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ABSTRACT

Visual recognition systems are extremely data-hungry. To accurately
recognize a new kind of object, a learning algorithm requires a mas-
sive dataset of example images, often augmented artificially by crop-
ping different image regions. More examples seem to invariably raise
the computational burden of learning. Is this an inescapable fact? In
this thesis, we show that it is not true – that the structure of these
datasets hides important shortcuts. The key observation is that sam-
ples are not independent, since samples cropped from the same im-
age sharemost pixels. Using an analytical model of image translation,
the cyclic shift, we show that the resulting dataset contains circulant
matrices. As a result, we can diagonalize it with the Discrete Fourier
Transform (DFT), which reduces both storage and computation by
orders of magnitude. The use of the DFT further reveals an interest-
ing link to correlation filters from classical signal processing. We ac-
celerate learning algorithms such as Ridge Regression and Support
Vector Regression, addressing linear and non-linear kernel methods.
We propose two trackers, the Dual and Kernelized Correlation Fil-
ters, which run at hundreds of frames-per-second, and yet perform
better than more complex trackers on a 50 videos benchmark. For de-
tection, we propose a decomposition that is several times faster than
hard-negative mining, a staple of detector learning. We also general-
ize these results for other kinds of datasets, such as rotated images or
non-rigidly deformed images, which accelerates the learning of pose
estimators. The proposed solutions require only a few lines of code
to implement, relying on the Fast Fourier Transform and optional off-
the-shelf solvers for the bulk of the computations, which easily run
in parallel. The software produced during this thesis is open-source.

Keywords: Computer vision, machine learning, circulant matrices, Dis-
crete Fourier Transform, correlation filters, image transformations, visual
tracking, object detection, pose estimation.
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RESUMO

Os sistemas de reconhecimento visual necessitam de vastas quanti-
dades de dados. Para reconhecer um novo tipo de objecto, um al-
goritmo de aprendizagem requer uma grande base de dados de
imagens-exemplo, muitas vezes aumentada artificialmente através
da extracção de diferentes regiões dessas imagens. Intuitivamente,
processar mais exemplos implica aumentar invariavelmente o custo
computacional do processo de aprendizagem. Será que esta intuição
corresponde à realidade? Esta tese demonstra que tal não é verdade
– que a estrutura destas bases de dados contém atalhos ainda inex-
plorados. A principal observação é que as amostras não são indepen-
dentes, já que amostras extraídas da mesma imagem vão ter vários
píxeis em comum. Com base num modelo analítico da translação de
imagem, chamado “deslocação cíclica”, é demonstrado que a base de
dados resultante contém matrizes circulantes. Consequentemente,
podemos diagonalizá-la com a Transformada de Fourier Discreta
(TFD), o que reduz significativamente os requisitos de armazena-
mento e de computação. O uso da TFD revela uma ligação impor-
tante aos filtros de correlação estudados em processamento de sinal.
Demonstra-se que é possível acelerar algoritmos de aprendizagem
tais como o método dos mínimos quadrados com regularização, e
regressão de vectores de suporte, abordando tanto métodos lineares
como de kernel (núcleo). São propostos dois métodos de seguimento
visual, o Filtro deCorrelaçãoDual e o deKernel, capazes de processar
vídeo a centenas de imagens por segundo, e que demonstram maior
precisão que outrosmétodosmais complexos numa base de dados de
50 vídeos. Para detecção de objectos, é proposta uma decomposição
várias vezes mais rápida que a procura sistemática de exemplos neg-
ativos, o método mais comum de aprendizagem de detectores. Estes
resultados são também generalizados para outros tipos de bases de
dados, tais como imagens que sofreram rotação ou deformações não-
rígidas, o que permite ainda acelerar detectores de pose. As soluções
propostas podem ser implementadas com poucas linhas de código,
usando apenas a Transformada de Fourier Rápida, e opcionalmente
algoritmos de aprendizagem externos, que podem ser executados em
paralelo. O código-fonte relativo a esta tese é de acesso livre.
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“Your assumptions are your windows on the world.
Scrub them off every once in a while,

or the light won’t come in.”

—Alan Alda [1]
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1
INTRODUCT ION

The aim of computer vision is to answer meaningful questions about
images and video in an automatic way. Although computer vision is
a vibrant field and there are a myriad questions that fall under this
umbrella, a central problem is that of object recognition – knowing
what objects are present, their locations and perhaps other quantita-
tive and qualitative properties. An autonomous system with such a
capability can be argued to possess a small degree of intelligence, and
its development presents a modest but sure step towards an under-
standing of cognition [113].
Going beyond pure scientific curiosity, the recent successes of com-

puter vision have catalyzed a wealth of commercial applications that
are now commonplace. Automatic focus on faces in consumer cam-
eras [71], unsupervised tagging and categorization of photos on the
internet [96, 31], biometric locking of smartphones [53], and gesture-
based interfaces for games and entertainment [50] are only a few ex-
amples.
The visual world has enough confounding factors, noise, ambigu-

ity and missing information that an accurate physical model of vi-
sion would be too complicated and brittle to use for recognition. In
fact, the most developed biological vision systems are not born with
the ability to see, but the ability to learn to see [113]. Some aspects
of recognition are innate while others must be learned, a middle-
ground within the old nature vs. nurture debate in psychology [107].
In the context of artificial vision systems, these concepts can be

given very precise meanings. The nature aspect corresponds to the
features of the system which are fixed – the architecture or mathe-
matical model, that predicts the sought answer from an image. The
nurture aspect corresponds to the features of the system which are
adaptable, and can have different values depending on the environ-
ment – the free parameters of the model. The choice of model must
reflect prior knowledge that is independent of the environment (e.g.
assuming the model belongs to a known family of equations). On the
other hand, the free parameters will reflect the particular vagaries of
the environment and can only be chosen based on empirical data (e.g.
images, measurements and annotations from the real world).
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2 introduction

Finding the optimal parameters that best fit the empirical data, re-
ferred to as the learning process, usually takes the center stage in
most modern systems. However, prior knowledge is still present, im-
plicit in the skillfull engineering of a system. A canonical example
is the use of image features instead of pixels, such as Histograms of
Oriented Gradients (HOG) [30] or Scale Invariant Feature Transform
(SIFT) [82], that are invariant to local non-rigid deformation and illu-
mination. Thus these sources of image variability, which are often not
important for recognition tasks, are discarded. Another common ex-
ample is the application of themodel tomultiple regions of the image,
in a sliding-windowmanner, which expresses a form of invariance to
translation.
The implicit nature of these assumptions can make their engineer-

ing very dependent on intuition and experimentation. It would be
more desirable to enforce explicit assumptions, such as invariance to
translation or rotation, in a systematic manner. Unfortunately, this
can lead to hard to analyze and sometimes even intractable models
[94, 110, 131].
A simple solution is to only enforce the assumption approximately,

by use of virtual samples. The empirical data generally consists of a
set of samples (e.g. images). Using the prior knowledge that a trans-
formation (e.g. translation or rotation) does not change the meaning
of an image, we can generate new virtual samples by applying the
transformation to the original samples.
Virtual samples are commonly used in practice [37, 76, 44, 30, 33],

though they are usually treated as an engineering trick and given rel-
atively little discussion. There are two main issues surrounding their
use. The first is that, since they are perceived as somewhat obvious
and ad-hoc, they have been subjected to relatively little analysis. Nev-
ertheless, an important result by Niyogi et al. [98] states that the use
of virtual samples can be equivalent to explicit invariance assump-
tions, making them theoretically well justified. The second issue is
their high computational demand. Generating new virtual samples
invariably increases the size of the learning problem, many times by
a large factor. This seriously inhibits the amount of virtual samples
that are used in practice, and thus the quality of the invariance ap-
proximation that can be achieved.

In this thesis, we aim to solve the efficiency issue of virtual samples.
We begin by making the observation that solving a standard learn-
ing problem with explicitly generated virtual samples is computa-
tionally wasteful, because the samples are highly correlated. This can
be easily understood from the intuitive fact that, after transforming



1.1 background 3

an image by translation, most pixels remain the same – they are sim-
ply assigned to different positions. The same observation holds for
more complicated transformations such as scale, rotation and even
non-rigid deformations.
Wepropose a theoretical frameworkwhereby translations aremod-

eled as cyclic shifts (Chapter 3). The key insight is that datasets with
many virtual samples generated by cyclic shifts will acquire circu-
lant structure. Leveraging the relationship between circulant matri-
ces and the Discrete Fourier Transform, we formulate several learn-
ing algorithms in a new basis that eliminates all the correlations that
arise fromvirtual samples, reducing computation by orders ofmagni-
tude (Chapters 4 and 5). The proposed formulations have the attrac-
tive properties of being closed-form, using Fast Fourier Transform
operations, and that they decompose the learning problem into par-
allelizeable chunks. At their core, the decomposed chunks are similar
in form to the original learning problem, so they can be solved using
standard machinery, which enables the use of highly optimized off-
the-shelf libraries.
The same results are then extended to other image transforma-

tions, using a variation of the cyclic shift model and circulant matri-
ces (Chapter 6). Because those transformations often do not admit a
simple description as a function of the input image, an important in-
novation is the use of an implicit transformation model. The optimal
solution is computed taking into account a transformationmodel that
is latent in example data, but never instantiated by the algorithm. In
this way, we can accelerate learning problems with virtual samples
obtained by planar rotation, but also highly non-trivial transforma-
tions such as out-of-plane rotation and non-rigid deformation.

1.1 background

To provide some context to the contributions in this thesis, it is impor-
tant to have a notion of how discriminative learning algorithms are
typically used in computer vision. We provide a broad overview in
Section 1.1.1, which can be safely skipped by someone familiar with
this setting.
Sections 1.1.2 and 1.1.3 will then describe what we call the sam-

pling problem, and focus on previous work that is more directly re-
lated to the theoretical framework that we develop. Reviews of the
literature pertaining to specific applications are given within each
chapter of this thesis, where they are themost relevant (Chapters 4-6).
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1.1.1 Image recognition

The image recognition task that is probably most directly formulated
as a learning problem is image classification [105, 69, 78, 55, 116].
Given an image containing mostly a single object, the task is to iden-
tify it from a discrete set of classes, such as cats, dogs or humans.
Scene classification and fine-grained categorization are related vari-
ants [78, 116].
Instead of learning amodel over rawpixels, the input to the learned

model is typically a representation extracted by amulti-stage pipeline,
with the goal of exhibiting invariance to a number of confounding fac-
tors. The first stage is usually the extraction of local features over a
grid of locations, such as Histograms of Oriented Gradients (HOG)
[30], Scale Invariant Feature Transform (SIFT) [82], or Local Binary
Patterns (LBP) [99], to mention a few popular descriptors. They are
locally invariant to brightness and illumination changes, since most
are based on edge detection, and show some invariance to local defor-
mations, by computing statistics over small regions. For that reason,
such features are commonly used as a first processing step in virtu-
ally all recognition tasks, not just classification. To illustrate this point,
we should mention that this is the case for most experiments in this
thesis, which are based on HOG features.
Somewhat more specific to classification is a coding or pooling

stage, which computes global statistics to form the final representa-
tion of the image. Examples are vector quantization or bag-of-words
models [126], spatial pyramids [78, 55], Fisher vectors [105] and Vec-
tor of Locally Aggregated Descriptors (VLAD) [69]. The global aggre-
gation implicitly yields some invariance to geometric transformations
and distortions. A discriminative learning algorithm then learns to
predict the image class from this representation. Because the output
is discretized into classes, the model in this case is called a classifier.
A relatively large dataset of input-output pairs is needed for the al-
gorithm to learn the model’s parameters, in this case images and the
correct (ground-truth) class.
In the same way, it is also possible to learn a classifier to predict

the presence of an object, i.e. the classes are object and non-object
(positive and negative classes, respectively). We can then test for the
presence of the object at several locations of an image, and in this
way perform object detection [30, 44, 13, 135]. Due to the computa-
tionally intensive nature of evaluating the model at many locations,
the global aggregation techniques used for classification are not com-
mon in detection. For that reason, many successful detectors employ
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one or more simple linear models over HOG features, evaluated in a
sliding-window manner and at multiple scales [30, 44, 13, 135]. Slid-
ing-window detectors were made popular by the well-known Viola-
Jones detector [141]. Competitive detectors require large amounts of
negative samples, which are also collected using a sliding window.
This means that negative samples are related by translation, and can
be instantiated as virtual samples. We exploit this fact to accelerate
learning, and discuss detection in more detail in Chapter 5.
A very related problem is that of single-object tracking, which con-

sists of following an object given only its initial position and size
[127, 148]. It can also be addressed as a detection problem, sharing
the same basic approach discussed earlier. A major difference is that
as the object is re-detected in a new frame of video, the learnedmodel
should be updated to account for the new empirical data that it pro-
vides. In this view, tracking is an online learning problem, as oposed
to the batch learning problems of detection and classification.We dis-
cuss the problem of tracking inmore detail in Chapter 4. The samples
collected in a new frame are also obtained by translation, and since
they all belong to the same image we can make some simplifying as-
sumptions in our analysis of virtual samples.
Predicting other extrinsic aspects of an object’s appearance is usu-

ally called pose estimation [106, 4]. They may include rigid pose pa-
rameters, such as an object’s rotation or position relative to the cam-
era, either in 2D or 3D [140]. They may also include non-rigid de-
formation parameters, such as the relative angles of a person’s joints
[106]. It is possible to learn a model that predicts the pose directly, as
real-valued, continuous variables [106, 4, 140]. Another approach is
to discretize it into a set of poses, and to learn a classifier to identify
each pose [13, 88]. This method can more directly benefit from the
advances in classifier and detector learning. It also makes it easier to
trade-off computation (by increasing the number of discrete poses)
for increased accuracy. Pose estimation is discussed in more detail
in Chapter 6, where the proposed formulation for virtual samples al-
lows us to accelerate the learning process significantly.

1.1.2 The sampling problem

A serious challenge for learning algorithms when applied to com-
puter vision is what we will call the “sampling problem”. It is mostly
an issue of exploiting prior knowledge well. Consider an image that
will be used as a sample for learning. Most of the time, any subre-
gion of that image is an equally valid sample. This is especially true



6 introduction

for negative samples (i.e. samples that do not contain an object of
interest). Thus, a single image can be a virtually limitless source of
samples. Traditional methods deal with this fact by selecting a lim-
ited number of samples per image, due to hardware limitations on
available memory [30, 44, 151, 73, 117].
The most straightforward method is to simply select the samples

randomly, a technique that is most prevalent in tracking applications
due to their time-sensitive nature [151, 73, 6, 117, 57]. On the other
hand, detector learningmostly relies on hard-negativemining,which
is performed offline [44]. It consists of first training an initial detector
using random samples (similarly to tracking). This detector is then
evaluated on a pool of images, and any wrong detections (named
“hard-negatives”) are selected as samples for re-training. Hard-nega-
tive mining is a very expensive process, but crucial for good detector
performance.We discuss it inmore detail in Chapter 5. A similar tech-
nique is used also in tracking, where detection mistakes are found
using a set of structural constraints [73].
A related issue can also occur when evaluating a detector. In or-

der to localize an object, the learned model is evaluated over many
subregions of an image. The amount of computation is proportional
to the amount of subregions that are considered, mirroring the sam-
pling problem in learning. Several ideas have been proposed in the
literature to address this problem. One of them is to use branch-and-
bound to find the maximum of a classifier’s response while avoid-
ing unpromising candidate regions [77]. Unfortunately, in the worst-
case the algorithmmay still have to iterate over all regions. Though it
does not preclude an exhaustive search, another notable optimization
is to use a fast but inaccurate classifier to select promising regions,
and only apply the full, slower classifier on those [59, 139]. A related
method can quickly discard regions (and thus their subregions) for
which the evaluated score will be considered too low [3], however it
is formulated only for distances between image pairs.
Although itmaynot be apparent at first, virtual samples provide an

elegant solution to the sampling problem, making it more amenable
to analysis. Subregions of an image extracted at slightly different lo-
cations are related by translation. One may approximate them from
one subregion by generating virtual samples by translation. The ap-
proximation is accurate for most pixels, differing only at the borders.
We propose to use virtual samples to approximate learning with all
possible subregions of several images, which if done naively would
be impossible using current hardware. The algorithms proposed in
Chapters 4 and 5 allow training with all virtual sample translations
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at a fraction of the computational cost of standard methods, such as
hard-negative mining.

1.1.3 Fourier-domain methods

The initial motivation for this line of research was the recent suc-
cess of correlation filters in tracking [11, 10]. Correlation filters have
proved to be competitive with far more complicated approaches, but
using only a fraction of the computational power, at hundreds of
frames-per-second. They take advantage of the fact that the convo-
lution of two images (loosely, their dot-product at different relative
translations) is equivalent to an element-wise product in the Fourier
domain. Thus, by formulating their objective in the Fourier domain,
they can specify the desired output of a linearmodel for several trans-
lations, or image shifts, at once.
Fourier transforms have long been used to perform fast convolu-

tion, and were employed recently to accelerate detectors at test time
[38]. They were also used to accelerate detector training, by modi-
fying an SVM solver with a more efficient subgradient computation
[39]. A Fourier domain approach can be very efficient, and has several
decades of research in signal processing to draw from [83, 86, 10]. Un-
fortunately, it can also be extremely limiting. We would like to simul-
taneously leverage more recent advances in computer vision, such as
more powerful features, large-margin classifiers or kernel methods
[36, 44, 121].
This hinted that a deeper connection between learning algorithms

and the Fourier domain was necessary to overcome the limitations of
direct Fourier formulations, motivating the present work.



8 introduction

1.2 outline

This thesis is organized into 3 introductory chapters, followed by 3
chapters with core contributions, and a concluding chapter.

• Chapter 1 motivates the proposed approach by presenting the
“sampling problem”, and provides some background on how it
fitswithin the broader context of object recognition in computer
vision. More detailed expositions of the state-of-the-art in each
application are deferred to the appropriate chapters (Chapters
4-6).

• Chapter 2 briefly reviews the concepts of regularized risk min-
imization, the dual space, the kernel trick, and shows some ex-
amples of machine learning algorithms.

• Chapter 3 introduces circulantmatrices, detailing their relation-
ship to cyclic shifts and the Discrete Fourier Transform (DFT) in
a self-contained manner. Several aspects of circulant matrices
will be derived, which will be useful in later chapters.

• Chapter 4 shows how to exploit the properties of circulant ma-
trices within kernel ridge regression problems, providing an ef-
fective sampling of thousands of image patches at a very low
computational cost. Two trackers, the Dual and Kernelized Cor-
relation Filters (DCF and KCF) are proposed and evaluated ex-
tensively.

• Chapter 5 focuses on linear algorithms, expanding the metho-
dology of circulant matrices to sample from multiple images
simultaneously, and to deal with more general learning algo-
rithms than ridge regression. The proposed Circulant Decom-
position is evaluated in several object detection tasks.

• Chapter 6 generalizes the results from Chapter 5 to sample im-
age patches at different rotations and other transformations.
The proposed algorithms are validated in various detection and
pose estimation applications.

• Chapter 7 gives some concluding remarks and directions for
future work.
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1.3 contributions

The broad idea put forward in this thesis is that cyclic shifts provide
an accurate model for the sampling process inherent in recognition
algorithms, and that these algorithms can be greatly accelerated by
leveraging properties of cyclic shifts. In their simplest form, cyclic
shifts model samples obtained from images by translation. This the-
sis presents a systematic study of several algorithms and settings,
showing that they exhibit circulant structure under this model, and
proposing novel solutions that are orders of magnitude faster than
the state-of-the-art. The focus is on learning algorithms of practical
relevance in modern computer vision applications.

The contributions in this thesis can be categorized as follows.

1. A self-contained characterization of the most important proper-
ties of circulant matrices, in an introductory format, and their
relation to cyclic shifts (Chapter 3). A new, short proof of their
eigendecomposition is also presented, using only the convolu-
tion theorem and elementary matrix algebra (Theorem 3).

2. An efficient solution for linear RidgeRegressionunder the cyclic
shift model. This solution is shown to be formally equivalent to
a correlation filter, revealing a link between learning algorithms
and classical signal processing (Section 3.8).

3. An analysis of linear and non-linear kernel Ridge Regression
under the cyclic shift model (Chapter 4). The focus is on fast
solutions that are suitable for online learning, such as tracking.

a) Proof that, for unitarily invariant kernels, the kernelmatrix
is circulant (Theorem 4).

b) Novel solutions in closed-form (with log-linear complexity,
using the Discrete Fourier Transform) for:

i. Kernel RidgeRegressionunder cyclic shifts.Wenamed
this algorithm the Kernelized Correlation Filter (KCF),
in analogy with the linear case (Section 4.3).

ii. Fast detection with kernel classifiers (Section 4.4).

iii. Computation of a variety of kernels at several image
regions, including the popular Gaussian and polyno-
mial kernels (Section 4.4).

c) A fast extension of classical correlation filters to support
multiple channels (and thus modern local features instead



10 introduction

of raw pixels). We named this algorithm the Dual Correla-
tion Filter (DCF).

d) Minimalistic trackers based onKCF andDCF are proposed
and evaluated. They are shown to achieve and surpass the
state-of-the-art performance, but with an implementation
that is simpler and orders of magnitude faster than com-
peting trackers.

4. A novel analysis of general linear regression algorithms under
the cyclic shift model (Chapter 5). The previous analysis is ex-
tended to deal with multiple sample images simultaneously, in
a batch setting.

a) Proof that the Gram matrix is circulant at the block level
(Section 5.2.1).

b) A closed-form transformation, using the Discrete Fourier
Transform, that eliminates redundant degrees of freedom,
and simultaneously decomposes the problem into small
independent sub-problems (Sec. 5.2-5.3). We call it the Cir-
culant Decomposition. It is valid for several algorithms, in-
cluding Ridge Regression and Support Vector Regression
(Sec. 5.3).

c) An explicit closed-formexpression of the datamatrixwhich
allows the use of fast linear solvers [42], that scale linearly
with the number of learning samples (Sec. 5.4-5.5).

d) Detectors based on the Circulant Decomposition are pro-
posed and evaluated. Experiments show that the decom-
position accurately approximates learning with all subre-
gions of large training sets (INRIA and Caltech Pedestri-
ans). It is shown to be orders ofmagnitude faster than hard-
negative mining, a staple of detector learning that is very
expensive.

5. A generalization of cyclic shifts to model other geometric trans-
formations, not just image translation (Chapter 6). This exten-
sion enables applications in more general pose estimation.

a) Proof that, for cyclic orthogonal transformation models,
the Gram matrix is circulant (Theorem 7).

b) Closed-form solutions that fully exploit the known struc-
ture, for Ridge Regression and Support Vector Regression,
based on the Discrete Fourier Transform and off-the-shelf
solvers.
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c) Another closed-form solution for learning multiple classi-
fiers simultaneously, for different poses. It has the same
computational cost as the fast solution for a single classi-
fier, yielding another boost in efficiency when applied to
pose estimation.

d) A method for simultanous detection and pose estimation
is proposed and evaluated. Since the proposed formulas
do not require explicitly estimating or knowing the trans-
formation, we demonstrate applicability to both datasets
of virtual samples and structured datasets with pose an-
notations. The performance is shown to be comparable to
naive algorithms on 3 widely different tasks, while being
several orders of magnitude faster.





