= 150

44 output last every 10 second

45 order by c a l l e r ID

Heavy queries with in-memory lookups with updates (Qh-mlu), regard

the management of cell towers. These queries collect all information of each

cell tower (i.e. total usage, available resources, operation temperature, used

energy, number of clients connected, average time each client is connected,

communications speed) and set it for update of in-memory structures. Fil-

ters for grouping towers and order them are set. The considered window of

data was 300 sec, and each output was set to be done in periods of 5 seconds.

Listing B.4: Heavy queries with in-memory lookups with updates

1 // look up tower l o c a t i o n and s t a tu s into mem

2 //update in memory data regard ing each tower

3 select towerID , towerLocation , . . .

4 from CDR. win : l ength (300)

5 group by towerID

6 output last every 5 second ,

7 order by towerID desc

8

9 // t o t a l o f money spent on c a l l s
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10 //update l o g s into memory

11 select ca l l e r ID , avg ( durat ion ) , sum( durat ion )

12 from CDR. win : l ength (300)

13 where planType = 2

14 group by c a l l e r ID

15 output last every 5 second

16 order by c a l l e r ID desc

17

18 //get c e l l company c a l l s count

19 //update c a l l s made by other companies

20 select cellCompany , count (⇤ ) , sum( durat ion )

21 from CDR. win : l ength (300)

22 group by cellCompany

23 output last every 5 second

24 order by cellCompany

25

26 //Count tower use by c e l l company

27 //update tower load made by other companies

28 select towerID , cellCompany , count (⇤ )

29 from CDR. win : l ength (300)

30 group by towerID , cellCompany

31 output last every 5 second

The queries used to demonstrate the degradation of performance (Qdb-

2) consists on doing a full analysis of the clients to promote the best clients

(e.g. for promotions and bonus) during a configurable time period. These

queries include heavy join tasks in the database side, as well as updates

and inserts both in the database and memory, which increase the processing

weight. A part of join tasks also relate with the analysis of the friends (most

called numbers) of each client, to o↵er them bonus. The considered window

of data was 300 sec. and each output was set to be done in each 60 seconds.

Listing B.5: Heavy queries with in-memory lookups with updates

1 //Analyze bes t costumer f o r promotion

2 //Get from the data warehouse u s e r s p r o f i l e and

3 // p r o f i l e o f the most c a l l e d numbers . Not i fy each
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4 // f r i end , l o g s are c rea ted f o r n o t i f i c a t i o n s .

5 //Update balance o f costumers into memory .

6 select ca l l e r ID , sum( durat ion ) , avg ( durat ion ) , max( durat ion )

7 from CDR. win : l ength (300)

8 group by c a l l e r ID

9 output last every 60 second

10 order by max( durat ion ) asc ,
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Appendix C

Data warehouse queries

This appendix introduces the used queries to test the data warehouse per-

formance and scalability. For more information regarding the used queries

please consult the SSB Benchmark documentation [80].

Listing C.1: Query 1.1

1 select sum( l o ex t endedp r i c e ⇤ l o d i s c oun t ) as revenue

2 from l i n e o rd e r , date

3 where l o o r d e rda t e = d datekey

4 and d year = 1993

5 and l o d i s c oun t between1 and 3

6 and l o quan t i t y < 25 ;

Listing C.2: Query 1.2

1 select sum( l o ex t endedp r i c e ⇤ l o d i s c oun t ) as revenue

2 from l i n e o rd e r , date

3 where l o o r d e rda t e = d datekey

4 and d yearmonthnum = 199401

5 and l o d i s c oun t between4 and 6

6 and l o quan t i t y between 26 and 35 ;
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Listing C.3: Query 1.3

1 select sum( l o ex t endedp r i c e ⇤ l o d i s c oun t ) as revenue

2 from l i n e o rd e r , date

3 where l o o rd e rda t e = d datekey

4 and d weeknuminyear = 6

5 and d year = 1994

6 and l o d i s c oun t between 5 and 7

7 and l o quan t i t y between 26 and 35 ;

Listing C.4: Query 2.1

1 select sum( l o r evenue ) , d year , p brand1

2 from l i n e o rd e r , date , part , s upp l i e r

3 where l o o rd e rda t e = d datekey

4 and l o pa r tk ey = p partkey

5 and l o suppkey = s suppkey

6 and p category = ’MFGR#12 ’