2
LEARNING ALGOR ITHMS

Learning algorithms form the backbone of most modern recognition
systems. In their simplest supervised form, they are generic algo-
rithms that learn a function f : Rm → R from a set of examples
input vectors xi ∈ Rm and outputs yi ∈ R, for i ∈ {1, . . . , n}. For
instance, xi may be a collection of images of objects, with yi = 1 if im-
age i contains mugs and yi = −1 otherwise. The learned function f
would then distinguish between mugs and other objects. This entails
a tremendous flexibility, in that other functions for different objects
can be learned in the same way, and variations on this theme can be
tailored for different applications.
Informally, the goal is for f to approximate well the set of exam-

ples, f(xi) ' yi, but also to generalize well given unseen data. As-
sume that the data (xi, yi) is drawn independently and identically
distributed (i.i.d.) from an underlying joint distributionP . A straight-
forward, but very limiting approach would be to assume that P be-
longs to a known family of parametric distributions, e.g. a mixture of
multivariate Gaussians, and to estimate its parameters from the data.
The optimal function f could then be obtained analytically. For exam-
ple, assuming the data is drawn from two Gaussians with different
labels yi and identical covariances, one obtains the parameters of the
optimal linear function f through Linear Discriminant Analysis [40],
a classic result. If we assume that the unseen data is drawn from the
same distribution, this function will generalize well.
However, real data often does not follow well-behaved distribu-

tions. Statistical Learning Theory [137], on the other hand, provides
many important results that are distribution-free, and for finite sam-
ple sizes. This means that, under mild assumptions on P , such as
smoothness and compactness, one can obtain bounds for the mis-
takes that a given function f will make on unseen data from an arbi-
trary distribution, when learned from a limited number of samples.
One of themost useful formulations is regularized riskminimization
[137, 121, 28], which we will use throughout the rest of the thesis. It
encompasses several standard algorithms that are routinely used in
Computer Vision, some of which will be analized in more detail. It
consists of the following optimization problem:

13
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min
f

n∑
i

L (f (xi) , yi) + λΩ (f) . (2.1)

The first term is the empirical risk, and measures how well f ’s pre-
dictions agree with the data, according to a convex loss function L.
As a concrete example, one may use the well-known squared error
L (f (x) , y) = (f (x)− y)2. The second term contains the regular-
ization Ω (f), penalizing complicated functions, which are prone to
over-fitting, and thus biasing f towards simpler functions. It can be
intuitively understood as a realization of Occam’s Razor [121], and
is an important ingredient in obtaining good generalization bounds.
Finally, the positive factor λ is called the regularization parameter.
It controls the relative weight of both objectives in the optimization,
effectively trading off between generalizing well but fitting the data
poorly, and generalizing poorly but fitting the data well.

A very tractable model, which is often useful in practice, is a linear
function f(x) = wTx, parameterized by a vector of weights w ∈ Rm.
In this case, the regularization can take the form Ω (f) = ‖w‖2, i.e., a
simple L2 norm (defined as ‖w‖2 = wTw). This method is also called
Tikhonov regularization [133, 137, 121]. The intuition is that awwith
a larger norm can make the output of f vary abruptly with smaller
variations of the input x, and in that sense it is a more complicated,
and thus less likely, function. More formally, it can also be shown to
correspond to an isotropic Gaussian prior on the weights, by inter-
preting Eq. 2.1 in a Bayesian setting [121]. A similar norm is defined
for non-linear kernel functions, described in Section 2.3. It is possi-
ble to choose other regularizers, such as the L1 norm ‖w‖1, which
promotes sparsity of the parameters [51], or the Total Variation norm
|∇w|, which promotes smoothness of the parameters (i.e., neighbor-
ing elements will tend to have the same values) [100, 51]. We will
mostly use the squared norm regularizer throughout the rest of the
thesis due to its good analytical properties and relative simplicity.
To further simplify the presentation, the linear model that we con-

sider does not explicitly include a bias term. This can be achieved
trivially by appending a constant feature to the samples, so that the
corresponding weight represents the bias:

f(x) =

[
w

b

]T [
x

1

]
= wTx + b. (2.2)
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Figure 2.1: Examples of loss functions used in regression. (a) Squared loss,
used in Ridge Regression. (b) ε-insensitive loss, used in Support
Vector Regression (SVR). (c) Squared ε-insensitive loss, used in
L2-SVR.

Such a bias term b is regularized, as all other weights are, so that a
solution with b closer to 0 will be preferred.1

2.1 optimization

Eq. 2.1 is very general, and the choice of model f , loss function L and
regularizer Ω will result in very different learning algorithms. The
chosen loss function and regularizer are typically convex functions,
so that the overall objective is convex and thus has a unique global
minimum that can be found relatively easily [14]. Several popular
algorithms fall under this framework, including the Support Vector
Machine, Logistic Regression, Ridge Regression, Ada-boost, LASSO,
and many others [132, 46, 28, 121]. In this section we will give a brief
overview of algorithms for linear models f and squared-norm reg-
ularizers, that are both representative and useful for later chapters.
Non-linear models that are nonetheless easy to learn will be treated
in Section 2.3, using the “kernel trick”. Other non-linearmodels, such
as random forests and other decision trees [40], as well as deep neu-
ral networks [76], can lead to non-convex objectives that are harder
to analyze, and will not be explored in this thesis.

2.1.1 Ridge Regression and Least-Squares

Ridge Regression (RR) has the advantage of having a closed-form so-
lution for the optimization problem, which makes it much easier to

1 Several expositions include an unregularized bias term, which must be handled
explicitly [28, 121]. However, unregularized parameters such as the bias can be
argued to encourage mild overfitting, and can make a learning problem harder to
optimize by removing strong convexity [123].
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study. It consists of using the squared loss and squared norm regu-
larizer:

min
w

n∑
i

(
wTxi − yi

)2
+ λ ‖w‖2 . (2.3)

Fig. 2.1-a shows a plot of the squared loss versus the model error,
wTx−y. Note that the loss is non-zero for allwTx−y 6= 0, so samples
that are very close to the model always incur some penalty, affecting
the optimal solution. On the other hand, samples that lie far away
from the model (outliers) suffer a quadratic penalty, so they can have
a very large influence on the solution even though they do not fit
the model at all. This fact has motivated the development of robust,
non-quadratic loss functions, some of which will be explored over
the following sections.
The objective in Eq. 2.3 is convex, and thus has a unique globalmin-

imum. The solution can be obtained by differentiating it with respect
to w, obtaining:

w =
(
XTX + λI

)−1
XTy, (2.4)

where we define X ∈ Rn×m as the data matrix, containing sample xi
in row i, and y as the vector of regression targets, with elements yi. I
is the identity matrix of appropriate size. The closed-form solution of
Eq. 2.4 allows one to implement Ridge Regression with nothing but
a basic numerical package (BLAS).
A special case that is worth noting is when choosing λ = 0. In this

case, one obtains the familiar Least-Squares regression algorithm,
which is probably the earliest sistematic approach to data fitting [130].
The lack of regularization means that the Least-Squares algorithm is
prone to over-fitting, and this accounts for the fact that it is generally
considered a less robust algorithm. However, the Ridge Regression
formulation alleviates this issue significantly, and is often competi-
tive in practice with more complicated algorithms [112]. The addi-
tion of the diagonal matrix λI , which is positive-definite for λ > 0,
ensures that the matrix inverse in Eq. 2.4 is always well-defined, even
in the event of colinear data vectors. The diagonalmatrix λI looks like
a “ridge”, giving the name to this algorithm.

2.1.2 Support Vector Machine

The special case of binary regression targets yi ∈ {−1, 1} arises often,
and is refered to as (binary) classification. In this case the output of f
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Figure 2.2: Illustration of the margin and hinge loss of a Support Vector Ma-
chine (SVM). (left) A linearly separable dataset, represented as
green circles (positive samples) and blue crosses (negative sam-
ples). In this case, SVM finds the hyperplane wTx = 0 that has
the largest distance (margin) from the closest positive and nega-
tive samples. (right) The hinge loss, shown in the case of a posi-
tive sample at the top and negative sample at the bottom. Note
if the sample is classified correctly, the loss is 0.

is binarized into one of the regression targets by taking its sign (pos-
itive or negative). Ideally, we would like the loss to be 0 for correctly
classified samples and 1 (or some other constant) for wrongly classi-
fied samples. This would be called the 0-1 loss [121]. Unfortunately, it
results in a non-convex minimization problem that can be difficult to
optimize. The hinge loss, on the other hand, is a convex upper-bound
of the 0-1 loss, so it captures the essence of this goal but results in a
convex optimization problem (see Fig. 2.2, right). It is given by:

L (f (x) , y) = max
{

0, 1− ywTx
}
. (2.5)

The hinge loss defines the Support Vector Machine (SVM), one of
the most successful classification algorithms to have been proposed
based on the concepts of Statistical Machine Learning [27, 28]. The
corresponding optimization problem is:

min
w

n∑
i

max
{

0, 1− yiwTxi
}

+ λ ‖w‖2 . (2.6)

For binary classification, w can be interpreted as the normal of a
hyperplane that separates positive from negative samples [28]. The
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SVM objective consists of finding the hyperplane wTx = 0 with the
highest distance from the closest positive sample and the closest neg-
ative sample (Fig. 2.2, left). Intuitively, this leaves the largest possible
margin between both distributions, and thus has the lowest chance
of misclassification. For this reason, algorithms of this sort are also
called Large-Margin Classifiers. Eq. 2.6 is the soft-margin SVM [28],
which maximizes the margin but allows some samples to lie on the
wrong side of the hyperplane, though incurring a penalty in the ob-
jective function. This enables the SVM to work for distributions that
cannot be perfectly separated by a hyperplane, which is what typi-
cally occurs in practice given noisy data.
The behavior of the hinge loss can be characterized easily: it is 0

for correctly classified samples, and grows linearly as a misclassified
sample gets further away from the hyperplane.
Eq. 2.6 can also be formulated as a quadratic minimization with

linear inequalities, also known as a Quadratic Program [14], by intro-
ducing slack variables ξi to replace the max operation:

min
w
‖w‖2 +

1

λ

n∑
i

ξi

subject to:
{
yiw

Txi ≥ 1− ξi
ξi ≥ 0

(2.7)

∀ i ∈ {1, . . . , n} .

The slack variables ξi represent the penalty assigned to each sam-
ple for lying on the wrong side of the hyperplane, and thus being
misclassified. For correctly classified samples ξi will be 0. Quadratic
Programs (QP) in general are well-studied in the optimization litera-
ture [14]. This QP in particular is convex, and the unique solution can
be found by standard solvers, such as ones based on interior-point or
conjugate-gradient methods [121]. There are also specialized SVM li-
braries such as liblinear and libsvm [23, 42].

2.1.3 Support Vector Regression

It is possible to create a loss function that is an analogue of the hinge
loss, but for real regression targets instead of binary targets. It is
called the epsilon-insensitive loss, and defined by∣∣wTx− y

∣∣
ε

= max
{

0,
∣∣y −wTx

∣∣− ε} . (2.8)
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The Support Vector Regression (SVR) algorithm is obtained with
this loss function:

min
w

n∑
i

∣∣wTxi − yi
∣∣
ε

+ λ ‖w‖2 . (2.9)

An illustration of the ε-insensitive loss is shown in Fig. 2.1-b. The
flat region between−ε and ε corresponds to samples that are close to
the regression model (at a distance smaller than ε). As the loss is 0 in
this case, samples that are considered correct do not affect the solu-
tion. The outer regions correspond to samples that are far from the
regression model, and will incur a loss that grows linearly with the
distance. Note that the influence of outliers on the solution is dimin-
ished, compared to the squared loss (Section 2.1.1). The combination
of a 0 loss for correct samples and a linear loss for incorrect samples
is similar to the hinge loss that defines the SVM.
A straightforward variant, that sometimes may simplify analysis,

is to consider the squared ε-insensitive loss instead,
∣∣wTx− y

∣∣2
ε
(Fig.

2.1-c). This is usually refered to as the L2-SVR [121]. Squaring the
loss loses the outlier-resistant property of the original ε-insensitive
loss, however it still seems to work well in practice (Section 5.6). A
possible explanation is that outliers in many recognition problems
are not placed arbitrarily away from the origin, which would induce
a large influence on the solution, because the values of the samples
are always bounded to some range. For example, a grayscale image
withm pixels may be limited to the range x ∈ [0, 255]m, and a similar
reasoning applies to other image features.
Both SVR and L2-SVR admit formulations as convex Quadratic

Program [121], and SVM libraries usually include specialized SVR
solvers [23, 42].
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Figure 2.3: Illustration of primal and dual spaces. (a) The Representer The-
orem states that the solution w is a linear combination of the
samples. As a simple example, a face classifierw can be learned
based on pixel values, which constitute the primal space. (b) As
w is a linear combination of samples, the combination coeffi-
cientsα can be understood as coordinates in a dual space, where
each coordinate corresponds to a particular sample instead.

2.2 the dual space

A concept that will play a central role in later chapters is the dual
space. It allows us to specify a different formulation for a given reg-
ularized risk minimization problem (Eq. 2.1). This alternative view
will sometimes expose an underlying structure in the data that is not
apparent in the original space (Chapters 4-6).
Lagrangian duality is a very well studied topic in optimization the-

ory [14], and we could certainly use those tools to derive the dual
formulations of the learning algorithms from Sections 2.1.1-2.1.3, by
treating them as generic constrained optimization problems. How-
ever, it is perhaps more instructive to see what the dual space means
in the context of learning algorithms. Its essence can be stated quite
simply by the Representer Theorem [120]:
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Theorem 1 (Representer Theorem [120]). Consider the linear regular-
ized risk minimization problem

min
w

n∑
i

L
(
wTxi, yi

)
+ λ ‖w‖2 . (2.10)

The solution w belongs to the span of the samples.
In other words,

w =
n∑
i

αixi = XTα, (2.11)

where α ∈ Rn is a vector of coefficients αi that implicitly define the solution.

Proof. Let us split the solution as w = w� + w⊥, into a part w�

that lies in the span of the samples, and another part w⊥ that is
orthogonal to them. We have:

• w� =
∑n

i αixi, since it can be defined as a linear combina-
tion of the samples.

• xTi w⊥ = 0 for all xi, sincew⊥ does not intersect the span of
the samples.

As such, Eq. 2.10 is equivalent to

min
w

n∑
i

L
(
wT

�xi + wT
⊥xi, yi

)
+ λ

∥∥w� + w⊥
∥∥2 (2.12)

= min
w

n∑
i

L
(
wT

�xi, yi
)

+ λ
∥∥w�

∥∥2
+ λ ‖w⊥‖2 . (2.13)

From Eq. 2.13, for a fixed w� the minimum of the objective is
achieved by reducing the norm ‖w⊥‖2 as much as possible, i.e.
w⊥ = 0. Because w⊥ = 0 for any optimal solution, w = w�, and
thus we have shown that the optimal solution always lies in the
span of the samples.

An illustration of the primal and dual spaces is given in Fig. 2.3.
The Representer Theorem allows one to replace the optimization

in m variables, w ∈ Rm, with an optimization in n variables, α ∈ Rn.
When there is a large discrepancy between the number of featuresm
and the number of samples n, choosing the most economical repre-
sentation can provide a significant computational advantage.
For simplicity, Theorem 1 assumes a squared norm regularizer

Ω (f) = ‖w‖2. It is possible to generalize it to include monotonically
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increasing functions of ‖w‖ [120], and non-linear f (Section 2.3). The
dual space is fundamental to the development of kernel algorithms,
which will be explored in Section 2.3.

Wewill nowmake the dual formulationmore concrete, by present-
ing the dual versions of the algorithms from Sections 2.1.1-2.1.3.

2.2.1 Ridge Regression (dual)

Since there is a closed-form solution for RR (Eq. 2.4), we can use the
explicit relationship in Eq. 2.11 to obtain the dual form of the solution
by simple algebraic manipulation [142]. By invoking the Sherman-
Morrison-Woodbury formula [67] (also known as thematrix inversion
lemma), (

A−1 +BTB
)−1

BT = ABT
(
BABT + I

)−1
, (2.14)

and performing the substitution in Eq. 2.4 with A = 1
λ
I and B = X ,

we obtain

w = XT
(
XXT + λI

)−1
y. (2.15)

Comparing this result to Eq. 2.11, the dual space solution is simply

α = (G+ λI)−1 y. (2.16)

where we have defined for convenience

G = XXT . (2.17)

G is called the Gram matrix, and will play a special role in later
chapters.
Eq. 2.4 requires taking the inverse of am×mmatrix, but the inver-

sion in Eq. 2.16 is for a n×nmatrix instead. This can yield substantial
computational savings if n� m.

2.2.2 Support Vector Machine (dual)

For optimization problems without a closed-form solution such as
the SVM, the direct approach from Section 2.2.1 is not very useful.
In general, the dual formulation can be obtained by resorting to the
Lagrangian dual of a constrained optimization problem [14]. The co-
efficients α that we used so far correspond exactly to the Lagrange
multipliers obtained in this way, that represent the solution in the
dual space [121]. For convex optimization problems such as the ones
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studied in this thesis, the primal and dual solutions are exactly equiv-
alent, as evidenced by the Representer Theorem (Theorem 1).
Turning to the dual formulation of the SVM,which can be obtained

as the Lagrangian dual of Eq. 2.7 [129, 121], it is

min
ᾱ

1

2
ᾱTGᾱ−

n∑
i

ᾱi

subject to: 0 ≤ ᾱi ≤
1

λ
, ∀i ∈ {1, . . . , n} . (2.18)

To simplify notation, and following standard practice [121], the co-
efficients ᾱi in Eq. 2.18 differ from the αi used elsewhere by just a sign
flip at the negative samples, i.e. αi = yiᾱi (recall that yi ∈ {−1, 1}).
Just like the primal problem (Eq. 2.7), this optimization problem is

a Quadratic Program that can be solved with standard tools [28, 14].

2.2.3 Support Vector Regression (dual)

The Lagrangian dual for the SVR can be derived from the primal
problem much in the same way as for the SVM [14]. The dual for-
mulation is [121, 66]

min
α

1

2
αTGα− αTy + ε |α|

subject to: − 1

λ
≤ αi ≤

1

λ
, ∀i ∈ {1, . . . , n} , (2.19)

where |α| is the L1 norm (sum of absolute values) of α.
The variantL2-SVR,which considers the square of the ε-insensitive

loss, has the dual form [66]

min
α

1

2
αTGα +

λ

2
‖α‖2 − αTy + ε |α| , (2.20)

which is very similar to Eq. 2.19, but with no constraints on α.

2.3 the kernel trick

Consider the learned linear model f(z) = wTz. A different symbol z
is used here to emphasize the fact that it may or may not belong to
the set of training samples xi. The learned function is simply a dot-
product in a feature spaceRm. However, f can becomemore powerful
if it has access to aspects of the data – features – that are more useful
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to predict the regression target. With this goal in mind, we can distin-
guish between the input space, which contains our input datax′i ∈ Rm′ ,
and the feature space, which is the data xi ∈ Rm that our learning al-
gorithm actually sees. The input data is transformed to the feature
space by a function ϕ : Rm′ → Rm,

xi = ϕ (x′i) . (2.21)

Note that typically m � m′, since we can extract several charac-
teristics by non-linear combinations of the original input dimensions.
Although ϕ may be non-linear, after mapping the samples with Eq.
2.21 we can still learn a linearmodel f in this high-dimensional space
(Rm), using the algorithms from the previous sections. We can obvi-
ously also consider the trivial mapping xi = x′i, so that the feature
space coincides with the input space (m = m′), in which case the
algorithms will simply operate on the raw input data.
The dual algorithms described in Sections 2.2.1-2.2.3 never instan-

tiate a vector in the feature space Rm – they only have indirect access
to it by means of the Gram matrix G (Eq. 2.17). The elements of the
n × n Gram matrix, Gij , store the dot-products between all pairs of
samples (xi, xj),

Gij = xTi xj. (2.22)

Notice that all the learning algorithms under consideration only
require these dot-products to operate, not the original xi. Assume
momentarily that we have found a nice function κ : Rm′ × Rm′ → R,
that satisfies

κ (u,v) = ϕT (u)ϕ(v), (2.23)

and can be evaluated in constant time, independent of the size of Rm.
The function κ is called a kernel function andwewill see some specific
examples in Sections 2.3.1 and 2.3.2. The kernel function κ allows us
to evaluate dot-products inRm without creating vectors in that space.
Ifm is very large, or potentially infinite, this can entail a tremendous
advantage. The elements of the Gram matrix can then be computed
using

Gij = κ
(
x′i,x

′
j

)
, (2.24)

with a computational load independent of m. In this case the Gram
matrix is often called the kernel matrix instead [121], and is usually
denoted byK. A dual algorithm can find the optimal model α in the
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Figure 2.4: A non-linear decision boundary, such as the ellipse in (a), can cor-
respond to a linear decision boundary (a hyperplane) in a higher-
dimensional space, depicted as a three-dimensional plane in (b).
Thismapping is at the core of the kernel trick. See text for details.

dual space Rn, without creating any vectors in the potentially large
feature space Rm.
We can express the learned function f(z) using the kernel function

too. From Eq. 2.11, we map the inputs by ϕ and apply Eq. 2.23:

f(z′) =

(
n∑
i

αi ϕ(x′i)

)T

ϕ(z′) =
n∑
i

αiκ (x′i, z
′) . (2.25)

In this way, the learned function in Eq. 2.25 also does not require
any vectors in the high-dimensional Rm. On the other hand, it is now
non-linear (even though the learning algorithm operates in a linear
space), and the number of kernel function evaluations growswith the
number of training samples, n. This methodology, of indirect access
to a high-dimensional space by using kernel functions, is called the
kernel trick [121].

2.3.1 Example

We will illustrate the kernel trick using a small toy example, which
will hopefully make its principles clear. Consider a dataset with sam-
ples x′i ∈ R2 (m′ = 2), and binary targets yi ∈ {−1, 1}, illustrated in
Fig. 2.4-a. The positive samples (green circles) and negative samples
(blue crosses) can be cleanly separated by an ellipse,making an ellipti-
cal equation the optimal choice for f (regardless of the loss function).
A linear equation, on the other hand, cannot separate the two classes,
and would make many classification errors.



26 learning algorithms

However, by means of the non-linear map ϕ : R2 → R3,

z = ϕ(z′) =

 (z′1)2

√
2z′1z

′
2

(z′2)2

 , (2.26)

the ellipse becomes an hyperplane in R3, illustrated in 2.4-b. This is
because an elliptical equation in the elements of z′ can be written as a
linear equation in the elements of the higher-dimensional z (defined
in Eq. 2.26).
This shows that a linear function f learned in an appropriate higher-

dimensional space Rm can be as expressive as a non-linear function
in the input space Rm′ .
Now let us analize a dot-product between twovectors (u,v)mapped

by ϕ:

ϕT (u)ϕ(v) =

 (u1)2

√
2u1u2

(u2)2

T  (v1)2

√
2v1v2

(v2)2

 (2.27)

= (u1v1)2 + 2u1u2v1v2 + (u2v2)2 (2.28)

=
(
uTv

)2
. (2.29)

Eq. 2.29 implies that the kernel function κ (u,v) =
(
uTv

)2, which
only requires performing a dot-product in R2 and squaring the out-
put, is equivalent to a dot-product in themapped spaceR3. Although
it does not seem like a huge gain, the same property holds for simi-
lar kernels of higher-order (e.g. κ (u,v) =

(
uTv

)b), which have an
exponentially larger dimension. Using the kernel trick, we can com-
pute dot-products in a high-dimensional feature spacewithout incur-
ring the overhead (sometimes prohibitive) of creating vectors in that
space.

2.3.2 Kernel functions

There are several kernel functions, that result in a myriad of implicit
feature spaces.