7 and s r e g i o n = ’AMERICA’

8 group by d year , p brand1

9 order by d year , p brand1 ;

Listing C.5: Query 2.2

1 select sum( l o r evenue ) , d year , p brand1

2 from l i n e o rd e r , date , part , s upp l i e r

3 where l o o rd e rda t e = d datekey

4 and l o pa r tk ey = p partkey

5 and l o suppkey = s suppkey

6 and p brand1 between ’MFGR#2221 ’ and ’MFGR#2228 ’

7 and s r e g i o n = ’ASIA ’

8 group by d year , p brand1

9 order by d year , p brand1 ;

Listing C.6: Query 2.3

1 select sum( l o r evenue ) , d year , p brand1

2 from l i n e o rd e r , date , part , s upp l i e r

3 where l o o rd e rda t e = d datekey

4 and l o pa r tk ey = p partkey
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5 and l o suppkey = s suppkey

6 and p brand1 = ’MFGR#2221 ’

7 and s r e g i o n = ’EUROPE’

8 group by d year , p brand1

9 order by d year , p brand1 ;

Listing C.7: Query 3.1

1 select c nat ion , s nat ion , d year , sum( l o r evenue ) as revenue

2 from customer , l i n e o rd e r , supp l i e r , date

3 where l o cu s t k ey = c cus tkey

4 and l o suppkey = s suppkey

5 and l o o r d e rda t e = d datekey

6 and c r e g i on = ’ASIA ’ and s r e g i o n = ’ASIA ’

7 and d year >= 1992 and d year <= 1997

8 group by c nat ion , s nat ion , d year

9 order by d year asc , revenue desc ;

Listing C.8: Query 3.2

1 select c c i t y , s c i t y , d year , sum( l o r evenue ) as revenue

2 from customer , l i n e o rd e r , supp l i e r , date

3 where l o cu s t k ey = c cus tkey

4 and l o suppkey = s suppkey

5 and l o o r d e rda t e = d datekey

6 and c na t i on = ’UNITED STATES ’

7 and s na t i on = ’UNITED STATES ’

8 and d year >= 1992 and d year <= 1997

9 group by c c i t y , s c i t y , d year

10 order by d year asc , revenue desc ;

Listing C.9: Query 3.3

1 select c c i t y , s c i t y , d year , sum( l o r evenue ) as revenue

2 from customer , l i n e o rd e r , supp l i e r , date

3 where l o cu s t k ey = c cus tkey

4 and l o suppkey = s suppkey

5 and l o o r d e rda t e = d datekey

6 and ( c c i t y=’UNITED KI1 ’

7 or c c i t y=’UNITED KI5 ’ )
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8 and ( s c i t y=’UNITED KI1 ’

9 or s c i t y=’UNITED KI5 ’ )

10 and d year >= 1992 and d year <= 1997

11 group by c c i t y , s c i t y , d year

12 order by d year asc , revenue desc ;

Listing C.10: Query 3.4

1 select c c i t y , s c i t y , d year , sum( l o r evenue ) as revenue

2 from customer , l i n e o rd e r , supp l i e r , date

3 where l o cu s t k ey = c cus tkey

4 and l o suppkey = s suppkey

5 and l o o rd e rda t e = d datekey

6 and ( c c i t y=’UNITED KI1 ’ or

7 c c i t y=’UNITED KI5 ’ )

8 and ( s c i t y=’UNITED KI1 ’ or

9 s c i t y=’UNITED KI5 ’ )

10 and d yearmonth = ’Dec1997 ’

11 group by c c i t y , s c i t y , d year

12 order by d year asc , revenue desc ;

Listing C.11: Query 4.1

1 select d year , c nat ion , sum( l o r evenue � l o s upp l y c o s t ) as p r o f i t

2 from date , customer , supp l i e r , part , l i n e o r d e r

3 where l o cu s t k ey = c cus tkey

4 and l o suppkey = s suppkey

5 and l o pa r tk ey = p partkey

6 and l o o rd e rda t e = d datekey

7 and c r e g i on = ’AMERICA’

8 and s r e g i o n = ’AMERICA’