2.3.2.1 Polynomial and dot-product kernels

A generalization of the example kernel from Section 2.3.1 is the ho-
mogenous polynomial kernel,
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κ (u,v) =
(
uTv

)b
, (2.30)

where b ∈ N is a tunable parameter that specifies the polynomial’s
order. This kernel induces a feature map ϕ into the space of all mono-
mials with order b, i.e., products of exactly b elements of the mapped
vector (similar to Eq. 2.26 but for higher orders). The space of all possi-
blemonomials grows exponentiallywith b, and thus the feature space
Rm can be very high-dimensional.
Another variant is the inhomogenous polynomial kernel, often referred

to simply as “the” polynomial kernel:

κ (u,v) =
(
uTv + a

)b
. (2.31)

With a 6= 0, the induced feature space contains all monomials with
order up to b. The parameter a is often simply set to 1, but can oth-
erwise be tuned to obtain better numerical conditioning of the com-
puted values.

A more general family is defined by the dot-product kernel,

κ (u,v) = g
(
uTv

)
, (2.32)

for which we have the freedom to choose the function g : R → R. It
includes polynomial kernels as special cases, but can also be used to
construct other kernels.

2.3.2.2 Gaussian and radial basis function (RBF) kernels

Another general parametric form is the radial basis function (RBF) ker-
nel,

κ(u,v) = h(‖u− v‖2), (2.33)

for a given function h : R → R. It has the property of translation
invariance: κ(u + ∆,v + ∆) = κ(u,v), for any ∆ ∈ Rm′ .2
A commonly used specialization of the RBF kernel is the Gaussian

kernel,

κ(u,v) = exp

(
− 1

σ2
‖u− v‖2

)
. (2.34)

The Gaussian kernel has a tunable parameter σ, that can be in-
terpreted as a bandwidth or scale. A surprising characteristic of the
Gaussian kernel is that it can be shown to correspond to an infinite-

2 Note that translation in this vector space is not the same as the image translation
discussed over the following chapters of this thesis, which is defined differently.
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dimensional feature space [128]. As such, it would be impossible for
a learning algorithm to use such features without the kernel trick.

2.3.2.3 Additive kernels

Several kernels can be decomposed into sums of scalar functions,
computed over each dimension. They are called additive kernels, and
can be specified as

κ(u,v) =
m′∑
d

k (ud, vd) , (2.35)

where k : R× R→ R is the scalar function that defines the additive
kernel, and the elements of u and v are, respectively, ud and vd.
We will now give a few examples of additive kernels. They are all

typically used to measure the similarity between two empirical dis-
tributions, specified as histograms u,v ∈ R+

0 . They correspond to dif-
ferent distance metrics, an angle that will be explored over the next
section. For now we will simply state their definitions. One measure
of histogram similarity is the intersection kernel,3

κ(u,v) =
m′∑
d

min {ud, vd} . (2.36)

Another histogram similarity measure is Hellinger’s kernel,

κ(u,v) =
m′∑
d

√
udvd, (2.37)

which is also known as Bhattacharyya’s coefficient [138]. Finally, we
can also consider the χ2 kernel, defined as

κ(u,v) =
m′∑
d

2udvd
ud + vd

. (2.38)

2.3.2.4 Kernels and distance metrics

Eq. 2.36-2.38 are motivated by their correspondence to different dis-
tance metrics. Notice that dot-products and the Euclidean distance
‖·‖ are related by

‖u− v‖2 = uTu + vTv − 2uTv. (2.39)

3 For general vectorsu,v ∈ R, the intersection kernel is not positive semidefinite (see
Section 2.3.2.5), but only Conditionally PositiveDefinite [87]. It is possible, however,
to restore positive semidefiniteness by shifting the origin so that u,v ∈ R+

0 .



2.3 the kernel trick 29

The dot-product in a feature space, computed by a particular ker-
nel, then corresponds to a particular distance metric ‖·‖κ, using

‖u− v‖2
κ = κ(u,u) + κ(v,v)− 2κ(u,v). (2.40)

We can use this view of kernels, as generators of distance met-
rics, to interpret the additive kernels from the previous section. Us-
ing the L1 metric |u− v| (sum of absolute differences) to compute
distances between histograms can be accomplished by using the in-
tersection kernel of Eq. 2.36 [7, 87]. Conversely, using the Hellinger
metric

∥∥√u−√v∥∥ to compute distances is equivalent to using the
Hellinger kernel shown in Eq. 2.37 [138]. Finally, the χ2 kernel in
Eq. 2.38 corresponds to using the distance χ2(u,v) = 1

2

∑m′

d
(ud−vd)2

ud+vd

between distributions, a metric that is inspired by Pearson’s χ2 test
statistic [138].

2.3.2.5 General conditions for a kernel to be valid

We will now state a general existence result about kernel functions
and induced mappings, to place the above kernels into context. In
order for a candidate kernel function κ to induce a feature space (Eq.
2.23) it must be a Mercer kernel [121]. For finite real inputs, a Mercer
kernel must satisfy the following conditions:

1. It is symmetric: κ(u,v) = κ(v,u).

2. It is a positive semidefinite operator: for an arbitrary choice
of vectors x′i, the corresponding Gram matrix (with elements
Gij = κ(x′i,x

′
j)) is positive-semidefinite.

The main advantage of this characterization is that it allows us to
prove that κ is a valid kernel, and use it in applications, without
having to explicitly find the mapping ϕ, a task that can be highly
non-trivial. For example, we can prove that the Gaussian kernel is
valid without dealing with the fact that the dimensionality of an ex-
plicitmappingwould not be finite (although explicitmaps are known
[128]). While it is important to know what sorts of functions can be
used as kernels, in Chapter 4 we will mainly use the kernel functions
discussed over the preceding sections.





3
C IRCULANT MATR ICES

Circulant matrices are the main new ingredient of the algorithmic
improvements presented in this thesis, as they canmodel natural reg-
ularities commonly found in computer vision datasets (Chapters 4-
6). They are square matrices with a simple deterministic pattern (Fig.
3.1), that will be explored over the remainder of the chapter.
Despite their apparent simplicity (or partly because of it), circu-

lant matrices connect vastly different subjects in the landscape of
mathematics. Their uses in engineering include the characterization
of the limits of linear time-invariant systems in signal processing
[56], sparse signal recovery with circulant sensing matrices in com-
pressed sensing [109], and deblurring methods in image processing
[8, 100]. They are an important topic in cryptography, being used to
construct error-correcting codes [84], and are an integral part of the
widely used Advanced Encryption Standard [29]. In physics, circu-
lant matrices are related to the representations of Weyl-Heisenberg
groups in discrete quantummechanics [118, 2], and can be used to ob-
tain solutions of partial differential equations [15]. Circulantmatrices
have also yielded important insights in the study of roots of general
polynomial equations [74], and even in some attempts to prove the
infamous Fermat’s Last Theorem, which remained unsolved for 358
years [145, 125].

Nevertheless, it may be argued that circulant matrices are interest-
ing mathematical objects in their own right. It is not uncommon for
prefaces of monographs on circulant matrices to praise their aesthet-
ically pleasing patterns and remarkably elegant properties [32, 75]:

“Some mathematical topics, circulant matrices, in
particular, are pure gems that cry out to be admired
and studied with different techniques or perspec-
tives in mind.”

I. Kra and S. R. Simanca [75]

The claims in this thesis are much more modest: the intent is to show
that circulant matrices fit very nicely the sorts of datasets that appear
in computer vision. In exploring the consequences of this proposi-
tion, some deeper connections between learning theory and signal
processing are also developed.

31
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𝐶                    =

 
 
 
 

 
Shifted by 1 element 
Base sample 

Shifted by 2 elements 

Shifted by 𝑠 − 1 elements 

⋮ 

Figure 3.1: Illustration of a circulant matrix. The rows are cyclic shifts of a
vector image, or its translations in 1D. The same properties carry
over to circulant matrices containing 2D images.

In light of this diversity, it is possible to give a characterization of
circulant matrices that is quite general. In order to ground the results
in practical computer vision, we will emphasize their relationship to
cyclic shifts, and end the chapter with an example that shows a new
derivation of classical correlation filters.

3.1 definition

Consider a given vector x ∈ Rs, each element denoted by xi. We can
use it to generate a circulant matrix C(x) ∈ Rs×s as follows:

C(x) =


x1 x2 x3 · · · xs
xs x1 x2 · · · xs−1

xs−1 xs x1 · · · xs−2

... ... ... . . . ...
x2 x3 x4 · · · x1

 . (3.1)

A more visual representation of the pattern is given in Fig. 3.1. No-
tice that the pattern is deterministic, and fully specified by the gener-
ating vector x, which appears in the first row. Each of the remaining
rows is just the previous row shifted to the right by one element, and
the right-most element wraps around to the left. We refer to this oper-
ation as a cyclic shift, whichwewill specifymore formally in the next
section. Shiftingwithout wrapping aroundwould result in a Toeplitz
matrix, which is a generalization of circulant matrices [56]. However,
Toeplitz matrices do not retain many of the nice properties of circu-
lant matrices, such as the direct relationship to the Discrete Fourier
Transform (DFT) which will be the basis for most of our algorithms.
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3.2 cyclic shifts

We can define the cyclic shift of the rows by resorting to a specific
permutation matrix. It is called the cyclic shift operator, and is defined
by

P =


0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
... ... . . . . . . ...
0 0 · · · 1 0

 . (3.2)

This matrix has the effect of permuting the elements of a vector in
the shape necessary to perform a cyclic shift by one element:

Px = [xs, x1, x2, . . . , xs−1]T . (3.3)

By chaining u applications of the permutation P , which can be
achieved with a matrix power P u, we can shift the vector by an ar-
bitrary amount u ∈ Z. Negative amounts will simply shift the vector
in the reverse direction. However, because P is a permutation matrix
with a single cycle of size s [32], its powers are periodic, P s = P 0 = I .
This means that with P uxwe get the same vector x periodically every
s shifts, and thus there are only s unique shifted versions of x:

{P ux |u = 0, . . . s− 1} . (3.4)

We can now use these cyclic shifts to give an alternate definition
for a circulant matrix:

C(x) =


(P 0x)

T

(P 1x)
T

(P 2x)
T

...
(P s−1x)

T

 . (3.5)

The transpose is only necessary to turn the column-vectors P ux

into row-vectors. For an arbitrary shift amount u, the row (umod s)+

1 contains the resulting vector, where mod is the modulus operator
(remainder of division).

As an interesting side note, we remark that P itself is a circulant
matrix, and can be defined concisely as P = C([0, . . . , 0, 1]T ).
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3.2.1 Cyclic shifts as a model for translation

The significance of cyclic shifts for computer vision is that they can
be used to effectively model translations in image-space. In the sim-
plest case, x can be understood to be a one-dimensional image (i.e. a
horizontal or vertical slice of a two-dimensional image). This image
is translated arbitrarily by P ux, and C(x) contains all possible cyclic
shifts of x. As such, we can use C(x) as the data matrix for a learning
algorithm (Chapter 2), which includes many translated images as the
samples.
We will now make a short digression into why such a data matrix

should be important. In order for a learning algorithm to be useful,
it must be trained with samples that represent faithfully the distribu-
tion of inputs thatwill be encountered by the learned function. Image
translations are a very common form of nuisance, and learning with
translated images is an important factor to increase robustness. Ex-
tracting many patches of images at different translations is standard
practice in computer vision [30, 6, 57, 4, 76], but this process is very
time-consuming and results in large, redundant datasets. Our goal,
inmodeling translationswith cyclic shifts, is to find shortcuts in these
redundant computations.
The cyclic shifts described in this Chapter are defined for one-di-

mensional images. The generalization to two-dimensional images is
straightforward, but restricting the derivations to one-dimensional
images simplifies notation significantly. In many cases it is also pos-
sible to extend the results to multiple channels (e.g. 3 channels in
the case of RGB images, or more standard local features, such as His-
tograms of Oriented Gradients [30]).

3.3 the discrete fourier transform

The Discrete Fourier Transform (DFT) will play an important role in
the coming sections, so to make the presentation self-contained we
will begin with some well-known definitions. The DFT of a vector1
x ∈ Rs will be denoted F (x). For convenience, we will also use a
hat over a variable to denote its DFT, x̂ = F (x). The elements of the
resulting vector x̂ can be computed by

x̂j =
s∑

k=1

xkω
(j−1)(k−1), with ω = e−2πi/s, (3.6)

1 Although for our purposes x is always real-valued, the same properties hold for
complex x as well.
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𝐹 =  

Figure 3.2: Illustration of the basis vectors of a DFT matrix (Eq. 3.8). The
elements of each row contain a complex sinusoid of a distinct
frequency. The solid blue lines depict the real part of the sinu-
soid, while the dashed green lines represent the imaginary part.
Note that the first frequency, commonly referred to as the DC
component, is constant, with its imaginary part equal to zero.

where i is the pure imaginary unit. From its definition in Eq. 3.6, we
can see that ω is a root of unity, i.e. ωs = 1. This means that ω lies on
the complex unit circle, and its powers in Eq. 3.6 must also lie on the
complex unit circle.
Notice that the DFT operation is linear in the arguments (ω(j−1)(k−1)

are constants). It can be interpreted as a linear projection on a new
basis, composed of complex sinusoids with varying frequencies. Be-
cause it is a linear operation,we can express it as amatrix-vector prod-
uct,

x̂ = Fx, (3.7)

for an appropriately defined complexmatrixF ∈ Cs×s, with elements

Fjk = ω(j−1)(k−1). (3.8)

F is called the DFT matrix; its rows are the complex sinusoid basis
of the DFT. It can be easily verified to be symmetric, F = F T . How-
ever, it is notHermitian:F 6= FH , whereFH = (F ∗)T is theHermitian
transpose, and ∗ denotes complex-conjugation.

3.4 unitarity

AmatrixA is said to be unitary ifAAH = I , with I the identitymatrix.
A unitary matrix is the complex-valued extension of an orthogonal
matrix, which represents a pure rotation in space when multiplied
by a vector. As we will see, the DFT is analogous to a change of basis
by rotation.
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Unitarity is a very useful property, since it makes the inverse quite
easily described in closed-form. Multiplying both sides of AAH = I

by the inverse of A, we get A−1 = AH . It also means that A preserves
the L2 norm of vectors, i.e. ‖Ax‖2 = ‖x‖2, hence the analogy to a rota-
tion (which also preserves Euclidean distances and thus L2 norms).
We can verify by direct computation that F is almost unitary, up to

a constant factor: FFH = sI . Multiplying both sides by the inverse
of F , we get F−1 = 1

s
F ∗. So we can obtain the inverse DFT from the

forward DFT, simply by complex-conjugation and rescaling with 1
s
.

Let us try to define a proper unitary DFTmatrixU . Wemerely have
to account for the constant factor that was mentioned before,

U = 1√
s
F. (3.9)

Because UUH = 1
s
FFH = I , it is indeed unitary. As such, it pre-

serves the L2 norm ‖Ux‖2 = ‖x‖2, and its inverse is given by U−1 =

UH . Since F and U are symmetric, we also have U−1 = U∗.
We can use these facts to obtain an expression for the norm of the

non-unitaryDFT. FromEq. 3.9we have ‖Ux‖2 =
∥∥∥ 1√

s
Fx
∥∥∥2

= 1
s
‖Fx‖2,

and by substitution in ‖Ux‖2 = ‖x‖2 it follows that ‖x̂‖2 = s ‖x‖2.
This is a fundamental property of the DFT, and is usually referred to
in the literature as Parseval’s Theorem [83].
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3.5 the convolution theorem

One of the most direct applications of the DFT is in the fast compu-
tation of convolutions. The convolution theorem [83] states that the
element-wise product of two vectors in the Fourier domain is equiv-
alent to their convolution. There are several variations of the con-
volution theorem [83], including circular and non-circular variants,
for discrete and continuous transforms. However, the variant that is
more relevant to our problem setting is as follows.

Theorem 2 (Convolution theorem [83]). Define the circular convolution
of two vectors, x ∗ z, as the vector with elements

(x ∗ z)j =
s∑

k=1

xk z1+(j−k) mod s. (3.10)

Then it can also be computed in the Fourier domain, with

x ∗ z = F−1 (x̂� ẑ) , (3.11)

where F−1 is the inverse DFT, and � denotes the element-wise product of
two vectors.

The modulus operation in Eq. 3.10 ensures that the index wraps
around at s, making the convolution circular.
We can also express a circular convolution using a circulant matrix,

x ∗ z = CT (x) z, (3.12)

which can be verified by expanding the right-hand-side and com-
paring it to Eq. 3.10. To avoid any confusion of notation, note that
CT (x) = (C (x))T .
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3.6 diagonalization of circulant matrices

Characterizing the eigenvalues and eigenvectors of a class ofmatrices
is usually a good first step towards understanding its properties. In
the case of circulant matrices, some of the most puzzling properties
will become obvious if we are given the eigendecomposition before-
hand.

Theorem 3. The eigenvalues of a circulant matrix C (x) are given by the
DFT, x̂ = F (x), and the eigenvectors by the unitary DFT matrix, U (Eq.
3.9). Equivalently,

C (x) = U diag (x̂) U∗. (3.13)

Proof. By the convolution theorem and Eq. 3.12,

CT (x)z = x ∗ z = F−1 (x̂� ẑ) . (3.14)

ReplaceDFT and inverseDFToperations by theirmatrix-vector
forms,

CT (x)z = 1
s
F ∗ (x̂� (Fz)) (3.15)

Because the element-wise product verifies u � v = diag (u)v

[95],

CT (x)z = 1
s
F ∗diag (x̂)Fz. (3.16)

Since Eq. 3.16 is valid for any z, then it is also true that

CT (x) = 1
s
F Tdiag (x̂)F. (3.17)

By taking the transpose of both sides of the equation, and us-
ing the definition of U , we finally obtain

C(x) = Udiag (x̂)U∗. (3.18)

The proof given here for Theorem 3 is considerably shorter than pre-
viously known derivations, which have resorted to difference equa-
tions [56] or polynomial representations of C(x) [32]. In this proof,
the same conclusions result from just the convolution theorem and
some elementary matrix manipulations.
Theorem 3 shows that a circulant matrix C(x) is diagonalized by

the unitary DFT U , and its eigenvalues are simply the (non-unitary)
DFT of the generating vector x. Notice that the eigenvectors do not
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depend on x at all, so every possible circulant matrix shares the same
set of eigenvectors. This remarkable fact is the main reason for the
somewhat uncommon properties that we will mention in the next
section.

3.7 some properties

We will now mention some useful properties of circulant matrices.
They follow almost trivially from the eigendecomposition in Theo-
rem 3, but we will make them explicit.
Consider two vectors x, z ∈ Rs, with DFT x̂, ẑ ∈ Cs, respectively,

and the circulant matrices X = C(x) and Z = C(z).

1. XZ = ZX . In words, any two circulant matrices X and Z com-
mute. This is a consequence of them sharing the same eigenvec-
tors.

2. αX + βZ = C(αx + βz). Circulant matrices are linear in the
arguments.

3. XZ = C (F−1 (x̂� ẑ)). The product of two circulant matrices is
equivalent to an element-wise product in the Fourier domain.

4. Xz = F−1 (x̂� ẑ). An analogous property holds for a matrix-
vector product, but the result is a vector. This product can be
understood as a cross-correlation operation.

5. If X is non-singular, X−1 = C (F−1 (1/x̂)), where division is
taken element-wise. This means that matrix inversion is simply
an element-wise inversion in the Fourier domain.

6. XT = C (F−1 (x̂∗)).Matrix transposition is equivalent to complex-
conjugation in the Fourier domain.
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3.8 deriving a correlation filter

Suppose that we want to learn a linear function using Ridge Regres-
sion (Section 2.1.1). Recall that the expression for the solution w is

w =
(
XTX + λI

)−1
XTy, (3.19)

given a data matrix X and regression targets y.
The samples may be composed of cyclic shifts of a base sample x ∈

Rs, so in this case we have a circulant data matrix X = C(x).
We can apply the knowledge we gained in the previous sections to

considerably simplify the computation. Notice that many operations
would be expensive if performed with a naive algorithm (e.g. ma-
trix products can scale with the cube of the matrix size,O(s3)). How-
ever, for circulant matrices, most of them can be performed element-
wise in the Fourier domain (Section 3.7), bounding the complexity at
O(s log s) when using a Fast Fourier Transform algorithm [83].
Take the term XTX , which can be seen as a non-centered covari-

ance matrix. Replacing Eq. 3.13 in it,

XTX = U diag (x̂∗) U∗U diag (x̂) U∗. (3.20)

Additionally, we can eliminate the factor U∗U = I , by the unitarity
of U . We are left with

XTX = U diag (x̂∗) diag (x̂) U∗. (3.21)

Because operations on diagonal matrices are element-wise, we can
define the element-wise product as � and obtain

XTX = U diag (x̂∗ � x̂) U∗. (3.22)

An interesting aspect is that the vector in brackets is known as the
auto-correlation of the signal x (in the Fourier domain, also known as
the power spectrum [83]). In classical signal processing, it contains
the variance of a time-varying process for different time lags, or in
our case, space.
The above steps summarize the general approach taken in diago-

nalizing expressions with circulant matrices. Applying them recur-
sively to the full expression for linear regression (Eq. 3.19), we can
put most quantities inside the diagonal,

ŵ = diag
(

x̂∗

x̂∗ � x̂ + λ

)
ŷ, (3.23)

or better yet,
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ŵ =
x̂∗ � ŷ

x̂∗ � x̂ + λ
. (3.24)

The fraction denotes element-wise division. We can easily recover
w in the spatial domainwith the InverseDFT,which has the same cost
as a forward DFT. The detailed steps of the recursive diagonalization
that yields Eq. 3.24 are given in Appendix A.1.5.
At this point we just found an unexpected formula from classical

signal processing – the solution is a regularized correlation filter [11,
83].
Before exploring this relation further, we must highlight the com-

putational efficiency of Eq. 3.24, compared to the prevalent method
of extracting patches explicitly and solving a general regression prob-
lem. For example, Ridge Regression has a cost ofO (s3), bound by the
matrix inversion and products2. On the other hand, all operations in
Eq. 3.24 are element-wise (O (s)), except for the DFT, which bounds
the cost at a nearly-linear O (s log s). For typical data sizes, this re-
duces storage and computation by several orders of magnitude.
Consequently, Eq. 3.24 yields a simple learning algorithm that can

be used for trackingwith very little engineering. In Section 4.7wewill
compare it to several other algorithms, where it is referred to as “DCF
on raw pixels”. It achieves surprisingly competitive performance for
such a small implementation effort and computational cost.

3.8.1 Connection to classical signal processing

Correlation filters have been a popular topic in signal processing
since the 80’s, with solutions to a myriad of objective functions in
the Fourier domain [86, 83]. Recently, they made a reappearance as
MOSSE filters [11], which have shown remarkable performance in
tracking, despite their simplicity and high FPS rate.
The solution to these filters looks like Eq. 3.24 (see Appendix A.2),

butwith two crucial differences. First,MOSSEfilters are derived from
an objective function specifically formulated in the Fourier domain.
Second, the λ regularizer is added in an ad-hocway, to avoid division-
by-zero. The derivation we showed above adds considerable insight,
by specifying the starting point as Ridge Regressionwith cyclic shifts,
and arriving at the same solution.

2 We remark that the complexity of training algorithms is usually reported in terms
of the number of samples n, disregarding the number of features m. Since in our
casem = n (X is square), we conflate the two quantities. For comparison, the fastest
SVM solvers have “linear” complexity in the samples O (mn), but under the same
conditionsm = nwould actually exhibit quadratic complexity, O

(
n2
)
.
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Circulant matrices allow us to enrich the toolset put forward by
classical signal processing and modern correlation filters, and apply
the Fourier trick to new algorithms. Over the next chapter wewill see
one such instance, in training non-linear filters.