9 and ( p mfgr = ’MFGR#1 ’ or p mfgr = ’MFGR#2 ’ )

10 group by d year , c na t i on

11 order by d year , c na t i on ;

Listing C.12: Query 4.2

1 select d year , s nat ion , p category ,

2 sum( l o r evenue � l o s upp l y c o s t ) as p r o f i t

3 from date , customer , supp l i e r , part , l i n e o r d e r
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4 where l o cu s t k ey = c cus tkey

5 and l o suppkey = s suppkey

6 and l o pa r tk ey = p partkey

7 and l o o r d e rda t e = d datekey

8 and c r e g i on = ’AMERICA’

9 and s r e g i o n = ’AMERICA’

10 and ( d year = 1997 or d year = 1998)

11 and ( p mfgr = ’MFGR#1 ’

12 or p mfgr = ’MFGR#2 ’ )

13 group by d year , s nat ion , p category

14 order by d year , s nat ion , p category ;

Listing C.13: Query 4.3

1 select d year , s c i t y , p brand1 ,

2 sum( l o r evenue � l o s upp l y c o s t ) as p r o f i t

3 from date , customer , supp l i e r , part , l i n e o r d e r

4 where l o cu s t k ey = c cus tkey

5 and l o suppkey = s suppkey

6 and l o pa r tk ey = p partkey

7 and l o o r d e rda t e = d datekey

8 and c r e g i on = ’AMERICA’

9 and s na t i on = ’UNITED STATES ’

10 and ( d year = 1997 or d year = 1998)

11 and p category = ’MFGR#14 ’

12 group by d year , s c i t y , p brand1

13 order by d year , s c i t y , p brand1 ;
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Appendix D

Data warehouse indexes and

views

This section presents the created indexes to optimize the data warehouse

queries and created views, which were updated after each load process.

Listing D.1: Indexes part 1

1 CREATE INDEX L ORDERKEY idx ON LINEITEMORDER (LORDERKEY)

2

3 CREATE INDEX L LINENUMBER idx ON LINEITEMORDER (L LINENUMBER)

4

5 CREATE INDEX L KEYS idx ON LINEITEMORDER (L ORDERKEY, L LINENUMBER,

6 L CUSTKEY, L PARTKEY, L SUPPKEY)

7

8 CREATE INDEX L LINENUMBER L ORDERKEY idx ON LINEITEMORDER (L LINENUMBER,

9 LORDERKEY)

10

11 CREATE INDEX L CUSTKEY idx ON LINEITEMORDER (L CUSTKEY)

12

13 CREATE INDEX L PARTKEY idx ON LINEITEMORDER (L PARTKEY)

14

15 CREATE INDEX L SUPPKEY idx ON LINEITEMORDER (L SUPPKEY)

16

17 CREATE INDEX L ORDERDATE idx ON LINEITEMORDER (LORDERDATE)
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18

19 CREATE INDEX L ORDPRIORITY idx ON LINEITEMORDER (L ORDPRIORITY)

Listing D.2: Indexes part 2

1 CREATE INDEX L SHIPPRIORITY idx ON LINEITEMORDER (L SHIPPRIORITY)

2

3 CREATE INDEX L DISCOUNT idx ON LINEITEMORDER (L DISCOUNT)

4

5 CREATE INDEX L SHIPMODE idx ON LINEITEMORDER (L SHIPMODE)

6

7 CREATE INDEX L REVENUE idx ON LINEITEMORDER (L REVENUE)

8

9 CREATE INDEX L ORDTOTALPRICE idx ON LINEITEMORDER (L ORDTOTALPRICE)

10

11 CREATE INDEX C CUSTKEY idx ON CUSTOMER (C CUSTKEY)

12

13 CREATE INDEX C NAME idx ON CUSTOMER (CNAME)

14

15 CREATE INDEX P PARTKEY idx ON PART (P PARTKEY)

16

17 CREATE INDEX P NAME idx ON PART (P NAME)

18

19 CREATE INDEX P CATEGOTY idx ON PART (PCATEGOTY)

20

21 CREATE INDEX P COLOR idx ON PART (P COLOR)

22

23 CREATE INDEX P SIZE idx ON PART (P SIZE )

24

25 CREATE INDEX S SUPPKEY idx ON SUPPLIER (S SUPPKEY)

26

27 CREATE INDEX S CITY idx ON SUPPLIER (S CITY)

28

29 CREATE INDEX S NATION idx ON SUPPLIER (S NATION)

30

31 CREATE INDEX S REGION idx ON SUPPLIER (S REGION)

32

33 CREATE INDEX S PHONE idx ON SUPPLIER (S PHONE)

34

35 CREATE INDEX S ADDRESS idx ON SUPPLIER (S ADDRESS)

36
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37 CREATE INDEX D DATEKEY idx ON DATETIME (DDATEKEY)