4
KERNEL IZED CORRELAT ION F ILTERS

Correlation filters can quickly find the linear model that provides
the best fit to a desired correlation output, in the least-squares sense.
They are an attractive algorithm for tracking, due to their good per-
formance and high computational efficiency [11, 10], and have also
found application in detection [86, 12]. It would be very desirable
to apply the powerful kernel trick to correlation filters, so that this
linear model would work on a rich high-dimensional space of non-
linear features (Section 2.3). The kernel trick is known to generally
improve the performance of linear algorithms [121, 105, 57, 138].
This problem has been attacked on several fronts [16, 103, 70, 146],

but has resisted every effort – previous proposals resort to ad-hoc
modifications of the objective function or suffer from an unsustain-
able computational penalty (Section 4.2.1).
However, the new derivation of correlation filters that was pre-

sented at the end of the last chapter (Section 3.8) presents an obvious
path for applying the kernel trick. It begins with a Ridge Regression
problem, where the samples are cyclic shifts, and arrives at the final
formula for correlation filters by using the properties of circulant ma-
trices. Because the starting point is standard Ridge Regression, the
same steps can be followed for kernel Ridge Regression instead. In
this way, we can easily obtain the kernelized version of correlation
filters (whichwe namedKCF). Themain difficulty is dealingwith the
non-linearity of the kernel, which we do in Theorem 4. We also de-
velop a linear version (Dual Correlation Filter, or DCF), which unlike
previously proposed correlation filters, is able to incorporate several
feature channels simultaneously. This enables the use of powerful
features that result in significantly better performance.
Hopefully the value of kernelizing a successful linear algorithm for

the first time is apparent, at least theoretically. On the other hand, this
approach provides an answer to the sampling problem in tracking,
which is of practical importance, and we will explore this point of
view over the next section.

43
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Figure 4.1: Example tracking results in three frames of two videos (coke
and surfer). We show bounding boxes and response maps for
Kernelized Correlation Filters on raw pixels. The response maps
are color-coded with red/opaque for high responses, and blue/-
transparent for low responses. The dataset used in the evaluation
has 50 videos, shown in Fig. 4.3.

4.1 the sampling problem in tracking

Arguably one of the biggest breakthroughs in recent visual tracking
research was the widespread adoption of discriminative learning
methods. The task of tracking, a crucial component of many com-
puter vision systems, can be naturally specified as an online learning
problem [127, 148]. Given an initial image patch containing the target,
the goal is to learn a classifier to discriminate between its appearance
and that of the environment. This classifier can be evaluated exhaus-
tively at many locations, in order to detect it in subsequent frames.
Of course, each new detection provides a new image patch that can
be used to update the model.
It is tempting to focus on characterizing the object of interest – the

positive samples for the classifier.However, a core tenet of discrimina-
tive methods is to give as much importance, or more, to the relevant
environment – the negative samples. The most commonly used neg-
ative samples are image patches from different locations and scales,
reflecting the prior knowledge that the classifier will be evaluated
under those conditions.
An extremely challenging factor is the virtually unlimited amount

of negative samples that can be obtained from an image. Due to the
time-sensitive nature of tracking, modern trackers walk a fine line be-
tween incorporating as many samples as possible and keeping com-
putational demand low. It is common practice to choose only a few
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samples each frame, either randomly [151, 73, 6, 117, 57] or selected
using structural constraints [73].
Although the reasons for doing so are understandable, our exper-

iments support the hypothesis that undersampling negatives is the
main factor inhibiting performance in tracking. Using the tools devel-
oped in Chapter 3, we can analytically incorporate thousands of sam-
ples at different relative translations, without iterating over them ex-
plicitly. This is made possible by the counterintuitive discovery that
some learning problems may actually become easier as we add more
samples, by acquiring circulant structure, which is easily exploited.
Using circulant matrices, we propose a tracker based on kernel

Ridge Regression [112] that does not suffer from the “curse of kernel-
ization”, which is its larger asymptotic complexity, and even exhibits
lower complexity than unstructured linear regression. We leverage
the powerful kernel trick at the same computational complexity as
linear correlation filters, which form the basis for the fastest trackers
available [11, 10]. Our framework easily incorporatesmultiple feature
channels, and by using a linear kernel we additionally show a fast ex-
tension of linear correlation filters to the multi-channel case.

4.2 related work

Single-object tracking is a fundamental task in computer vision, with
applications in video surveillance, human-machine interfaces and
robot perception. Even though some settings allow for strong as-
sumptions about the target [65, 150], single-object tracking usually
consists of following a target given just its initial position and size in
a video stream.
A comprehensive review is outside the scope of this chapter, butwe

refer the interested reader to two excellent and very recent surveys
[127, 148]. It is possible to categorize current methods very broadly
into two distinct approaches: generative and discriminative.
Generative tracking typically consists of building an appearance

model to describe the object of interest, which can be used to search
for it in a new frame of video. This search can also be guided by a
probabilistic motionmodel [68]. However, the emphasis is on finding
strong appearance models and distance metrics to compare them. A
canonical example is Incremental Visual Tracking [114], which uses a
low-dimensional subspace representation of the target to capture its
variations over time, similar to Principal ComponentsAnalysis (PCA)
[121] but learned online. Locally Orderless Tracking (LOT) [101] uses
image superpixels as an appearance model, and compares them us-
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ing a specialization of the EarthMover’s Distance, a natural metric to
compare distributions. LOT uses a particle filter as a motion model
to pursue different hypothesis simultaneously, which is the basis of
Condensation [68], another canonical generative tracker. Additional
examples of non-discriminative trackers include the work ofWu et al.
[144], who formulate tracking as a sequence of image alignment ob-
jectives, and of Sevilla-Lara and Learned-Miller [122], who propose
a strong appearance descriptor based on distribution fields.
Discriminative tracking has risen in popularity in recent years, fol-

lowing the success of machine learning methods in several areas of
computer vision [147]. It consists of training a classifier online to
directly predict the presence or absence of the target in an image
patch [151, 73, 6, 117]. This classifier is then tested on many candi-
date patches to find the most likely location. Alternatively, the posi-
tion and other properties of the target can also be predicted directly
[57]. This discriminative approach to tracking is also called tracking-
by-detection.
Canonical examples include those based on Support Vector Ma-

chines (SVM) [5], Random Forest classifiers [117], or boosting vari-
ants [54, 6]. All the mentioned algorithms had to be adapted for on-
line learning, in order to be useful for tracking. Zhang et al. [151]
propose a projection to a fixed random basis, to train a Naive Bayes
classifier, inspired by compressive sensing techniques. Aiming to pre-
dict the target’s location directly, instead of its presence in a given im-
age patch, Hare et al. [57] employed a Structured Output SVM and
Gaussian kernels, based on a large number of image features. An-
other discriminative approach by Kalal et al. [73] uses a set of struc-
tural constraints to guide the sampling process of a boosting classifier.
Finally, Bolme et al. [11] employ classical signal processing analysis
to derive fast correlation filters, whichwe generalize tomulti-channel
and non-linear filters.

4.2.1 Kernel methods and correlation filters

Classical correlation filters are usually formulated as variations of
linear least-squares problems, but in the Fourier domain [11]. Least-
squares problems are typically easy to extend with the kernel trick,
obtaining more powerful non-linear models [121]. It would then
seem that creating kernelized versions of correlation filters would
be straightforward, but that is not the case.
Several recent works have analyzed this problem, but reported

mostly negative results, showing that the standard Fourier metho-
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+30 +15 Base sample -15 -30

Figure 4.2: Examples of vertical cyclic shifts of a base sample. Our Fourier
domain formulation allows us to train a tracker with all possible
cyclic shifts of a base sample, both vertical and horizontal, with-
out iterating them explicitly. Artifacts from thewrapped-around
edges can be seen (top of the left-most image), but are mitigated
by the cosine window and padding.

dology cannot yield efficient algorithms [16, 103, 70]. This was found
to be the case for objective functions that consider power spectrum
or image translations, such as MinimumAverage Correlation Energy
[86], Optimal Trade-Off [146] andMinimumOutput Sum of Squared
Error (MOSSE) filters [11]. The main issue is that the application of
the Discrete Fourier Transform (DFT) is done first, without a com-
pelling theoretical justification, and the attempt to apply the kernel
trick is done after-the-fact. Our formulation yields some insight on
this problem, since the use of the DFT in a kernel algorithm arises as
a direct consequence of the circulant structure, just as in the linear
case.
Objective functions that ignore the spatial structure, such as Syn-

thetic Discriminant Function (SDF) filters, are easier to kernelize [70,
103]. Unfortunately, ignoring the spatial structure effectively removes
the correlation filters’ greatest advantage, which is their robustness
to image translations.
Another approach is to decouple the two features into separate

stages: one that pre-processes the image using spatial information
but ignoring the non-linear kernel, and another that applies the ker-
nel trick ignoring the spatial structure [146]. A kernel that applies a
whitening operation to the spectrum of its arguments was also pro-
posed [9, Section 3.2.1]. These methods are notable and share some
of the benefits of both kernels and correlation filters. However, they
are somewhat ad-hoc and do not apply the kernel trick to the op-
timization objective of correlation filters, which we do on a strong
theoretical basis by virtue of the cyclic shifted samples.
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4.3 fast kernel regression

We can now focus on the main derivations of this chapter. They con-
sist of replicating the process done in Section 3.8, which derives a cor-
relation filter from Ridge Regression and cyclically shifted samples,
but now for kernel Ridge Regression. After computing the optimal
solution in the dual, as is usually done for kernel algorithms (Section
2.3), wewill also look at some related computations and how they can
be accelerated using the properties of circulant matrices (Sections 4.4
and 4.5).

Let us recall the solution for dual Ridge Regression (Eq. 2.16). It
can be computed in closed-form with

α = (K + λI)−1 y, (4.1)

whereK is the kernelmatrix andα is the vector of coefficients αi, that
represent the solution in the dual space. Since we want to work in a
high-dimensional feature space induced by a kernel function κ, we
use it to compute the elements of the kernel matrix, Kij = κ

(
x′i,x

′
j

)
(Eq. 2.24). We also use the term kernel matrix instead of Grammatrix,
and denote it with K, to emphasize the fact that the standard dot-
product is computed implicitly by a kernel function.

Now, if we can prove thatK is circulant for datasets of cyclic shifts,
we can diagonalize Eq. 4.1 and obtain a fast solution as for the lin-
ear case. This would seem to be intuitively true, but does not hold in
general. The arbitrary non-linear mapping gives us no guarantee of
preserving any sort of structure. However, we can impose one condi-
tion that will allow K to be circulant. It turns out to be fairly broad,
and apply to most useful kernels.

Theorem 4. Given circulant data C (x), the corresponding kernel matrix
K is circulant if the kernel function satisfies κ(x,x′) = κ(Mx,Mx′), for
any permutation matrixM .

For a proof, see Appendix A.1.2. What this means is that, for a ker-
nel to preserve the circulant structure, it must treat all dimensions of
the data equally. Fortunately, this includes most useful kernels (Sec-
tion 2.3.2).

Example 5. The following kernels (see Section 2.3.2) satisfy Theorem 4:

• Radial Basis Function kernels – e.g., Gaussian.

• Dot-product kernels – e.g., linear, polynomial.
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• Additive kernels – e.g., intersection, χ2 and Hellinger kernels [138].

• Exponentiated additive kernels.

Checking this fact is easy, since reordering the dimensions of x and
x′ simultaneously does not change κ(x,x′) for these kernels. This ap-
plies to any kernel that combines dimensions through a commutative
operation, such as sum, product, min and max.

Knowing which kernels we can use to make K circulant, it is pos-
sible to diagonalize Eq. 4.1 as in the linear case, obtaining

α̂ =
ŷ

k̂xx + λ
, (4.2)

where kxx is the first row of the kernel matrixK = C(kxx), and a hat
ˆdenotes the DFT of a vector. A detailed derivation is in Appendix
A.1.3.

To better understand the role of kxx, we found it useful to define a
more general kernel correlation. The kernel correlation of two arbitrary
vectors, x and x′, is the vector kxx′ with elements

kxx
′

i = κ(x′, P i−1x). (4.3)

Recall that P is the cyclic shift operator (Eq. 3.2), which is a permu-
tationmatrix. Inwords, kernel correlation evaluates the kernel for dif-
ferent relative shifts of its two arguments, and stores them in a vector.
Then k̂xx is the kernel correlation of x with itself, in the Fourier do-
main. We can refer to it as the kernel auto-correlation, in analogy with
the linear case.
This analogy can be taken further. Since a kernel is equivalent to

a dot-product in a high-dimensional space ϕ(·), another way to view
Eq. 4.3 is

kxx
′

i = ϕT (x′)ϕ(P i−1x), (4.4)

which is the cross-correlation of x and x′ in the high-dimensional
space ϕ(·).
Notice how we only need to compute and operate on the kernel

auto-correlation, an s× 1 vector, which grows linearly with the num-
ber of samples. This is contrary to the conventional wisdomon kernel
methods, which requires computing an s × s kernel matrix, scaling
quadratically with the samples. Our knowledge of the exact structure
of K allowed us to do better than a generic algorithm.
Finding the optimal α is not the only problem that can be accel-

erated, due to the ubiquity of translated patches in a tracking-by-
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detection setting. Over the next sections we will investigate the effect
of the cyclic shift model on the detection phase, and even in comput-
ing kernel correlations.

4.4 fast detection

It is rarely the case that we want to evaluate the regression function
f(z) for one image patch in isolation. To detect the object of interest,
we typically wish to evaluate f(z) on several image locations, i.e., for
several candidate patches. These patches can be modeled by cyclic
shifts.
Denote byKz the (asymmetric) kernel matrix between all training

samples and all candidate patches. Since the samples and patches
are cyclic shifts of base sample x and base patch z, respectively, each
element ofKz is given by κ(P i−1z, P j−1x). It is easy to verify that this
kernel matrix satisfies Theorem 4, and is circulant for appropriate
kernels.
Similarly to Section 4.3, we only need the first row to define the

kernel matrix:

Kz = C(kxz), (4.5)

where kxz is the kernel correlation of x and z, as defined before.
From Eq. 2.25, we can compute the regression function for all can-

didate patches with

f(z) = (Kz)T α. (4.6)

Notice that f(z) is a vector, containing the output for all cyclic shifts
of z, i.e., the full detection response. To compute Eq. 4.6 efficiently, we
diagonalize it to obtain

f̂(z) = k̂xz � α̂. (4.7)

Intuitively, evaluating f(z) at all locations can be seen as a spatial
filtering operation over the kernel values kxz. Each f(z) is a linear
combination of the neighboring kernel values from kxz, weighted by
the learned coefficients α. Since this is a filtering operation, it can be
formulated more efficiently in the Fourier domain. A more detailed
proof is given in Appendix A.1.4.
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4.5 fast kernel correlation

Even though we have found faster algorithms for training and detec-
tion, they still rely on computing one kernel correlation each (kxx and
kxz, respectively). Recall that kernel correlation consists of comput-
ing the kernel for all relative shifts of two input vectors (Eq. 4.3). This
represents the last standing computational bottleneck, as a naive eval-
uation of s kernels for signals of size swill have quadratic complexity.
However, using the cyclic shift model will allow us to efficiently ex-
ploit the redundancies in this expensive computation.

4.5.1 Dot-product and polynomial kernels

Dot-product kernels have the form κ(x,x′) = g(xTx′), for some func-
tion g (Section 2.3.2). Then, kxx′ has elements

kxx
′

i = κ(x′, P i−1x) = g
(
x′TP i−1x

)
. (4.8)

Let g also work element-wise on any input vector. This way we can
write Eq. 4.8 in vector form

kxx′
= g(C(x)x′) . (4.9)

This makes it an easy target for diagonalization, yielding

kxx′
= g
(
F−1 (x̂∗ � x̂′)

)
, (4.10)

where F−1 denotes the Inverse DFT.
In particular, for a polynomial kernel κ(x,x′) =

(
xTx′ + a

)b,
kxx′

=
(
F−1 (x̂∗ � x̂′) + a

)b
. (4.11)

Then, computing the kernel correlation for these particular kernels
can be done using only a few DFT/IDFT and element-wise opera-
tions, in O (s log s) time.

4.5.2 Radial Basis Function and Gaussian kernels

RBF kernels have the form κ(x,x′) = h(‖x− x′‖2), for some function
h (Section 2.3.2). The elements of kxx′ are

kxx
′

i = κ(x′, P i−1x) = h
(∥∥x′ − P i−1x

∥∥2
)

(4.12)
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We will show (Eq. 4.14) that this is actually a special case of a dot-
product kernel. We only have to expand the norm,

kxx
′

i = h
(
‖x‖2 + ‖x′‖2 − 2x′TP i−1x

)
. (4.13)

The permutation P i−1 does not affect the norm of x due to Parse-
val’s Theorem [83]. Since ‖x‖2 and ‖x′‖2 are constant w.r.t. i, Eq. 4.13
has the same form as a dot-product kernel (Eq. 4.8). Leveraging the
result from the previous section,

kxx′
= h

(
‖x‖2 + ‖x′‖2 − 2F−1 (x̂∗ � x̂′)

)
. (4.14)

As a particularly useful special case, for aGaussian kernelκ(x,x′) =

exp
(
− 1
σ2 ‖x− x′‖2)we get

kxx′
= exp

(
− 1

σ2

(
‖x‖2 + ‖x′‖2 − 2F−1 (x̂∗ � x̂′)

))
. (4.15)

As before, we can compute kernel correlation in only O (s log s)

time.

4.5.3 Other kernels

The approach from the preceding two sections depends on the ker-
nel value being unchanged by unitary transformations, such as the
DFT. This does not hold in general for other kernels, e.g. intersection
kernel. We can still use the fast training and detection results (Sec-
tions 4.3 and 4.4), but kernel correlation must be evaluated by a more
expensive sliding window method.

4.6 multiple channels

In this section, wewill see that working in the dual has the advantage
of allowing multiple channels (such as the orientation bins of a HOG
descriptor [44]) by simply summing over them in the Fourier domain.
A corollary is that linear correlation filter can also easily incorporate
multiple channels, if solved in the dual.
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4.6.1 General case

To deal with multiple channels, in this section we will assume that a
vector x concatenates the individual vectors for m channels (e.g. 31
gradient orientation bins for a HOG variant [44]), as x = [x1, . . . ,xm].
Notice that all kernels studied in Section 4.5 are based on either dot-

products or norms of the arguments. A dot-product can be computed
by simply summing the individual dot-products for each channel. By
linearity of the DFT, this allows us to sum the result for each channel
in the Fourier domain. As a concrete example, we can apply this rea-
soning to the Gaussian kernel, obtaining the multi-channel analogue
of Eq. 4.15,

kxx′
= exp

(
− 1

σ2

(
‖x‖2 + ‖x′‖2 − 2F−1 (

∑m
c x̂∗c � x̂′c)

))
. (4.16)

It is worth emphasizing that the integration of multiple channels
does not result in amore difficult inference problem –wemerely have
to sum over the channels when computing kernel correlation.

4.6.2 Linear kernel

For a linear kernel κ(x,x′) = xTx′, the multi-channel extension from
the previous section simply yields

kxx′
= F−1 (

∑m
c x̂∗c � x̂′c) . (4.17)

We named it the Dual Correlation Filter (DCF). This filter is linear,
but trained in the dual space α. This enables a simple multi-channel
extension, that direct formulations such as MOSSE lack [11].

4.7 experiments

4.7.1 Tracking pipeline

We implemented in Matlab two simple trackers based on the pro-
posed Kernelized Correlation Filter (KCF), using a Gaussian kernel,
and Dual Correlation Filter (DCF), using a linear kernel. We do not
report results for a polynomial kernel as they are virtually identical
to those for the Gaussian kernel, and require more parameters. We
tested two further variants: one that works directly on the raw pixel
values, and another that works onHOGdescriptors with a cell size of
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Algorithm 4.1 Matlab code for a Kernelized Correlation Filter, us-
ing a Gaussian kernel. Multiple channels (third dimension of image
patches) are supported. It is possible to further reduce the number of
FFT calls. Implementation with GUI available at:
http://www.isr.uc.pt/~henriques/

Inputs:
• x: training image patch, size s1 × s2 ×m
(an RGB image or a grid of features such as HOG)

• y: regression target, Gaussian-shaped, size s1 × s2

• z: test image patch, size s1 × s2 ×m
Output:

• responses: detection score for each location, s1 × s2

function alphaf = train(x, y, sigma, lambda)
k = kernel_correlation(x, x, sigma);
alphaf = fft2(y) ./ (fft2(k) + lambda);

end

function responses = detect(alphaf, x, z, sigma)
k = kernel_correlation(z, x, sigma);
responses = real(ifft2(alphaf .* fft2(k)));

end

function k = kernel_correlation(x1, x2, sigma)
c = ifft2(sum(conj(fft2(x1)) .* fft2(x2), 3));
d = x1(:)’*x1(:) + x2(:)’*x2(:) - 2 * c;
k = exp(-1 / sigma^2 * abs(d) / numel(d));

end

http://www.isr.uc.pt/~henriques/
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Kernelized Correlation Filter (proposed) TLD Struck

Figure 4.3: Qualitative results for the proposed Kernelized Correlation Fil-
ter (KCF), compared with the top-performing Struck and TLD.
Best viewed on a high-resolution screen. The chosen kernel is
Gaussian, on HOG features. These snapshots were taken at the
midpoints of the 50 videos of a recent benchmark [147]. Missing
trackers are denoted by an “x”. KCF outperforms both Struck
and TLD, despite its minimal implementation and running at
172 FPS (see Algorithm 4.1, and Table 4.2).
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parameters raw pixels hog

Feature bandwidth σ 0.2 0.5
Adaptation rate 0.075 0.02

Spatial bandwidth δ √
s1s2/10

Regularization λ 10−4

Table 4.1: Parameters used in all tracking experiments. The same parame-
ters were used for KCF and for DCF. The parameters differ only
between the raw pixels and HOG variants. s1 and s2 refer to the
height and width of the target, measured in pixels or HOG cells.

4 pixels, in particular Felzenszwalb’s variant1 [44, 36]. Note that our
linear DCF is equivalent to MOSSE [11] in the limiting case of a sin-
gle channel (raw pixels), but it has the advantage of also supporting
multiple channels (e.g. HOG). Our tracker requires few parameters,
and we report the values that we used, fixed for all videos, in Table
4.1.
The bulk of the functionality of the KCF is presented as Matlab

code in Algorithm 4.1. It is prepared to deal with multiple channels,
as the 3rd dimension of the input arrays. It implements 3 functions:
train (Eq. 4.2), detect (Eq. 4.7), and kernel_correlation (Eq. 4.16),
which is used by the first two functions.

The pipeline for the tracker is intentionally simple, and does not
include any heuristics for failure detection or motion modeling. In
the first frame, we train a model with the image patch at the initial
position of the target. This patch is larger than the target, to provide
some context. For each new frame, we detect over the patch at the
previous position, and the target position is updated to the one that
yielded the maximum value. Finally, we train a new model at the
new position, and linearly interpolate the obtained values of α and
xwith the ones from the previous frame, to provide the tracker with
some memory.

4.7.2 Evaluation

We put our tracker to the test by using a recent benchmark that in-
cludes 50 video sequences [147] (see Fig. 4.3). This dataset collects
many videos used in previous works, so we avoid the danger of over-
fitting to a small subset.

1 The HOG descriptor for each cell contains 31 features, corresponding to the nor-
malized edge magnitude in 9 contrast-insensitive and 18 contrast-sensitive orien-
tations, plus 4 gradient energy features [44]. The features were computed using
Piotr’s Toolbox [35].
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Figure 4.4: Precision plot for all 50 tracking sequences. The proposed track-
ers (bold) outperform state-of-the-art systems, such as TLD and
Struck, which are more complicated to implement and much
slower (see Table 4.2). Best viewed in color.