38

39 CREATE INDEX D DATEID idx ON DATETIME (D DATEID)

40

41 CREATE INDEX D DATE idx ON DATETIME (D DATE)

42

43 CREATE INDEX D MONTHSEQ idx ON DATETIME (DMONTHSEQ)

44

45 CREATE INDEX D WEEKSEQ idx ON DATETIME (DWEEKSEQ)

46

47 CREATE BITMAP INDEX D QUARTERSEQ idx ON DATETIME (DQUARTERSEQ)

48

49 CREATE INDEX D WEEKDAY idx ON DATETIME (DWEEKDAY)

50

51 CREATE INDEX DYEARMONTHNUM idx ON DATETIME (DYEARMONTHNUM)

52

53 CREATE INDEX D WEEKNUMINYEAR idx ON DATETIME (DWEEKNUMINYEAR)

54

55 CREATE BITMAP INDEX D HOLIDAY idx ON DATETIME (D HOLIDAY)

56

57 CREATE BITMAP INDEX D WEEKEND idx ON DATETIME (DWEEKEND)

The created views for update are as follow.

Listing D.3: View 1.1

1 select sum( l o ex t endedp r i c e ⇤ l o d i s c oun t ) as revenue

2 from l i n e o rd e r , date

3 where l o o r d e rda t e = d datekey

4 and l o quan t i t y < 25

Listing D.4: View 1.2

1 select sum( l o ex t endedp r i c e ⇤ l o d i s c oun t ) as revenue

2 from l i n e o r d e r

3 Where l o quan t i t y between 26 and 35

Listing D.5: View 1.3
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1 select sum( l o ex t endedp r i c e ⇤ l o d i s c oun t ) as revenue

2 from l i n e o rd e r , date

3 where l o o rd e rda t e = d datekey

4 and l o d i s c oun t between 5 and 7

Listing D.6: View 2.1

1 select sum( l o r evenue ) , d year , p brand1

2 from l i n e o rd e r , date , s u pp l i e r

3 where l o o rd e rda t e = d datekey

4 and s r e g i o n = ’AMERICA’

Listing D.7: View 2.2

1 select sum( l o r evenue ) , d year , p brand1

2 from l i n e o rd e r , date , s u pp l i e r

3 where l o o rd e rda t e = d datekey

4 and s r e g i o n = ’ASIA ’

Listing D.8: View 2.3

1 select sum( l o r evenue ) , d year , p brand1

2 from l i n e o rd e r , date

3 where l o o rd e rda t e = d datekey

4 and s r e g i o n = ’EUROPE’

Listing D.9: View 3.1

1 select c nat ion , d year , sum( l o r evenue ) as revenue

2 from customer , l i n e o rd e r , date

3 where l o cu s t k ey = c cus tkey

4 and d year >= 1992 and d year <= 1997

Listing D.10: View 3.2

1 select c c i t y , s c i t y , sum( l o r evenue ) as revenue

2 from customer , l i n e o rd e r , s upp l i e r

3 where l o cu s t k ey = c cus tkey

4 and c na t i on = ’UNITED STATES ’

5 and s na t i on = ’UNITED STATES ’
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Listing D.11: View 3.3

1 select c c i t y , s c i t y , d year , sum( l o r evenue ) as revenue

2 from customer , l i n e o rd e r , supp l i e r , date

3 where l o cu s t k ey = c cus tkey

4 and l o suppkey = s suppkey

5 and l o o r d e rda t e = d datekey

6 and d year >= 1992 and d year <= 1997

Listing D.12: View 3.4

1 select c c i t y , s c i t y , sum( l o r evenue ) as revenue

2 from customer , l i n e o rd e r , s upp l i e r

3 where l o cu s t k ey = c cus tkey

4 and l o suppkey = s suppkey

5 and ( c c i t y=’UNITED KI1 ’ or

6 c c i t y=’UNITED KI5 ’ )

Listing D.13: View 4.1

1 select c nat ion , sum( l o r evenue � l o s upp l y c o s t ) as p r o f i t

2 from customer , supp l i e r , part , l i n e o r d e r

3 where l o cu s t k ey = c cus tkey

4 and c r e g i on = ’AMERICA’

5 and s r e g i o n = ’AMERICA’

Listing D.14: View 4.2

1 select s nat ion , p category

2 from customer , supp l i e r , part , l i n e o r d e r

3 where l o cu s t k ey = c cus tkey

4 and l o suppkey = s suppkey

5 and p category = ’MFGR#14 ’

Listing D.15: View 4.3

1 select d year , s c i t y , p brand1 , sum( l o r evenue � l o s upp l y c o s t ) as p r o f i t

2 from date , customer , supp l i e r , part , l i n e o r d e r

3 where l o cu s t k ey = c cus tkey

4 and l o suppkey = s suppkey
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5 and l o pa r tk ey = p partkey

6 and s na t i on = ’UNITED STATES ’

7 and ( d year = 1997 or d year = 1998)



Appendix E

API specification

This appendix describes AScale API configuration for each part of the frame-

work pipeline.

E.1 Data Sources

An AScale module ”data loader” must be configured in the ”data source”

side to allow connection from AScale extraction module.

Listing E.1: AScale maximum data chunk size

1 aScaleSetMaxDataChunkSize (

2 50MB) ; //maximum data chunk s i z e

Listing E.1 shows the configuration of the maximum size of the data

chunks that are transferred along the AScale modules.

Listing E.2: Data loader configuration

1 dataLoaderSetLog (

2 ” log1 ” , // log ID
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3 ” . . / home/ , // log s to rage path

4 ” stock ” , // log f i l e name

5 ”�”); // l og f i l e p r e f i x be f o r e s e qu en t i a l numbering

Listing E.2, shows ”Data Loader” configuration for AScale extraction.

Data extraction is made following the file sequence (e.g. stock-0, stock-1,

stock-2). To avoid read and write conflicts, a file n is only loaded when n+1

is created. After data extraction completed the file is deleted.

Listing E.3: Data loader max memory configuration

1 dataLoaderMaxMemory (

2 ”1GB” ) ;

Listing E.3, shows the memory size configuration for the data loader

nodes. This memory is used to read the available data into memory and

make it available for extraction by the data sources.

E.2 Extraction nodes

Data is extracted from data sources using a default approach based on AS-

cale scheduler extraction algorithm. A Scheduler module collects the avail-

able data size information of each data source. Then an extraction node

(the one that is free to work) is selected to extract data from a specific data

source.

Listing E.4: Extraction, logs configuration

1 extractSetDataSourceLog (

2 ” source1 ” , // data source ID
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3 {” logA ” ,” logB ”} , // l og f i l e s ID

4 {”⇤ 1 ⇤ ⇤ ⇤ ⇤ ⇤” , ”⇤ 2 ⇤ ⇤ ⇤ ⇤ ⇤”} , // ex t r a c t i on f requency

5 {”7h” , ”7h ”} ) ; //maximum ex t r a c t i on time

Listing E.4 shows how to configure ”data sources” data logs formats.

Note that the extraction frequencies (e.g. every 5 minutes) are configured

using the Unix crontab format, where the stars mean: second (0-59), minute

(0-59), hour (0-23), day of month (1-31), month (1-12), day of week (0-6),

year (1970-2099).

Listing E.5: Extraction data source format

1 extractSetDataSourceFormat (

2 ” source1 ” , // source ID

3 ” logA ” , // source l og f i l e ID

4 ” |” , //column separa t e cha rac t e r

5 ”\n ” ) ; //row separa te cha rac t e r

Listing E.5, shows the configuration of the data sources data format.

Listing E.6: Extraction policy, definition

1 extractSetExtractMode (

2 ” schedulerBased ” ) ;

Listing E.6, shows the definition of the default extraction policy to be

applied to extract data from the data sources. Other policies can be applied

such as manual or round-robin.