For the performance criteria, we did not choose average location
error or other measures that are averaged over frames, since they im-
pose an arbitrary penalty on lost trackers that depends on chance fac-
tors (i.e., the positionwhere the trackwas lost),making themnot com-
parable. A similar alternative is bounding box overlap, which has the
disadvantage of heavily penalizing trackers that do not track across
scale, even if the target position is otherwise tracked perfectly.
An increasingly popular alternative, which we chose for our eval-

uation, is the precision curve [147, 6, 61]. A frame may be considered
correctly tracked if the predicted target center is within a distance
threshold of ground truth. Precision curves simply show the percent-
age of correctly tracked frames for a range of distance thresholds. No-
tice that by plotting the precision for all thresholds, no parameters are
required. This makes the curves unambiguous and easy to interpret.
A higher precision at low thresholds means the tracker is more accu-
rate, while a lost target will prevent it from achieving perfect preci-
sion for a very large threshold range.When a representative precision
score is needed, the chosen threshold is 20 pixels, as done in previous
works [147, 6, 61].
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algorithm features precision mean fps

Proposed

KCF HOG 73.2% 172
DCF 72.8% 292
KCF Pixels 56.0% 154
DCF 45.1% 278

Other
algorithms

Struck [57] 65.6% 20
TLD [73] 60.8% 28

MOSSE [11] 43.1% 615
MIL [6] 47.5% 38

ORIA [144] 45.7% 9
CT [151] 40.6% 64

Table 4.2: Summary of experimental results on the 50 videos dataset [147].
The reported quantities are averaged over all videos. Precision is
calculated at a 20px threshold. Reported speeds include feature
computation (e.g. HOG).

4.7.3 Experiments on the full dataset

We start by summarizing the results over all videos in Table 4.2 and
Fig. 4.4. For comparison, we also report results for several other sys-
tems [57, 73, 11, 6, 144, 151], including some of the most resilient
trackers available – namely, Struck and TLD. Unlike our simplistic
implementation (Algorithm 4.1), these trackers contain numerous en-
gineering improvements. Struck operates on many different kinds of
features and a growing pool of support vectors. TLD is specifically
geared towards re-detection, using a set of structural ruleswithmany
parameters.

Despite this asymmetry, our Kernelized Correlation Filter (KCF)
can already reach competitive performance by operating on raw pix-
els alone, as can be seen in Fig. 4.4. In this setting, the rich implicit
features induced by the Gaussian kernel yield a distinct advantage
over the proposed Dual Correlation Filter (DCF).
We remark that the DCF with single-channel features (raw pixels)

is theoretically equivalent to aMOSSE filter [11]. For a direct compari-
son, we include the results for the authors’ MOSSE tracker [11] in Fig.
4.4. The performance of both is very close, showing that any particu-
lar differences in their implementations do not seem to matter much.
However, the kernelized algorithm we propose (KCF) does yield a
noticeable increase in performance.
Replacing pixels with HOG features allows the KCF and DCF to

surpass even TLD and Struck, by a relatively large margin (Fig. 4.4).
This suggests that the most crucial factor for high performance, com-
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pared to other trackers that use similar features, is the efficient incor-
poration of thousands of negative samples from the target’s environ-
ment, which they do with very little overhead.

4.7.4 Timing

As mentioned earlier, the overall complexity of our closed-form solu-
tions is O (s log s), resulting in its high speed (Table 4.2). The speed
of the tracker is directly related to the size of the tracked region. This
is an important factor when comparing trackers based on correla-
tion filters. MOSSE [11] tracks a region that has the same support
as the target object, while our implementation tracks a region that
is 2.5 times larger (116x170 pixels on average). Reducing the tracked
region would allow us to approach their FPS of 615 (Table 4.2), but
we found that it hurts performance, especially for the kernel variants.
Another interesting observation from Table 4.2 is that operating on
31 HOG features per spatial cell can be slightly faster than operat-
ing on raw pixels, even though we take the overhead of computing
HOG features into account. Since each 4x4 pixels cell is represented
by a single HOG descriptor, the smaller-sized DFT counterbalance
the cost of iterating over feature channels. Taking advantage of all 4
cores of a desktop computer, KCF/DCF take less than 2 minutes to
process all 50 videos (∼29,000 frames).

4.7.5 Experiments with sequence attributes

The videos in the benchmark dataset [147] are annotated with at-
tributes, which describe the challenges that a tracker will face in each
sequence – e.g., illumination changes or occlusions. These attributes
are useful for diagnosing and characterizing the behavior of trackers
in such a large dataset, without having to analyze each individual
video. We report results for 4 attributes in Figure 4.5: non-rigid defor-
mations, occlusions, out-of-view target, and background clutter.
The robustness of the HOG variants of our tracker regarding non-

rigid deformations and occlusions is not surprising, since these fea-
tures are known to be highly discriminative [44]. However, the KCF
on raw pixels alone still fares almost as well as Struck and TLD, with
the kernel making up for the features’ shortcomings.
One challenge for the system we implemented is an out-of-view

target, due to the lack of a failure recoverymechanism. TLDperforms
better than most other trackers in this case, which illustrates its focus
on re-detection and failure recovery. Such engineering improvements
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Figure 4.5: Precision plot for sequenceswith attributes: occlusion, non-rigid
deformation, out-of-view target, and background clutter. The
HOG variants of the proposed trackers (bold) are the most re-
silient to all of these nuisances. Best viewed in color.

could probably benefit our trackers, but the fact that KCF/DCF can
still outperform TLD shows that they are not a decisive factor.
Background clutter severely affects almost all trackers, except for

the proposed ones, and to a lesser degree, Struck. For our tracker
variants, this is explained by the implicit inclusion of thousands of
negative samples around the tracked object. Since in this case even
the raw pixel variants of our tracker have a performance very close to
optimal, while TLD, CT,ORIA andMIL showdegraded performance,
we conjecture that this is caused by their undersampling of negatives.

We also report results for other attributes in Fig. 4.6. Generally, the
proposed trackers are the most robust to 6 of the 7 challenges, except
for low resolution, which affects equally all trackers but Struck.

4.8 conclusions

In this chapter, we leveraged the theory of circulant matrices to effi-
ciently train a kernel learning algorithm with several translated im-
age patches. Our approach provides a theoretically sound solution to
the long-standing open problem of how to apply the kernel trick to
correlation filters. We thus obtained state-of-the-art trackers that run
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at hundreds of FPS, and can be implemented with only a few lines of
code.
The proposed method takes into account cyclic shifts of a single

base sample, which seems to be sufficient to obtain very competitive
performance in tracking. It is possible to extend the method to in-
corporate cyclic shifts of a set of base samples. Unfortunately, the re-
sulting model would scale linearly with the number of base samples,
similarly to other kernel methods [121]. This fact can be mitigated by
a number of approaches, such as the Nyströmmethod [143], random
Fourier features [108], and explicit feature maps obtained by spec-
tral analysis [138]. Nevertheless, for large-scale learning applications,
such as detection and pose estimation, linear models are typically
chosen over non-linear kernels. For this reason, over the next chap-
ters we will analyze the behavior of batch learning algorithms under
cyclic shifts, and change our focus to linear models.
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Figure 4.6: Precision plots for 6 attributes of the dataset. Best viewed in color.
In-plane rotation was left out due to space constraints. Its results
are virtually identical to those for out-of-plane rotation (top-left),
since they share almost the same set of sequences.



5
C IRCULANT DECOMPOS IT ION OF LARGE - SCALE
PROBLEMS

There are a few immediate ways in which we can generalize the me-
thodology of the previous chapters. One of them is to consider the
cyclic shifts of multiple base samples. In tracking applications (stud-
ied in Chapter 4) there is only one new image in each frame, from
which we can obtain samples through cyclic shifts. In this chapter,
however, we will study detectors for general classes of objects. Object
detectors are typically learned offline, using a collection of example
images, and all of their cyclic shifts are potentially useful samples,
which we must consider jointly. In Section 5.1 we will relate this sam-
pling method to the approach taken in state-of-the-art detector train-
ing, called hard-negativemining. From Section 5.2.1 onwards wewill
devise efficient algorithms that exploit the proposed sampling pro-
cess.
Another important generalization is to consider more complicated

learning algorithms than Ridge Regression, which often attain better
performance [30, 44]. The discussion in Chapter 4 was restricted to
Ridge Regression, which minimizes the squared error of the model
on the training samples (Section 2.1.1). Both Ridge Regression, and
other objective functions that are quadratic in the arguments, can be
solved in closed-form [14]. This makes them a popular framework
in the signal processing literature, and the basis for correlation fil-
ters (by minimizing a quadratic error in the Fourier domain) [86, 10,
146]. It is legitimate to ask, however, whether correlation filters can
be generalized usingmore varied loss functions, creating a bridge be-
tween classical signal processing and machine learning algorithms.
The practical benefit is a family of algorithms that inherit the com-
putational efficiency of the former, and the high performance of the
later. These advantages will be demonstrated with detector learning
experiments in Section 5.6.

5.1 the sampling problem in detection

Similarly to object trackers, object detectors work by scanning images
using learned templates. These templates may model whole objects
[30], parts [44], more general mid-level fragments [13, 135] or hierar-

63
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chies of filters capturing increasingly higher-level features [76]. The
templates, most oftenHOG (Histogram of OrientedGradients) filters
[30], are evaluated exhaustively at all locations in an image over a dis-
crete range of scales, using fast convolution implementations.
This type of dense search is very powerful butmakes it challenging

to learn the filters: learning algorithms for even the simplest models,
linear classification and logistic regression, scale to ∼ 106 training
examples [42]; however, a handful of test images can contain these
many samples. The asymmetry between the resolution of prediction
and learning has been tackled by mining for hard negative examples.
In this iterative process, an initial model is trained using all positive
examples (which are representative of the desired object class) and
a randomly selected subset of negative examples. The initial training
set is then progressively augmentedwith false positive examples pro-
duced while scanning the images with the model learned so far. Due
to the exhaustive scanning, hard negative mining is very expensive,
and does not scale up to a large number of object models [88].
Some recent attempts at speeding up learning have fit parametric

models (Gaussians) to the background distribution [102, 58, 49], how-
ever some of these approaches are specific to particular models such
as Linear Discriminant Analysis. Additionally, natural image statis-
tics are known to be characterized by long exponential tails [115]
hence may not be very faithfully represented by a Gaussian distri-
bution.
Fourier transforms have long been used to perform fast convolu-

tion, and were employed recently to accelerate detectors at test time
[38]. They have also been used to accelerate the subgradient compu-
tation of a modified SVM solver [39].
In the present chapter we will take a different direction. Leverag-

ing the idea of cyclic shifts (Chapter 3), wewill model all samples that
are contained in the training images. We will then see how standard
learning algorithms can take advantage of the inherent structure for
maximumefficiency. By taking into account all possible samples from
the start, there is no need for an expensive hard-negative mining pro-
cess.

5.2 datasets with cyclic shifts

Our starting point is a direct extension of the datasets considered in
previous chapters. Recall that s virtual samples can be obtained by
translation from a base sample x as (Eq. 3.4), yielding the dataset
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Figure 5.1: Illustration of a dataset augmented using s cyclic shifts of the
original n base samples. Such a dataset can be used to model
the training of a classifier with several subwindows from a set of
images.

X ′ =
{
P u−1x |u = 1, . . . s

}
. (5.1)

The samples can be concatenated into the rows of a data matrix,
which will then be circulant: X ′ = C(x) (Section 3.2).

Now, if we consider n base samples instead, denoted xi, we get an
augmented dataset

X =
{
P u−1xi | i = 1, . . . , n; u = 1, . . . , s

}
. (5.2)

The total number of samples is now sn, which can exceed the base
samples by a large factor. Another view of the same dataset is by con-
catenating the samples into the rows of a sn× s data matrix,

X =

 C(x1)
...

C(xn)

 (5.3)

which contains one circulant block for each base sample.
The model of Eq. 5.2-5.3, if exploited correctly, can have a tremen-

dous impact in practice. The bottleneck of detector learning is the
large amount of potentially useful negative samples, extracted from
example images by hard-negative mining. Eq. 5.2, on the other hand,
can describe all the potential negative samples at once. Because of
the wrap-around effect at the borders, the approximation quality of
cyclic shifts degrades for very large translations, when compared to
non-cyclic translation. As such, in practice we collect base samples
in a grid pattern, at large intervals, which models large translations.
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Figure 5.2: Illustration of a Gram matrix with circulant blocks (left) and its
block-diagonalization (right). Forming the ns× ns Gram matrix
G from the dataset illustrated in Fig. 5.1, it is clear that there
is some structure at the block level. We show that G has circu-
lant blocks (Sec. 5.2.1). Transforming by V block-diagonalizes
the Gram matrix, resulting in s smaller and independent sub-
problems (one per block). Each sub-problem will correspond to
a distinct frequency of the Fourier transform.

The cyclic shifts in Eq. 5.2 then model the finer translations. Fig. 5.1
illustrates this idea.

5.2.1 Influence of cyclic shifts on a learning problem

In order to understand the role that such datasets play in a learn-
ing algorithm, probably the most direct quantities that we can anal-
ize are the uncentered covariance matrixXTX , and the Grammatrix
XXT . The covariance matrix is somewhat limited in usefulness, as it
appears only in the expression for Ridge Regression (Eq. 2.4)1. How-
ever, the Gram matrix is more pervasive: every algorithm presented
in Chapter 2 can be expressed in the dual, and access the data solely
through the Gram matrix (Eq. 2.16, 2.18, 2.19, 2.20). It is due to this
wider availability that we will focus our efforts on the Gram matrix
G.

Inspecting the rows of the data matrixX in Eq. 5.3, we can observe
that they are partitioned into n blocks, one per base sample, and each
block contains s samples (obtained by cyclic shifts). Since X is a ma-
trix with n vertical blocks, the Gram matrix G = XXT must also be
a block matrix. To compute its values we can use the rules of block-
matrix multiplication, which are essentially the same as those of stan-

1 Whether the covariance matrix is used at all depends, of course, on the optimiza-
tion method. Newton methods rely on the Hessian matrix (second-order deriva-
tives of the objective) that often shares similarities with the covariance matrix, but
in general it does not exhibit the properties we discuss here [80, 42].
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dardmultiplication but replacingmatrix elementswithmatrix blocks
[52, Section 1.3]. As a result, the n2 blocks of G are simply

G(i, j) = C(xi)C
T (xj), (5.4)

where eachG(i, j) is s×s. By stacking the blocksG(i, j) we obtain the
full GrammatrixG, which is sn×sn. Note thatG(i, j) is the product of
two circulant matrices, and as such it must also be circulant (Section
3.7).

5.2.1.1 Block-circulant vs. circulant blocks

As shown earlier, the GrammatrixG is a matrix with circulant blocks
(Eq. 5.4).Note that it is always possible to reorder its rows and columns
so it becomes block-circulant (i.e., the elements of the blocks are ar-
bitrary, but the blocks themselves follow a circulant pattern). This is
explored in detail in Appendix A.2.2. Both forms of the Grammatrix
are equivalent, because only the order of the samples is different.

5.2.2 Block-diagonalization

Since each block of the Gram matrix G(i, j) is circulant, we can diag-
onalize it by Theorem 3:

G(i, j) = U diag (x̂i) U
∗U diag (x̂j) U

∗ (5.5)
= U diag (x̂i � x̂j) U

∗ (5.6)
= U G′(i, j)U∗, (5.7)

where� is the element-wise product, and we defined a diagonalized
block as G′(i, j) = diag (x̂i � x̂j).

The fact that we can diagonalize each block G(i, j) hints at a pos-
sible diagonalization of the full Gram matrix G. A nearly-diagonal
GrammatrixGwould be extremely sparse, whichwould simplify sig-
nificantly most learning problems in the dual (Section 2.2). We will
now focus on achieving this goal.

Concatenating the blocks of Eq. 5.7 into a full matrix G, and doing
the same for G′, we can collect the U and U∗ factors outside of G′,
yielding

G = (I ⊗ U)G′ (I ⊗ U)∗ , (5.8)

where ⊗ is the Kronecker product (Section A.2.3).
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There is a unique permutation R that changes any matrix with di-
agonal blocks, such as G′, into a block-diagonal matrix,

G′ = RT ĜR, Ĝ =

Ĝ(1)
. . .

Ĝ(s)

 . (5.9)

For the purposes of this derivation we only need to know that such
a permutation exists, however it is explored in more detail in Ap-
pendix A.2. We point out that this permutation R is unique and is
known in the literature as the commutation matrix [85]. The blocks of
Ĝ can then be computed explicitly by drawing from the elements of
G′,

Ĝij(f) = x̂if x̂jf , (5.10)

where x̂if denotes the f th element of x̂i. A block Ĝ(f) can be inter-
preted as the Gram matrix for a Fourier frequency f : it is composed
of the dot-products between the frequency f from all pairs of sam-
ples.

It is possible to simplify Eq. 5.8, by replacing Eq. 5.9 and using the
fact that the commutation matrixR commutes the arguments of Kro-
necker products [85] (Appendix A.2.3).

G = (U ⊗ I) Ĝ (U ⊗ I)∗ . (5.11)

5.2.3 Unitarity revisited

For convenience, we can denote U ⊗ I = V . It can be easily veri-
fied that the diagonalizationmatrix V is unitary, a property inherited
from the unitary DFT matrix U and the identity I . In other words,
V −1 = V H (where V H = (V ∗)T is the Hermitian transpose, see Sec-
tion 3.4).
The interest in unitary transformations lies in the fact that they pre-

serve dot-products. Given two vectors a and b, and denoting â = V a

and b̂ = V b, then we have âHb̂ = aHb. Since L2-norms are dot-
products, they are also preserved: aHa = ‖a‖2 = ‖â‖2. These proper-
ties will be very useful in the next section.

5.3 separability of learning problems

Wenowneed to prove the intuition that the blocks of a block-diagonal
Gram matrix Ĝ indeed represent independent learning problems.
This can yield considerable computation and storage savings, since
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the number of elements under consideration is (s− 1) s times smaller
than for the full G. The exact partitioning into sub-problems is also
suitable for parallel implementations that take full advantage ofmod-
ern architectures.
As mentioned earlier, V preserves dot-products and norms. If the

dual of an algorithm can be represented exactly using dot-products
and norms of the data in the dual space, then transforming this space
by V will not affect the result. Additionally, both a block-diagonal Ĝ
and any dot-products and norms can be decomposed into sums of
their respective blocks. This means that the blocks can be optimized
separately, proving our initial intuition. The result is formalized in
the following theorem.

Theorem 6. Consider a general learning problem, expressed in the dual
variables α, with labels y and Gram matrix G:

min
α

1

2
αHGα +

n∑
i

D (αi, yi) . (5.12)

The function D can vary depending on the chosen algorithm. Given a
unitary matrix V such that Ĝ = V ∗GV is block-diagonal, with s blocks Ĝf ,
then Eq. 5.12 can be decomposed into s sub-problems

min
ᾱf

1

2
α̂
H
f Ĝf α̂f +

n∑
i

D (α̂fi, ŷfi) , f = 1, . . . , s, (5.13)

with the transformed variables α̂ = V ∗α and ŷ = V ∗y. Both α̂ and ŷ are
partitioned into s blocks α̂f and ŷf , each with n elements α̂fi and ŷfi.
This relation is exact if the function D only depends on dot-products of

its arguments, and approximate otherwise.

The proof is given in Appendix A.3.1. We are now ready to explore
the implications for a number of learning algorithms.

5.3.1 Ridge Regression

Ridge regression (RR) is a regularized formof least-squares,with loss
function (Section 2.1.1)

L
(
wTx, yi

)
=
(
wTx− yi

)2
. (5.14)

Although we can compute the dual solution in closed form (Sec-
tion 2.2.1), it is easier to consider it as aminimization problem, which
conforms to Eq. 5.12. In the case of Ridge Regression, the dual has
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D (αi, yi) = λ
2
α2
i −λαiyi [112]. Since its terms are all dot-products, the

decomposition is exact.

5.3.2 Support Vector Regression

L2-SVR penalizes errors with the squared epsilon-insensitive loss
(Section 2.1.3)

L (f(x), y) =
∣∣wTx− y

∣∣2
ε

= max
(
0,
∣∣wTx− y

∣∣− ε)2
. (5.15)

The dual has D (αi, yi) = λ
2
α2
i − αiyi + ε |αi| [137, Section 6.2.2].

Only the last term, an L1-norm, is not a dot-product. As such, the
approximation error is bounded by ε |‖ᾱ‖1 − ‖α‖1|.

5.3.3 General case

The same analysis applies to L1-SVR, Logistic Regression and other
dual formulations, with varying degrees of approximation. It is also
possible to characterize the transformations that preserve L1 and L2-
norms exactly, but such a restriction makes them less useful (this is
explored in Appendix A.3.2). We do not consider SVM because it re-
stricts the labels to {−1, 1}, and a unitary transformation of the labels
may fall outside this set.

5.4 explicit data matrix

The transformed Gram matrix for each of the s sub-problems, Ĝ(f),
can be used directly in a dual solver (e.g., libsvm [42]). However, if
n is large, an explicit description of the transformed data matrix that
generates such a Gram matrix (through Eq. 2.17) would be more de-
sirable.
By inspecting Eq. 5.10, it can be seen that each block Ĝ(f) corre-

sponds to a distinct Fourier frequency f , and each of its elements
(i, j) is simply the product of frequency f of the Fourier transforms
of samples xi and xj .
Because it is a simple product, it can be factorized into

Ĝ(f) = X̂(f)X̂H(f), (5.16)
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Algorithm 5.1 Matlab code for the Circulant Decomposition with
multiple base samples. See Section 5.6.2.1 for details. This algorithm
is equivalent to solving a regression with all spatial translations of
the given samples. The full test suite can be downloaded at: http:
//www.isr.uc.pt/~henriques/

Inputs:
• X: s1 × s2 ×m× n data matrix with n samples,
each withm features on a s1 × s2 grid

• Y: s1 × s2 × n labels matrix
• regression: a complex-valued linear regression function

Output:
• W: s1 × s2 ×mweights matrix

X = fft2(X);
Y = fft2(Y);
Y(1,1,:) = 0;
X = permute(X, [4, 3, 1, 2]);
Y = permute(Y, [3, 1, 2]);
for f1 = 1:s1
for f2 = 1:s2
W(f1,f2,:) = regression(X(:,:,f1,f2), Y(:,f1,f2));

end
end
W = real(ifft2(W));

where X̂(f) is an n × 1 vector with the Fourier frequency f of each
sample. This explicit description of the data matrix X̂(f) allows us to
use a fast primal solver such as liblinear [42].

5.4.0.1 Extension to two dimensions

All properties of the Fourier transform (FT) and circulantmatriceswe
used have direct equivalents in 2D, i.e., when samples contain s1× s2

spatial cells. We just have to replace the 1D FT with the 2D FT, and
set s = s1s2.