Listing E.7: Extraction policy, manual

1 extractSetExtractFrom (
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2 ” extract ID ” , // ex t r a c t i on node ID

3 ” source1 ” , // data source to ex t r a c t data from

4 ” logA ” ) ; // data log to be ext rac t ed

Listing E.7 shows the required configuration for manual extraction pol-

icy.

Listing E.8: Extraction send policy configuration

1 ext rac tSe tSendPo l i cy (

2 ”LWR” ) ;

Listing E.8, shows the configuration of the data policy used to send data

from the extraction nodes into the transformation nodes. By default lest-

work-remaining data distribution is used. However others can be used such

as, manual data distribution, or round-robin data distribution.

Listing E.9: Extraction configure manual send policy

1 extractSetSendTo (

2 ” ex t rac t1 ” , // ex t r a c t node ID

3 ” transformNode1 ” ) ; // t rans fo rmat ion node ID

Listing E.9 shows how to configure manual data distribution policy.

E.3 Transformation configuration

In this section we describe how to configure the the transformation nodes.
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Listing E.10: Transformation, configuring queue size

1 transformSetMaxSize (

2 ”16GB” , //maximum al lowed memory s i z e

3 ”5GB” , // l im i t f r e e memory s i z e , b e f o r e data swap in to d i sk

4 ”500GB” ) ; //maximum di sk s to rage s i z e

Listing E.10, shows how to configure the data queue size.

Listing E.11: Transformation API get data

1 array [ ] = transformGetExtractData ( ) ;

Listing E.11 shows AScale library and web service API to get data.

Listing E.12: Transformation API submit data

1 transformSetOutput (

2 ”112 |Pedro | 3 0 | Portugal \n” , // transformed data

3 ” |” , //column separa t e cha rac t e r

4 ”\n” , //row separa te cha rac t e r

5 ” u s e r s ” ) ; //data�warehouse schema corre spond ing tab l e

Listing E.12 shows the API to set data back to AScale after transforma-

tions applied.

Listing E.13: Transformation data send policy

1 trans formSetSendPol i cy (

2 ”LWR” ) ;

Listing E.13 shows how to configure the data distribution policy from

the transform nodes into the data bu↵er nodes. By default LWR is applied.
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However other policies can be applied such as manual data distribution, or

round-robin.

Listing E.14: Transformation, manual distribution policy

1 trans formSetSendPol i cy (

2 ” trasnform1 ” , // trans form node ID

3 ”dataBufferNode1 ” ) ; // d e s t i n a t i on data bu f f e r ID

Listing E.14, shows how the manual data distribution policy can be con-

figured.

E.4 Data bu↵er

The ”data bu↵er” functions as a data storage to hold recent transformed

data until the next load instant.

Listing E.15: Data Bu↵er size configuration

1 dataBu f f e rSe tS i z e (

2 ” dataBuf fe r1 ” , // data bu f f e r Id name

3 ”10GB” , //maximum memory s i z e

4 ”5GB” , // l im i t memory s i z e be f o r e data swap

5 ”1TB” , //maximum di sk s i z e

6 ”D: ” ) // d i sk s to rage l o c a t i o n

Listing E.15 shows the configuration parameters to set the data bu↵er

sizes that will allow it to scale if necessary.
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E.5 Data Switch

Data switch nodes extract data from the data bu↵ers and set it into the data

warehouse nodes to be loaded. Note that by default the extraction policy

from the ”data bu↵er” nodes is commanded by the scheduler.

Listing E.16: Data Switch maximum supported data-rate

1 dataSwitchSetDataRate (

2 ”dataSwitch1 ” , // data switch Id name

3 ”80000 l / s ” //maximum supported data�r a t e

4 ”5m” ) ; //maximum al lowed time at the maximum data ra t e

Listing E.16 shows the data switch configuration regarding the maxi-

mum supported data-rate.

If this value (data-rate) is reached for the duration of a certain time frame,

AScale scales-out the data switch nodes.

Listing E.17: Data Switch replication configuration

1 dataSwitchSetSchemaRepl icat ion (

2 ” nat ion ” , //data�warehouse schema tab l e

3 t rue ) ; // t rue � f o r data r e p l i c a t i o n by a l l nodes

Listing E.17 shows the replication configuration command line. The de-

veloper must specify which tables, present in the data warehouse schema,

should be replicated.

Listing E.18: Data Switch extraction policy configuration

1 dataSwitchSetExtractPo l i cy (

2 ” schedulerBased ” ) ;
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Listing E.18 shows the data switch data extraction configuration API.

By default a scheduler based extraction is applied. However others can be

configured, ”round-robin”, ”manual”, ”LWR” from the data bu↵ers nodes

holding more data.

Listing E.19: Data Switch manual extraction policy configuration

1 dataSwitchSetExtractFrom (

2 ”dataSwitch1 ” , // data switch ID

3 ” bu f f e r 1 ” ) ; // data bu f f e r ID to ex t r a c t data from

Listing E.19 shows the manual data extraction configuration parameters.

Listing E.20: Data Switch manual load policy configuration by table refer-

encing

1 dataSwitchSetManualLoadPolicyByTable (

2 ” nat ion ” , // data warehouse schema tab l e name

3 ”DWnode1” ) ; // data warehouse d e s t i n a t i on node ID

Listing E.20 shows the data load policy configuration to select specific

data to be stored into specific data warehouse nodes.

E.6 Data warehouse

Listing E.21: Data warehouse connection

1 dataWarehouseSetConnection (

2 ” o r a c l e ” , // vendor eng ine ID

3 ”AScaleDB” // database name

4 ” o r c l ” // database user name

5 ”12345”) ; // database password
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Listing E.21 shows the connection configurations for the database.

Listing E.22: Data warehouse load configuration

1 dataWarehouseSetLoad (

2 ”⇤ 30 1 ⇤ ⇤ ⇤” , // load f requency (UNIX cron tab format )

3 ”5h” , //maximum load time

4 ”100MB” ) ; //maximum batch f i l e s i z e

Listing E.22 shows, the data warehouse load configuration.

Listing E.23: Data warehouse schema configuration

1 dataWarehouseSetSchema (

2 ” / . . . / s c r i p t ” ) ;

Listing E.23 shows the data warehouse schema configuration. The schema

must be submitted in standard SQL format. The indexes, views and key

identifiers must be defined. All nodes have the same schema.

Listing E.24: Data warehouse pre-load and post-load configurations

1 dataWarehouseSetPreLoadTasks (

2 ” . . /⇤/ preLoad . s q l ” ) ;

3

4 dataWarehouseSetPostLoadTasks (

5 ” . . /⇤/ posLoad . s q l ” ) ;

Listing E.24 shows the pre-load and post-load configurations to be ap-

plied before loading data and after the loading process. A set of tasks can

be set to be performed, such as: destroy indexes, remove/add/clean tables,

create/destroy views.
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E.7 Queries

Queries can execute in the data warehouse and/or dynamic data warehouse.

For all queries a maximum acceptable execution time is considered. If this

time is not fulfilled the data warehouse nodes scale-out.

Listing E.25: Maximum query execution time configuration

1 querySetMaxDWQueryExecutionTime (

2 value ) ; //maximum de s i r ed execut ion time

3

4 querySetMaxD�DWQueryExecutionTime (

5 value ) ; //maximum de s i r ed execut ion time

Listing E.25 shows the API to configure the maximum query execution

time.

Listing E.26: Query execution

1 array [ ] = querieSetRun (

2 ”SELECT ⇤ FROM customer ” , // query in SQL format

3 ”DW” ) ; // data warehouse to use ”DW” or ”D�DW” or both

Queries can run at the DW and/or D-DW.

Output parameters: an array in text format with the query results.

E.8 Freshness

The specification of the API to configure and support fresh results is as

follows.
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Listing E.27: Configuring the dynamic data warehouse bu↵er queue

1 dynamicDWSetScale (

2 ”10GB” , //maximum queue s i z e

3 ”1GB” ) ; // l im i t s i z e be f o r e s ca l i ng�out

Listing E.27 shows the configuration command to set the maximum

dynamic-data-warehouse memory size and the limit memory size to trig-

ger the scaling mechanisms.

Listing E.28: Configuring the dynamic data warehouse load size

1 dynamicDWSetLoad (

2 ”batch ” , // load method

3 ”10MB” ) ; // the number o f l i n e s or s i z e

4

5 dynamicDWSetLoad (

6 ”row�by�row” , // load method

7 10 ) ; // the number o f l i n e s or s i z e

Listing E.28 shows the two di↵erent method supported at the dynamic-

data-warehouse to load data, batch based or row-by-row.