5.4.0.2 Extension for multiple features per cell

We can simply extend X̂(f) to be a n×mmatrix with the Fourier fre-
quency f of m features. By additivity of the dot-product, the Gram
matrix obtained this way is the sum of Gram matrices over allm fea-
tures, and all properties are preserved.

http://www.isr.uc.pt/~henriques/
http://www.isr.uc.pt/~henriques/
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5.5 complex-valued regression

The fact that the datamatrices of Eq. 5.16 are complexmay apparently
present some difficulties, since regression is usually real-valued. In
this section we discuss some solutions. We consider a generic data
matrix X and regression targets y.
The simple algorithm of Ridge Regression is already prepared to

deal with complex values:

w∗ =
(
XHX + λI

)−1
XHy. (5.17)

The only difference from the real case is that the solution must be
complex-conjugated.
The SVR can deal with the complex case by extending its loss func-

tion (Eq. 5.15) from the real line to the complex plane:

L
(
wHx, y

)
=
∣∣Re

(
wHx− y

)∣∣2
ε

+
∣∣Im (wHx− y

)∣∣2
ε
, (5.18)

where Re (·) extracts the real part of a complex number, and Im (·) the
imaginary part. For real arguments, this reduces to the simple SVR.
We can prove (Appendix A.3.3) that this is equivalent to a real SVR
with the augmented data matrix X ′ and augmented targets y′,

X ′ =

[
Re (X) Im (X)

Im (X) −Re (X)

]
, y′ =

[
Re (y)

Im (y)

]
, (5.19)

where the rows of X ′ are the samples of the new real SVR problem,
and the elements of y′ are its regression targets. The complex solution
w can then be reconstructed from the augmented real solution w′,

w′ =

[
Re (w)

Im (w)

]
. (5.20)

Note that this is not the same as simply concatenating the real and
imaginary parts as features. The structure ofX ′ ensures that the prop-
erties of complex numbers are respected (e.g., i.i = −1, with i the
pure-imaginary unit).

5.6 experiments

We tested the proposed decomposition on a number of detection
tasks. Recall that the proposed method can replace the traditional
hard negative mining steps with a single learning phase. As such,
the goal of these experiments is not to show greater accuracy, but to
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Figure 5.3: Example detections in the Inria Pedestrians dataset. The opacity
of the bounding boxes is proportional to the confidence in each
detection. Best viewed in color.

verify that we can achieve accuracy that is competitive with several
rounds of hard negative mining, all other components being constant.
If we introduced different variations (features, etc), results would be
less conclusive.We chose the task of learning a singleHOGfilter from
full object exemplars, which captures the core component shared by
many modern object detectors [44, 13]. Note that these contributions
are orthogonal to other recent advances in object detection, such as
the use of part filters and multiple object components [44, 13, 135].
In our tests, we will apply the Circulant Decomposition (CD) to an

SVR solver, as we found SVR to perform similarly to regular SVM
in practical object detection tasks. The experiments will evaluate sev-
eral aspects: 1) how detection performance with the CD single-batch
learning relates to SVM learning as the number of rounds of hard
negative mining increases, 2) the implicit ability of CD to enlarge the
training set with many translations, and its impact on datasets with
few positive samples and 3) the computational savings of CD, com-
pared to hard negative mining, which is generally considered expen-
sive.

5.6.1 Detector evaluation metrics

Probably the most well-known detector evaluation metrics are Preci-
sion-Recall curves (for a visual comparison), and Average Precision
(for a summary statistic), made popular by the Pascal VOCChallenge
[41, 44]. An important feature is that thesemetrics are threshold inde-
pendent. The output of a detector is typically a list of bounding boxes
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(object locations obtained during scanning), and each has an associ-
ated confidence score. In the case of a discriminative classifier, the
output of the model f(z) ∈ R at the bounding box’s location gives a
measure of confidence. Thresholding f(z) at a given confidence level
will separate the object detections from the background.

However, this threshold depends heavily on the tradeoffs associ-
ated with a particular application, where different kinds of errors
may be acceptable. A low threshold means that more candidates are
considered objects, so there are few missing detections (false nega-
tives), but a higher probability of spurious detections (false positives).
A high threshold will filter the candidates aggressively, with fewer
false positives, but may miss more detections (false negatives).
It is desirable to measure performance in an application-indepen-

dent (and thus threshold-independent) manner, so methods are com-
pared using a plot of the precision and recall over all possible thresh-
olds (see Fig. 5.4). For a given threshold, precision is computed as
TP/(TP + FP ), where TP is the number of true positives (correct
detections) and FP the number of false positives. Recall is computed
as TP/(TP + FN), where FN is the number of false negatives. This
allows us to plot a Precision-Recall curve for all thresholds, where
methods with higher curves generally fare better. The average value
of the precisions in the curve (AP) is typically used as a single perfor-
mance statistic, with higher values corresponding to a more accurate
detector.2

5.6.2 Pedestrian detection

Weexperimentedwith pedestrian detection on two standarddatasets:
the well-known INRIA Pedestrians [30] and the more recent Caltech
Pedestrian Detection Benchmark [34]. Example detections obtained
using the proposed method are shown in Fig. 5.3 and 5.8.
Before delving into the details of the detector implementations,

we will show the main results of the experimental section – that a
Circulant Decomposition is equivalent to training with all negative
windows, a feat that can only be approximated by several rounds of
hard negative mining. Fig. 5.4 shows a comparison of CD and differ-
ent numbers of hard negative rounds for INRIA Pedestrians and Fig.
5.5 shows the same comparison for the Caltech Pedestrian Detection

2 The criteria for considering a detection correct (to compute TP , FP and FN ) is
that it overlaps bymore than 50%with a ground truth bounding box. Their relative
overlap is defined as the area of the intersection of the two bounding boxes, divided
by the area of their union.
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Figure 5.4: Performance on the test set of INRIA Pedestrians using a HOG
detector. It takes several rounds of hard negative mining to con-
verge to the same results of the proposed Circulant Decomposi-
tion, which is trained on the full set of negative windows. The
Circulant Decomposition allows training on the full set in one
go. AP is shown in brackets.

Benchmark. The Average Precision (AP) is shown in brackets. The
results suggest that the Circulant Decomposition performs on par
with the slower and intrinsically less complete process of learning
with hard negative mining.

5.6.2.1 Implementation

We followed the original implementation of the HOG pedestrian de-
tector [30]. On INRIA Pedestrians the baseline classifier is trained
with 12180 random negative windows, before mining hard negative
examples from the set of 1218 negative images, which contains∼ 108

potential windows. For our method, which can train with all ∼ 108

windows in this set, we consider a total of ∼ 105 base samples. The
finer translations within each patch are implicitly dealt with by the
Circulant Decomposition, which is the main advantage of our ap-
proach. We proceed similarly on the “reasonable” subset of the Cal-
tech Pedestrians dataset [34], composed of 4250 training images ob-
tained every 30 frames, of which 2217 are negative images, without
pedestrians. All tests were done on a quad-core 3.0Ghz desktop com-
puter. Both CD andmining implementations are parallelized, provid-
ing a fair representation of a modern set-up.
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Figure 5.5: Performance on the test set of the Caltech Pedestrians Detection
Benchmark (AP is shown in brackets) using aHOGdetector. The
CirculantDecomposition is competitivewith 3 expensive rounds
of hard negative mining.

An implementation of the proposedmethod using this datamatrix
is given in Algorithm 5.1. For HOG descriptors, m is the number of
orientation bins, over an s1×s2 grid, and n is the number of base sam-
ples. After transformingX to the Fourier domain, the built-inMatlab
function permute will reorder the dimensions of the data matrix X ,
from s1 × s2 × m × n to n × m × s1 × s2. Extracting a n × m slice
from this array yields the data matrix for one of the s1s2 regression
subproblems. The results of the individual regressions are stored into
w, which is then transformed back to the spatial domain to yield the
solution.
Additionally, we verified experimentally that it is necessary for the

regression targets to have no DC component (line 3 of Algorithm 5.1.)
A possible reason is that the DC component of the data, which corre-
sponds to the mean in the spatial domain, tipically has values several
orders of magnitude larger than the remaining frequencies.

5.6.2.2 Cyclic shifts as a model for translation

Since samples must have the same support as the learned template
w, cyclic shifts of a template-sized sample are less accurate for large
translations, due to wrap-around effects. Thus in practice we collect
base samples xi from negative images in a grid, at regular intervals



5.6 experiments 77

mining circulant
rounds 0 1 2 3 0

Time (s) INRIA 7 159 312 463 35
Caltech 12 646 1272 1901 139

AP INRIA 0.749 0.785 0.794 0.796 0.805
Caltech 0.165 0.268 0.365 0.368 0.380

Table 5.1: Performance and timing of the proposed method on the INRIA
and Caltech Pedestrians datasets, and the classical approach us-
ing increasing numbers of hard negative mining rounds. The pro-
posed method converges on the solution in one go, requiring
much less time than even a single round of mining.

of 2/3 of the template size, which accounts for large translations. We
verified experimentally that there is little impact in performance if
we assume cyclic shifts are accurate up to ∼1/3 of the template size
in all directions. The cyclic shifts P u−1xi model the finer translations,
which comes at no additional cost when using the Circulant Decom-
position. This allows us to effectively model a sliding window, while
collecting only a few dozen base samples per negative image.
To verify that the gain in performance is truly due to the Circulant

Decomposition and not the grid sampling scheme, we trained a full
SVM classifier with the same base samples. The results in Fig. 5.6-
a show that performance drops significantly without the proposed
decomposition, which also makes training faster and easier to paral-
lelize.

5.6.2.3 Positive samples

Another aspect of our method is that wemust choose labels for trans-
lations of positive samples, since they are implicitly accounted for
during training.
A translation of a positive sample at some point becomes a false

positive, so a simple choice is to assign it the label +1 if t = 0 (aligned),
and -1 if t 6= 0 (misaligned). Alternatively, and taking advantage of
the fact that regression allows labels outside the set {−1,+1}, we can
use a Gaussian function to interpolate smoothly between the two, ac-
cording to a Gaussian bandwidth σ. For σ = 0 the function looks
like a single peak, and we recover the first choice wementioned. This
function plays a similar role to the regression targets in correlation
filters (Appendix A.1.1).
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Figure 5.6: INRIA Pedestrians. (a) Comparison of Circulant Decomposition
and a full SVM (not decomposed) using the same base samples.
(b) Performance as spatial bandwidth σ is varied (see text). Small
values offer better performance because high localization in de-
tection tasks can be understood as suppressing off-center detec-
tions.

Performance on INRIAPedestrians as this parameter varies is shown
in Fig. 5.6-b. Larger bandwidths seem to degrade performance, and
the best performance is attained near σ = 0. Since good localization
(suppressing misaligned detections) is important in detection tasks,
this result agrees with intuition.

5.6.3 ETHZ Shapes

Asmentioned earlier, translations of positive samples are also consid-
ered. It is possible that these “virtual samples” help regularize the
solution in settings with a scarcity of positive samples. To test this
hypothesis, we followed the same methodology as before but on the
ETHZ Shapes dataset [45]. This dataset has only between 22 and 45
positive examples for each of its 5 categories (Mugs, Bottles, Swans,
Giraffes and Apple Logos), evenly split into training and testing sets.
Example detections of each class are shown in Fig. 5.9. Unlike on the
pedestrian detection benchmarks, where positive examples abound,
here results are markedly improved using the proposed method, as
visible in Fig. 5.7. We conjecture, based on these results, that our ap-
proach could also benefit applications such as one-shot learning and
transfer learning.

5.7 conclusions

Supported by the observation that the Gram matrix of the set of
training images and their translations has circulant blocks, we have
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Figure 5.7: Performance on ETHZ Shapes, a dataset with scarce training
data (between 22 and 45 positive examples per class, with an
equal train-test split). In addition to allowing models to be
trained faster, the Circulant Decomposition achieves higher per-
formance in this case, perhaps due to the implicit inclusion of
translated positive samples. (Mean AP is shown in brackets.)

derived a closed-form decomposition that allows for popular filter-
based detectors to be efficiently learned from all subwindows of a
given size in a single batch, on datasets with a few thousand train-
ing images. This is surprising since the number of subwindows is in
the order of 108, which precludes even loading the data matrix into a
current computer’s memory, but is feasible using our proposed em-
bedding of the learning problem into the Fourier domain. This me-
thodology is likely to have broad applicability, as it allows for both
a much more efficient and more complete learning process than iter-
ative hard negative mining, used for learning many modern object
detectors.
After exploiting the nature of image translations to accelerate learn-

ing algorithms, we will now turn to an even more challenging prob-
lem: to exploit the structure of arbitrary image transformations, such
as rotations or image scaling.
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Figure 5.8: Example detections in the Caltech Pedestrians dataset. The opac-
ity of the bounding boxes is proportional to the confidence in
each detection. Best viewed in color.

Figure 5.9: Example detections in the ETHZ Shapes dataset, one per object
class. The opacity of the bounding boxes is proportional to the
confidence in each detection. Best viewed in color.



6
GENERAL GEOMETR IC TRANSFORMAT IONS

In many datasets, the samples are related by a known image transfor-
mation, such as rotation, or a repeatable non-rigid deformation. This
applies to both datasets with the same objects under different view-
points, and datasets augmented with virtual samples. Such datasets
possess a high degree of redundancy, because geometrically-induced
transformations should preserve intrinsic properties of the objects.
Likewise, ensembles of classifiers used for pose estimation should
also share many characteristics, since they are related by a geomet-
ric transformation. This represents a significant generalization of the
results from the previous chapters, which considered the same prob-
lem but for image translation only. In this chapter we will show that,
under the assumption that the transformation is norm-preserving
and cyclic, a simple closed-form solution in the Fourier domain can
eliminate most redundancies. It can leverage off-the-shelf solvers
with no modification (e.g. libsvm [23]), and train several pose classi-
fiers simultaneously at no extra cost. The experiments will show that
training a sliding-window object detector and pose estimator can be
sped up by orders of magnitude, for transformations as diverse as
planar rotation, the walking motion of pedestrians, and out-of-plane
rotations of cars.

6.1 introduction

To cope with the rich variety of transformations in natural images,
recognition systems require a representative sample of possible vari-
ations. Some of those variations must be learned from data (e.g. non-
rigid deformations), while others can be virtually generated (e.g.
translation or rotation, see Fig. 6.1). Recently, there has been a re-
newed interest in augmenting datasets with virtual samples, both in
the context of supervised [104, 76] and unsupervised learning [37].
This augmentation has the benefits of regularizing high-capacity clas-
sifiers [37], while learning the natural invariances of the visual world.
Some kinds of virtual samples can actually make learning easier

– for example, with horizontally-flipped virtual samples [44, 30, 76],
half of the weights of the template in the Dalal-Triggs detector [30]
become redundant by horizontal symmetry. The developments of

81
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Figure 6.1: Virtual samples generated by rotation of 4 cars from aerial im-
ages. The deterministic rotations create an intrinsic pattern in
the dataset, that we propose to exploit.

Chapters 4 and 5 have shown that cyclically translated virtual sam-
ples also constrain learning problems, to obtain substantial gains
in computational efficiency. In this chapter, we will show that the
“Fourier trick” responsible for these gains is not unique to cyclic
translation, but can be generalized to other cyclic transformations.
The proposed model captures a wide range of useful image transfor-
mations, yet retains the ability to accelerate training with the DFT.
As it is only implicit, we can accelerate training in both datasets of
virtual samples and natural datasets with pose annotations.

Also due to the geometrically-induced structure of the training
data, the proposed algorithm can obtain several transformed pose
classifiers simultaneously. Some of the best object detection and pose
estimation systems currently learn classifiers for different poses in-
dependently [47, 44, 88], and we show how joint learning of these
classifiers can dramatically reduce training times.

6.1.1 Related work

There is a vast body of works on image transformations and invari-
ances, of which we can only mention a few. Much of the earlier com-
puter vision literature focused on finding viewpoint-invariant pat-
terns [97]. They were based on image or scene-space coordinates, on
which geometric transformations can be applied directly, however
they do not readily apply to modern appearance-based representa-
tions. To relate complex transformations with appearance descrip-
tors, a classic approach is to use tangent vectors [24, 124, 72], which
represent a first-order approximation. However, the desire for more
expressiveness has motivated the search for more general models.
Recentworks have begun to approximate transformations asmatrix-

vector products, and try to estimate the transformation matrix ex-
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plicitly. Tamaki et al. [131] do so for blur and affine transformations
in the context of Linear Discriminant Analysis (LDA), while Miao
et al. [94] approximate affine transformations with an Expectation-
Maximization (E-M) algorithm, based on a Lie group formulation.
They estimate a basis for the transformation operator or the trans-
formed images, which is a hard analytical/inference problem in it-
self. The involved matrices are extremely large for moderately-sized
images, necessitating dimensionality reduction techniques such as
Principal Component Analysis (PCA), which may be suboptimal.
Several works focus on rotation alone [119, 81, 134, 22], most of

them speeding up computations using Fourier analysis, but they all
explicitly estimate a reduced basis on which to project the data. An-
other approach is to learn a transformation from data, using more
parsimonious factored or deep models [93]. In contrast, our method
generalizes to other transformations and avoids a potentially costly
transformation model or basis estimation.

6.2 the cyclic orthogonal model for image transforma-
tions

Consider them×1vectorx, obtained by vectorizing an image (Section
A.2). The image may be a 3-dimensional array that contains multiple
channels, such as RGB, or the values of a densely-sampled image de-
scriptor.
We wish to quickly train a classifier or regressor with transformed

versions of sample images, tomake it robust to those transformations.
The model we will use is anm×m orthogonal matrix Q, which will
represent an incremental transformation of an image as Qx (for ex-
ample, a small translation or rotation, see Fig. 6.2-a and 6.2-b). We
can traverse different poses w.r.t. that transformation, p ∈ Z, by re-
peated application of Q with a matrix power, Qpx. Note that Q is a
generalization of the cyclic shift matrix P we used earlier, but unlike
P we do not constrain Q to be a particular matrix, or even require it
to represent a permutation.
In order for the number of poses to be finite, we must require the

transformation to be cyclic, Qs = Q0 = I , with some period s. This
allows us to store all versions of x transformed to different poses as
the rows of an s×mmatrix,
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CQ(x) =


(Q0x)

T

(Q1x)
T

...
(Qs−1x)

T

 (6.1)

Due to Q being cyclic, any pose p ∈ Z can be found in the row
(pmod s) + 1. Note that the first row of CQ(x) contains the untrans-
formed image x, since Q0 is the identity I . For the purposes of train-
ing a classifier, CQ(x) can be seen as a data matrix, with one sample
per row.

The cyclic orthogonal model can be related to our earlier results
by setting Q = P , the cyclic shift matrix (Eq. 3.2). In this case Q
represents (cyclic) image translations, and CQ(x) is reduced to a sim-
ple circulant matrix C(x). An important open question was whether
the diagonalization of standard circulant matrices (Theorem 3) can
be reused for image transformations other than translation. We will
show that this is true, using the model from Eq. 6.1.
Wemust contrast this model to tangent vectors and subspacemeth-

ods, as used in several prior works [24, 131], which are only valid in
a small neighborhood of p around the original image x. Outside that
scope, their predicted values may diverge to zero or to infinity. By
virtue of the orthogonality of Q, Qpx is guaranteed to preserve the
norm of the original image x for any pose values p, so our model is
inherently stable.
Although the cyclic orthogonal model is conceptually simple, we

will show through experiments that it can accurately capture a vari-
ety of natural transformations (Section 6.5.2). More importantly, we
will show that Q never has to be created explicitly. The algorithms we
develop will be entirely data-driven, using an implicit description of
Q from a structured dataset, either composed of virtual samples (e.g.,
by image rotation), or natural samples (e.g. using pose annotations).

6.3 fast training with transformations of a single image

Wewill now focus on themain derivations, which allow us to quickly
train a classifier with virtual samples generated from an image x by
repeated application of the transformation Q. This section assumes
only a single image x is given for training, which makes the presen-
tation simpler and we hope will give valuable insight into the core of
the technique. Section 6.4 will expand it to full generality, with train-
ing sets of an arbitrary number of images, all transformed by Q.
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(a) (b)

Figure 6.2: (a) The horizontal translation of a 6 × 6 image, by 1 pixel, can
be achieved by a 36 × 36 permutation matrix P that reorders el-
ements appropriately (depicted is the reordering of 2 pixels). (b)
Rotation by a fixed angle, with linearly-interpolated pixels, re-
quires a more general matrix Q. By studying its influence on a
dataset of rotated samples, we show how to accelerate learning
in the Fourier domain. Our model can also deal with other trans-
formations, including non-rigid.

The first step is to show that some aspect of the data is diagonaliz-
able by the DFT, which we do in the following theorem.

Theorem 7. Given an orthogonal cyclic matrixQ, i.e. satisfyingQT = Q−1

andQs = Q0, then the s×mmatrixX = CQ(x) (from Eq. 6.1) verifies the
following:

• The data matrixX and the uncentered covariance matrixXTX

are not circulant in general, unless Q = P (from Eq. 3.2).

• The Gram matrix G = XXT is always circulant.

Proof. See Appendix A.4.1. �
Theorem 7 implies that the learning problem in its original form

is not diagonalizable by the DFT basis. However, the same diagonal-
ization is possible for the dual problem, defined by the Gram matrix
G.
BecauseG is circulant, it has only s degrees of freedom and is fully

specified by its first row g [56], G = C(g). By direct computation
from Eq. 6.1, we can verify that the elements of the first row g are
given by gp = xTQp−1x.One interpretation is that g contains the auto-
correlation of x through pose-space, i.e., the inner-product of xwith
itself as the transformation Q is applied repeatedly.

6.3.1 Dual Ridge Regression

For nowwewill restrict our attention to Ridge Regression (RR), since
it has the appealing property of having a solution in closed form,
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which we can easily manipulate. Section 6.4.1 will show how to ex-
tend these results to Support Vector Regression.
Sincewe have s samples in the datamatrix under consideration (Eq.

6.1), there are s dual variables, stored in a vector α. The RR solution
is given by α = (G+ λI)−1 y (Eq. 2.16), where G = XXT is the s× s
Gram matrix, y is the vector of s labels (one per pose), and λ is the
regularization parameter. The dual form of RR is usually associated
with non-linear kernels (Section 2.3), but since this is not our case we
can compute the explicit primal solution with w = XTα, yielding

w = XT (G+ λI)−1 y. (6.2)

Applying the circulant eigendecomposition (Theorem 3) to G, and
substituting it in Eq. 6.2,

w = XT (U diag (ĝ)U∗ + λUU∗)−1 y = XTU (diag (ĝ + λ))−1 U∗y,

(6.3)
wherewe introduce the shorthand ĝ = F (g), and similarly ŷ = F (y).
Since inversion of a diagonal matrix can be done element-wise, and
itsmultiplication by the vectorU∗y amounts to an element-wise prod-
uct, we obtain

w = XTF−1

(
ŷ

ĝ + λ

)
, (6.4)

whereF−1 denotes the inverseDFT, and the division is taken element-
wise. This formula allows us to replace a costly matrix inversion with
fast DFT and element-wise operations. We also do not need to com-
pute and store the full G, as the auto-correlation vector g suffices. As
we will see in the next section, there is a simple modification to Eq.
6.4 that turns out to be very useful for pose estimation.

6.3.2 Training several components simultaneously

A relatively straightforward way to estimate the object pose in an in-
put image x is to train a classifier for each pose (which we call compo-
nents), evaluate all of them and take the maximum, i.e.

fpose (x) = arg max
p

wT
p x. (6.5)

This can also be used as the basis for a pose-invariant classifier,
by replacing argmax with max [47]. Each pose classifier wp could be
trained individually using the method from Section 6.3.1, which can
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Figure 6.3: Example HOG template (a car from the Google Earth dataset) at
4 rotations learned by the proposed model. Positive weights are
on the first and third column, others are negative.

quickly become expensive as we need to evaluate Eq. 6.4 a total of s
times. However, we can exploit the fact that these training problems
become tightly related when the training set contains transformed
images.
Recall that y specifies the labels for a training set of s transformed

images, one label per pose. Without any loss of generality, suppose
that the label is 1 for a given pose t and 0 for all others, i.e. y contains a
single peak at element t. Then by shifting the peak with P py, we will
train a classifier for pose t+ p. In this manner we can train classifiers
for all poses simply by varying the labels P py, with p = 0, . . . , s− 1.
Based on Eq. 6.4, we can concatenate the solutions for all s compo-

nents into a singlem× smatrix,

W =
[
w0 · · · ws−1

]
= XT (G+ λI)−1 [

P 0y · · · P s−1y
]
(6.6)

= XT (G+ λI)−1CT (y) . (6.7)

Diagonalization yields

W T = F−1

(
diag

(
ŷ∗

ĝ + λ

)
F (X)

)
. (6.8)

Since their arguments are matrices, the DFT/IDFT operations here
work along each column. The product of F (X) by the diagonal ma-
trix simply amounts to multiplying each of its rows by a scalar factor,
which is inexpensive. Eq. 6.8 has nearly the same computational cost
as Eq. 6.4, which trains a single classifier.
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6.4 transformation of multiple images

The training method described in the previous section would find
little applicability for modern recognition tasks if it remained lim-
ited to transformations of a single image. Naturally, we would like to
use n images xi. We now have a dataset of ns samples, which can be
divided into n sample groups {Qp−1xi|p = 1, . . . , s}, each containing
the transformed versions of one image.
This case becomes somewhat complicated by the fact that the data

matrix X now has three dimensions – the m features, the n sample
groups, and the s poses of each sample group. In thism×n× s array,
each column vector (along the first dimension) is defined as

X•ip = Qp−1xi, i = 1, . . . , n; p = 1, . . . , s, (6.9)

where we have used • to denote a one-dimensional slice of the three-
dimensional array X .1 A two-dimensional slice will be denoted by
X••p, which yields am× nmatrix, one for each p = 1, . . . , s.
Through a series of block-diagonalizations and reorderings,we can

show (Appendix A.4.2-A.4.5) that the solution W , of size m × s, de-
scribing all s components (similarly to Eq. 6.8), is obtained with

Ŵ•p = X̂••p (ĝ••p + λI)−1 Ŷ ∗•p, p = 1, . . . , s, (6.10)

where a hat ˆ over an array denotes the DFT along the dimension
that has size s (e.g. X̂ is the DFT ofX along the third dimension), Yip
specifies the label of the sample with pose p in group i, and g is the
n× n× s array with elements

gijp = xTi Q
p−1xj = XT

•i1X•jp, i, j = 1, . . . , n; p = 1, . . . , s. (6.11)

It may come as a surprise that, after all these changes, Eq. 6.10 still
essentially looks like a dual RidgeRegression (RR) problem (compare
it to Eq. 6.2). Eq. 6.10 can be interpreted as splitting the original prob-
lem into s smaller problems, one for each Fourier frequency, which
are independent and can be solved in parallel. A Matlab implemen-
tation is given in Algorithm 6.1.

1 For reference, our slice notation • works the same way as the slice notation : in
Matlab or NumPy. For example, X•ip would be represented as X(:,i,p).



6.5 orthogonal transformations in practice 89

6.4.1 Support Vector Regression

Given that we can decompose such a large RR problem into s smaller
RR problems, by applying the DFT and slicing operators (Eq. 6.10),
it is natural to ask whether the same can be done with other algo-
rithms. Leveraging the results of Chapter 5, where this was done for
image translation, the same steps can be repeated for the dual formu-
lation of other algorithms, such as Support Vector Regression (SVR).
AlthoughRR in the dual can dealwith complex data, SVR requires an
extension of the dual solution to the complex domain,whichwe show
in Appendix A.4.6. We give a Matlab implementation in Algorithm
6.3, which can use any off-the-shelf SVR solver without modification.

6.4.2 Efficiency

Naively training one detector per pose would require solving s large
ns × ns systems (either with RR or SVR). In contrast, our method
learns jointly all detectors using s much smaller n × n subproblems.
The computational savings can be several orders of magnitude for
large s. Our experiments seem to validate this conclusion, even in
relatively large recognition tasks (Section 6.6).

6.5 orthogonal transformations in practice

Until now, we avoided the question of how to compute a transfor-
mation model Q. This may seem like a computational burden, not to
mention a hard estimation problem – for example, what is the cyclic
orthogonal matrix Q that models planar rotations with period s?
Inspecting the relevant equations (Eq. 6.10-6.11), however, reveals

that we do not need to form Q explicitly, but can work with just a
data matrix X of transformed images. From there on, we exploit the
knowledge that this data was obtained from some matrix Q, and that
is enough to allow fast training in the Fourier domain. This allows a
great deal of flexibility in implementation.

6.5.1 Virtual transformations

One way to obtain a structured data matrix X is with virtual sam-
ples. From the original dataset of n samples, we can generate ns vir-
tual samples using a standard image operator (e.g. planar rotation).
However, we should keep in mind that the accuracy of the proposed
method will be affected by how much the image operator resembles
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Figure 6.4: Example detections and estimated poses in the Google Earth
dataset. In this dataset, an object’s pose is determined by the an-
gle of rotation on the image plane, illustrated as a rotated bound-
ing box. Best viewed in color.

a pure cyclic orthogonal transformation. The different properties that
the image operator must have will now be analysed in more detail.

6.5.1.1 Linearity

Many common image transformations, such as rotation or scale, are
implemented by nearest-neighbor or bilinear interpolation. For a
fixed amount of rotation or scale, these functions are linear functions
in the input pixels, i.e. each output pixel is a fixed linear combination
of some of the input pixels. As such, they fulfill the linearity require-
ment.

6.5.1.2 Orthogonality

For an operator to be orthogonal, it must preserve the L2 norm of its
inputs. At the expense of introducing some non-linearity, we simply
renormalize each virtual sample to have the same norm as the origi-
nal sample, which seems to work well in practice (Section 6.6).

6.5.1.3 Cyclicity

We conducted some experiments with planar rotation on aerial im-
agery (Section 6.6.1). A rotation of 360/s degrees is cyclic with period
s. In the future, we plan to experimentwith non-cyclic operators (sim-
ilar to how cyclic shifts were used to approximate image translation
in Chapters 4 and 5).
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Figure 6.5: Example detections and visualization of estimated poses in the
TUD-Crossing dataset. The pose is determined by the estimated
phase of the walk cycle of a pedestrian, illustrated using a wire-
frame model. Best viewed in color.

6.5.2 Natural transformations

Another interesting possibility is to use pose annotations to create a
structured data matrix. This data-driven approach allows us to con-
sider more complicated transformations than those associated with
virtual samples. Given s views of n objects under different poses, we
can build them×n×s data matrixX and use the samemethodology
as before. In Section 6.6 we describe experiments with the walk cy-
cle of pedestrians, and out-of-plane rotations of cars in street scenes.
These transformations are cyclic, though highly non-linear, and we
use the same renormalization as in Section 6.5.1.

6.5.3 Negative samples

One subtle aspect is how to obtain a structured data matrix from neg-
ative samples. This is simple for virtual transformations, but not for
natural transformations. For example, with planar rotation we can
easily generate rotated negative samples with arbitrary poses. How-
ever, the same operation with walk cycles of pedestrians is not de-
fined. How do we advance the walk cycle of a non-pedestrian? As a
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dataset method classifier time (s) ap pose

Google
Earth

Proposed SVR 4.5 73.0 9.4
RR 3.7 71.4 10.0

Standard SVR 130.7 73.2 9.8
RR 399.3 72.7 10.3

Table 6.1: Experimental results for pose detectors trained with Support Vec-
tor Regression (SVR) and Ridge Regression (RR), on the Google
Earth dataset. The table shows the total training time,Average Pre-
cision (AP) and pose error (both in percentage).

pragmatic solution, we consider that negative samples are unaffected
by natural transformations, so a negative sample is constant for all s
poses. Because the DFT of a constant signal is 0, except for the DC
value (the first frequency), we can ignore untransformed negative
samples in all subproblems for p 6= 1 (Eq. 6.10). This simple obser-
vation can result in significant computational savings.

6.6 experiments

To demonstrate the generality of the proposed model, we conducted
object detection and pose estimation experiments on 3 widely dif-
ferent settings, which will be described shortly. We implemented
a detector based on Histogram of Oriented Gradients (HOG) tem-
plates [30] with multiple components [44]. This framework forms
the basis on which several recent advances in object detection are
built [88, 47, 44]. The baseline algorithm independently trains s clas-
sifiers (components), one per pose, enabling pose-invariant object
detection and pose prediction (Eq. 6.5). Components are then cali-
brated, as usual for detectors with multiple components [44, 88]. The
proposed method does not require any ad-hoc calibration, since the
components are jointly trained and related by the orthogonal matrix
Q, which preserves their L2 norm.
For the performance evaluation, we use the same procedure as in

Section 5.6.1. We measure average precision (AP) and pose error (as
epose/s, where epose is the discretized pose difference, taking wrap-
around into account). We tested two variants of eachmethod, trained
with both RR and SVR. Although parallelization is trivial, here we
report timings for single-core implementations, which accurately re-
flect the total CPU load.
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6.6.1 Planar rotation in aerial images (Google Earth)

Our first test will be on a car detection task on aerial imagery [60],
which has been used in several works that deal with planar rotation
[119, 81]. We annotated the orientations of 697 objects over half the
30 images of the dataset. The first 7 annotated images were used for
training, and the remaining 8 for validation. We created a structured
data matrix X by augmenting each sample with 30 virtual samples,
using 12º rotations. A visualization of trained weights is shown in
Fig. 6.3 and Appendix B. Experimental results are presented in Ta-
ble 6.1. Recall that our primary goal is to demonstrate faster training,
not to improve detection performance, which is reflected in the re-
sults. Nevertheless, the two proposed fast Fourier algorithms are 29
to 107× faster than the baseline algorithms.

6.6.2 Walk cycle of pedestrians (TUD-Campus and TUD-Crossing)

We can consider a walking pedestrian to undergo a cyclic non-rigid
deformation, with each period corresponding to one step. Because
this transformation is time-dependent, we can learn it from video
data. We used TUD-Campus for training and TUD-Crossing for test-
ing (see Fig. 6.5) [4].We annotated a key pose in all 272 frames, so that
the images of a pedestrian between two key poses represent a whole
walk cycle. Sampling 10 images per walk cycle (corresponding to 10
poses), we obtained 10 sample groups for training, for a total of 100
samples.
From Table 6.2, the proposed algorithms seem to slightly outper-

form the baseline, showing that these non-rigid deformations can be
accurately accounted for. However, they are over 2 orders of magni-
tude faster. In addition to the speed benefits observed in Section 6.6.1,
another factor at play is that for natural transformations we can ig-
nore the negative samples in s− 1 of the subproblems (Section 6.5.3),
whereas the baseline algorithms must consider them when training
each of the s components.

6.6.3 Out-of-plane rotations of cars in street scenes (KITTI)

For our final experiment, we will attempt to demonstrate that the
speed advantage of our method still holds for difficult out-of-plane
rotations. We chose the very recent KITTI benchmark [48], which in-
cludes an object detection set of 7481 images of street scenes (see Fig.
6.6). The facing angle of cars (along the vertical axis) is provided,
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dataset method classifier time (s) ap pose

TUD
Campus /
Crossing

Proposed SVR 0.1 81.5 9.3
RR 0.08 82.2 8.9

Standard SVR 40.5 80.2 9.5
RR 45.8 81.6 9.4

Table 6.2: Experimental results for pose detectors on the TUD Cam-
pus/Crossing dataset. The columns are as in Table 6.1.

dataset method classifier time (s) ap pose

KITTI
Proposed SVR 15.0 53.5 14.9

RR 15.5 53.4 15.0

Standard SVR 454.2 56.5 13.8
RR 229.6 54.5 14.0

Table 6.3: Experimental results for pose detectors on the KITTI dataset. The
columns are as in Table 6.1.

which we bin into 15 discrete poses. We performed an 80-20% train-
test split of the images, considering cars of “moderate” difficulty [48],
and obtained 73 sample groups for training with 15 poses each (for a
total of 1095 samples).
Table 6.3 shows that the proposed method achieves competitive

performance, but with a dramatically lower computational cost. The
results agree with the intuition that out-of-plane rotations strain the
assumptions of linearity and orthogonality, since they result in large
deformations of the object. Nevertheless, the ability to learn a useful
model under such adverse conditions shows great promise.

6.7 conclusions

In this chapter, we derived new closed-form formulas to quickly train
several pose classifiers at once, and take advantage of the structure
in datasets with pose annotation or virtual samples. The proposed
implicit transformation model seems to be surprisingly expressive,
and in future work we would like to experiment with other transfor-
mations, including non-cyclic. Other interesting directions include
larger-scale variants and the composition of multiple transforma-
tions.
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Figure 6.6: Example detections and visualization of estimated poses in the
KITTI dataset. The pose is determined by the facing angle of a
car along the vertical axis, representing an out-of-plane rotation.
An illustration of the predicted pose is presented as a rotated 3D
bounding box. Best viewed in color.



96 general geometric transformations

Algorithm 6.1 Matlab code for fast Fourier training of several pose
detectors. X contains sample groups, with s transformed samples
each (e.g. rotations of the same object). Note that the transformation
should be cyclic. The sampleswithin a groupmust also have the same
Euclidean norm.

Inputs:
• X (m× n× s data matrix withm features, n sample groups
and s transformations)

• Y (n× s labels matrix)
• λ (scalar, regularization parameter)
• regression (a dual complex regression – Alg. 6.2 or Alg. 6.3)

Output:
• W (m× sweights matrix – one pose detector per column)

g = zeros(n, n, s);
for p = 1:s
g(:,:,p) = X(:,:,1).’ * X(:,:,p); %Eq. 6.11

end
X = fft(X, [], 3);
g = fft(g, [], 3);
Y = conj(fft(Y, [], 2));
for f = 1:s %Eq. 6.10
W(:,f) = X(:,:,f) * regression(g(:,:,f), Y(:,f),lambda);

end
W = real(ifft(W, [], 2));

Algorithm 6.2 Complex-valued Dual Ridge Regression (can replace
regression in Alg. 6.1).

function alphas = regression(G, y, lambda)
alphas = (G + lambda * eye(size(G,1))) \ y; %Eq. 6.2

end

Algorithm 6.3Complex-valuedDual Support Vector Regression (can
replace regression in Alg. 6.1). The real_svr function can be any
off-the-shelf SVR solver that accepts a “custom kernel matrix” (Gram
matrix), e.g. libsvm [23].

function alphas = svr(G, y, lambda)
G = [real(G), imag(G).’; imag(G), real(G)]; %Eq. A.64
y = [real(y); imag(y)];
alphas = real_svr(G, y, lambda);
alphas = alphas(1:end/2) + 1i * alphas(end/2+1:end);

end
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CONCLUS IONS

In the course of this thesis, we have explored how cyclic shifts, and
related models of image transformations, affect the learning process
of various discriminative algorithms. This represents a significant de-
parture from previous works, which usually regard the input data as
unstructured and independently drawn from an unknown distribu-
tion. Far from this implicit assumption, we have found that such an
analytical model can bring order to an otherwise difficult problem,
and manifest itself in the emergence of a circulant structure.
As a side-effect of this exploration of circulant structures,we uncov-

ered an explicit link between Fourier-domain solutions, widely used
in the signal processing community, and several machine learning al-
gorithms, which are more commonly used in computer vision. These
two approaches to image recognition have evolved side-by-side over
the years, under very different views. Circulant matrices thus cast
an illuminating new perspective on where they overlap. This creates
fertile ground for devising new techniques that take the best of both
worlds – the speed of Fourier techniques and the generalizability of
machine learning. This thesis shows several applications, but the two
fields are so vast that it surely does not exhaust all the possibilities.
It is interesting to note that the analysis of the circulant structure

can actually simplify learning problems. The Kernelized Correlation
Filter proposed in Chapter 4 requires only the Fast Fourier Trans-
form and element-wise operations, while a general kernel regression
would require a more sophisticated solver. Likewise, the general re-
gression problems considered in Chapters 5 and 6 are broken down
into smaller regression problems, one for each Fourier frequency,
without changing the nature of the underlying regression algorithm.
It can be concluded that, though the analysis may involve some non-
trivial steps, accounting for the regularities of the data can lead to
simplified algorithms, not more complicated ones.
This simplification, along with the expected computational bene-

fits, does not necessarily entail the sacrifice of recognition accuracy.
We were able to obtain state-of-the-art results in tracking (Chapter 4),
detection (Chapter 5), and pose estimation (Chapter 6). In order to
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aid reproducibility, free open-source implementations of these algo-
rithms have been made available to the community1.
Another conclusion is that, under the right conditions, the Fourier-

domain solutions obtained by exploiting circulant data can actually
give a significant performance boost. This is the case of data-starved
settings, where we have to work with very few examples, such as
tracking (Section 4.7) and small detection datasets like ETHZ Shapes
(Section 5.6.3). Enriching the dataset with virtual samples (cyclic
shifts) can make up for the shortcomings of the dataset, and pro-
vide valuable information that a standard learning algorithm does
not consider. Cyclic shifts can thus be seen as a strong regularizer,
capable of encoding prior knowledge that is common to many com-
puter vision tasks.

7.1 directions for future work

There are several ideas that could not be pursued within the scope
of this thesis, but which are very promising directions for further in-
vestigation. Some of them have already been explored, based on the
preliminary publications made over the course of this thesis.

An interesting direction is to relax the assumption of periodic
boundaries, which would make for a more accurate model of im-
age translation. A data matrix obtained from (non-cyclically) shifted
samples becomes a Toeplitz matrix [56], which is a generalization of
a circulant matrix. Although Toeplitz matrices are not invertible in
closed form, Valmadre et al. [136] have proposed an iterative method
that takes advantage of the close relationship between circulantmatri-
ces and Toeplitz matrices. Exploiting the Toeplitz structure provides
better performance with only a modest speed penalty, which is still
much faster than standard learning. Using the same structure, they
also show that the statistics of negative images can be gathered once
and then re-used to train different detectors, even when they have
different sizes [136].
The proposed methods address the classical inefficiency of virtual

samples [33]. Intuitively, assigning the same label to virtual samples
obtained by a transformation (e.g. rotated images) should make a
classifier invariant to that transformation. There is some early work
establishing this connection [98], but much more can be done to put
it on a stronger formal basis. Another interesting avenue for theo-
retical development is to frame cyclic shifts and circulant matrices
in the language of Lie groups, which naturally describe continuous

1 http://www.isr.uc.pt/~henriques/

http://www.isr.uc.pt/~henriques/
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transformations and invariances [94]. There are interesting parallels
between them, since both study the successive application of a trans-
formation matrix through a matrix power (e.g. Eq. 3.4, Eq. 6.1). The
works on image transformationswith Lie group theory can be seen as
a continuous analogue of the methodology developed in this thesis
[94]. Cohen and Welling [26] have recently shown that the Continu-
ous Fourier Transform diagonalizes cyclically shifted samples, when
the shifts are uniformly distributed, which can be seen as a continu-
ous analogue for the settings of Chapter 5. Such an analogy between
the discrete and continuous cases can bear further insights into the
fundamental properties of image transformations.
There are other areaswithin computer vision thatmay benefit from

the inclusion of circulant data, but were not explored here. In video
streams, virtual samples can be obtained by time translation, which
can also be modeled with cyclic shifts, but along the time axis. Re-
vaud et al. [111] have proposed such a method, significantly improv-
ing the state-of-the-art of video retrieval. Another interesting direc-
tion is to explore these ideas within fine-grained categorization [149]
and one-shot learning [43], settingswhere very few samples are avail-
able, and that can benefit from the strong regularization properties
of Fourier training.
Finally, a very promising avenue of research is to study the influ-

ence of image transformations on deep neural networks [76]. Circu-
lant matrices have recently been proposed in this context as a fast lin-
ear layer [25], enjoying better performance and regularization than
standard linear layers. It remains to be explored, however, how to ex-
ploit the regularities of the data in this setting, similarly to what has
been proposed in this thesis. Such advances could hold the key for
vastly more efficient deep learning, which is currently both computa-
tionally expensive and data-hungry.





A
PROOFS AND IMPLEMENTAT ION DETA ILS

a.1 kernelized correlation filters

a.1.1 Implementation details

As is standard with correlation filters, the input patches (either raw
pixels or extracted feature channels) are weighted by a cosine win-
dow, which smoothly removes discontinuities at the image bound-
aries caused by the cyclic assumption [11, 83]. The tracked region has
2.5 times the size of the target, to provide some context and additional
negative samples.
Recall that the training samples consist of shifts of a base sample, so

we must specify a regression target for each one in y. The regression
targets y simply follow a Gaussian function, which takes a value of
1 for a centered target, and smoothly decays to 0 for any other shifts,
according to a spatial bandwidth δ. Gaussian targets are smoother
than binary labels, and have the benefit of reducing ringing artifacts
in the Fourier domain [83].
A subtle issue is determining which element of y is the regression

target for the centered sample, on which we will center the Gaussian
function. Although intuitively it may seem to be the middle of the
output plane (Fig. A.1-a), it turns out that the correct choice is the
top-left element (Fig. A.1-b). The explanation is that, after computing
a cross-correlation between two images in the Fourier domain and
converting back to the spatial domain, it is the top-left element of
the result that corresponds to a shift of zero [83]. Of course, since
we always deal with cyclic signals, the peak of the Gaussian function
must wrap around from the top-left corner to the other corners, as
can be seen in Fig. A.1-b. Placing the Gaussian peak in the middle
of the regression target is common in some filter implementations,
and leads the correlation output to be unnecessarily shifted by half a
window, which must be corrected post-hoc1.

1 This is usually done by switching the quadrants of the output, e.g. with theMatlab
built-in function fftshift. It has the same effect as shifting Fig. A.1-b to look like
Fig. A.1-a.
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(a) (b)

Figure A.1: Regression targets y, following a Gaussian functionwith spatial
bandwidth s (white indicates a value of 1, black a value of 0).
(a) Placing the peak in the middle will unnecessarily cause the
detection output to be shifted by half a window (discussed in
Section A.1.1). (b) Placing the peak at the top-left element (and
wrapping around) correctly centers the detection output.

a.1.2 Proof of Theorem 4

Under the theorem’s assumption that κ(x,x′) = κ(Mx,Mx′), for any
permutation matrixM , then

Kij = κ(P ix, P jx)

= κ(P−iP ix, P−iP jx).

Using known properties of permutation matrices, this reduces to

Kij = κ(x, P j−ix). (A.1)

By the cyclic nature of P , it repeats every sth power, i.e. P s = P 0.
As such, Eq. A.1 is equivalent to

Kij = κ(x, P (j−i) mod s x), (A.2)

where mod is the modulus operation (remainder of division by s).
We now use the fact the elements of a circulant matrix X = C(x)

(Eq. 3.1) satisfy

Xij = x((j−i) mod s)+1, (A.3)

that is, a matrix is circulant if its elements only depend on (j −
i) mod s. It is easy to check that this condition is satisfied by Eq. 3.1,
and in fact it is often used as the definition of a circulant matrix [56].
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BecauseKij also depends on (j − i) mod s, we must conclude that
K is circulant as well, finishing our proof.

a.1.3 Kernel Ridge Regression with Circulant data

We start by replacing K = C(kxx) in the formula for Kernel Ridge
Regression, Eq. 4.1, and diagonalizing it

α = (C(kxx) + λI)−1 y

=
(
Udiag

(
k̂xx
)
U∗ + λI

)−1

y.