Listing E.29: Configuring full availability, 24/7

1 l oade rSe t 24Rep l i c a t i on (

2 t rue / f a l s e ) ;

Listing E.29 shows the configuration to achieve full availability, 24/7

query answering can be achieved by replication of the data warehouse, and

D-DW nodes. When data is being loaded into one node the other is used to

answer queries, and vice-versa.
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Appendix F

XML Configuration

In this appendix we show an example of a possible XML configuration file.

Listing F.1: XML configuration file sample

1 <XML>

2

3 <maxDataChunkSize>50MB</maxDataChunkSize>

4

5 <DataSource>

6

7 <ID>source1</ID>

8 <Locat ion>192 . 1 6 8 . 1 . 1 :1234</Locat ion>

9 <MaxMem>500MB</MaxMem>

10 <columnCharacter> |</ columnCharacter>

11 <l i n eCharac t e r>\n</ l i n eCharac t e r>

12

13 <DataSourceLog>

14 <name>logA</name>

15 <baseFileName>s tock</baseFileName>

16 <sequenceSeparateCharacter> </ sequenceSeparateCharacter>

17 <f r equency>⇤/10 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤</ f requency>

18 <maxDuration>5 s</maxDuration>

19 </DataSourceLog>

20

21 <DataSourceLog>

22 <name>logA</name>

197
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23 <baseFileName>s a l e s</baseFileName>

24 <sequenceSeparateCharacter> </ sequenceSeparateCharacter>

25 <f r equency>⇤/10 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤</ f requency>

26 <maxDuration>5 s</maxDuration>

27 </DataSourceLog>

28

29 </DataSource>

30

31 <Extract ion>

32

33 <Extrac tPo l i cy>schedulerBased</ Extrac tPo l i cy>

34 <SendPol icy>LWR</SendPol icy>

35

36 </Extract ion>

37

38 <Transformation>

39

40 <MaxMem>10GB</MaxMem>

41 <limitMem>5GB</MaxMem>

42 <SendPol icy>LWR</SendPol icy>

43

44 </Transformation>

45

46 <DataBuffer>

47

48 <ID>DataBuffer1</ID>

49 <MaxMem>10GB</MaxMem>

50 <swapMemLimit>5GB<swapMemLimit>

51 <MaxDisk>1TB</MaxDisk>

52 < l o c a t i o n> . . / home/</ l o c a t i o n>

53 <limitMem>5GB</MaxMem>

54

55 </DataBuffer>

56

57 <DataSwitch>

58

59 <performance>

60 <ID>dataSwitch1</ID>

61 <maxDataRate>80000</maxDataRate>

62 <maxDataRateTime>2m</maxDataRateTime>

63 </performance>

64
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65 <ExtractMode>schedulerBased</ExtractMode>

66

67 <r e p l i c a t e>

68 <name>nat ion</name>

69 <name>time</name>

70 <name>c l i e n t s</name>

71 </ r e p l i c a t e>

72

73 <d i s t r i b u t e>

74 <name> l i n e i t em</name>

75 </ d i s t r i b u t e>

76

77 </DataSwitch>

78

79 <DataWarehouse>

80

81 <f r equency>⇤ 30 1 ⇤ ⇤ ⇤ ⇤</ f requency>

82 <maxDuration>5h</maxDuration>

83 <batchS ize>100MB</ batchS ize>

84 <schema> . . / home/schema . s q l</schema>

85 <preLoad> . . / home/preLoad . s q l</preLoad>

86 <posLoad> . . / home/posLoad . s q l</posLoad>

87

88 <connect ion>

89 <ID>dw1</ID>

90 <dbEngine>o r a c l e</dbEngine>

91 <db>AScaleDB</db>

92 <usename>o r c l</username>

93 <pass>12345</ pass>

94 </ connect ion>

95

96 </DataWarehouse>

97

98 <query>

99

100 <maxDurationDW>5m</maxDurationDW>

101 <maxDurationD�DW>1m</maxDurationD�DW>

102

103 </query>

104

105 </XML>
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