By simple linear algebra, and the unitarity of U (Section 3.4),

α =
(
Udiag

(
k̂xx
)
U∗ + λUIU∗

)−1

y

= Udiag
(
k̂xx + λ

)−1

U∗y,

which is equivalent to

U∗α = diag
(
k̂xx + λ

)−1

U∗y. (A.4)

Using U as the unitary DFT operator, we can change the vectors to
the Fourier domain, and complex-conjugate the whole expression to
obtain

α̂ = diag
(

1

k̂xx + λ

)
ŷ. (A.5)

Finally, because the product of a diagonal matrix and a vector is
simply their element-wise product,

α̂ =
ŷ

k̂xx + λ
. (A.6)

a.1.4 Derivation of fast detection formula

To diagonalize Eq. 4.6, we use the same properties as in the previous
section. We have
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f(z) = (C (kxz))T α

=
(
Udiag

(
k̂xz
)
U∗
)T

α

= U∗diag
(
k̂xz
)
Uα

which is equivalent to

U f(z) = diag
(
k̂xz
)
Uα. (A.7)

Replicating the same final steps from Section A.1.3,

f̂(z) = k̂xz � α̂. (A.8)

a.1.5 Linear Ridge Regression with Circulant data

This is a more detailed version of the steps from Section 3.8. It is very
similar to the kernel case. We begin by replacing Eq. 3.22 in the for-
mula for Ridge Regression, Eq. 3.19.

w = (Udiag (x̂∗ � x̂)U∗ + λI)−1XTy (A.9)

By simple algebra, and the unitarity of U , we have

w = (Udiag (x̂∗ � x̂)U∗ + λUIU∗)−1XTy

=
(
Udiag (x̂∗ � x̂ + λ)−1 U∗

)
XTy

= Udiag (x̂∗ � x̂ + λ)−1 U∗Udiag (x̂∗)U∗y

= Udiag
(

x̂∗

x̂∗ � x̂ + λ

)
U∗y.

Then, this is equivalent to

U∗w = diag
(

x̂∗

x̂∗ � x̂ + λ

)
U∗y. (A.10)

Since for any vector Uz = 1√
s
ẑ, and likewise U∗z = 1√

s
ẑ∗,

ŵ = diag
(

x̂∗

x̂∗ � x̂ + λ

)
ŷ. (A.11)

Wemay go one step further, since the product of a diagonal matrix
and a vector is just their element-wise product:
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ŵ =
x̂∗ � ŷ

x̂∗ � x̂ + λ
. (A.12)

a.1.6 MOSSE filter

The only difference between Eq. 3.24 and theMOSSE filter [11] is that
the latterminimizes the error over (cyclic shifts of) multiple base sam-
ples xi, while Eq. 3.24 is defined for a single base sample x. This was
done for clarity of presentation, and the general case is easily derived.
Note also that MOSSE does not support multiple channels, which we
do through our dual formulation.2
The cyclic shifts of each base sample xi can be expressed in a circu-

lant matrix Xi. Then, replacing the data matrix X ′ =

 X1

X2

...

 in Eq.

2.4 results in

w =
∑
j

(∑
i

XH
i Xi + λI

)−1

XH
j y, (A.13)

by direct application of the rule for products of block matrices. Fac-
toring the bracketed expression,

w =

(∑
i

XH
i Xi + λI

)−1(∑
i

XH
i

)
y. (A.14)

Eq. A.14 looks exactly like Eq. 2.4, except for the sums. It is then
trivial to follow the same steps as in Section A.1.5 to diagonalize it,
and obtain the filter equation

ŵ =

∑
i x̂
∗
i � ŷ∑

i x̂
∗
i � x̂i + λ

. (A.15)

2 Note that by convention, Bolme et al. [11] consider a template w∗ that is the
complex-conjugated version of ours.
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a.2 commutations and block-matrices

Manipulating block matrices can lead to burdensome notation, and
theorems built for standard matrices do not always apply to them.
In order to alleviate this issue, we introduce the notion of the com-
mutation matrix. Although it was originally developed for problems
involving Kronecker products [85], we will show that its usefulness
extends to much more general problems involving block matrices.
Define vec (A) as the operator that takes the columns of a m × n

matrix A, and stacks them into a mn × 1 vector (vectorization). For
example, if A is 2× 3, we have

vec (A) = vec

([
a11 a12 a13

a21 a22 a23

])
=



a11

a21

a12

a22

a13

a23


(A.16)

The commutation matrix R permutes the elements of a vectorized
matrix A to obtain its transpose AT [85]. Formally,

Rvec (A) = vec
(
AT
)
. (A.17)

Note that there is a uniquely defined commutation matrix R that
does not depend on A, but only on the size of A [85]. It is the unique
permutation matrix that obeys Eq. A.17.

As a concrete example, if A is 2× 3,

R︷ ︸︸ ︷

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1



vec(A)︷ ︸︸ ︷

a11

a21

a12

a22

a13

a23


=

vec(AT )︷ ︸︸ ︷

a11

a12

a13

a21

a22

a23


. (A.18)

Notice how the elements were permuted in Eq. A.18. We can view
vec (A) as a mn × 1 block-matrix with n blocks, where each block is
a column of A. The right-hand side of Eq. A.18 contains m blocks,
where each block is a row of A instead. The commutation matrix
stacks the first element of every block, then the second element of
every block, and so on. This characterization is important, and will
be very useful in the remainder of this section.
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Because R is a permutation matrix, it is orthogonal, so its inverse
can be obtained easily: RT = R−1. Applying a permutation matrix to
an arbitrary matrix on the left will permute its rows, while doing so
on the right permutes its columns. In this way we can use R to per-
mute the blocks of a block-matrix, in the same order as the blocks of
the vector in Eq. A.18. As a few examples, that can be verified quickly
using Eq. A.17, we have the following.

a.2.1 Block-diagonal matrices and matrices with diagonal blocks

Amn×mn block-diagonalmatrix (left of Eq.A.19) can be transformed
into a mn ×mn block matrix, where each block is diagonal (right of
Eq. A.19), by application of the permutation R:

A(1)
. . .

A(n)

 = R

D(1, 1) · · · D(1,m)
... . . . ...

D(m, 1) · · · D(m,m)

RT , (A.19)

where theA(i) are arbitrarym×mmatrices, and eachD(i, j) is a n×n
diagonal matrix, where the kth diagonal element is Aij(k).

a.2.2 Block-circulant matrices and matrices with circulant blocks

Similarly to the above, a block-circulantmatrix (left of Eq.A.20) can be
transformed into a block matrix, where each block is circulant (right
of Eq. A.20), by the same application of the permutation R:


A(1) A(2) A(3) · · ·
A(n) A(1) A(2) · · ·

A(n− 1) A(n) A(1) · · ·
... ... ... . . .

 = R

C(1, 1) · · · C(1,m)
... . . . ...

C(m, 1) · · · C(m,m)

RT ,

(A.20)
where theA(i) are arbitrarym×mmatrices, and eachC(i, j) is a n×n
circulant matrix, where the kth element of its first row is Aij(k).

Hopefully a pattern starts to emerge: because R only permutes the
rows and columns of a matrix, in the manner described at the beg-
gining of the section, matrix properties can be carried over from the
block-level to the level of individual blocks. Specifically, properties
that varywithwhole blocks ofmatrices (such as being block-diagonal
or block-circulant) now describe individual elements (diagonal or cir-
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culant), because these elements are simply rearranged by R from a
block-wise order to a block-element order.

a.2.3 Commutation of Kronecker products

Kronecker products create block matrices, and given the previous
considerations it is not surprising that the commutation matrix has
an interesting effect on Kronecker products.
The Kronecker product of two matrices is a block matrix, defined

as [95]

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
... ... . . . ...

am1B am2B · · · amnB

 . (A.21)

The commutation matrix can then be used to exchange the block
order, essentially commuting A and B [85]

B ⊗ A = R (A⊗B)RT . (A.22)

Eq. A.19-A.22 provide several relations between blocks and the
commutation matrix. Together with its orthogonality (RT = R−1),
we have a diverse set of tools to manipulate block matrices, which
are very useful for Chapters 5 and 6.
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a.3 circulant decomposition of large-scale problems

a.3.1 Separability of learning problems

For the exact case, we will assume D can be written in terms of
dot-products, as mentioned. Keeping in mind that its arguments are
scalar,

D (αi, yi) = d1 ‖αi‖2 + d2 ‖yi‖2 + d3α
H
i yi, (A.23)

where we defined the new constants d1, d2 and d3. Then, Eq. 5.12 be-
comes

min
α

1

2
αHGα +

n∑
i=1

(
d1 ‖αi‖2 + d2 ‖yi‖2 + d3α

H
i yi
)

= min
α

1

2
αHGα + d1 ‖α‖2 + d2 ‖y‖2 + d3α

Hy, (A.24)

where the Hermitian transpose (·)H is used instead of (·)T . Notice
that all the learning algorithms we consider use the Hermitian trans-
pose when extended from reals to complex numbers, which simpli-
fies some expressions, and has no effect if the quantities are indeed
real.
Performing the substitutions G = V ĜV ∗, α = V α̂ and y = V ŷ, by

unitarity the V ’s cancel out, and we are left with

min
α̂

1

2
α̂
HĜα̂ + d1 ‖α̂‖2 + d2 ‖ŷ‖2 + d3α̂

H ŷ. (A.25)

This may seem like a trivial change, but Ĝ is block-diagonal, while
G is not. Recall Eq. 5.9,

Ĝ =


Ĝ(1)

Ĝ(2)
. . .

Ĝ(s)

 , (A.26)

where each block is n× n. To correspond to the same structure, split
the vectors α̂ and ŷ into s blocks of size n× 1,

α̂ =


α̂1

α̂2

...
α̂s

 , ŷ =


ŷ1

ŷ2

...
ŷs

 , (A.27)
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where each block α̂f and ŷf has n elements α̂fi and ŷfi, respectively.
Now, since the rules for matrix products are the same as for block-
matrix products, direct computation yields

min
α̂

s∑
f=1

(
1

2
α̂
H
f Ĝf α̂f + d1 ‖α̂f‖2 + d2 ‖ŷf‖2 + d3α̂

H
f ŷf

)

= min
α̂

s∑
f=1

(
1

2
α̂
H
f Ĝf α̂f +

n∑
i=1

D (α̂fi, ŷfi)

)
. (A.28)

Notice that Eq. A.28 is a sum of objective functions over different
(and non-interacting) optimization variables, α̂f . As such, they can
be optimized independently, and Eq. A.28 is equivalent to the s sub-
problems,

min
α̂f

1

2
α̂
H
f Ĝf α̂f +

n∑
i=1

D (α̂fi, ŷfi) , (A.29)

for f = 1, . . . , s, as required.

a.3.2 Transformation matrices that yield exact decompositions

As an interesting aside, it is possible to characterize the class of ma-
trices V that would yield an exact decomposition for most algorithms.
Just as unitary matrices preserve the L2-norm, it is known [79] that
generalized permutation matrices (which extend permutation matri-
ces by allowing the non-zero elements to take the values 1 and -1)
preserve all Lp-norms, for p ≥ 1. By restricting V to this class, the
decomposition would be exact for algorithms such as the SVR. Even
though this result may be useful for other block-diagonalizations, we
cannot use it since it is too restrictive for the case of block-circulant
matrices.

a.3.3 Complex Support Vector Regression

This section deals with the extension of a linear regression problem,

min
w

λ ‖w‖2 +
n∑
j=1

∣∣wHx− yj
∣∣
ε
, (A.30)

to the complex domain, through the extended loss function,
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∣∣wHx− y
∣∣
ε

=
∣∣Re

(
wHx− y

)∣∣
ε

+
∣∣Im (wHx− y

)∣∣
ε
, (A.31)

as mentioned in Section 5.5. Note the Hermitian transpose reduces
to the transpose for real arguments. Also, the ε-insensitive loss in Eq.
A.30 and A.31 can be easily squared, in the case of L2-SVR, and our
result still holds.
In this section we will use i to denote a pure imaginary unit, i =√
−1. First, decompose all quantities into their real and imaginary

components, as

w = wR + iwI

xj = xRj + ixIj (A.32)
yj = yRj + iyIj .

Substituting into Eq. A.30, and applying the rules of the complex
product,

min
w

λ
∥∥wR + iwI

∥∥2
+

n∑
j=1

∣∣∣(wR
)T

xRj +
(
wI
)T

xIj − yRj

+ i
((

wR
)T

xIj −
(
wI
)T

xRj − yIj
)∣∣∣

ε
. (A.33)

Expanding the first term, and applying Eq. A.31 to the second,

min
w

λ
∥∥wR

∥∥2
+

n∑
j=1

∣∣∣(wR
)T

xRj +
(
wI
)T

xIj − yRj
∣∣∣
ε

+λ
∥∥wI

∥∥2
+

n∑
j=1

∣∣∣(wR
)T

xIj −
(
wI
)T

xRj − yIj
∣∣∣
ε
. (A.34)

Eq. A.34 shows that the complex SVR is equivalent to an aug-
mented real SVR, with:

1. Double the features, to account for real and imaginary parts of
the inputs and weights.

2. Double the samples, to account for the loss function in the real
axis and in the imaginary axis (from Eq. A.31).

The augmented real SVR can be written more compactly as
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min
w

λ ‖w′‖2
+

n∑
j=1

∣∣w′Tx′j − y′j∣∣ε , (A.35)

with x′j the rows of X ′ and y′j the elements of y′, defined in terms of
the analogous original complex quantities,

X ′ =

[
Re (X) Im (X)

Im (X) −Re (X)

]
(A.36)

y′ =

[
Re (y)

Im (y)

]
(A.37)

w′ =

[
Re (w)

Im (w)

]
. (A.38)
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a.4 general geometric transformations

a.4.1 Proof of Theorem 7

Though the main claim of the Theorem is the last one, there are also
other claims which we will prove in turn.

• The data matrix X and the uncentered covariance matrix XTX are
not circulant in general.

This can be demonstrated with a simple counterexample. Consider
the following transformation Q, which simply reverses the order of
any 3× 1 input vector:

Q =

 0 0 1

0 1 0

1 0 0

 (A.39)

It is orthogonal and cyclic with period s = 2 (Q2 = Q0 = I).
The corresponding data matrix X (using Eq. 6.1) is

X =

[
x1 x2 x3

x3 x2 x1

]
. (A.40)

The matrix in Eq. A.40 is not square, and thus cannot be circulant
[56].
Another necessary (but not sufficient) condition for a matrix to be

circulant is that its diagonal elements are constant [56]. By direct com-
putation, the uncentered covariance matrix XTX fails this require-
ment; its diagonal elements are given by [x2

1 + x2
3, 2x2

2, x
2
1 + x2

3].

• The data matrix X and the uncentered covariance matrix XTX are
circulant for Q = P .

This is an earlier result (Sections 3.2 and 3.7).

• The Gram matrix G = XXT is circulant.

We have

Gpr = (Qpx)T Qrx = xT (Qp)−1Qrx = xTQr−px = xTQ(r−p)mod sx,

(A.41)
where the second equivalence is due to orthogonality, and the last
one is due to cyclicity. The strict dependence on (r − p) mod s implies
that G is circulant [56].
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a.4.2 Fast solution in the dual for training with multiple transformed im-
ages

Weare givenn sample groups, each of them containing s transformed
versions of an image xi. Let us organize the data into n blocks X(i),
one per sample group, each block with size s×m:

X(i) = CQ(xi), i = 1, . . . , n (A.42)

The full ns×m data matrix is obtained by vertical concatenation of
all the X(i). We can compute the corresponding Gram matrix easily
since it is just the product of two block matrices. It is composed of n2

blocks, each one of size s× s, defined by

G(i, j) = XT (i)X(j), i, j = 1, . . . , n. (A.43)

The Ridge Regression (RR) problem with an ns× ns Gram matrix
composed of these blocks is given by

 α(1)
...

α(n)

 =


 G(1, 1) · · · G(1, n)

... . . . ...
G(n, 1) · · · G(n, n)

+ λI


−1  y(1)

...
y(n)

 ,
(A.44)

where α(i) are s× 1 vectors of solution coefficients, and y(i) are s× 1

vectors of target labels.
Each block G(i, j) verifies Theorem 7, which means that they are

circulant. As such, they are defined by their first row,

G(i, j) = C
(
xiC

T
Q(xj)

)
. (A.45)

We can diagonalize the blocks of the Gram matrix individually,
by transforming the problem (block-wise) to the Fourier domain. Eq.
A.44 is equivalent to

 α̂(1)
...

α̂(n)

 =


 Ĝ(1, 1) · · · Ĝ(1, n)

... . . . ...
Ĝ(n, 1) · · · Ĝ(n, n)

+ λI


−1  ŷ(1)

...
ŷ(n)

 ,
(A.46)

with the Fourier-domain variables α̂(i) = Uα(i), ŷ(i) = Uy(i), and
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Ĝ(i, j) = U∗G(i, j)U, i, j = 1, . . . , n, (A.47)

The identity I is unaffected by U because the later is unitary.
Since G(i, j) is circulant, Ĝ(i, j) must be diagonal, i.e.,

Ĝpr(i, j) = 0, if p 6= r. (A.48)

We can turn the Gram matrix with diagonal blocks into a block-
diagonal matrix by a permutation of its rows and columns. Define s2

blocks, each one n×n, with elements obtained just by reordering the
elements of Ĝ(i, j):

G′ij(p, r) = Ĝpr(i, j), i, j = 1, . . . , n. (A.49)

The two forms offer different views into the same data. Ĝ(i, j) de-
scribes the interactions through pose-space, after fixing two samples
i and j.G′(p, r) emphasizes the interactions between pairs of samples,
for a given Fourier frequency.
Given Eq. A.48 and Eq. A.49, we know that the off-diagonalG′(p, r)

blocks must be zero, i.e.,

G′(p, r) = 0, if p 6= r, (A.50)

with 0 denoting an n × n matrix of zeros. The RR problem in the
permuted domain is then


α′(1)

α′(2)
...

α′(s)

 =



G′(1, 1) 0 · · · 0

0 G′(2, 2) · · · 0
... ... . . . ...
0 0 · · · G′(s, s)

+ λI


−1 

y′(1)

y′(2)
...

y′(s)

 ,
(A.51)

where α′i(p) = α̂p(i) and y′i(p) = ŷp(i) are the remaining variables
under the same permutation.
By direct computation with the rules of block matrices, we obtain

α′(1)

α′(2)
...

α′(s)

 =


(G′(1, 1) + λI)−1 y′(1)

(G′(2, 2) + λI)−1 y′(2)
...

(G′(s, s) + λI)−1 y′(s)

 , (A.52)

or more concisely,
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α′(p) = (G′(p, p) + λI)
−1

y′(p), p = 1, . . . , s. (A.53)

Note that Eq. A.53 hinges on the earlier definitions ofα′(p),G′(p, p)
and y′(p), which are Fourier-transformed and permuted versions of
the original quantities.

a.4.3 Formulation using multi-dimensional arrays

To make Eq. A.53 more self-contained, we can express it using multi-
dimensional arrays, by tracing back the elements ofα′(p),G′(p, p) and
y′(p).

Define the n×n×s array of unique inner-products g, with elements

gijp = xTi Q
p−1xj. (A.54)

Also, define the n × s matrix Y , where the element Yip is the label
of sample image i for pose p.
Then Eq. A.53 can be implemented by taking the DFT of Y along

the second dimension and the DFT of g along the third dimension,
i.e.,

Ŷ = F(2) (Y ) (A.55)
ĝ = F(3) (g) , (A.56)

and computing the n× s solution in the Fourier domain, Â, with

Â•p = (ĝ••p + λI)−1 Ŷ•p, p = 1, . . . , s, (A.57)

where Â•p denotes the pth column from Â (and similarly for Ŷ ), while
ĝ••p slices the pth subarray (of size n× n) along the third dimension
of ĝ. For reference, the slicing operator • works the same way as the
slicing operator : in Matlab or NumPy.
Note that Eq. A.57 and Eq. A.53 are exactly the same, except with

different notation.
We can retrieve the solution from Fourier space by taking the IDFT

of Â along the second dimension,

A = F−1
(2)

(
Â
)
. (A.58)
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The element Aip is the dual coefficient of sample image i for pose
p.

a.4.4 Solution for a single classifer

Using the data matrix in Eq. A.42 and the solution in the dual from
Eq. A.57,

w =
n∑
i=1

XT (i)Ai• . (A.59)

a.4.5 Solution for multiple pose classifiers

For multiple pose classifiers, we have

W =
[
w0 · · · ws−1

]
=

n∑
i=1

XT (i)
[
P 0Ai• · · · P s−1Ai•

]
=

n∑
i=1

XT (i)CT (Ai•) , (A.60)

because permuting the rows of the labels Y results in the same per-
mutation being applied to the rows of the solution A. Diagonalizing
with U , we obtain

W T = F−1

(
n∑
i=1

diag
(
Â∗i•

)
F (X(i))

)
, (A.61)

where ∗ denotes complex-conjugation. Note that a product by a diag-
onal matrix on the left simply amounts to multiplying each rowwith
one of the diagonal elements.
If X̂ is them× n× s data matrix, Fourier-transformed in the third

dimension, we can rewrite Eq. A.61 as

Ŵ•p = X̂••pÂ
∗
•p

= X̂••p (ĝ••p + λI)−1 Ŷ ∗•p

for p = 1, . . . , s, and recover W by taking the IDFT over the second
dimension.
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a.4.6 Complex-valued Support Vector Regression in the Dual

We build on the primal solution for complex-valued Support Vector
Regression (SVR) given in Appendix A.3.3 (complex-SVR for short).
Note that the algorithm that we propose in Chapter 6 encodes each
sub-problem as a complex-valued Gram matrix G, not a data matrix
X . This requires us to express the complex-SVR in the dual variables
instead, differently from Appendix A.3.3.
For conciseness, let the subscripts R and I denote real and imagi-

nary parts, respectively (e.g., XR = Re (X) and XI = Im (X)). By di-
rect computation, the complex-valued GrammatrixG obtained from
a complex-valued X = XR + i.XI is

G = XXH = X2
R +X2

I + i.
(
XIX

T
R −XRX

T
I

)
= GR + i.GI , (A.62)

where we used i to denote a pure imaginary unity.
Again by direct computation, the real-valued Gram matrix G′ ob-

tained from the equivalent Eq. A.36 is

G′ = X ′X ′T =

[
X2
R +X2

I XRX
T
I −XIX

T
R

XIX
T
R −XRX

T
I X2

R +X2
I

]
(A.63)

Comparing Eq. A.62 to A.63, we see that

G′ =

[
GR GT

I

GI GR

]
, (A.64)

and thus we can use Eq. A.64 to express the complex-valued G of
a complex-valued SVR with an equivalent real-valued G. A simple
implementation is shown in Algorithm 6.3.
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Figure B.1: Visualization of HOG templates, obtained with Fourier training
and RR, for the Google Earth dataset. Each template represents
a distinct pose across planar rotations. Only the templates from
0º to 90º are shown. Positive weights are shown on the left, neg-
ative weights on the right. The tight-fitting bounding box is also
displayed as a yellow line. Note that rotatedHOG templates can-
not be obtained from a single template simply by applying a ro-
tation to the cells – the gradient bins must also adjust their orien-
tation correctly. For more complicated transformations and fea-
tures, this cannot be done in closed form. The implicit transfor-
mation model allows us to bypass this issue, and obtain correct
gradient orientations.
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Figure B.2: Visualization of HOG templates, obtained with Fourier training
and RR, for the KITTI dataset. Each template represents a dis-
tinct pose across out-of-plane rotations (along the vertical axis).
Positive weights are shown on the left, negative weights on the
right. The tight-fitting bounding box is also displayed as a yellow
line.
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Figure B.3: Visualization of HOG templates, obtained with Fourier training
and RR, for the TUD-Campus/TUD-Crossing dataset. Each tem-
plate represents a distinct pose across a pedestrian’s walk cycle.
Positive weights are shown on the left, negative weights on the
right. The tight-fitting bounding box is also displayed as a yellow
line.
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